
Springer Undergraduate Mathematics Series

Frazer Jarvis

Algebraic 
Number 
Theory



Springer Undergraduate Mathematics Series

Advisory Board

M. A. J. Chaplain, University of Dundee, Dundee, Scotland, UK
K. Erdmann, University of Oxford, Oxford, England, UK
A. MacIntyre, Queen Mary, University of London, London, England, UK
E. Süli, University of Oxford, Oxford, England, UK
M. R. Tehranchi, University of Cambridge, Cambridge, England, UK
J. F. Toland, University of Cambridge, Cambridge, England, UK

For further volumes:
http://www.springer.com/series/3423

http://www.springer.com/series/3423


Frazer Jarvis

Algebraic Number Theory

123



Frazer Jarvis
School of Mathematics and Statistics
University of Sheffield
Sheffield
UK

ISSN 1615-2085 ISSN 2197-4144 (electronic)
ISBN 978-3-319-07544-0 ISBN 978-3-319-07545-7 (eBook)
DOI 10.1007/978-3-319-07545-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014941941

Mathematics Subject Classification: 11Rxx, 11R04, 11R09, 11R18, 11R27, 11R29, 11R47, 11-01

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This book, like others in the SUMS series, is designed to be suitable for under-
graduate courses. While many institutions may not offer such courses in algebraic
number theory, some may instead offer the possibility for students to take reading
courses, or to write projects, in more diverse areas of pure mathematics. It is my
hope that this book is suitable for any of these options.

Outline of the Book

Let us now summarise the content of the book. The first chapter begins with a
review of the Euclidean algorithm and its importance in the proof of the Funda-
mental Theorem of Arithmetic, which states that every integer can be uniquely
factorised into prime numbers. We then consider some questions about the integers
which can be addressed by working with the Gaussian integers Z½i�, and for which
analogues of unique factorisation are essential to the proof.

Motivated by the need to consider larger sets than Z, the second chapter defines
algebraic numbers, and number fields and their rings of integers. These are the sets
which are going to generalise the rational numbers and the integers and in which
we are going to be studying arithmetic throughout the rest of the book. The third
chapter continues this theme, studying natural questions about rings of integers in
number fields. Some of these further questions are of a harder nature than those in
Chap. 2, and the reader (or instructor) may wish to omit some of this material on a
first reading.

Unique factorisation forms the topic of the next two chapters; we would like to
know whether the ring of integers in a given number field has unique factorisation
or not, in order to deduce interesting results such as those at the end of the first
chapter. Although unique factorisation does not always hold (indeed, it’s quite
rare!), Kummer suggested a way to recover it, by adding ‘‘ideal numbers’’. Later,
Dedekind reformulated this to give a definition of ideals in the rings of integers,
and Chap. 4 considers properties of ideals. Prime ideals, analogues of prime
numbers, are studied in the fifth chapter, whose main result is the uniqueness of
factorisation of ideals into prime ideals. The chapter also introduces the class
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number and class group, which measure the failure of unique factorisation of
elements.

Chapter 6 considers the case of imaginary quadratic fields, which is probably
the simplest family of worked examples. After considering problems such as
finding the imaginary quadratic fields with unique factorisation, the relation with
the theory of positive definite quadratic forms is explained, which gives a con-
venient way to make computations of class numbers of imaginary quadratic fields.

Before considering further examples, we develop some theory in Chap. 7. This
chapter studies geometry of numbers and the class group, proving some useful
general theoretical results, which then get illustrated in Chap. 8, which focuses on
other classes of fields with small degree. To treat the case of real quadratic fields, we
introduce Pell’s equation, and its solution via continued fractions. Next, Chap. 9
considers number fields generated by roots of unity, and in particular, Kummer’s
work on Fermat’s Last Theorem.

These nine chapters are already more than enough to form a full one-semester
course in a typical UK University. But this is just the start of the theory, almost all
understood by the mid-nineteenth century. I have also included additional chap-
ters, which could form the basis for further reading, or for student projects. These
concern explicit class number formulae, and the number field sieve. The first
chapter, on analytic methods, considers the Riemann zeta function, and zeta
functions of number fields, culminating in the analytic class number formula, and a
brief discussion of p-adic numbers, of great importance for modern number the-
orists. The advent of the computer has led to increased interest in the problem of
factorisation of integers, through the RSA cryptosystem, and the current method of
choice, which uses many techniques of algebraic number theory, is the number
field sieve. But today the field is extremely active, and has expanded far beyond
the contents of this book. I am very conscious that there are topics which might
have been treated as part of this list which have been omitted: the relation to Galois
Theory, further ramification theory, class field theory, p-adic methods and tran-
scendence theory, amongst others.

A Note for Instructors

There are many possible combinations of topics that could form a suitable course. A
basic one-semester course at an undergraduate level at a typical UK University
might review Chap. 1 quickly, spend quite a lot of time on Chap. 2, briefly touch on
some of the topics in Chap. 3 and cover Chaps. 4 and 5 fairly fully, with examples
taken from parts of Chaps. 6 and 8. Any remaining time might be spent on
additional topics from some of the later chapters, such as quadratic forms (from
Chap. 6), the finiteness of the class number (from Chap. 7), or roots of unity and
Fermat’s Last Theorem (from Chap. 9). The relationship between class numbers
of imaginary quadratic fields and quadratic forms (Chap. 6), analytic methods
(Chap. 10) and the number field sieve (Chap. 11) are more likely to be suitable for
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undergraduate project work. Some of this material is also likely to be suitable for
beginning graduate students.

Prerequisites

I have tried to keep the prerequisites to a minimum. Nevertheless, there are a
number of topics which might be useful, and which most readers will have met in
their previous studies. It is my intention that readers should be able to read most of
the text without previous courses in these topics, but it is inevitably true that
previous acquaintance with them will be helpful, and readers without this
knowledge may occasionally need to consult additional sources for this back-
ground. These topics include: elementary number theory (here [7] is an excellent
source), a first course in linear algebra (including vector spaces over fields), a first
course in group theory (little beyond Lagrange’s Theorem is required) and some
basic understanding of rings and fields. Even here, it should be possible for a
reader without this knowledge to follow the material, with the understanding that a
ring is just a set in which one can add, subtract and multiply, in such a way that all
the algebraic properties of Z are satisfied (in particular, all our rings are com-
mutative and have a multiplicative identity). Slightly more advanced concepts
such as ideals and quotient rings are an essential part of algebraic number theory
(and were, in fact, motivated by the theory, as we will see), and they are introduced
from scratch. Similarly, I hope that readers would be able to follow the text with
the idea that a field is just a set in which one can add, subtract, multiply and divide
by non-zero elements, in such a way that all the algebraic properties satisfied by Q

continue to hold.

A Note on Computer Packages

It was a difficult decision to exclude explicit mention of computer packages within
the text. There is considerable scope for using computer packages to study alge-
braic number theory; many have been written and new ones continue to appear;
had I written the book 5 years ago, I might well have written examples with a
different package to my package of choice today, and 10 years ago I might have
preferred a different choice again.

But it would seem to be a mistake to write an undergraduate text with no
mention of resources available for students to study the subject further, or to
develop understanding by finding interesting examples with the aid of a computer
package. Partly to make amends, here is a brief guide to available resources at the
time of writing.

Preface vii



An excellent list of packages and online tables of examples can be found at the
Number Theory Web; see http://www.numbertheory.org/ntw/N1.html. All the
packages listed here are linked to from this page.

Algebraic number theory is a relatively specialist area, and is not so well served
by well-known general-purpose computer packages such as Maple or Mathemat-
ica, although both have their uses. The MAGMA Computational Algebra System
(http://www.magma.maths.usyd.edu.au/magma/) has the best treatment of alge-
braic number theory of the major packages; however, it is comparatively expen-
sive, and less likely to be installed on University computer systems.

However, there are free alternatives which have been particularly developed for
use in algebraic number theory. (Of course, the disadvantage of such programs is
that there may be little in the way of documentation or support.)

One such program is PARI-GP (http://www.pari.math.u-bordeaux.fr/), devel-
oped originally by Henri Cohen (Bordeaux) and a team of co-workers. Cohen has
also written several nice textbooks on computational number theory.

More recently, William Stein has been heading the SAGE project to develop an
open-source equivalent to Maple, Mathematica and MAGMA. It can be down-
loaded from http://www.sagemath.org/; the project incorporates parts of PARI-GP.
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Chapter 1
Unique Factorisation in the Natural Numbers

We are so used to working with the natural numbers from infancy onwards that
we take it for granted that natural numbers may be factorised uniquely into prime
numbers. For example, 360 = 23325 is the prime factorisation of 360. However, we
should notice that there are already senses in which this factorisation is not really
unique; we can write 360 = 2 × 3 × 5 × 2 × 3 × 2, or even 360 = (−2) × 5 × 3 ×
(−3) × 2 × 2. Nevertheless, we can see that all these factorisations are “essentially
the same”, in a way which we could make precise, and we will do so later.

It was not until the early nineteenth century that mathematicians became aware
that this uniqueness of factorisation is actually a rather special property of the natural
numbers, and that it required a proof. It seems that Gauss was aware of this around
1800, but, as with much of modern number theory, the issue was brought to the fore
as a consequence of work on Fermat’s Last Theorem. Let’s recall the statement:

Conjecture 1.1 (Fermat’s Last Theorem) The equation xn + yn = zn has no solu-
tions with x, y and z positive integers when n ≥ 3.

