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‘Entities of an essentially new sort are entering the sphere of scientific
thought. Classical science in its diverse disciplines, be it chemistry,

biology, psychology or the social sciences, tried to isolate the
elements of the observed universe —chemical compounds and

enzymes, cells, elementary sensations, freely competing individuals,
what not—expecting that, by putting them together again,

conceptually or experimentally, the whole or system—cell, mind,
society—would result and be intelligible. Now we have learned that
for an understanding not only the elements but their interrelations as

well are required ...’
Ludwig von Bertalanffy, 1901–1972.

‘The whole of the developments and operations of analysis are now
capable of being executed by machinery ... As soon as an Analytical
Engine exists, it will necessarily guide the future course of science.’

Charles Babbage, 1791–1871.
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Preface

Due to political and socio-economic changes and radical technological advances (e.g.
automation, nanotechnology, robotics, computerization) the last decade has revolu-
tionized science and technology and has radically changed the way we apply, man-
age, and evolve information and knowledge. This is particularly true for the new
interdisciplinary scientific field called systems biology. Investigating life from its
molecular basis all the way up to consciousness, populations, and ecosystems, sys-
tems biology covers a staggering range of scientific concepts, methods, and natural
phenomena. In addition to systems science, mathematics, and computer science, key
sub-disciplines of systems biology include biological and medical physics, chem-
istry and biochemistry, biology (e.g. evolutionary, developmental, and cell biology),
physiology, neuroscience, psychology, behavioral sciences, and medicine. Life sci-
ence in general and systems biology in particular are currently witnessing a knowl-
edge and information revolution and proliferation on an unprecedented scale. We
see two main reasons for this development. First, the ever-increasing detail and so-
phistication in which natural systems are being probed, mapped, and modeled. And
second, a shift from a traditionally ‘reductionistic’ to a more holistic, integrative,
system-based approach to understanding the dynamics and organizational principles
of living systems.

The increasingly detailed investigations in systems biology have lead to astro-
nomical mountains of data and information. At a conceptual level, we distinguish
two kinds of data repositories: databases and information bases.

• Databases (or data sets) contain ‘raw’ observational or experimental data, arising
from in vitro, in vivo, and increasingly from in silico (i.e. computer simulation)
experiments. Examples include gene expression repositories, brain scan data, and
toxicity screen data. While databases from systems biology experiments are of-
ten local and proprietary, more and more databases are now becoming publicly
available.

• Unlike databases, information bases contain summarized, consolidated, and de-
rived data, and are typically organized to serve a particular function. Such repos-
itories or systems organize and manage insights obtained from analyzing and
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interpreting experimental data. Most of these repositories are publicly available,
for example, gene and protein information bases such as GenBank, Swiss-Prot,
and ontologies such as the Gene Ontology.

The push towards a systems approach has profound implications for the way the
life sciences will develop in the future and in terms of the role computing science
(including artificial intelligence) will play in this development. The new systems
thinking in biology has triggered the need for

• constructing more ‘complete’ computational models that are able to capture cru-
cial knowledge about and vital systemic properties and mechanisms of biological
entities and processes. Besides reflecting crucial structural characteristics of the
underlying biological objects, such models are endowed with inferential capabil-
ities. Systems of this kind operate either as knowledge-based or decision support
systems (capable of intelligently answering non-trivial questions about a well-
defined small area of systems biology) or as simulation systems. The former class
of systems is often geared towards processing ‘symbols’ (qualitative, i.e., words)
using a logics-based scheme for drawing inferences. This allows them to intel-
ligently answer non-trivial questions about a well-defined small area of systems
biology. The latter uses ‘sub-symbolic’ (quantitative, i.e., numbers) representa-
tions and inference mechanisms, facilitating the simulation of the systemic prop-
erties and dynamics of the biological system under study. Computational models
are considered essential in the quest to a deep understanding of life phenomena,

• developing integrative information infrastructures, methodologies, tools, and sys-
tems that stretch across the entire data-information-knowledge spectrum and
transcend the man-machine dichotomy, and

• bridging the cultural, conceptual, and technological gap among systems biology
disciplines.

An important dimension of the information and knowledge proliferation issue in
systems biology is geography. Systems biology organizations and information repos-
itories and systems are dispersed around the globe. Many future solutions tackling
the information and knowledge needs in systems biology will have to address this
dimension. Grid computing technologies are hailed as the ‘knowledge layer’ of the
global computing network. As such they are destined to play a crucial role in this
endeavor. Methodologies from the field of distributed artificial intelligence (agents)
and artificial life (self-organizing and emergent systems) are important contenders in
making contributions to this development.

The opinions on how to define the field of artificial intelligence vary widely, and
sometimes wildly. For this title we adopt a fairly broad and practical view. In this
view

artificial intelligence embraces concepts, methodologies, and techniques that form
part of a computer system or program that exhibits characteristics akin to

intelligent behavior
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If, for example, a program plays chess on a sufficiently high level, or successfully
and consistently derives useful and non-trivial patterns from data, or if it predicts the
secondary structure of proteins with a satisfactory degree of accuracy, then we would
consider it ‘artificial intelligence’, regardless of the underlying technology. Some key
areas of artificial intelligence include:

• Computational knowledge (bases) and reasoning (under uncertainty). This class
of methodologies is used to explore computational ways of representing (poten-
tially incomplete, inconsistent) knowledge about the world and algorithms that
reason logically using this knowledge base.

• (Machine) Learning. This notion embraces a range of methodologies that aim
to automate the generation of knowledge and reasoning structures needed for
automated reasoning.

• Problem solving and planning. These areas are concerned with tasks that require
to think ahead several steps, to construct sequences of actions towards a set goal,
and to decide which course of action to choose. Methods of this kind employ
knowledge and reasoning and learning approaches.

• Agents. Agent techniques model how an artificial intelligent agent perceives and
communicates with its environment by vision, touch, hearing, or understanding
language, and how agents turn their plans into actions by affecting the environ-
ment, for example, using robot motion or language utterances or by providing
decision support.

We are convinced that artificial intelligence has a great deal to offer to ongoing
and future research and development in systems biology. First, the range of method-
ologies and tools developed by artificial intelligence researchers may provide solu-
tions to systems biology problems where conventional mathematical and statistical
methods prove ineffective or inefficient. Second, artificial intelligence is arguably a
key technology for addressing the ever-increasing data and knowledge proliferation
problem in systems biology and related life science fields. We envisage that artificial
intelligence will make significant contributions to this end (a) by helping to capture,
share, evolve, and use knowledge about vast amounts of life phenomena (potential
techniques include artificial life, machine learning, knowledge management, multi-
agent systems), (b) by providing a methodological and technological platform for
integrating and thus optimizing capabilities of humans and computers (e.g., agents,
human-computer interaction, natural language processing, vision and pattern recog-
nition, computational creativity), (c) by offering a conceptual and methodological
‘pathway’ from data to knowledge (e.g., data mining, knowledge-based systems,
computational theories), and (d) by playing an important role in the industrial de-
sign and development of new compounds, processes, and applications.

We believe that one significant barrier to the widespread use of artificial intel-
ligence methods and tools in systems biology is a lack of knowledge about what
kinds of methodologies and tools exist, how such techniques are used, what their
merits and limitations are, and what obstacles are involved in deploying them. An
important goal of this volume is to address these issues by providing what is si-
multaneously a design blueprint, user guide, research agenda, and communication
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platform for current and future developments in the field. We intentionally adopt a
relatively broad definition of systems biology, embracing a wide range of topics from
biological physics to consciousness research. In this definition the goal of

systems biology is to reconcile the fast-growing volumes of data about
biomolecules, cells, tissues, organisms, populations, and ecosystems into coherent

and systemic views of organization

However, in this volume we do place an emphasis on the molecular dimension of
life phenomena and in one chapter on anatomical and functional modeling the brain.
From an information processing perspective, these areas of research share impor-
tant characteristics, including (a) the desire to relate structure (anatomy) to function
(physiology), (b) the importance of understanding both phylogeny (collective evo-
lution) and ontogeny (individual development) of the phenomenon under study, and
(c) the need to understand holistically the mechanisms of organization and dynamics
of complex biological systems at different levels (i.e., intra- and inter-cellular, and
different ‘-omic’ levels such as genomic, transcriptomic, proteomic, metabolomic,
and so on).

As design blueprint, the book is intended for artificial intelligence researchers,
life scientists, statisticians, computer experts, technology developers, managers, and
other professionals who will be tasked with developing, deploying, and using infor-
mation technology in the context of life science research and development.

As a user guide, this volume seeks to address the requirement of scientists and
researchers to gain an overview and a basic understanding of key artificial intelli-
gence and related methodologies and tools used in life sciences research. For these
users, we seek to explain the key concepts and assumptions of the various techniques,
their conceptual and computational merits and limitations, and, where possible, give
guidelines for choosing the methods and tools most appropriate to the task at hand.
Our emphasis is not on a complete and intricate mathematical treatment of the pre-
sented methodologies. Instead, we aim at providing the users with a clear under-
standing and practical know-how of the relevant methods in the context of concrete
life science problems.

As a research agenda, the book is intended for computer and life science stu-
dents, teachers, researchers, and managers who want to understand the state of the
art of the presented methodologies and the areas in which gaps in our knowledge de-
mand further research and development. To achieve this, we have attempted to cover
a representative range of life science and systems biology areas and artificial intelli-
gence techniques, and we have endeavored to put together a balanced mix of papers
with review, method, and application character. Our aim was to maintain readability
and accessibility of a textbook throughout the chapters, rather than compiling a mere
reference manual. Therefore, considerable effort was made to ensure that the pre-
sented material is supplemented by rich literature cross-references to relevant work.

The book is also intended as a communication platform seeking to bridge the
cultural, conceptual, and technological gap among key systems biology disciplines
(i.e., biology, mathematics, and information technology). To support this goal, we
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have asked the contributors to adopt an approach that appeals to audiences from
different backgrounds.

Clearly, we cannot expect to do complete justice to all four objectives in a single
book. However, we do believe that we have succeeded in taking constructive steps
toward each goal. In doing so, we hope to advance the understanding of artificial
intelligence methodologies and tools relevant to life sciences and systems biology
research. In addition, we hope to outline future challenges and opportunities of artifi-
cial intelligence and important complementary technologies such as Grid computing,
information visualization, high-performance computing, to name but a few.

The design and subsequent deployment and application of artificial intelligence
methods and tools to specific systems biology problems rests on the scientific exper-
tise of the researchers involved and their knowledge about the underlying concepts
and systems. The available machinery of artificial intelligence methods ranges from
machine learning and knowledge-based systems (e.g., decision trees, expert sys-
tems), to highly mathematical models (e.g., Bayesian statistics and hidden Markov
models), and to sophisticated approaches exploiting principles of self-organization
and complexity emergence, including multi-agent systems and artificial life tech-
niques. Likewise, the phenomena investigated and methods used by biologists cover
a staggeringly huge number of complex concepts. Hence, the preparation of this book
must draw upon the experts from many diverse subfields in artificial intelligence,
computer science, and life sciences. In developing this volume, we have assembled
a distinguished set of authors, each recognized as an authority in one or more of
these fields. We have asked these authors to present a selected set of current systems
biology research questions, issues, and areas and to describe how artificial intelli-
gence techniques can help to address them. By emphasizing a highly user-oriented
and practical approach, the authors have attempted to provide valuable and useful
knowledge to researchers and developers dealing with such problems. To support
the research agenda of this book, we have also asked the authors to identify where
future developments are likely to take place and to provide a rich set of pointers to
theoretical and practical works underpinning the presented material. Finally, we in-
vited the authors to design their contributions in such a way that it will encourage
and foster dialog across disciplines and (perceived) boundaries. The result, we hope,
is a book that will be valuable for a long time, as summary of where we are, as a
practical user guide for making informed choices on systems biology projects, and
as roadmap for where we need to go in order to improve and further develop future
information technology in the life sciences.

This book contains eleven technical chapters, dealing with specific areas of sys-
tems biology (see table below). In terms of the underlying life science field, they
may be roughly grouped into three broad categories, namely biochemistry (first two
chapters), (molecular) biology (Chapters 3 to 10), and neuroscience (Chapter 11).
Organizing the chapters in this way roughly mirrors the ‘systems stack’ of life—
biochemistry, physiology, and psychology. Within each category, the chapters are
presented in an order that reflects as much as possible the degree of complexity and
organization of the investigated phenomenon. The table also illustrates the different
artificial and information technology techniques discussed in the various chapters.
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Table 1. Organization of chapters and systems biology and information technology topics and
techniques.

Chapter Chapter Systems Information
Number Title Biology Technology

1 Lazy Learning for Predictive
Toxicology based on a Chemical

Ontology

toxicology machine learning

2 QSAR Modeling of Genotoxicity on
Non-Congeneric Sets of Organic

Compounds

genotoxicity machine learning,
QSAR, QSPR

3 Characterizing Gene Expression
Sequences using a Hidden Markov

Model

gene expression HMM

4 Analysis Of Large-Scale mRNA
Expression Data Sets By Genetic

Algorithms

gene expression genetic algorithms,
machine learning

5 A Data-Driven, Flexible Machine
Learning Strategy for the

Classification of Biomedical Data

proteomics, mass
spectroscopy

machine learning,
classification

6 Cooperative metaheuristics for
exploring proteomic data

proteomics machine learning,
evolutionary
algorithms

7 Integrating gene expression data,
protein interaction data, and

ontology-based literature search

proteomics, gene
expression

info integration
and retrieval, text

mining
8 Ontologies in Bioinformatics and

Systems Biology
bioinformatics ontologies,

knowledge-based
techniques

9 Natural Language Processing in
Systems Biology

annotation,
database curation

NLP, text mining,
ontologies

10 Systems Level Modeling of Gene
Regulatory Networks

gene regulation
and expression

systems modeling,
Bayesian networks

11 Computational Neuroscience for
Cognitive Brain Functions

neuroscience systems modeling

Chapter 1 discusses the problem of predicting toxic properties of chemical com-
pounds. It reviews several machine learning approaches, which traditionally repre-
sent compounds and properties as vectors of attribute-value pairs. The authors pro-
pose a new methodology to represent this type of data, which may exploit structure-
activity relationships (the dependence of the biological effects of a chemical upon its
molecular structure produces a structure-activity relationship) in a more meaning-
ful fashion. Such an information representation model is based on the application of
knowledge derived from a chemical ontology. This model and similarity-based ma-
chine learning methods are assessed. The predictive performance obtained is compa-
rable to that shown by other methods based on structure-activity relationships.
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In contrast heavily-researched congeneric toxic chemicals (i.e., chemicals be-
longing to well-defined families of molecular structures), Chapter 2 investigates the
toxic properties of non-congeneric substances. This class of compounds constitutes
a much harder problem. It reviews advances in the prediction of genotoxicity (refers
to the damage a toxin can inflict on DNA molecules) of non-congeneric, organic
compounds. Comparisons between important predictive methods, such as neural-
network-based methods, are implemented and evaluated. This study suggests that
neural networks can provide the basis for more powerful structure-activity predic-
tion models than traditional linear techniques.

Chapter 3 moves up to the transcriptomic level of the ‘systems stack’ of life
and addresses the problem of describing and classifying temporal gene expression
data (mRNA abundance levels measured at different time points). The authors ap-
ply hidden Markov models to detect important temporal patterns in the data. This
approach is based on Markov chains that model sequences of events where the prob-
ability of an event occurring depends on the occurrence of the preceding event. The
authors present a procedure for the identification of linguistic identifiers, which may
support annotation of gene expression data. They discuss current limitations and re-
quirements for understanding complex, non-obvious temporal relationships.

The selection of the most relevant predictive characteristics or features (e.g.,
genes in gene expression analyses) for building accurate and efficient classifiers is
a fundamental problem in genome-wide studies. Chapter 4 reviews powerful opti-
mization techniques based on genetic algorithms to perform feature selection in gene
expression studies. Genetic algorithms implement optimization and search inspired
by key principles of evolution (inheritance, variation, and selection based on fitness).
The authors discuss design principles, which are important to understand when and
how to apply a particular option. Different techniques for information representation,
search and classification are compared. Current limitations, strengths and recommen-
dations for future research are offered.

Chapter 5 addresses the problem of improving classification tasks for biomedi-
cal spectral data, such as those acquired from mass spectroscopy and magnetic reso-
nance experiments. The authors discuss two important factors: The curse of dimen-
sionality and curse data sparsity. This double curse is looming large over modern
system-wide high-throughput studies in systems biology. It refers to the undesired
situation where the number of individual measurements taken per individual sample
(or observation) is extremely high while at the same the number available samples
is relatively small. Gene expression experiments, for example, are frequently visited
upon by this twin evil. They describe a classification framework known as statistical
classification strategy to address problems of this nature. Diverse pre-processing and
classification procedures are introduced and compared. The authors argue that this
framework is able provide robust and meaningful classification solutions for complex
classification problems (e.g., classification of mass-spec data).

Metaheuristic methods represent an intricate yet sophisticated strategy to address
combinatorial optimization tasks, such as multiple sequence alignment. Multiple se-
quence alignment is concerned with establishing a degree of similarity, homology,
or other degree of relatedness between two or more sequential biomolecules (usually
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nucleotide or amino acid sequences) based on a an ‘aggregated match’ score of the
compared sequences. The metaheuristic represents this problem as search of an ex-
tremely large search space and uses several processing entities to explore this space.
These entities exchange information among them to approximate optimal solutions.
Co-operative metaheuristic processes may support a more effective and efficient op-
timization based, for example, on evolutionary or genetic computation algorithms.
Chapter 6 discusses advances in co-operative metaheuristic techniques, which are
tested on protein identification (given a mixture containing N different types of pro-
teins, protein identification refers to the task of determining which types these are;
this task becomes highly complex if some of the proteins in the mixture are novel)
and multiple sequence alignment tasks. Advantages, challenges and design factors
are discussed to promote the application of this approach.

A fundamental task in systems biology is the integration of multiple data sources
to support hypothesis generation and validation. Artificial intelligence together with
advances from networking and Grid computing technologies could facilitate the de-
velopment of information infrastructures required to tackle these challenges. Chap-
ter 7 presents a platform for linking gene expression, interaction (gene-gene, gene-
protein, protein-protein), and scientific literature data to achieve a systemic visu-
alization of interaction networks. The authors discuss different data analysis tools
including clustering and ontology-driven literature search. The application and use-
fulness of this framework is illustrated by an analysis of energy-related genes and
protein complexes, that is, molecules involved in the transformation, exchange, and
use of energy in cellular processes.

Data integration, literature search, natural language processing and annotation
tasks (characterization of genes, proteins and other biological entities and processes)
require a profound understanding of how biology knowledge may be formally rep-
resented and harmonized. Biological ontologies have become a crucial tool for rep-
resenting and sharing knowledge in systems biology. A biological ontology refers to
an explicit formal specification of how to represent the objects, concepts and other
entities that are assumed to exist in (systems) biology or its sub-disciplines and the
relationships that hold among these entities. Chapter 8 introduces the problem of
constructing and exploiting ontology-driven knowledge in systems biology. The au-
thor provides and overview and conceptual background and discuss design tools and
key applications in bioinformatics, for example, in complex database querying sys-
tems.

Chapter 9 reviews applications of natural language processing (NLP) for sup-
porting various tasks relevant to systems biology. Natural language processing is con-
cerned with the use of computers to process written and spoken language for some
practical and useful purpose. The chapter discusses the connection between NLP
techniques and complex biological problems. It illustrates important NLP-based sys-
tems and applications, including the curation of biological databases and data mining
for functional genomics. Database curation is concerned with the need to maintain
the correctness, consistency and currency of biomedical databases in the light of new
facts and emerging knowledge. The computational requirements, limitations and de-
sign issues for achieving advanced NLP systems in bioinformatics are also discussed.
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Chapter 10 overviews the application of neural networks and statistical learn-
ing approaches to aid the modeling of genetic networks. Genetic networks govern
which genes are expressed (active) in a cell at any given time, how much product
(RNA or protein) is made from each one, and the cell’s responses to diverse envi-
ronmental cues and intracellular signals. Fundamental concepts on inferring genetic
networks from gene expression data are introduced. The chapter places emphasis
on data-driven methods, such as clustering-based and graphical modeling methods,
for the study of genetic networks. The authors also discuss the important problem
known as generative inverse modeling, in which gene expression data can be derived
(generated) by simulation from computational models (here: Bayesian networks) rep-
resenting genetic networks.

Finally, Chapter 11 describes and evaluates a computational, integrative frame-
work for studying brain function. The approach described in this chapter integrates
information originating from different levels of higher brain function. This model
may be used to implement, for example, simulations of neuronal responses or the
effect of pharmacological agents (e.g., therapeutic drugs). The presented analyses
show how an important cognitive factor known as attentional bias can affect other
important processes such as selective working memory. Attentional bias refers to the
ability of the brain to cope with the massive amount of sensory input via selective
attention causing certain inputs to be processed in a preferential fashion.

The book is designed to be used by the practicing professional tasked with the
organization and analysis of life science and systems biology data, and the mod-
eling of life phenomena and systems. It is also intended to serve as a text for a
senior undergraduate- or graduate-level course in cheminformatics, bioinformatics,
neuroinformatics, complex systems studies, systems biology, or topics on artificial
intelligence. In a quarter-length course, one lecture can be spent on each chapter, and
a project may be assigned based on one of the topics or techniques discussed in a
chapter. In a semester-length course, some topics can be covered in greater depth,
covering more of the formal background of the discussed methods. Each chapter
includes recommendations for further reading.
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Lazy Learning for Predictive Toxicology based on a
Chemical Ontology

Eva Armengol and Enric Plaza

Artificial Intelligence Research Institute (IIIA-CSIC)
Campus UAB, 08193 Bellaterra, Catalonia (Spain).
E-mail: {eva, enric}@iiia.csic.es

Summary. Predictive toxicology is concerned with the task of building models capable of
determining, with a certain degree of accuracy, the toxicity of chemical compounds. We dis-
cuss several machine learning methods that have been applied to build predictive toxicology
models. In particular, we present two lazy learning lazy learning techniques applied to the
task of predictive toxicology. While most ML techniques use structure relationship models to
represent chemical compounds, we introduce a new approach based on the chemical nomen-
clature to represent chemical compounds. In our experiments we show that both models, SAR
and ontology-based, have comparable results for the predictive toxicology task.

1 Introduction

Thousands of new chemicals are introduced every year in the market for their
use in products such as drugs, foods, pesticides, cosmetics, etc. Although these
new chemicals are widely analyzed before commercialization, the effects of many
of them on human health are not totally known. In 1973 the European Commis-
sion started a long term program consisting on the design and development of
toxicology and ecotoxicology chemical databases. The main idea of this program
was to establish lists of chemicals and methods for testing their risks to the peo-
ple and the environment. Similarly, in 1978 the American Department of Health
and Human Services established the National Toxicology Program (NTP) with the
aim of coordinating toxicological testing programs and developing standard meth-
ods to detect potentially carcinogenic compounds (see more information in http:
//www.ntp-server.niehs.nih.gov).

When a chemical compound is suspected to be toxic, it is included in the NTP list
in order to perform standardized experiments to determine its degree of toxicity. Ba-
sically, there are two kinds of experiments: in vitro and in vivo. In vitro experiments
are carried out on salmonella and the outcome are quantitative results of several
physical-chemical parameters. In vivo experiments are performed on rodents (rats
and mice), and there are, in turn, two kind of experiments: short-term (90 days) and
long-term (2 years). Usually, short-term experiments are performed as a means to

1
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obtain a first clue of the toxicity of a compound. It should be emphasized that to de-
termine the toxicity of chemical compounds on rodents is an expensive process that,
in addition, offers results that are not conclusive concerning the toxicity in humans.

The use of computational methods applied to the toxicology field could con-
tribute to reduce the cost of experimental procedures. In particular, artificial intel-
ligence techniques such as knowledge discovery and machine learning (ML) can
be used for building models of compound toxicity (see [18] for an interesting sur-
vey). These models reflect rules about the structure-activity relationships (SAR) of
chemical compounds. Such rules are used to predict the toxicity of a chemical com-
pound on the basis of the compound’s chemical structure and other known physical-
chemical properties. The construction of this model is called predictive toxicology.

The Predictive Toxicology Challenge (PTC) was a competition held in 1990 with
the goal of determining the toxicity of 44 chemical compounds based on both exper-
iments in the lab and the predictive toxicology methods. The results of this challenge
[4, 10] showed that the best methods are those taking into account the results of the
short-term tests. A second challenge was announced in 1994. This challenge was
mainly focused on using ML techniques and results can be found in [30]. The last
challenge held in 2001 [19] was also focused on ML techniques and most of them
used SAR descriptors. In this challenge most of authors proposed a relational repre-
sentation of the compounds and used inductive techniques for solving the task.

Currently there still are two open questions in predictive toxicology: 1) the rep-
resentation of the chemical compounds, and 2) which are the characteristics of a
chemical compound that allows its (manual or automatic) classification as a poten-
tially toxic.

In this chapter we describe several approaches to both questions: we propose a
representation of the chemical compounds based on the IUPAC (International Union
of Pure and Applied Chemistry) chemical nomenclature and a lazy learning tech-
nique for solving the classification task.

2 Representation of chemical compounds

One of the most important issues for developing computational models is the rep-
resentation of domain objects, in our case chemical compounds. In the toxicology
domain, there are several key features of the molecule to be taken into account
for predicting toxicity. First, there are some concerning to the basic elements of
the molecule, such as number of atoms, bonds between atoms, positions, electri-
cal charges, etc. Second, there are physical-chemical properties of the molecule such
as lipophilic properties, density, boiling point, melting point, etc. Finally, there often
exists prior information about the toxicity of a molecule, which was obtained from
studies on other species using different experimental methods.

In the literature, there are two approaches to represent chemical compounds:
1) those representing a compound as a vector of molecular properties (proposi-((
tional representation), and 2) those explicitly representing the molecular structure
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atom(tr339,1,o,-1). atom(tr339,2,n,1). atom(tr339,3,o,0). atom(tr339,4,c,0).
atom(tr339,5,c,0). atom(tr339,6,c,0). atom(tr339,7,c,0). atom(tr339,8,o,0).
atom(tr339,9,c,0). atom(tr339,10,n,0). atom(tr339,11,c,0). atom(tr339,12,h,0).
atom(tr339,13,h,0). atom(tr339,14,h,0). atom(tr339,15,h,0). atom(tr339,16,h,0).
atom(tr339,17,h,0). bond(tr339,1,2,1). bond(tr339,2,3,2). bond(tr339,2,4,1).
bond(tr339,4,5,1). bond(tr339,5,6,2). bond(tr339,5,12,1). bond(tr339,6,7,1).
bond(tr339,6,13,1). bond(tr339,7,8,1). bond(tr339,7,9,2). bond(tr339,8,14,1).
bond(tr339,9,10,1). bond(tr339,9,11,1). bond(tr339,10,15,1). bond(tr339,10,16,1).
bond(tr339,11,17,1).

atomcoord(tr339,1,3.0918,-0.8584,0.0066). atomcoord(tr339,2,2.3373,0.0978,0.006).
atomcoord(tr339,3,2.7882,1.2292,0.0072). atomcoord(tr339,4,0.8727,-0.1152,-0.0023).
atomcoord(tr339,5,0.3628,-1.4003,-0.0094). atomcoord(tr339,6,-1.0047,-1.6055,-0.0172).
atomcoord(tr339,7,-1.868,-0.5224,-0.0174). atomcoord(tr339,8,-3.2132,-0.7228,-0.0246).
atomcoord(tr339,9,-1.355,0.7729,-0.0098). atomcoord(tr339,10,-2.2226,1.8712,-0.0096).
atomcoord(tr339,11,0.018,0.971,0.0028). atomcoord(tr339,12,1.0343,-2.2462,-0.0092).
atomcoord(tr339,13,-1.3998,-2.6107,-0.0234). atomcoord(tr339,14,-3.4941,-0.7673,0.8996).
atomcoord(tr339,15,-3.1824,1.7311,-0.0147). atomcoord(tr339,16,-1.864,2.7725,-0.0043).
atomcoord(tr339,17,0.419,1.9738,0.0087).

Fig. 1. Representation of the chemical compound TR-339 using Horn clauses.

of a compound (relational representation). In the follow sections we briefly ex-
plain these representations (details can be found at http://www.informatik.
uni-freiburg.de/˜ml/ptc/ and then we will introduce our own representa-
tion based on the chemical ontology used by the experts.

SAR and Qualitative SAR (QSAR) use equation sets that allow the predic-
tion of some properties of the molecules before the experimentation in the labo-
ratory. In analytical chemistry, these equations are widely used to predict spectro-
scopic, chromatographic and some other properties of chemical compounds. There
is a number of commercial tools allowing the generation of these descriptors:
CODESSA [22], TSAR (Oxford molecular products, http://www.accelrys.
com/chem/), DRAGON http://www.disat.inimib.it/chm/Dragon.
htm), etc. These tools represent a chemical compound as a set of attribute value
pairs. This kind of representation is called propositional in ML. For instance, the de-
scription of a car using propositional description is the following: {(size, medium),
(builder, BMW), (model, 250), (color, white)}.

In addition to the knowledge about a particular compound, it is also useful to
handle general chemical knowledge, what is called background knowledge in ML.
Automatic methods that use background knowledge often consider compounds as a
structure composed of substructures. This kind of representation is called relational
because an object is represented by the relationships between their component ele-
ments. For instance, a car can be described composed of subparts like the chassis and
the engine. In turn, each one of these parts can be described by their own subcompo-
nents.

A form of relational representation is logic programming, that represents the re-
lations among elements by a set of predicates. Thus, a set of predicates can be used
to establish the relationship among the atoms of a molecule and also handle basic
information about the compounds (such as molecular weight, electrical charge, etc.).
Fig. 1 shows the representation of the chemical compound TR-339 (the 2-amino-4-
nitrophenol) of the NTP data set. In this representation, there are three predicates:
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• atom(C, A, E, V) gives information about an atom. C is the chemical compound
where the atom belongs; A is the number of the atom in the chemical compound;
E is the chemical element; and V is the electrical charge of the atom. For in-
stance, atom(tr339, 1, O, -1) is the atom 1 of the compound tr339, It is an oxygen,
and its charge is -1.

• bond(C, A1, A2, B) indicates the kind of bond between two atoms. C is the chem-
ical compound where the bond belongs; A1 and A2 are the atoms of the com-
pound connected by the bound; B is the kind of bond: simple, double or triple.
For instance, bond(tr339, 9, 10, 1) is a simple bound of the chemical compound
tr339 that connects the atoms 9 and 10.

• atomcoord(C, A, X, Y, Z). It gives the spatial coordinates of the compound atoms.
C is the chemical compound, A is the atom and X,Y and Z are the spatial coor-
dinates. For instance, atomcoord(tr339, 1, 3.0918, -0.8584, 0.0066) indicates that
the atom 1 of the compound tr339 has as coordinates (3.0918, -0.8584, 0.0066).

Fig. 1 represents the compound TR-339 with 17 atoms (3 oxygen, 2 nitrogen, 6
carbon and 6 hydrogen); there are double bonds between atoms 2 and 3; 5 and 6; 7
and 9; and 4 and 11 (see Fig. 1); and the rest of bonds are simple.

The representation introduced in [8] has a different approach: the compounds are
organized according to their active centers (chemically identified with weak bonds).
Active centers are atoms or groups of atoms responsible of the reactivity of the com-
pound with biological receptors (for instance, toxicity). With this approach, each
resulting part of the compound receives a code, therefore the chemical substances
are represented as a string of codes.

The Viniti’s group [8] proposed the fragmentary code of substructure superpo-
sition (FCSS) language, allowing the description of chemical compounds as a set of
substructures containing the active centers. The elements of the FCSS language are
chains of carbon pairs that begin and end with the descriptors of active centers. For
instance, the chemical compound TR-339 described in FCSS is the following code:
9 6,06 0700151 0700131 0700331 1100331 0200331 0764111 0263070 0262111.

2.1 Representation using a chemical ontology

The representation of chemical compounds we propose is the chemical ontology
based on the terminology used by chemists, i.e the IUPAC nomenclature (http:
//www.chem.qmul.ac.uk/iupac/). Also we take into account the experi-
ence of previous research (specially the works in [17, 15, 8]) since we represent
a chemical compound as a structure with substructures. Our point is that there is no
need to describe in detail the properties of individual atom properties in a molecule
when the domain ontology has a characterization for the type of that molecule. For
instance, the benzene is an aromatic ring composed by six carbon atoms with some
well-known properties. While using SAR models would represent a given compound
as having six carbon atoms related together (forming an aromatic ring), in our ap-
proach we simply state that the compound is a benzene (abstracting away the details
and properties of individual atoms).
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compound

alkane

cyclic

functional-group

acyclic-alkane

cycloalkane

acyclic-saturated

acyclic-unsaturated

saturated-cycloalkane
unsaturated-cycloalkane

aldehide

nitrocompound

cetone

acetate

ether

acid

P-compound

….

phosphate
phosphite
phosphorothioate
phosphamine
….

amonium
amide
amine
nitro-deriv
azo-deriv
nitrile
….

metane
ethane
propane
….

Heterocycles

no-heterocyles

aromatic-heterocycle

no-aromatic-heterocycle

aromatic-no-heterocycle

no-aromatic-no-heterocycle
i

Fig. 2. Partial view of the Toxicology ontology

Fig. 2 shows a partial view of the chemical ontology we used for representing
the compounds in the Toxicology data set. This ontology is based on the chemical
nomenclature which, in turn, is a systematic way of describing molecules. In fact, the
name of a molecule, when the standard nomenclature is used, provides to the chemist
with all the information needed to graphically represent its structure. According to
the chemical nomenclature rules, the name of a compound is usually formed in the
following way: radicals’ names + main group. Commonly, the main group is the part
of the molecule that is either the largest or that located in a central position; how-
ever, there is no general rule to establish them. Radicals are groups of atoms usually
smaller than the main group. A main group can have several radicals and a radical
can, in turn, have a new set of radicals. Any group of atoms could be main group or
radical depending on their position or relevance on the molecule, i.e., the benzene
may be the main group in one compound and a radical in some other compounds.

The implementation of this representation is done using the feature terms formal-
ism introduced in [1]. This formalism organizes concepts into a hierarchy of sorts (as
that of Fig. 2), and represent descriptions and individuals as collections of features
(functional relations). Sorts have an informational order relation (�) among them,
where ψ � ψ′ means that ψ has less information than ψ′ or, equivalently, that ψ is
more general than ψ′. The minimal element (⊥) is called any and it represents the
minimum information; when a feature value is not known it is represented as hav-
ing the value any. All other sorts are more specific that any. The most general sort in
Fig. 2 is compound. This sort has three subsorts: alkane, cyclic and functional-group,
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compound

main-group = compound
p-radicals    = position-radical

position-radical

position = position
radicals    = compound

Fig. 3. Features corresponding to sorts compound and position-radical.

O
O

N

NH2

OH TR-339 =

⎡
⎢
⎡⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

compound
⎡⎡
main-group

⎡⎡
.
=benzene

p-radicals .
=

⎡
⎢
⎡⎡
⎢⎢⎢⎣

position-radical
⎡⎡
position

⎡⎡
.
=one

radicals
⎣⎣ .

=

[
compound

[[
main-group

[[
.
=alcohol

]
⎤
⎥
⎤⎤
⎥⎥⎥⎦

⎡
⎢
⎡⎡
⎢⎢⎢⎣

position-radical
⎡⎡
position

⎡⎡
.
=two

radicals
⎣⎣ .

=

[
compound

[[
main-group

[[
.
=amine

]
⎤
⎥
⎤⎤
⎥⎥⎥⎦

⎡
⎢
⎡⎡
⎢⎢⎢⎣

position-radical
⎡⎡
position

⎡⎡
.
=four

radicals
⎣⎣ .

=

[
compound

[[
main-group

[[
.
=nitro-deriv

]
⎤
⎥
⎤⎤
⎥⎥⎥⎦

⎤
⎥
⎤⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Representation of TR-339, 2-amino-4-nitrophenol, with feature terms.

which in turn, have other subsorts. The sort methane is more specific than the sort
acyclic-alkane; while the sorts methane and ethane are not directly comparable.

Each sort has a collection of features characterizing the relations for this sort.
For instance, Fig. 3 shows that the sort compound has two features: main-group and
p-radicals. The values of the feature main-group have to be of the sort compound,
while the feature p-radicals has values of sort position-radical. The sort position-
radical (Fig. 3) has, in turn, two features: radicals and position. The feature radicals
has values of sort compound (since radicals themselves are compounds). The feature
position indicates where the radical(s) is bound to the main group.

Fig. 4 shows the representation of the chemical compound TR-339, 2-amino-4-
nitrophenol, using feature terms. TR-339 has a benzene as main group and a set of
three radicals: an alcohol in position one; an amine in position two; and a nitro-deriv
in position four. Notice that this information has been directly extracted from the
chemical name of the compound following the nomenclature rules.

This kind of description has the advantage of being very close to the representa-
tion that an expert has of a molecule from the chemical name. We have translated,
with the support of a chemist, the compounds of the NTP data set to this represen-
tation based on the chemical ontology. A shortcoming of the representation based
on the chemical name of a compound is the existence of synonymous names. Cur-
rently, we have selected one of the possible names and we codified the compound
with feature terms using this selected name.
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3 The predictive toxicology task

The NTP data set contains reports of experiments on chemical compounds in or-
der to establish whether they are carcinogenic. Each experiment is performed in two
species: rats and mice. Moreover, because the carcinogenic activity of the compounds
has proved to be different in both species and also among the sex of the same species,
some computational approaches take separately the results of the experiments hav-
ing, in fact, four data sets: male rats (MR), female rats (FR), male mice (MM) and
female mice (FR). The chemical compounds can be classified in each data set into
two solution classes: positive (i.e., when the compound is carcinogenic) and negative
(i.e., when the compound is not carcinogenic).

The goal of predictive toxicology is to develop models able to predict whether a
chemical compound is toxic or not. The construction of these models by computer
assisted techniques takes into account the toxicity observed in some molecules to
extract theories about the toxicity on families of molecules. Early systems focused
on predictive toxicology were DEREK [27] and CASE [23]. DEREK is a knowledge-
based system based on a set of rules describing relations between structural features
and their associated toxicity. To determine the toxicity of a new compound, DEREK
compares this new compound with all the compounds of the knowledge base. CASE
has a base of substructures labeled as active or inactive according to their toxicity.
Thus, to determine the toxicity of a new compound, CASE extracts all its possible
substructures and labels each one as active or inactive using the base of substructures.
Then CASE uses statistical techniques to determine the global toxicity of the new
compound.

There are two families of methods currently used to solve the predictive toxicol-
ogy task: statistics and ML. A widely used statistical method is regression analysis
of molecular descriptors. This technique finds equations that correlate the toxicity
of a compound with some physical-chemical properties [21] or with the presence
of some functional groups [7]. Probabilistic reasoning such as Bayesian networks
has also been widely used to build classifiers [32] or in combination with other tech-
niques like multi-way recursive partitioning [25] and artificial neural networks [6, 5].

The focus of the second PTC [30] was to use ML to address the predictive tox-
icology problem. From the ML point of view, the goal of the predictive toxicology
is a classification task, i.e., toxic compounds are classified as belonging to the posi-
tive class and non-toxic compounds are classified as belonging to the negative class.
Moreover, the classification task has to be solved separately for each data set (MR,
FR, MM and FM).

The majority of this work was concerned with using inductive techniques to con-
struct toxicity models. Given a solution class C, a set of examples P belonging to
C, and a set of examples N that do not belong to C, the goal of inductive learning
techniques is to build a general description d of C such that 1) d is satisfied by all
the examples in P , and 2) d is not satisfied by the examples in N .

Some inductive techniques build decision trees as predictive classifiers. The rep-
resentation of the compounds is propositional (in the form of attribute value pairs)
and the attributes are the values of molecular properties (molecular weight, physical-
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chemical properties, etc.) and results of toxicity of some other tests. The main short-
coming of decision trees is the propositional representation of the compounds due to
two reasons: 1) the high number of descriptors for a compound, and 2) the fact that
not all them are equally relevant in order to predict the toxicity. Most approaches use
ML and statistical methods to select feature subsets.

A widely used relational learning technique is inductive logic programming
(ILP). The main idea of ILP is to induce general descriptions explaining a set of
examples represented using logical predicates. The first ILP program used to induce
SAR models was PROGOL [29]; it was applied to a set of 230 aromatic and het-
eroaromatic nitro compounds and the resulting model was compared with models
obtained by both linear regression and neural networks with backpropagation. PRO-
GOL’s results were very encouraging since the final rules were more understandable
than those obtained using the other methods.

Other relational representation approaches consider a compound as a group of
substructures instead of sets of atoms. These approaches consider that if a substruc-
ture has known toxic activity, then a compound having this substructure can also have
toxic activity. Pfahringer and Gini proposed a more abstract representation of the
chemical compounds using the concept of functional groups (similar to the chemical
ontology we use, see Sect. 2.1). This abstraction improves the search process since
it represents substructures rather than describing each atom and atom bonds.

Several authors [14, 17, 11] represent the compounds as labeled graphs and this
allows the use of graph search algorithms for detecting frequent substructures of
the molecules in the same class. Following this approach, SUBDUE [20] discovers
substructures beginning with substructures matching a single vertex in the graph and
extending them by selection of the best substructure in each iteration. At the end
of the process, SUBDUE has a hierarchical description of the data in terms of the
discovered substructures. SMILES [31], also following this approach, detects the set
of molecular substructures (subgraphs) more frequently occurring in the chemical
compounds.

There are also hybrid approaches, such as the one proposed by Gini et al. [16].
This approach combines the toxicity results given by a set of fragments of structures
with an artificial neural network that uses descriptors of the chemical compounds.
Thus, first the authors defined a set of fragments that experts recognize as structures
responsible for carcinogenicity. Then they developed a module that searches in the
chemical compound structure for the presence of one or more of these fragments.
On the other hand, they also used an artificial neural network that assessed the car-
cinogenicity of a chemical compound taking into account its molecular descriptors.
Finally, an ILP module is used to combine the toxicity assessment of the two mod-
ules.

A problem with inductive techniques is that the high variability of chemical com-
pounds poses great difficulties to find general rules describing the classes appropri-
ately. In the next section we will introduce our work on lazy learning techniques for
predictive toxicology.
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Fig. 5. a) 2-methyl-4 aminophenol. b) 2-amino-4-nitro-6-ethanophenol. c) structure shared by
the chemical compounds a) and b). compound and N-compound are the most specific sort (lub)
of the radicals in the respective positions, according to the sort/subsort hierarchy in Fig. 2

3.1 Lazy learning techniques

Inductive learning techniques try to extract general rules describing the cases in each
class. This kind of techniques has some difficulties in dealing with domains, like
toxicology, where entities are subject to high variability. Lazy learning techniques,
on the other hand, are based on the retrieval of a set of solved problems (cases)
similar to a specific problem. A critical issue in lazy learning is the evaluation of
similarity between two cases, as this forms the basis for identifying a suitable set
of cases or ‘promising’ candidates. Several authors use the concept of similarity
between chemical compounds: HazardExpert [12] is an expert system that evaluates
the similarity of two molecules based on the number of common substructures; Sello
[28] also uses the concept of similarity but the representation of the compounds is
based on the energy of the molecules.

Shaud

When the domain objects have a propositional representation, the similarity between
two objects is assessed by computing the similarity of attributes and then aggregating
their similarities to obtain a global measure of the similarity of the objects. Shaud
is a similarity measure able of assessing the similarity between structured objects
represented as feature terms. Given two objects Shaud distinguishes two parts in
their structure: one formed by the features present in both objects, called the shared
structure; and another formed by those features that are only present in one of the
objects (but not the other) called the unshared structure. For instance, Fig. 5 shows
that the molecules a) and b) have in common the structure c). In this example, the
unshared structure is only the radical ethane in position six of the molecule b).

Shaud [2, 3] assesses the similarity of two feature terms by computing the simi-
larity of the shared structure and then normalizing this value taking into account both
the shared and the unshared structure. The comparison of the shared structure is per-
formed element by element comparing the position of their sorts into the sort/subsort
hierarchy in the following way:
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S(sort(ψ1), sort(ψ2)) =
{

1 if sort(ψ1) = sort(ψ2)
1 − 1

M level(lub(sort(ψ1), sort(ψ2)) otherwise

The idea is that the similarity between two values depends on the level of the
hierarchy (see Fig. 2) where their least upper bound (lub) is situated in the sort hier-
archy: the more general lub(v1, v2) the smaller is the similarity between v1 and v2.
M is the maximum depth of the sort hierarchy.

For instance, in order to assess the similarity of the molecules a) and b) in Fig.
5, Shaud takes into account the structure shared by both molecules (c) and com-
pares the elements composing that structure (Fig. 6). The similarity assessment of
the shared structure is the following:

• the main group that is benzene in both molecules, therefore

S(benzene, benzene) = 1

• a radical in position 1 that is an alcohol in both molecules, therefore

S(alcohol, alcohol) = 1

• a radical in position 2 that is a methane in the molecule a) and an amine in the
molecule b), therefore

S(methane, amine) = 1 − 1
M

level(lub(methane, amine))

and since lub(methane, amine) = compound, M = 5, and level(compound) =
5 (see Fig. 2) then

S(methane, amine) = 1 − 1
5
level(compound) = 1 − 1

5
5 = 0

• a radical in position 4 that is an amine in the molecule a) and a nitro-derivate
(nitro-deriv) in the molecule b), therefore

S(amine, nitro-deriv) = 1 − 1
M

level(lub(amine, nitro-deriv))

and since lub(amine, nitro-deriv) = N-compound, M = 5 and level(N-compound)
= 3 (see Fig. 2) then

S(amine, nitro-deriv) = 1 − 1
5
level(N-compound) = 1 − 1

5
3 = 0.4

Because these are simple molecules where the radicals themselves have no radicals,
the similarity of the common part is

S(benzene, benzene) + S(methane, amine) + S(amine, nitro-deriv) = 2.4

Then, this value is normalized by the total number of nodes (those of the shared
structure plus those of the unshared structure), i.e., S(a, b) = 2.4

5 = 0.48.
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Fig. 6. Formal representation of molecule c) shown in Fig. 5

We have performed several experiments using the k-nearest neighbor (k-NN)
algorithm [13]. Given a new problem p, the k-NN algorithm retrieves the k most
similar cases and classifies p into the class resulting of the aggregation of the classes
where the k cases belong. There are two key issues in the k-NN algorithm: the simi-
larity measure and the aggregation. In our experiments, we took Shaud as similarity
and the majority class (MC) for aggregation (i.e., the new compound is classified
as belonging to the class that most of the k retrieved precedents belong to). How-
ever, our preliminary experiments using the majority criterion with different values
of k did not provide a satisfactory accuracy. We proposed the Class Similarity Aver-
age (CSA) criterion [3], a domain-independent criterion that takes into account the
similarity of the k most similar cases and also the solution class where they belong.

For each compound p to be classified, Shaud yields the similarity between p and
each one of the k most similar cases. CSA will compute the average of the similarity
of the cases in the same class; then the class with higher average similarity is selected
as solution for p. More formally, let p be the compound to be classified and Rk the set
of the k cases most similar to p according to the Shaud results. Each case ci ∈ Rk

has the following data associated: 1) the structural similarity si between p and ci,
i.e., si = Shaud(p, ci); and 2) for each data set (i.e., MR, FR, MM and FM) the
compound ci is positive or negative.

For each data set, let A+ be the set containing cases ci ∈ Rk with positive
activity, and A− be the set containing cases ci ∈ Rk with negative activity. From
the sets A+ and A− we define sim+ and sim− as the respective averages of the
similarities of positive and negative cases retrieved, i.e.,

sim+ = 1
|A+|

∑
ci∈A+ si and sim− = 1

|A−|
∑

ci∈A− si

The carcinogenic activity of a compound c is obtained according to the following
criterion (CSA): if sim-pos < sim-neg then c has negative carcinogenic activity else
c has positive carcinogenic activity.
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Table 1. Distribution of the examples in the four PTC data sets and the accuracy results ob-
tained by two of the authors presented at the PTC compared with the accuracy of Shaud with
k = 5 and the MC and CSA criteria.

Composition PTC Acc (k = 5)
data set

MR
FR

MM
FM

+ − total
81 125 206
66 140 206
63 139 202
78 138 216

Ohwada Boulicaut
55.59 55.88
65.43 68.66
64.11 63.49
63.69 60.61

MC CSA
48.06 62.13
49.03 64.08
60.40 64.85
59.72 62.50

Table 1 shows the results of using k-NN with k = 5 both MC and the CSA
criteria together with the accuracy of two methods presented by [26, 9] in the PTC.
Notice that the accuracy using the CSA criterion is higher than using MC. Also, the
accuracy taking separately positive and negative examples is more balanced using
the CSA criterion. In particular, for the MR data set, the accuracies using MC are
Acc+ = 35.80 and Acc− = 56 whereas the accuracies using CSA are Acc+ = 55.55
and Acc− = 66.40.

Lazy induction of descriptions

Lazy induction of descriptions (LID) is a lazy concept-learning technique for clas-
sification tasks in case-based reasoning (CBR). LID determines which are the more
relevant features of a problem and searches in the case base for cases sharing these
relevant features. The problem is classified when LID finds a set of relevant features
shared by a subset of cases all them belonging to the same solution class CiCC . Then
LID classifies the problem as belonging to CiCC . We call similitude term the structure
formed by these relevant features and discriminatory set the set of cases satisfying
the similitude term. The similitude term is a feature term composed of a set of fea-
tures shared by a subset of cases belonging to the same solution class.

Given two feature terms, there are several similitude terms, LID builds the simil-
itude term with the most relevant features. The relevance of a feature is heuristically
determined using the Lopez de M´ ántarasMM´ (LM) distance [24]. The LM distance as-
sesses how similar two partitions are in the sense that the lesser the distance the more
similar they are (see Fig. 7). Each feature fiff of an example induces a partition PiPP over
the case base according to the values that fiff can take in the cases. On the other hand,
the LM considers the correct partition PcPP that is the partition where all the cases
contained into a partition set belong to the same solution class.

Given two partitions PAP and PBP of a set S, the distance among them is computed
as follows:

LM(PAP , PBP ) = 2 − I(PAP ) + I(PBP )
I(PAP ∩ PBP )

where I(P ) is the information of a partition P and I(PAP ∩ PBP ) is the mutual infor-
mation of two partitions.
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C1 C2 C3 C4

f1

f2

v21 v22 v23 v24

v11 v12 v13 v14

Pc

LM(Pc, f1) < LM(Pc, f2)

Fig. 7. Intuitive idea of the LM distance. The case base B contains precedents belonging to
four solution classes. The partition induced by the feature f1 is more similar to the correct
partition Pc than the partition induced by f2.

In our case, the distance measure is applied to compute the distance among a
partition generated by a feature and the correct partition. The correct partition PcPP has
two classes, one containing the positive examples (examples in Ck) and the other
containing the negative examples (those not in Ck). Thus, for each feature fiff , there
is a partition PiPP of the case base B according to the values of fiff . Each partition PiPP
is compared with the correct partition PcPP using the Lopez de M´ antaras distance. The´
most discriminatory feature fdff is that producing a partition PdPP having the minimum
distance LM(PdPP , PcPP ) to the correct partition PcPP .

Let PcPP be the correct partition and PiPP and PjPP the partitions induced by features
fiff and fjff respectively. We say that the feature fiff is more discriminatory than the
feature fjff iff LM(PiPP , PcPP ) < LM(PjPP , PcPP ). In other words, when a feature fiff is
more discriminatory than another feature fjf the partition that fiff induces in B is
closer to the correct partition PcPP than the partition induced by fjf . Intuitively, the
most discriminatory feature classifies the cases in B in a more similar way to the
correct classification of cases. LID uses the most discriminatory than relationship
to estimate the features that are most relevant for the purpose of classifying a new
problem.

Now, we will illustrate the performance of LID (see algorithm in Fig. 9) to assess
toxicity of the 2-chloroethanol (the TR-275 in the PTC case base) for male rats. LID
inputs are SD = B of chemical compounds, a similitude term D initialized to the
most general feature term (i.e., the most general description), the description of the
2-chloroethanol, and the set SD (the discriminatory set associated to D) that contains
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Fig. 8. Similitude terms build by LID to classify the 2-chloroethanol in the negative class for
male rats.

Function LID (∆D , p, D, C)
if stopping-condition(∆D)

then return class(∆D)
else fdff := Select-feature (p(( , ∆D , C)

D′ := Add-feature(fdff , D)
∆D′ := Discriminatory-set (D′, ∆D)
LID (∆D′ , p, D′, C)

end-if
end-function

Fig. 9. The LID algorithm. D is the similitude term, ∆D is the discriminatory set of D, C
is the set of solution classes, class(∆D) is the class CiCC ∈ C to which all elements in ∆D

belong.

all the cases that satisfy the structure described by D. Initially SD = B since D is
satisfied by all the cases in B.

The first step of LID is to check whether all the cases in ∆D belong to the same
solution class. Since this stopping condition is not satisfied at the beginning, the
second step is to specialize D. The specialization D1 of D is built by adding to D
the path p-radicals.radicals.main-group with main-group taking value alcohol,
as in the 2-chloroethanol (see Fig. 8). The discriminatory set ∆D1 contains now 42
cases subsumed by D1, i.e., those compounds in ∆D having a radical alcohol. Next,
LID is recursively called with D1 and ∆D1 .

The cases in the discriminatory set ∆D1 do not satisfy the stopping condition,
i.e., some of them belong the positive class and some others belong to the negative
class, therefore D1 has to be specialized by adding a new discriminatory feature.
Now most discriminatory feature is main-group. The specialization D2 is built by
adding main-group to D1 with value ethane (see Fig. 8). LID is recursively called
with the set ∆D2 and the similitude term D2.

The set ∆D2 contains 6 cases all of them belonging to the negative class. There-
fore LID terminates classifying the chloroethanol as belonging to the negative class
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and explaining it with the similitude term D2 (shown in Fig. 8), i.e., because the
compound is an ethane with a radical alcohol. This classification is supported by the
6 cases in ∆D2 . The result of LID is the solution class CiCC and a similitude term Dn.
The similitude term Dn can be seen as an explanation of why the current problem p
is in the solution class CiCC . Dn is a partial description of CiCC because, in general, not
all cases in CiCC satisfy Dn.

We conducted a series of experiments with the similitude terms to discover pat-
terns in the Toxicology data set. These experiment had two steps: 1) use LID with the
leave-one-out method in order to generate similitude terms for classifying the cases;
and 2) select a subset of these similitude terms. The first step yields a set of simil-
itude terms that have been used for classifying some cases. The second step selects
only those similitude terms that are totally discriminatory (we call them patterns).
Some of the patterns detecting positive toxicity are also reported in the literature.
For instance, LID founds that compounds with a radical chlorine are carcinogenic
and Brautbar describes some experiments confirming the toxicity of chlorinated hy-
drocarbons.

As a second experiment, we defined Caching LID (C-LID), a lazy learning ap-
proach that reuses the patterns used for solving past problems in order to improve
the classification of new problems in case-based reasoning (CBR). C-LID is imple-
mented on top of LID by defining two policies: the caching policy and the reuse
policy. The caching policy determines which similitude terms (patterns) are to be
retained. The reuse policy determines when and how the cached patterns are used to
solve new problems. In our experiments, the caching policy of C-LID states that a
similitude term D will be cached if it is univocal, i.e., when all cases covered by a
pattern belong to one class only. The reuse policy of C-LID states that patterns will
be used for solving a problem p only when LID is unable to univocally classify p.

Thus, the experiment with C-LID has two phases: 1) a preprocessing of the case
base in order to obtain some patterns to be cached; and 2) the problem solving phase
that uses LID together with the cached patterns for classifying new problems. The
preprocessing phase is done using the leave-one-out technique using the cases in the
case base B. For each case c ∈ B, C-LID uses LID to classify c and generates a
similitude term Dc. When Dc is univocal C-LID caches it. Thus, at the end of the
preprocessing phase C-LID has obtained a set M = {D1 . . . Dn} of patterns. The
reuse policy decides when to use these patterns during the problem solving phase.

The evaluation of the predictive accuracy of the methods has been made using
10-fold cross-validation. Table 2 shows the accuracy of LID and C-LID for each one
of the data sets. Notice that C-LID improves the accuracy of LID in all the data sets
showing that the caching policy is adequate. Notice that the caching policy stores
only the similitude terms that are univocal, i.e., those subsuming cases belonging to
only one solution class. With this policy C-LID takes into account only those patterns
with clear evidence of a good discrimination among classes.
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Table 2. Accuracy of LID and C-LID on the PTC data set.

data set # cases LID C-LID
MR 297 58.27 60.54
FR 296 63.09 66.97

MM 296 52.39 53.95
FM 319 52.36 56.60

4 Conclusions

We have seen that the task of predicting the possible activity of molecules is a chal-
lenging one, from the chemist viewpoint and also the field of ML. From the chemist
viewpoint it is interesting that automated techniques may be capable of predicting
with some degree of accuracy the toxicity of chemical compounds that have not
been synthesized. Predicting toxicity is a complex task for ML that requires thought-
ful analysis of all dimensions involved.

We have summarily described several ML approaches to toxicity prediction, and
we have highlighted the dimension of example representation. ML approaches that
use a propositional representation (i.e., an example is represented by a vector of
attribute value pairs) have problems for mapping the chemical model of chemical
compounds based on SAR into vectors of attribute value pairs. Since this mapping
ignores the structure itself, other ML approaches use relational learning techniques;
specifically ILP maps the SAR models into a logic representation of examples and
background knowledge. Our approach proposes a new kind of relational represen-
tation based on the chemical ontology that describes the compounds’ structure in a
more abstract way. The experiments have shown that the predictive performance of
our methods (SHAUD and C-LID using the chemical ontology based representation)
have comparable results to that of methods that use SAR models.

ML techniques are very dependent on the way examples are represented. The
fact that ML techniques—using propositional SAR, relational SAR, and chemical
ontology—achieve a similar performance in predicting toxicity implies that they pos-
sess a comparable information content in terms of the studied molecules. Nonethe-
less, toxicity prediction is a complex task for ML techniques, since their performance
is just relatively good [19] while they can be very good for other tasks. Because there
is no ML technique providing excellent results, a likely explanation is that the cur-
rent representation of chemical compounds is not adequate. Notice that a compound
can be toxic in a data set (say male rats) and not in another (say female mouse): since
the representation of the examples is the same, and yet they have different solutions,
this seems to indicate that there are external factors involved that are not represented
in the examples themselves. An enriched characterization of the compounds would
very likely improve the predictive accuracy of the ML techniques we have discussed
here.
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Summary. This chapter describes the interdisciplinary research where complex biochemical
interactions of chemicals with the DNA is modeled with the aid of methods from artificial
intelligence, quantum mechanics, statistical methods by analyzing relationships between the
mutagenic activity of compounds and their structure. The overview is given on the use of
artificial intelligence methods for the estimation of mutagenicity. The focus is on quantitative
structure-activity relationships, the selection of molecular descriptors for the relationships and
the efforts of modeling described in the literature.

1 Introduction

The reliable assessment of hazards posed by chemicals has a major significance when
examining the potential genotoxicity of newly designed chemicals and materials.
Various experimental methods have been used to measure the genotoxicity of com-
pounds. However, most of them are expensive in terms of time and the experimental
resources required [33]. Therefore, various cost- and time-efficient theoretical meth-
ods [7, 10, 23] have been developed that enable the prediction of genotoxicity at
the level of reasonable experimental quality. These methods originate from Hansch’s
work in 1960s [22], where he linked the biochemical activity of chemicals and the ex-
perimentally derived parameters (descriptors) capturing hydrophobic, electronic and
steric interactions influencing the activity of those chemicals into one mathematical
equation. By definition, each Hansch type (quantitative) structure-activity relation-
ship is valid within a congeneric set of compounds. Congeneric compounds belong
to a well-defined family of molecular structures characterized by certain (one or sev-
eral) functionalities that are responsible for the observed activity. Thus, each com-
pound from a congeneric set is assumed to produce certain biological action through
the same mechanism. Different substituents attached to a common molecular skele-
ton simply modulate the quantitative level of activity. Consequently, the quantitative
structure-activity relationship (QSAR) analysis is frequently aimed at developing
a mathematical model that relates the biological activity to small variations of the
chemical structure parameterized by empirical physico-chemical descriptors or the-
oretical molecular descriptors. The congeneric set of compounds is often collected
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using only the similarity of chemical structures, and QSAR models are developed
by assuming that they will also have the same mechanism of toxic action. There-
fore, it is critical how congeneric series are tailored, and this strongly determines the
success of the analysis. Much work has been done in the field of QSAR analysis of
congeneric sets of genotoxic compounds and several reviews [10, 45, 8, 9] describe
the achievements in this field.

In risk assessment, however, one has often to deal with a large number of chem-
icals that are structurally diverse i.e., non-congeneric. The analysis of diverse chem-
icals is extremely difficult because they may follow different mechanisms of toxic
action. This makes it very hard to summarize all the possible mechanisms into one
model or to find some underlying factor(s) that is common to all of them. Despite
of such difficulties, attempts have been made to establish predictive models for non-
congeneric series of genotoxic chemicals [45].

2 Quantitative structure-property/activity relationship

A quantitative structure-property relationship (OSPR) or a quantitative structure-
activity relationship describes a mathematical relationship where the property or ac-
tivity (P ) is a function (see equation 1) of the molecular structure that is described
through the descriptors (di).

P = f(d1, d2, . . . , dn) (1)

The dependent variable in this relationship is a physico-chemical property or
a bio-chemical activity. The property can be any measured value that describes
physico-chemical interactions, like boiling point, melting point, vapor pressure, par-
tition coefficients, etc. The activity can be any value describing bio-chemical inter-
actions, for instance, inhibitor constant, receptor binding energy, bio-concentration,
bio-degradation, rate of chemical reaction, acute toxicity, mutagenicity, carcino-
gencity, etc.

In the QSPR/QSAR approach, molecules can be represented by a wide variety of
(theoretical) molecular descriptors [28, 55] which are used as independent variables
in the model. Thousands of different descriptors are currently available and they are
traditionally divided into several subclasses according to the information they capture
(Fig. 1):

• Constitutional descriptors capture information about the chemical composition
of compounds. The examples are counts of atoms, bonds, functional groups, etc.
Constitutional descriptors characterize the one-dimensional (1D) properties of
molecules, where the chemical formula is sufficient to calculate the descriptors.

• Topological descriptors are numerical descriptors that are derived from the two-
dimensional (2D) structure of molecules. These descriptors require information
about the connectivity in molecules that is usually expressed in the form of
mathematical objects—graphs. A topological descriptor reduces the molecular
graph into a number that characterizes the structure and the branching pattern
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Fig. 1. Classification of descriptors according to the structural information captured

of the molecule. The common representatives of topological descriptors are var-
ious connectivity indexes. They can also include information about the nature
of atoms, bond multiplicity, stereo-chemical features, and electronic parameters
associated with various atoms.

• Geometrical descriptors are derived from the information about the orientation
of atoms in space. They are calculated from the three-dimensional (3D) coordi-
nates of atomic nuclei in space, atomic masses and/or atomic radii. The typical
examples are molecular surface areas, solvent accessible molecular surface areas,
moments of inertia of a molecule, etc.

• Charge-distribution-related descriptors combine the 3D coordinates and the in-
formation about the electronic structure of molecules. The electronic structure
is particularly important because the electron densities and charges in molecules
determine the physico-chemical properties (polar interactions) and reactivity of
chemicals (covalent interactions). The charge distribution in the molecules can be
calculated at various levels of theory starting with empirical methods and ending
with quantum chemical methods. Examples of the charge-distribution-related de-
scriptors are atomic partial charges of the atoms, charged partial surface areas,
etc.

• Quantum-chemical descriptors are based on the molecular quantum mechanical
calculations that solve the time-independent Schrdinger equation for the station-
ary states of molecules [36]. Quantum mechanical calculations can range from
various semi-empirical approximations to a wide selection of ab initio methods.
The real application of quantum mechanical calculations depends on available
computer resources and the number of chemicals in the training set. From the
vast amount of quantum chemical descriptors the best examples are the energies
of the highest occupied molecular orbital and the lowest unoccupied molecular
orbital.
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The complexity of the descriptors and the information captured by the molec-
ular descriptors rises in the rows constitutional → topological → geometrical →
charge-distribution-related → quantum chemical and 1D → 2D → 3D. Therefore
more complex descriptors are good candidates for the modeling of complex proper-
ties or activities.

Various statistical methods can be applied to find mathematical relationships or
models between these descriptors and the investigated properties or activities (see
Fig. 2). For the development of a model, the molecule must have a corresponding
experimentally measured activity or property and the molecular descriptors calcu-
lated, as briefly overviewed above. The following QSPR/QSAR treatment will apply
multi-linear regression (MLR), partial least squares (PLS), artificial neural network
(ANN) or other methods for the analysis of the descriptor pool. The prediction of a
property or activity involves the application of the developed QSPR/QSAR model.
The QSPR/QSAR predictions have an important role in drug design, material design,
and chemical engineering.

Structures

Molecular
descriptors

Experimental
properties or 

activities

QSPR/QSAR treatment
(ANN, MLR, PLS)

Structure(s)

Molecular
descriptors

QSPR/QSAR
model

Predicted
property or 

activity

Model development Prediction

Fig. 2. Overview of quantitative structure-property or structure-activity relationship
(QSPR/QSAR) approach
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The developed QSPR/QSAR models (see equation 1) can be either linear or non-
linear in their representation. In practice, linear models are more common, as they are
much easier do develop and interpret. Non-linear models are often developed with
the help of artificial intelligence (AI) methods that are getting increasingly more
popular.

The quality of QSPR/QSAR models is measured by several criteria character-
izing the regression models, like the correlation coefficient of the regression (R),
squared correlation coefficient (R2—the coefficient of determination), the standard
error of the multiple linear regression (s), the normalized standard error of the re-
gression (s0), the Fisher criterion (F ), the Student’s t-test, the root-mean-square
(RMS) error, etc. [28] The best QSPR/QSAR model is usually selected by analyzing
a complex of different criteria.

3 Variable selection

In the case of large numbers of (experimental or theoretical) molecular descriptors
the correct selection of relevant descriptors (variables) into the QSPR/QSAR models
becomes important. The variable selection is a particularly important and challenging
problem in the development of artificial neural network (ANN) models.

Over the years, a vast number of methods for the dimensionality reduction of
the descriptor space have been suggested for the QSPR/QSAR modeling. Variable
reduction is needed to remove redundancies from a descriptor pool and to eliminate
molecular descriptors that contain irrelevant information about the modeled prop-
erty or activity. This effectively makes QSPR/QSAR models much easier to interpret
and reduces the risk for chance correlations. Traditional variable selection meth-
ods include algorithms for forward selection and backward elimination of descriptor
scales, principal component analysis (PCA), and PLS. Also, various stochastic meth-
ods exploit evolutionary algorithms, such as genetic algorithms (GA) and simulated
annealing (SA). There is no guarantee that these methods will find the most optimal
subset of descriptors, although in practice, these methods frequently provide reliable
and predictive correlation models. In principle, a complete analysis of all possible
descriptor subsets could be performed, but this becomes impractical very quickly as
the number of the available descriptor scales and the size of the subset increases.

All these methods have been successfully applied for the development of multi-
linear (ML) QSPR/QSAR models for various physico-chemical properties and bio-
logical activities, as summarized in the reviews [28, 32, 29, 31]. On the other hand,
the range of available descriptor selection methods for the development of ANN
models has been more limited in the past due to the lack of available computer re-
sources. Fortunately, the rapid increase of hardware performance in recent years has
alleviated this situation to some extent.

The PCA method is often used in ANN modeling for dimensionality reduction.
The principal component scores are extracted from the input data matrix and they
are used as input variables for the ANN models. Examples include carcinogenicity
[18], calcium channel antagonists [56], and the activity of bradykinin potentiating
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pentapeptides [57]. The risk associated with the PCA is the potential elimination
of input variables that have a non-linear relationship with the dependent variables.
Another problem of the principal component scores is that they are much harder to
interpret, since they do not have a clear physical meaning.

The forward selection of descriptor scales is very popular for ML QSPR/ QSAR
analysis, since the resulting models have a very simple mathematical formulation
and are very easy to interpret. Several variations of forward selection algorithms exist
[14, 51]. These methods start usually with the elimination of insignificant descriptor
scales according to various criteria (e.g., too little variation in descriptor values, too
many missing descriptor values, high inter-correlation with some other descriptor,
etc.). Next, statistical parameters of all one- or two-parameter correlation models are
evaluated, the best models are selected, and new descriptors are incrementally added.
This process proceeds until QSPR/QSAR models with desired quality of prediction
are obtained.

The forward selection algorithm still involves a significant number of model
evaluations with different descriptor subsets, and thus, this approach is rarely used
for the development ANN models, because the training process can be quite time-
consuming. Since the model evaluation for ML models is much cheaper, the de-
scriptor subsets selected with forward selection ML regression analysis have been
used previously as inputs for ANNs [11]. Of course, this approach is limited to data
sets where non-linear relationships with the investigated property or activity is not
very significant. However, descriptor subsets from ML regression models can be a
starting point for the selection of feasible ANN architectures, which follows with in-
teractive improvement of selected subsets by the removal or addition of descriptors
[30], or further optimization by genetic algorithms [42]. The forward selection with
ANN modeling has been used for the development of predictive QSPR models for
dielectric constants [49] and mutagenicity [38] that will be discussed in Section 5.

The backward elimination is another approach that is used in combination with
ANNs to reduce the dimensionality of data. These methods are usually based on the
pruning of input unit weights. The sensitivity of input units is analyzed and the least
significant units are eliminated. Tetko et al. [53, 35] published several examples of
different pruning algorithms for the back propagation and cascade correlation learn-
ing algorithms. Pruning methods were also used to develop the ANN models for
octanol water partition coefficients [26] and drug transfer into human breast milk
[2].

The GA method [19, 46] uses the principle of natural evolution for solving var-
ious optimization problems and is commonly used in connection with ANN model-
ing. The GA algorithm starts the descriptor selection with a population of randomly
constructed QSPR/QSAR models. These models are ranked using some fitness func-
tion that evaluates the predictive power of the model. Then a set of genetic operations
(crossover, mutation) is applied to the better-ranked models in the population to pro-
duce new models that will replace the worst ranked models. Thus, in analogy with
the evolution theory, only the fittest models will survive. Karplus and coworkers [50]
have tested different methods (forward selection with ML regression, genetic func-
tion approximation, GA-ANN, SA-ANN) to build QSAR models on progesterone
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receptor binding steroids. They concluded that non-linear models outperformed lin-
ear models, while the best results were obtained with the GA-ANN method. Jurs
et al. have used GAs and SAs to build ANN models for auto ignition temperatures
[42], boiling points [20], and the inhibition concentration of acyl-CoA:cholesterol O-
acyltransferase inhibitors [43]. Other examples include human intestinal absorption
[1], and the treatment of estrogen receptor ligands, carbonic anhydrase II inhibitors,
and monoamine oxidase inhibitors [16].

4 Ames test of mutagenicity

The genotoxicity is a specific adverse effect on the genome of living cells that, upon
the duplication of the affected cell, can be expressed as a mutagenic or a carcinogenic
event because of specific alterations of the molecular structure of the genome through
the translation of proto-oncogenes [25]. It results from a reaction with the DNA that
can be measured either bio-chemically or, in short-term tests that reflect the DNA
damage.

The genotoxicity is usually detected by the ability of a chemical to produce tu-
mors on laboratory animals. This kind of experiment may last for two or three years
and require the use of significant resources and expertise. This has led to the devel-
opment of alternative, short-term, and relatively inexpensive assay screening tests for
the toxic effects on the genome without the use of live animals. The most commonly
used tests are for the detection of mutagenicity [27]. The best known of them is the
Ames test that is based on the Salmonella typhimurium bacterial strain [40, 3] .

During this test, the colonies of bacteria having a reversible mutant gene are ex-
posed to a chemical under testing [48]. This mutant gene makes the bacterial strain
unable to synthesize one particular amino acid (histidine) that is essential for the
bacteria to live. The testing environment contains only a limited amount of histidine
which is insufficient for the normal growth. If the chemical has the mutagenic activ-
ity then it will cause mutations that will reverse the effect of the original mutation on
the bacteria. Because the mutant bacteria reverse back to their original character, they
are called revertants. After the reverse mutation the bacteria no longer require histi-
dine from the environment as they can produce histamine again by themselves and
grow normally. Thus this test measures the net revertant mutant colonies obtained at
several doses of test chemical and is expressed by the logarithm of the number of re-
vertants per nanomole. It can be measured for different bacterial strains (for instance
TA98 and TA100) of Salmonella typhimurium, with or without microsomial prepa-
ration (+S9). Many chemicals are non-mutagenic, but are converted into mutagens
as they are metabolized. The microsomial preparation adds metabolizing enzymes
that are extracted from the liver cells of mammals (normally rats). The microsomial
preparation is designed to simulate mammalian liver enzyme systems and is used to
detect chemicals, which undergo the metabolic activation from non-mutagenic forms
to mutagenic forms.

Although the Ames test allows a relatively quick and inexpensive way for de-
tecting chemicals that are potential mutagens, the test is still far too expensive and
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time-consuming if a large number of chemicals have to be tested. Therefore theo-
retical models are useful to make the computer simulation of Ames tests possible.

5 QSAR models for mutagenicity

TOPKAT and CASE-MULTICASE [10] are programs originating from the Han-
sch approach [22] that have been used to predict toxicity (including genotoxicity)
in non-congeneric databases. The TOPKAT (TOxicity Prediction by Komputer As-
sisted Technology) system is based on the quantitative structure toxicity relationships
extending the classical Hansch approach to modeling of non-con-generic data by re-
lying on the use of 2D topological and substructure-specific parameters [15]. The
CASE/MULTICASE system performs a statistical analysis to identify those molec-
ular fragments that are relevant to the observed activity [34]. The structure-activity
relationship approaches (including TOPKAT) start with the analysis of the training
set of chemicals, searching for the predefined set of substructural fragments, find
their contribution to the modeled activity and then use the fragments with the largest
contribution in the formation of the model. The TOPKAT and CASE-MULTICASE
applications on non-congeneric databases have been well documented in several re-
views [45, 8].

The mutagenicity has been modeled for non-congeneric sets of compounds us-
ing various variable selection algorithms combined with ML and ANN methods for
developing QSAR models (Table 1).

Based on a set of 43 aminoazobenzene derivates, Garg et al. [17] have derived
a five-parameter ML QSAR model (the squared correlation coefficient, R2 = 0.85)
and a three-parameter ANN model with the squared correlation coefficient R2 = 0.88
for mutagenicity (Table 1: row #1 & row #2). Recently this work has been extended
to the mutagenicity of a set of 74 aminoazo dyes [52]. The derived 8 parameter ML
QSAR model was characterized with the squared correlation coefficient R2 = 0.73,
while the respective ANN QSAR model with 8 parameters produced a remarkably
improved squared correlation coefficient R2 = 0.95 (Table 1: #3 & #4).

Gramatica et al. [21] have used genetic algorithms for the variable selection from
a large pool of molecular descriptors for the modeling of aromatic and heteroaro-
matic amines for two bacterial strains TA98 and TA100. At first they used distance-
based experimental design [54] for the selection of training and validation sets. The
models (Table 1: #5 & #6) were developed for both TA98 and TA100 strains, in-
corporating four and three descriptors, respectively. The descriptors in the models
were analyzed to understand the mechanism of mutagenicity. They found that steric
factors appear more important in TA98 models, while polarizability, electronic, and
hydrogen bonding related factors were more prominent in TA100 models. The pre-
diction quality of both models was assessed with various validation techniques.

Cash used electro-topological state indexes for modeling the mutagenicity of aro-
matic and heteroaromatic amines [12]. Stepwise forward selection was used to con-
struct QSAR models. The best model for a data set of 95 structures had the squared
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Table 1. Characteristics and Methods for QSAR models in literature: number of compounds in
the data set (N ), number of descriptors in model (NDN ), squared correlation coefficient (R2),
squared standard error (s2).

# Dataset N Methoda NDN R2 s2 Reference

1 Aminoazo dyes (TA98 +S9) 43 FS-ML 5 0.85 0.13 [17]
2 Aminoazo dyes (TA98 +S9) 43 n/a-ANN 3 0.88 – [17]
3 Aminoazo dyes (TA98 +S9) 74 FS-ML 8 0.73 0.23 [52]
4 Aminoazo dyes (TA98 +S9) 74 n/a-ANN 8 0.95 – [52]
5 Aromatic amines (TA98 +S9) 60 GA-ML 4 0.80 0.68 [21]
6 Aromatic amines (TA100 +S9) 46 GA-ML 3 0.81 0.34 [21]
7 Aromatic amines (TA98 +S9) 95 FS-ML 9 0.77 0.96 [12]
8 Aromatic amines (TA98 +S9) 95 C-ML 8 0.79 0.83 [6]
9 Aromatic amines (TA98 +S9) 95 C-ML 9 0.82 0.71 [4]
10 Aromatic amines (TA98 +S9) 90 GA-ANN 26 0.64 – [39]
11 Aromatic amines (TA98 +S9) 95 FS-ML 6 0.83 0.66 [37]
12 Aromatic amines (TA98 +S9) 95 FS-ANN 6 0.90 – [30]
13 Diverse set (TA100) 117 FS-ML 12 0.83 0.74 [38]
14 Diverse set (TA100) 117 FS-ANN 7 0.84 – [38]
15 Diverse set (TA98) 211 FS-ML 10 0.83 0.79 [38]
16 Diverse set (TA98) 211 FS-ANN 6 0.86 – [38]

a FS – forward selection; n/a – descriptor selection method is not specified by the author; C –
clustering.

correlation coefficient R2 = 0.77 (Table 1: #7). The model included nine different
electro-topological state indexes.

Basak et al. have performed a series of studies for the prediction of mutagenicity
of 95 aromatic and heteroaromatic amines. These are summarized in a recent book
chapter [5]. Basak et al. have systematically explored the applicability of topologi-
cal and geometric descriptors in the prediction of mutagenicity. Gradually they have
extended the set of descriptors with other families of descriptors. In one of the re-
cent studies [6] they have performed the hierarchical QSAR approach, incorporating
quantum chemical descriptors, where the variables into the QSAR where selected
with the modules provided by the statistical package SAS [47]. The final model in-
cluded nine descriptors, with the squared correlation coefficient R2 = 0.79 (Table 1:
#8). They have further extended the database of descriptors with electro-topological
state indexes [4]. The variable selection was used to reduce the number of descrip-
tors, and a new QSAR model was obtained with the squared correlation coefficient
R2 = 0.82 (Table 1: #9).

Mazzatorta et al. have developed an artificial neural variable adaptation system
(ANVAS) via combing GA and ANN methods for the selection of variables (descrip-
tors) to QSAR models [39]. They applied it to the QSAR modeling of mutagenicity
of 95 aromatic and heteroaromatic amines. The ANVAS selected 26 molecular de-
scriptors and obtained a model with the squared correlation coefficient of R2 = 0.64
(Table 1: #10). The selected number of descriptors is high in comparison with other
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models (Table 1) indicating the need to improve the selection criteria of variables in
the proposed method.

We have used forward selection methods to select relevant descriptor scales for
the prediction of mutagenicities on the data set of 95 aromatic and heteroaromatic
amines, measured with the Ames test [37]. The final quantitative structure-activity
relationship (Table 1: #11) with R2 = 0.83 consisted of six descriptors related to the
hydrogen bonding ability, effects induced by the surrounding medium, and the size of
the compound. The model was further improved with the implicit account for nonlin-
ear effects using the forward selection of descriptor scales and the back-propagation
ANNs together [30]. The best six-parameter ANN model (6x5x1 architecture) for
the mutagenicity has the squared correlation coefficient R2 = 0.90 (Table 1: #12).

Recently, the work on the prediction of mutagenicities [37, 30] was extended to
more diverse non-congeneric sets of compounds [38]. From literature data the diverse
sets of mutagenic compounds were collected for two bacterial strains TA100 and
TA98, with 177 and 212 compounds, respectively. The ML and non-linear QSAR
models (Table 1: #13 - #16) were derived by employing the forward selection of
descriptors from a large initial pool of theoretical molecular descriptors (in total 620)
for both sets.

For the ML QSAR analysis the best multi-linear regression procedure was used
to select the best two-parameter regression model, the best three-parameter regres-
sion model, and so on, based on the highest squared correlation coefficient, R2, value
in each step of the forward selection procedure [14]. The correlation equations were
built from a pre-selected set of non-collinear descriptors. The final result had the
best representation of the activity in the given descriptor pool. For the ANN proce-
dure the experimental data (TA100 and TA98) and calculated descriptor values were
scaled. Feed-forward multi-layer neural networks with input, hidden and output lay-
ers were used to represent non-linear QSAR models. A back propagation algorithm
with momentum term was used to train the ANN models. The validation set error was
monitored to perform automatic early stopping in order to avoid over-training of the
neural network. The descriptor subsets selected with the best multi-linear regression
procedure were used to adjust the initial ANN architecture for descriptor selection.
The architecture with an equal number of input and hidden units was selected for
both TA100 and TA98.

The significant descriptors for the ANN models were selected by a forward se-
lection algorithm. The descriptor selection started with the pre-selection of molec-
ular descriptors. If two descriptors were very highly inter-correlated then only one
descriptor was selected. In addition, descriptors with insignificant variance were re-
jected. The descriptor selection algorithm started by evaluating ANN models (1x1x1)
with one descriptor as input. The best models were then selected to the next step,
where a new descriptor was added to the input layer and the number of hidden units
was increased by one. Again, the best models were selected and this stepwise proce-
dure was repeated until addition of new input parameters did not improve the model
significantly. Since ANN models are quite likely to converge to some local minima,
each model was retrained 30 times, and a model with the lowest error was selected.
To speed up the training process, a larger learning rate was used and the number
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of allowed iterations was limited in the descriptor selection stage, since the training
involves a significant amount of computations. The best models with smallest errors
were selected from this procedure and were further optimized.
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Fig. 3. Calculated vs. experimental mutagenicities derived with ANN for TA100

The stepwise development of the ML QSAR model resulted in twelve- parameter
and ten-parameter equations for the TA100 and TA98 bacterial strains, respectively
(Table 1: #13 & #15) [38]. The ANN development of QSAR models resulted in the
seven-parameter (7x7x1 architecture) and six-parameter (6x6x1 architecture) model
for the TA100 (see summarizing plot, Fig. 3) and TA98, respectively (Table 1: #14
& #16) [38]. The analysis of the descriptor content of the QSAR models shows that
the size of a compound is an important determinant of mutagenicity. It can influence
the transportation process of mutagenic compounds to the active site, particularly
the penetration through the bio-membranes. This conclusion is also supported by
our earlier work [37] where we showed that the number of rings, which is related
to the size of the compounds, is a major determinant of mutagenicity for aromatic
and heteroaromatic amines. Of course, the number of the rings is approximately
proportional to the area of hydrophobic aromatic hydrocarbon part of the molecule



30 U. Maran and S. Sild

and can therefore be related to the hydrophobicity of the (poly) cyclic compounds
as well. Hatch and Colvin [24] have also found that the mutagenicity of aromatic
and heterocyclic amines depends mainly on the size of the aromatic ring system.
Both studies conclude that the size of the ring system can affect the mutagenicity in
various steps during the interactions in living organisms, but most probably it affects
the penetration through the bio-membranes.

Also the charge-related descriptors appear in different forms and constitute the
largest group of descriptors in the derived models [38]. This clearly shows the im-
portance of electronic effects on mutagenicity. Those descriptors cover the effects
related to the specific interactions at the reactive site of the DNA and to the hydro-
gen bonding.

Several descriptors in our models describe the energy distribution in molecules
[38]. Those descriptors can be also attributed to the reactivity of the mutagenic com-
pounds. For instance the maximum electrophilic reactivity index for a C atom is com-
mon in both ML models indicating the importance of electrophilic reactivity. The
presence of carbon atom, C-C and C-H bonds in the reactivity descriptors of ML
models may be related to the formation of highly reactive radical centres in the aro-
matic systems that affect the reproductory system of a cell [44]. In the ANN model
for TA98 the energy term for C-N bond is related to the bond between the nitro group
and one of the carbons in the ring system. The nitro-group is known to be significant
in the mutagenic action [13] and therefore this descriptor quantifies the respective
reactivity.

Mutagenicity is often related to the ability of the molecule to react with the cell
reproductory system. In some cases, the mutagenic action has been ascribed to an
electrophilic site in the molecule [41]. In other cases, mutagenic action is related
to the nucleophilic site in the molecule or to the alkylation process. However, the
electrophilic, nucleophilic and alkylation sites may either be present in the parent
mutagenic compound, or created as its metabolite. Therefore, several possible mech-
anisms of toxic action can be involved even in the case of a small group of similar
compounds. Considering this, it is significant that our models show the general trends
in the diverse set of compounds and bring up possible structural factors that may be
important in mutagenic interactions.

The mechanism of mutagenic action includes: (1) preliminary rearrangements in
the environment, (2) penetration through the biological membranes, (3) interaction
with the environment in the cell (possible bio-activation to more mutagenic species)
and (4) the final interaction with the mutagenic site. Proceeding from those mech-
anistic concepts, the interactions related to the mechanism of mutagenic action can
be divided into two groups. First, the non-specific interactions that usually deter-
mine the solubility of a compound in the cell environment, penetration through the
cell membranes, and hydrophobicity. The second group involves specific interac-
tions with certain sites of the action, such as (i) electrophilic, (ii) nucleophilic and
(iii) alkylation reactions. The possible metabolization of mutagenic compounds to
the more reactive species may also play an important role in the specific interac-
tions of mutagenicity. As discussed in the original articles the different descriptors
can thus be related to the distinct physical interactions involved in the mechanism of
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mutagenic action. The non-specific interactions are modeled by the bulk structural
characteristics of the compounds like the size, the surface area, the polarity, etc. The
specific interactions are modeled by the electronic and energetic characteristics of
the compounds described by the charge distribution or the energetic levels of the
molecules.

The developed QSAR models have to be validated. This can be performed with
several statistical approaches (internal cross-validation, etc.), but higher confidence
is achieved when a prediction set is used, that includes compounds not used during
the development of the QSAR model(s). The ML model for TA100 (Table 1: #13)
predicted the mutagenicity of the external prediction set with R2 = 0.85. The ML
model for the TA98 (Table1: #15) gave the external prediction quality of R2 = 0.82.
The predictive ability of the ANN models was tested on the same prediction set. The
ANN model for TA100 (Table 1: #14) predicted mutagenicity with R2 = 0.84. The
model for the TA98 (Table 1: #16) gave external prediction with R2 = 0.86. The
validation shows good prediction quality.

The comparison of ML and ANN models revealed that for both data sets, the
ANN over performed the ML regression by employing much less descriptors in the
model, without loss in the quality of prediction (Table 1: #13–#16). In case of TA100
the ML QSAR model is with twelve descriptors and the respective ANN QSAR
model with seven descriptors. For the TA98 the ML and ANN QSAR models have
ten and six descriptors, respectively. This suggests that the relationships between the
structure and mutagenicity can be, in principle, nonlinear.

6 Conclusion

The use of AI techniques is gaining more and more attention in the QSAR anal-
ysis and in the connected fields. The attention is driven particularly by two major
reasons. Firstly, the number of chemicals in use is growing rapidly, accompanying
the myriad of information required in the research and development (e.g., drug de-
sign, design and analysis of virtual combinatorial libraries of chemicals, chemical
technology implementations, etc.) and by the legislative and controlling bodies (for
risk assessment and setting up production limits). Secondly, the volume of infor-
mation available about chemical structures is much bigger than it was for a couple
of decades. It is particularly the result of very extensive development of (theoreti-
cal) molecular descriptors, which capture either the characteristics that describe the
entire molecule and/or some specific (active) site in the molecule.

The number of compounds in use can scale from several hundreds to several mil-
lions. The number of compounds in virtual combinatorial libraries scale up to several
billions and the number of molecular descriptors per compound can be easily up to
one thousand (it is claimed that this number can be even higher). Although the hu-
man expertise is invaluable, the amount of information we need to know and analyze
is growing rapidly. Therefore computational and AI methods and tools have been ac-
tively investigated to get explanations for many chemical phenomena related to drug
design, technology development and to risk assessment for better living standards.
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Within the this chapter we have addressed the current state in the prediction of
mutagenic potency for non-congeneric data sets in the framework of the QSAR mod-
eling with the aid from data mining tools for the QSAR model construction. The
overview of the scientific studies in the prediction of mutagenicity is given and fi-
nally a comparative study between the MLR and ANN models for TA100 and TA98
bacterial strains on non-congeneric data sets is discussed in more detail.

The relationships between mutagenicity and molecular structures are usually
modeled with ML relationships. The results summarized in this chapter provide evi-
dence that the ANNs give high quality QSAR models for the modeling of mutageni-
cicty. This indicates the possibility of non-linear relationship between mutagenicity
and chemical structure.

As already mentioned, the experimental evaluation of mutagenicity is a difficult
task. In this situation the ANN models have the advantage over ML models because
they can cope with noisy data. ML regression models have an advantage because of
the simple mathematical representation and are therefore much easier to interpret in
terms of mechanistic concepts of mutagenicity. The extraction of rules from the ANN
models, how structure determines activity, is still an open topic and a real challenge
for future.
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Summary. We are concerned with the temporal clustering of a series of gene expression data
using a hidden Markov model (HMM) and in so doing providing an intuitive way of character-
izing the developmental processes within the cell. By explicitly modelling the time dependent
aspects of these data using a novel form of the HMM, each stage of cell development can
be depicted. In this model, the hitherto unknown development process that manifests itself as
changes in gene expression is represented by hidden concepts. We use clustering to learn prob-
abilistic descriptions of these hidden concepts in terms of a hidden Markov process. Finally,
we derive linguistic identifiers from the transition matrices that characterize the developmental
processes. Such identifiers could be used to annotate a genome database to assist data retrieval.

1 Introduction

Microarray technology has proved to be a useful tool for measuring the expression
level of thousands of genes in a single experiment. Using a series of experiments
enables the gathering of large quantities of gene expression data under various ex-
perimental conditions or at different times. However, the biological interpretation of
these gene expression data is left to the observer and due to its sheer volume and
the complexity of possible ways that genes might be structurally and functionally
related, presents a formidable challenge. Current methods for the analysis of gene
expression data typically rely on algorithms that cluster genes with respect to a se-
ries of states [11] or use other computational tools to organize the gene expression
profiles into conceptual schemes. The biological premise underlying the use of clus-
tering algorithms is that genes that display similar temporal expression patterns are
co-regulated and may share a common function or contribute to common pathways
in the cellular processes. These clustering techniques have relied on a variety of as-
sociation metrics such as Euclidean distance and correlation coefficients. However,
such an approach can only achieve a limited understanding of dynamic processes as
has been pointed out by Cadez et al. [2].

In this paper, our aim is to provide a model that will help to understand the
semantics of the underlying processes within the cell in much the same way as a lin-
guist may analyze a hitherto unknown script. For the time series aspects of the gene
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expression, we adopt a hidden Markov model (HMM), where the states represent the
stages of the underlying process concept. By concept we mean a notion of interest,
for example, we may define adolescent as a person aged between 12 and 16 years.
Concept learning is an important task in machine learning [12]. By process we mean
a dynamic behavior, such as growth, that typically proceeds through a number of
stages. Here, the concept being studied is the central nervous system of a rat that ex-
periences the process of development. For example, we may associate a gene cluster
with an underlying growth process that develops through a number of stages that are
paralleled by developments in the associated genes.

Each cluster is represented by a concept, which is described in terms of a HMM.
We seek to find schema mappings between the states of the observed expression time
series in the data and the states of the HMM (the model). There are several advan-
tages to this approach. It explicitly models the temporal aspects of the data in terms
of stages, thereby providing an intuitive way of describing the underlying behavior
of the process. It also allows us to use probabilistic semantics, inherent in the model,
to take account of natural variability in the process. Such segmental models have
considerable potential for time sequence data [6]. The characterization of the clus-
ters in terms of a hidden underlying process concept may correspond to a hitherto
unknown biological process that may only later be recognized and understood.

This approach is extended to the integration and clustering of non-homogeneous
Markov chains to reflect the temporal semantics of the data. A similar method for ho-
mogeneous data is described in Smyth [14] and Cadez et al. [2]. We have previously
assumed that the schema mappings are available ab initio.

In this paper the novelty resides mainly in the fact that we must now learn the
schema mappings as well as the cluster memberships and profiles. Our use of non-
time-homogeneous HMMs in this context is also novel. Such constructs allow us to
better describe the temporal semantics of a dynamic process in a stochastic environ-
ment.

Model-based clustering is well established and, in general, provides a flexible
methodology that can cope with complex and heterogeneous data. Clustering is based
on the measurement of similarity between the data and the model. The alternative
approach, using distance metrics, tends to be less robust in terms of its ability to
cope with complicated data that may be statistically incomplete in various regards
[2, 3]. Our approach is intermediate between these two methodologies in that the
initial gene expressions are clustered using a distance metric based on mutual in-
formation, that is, a similar temporal profile. A full model-based approach, such as
that described by Cadez for homogeneous schema, could also be utilized here; the
advantage of our strategy is that we decouple clustering from schema learning, thus
allowing simpler ad hoc methods to be substituted for these tasks in the interests of
simplicity and computational efficiency.
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2 Overview

2.1 The general process

We divide the problem into a number of distinct tasks. For each set of gene expression
time series data within the data set, we identify genes that have a similar temporal
signature. These genes are then grouped to form gene clusters. Although the genes
within a cluster exhibit comparable patterns of expression, the time indexing of the
data themselves may be heterogeneous. The term heterogeneous here is used in the
sense that they may represent either different attributes, the same attribute held at
different granularities or indeed the series may be of differing length. This is often
the case where the data is from diverse origins. Such issues are resolved by mapping
each of the expression data sets to an idealized though previously unknown time
series data set that may be deemed to be a representative expression of the underlying
hidden process concept. This data set must be learned, and once learned, we refer to it
as the hidden process. On the basis of these mappings we may learn the probabilistic
description of this process.

Where an underlying and maybe unknown dynamic process is driving an ob-
served set of events, the hidden Markov model is a valuable mathematical tool. The
HMM describes a latent process, usually associated with function, that changes state
in a similar way to the observed gene expression. In some respects, this latent process
may be considered to be driving the observed events.

The model defines a set of states, h1, · · · , hk each of which is associated with
a multi-dimensional probability distribution called a transition matrix P = {pij}.
Transitions between the states are governed by these probabilities called transition
probabilities where:

pij = Prob {HMM is at hj at time t + 1 given the HMM is at hi at t}.
From an intial state defined by the initial state vector s0 = {s0j} any particular
outcome can be generated, according to the associated transition matrix. However,
in general, only the outcome and not the state itself is observable, hence the name
hidden Markov model. Fig. 1 illustrates the relationship between the state space in
the HMM and the elements of the state vector.

Working with a cluster of genes that exhibit a similar temporal expression pat-
tern, our goal is to determine a temporal clustering of the time series. Each temporal
cluster is then characterized by a HMM transition matrix, the symbols of each series
in the cluster can then be mapped onto states of the HMM.

When the temporal processes within the gene cluster are described in terms of
this HMM, the states of the model can be said to characterize the behavior of that
gene cluster. We propose a system of formal linguistic identifiers, based on the gen-
eral form of the HMM states, that would represent each class of behavior. If a gene
expression database were annotated with such identifiers, this would facilitate the
search and retrieval of gene clusters with a given behavior.

While, in general terms, these tasks may be carried out in an integrated manner,
as an initial strategy we have decided to approach each of these tasks independently.
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Fig. 1. HMM state space and state vector elements.

We recognize two distinct sub-problems. The first sub-problem involves mapping
and re-labelling of the respective time series alphabets. In order to do this we need to
recognize the sequences where re-labelling is appropriate and then learn the optimal
labelling. The second sub-problem involves learning a HMM based on these mapped
time series. Then, by using this HMM to identify and characterize the temporal clus-
ters, those clusters can be attributed with an appropriate linguistic label.

2.2 An illustrative example

We consider the problem of clustering heterogeneous time series of symbolic data.
The series have in common the fact that, within a cluster, they are related to a com-
mon underlying concept process that is conceptualized here as a hidden Markov
model. As an example we present four time series of gene expression adapted from
D’haeseleer et al. [4]. Here the letters A, B, etc. may, for example, be discretized nu-
merical ranges. In Table 1 the four series, {Series 1, Series 2} and {Series 3, Series
4} form two separate clusters when we perform the mappings presented in Table 2.

Table 1. Gene expression data

Series 1 A A B B B B B B B
Series 2 C D E E E E E E E
Series 3 F F F G G G G H H
Series 4 I I I K K K K J J

Table 2. Schema mappings for Table 1

Cluster 1 S1&2& U U/V W W W W W W W
Cluster 2 S3&4 X X X Y Y Y Y Z Z

The series (U, U/V, W, W, W, W, W, W, W) and (X, X, X, Y, Y, Y, Y, Z, Z)
therefore characterize the behavior of the HMMs for the latent variables underpin-



Time Series Characterization Using a HMM 41

ning clusters 1 and 2 respectively. Here U/V means that this term may be either U
or V. Although, in some circumstances, the domain expert may know such schema
mappings, typically they are unknown and must be discovered by the algorithm.

We define a correspondence table for a set of series to be a table that represents
mappings between the schemes. The correspondence table for cluster 1 (series 1 and
2) is shown in Table 3; the symbolic values in each series are described alphabeti-
cally.

Table 3. The correspondence table for cluster 1 in Table 1.

Hidden Concept 1 Series 1 Series 2
U A C
V - D
W B E

This correspondence table must be learned in order to determine the mappings
between heterogeneous time series.

Earlier work has used mutual entropy to cluster data of this type [2]. Examination
of the mutual entropy identifies where the symbols in the respective sequence alpha-
bets co-occur. Finding these schema mappings would involve searching over all the
possible mappings. However, another possibility is to use a heuristic approach such
as a genetic algorithm to minimize the divergence between the mapped time series.
We may limit the types of mapping that are permissible in order to restrict the search
space e.g., we may allow only order-preserving mappings. The fitness function may
also be penalized to prohibit trivial mappings, e.g., where every symbol in the series
is mapped onto the same symbol of the HMM.

While the use of mutual entropy has been criticized previously on the grounds
that it does not take the temporal aspects into account, we nonetheless adopt it in our
initial approach, though only to determine mappings between the heterogeneous time
series in order to identify homogeneous clusters. When testing whether to combine
two clusters, we calculate the mutual information for the two clusters separately and
then the two clusters combined. If the value of H12 (the pooled entropy) is inside a
threshold of H1 + H2HH (the sum of the separate entropies), then clusters 1 and 2 are
sufficiently close together to be combined. This metric is chosen because it tends to
cluster together sequences whose values are associated, i.e., they tend to co-occur.
This means that within a cluster we can find a transformation such that mapping
associated values onto a common ontology leads to sequences that are similar.

2.3 Learning the mapping

The schema mappings from each of the gene expression time series to the hidden
process ensure that the symbols of the series are of the same alphabet. These map-
pings may also serve another purpose as mentioned above, of facilitating the differ-
ence in granularity of the time series to the hidden process. Although it is possible
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in theory for the data to be of coarser granularity than the hidden process, we restrict
our attention to mappings to a hidden process that may be coarser. We make this as-
sumption partly because the alternative would raise methodological difficulties such
as problems of non-identifiability.

Our objective is to carry out the mapping such as to minimize the distance be-
tween each gene expression series and the hidden process. Since the search space
for optimal mappings is potentially very large and the hidden process is a priori un-
known, we propose to approximate this function with an ad hoc approach that can
be used to initialize a heuristic method. Our initialization method then finds a map-
ping by choosing one of the gene expression time series whose number of symbols
is maximal and each of those symbols then acts as a proxy for the symbols of the
hidden process. For each of the remaining series, each symbol is mapped to one of
the symbols of the hidden process in such a way that the sum of the distances in that
time series is minimal. If we wish to provide a number of solutions to form the initial
mating pool for a genetic algorithm, we can choose a number of different series to
act as proxies for the HMM.

2.4 Learning the HMMs

We now develop an algorithm for learning the transition matrix of the HMM for a
set of heterogeneous time series, given that the mappings between the respective se-
ries schema is a priori known. This matrix then characterizes the underlying process
described by the HMM.

Maximum likelihood is a common statistical method for estimating probabilities.
Using this approach we find that:

pij =
∑

t numbers of transitions from state i to state j at time t∑
t total numbers of genes in state i at time t

(1)

and

p0j =
total number of genes in state j at time t = 0

total number of genes at time t = 0
(2)

where t is the development time point.
Further details of these equations may be found in McClean, et al. [10].