Fermat seems to have made this conjecture around 1640; it was not finally proven
until work of Andrew Wiles, partly with Richard Taylor, in 1994.

Since Fermat proved the result for n = 4, it is easy to see that it suffices to
treat the case where n = p, an odd prime. Then we can write the equation in the
conjecture as

p−1∏

m=0

(x + e
2π im

p y) = z p.

As we shall see in Chap. 9, there is a rather simple “proof” of many special cases
of this conjecture if we have some sort of unique factorisation statements in the

cyclotomic fields Q(e
2π i

p ). Unfortunately, it turns out that these cyclotomic fields
do not, in general, have such a unique factorisation property. This failure of unique
factorisation led Kummer to develop the theory of ideals, and factorisation of ideals,
which is the starting point for algebraic number theory.

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 1
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© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-07545-7_9


2 1 Unique Factorisation in the Natural Numbers

At the end of this chapter, we will see further examples where naturally arising
problems about the integers Z can be addressed using arithmetic in a larger set, and
where unique factorisation in this set is a crucial requirement.

We will begin, therefore, with a reminder of the main definitions and results
concerning the uniqueness of factorisation into primes for the natural numbers. This
will also provide useful clues when it comes to generalisations to other settings.

1.1 The Natural Numbers

In this book, the natural numbers will be taken to be N = {1, 2, 3, . . .}. In order to
study factorisation in the natural numbers, we need some basic definitions.

Definition 1.2 Let a and b be integers. Then b divides a, or b is a factor or divisor
of a, if a = bc for some integer c. Write b|a to mean that b divides a and b � a to
mean that b does not divide a.

When b divides a, we also say that a is a multiple of b.

Thus 17|323 as 323 = 17 × 19, but 17 � 324. For all a ∈ Z, we have 1|a and a|a
(since a = a × 1) and a|0 (since 0 = a × 0). Notice that 0 � a, if a �= 0. If b|a,
then −b|a, so the non-zero divisors of an integer occur naturally in pairs. Clearly if
b �= 0, then b|a means that the remainder when a is divided by b is 0.

Definition 1.3 A prime number is a natural number p > 1 which is not divisible by
any natural number other than 1 and p itself.

A composite number is a natural number n �= 1 which is divisible by natural
numbers other than 1 and itself. Notice that 1 is neither prime nor composite.

For example, 37 is prime, but 39 = 3 × 13 is not.

Theorem 1.4 (Euclid) There are infinitely many prime numbers.

Proof Suppose that there are only finitely many primes, p1, p2, . . . , pn .
Define

N = p1 p2 . . . pn + 1.

Suppose that p is a prime factor of N . None of the primes p1, . . . , pn is a factor of N ,
as N is 1 more than a multiple of each pi . So p is not one of the primes p1, . . . , pn ,
and we have found another prime, which contradicts our assumption that p1, . . . , pn

are all the primes. So there must be infinitely many primes. �

The importance of prime numbers is that they are the building blocks multiplica-
tively for all of the natural numbers; every natural number will be the product of
prime numbers.
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Exercise 1.1

1. Adapt the proof of Theorem 1.4, using N = 4p1 . . . pn −1, to show that there are
infinitely many primes p ≡ 3 (mod 4). (Recall that a ≡ b (mod m) is equivalent
to m|a − b.)

2. Similarly, show that there are infinitely many primes p ≡ 5 (mod 6), using N =
6p1 . . . pn − 1.

Exercise 1.2

1. Let x be an even integer. Show that any prime divisor of x2 + 1 is necessarily
of the form 1 (mod 4). [Hint. Explain that the congruence x2 + 1 ≡ 0 (mod p)
shows that x is an element of order 4 in the group of non-zero integers modulo p,
and then use Lagrange’s Theorem.]

2. Adapt the proof of Theorem 1.4, using N = (2p1 . . . pn)2 +1, to show that there
are infinitely many primes p ≡ 1 (mod 4).

Exercise 1.3 Using the method of the previous exercise with the polynomial x2 +
x + 1, where x is an integer divisible by 6, show that there are infinitely many prime
numbers p ≡ 1 (mod 6).

1.2 Euclid’s Algorithm

The notion of common divisors, and especially of the greatest common divisor turns
out to be surprisingly important. Indeed, the existence of the greatest common divi-
sor, which for Z is a corollary of Euclid’s algorithm, is the key to proving unique
factorisation of integers into prime numbers. Although most readers will have seen
this as part of a course in elementary number theory, we dwell on it a little here for
two reasons: firstly because we want to stress its importance for unique factorisation,
and secondly because we will want to generalise the arguments later.

If two integers a and b are both multiples of another integer c, so that c|a and c|b,
then c is a common factor of a and b. For example, 8 and 36 have common factors
±1, ±2 and ±4. The highest common factor will just be the largest of the common
factors; for example, the highest common factor of 8 and 36 is 4. Unless both a and
b are zero, there will be a highest common factor of a and b, and we write this as
(a, b). Here’s a more formal definition.

Definition 1.5 The integer h = (a, b) is a highest common factor (or greatest com-
mon divisor) of given integers a, b if

1. h|a and h|b (so that h really is a common factor of a and b);
2. if c|a and c|b, then c ≤ h (in words: if c is a common factor of a and b, then c is

at most h).

Clearly (a, b) = (b, a) and (0, b) = (b, b) = |b| when b is non-zero. The case
where a and b have no common factor except ±1 will occur particularly often, and
we have special terminology:
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Definition 1.6 Let a and b be integers. Say that a and b are coprime (or relatively
prime) if (a, b) = 1, i.e., a and b have no common factor except (±)1.

An integer a can always be divided by a positive integer b to give a unique quotient
q and a unique remainder r in the range 0 ≤ r < b, i.e.,

a = qb + r (0 ≤ r < b).

The quotient and remainder are always assumed to be integers. Thus, for example,

78 = 8(9) + 6 and − 78 = −9(9) + 3.

The simple process of finding a quotient and remainder is known as the division
algorithm.

The key theoretical result is the following simple lemma:

Lemma 1.7 Suppose that a = qb + r . Then (a, b) = (b, r).

Proof Suppose that d divides a and b. Then, since r = a − qb, we also have d|r .
Thus every common divisor of a and b also divides r . In particular, (a, b) divides r ,
and since it also divides b, we see that (a, b) is a common factor of b and r . Therefore
(a, b) ≤ (b, r), as (b, r) is the highest common factor of b and r .

Conversely, any common divisor of b and r also divides a = qb+r . In particular,
(b, r) divides a, and as in the first paragraph, we conclude that (b, r) ≤ (a, b).

Combining these inequalities, we see that (a, b) = (b, r), as required. �

Repeatedly applying the division algorithm gives Euclid’s algorithm, which allows
us to compute highest common factors extremely efficiently.

Example 1.8 Let’s work out the highest common factor of 630 and 132. The division
algorithm gives

630 = 4 × 132 + 102.

But now Lemma 1.7 gives (630, 132) = (132, 102). It follows that we just have to
work out the highest common factor of these two smaller numbers, 132 and 102. But
we can repeat the division algorithm:

132 = 1 × 102 + 30,

and Lemma 1.7 gives (132, 102) = (102, 30). Repeat again: the division algorithm
gives

102 = 3 × 30 + 12,

and Lemma 1.7 gives (102, 30) = (30, 12). Next the division algorithm gives

30 = 2 × 12 + 6,
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and Lemma 1.7 gives (30, 12) = (12, 6). Finally, the division algorithm gives

12 = 2 × 6 + 0,

and Lemma 1.7 gives (12, 6) = (6, 0). We’ve already explained that the highest
common factor of 0 and b is just |b|, so (6, 0) = 6. We conclude that

(630, 132) = (132, 102) = (102, 30) = (30, 12) = (12, 6) = (6, 0) = 6,

and so we have shown that (630, 132) = 6.
It is usual to write these equations in tabular form:

630 = 4 × 132 + 102
132 = 1 × 102 + 30
102 = 3 × 30 + 12
30 = 2 × 12 + 6
12 = 2 × 6 + 0

and the argument shows that the highest common factor is the last non-zero remainder.
We get interesting information by running the algorithm backwards too. We can

use all the lines above to write the highest common factor as the sum of a multiple
of 630 and a multiple of 132:

6 = 30 − 2 × 12

= 30 − 2 × (102 − 3 × 30) = 7 × 30 − 2 × 102

= 7 × (132 − 1 × 102) − 2 × 102 = 7 × 132 − 9 × 102

= 7 × 132 − 9 × (630 − 4 × 132) = 43 × 132 − 9 × 630.

Thus the highest common factor of 630 and 132 has been written in the form 630s +
132t for certain integers s and t . At each stage, we use one of the equations in the
forward direction of Euclid’s algorithm to express the highest common factor using
numbers appearing at earlier steps in the algorithm.

The same argument, applied more generally, gives the general result:

Theorem 1.9 Let a, b ∈ Z, with b �= 0. Then there exist s, t ∈ Z such that (a, b) =
sa + tb.

Exercise 1.4

1. In Euclid’s Algorithm, show that if rn , rn+1 and rn+2 are three consecutive remain-
ders, then rn+2 < rn/2.

2. Deduce that if a > b, then r2n < b/2n .
3. Deduce that if a > b, Euclid’s Algorithm terminates after at most 2 log2 b steps.
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Exercise 1.5 We can modify the algorithm to allow negative remainders, by using a
division algorithm of the form

a = q̃b + r̃ ,

where −b/2 < r̃ ≤ b/2.

1. Use this modified algorithm to compute the highest common factor of 630 and
132.

2. Show that if a > b, the modified Euclid’s Algorithm terminates after at most
log2 b steps.

Exercise 1.6 Explain that if f (X) and g(X) are in Q[X ], the polynomials with
coefficients in Q, then there is a similar division algorithm (coming from long division
of polynomials): there are polynomials q(X) and r(X) in Q[X ] with

f (X) = q(X)g(X) + r(X)

with the degree of the polynomial r(X) strictly less than the degree of g(X), or
r(X) = 0.

Extend this in the obvious way to give a Euclidean algorithm, and find the highest
common factor of x5 +4x4 +10x3 +15x2 +14x +6 and x4 +4x3 +9x2 +12x +9.

Recall that integers a and b are said to be coprime or relatively prime if their
highest common factor (a, b) is 1. Thus, if a and b are coprime, there exist integers s
and t such that sa + tb = 1. Conversely, if there exist s and t such that sa + tb = 1,
a common factor of a and b will divide sa + tb, and so will divide 1. This implies
that a and b are coprime. Thus:

Corollary 1.10 Let a, b ∈ Z. Then a and b are coprime if and only if there exist
integers s and t such that sa + tb = 1.

Exercise 1.7 Using the Euclidean Algorithm, show that 999 and 700 are coprime,
and find integers s and t such that 999s + 700t = 1.

We can use this result to prove several elementary properties of the highest com-
mon factor which shouldn’t be surprising to you, given your long experience with
the natural numbers!

Corollary 1.11 Let a, b ∈ Z, not both zero. If h = (a, b), then a/h and b/h are
coprime.

Proof By Euclid’s algorithm, there exist integers s and t such that sa + tb = (a, b)

= h, so that s(a/h) + t (b/h) = 1. Then a/h and b/h are coprime. �
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Another easy result is the following:

Lemma 1.12 Suppose that (a, bc) = 1. Then (a, b) = 1 and (a, c) = 1.

Proof If a and bc are coprime, then there are integers s and t such that

sa + tbc = 1.

But then
sa + (tc)b = 1.

Put m = tc, so that there are integers s and m with sa + mb = 1. It follows
that a and b must be coprime. Similarly, a and c are coprime, using the bracketing
sa + (tb)c = 1. �

In fact, the converse is also true—if a is coprime to b and to c, then it is coprime
to bc.

Lemma 1.13 Suppose that (a, b) = 1 and (a, c) = 1. Then (a, bc) = 1.

Proof If (a, b) = 1, then there are integers s and t so that

sa + tb = 1.

If also (a, c) = 1, then there are integers p and q so that

pa + qc = 1.

Rearrange these:

tb = 1 − sa

qc = 1 − pa

and multiply:

(tq)bc = 1 − sa − pa + spa2 = 1 − (s + p − spa)a.

Put m = s + p − spa and n = tq; then the equation becomes ma + nbc = 1, and
so a and bc are coprime. �

The last of our simple results is surprisingly important. We’ll use it in the next
section to deduce the so-called Fundamental Theorem of Arithmetic.

Lemma 1.14 Suppose that a|bc and (a, b) = 1. Then a|c.

Proof As (a, b) = 1, there exist integers s and t such that sa + tb = 1. Multiply
this equation by c:

sac + tbc = c.
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Notice that a clearly divides sac. The hypothesis that a|bc implies that a divides the
left-hand side, and since this is equal to the right-hand side c, we get that a|c. �

1.3 The Fundamental Theorem of Arithmetic

In this section, we prove that every number can be written uniquely as a product
of prime numbers. This fact will not seem surprising to you, and it wasn’t until
about 1800 that Gauss pointed out that it fails in a number of similar situations.
We’ll explore these issues in some depth in Chap. 4. Indeed, the failure of unique
factorisation is the main topic of this book.

The following mild reformulation of Lemma 1.14 is the key result:

Lemma 1.15 Suppose that p|ab, where a, b ∈ Z, and p is prime. Then either p|a
or p|b.

Proof If p|a, we are done. If p � a, we need to show that p|b.
But if p � a, then (a, p) = 1: a common divisor of a and p must divide p, but the

only divisors of p are 1 and p, and we are assuming that p � a. So the only possible
common divisor is 1.

Then the result follows as in Lemma 1.14: as (a, p) = 1, we can write sa+tp = 1
for some integers s and t ; multiply by b to get sab + tpb = b, and as p|ab, it divides
the left-hand side which equals the right-hand side, so p|b as required. �

Repeated application of this lemma gives:

Corollary 1.16 Suppose that p|a1a2 . . . an. Then p|ai for some i = 1, . . . , n.

Let’s use this result to prove the Fundamental Theorem of Arithmetic:

Theorem 1.17 (Fundamental Theorem of Arithmetic) Every integer n greater than
1 can be expressed uniquely (apart from the order of factors) as a product of primes.

Proof Suppose (for a contradiction) that there is an integer n with two different
factorisations. Dividing out any primes occurring in both factorisations, we get an
equality of the form

p1 p2 . . . pr = q1q2 . . . qs

where the factors pi and q j are all primes, not necessarily all distinct, but where no
prime on the left-hand side also occurs on the right-hand side. But p1 divides the
left-hand side and therefore the right-hand side. So p1|q1 . . . qs . But Corollary 1.16
now shows that p1 must divide one of the q j , and therefore must be identical with one
of the q j , since the only divisors of the prime q j are 1 and q j itself. This contradicts
the hypothesis that no prime occurs on both sides of the equality. �

http://dx.doi.org/10.1007/978-3-319-07545-7_4
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Thus each integer n > 1 can be written uniquely in the form

n = pn1
1 pn2

2 . . . pnk
k

where p1, p2, . . . , pk are primes with p1 < p2 < · · · < pk , and n1, n2, . . . , nk are
natural numbers. For example,

360 = 23 × 32 × 5, 4725 = 33 × 52 × 7, 714420 = 22 × 36 × 5 × 72.

It is worth taking a little time to reflect on this argument. The key result is really
Lemma 1.15, which gave the Corollary 1.16. The proof of this lemma depends
strongly on the elementary properties of the highest common factor. In more general
situations, we may or may not have an analogue of the Euclidean algorithm; if we
do, then it is likely that we can easily define a notion of highest common factor, and
that the argument above can be generalised. On the other hand, we may have no
analogue of the Euclidean algorithm, and this will make our task harder; with luck,
it may be possible to define a highest common factor anyway, and to recover unique
factorisation, but we shall see that this is rare. We shall return to this theme later.

1.4 The Gaussian Integers

Before launching into a general theory, let us consider an example of a question
where it is useful to consider more general settings than just the integers Z.

Fermat asked which natural numbers could be written as the sum of two squares.
That is, given a natural number n, are there integers a and b so that n = a2 + b2?

One fruitful way to think of this is to factorise the right-hand side, as a product of
the two complex numbers a + ib and a − ib. That is, we are working in

Z[i] = {x + iy | x, y ∈ Z},

and asking how the number n factorises in the larger set Z[i]. Elements of the set
Z[i] are known as Gaussian integers. Write

N (x + iy) = |x + iy|2 = (x + iy)(x + iy) = (x + iy)(x − iy) = x2 + y2,

the norm of x + iy.
Here is our first elementary observation:

Lemma 1.18 Suppose that n1 and n2 can be written as the sum of two squares. Then
their product n1n2 is also the sum of two squares.
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Proof Suppose that n1 = a2 + b2 and that n2 = c2 + d2. Equivalently,

n1 = N (a + ib) = (a + ib)(a + ib),

n2 = N (c + id) = (c + id)(c + id).

As multiplication of complex numbers is commutative,

|zw|2 = zwzw = zzww = |z|2|w|2,

and we see that N (zw) = N (z)N (w). In particular, we have

N ((a + ib)(c + id)) = N (a + ib)N (c + id) = n1n2,

but also

N ((a + ib)(c + id)) = N ((ac − bd) + i(ad + bc)) = (ac − bd)2 + (ad + bc)2.

Combining these gives

n1n2 = (a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2,

as required. �

(Of course, we could have proven the lemma simply by writing down the final
identity.)

The lemma suggests that we should start by working out the prime numbers p
which can be written as the sum of two squares. For example, if every prime number
p could be written as the sum of two squares, then every natural number could be
written as the sum of two squares.

One doesn’t have to try too many examples before realising that p = 3 cannot be
written as the sum of two squares. Indeed, square numbers give a remainder which
is 0 or 1 modulo 4. So the only possible sums of two squares are 0 + 0, 0 + 1 or
1 + 1 modulo 4, and no number which is 3 (mod 4) can be written as the sum of two
squares.

The situation for prime numbers which are congruent to 1 (mod 4) is considerably
better: it turns out that every such prime number is the sum of two squares, as you
might like to investigate numerically.