2.5 Characterizing the clusters

Once we have learned the HMM probabilities using equations (1) and (2), the next
task is to use these probabilities to characterize the clusters in terms of the optimal
pathway for each cluster. We use dynamic programming (DP) to compute the optimal
pathway for each HMM. This is a special case of a standard technique in the theory
of HMM, where such a DP approach is known as the Viterbi Algorithm [14]. The
optimal pathway is here chosen so that the probability of the next step is as large as
possible.
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2.6 The time-inhomogeneous HMM

The HMM is typically used to model an underlying process that produces a succes-
sion of observed states. Our concept here has been to use the HMM model to provide
a means of associating the expression of a gene cluster with an underlying process
concept as it moves through a succession of developmental stages. While it is possi-
ble that the HMM is time invariant, in these cases, the underlying transition matrix
of the HMM is a function of time changing in response to external stimuli. As we
will see in the next section, processes such as we have in mind are likely to exhibit
such time heterogeneous behavior.

Once the hidden process has been determined, its state at each time point is char-
acterized by a HMM transition matrix. Now we wish to create a set of temporal
clusters of contiguous time periods where each temporal cluster is subject to a time-
homogeneous Markov model. Thus, changes in the underlying process can be traced
to a series of change points and the prevailing situations between these time points
identified.

Beginning at the first time point, contiguous matrices are tested for similarity and
if they are found not to be significantly different, they are combined and compared
with the following matrices. These combined transition matrices then represent a
uniform contiguous series of gene expression data. If however, the next contiguous
matrix fails the test of similarity, then that cluster is deemed to have ended and a
new cluster commences. Here a temporal cluster may be thought of as a pattern that
prevails for a period of time and then changes to a different pattern.

The similarity metric is given by L12 − L1 − L2, where L is the log-likelihood
function for the elements of the transition matrix given the observed transitions.
While the log-likelihood is a similar distance metric to the mutual entropy used ear-
lier for gene clustering, we are now carrying out temporal clustering, by comparing
transition matrices at the respective time points. The previous gene clustering was
static, involving the comparison of probabilities of occurrence of the series states.
We now adopt here the previous approach of McClean et al. [8, 9] that uses likeli-
hood ratio tests in a sequential manner to cluster Markov chains at contiguous time
points, where appropriate.

It is here required to characterize each of the newly formed temporal clusters
by determining the optimal pathway. This procedure, as before, is achieved through
dynamic programming to combine optimal sub-pathways to find the overall optimal
pathway.

3 Application

The procedures outlined above are now illustrated using temporal series of gene ex-
pression data. These data are available electronically at: http://stein.cshl.
org/genome_informatics/expression/somogyi.txt and have been
analyzed in a number of papers [11, 4]. The gene activity data refers to the expression
of 112 genes within the spinal chord of a rat during its development from embryo



44 S. McClean, B. Scotney and S. Robinson

to adult. Only the specific genes that are considered to be important in the process,
whereby the cells of the central nervous system become specialized nerve cells, have
been analyzed. Indeed these genes are known to code for the manufacture of various
proteins associated with the role of a nerve cell. These proteins include neurotrans-
mitter receptor proteins (Acetylcholine receptors: nAChRa2, mAChR2, mAChR3,
nAChRa3, nAChRa7), peptide signalling proteins (Heparin-binding growth factors:
MK2, EGFR, PDGFR) and one neuroglial marker (NFL). The data contain a time
series of gene expression measured at eight developmental time points E11, E15,
E18, E21, P0, P7, P14, A, referring to embryonic, postnatal, and adult phases re-
spectively. The scales of gene expression have been discretized by partitioning the
expressions into three equally sized bins and domain experts have identified the gene
clusters based on this three-bin discretization. In this analysis the discretization has
a smoothing effect that facilitates characterizations of the time series without un-
duly masking the underlying pattern. Associations between the gene expression time
series were identified using mutual entropy and the clusters based on this distance
metric are described in detail in Michaels et al. [11].

Of the clusters identified, we now use cluster 3, the smallest cluster, to illustrate
our approach. Using this cluster, we first learn the mapping that characterizes the
cluster. Once we have succeeded in mapping the sequences to a hidden process, we
can characterize that hidden process in terms of the optimal pathway using the initial
vector and transition matrix of the underlying Markov chain. In this case the gene
expression time series are presented in Table 4 where the codes 0, 1, and 2 are local
references and therefore have different meanings in each gene.

A heuristic process was then used to learn the mappings between the data in Table
4 and the hidden process. The heuristic process used a randomized search method to
optimize sequence alignment by finding the most probable mapping. These mappings
are shown in Table 5 and the transformed sequences are illustrated in Table 6.

Table 4. Time series of gene expression for Cluster 3.

Gene E11 E13 E15 E18 E21 P0 P7 P14 A
nAChRa2 RATNNAR 0 0 0 1 2 2 2 2 1
mAChR2 BOVMRM2SUB 0 0 0 2 2 2 2 2 1
mAChR3 RATACHRMB 0 0 0 1 2 2 1 1 0
nAChRa3 RNACHRAR 0 0 2 1 2 2 1 1 0
EGFR RATEGFR 0 1 0 1 2 2 2 2 0
NFL RATNFL 0 1 1 1 1 2 2 1 0
nAChRa7 RATNARAD 1 0 0 2 2 2 2 2 1
MK2 MUSMK 2 2 2 1 1 1 1 1 0
PDGFR RNPDGFRBE 2 2 2 0 0 0 0 0 1
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Table 5. The mappings for the time series in Table 4.

Gene Mapped Sequence Values
0 1 2

nAChRa2 RATNNAR 0 1 2
mAChR2 BOVMRM2SUB 0 0 2
mAChR3 RATACHRMB 0 2 2
nAChRa3 RNACHRAR 0 2 2
EGFR RATEGFR 0 0 2
NFL RATNFL 0 1 2
nAChRa7 RATNARAD 0 0 2
MK2 MUSMK 1 2 0
PDGFR RNPDGFRBE 2 1 0

Table 6. The series in Table 4 mapped using the transformations in Table 5.

Gene E11 E13 E15 E18 E21 P0 P7 P14 A
nAChRa2 RATNNAR 0 0 0 1 2 2 2 2 1
mAChR2 BOVMRM2SUB 0 0 0 2 2 2 2 2 0
mAChR3 RATACHRMB 0 0 0 2 2 2 2 2 0
nAChRa3 RNACHRAR 0 0 2 2 2 2 2 2 0
EGFR RATEGFR 0 0 0 0 2 2 2 2 0
NFL RATNFL 0 1 1 1 1 2 2 1 0
nAChRa7 RATNARAD 0 0 0 2 2 2 2 2 0
MK2 MUSMK 0 0 0 2 2 2 2 2 1
PDGFR RNPDGFRBE 0 0 0 2 2 2 2 2 1

Using the transformed sequences in Table 6 the maximum likelihood estimates
of the initial vector and transition matrix were then found to be:

s0 =

⎛
⎝
⎛⎛

1
0
0

⎞
⎠
⎞⎞

P =

⎛
⎝
⎛⎛

0.64 0.08 0.28
0.17 0.5 0.33
0.12 0.10 0.78

⎞
⎠
⎞⎞

The interpretation of this transition matrix is that all sequences start in state 0,
and there is a probability 0.64 of still being there, 0.08 of being in state 1 and 0.28 of
being in state 2, at the next time point. Using dynamic programming with s0 and P,
as described above, we learn the most probable pathway given the initial state vector
and the transition matrix: this is (0, 2, 2, 2, 2, 2, 2, 2, 2). By inspection of the mapped
sequences in Table 6, it appears that this pathway is not, in fact, very representative
of the process. The reason for this is probably because of a problem with time het-
erogeneity, as described above. We therefore now apply the methodology discussed
in that section for time-inhomogeneous HMMs.

Using the mapped sequence data in Table 6, the separate transition matrices are
found to be:
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PE11 =

⎛
⎝
⎛⎛

0.89 0.11 0
∗ ∗ ∗
∗ ∗ ∗

⎞
⎠
⎞⎞

PE13 =

⎛
⎝
⎛⎛

0.87 0 0.13
0 1 0
∗ ∗ ∗

⎞
⎠
⎞⎞

PE15 =

⎛
⎝
⎛⎛

0.14 0.14 0.72
0 1 0
0 0 1

⎞
⎠
⎞⎞

PE18 =

⎛
⎝
⎛⎛

0 0 1
0 0.5 0.5
0 0 1

⎞
⎠
⎞⎞

PE21 =

⎛
⎝
⎛⎛∗ ∗ ∗

0 0 1
0 0 1

⎞
⎠
⎞⎞

PP0 =

⎛
⎝
⎛⎛∗ ∗ ∗

∗ ∗ ∗
0 0 1

⎞
⎠
⎞⎞

PP7 =

⎛
⎝
⎛⎛∗ ∗ ∗

∗ ∗ ∗
0 0.11 0.89

⎞
⎠
⎞⎞

PP14 =

⎛
⎝
⎛⎛ ∗ ∗ ∗

1 0 0
0.62 0.38 0

⎞
⎠
⎞⎞

Here ∗ denotes that there were no data available to estimate this probability. Com-
paring PE11 with PE13 the log-likelihood distance is 2.78; the chi-squared statistic
with 2 degrees of freedom is 5.99 at a significance level of 95%, suggesting that
we should decide that there is no significant difference between PE11 and PE13.
These matrices are therefore combined and the combined matrix compared with
PE15. This time the log-likelihood distance is 15.82 compared with a test statis-
tic of 5.99, so we decide that E15 is in a different cluster to that containing E11 and
E13. Proceeding in a similar fashion, we find that PE15 can be combined with PE18,
PE21, PP0, and PP7. However, when we compare the combined transition matrix
from {PE15,PE18,PE21,PP0, and PP7} with PP14 the log- likelihood distance is
40.98; the chi-squared statistic with 4 degrees of freedom is 9.49 at a significance
level of 95%, suggesting that we should decide that there is a significant difference.
There are therefore three temporal clusters: {E11, E13}, {E15, E18, E21, P0, P7,
P14}, and {A}, with respective transition matrices:

P1 =

⎛
⎝
⎛⎛

0.88 0.06 0.06
0 1 0
∗ ∗ ∗

⎞
⎠
⎞⎞

P2 =

⎛
⎝
⎛⎛

0.125 0.125 0.75
0 0.5 0.5
0 0.03 0.97

⎞
⎠
⎞⎞

P3 =

⎛
⎝
⎛⎛ ∗ ∗ ∗

1 0 0
0.62 0.38 0

⎞
⎠
⎞⎞

We now use this time-inhomogeneous HMM to re-compute the optimal pathway.
This is given by: (0, 0, 2, 2, 2, 2, 2, 2, 0). We see from Table 6 that this is much more
plausible than the optimal pathway predicted by the time homogeneous HMM; in fact
three of the observed sequences coincide with it. We have therefore demonstrated
that such problems may benefit from the time-inhomogeneous approach.

The model describes the group of genes showing marked changes in gene activity
over a period of time from halfway into the embryonic stage of the rat (E15) until
just before the adult stage (A). The marked change can be either an increase in the
level of activity or a decrease in the level of activity. The peptides produced by some
genes are known to lead to the promotion or inhibition of another gene later on in
time. The importance of this model is that it can demonstrate which genes change in
their activity over time in either direction and thereby provide an indicator of a causal
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relationship between the genes. Although only a few genes have been analyzed here,
a more complete study would provide a significant tool for the understanding of
processes within the development of the cell.

4 Learning linguistic descriptions of the sequences

4.1 The homogeneous case

Although gene expression databases are burgeoning, tools for their exploration are in
their infancy [1]. An important aim of such tools is the interpretation of gene expres-
sion time series in terms of changing states of the organism. In seeking to relate gene
activity to known processes and pathways, we might match our characterization, de-
fined by the states of the HMM, to the function of the genes. While functional data
are not always available or may be incomplete, linguistic descriptions, derived from
signature patterns, could be used to describe the temporal semantics of the series.
Such annotations may then be used to augment gene expression databases. Although
such linguistic labelling of genes has been used in the past [5, 7, 13], the annotation
of temporal sequences is novel.

We have identified three terms that capture the temporal semantics of commonly
occurring sequence patterns for a homogeneous HMM, namely: constant, random,
and trend. We characterize these as follows:

Constant

A constant pattern is characterized by the HMM transition matrix being the identity
matrix. Thus the gene stays in its initial state and never moves to an alternative state.
Since the real world is usually subject to some noise, this definition is relaxed to one
where the process is quasi-constant, and the matrix is ‘nearly’ the identity, reflecting
very little changes in states. Here we can define ‘nearly’ in terms of thresholds e.g.,
all diagonal elements of the transition matrix should be greater than or equal to 0.9.
An example of this pattern is therefore one that has the transition matrix:

P =

⎛
⎝
⎛⎛

0.9 0.05 0.05
0.03 0.92 0.05
0.03 0.04 0.93

⎞
⎠
⎞⎞

Random

A Markov chain can be characterized by its limiting behavior as t → ∞. Often
the Markov chain can be described as ergodic, that is that the limiting probabilities
of being in each state, when the transition matrix is P, is given by the eigenvector
of P corresponding to the eigenvalue 1. An important special case of an ergodic
Markov chain is one which has every element positive. We here use the term random
of processes which are quasi-ergodic; this may be determined by thresholding the
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steady state vector, e.g., if all elements are greater than 0.1. An example of a pattern
that we define as random is therefore one that has transition matrix

P =

⎛
⎝
⎛⎛

0.5 0.3 0.2
0.4 0.25 0.35
0.2 0.25 0.55

⎞
⎠
⎞⎞

with corresponding steady state vector given by

π =

⎛
⎝
⎛⎛

0.36
0.27
0.37

⎞
⎠
⎞⎞

This means that there is a lot of change between states but there is no particular
pattern to this.

Trend

Another important type of Markov chain has states that do not communicate with
each other i.e. the probability of moving between them in any number of steps is
zero. In this case we say that the Markov chain is reducible into classes where each
class consists of a group of states that do not communicate with other states. Where
there is zero probability of exiting a class, once entered, we say that this class is
persistent. We here use the term trend of a process which initiates in a transient state
and moves to a persistent state. Trend is then characterized by a limiting distribution
which has zeros corresponding to non-zeros in the initial vector and vice versa vector;
the quasi reducible process may be determined by thresholding the initial and steady
state vector, e.g., when appropriate elements are greater than 0.9. An example of a
pattern that we define as trend is therefore one which has the transition matrix:

P =

⎛
⎝
⎛⎛

0.2 0.3 0.5
0 0.4 0.6
0 0.1 0.9

⎞
⎠
⎞⎞

or P =

⎛
⎝
⎛⎛

0.85 0.15 0
0.7 0.2 0.1
0.6 0.35 0.05

⎞
⎠
⎞⎞

with corresponding initial vectors given by:

s =

⎛
⎝
⎛⎛

1
0
0

⎞
⎠
⎞⎞

and π =

⎛
⎝
⎛⎛

0
0
1

⎞
⎠
⎞⎞

and steady state vector given by

π =

⎛
⎝
⎛⎛

0.82
0.16
0.02

⎞
⎠
⎞⎞
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4.2 The inhomogeneous case

In the inhomogeneous case, we use one of the labels constant, random, and trend
within each temporal cluster. Thus, using the temporal clusters identified in Section
3 for the rat data, we would describe the pattern as:

Constant (at 0) in E11, E13,
Trend (to 2) in E15, E18, E21, P0, P7, P14, and
Random (in 0 and 1) inA.

In fact it is likely that the third pattern reverts to the first one, once the genes have
settled into their adult behavior. However, with only one adult observation in this data
set we cannot infer this at the moment. Such a pattern, which moves from one con-
stant state to another constant state, staying in each constant state for an amount of
time that is determined by the underlying process, is likely to be commonly occur-
ring. We label this pattern as staged, where we envisage moving through a series of
stages in response to stages in the underlying process.

5 Conclusions

We have described a novel solution to a sequence-clustering problem where the se-
quences have been classified according to heterogeneous classification schemes. We
adopt a model-based approach that uses a hidden Markov model that has, as states,
the stages of the underlying process that generates the sequences. Each cluster is
described in terms of a HMM where we seek to find schema mappings between the
states of the original sequences and the states of the HMM.

The general solution that we propose involves a complex process in which we
first cluster the heterogeneous time series, next determine mappings between the
sequences and the HMM, then find the parameters for each cluster-specific HMM,
and finally describe the clusters in terms of optimal pathways. Time-inhomogeneous
HMMs are used to test for time-inhomogeneity and, where appropriate, HMM transi-
tion matrices and optimal pathways are determined for the separate temporal clusters.
Finally we identify linguistic identifiers to facilitate annotation of gene expression
data.

This approach is used to cluster and characterize heterogeneous gene expression
time series data; for illustrative purposes we use a data set that is publicly available on
the Internet. Although this is a modest data set, it serves to explain our approach and
demonstrates the necessity of considering time-inhomogeneity for such problems,
where there is an underlying temporal process involving staged development.

In conclusion, we believe that this paper has identified, and provided a framework
for solving, an important problem for large, possibly distributed, heterogeneous gene
expression time series data.
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Summary. DNA microarray experiments typically produce large-scale data sets comprising
thousands of mRNA expression values measured across multiple biological samples. A com-
mon problem in the analysis of this data is the ‘curse of dimensionality’, where the number
of available samples is often insufficient for reliable analysis due to the large number of indi-
vidual measurements made per sample. Genetic algorithms (GAs) are a promising approach
towards addressing this problem. Here, several examples from the scientific literature are dis-
cussed to illustrate the various ways GAs have been applied to the analysis of mRNA expres-
sion data sets, specifically in the area of cancer classification.

1 Introduction

One of the most exciting developments in recent functional gemomics research has
been the application of gene expression profiling technology to the study of oncol-
ogy and the specific problem of cancer classification. Being a complex disease, can-
cer happens when a critical number of changes have been accumulated in the same
cell over a period of time. Furthermore, matters become more complicated when we
consider that there are many different types (not to mention different subtypes within
a single type!) of cancer, each having arisen from different combinations of changes.

At present, the clinical and molecular heterogeneity inherent to many cancers
presents a significant challenge towards the successful diagnosis and treatment of the
disease—it is well-known that individual cancers can exhibit tremendous variations
in clinical presentation, disease aggressiveness, and treatment response, suggesting
that these clinical entities may actually represent a conglomerate of many different
and distinct cancer subtypes. In contrast to conventional techniques currently being
used by clinical histopathologists such as light microscopy and immunohistochem-
istry (IHC), the use of expression profiles to classify tumors may convey several
advantages. First, it has been shown that expression profiles can define clinically rel-
evant subtypes of cancer that have previously eluded more conventional approaches

51

W. Dubitzky and F. Azuaje (eds.), Artificial Intelligence Methods and Tools for Systems Biology, 51–66.

© 2004 Springer. Printed in the Netherlands. 



52 C.H. Ooi and P. Tan

[1, 6]. Second, in contrast to the use of single molecular markers, the ability to
monitor the expression levels of multiple genes in a simultaneous fashion can of-
ten provide a useful insight into the activity state of clinically significant cellular
and tumorigenic pathways. Third, depending on the scoring pathologist, results from
conventional IHC may sometimes be misleading due to the presence of isolated aber-
rant regions on the tissue section. In contrast, because expression profiles are usually
derived from the bulk of the tumor, they may better represent the overall collective
biology of the composite tumor.

Reflecting this promise and the active nature of the field, a substantial body of
work now exists describing various analytical strategies exploiting mRNA expres-
sion profiles for cancer classification. Typically, the expression data set is analyzed
using a wrapper gene selection-classifier training approach to identify genes whose
expression is selectively enriched in one tumor type (‘A’) and not another (‘B’) (Fig.
1). This is usually achieved as follows: for an expression data set comprising of M
samples (arrays) and N genes (features), the samples are first divided into a training
set (MTMM samples) and test set (MIM samples). Feature selection and classifier training
is performed using the training set samples, and the accuracy of the trained classi-
fier is determined by testing its ability to classify the test set samples. Importantly,
samples belonging to the test set should be completely ‘hidden’ from the initial gene
selection process performed using the training set. In addition to the gold standard
of an independent test, V-fold cross-validation or bootstrap methods can also be em-
ployed on the training set to obtain an unbiased estimate of sampling error [3]. With
the former, the training set is first randomly split into V subsets. A subset is singled
out, and the feature selection process is repeated on the remaining V − 1 subsets be-
fore attempting to classify the singled-out subset. This is repeated for all subsets, and
the total error rate is recorded as the estimate of error, EC (Note that this becomes a
leave-one-out cross-validation (LOOCV) assay when V = MT ). In bootstrapping,
instead of having V subsets that are exclusive of each other, B subsets of size MTMM are
defined, where each subset consists of samples that are resampled from the original
training set with replacement. Each subset is trained to produce a predictor set, which
is then used to classify all the training samples. EC is then computed based on the
error rate from each subset. Interested readers are referred to [10] for further details
on error estimation.

Fig. 1. Wrapper-approach gene selection scheme (left) for tumor classification (right).
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1.1 The challenge of high dimensionality for cancer classification

Although it is technically possible to build an apparently accurate classifier for can-
cer using the expression data from every single gene captured on a microarray, for
widespread clinical use it may not be feasible to use a diagnostic test that requires
monitoring the expression levels of thousands of genes [31]. Thus, in addition to pre-
diction accuracy, another important consideration for the ideal cancer classifier is that
it should consist of as few genes as possible while preserving good classification ac-
curacy. This may facilitate the development of simpler, faster and cheaper diagnostic
microarrays containing probes for only ‘key’ classifier features. There thus lies the
need to select, among the thousands of measured genes on a microarray, the handful
that will form a good predictor set. In this context, it is worth noting that the heuristic
‘goodness’ of a predictor set can often be measured by the extent to which it obeys
the hypothesis that good predictor sets should contain features highly correlated with
the specific class distinction, and yet uncorrelated with one other [15].

A major challenge in this regard, however, is the ‘curse of dimensionality’ that
arises as a consequence of the high-dimensionality nature of microarray data [20].
Typically, the design of a classifier should utilize at least 10 times as many training
samples per class as the number of features [19]. However, this criteria is extremely
difficult, if not impossible, to satisfy for most microarray experiments, where the
typical mRNA expression data set can contain at least 2 000 features and at most 200
samples, which, even in case of 2-class data sets, barely fulfills the aforementioned
criteria. Predictably, the situation is worsened when one considers multi-class data
sets, where the number of classes can extend to five or more.

The high dimensionality of mRNA expression data sets also presents a specific
challenge when one considers the requirement that a predictor set for tumor clas-
sification should ideally consist of a small number of features. A suitable analogy
would be ‘looking for a needle in a haystack’, as one would need to select, from
all available measured features, the appropriate combination of 10 to 100 to be pre-
sented to the classifier that maintains a reasonably good classification accuracy. As
an illustration, the solution space for a 20-gene predictor set drawn from a data set of
2 000 genes would consist of 3.9 × 1047 possible candidates, and this space would
exponentially increase if a range of predictor set sizes was tested. Because of these
difficulties, there is thus a need to develop algorithms that can analyze these large
solution spaces in a rapid and parallel manner. Genetic algorithms, which are now
described, may present a possible analytical approach that can be effectively applied
to this problem.

2 Genetic algorithms—a brief introduction

Genetic algorithms (GAs), first introduced by John Holland in the mid-1970s, are
randomized search and optimization techniques that derive their working principles
from the processes of evolution and natural genetics. In non-biological applications
such as engineering, network designs and traditional machine learning, GAs have
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already been well-established as heuristic optimization tools. In particular, because
they are aided by large amounts of implicit parallelism [14], GAs are capable of
searching for optimal or near-optimal solutions on complex and large spaces of pos-
sible solutions. This analytical capability thus makes GAs highly suited to the com-
plexity of a typical mRNA expression data set. Some specific advantages that GAs
bring to the analysis of mRNA expression data sets include:

1. GAs have been proven as an effective feature selector [26],
2. GAs are easily adaptable as they can be used with any single or combined clas-

sifiers,
3. GAs are flexible in algorithm design, as key parameters can be adjusted by the

user to achieve optimal results.

There are 5 distinct stages in a typical GA: initialization, evaluation, selection,
crossover and mutation. These do not occur linearly, but rather in a generation loop
as shown in Fig. 2.

In the GA, the evolutionary process is simulated by first initializing a random
population of ‘individuals’. Each ‘individual’ represents a potential solution to the
problem at hand, and is usually constructed as a string of variables or ‘genes’ [17],
which represent the specific attributes or parameters of the solution.

Fig. 2. A standard GA procedure.

To evaluate the specific ‘goodness’ of a solution represented by an individual,
a fitness function is applied to each member of the population in order to calculate
the fitness value of each individual. In the selection stage, a ‘mating pool’ is cre-
ated whose members are derived from the current generation. Echoing the concept
of ‘survival of the fittest’, individuals with higher fitness values are assigned higher
probabilities of ‘mating’ by having more copies of themselves in the mating pool.
In the mating pool, crossover and mutation operations are performed to create a new
and diverse set of solutions. In crossover, two individuals are randomly chosen from
the mating pool and a crossover operation is applied on the selected string pair with a
fixed probability pc (the expected number of crossovers occurring per individual per
generation), generating two offspring strings through the exchange of genetic infor-
mation between the two parents. This probabilistic process is repeated until all parent
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strings in the mating pool have been considered. Mutation operations are also applied
at a pre-determined rate, upon offspring strings produced from crossover. The most
common application is point mutation where the value of a variable at a probabilisti-
cally determined position along the offspring string is changed at probability pm (the
expected number of mutations to occur per ‘gene’ in a generation).

The resulting set of derived individuals now serves as a new population upon
which a new generation loop of evaluation, selection, and crossover/mutation is per-
formed. These generation cycles are reiteratively executed until a pre-specified ter-
mination criterion is fulfilled. Typical termination criteria can either be:

1. The appearance of an individual or a set of individuals which satisfy the required
fitness value,

2. A situation where no significant improvement of average or best fitness value
of the population is achieved after the duration of a pre-determined number of
consecutive generations (i.e., convergence has been attained),

3. The algorithm has been reiterated for a pre-determined maximum number of
generations.

In essence, the GA allows relatively fitter individuals to thrive compared to their
less fit counterparts, as the former are able to perpetuate their genes across subse-
quent generations at the expense of the latter. Crossover and mutation mechanisms
also make it possible for more ‘optimized’ individuals to arise from fit individuals of
the previous generation. Finally, selection mechanisms ensure that the newer, fitter
individuals are preserved in the following generation, resulting in an increase of the
average fitness of the total population.

2.1 Implementing a GA for feature selection

This section presents a series of simple GA designs for feature selection that can be
used for cancer classification. String design is perhaps the most important component
of a GA. One intuitive string design that could be used in feature selection would be
a binary-encoding-based design, where each string contains N variables and each
variable represents a gene drawn from a microarray data set of N genes. For each
variable, a value of 0 or 1 can be assigned, where a value of 1 indicates that gene i
is to be included in the predictor set to be presented to the classifier, and a value of 0
means the exclusion of gene i (Fig. 3a).

One disadvantage of this basic string design is that it is a rather inefficient coding
technique, since each string will contain as many variables as the total number of
genes in the microarray data set. Other more efficient string designs can also be
used to describe a predictor set. For example, in a whole number encoding string,
an index number is assigned to each gene in the data set (1, 2, ..., N ) and the string
is composed of variables ranging from 0 to N (Fig. 3b), where a variable with the
value of 0 represents no gene. Therefore instead of representing the total number of
genes in the data set, N , the actual string length, L represents a user-specified upper
limit to the number of genes in the predictor set, Rmax. Genes whose index numbers
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(b)   Whole number encoding

Fig. 3. Some feasible string designs for feature selection in cancer classification ranging from
the simplistic binary encoding to the more complex gene-weight encoding.

are contained within a string are included in the predictor set. Due to the possible
presence of variable(s) with the value of 0, in this scheme a predictor set can contain
anywhere from 0 to Rmax genes.

Now, it is known that the number of possible string permutations is dL (when
there are d possible values for each of the variable in the L-variable string). Therefore
the solution space that needs to be searched in case of the binary encoding is in the
order of 2N , while for the whole number encoding it is in the order of NRmax .
Since according to the definition of a good predictor set (discussed in Section 1.1),
Rmax�N , the solution search space is smaller than the one for the binary encoding.

A combination of both the binary and whole number designs produces the gene-
switch encoding (Fig. 3c), where a gene index and its ‘switch’ (‘0’ for ‘off’, ‘1’
for ‘on’) are placed side-by-side along the string. An extension of this idea is the
gene-weight encoding string, where the ‘switch’ for each gene index is replaced as
a weight, wGi

, which represents the contribution of gene i to the predictor set (Fig.
3d).

Once a string design has been determined, a starter population of P individuals
can then be randomly initialized. P typically ranges from 50 to the order of 10 000,
depending upon computational limitations and the required diversity of the popula-
tion.

A second key component of the GA is the structure of the objective or fitness
function, which measures the ‘goodness’ of an individual Si based on pre-specified
criteria. In the specific case of cancer classification, one simple measure of ‘good-
ness’ might be the ability of a predictor set encoded by a particular string to deliver
good classification accuracies. The situation may be more complicated, however,
when multiple criteria are considered in determining the overall ‘goodness’ of an in-
dividual. For multi-objective GAs, the overall fitness can be expressed in the vector
form f(Si) = 〈f1(Si), . . ., fKff (Si)〉 where the scalar function fkff represents the k-th
objective. For example, besides attaining good classification accuracies, one might
also want the GA to select the individual containing the least number of genes. In
this case the objectives could at least be: (1) maximize training classification accu-
racy and (2) minimize the number of selected genes. This could be represented by:
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f1(Si) = 100 − EC (1)

f2ff (Si) = 1/R (2)

where EC is the cross-validation error rate (and hence in this case f1(Si) would be
the cross-validation accuracy). Thus for an individual Si the fitness value increases
with accuracy, but faces penalization if the predictor set size, R is too large.

If a plain aggregation method is used, the fitness function can then be expressed
in a scalar form

f(Si) =
K∑

k=1

= wkfkff (Si) (3)

where wk represents the weight set to each corresponding objective fkff (Si).
In selecting the individuals that will enter the mating pool, two steps are in-

volved: fitness assignment, followed by actual selection. Fitness assignment can be
performed using different operations. In proportional fitness assignment [12], the
transformed fitness F (Si) is obtained by dividing the raw fitness f(Si) by the sum
of f(Si) of the population (

∑
f(SjS ) for j = 1, 2, . . ., P ). However, as one may

encounter various scaling problems with this method, an alternative methodology
is the more robust rank-based fitness assignment [4], where the population is first
sorted based on their raw fitness values, f(Si) and each individual is then assigned
an adjusted fitness value F (Si) purely based on its ranked position.

The next step of actual selection can be implemented using a number of meth-
ods. In stochastic universal sampling (SUS, Fig. 4a), the population is represented
as a single contiguous line, and each individual in the population is represented as a
segment on that line. The length of each segment is based upon the fitness of the in-
dividual, i.e., an individual with higher fitness would be assigned a longer segment.
N equally spaced pointers are placed over the line, where the position of the first
pointer is chosen randomly in the range [0, 1/P ]. The number of copies of a particu-
lar individual Si entering the mating pool is equal to the number of pointers that fall
within Si’s segment. This selection method gives zero bias and minimum spread [5],
which are desirable in a selection method. Bias is defined as the absolute difference
between an individual’s transformed fitness F (Si) value (as defined in the propor-
tional fitness assignment method) and its expected probability of reproduction, while
spread is the range of possible values for the number of offspring assigned to an
individual [5].

The roulette wheel selection (RWS, or stochastic universal sampling with re-
placement, Fig. 4b) also uses a single contiguous line to represent the population. In
this case, a single pointer is placed at a random position along the line P times. In
each placement, a copy of the individual Si on whose segment the pointer falls enters
the mating pool. Although this is a simpler selection scheme, it does not guarantee
minimum spread [5].

These aforementioned methods are best used in the context of a single scalar
fitness function. If the fitness function is in vector form, other selection methods can
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Fig. 4. Two of the most conventional stochastic selection methods used in GA.

be used. We briefly discuss two selection methods that have been established for
multi-objective GAs, based upon non-Pareto and Pareto-ranking approaches. The
vector evaluated genetic algorithm (VEGA) [28] performs selection in a non-Pareto
way. The population is divided into K groups of equal size, where K represents
the number of criteria/objectives. In the k-th group proportional fitness selection is
implemented based on the scalar function fkff (Si). The fittest individuals from the
K groups are then mixed to create a combined mating pool where crossover and
mutation operations are applied. While VEGA provides a robust selection technique
for high order optimization problems when little a priori knowledge is available to
guide the search, it faces the problem of speciation [28], where the population splits
into groups of species particularly strong in each of the components of f(Si). This
tendency is due to the fact that VEGA implicitly performs linear combination of the
objectives [11].

In Pareto-based approaches, each individual in the population is compared to ev-
ery other in order to identify non-dominated individuals. An individual is considered
to be ‘non-dominated’ when there does not exist any other individual in the popula-
tion that is (1) equal or superior to it in all criteria; and (2) superior to it in at least
one criterion. The ‘non-dominated’ individuals are then isolated from the population
and moved into the first non-dominated front. (A front is a set of individuals with
the same rank of non-domination.) The remaining individuals in the population are
again evaluated, and the now non-dominated individuals are similarly moved into
the second non-dominated front. This process of evaluation and isolation is repeated
until all individuals in the population have been placed in Pareto-based fronts. All
members of one front receive the same rank, and members of the first front have the
highest rank [12]. After ranking, fitness values are then assigned linearly from the
best to the worst individual. The non-dominated sorting genetic algorithm (NSGA)
[29], discussed in the next section, uses this ranking approach.

After selecting the individuals comprising the mating pool, crossover and muta-
tion operations can now be performed. Two common types of crossover are shown
in Fig. 5. The reader is referred to [16] for further reading. In one-point crossover, a
common cut point is randomly chosen along the strings, producing segments that are
then exchanged to produce two genetically different offspring. In uniform crossover,
the elements of a randomly generated template determine the genes a child receives
from each parent.

String design is an important factor in deciding the appropriate type of crossover
function to use. If the genes are arbitrarily arranged along the string (Fig. 3a and
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Fig. 5. Two disparate variants of crossover operators used in GA. At one extreme is the one-
point crossover, while the uniform crossover (which is essentially a multi-point crossover)
stands at the other end.

3b), uniform crossovers should perform comparably [30], if not better than one-
point crossover, since disruption [17, 21] is not a factor in this case. However, if
the variables representing the genes are ordered along the string based on external
information, such as their physical genomic location, one-point or custom-designed
crossovers are preferred over uniform crossover. The choice of mutation operator can
also be affected by the string design. For binary encoding strings, the most common
mutation operator is the bit-flip operator, where the bit of the ‘gene’ selected for mu-
tation is simply flipped (‘1’ becomes 0, and vice versa). In the case of whole number
encoding strings, random mutation can be used, where the value of a variable (i.e.,
the gene index number) that has been chosen for mutation is replaced by a randomly
chosen value between 0 and N .

Finally, the reconstitution of a new population for the next generation can em-
ploy various types of replacement schemes. In complete replacement schemes, all
the resulting offspring from the genetic operations and none of the original parents
populate the next generation. In elitist replacement schemes, both the parents and off-
spring are ranked by their fitness values, and the top P ranking individuals enter the
next generation. Thus, fit parents are retained. The advantage of such elitist schemes
over complete replacement schemes is that good individuals are not lost forever if
they produce inferior offspring. A disadvantage of the elitist approach, however, is
the increased risk of leading the GA into a local rather than global optimum.

2.2 Some examples from the literature

There are a number of reported studies (see Table 1) in the literature describing GA-
based strategies for feature selection and cancer classification. The performance of
these approaches was evaluated by their ability to correctly classify a number of pub-
licly available microarray data sets, including those for colon cancer [2], leukemia
[13], lymphoma [1], human tumor cell lines of diverse tissue origins (NCI60) [27]
and multiple primary tumor types (‘Global Cancer Map’, or GCM) [25]. The first
three data sets represent 2-class classification problems, while the last two (NCI60
and GCM) are multi-class data sets (9 classes for NCI60 and 14 classes for GCM).
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In the first study [7], a variant of GAs referred to as EDA (estimation of distri-
bution algorithms) was used to select predictor genes for the colon and leukemia 2-
class data sets. A binary string (similar to Fig. 3a) was used for the individual string
design with a population size of 100. Crossover and mutation operations were not
performed on selected individuals in this study, as it was reasoned that randomized
crossover operations could potentially disrupt the relationships between the variables
on individual binary strings [18] (see point 2 below). Instead, individuals for the next
generation were generated by sampling the L-dimensional probability distribution
learnt from the fittest individuals of the current generation, and fitness was measured
by LOOCV error (see Table 1). Potential concerns in this study include the follow-
ing:

Table 1. GA-based studies in tumor classification.

No. Study Data Sets Cross- Test No. of Classifier
Validation Genes

1 EDA [7] Colon 98.4 NA 6 naive
Leukemia 100 NA 8 Bayes (NB)

2 GA/KNN [22] Colon 95–100 94.1 50 k-nearest
Lymphoma 91–100 84.6 50 neighbor (k-NN)

Colon 90 NA 14
3 MOEA [23] Leukemia 97 NA 16 weighted voting

Lymphoma 94 NA 18
4 GA/MLHD [24] NCI60 85.4 95 13 linear

NCI60 79.3 86 32 discriminant
Leukemia 100 100 3 weighted

Lymphoma 100 100 5 voting: 2-class
5 NSGA-II [9] Colon 100 100 6 problems,

NCI60 92.7 90 37 one-vs-all
GCM 86 80 12 multi-class

1. The authors did not establish a test set that was separate from the training pro-
cess. Instead, for both the leukemia and the colon data sets, all the samples were
used in the training set. Hence, there was no way of independently estimating
the accuracy of the best predictor sets obtained by the EDA,

2. The selection stage of the EDA assumes that the variables represented in a partic-
ular string are independent of each other. This, however, may contradict the prior
concern (described above) regarding crossovers disrupting relationships between
individuals, which suggests the existence of interdependencies between the vari-
ables.

In contrast to [7], the GA/KNN (k-nearest neighbors) study [22] used a string
design consisting of actual gene indices rather than a binary string to represent a
potential predictor set. The size of a predictor set was not encoded within the string,
and various string length values, from L = 5 up to 50 were independently tested
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in separate runs. Using a population size of 100, 6 discrete predictor set sizes (of 5,
10, 20, 30, 40 and 50 genes per set) were separately considered. Similar to the EDA
study, the fitness function was the cross-validation accuracy. Mutation operations
were performed as follows: One to five ‘genes’ per individual were randomly chosen
and replaced with other ‘genes’ that were not already present in the predictor set.
Crossover operations were not performed in this study. Instead of specifying a fixed
number of generations, a termination criterion of 31/34 and 38/40 cross-validation
accuracy was utilized for the lymphoma and colon data sets respectively.

One interesting aspect of this study, however, was that unlike typical GAs de-
signs where an optimal predictor set is typically derived from one or a few runs, this
study adopted a ‘pooling’ approach to identify a consensus predictor set that could
be ultimately used by a k-NN classifier to classify the test set. Specifically, all the
individual genes were first ranked by their frequency of selection based upon the top
10 000 predictor sets generated by running the GA on the training set using different
values of L. For each value of L, the N top-ranked genes were then picked as pre-
dictor genes, and were used to classify the test sets through the k-NN method. This
study found that in general for all values of L: (1) the windows for the best test set
accuracy were achieved using classifier sizes of < 250 and (2) both test and training
set classification accuracies decreased with increasing N beyond 250, demonstrating
the essentiality of good predictor set selection in the classification process.

The challenge of identifying a predictor set that fulfills more than one require-
ment was recently addressed in a MOEA (multi-objective evolutionary algorithm)
study [23], where the investigators made full use of the power of multi-objective
GAs by attempting to simultaneously optimize 3 parameters: the number of misclas-
sified training samples (F1FF ), the predictor set size (F3FF ) and the class bias (F2FF ), which
reflects the potential bias of a predictor set due to unequal class sizes. A binary string
design (similar to Fig. 3a) was used, and the predictor set size was controlled during
population initialization by randomly generating strings where the total number of
variables assigned a ‘1’ was constrained between two thresholds τ1 to τ2ττ , τ1 and τ2ττ
being user-specified constants.

To evaluate the predictor sets, two subsets (size ratio 7:3) were randomly formed
from the data set. The larger set, together with the predictor set of the individual, was
used to train a weighted voting classifier which was then challenged by the members
of the smaller set, which was hidden from the classifier. The fitness values were then
calculated based on the individual’s non-domination level (number of individuals not
dominated by it).

A final predictor set was obtained after 10 runs of the MOEA classifier, with a
crossover rate of 0.6 per individual per generation, mutation rate 0.001, population
size 500 and 200 000 generations per run. Since the aim was to obtain a single pre-
dictor set, not the whole best Pareto front, simple aggregation of the F1FF , F2FF and F3FF
objectives was used to determine the optimal individual from members of the final
or best Pareto front. In simple aggregation, the objectives are combined into a higher
scalar function that is used as the criterion of decision making. The optimal predictor
sets were tested by performing LOOCV on the 3 data sets used in this study in order
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Fig. 6. A Summary of the MOEA approach. G denotes the maximum number of generations
in an MOEA run, while P is the pre-specified population size.

to obtain the results shown in Table 1. A summary of this approach is presented in
Fig. 6.

Besides 2-class data sets, at least two studies have considered how GAs could
be applied to the problem of classification in the context of multiple classes. Multi-
class data sets were first considered in the GA/MLHD study [24], which combined a
simple GA design with a maximum likelihood discriminant (MLHD) classifier. The
fitness function was a single scalar function defining classification accuracy as the
only parameter to be maximized. Two multi-class data sets were considered—the
9-class NCI60 and the 14-class GCM. In analyzing the NCI60 data set, the predic-
tor set size, R was coded as the initial character of the individual string design and
hence not included in the fitness function. The remainder of the strings contained
integers [1, N ], representing the index of a gene. To control the predictor set size, a
method similar to [23] was adopted where the population was initialized such that
R was between pre-determined constants Rmin and Rmax, and string length was
fixed at Rmax + 1. For the GCM data set, a slightly different string design was em-



Analysis of Large-Scale mRNA Expression Data 63

ployed (similar to Fig. 3c), where the predictor set size could be anywhere from 0
to a pre-determined maximum, Rmax. Interestingly, it was found that the value of
Rmax did not appear to play a significant role in influencing the ultimate size of the
final predictor sets. For example, the size of optimal predictor sets converged around
30 genes by generation 100 or so, regardless of whether Rmax was set to 60 or 100.
Analysis of the NCI60 data set used a population size of 100 and set the maximum
number of generations to 100, while for the GCM data set the population size was 30
and the maximum number of generations, 120. Various combinations of crossover
(uniform, one-point) and selection operators (RWS, SUS) were tested in different
runs. The optimal predictor set size was discovered to be between the range [11, 15]
for the 9-class NCI60 and [1, 60] for the 14-class GCM) after various runs utilizing
different size ranges (from [1, 5] to [26, 30]), varying crossover (0.7 to 1.0) and mu-
tation rates (0.0005 to 0.02). It is worth noting that although the linear discriminant
classifier used in this method tends to select uncorrelated genes into optimal predic-
tor sets, thereby complying with the hypothesis defining a ‘good’ predictor set [15],
the necessity to invert the covariance matrix in the discriminant analysis comes at a
fairly high computational cost. Developing new methods to correct this disadvantage
will be an important issue for future research.

Finally, a separate study [9] also addressed cancer classification problems for
both multi- and 2-class data sets using the NSGA-II (improved version of the
NSGA). Advantages of the NSGA-II approach include its modest computational
complexity and an efficient diversity preservation method [8]. A binary string (Fig.
3a) design was adopted. To reduce the length of each string and lower the compu-
tational cost, some of the more complex data sets were preprocessed by removing
certain genes based upon the differences between their maximum and minimum ex-
pression values.

For each of the 2-class data sets analyzed, the NSGA-II was run with a population
size 1 000 for 1 000 generations, with one-point crossover at a probability of 0.8 and
a mutation rate of 0.0005 (0.001 for the colon data set). With the multi-class data
sets, the mutation probability was decreased to 0.0001, while the maximum number
of generations was increased to 2 000 in case of the GCM data set (which comprises
a larger number of samples, genes and classes to consider). Since the NSGA-II is
a multi-objective GA, 3 objectives were defined: f1: predictor set minimization, f2ff :
training error minimization, and f3ff : test error minimization. Notably, this is the first
study in which a GA-based tumor classifier was applied to all five popular expression
data sets.

3 Conclusions—and the future

The few examples cited here demonstrate that the highly parallelized searching ca-
pabilities of GAs can be effectively used as powerful optimization tools to create op-
timal predictor sets for cancer classification, both for 2-class and multi-class mRNA
expression data sets. Nevertheless, much work remains to be done before the true
applicability of GAs to cancer classification can be fully appreciated. One of the
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most important issues is the problem of selection bias, which is now recognized as a
common flaw in many microarray-based cancer classification studies (involving both
GA and non-GA based methodologies). In many of these studies where LOOCV was
used as a surrogate index of classification accuracy, in the majority of these cases the
initial feature selection process utilized all samples (rather than all samples minus
one), which can also lead to significant overfitting [3]. In addition, for a test set to
provide an unbiased measure of classification performance by a predictor set, that
test set must also be completely segregated from even the initial feature selection
process. In the specific case of GAs, another potential concern is that for all the
methodologies described in this chapter employing a test set (with the exception of
the GA/KNN study), the classification accuracy of the test set was also incorporated
into the fitness function—the effects of this with regard to potential overfitting re-
mains an important issue to be addressed.

Another relatively unexplored area lies in the potential use of individuals where
the string length is variable and not fixed. All the studies discussed in this chapter
employed the fixed-length ‘chromosome’ concept, which greatly simplifies the im-
plementation of the crossover operator. However, it will be interesting to study the
possible contribution of variable-length string designs to GA-based methods for fea-
ture selection. In such a scenario, individuals with varying lengths (i.e. representing
predictor sets of various sizes) could compete with one another as well. In closing,
we believe that the full extent of the potential contributions of GAs to feature se-
lection remains to be fully exploited, particularly in the specific area of expression
genomics and cancer classification.
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Summary. While biomedical data acquired from the latest spectroscopic modalities yield
important information relevant to many diagnostic or prognostic procedures, they also present
significant challenges for analysis, classification and interpretation. These challenges include
sample sparsity, high-dimensional feature spaces, and noise/artifact signatures. Since a data-
independent ‘universal’ classifier does not exist, a classification strategy is needed, possessing
five key components acting in concert: data visualization, preprocessing, feature space dimen-
sionality reduction, reliable/robust classifier development, and classifier aggregation/fusion.
These components, which should be flexible, data-driven, extensible, and computationally
efficient, must provide accurate, reliable diagnosis/prognosis with the fewest maximally dis-
criminatory, yet medically interpretable, features.

1 Introduction

Many conventional diagnostic/prognostic clinical procedures are invasive. In addi-
tion, their sensitivity and/or specificity are frequently low. The obvious need to re-
place these with non-invasive or minimally invasive, yet more reliable methodolo-
gies has led to the development of spectroscopic, and more recently, microarray-
based experimental techniques. Prominent roles are played by magnetic resonance
(MR), infrared (IR), Raman, fluorescence and mass spectroscopy, all providing
spectra of biofluids and tissues. Depending on their frequency range, these meth-
ods probe molecular sizes, from diatomic molecules to large proteins. The analy-
sis/classification of these spectra has the goal of distinguishing diseases or disease
states. One can also apply the first four methods in vivo, a significant advantage in
the clinic (consider the possibility and promise of deciding, without surgical inter-
vention, the malignancy of a brain tumor).

Unfortunately, biomedical spectra are plagued by the twin curses of dimension-
ality and data set sparsity [49]. The first curse is active because the dimensionality
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d of spectral feature space is typically very high, d = O(1 000) to O(10 000); the
spectral features are the various intensity values at the d measurement frequencies.
The second curse arises because of the practical difficulty and/or cost of the exper-
imental acquisition of a statistically meaningful number N of biomedical samples;
frequently N is only of O(10) to O(100). This leads to a sample to feature ratio
(SFR) N/d that is in the 1/20 to 1/500 range.

However, the pattern recognition/AI community generally accepts that to create a
classifier with high generalization capability, we require an SFR of at least 5, prefer-
ably larger [30]. (Cover’s combinatorial proof sets the minimum theoretical value of
SFR at 2 as the natural separating capacity of a family of d-dimensional surfaces;
however, ‘the probability of ambiguous generalization is large, unless the number
of training patterns exceeds the capacity of the set of separating surfaces’ [15], i.e.
unless SFR > 2.). This seems to be a necessary condition. However, even if this is
satisfied, sufficiency is not guaranteed for small sample sizes; apart from a few recent
exceptions [19, 45], this latter caveat is not fully appreciated [49].

It is important to constantly keep in mind the general caveat: ‘there are no
panaceas in data analysis’ [28]. Thus, a best, ‘universal’ classifier does not exist: the
choice of preprocessing methodology, classifier development, etc. is data dependent
and should be data-driven. Instead of a futile search for a (nonexistent) ‘universal’
classifier, we have to formulate and realize a flexible classification strategy.

We call our strategy a statistical classification strategy (SCS), although it is a
hybrid of several statistical and machine learning/AI methods, supporting Breiman’s
view [13] that statistical and algorithmic modeling are different sides of the same
coin and both should be exploited. The SCS evolved over the last decade in re-
sponse to the need to reliably classify biomedical data that suffer from the above
twin curses. In particular, we formulated the strategy with clinical utility in mind: not
only should the eventual classifier provide accurate, reliable diagnosis/prognosis, it
should also predict class membership using the fewest possible discriminatory fea-
tures (attributes). Furthermore, these features must be interpretable in biochemically,
medically relevant terms (‘biomarkers’). These two interrelated aspects are not al-
ways appreciated, and thus considered when developing classifiers for biomedical
applications.

Because of the twin curses, reliable classification of biomedical data, spectra
in particular, is especially difficult, and demands a ‘divide and conquer’ approach.
Thus, our strategy consists of several stages: 1) Data visualization, 2) Preprocessing,
3) Feature extraction / selection, 4) Classifier development and 5) Classifier aggre-
gation / fusion. We activate all or some of these stages as needed, depending on the
data we need to classify. We show the possible interrelations of the various stages in
Fig. 1.

In the following, we shall lay out a ‘roadmap’ of the evolution of the SCS, and
describe our decade-long travel along this road. Whenever useful or revealing, we
shall also compare the SCS with more standard AI/machine learning approaches,
although without pretending to provide a thorough review of the latter. The journey
continues, with new challenges and promising future directions; we shall also sketch
these.
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Fig. 1. Flowchart for the statistical classification strategy

2 The Strategy

2.1 Data visualization—a picture is worth a thousand words

Any strategy involving the type of high-dimensional data we want to analyze requires
as its essential component, some effective, low-dimensional, yet accurate visualiza-
tion methodology. Prior to any classifier development, proper data set visualization
would help detect ‘outliers’ (e.g., poor-quality or noisy spectra), and assess whether
both training and test sets have been drawn from the same distribution (a necessary
condition for a meaningful evaluation of a classifier’s generalization power). Such
guarantee is particularly important for sparse data sets. We have recently introduced
a distance-(similarity)-based, exact mapping from d � 2 to 2 or 3-dimensions [48].
It relies on the simple fact that one can display in two dimensions exactly the dis-
tances between any three d-dimensional points (d arbitrary). We call it mapping to
a relative distance plane (RDP). It only requires a single distance matrix calculation
in some metric (e.g. Euclidean or Mahalanobis). By choosing any two points in the
feature space (the reference pair, R1, R2), one preserves the exact distances of all
other points to this pair. One can use any pair of points (e.g., the two class centroids),
and a line through them defines a potentially ‘interesting direction’. Projecting the
samples onto this reference axis creates a histogram. A multi-peaked histogram in-
dicates data clustering. When projecting the patterns onto some discrete collection
of reference axes, we can interpret the RDP mapping as a discretized version of pro-
jection pursuit [25]. If classification is of interest, R1, R2 should generally come
from different classes (but need not be the class centroids). For a 2-class case, with
N1N samples in class 1 and N2NN in class 2, including the two class centroids, there are
(N1NN +1)(N2NN +1) possible reference pairs. We can rank these according to misclassi-
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fication error; if the latter is zero for several reference pairs, we break ties by ranking
them in decreasing order of the training set (TS) margins (minimum distances be-
tween two patterns separating the two classes) in the RDP [48]. RDP mapping does
not require any optimization.

Although primarily an exploratory tool, the RDP mapping is particularly bene-
ficial when used in a dynamic, interactive way, throughout the deployment of our
strategy (Fig. 1).

2.2 Preprocessing—setting the stage

Preprocessing of spectra initially involves some type of normalization (e.g. ‘whiten-
ing’, or scaling to unit area), smoothing (filtering), and/or peak alignment (to some
external or internal reference). Frequently, we obtain better classification results if we
first transform the data. Typically, we replace MR spectra by their (numerical) first
derivatives, or rank-ordered variants (rank ordering replaces the original features
by their ranks. This nonlinear transformation reduces the influence of accidentally
large or small feature values.) For IR spectra, second derivatives are often beneficial.
Other (nonlinear) transformations, applied feature-by-feature, include power, log and
exponential operations. All of these preprocessing steps are computationally fast.

We have also introduced two nonlinear data transformations that specifically re-
quire parameter optimization [18, 50]. Both approaches improved class separation.

Having prepared the data set, we display it in the RDP, identify and remove po-
tential outliers, and if a split into training—test set is feasible, determine whether the
training and test sets appear to come from the same distribution [48]. (If this does
not hold, any assessment of the generalization capability of the classifier is suspect.)

Based on our extensive experience, the critical stage of the classification strategy
for spectra is the reduction of feature space dimension. Its primary role is to lift the
curse of dimensionality, i.e., increase the SFR to the acceptable 5 to 10 range. This
is both essential and feasible for spectra, for which the majority of the d spectral
features are either redundant (correlated) or irrelevant (‘noise’).

2.3 Feature space dimensionality reduction

We can accomplish feature space dimensionality (FSD) reduction in two, concep-
tually distinct ways. Filter methods do not rely on any knowledge of the eventual
classifier algorithm. Wrapper methods, which intimately tie FSD reduction to a pre-
diction algorithm, tend to perform better, but are biased and execute slower than the
filter methods, especially since they generally use some form of crossvalidation [34].

For either method, FSD reduction comes in two flavors. Feature selection pro-
duces a subset of the original features. Feature extraction is the more general ap-
proach: it involves obtaining some functional combination of the original features.
For instance, principal component analysis (PCA) [29], creates the d new features
as different linear combinations (the PCs) of the original d features. However, PCA
involves a high degree of feature transformation—the extracted features bear little
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resemblance to the original ones. This feature scrambling is undesirable for inter-
pretability, e.g., for MR or mass spectra, in which relatively narrow, adjacent spectral
regions are frequently signatures of specific chemical compounds.

A conceptually better approach than PCA is to use partial least squares for di-
mensionality reduction. Partial least squares sequentially maximizes the covariance
between the response variable (the class label) and a linear combination of the orig-
inal features, hence it is expected that the new features produced will be better class
predictors [37]. However, the interpretational difficulties persist because of the PCA-
type scrambling.

These conceptual problems led us to develop a specific feature extraction method
[38, 39] whose most important interpretational advantage is that it retains spectral
identity: the new features are functions (typically the averages) of adjacent spectral
points.

Before discussing this method in detail, another, more recent approach is worth
mentioning. It uses the fact that the PCA basis is not the only orthogonal basis for the
subspace spanned by the data points. In fact, one can rotate the PCA basis so that the
basis functions appear to be, as much as possible, indicator functions supported over
an interval of the data. A procedure for determining such a rotation is described in
[8]. Using this rotation, one can construct a basis, the rotated PC (RPC) basis for the
subspace spanned by the data in which the derived features resemble, as much as is
possible, averages over a region of the original feature space. When d > N , this can
be done without loss of information from the original d-dimension data. ¿From these
N RPCs one may select maximally discriminatory subsets by exhaustive search.

An alternate method for feature space reduction is to use the discrete wavelet
transform with thresholding [42]. The discrete wavelet transform is also an orthogo-
nal transform and converts the original high-dimensional spectra into a set of wavelet
coefficients. By thresholding the absolute values of these coefficients, one may dras-
tically reduce the number of extracted features, although the number is not necessar-
ily as low as N. Since the number of thresholded

coefficients varies from sample to sample, the approach taken in [42] was to
select those coefficients that satisfy the threshold in M < N of the samples.

Our feature extraction approach is a genetic-algorithm-based optimal region se-
lection algorithm (GA ORS) [39]. We chose a genetic algorithm because it is a global
minimizer, working on a string of 1s and 0s, a natural representation of the presence
or absence of spectral feature fkff . The inputs of GA ORS are F, the maximum num-
ber of features (distinct subregions) required, and the usual parameters of GA opti-
mization: crossover and mutation rates, number of generations, and number of ‘elite’
chromosomes. For spectra, nk consecutive 1s would represent the kth subregion, gk,
k = 1,...,F. GA ORS minimizes simultaneously the misclassification error and the
classification fuzziness (i.e., increases class assignment probabilities). Unique to our
method is that we can specify the type of required mathematical operation on adja-
cent features. We generally use averaging: a new feature gk is the arithmetic average
of nk adjacent original fkff s. Thus, one can view any of the F gks as a linear projec-
tion into an nk-dimensional subspace, followed by averaging over that subspace. For



72 R.L. Somorjai, M.E. Alexander and R. Baumgartner et al.

MR and mass spectra, such averaging is particularly meaningful, since the averaged
regions

frequently estimate specific peak areas. A bonus is that averaging tends to in-
crease the signal-to-noise ratio (i.e., corrects for the presence of noise). We also
specify what type of classifier (linear discriminant analysis (LDA), quadratic dis-
criminant analysis, k-nearest-neighbors, etc.) we should use in this wrapper-based
feature extraction approach. We usually employ LDA as the classifier, with leave-
one-out crossvalidation; using proper feature extraction, even the simplest classifiers
frequently outperform their more sophisticated (e.g., nonlinear) counterparts [45].

We incorporated into the GA ORS software several algorithmic enhancements.
Among the most useful are constraints that minimize the maximum misclassification
error among the classes (i.e. for 2-class problems equalize false positive and false
negative rates), penalize classification errors differently for different classes (relevant
when there is considerable imbalance between class sample sizes), and set lower and
upper bounds on the allowed spectral subregion widths. (This is important for the
mass spectra from proteomics, for which only very narrow regions, 5–20 adjacent
mass/charge values, are usually meaningful.)

The GA ORS approach has been very successful (for its application to the classi-
fication of biomedical MR and IR spectra, see the review [36] and references therein).
GA ORS worked equally well for mass spectra from proteomics data [49]. It is even
possible to apply the approach to data already reduced using rotated PCA. We rec-
ommend the RPC pretreatment because it reduces the dimensionality of the feature
space from d (� N ) to N . GA ORS will then better be able to further reduce the
data to a set of features that satisfy the SFR requirement.

For microarrays, the original features are expression levels of individual genes,
and FSD reduction requires a feature selection approach. Since the number of genes
is typically d = O(1 000) to O(10 000), exhaustive search (ES) (except for sin-
gle features) is clearly unfeasible, especially for a wrapper-based feature selection
method.

A good discussion of the conventional feature selection approaches is in [31].
They claim that the sequential forward floating selection (SFFS) method [41] is par-
ticularly powerful and near optimal. The SFFS is a generalization of the ‘plus-s
minus-r’ method, which enlarges the feature subset by s features using forward se-
lection, and then deletes r features using backward selection. In SFFS, the values of s
and r are determined automatically and updated dynamically. An improved, adaptive
version was announced in [47].

Until very recently, feature selection for proteomics and especially for microarray
data relied primarily on filter-based approaches, using some univariate criterion for
feature ranking, such as in [56]. Typically, the best K (50–200) features were selected
for classification, often with K > N . With sophisticated classifiers (e.g., neural nets
or support vector machines, SVMs) apparently very good results were obtainable.
Unfortunately, the reliability of these results is questionable, because of the small
N and still large K. Selecting from these K features an optimal subset, although
leading to a multivariate set that might even satisfy the SFR requirement, ignores the
fact that in general, no nonexhaustive feature selection method can be guaranteed to
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find the optimal subset. In fact, any ordering of the classification errors obtained with
each of the 2d − 1 feature subsets is possible [16]. Thus, there is no guarantee that
the best two or more features are amongst the K ‘best’ features selected via some
univariate method.

We found a (necessarily suboptimal) two-stage, ab initio multivariate strategy
that produces good classification results.

At the first stage, we use GA ORS as outlined above, even if no prior grouping
of similar genes was carried out (e.g., by an initial clustering). We specify as input
F � d temporary features (averaged subregions) that satisfy the SFR criterion.
These F regions comprise nk adjacent averaged features, k = 1, . . . , F , a total
of dF =

∑
k nk original features. dF is generally much less than the original d,

typically 1–2 orders of magnitude smaller.
At the second stage, we apply ES to the dF features for the best (sample-size-

dependent) K (2–5) individual features, using a wrapper approach with crossvalida-
tion. We assess the relevance of the individual features by counting their frequency
of occurrence in the classifiers tested. This counting is weighted. The weight for fea-
ture m is

∑
j κjCjC 1/2, with 0 ≤ CjC ≤ 1 the fraction of crisp (p ≥ 0.75) class

assignment probabilities, and κj Cohen’s chance-corrected index of agreement [14]
for classifier j; the sum is over the number of occurrences of feature m.

This two-stage approach might be viewed as an example of an embedded feature
selection method [26]. The latter incorporates feature selection as part of the train-
ing process. In fact, simultaneous classification and relevant feature identification is
an active area of research. For classification of a set x = {xi}, i = 1, ..., N of d-
dimensional vectors, the generic idea is to somehow identify a sparse hyperplane,
g(x) = w •x+w0, i.e., automatically eliminate contributions from most of the orig-
inal d features. Some form of regularization, i.e., adding a term such as an Lp norm
||w||p of the weight vector w, generally induces sparseness. Ideally, one would min-
imize the L0 norm ||w||0 of w forming the hyperplane; in practice, one minimizes
the computationally more tractable (weighted) L1 norm ||w||1. If the data set is not
linearly separable, a penalty term, the sum of non-negative slack variables,

∑d
k=1 ζk

with ζk given by the hyperplane, ζk = 1 − yk g(x) (an upper bound on the number
of misclassifications) alters the objective function ||w||1 to ||w||1 + C

∑d
k=1 ζk. yk

is the class label of sample k, and is either +1 or –1. The parameter C, 0 ≤ C ≤ 1,
controls the tradeoff between misclassification and sparseness. The constrained min-
imization of the objective function can be cast as an efficient linear programming
problem, e.g., via LIKNON, as in [6], or linear SVMs, as in [7]. We have compared
LIKNON with GA ORS on several biomedical spectral classification problems. Al-
though there is frequently overlap between the two subsets selected, in general LI-
KNON produces many more (probably strongly correlated) features than GA ORS,
often more than the number of samples. However, a LIKNON subset could serve as
a starting point for additional feature selection.

In Fig. 2 we show the outcomes of applying the GA ORS and LIKNON feature
selection methods to a 2-class biomedical MR spectral data set with 300 original
features. There are 61 samples in the healthy class and 79 in the cancer class.
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Fig. 2. Results of applying different feature selection methods to a 2-class biomedical MR
spectral data set with 300 initial features. We display the class centroids (– healthy,– colon
cancer), the difference curve (healthy – cancer), and both the GA ORS-created optimal subre-
gions (shaded bars), and the LIKNON-produced single features (black vertical lines).

2.4 Development of reliable classifiers

Having obtained (via GA ORS or otherwise) F discriminatory features that satisfy
the SFR appropriate for the data set size, the next step is to develop a reliable classi-
fier, i.e., one that has high generalization power. Ideally, one would like to partition
the data set into a training set, a monitoring (tuning) set and an independent vali-
dation (test) set. However, when the sample size is small, such partitioning is not
sensible or meaningful. The simplest approach is to use the entire data set when
developing the classifier. However, this resubstitution method is known to give an
optimistically biased error estimate (EE). Amongst the various crossvalidation (CV)
approaches, the leave-one-out (LOO) method uses N − 1 of the N samples to train
on and validates on the left out sample. By leaving out each of the N samples in
turn, it provides an essentially unbiased EE, but for small N the variance can be un-
acceptably large. In k − fold CV, we split the data set intoVV k approximately equal
parts, train a classifier on k − 1 parts, validate on the held out portion, and repeat the
process, cycling through all k folds. The ultimate EE is the average of k EEs, one for
each fold. The holdout (i.e., 2-fold CV) method uses approximately half of the data
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for training and the remainder for validation. Its EE is pessimistically biased. For the
k-fold crossvalidation (k �=�� N , i.e., not LOO), the data can be repeatedly partitioned,
preferably in a stratified fashion, i.e., maintaining the original sample proportions in
the classes—there is evidence that this improves the EE [58]. The bootstrap method,
a random resampling with replacement strategy [21], helps overcome both large bias
and large variance. It produces numerous artificial data sets of the same size as the
original; for each, one creates a classifier and averages the classifier outcomes. In the
limit, because of replacement, approximately 37.6% of the samples are left out and
can be used for validation.

Whatever the error estimation methods, the ultimate classifiers are of the resub-
stitution type, using the entire data set. Inspired by the ‘resampling with replace-
ment’ philosophy, we have developed a method to create reliable classifiers [51].
This involves randomly selecting (in a stratified manner) about half of the samples
as a training set, developing a crossvalidated classifier, and using the remainder to
test the efficacy of the classifier. The training samples are then returned to the orig-
inal pool and the process repeated, usually B = 5000 to 10 000 times (less if N
is very small). We save the optimized classifier coefficients for all B random splits.
The weighted average of these B sets of coefficients produces the final classifier.
The weight for classifier j is Qj = κjC

1
jC /2, with 0 ≤ CjC ≤ 1 the fraction of crisp

(p ≥ 0.75) class assignment probabilities, and κj is Cohen’s chance-corrected mea-
sure of agreement [14], ∼ 0 ≤ κj ≤ 1, with κj = 1 signifying perfect classification.
The B Qj values used for the weights are the ones found not for the training sets but
for the less optimistic test sets. We report classifier outcome as class probabilities.
The weighted Q-average need only include a fraction of the top-ranked classifiers.

2.5 Classifier aggregation/fusion

Classification reliability requires statistically significant (high confidence) class as-
signments for the samples, i.e. the assignment probabilities pmn should be crisp,
close to unity (e.g., for 2-class problems pmn is crisp if ≥ 0.75)). If the overall
crispness of the single classifier is low, or the accuracy is unsatisfactory, we activate
the classifier fusion stage of the SCS. At this stage, one combines the outputs (class
probabilities) of several classifiers to form a new classifier. The expectation is that
due to aggregation, the accuracy of the combined classifier will increase relative to
the accuracy of the best individual classifier.

One assumes that an ensemble of classifiers must be both diverse and accurate
for this to happen. However, the accuracy requirement depends on how one combines
the individual outcomes.

Diversity ensures that the individual classifiers make independent errors (in ad-
dition to the Bayes error); then the error after their aggregation may be reduced by a
factor up to the number of individual classifiers combined [55]. One of the important
theoretical results of classifier aggregation is the ambiguity decomposition [35]. It
states that the mean-square error of the combined error estimate is guaranteed to be
less than or equal to the average mean-square error of the component error estimates.
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An obvious (not necessarily optimal) way to promote diversity is to apply sev-
eral conceptually and methodologically diverse prediction methods to the data set.
We used this approach with success to discriminate between the MR spectra of can-
cerous and normal thyroid neoplasms [52]. LDA, a neural net-based method and
genetic programming formed the triplet of classifiers, applied to two different spec-
tral regions. The median of the six probabilities produced was the combiner. 100%
sensitivity and 98% specificity was obtained for an independent validation set.

Theoretical considerations notwithstanding, in our experience, classifier diversity
does not seem to be critical. Thus, classifier fusion need not rely on widely different
classifier methodologies. We found that for classifying biomedical spectra, using
a single, simple classifier, e.g. LDA, preprocessing the spectra differently (taking
different derivatives, rank ordering, etc) and/or selecting different spectral regions
will provide sufficient diversity for classifier aggregation.

Since the mid 90s, there has been an explosion of research on classifier fusion
(under many other appellations). Conceptually important approaches of practical in-
terest include bagging [9], boosting [23], output randomization [12], arcing [10],
and variants [5, 54]. There are annual conferences and workshops devoted to ‘Mul-
tiple Classifier Systems’, see e.g., [57] and earlier proceedings. We strongly advise
consulting these.

Let us suppose that K different classifiers are available (for simplicity, we as-
sume 2-class classification), and we want to combine their outcomes (a useful anal-
ogy: there are K experts with K possibly different opinions; we want to reach an
optimal consensus). For any sample x, the K classifiers produce K class probabili-
ties pk(x). The following is one of numerous possible categorizations of approaches
that combine multiple classifier outcomes. (The literature is extensive.)

1) ‘Passive’: These approaches are data-independent. The AI community typi-
cally uses the averages or medians or even products of the pk(x)s [53]. We shall
mention other combining methods below.

2) ‘Active’: The prime example of this is the multi-classifier variant of stacked
generalization (SG) [59]. It uses the K pk(x)s (level 0 outputs of the first set of K
classifiers) as K inputs to another (level 1) classifier. This process can be repeated
(levels 2, 3,. . . ).

We have compared several aggregation techniques on various artificial and real-
life MR and IR data in [60]: Averaging, majority voting, logistic regression, linear
combination, fuzzy integration, entropy, confidence factor, and stacked generaliza-
tion. Most of the techniques require training, usually involving the minimization of
an objective function. Training is computationally fast for linear combination and
quite time-consuming for fuzzy integration and logistic regression. The entropy and
confidence factor approaches do not require any training. The level 1 classifier we
used for stacked generalization was the relatively fast LDA/LOOCV.

Based on these results, our general conclusion (confirmed many times since) is
that for biomedical spectra:

• Aggregating classifiers will in most cases lead to a better classification perfor-
mance than that of the best individual classifier, and almost invariably results in
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more crisp classification. This latter observation is particularly relevant in a clin-
ical setting, where diagnosis (classification) with high confidence is important.

• Preprocessing data differently and submitting these to a single, reliable (level 0)
classifier is a simple and viable technique for creating diversity.

• Just as it is difficult to choose the best among different classifiers, it is also dif-
ficult to choose the best aggregation method. Different methods perform well on
some data and poorly on others. For biomedical data, SG with a simple level
1 classifier (LDA/LOO) generally gives high classification accuracies and pro-
duces crisp (high class assignment probability) outcomes.

For a reliable and realistic error estimate, especially for small N , it is impor-
tant to use crossvalidation at all stages: at feature selection/extraction, at classifier
development and even at classifier fusion [4, 45].

3 Challenges and Some Partial Solutions—Through a Glass
Darkly

3.1 Non-uniqueness

Non-uniqueness is largely due to small sample size: several sets of features give com-
parable classification accuracies (sensitivities, specificities), not only for the training
set but also for the independent validation set [32, 33, 49]. Given equally good fea-
ture sets, we found that using the RDP mapping can help in deciding which will
generalize better. We demonstrate this on the prostate cancer mass spectroscopy data
set ‘JNCI 7-3-02’, from (http://clinicalproteomics.steem.com). ‘JNCI 7-3-02’ has 42
samples in class 1 (black disks) and 42 in class 2 (white disks) in the training set
(TS), and 21 class 1 (black triangles) and 27 class 2 (white triangles) samples in the
validation set (VS) (Fig. 3). There are 15 154 original ‘features’ (mass/charge, M/Z
values), giving an SFR per class of 42/15 154 ≈ 1/361, instead of the recommended
5 to 10.

In the left panel of Fig. 3 we show results of the mapping (in the L2 norm) from
the 15 154-dimensional feature space to the RDP. This produced 8 misclassifications
in the TS and 9 in the VS, likely the worst possible result with a linear classifier.

Using an LDA/LOO-wrapper-based feature selection from the original 15 154-
dimensional feature space (1 million random sets with replacement), two different
5-dimensional feature sets (set A and set B), the features being the intensity values
at five M/Z positions, had no misclassification error for either TS or VS [49]. Which
of these will generalize better? On mapping from 5 dimensions to the RDP, this
classification-based ambiguity disappears: the classifier with set B is more likely
to generalize better than the classifier with set A; in the L2 norm, set A gave 7
misclassifications in the TS and 2 in the VS (middle panel), whereas set B produced
8 reference pairs with zero misclassification for the TS, three of which (one displayed
in the rightmost panel) also produced no error in the VS. If we use the Mahalanobis
distance as the metric for the RDP mapping, there are many more reference pairs
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Fig. 3. Mapping to the RDP (L2 norm). Left panel: From 15 154 features (M/Z values). 8
(TS), 9 (VS) misclassifications. Middle panel: From 5 dimensions (feature set A). 7 (TS),
2 (VS) misclassifications. Right panel: From 5 dimensions (feature set B). 0 (TS), 0 (VS)
misclassifications.

with perfect TS + VS classification. (This is to be expected, since feature selection
was LDA-based.) However, a classifier using feature set B still appears superior: 174
of the 1 849 possible reference pairs give perfect TS + VS results, whereas only 12
of the 1 849 pairs are error-free for feature set A.

3.2 Open vs. closed system

Given a 2-class classifier CmnCC , it will necessarily assign a new exemplar x to either
class m or to class n, i.e., CmnCC presents a closed classifier system. In contrast, an
open system allows for a reject class: exemplars that do not appear to belong to either
class should be identifiable. This is a generic problem and is closely tied to outlier
detection, with all its attendant difficulties. The atypicality index [2, 3] of x attempts
to assess how different x is from the population it is compared to. An exemplar x
may be placed in the reject class because it is too far from either class (‘distance
reject’) or because its class assignment is undecidable (‘ambiguity reject’) [20]. It is
somewhat simpler to ascertain the latter condition if CmnCC assigns class probabilities;
we call the class assignment of x ambiguous or fuzzy

if 0.25 ≤ pmn(x) ≤ 0.75.

3.3 The K-class problem—it is better with pairs

Proponents of multi-class methods argue that the larger the number of classes,
the less likely that a ‘random’ set of features provides good discrimination. How-
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ever, in the case of uneven distributions across classes, multi-class methods over-
represent abundant or easily separable classes [22]. Extensive experimentation sug-
gests that for the problems we considered, the best K-class classifier is obtained
when we develop K(K−1)/2 2-class classifiers and combine their outcomes. When
K(K − 1)/2 is large, an alternative approach is to create K 2-class classifiers, class
J vs. the K − 1 remaining classes, J = 1, . . . ,K, [43], or in general, use error-
correcting output codes [17]. Care must be taken to deal with the inevitable sample
size imbalance. A simple remedy we found effective is to assign (by crossvalidation
or trial-and-error) a larger weight to the less populous class when developing the
classifier.

Two-class classifiers have several advantages. They provide a more flexible
model than a K-class classifier (e.g., LDA assumes that all K classes have the same
covariance matrix. This would be much more restrictive than assuming a common
covariance matrix for only two classes: we need to pool the K potentially different
covariance matrices only two at a time). Furthermore, each 2-class classifier may
assume a different optimal feature set, thus providing additional classification flexi-
bility. In addition, unlike for K classes, the reliable detection of outliers in the 2-class
case is much less problematic. Finally, for a 2-class problem, a linear classifier and a
linear regressor are equivalent. However, being able to treat classification as regres-
sion, robust versions, e.g. least trimmed squares [1] can be developed more naturally.

3.4 Methods of combining 2-class classifiers (‘decoding’)

Let pmn(x) be the probability that when a d-attribute sample x = (x1, . . . , xd)
is submitted to CmnCC , the pair classifier for classes m and n, it will be assigned to
class m. To compute the posteriori probabilities pm(x) for all m = 1, 2, . . . ,K,
we present x to all CmnCC , and obtain the corresponding probabilities pmn(x). Given
the pmn(x), Friedman [24] introduced a simple combination rule: Assign x to the
class that wins the most pairwise comparisons. This is an integer count of all pair
probabilities pmn(x) ≥ 0.5. A natural extension is to use the actual probability
values pmn(x). Then

pF∗
m (x) = (2/K(K − 1))

∑
n�=�� m

pmn(x) (1)

RF∗ = arg max
m

[p[[ F∗
m (x)] (2)

pF∗
m (x) is now a proper (unnormalized) probability. In fact, Eq. 1 provides the

starting values for an iterative, maximum-likelihood method introduced in [27].
An alternate approach to these ‘winner takes all’ rules has been proposed in [44].

It is based on an optimal ‘network’ design of the K-class classifier, derived from all
possible 2-class classifiers, and leads to the combining rule

pB
m(x) = 1/[1 +

∑
n�=�� m

(1/pmn(x) − 1) (3)
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Eq. (3) is the critical relation that connects the a posteriori probability pm(x)
that x belongs to class m to the a posteriori probabilities pmn(x) obtained from
the K − 1 pair classifiers trained to discriminate class m from the K − 1 classes,
n = 1, 2, . . .K, n �=�� m. The K pB

m(x)s have to be normalized by dividing each by
their sum. In our experience, Eq. (3) generally outperformed both Friedman’s and
Hastie’s [27] approach.

We generalized Eq. (3) to account for the quality of the 2-class classifiers CmnCC .
This leads to quality-weighted final probability assignments. If Qmn = Qnm(0 ≤
Qmn ≤ 1,

∑
n�=�� m Qmn = 1) is some normalized measure of the quality of classifier

CmnCC , then Eq. (3) becomes

pB
m(x) = 1/[

∑
n�=�� m

(Qmn/pmn(x))] (4)

3.5 Burnishing tarnished gold standards

The problem of extracting diagnostic information is often exacerbated by the fact
that the ‘gold standard’—the external reference test against which a newly proposed
and possibly imperfect diagnostic test is measured—may itself be imprecise or even
unreliable. Factors contributing to a ‘tarnished’ gold standard include subjective es-
timates by a domain expert (or panel of experts), simple clerical errors, unreliable
or imperfect sample acquisition techniques, or anomalous sensor readings. However,
little work has been done to investigate a methodology whereby the possible impre-
cision of a well-established gold standard may be addressed while at the same time
maintaining its essential discriminatory power. One effective strategy for dealing
with this problem is the gold standard adjustment of spectra in a training set using a
robust estimation of deviations from class medians [40].

The strategy begins with calculating the medoid (a robust centroid) for each class.
One then uses a multivariate extension of the median of absolute deviations (robust
to outliers and long-tailed distributions) to compute the robust estimates of disper-
sion for each class medoid. We apply a weighted distance measure to each training
set spectrum for each class medoid. We incorporate this distance measure into the
original gold standard, using a fuzzy set theoretic membership function. While the
original gold standard assigns each spectrum to one and only one class, the fuzzy
gold standard adjustment assigns each spectrum to all classes, but to varying degrees.
If a spectrum is near its class medoid, the original gold standard predominates. If it is
far from its class medoid, its membership in its original class is reduced. Moreover,
if it is also sufficiently near another class medoid, its membership in that class will
increase. Note that if a class label adjustment occurs, it only occurs for spectra within
the training set; test sets are never altered.

This method was applied to a set of 206 normalized 1H MR spectra of human
brain neoplasms (95, 74, and 37 spectra in three classes) that were randomly as-
signed to training and test sets (80 and 126 spectra, respectively). The method ad-
justed significantly class labels for 3 training spectra; this improved the overall test
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set accuracy of the classifier (a multi-layer perceptron) to 87% (versus 83% with
the original gold standard). If we simply remove the three suspect spectra from the
training set, as is often done with ‘outliers’, the test set accuracy drops to 77%.

3.6 Nonlinear transformations

Most classes are not separable linearly. To handle arbitrary decision boundaries, we
either have to use some nonlinear classifier (e.g., neural nets) in the original feature
space, or first we have to transform the features. The latter approach is more attractive
because the appropriate transformation may render the classes linearly separable
in the transformed space. Such linearization carries penalties with it. The number
of parameters (i.e., the classifier coefficients) to be optimized will increase. This is
undesirable for biomedical data sets both because of interpretational difficulties and
because they already suffer from sparsity.

The kernel ‘trick’ of SVMs, i.e., using a nonlinear mapping of the original fea-
tures into an even higher dimensional feature space, may give an apparently error-
free classification (very high-dimensional spaces are essentially empty), but at the
expense of interpretability. On the other hand, after appropriate feature space re-
duction (to a low enough dimension to also satisfy the SFR), a nonlinear mapping
converts nonlinear class boundaries in the reduced space into hyperplanes in the new
feature space. The dimensionality of this space will still be low enough to be inter-
pretable, and one can exploit the simplicity and robustness of linear classifiers. Such
considerations further strengthen the argument for feature space reduction.

4 Future Directions and Persisting Challenges

The increased and increasing emphasis in the biomedical arena on certain data ac-
quisition methods (microarrays and various forms of spectroscopy) will lead to very
high-dimensional data sets; the clinical reality is that these data sets are sparse. From
the viewpoint of a data analyst/statistician, these twin curses pose a serious challenge.
There has been some progress. There are now effective algorithms and strategies to
find the intrinsic dimensionality of high-dimensional feature spaces: we can deal
with the curse of dimensionality. The curse of data set sparsity is another matter:
it is often not cost-effective, feasible or practical to experimentally increase sample
size. So what can one do to create diagnostic/prognostic tools (‘classifiers’) that are
reliable?

A possible answer is to devise methods that generate representative surrogate
(pseudo) data. The hope is that these data will somehow ‘fill the gap’ in the very
sparsely sampled populations. We believe this is a promising direction of research,
still in its infancy. In particular, there are already attempts in the literature, if some-
what unsatisfactory. Among these are the convex pseudo-data generation method
[11], K-nearest-neighbors-directed noise injection [46] and a ‘sample neighborhood
smearing’ method [32]. We have also started experimenting with a permutation-
based approach, with some success. We shall report on these experiments elsewhere.
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Clinical reality forces us to accept that not all class label assignments are equally
certain. Classification/regression methods that can incorporate such uncertainties
will gain more prominence. We have already mentioned one data-driven approach
to deal with tarnished gold standards. We are exploring, for 2-class problems, a re-
gression formulation, with domain expert confidence built into the class labels.
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Summary. Most combinatorial optimization problems cannot be solved exactly. A class of
methods, called metaheuristics, has proved its efficiency to give good approximated solutions
in a reasonable time. Cooperative metaheuristics are a sub-set of metaheuristics, which im-
plies a parallel exploration of the search space by several entities with information exchange
between them. Several improvements in the field of metaheuristics are given. A hierarchical
approach resting on multiple levels of cooperative metaheuristics is presented. Some applica-
tions of these concepts to difficult proteomics problems, including automatic protein identi-
fication, biological motif discovery and multiple sequence alignment are presented. For each
application, an innovative method based on the cooperation concept is given and compared
with classical approaches.

1 Introduction

An important challenge of system biology is to analyze the huge amount of data gen-
erate by the new field of molecular biology: proteomics. Proteomics [33][42] can
be defined as the study of the protein expression pattern of a given tissue or organ-
ism at a given time. This involves knowing about large number of different proteins,
their possible variants (modifications, mutations, fragments ...), their corresponding
amino acid sequence and potential interactions between these proteins.

The commonly used technique for proteome analysis involves four steps (see Fig.
1): protein separation (for example by two-dimensional electrophoresis), protein di-
gestion which produces a set of peptides, measurement of the peptides and peptide
fragments masses by mass spectrometry, comparison of mass data with proteic or
translated genomic sequence databases. Matched masses are used to identify proteins
and their possible variants. The understanding of the possible biological functions of
the identified new proteins, protein variants or protein complexes rely on various
information sources (experimental data, sequence and/or annotation databases, liter-
ature...). This approach must be automated or partially automated to analyze in real
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Fig. 1. Illustration of a typical proteomic experiment. Proteins to be analyzed are first isolated
from the sample by any separation technique, as for example two-dimensional electrophoresis
(1). A protein of interest is selected from the gel and is degraded enzymatically into smaller
pieces, the peptides (2). After ionization, the peptides are analyzed by mass spectrometry
(MS1) (3), leading to an MS spectrum containing a list of mass-charge ratios (m/z) together
with their intensities (denoted as peaks). The source protein of an MS spectrum can be identi-
fied by comparing the experimental peak list with virtual MS spectra computed from theoreti-
cal proteins stored in databases (4). Additional information can be obtained using tandem mass
spectrometry (MS/MS, or MS2). In this approach, a particular m/z value is isolated from the
MS spectrum and further fragmented by collision with gas molecules giving rise to fragment
ions. Again, the mass-charge ratios of the fragment ions are measured by mass spectrometry
(5), and an MS/MS spectrum is produced. While MS spectra correspond to a protein, MS/MS
spectra are associated with a peptide. MS/MS spectra can be identified in the same way as
MS spectra by computing virtual MS/MS spectra from theoretical peptides and measuring
their similarity (6). Alternatively, the sequence of the source peptide can be inferred de novo
without information from a database by analyzing the relative positions of the peaks.
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time the large amount of data generated in high-throughput environments commonly
used in recent years.

In our research group, we develop different methods for the automation of pro-
teomics data analysis. We are particularly interested in the problems of automatic
proteins identification and protein sequences analysis. From our point of view, most
of these analyzes can be regarded as difficult combinatorial optimization problems
such as, for example, efficient learning of properties from data, classification of com-
plex sets of information, extraction of grammatical structure from sequences, etc. We
apply cooperative metaheuristic approaches in a hierarchical way to manage a wide
variety of proteomics problems.

Metaheuristics are generic methods for non-exact solving of difficult (NP−hard
that is problems for which there is no proof that they can be solved in a polynomial
time) combinatorial problems [27]. Their global strategy consists of an efficient ex-
ploration of the search space in order to localize reasonably ‘good’ solutions for a
given objective function. A large variety of such optimization methods is available
(simulated annealing, branch and bound, tabu search, evolutionary algorithms ...);
they can be classified according to different criteria reflecting a particular property
to be emphasized. For example, they are often classified into deterministic and non-
deterministic categories depending on the use (or not) of a stochastic process for the
exploration of the search space.

We are interested in another metaheuristics property leading to classify between
cooperative and non-cooperative methods. The non-cooperative metaheuristics are
those which explore a unique point of the search space at a given time, like hill
climbing, simulated annealing, taboo search, etc. Cooperative metaheuristics corre-
spond to a parallel exploration of the search space by a set of coexisting potential
solutions; each solution cooperate with the others by information exchange in or-
der to select new promising potential solutions. This aspect is strongly linked with
the concept of building blocks (BB) [11, 12], that are relevant sub-parts of solutions
shared by most of the good solutions, because information exchange is a way to
detect and transmit building blocks between solutions. We distinguish three classes
of cooperative metaheuristics according to the origin of the decision and the nature
of information exchange. In the first one, referred to as ‘centralized cooperation’,
cooperation between entities is handle by an external oracle that selects both the
cooperating entities and the content of the exchange. For example, in a classical evo-
lutionary algorithm, cooperation consists of sub-solution exchange performed by the
crossover operator. The second class, referred to as ‘individual cooperation’, corre-
sponds to a system in which entities manage communication themselves however
without any prior information from the other entities. For example, the parallel ver-
sion of evolutionary programming, based on the injection island model [9, 13, 24],
is a two level cooperation metaheuristics.

The first level is the centralized cooperation between chromosomes on each is-
land and the second level is an individual cooperation between islands. In this second
level, each island sends data to its own selection of other islands independently of the
other agents needs. The island model not only provides efficient exploration ability
but it is also a common way to preserve diversity [35]. Finally, the third class, re-
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ferred to as ‘concerted cooperation’, embodies a cooperation process in which each
exchange depends on a mutual agreement between entities. Therefore, the direction
and the content of the communication are defined dynamically, in order to optimize
the gain of each participant. This model can be much more complex than those de-
scribed in the other two classes. It implies the definition of a strategy of cooperation
for each entity based on knowledge regarding its proper state and possibility of im-
provement, the information content of the other entities, the strategies of the other
entities, etc. However, the exploration of the search space is much more dynamic
and ‘intelligent’ due to the association of two factors: first, the diversity, which is
preserved by isolation of potential solutions inside agents; second, the flexible and
directed property of the information exchange mechanism between entities.

2 Genetic programming applied to protein identification

Protein identification is a key issue in proteomics. In a global approach, the chal-
lenge is to identify all proteins present in a sample. In high-throughput identification
projects, the identification tool should be fast, fully automated and robust. Alterna-
tively, proteins of clinical interest can be targeted by differential expression between
two samples. In this case, the identification tool must be generic enough to be able
to identify mutated or modified proteins.

Nowadays, the most widely used technique in protein identification is mass spec-
trometry (MS). After purification, each protein is digested using a specific enzyme.
The masses of the resulting peptides are then measured. The obtained mass list,
called a MS spectrum, may already be used for identification by ‘peptide mass finger-
print’, but additional information on the protein sequence can improve the accuracy
of identification: each peptide is further fragmented. The fragmentation ideally oc-
curs on the peptidic bonds joining together the amino acids and generates ionic frag-
ments carrying one or several charges. The fragment masses are measured, leading to
a MS/MS spectrum, which includes the molecular weight of the unfragmented pep-
tide (the source peptide) and a peak list representing the masses and the intensities of
the detected ionic fragments. The identification relies on a scoring function that com-
pares the experimental MS/MS spectrum with peptides from a database (theoretical
peptide).

MS/MS identification is not easy, since the fragmentation process is hardly fore-
seeable and depends, among other things, on the amount of energy used by the mass
spectrometer, on the number and the repartition of the charges carried by the pep-
tide, and on its sequence. As a result, some positions on the peptide are possibly
not fragmented. Moreover, the masses finally measured are modified by various fac-
tors, such as the exact position of the fragmentation related to the peptidic bond, the
number of charges on the ionic fragment, the possible loss of molecules (as water
or ammonium) and the isotopic pattern of the peak. Another difficulty is the pres-
ence of possible modifications (adjunction of specific molecules on amino acids) or
mutations in the source peptide, resulting in shifts in some of the measured masses.
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Different algorithms aimed at correlating a theoretical peptidic sequence with an ex-
perimental MS/MS spectrum have been described in the literature [16, 15].
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Fig. 2. Representation of an interpreted MS/MS spectrum and a simplified part of its associated
spectrum graph. The corresponding source peptide sequence is AFDQIDNAPEEK. The tag
ANDIQD is highlighted in the spectrum. Since this tag is formed by C-terminal fragments, it
is reversed compared to the peptide sequence. Some algorithms, like Popitam, first transform
all peaks into N-terminal fragments such that the tags can be read in the same direction. The
first node of the spectrum graph corresponds to the empty sequence (mass of an hydrogen)
and the last one corresponds to the complete sequence (parent mass of the MS/MS spectrum).

Our algorithm, called Popitam [18], exploits the concept of ‘spectrum graph’ in
order to extract tags (amino acid sequences) from the MS/MS spectrum. The graph
represents all possible complete sequences and sub-sequences that can possibly be
built from the spectrum (see Fig. 2). Vertices are built from the peaks and represent
therefore masses of fragments, while edges represent amino acid masses (consecu-
tive fragmentation in the source peptide differ by the mass value of one amino acid).
The sequences can be constructed by moving from one vertex to another by follow-
ing existing edges. A more complete description of the spectrum graph has been
published in [7]. The major difficulty with such a structure is the huge number of
tags that can be extracted from the graph. Among them, only a tiny part represents
true sub-sequences of the source peptide.

Identification methods based on tag search [7, 5, 26, 38, 40] typically try to ex-
tract tags (or complete sequences) from the graph and use them to identify the most
similar sequence from the database using sequence alignment algorithms [25]. In
Popitam, on the other hand, the database is used to direct the search in the graph.
This has two major advantages: first, all the original information can be used during
the comparison between the theoretical peptide and the graph, and second, the search
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space is strongly reduced, since tags are specifically extracted for each theoretical se-
quence.
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Fig. 3. Illustration of Popitam’s algorithm. The first step consists in structuring the MS/MS
spectrum into a spectrum graph (1). Then, theoretical peptide sequences guide the extrac-
tion of tags from the graph. As an example, five tags are extracted for the theoretical peptide
VVLVSDRFTGER. The ‘compatibility graph’ (2) is build from the tag list and is used to com-
pute all possible arrangements of tags (3), which are then scored. The best arrangement score
is the final score of the theoretical peptide (4). All candidate peptides iteratively undergo the
complete procedure from tag extraction to arrangement scoring. Eventually, the best-scored
peptide is proposed as the most likely source sequence of the experimental MS/MS spectrum.

Popitam’s algorithm can be described as follows (see Fig. 3: first, the experimen-
tal MS/MS spectrum is transformed into a spectrum graph. The next step is applied to
each theoretical peptide from a database that matches some criteria, such as species
of the sample and the molecular weight of the source peptide. It consists of extracting
from the spectrum graph all tags with a sequence that matches a sub-sequence of the
current theoretical peptide. The tags are then processed, in order to remove redun-
dant information (i.e., tags that are sub-sequences of other tags are removed), and
non-logical information (i.e., a tag which begins at the first node of the graph must
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also be prefix of the theoretical sequence). The aim is to arrange the tags in order to
maximally score the theoretical peptide. In addition, arrangements have to take into
account logical rules between tags. The arrangements are found by building a com-
patibility graph using these two rules, and then looking in the graph for all possible
cliques (fully connected sub-graphs). The final step is to score each arrangement
of the current theoretical peptide. The higher arrangement score represents the fi-
nal identification score for the current peptide. This is of course a key process of
Popitam’s algorithm, since the arrangement scoring function should be maximal for
the theoretical peptide that represents the source peptide (in order to automatically
identify, our scoring function must ranks first the theoretical peptide that correspond
to the source peptide), and should allow a good discrimination between the correct
candidate and the other theoretical peptides. We defined for the scoring function nine
sub-scores, such as the number of tags included in the arrangement or the percent-
age of coverage of the theoretical peptide by the tag. Other scores are described in
[18]. Of note, new sub-scores may be added in the future, such as expert rules set by
biologists used to studying MS/MS data.

We first combined empirically the nine sub-scores and tested this ‘empirical’
scoring function on a set of MS/MS spectra with known identifications. Then we
used Genetic Programming (GP) [21] to discover a more efficient scoring function.
GP belongs to the class of evolutionary algorithms (EA), which are stochastic search
methods inspired by natural mechanisms. GP applies EA to a population of computer
programs. A program can be represented as a tree with ordered branches in which
the internal nodes are functions and the leaves are the so-called terminals of the prob-
lem. GP provides a way to search the space of all possible programs composed of
functions and terminals in order to find a appropriate solution for the given problem.
The evolutionary process starts with a population composed of random programs.
Then this population applies the Darwinian principle of survival of the fittest and
genetic mechanisms borrowed from biology to breed a new population of programs.
This breeding process is repeated during a given number of generations in order to
produce better and better approximations to an optimal solution of the given problem
by exchanging ‘genetic information’ (BB) of promising points of the search space.
The evolution is guided by a fitness function that determines how each program in
the population solves the problem. In our case, trees represent the scoring function of
the identification. Nodes are arithmetic and conditional operators, and leaves consist
of the nine sub-scores computed for each tag arrangement and of constants randomly
generated in a bounded set of values. For our problem, the fitness function indicates
how a scoring function encoded by a program is able to correctly identify MS/MS
spectra from a learning set. Genetic operators are the engines of the evolution. They
allow producing offspring by combining and modifying the ‘genetic information’
contained in the individuals of the population. The most widely used operators are
the crossover, the mutation and the permutation. They operate on parent trees that
are selected from the population with, for instance, a tournament selection method
[3]. The crossover operates on two parent trees.

The process begins by independently selecting a crossover point in each parent
tree. Then the sub-trees, whose roots are a crossover point, are exchanged, giving
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rise to two offspring trees. The mutation operator consists of replacing a sub-tree of
a parent tree by a new randomly generated sub-tree. Finally the permutation operator
works by selecting a random internal node of a parent tree and permuting the order
of its arguments.
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Fig. 4. An example of optimized scoring function learned by genetic programming, using a set
of 265 MS\MS spectra. This function was then tested against a second set composed of 505
MS\MS spectra, and obtained a performance of 90.7% of correctly identified spectra, whereas
the empirical function had a performance of 85.9%.

Using relevant setting of the genetic operators, of the fitness function, of the
tree population size and of the generation number allows discovering new scoring
functions with better performance for our problem (see Fig. 4).

3 A hierarchical cooperative multiple sequence alignment
combining local similarity

The second major problem of proteomics that we handle concerns the analysis of
proteic sequences in order to infer knowledge about the function of the correspond-
ing proteins. In this section, we describe a cooperative multi-agent strategy that takes
advantage of concerted cooperation to achieve a fully automated clustering of biolog-
ical sequences depending on multiple local or distant similarities. Therefore, cluster-
ing leads to construction of a multiple sequence alignment (MSA) based on several
independent alignments by regular single motifs (local conserved regions in several
sequences, see Section 3.1) and linked dyad motifs (couple of covariated regions in
several sequences, see Section 3.2).

During evolution, DNA sequences are subject to mutation. These mutations may
have very different outcomes depending on where they occur. A point mutation that
does not affect the survival of an organism is likely to remain and be passed on
future generations. On the other hand, a mutation on a regulatory site may have
dramatic consequences on the survival of the organism. Thus, this mutation is not
likely to propagate to future generations. Considering a set of biological sequences
known to be related (a set of promoters or a family of protein sequences for instance),
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common features or similar words (sub-sequences) shared by all the sequences can
be determined. We suspect that these similar words have been kept by an evolutionary
pressure, because they are involved in a biological process. Then the problem of
discovering conserved regions can be formulated as follows: given a set of sequences,
extract one word (of a constrained length) per sequence such that all extracted words
share a maximum global similarity. These extracted words will then constitute a local
multiple alignments. This problem is addressed in Section 3.1

The three-dimensional shape of a protein bears on the protein function. This
shape is constrained by physico-chemical interactions, which determine the sec-
ondary and tertiary structures. Physico-chemical interactions are known, but it is very
difficult to precisely predict their involvement in the folding of a linear sequence of
amino acids into a structured protein. Motifs used in biology to characterize fami-
lies of proteins are often single words that represent conserved regions in the corre-
sponding set of related sequences. However, this kind of motif may not be descriptive
enough because protein properties depend greatly on physico-chemical interactions
between distant regions. Thus, a descriptive motif should at least be made up of re-
gions linked by some dependence. This problem is addressed in Section 3.2.

MSA is a very difficult problem ever present in bioinformatics. The alignment
of a collection of biological sequences significantly contributes to the field of pro-
tein characterization: it applies to phylogenetic analysis, structural modeling or func-
tional annotation transfer from characterized to new sequences [29]. Several heuris-
tic MSA algorithms have been developed so far, ranging from traditional progres-
sive methods [8, 20, 41] to computationally expensive score optimization strategies
[14, 28, 31, 39]. The quality of alignments produced is highly dependent on the initial
data [22]. None of these methods performs well in the variety of situations encoun-
tered with biological data, for example low sequence identity, complex or inverted
sequence similarity architecture, or variable sequence length.

3.1 A strategy for ungapped local multiple alignment

In this section, we address the following well-known problem: given a set of DNA
or protein sequences known to be functionally related, choose exactly one fixed-
length word per sequence, so that all chosen words are maximally similar (the length
must be provided by the user). The set of chosen words is called an ungapped lo-
cal multiple alignment (ULMA). This problem is addressed by a large variety of
programs, but we only focus on those that use a similarity measure based on the
information content concept. Considering that this problem has been shown to be
NP-hard [1], all these methods are heuristics. Apart from CONSENSUS [19], which
builds a solution using a greedy algorithm, other methods sample the search space,
optimizing an objective function. The well-known programs are the Gibbs Site Sam-
pler [23] and MEME [2]. Our method, MoDEL (motif discovering with evolutionary
learning) [17], is based on the exploration of two search spaces using a linked op-
timization strategy: 1) the search space M consists of all possible words of a given
length, and 2) the search space P consists of all possible ULMAs of this given length.
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An evolutionary algorithm globally samples the word search space, producing sub-
optimal ULMAs. These ULMAs are refined by two hill-climbing operators. The
key idea is to use the evolutionary algorithm to detect relevant areas of the search
space. We demonstrate some advantages of our strategy on a difficult proteins se-
quence data set (with a low level of local similarity). A web interface is available at
http://idefix.univ-rennes1.fr:8080/PatternDiscovery/.