Let’s prove this now. We’ll first give a proof which is missing one crucial detail.
Try and spot where the gap is.

Theorem 1.19 Every prime number p ≡ 1 (mod 4) can be written as the sum of
two squares.

Proof Since p ≡ 1 (mod 4), we can solve the equation x2 +1 ≡ 0 (mod p). Indeed,
one way to do this explicitly is the following. Write p = 4k + 1, and set x = (2k)!.
Then
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(2k)!(2k)! = 1.2. . . . .(2k − 1)(2k)(2k)(2k − 1) . . . 2.1

= (−1)2k1.2. . . . .(2k − 1)(2k)(2k)(2k − 1) . . . 2.1

= (−1)(−2) . . . .(−2k + 1)(−2k)(2k)(2k − 1) . . . 2.1

≡ (p − 1)(p − 2) . . . .(2k + 2)(2k + 1)(2k)(2k − 1) . . . 2.1 (mod p)

≡ (p − 1)! (mod p)

≡ −1 (mod p)

where the last line is Wilson’s Theorem, that if p is prime, then (p − 1)! ≡
−1 (mod p) (see [7, Corollary 4.5]). Thus x2 ≡ −1 (mod p) as required.

With this value of x , then, p|x2 + 1 = (x + i)(x − i) in Z[i]. If p were prime in
Z[i], we would have p|x+i or p|x−i . However, x±i

p /∈ Z[i], which is a contradiction
(neither the real nor imaginary parts are integers). So p is not prime, and it therefore
factorises in Z[i].

Suppose that p factorises as αβ. Then N (p) = p2 = N (α)N (β). We have three
possibilities:

N (α) = 1, N (β) = p2;
N (α) = p, N (β) = p;
N (α) = p2, N (β) = 1.

Suppose first that N (α) = 1, with α = a + ib. Since the only solutions to
a2 + b2 = 1 are a = ±1, b = 0 and a = 0, b = ±1, this means that α = ±1
or α = ±i , and so β = ±p or ±i p. Notice that this doesn’t involve factorising
p; merely writing it in an equivalent way using units. The case N (α) = p2 and
N (β) = 1 is similar.

Thus p must factorise as αβ with N (α) = N (β) = p. If we write α = a + ib,
we deduce that a2 + b2 = p, and we have found a representation of p as the sum of
two squares. �

Hopefully you spotted the gap in the argument, although it’s quite subtle. We used
the claim that if p|(x + i)(x − i) in Z[i] and p is prime, then p|x + i or p|x − i .
This should seem reasonable; in Z, if a prime number p divides a product ab, then
p|a or p|b (Lemma 1.15). This was one of a sequence of lemmas which followed in
a reasonably straightforward manner from the existence of the Euclidean algorithm
for Z.

However, we have not explained that there is any analogous algorithm for Z[i],
and so we cannot yet deduce the analogous statement over Z[i]. Fortunately there is
a version of the Euclidean algorithm for the Gaussian integers:

Lemma 1.20 Let α, β ∈ Z[i], with β �= 0. Then there exist Gaussian integers κ and
ρ such that

α = κβ + ρ

with N (ρ) < N (β).
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Proof We start by finding κ ∈ Z[i] with |α
β

− κ| < 1.
Simply take the quotient α/β = x + iy ∈ C. Then we choose integers m and

n such that |x − m| ≤ 1
2 and |y − n| ≤ 1

2 . Write κ = m + in ∈ Z[i], and write
ρ = α − κβ. This makes κ the closest point of Z[i] to α

β
. Then

∣∣∣∣
α

β
− κ

∣∣∣∣ = |(x + iy) − (m + in)| = |(x − m) + i(y − n)| ≤
√( 1

2

)2 + ( 1
2

)2 = 1√
2
.

Then

N (ρ) = |ρ|2 = |α − κβ|2 =
∣∣∣∣
α

β
− κ

∣∣∣∣
2

.|β|2 ≤ 1

2
|β|2 < |β|2 = N (β),

as required. �
You might like to check that this leads to the conclusion that if π |αβ in Z[i] for a

prime π , then π |α or π |β, exactly as in Lemma 1.15. We shall omit that here; later
we will develop a more general theory of Euclidean rings, with Z[i] an example, and
will see that the theory given in Sects. 1.2 and 1.3 can be generalised to such rings.

This fills in the gap in the proof of the lemma above, and shows that every prime
number p ≡ 1 (mod 4) can be written as the sum of two squares. This is the key
ingredient in the following classification of those integers which can be written as
the sum of two squares:

Theorem 1.21 A natural number n can be written as the sum of two squares if and
only if n has prime power factorisation n = ∏

p pn p where n p is even for all primes
p ≡ 3 (mod 4).

Exercise 1.8 Show that the set Z[√−2] = {a + b
√−2 | a, b ∈ Z} also has a

Euclidean algorithm, by imitating Lemma 1.20.

Exercise 1.9 Prove that an odd prime p can be written as x2 +2y2 with x and y ∈ Z

if and only if the congruence x2 ≡ −2 (mod p) is soluble.
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Exercise 1.10 Show that the set Z[√2] = {a +b
√

2 | a, b ∈ Z} also has a Euclidean
algorithm, using the norm function N (a + b

√
2) = |a2 − 2b2|.

Exercise 1.11 Find α, β ∈ Z[√−7] = {a + b
√−7 | a, b ∈ Z} with |α/β − κ| > 1

for each κ ∈ Z[√−7], and deduce that the natural attempt to generalise the Euclidean
algorithm to Z[√−7] fails.

Remark 1.22 We saw above, in the proof of Lemma 1.19, that x = (
p−1

2 )! gives a
solution to x2 ≡ −1 (mod p). However, in practice this is hard to calculate.

Here is a better way, using Legendre symbols (see [7, Chap. 7]). Recall that a
is a quadratic residue modulo p if the equation x2 ≡ a (mod p) has two solutions,
and is a non-residue if there are no solutions, and that the Legendre symbol ( a

p ) is
defined to be +1 if a is a quadratic residue, and −1 if not. Legendre symbols have
various properties which enable them to be calculated easily, such as multiplicativity,
( ab

p ) = ( a
p )( b

p ), explicit formulae for (−1
p ) and ( 2

p ), and also quadratic reciprocity

(see Theorem 9.15 for a statement and proof), which relates (
p
q ) and (

q
p ) for two

primes p and q.
Recall that a(p−1)/2 ≡ ±1 (mod p) for all a not divisible by p, the answer being

+1 when a is a quadratic residue, and −1 if not. That is, a(p−1)/2 ≡ ( a
p ) (mod p)

(this is due to Euler).
Compute the Legendre symbols ( a

p ) for a = 2, a = 3, and so on, until you find one
with ( a

p ) = −1. (You should be able to persuade yourself, using the multiplicativity

of the Legendre symbol, that the smallest such a will be prime.) Then a(p−1)/2 ≡
−1 (mod p); we simply put x = a(p−1)/4 (mod p) (remember that p ≡ 1 (mod 4));
then x2 ≡ −1 (mod p).

As an example, consider p = 73. We compute ( 2
73 ) = ( 3

73 ) = 1, but that ( 5
73 ) =

−1. We therefore compute x = 518 (mod 73); this is easily done by successively
squaring modulo 73:

52 ≡ 25, 54 ≡ 252 ≡ 41, 58 ≡ 412 ≡ 2, 516 ≡ 22 ≡ 4,

and then
518 = 516 × 52 ≡ 4 × 25 ≡ 27 (mod 73).

So x = 27 gives a solution to x2 ≡ −1 (mod 73).

Exercise 1.12 Use this method (perhaps with a computer equipped with a suitable
computer algebra package) to find a solution to x2 ≡ −1 (mod 1009).

We shall discuss generalisations of the Euclidean algorithm to imaginary quadratic
fields in Chap. 6.

I can’t resist ending the section with two related results published in American
Mathematical Monthly 97 (1990). The first is a remarkable proof, due to Don Zagier
[18], that every prime number p ≡ 1 (mod 4) is the sum of two squares. It is based
on an earlier argument by Roger Heath-Brown. Sadly the potential for generalisation
to other situations seems considerably more limited than our argument above.

http://dx.doi.org/10.1007/978-3-319-07545-7_6


14 1 Unique Factorisation in the Natural Numbers

Exercise 1.13

1. Recall that an involution on a set S is a map f : S −→ S such that f ◦ f = id,
i.e., for all s ∈ S, f ( f (s)) = s. If f is an involution on a finite set S, let
FixS( f ) = {s ∈ S | f (s) = s} denote the set of fixed points of S. Show that
|S| ≡ |FixS( f )| (mod 2).
[Hint: Consider all of the subsets of S of the form {s, f (s)}.]
Deduce that if |S| is odd, then there is always a fixed point in S.

2. Now let p = 4k + 1 be prime, and consider the set

S = {(x, y, z) ∈ N3 | x2 + 4yz = p}.

Show that the map f : S −→ S defined by

f : (x, y, z) ⇒→
⎧
⎨

⎩

(x + 2z, z, y − x − z), if x < y − z,
(2y − x, y, x − y + z), if y − z < x < 2y,

(x − 2y, x − y + z, y), if 2y < x,

is an involution on S.
3. Show that f has a unique fixed point, and deduce that |S| is odd.
4. Show that f ∩ : (x, y, z) ⇒→ (x, z, y) is another involution on S, and deduce that

FixS( f ∩) is non-empty.
5. Deduce that p can be written as the sum of two squares.