Definitions

Let S = {S1;S2; . . . ;SN} a set made up of N sequences of length T (for conve-
nience, we suppose that all sequences have the same length). Si,j is the jth symbol
of the ith sequence. S is over a fixed size alphabet Σ = {σ1;σ2; . . . ;σK} with
K = |Σ| (4 for DNA and 20 for proteins). Let M = {m1;m2; . . . ;mW } be a
word of length W defined on Σ. The set of all possible words M defines the search
space M of size KW . Let P = {p1; p2; . . . ; pN} be a position vector, defining oc-
currences on Si, beginning at positions pi and of length W . Thus, P represents an
ungapped local multiple alignment (ULMA), made up of exactly one occurrence per
sequence in S. The set of all possible ULMAs P defines the search space P , of size
(T − W + 1)N .
The purpose of our method is to find the point of P that maximizes the relative en-
tropy. This measure expresses how unexpected the symbol frequencies inside the
ULMA columns are, with respect to some background frequencies (usually esti-
mated from the whole dataset). In other words, more the symbols are conserved
in the ULMA columns, and higher is this value. The relative entropy is calculated as
follows: a frequency matrix F is first estimated from the ULMA: for k = 1, . . . , K
and j = 0, . . . ,W − 1:

Fk,jFF =
1
N

N∑
i=1

J (k, Si,pi+j) with J(k, a) =
{

1 a = σk

0 else
(1)

The relative entropy is calculated from this matrix by:

I
(
F, F 0

)
=

K∑
i=1

W∑
j=1

Fi,jFF log
(

Fi,jFF

F 0
iFF

)
(2)

where F 0 is the background frequencies estimated once, during the initialization
step, from S.
The exploration process takes advantage of both word and ULMA representations,
mapping them together by two projection operators. The first one projects points
from M onto P (MtoP) and the second one projects points from P onto M (PtoM).
Both projection operators are illustrated in Fig. 5. The MtoP operator builds a ULMA
from a word. This is achieved by aligning the word M with all the sequences of S.
More formally: for i = 1, . . . , N and j = 1, . . . , T − W + 1:

pi = argmax
j

W∑
k=1

H (Si,j+k−1,mk) with H (a, b) =
{

1 a = b
0 else

(3)
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Then, pi corresponds to the position on Si where the match count is maximal.
However, a single sequence may have several maximal positions, leading to a posi-
tion vector having ambiguous pi. In this case, we use a greedy algorithm to clear up
ambiguities. Non-ambiguous dimensions are first selected to build a core. Remaining
dimensions are then added one by one, choosing each time the position that maxi-
mizes the relative entropy of the growing ULMA. This operator has an interesting
property: because of the alignments, the resulting occurrences in S present a much
greater similarity than positions selected by chance (a random point of P). This fea-
ture allows us to directly find outstanding points (with a high relative entropy value).
To denote these outstanding points, we define Q, a subspace of P which is made up
by all points in P that can be reached from M by a projection. By construction, this
subspace has at most the size of M. The complementary operator, PtoM, produces
a word from a ULMA. The resulting word is simply the most likely one accord-
ing to the frequency matrix F (Equation 1). More formally, for i = 1, . . . , K and
j = 1, . . . , W :

mj = σk with k = argmax
i

(Fi,jFF ) (4)

Note that the correspondence established between the two search spaces is not
symmetrical. A word projected to P and projected back to M will not necessarily
be the same as the initial one. This is also true for a ULMA.

Exploration

The overall strategy of MoDEL combines an evolutionary algorithm with simple hill-
climbing optimizations. The evolutionary algorithm locally samples the M search
space. Genetic operators are thus applied on words (points of M). In addition to clas-
sical genetic operators (crossover, mutation), specific ones have been designed. We
use for example a slide operator, which shifts all symbols in the word one position to
the left or to the right. The fitness value of a given M point is the relative entropy of
the corresponding Q point (which is obtained by the MtoP projection operator). This
evolutionary algorithm allows to discover high-scoring ULMAs belonging to the Q
search space. However, exploring solely this space is not sufficient because the global
maximum might be located in an area of P that is not covered by Q. A local search
in P is necessary to locate possible higher scoring ULMAs. After each iteration of
the evolutionary algorithm, about 5% of the newly created solutions are chosen to be
optimized with two simple hill-climbing processes: a ‘sequence-neighborhood’ opti-
mization and a phase-shift correction. The sequence-neighborhood works as follows:
given a position vector P = {p1, p2, . . . , pN}, only one pi dimension is modified at
once, keeping the others fixed. This dimension is sampled on all possible values (cor-
responding to the T −W + 1 possible words of Si), and is updated with the position
that maximizes the overall relative entropy (equation 2). All dimensions are modi-
fied one after the other, either in a predefined order or by random selection without
replacement. The sequence-neighborhood optimization is coupled with a phase shift



98 R. Gras, D. Hernandez and P. Hernandez et al.

Greedy algorithm

ambiguous

positions

unambiguous

positions

GATCCA...
Alignment

A 0.14A 0.43 0.07 0.00 0.38 0.68 ...

T 0.00 0.07 0.86 0.20 0.12 0.06 ...

C 0.24 0.29 0.00 0.71 0.28 0.12 ...

G 0.62 0.21 0.07 0.09 0.22 0.14 ...

Observed frequencies

26; 48

86

3

34

80; 118

86

32; 102

70

20

26

86

3

34

118

86

102

70

20

GATCAA...

2) PtoM

1) MtoP

Fig. 5. Projection operators allow the mapping of a point from one search space to the other.
1) MtoP: the word (a point of M) is aligned on each sequence in order to find positions
that maximize the match count. It is likely that several positions on the same sequence will
maximize the match count, leading to a position vector having some ambiguous positions. A
greedy algorithm clears these ambiguities up. Non-ambiguous dimensions are first selected to
build a core. Remaining dimensions are then added one by one, each time choosing the one
that maximizes the relative entropy of the growing ULMA. 2) PtoM: the resulting word is the
most likely one according to the frequency matrix F .

correction [23], which consists of shifting all pi together, several positions to the left
and to the right to ensure that the ULMA is not in a shifted sub-optimal configuration.

Performance comparison of exploration strategies

One may ask if using a complicated exploration strategy really gives an advantage
over simple repeated optimizations (multi-start hill-climbing) on different random
seeds, when the same CPU-time is allowed. To illustrate the relevance of the global
search (evolutionary algorithm) as well as the MtoP projection operator, we com-
pared the exploration abilities of MoDEL versus three simpler strategies. The first
one consists simply of local hill-climbing optimizations of random points of P . The
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second one works in the same way but with random points of Q (by converting ran-
dom words to ULMAs using the MtoP operator). The last one is the Site Sampler,
which can be roughly seen as a stochastic hill-climbing from random points of P .
We used a data set of 16 helix-turn-helix (HTH) protein sequences. This structural
motif (HTH) consists of two α-helices separated by a short turn. Its conformation
allows proteins to specifically bind DNA. The second helix recognizes and binds to
a specific sequence along the major groove of DNA, while the first helix stabilizes
the complex. We build a data set by gathering 16 HTH domain-containing proteins,
each one being a representant of a major HTH evolutionary lineage [37]. In this way,
sequences are highly divergent and the HTH occurrences are weakly similar, and
quite difficult to recover. The Swiss-Prot database [4] accession numbers of these se-
quences are: P03033, P00579, P22874, P02306, P03809, P16528, P16644, P03020,
P46833, P43271, P03030, P30338, P03021, P06020, P09964, P23221. The highest-
scoring ULMA we found (corresponding to the HTH domains) has a relative entropy
of 32.71 (we fixed a width of 20 amino acids). We will denote this ULMA as the ref-
erence. Fig. 6 shows the success rate (y-axis) plotted against the CPU-time (x-axis).
The success rate is estimated over 100 independent runs. A success means that the
reference ULMA has been recovered. Results show that the evolutionary algorithm
significantly improves the exploration process, compared to simple hill-climbing op-
timizations from random seeds. We therefore show that, even if the evolutionary
algorithm spends about 50% of the CPU-time of MoDEL, it gives a significant ad-
vantage in the exploration process, by choosing relevant points of Q, to be locally
optimized.
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Fig. 6. Performance of MoDEL and simpler strategies on the HTH dataset. The success rate
is plotted against the CPU-time (Athlon, 1.6 GHz). 1) Local search around random points
of P: ULMAs are randomly sampled and optimized with the hill-climbing optimizations. 2)
Local search around random points of Q: same as above but the MtoP projection is used
before the hill-climbing optimizations. 3) Full method: the Q search space is sampled with the
evolutionary algorithm, which chooses points to be locally optimized. 4) Gibbs Site Sampler.
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3.2 Linked dyad motif discovery from combination of conserved regions

The biological mechanisms underlying the three-dimensional folding of proteins are
not sufficiently known yet to be used efficiently for the discovery of structural mo-
tifs (i.e., motifs taking physico-chemical interactions into account). We focused on
the idea of using covariation measurement to detect a statistical dependence between
conserved regions in a set of sequences. Thus, we hope that regions correlated in
this way have a real biological meaning [10, 36]. We define a linked dyad as a pair
of conserved ULMA with a significant covariation value between them. In linguis-
tic terms, linked dyads belong to the upper class of context dependent languages in
Chomsky’s hierarchy and thus are considered very difficult (NP-hard) to discover.
Our goal is to discover such motifs from a given sequence set, and because it is un-
realistic to achieve that by an exact method, we will use an evolutionary cooperative
metaheuristic based on concepts defined in MoDEL.

We have a set of sequences using alphabet Σ and two position vectors (see Sec-
tion 3.1) of length N (with N the number of considered sequences), we define
M(P1, P2) as the well known mutual information measure between the two vec-
tors P1 = {P1[1], · · · , P1[N ]} and P2 = {P2[1], · · · , P2[N ]}, slightly modified
for our problem.

M (P1PP , P2PP ) =
∑
x,y

(
fxyff (P1PP , P2PP ) · log

fxyff (P1PP , P2PP )
fxff (P1PP ) · fyff (P2PP )

)

Where fxff (P1PP ) is the frequency of letter x in P1PP and fxyff (P1PP , P2PP ) is the frequency
of co-occurrence of x and y in the same sequence.

This definition can be extended that to measure the covariation between two con-
served patterns P 1···W

1PP and P 1···W
2PP of same size W beginning at position vectors P1PP

and P2PP :

CL(P1PP , P2PP ) = C(P 1···W
1PP , P 1···W

2PP ) =
∑

i=1···W
M(P i

1PP , P i
2PP ) (5)

Where P 1
1PP = P1PP and P i

1PP [k] = P1PP [k] + i − 1 We also compute

CL(P1PP , P2PP ) =
∑

i=1···W
M(P i

1PP , PL−i+1
2PP ) (6)

which takes into account the reverse order corresponding to ‘palindromic’ covaria-
tion. We then select pairs of position vectors with high value of CL or CL.

Evolutionary strategy for linked dyad discovery

MoDEL is efficient to find the best conserved region of a set of sequences, but the
diversity of the population obtained after several generations is poor: weaker chro-
mosomes are discarded during the evolutionary process and the resulting solutions
are always slight variations of the best one. To avoid that, we use the concept of eco-
logical niches [11]. Each chromosome fitness is balanced with a distance between the
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chromosome and the rest of the population. Thus the fitness of a ‘weak’ chromosome
with a few neighbors (similar chromosomes) in the population is as good as that of
a ‘strong’ chromosome with many neighbors. So the population will be distributed
among many optima, and not only around one unique optimum like in MoDEL.

With this modification the MoDEL evolutionary process finally yields several
different conserved regions. If we use MoDEL as a generator of conserved regions,
we can compute the mutual information CL and CL between all possible pairs of
such regions and keep the best pairs. Depending on the number of possible pairs,
conserved regions can be combined via a heuristic step.

Preliminary results

In order to validate our hypothesis on mutual information measurement, we have
implemented a generator which produces sequences similar to those of the Pevzner’s
challenge [34]: find a signal in a sample of sequences, each 600 nucleotides long and
each containing an unknown signal (pattern) of length 15 with 4 mismatches. In our
generator, instead of regular motifs, linked dyads are inserted. Given two consensus
words, one being a morphic transformation of the other one, they are inserted in
each sequence with a given number of errors. Then, for each occurrence of these
words, we randomly restore the morphic links, which were lost because of errors.
Any mutation in one word will be reflected onto the other one, creating two sets of
words complying with our definition of a linked dyad. We have used this generator to
create sets of 20 sequences of length 1 000, with 10 inserted linked dyads of length
15 (for each word) having variable rates of errors and mutual information values.

We used MoDEL (modified as described above) on these sets of sequences, and
calculated the mutual information values of all possible pairs composed of regions
generated by the evolutionary process. Note that we gave the chromosomes the ap-
propriate length; with a smaller (resp. greater) length, we would have retrieved re-
gions that are included (resp. contained) in the inserted regions. The covariation com-
putation is very time consuming if we consider all the pairs, but is reduced to a few
seconds with a heuristic approach selecting the most promising pairs.

3.3 A cooperative multiple sequence alignment based on biological domain
composition

MSA requires a very flexible heuristic to produce a biologically meaningful align-
ment, keeping time and computation resources within reasonable ranges and pre-
serving robustness with regard to the initial data set (the number of sequences, the
degree of similarity between sequences, the variability in domain composition and
organization). Several difficulties are encountered: the choice of a pertinent scoring
system and the efficient exploration of the search space, which is exponential to the
number of sequences. MSA is therefore highly combinatorial and requires strong
heuristic strategies since exhaustive methods are impracticable, even for reasonably
sized data (three sequences or less) [30].



102 R. Gras, D. Hernandez and P. Hernandez et al.

A concerted cooperative multi-agent approach, which is distributed and highly
adjustable, is appropriate in this situation. The particularity of our strategy rests on
the application of a preliminary clustering stage based on biological domains before
constructing the alignment itself. The heuristics lies in splitting the problem into a
variable number of agents that consider only a single domain at a time and achieve a
dynamic assembly of sequences around this domain. Concerted cooperation is driv-
ing the clustering process. This strategy, unlike traditional clustering methods, does
not require to pre-set the number of clusters and tolerates overlapping clusters, it is
therefore robust with regard to starting conditions.

Since this approach is entirely founded on the notion of domains, it should be
able to take advantage of any single piece of information contained in biological
domains. The term ‘biological domain’ covers here not only regular motifs (Section
3.2), but also linked dyad motifs (Section 3.3). Moreover, domains found only in a
sub-set of sequences are also considered. The order in which the different domains
are organized in the sequences do not impair the procedure. Basic concepts, and a
first draft of this novel MSA algorithm as well as preliminary results are presented
below.

Clusters and sequences scoring system relies on domain information

The dependency on pairwise similarity, either global or local, is a major weakness
of the existing sequence clustering or alignment methods. The global measure is not
optimal to describe the homogeneity of a group of biological sequences, since it does
not reflect their domain architecture, which is fundamental to their biological func-
tion. We propose a similarity criterion that does not rely on pairwise comparisons
but includes the relative entropy of a regular motif inferred across all sequences on
the one hand (Section 3.1, equation 2); and the co-variation measure of linked dyad
motifs on the other hand (Section 3.2, equations 5 and 6). This two-component sim-
ilarity criterion is local and hence it accounts for complex domain architecture with
potential inversions. In addition, it embodies simultaneously the conservation of all
considered sequences. Therefore, it is more suitable than a pairwise score to char-
acterize homogeneity within a group of sequences. Finally, the contribution of each
sequence to this similarity measure is computed and serves as a basis for sequence
exchange between cooperating agents or clusters during the optimization process.

Cooperative agents explore of the search space

Exploration of the partition space, especially when overlapping clusters are autho-
rized, is an NP-hard problem. To bypass this situation, we propose a cooperative
heuristic that distributes the exploration among a variable number of agents, each
agent being responsible for one cluster. The optimization of a single sequence fam-
ily can be properly addressed by a single agent. Each agent cooperates with other
agents to perform a local optimization on the corresponding sequence family. Con-
certed cooperation is a decision-based communication procedure that results in se-
quence exchange between agents. This approach can be seen as a balance between
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two procedures: intensification and diversification of the search. Intensification tends
to focus on promising points of the search space, whereas diversification directs the
search towards yet unexplored points.

Intensification implies small moves in the search space. It is mostly achieved
by concerted cooperation, which consists of sequence exchange and is decided by
two partners according to their size, fitness and sequence scores. Upon agreement
between two partners, a certain exchange is executed. Diversification induces more
radical moves in the search space. It encompasses birth of new agents, death of in-
competent agents, fission or fusion of agents. Agents have also the possibility of
picking randomly new sequences from the initial set, to maintain some diversity. In-
versely, they can exclude bad sequences to avoid uncontrolled growth of the family
and speed the convergence towards a stable sequence cluster.

Once the clustering process has reached equilibrium, a multiple alignment can
be constructed. The sequence family of each agent embodies a building block of
the whole cluster set. During the optimization process, agents self-organize into a
hierarchical structure. The assembly of all families guided by the natural hierarchy
present among agents will lead to an emerging multiple sequence alignment.

First draft

In the present chapter, we describe a first draft of the clustering algorithm involving
cooperative agents. A parallel implementation has been performed using the ‘mes-
sage passing interface’ package MPI [32]. Once the agents are initialized, they run a
number of MoDEL generations to compute a preliminary best motif with its relative
entropy, set as the agent’s fitness. The contribution of each sequence to the agent’s
fitness is also computed. These scores and the best motif found so far are sent to all
other agents so that they acknowledge each other. The agents check the information
received from other agents, if any and update their data. Then a different communi-
cation procedure prompts the agent to decide which exchange should take place with
which partner and actually sends the sequences. When this second communication
is over, the agent looks for putative received sequences. It decides whether or not to
pick new sequences or trash some poor scoring sequences. Finally, the agent updates
its sequence set and starts again the succession of actions of the algorithm.

The decisions to exchange or to pick or trash sequences bring a certain benefit
(or detriment) to the agent’s fitness. This benefit is used to choose which type of
decision should be privileged in future iterations.

Our clustering approach was tested on artificially-generated DNA (cardinal 4)
sequence families in which a conserved motif of length 15 with 2 errors was inserted
[34]. A set of 100 sequences, 5 families (5 different motifs) of 20 sequences of length
600, was produced. A population of 14 agents received each a random subset of 46
sequences from the initial set. The subset was iteratively updated during the clus-
tering process, by sequence exchange between agents as described in Section 3.4.3.
A total of 50 iterations requires 71 seconds CPU-time when distributed on a cluster
of 14 Pentium4 1.5GHz processors. This whole clustering procedure was repeated
100 times on different data sets for statistical reasons. The results obtained were the
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following: among the 5 families contained in the initial set, a mean of 4.31 families
was identified by the agents. At the end of the procedure, each cluster contained a
mean of 52.2% of sequences from its identified family, the remaining was distributed
among the 4 other families. Finally, each cluster contained on average 69.5% of the
sequences from its identified family (14 sequences out of 20).

Although this version of the algorithm is still under development, it produced
encouraging results, confirming the suitability of the scoring system.

4 Conclusion

We presented in this paper a new classification of metaheuristics considering the
property of cooperation among entities exploring a search space. This classification
involves three sub-classes: centralized, individual and concerted cooperation depend-
ing on how the cooperation is accomplished. We gave new definitions and described
new developments of these approaches. We emphasized the importance of a com-
bination of these methods to maximally profit from their specific characteristics for
complex structured problems. In this case, a hierarchical division of the problem into
independent tasks can lead to spread and simplify optimization steps. The results of
these optimizations are then associated to produce a global solution benefiting from
the structures appearing in the different levels considered. We applied all these tech-
niques to two central problems of proteomics: automatic protein identification and
multiple sequence alignment based on motif discovery. We gave a short overview of
the state of the art of these problems and some possible improvements to manage all
their inherent difficulties. We gave also some promising preliminary results obtained
with our tools using real data for protein identification, learning of a discriminating
score, motif inference or sequence clustering.

We are currently working on several enhancements of our methods. From the ap-
plication point of view, we try to integrate some new biological expert knowledge in
the parsing of the graph structure and in the protein identification scoring function.
We also designed a new algorithm based on tag matching which will allow the detec-
tion of all possible modifications. We work on the extension of motif representation
allowing variable length, gaps inside motif or multiple alphabet representation. A
wide variety of improvements are also currently under study for the metaheuristic
aspects. We work on a better management of the building block concept in evolu-
tionary algorithms. For example, if we can represent explicitly the possible building
blocks in genetic programming then we can use a multi-level parallel algorithm to
discover and combine them. We will extend our explored space representation to
control the use of the genetic operators and to define smarter new operators for ge-
netic algorithms. We will develop adaptive strategies for agents that enable a mutual
agreement and increase the diversification aspect of concerted cooperation using new
operators like birth or death of agents. Finally, we plan to integrate a multi-objective
optimization approach [6] to our methods because most of the biological problems
imply several independent properties with inconsistent maximum values.
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Summary. Until recently, genomics and proteomics have commonly been separate fields that
are studied and applied independently. We introduce the BioGrid4 platform, which aims to
bridge this gap by integrating gene expression and protein interaction data. In the expression
space, gene expression data can be analyzed using standard clustering techniques. To link the
gene expression space with the protein interaction space, we assign domains and superfamilies
to gene products by applying the SUPERFAMILY tool and the Structural Classification of Pro-
teins (SCOP) database. For these proteins, the BioGrid platform may display possible physical
interactions between them as predicted by the Protein Structure Interactome Map (PSIMAP).
Any findings in the gene expression and protein interaction space should be compared with
those reported in the scientific literature. Therefore both spaces are linked to a literature space
by integrating GoPubMed, a system for ontology-based literature searches, into the BioGrid
platform. We illustrate the approach that the BioGrid platform enables through an analysis of
energy-related genes and protein complexes.

1 Introduction

Bioinformatics acquired genomics as one of its core fields of application after many
complete bacterial genomes were sequenced around the mid 1990s. For the com-
plete understanding of individual proteins and their functions, the technologies of
proteomics are critically important. The experimental measurement of gene and pro-
tein expression levels has produced preliminary results on the regulation, pathways
and networks of genes in cells. The ultimate aim of both genomics and proteomics
in a bioinformatics and systems biology perspective is to map out all the circuits
of energy and information processing in life. There are two initial challenges in sys-
tems biology and bioinformatics: one is to produce precise and accurate experimental
data using mass spectrometer, protein chips and microarrays on the expression and

4EU project BioGrid (IST-2002-38344), http://www.bio-grid.net/.
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Fig. 1. The BioGrid platform integrates an expression space to analyse gene expression pro-
files, an interaction space to study protein interactions, and a literature space to find and clas-
sify relevant scientific literature.

interaction of genes and proteins in cells. The other is to organize these data in the
most insightful and biologically relevant way so that the most information may be
extracted and validated. We are addressing the second challenge by developing the
BioGrid platform, which will allow biomedical researchers to easily understand, nav-
igate, and interactively explore relationships and dependencies of genes and proteins
by integrating data and analysis methods for gene expression, protein interaction and
literature data (see Fig. 1). The platform enables users to cluster gene expression
profiles, and to predict the domains, superfamilies and interactions of proteins. The
data analysis is complemented by a novel ontology-based literature search tool, GoP-
ubMed, that classifies collections of papers from literature searches into a navigable
ontology.

2 Expression space

2.1 Gene expression data

The advent of DNA chip technology [11] facilitates the systematic and simultane-
ous measurement of the expression levels of thousands of genes. Consider Table 1,
which shows data from experiments to identify all the genes whose mRNA levels
are regulated by the cell cycle of yeast —the tightly controlled process during which
a yeast cell grows and then divides [42, 12]. Each gene is characterized by a series
of expression measurements taken at successive time intervals. The alpha cell ex-
periment contains 21 successive measurements on samples taken from the same cell
population. From the complete set of genes, the authors selected 800 genes whose
level of expression fluctuates with the period of the cell cycle. We are thus dealing



Integrating Gene Expression, Protein Interaction and Literature Searches 109

with a multivariate analysis of a data matrix with 800 rows (entries) and 21 columns
(variables).

Table 1. Fragment of a multivariate data table of gene expression measurements. Rows cor-
respond to genes, and columns to different experiments. The expression level of circa 6 000
genes was measured using microarray analysis at 21 successive time points by taking samples
every seven minutes from a population of synchronized yeast cells [12].

Gene 0 min. 7 min. 14 min. 21 min. 28 min. 35 min. ...
YER150W 0.41 1.47 1.8 0.81 0.03 -0.31 ...
YGR146C 0.78 0.37 -0.09 0.07 0.03 0.25 ...
YDR461W 2.36 2.35 2.3 2.11 1.75 0.76 ...
...

A set of expression measurements for a gene is commonly referred to as the
expression profile of that gene. To understand their gene expression data, scientists
often wish to analyze and visualize it using a tool that groups genes with similar ex-
pression profiles in order to detect clusters of genes which are probably involved in
a common biological process. Clustering can be defined as the process of automat-
ically finding groups (i.e., clusters) of similar items based on some characteristics
describing those items. Clustering is commonly used to infer information about the
function of uncharacterized genes by applying the ‘guilt by association’ principle,
i.e., if an uncharacterized gene is clustered with a group of genes participating in a
known biological process (e.g., cell death or protein degradation), then it is assumed
that the uncharacterized gene also participates in this process. However this informa-
tion is often quite noisy because a given expression profile does not imply a given
molecular function or biological process, however the reverse case is usually true. In
many cases, gene expression profiles can be represented as a time series, so the prob-
lem of clustering gene expression profiles corresponds to identifying and grouping
similar time-series data into clusters.

It is worth noting that the aim of clustering expression data is the same as the gen-
eral aim of all data mining in bioinformatics and systems biology: finding the effects
that unknown and hidden dynamics have on the expression profiles. However the
biological interpretation of such results is an extremely hard procedure and should
be always backed up by strong and robust biological arguments, and confirmed by
laboratory experiments.

Clustering of gene expression data may be broken down into two steps:

1. Define a distance metric that measures the similarity of gene expression profiles.
2. Use these distances to group similar expression profiles together.

2.2 A catalogue of distance and dissimilarity/similarity measures

Starting from a raw data set of gene expression results, the first and most important
step is to define a distance or (dis)similarity measure between the different gene
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expression profiles. This measure will determine which genes will be considered
related and hence clustered together, and thus influence the subsequent analysis sig-
nificantly. The following distance measures are useful (as a reference, see e.g., [29]):

Before we define the distances, let us define the scalar product and the Euclidean

norm. Let x, y ∈ Rn be vectors. Then (x, y) =
n∑

i=1

xiyi is called scalar product and

||x|| =

√
n∑

i=1

x2
i Euclidean norm. The mean value of x is given by µx = 1

n

n∑
i=1

xi.

1. Scalar product: dc(x, y) =
n∑

i=1

xiyi.

2. Maximum scalar product: dcmax
(x, y) = maxk

n∑
i=1

xiyi−k, −n ≤ k ≤ n.

3. Direction cosine: dcos(x, y) = cosθ = (x,y)
||x||||y|| and angle (angular distance):

dangle(x, y) = acos(dcos(x, y))

4. Correlation metric: dcor(x, y) = 1 − (∑ n
i=1(xi−µx)(yi−µy))2∑ n

i=1(xi−µx)2
∑ n

i=1(yi−µy)2

5. Euclidean distance: de(x, y) = ||x − y|| =
√∑n

i=1(xi − yi)2

6. Minkowski distance: dm(x, y) = (
∑n

i=1 |xi − yi|λ)
1
λ , λ ∈ R

The above distance measures are not equivalent and the validity of any inter-
pretation depends crucially on the choice of an appropriate metric. For example,
Euclidean distance should be avoided, because it depends on the absolute level of
expression and it is common to find genes which are co-regulated, in the sense that
they respond to the environmental conditions in the same way, but with very dif-
ferent absolute levels of expression. The correlation coefficient is a better estimator
of co-regulation than the Euclidean distance. However, this metric suffers from the
opposite weakness: it is totally independent of the absolute levels. Consequently,
strong correlations might be established between genes which are not co-regulated,
but show small random fluctuations in expression that by chance exhibit a statisti-
cally significant correlation. The dot product or preferably the co-variance, seems the
most appropriate to measure the co-regulation of two genes without over-estimating
the weakly regulated genes [40].

2.3 Clustering of the data

Now let us consider two widely used clustering methods. For a more comprehensive
overview on clustering, classification and visualization of gene expression data, see
[40, 55, 21, 34, 14, 54, 30, 50].

K-means clustering

K-means clustering is one of the simplest and most popular clustering techniques.
The algorithm is given the desired number of clusters, and empty clusters are formed,
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whose centroids are either distributed evenly across the domain space, or are ran-
domly chosen elements from the set of points. Points are then assigned to the closest
cluster, and centroids are recalculated. Clusters are emptied and the process is re-
peated until the assignments become constant. The main advantage of K-means lies
in its simplicity and intuitiveness, as well as in its speed. When dealing with gene
expression data, points to be clustered are n-dimensional, where each of the n values
represent the expression level of the specific gene under given experimental condi-
tions. One downside in this instance is that the number of clusters must be specified
in advance, something that may require a certain amount of experimentation before
it produces optimum results. However unlike hierarchical clustering, K-means lends
itself naturally to an easily digestible visual display showing the centroid and sil-
houette for each cluster and enabling the user to see where in the cluster a certain
gene is positioned. The BioGrid platform implements K-means clustering of gene
expression data.

Hierarchical clustering

The main strength of hierarchical clustering lies in the fact that it does not require
the user to predefine the number of clusters in the data. At the outset, each point
is assigned its own cluster. The closest clusters are then merged and the process is
repeated until we end up with a single cluster. Results of this analysis are commonly
represented in the form of a dendrogram—a tree in which each branching is a single
merge operation. A disadvantage of hierarchical clustering is the lack of a cut-off
point, which determines the number of clusters. This can be defined manually after
the clustering, but is impractical for large numbers of expression profiles. One way of
dealing with this issue, which the BioGrid platform utilises, is to specify a tolerance
constant that represents the minimum distance allowed between clusters.

2.4 Case study: Energy-related genes and protein complexes

For our investigations of the relationship between gene expression and protein in-
teractions, we exploited the gene co-expression networks compiled by Stuart et al.
[44]. In this study, Stuart and co-workers identified orthologous genes (i.e., genes
in different organisms that have evolved from a single gene in an ancestral species)
in humans, fruit flies, nematode worms, and baker’s yeast on the basis of conserved
protein sequences [46]. In total, they identified a set of 6 307 orthologous genes, rep-
resenting 6 591 human genes, 5 180 worm genes, 5 802 fly genes, and 2 434 yeast
genes. They then analyzed 3 182 DNA microarrays taken from these different organ-
isms to identify pairs of orthologous genes whose expression profiles showed co-
expression across multiple organisms and conditions. Compared to the conventional
analysis of gene expression profiles from a single species, the use of orthologous
genes across multiple species utilizes evolutionary conservation as a powerful cri-
terion to identify genes that are functionally important among a set of co-expressed
genes. Thus co-expression of a pair of orthologous genes over large evolutionary
distances is indicative of a selective advantage to their co-expression, and hence the
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protein products of these genes are more likely involved in the same functional pro-
cess. By applying the K-means algorithm described above, Stuart et al. were able
to identify 12 gene clusters that each contained genes encoding proteins involved in
specific cellular processes, e.g., signalling, cell cycle, and secretion.

The clusters of genes found by Stuart offer some important advantages over those
from microarray experiments on single organisms, particularly with regard to study-
ing protein interactions. Due to the evolutionary conservation that is implied, the ob-
served orthologous genes are principally components of highly conserved biological
processes, and it is probable that to increase efficiency, evolution has favored having
some of these proteins coming together to form protein complexes, i.e., the genes of
these expression clusters may be more likely to contain a significant proportion of
interacting proteins. Such insights are less obvious in single species studies, where
only correlated gene expression is implied. A cluster that particularly interested us
from the data set was that containing a number of genes annotated as being involved
in ‘energy generation.’

3 Interaction space

The expression space is complemented by the interaction space. The former captures
the activity of genes, the latter the interactions of proteins, which are important in
providing a context to understand function.

3.1 Protein interactions are fundamental to understanding protein function

Protein-protein interactions are fundamental to most cellular processes [43]. The
functions of proteins in biological systems are determined and mediated by the phys-
ical interactions they make with other molecules [53, 20]. The nature of these inter-
actions ranges from short-lived interactions in signalling processes, to long-lived in-
teractions between proteins of the skeletal components of a cell or organism. Protein-
protein interactions occur in oligomers, between enzymes and substrates, in cell-cell
contact through cell-adhesion molecules, and between antibodies and antigenes in
the immune system. Despite the importance of protein interactions and technologi-
cal advances in their detection, there is still a huge gap between the circa one million
annotated proteins and around 50 000 documented interactions.

3.2 Experimental approaches for detecting protein interactions

There are a number of experimental approaches for detecting protein-protein inter-
actions, for example:

• Tandem affinity purification (TAP): A method for trapping and purifying a pro-
tein complex, based on the selective interaction of proteins with a protein that is
attached to a solid support.
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• Co-immunoprecipitation (Co-IP): The use of a specific antibody to trap and pu-
rify a protein, plus the proteins it interacts with.

• Phage display: A technique that uses bacteriophages that have been genetically
modified to express a new protein on their surface. Libraries of bacteriophages
expressing many different proteins may be produced, and other proteins to which
these bind may be purified and identified.

In a manner analogous to DNA microarrays, the techniques of TAP and Co-IP
may be minaturized and used to detect multiple interactions simultaneously by print-
ing sets of different peptides (peptide arrays) or antibodies (antibody arrays) onto
slides. Another widely used technique for detecting protein-protein interactions is
the ‘yeast two-hybrid’ (Y2H) method. To confirm an interaction of proteins A and
B, the gene for protein A is fused with a gene encoding a DNA-binding domain
for a specific reporter gene and the gene for protein B is fused with a gene encod-
ing a transcription activation domain. Only if the proteins A and B interact, can the
DNA-binding domain and the activation domain come together in order to initiate
transcription of the reporter gene with its detectable product. An advantage of this
approach is that interactions can be generated on a large-scale by breeding libraries
of yeast cells with different genes fused to the DNA-binding and activation domains.
Y2H data is collected and curated in databases such as the Biomolecular Interaction
Network Database (BIND) [3] and the Database of Interacting Proteins (DIP) [57].
Although the Y2H method is used widely by the systems biology community, the
method suffers from severe problems of false positives, i.e reporting that two pro-
teins interact when in fact they do not in vivo. The reasons for this high false positive
rate are most likely that either the reporter gene may be expressed independently of
any interaction between proteins A and B, or that under normal physiological con-
ditions, the two proteins are not expressed at the same time or location. There are
estimates that between 50% to 80% of the interactions reported by Y2H are likely to
be false positives. From these large sets of binary protein interactions may be gen-
erated maps, which represent the context and global structure of protein interaction
networks.

3.3 Computational approaches for predicting protein interactions

Large-scale protein interaction maps from results of experimental methods [26, 36,
49, 52, 18, 19, 27, 16, 39] have increased our knowledge of protein function, ex-
tending ‘functional context’ to the network of interactions which span the proteome
[23, 51, 15, 32]. Functional genomics fuels this new perspective, and has directed
research towards computational methods of determining genome-scale protein inter-
action maps.

One group of computational methods uses the abundant genomic sequence data,
and is based on the assumption that genomic proximity and gene fusion result from
a selective pressure to genetically link proteins which physically interact [33, 8, 13].
However with the exception of polycistronic operons (where a set of neighbouring
genes involved in a common process are under the control of a single operator and
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Fig. 2. The depicted structure contains three SCOP superfamilies: a ‘winged helix DNA-
binding domain’ (a.4.5, medium gray, bottom right), an ‘iron-dependent repressor protein,
dimerization domain’ (a.76.1, dark gray, bottom left), and a ‘C-terminal domain of transcrip-
tional repressors’ (b.34.1, light gray, top). The possible interactions that could occur are: a.4.5–
a.76.1, a.4.5–b.34.1, and a.76.1–b.34.1. However, in the structure, only the a.4.5–a.76.1 super-
family interaction is observed. The interacting residues of the two domains are depicted as
small spheres. The Protein Structure Interactome Map (PSIMAP) determines these interac-
tions for all multi-domain structures in the Protein Data Bank (PDB). On the right side of the
figure, a screen shot of all such superfamily interactions in the PSIMAP database is depicted.
It can be seen that the PSIMAP database contains a large number of independent compo-
nents which contain only a few superfamilies. The main component in the middle of the figure
contains 320 linked superfamilies. The most prominent superfamilies are the P-loop and im-
munoglobulin, which have both the most interaction partners and occur in the greatest number
of different species.

thus expressed together), genomic proximity is only indicative of possible indirect
functional associations between proteins [25], rather than direct physical interactions
between the gene products.

A second group of methods, based on the assumption that protein-protein in-
teractions are conserved across species, was originally applied to genomic compar-
isons [38]. Just as common function can be inferred between homologous proteins,
‘homologous interaction’ can be used to infer interaction between homologues of
interacting proteins.

One approach to detect these interactions is with the Protein Structure Interac-
tome Map (PSIMAP) algorithm. [37, 6, 7]. The PSIMAP algorithm finds interactions
between protein domains in the Protein Data Bank (PDB) [4] using the domain def-
initions of the SCOP database5. As an example, consider Fig. 2. The depicted struc-

5The Structural Classification of Proteins (SCOP) database, created by manual inspection
and abetted by a battery of automated methods, aims to provide a detailed and comprehensive
description of the structural and evolutionary relationships between all proteins whose struc-
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ture contains three SCOP domains: a winged helix DNA-binding domain (a.4.5.24,
medium gray), an ‘iron-dependent repressor protein, dimerization domain’ (a.76.1.1,
dark gray), and a ‘C-terminal domain of transcriptional repressors’ (b.34.1.2, light
gray). The PSIMAP algorithm determines for a pair of domains whether there are
at least five residue pairs within a five Å (Angstrom) distance. In this example, the˚̊
PSIMAP algorithm determines that the DNA-binding domain (medium gray) inter-
acts with the iron-dependent repressor protein (dark gray). The figure on the right
highlights the atoms of the interacting residues as spheres, while the rest of the pro-
tein is shown as ribbons that follow the backbone of the proteins. The PSIMAP
algorithm also determines that the DNA-binding domain and the transcriptional re-
pressor domain are not interacting. The same holds for the two repressor domains.
In both cases the distances are too great and the interactions are too few to constitute
an interaction.

The PSIMAP algorithm finds such interactions for all multi-domain proteins in
the PDB and the results are stored in the PSIMAP database, from which may be
generated a map of interacting SCOP superfamilies. Domains of a SCOP superfam-
ily are probably evolutionary related as evidenced by their common structure and
function—despite having possibly low sequence similarity. Thus superfamily inter-
actions are the appropriate level to study homologous interactions. The right side of
Fig. 2 shows a screen shot of a global view of the map generated from the results in
the PSIMAP database, depicting hundreds of superfamilies and their interactions.

The results in the PSIMAP database have been compared to experimentally de-
termined domain interactions in yeast [37] and a correspondence of around 50% has
been found. Given the high number of false positives in Y2H data [31], this result is
very promising. The PSIMAP results have also been validated systematically at the
sequence level using BLAST [35], and have been improved by the use of a statistical
domain level representation of the known protein interactions [56, 10]. The PSIMAP
database is also very comprehensive, being based upon 108 694 individual domain-
domain interactions. This is an order of magnitude larger than the data available in
the DIP database. The growth of the PDB also means that PSIMAP’s coverage is
increasing.

3.4 Case study: Energy-related genes and protein complexes

The PSIMAP results can be used to predict subunit and domain interactions in pro-
tein complexes. To this end, in [6] we studied two energy-related protein complexes:
NADH:ubiquinone oxidoreductase and succinate dehydrogenase.

The protein complexes of the respiratory chain

The majority of molecular processes necessary for life are thermodynamically un-
favorable, i.e., they require an input of energy to drive them, and thus need to be

ture is known. Within SCOP, the separate domains of proteins are identified and classified into
a hierarchy.
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coupled to a suitable thermodynamically favorable reaction in order to proceed. The
most common source of energy used by cells to drive such reactions is the hydrolysis
of adenosine triphosphate (ATP). Thus cells need a constant supply of ATP if they
are to function and survive.

The most important mechanism for the synthesis of ATP is from the phosphory-
lation of adenosine diphosphate (ADP) by the enzyme ATP synthase. The source of
energy for these endothermic reactions are electro-chemical gradients. These electro-
chemical gradients are generated from a series of redox reactions carried out by the
protein complexes of the respiratory chain, which pump protons across a membrane
leading to the establishment of a proton gradient and hence a proton motive force
that may be used as an energy source to perform work. The protein complexes of the
respiratory chain generate the electro-chemical gradient using the controlled reduc-
tion of molecular oxygen to water, and oxidation of sugars to carbon dioxide. This
is a highly energetic reaction, however in the respiratory chain it is divided into a
series of steps using electron transfer reactions between redox centers in the protein
complexes so that the energy may be used to do useful work, i.e., to generate the
electro-chemical gradient by pumping protons across a membrane.

Fig. 3. A schematic of the three membrane-bound protein complexes of the respiratory
chain in the inner mitochondrial membrane: NADH:ubiquinone oxidoreductase (complex I);
ubiquinol:cytochrome c oxidoreductase (complex III) and cytochrome c oxidase (complex
IV). Also shown are the two mobile electron carriers: ubiquinone (Q and QH2) and cy-
tochrome c, that are responsible for shuttling electrons between the protein complexes.

The respiratory chain consists of three membrane-bound protein complexes:
NADH:ubiquinone oxidoreductase (also known as complex I), ubiquinol:cytochrome
c oxidoreductase (also known as complex III) and cytochrome-c oxidase (also known
as complex IV). In addition, there are two mobile electron carriers: ubiquinone and
cytochrome c (see Fig. 3). All the proteins of the respiratory chain are composed
of multiple polypeptide units and incorporate a number of redox co-enzymes that
are used to transport electrons, e.g., flavins, iron-sulphur centers, heme groups and
copper ions. The passage of electrons from a molecule called NADH to molecular
oxygen starts with complex I, where the electrons of NADH are passed via FMN
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and several iron-sulphur centers to ubiquinone, which is reduced to ubiquinol. The
ubiquinol then dissociates from complex I and migrates through the mitochondrial
membrane until it meets a molecule of complex III, at which point it is oxidized
to ubiquinone and its electrons pass to complex III, which uses them to reduce cy-
tochrome c. (An additional source of ubiquinol for complex III is succinate dehy-
drogenase (also known as complex II) of the citric acid cycle during the oxidation
of succinate to fumarate.) Cytochrome c is oxidized by complex IV, which catalyses
the transfer of electrons using copper ions and heme groups to their final destination
of molecular oxygen. As complexes I, III and IV transfer electrons along their co-
enzymes, it has the net effect of transporting protons from one side of the membrane
to the other.

Since the components of the respiratory chain are large and predominantly hy-
drophobic, it has proven a major challenge to determine their structure by crystallog-
raphy. Although structures are now known for complex II [59], complex III [58] and
complex IV [48], as well as important subunits of ATP synthase [1], the structure
of the relatively simple version of complex I found in E. coli with only 13 subunits
has not yet been determined at atomic resolution. The human version of complex I
has at least 45 proteins and the determination of its structure presents an even greater
challenge. Thus alternative methods that may shed light on the structure, mechanism
and evolution of these complexes are potentially useful. The work presented here is
attempting to use the results of gene expression, homologous protein interactions and
text analysis to identify and assemble the subunits of protein complexes involved in
the generation of energy by cells, with a particular emphasis on complex I.

Recovering complex I and complex II

To evaluate whether protein interactions in complex I and complex II can be re-
covered using the superfamily interactions recorded in the PSIMAP database, we
used the Position Specific Iterative BLAST (PSI-BLAST) application [2], to assign
superfamilies defined in the SCOP database to known protein subunits of com-
plex I and complex II. Thus known components of bovine complex I: 39 kDa sub-
unit (Swiss-Prot:P34943), TYKY subunit (Swiss-Prot:P42028), and 75 kDa subunit
(Swiss-Prot:P15690), were analysed and predicted to belong to the SCOP superfam-
ilies ‘2Fe-2S ferredoxin-like’ (d.15.4), ‘nucleotide-binding domain’ (c.4.1), ‘4Fe-
4S ferredoxins’ (d.58.1), and ‘alpha-helical ferredoxin’ (a.1.2), respectively. Fur-
thermore, the two SCOP superfamilies, ‘FMN linked oxidoreductase’ (c.1.4) and
‘FAD/NAD (P) binding domain’ (c.3.1), are functionally significant to complex
I. Protein components of complex II from nematodes: iron-sulfur subunit (Swiss-
Prot:Q09545) and flavoprotein subunit (Swiss-Prot:Q09508), were found to map
to ‘2Fe-2S ferredoxin-like’ (d.15.4), ‘alpha-helical ferredoxin’ (a.1.2), ‘succinate
dehydrogenase/fumarate reductase flavoprotein C-terminal domain’ (a.7.3), ‘succi-
nate dehydrogenase/fumarate reductase flavoprotein, catalytic domain’ (d.168.1),
and ‘FAD/NAD(P)-binding domain’ (c.3.1). Fig. 4 shows the induced subgraphs gen-
erated from the PSIMAP database using the predicted superfamilies of the complex I
and complex II subunits. As a proof-of-principle, the known superfamily interactions
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Fig. 4. Reconstructing complexes: For proteins of complex I and II, we assigned superfam-
ilies to the protein domains. From the PSIMAP database, we obtained an induced subgraph
of the superfamily interactions, i.e., only superfamilies of complex I and II, plus any super-
families connecting these were selected. The superfamilies of complexes I and II are colored
in light gray. The right side shows the induced subgraph for complex II—all complex II su-
perfamilies interact directly with each other. The left shows complex I, whose structure is not
yet solved—There are clear clusters of interacting superfamilies. In particular, the superfam-
ily ‘FAD/NAD(P)-binding domain’ (c.3.1) appears to be part of complex I as it connects a
number of complex I superfamilies.

of complex II, whose structure has been solved, are fully recovered. For complex I,
whose structure is not yet solved, substantial numbers of interactions between pre-
dicted superfamilies of the subunits are predicted. Intermediate superfamilies con-
necting the predicted superfamiles of known subunits correspond to predicted super-
families of complex I subunits that were not detected by the PSI-BLAST algorithm
on the basis of sequence similarity.

4 Mapping expression data to interaction data

An assumption underlying the analysis of many microarray experiments is that if
genes are co-expressed over a range of different conditions, then this is because they
are being co-regulated by the cell, i.e., the protein products of the genes are involved
in the same functional processes and are being controlled by a common set of tran-
scription factors to ensure that they are all expressed together at the required time.
A corollary to this is that if a set of proteins associate to form a protein complex,
then it may be expected that the genes encoding these protein products would be
co-regulated too—This is taken to its extreme in operons, where a single opera-
tor controls the expression of multiple genes as a polycistron. Thus an analysis of
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gene expression data to identify co-expressed genes over a range of conditions may
identify putative components of protein complexes, as well as genes whose protein
products are involved in similar functional processes [44, 12, 28, 24, 41].

Thus, can we relate the energy-related genes discussed in Section 2.4 with the
electron-transport complexes discussed in the previous section? Before we can ad-
dress this question, we need to link the expression and interaction space. This is not
trivial, as the interaction space we presented is based on the limited structural data
available in the PDB, however the structures of the majority of genes analyzed in the
expression space will not have been determined. This knowledge gap may be bridged
by comparing the sequences of proteins with known structural SCOP superfamilies
to those proteins of unknown structure and assigning them a SCOP superfamily on
the basis of sequence similarity. This approach is used by the SUPERFAMILY tool
[22], which uses a library of hidden Markov models of domains of known structure
from SCOP and provides structural (and hence implied functional) assignments to
protein sequences at the superfamily level according to SCOP. This analysis has been
carried out on all completely sequenced genomes, so the SUPERFAMILY database
contains all the possible domain assignments for every gene of all completely se-
quenced genomes.

The BioGrid platform uses the SUPERFAMILY tool and database to link gene
expression to protein interaction data by generating the induced interaction graphs
for the genes of an expression cluster. For every gene within a gene expression clus-
ter, we determine if there are domain assignments provided by the SUPERFAMILY
tool. After all the domain assignments have been retrieved, the induced interaction
graphs are generated using the PSIMAP database. The induced interaction network
for a given set of superfamilies S is defined as the subgraph of the whole PSIMAP
for the superfamilies S and the superfamilies on any shortest paths between any two
superfamilies in S. Let us now consider the case study.

4.1 Case study: Energy-related genes and protein complexes

Table 2. Mapping between energy-related genes and SCOP superfamilies known to be part of
complex II.

SCOP superfamily description SCOP ID Yeast gene names
FAD/NAD(P)-binding domain c.3.1 YFL018C,YGR255C,

YHR176W,YIL155C,
YPL091W,YJL045W

Succinate dehydrogenase/fumarate d.168.1 YJL045W
reductase catalytic domain
Succinate dehydrogenase/fumarate a.7.3 YJL045W
reductase C-terminal domain
Alpha-helical ferredoxin domain a.1.2 YLL041C
2Fe-2S ferredoxin-like domain d.15.4 YLL041C
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Fig. 5. Induced PSIMAP: The figure shows the superfamily interaction graph induced by the
energy-related genes of an expression cluster from a set of microarray experiments [44]. Using
the SUPERFAMILY tool, we determined the superfamilies assigned to the protein products
of these genes. The graph shows the interaction network of these energy-related superfamilies
(light gray) and any superfamilies, which are on any shortest path between two energy-related
superfamilies (dark gray). In addition, five superfamilies known to be part of complex II occur
in the cluster and have been circled in bold.

What protein domain interactions are predicted for the energy-related genes? Can
we associate parts of energy-related protein complexes to these genes? To answer
the first question, we determined the superfamilies for the energy-related genes and
produced the induced interaction network as shown in Fig. 5. This shows the energy-
related superfamilies in light gray and any superfamilies, which are on any shortest
path between two energy-related superfamilies, in dark gray. Additionally, superfam-
ilies known to be part of complex II have been circled in bold. These superfamilies
can be linked back to the energy-related genes shown in Table 2. This example sup-
ports the link between the expression profiles of the energy-related gene cluster in
the microarray data set and the physical interactions between subunits in the energy-
related protein complexes.
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5 Literature space

Any analysis in the expression and interaction space should be combined with an as-
sessment of the relevant scientific literature. With the tremendous growth of literature
this is not an easy task. PubMed, the main literature database referencing 6 000 000
abstracts, has grown by some 500 000 abstracts in 2003 alone. Due to this size, sim-
ple web-based text search of the literature is often not yielding the best results and
a lot of important information remains buried in the masses of text. Text mining of
biomedical literature aims to address this problem. There have been a number of ap-
proaches using literature databases such as PubMed to extract relationships such as
protein interactions [5, 47]), pathways [17], and microarray data [45]. Mostly, these
approaches aim to improve literature search by going beyond mere keyword search
by providing natural language processing capabilities. While these approaches are
successful in their remit, they do not mimic human information gathering.

Often scientists search the literature to discover new and relevant articles. They
provide keywords and usually get back a possibly very long list of papers sorted by
relevance. The search process can be broken down into three steps: First, a query may
be pre-processed (e.g., keywords may be stemmed, synonyms may be included and
general terms may be expanded (as done in PubMed)), second the search is carried
out (this can range from a simple keyword search to refined concepts such as using
document link structure as implemented in Google) and finally post-processing of
relevant results (in most cases presentation of results as a list). While such lists are
useful when looking up specific references, they are inadequate to get an overview
over a large amount of literature and they do not provide a principled approach to
discover new knowledge.

Our system, GoPubMed is based on mapping texts in paper abstracts to the Gene
Ontology (GO) 6. Gene Ontology is an increasingly important international effort
to provide common annotation terms (a controlled vocabulary) for genomic and pro-
teomic studies. The core of GO we are using is a term classification divided into three
alternative directed acyclic graphs for molecular functions, biological processes, and
cellular components. Two types of links are available: is a and has a. Multiple inher-
itance of subterms is possible.

To implement the literature space in the BioGrid platform, we provide a novel
ontology-based literature search. GoPubMed allows one to submit keywords to
PubMed and retrieve a given number of abstracts, which are then scanned for GO
terms. The found terms are used to categorize articles and hence group related pa-
pers together. The hierarchical nature of the Gene Ontology gives the user the ability
to quickly navigate from an overview to very detailed terms. Even with over 10 000
terms in the Gene Ontology, it takes a maximum of 16 terms to go from the root of
the ontology to the deepest and most refined leaf concept. In particular GoPubMed
works as follows:

6The Gene Ontology is a hierarchical vocabulary for molecular biology. (See http://
www.geneontology.org/
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Step 1 For each abstract, a collection of GO terms T is first found by using heuristics
appropriate for the characteristic textual form of the GO terms.

Step 2 The minimal directed subgraph S is constructed that contains all the discov-
ered terms T . The graph is constructed in XML to make presentation of the
data in the HTML form easier. Because XML is a tree, not a graph, we clone
and attach equivalent subtrees, which is required because of the multiple in-
heritance in GO.

Step 3 Statistics of each node are computed. For each node, we count all the paper
links and discovered terms for the terms at the current node and the terms
in the descendent nodes. The end result allows easily navigating to a sub-
set of papers including a particular subcategory of terms (e.g., biosynthesis).
Relative statistics can help to evaluate how important a particular process or
function may be for the input query.

At the heart of GoPubMed is the problem of extracting Gene Ontology terms
from free text. Finding exact terms in the literature is rarely possible and so GoP-
ubMed employs a novel algorithm, which first tries to find short matching seed terms,
which are then iteratively extended [9]. The subset of the Gene Ontology relevant to
the retrieved papers and extracted terms is then used for exploration. Fig. 6 shows a
screen shot of the system.

Example 1. For the example of energy-related genes and complex II superfamilies,
we submitted the following SCOP superfamily names to GoPubMed, but limited the
maximum number of retrieved abstracts to 40:

• 2Fe-2S ferredoxin-like (d.15.4).
• Alpha-helical ferredoxin (a.1.2).
• Succinate dehydrogenase/fumarate reductase C-terminal domain (a.7.3).
• Succinate dehydrogenase/fumarate reductase catalytic domain (d.168.1).
• FAD/NAD(P)-binding domain (c.3.1).

The relevant papers could be classified as shown in Table 3. All of them were
classified as being concerned with electron transport and energy pathways.

6 Conclusion

In this paper we have given an overview of the BioGrid platform—an integrated plat-
form for the analysis of gene expression and protein interaction data. The expression
and interaction space is complemented by a literature space, which provides access
to ontology-based literature searches. While the data and analysis of the individual
spaces is well-understood and explored separately, there is little work on their inte-
gration to provide a holistic view of the underlying networks. The BioGrid platform
addresses this problem. The example of energy-related genes and complexes illus-
trates the potential usefulness of this novel approach.
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Fig. 6. User interface of GoPubMed. It displays the results for ‘Levamisole inhibitor’ limited
to one hundred papers. A number of relevant enzyme activities are found.

Table 3. We submitted superfamily names to GoPubMed limiting the retrieval to 40 abstracts
only. The table shows Gene Ontology terms in the process and function categories relevant to
all five complex II superfamilies.
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Summary. Ontologies are being used in bioinformatics and systems biology, among others,
for communication between people and organizations, as the basis for interoperability between
systems, and as query models and indexes to repositories of information. In this chapter we
give a background of the area and provide a state of the art overview. We present different
possible definitions of ontology, examples of bio-ontologies and their use, formalisms that
can be used to represent ontologies as well as tools that support the different stages in the life
cycle of an ontology.

1 Introduction

Intuitively, ontologies can be seen as defining the basic terms and relations of a do-
main of interest, as well as the rules for combining these terms and relations. Ontolo-
gies are being used nowadays in many areas, including bioinformatics and systems
biology, among others, for communication between people and organizations, as the
basis for interoperability between systems, and as query models and indexes to repos-
itories of information. Although ontologies have been around for a while, it is only
during the last five years that the creation and use of ontologies in bioinformatics and
systems biology have emerged as important topics. The number of researchers work-
ing on methods and tools for supporting ontology engineering is constantly growing
and more and more researchers and companies use ontologies in their daily work.
The work on ontologies is now also recognized as essential in some of the grand
challenges of genomics research [7].

In this chapter we give a background of the area and provide a state of the
art overview. We present different possible definitions of ontology (Section 2), talk
briefly about ontologies in bioinformatics and systems biology (bio-ontologies) (Sec-
tion 3) and show their use (Section 4). Then, we discuss an issue that is important for
the use of an ontology, namely its representation language and its level of formality.
We show some of the consequences of the different possible choices (Section 5). Fi-
nally, we pay attention to ontology engineering tools. These are tools that support the
different stages in the life cycle of an ontology such as its creation and maintenance.
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We describe the main categories and some of the most well-known systems in this
field, and show the results of evaluations of these tools (section 6).

2 Ontologies

The word ‘ontology’ has an original meaning in philosophy where it is the study of
being, the study of existence. Within the field of artificial intelligence we find several
definitions. One of the earlier is: An ontology defines the basic terms and relations
comprising the vocabulary of a topic area, as well as the rules for combining terms
and relations to define extensions to the vocabulary [34]. A definition that has been
referenced a lot is the following by Gruber [19]: An ontology is an explicit specifi-
cation of a conceptualization. A conceptualization is an abstract, simplified view of
the world that we want to represent. According to this view, an ontology contains
definitions and axioms. Definitions associate the names of entities in the domain
with human-readable text describing what they are meant to denote. Formal axioms
constrain the interpretations and well-formed use of these names of entities. This
definition of ontology has been adapted by others. For instance, some definitions
require the specification to be formal and some definitions require the conceptual-
ization to be shared among many users. Still others have provided definitions based
on the way they have used the ontologies (e.g., as a basis for the construction of
knowledge bases).

Guarino and Giaretta [20] try to bring some clarity in the terminology and dis-
cuss the different interpretations they have found in the literature: Ontology as (1)
a philosophical discipline, (2) an informal conceptual system, (3) a formal semantic
account, (4) a specification of a ‘conceptualization’, (5) a representation of concep-
tual system via a logical theory, (6) the vocabulary used by a logical theory, and (7) a
(meta-level) specification of a logical theory. The first interpretation is very different
from the others as ontology is seen as a discipline. The other interpretations refer
to ontologies as particular objects. In interpretations two and three an ontology is
seen as a semantic entity. The ontology is a formal or informal conceptual system
where a conceptualization is defined as an intensional semantic structure which en-
codes the implicit rules constraining the structure of a piece of reality. Interpretations
five, six and seven on the other hand consider an ontology as a syntactic entity. In
interpretation five the ontology is a logical theory, in interpretation six the vocabu-
lary of such a theory and in interpretation seven the ontology defines the primitives
used in the logical theory. Guarino and Giaretta state that when ‘conceptualization’
in interpretation four is interpreted as vocabulary then interpretation four collapses
into interpretation five. Based on these interpretations (two to seven) Guarino and
Giaretta suggest then two senses for the word ‘ontology’: (i) as synonym of con-
ceptualization and (ii) a logical theory which gives an explicit, partial account of a
conceptualization. This means that ontology is used as a rather high-level concept
and that, when more precise definitions are needed, we can specify the use of the
word ‘ontology’ by referring to the right interpretation.
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As we have shown, giving a definition for ontology is not an easy task. This is
complicated even more by the fact that ontologies differ with respect to the kind of
information that they represent (e.g., Section 5) as well as the way they are used (e.g.,
Section 4). Also, work concerning ontologies is at different stages of development
and maturity in different research communities. Therefore, giving one final definition
of ontology at this point in time may not be possible. However, for reasons of clarity,
reuse and reproducibility, researchers should clearly specify in their work what in-
formation is represented in their ontologies and in which representation framework,
and how the ontologies are used. For a larger overview and discussion of definitions
we refer to [18].

3 Bio-ontologies

Within the bioinformatics and systems biology fields ontologies have been around
for a while and there exist many kinds of ontologies. Many of the model organism
databases such as Flybase and Mouse Genome database can be seen as simple on-
tologies. Further, there are ontologies focusing on things such as protein functions,
organism development, anatomy and pathways. Some examples are the thesaurus
MeSH (Medical Subject Headings) [32], the MGED (Microarray Gene Expression
Data) [33] ontology which aims to provide standard terms for the annotation of mi-
croarray data, STAR/mmCIF [50] which is an ontology for macromolecular struc-
ture, the TAMBIS ontology [3] which combines knowledge from several databases
such as Swiss-Prot and PROSITE, and the ontology for biological function devel-
oped for the EcoCyc DB [15]. The field has matured enough to start talking about
standards. An example of this is the organization of the first conference on Standards
and Ontologies for Functional Genomics (SOFG) in 2002 and the development of
the SOFG resource on ontologies [48].

The use of ontologies in bioinformatics has grown drastically since database
builders concerned with developing systems for different (model) organisms joined
to create the Gene Ontology Consortium (GO, [8, 17]) in 1998. For a complete list of
member organizations we refer to the Gene Ontology Consortium home page [17].
The goal of GO is to produce a structured, precisely defined, common and dynamic
controlled vocabulary that describes the roles of genes and proteins in all organ-
isms [8]. Currently, there are three independent ontologies publicly available over
the Internet: biological process, molecular function and cellular component. The
GO ontologies have nowadays become a de facto standard and are used by many
databases containing information about genes and proteins for annotation. In Fig. 1
we show a small part of a GO ontology. The top level concept in this part is defense
response. Indentation represents an is-a (generalization-specialization) relationship.
Thus, hypersensitive response is a defense response and antigenpresentation
is an immune response which, in its turn, is a defenseresponse.

Recently, Open Biological Ontologies (OBO, [40]) was started as an umbrella
web address for ontologies for use within the genomics and proteomics domains.
The member ontologies are required to be open, to be written in a common syntax,
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to be orthogonal to each other, to share a unique identifier space and to include textual
definitions. Many bio-ontologies are already available via OBO.

defense response ; GO:0006952
hypersensitive response ; GO:0009626
immune response ; GO:0006955

acute-phase response ; GO:0006953
antigen presentation ; GO:0019882

antigen presentation, endogenous antigen; GO:0019883
antigen presentation, exogenous antigen; GO:0019884

Fig. 1. Part of a GO ontology describing defense response.

4 Use of ontologies

Ontologies are used in various ways and this may have an influence on what infor-
mation is represented in the ontologies. For instance, there are domain-oriented on-
tologies, task-oriented ontologies and generic ontologies. Most of the bio-ontologies
are a mixture of these types of ontologies [49]. Jasper and Uschold [24] propose
a classification of uses of ontologies (that was extended in [49]). They define the
following scenarios: neutral authoring, ontology as specification, common access to
information and ontology-based search. We describe the types and give examples for
bio-ontologies.

• Neutral authoring. Within the neutral-authoring scenarios application-neutral on-
tologies are developed in a single language. The knowledge is then converted into
a different form (e.g., a knowledge base) for use in multiple target applications.
The benefits include reuse and portability of knowledge across platforms (e.g.,
the knowledge in the GO ontologies is used in different data banks) and improved
maintainability (changes in the knowledge need only be made in one place).

• Specification. In the ontology-as-specification scenarios an ontology is used as
a basis for software development. An example is the definition of a database
schema or of a vocabulary for annotation. More and more information sources
annotate their entries with terms from an ontology. Search engines can take ad-
vantage of this annotation as it gives extra information. Also, it allows for a sim-
ple form of integration of information sources as well as knowledge discovery
as there is a good chance that there exist relationships between entries in differ-
ent sources that are annotated with the same term. Benefits of the ontology-as-
specification scenarios include documentation, maintenance, reliability, sharing
and knowledge reuse.

• Common information access. The third kind of scenarios deals with common ac-
cess to information. Ontologies are used to make information that needs to be
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shared intelligible to multiple applications or humans. One example of such a
scenario is the case where the ontology is used to promote common and con-
sistent understanding among people and organizations. The ontology is shared
among different people who all reference it in their work. The ontology may
become a community reference. Several of the current bio-ontologies develop-
ers state this as a goal. The ontology can also be used as an interchange format
between different applications. This may improve interoperability.

• Search. Finally, in the ontology-based search scenarios the ontology is used for
querying over information sources with as aim to improve the quality of the an-
swers (e.g., better precision and recall) and to reduce the time spent searching
(e.g., [28]). For instance, the ontology may be used as an index to the infor-
mation in the information sources. A user can browse the ontology and use the
terms in the ontology as query terms. The ontology may also be used for query
refining and expansion by moving up and down in the hierarchy of concepts. For
instance, when a user searches in a database for ‘immune response’ and gets only
very few results, she may decide to query with a more general term to find more
answers. The ontology can be used to find these more general terms, in this case,
for instance ‘defense response’.

Some of the more advanced information sources use logical inferencing (see Sec-
tion 5). In this case the ontology may be used to guide this reasoning. For instance,
while looking for defense responses also all entries on immune responses will be re-
turned as the ontology states that immune responses are defense responses. Another
area where ontologies are proving to be useful is the area of data mining and knowl-
edge discovery. For instance, in [1] a web tool for finding associations of GO terms
with groups of genes is presented. Ontologies can also be used for clearly separat-
ing domain knowledge from application-based knowledge. Further, using ontologies
forces system developers to make domain assumptions explicit. The ontologies can
also be used for validation which leads to more reliable software.

5 Knowledge representation for ontologies

Ontologies differ regarding the kind of information they can represent. From a
knowledge representation point of view ontologies can have the following compo-
nents (e.g., [49]).

• Concepts represent sets or classes of entities in a domain. For instance, immune
response represents all the things that are immune responses. The concepts may
be organized in taxonomies, often based on the is-a relation or the part-of rela-
tion.

• Instances represent the actual entities. They are, however, often not represented
in ontologies.

• Further, there are many types of relations. For instance, one type is the group
of taxonomic relations such as the specialization relationships (e.g., immune
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response is-a defense response) and the partitive relationships (e.g., cell has-
Component nucleus). Another type are the associative relationships such as
nominative relationships that describe the name of concepts (e.g., protein has-
Name proteinname) and locative relationships that describe the location of
a concept with respect to another (e.g., chromosome hasSubcellularLocation
nucleus).

• Finally, axioms represent facts that are always true in the topic area of the on-
tology. These can be such things as domain restrictions (e.g., the origin of a
protein is always of the type gene coding origin type), cardinality restrictions
(e.g., each protein has at least one source), or disjointness restrictions (e.g., a
helix can never be a sheet and vice versa).

Depending on which of the components are represented and the kind of infor-
mation that can be represented, we can distinguish between different kinds of on-
tologies. A simple type of ontology is the controlled vocabulary. Controlled vocab-
ularies are essentially lists of concepts. When these concepts are organized into a
generalization-specialization hierarchy, we obtain a taxonomy. A slightly more com-
plex kind of ontology is the thesaurus. In this case the concepts are organized in
a graph. The arcs in the graph represent a fixed set of relations, such as synonym,
narrower term, broader term, similar term. The data models allow for defining a hi-
erarchy of classes (concepts), attributes (properties of the entities belonging to the
classes, functional relations), relations and a limited form of axioms. There are also
the knowledge bases which are often based on a logic. They can represent all types
of components and provide reasoning services such as checking the consequences of
the statements in the ontology and building the generalization-specialization hierar-
chy.

An ontology and its components can be represented in a spectrum of represen-
tation formalisms ranging from very informal to strictly formal. This would include
natural language, limited and structured forms of natural language, formally defined
languages and logics with formal semantics [24]. The choice of which formalism to
use depends on the characteristics of the ontology as well as on its intended use. For
instance, as controlled vocabularies are essentially lists of words, natural language
may be a suitable representation formalism and the machinery of a formal logic
may not be needed. Taxonomies are often represented in a formalism that introduces
some structure. An example of this is XML (Extensible Markup Language). Due to
XML’s portability and widespread acceptance, a number of XML-based formalisms
have been developed. An example is SBML (Systems Biology Markup Language)
[23, 46] which is an XML-based format for representing biochemical reaction net-
works. Formalisms such as Entity-Relationship diagrams or UML (Unified Modeling
Language) can be used for the data models. Also, database schemata can be consid-
ered as a possible representation of such ontologies. Frame systems define a number
of language constructs (frames, slots, facets, values). Frames represent classes or in-
stances. Classes are concepts in the domain. Slots describe properties or attributes of
classes. Facets describe properties of slots and axioms define additional constraints.
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Frame systems impose restrictions on how the language constructs are used or com-
bined to define a class.

The most expressive representation formalisms in use for ontologies are the
logics. Logics are formal languages with well-defined syntax, semantics and infer-
ence mechanisms. Logics provide support in ontology design, ontology aligning and
merging and ontology deployment. Regarding ontology design, for instance, they al-
low for checking of concept and ontology satisfiability and for computing implied
relationships. Regarding ontology aligning and merging they support the assertion
of inter-ontology relationships, computing an integrated concept hierarchy, and con-
sistency checking. In the ontology deployment phase, they support determining, for
instance, whether a set of facts is consistent with respect to an ontology and whether
instances belong to ontology concepts.

An interesting family of logics for representing ontologies are description logics
(e.g., [2]). Description logics are knowledge representation languages tailored for ex-
pressing knowledge about concepts and concept hierarchies. As they are logics they
have a well-defined semantics. They are considered an important formalism unify-
ing and giving a logical basis to the well known traditions of frame-based systems,
semantic networks and KL-ONE-like languages, object-oriented representations, se-
mantic data models, and type systems. The basic building blocks are concepts, roles
and individuals. Concepts describe the common properties of a collection of individ-
uals. Roles represent binary relations. Each description logic defines also a number
of language constructs (such as intersection, union, role quantification, etc.) that can
be used to define new concepts and roles. The main reasoning tasks are classifica-
tion and satisfiability, subsumption and instance checking. Subsumption represents
the is-a (generalization-specialization) relation. Classification is the computation of a
concept hierarchy based on subsumption. Several knowledge representation systems
have been built using these languages and have been used in a variety of applications.
They are now also seen as a base technology for the semantic web where content is
labelled with semantic annotations and these annotations are used for automated re-
trieval and composition of web content.

One of the languages within this family, DAML+OIL [12], was previously rec-
ommended by the BioOntology Consortium as its choice of ontology representation
language. Its successor, OWL [42], is now one of the languages that may be used
for representing OBO ontologies. Both languages are XML-based and are closely
related to the SHIQ(D) and SHOQ(D) description logics [22]. In Fig. 2 we give ex-
amples of a subset of the concept constructors in the DAML+OIL language. Using
the IntersectionOf constructor new concepts can be defined as the intersection of
previously defined concepts. For instance, signal transducer activity � binding
represents all things that are both a signal transducer activity and a binding.
The other boolean operations are handled by the UnionOf and ComplementOf con-
structors. For instance, helix � sheet represents all things that are helices or sheets,
while the things that are not helices are represented by ¬ helix. The language also
allows the use of existential and universal quantifiers and number restrictions. For
instance, ∃ hasOrigin. mitochondrion represents all things that originate from a
mitochondrion, while ∀ hasOrigin. gene coding origin type represents all things
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that have only origins belonging to the type gene coding origin type. The things
having at least one source are represented by ≥ 1 hasSource. For the complete syntax
and the semantics of DAML+OIL and OWL we refer to [12] and [42], respectively.

IntersectionOf C � D signal transducer activity � binding
UnionOf C � D helix � sheet
ComplementOf ¬ C ¬ helix
ToClass ∀ R.C ∀ hasOrigin. gene coding origin type
HasClass ∃ R.C ∃ hasOrigin. mitochondrion
MinCardinality ≥ n R ≥ 1 hasSource

Fig. 2. Some DAML+OIL concept constructors.

In general, the more formal the representation language, the less ambiguity in the
ontology. The ontologies defined in an informal way rely on shared human consen-
sus. However, there is no guarantee that there are no hidden ambiguities or hidden
assumptions. This is more easy to check for formal languages. Formal languages are
also more likely to implement correct functionality. Further, the chance for interoper-
ation is higher. There is no common ground for interoperability based on the informal
languages. In the informal languages the ontology content is also hard-wired in the
application. This is not the case for the formal languages as they have a well-defined
semantics. However, building ontologies using formal languages is not an easy task.

In practice, in bioinformatics and systems biology ontologies such as the GO
ontologies, have started out as controlled vocabularies. This allowed the ontology
builders, which were domain experts, but not necessarily experts in knowledge repre-
sentation, to focus on the gathering of knowledge and the agreeing upon definitions.
More advanced representation and functionality was a secondary requirement and
was left as future work. However, some of the bio-ontologies have reached a high
level of maturity and stability regarding the ontology engineering process and their
developers have now started investigating how the usefulness of the ontologies can be
augmented using more advanced representation formalisms and added functionality.

6 Ontology tools

In the same way as there exist many tools in software engineering that provide sup-
port for the different software development phases, there are now also tools that
provide support for the different phases of the ontology engineering process. Based
on the tasks and processes that are supported, the ontology tools can be grouped in
the following clusters [9]. Ontology development tools, such as Protége-2000, Chi-´
maera, OilEd, Ontolingua, WebOnto, Ontosaurus and KADS, are used for building
new ontologies. These tools usually support editing, browsing, documentation, ex-
port and import from different formats, views, libraries and they may have attached
inference engines.
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Ontology merge and integration tools (e.g., Protége-2000 with PROMPT, Chi-´
maera, SAMBO) support users in merging or integrating ontologies in the same
domain. Within an area there are always a number of ontologies, each with their
own focus. For instance, in bioinformatics ontologies may cover different aspects in
molecular biology such as molecular function and cell signaling. Many of these on-
tologies contain overlapping information. For instance, a protein can be involved in
both cell signaling and other biological processes. In applications using ontologies it
is therefore of interest to be able to use multiple ontologies. However, to obtain the
best results, we need to know how the ontologies overlap and align them (define the
relationships between the ontologies) or merge them (create a new ontology contain-
ing the knowledge included in the original ontologies). Another reason for merging
ontologies is that it allows for the creation of ontologies that can later be composed
into larger ontologies. Also, companies may want to use de facto standard ontologies
and merge them with company-specific ontologies.

Ontology evaluation tools, such as OntoAnalyzer, OntoClean and ONE-T, sup-
port ensuring a certain level of quality for the ontologies. A kind of tools that may
become more important for bioinformatics and systems biology are the ontology-
based annotation tools, which allow users to insert ontology-based mark-up in web
pages. Further, there are also ontology learning tools that derive ontologies from
natural language texts and ontology storage and querying tools. In this section we
briefly describe the tools that have already been used in evaluations in the field of
bioinformatics and present some evaluations of ontology tools.

6.1 Tools

Protégé-2000´ [39, 44] is a software for creating, editing and browsing ontologies de-
veloped by Stanford Medical Informatics. The design and development of Protégé-
2000 has been driven by two goals: to be compatible with other systems for knowl-
edge representation and to be an easy to use and configurable tool for knowledge
extraction. Protégé-2000 is available as free software, is Java-based and should be´
installed locally. It has many plug-ins that extend the functionality of the system.
For instance, the plug-in PROMPT [43] supports merging and aligning of ontologies
[36].

The Protégé knowledge model is frame based. An ontology consists of classes,´
slots, facets and axioms [35]. Protégé-2000 provides ontology editing functionality´
on different levels. Classes, attributes and instances can be created, added, deleted,
viewed and searched for. Super-classes can be added, deleted and replaced. Further,
it is possible to query the ontology. The Protége-2000 user interface contains sev-´
eral tabbed panes where in each pane relevant information about a selected ontology
component is shown. The ontologies are shown using a tree structure. Plug-ins are
provided for querying based on F-Logic [25], merging and annotation of the ontolo-
gies with WordNet [51]. The information exchange mechanisms are based on a re-
stricted version of Open Knowledge Base Connectivity (OKBC, [5]), an application
programming interface for frame-based knowledge representation systems.
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Protége-2000 supports the import of text files, database tables and RDF (Re-´
source Description Framework) files. The user can save her work in three different
formats: as standard text files, in a JDBC database and in RDF format. Plug-ins can
be used to support other formats such as XML. The user can customize Protégé-2000´
in the sense that she can choose between different layouts and she can choose which
tabbed panes are shown in the user interface and in which order.

Chimaera [31, 30, 6] is developed by the Knowledge Systems Laboratory at
Stanford University and aims to provide assistance to users for browsing, creating,
editing, merging and diagnosing of ontologies. It is available over the Internet and
requires a relatively fast connection to be able to work efficiently. It was built on top
of the Ontolingua Distributed Collaborative Ontology Environment. The initial goal
was to develop a tool that could give substantial assistance for the task of merging
knowledge bases produced by different users for different purposes with different
assumptions and different vocabularies. Later the goals of supporting testing and
diagnosing ontologies arose as well. The user interacts with Chimaera through a
browser such as Netscape or Microsoft Internet Explorer.

Chimaera’s knowledge model is frame based. An ontology consists of classes and
slots. Chimaera provides about seventy commands in the user interface, thereby en-
abling taxonomy and slot editing. The applicable commands at each point in time are
made available by the interface. In addition to editing, some of the commands are re-
lated to ontology merging. There are also commands related to diagnosis that, among
others, check for incompleteness, cycles and value-type mismatches. All compo-
nents of the ontology are shown in one window using a tree structure. As the current
user interface is not a general-purpose editing environment, non-slot individuals and
facets are not displayed [31]. The information exchange mechanisms are based on
OKBC.

Chimaera accepts as input 15 different formats among which Protégé files and´
OKBC. The user can create knowledge bases of types ATP, CLOS, Ontolingua and
Tuple KB. Chimaera has many different alternatives with respect to customization
such as choosing default analysis tools, autosave and translating uploaded ontologies
automatically to OKBC. The focus is on customization of the behavior of the tool.

OilEd [4, 45, 41] is a graphical tool for creating and editing OIL ontologies
developed at the University of Manchester. The tool should be installed locally. One
of the goals of OilEd is to show the use of the DAML+OIL language.

The knowledge model for OilEd is based on description logics. In contrast to
frame systems, OilEd allows for arbitrary boolean combinations of classes. It also
allows several types of constraints such as value-type and cardinality restrictions.
OilEd provides creation and editing functionality for classes, relations, instances and
axioms. The OilEd user interface has been strongly influenced by Protége-2000. The´
ontologies are shown using a tree structure. OilEd uses the FaCT system [21, 16], a
description logic system, for reasoning services such as checking the consequences
of the statements in the ontology, classification and consistency checking.

OilEd supports import from Simple RDFS, DAML+OIL, SHIQ, HTML, Dotty
and DIG and exports DAML+OIL. It allows a limited amount of customizations
pertaining partly to the look of the tool and partly to the reasoning capabilities.
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DAG-Edit [11] is open source software implemented in Java and should be in-
stalled locally. The tool offers a graphical user interface to browse, search and edit
Gene Ontology files or other ontologies based on the directed acyclic graph (DAG)
data structure. The relationships that are supported are is-a and part-of. DAG-Edit has
its main focus on browsing and editing GO. Functionality is provided for the creation
and deletion of concepts, adding synonyms, adding database references, and merg-
ing concepts. DAG-Edit shows the components of the ontology in one window. The
ontologies are shown using a tree structure. The save formats in DAG-Edit are GO
and OBO formats. DAG-Edit supports configuration via the Configuration Manager
Plugin. The user can choose formats and what plug-ins should be shown.

SAMBO [29] is an ontology merge system developed at Linköpings universitet.¨
It helps a user to merge two DAML+OIL ontologies into a new DAML+OIL on-
tology. Similarly to PROMPT and Chimaera, the system generates suggestions for
merging concepts or relationships and for creating is-a relationships. The user can
accept or reject these suggestions and can also add own suggestions. SAMBO per-
forms the actual merging and computes the consequences of the merge. The SAMBO
system uses the FaCT reasoner to provide a number of reasoning services such as
consistency, satisfiability and equivalence checking.

6.2 Evaluations of ontology tools

Currently, only few evaluations of ontology tools using bio-ontologies have been
performed. In [27] and [26] different tools were evaluated and compared as ontology
tools. In [52] one tool was assessed for its use in developing and maintaining GO
ontologies. Each evaluation had a different purpose and although GO has been used
in all evaluations, there is no benchmark test suite yet that can easily be used by future
evaluations. In this section we briefly describe the results of these three evaluations
and then also give a short overview of evaluations of ontology tools in other areas.

In [27] Protége-2000, Chimaera, OilEd and DAG-Edit were evaluated as ontol-´
ogy development tools using GO ontologies as test ontologies. The different systems
were in different phases of development and further development was ongoing for
most of them. The systems were evaluated according to the following criteria:

• Availability. How is the tool used: local installation or via the web?
• Functionality. What functionality does the tool provide?
• Multiple inheritance. Is multiple inheritance supported? How is it visualized in

the tools?
• Data model. What is the underlying data model for the ontologies in the tools?
• Reasoning. Do the tools verify newly added data and check for consistency when

the ontology changes?
• Example ontologies. Are example ontologies available? Are they helpful in un-

derstanding the tools?
• Reuse. Can previously created ontologies be reused?
• Formats. Which data formats are compatible with the tool? What formats can be

imported and exported?
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• Visualization. Do the users get a good overview over the ontology and its com-
ponents?

• Help functionality. Is help functionality available? Is it easy to use?
• Shortcuts. Are shortcuts for expert users provided?
• Stability. Did the tool crash during the evaluation period?
• Customization. Can the user customize the tool and in what way?
• Extendibility. Is it possible to extend the tools?
• Multiple users. Can several users work with the same tool at the same time?
• User interface. The aspects studied in the evaluation are relevance, efficiency,

attitude and learnability. Relevance measures how well a user’s needs are satisfied
by the tool. Efficiency measures how fast users can perform their tasks using the
tool. The subjective feelings towards the tools are measured by attitude. Finally,
learnability measures how easy or difficult it is to learn the tool for initial use as
well as how well a user can remember how to work with the tool.

According to this evaluation, no system is preferred in all situations. All systems
have their strengths and weaknesses. The main strengths of Protégé-2000 compared´
to the other systems are its user interface, the extendibility using plug-ins, the func-
tionality that the plug-ins provide (such as merging) as well as the different formats
that can be imported and exported. Chimaera’s main strengths are its functionality,
including merging and diagnosis, the different formats that can be imported and ex-
ported, its help functionality, the shortcuts for expert users and the fact that multiple
users can work with the same ontology. Its user interface is its main weakness. The
main advantage of OilEd is the fact that its model is description logic-based and that
the underlying FaCT system can perform reasoning tasks such as classification and
consistency checking. DAG-Edit was specifically built for GO ontologies and has an
interface that is easy to use and learn.

Protégé-2000 with PROMPT and Chimaera were also evaluated as ontology´
merging tools [26]. The test cases used GO ontologies and Signal-Ontology [47].
Both systems create suggestions for operations, such as the merging of two con-
cepts, and compute the additional changes that follow from these operations. Chi-
maera also suggests taxonomy areas that are candidates for reorganization. The user
interface of Protége-2000 with PROMPT was considered better than Chimaera. It´
gave a better overview over the ontologies and it was easier to work with. Chimaera,
however, provides more functionality and better help facilities. It is also much faster
to merge ontologies with Chimaera. This may be an important factor when merging
large ontologies. The quality of the suggestions was measured in terms of precision
and recall. Precision measures how many of the suggestions are relevant while re-
call measures how many of the relevant suggestions the system actually proposed.
PROMPT had high precision but low recall for the test cases. Chimaera had slightly
better recall but low precision. Extensions to the basic algorithm that may improve
these results are under development. One such extension is Anchor-PROMPT [37]
where similarities in the structure of the ontologies are used to generate new sugges-
tions. Based on the lessons learned in this evaluation the SAMBO system was pro-
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posed. SAMBO obtained better results regarding precision and recall than PROMPT
and Chimaera for the same GO and Signal-Ontology test ontologies [29].

In [52] Protége-2000 was assessed as a tool for maintaining and developing the´
GO ontologies. First, GO was translated into Protége-2000. Then, the knowledge´
base management functionality of the system was applied to GO. The results of
the assessment suggested that this functionality was useful for checking ontologi-
cal consistency. The PROMPT tool was used for tracking changes in GO. It found,
for instance, concepts that changed from one release to another but had a very similar
structure (e.g., they had the same subclasses and superclasses). In this case, PROMPT
suggested that these concepts were related. Further, Protége-2000 was used to make´
changes to and extend GO.

Some evaluations of ontology tools have been performed in other areas. In [14]
Ontolingua, WebOnto, ProtégeWin, OntoSaurus, ODE and KADS22 were com-´
pared. The authors used ontologies concerning academia and university studies for
testing. It was concluded that for less experienced users WebOnto and ProtégeWin´
are better suited, while Ontolingua and OntoSaurus might give better support for cre-
ating complex ontologies. In [13] requirements were defined for industrial strength
ontology management. Scalability, reliability, security, internationalization and ver-
sioning were considered to be the most important requirements. Scalability and re-
liability are needed to support the distributed and cooperative development of large-
scale ontologies by multiple users. Security management is needed to protect data
integrity, to prevent unauthorized access and to provide access control mechanisms.
Internationalization refers to the fact that users at different geographical locations
may need to access the same ontologies and this possibly in different natural lan-
guages. Finally, versioning is needed as ontologies change and evolve over time.
Chimaera, Protégé, WebOnto and OntoSaurus were evaluated with respect to these´
criteria. No single tool met the requirements. Some of the tools did meet or surpass
other requirements such as ease of use, knowledge representation and merging, but
these were not considered to be the most important for industrial strength ontology
tools. In [38] evaluation criteria for mapping or merging tools were proposed. First,
an evaluation should be driven by pragmatic considerations: input requirements, level
of user interaction, type of output and content of output. Tools that satisfy a user’s
pragmatic requirements can then be compared with respect to a performance criterion
based on precision and recall. Protége-2000 with PROMPT was evaluated according´
to these criteria. A larger survey of ontology tools and methodologies was performed
by the OntoWeb Consortium [9, 10].

Regarding ontology development tools the following evaluation criteria were
proposed: interoperability with other tools, knowledge representation, inference ser-
vices and usability. A number of tools were compared according to these criteria.
Most of the new tools were found to export and import different markup languages,
but there does not exist a comparative study about the quality of the translators.
With respect to knowledge representation two families were found: description log-
ics based tools and tools that are based on frames. Most tools provided some infer-
encing, but only the description logics based tools performed automatic classifica-
tions. Finally, regarding usability WebOnto had the most advanced features related
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to cooperative construction of ontologies. Test experiments are planned for OilEd,
OntoEdit, Protége-2000, WebODE and WebOnto.´

7 Conclusion

In this chapter we presented different currently used definitions of ontology. We
briefly introduced ontologies in bioinformatics and systems biology and gave exam-
ples of how they are currently used. The focus in bioinformatics and systems biology
has been on the construction of a community reference as well as on creating a vo-
cabulary for annotation. Ontologies will still be used in this way in the future, while
the other uses such as ontology-based search and ontology-based integration of in-
formation sources will gain in importance. Regarding representation the focus has
been on controlled vocabularies. However, to be able to use the ontologies in more
advanced ways, more expressive representation formalisms with reasoning capabil-
ities will need to be used. We also discussed some ontology engineering tools. As
was shown in several evaluations, the current ontology engineering tools are a good
start, but research is still needed to be able to develop high-quality industrial-strength
engineering tools.

Main abbreviations and acronyms

DAG: Directed Acyclic Graph.
DAML: DARPA Agent Markup Language. Developed as an extension to XML and
RDF.
DAML+OIL: Semantic markup language for web resources. Based on DAML-ONT
and OIL.
DAML-ONT: DAML Ontology language.
EcoCyc: Encyclopedia of Escherichia coli K12 Genes and Metabolism. Scientific
database for the bacterium Escherichia coli K12 MG1655.
F-Logic: Frame Logic. Language dealing with most of the structural aspects of
object-oriented and frame-based languages.
GO: Gene Ontology consortium. The goal of the Gene Ontology consortium is to
produce a controlled vocabulary that can be applied to all organisms.
MeSH: Medical Subject Headings.
MGED: Microarray Gene Expression Data. The MGED Society is an international
organization of biologists, computer scientists, and data analysts that aims to facili-
tate the sharing of microarray data generated by functional genomics and proteomics
experiments.
OBO: Open Biological Ontologies. Umbrella web address for ontologies for shared
use across different biological domains.
OIL: Ontology Inference Layer. Web-based representation and inference layer for
ontologies, which combines the widely used modeling primitives from frame-based
languages with the formal semantics and reasoning services provided by description
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logics.
OilEd: Ontology editor for OIL.
OKBC: Open Knowledge Base Connectivity. Application programming interface
for frame-based knowledge representation systems.
OWL: Web Ontology Language.
PROSITE: Database of protein families and domains.
PROMPT: Plug-in for the Protége-2000 system supporting ontology merging.´
Protégé-2000´ : Ontology development system.
RDF: Resource Description Framework.The RDF specifications provide a lightweight
ontology system to support the exchange of knowledge on the Web.
SAMBO: System for Aligning and Merging Bio-Ontologies.
SBML: Systems Biology Markup Language. An XML-based format for represent-
ing biochemical reaction networks.
SHIQ(D): An expressive description logic.
SHOQ(D): An expressive description logic.
SOFG: Standards and Ontologies for Functional Genomics. SOFG is both a meeting
and a website. It aims to bring together biologists, bioinformaticians, and computer
scientists who are developing and using standards and ontologies with an emphasis
on describing high-throughput functional genomics experiments.
STAR/mmCIF: An ontology for macromolecular structure.
Swiss-Prot: A curated protein sequence database.
TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources.
UML: Unified Modeling Language.
WordNet: A lexical database for the English language.
XML: Extensible Markup Language. Web language.
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Natural Language Processing and Systems Biology

K. Bretonnel Cohen and Lawrence Hunter

Center for Computational Pharmacology, University of Colorado School of Medicine,
Denver, USA.
E-mail: {kevin.cohen, larry.hunter}@uchsc.edu

Summary. This chapter outlines the basic families of applications of natural language pro-
cessing techniques to questions of interest to systems biologists and describes publicly avail-
able resources for such applications.

1 Introduction

Natural language processing (NLP) is the processing, or treatment by computer, of
natural language, i.e., human languages, as opposed to programming languages.
The two differ from each other in a very fundamental way: the interpretation of a
programming language is designed not to be ambiguous, while the possible inter-
pretations of natural language are potentially ambiguous at every level of analysis.
The processing of computer languages is a subject for computer science and is gen-
erally treated in courses on compiler design. In contrast, the processing of natural
language crosses a number of disciplines, including linguistics, computer science,
and engineering.

One of the more surprising developments in bioinformatics and systems biology
has been the attention that NLP has received at bioinformatics conferences in re-
cent years. The Pacific Symposium on Biocomputing (PSB) and Intelligent Systems
for Molecular Biology (ISMB) conferences began publishing papers on the topic in
the early 1990s devoting entire sessions to the topic in the late 1990s. The natural
language processing community has reciprocated, with the Association for Compu-
tational Linguistics offering workshops on NLP in the molecular and systems biol-
ogy domain for the past three years ([56, 2, 48]). This is a welcome turn of events
for the NLP community; although the medical domain has long been a target of in-
terest for computational linguists, the medical community has yet to adopt natural
language processing in a widespread way. In contrast, the current state of events,
in which linguists find biologists coming to them, is a happy one. The results have
been beneficial to both groups, with biologists gaining curation tools and linguists
taking advantage of the large, well-curated resources that the biological community
has made available in recent years. Biologists are increasingly faced with a body of
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literature that is too large and grows too rapidly to be reviewed by single researchers.
At the same time, it becomes increasingly clear that relevant data is being published
in communities outside of the traditional molecular biology subfields. Faced with
the need to perform systematic surveys of all published information about multiple
genes and proteins returned in large numbers by high-throughput assays, there is a
growing awareness among molecular biologists that automated exploitation of the
literature may be not just useful, but essential1.
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Fig. 1.Fi 1 Growth in Medline over the past 17 years. The hollow portion of the bar is cumulativeG h i M dli h 17 Th h ll i f h b i l i
size up to the preceding year; the solid portion is new additions in that year.

Unfortunately for impatient consumers—perhaps fortunately for curious
scientists—NLP is approximately as difficult as it is important. It requires enormous
amounts of knowledge, on a number of levels. For example, knowledge of how words
are formed (morphology) is required to understand words like deubiquitinization that
are complex and may not have been seen before. Knowledge of how phrases combine
(syntax) is needed to understand why a sentence like These findings suggest that FAK

1NLP techniques have also proven useful for macromolecular sequence analysis. This in-
cludes the use of hidden Markov models (see e.g., [57] for a general overview and [5] for
biological applications), a technique from speech recognition; and the use of phrase struc-
ture grammars (see [97] for an excellent review and [96] for a more detailed exposition). In a
related vein, techniques from computer science for efficient string searches and tree manipu-
lations have been important as well; these are covered very well in [42]. These are beyond the
scope of this chapter, and the reader is referred to the cited references for more information on
them.
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functions in the regulation of cell migration and cell proliferation ([41]) is ambigu-
ous (does FAK play a role in cell proliferation and in the regulation of cell migration,
or does it play a role in the regulation of cell proliferation and in the regulation of
cell migration?). These problems are difficult enough—despite the fact that since the
1960s most linguists have been working on the English language, there is still no
comprehensive analysis of the syntax of English available. However, they pale next
to the difficulty of representing the knowledge about the world that we make use of
in understanding language. As human users of language, world knowledge is simul-
taneously so pervasive and so taken for granted in our understanding of language that
we are generally unaware of it and may be difficult to convince that it plays a role at
all. Consider the sentences she boarded the plane with two suitcases and she boarded
the plane with two engines ([54]). Both sentences are equally syntactically ambigu-
ous, with two possible phrasal structures for each sentence, depending on whether the
plane or the woman has the suitcases or the engines. However, humans are unlikely
to entertain two analyses of either sentence—rather, one analysis (and a different one
in each case) seems obvious and exclusive for each. This phenomenon is based on
knowledge that humans have about the kinds of things that people and airplanes are
and are not likely to have. Representing this level of knowledge in the breadth and
depth that would be required for understanding unrestricted text in general English
or any other language has so far remained an elusive goal.

2 NLP and AI

NLP has a long history in artificial intelligence, and vice versa. There are two main
lineages in NLP, one of which traces itself back to Roger Schank (see e.g., [93]).
Historically, approaches to conceptual analysis work in AI have tended to be heavily
based on semantic processing and knowledge-based techniques, with syntax often
(although certainly not always) having a marginal position and sometimes eschewed
completely, at least in principle. [103] provides a comprehensible overview of NLP
research in the Schankian paradigm through the early 1980s. Since that time, two
main trends of thought on NLP have emerged from the AI community: the direct
memory access paradigm and implementations of conceptual dependency parsing.
The direct memory access paradigm ([87, 69, 31]) has investigated the implications
of thinking of language processing as change in mental representations. This offers
some real advantages with respect to mapping the output of NLP to known con-
cepts and entities in an ontology or knowledge base that is lacking in term-based
approaches to NLP. (For example, for the input . . . Hunk expression is restricted to
subsets of cells. . . ([38]), a good term-based system will output the fact that Hunk is
expressed; a concept-based system might output the fact that LocusLink entry 26 559
is expressed.) It has had some commercial application in the area of robot control by
NASA, and shows promise for language processing in the systems biology domain,
including in the areas of word sense disambiguation and resolution of syntactic am-
biguity ([53]). The conceptual dependency parser ([61, 88]) has had success in the
kinds of information extraction tasks that are of much current interest in the bioin-
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formatics community. (Other AI researchers have increasingly pursued statistical ap-
proaches to NLP, e.g., [19, 20]). Systems biology literature shows every indication
of being the right target at the right time for AI-inspired approaches. Though the ne-
cessity of incorporating knowledge into language processing has long been acknowl-
edged, in the past knowledge-based approaches have been thought to be impractical
due to both the high cost of knowledge engineering and the breadth and depth of
‘common-sense’ knowledge required to parse general English. Within just the recent
past, the cost argument has ceased to hold as much weight, as the molecular and
systems biology community has released for public use large, carefully curated re-
sources like LocusLink ([67] and the Gene Ontology ([24, 25]). With respect to the
depth and breadth of knowledge required, we maintain that it is substantially less for
molecular biology literature than for general English: nothing you need to know to
understand molecular biology is everyday, common-sense knowledge- –everything
that anyone knows about molecular biology came from a textbook, a journal article
or an experiment. Thus, the time is ripe for applying AI to NLP in systems biology2.

3 NLP and systems biology

The importance of NLP for systems biology comes from the high-throughput na-
ture of modern molecular biology assays. The drinking-from-a-firehose nature of the
business creates the opportunity for fruitful application of NLP techniques in two
ways:

• It makes automated techniques for handling the literature attractive by fueling a
rate of publication that is unequaled in the history of science, or indeed of the
world.

• At the same time, it makes progress in the field of NLP possible by providing
a huge body of data in a restricted domain for training and evaluation of NLP
systems.

Specific applications of NLP to biological data or assays include automated lit-
erature searches on sets of genes returned by an experiment; annotation of gene lists
with Gene Ontology concepts; improvement of homology search; management of
literature search results; aids to database curation; and database population. These
biological tasks have been approached through a variety of NLP techniques, includ-
ing information extraction, bibliometrics, and information retrieval. In addition, there
are subtasks whose successful accomplishment is key to all of these. These include

2It should be noted that the molecular biology domain has long been known to be a good
target for natural language processing applications due to its good fit to a sublanguage model
of language. A sublanguage is a genre of language use which deals with a semantically re-
stricted domain and has certain qualities which make it more amenable to machine processing
than is unrestriced language. A number of recent papers [33] have discussed the fit of systems
biology texts to the sublanguage model.
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entity identification (see Section 4.2), tokenization (see page 160), relation extrac-
tion (see Section 4.3), indexing (see page 165), and categorization and clustering
(see page 166). These subtasks are discussed in detail in the sections that follow.

3.1 Where NLP fits in the analysis pipeline

NLP fits into the bioinformatics data analysis pipeline in two ways, or at two points
in the process: at the beginning, by aiding in the analysis of the output of high-
throughput assays, thus helping the scientist bring a project from experiment to pub-
lication; and at the end, by helping the working researcher exploit the flood of pub-
lications that fills Medline at the rate of 1500 abstracts a day. (This split in times
of application of the technology does not, however, correspond to any division of
natural language processing techniques into different categories; as we will see, a
given biological application can be implemented using a variety of different NLP
technologies, and a single NLP technique may be utilized for a variety of types of
biological applications.) We can also think of NLP techniques as helping the biol-
ogist approach two kinds of tasks: on the one hand, ad hoc location of data about
single items of interest to them (where single might be a single gene or protein, or
the output of an experiment, which might itself be a list, for example of differen-
tially expressed genes). In this case, the strength of NLP is its potential for mining
information from communities whose literature the researcher might not be aware
of but whose work has relevance to her (consider for instance the newly discovered
importance of a pregnancy-related protein in heart failure [29]). The other type of
task can be thought of as systemic in nature, for example population of databases or
aiding database curators; here we make more sweeping queries, of the nature of tell
me about every protein-protein interaction described in the literature.

3.2 Database population and curation

Rapid population of databases of biologically interesting information was an early
motivation for NLP in bioinformatics. The idea that if protein names could be located
in text, then we could automatically populate databases of facts about proteins—
for example, their interactions with other proteins, as in DIP and BIND—comes up
in the first of the modern papers on molecular biology NLP, [35]. The problem to
be solved is that enormous amounts of information on the topic are present in the
systems biology literature, and we would like to convert that free-text information
into a computable form, i.e., entries in structured databases. This is doable manually,
but at great cost in terms of time and financial resources. Two basic approaches have
been suggested—bibliometric techniques, and information extraction techniques.

Database population belongs to a class of problems in which the goal of NLP is to
discover a very limited range of types of facts —perhaps only one. A typical example
is protein-protein interactions. Bibliometric approaches are based on the assumption
that if two proteins are mentioned in the same text (typically an abstract), then there
might be a relationship between them. The PubGene system ([55]) is a good example
of such a system. Sophisticated approaches like PubGene attempt to normalize for
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the fact that two proteins might be mentioned in the same text by chance. They typi-
cally find only pairwise interactions, an exception being the AlcoGene module of the
INIA web site, which finds interactions of arbitrarily large arity. In general, biblio-
metric approaches suffer from problems related to entity identification. Either they
are restricted with respect to the kinds of entity referents that they find—for example,
PubGene utilizes only gene symbols and single-word names—or they are swamped
by false positives due to synonymy issues, or both. [116] has a good discussion of
sources of false positives in bibliometric approaches.

Information extraction offers a more constrained approach to database popula-
tion. Examples of papers whose stated goal is database population using information
extraction techniques include [8, 26]. Information extraction targets a very restricted
set of types of assertions, and hence is less susceptible to the extreme low preci-
sion problems of bibliometric systems. In general, no technique has proven suffi-
ciently accurate for completely automated population of databases. However, a num-
ber of techniques produce output that is of sufficient quality to aid human curators
of such databases. Systems biology databases that store information that is more ab-
stract than sequence data, such as BIND, Swiss-Prot, and OMIM, are typically hand-
curated by experienced scientists, with new entries coming from findings reported in
the scientific literature. A growing body of work addresses the needs of such cura-
tors for a fast and efficient way to navigate or filter the high volume of publications
that characterizes the rapid rate of progress in systems biology today. The potential
utility of NLP in curation efforts is so apparent that some recent competitions have
been funded or materially aided by various databases.

3.3 Aids to analysis of high-throughput assays

Gene expression arrays

A number of studies have specifically addressed issues in the analysis of gene expres-
sion array data. An early such system was MedMiner ([107]), which was designed
to perform automatic literature searches on large numbers of genes found to be of
significance in an expression array study. Such studies often result in large lists of
genes which may lead to thousands of articles being returned by a literature search;
MedMiner helps the experimenters navigate these large bodies of literature by sort-
ing them according to categories known to be of interest to molecular biologists.
This work has been extended to other user communities, including researchers on
the molecular biology of substance abuse and cancer researchers. Shatkay et al. [98]
describes a method for detecting functional relationships in microarray data. Other
approaches to the application of NLP to the interpretation of gene expression arrays
have concentrated on using literature to augment the classifications of genes already
present using the Gene Ontology ([86]).