The proofs given above that every prime number congruent to 1 (mod 4) are not
constructive; that is, given p, the proof doesn’t really help to find integers a and
b such that p = a2 + b2. However, there is a constructive algorithm which works
quickly, which we will outline without proof in the next exercise. For a proof of why
this works, as well as a historical discussion, see the article by Stan Wagon [15] in
the same issue of the journal mentioned above:

Exercise 1.14 Here is a constructive algorithm to solve p = a2 + b2 for
p ≡ 1 (mod 4) which works quickly. There are just two steps:

Step 1: Find an integer x such that x2 ≡ −1 (mod p) (see Remark 1.22).
Step 2: Run the Euclidean algorithm on p and x ; then a and b can be taken to be

the first two remainders less than
√

p.

Using Exercise 1.12, hence factor 1009 in the Gaussian integers.

1.5 Another Application of the Gaussian Integers

Let’s finish the chapter with another application of uniqueness of factorisation in
Z[i]. We will find all integer solutions to x3 = y2 + 1. (Recall that equations where
only integer solutions are sought are known as Diophantine equations, after the Greek
mathematician Diophantus.)
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Remark 1.23 This is a special case of Catalan’s conjecture, which predicts that the
only consecutive perfect powers are 8 = 23 and 9 = 32. The conjecture was finally
proven, after a long history, by Preda Mihăilescu, in 2002.

Remark 1.24 We have remarked that some care has to be taken in defining unique-
ness of factorisation. For example,

6 = 2 × 3 = (−2) × (−3)

should really be counted as equivalent factorisations – we’ve simply multiplied both
by −1, and since (−1)(−1) = 1, this shouldn’t really matter. The same considera-
tions will apply in Z[i]; given a factorisation α = βγ , and if u and v in Z[i] satisfy
uv = 1, then we will consider α = (uβ)(vγ ) as an equivalent factorisation. In Z[i],
the possible values of such units u are ±1 or ±i , exactly those elements u with
N (u) = 1.

Suppose that x and y are integers satisfying x3 = y2 + 1. The first observation is
that if x is even, y2 +1 ≡ 0 (mod 4), which is not possible. So x is odd, and therefore
y is even.

Now we make use of the theory of the Gaussian integers started in the previous
section. As in the previous section, we will use the word “prime” rather loosely, and
assume that primes in Z[i] satisfy the same properties as prime numbers in Z do (we
will justify this more carefully in later chapters). In Z[i], we can write

x3 = (y + i)(y − i).

Let’s first show that any common factor of y + i and y − i must be a unit ±1 or ±i
(i.e., y + i and y − i are coprime).

Lemma 1.25 Suppose that α|y + i and also α|y − i . Then α is a unit.

Proof Suppose that α|y + i and also α|y − i , and suppose that α is not a unit. Then
α|((y + i) − (y − i)), and so is a factor of 2i = (1 + i)2. However, any factorisation
1 + i = βγ must satisfy N (β)N (γ ) = N (1 + i) = 2, so either N (β) = 1 or
N (γ ) = 1, and then β or γ is ±1 or ±i , a unit. So 1 + i is a prime in Z[i]. As
α|(1+ i)2, if α is not a unit, we must have 1+ i |α, using unique factorisation in Z[i].
Then 1+ i |x3, and so 1+ i |x (again using unique factorisation). But then (1+ i)2|x2,
so 2i |x2, and so x2 is even. This contradicts the observation that x is odd. �

We conclude that y+i and y−i are coprime (in the sense that any common divisor
must be a unit). If π |x and π is a prime (so not a unit), then π3|x3 = (y + i)(y − i).
Since y + i and y − i have no factor in common, either π3|y + i and π � y − i , or
vice versa. In particular,

y + i = uβ3

y − i = vγ 3
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where u and v are units. In fact, since the units are ±1 and ±i , they are all already
cubes, and we can absorb them into β and γ .

We can therefore suppose that y + i = (a + bi)3 for some integers a and b.
Expanding:

y + i = (a3 − 3ab2) + i(3a2b − b3),

and equating imaginary parts gives

(3a2 − b2)b = 1.

The only way that a product of two integers can give 1 is if both are 1, or both are
−1. If b = 1, there is no possible solution for a (we would need 3a2 = 2). However,
if b = −1, we see that a = 0 gives the only solution.

It follows that y + i = (−i)3 = i , so that the only solution in integers to the
original equation x3 = y2 + 1 is when y = 0, which implies that x = 1.

Exercise 1.15 Find all solutions of x3 = y2 + 2 by the same method (you may
assume that Z[√−2] has unique factorisation by Exercise 1.8).

Exercise 1.16 Find all solutions of x5 = y2 + 1 by the same method.



Chapter 2
Number Fields

We’ve just seen examples where questions about integers were naturally treated by
working in the slightly bigger set Z[i] of Gaussian integers. In this chapter we begin
the development of some more general theory.

The aim of algebraic number theory is to study generalisations of the usual arith-
metic in the natural numbers in more general settings. While studying these gener-
alisations, it will become clear that there are new phenomena of interest in their own
right.

In Chap. 1, we saw that unique factorisation plays a prominent role, and that this
was a consequence of the Euclidean algorithm. In order to be able to talk about a
Euclidean algorithm, we need to work in sets closed under addition and multiplica-
tion, i.e., in rings. As in the examples at the end of Chap. 1, we will also want to work
in sets contained in the complex numbers, that is, with subrings of C.

It turns out that there is a good theory of integers inside any field K which is a finite
degree extension of Q, and these finite extensions, known as number fields, form the
setting for algebraic number theory. Finite degree extensions of Q are constructed by
adjoining complex numbers which are the roots of polynomial equations with rational
(or integer) coefficients. Although many complex numbers are roots of polynomial
equations with integer coefficients, it turns out that not every complex number can
be written in this way.

2.1 Algebraic Numbers

Definition 2.1 A complex number α is said to be algebraic if it is the root of a poly-
nomial equation with integer coefficients. If α is not algebraic, it is transcendental.

Every rational number m
n is algebraic, as it is a root of nX − m = 0; also, ±≥

2

are roots of X2 − 2 = 0, so ±≥
2 are both algebraic. Indeed, every polynomial with

integer coefficients of degree n will have n algebraic numbers as roots. This gives

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 17
Mathematics Series, DOI: 10.1007/978-3-319-07545-7_2,
© Springer International Publishing Switzerland 2014
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such a large collection of algebraic numbers, that one might wonder whether every
complex number could be written as a root of a polynomial.

However, this is not true. Liouville (1844) was the first to construct an explicit
example of a transcendental number, while Hermite (1873) and Lindemann (1882)
proved that e and π respectively are transcendental.

For readers with some knowledge of Cantor’s theory of countability, the simplest
proof of the existence of transcendental numbers is due to Cantor himself (1874),
although it does not give any way to construct such numbers. We will give Liouville’s
construction of an explicit transcendental number below.

Write A ∈ C for the collection of all algebraic numbers.

Theorem 2.2 (Cantor) The set A is countable; that is, there are only countably
many algebraic numbers.

Proof Given a polynomial equation p(X) = c0 Xd + c1 Xd−1 + · · · + cd = 0 with
all ci ∈ Z and c0 ≡= 0, define the quantity

H(p) = d + |c0| + · · · + |cd | ∈ Z.

This process associates an integer to every polynomial with integer coefficients.
Notice that deg(p) = d < H(p).

Let H be any natural number. Then it is easy to see that there are only finitely
many polynomials p(X) which satisfy H(p) ≤ H . Say that an algebraic number
α ∈ A is of level H if α is a root of some polynomial p with H(p) ≤ H . As there
are only finitely many polynomials with H(p) ≤ H , and all have at most H roots
(since the degree of such a polynomial is bounded by H ), there are only finitely many
algebraic numbers of level H , for any given H .

On the other hand, every algebraic number is a root of such a polynomial, and is
therefore of level H for some H . The collection of algebraic numbers can therefore
be written as a union

A =
√⋃

H=1

{α ∈ A | α is of level H}.

We have already remarked that each set on the right-hand side is finite. Furthermore,
the union is a countable union, as the indexing set consists of the natural numbers.
Therefore A is a countable union of finite sets, and is therefore countable. �

Since C is uncountable, and its subset A is countable, we conclude that tran-
scendental numbers exist. Even more, we see that the set of transcendental numbers
is actually uncountable, so that, in some sense, almost every complex number is
transcendental.

Now let us give Liouville’s explicit construction of a transcendental number,
which avoids use of countability arguments.



2.1 Algebraic Numbers 19

We need the following theorem:

Theorem 2.3 (Liouville) Let α be a real algebraic number which is a root of an
irreducible polynomial f (X) over Z of degree n > 1. Then there is a constant c such
that for all rational numbers p

q ,

∣∣∣∣α − p

q

∣∣∣∣ >
c

qn
.

Proof The result is clear in the case where |α − p/q| > 1; choosing c = 1 covers
these values. We therefore consider the remaining case where |α − p/q| ≤ 1.