3.4 Interaction and pathways

A significant body of work has concentrated on the discovery of networks of inter-
actions and on pathway discovery. The interactions are generally between proteins,
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although other kinds of ‘interactions’ or associations have been investigated as well,
including:

• Proteins and drugs ([90, 107])
• Proteins and diseases ([26, 100, 101])
• Proteins and subcellular locations ([26, 100, 101])

In general, the linguistic and computational problems are the same, regardless of
the exact nature of the interaction.

4 Issues and resources in natural language processing

4.1 Evaluation

Metrics

Most evaluation in NLP is done by calculating values for precision, recall, and of-
ten F-measure on the output of a system, evaluated against a gold standard. Gold
standard data is, in the best-case scenario, data that is hand-annotated by domain
experts. It is often constructed by running some automated system against a set of
inputs, and then having it hand-corrected by domain experts. It is preferable to have
multiple human experts annotate the data. When this is done, inter-annotator agree-
ment can be calculated, e.g., by calculating the κ statistic. This can be an indicator
of the difficulty of the task, e.g., indicating the possible upper limit of system per-
formance. Preparing such gold standard data sets is a pressing issue in the systems
biology NLP domain. When gold standard data sets are available, they are listed in
the relevant subsections.

Precision measures how often the system is correct when it outputs a particular
value. It is similar to specificity, and is calculated by dividing the number of correct
outputs (true positives, or TP) by the total number of outputs. The total number
of outputs is the number of correct outputs plus the number of incorrect outputs
(false positives(( , or FP), so the equation is often given as P = TP/(TP + FP). Recall
measures how often the system correctly finds the right things to output. It is similar
to sensitivity, and is calculated by taking the ratio of correct outputs by the total
number of potential correct outputs. The total number of potential correct outputs is
the number of correct outputs plus the count of things that should have been output
but were not (false negatives(( , or FN, so the equation is often given asNN R = TP/(TP
+ FN). The F-measure or harmonic mean attempts to balance the contributions of
precision and recall to system performance. It is calculated by 2PR/(P+R).3 [54]
provides a cogent overview of these and other metrics for evaluating NLP systems.

Precision and recall are taken from the information retrieval (IR) community.
The prototypical IR task is to retrieve from some set of documents all and only the

3The F-measure can be calculated in other ways that allow for weighting precision more
or less, relative to recall—see [57], and [68] pp. 268–270.
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documents that are relevant to some query. We assume that the set includes some
documents that are relevant, and some that are not. Documents that are relevant and
are successfully retrieved by the system are thus ‘true positive’ outputs. Documents
that are retrieved by the system but that actually are not relevant to the query are
‘false positive’ outputs, and documents that truly are relevant to the query but that
the system failed to retrieve are ‘false negative’ outputs.

Bake-offs

Most systems currently described in the literature were evaluated with locally pre-
pared data, and sometimes with idiosyncratic scoring methods. However, in recent
years the systems biology NLP community has experimented with its first ‘bake-
off’-style competitions, where each participating group is evaluated on the same
data, with outputs being scored at a central location using consensus criteria. The
recent competitions have been:

• the KDD Cup genomics challenge, described in [119]
• the TREC 2003 genomics track, described in [47]
• BioCreative, described at [6]

4.2 Entity identification

All applications of NLP to problems in computational and systems biology require
the ability to recognize references to genes and gene products in text. For example,
in the sentence fragment association of ADHD with DRD4 and DRD5 ([60]), we
want to know the DRD4 and DRD5 are genes, but ADHD is not, despite the fact
that all three words look very much the same. The general problem of recognizing
things of a particular class in free text is known as entity identification or named en-
tity recognition. The problem was first defined in the general-language domain in the
context of the Message Understanding Conferences ([78, 54]). Entity identification
has been a topic of interest in the systems biology NLP domain for about as long
as NLP has been of interest to systems biologists, and in fact the most heavily cited
NLP paper from a computational bioscience conference, [35], was on this topic. In
general-language domains, the set of entities has tended to be fairly heterogeneous,
ranging from names of individuals to monetary amounts; in the systems biology do-
main, the set of entities is sometimes restricted to just genes and gene products, with
individual authors tending to define the task on an ad hoc basis. (The BioCreative
competition may bring about some standardization of the task definition.)

Approaches to entity identification in the systems biology domain fall into two
general classes: rule-based approaches, and machine-learning-based approaches (see
below). Rule-based approaches generally rely on some combination of regular ex-
pressions (see paragraph below) to define patterns that match gene names, and some
logic for extending names to the right and/or left. For example, a rule-based approach
might use a regular expression such as /ˆ[a-z]+[0-9]+$/ (any sequence of one
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or more lower-case letters followed immediately by any sequence of one or more dig-
its) to recognize that p53 is a gene name. It might also include a rule (possibly also
implemented as a regular expression) to include the word gene if it occurs immedi-
ately to the right of a string that is recognized by that pattern. In addition to Fukuda et
al.’s work, examples of rule-based approaches in the literature include [79]. Fukuda’s
PROPER system is a rule-based system that is freely available for download at [58].

A variety of machine-learning-based approaches to entity identification have
been tried. These are mostly the work of the Tsujii lab. Approaches have included
decision trees, Bayesian classifiers, hidden Markov models, iterative error reduction,
and support vector machines. Tanabe and Wilbur’s ABGene system is a learning-
based system that is freely available for download at [1].

Almost all work on entity identification can be described as entity ‘location.’ The
task is generally defined as locating entities in text. There is generally no attempt
to map the entities that have been located to a database of genes or gene products,
despite the benefits to being able to do this. This more complex task may be referred
to as concept identification. [21] addresses some of the problematic issues for this
task from a structural linguistic perspective. BioCreative task 1B addressed the issue.

Entity identification systems that attempt to rely solely on ‘look-up’ in a dictio-
nary or gazetteer of names typically perform quite poorly, with coverage generally
only in the range of 10-30%, meaning that only 10-30% of the gene names in a
corpus can typically be found this way, even allowing for some variability in the
form of the names between the reference source and the corpus, such as letter case,
hyphenation, etc. (see [21] for a discussion of such variability).

A regular expression is a mathematical formula for specifying the class of ob-
jects that belong to a particular set. When applied to natural language processing,
the objects are textual strings. Regular expression engines typically allow for mak-
ing reference to specific positions in a string, for allowing choices between a set of
characters, for repetition, and for optionality. For example, in the regular expression
/∧[a-z]+[0-9]+$/ the carat species the beginning of the string, [a-z] rep-
resents a choice between any of the lower-case letters, [0-9] represents a choice
between any of the digits, the plus-signs indicate that the ‘choice’ that precedes it
can be repeated any number of times, and the dollar-sign specifies the end of the
string. Taken together, the elements of the regular expression specify strings that be-
gin with one or more letters and end with one or more digits. Thus, the set of strings
that is specified by the regular expression includes p53, pax9, and hsp60. Chapter 2
of [57] gives an excellent introduction, both theoretical and applied, to regular ex-
pressions. [50] provides an excellent introduction to the use of regular expressions
in the Perl programming language; because most modern regular expression engines
mimic Perl’s syntax, much of its material is applicable to other languages as well.

Resources for entity identification

Resources for entity identification fall into two classes:

• Lists of names and symbols for ‘dictionary’ construction
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• Software for performing entity identification

At this writing, a variety of publicly available sources for dictionary construction
exist. Most provide both names and symbols, and some also provide synonym lists.
These include the following:

• LocusLink’s LL tmpl file. LocusLink ([67]) supplies an extremely large number
of names and symbols, including synonyms for each, often multiple ones. These
are available for a wide variety of species (thirteen at time of writing). There is no
attempt at standardization. From the point of increasing recall, this is a benefit.
Names and symbols can be extracted from a number of fields, including

– OFFICIAL GENE NAME
– PREFERRED GENE NAME
– OFFICIAL SYMBOL
– PREFERRED SYMBOL
– PRODUCT
– PREFERRED PRODUCT
– ALIAS SYMBOL
– ALIAS PROT

It is available for downloading at [65]. Java classes for parsing the data file and
representing LocusLink entries are available from the authors.

• HUGO: The Human Gene Nomenclature Database supplies a much smaller num-
ber of names and symbols for human genes. Some symbols are provided. The
symbols are standardized. It is described in [114] and is available for download-
ing in a variety of formats at [51].

• FlyBase provides names, symbols, and synonyms for D. melanogaster genes.
[49] and [77] discuss its use in NLP.

Finally, the reader should consult the ‘interesting gene name’ site at [39]; for
comic relief, be sure to note the ‘worst gene names’ page. See also the FlyNome site
(http://www.flynome.org) for explanations of some of the more interesting
Drosophila names.

Software for performing entity identification falls into two classes—systems that
are available over the Internet for remote usage, and systems that the user installs
locally. Availability of the former type of system of course varies. At the time of
writing, the following over-the-Internet systems are available:

• The GAPSCORE system is available via a Web-based interface at [37]. It returns
a list of potential gene names in the input text with a score that rates the probabil-
ity that each name is a gene. (It is also available through an XML-RPC interface
from a variety of languages—see below.) It is described in [18].

• Yapex is available via a Web-based interface at [118]. Yapex has the unusual
feature of being able to use information about names mentioned more than once
in an input to improve recognition of those names on subsequent mentions. It is
described in [32].
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• The Descriptron system, under development at the Center for Computational
Pharmacology and described in [74], provides (among other services) look-up
for gene symbols, names, and other identifiers, allowing rapid determination of
whether or not an identifier is ambiguous as to species or as to the underlying
sequence data.

The following systems for local installation are available:

• Chang et al.’s GAPSCORE system is available at [36].
• The ABGene system is available for download at [1]. It performs two functions at

once: it simultaneously locates named entities, and performs part-of-speech tag-
ging, such that all non-entities in the output have POS tags in place. It is available
on Solaris and Linux; installation on Linux requires Slackware (a specific Linux
distribution, available at [102]). It is described in [108] and [109].

• The KeX/PROPER system is available for download at [58]. It produces SGML-
style output. It is optimized for yeast. It is described in [35].

Evaluation of entity identification

Two kinds of data sets for evaluation of entity identification systems exist. One kind
is data sets assembled by individual authors and made available in conjunction with
their publications. Recently, another kind of data set has become available, as well—
publicly available, carefully-curated large data sets intended for use in challenge
tasks. These latter may become standard data sets for publication purposes.

• The GENIA corpus is an extensively hand-annotated corpus of abstracts on hu-
man blood cell transcription factors. It is split into sentences and the content is
fully tokenized4. It is part-of-speech tagged, and is also annotated with respect
to a sophisticated ontology of the molecular domain. This ontology includes a
number of concepts that correspond to named entities as that term is used in this
chapter, i.e., genes and gene products. It is the largest corpus of its type currently
available, comprising 2 000 abstracts with 18 545 sentences containing 39 373
named entities. It is available at [40] and is fully described in [81, 59].

• The BioCreative corpus comprises 10 000 sentences and titles with 11 851 named
entities. Unlike the GENIA corpus, it was deliberately constructed to be hetero-
geneous (within the constraints of the molecular biology domain). It includes
sentences that contain deliberately challenging false positives. It is downsampled
from abstracts, which removes some classes of contextual cues. The corpus was
originally constructed by the National Library of Medicine. It was made publicly
available in conjunction with the BioCreative comptetition on entity identifica-
tion. It is available for download at [6].

• the Yapex data set—about 200 Medline abstracts, some of which are a re-
annotated subset of the GENIA corpus. It is available for download at [117].

4Tokenization is the separation of input into appropriately sized chunks for analysis. The
term often refers to separating words and punctuation into individual tokens (see the example
on page 160). Sentence tokenization is the separation of input into sentences.
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• The authors make available a system for generating test data for entity identifica-
tion systems at [52]. The system allows the user to generate customized test suites
to evaluate performance on different types of names and symbols in a variety of
sentential contexts. It is described in [23].

4.3 Information extraction

Information extraction (IE) is the location of assertions about restricted classes of
facts in free text. It is also sometimes referred to as relation extraction. IE can be
thought of as a ‘robust’ approach to natural language understanding ([57]) in that
rather than trying to build a system that ‘understands’ all aspects of an input text,
workers in information extraction try to ‘understand’ only assertions of a very re-
stricted sort. For example, an early system in the molecular biology domain extracted
assertions about subcellular localization of proteins ([26]). Information extraction
technologies have a wide range of applications. The most basic of these uses the
results of information extraction directly to populate a knowledge base. Extracted
assertions can also be used as input data for other NLP-based applications, such as
ontology construction, network discovery, and information retrieval. (So far the im-
maturity of the technology has stood in the way of success in such efforts.)

Approaches to information extraction can be classified into two broad categories—
rule-based, and machine-learning-based. In general, rule-based systems tend to ap-
ply some linguistic analysis; in contrast, learning-based systems tend to apply less
linguistic analysis and to use simpler representations5. The first application of in-
formation extraction to the molecular biology domain was a rule-based system for
finding protein-protein interactions, described in [8]. A representative example of
a rule-based system is described in [83]. These authors developed a set of regular
expressions defined over part-of-speech (POS) tags and entities that perform some
analysis of sentence structure, such as recognizing complex coordinated sentences,
and then recognize simple assertions about protein-protein interactions involving a
limited number of verbs and deverbal nouns. Commonly used ‘keywords’ in these
systems (see e.g., [8, 10]) include:

• interact
• associate
• bind
• complex
• inhibit

5A very common model for representing a text in a machine learning framework is the bag
of words (BOW). In a BOW model, the text is represented as a vector in which each element
represents a single word. (The value for the element may be binary, i.e., indicating presence
or absence of the word, or it may be weighted in some way.) The BOW metaphor takes its
name from the fact that the features reflect nothing but the words, crucially excluding order—
thus, the BOW representation for the sentences A upregulates B and B upregulates A would be
identical—something like A:1 B:1 upregulates:1.
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• activate
• regulate
• encode
• function
• phosphorylate

The first machine-learning-based information extraction system in the molecular
biology domain is described in [26]. They developed a Bayesian classifier which,
given a sentence containing mentions of two items of interest, returns a probability
that the sentence asserts some specific relation between them. For example, given a
sentence containing the name of a protein and the name of a cellular compartment,
it returns the probability that the sentence asserts that that protein is localized to
that cellular compartment. Later systems have applied other technologies, including
hidden Markov models and support vector machines.

Things that make information extraction difficult

A variety of factors conspire to make information extraction difficult. These factors
fall into two general groups: issues that must be dealt with in most information tasks,
and issues that may be specific to the systems biology domain. Entity identification
is frequently cited in error analyses as a source of low recall: inability to solve the
entity identification problem leads to missed assertions. Coordination, the linking of
structures by words like and and or, is another problematic phenomenon. Negation
is often simply ignored, a notable exception to this being the work reported in [62]
and [63]. Anaphora, or references to entities that have been named earlier, often by
words like it, are another source of low recall.

Low-level linguistic analysis and preprocessing

Many issues of low-level linguistic analysis arise in information extraction. These
include:

• sentence tokenization
• word-level tokenization
• entity identification
• part-of-speech tagging
• stemming
• abbreviation expansion

The National Library of Medicine makes available a variety of tools that might
be of use. These include:

• lvg (lexical variant generation), a set of Java API’s for normalizing and generat-
ing variant forms of biomedical terms. lvg is described in [28] and is available
for download at [66].

• MetaMap, a system for finding biomedical concepts in free text. MetaMap is
described in [3] and is available for download at [76].
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Sentence tokenization

Sentence tokenization is the process of separating a chunk of text into individual
sentences. A problem with tokenization of sentences in molecular biology text is that
case is not always a reliable indicator of sentence boundaries. Consider for example
the following text, which should be split into four sentences, indicated here by line
breaks:

Misshapen (Msn) has been proposed to shut down Drosophila photorecep-
tor (R cell) growth cone motility in response to targeting signals linked by
the SH2/SH3 adaptor protein Dock.
Here, we show that Bifocal (Bif), a putative cytoskeletal regulator, is a com-
ponent of the Msn pathway for regulating R cell growth cone targeting.
bif displays strong genetic interaction with msn.
Misshapen (Msn) has been proposed to shut down Drosophila photorecep-
tor (R cell) growth cone motility in response to targeting signals linked by
the SH2/SH3 adaptor protein Dock.

The final sentence of the selection (from the abstract of [91]) begins with a
mention of the recessive form of the Bifocal gene. The authors have followed the
Drosophila community’s convention of indicating dominance/recessiveness of an al-
lele by using upper case for the initial letter of the name/symbol when discussing
the dominant form, and lower case for the recessive allele. Other difficulties come
from domain-specific entities that can contain internal punctuation that would nor-
mally be sentence-final, such as chromosomal locations (p24.2(( ), species names (S.
cerevisiae), etc.

Approaches to sentence tokenization can be divided into two categories: rule-
based, and learning-based. Appendix B of [16] gives a set of heuristics for rule-
based sentence tokenization of Medline abstracts. No publicly distributed tools that
are customized for the molecular biology domain are currently available.

Word-level tokenization

Most NLP projects require breaking the input into word-sized chunks. The definition
of what counts as a word is often frustratingly domain-specific. Molecular biology
text provides its own challenges in this regard. For example, tokenization routines
generally split punctuation from the words to which it is attached. They generally
count hyphens as separable punctuation. However, this often yields undesirable re-
sults on molecular biology text. Consider, for example, the sentence Relaxin, a preg-
nancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-
1-mediated vasoconstriction by stimulation of endothelin thp-B receptor expression
via ERK-1/2 and nuclear factor-kappaB [29]. The desired output of tokenization is
shown in Table 1, where it is contrasted with the output of a typical tokenizer. A num-
ber of problems with the typical output are apparent. Endothelin-1-mediated should
be separated into endothelin-1 and mediated, but endothelin-1 should be kept as a sin-
gle ‘token.’ Similarly, thp-B is split into three tokens, when it should be maintained
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as a single unit, and ERK-1/2 is split into five units. Some tokenization routines ac-
tually discard punctuation, including hyphens; this is problematic in the biomedical
domain, where e.g., hyphens can be used to indicate negation ([105]) and electrical
charge.

Part-of-speech tagging

Part-of-speech tagging is the assignment of part-of-speech labels to individual to-
kens in a text. The set of labels is typically much larger than the eight categories
(noun, verb, preposition, etc.) typically taught in traditional grammar. A common
tagset (set of tags) includes around forty categories, and much larger sets are known,
as well. ([57]:Appendix C gives several pages of tags.) The increased size of NLP
tagsets as compared to the eight traditional parts of speech comes in part from finer
granularity—for example, where traditional grammar has the category noun, a com-
monly used NLP tagset has the categories NN (singular or mass noun), NNS (plural
noun), NNP (singular proper noun), and NNPS (plural proper noun). It is a challeng-
ing task because even within a homogeneous domain, a word can have multiple parts
of speech. For instance, in the molecular biology domain, white can be an adjective,
as in . . . Morgan’s awarenesss that white eye-color was not the only genetically de-r
termined alternative to red eye-color. . . ([30]); a mass noun, as in . . . the appearance
of a traite, such as color, was due to the presence of a gene, and white, i.e., no color,
to its absence (op cit); and of course a proper noun. Information extraction systems
generally apply a POS tagger and entity identification system as their first steps, in
one order or the other. Publicly available entity identification systems are discussed
above in 4.2. Publicly available POS taggers include the following:

• Brill: the Brill part-of-speech tagger ([14]) is possibly the most widely used piece
of NLP software in the world. It is shipped with data for tagging general English,
but can be trained on molecular biology data and has been widely applied to such.
It is available at [13].

• TnT: The Trigrams’n’Tags part-of-speech tagger ([12]), also known as TnT, is aTT
very fast and stable part-of-speech tagger that is available on a variety of plat-
forms. It has been tested on multiple languages, and has an intuitive interface. It
is available at [111].

Stemming

It is often useful to be able to determine the stem of words in the input text. A
word’s stem is the main part of the word, exclusive of parts that are added to it to
mark plurality, tense, etc. For example, interact is the stem of the words interacts,
interacted, interacting, and interaction. Publicly available software for this includes
many implementations in a wide variety of languages of the Porter stemmer ([85]),
available at [84]. No stemmer has been optimized for NLP in the systems biology
domain.
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Table 1. Desired and typical outputs of tokenization. The table shows one token per line. Note
that the typical tokenization routine tends to break apart things that should remain single units.

DESIRED OUTPUT OF TOKENIZATION OUTPUT OF A TYPICAL TOKENIZATION ROUTINE

Relaxin Relaxin
, ,
a a

pregnancy pregnancy
hormone hormone

, ,
is is
a a

functional functional
endothelin-1 endothelin

-
1

antagonist antagonist
: :

attenuation attenuation
of of

endothelin-1 endothelin
-
1

- -
mediated mediated

vasoconstriction vasoconstriction
by by

stimulation stimulation
of of

thp-B thp
-
-
B

receptor receptor
expression expression

via via
ERK-1/2 ERK

-
1
/
2

and and
nuclear nuclear

factor-kappaB factor
-

kappaB
. .
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Lexical resources

Lexical resources are often useful in information extraction, and happily, a number
of them are publicly available. (One could argue that the number and high quality
of lexical resources that has become available in the recent past make molecular
biology the first domain in which knowledge-based NLP has ever been practical.)
The advantages of these resources include the ability to recognize multi-word terms,
which reduces the amount of low-level parsing necessary ([115]).

• Gene Ontology: the Gene Ontology ([24, 25]) is an ontology of concepts relevant
to the systems biology domain. [73, 113, 80] discuss various linguistic aspects of
the ontology and its applicability to NLP tasks.

• UMLS: the Unified Medical Language System is a large metathesaurus of
biomedical vocabularies. It is documented in [64] and Bodenreider (2004). and
[11]. It is available through the National Library of Medicine at [112]. Numerous
researchers have investigated its use in natural language processing, including
[70, 71, 89, 4, 120, 15, 46, 3, 72], to name just a few.

Abbreviation expansion

The ability to deal with abbreviations is often important in systems biology text.
Abbreviations are often defined ad hoc, limiting the usefulness of dictionary-based
systems. Additionally, systems biology text also often contains gene symbols. These
symbols are often defined in the text in a structure similar to that of an abbreviation
definition.

• The BioText project makes Java code for a rule-based system available at [94]. It
is straightforward to implement and use, and the authors and others have applied
it to the BioCreative Task 1A challenge task. The algorithm is described in [95].

• Chang et al. make a statistically-based system available through a web site and
via an XML/RPC server. It can be found at [104]. This system returns a list of
potential abbreviation/definition pairs, each with both a categorical and a proba-
bilistic assessment of the likelihood that it is a valid pair. The system is described
in [17].

Evaluation of information extraction

There has not yet been a MUC-like competition for information extraction in the
molecular biology domain, and so no data set like BioCreative exists yet. Small,
generally ‘lightly annotated’ data sets have been made available by individual re-
searchers. These include:

• Contact Mark Craven at craven@biostat.wisc.edu for access to a large
dataset of assertions about protein-protein interactions, protein-disease associa-
tions, and subcellular localization of proteins.
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• Contact Christian Blaschke at blaschke@cnb.uam.es for access to a dataset
on protein-protein interactions.

Evaluations of information extraction in this domain typically involve precision,
recall, and F-measure, but may differ with respect to the domain over which they
are measured. Some authors calculate them on the basis of mentions in text, while
other authors calculate them on the basis of the underlying concepts. For example, if
a test set contains three assertions to the effect that p27 interacts with CK2, then if
we are calculating recall on the basis of mentions, then there are three potential true
positives, and any that we miss will count as false negatives. On the other hand, if
we are calculating recall on the basis of the underlying concepts, then as long as we
find at least one assertion that p27 interacts with CK2, we have no false negatives.

The issue of input size

Most NLP work in systems biology takes abstracts (with their titles) as the basic
unit of input, rather than full-text articles. One reason for this is purely practical—
until recently, access to full-text articles in easily processable formats has been quite
limited. (The PubMed Central collection is one current attempt to make full-text
articles available.) A small number of researchers has in fact reported success in
working with full-text articles. The GENIES system ([34]) was evaluated on a full-
length article, and the winning team in the 2002 Genomics KDD cup [119] used
full-text articles to great advantage. [109] discusses some of the difficulties that arise
when working with full-length articles rather than abstracts, and [27] evaluates the
use of inputs of various sizes in an information extraction task.

Resources: raw data for information extraction

Resources: almost all research in systems biology NLP begins with a query to the En-
trez interface to the Pubmed document collection, typically through the well-known
Entrez interface. Kevin Rosenberg makes LISP code for accessing PubMed avail-
able through the BioLisp organization (http://www.biolisp.org), and the
National Library of Medicine makes an API available. These queries themselves fall
into the category of information retrieval, the subject of the next section.

A local copy of medline allows for heavier usage and faster access than does the
National Library of Medicine interface or API’s. The BioText project at the Univer-
sity of California at Berkeley and Stanford makes available Java and Perl code for
parsing the data files provided by the National Library of Medicine into a relational
database, as well as the associated schemas. The code and schemas are available at
[7] and are described in [82].

4.4 Information retrieval

Information retrieval consists of finding subsets of documents in a larger set that are
relevant to some query. Originally a problem in library science, it has largely been
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reconceived as a WWW query task. In the systems biology domain, all of the stan-
dard IR problems present themselves. In addition, there is a twist that is peculiar to
this domain. A typical Web query may return thousands of documents, of which only
a small number are actually relevant to the user—the ‘needle in a haystack’ problem.
In contrast, a typical query about a gene to the Pubmed search engine may return
thousands of documents, of which most are relevant to the user. So, the problem in
IR for gene expression array studies is not the Google-task of finding a needle in
a haystack—the problem is that the whole haystack is made of needles. The issue
then becomes: how to organize this mass of documents in such a way as to make
it navigable by the user? Relevant research issues include indexing, query construc-
tion, clustering/categorization, and visualization, which are discussed in the follow-
ing sections.

Indexing

Indexing a document collection is the process of determining the set of terms or
words within each individual document that should be used when matching that doc-
ument to a query. Not all words are equally useful for purposes of indexing. For
example, function words (words that indicate grammatical information only) such as
a, the, and textitall are usually considered not to be useful for indexing. Since all doc-
uments contain them, they are not useful for determining whether or not a particular
document should be returned in response to a particular query. In contrast, content
words (words that express specific semantic concepts), such as phosphorylate, pro-
tein, and BMP-4, are generally good candidates for indexing. Standard mathematical
procedures for determing the usefulness of particular words for indexing particu-
lar document collections exist—see Salton 1989 and Jackson and Moulinier 2002).
To understand why a particular word might be useful for indexing one document
collection but not another, consider the word protein and two separate document col-
lections: a set of documents about nutrition, and a set of documents about Bone Mor-
phogenetic Protein 4. For the set of documents about nutrition, it is easy to imagine
realistic queries for which the presence or absence of the word protein in a document
will be very useful for deciding whether or not to include that document in the set of
documents that are returned. In contrast, for the set of documents that are all about
Bone Morphogenetic Protein 4, the presence or absence of the word protein is not
likely to ever help us decide whether or not to return a particular document.

A number of factors conspire to make indexing for systems biology difficult.
These include:

• Massive synonymy of the items of interest. Many of the concepts of interest
in systems biology are genes and proteins, which have on average about five
synonyms each.

• Multi-word units: Traditional indexing assumes that the unit of interest is a single
word. However, the concepts of interest to systems biologists are frequently ref-
erenced by multi-word units—review of two corpora of molecular biology texts
revealed that about 50% of the mentions of genes and proteins in each corpus
were two or more words in length ([22]).
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• Difficulty of mapping to a standard ontology: Concepts of interest in systems
biology are not limited to genes and proteins, but rather include also concepts
such as those described in the Medical Subject Headings (MeSH) and the Gene
Ontology. Such ontologies have proven to be useful indexing schemes, but as-
signing the correct MeSH headings or GO codes is difficult to do automatically,
due to synonymy and to variability in the possible forms of multi-word ontology
elements. (For example, regulation of cellular proliferation can also appear in
text as cell proliferation regulation.)

All of these are open research issues.

Clustering and categorization

Clustering and categorization address the issue of taking a set of documents that
have been returned in response to a query, and organizing them in a way that helps
the user navigate and make sense of them. There are two approaches to clustering
and categorization: top-down, and bottom-up.

• Top-down clustering organizes a document set according to a pre-existing model
of how a user models the conceptual domain. For example, the AlcoGene system
is a literature retrieval application for researchers in the molecular biology of
alcoholism. It organizes the set of documents returned in response to a query
according to which of the following topics they address:
– nervous system structures
– behaviors
– ion channels
– protein kinases
– quantitative trait loci
These categories were arrived at by interviewing domain experts and monitoring
their interactions with the literature retrieval system. To see a top-down cate-
gorization system in action, try the MedMiner web site, described in [107] and
available at [75].

• Bottom-up clustering of documents is based on similarities between documents
in a set as determined by some metric. Where top-down clustering is based on
a priori assumptions about the world to which we map the members of a doc-
ument set, bottom-up clustering is based entirely on the contents of the doc-
uments and requires no model of the world beyond a theory of how to rep-
resent document contents and a similarity metric by which to assess them.
To see a bottom-up categorization system in action, try Vivisimo’s system at
http://www.vivisimo.com. Limiting the search domain to PubMed, en-
ter the query p53. The search returns 200 documents, which Vivisimo separates
into a number of categories, including the following:

– breast (13 documents)
– activation of caspase (12 documents)
– hepatocellular carcinoma (10 documents)
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Querying with the gene symbol bmp4 returns a very different set of categories,
including:
– neural crest (32 documents)
– tooth (17 documents)
– Tgfbeta (16 documents)
– receptors, fibroblast growth factor (12 documents)
The clusters for the oncogene p53 and the developmental gene bmp4 are quite
different. This flexibility is a strength of the bottom-up approach. On the other
hand, the clusters are not necessarily relevant to the researcher’s interests; the
guarantee of relevance is a strength of the top-down approach. [98] presents an-
other perspective on clustering for information retrieval, assuming a usage sce-
nario involving large lists of genes as for example the output of an expression ar-
ray experiment. Clusters based on papers that are prototypical for particular genes
are used to discover functional relationships between genes in a large dataset.

Visualization

Visualization: A very open area of research is visualization of the contents of large
document collections. The hypothesis is that users might better be able to navigate
large document sets if they have some visual metaphor for the organization of the set,
rather than just the flat (or at best hierarchical) lists returned by most literature search
interfaces. A good starting point for research in this area is [44]. For a demonstra-
tion of an interesting visualization system, see the Pacific Northwest National Lab’s
ThemeRiver, documented in [43] and viewable at [110].

5 Further reading

In this section I differentiate between general natural language processing, i.e., cov-
erage of the topic that is not specific to a particular genre or domain, and NLP for
systems biology. Any investigation of general NLP should start with [57]. For the
specific topics of general information extraction, information retrieval, text catego-
rization, entity identification, and summarization, the reader should begin with [54].
[106] describes molecular-biology-specific information retrieval, entity identifica-
tion, and information extraction systems. For a comprehensive treatment of statis-
tical approaches to general NLP, see [68]. For information retrieval, [92] is a good
general text, making up for the fact that it is somewhat dated by the fact that it is
incredibly readable; for information retrieval in biomedical domains, [45] is recom-
mended. For NLP in the systems biology domain, some excellent review papers are
available, including [9, 116, 99].
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Summary. The perhaps most important signaling network in living cells is constituted by the
interactions of proteins with the genome—the gene regulatory network of the cell. From a
system level point of view, the various interactions and control loops, which form a genetic
network, represent the basis upon which the vast complexity and flexibility of life processes
emerges. Here we review ways by which artificial intelligence approaches can help gaining a
more quantitative understanding of regulatory genetic networks at the systems level.

1 Introduction

All biochemical processes in a living cell are subject to initiation and control by the
genome, encoded in the deoxyribonucleic acid (DNA) molecules. For example, cells
must maintain their organization, must ensure their nutrition and must synthesize and
exchange new biomolecules—which they consist of —by metabolic processes. In re-
sponse to external chemical signals, they eventually grow and undergo cell division,
differentiate into specialized cell types, start secretion of chemical substances or ini-
tiate their own death [1]. In addition, cells must maintain their physical functionality
by a variety of repair mechanisms, such as DNA repair [2] and must produce the
corresponding specialized proteins selectively when they are needed.

But there are also restrictions and malfunctions of this machinery with important
and often undesirable implications. For example, many severe diseases including dif-
ferent kinds of cancer, Alzheimer’s disease and many others show a clear relationship
to genetic disorders [2]. Further, fundamental restrictions in wound healing and re-
pair exist for higher organisms (amputated limbs and removed organs do not replace
themselves in humans) and seem to have their roots in a disability of differentiated
cells to re-use the pluripotent genetic machinery of stem cells. Finally, changes in
the cellular machinery related to impairment in repair mechanisms also seem to be
involved in aging and death [3, 4].

All these processes are directly or indirectly related to and guided by complex, re-
current and mutually interacting signaling chains. Proteins are produced from genes,
interact with each other and with smaller molecules but also act back onto the DNA
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where they regulate the production of other proteins. Hence, understanding life pro-
cesses implies understanding the concerted action of large groups of biomolecules,
rather than understanding their individual actions.

One major component of this intensely and recurrently interacting system is the
network of regulatory relationships between genes, the gene regulatory network.
Triggered by the establishment of genome-wide expression measurements with DNA
microarrays, increasing efforts are being undertaken to understand how genetic net-
works operate at a system-wide level. Understanding genetic networks will open
the gate for new in silico technologies: Technologies to help quantifying how the
global collaboration of biomolecules can emerge from underlying functional princi-
ples; how these global modes of operation are controlled in a flexible way by often
locally applied biosignals; how diseases can evolve as a consequence of perturba-
tions of the equilibrium in this network; and finally, how drugs need to act such as
to restore this equilibrium. We will have methods to play what-if scenarios in silico
to quantify disease mechanisms, the effects of drug treatment and to support new
approaches to tissue engineering.

Methods of artificial intelligence (AI) including statistical learning theory, ma-
chine learning, artificial neural networks, neurodynamical modeling and related tech-
niques have been proven very useful tools for better understanding gene regulatory
networks. Here we provide a summary over recent AI approaches towards systems
level computational modeling of genetic networks. Although many methods pre-
sented are applicable to various kinds of molecular interaction networks, we will
put an emphasis on the analysis of gene regulatory networks based on DNA chip
measurements. Also, we will focus on methods which aim at extracting principles
of cellular function from a large scale view on genetic networks. In the next section,
we briefly summarize some characteristics of genetic networks and genome wide ex-
pression measurements. The following sections will summarize two different classes
of genetic network models: hypothesis-driven dynamical approaches and data-driven
mining methods. The chapter will be concluded by a brief summary.

2 Genetic networks and gene expression profiling

The human genome is believed to consist of about 30000 genes, which encode the
sequences of about 1 million different proteins [1, 5]. When a gene is expressed, its
nucleotide sequence is first transcribed into gene-specific messenger-RNA (mRNA).
The mRNA is subsequently translated by ribosomes to an amino-acid chain which
folds into its functional form, the protein (Fig. 1a). There are a number of modifica-
tion and processing steps during transcription and translation, including RNA splic-
ing and post-translational modifications of proteins by enzymes. In addition many
proteins form various sets of aggregates, and are only operative in these complexes.
Due to splicing, post-translational modifications and aggregation, each gene may
produce a whole family of operative protein structures.
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Fig. 1. From cellular regulatory mechanisms to abstract genetic networks. (a) Gene expression
and gene regulation. Transcription and translation form proteins from genes, leaving mRNA
as intermediate product. Proteins and siRNA can regulate gene expression by various mecha-
nisms. RR= regulatory region; PTM = post-translational modification (of proteins) For details
see text. (b) More schematic view of the interaction pathways between genes. (c) Abstract
genetic network. Shaded boxes mark the part of the network measured by DNA microarray
experiments.

2.1 Gene regulation and genetic networks

Each cell of an organism contains only a subset of all possible proteins at any time.
This subset forms its proteome. Whereas the genome is (almost) the same in each
cell, the proteome differs drastically for different cell types. In addition, the proteome
changes dynamically depending on the state of the cell (e.g., the phase of the cell-
division cycle) and on the external signals imposed on it. This implies that cells have
control over the use of their genome. In fact, they have the possibility to change
the proteome in a very flexible way. One major mechanism for this control is the
regulation of gene expression.

Gene expression is regulated in a number of different ways. Each gene is pro-
vided with a regulatory region upstream its expressed part (Fig. 1a) During cell dif-
ferentiation, specific sets of genes are permanently in-activated by cytosine methy-
lation within the regulatory region [6]. Any modification in the DNA methylation
pattern causes a changed gene expression pattern and a change in the proteome. Ac-
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tually, disrupted DNA methylation patterns have been frequently observed in tumor
cells [7] and their analysis has proven useful for cancer classification [8].

But also after differentiation, gene expression is dynamically regulated. In fact,
most of the proteins interact with each other or interact with the genome and thereby
participate in molecular signaling or reaction networks of the cell. Fig. 1a summa-
rizes some important mechanisms, by which proteins can dynamically regulate gene
expression. One prominent regulatory mechanism is the binding of a protein to the
regulatory region of a gene. Proteins of this kind are called transcription factors. By
binding to the regulatory region, transcription factors affect the initiation of tran-
scription of that gene. Usually up to a few tens of transcription factors can act on the
same regulatory regions of a gene [9]. This mechanism constitutes a gene-protein
interaction. Transcription factors can enable, disable, enhance or repress gene ex-
pression, and they can do so in a highly nonlinear collective way [10]. In turn, any
given transcription factor could act on a few thousands of different genes [5].

Another regulation mechanism is formed by proteins which are involved in RNA
splicing. They can control which gene product or if at all a gene product is translated.
Moreover, mRNA can be in-activated in a selective and efficient way by short double-
stranded RNA fragments, a mechanism called RNA interference. Small interfering
RNA (siRNA) has proven a powerful tool for investigating the effect of selective gene
silencing on the organism [11]. Finally, proteins modify other proteins or attach to
them. These latter mechanisms represent protein-protein interactions.

In summary, dynamic gene regulation adds a feedback step to the feed-forward
process of gene expression. Gene expression controls protein concentrations, and
proteins in turn—either directly or indirectly—regulate gene expression levels. Hence,
the genome and proteome form a recurrent (and nonlinear) regulatory network, the
gene regulatory network of the cell. The operation of the genetic network is con-
trolled and guided by extracellular signals, which form the interface between a cell
and its environment. External signals can regulate gene expression either by directly
acting as transcription factors, or by modifying transcription factors [5].

Fig. 1b illustrates at a more abstract level the pathways, by which a gene A can
regulate the expression level of another gene B at three different levels. Some mech-
anisms of regulation, including DNA methylation, transcriptional regulation, mod-
ification of transcription factors by protein-protein interactions and RNA splicing,
are reflected in the cellular concentrations of mRNA (solid arrows). They can be de-
tected in principle by gene expression measurements. Other regulatory mechanisms
including RNA interference and certain types of protein-protein interaction, cannot
be detected from the mRNA concentration (dashed arrows). Fig. 1c, finally sketches
a fully abstracted graphical representation of a genetic regulatory network.

2.2 Gene expression measurements by DNA microarrays

Computational models of genetic networks depend on the availability of data that
reflect the state of the system. These data would ideally involve the expression rates
of all genes plus the state of the proteome, i.e., the types, concentrations and states of
all proteins in the cell. To date, delineating the proteome as a whole is still difficult,
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because we lack massively parallel techniques for protein characterization. Present
techniques are centered around two-dimensional gel electrophoresis followed by
mass spectrometry to determine the protein sequences [5, 12], although protein chip
technologies for large-scale proteome measurements are being put forward [13, 14].

During the last decade, techniques for the large scale measurement of gene ex-
pression levels, which are based on DNA microarrays and related techniques (gen-
erally referred to as DNA chips), have been developed [15, 16], for reviews see
[17, 18, 19, 20]. Microarray measurements make use of the known gene sequences
known from the Human Genome Project [21, 22, 23]. They are based on selective
hybridization of cellular mRNA with complementary nucleotide sequences. A spot
on a carrier on which such molecules with a given sequence are fixed, can therefore
act as a selective probe for one type of mRNA. A DNA microarray consists of many
thousands of different mRNA probes, and can therefore measure a snapshot of thou-
sands of cellular mRNA concentrations at a time. The shaded boxes in Fig. 1 mark
the level at which DNA microarray measurements operate. They make use of the
fact that the presence of mRNA for a certain gene reflects the level of transcription
of this gene. Therefore, DNA microarray measurements are also called gene expres-
sion profiles. It needs to be kept in mind, however, that not all regulatory processes
are reflected in the mRNA concentration (counter examples include siRNA silencing
and many protein-protein interactions, dashed arrows in Fig. 1b)

There are many sources of noise in microarray experiments, which include bio-
logical noise (variation of cellular states in a homogeneous strain, variations caused
by RNA extraction procedures), finite sample effects such as fluctuations in the num-
ber of hybridizing molecules, optical readout noise, and others. Consequently, gene
expression profiles are adequately described by probabilistic methods.

3 Dynamical models of genetic networks

Genetic regulatory networks form complex, recurrent and nonlinear systems, which
evolve dynamically according to their mutual interactions and in response to external
signals. Because also the brains of higher organisms represent large-scale nonlinear
recurrent signal processing systems, it turns out that a large body of theoretical inves-
tigation of such systems has been accumulated by theoretical brain research. In this
related field, biological networks of nerve cells have been vastly abstracted in the mid
eighties to various kinds of artificial neural networks [24, 25]. During the following
decade, many analogies could be found between the biologically inspired theory of
neural networks and statistical learning theory [26]. This link opened the gate for
the unification of machine learning techniques and neural networks and at the same
time drew the attention of theoreticians towards the applicability of machine learning
methods for the large-scale analysis of biological systems. Hence in brain research,
an apparent step backwards, namely to more abstract artificial neural networks, has
brought qualitatively new insights into the systems biology of the brain, based on
which —as a second step—more biological knowledge and diversity is nowadays
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taken into account in the younger discipline of computational neuroscience [27, 28]
to provide more detailed brain models.

At present, many approaches towards genome research seem to be at the edge of
the first abstraction step. Although first attempts to describe genetic networks at an
abstract level date back more than thirty years [29, 30], the data basis to constrain
the models has been too sparse at that time. However, as described in the previous
section, increasing knowledge about gene sequences and a growing body of DNA
microarray technologies and data sets now open the gate for a new generation of
computational large-scale analysis [31] and modeling [32] methods.

3.1 Biochemically inspired models

Biochemically inspired models of genetic networks are based on the reaction kinet-
ics between the different components of the genetic regulatory network within the
different compartments of a cell. These models can be associated with the level of
detail of Fig. 1a. Reaction kinetics provides a framework, by which the chemical
reactions between molecular compounds of the network can be described [33, 34].
For example, if a transcription factor T , expressed from a gene j, is brought together
with the DNA sequence it selectively binds to, say in the regulatory region of of gene
i, it might react with a rate k1 to form a compound TD with the DNA, but might also
dissociate with a rate k2 from it. If this process follows a first order reaction kinetics,
its time evolution is given by

d

dt
[TD]i(t) = −k2[TD]i(t) + k1[T ]i(t); (1)

d

dt
[T ]i(t) = −k3[T ]i(t) + k2[TD]i(t) + d[TextTT ]i(t). (2)

In these equations, [A]i denotes the probability of finding molecule A at the site of
the considered gene i. The term d[TextTT ]i denotes the net extra supply of transcription
factor molecules T at gene i. It can be thought to originate from the expression of
T at gene j, followed by its diffusion towards the site of gene i. This implements a
causal relationship from gene j to gene i. Molecule T can also diffuse away from i or
can be degraded by chemical processes, with a rate k3. Many gene-gene-interactions
and causal relationships form the gene regulatory network described by the model. If
diffusion processes across the intracellular space are explicitly taken into account, the
resulting models are referred to as reaction-diffusion models. Collective phenomena
in reaction-diffusion systems have been first described more than 50 years ago [35].

Biochemically inspired models have the advantage that they can be most directly
related to biological processes, but they also suffer from a number of difficulties. For
example, most of the biochemically relevant reactions under participation of pro-
teins do not follow linear reaction kinetics. Many proteins undergo conformational
changes after reactions, which change their chemical behavior. In particular, in many
regulatory DNA regions transcription factor binding can show cooperative or com-
petitive effects, which are nonlinear and mostly unknown. Second, the full network
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of metabolic, enzymatic and regulatory reactions is very complex and hard to disen-
tangle in a single step. To do so, the kinetic equations of all the different interactions
(e.g., those in Fig. 1a) would have to be written down, but the type of reactions and
their parameters are often unknown. At present, the data basis seems therefore not
sufficient to globally understand regulatory networks at this level of detail. How-
ever, there exist very well-examined regulatory sub-networks [36, 10, 37], which are
sufficiently well-characterized to be modeled at the reaction kinetics level. Another
promising line could be to infer the topology and reaction parameters of large-scale
molecular networks by genetic programming [38].

Other approaches use approximations to reaction-kinetic formulations to arrive
at systems of coupled differential equations for describing the time course of gene-
expression levels [39, 34, 40]. In a differential equation approach, the temporal evolu-
tion of the expression level xi of gene i is guided by the concerted influence of other
gene products. The latter is described by a function F (x), where x = (x1, ..., xN ) is
the vector of gene expression levels:

τ
dxi

dt
= −xi + FiFF (x) (3)

Differential equation models represent approaches, which adopt a more abstract view
on genetic regulatory networks. For example, in eq. (3) no clear specification is pro-
vided (nor needed) anymore about whether the quantities xi denote mRNA concen-
trations or protein concentrations. These models act at the level of description shown
in Fig. 1c rather than Fig. 1a. The next paragraph provides a brief overview over
different genetic network models of the type eq. (3).

3.2 Neural network models

The general form of eq. (3) represents a very rich family of networks. When model-
ing genetic networks, one major task is to specify the interaction functions FiFF such
as to be simple enough to be constrained by the existing data and at the same time
accounting for biological evidence. One way to specify the interaction function is
to assume that the effects of transcription factors j superimpose linearly when they
bind to the regulatory region of a gene i, and that the expression of i is a nonlinear
function fiff of the total regulatory input:

τ
dxi

dt
= −xi + fiff

⎛
⎝
⎛⎛

Iext,iII +
∑

j

wijxj

⎞
⎠
⎞⎞

. (4)

The weights wij describe the relative impact of each transcription factor and Iext,iII
represents external cellular signals. Equation (4) is identical to the formulation of a
continuous artificial neural network [24, 25].

As mentioned previously, many biochemical reactions do not act linearly. This
observation can be accounted for by including higher-order terms to the formulation
of the total input [26]:
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τ
dxi

dt
= −xi + fiff

⎛
⎝
⎛⎛

Iext,iII +
∑

j

wijxj +
∑
jk

wijkxjxk + ...

⎞
⎠
⎞⎞

. (5)

In this formulation, the functions FiFF are specified as univariate nonlinear transforms
of the Taylor-series expansion of their input arguments. This model accounts for
multiplicative nonlinearities in the molecular interactions, which are quite common
in reaction kinetics. A special case of the multiplicative network in eq. (5) has been
shown to arise as an approximation from a reaction-kinetic formulation of transcrip-
tional regulation [34]: When products of the activator genes j and inhibitor genes
k bind to the regulatory region of gene i, the expression of gene i follows approxi-
mately

dxi

dt
= −axi + b

∏
j

x
hj

j − c
∏
jk

x
hj

j xhk

k , (6)

where hj and hk are integer stoichiometric coefficients. They enumerate, how many
protein molecules of type j or k (i.e., expressed from gene j or k, respectively) are
required to complete a chemical binding reaction.

The complexity of the class of interaction functions can be also reduced by giv-
ing up their continuous nature. Gene expression states are then characterized by bi-
nary variables with the states ‘expressed’ or ‘not expressed’. In this case, the func-
tions FiFF are binary-valued, with binary valued arguments, they are boolean functions.
Boolean networks have been among the earliest approaches towards genetic network
modeling [29].

The model formulations above have many free parameters. In fact, even the sim-
plest neural network formulation eq. (4) is controlled by all the weights wij , which
are of the order of the square of the number of genes, plus further free parameters de-
scribing the nonlinear functions. Hence the number of weights can well exceed one
million, whereas the number of microarray measurements usually ranges between
tens up to a few hundreds of measurements. Hence, at present these parameters can-
not be estimated from the data for large network studies. In addition, all these model
assume the structure of the genetic network as known. However, it is one of the ma-
jor challenges of the post-genomic era to infer, which genes might act in a regulatory
way on which other genes, in other words to infer the structure of the network from
the data.

4 Data driven modeling of genetic networks

Therefore, another line of genetic network modeling is characterized by a yet higher
level of abstraction, and treats the task of modeling microarray data as a data mining
problem [41, 42, 43, 44, 45, 46, 47]. The goal of data mining is to explore a data set
and to discover regularities and structures from it. As opposed to hypothesis-driven
approaches, which search for a particular and pre-defined pattern in the data, data
mining approaches specify autonomously, which patterns are present and important
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in the data —they are exploratory and data driven. As gene expression data sets are
noisy by their nature, statistical methods play an important role for finding trends
and patterns in the experimental results. In the case of genetic networks, one kind of
patterns to be inferred can be for example clusters of genes, which are co-expressed
when the cell is in a given state. Another type of pattern might be the structure of
regulatory relationships between genes.

Fig. 2. Matrix of 327 gene expression profiles from ALL patients (columns) with 271 gene
probes each (rows), after 2D-hierarchical clustering. White: Over-expressed state, gray: under-
expressed state; black: normal expressed state with respect to a reference tissue. The genome
wide expression patterns is a reliable disease marker for different ALL subtypes (names indi-
cated below the gene expression matrix).

4.1 Clustering gene expression patterns

Clustering algorithms aim at discovering sets of genes or gene expression patterns
which are more similar to each other than to others [48, 49, 50]. The set of gene
expression measurements is considered as a data matrix X, where the element xij

represents the expression level of gene i in the j-th experiment [48]. Hence, each
column of X contains the expression levels for all genes of one experiment and each
row contains the expression levels of one gene across experiments. Hierarchical clus-
tering of the rows of the matrix has been suggested in order to find clusters of genes
that are co-expressed over the different experiments. One kind of hierarchical clus-
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tering groups together pairs of clusters, starting out from the individual data vectors,
and proceeding along decreasing similarity [51, 50, 52].

Here we exemplify a typical application of clustering: the prediction of different
subtypes of childhood acute lymphoblastic leukemia (ALL) from DNA microarray
profiles measured and published by Yeoh and coworkers [52, 53]. ALL is a hetero-
geneous disease. Leukemic ALL-cells are related to bone marrow cells, which are
destined to either become T-lymphocytes (T-lineage) or B-lymphocytes (B-lineage).
The disease appears in various subtypes, which differ markedly in their response
to chemotherapy. Therefore it is important to know which subtype a patient suffers
from in order to design the most efficient treatment. Traditionally, the identification
of the ALL subtype was a difficult and expensive process which required a combina-
tion of laboratory studies including immunophenotyping, cytogenesis and molecular
diagnostics.

Recently, it has been found that the genome-wide expression pattern is a very ef-
ficient disease marker for the different ALL subtypes [52]. Fig. 2 shows a large data
set of 327 microarray measurements taken from different ALL patients. 271 genes
were selected as the ones which vary most with individual subtypes. The figure shows
the order of the patients after hierarchical clustering of the column vectors. It can be
seen that there are sharp transitions between markedly different global expression
patterns. Each of these global patterns can be assigned to one disease subtype (indi-
cated below the data set) with very high reliability. Hence, genome wide expression
profiles are very efficient markers for individual disease subtypes.

Clustering can also be carried out along all two dimensions. Comparing different
rows in Fig. 2 shows, that there are also groups of genes which are co-expressed, so-
called gene clusters. These clusters of genes might carry out some concerted global
action, which contributes crucially to the pathogenesis of an ALL subtype. In each
subtype another gene cluster or set of clusters is recruited, which means that the
disease mechanisms for the various ALL subtypes are probably radically different
from each other.

4.2 Graphical modeling of genetic network structures

Clustering studies have revealed several large groups of genes, which collectively
change their expression levels when a cell or tissue changes from one mode of life to
another. These global patterns are thought to reflect the execution of specific genetic
programs. One might ask the question which are the mechanisms that either stabilize
a genetic program or or evoke a change to a new program. In other words, are there
dominant genes or small groups of genes which are the underlying cause of a specific
global gene-expression pattern? The ability to form the link between local causes
and global collective behavior might provide key technologies for playing what-if
scenarios in silico. These technologies will help to better understand principles of
cellular function, disease mechanisms, and drug treatment on a more quantitative
basis.

Due to these considerations, recent data-driven approaches have increasingly
concentrated on inferring the structure of the underlying genetic regulatory networks
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from the statistics of microarray data, by use of graphical models [54, 55, 56, 57,
58, 59]. These approaches assume, that underlying biological interactions, such as
for example transcription factor binding, will cause characteristic co-expression pat-
terns for different genes. More generally speaking, existing biological relationships
between genes or their mRNA will be more or less directly reflected in statistical re-
lationships in the gene expression profiles. Hence, modeling the multivariate statis-
tics of the gene expression profiles will help characterizing certain features of the
underlying biological relationships causing them.

One frequently used type of graphical model are Bayesian networks. A Bayesian
network B is a probabilistic model which describes the multivariate probability dis-
tribution for a set of variables x = {x1, ..., xN}, where each variable xi only depends
on its parents Pai:

P (x1, ..., xN ) =
N∏

i=1

P (xi|Pai) (7)

The associations among the variables, namely the conditional dependencies and in-
dependencies, are described by means of a directed acyclic graph (DAG) G. In the
context of genetic pathway inference, each node of a Bayesian network is assigned
to a gene, and can assume the different expression levels of this gene throughout the
set of measurements. Each edge between genes describes a statistical dependency
between them. In general, there is no single and unique graph structure for a given
probability distribution. Instead, a whole set of graph structures, called an equiva-
lence class, is uniquely defined by the probability distribution. If the direction of an
edge between two genes is uniquely defined throughout the equivalence class, it can
be interpreted as a causal relationship: It provides an estimate which gene controls
another gene.

Learning Bayesian networks [60, 61, 62] use Bayesian statistics to find the net-
work structure and the corresponding model parameters which describe best the
probability distribution from which the data set X is drawn. In the class of score-
based learning algorithms, the goodness of fit of a network G with respect to the
data set X is assessed by assigning a score S(G) by use of a statistically motivated
scoring function S, as for example the Bayesian score [63]. It is proportional to the
posterior probability P (G|X) of the graph structure given the gene expression data
matrix X:

S(G|X) =
P (X|G)P (G)

P (X)
. (8)

Unfortunately the task of structure learning is NP-hard. Moreover, usual data sets
are very high-dimensional (hundreds to thousands of dimensions) with only few data
points (tens to hundreds of data points). Hence, at first sight any estimate of graph
structures from such data seems to suffer from an extreme lack of robustness.

A recent study has therefore focused on the problem to specify, which properties
of a learned graph structure are robustly detected, when a structure with many nodes
and edges must be learned with less and less data points [57]. For this, data sets with
different sample sizes were drawn from the ALARM network [64]. The ALARM
network is a medical diagnostic system for patient monitoring. It has 37 nodes which
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Fig. 3. Number of false positive (black
bar) and false negative (white bars)
edges of learned structures with respect
to the true structure of the Alarm net-
work, as a function of the size of the
data sample. Each plot shows the re-
sult of ten simulation runs. From top
left to bottom right, the number of
data points was 30 000, 20 000, 10 000,
5 000, 1 000, 500, 100, 50, 10.

stand for medical state variables (8 diagnoses, 16 findings and 13 intermediate vari-
ables). Variables assume between 2 and 4 values. The nodes are connected by 46
directed edges, which can be interpreted in a causal manner.

Fig. 3 summarizes the number of false positive (black bars) and false negative
edges (white bars) in the learned structure with respect to the true structure. Each plot
summarizes four runs, and the different plots correspond to different sample sizes.
The errors increase as soon as the sample size shrinks below 10000. However, it can
also be observed that almost exclusively the number of false negative edges increases
drastically as the sample size goes down, whereas the false positive errors rise only
moderately. This behavior has an important implication for pathway inference by
Bayesian networks: A Bayesian network applied to a small gene expression data set
will most likely not detect all gene interactions which are actually generated by the
underlying gene regulatory network. However the ones that are detected are relatively
reliable even when the data set is small.

In light of these results it seems not unrealistic to assume, that the edges found
by a learning Bayesian network represent real effects of the underlying genetic reg-
ulatory network rather than statistical fluctuations. Accordingly, a number of studies
have suggested a structural analysis of learned graph structures [54, 57, 58]. Fig. 4a
shows a part of an estimated regulatory network trained using the same ALL data set
as used in Fig. 2. The network has been assembled from Q = 20 individual Bayesian
networks using a bootstrap procedure [65, 58], in order to estimate the variability of
the learning results and to keep only significant edges. For the bootstrap procedure,
first a set of Q replica data sets was generated by sampling with replacement from
the original data set. Each bootstrap replica contains as many points as the initial data
set, however some points might be present in multiple copies or might be missing.
Then, Q Bayesian networks are learned. After learning, the confidence in an arbi-
trary network feature can be assessed empirically by calculating its mean over the
bootstrap replicas. For example, the confidence of an edge between two genes being
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(a) (b)

Fig. 4. (a) Section of the ALL network. Most genes are linked to only one or two other genes.
A few genes, however, (e.g., Affymetrix-ID: 33355 at) are linked to many others. (b) The
degree distribution of the ALL network follows a power law.

present is just the relative frequency of bootstrap networks in which this edge was
present. Fig. 4a shows a part of the feature graph of the ALL network, in which only
edges with confidence level greater than 0.5 have been included.

It can be seen that many genes maintain links to only one or two other genes,
however a few of them are linked to many other genes. (e.g., gene 33355 at,
Affymetrix-ID, in Fig. 4a ). This observation has led to the suggestion that the
densely linked genes, so-called ‘dominant genes’, might be of particular importance
for global network functions [54]. In fact, all the dominant genes found in the ALL
network are annotated either as oncogenes or as genes involved in critical cellular
functions [58]. For example, the highly linked gene 33355 at mentioned above en-
codes the proto-oncogene PBX1, which is known to cause the ‘E2A-PBX1’ subtype
of ALL after mutation.

However, there is a second observation linked with the network structure. One
prominent way to quantify the link structure of a net is to calculate its degree dis-
tribution. The degree of a gene is defined as the number of links, i.e., graph edges,
from and to it. Fig. 4b displays the degree distribution, i.e., the frequency of genes
with link degree k. The degree distribution of the ALL network follows a power
law: P (k) = p0k

−γ with an exponent γ = 3.2. Networks with a power-law degree
distribution are called scale-free networks [66]. Scale-free networks share certain
features regarding the performance: The network operation is very robust against the
damage of a random node. In contrast, a targeted attack to certain few nodes can
cause a global breakdown of the whole network. In light of this observation and the
scale-free property of the ALL network, it has been recently formulated a new cri-
terion for identifying globally important genes: Genes which represent spots of high
vulnerability of the network, are ranked as having high importance for the global
network operation. Besides genes with high degree, also genes with a high traffic
load can be identified as spots of high vulnerability. And in fact, all spots of high
vulnerability of the ALL network are either known as oncogenes or are involved in
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(a)

(b)

Fig. 5. (a) Principle of generative inverse modeling. For details see text. (b) Inverse modeling
for ALL data after clustering. Top: Artificially generated expression profiles without interven-
tion. Arrow marks the cluster of E2A-PBX1 characteristic profiles. These profiles are closest
to the measured profiles from E2A-PBX1 patients. Bottom left: generated profiles, when gene
PBX1 is kept active. Bottom right: generated profiles, when ELOV5 is activated (arrow: row
of constantly over-expressed ELOV5). PBX1 stabilizes the pathological pattern more than
ELOV5. Gray scale as in Fig. 2.

DNA repair, induced cell death (apoptosis), cell-cycle regulation or in other critical
processes. [58]. Genes are often co-expressed and become active as a whole group,
a gene cluster (Fig. 2). Further, many proteins consist of several subunits, encoded
by different genes, and become only functional when the corresponding genes are all
expressed at the same time. Moreover, proteins can form larger assemblies and carry
out their function only in this formation. Finally, proteins can also be part of reaction
cascades which subserve a common task. In summary, gene products are often natu-
rally linked to functional modules by the one or the other of these mechanisms [67].
Hence, expressing genes often means expressing groups of genes whose products are
necessary to build an operative functional module. In light of the ubiquity of modu-
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lar substructures in regulatory networks, another body of work has designed machine
learning methods which are tailored to describe and learn modular structures. Typical
examples include module networks [68] and decomposable models [69, 59].

4.3 Generative inverse modeling of genetic networks

Structural considerations regarding graphical models of genetic regulatory networks
can be complemented by the view of Bayesian networks as generative models. In-
stead of analyzing explicitly the graph structure, the Bayesian network is used to gen-
erate artificial gene expression patterns. If in the previous section the graph structure
was related to the structure of the underlying genetic network, generative modeling
relates the function of the underlying genetic network to features of the gene expres-
sion profiles.

Recently, a method called generative inverse modeling has been formulated,
which allows to generate gene expression profiles from the Bayesian network, while
certain interventions are imposed onto the model network [70]. Fig. 5a sketches the
procedure of generative inverse modeling. First, a set of Bayesian networks is learned
from a measured gene expression data set. After learning, the statistical relationships
between gene expression levels are imprinted in the structure and parameters of the
Bayesian networks. Learning several networks following a bootstrap procedure helps
assessing the reliability of various network features.

After learning, different sets of artificial gene expression patterns are generated,
each under the action of a different intervention E. For example, an intervention
can consist of keeping fixed a gene or a set of genes at the over-expressed or under-
expressed levels. Keeping fixed such individual gene expression levels could model
the effect of a drug, a genetic mutation or other mechanisms related to disease gen-
eration and prevention. Fig. 6 illustrates the procedure of data sampling. By drawing
gene expression profiles under interventions is then possible which effect on the sys-
tem wide behavior of the network in terms of gene expression is evoked by this local
interventions. Artificial gene expression patterns can then be compared to different
measured ones, say, from healthy subjects and from patients suffering from differ-
ent ALL subtypes (Fig. 5a , dashed box). If an artificial expression pattern under
an intervention E becomes very similar to a certain pathological expression pattern,
this intervention is likely to be critically involved in the pathogenesis of this disease
subtype.

Fig. 5b shows an example of generative inverse modeling based on the ALL data
set. On top is shown a set of 327 artificial gene expression profiles drawn from the
original learned bootstrap-weighted Bayesian network. Similar to the measured data
set (Fig. 2) , the profiles cluster into different patterns characteristic for ALL sub-
types. When gene PBX1 is kept over-expressed throughout data sampling, the global
pattern characteristic for the E2A-PBX1 subtype of ALL is strongly stabilized. This
can be seen by comparing the most frequent patterns in the bottom-left data matrix
with the global shape of the E2A-PBX1-specific pattern in the measured data. In con-
trast, when another gene within the same gene cluster as PBX1 is kept over-expressed
(gene ELOV5, intervention E2), the global pattern is only weakly stabilized. It can be
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Principle of the generation of artificial gene expression patterns for an example network
of only five genes. (a) As an intervention, gene X4 is clamped to X4 = +1. (b)-(e) Patterns are
drawn as random samples from the multivariate conditional probability distribution resulting
from the intervention, by repeated Bayesian inference. For this, genes are first sorted such that
parents precede children. Then, the network is filled from above: (b) Instantiate gene X1 = x1

according P (X1|X4 = 1) (e.g., X1 = −1). P (X1|X4 = 1) is calculated by applying Bayes’
law and subsequently summing over all other free variables. (c)-(e) Repeat the component-
wise sampling following the node order. (f) Proceed with steps (b)-(e) until the desired data
set is drawn.
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concluded, that PBX1 is more critical for the pathogenesis of this ALL subtype than
ELOV5. In fact, PBX1 is known as oncogene of the E2A-PBX1 disease subtype:
The origin of E2A-PBX1 ALL has been correctly identified by generative inverse
modeling.

In summary, one particular strength of Bayesian networks and other data driven
modeling techniques is to make efficient use of the restricted data basis for obtain-
ing information about genetic networks at the systems level. Operating at this ab-
stract level, these approaches could well be used also to analyze protein and other
molecular interaction networks, provided that there exist system-wide measurement
techniques. However this generality comes at the expense of detail in the descrip-
tion of biochemical processes. By their philosophy, graphical modeling approaches
focus only on the statistical nature of the data and ignore real biochemical processes
as well as dynamical features of molecular interactions in the cell, which underly
and generate gene expression patterns. We are looking forward to exciting new and
probably hybrid methods to be developed, which span the whole variety of cellular
phenomena to be characterized.

5 Conclusions

The genes of a genome are expressed to form the cell’s proteome, which in turn
acts back onto the genome in a multitude of regulatory processes. Characterizing
the global principles of operation of these genetic regulatory networks represents
one of the major challenges of the post-genomic era. Understanding genetic net-
works will help opening the gate towards a quantitative understanding of morpho-
genesis and pathogenesis and towards the development of new tissue engineering
techniques and drug discovery methods, just to mention a few. With high-throughput
gene-expression profiling techniques such as DNA microarrays, a data basis has be-
come available for data-driven modeling of genetic networks. We have provided an
overview over different approaches from artificial intelligence towards genetic net-
work modeling. These techniques involved artificial neural networks, machine learn-
ing and data mining techniques.

To date, clustering algorithms and graphical models seem to be highly impor-
tant approaches for modeling the currently available data basis of DNA microar-
ray measurements. Learning and analyzing statistical structures of graphical models
from sets of microarray data - guided and constrained by various sources of prior
knowledge - can form the basis of highly useful and powerful support-systems for
life sciences. These systems will allow to play what-if scenarios of various cellular
interventions in silico and will put forward entirely new approaches towards under-
standing normal life processes and disease mechanisms.
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Summary. Cognitive behavior requires complex context-dependent processing of informa-
tion that partially emerges from the links between attentional perceptual processes and work-
ing memory. We describe a computational neuroscience theoretical framework which shows
how an attentional bias can influence perceptual processing, the mapping of sensory inputs
to motor output and formation of selective working memory. This theoretical framework in-
corporates spiking and synaptic dynamics which enable single neuron responses, functional
magnetic resonance imaging (fMRI) activations, psychophysical results, the effects of phar-
macological agents, and the effects of damage to parts of the system, to be explicitly simulated
and predicted. This computational neuroscience framework provides an approach for inte-
grating different levels of investigation of brain function, and for understanding the relations
between them.

1 Introduction

Nowadays, the scientific community agrees that the processing of information by
the brain underlies sensory, motor and cognitive functions. Neurons are the cells re-
sponsible for this processing of information, that is for the coding, transmission, and
integration of signals originating inside or outside the nervous system. At least in
the mammalian brain, it is believed that brain functions are achieved by the conjoint
information processing of large groups of neurons. The transmission of informa-
tion within and between neurons involves changes in the so-called resting membrane
potential, the electrical potential of the neurons at rest, when compared to the extra-
cellular space. The inputs one neuron receives at the synapses from other neurons
cause transient local changes in its resting membrane potential, called postsynaptic
potentials. These changes in potential are carried out by the flux of ions between
the intra- and extra-cellular space. The flux of ions is made possible through ion
channels present in the membrane. The ion channels open or close depending on the
membrane potential and on substances released by the neurons, named neurotrans-
mitters, which bind to receptors on the cell’s membrane. The postsynaptic potentials
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can either hyperpolarize or depolarize the cell. When the conjoint effect of the post-
synaptic potentials at a given time reaches a certain threshold value, above the resting
membrane potential, the neuron will produce an impulse of signal. The impulses of
signal, called action potentials, are characterized by a certain amplitude and dura-
tion and are the units of information transmission at the inter-neuronal level. The
information is thought to be coded in terms of the frequency of the action potentials,
called spiking or firing rate, as well as possibly in the timing of action potentials.

One possibility to investigate the biological basis of the processing of informa-
tion in the brain is to study the response of neurons to stimulation. This can be done
in experimental animals using implanted electrodes to record the rates and timing of
action potentials. However, this approach is generally not possible to apply in hu-
mans. To study brain function in humans, techniques allowing the indirect study of
the activity of neurons have been developed. An example of one such technique is
fMRI, measuring regional changes in metabolism and blood flow, indirectly asso-
ciated with regional changes in brain activity. This approach of measuring regional
differences in brain activity is possible, because at a macroscopic level the brain,
and the cortex in particular, is organized into spatially segregated regions known to
have functionally specialized roles. For example, the occipital cortex is specialized
for vision, with different macroscopic subregions specialized in particular types of
visual information processing. Further within some of these regions there is a to-
pographic organization, that is adjacent neurons are responsive to adjacent portions
of the image seen. Topographic organizations are found in other sensory and motor
systems. A technique such as fMRI allows the mapping of brain regions associated
with a particular task or task component. For a detailed introductory description of
neuronal physiology, cortical organization and measuring techniques see any neuro-
science textbook, for example [20].

Understanding the fundamental principles underlying higher brain functions re-
quires the integration of different levels of experimental investigation in cognitive
neuroscience (from the operation of single neurons and neuroanatomy, neurophys-
iology, neuroimaging and neuropsychology to behavior) via a unifying theoretical
framework that captures the neural dynamics inherent in the computation of cog-
nitive processes. A theoretical framework that fulfills these requirements can be ob-
tained by developing explicit mathematical neurodynamical models of brain function
based at the level of neuronal spiking and synaptic activity [29, 8].

In this chapter, we review, using a computational neuroscience perspective, neu-
ronal and cortical mechanisms for the interplay between visual attention and working
memory, as fundamental basic processes involved in cognition. In highly developed
animals, like primates, expansion of the sensory and motor capabilities increases the
problem of stimulus selection, i.e., the question as to which information is relevant
to react to. Paradoxically, in spite of the massively parallel character of computations
performed by the brain, it seems that biological systems employ a selection process-
ing strategy for managing the enormous amount of information resulting from their
interaction with the environment. This selection of relevant information is referred
to as visual attention. The concept of attention implies that we can concentrate on
certain portions of the sensory input, motor programs, memory contents, or inter-
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nal representations to be processed preferentially, shifting the processing focus from
one location to another or from one object to another in a serial fashion. Focusing
attention is dependent on the context of the task one aims at solving at present. At
any given moment the context information can change and must then be updated
and maintained in the mind. This process of actively storing and manipulating in-
formation in mind for a short period of time has been defined as working memory
[2].

In this chapter, neurodynamics, described at the level of spiking and synaptic ac-
tivity, are used to provide a quantitative formulation for the dynamical evolution of
single neurons, neural networks, and coupled hierarchical modules of networks. The
structure we use is organized within the general framework of the biased competition
hypothesis for selective attention. [24, 32, 25, 23, 7, 27, 6], which assumes that popu-
lations or pools of activated neurons engage in competitive interactions mediated by
global inhibition and that this competition can be biased toward some given neuronal
populations by an external signal representing attention or context. In a generaliza-
tion of this hypothesis, some populations are thought not to compete but to coop-
erate, that is they are thought to mutually reinforce their repective activities. Rolls
and Deco [29] introduced a theoretical framework for the neurodynamics of biased
competition and cooperation, in which multiple activated populations of neurons in-
teract with each other in a hierarchical way. Neuron populations which are combined
in such a way as to model an individual brain structure (e.g., a cortical area) engage
in competitive and cooperative interactions with each other, trying to represent their
input in a context-dependent way. But biased competition and cooperation networks
often consist of several model areas. External inputs from one model area bias the
internal competition and cooperation in favor of specific neurons. By this bias, each
model area forms a context or top-down hypothesis, in the framework of which the
dynamics of the other areas are guided. In the context of visual attention, for exam-
ple, the external bias can be interpreted as an attentional effect which is produced by
generating signals in areas outside the visual cortical areas. These signals are then
fed back to extrastriate, higher visual areas where they bias the competition in such a
way that, when multiple stimuli appear in the visual field, the cells representing the
attended stimulus ‘win’, thereby suppressing cells representing distracting stimuli
[29, 13, 11, 12].

The operation of biased competition and cooperation networks in general can be
imagined as a negotiation process between different specialized experts: Each model
area tries to represent one aspect of the environment. These aspects can be spatial re-
lationships, object identities, history, currently valid rules, rewarding tasks and many
others. Each representation alone is insufficient to deal with the complexity of the
environment. However the areas bias each other and mutually guide each other’s in-
ternal dynamics until a maximally coherent state is reached, which then forms a good
global representation of the environment.

Multi-areal modeling of large scale brain systems strikingly exemplifies that an
understanding of higher brain functions cannot be achieved by adopting a purely re-
ductionist view. Instead, most key features of brain operation seem to emerge from
the mutual interplay of the components rather than being generated by each of the
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components individually. Principles of brain operation can therefore only be fully
understood by a holistic, systems level quantitative treatment. It turns out that many
complex phenomena in living systems, even the phenomenon of life itself, appear
to draw their complexity from interactions of structured networks such as gene reg-
ulatory networks, metabolic networks, protein networks, intercellular signaling net-
works and immunoresponse networks, just to mention a few.

In light of this, we urgently need powerful methods to understand, model and an-
alyze densely interacting biological networks at a systems level. Four decades of AI
research have provided a large pool of methods, techniques and background knowl-
edge required to form quantitative models of the brain and other systems. In this
chapter we exemplify how AI methods from the fields of artificial neural networks,
spiking neuron networks and nonlinear dynamics can be used to model and under-
stand visual attentional and cognitive phenomena as effects of multi-areal recurrent
processing. By doing so, we are on our way not only toward understanding opera-
tional principles of the brain but can also hope to learn —although at a high level—
about other complex networks which altogether form living biological organisms.

However, systems biology also can provide input to AI research. Living systems
have developed a highly desirable property: They can successfully navigate in and
manipulate a complex, changing, potentially unpredictable and open environment.
For example, bacteria can robustly deal with their chemical environment, cells of a
higher organism robustly act within their molecular signaling network, and finally
our brain enables us to robustly navigate in our complex natural environment. To be
able to do so, living systems adopt a complex linked internal structure which largely
remains to be understood, they learn from the environment, adapt to changes and
contain error tolerance strategies. By modeling living systems with AI methods, we
hope to be able to transfer many of these desirable features to artificial systems better
than achieved so far. For example, multi-areal neurodynamical models as presented
here could trigger new developments for artificial neural networks, brain-like expert
and decision support systems, prognosis systems and other distributed AI approaches
like mixture of experts, intelligent agents in open multi-agent systems and the suit-
able design of these environments.

In the next section, we will briefly summarize the procedure to set up biased
competition and cooperation neurodynamical models. The following sections will
summarize three examples of how neuronal responses recorded while animals un-
derwent cognitive tasks, pop out in a natural way when modeled in the context of
biased competition and cooperation. The chapter will be concluded by a brief out-
look to future research directions.

2 Computational neuroscience tools

What are the theoretical tools for achieving the proper level of description of the neu-
rodynamical mechanisms that underlie brain functions? On the one hand, the level of
description should be accurate enough to allow the relevant mechanisms at the level
of neurons and synapses to be properly taken into account. On the other hand, the
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description should be simple enough, so that we can really infer by abstraction the
relevant principles substantiating perception and cognition. A mere reproduction of
phenomena of a complex system, like the brain, just by simulating the same kind of
artificial complex system, is most of the time not useful, because there are usually no
explicit underlying first principles, and it is also unrealistic.

We assume that a proper level of description at the microscopic level is captured
by the spiking and synaptic dynamics of one-compartment, point-like models of neu-
rons, such as integrate-and-fire (IF) models (in particular we use the model described
in [5]). An IF neuron can be described by a circuit consisting of a capacitance (the
cell membrane capacitance CmCC ) in parallel with a resistance (the cell membrane re-
sistance Rm) driven by input currents coming from connected neurons. When the
voltage across the membrane capacitance reaches a given threshold the circuit is
shunted and the neuron generates a spike which is then transmitted to other neurons.
The spikes arriving to a given neuron produce post-synaptic excitatory or inhibitory
potentials (through a low pass filter by the synaptic and membrane time constants)
and constitute the incoming input to the neuron. The dynamics of the IF model al-
low the use of realistic biophysical constants (like conductances, delays, etc.) in a
thorough study of the realistic time scales and firing rates involved in the evolution
of the neural activity underlying cognitive processes, for comparison with experi-
mental data. We believe that it is essential in a biologically plausible model that the
different time scales involved are properly described, because the system that we are
describing is a dynamical system that is sensitive to the underlying different spik-
ing and synaptic time courses, and the non-linearities involved in these processes.
For this reason, it is convenient to include a thorough description of the different
time courses of the synaptic activity for both excitatory and inhibitory postsynaptic
potentials. In the neuronal model considered here the excitatory postsynaptic cur-
rents have two components, a fast one mediated by α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors and a slow one mediated by N-methyl-D-
aspartate (NMDA) receptors. The inhibitory currents are mediated by the neurotrans-
mitter gamma-aminobutyric acid (GABA) (see for example [30]). A second reason
why this temporally realistic and detailed level of description of synaptic activity is
required, is the goal to perform simulations which can be compared with fMRI data.
These involve the realistic calculation of BOLD-signals that are intrinsically linked
with the synaptic dynamics, as recently found by [22]. A third reason is that one can
consider the influence of neurotransmitters and pharmacological manipulations, e.g.,
the influence of dopamine on the NMDA and GABA receptor dynamics [38, 21], to
study the effect on the global dynamics and on the related cortical functions (e.g.,
working memory [9], and [10]). A fourth reason for analysis at the level of spiking
neurons is that the computational units of the brain are the neurons, in the sense that
they transform a large set of inputs received from different neurons into an output
spike train, that this is the single output signal of the neuron which is connected to
other neurons, and that this is therefore the level at which the information is being
transferred between the neurons, and thus at which the brain’s representations and
computations can be understood [29, 28].
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Fig. 1. Course of the membrane potential of a neuron along the time-axis. During the sub-
threshold behavior the membrane potential is influence by the incoming spikes mediated by
the synaptic currents IsynII (t). Once the threshold θ is reached, the neurons emits a spike and
stays for a refractory period τrefττ at the reset potential VresetVV

For all these reasons, the non-stationary temporal evolution of the spiking dy-
namics are addressed by describing each neuron by an integrate-and-fire model. The
subthreshold membrane potential V (t) of each neuron evolves according to the fol-
lowing equation:

CmCC
dV (t)

dt
= −gm(V (t) − VLVV ) − IsynII (t) (1)

where IsynII (t) is the total synaptic current flow into the cell, VLVV is the resting poten-
tial, CmCC is the membrane capacitance, and gm is the membrane conductance. When
the membrane potential V (t) reaches the threshold θ a spike is generated, and the
membrane potential is reset to VresetVV . The neuron is unable to spike during the first
τrefττ which is the absolute refractory period (Fig. 1).

The total synaptic current is given by the sum of glutamatergic excitatory com-
ponents (AMPA and NMDA) and inhibitory components (GABA). As we described
above, we consider that external excitatory contributions are produced through
AMPA receptors (IAMPAI ,ext), while the excitatory recurrent synaptic currents are
produced through AMPA and NMDA receptors (IAMPAI ,rec and INMDAII ,rec). The to-
tal synaptic current is therefore given by:

IsynII (t) = IAMPAI ,ext(t) + IAMPAI ,rec(t) + INMDAII ,rec(t) + IGABAII (t) (2)

where the current generated by each receptor type follows the general form:

I(t) = g(V (t) − VEVV )
N∑

j=1

wjsj(t) (3)

and VEVV = 0 mV for the excitatory (AMPA and NMDA) synapses and −70 mV
for the inhibitory (GABA) synapses. The synaptic strengths wj are specified by the
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architecture. The time course of the current flow through each synapse is dynamically
updated to describe its decay by altering the fractions of open channels s according
to equations with the general form:

dsj(t)
dt

= −sj(t)
τ

+
∑

k

δ(t − tkj ) (4)

where the sum over k represent a sum over spikes emitted by presynaptic neuron j
at time tkj , and τ is set to the time constant for the relevant receptor. In the case of
the NMDA receptor, the rise time as well as the decay time is dynamically modeled,
as it is slower. Details are provided by [10].

The problem now is how to analyze the dynamics and how to set the param-
eters which are not biologically constrained by experimentally determined values.
The standard trick is to simplify the dynamics via the mean-field approach at least
for the stationary conditions, i.e., for periods after the dynamical transients, and
to analyze there exhaustively the bifurcation diagrams of the dynamics. A bifur-
cation diagram shows the possible dynamical states of the system as a function of
the model-parameters. This enables a posteriori selection of the parameter region
which shows in the bifurcation diagram the emergent behavior that we are looking
for (e.g., sustained delay activity, biased competition, etc.). After that, with this set
of parameters, we perform the full non-stationary simulations using the true dynam-
ics only described by the full integrate-and-fire scheme. The mean-field approxi-
mation represents a well-established way of exploring the behavior of the network
[33, 14, 18, 17, 3, 37, 36]. It assures that the dynamics of the network will con-
verge to a stationary attractor which is consistent with the asymptotic behavior of an
asynchronous firing network of IF neurons [5, 19, 16].

In the standard mean-field approach, the network is partitioned into populations
of neurons which share the same statistical properties of the afferent currents (cur-
rents that enter each neuron), and fire spikes independently at the same rate. The
essence of the mean-field approximation is to simplify the integrate-and-fire equa-
tions by replacing, in accordance with the diffusion approximation [35], the sums of
the synaptic components by the average DC component and a fluctuation term. The
stationary dynamics of each population can be described by the population transfer
function F (), which provides the average population rate as a function of the average
input current. The set of stationary, self-reproducing rates νi for the different pop-
ulations i in the network can be found by solving a set of coupled self-consistency
equations:

νi = F (µi(ν1, ..., νN ), σi(ν1, ..., νN )) (5)

where µi() and σi() are the mean and standard deviation of the corresponding in-
put current, respectively. To solve these equations, a set of first-order differential
equations, describing a fake dynamics (in contrast to the ‘true’ underlying spiking
dynamics) of the system, whose fixed point solutions correspond to the solutions of
Eq. 5, is used :
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τiττ
dνi(t)

dt
= −νi(t) + F (µi(ν1, ..., νN ), σi(ν1, ..., νN )) (6)

The standard mean-field approach neglects the temporal properties of the synapses,
i.e., considers only delta-like spiking input currents. Consequently, after this simplifi-
cation, the transfer function F () is an Ornstein-Uhlenbeck solution for the simplified
integrate-and-fire equation τxττ

dV (t)
dt = −V (t) + µx + σx

√
τxττ η(t), as detailed by [5].

An extended mean-field framework which is consistent with the integrate-and-fire
and synaptic equations described above, i.e., that considers both the fast and slow
glutamatergic excitatory synaptic dynamics (AMPA and NMDA) and the dynamics
of GABA-inhibitory synapses, were derived by [5]. The mean-field analysis per-
formed in this work uses the formulation derived in [5, 4], which is consistent with
the network of neurons used.

To model a cortical area, a network of interconnected excitatory and inhibitory
neurons is considered. The basic general network architecture used implements a
multi-modular system where stimuli-related inputs are processed in the context of
neuronal reverberation, cooperation and competition biased by task-relevant infor-
mation.

The structure of the network consists of a set of distinct pools of neurons which
are defined by shared inputs and weights of the connections. We consider three gen-
eral types of pools: pools of excitatory neurons which selectively encode informa-
tion associated with some given task to be modeled (selective pools); one pool of
excitatory neurons which are not directly activated in association with the task at
hand (non-selective pool) and one pool of inhibitory neurons. All neurons receive a
background external input assumed to originate in neurons not explicitly modeled.
Added to this noise input, the selective pools can receive external inputs which are
task-related. These inputs convey into the model either the presentation of stimuli or
an attentional state or context knowledge. This last type of inputs have the ability to
bias the processing taking place in the network and are assumed to be encoded in
cortical areas not explicitly modeled.

The framework of biased competition and cooperation is implemented by differ-
entially setting the strengths of the interneuronal synaptic connections. These con-
nection strengths or weights describe relative departures of the synaptic conductiv-
ities from their average value over the network. The weights are considered fixed,
after some tuning process (possibly a Hebbian rule) which is not simulated. It is
reasonable to assume that neurons within the same selective pool are strongly coacti-
vated and hence that, following a Hebbian learning rule, the synaptic strength of the
connections between such neurons (pool cohesion) are higher than average. These
strong weights implement reverberation of the intra-pool neuronal activities, which
can underly formation of working memory, that is appearance of sustained high ac-
tivity coding for a previously presented stimuli, which is absent at present. Some
selective pools are involved in processing related information (for example, similar
inputs) in the context of a certain task. Neurons belonging to these pools are likely to
have correlated activity and therefore are assumed to be linked through connections
with stronger-than-average weights, implementing cooperation between these pools.
The selective pools which are activated by different stimuli or tasks are likely to
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Fig. 2. 1st row: Attentional filtering experiment. Each pair of traces shows the mean neuronal
responses to a bilateral stimulus shown in the inset. (A) target/target, (B) Non-target/target,
(C) target/ non-target, and (D) non-target/non-target stimulus pairs. Black and gray trace are
recorded, when the attention was drawn to the preferred location (black box around stimulus)
or to the non-preferred location. For each pair of traces, the stimulus was identical, but the
response reflected only the identity of the object in the attended location. 2nd row: Simulation
result of a spiking network with biased competition and cooperation. 3rd row: Simulation
result for a weak increase of dopamine D2 receptor activity. 4th row: Result for strong increase
of D2 activity.

have uncorrelated activities and thus be connected through synaptic weights weaker
than average. These selective pools influence each other’s activities mainly through
the inhibitory neurons, which then implement a mechanism of global competition
between such excitatory pools.

The theoretical framework for biased competition and cooperation networks de-
scribed here has been used to model single neuronal responses fMRI activation pat-
terns, psychophysical measurements, effects of pharmacological agents and of local
cortical lesions [29, 9, 10, 34]. The examples described in the next three sections
focus mainly on results of neurophysiological experiments.

3 Attentional filtering

Mechanisms of selective attention form an important basis of cognitive processes.
By attention, information is selected and filtered out in a context-dependent way.
The context is provided by the internal state of the brain, which can represent current
hypotheses about the environment. For example, visual information can be selec-
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tively attended to depending on whether or not this input is relevant for a task to be
subserved or a goal to be achieved. Hence, it is interesting to investigate how atten-
tion could arise in the brain, and how it can be flexibly controlled by the surrounding
brain state reflecting the subject’s hypothesis about the world.

Recently, a neurophysiological study has been carried out in order to investi-
gate the neuronal responses in the prefrontal cortex (PFC) of monkeys which were
engaged in a focused attention task [15]. In this experiment, a monkey, after being
cued to attend one of two visual hemifields (left or right eye-field), had to watch a
series of bilateral stimuli that consisted of different pairs of objects, and to react with
a saccade (rapid intermittent eye movement occurring when eyes fix on one point
after another) if and only if a predefined target object appeared in the cued hemifield.
In order to correctly perform this cognitive task, the monkey had to ignore any object
in the uncued hemifield and to concentrate (focus his attention) on the cued location.

In the experiment, Everling and co-workers first observed neurons which were
selective for target or non-target stimuli (stimuli requiring or not requiring a re-
sponse), and preferred the stimulus location in one hemifield over the other. Next,
during the focused attention task, these neurons again discriminated between target
and non-target, but only when the stimulus changed in the attended location (Fig. 2,
row 1). The stimulus in the non-attended location had no influence on the neuronal
response. This effect we refer to as attentional filtering. In other words, the context,
which is given by the relevance of a stimulus for the task, acts in a multiplicative
way on its representation in the PFC. Only a task-relevant stimulus (i.e., target in the
cued hemifield) is gated by the context and is allowed to be represented.

Attentional filtering represents a particularly strong attentional effect, in which
the context gates sensory input in an all-or-none fashion. Moreover, attentional filter-
ing might be part of a neural correlate of inattentional blindness, which is the inability
of humans to recover any information from unattended sensory stimuli [31]. Inatten-
tional blindness is thought to be part of an important cognitive mechanism, namely
that of focusing or ‘concentrating’ on a task to be performed.

Motivated by these observations, we built a neurodynamical model to investi-
gate, how this strong attentional effect can arise from a weak modulatory bias which
mediates the cortical context [34]. The model is set up as a layer of spiking neu-
rons which are grouped into four selective pools, one non-selective pool and one
inhibitory pool, as described in the previous section. Neurons of each selective pool
not only share the same weight, but in addition receive the same bottom-up sensory
input. The input selectively encodes whether there was a target or non-target in the
left or right hemifield. Correspondingly, the four selective pools are denoted accord-
ing to their inputs as target-left (TL), target-right (TR), other left (OL) and other
right (OR). In agreement with the Hebbian learning rule, weights within each pool
were strongest. Weights between the two target and the two non-target pools are in-
termediate, because these pairs receive similar inputs. These weights are found to
mediate cooperation between same-object pools. Weights between all other neurons
are weaker than average, because they receive different inputs. The latter weights
are found to implement competition between pools for activity. The selective pools
receive two top-down inputs which act as bias. The first top-down signal biases neu-
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rons that are selective for the target object. The second top-down signal facilitates
neurons which have the cued location as preferred location. Both biases together can
provide sufficient information about the task to be solved. They are found to guide
the competition and cooperation process.

The second row of Fig. 2 shows the pool-averaged responses of the model TR
neurons for the same stimulus conditions and attentional states as the experimental
results of row 1. It can be seen that the model traces are in good agreement with the
experimental results. This demonstrates that a weak attentional bias can be strongly
and selectively amplified by cooperation and competition and lead to an all-or-none
attentional filtering effect. Simulating with different parameters, it can be shown that
in the framework of the present model both cooperation and competition are needed
together in order to reproduce the effect.

Departing from the parameter setting which correctly reproduces the experiment,
one can also formulate quantitative predictions of the effect of neurotransmitters or
pharmacological treatment. This will be exemplified by modeling the effect of an
increase in dopamine concentration on attentional filtering. An increase in dopamine
concentration, accompanied by an increase in D2 receptor activation, is known to
decrease both NMDA and GABA conductances [21, 38]. Hence, a weak increase in
D2 receptor activation was modeled by multiplying both NMDA and GABA conduc-
tances by a factor of 0.7, a strong increase by multiplying the same quantities with
0.2. The model neuronal responses are shown in rows 3 and 4 of Fig. 2, respectively.
We found that when the dopamine level increases slightly, the response to a weak
stimulus is no longer attended to (Fig. 2, 3C). This might be related to a degraded
ability to shift selective attention to a new, non-prominent stimulus. As the level of
dopamine is further increased, attentional effects become more and more impaired
in general (Fig. 2, row 4). Hence, by using a neurodynamical model, we can predict
that an increase in dopamine concentration will lead to a progressive weakening of
the attentional filtering effect.

4 Working memory

Many real world behaviors depend on arbitrary stimulus-response mappings. To ex-
plore the role of the prefrontal cortex in stimulus-response associations, the experi-
ment of Assad, Rainer and Miller [1] is designed to combine aspects of cue-response
learning with an object-response task. We suggest a neurodynamical model based on
the finding of object-direction selective neurons in the experiment, which allows us
to draw further conclusions about the possible underlying neural substrate.

The delayed-response experiment starts with presentation of an object A or B,
and after a delay a response is given by a leftward or rightward saccadic eye move-
ment according to the object identity. To this simple object-response task an associa-
tive aspect is added by incorporating a reward learning-mechanism with two possi-
ble conditions: One associates object A with a leftward motor response L, B with a
rightward response R (direct rule), and vice versa (reversal rule). During the experi-
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External
Input

Object

Premotor

Fig. 3. The basic setup of the network model consists of 8 selective pools
(A,B,AL,BR,AR,BL,L,R), a non-selective pool (NS) and an inhibitory pool (IH). The external
environment of the neuronal assembly is modeled with an external input.

ment the current condition is indicated by reward learning, so that the monkey knows
which rule applies.

During the trials, neurons in the lateral prefrontal cortex of the monkeys are
recorded to assess the underlying neuronal basis of the conditional visuomotor tasks.
The interesting finding is that, besides neurons that selectively respond to either the
cue or the associated response, there are object-response selective neurons that re-
spond to cue and response properties in a nonlinear fashion: High activity is dis-
played during object A with response L, while there are low activity levels in all
other combinations.

Based on the single-cell findings of [1] we postulate 8 different kinds of pools
of neurons: Pools that are selective to the presented objects, designated by A and
B; ones that code the output in terms of the rightward and leftward motor response,
called L and R, respectively; inspired by the nonlinear object-response selective neu-
rons found, we also introduce all possible combinations of object and premotor se-
lectivity, denoted: AL, AR, BL and BR. The neuronal basis of the model is made
up of these 8 selective pools, a non-selective one and an inhibitory pool for global
inhibition.

The connections between the pools are assumed to have been built up according
to the Hebbian learning rule, which leads to a hierarchical neurodynamical model:
There are three layers, an input layer with the object pools A,B, a premotor layer with
the premotor pools L,R and an intermediate layer in between that contains pools for
all possible combinations. We associate A with AL and AR, also B with BL and BR.
The same is done for the premotor neurons: L with AL, BL and R with AR, BR (Fig.
3).

The learned associations are modeled with a higher external input to intermediate
neurons, which mediate most likely the mapping between the object-selective and
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premotor neurons. In terms of neurodynamics, this external influence is a bias that
shifts the dynamics of the system in order to account for a learned rule.

The analysis is conducted by means of a mean-field exploration of the parameter
space that is spanned by the free parameters in the network. These parameters are the
pool cohesion, the external bias for the applied rule and the structural feed forward
and feed backward connections within the network. The goal of the analysis is to find
a non-linear mapping between object and response in accordance with the applied
rule (direct or reversal) that has also been identified in the experiment of [1].

In the analysis we find that the pool cohesion and the strength of the external bias
are the important factors in order to show biased competition properties throughout
the network, while the structural parameters, the feed-forward and feed-backward
parameters influence the way in which biased competition takes effect.
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Fig. 4. Qualitative behavior of the system when varying the feed-forward and feed-backward
connection strength while leaving the rest of the parameters (pool-cohesion, external input and
external bias) at fixed values. Three basic states are found: A spontaneous state in which the
presentation of the stimuli to the network does not show any effect, an excitatory state which
presents overall high activity and a biased competition state in which the presentation of the
object and the external bias interact.

Fig. 4 shows conceptual regions found by varying the relative feed-forward and
-backward connection strengths. With low relative connection strengths we observe
that the presentation of the object stimulus does not have any effect and the pools
just show spontaneous activity, although we present a stimulus to the network. On
the contrary, strong connection strengths lead to a high excitation of all pools, al-
though the implemented bias that should account for the learned rule (direct/reversal)
does not effect the final state of the neurodynamics. In an area with moderate con-
nection strength which is also characterized by either stronger feed-forward or feed-
backward connections, we observe various distinct kinds of behavior depending on
the specific connectivity properties which we summarized in the biased competition
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region in Fig. 4. A thorough analysis of the surrounding parameter space reveals
multiple dependencies in the network that need to be met in order to observe the
desired qualitative behavior.

In summary, we built up and analyzed a neurodynamical model based on the
experimental data of [1]. We have been able to reproduce the experimental results
by postulating corresponding pools of neurons and using the biased competition and
cooperation hypothesis. Furthermore, our results suggest that the network has to be
in a finely tuned dynamical equilibrium, otherwise it is not able to show the desired
results. The figure also suggests that the connection strengths have to be stronger
in one direction, either feed-forward or backward, in order to match the measured
biological data of the underlying experiment.

5 Selective working memory

Recently, Rainer and collaborators [26] performed a electrophysiological experiment
in monkeys which revealed that PFC neurons might be involved not only in the stor-
age of working memory but also in selectively representing information relevant for
task performance, while task-irrelevant information is filtered out. In this study the
monkeys were required to perform a visual delayed-match-to-sample task. The sam-
ple stimuli consisted of a set of objects presented at different locations. After a delay
period, where the stimulus was not presented, the animals saw a new stimulus which
they had to identify as a match or non-match with respect to the previously presented
sample. A stimuli was defined as a match if the target object (whose identity was
known beforehand) appeared at the same location as in the sample period, irrespec-
tively of the locations of the other objects. The spatial locations of the non-target
objects were irrelevant for correct performance and hence it was not necessary for
the monkey to store this information in working memory. The experimental results
showed that neurons in PFC exhibited delay activity which coded selectively for task
relevant information (position or location of the target object). The task irrelevant
features of the sample stimulus did not influence the measured delay activity. More,
although the task was defined through object identity, it not only determined which
object identity information should be retained in working memory but also which
spatial information to store. These experimental findings can be explained within
the context of biased competition and cooperation, using a neurodynamical compu-
tational model as described above. However, to fully account for the experimental
results, an extension of the general model had to be introduced, allowing the imple-
mentation of a mechanism we called modular biased competition.

The specific network architecture used is shown in Fig. 5. For simplicity we con-
sidered only stimuli consisting of two possible objects presented in two possible
positions. Four neuronal pools (OS) receiving stimulus specific external inputs were
considered. Neurons in these pools were assumed to code for a particular object and
position. Apart from this structure, we considered pools encoding just for object (O)
or spatial location (S), since the experimental results reported were measured from
neurons with such responsiveness. In each trial, one of the O pools received exter-
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Fig. 5. Network architecture.

nal input coding for identity of the target object, which biased the processing by
the network of the stimulus specific inputs. With the rational explained above, the
weight (here w+ = 2.1) (see Fig. 5) between neurons of the same selective pool was
considered to be the highest weight, implementing formation of working memory.
Cooperation between pools coding for the same stimuli was implemented by taking
the corresponding weights (here w′ = 1.8) larger than the average weight, while
a value of w− (here 0.3) smaller than 1 implemented competition. The mechanism
of biased competition implemented the filtering out of irrelevant features for task
performance that is the selection of which information to be stored, according to
context. The cooperation was shown to be essential for the ability to select what spa-
tial information to maintain, based on information about object identity. However,
to account for the experimental results a modification of the biased competition and
cooperation model was important. This extension implemented intracortical modular
competition between three separate groups of selective pools of neurons (O pools, S
pools and OS pools), as opposed to a global competition between all selective pools.
This mechanism together with cooperation allowed the propagation of competition
through the different modules of the network and the subsequent formation of selec-
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tive spatial working memory. This was done by letting one spatial selective pool win
a local competition, instead of resulting in global winners. The global winners would
be among the O and OS selective pools, which receive a larger total external input.
Modular competition was implemented by considering the weights (w−) of the con-
nections between pools which should compete weaker than the weights (w1) of the
connections between pools in different competition groups. In Fig. 6 results from
mean-field simulations are shown for the delay period, where the monkey should re-
member the location of the target (object 1) which had appeared in space 1 during
stimulus presentation. It can be seen that setting the weight w1 lower than w− (0.3),
destroys the modular competition and instead a global competition is implemented.
In this case the pools O1S1, O2S2 and O1 are winners of the global competition (see
Fig. 6 left-hand side, both the plots and, on the top, the schematic representation of
the winner pools). There are no space pools which exhibit sustained high activity
and hence the spatial location of the target object is not kept in working memory.
For values of w1 at least as high as w−, the modular competition is implemented
and propagated to the S pools, resulting in storage in memory of the task relevant
information that is the identity and spatial position of the target object.

Our results suggest that the propagation, through intracortical cooperation, of
intracortical modular biased competition might constitute a general mechanism for
implementing selective formation of working memory, where task-relevant informa-
tion is maintained in mind over a delay period while task-irrelevant information is
filtered out through an attentional mechanism. The network architecture described
in this section is an extension of the general network structure used to implement
biased competition and cooperation, which was used in the examples above.

The extension introduced implements competition among subsets of neuronal
pools as opposed to global competition. This mechanism was shown to be important
for the formation of selective working memory at the level of one feature dimension
(space) although the relevant information for task performance was defined at the
level of another feature dimension (object identity).

6 Future directions

We have to keep in mind that the models include several abstractions and simplifi-
cations that are on the one hand necessary due to computational constraints and on
the other hand an essential part of the modeling process. If one wants to find out
which network components are needed to show specific properties they have to be
studied separately. Therefore the overall goal should not be to build up a highly com-
prehensive model of the brain, but to try to extract neurodynamical effects that are
responsible for single functions of the brain. The second step would be to put them
together to achieve a holistic picture of brain functionality. The presented models
should not be regarded as given and fixed but as an open framework which allows
to extract important information about the neurodynamical effects underlying higher
cognitive brain functions.
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Fig. 6. Spiking rates of the selective pools, as a function of w1. On the top schematic repre-
sentation of the neuronal pools showing high sustained activity during the delay period, hence
coding for information stored in working memory.

There are several parts of the models which could be altered and discussed in
the process of discussing certain effects: Full vs. partial connectivity, local vs. global
inhibition, influence of the external neurons, modeling and selection of neurotrans-
mitters.

Even though many neural and synaptic mechanisms are not known exactly, we
can make explicit assumptions for these mechanisms, analyze them and thereby draw
specific conclusions about the underlying neural behavior.
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