Apply the Mean Value Theorem to f (X) at the points α and p/q to deduce the
existence of a number γ strictly between α and p/q such that

f (α) − f (p/q)

α − p/q
= f →(γ ).

As α is a root of f , we see that f (α) = 0. Also, as f (X) is an irreducible polynomial
of degree n > 1, it has no rational roots, so f (p/q) ≡= 0. However, as f (X) has
integer coefficients, the denominator of f (p/q) must divide qn , so qn f (p/q) is a
non-zero integer. Therefore | f (p/q)| ◦ 1/qn .

Now |γ − α| < 1 as γ is strictly between α and p/q, and |α − p/q| ≤ 1. By
continuity of f → at α, we see that | f →(γ )| < 1/c0 for some constant c0 for all γ

within 1 of α, where the constant c0 depends only on α. Then

∣∣∣∣α − p

q

∣∣∣∣ =
∣∣∣∣

f (p/q)

f →(γ )

∣∣∣∣ >
c0

qn
.

Choose c = min(c0, 1) to cover both cases, and the result follows. �
In order to find a transcendental number, we simply need to find an α where the

inequality of Theorem 2.3 fails for all n. Liouville suggested choosing

α =
√∑

k=1

10−k! = 0.11000100000000000000000100 . . . .

Define pr/qr = ∑r
k=1 10−k!. The first three numbers are p1/q1 = 0.1, p2/q2 = 0.11

and p3/q3 = 0.110001. Then qr = 10r !, and

∣∣∣∣α − pr

qr

∣∣∣∣ =
√∑

k=r+1

10−k! <
2

10(r+1)! = 2

(10r !)r+1
= 2

qr+1
r

. (2.1)

Ifα were algebraic of some degree n, there would be a constant c such that |α−p/q| >

c/qn for all rationals p/q. However, choosing p/q = pr/qr for large enough r > n
gives a contradiction, using (2.1).
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Exercise 2.1 Show that all numbers
∑√

k=1 sk10−k! are transcendental, where sk ∈
{1,−1}.

By considering a variant of Cantor’s diagonal argument, prove that the set of
numbers of this form is uncountable. This gives another proof of the uncountability
of the set of transcendental numbers.

Hermite’s proof of the transcendence of e, and Lindemann’s proof of the transcen-
dence ofπ , are (only just) beyond the scope of this book. References for the arguments
include [11].

2.2 Minimal Polynomials

As already mentioned, we will be able to do arithmetic in fields which are obtained
by adjoining roots of polynomials to Q, i.e., algebraic numbers. In this section, we
will look at some properties of polynomials.

Recall that a monic polynomial is one whose leading coefficient is 1.

Lemma 2.4 If α is algebraic, then there is a unique monic polynomial f (X) ∈ Q[X ]
of smallest degree with α as a root.

Proof If α is a root of a polynomial f (X) = c0 Xn +c1 Xn−1 +· · ·+cn with c0 ≡= 0,
it will also be a root of Xn + c1

c0
Xn−1 + · · · + cn

c0
got by dividing through by the

leading coefficient.
Amongst all the monic polynomials with α as a root, let f (X) be one with smallest

degree. We claim that f (X) is unique.
Suppose that g(X) is another monic polynomial of the same degree with α as a

root. Then α is also a root of ( f − g)(X), and since the leading terms of f (X) and
g(X) cancel, the degree of f −g is smaller than that of f or g. If f −g ≡= 0, then we
can divide through by its leading coefficient to find a monic polynomial of smaller
degree than f with α as a root, contradicting the choice of f (X). �

Definition 2.5 Let α be an algebraic number. The minimal polynomial of α over Q
is the monic polynomial over Q of smallest degree with α as a root.

Lemma 2.6 If m(X) is the minimal polynomial of the algebraic number α, then it
is irreducible.

Proof Indeed, if m(X) were to factorise as the product f (X)g(X) of two polynomials
over Q of smaller degree, then since m(α) = 0, we would have f (α)g(α) = 0, and α

would be a root of either f or g, and this contradicts the choice of m as the polynomial
of smallest degree with α as a root. �

The minimal polynomial has a particularly useful property: every polynomial with
α as a root is necessarily a multiple of the minimal polynomial of α. We’ll prove that
next, with the aid of Euclid’s algorithm for polynomials.
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Lemma 2.7 Suppose that α is a root of some polynomial f (X) ∈ Q[X ]. If m(X) is
the minimal polynomial of α, then m(X)| f (X).

Proof Just like Z, the ring of rational polynomials Q[X ] has an obvious division
algorithm (see Exercise 1.6), and we can find polynomials q(X), r(X) ∈ Q[X ] such
that

f (X) = q(X)m(X) + r(X),

where r(X) is the zero polynomial, or has smaller degree than m(X). Substitute
X = α:

f (α) = q(α)m(α) + r(α);

as f (α) = m(α) = 0, we must have r(α) = 0. However, r(X) has smaller degree
than m(X), and m(X) was the monic polynomial of smallest degree with α as a
root. If r(X) were non-zero, we could scale it to get a monic polynomial of smaller
degree than m(X) with α as a root, and this would contradict the definition of m(X).
Therefore r(X) must be the zero polynomial. In particular, f (X) = q(X)m(X), and
so f (X) is a multiple of m(X). �

If K is any field, and if α satisfies some equation over K , then we also have a
notion of minimal polynomial over K , the monic polynomial with coefficients in K
of smallest degree with α as a root; any other polynomial with coefficients in K with
α as a root is a multiple of the minimal polynomial. The argument is identical to the
one just given.

Exercise 2.2 Find the minimal polynomial of
≥

2+≥
3 (overQ). Would the minimal

polynomial over Q(
≥

2) be the same?

Exercise 2.3 Find the minimal polynomial of α = 1+i≥
2

over Q. What is the minimal

polynomial of α over each of Q(i), Q(
≥

2) and Q(
≥−2)?

2.3 The Field of Algebraic Numbers

The main aim of this section is to establish the basic algebraic properties of algebraic
numbers; indeed, we prove that the set A of algebraic numbers is actually a field.
Recall that a field is a set which satisfies exactly the same algebraic properties as Q,
so that we must be able to add, subtract, multiply and divide (by non-zero elements)
in Q, and the usual algebraic rules (e.g., addition and multiplication are commutative
and associative) are satisfied. Since we are dealing with subsets of the complex
numbers C, all these rules are inherited from C, and we just have to check that the
collection of algebraic numbers is closed under the usual arithmetic operations. That
is, we want to see that if α and β are algebraic numbers, then so are α + β, α − β

and αβ, and if β ≡= 0, so is α/β.
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Although one could write a proof using no abstract algebra (using the ideas of
the end of Sect. 2.6), we will give a more algebraic argument now, since some of the
definitions will reappear later in the book.

We are going to give an equivalent algebraic formulation for what it means for
the complex number α to be algebraic. Let’s recall that for any complex number α,
Q(α) denotes the smallest field one can obtain by applying all the usual arithmetic
operations (addition, subtraction, multiplication, division) to the rational numbers
and α; it consists of all quotients p(α)/q(α) where p(X) and q(X) are polynomials
with rational coefficients, and where q(α) ≡= 0.

On the other hand, we also have the notation Q[α], which means the ring of all
polynomial expressions in α. It is the smallest ring one can obtain by applying the
arithmetic operations of addition, subtraction and multiplication (but not division)
to the rational numbers and α.

For example, 3α3+α−1
α2+2

is in Q(α), but not necessarily in Q[α]. Of course, Q[α] ∈
Q(α).

Let’s begin with a simple remark about algebraic numbers:

Proposition 2.8 If α is algebraic, Q[α] = Q(α), and so every element of Q(α) can
be written as a polynomial in α.

Proof We have to explain that every quotient of polynomials p(α)/q(α) with
q(α) ≡= 0 can be written alternatively as a polynomial in α.

Let m(X) denote the minimal polynomial of α over Q. The highest common
factor of the two polynomials m(X) and q(X) must be a factor of m(X); as m(X)

is irreducible, its only factors are 1 and m(X) itself. However, m(X) is not a factor
of q(X), as m(α) = 0, but q(α) ≡= 0. By a similar argument to the discussion of the
Euclidean algorithm in Chap. 1 (see Exercise 1.6), there are polynomials s(X) and
t (X) over Q such that

s(X)q(X) + t (X)m(X) = 1.

In particular, s(α)q(α) + t (α)m(α) = 1, and therefore s(α)q(α) = 1, because
m(α) = 0. We conclude that 1/q(α) = s(α), and so p(α)/q(α) = p(α)s(α), a
polynomial expression in α, as required. �

Note that if α is transcendental, there is no way to write 1/α as a polynomial in
α; otherwise, we could multiply through by α and find a rational polynomial with
α as a root. Therefore 1/α is in Q(α), but not in Q[α]. Thus if α is not algebraic,
then Q(α) is strictly bigger than Q[α], and the property of Proposition 2.8 therefore
characterises algebraic numbers.

Recall that the degree of the field extension Q(α)/Q is the dimension of the set
Q(α) when regarded as a vector space over Q; that is, it is the number of elements in
a basis {ω1, . . . , ωn} so that every element of Q(α) can be expressed uniquely as a
sum a1ω1 + · · · + anωn with ai ∈ Q. It is denoted [Q(α) : Q]. For example, Q(

≥
2)

has degree 2 over Q, as each element can be written as a + b
≥

2.

Exercise 2.4 Show that Q(
≥

2,
≥

3) has degree 4 over Q by proving that 1,
≥

2,
≥

3
and

≥
6 are linearly independent.

http://dx.doi.org/10.1007/978-3-319-07545-7_1
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Now we can give an equivalent formulation of what it means for a complex number
to be algebraic:

Proposition 2.9 Let α be a complex number. Then the following are equivalent:

1. α is algebraic;
2. the field extension Q(α)/Q is of finite degree.

Proof (1) ⇒ (2). Suppose that α is algebraic. Then let m(X) = Xn + c1 Xn−1 +
· · · + cn denote the minimal polynomial for α, so that

αn + c1α
n−1 + · · · + cn = 0,

or, rearranging:
αn = −(c1α

n−1 + · · · + cn). (2.2)

As α is algebraic, every element ofQ(α) can be written as a polynomial in α. Further,
if this polynomial has degree n or above, we can reduce the degree by replacing all
occurrences of αr for r ◦ n using (2.2). It follows that every element of Q(α) can
be written as an expression

an−1α
n−1 + an−2α

n−2 + · · · + a0

with ai ∈ Q.
Furthermore, this expression is unique—if an element can be written in two dif-

ferent ways

an−1α
n−1 + an−2α

n−2 + · · · + a0 = bn−1α
n−1 + bn−2α

n−2 + · · · + b0

then subtracting one side from the other gives a polynomial of degree strictly smaller
than n with α as a root. However, the minimal polynomial is m(X), of degree n, so
there can be no polynomial of degree less than n with α as a root.

So every element ofQ(α) is a unique rational linear combination of the n elements
1, α, . . . , αn−1. Thus Q(α) is n-dimensional as a vector space over Q, and therefore
[Q(α) : Q] is finite.

(2) ⇒ (1). If [Q(α) : Q] is some finite number, n, say, then any n + 1 ele-
ments of the Q-vector space Q(α) are linearly dependent. In particular, the elements
1, α, . . . , αn are linearly dependent, so that there exists a linear relationship

a0 + a1α + . . . + anαn = 0,

and consequently α satisfies a polynomial equation over Q, and is algebraic. �
The proof actually shows something more:

Corollary 2.10 Suppose that α is algebraic. Then the degree of the extension [Q(α) :
Q] is the same as the degree of the minimal polynomial of α over Q. Every element
of Q(α) can be written as a polynomial in α of degree less than [Q(α) : Q].
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Proof This just follows from the proof of Proposition 2.9. �

More generally, the same argument shows that if K is any field, then an element
α is algebraic over K (i.e., satisfies a polynomial equation with coefficients in K ) if
and only if [K (α) : K ] is finite, and that then this degree is also the degree of the
minimal polynomial of α over K .

We now use Proposition 2.9 to prove that the algebraic numbers form a field; that
is, the sum, difference and product of any two algebraic numbers is again algebraic,
as is the quotient of an algebraic number by a non-zero algebraic number.

We can adjoin more than one number to a field; for example, if both α and β

are algebraic, define Q(α, β) to be Q(α)(β), that is, all polynomial expressions in β

with coefficients in Q(α). It is easy to see that this just gives all the polynomials in
the two variables α and β.

Corollary 2.11 Suppose that α and β are algebraic. Then α +β, α −β and αβ are
algebraic; if also β ≡= 0, then α/β is algebraic.

Proof As α and β are algebraic, Proposition 2.9 states that [Q(α) : Q] and [Q(β) : Q]
are both finite. Write

m = [Q(α) : Q],
n = [Q(β) : Q].

Let’s explain that [Q(α, β) : Q] is finite. A typical element ofQ(α, β) is a polynomial
expression

∑k
i=0

∑l
j=0 ai jα

iβ j . However, every αi with i ◦ m can be written as a

polynomial in α of degree at most m − 1 (by Corollary 2.10), and similarly every β j

with j ◦ n can be written as a polynomial in β of degree at most n − 1. Substituting
these in, we see that any element of Q(α, β) can be written

m−1∑

i=0

n−1∑

j=0

a→
i jα

iβ j

for some a→
i j . It therefore follows that Q(α, β) is spanned by the set {αiβ j | 0 ≤ i ≤

m − 1, 0 ≤ j ≤ n − 1}. Thus Q(α, β) has a finite spanning set as a Q-vector space,
and therefore [Q(α, β) : Q] is finite.

To prove that α + β is algebraic, we simply note that α + β ∈ Q(α, β), so
that Q(α + β) ∈ Q(α, β), and so [Q(α + β) : Q] ≤ [Q(α, β) : Q]. It follows
that [Q(α + β) : Q] is finite, and, again applying Proposition 2.9, α + β must be
algebraic.

The arguments for α − β, αβ and α/β are all similar, as each lies in Q(α, β). �

While this proof is easy, it doesn’t give any recipe for writing down a polynomial
with α + β as a root, given polynomials with α and β as roots. We will discuss this
at the end of Sect. 2.6.

This is exactly what we need to deduce our desired result:
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Corollary 2.12 The algebraic numbers A form a field.

Exercise 2.5 Find an algebraic number α where Q(α) is strictly larger than the set
{a + bα | a, b ∈ Q}.
Exercise 2.6 Let α = 3

≥
2. Write α2−1

α+2 as a polynomial in α with rational coefficients.

Exercise 2.7 Let α be a root of X4 + 2X + 1 = 0. Write α+1
α2−2α+2

as a polynomial
in α with rational coefficients.

2.4 Number Fields

Although A is countable, it is still very much larger than the rational numbers Q (it
has infinite degree over Q, for example), and is too large to be really useful.

The fields in which we are going to generalise ideas of primes, factorisations, and
so on, are the finite extensions of Q:

Definition 2.13 A field K is a number field if it is a finite extension of Q. The degree
of K is the degree of the field extension [K : Q], i.e., the dimension of K as a vector
space over Q.

In particular, every element in K lies inside a finite extension of Q, and, by
Proposition 2.9, is necessarily algebraic.

Example 2.14

1. Q itself is a number field. Indeed, it will serve as the inspiration for our general
theory.

2. Q(
≥

2) = {a + b
≥

2 | a, b ∈ Q} is a number field, since every element is a
Q-linear combination of 1 and

≥
2, so [Q(

≥
2) : Q] = 2, which is finite.

3. Similarly,Q(i) is a number field, as isQ(
≥

d) for any integer d. Note that we may
assume that d is not divisible by a square (“squarefree”), because if d = m2d →,
Q(

≥
d) = Q(

≥
d →).

Indeed, it is easy to see (from the quadratic formula) that every quadratic field
Q(α) is of this form. So every quadratic number field is Q(

≥
d) for some square-

free d.
4. Q(

3
≥

2) is a number field, as [Q(
3
≥

2) : Q] = 3, which is finite. Every element
can be written in the form

a + b
3
≥

2 + c(
3
≥

2)2,

for a, b, c ∈ Q, so 1, 3
≥

2 and (
3
≥

2)2 form a basis for Q(
3
≥

2) as a vector space
over Q.
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5. Q(
≥

2,
≥

3) is also a number field; every element can be written in the form
a+b

≥
2+c

≥
3+d

≥
6 for rational numbers a, b, c and d, so that {1,

≥
2,

≥
3,

≥
6}

forms a basis for Q(
≥

2,
≥

3) over Q—it follows that [Q(
≥

2,
≥

3) : Q] = 4 (we
showed the linear independence in Exercise 2.4).

6. Q(π) is not a number field; π does not satisfy any polynomial equation over Q
(as it is transcendental); therefore [Q(π) : Q] is infinite.

Notice that every number field contains the rationals, so is infinite and is of
characteristic 0.

Recall that the characteristic of a field is 0 if 1 + 1 + · · · + 1 is never equal to
0, and is p if p is the smallest number such that 1 + 1 + · · · + 1 = 0, where p is
the number of 1s in the left-hand sum. Fields of characteristic 0 always contain Q.
Fields of characteristic p exist for any prime number p. They always contain the
integers modulo p, {0, 1, . . . , p − 1}, which is the smallest field of characteristic p,
and which we denote by Fp.

On the other hand, every element of a number field is algebraic, so is a root of a
polynomial with rational coefficients. As all roots of such polynomials are complex
numbers, this means that we can view every number field as a subfield of the complex
numbers C. However, it is sometimes important to realise that there is not usually a
natural way to do this; if a number field contains a square root

≥−1 of −1, we have
a choice whether to view this as i or as −i inside the complex numbers. In Chap. 3
we will think more about this issue.

Occasionally it will be useful to know that every extension is simple, that is, it is
generated by a single element.

We need a preliminary result.

Lemma 2.15 Suppose that f (X) ∈ Q[X ] is an irreducible polynomial. Then it has
distinct roots in C.

Proof Over C, factorise f (X) as c
∏r

i=1(X − γi )
di .

If the lemma were false, di > 1 for some i , and so f (X) would have a factor
(X − γi )

2.
Writing f (X) = (X − γi )

2g(X), we see that (X − γi ) is also a factor of the
derivative f →(X). So (X − γi ) is a common factor of f and f →, thus showing that the
highest common factor h of f and f → must be of degree at least 1. But the highest
common factor of f and f → is obtained by Euclid’s algorithm in Q[X ], and is a
polynomial with rational coefficients that divides into both f and f →. However, f is
irreducible, so its only factors are 1 and f . Since h has degree at least 1, we conclude
that h = f . But then f | f →, which is absurd, since the degree of f is bigger than the
degree of f →, which is a nonzero polynomial (as f has degree d ◦ 1). �

Remark 2.16 More generally, the proof shows that any irreducible polynomial over
a field of characteristic 0 has distinct roots. In characteristic p, it can happen for
an irreducible polynomial that its derivative is 0, since it may only involve terms in
X p, whose derivatives are divisible by p, and which therefore vanish; consider the
polynomial f (X) = X p in a field of characteristic p; although this is not irreducible,
it is an example where f divides f →, as f → = 0.

http://dx.doi.org/10.1007/978-3-319-07545-7_3


2.4 Number Fields 27

Theorem 2.17 (Primitive Element) Suppose K ∈ L is a finite extension of fields of
characteristic 0 (e.g., number fields). Then L = K (γ ) for some element γ ∈ L.

Proof Suppose L is generated over K by m elements. We first treat the case m = 2.
So suppose L = K (α, β), and let f and g denote the minimal polynomials of α and
β over K . Let α1 = α, α2, . . . , αs be the roots of f in C, and let β1 = β, β2, . . . , βt

be the roots of g. Irreducible polynomials always have distinct roots (Lemma 2.15).
Thus X = αi −α1

β1−β j
is the only solution (if j ≡= 1) to

αi + Xβ j = α1 + Xβ1.

Choosing a c ∈ K different from each of these X ’s, then each αi + cβ j is different
from α+cβ. We claim that γ = α+cβ generates L over K . Certainly γ ∈ K (α, β) =
L . Now it suffices to verify that α, β ∈ K (γ ).

The polynomials g(X) and f (γ −cX) both have coefficients in K (γ ), and have β

as a root. The other roots of g(X) are β2, . . . , βt , and, as γ −cβ j is not any αi , unless
i = j = 1, β is the only common root of g(X) and f (γ − cX). Thus, (X − β) is
the highest common factor of g(X) and f (γ − cX). But the highest common factor
is a polynomial defined over any field containing the coefficients of the original two
polynomials (think about how the Euclidean algorithm works for polynomials). In
particular, it follows that X − β has coefficients in K (γ ), so that β ∈ K (γ ). Then
α = γ − cβ ∈ K (γ ). The result follows for m = 2.

Now we turn to the case where m > 2. We can prove this using the result
we have just proven. After all, if L = K (α1, . . . , αm), we can view this as
K (α1, . . . , αm−2)(αm−1, αm), and the case m = 2 allows us to write this as
K (α1, . . . , αm−2)(γm−1). Rewriting this as K (α1, . . . , αm−3)(αm−2, γm−1), and
using the case m = 2 again reduces the number further still. Continuing in this
way, we eventually get down to just one element. �

This proof uses properties of fields of characteristic 0 in two places. Firstly, we
used the fact that irreducible polynomials always have distinct roots, which is true
for any field of characteristic 0. And then we chose a value of c different from all
values in some finite set, which we can do because fields of characteristic 0 contain
Q, and so are infinite.

Corollary 2.18 Let K be a number field. Then K = Q(γ ) for some element γ .

Proof Simply apply Theorem 2.17. �

Let’s illustrate this argument with one example.

Example 2.19 By the previous corollary, it should be possible to express the number
field Q(

≥
2,

≥
3) as Q(γ ) for some element γ . By looking at the proof of Theorem

2.17, it seems that we should be able to take γ = ≥
2 + c

≥
3 for almost any choice

of c (only finitely many values might be excluded). Let’s try c = 1, so that γ =≥
2 + ≥

3 ∈ Q(
≥

2,
≥

3). Then
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1 = 1
γ = ≥

2 +≥
3

γ 2 = 5 +2
≥

6
γ 3 = 11

≥
2 +9

≥
3

and we see that
≥

2 = (γ 3 − 9γ )/2 and
≥

3 = (11γ − γ 3)/2. It follows that both≥
2 and

≥
3 can be written as polynomials in γ , so that

≥
2,

≥
3 ∈ Q(γ ). Therefore

Q(
≥

2,
≥

3) ∈ Q(γ ). On the other hand, γ ∈ Q(
≥

2,
≥

3), which gives the other
inclusion Q(γ ) ∈ Q(

≥
2,

≥
3), and shows that Q(

≥
2,

≥
3) = Q(γ ), as required.

Exercise 2.8 What is the degree of Q(
3
≥

2,
≥

2) over Q?

Exercise 2.9 Show that Q(
≥

3,
≥

5) = Q(
≥

3 + ≥
5).

2.5 Integrality

We are going to do number theory in number fields, enlarged versions of the rational
numbers. That is, we are going to study prime numbers, divisibility, and so on, in
these larger fields.

Recall that prime numbers are defined as those positive integers which have no
divisors other than themselves and 1. Even to talk about divisibility needs some
notion of integrality; in Q, any rational number is divisible by any non-zero rational
number. It is only in the integers that divisibility and prime numbers are properly
defined.

When we “do number theory”, we almost always refer to properties of the inte-
gers Z, rather than Q. So to work in a number field K , we need to define a subset
ZK of “integers in K ”.

It would be nice if this subset satisfied the same algebraic properties asZ—namely,
ZK should be a ring, so that we can add, subtract and multiply within ZK . Clearly
we would like the integers in Q to turn out to be Z!

It would also be desirable to arrange that, given two number fields K ∈ L and an
element α ∈ K , that α is an integer in K if and only if it is an integer in L . That is,
if K ∈ L is an extension of number fields, we require ZL ∩ K = ZK .

At the end of Chap. 1, we saw our first example of working in a more general
number field. There, we looked at the Gaussian integers,

Z[i] = {a + bi | a, b ∈ Z}

which seemed to have the appropriate properties in Q(i). It seems reasonable to hope
that our definition of integers should give Z[i] as the integers for Q(i).

We have also seen that every number field can be written in the form Q(γ ), and at
first glance, it might seem reasonable to suggest that we define its integers to beZ[γ ].
This is, after all, a ring; the elements are polynomials in γ with integer coefficients,

http://dx.doi.org/10.1007/978-3-319-07545-7_1
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and two of these can be added, subtracted or multiplied. In addition, it gives the right
answer for Q(i).

Unfortunately, a moment’s reflection will reveal that this is not a good definition.
Indeed, it isn’t even well-defined! That is, we may be able to write our number field
in more than one way as Q(γ ), but these may give different answers for the integers.
For example, as

≥
8 = 2

≥
2, we see that Q(

≥
8) = Q(

≥
2); on the other hand,

Z[≥8] ≡= Z[≥2], since
≥

2 /∈ Z[≥8].
We need some more intrinsic way to determine which element of a given number

field is an integer.
Associated to α is its minimal polynomial over Q, the monic polynomial with

rational coefficients of smallest degree which has α as a root. We’re going to use this
to give our definition of an integer:

Definition 2.20 Let α be an algebraic number. We say that α is an algebraic integer
if the minimal polynomial of α over Q has coefficients in Z.

Before we explain that the algebraic integers form a ring, that is, they are closed
under addition, subtraction and multiplication, let’s look at some examples:

Example 2.21

1. Every integer n is an algebraic integer. Its minimal polynomial over Q is X − n,
and the coefficients of this polynomial are indeed integral.

2. i is an algebraic integer, as its minimal polynomial is X2 + 1, which is in Z[X ].
3.

≥
2 is an algebraic integer, as its minimal polynomial is X2 − 2, again in Z[X ].

4. ω = (−1 + ≥−3)/2 is an algebraic integer, perhaps surprisingly; it is a root of
the polynomial X2 + X + 1—since this polynomial is irreducible, this must be
the minimal polynomial of ω.

5. (−1 + ≥
3)/2 is not an algebraic integer, as its minimal polynomial is X2 +

X − 1
2 , which involves fractional coefficients.

6. π is not an algebraic integer, since it is not even an algebraic number.

You might be surprised that (−1 + ≥−3)/2 should be an integer, but that (−1 +≥
3)/2 isn’t, but apart from that, I hope that you agree that the definition looks

reasonable.
When it comes to checking whether or not a given algebraic number α is an

algebraic integer, it is sometimes convenient to be able to check a weaker condition.

Lemma 2.22 Suppose that α satisfies any monic polynomial with coefficients in Z.
Then α is an algebraic integer.

Proof Suppose α is a root of the monic polynomial f (X) ∈ Z[X ]. Let m(X) ∈ Q[X ]
denote the minimal polynomial of α over Q. We will show that m(X) ∈ Z[X ]. We
have already seen that m(X)| f (X), so that f (X) = q(X)m(X) for some polynomial
q(X) ∈ Q[X ]. Since f (X) and m(X) are both monic, clearly q(X) is also.

So f (X) = q(X)m(X) expresses f (X) ∈ Z[X ] as a product of two monic
polynomials q(X) and m(X) with rational coefficients. We explain that this implies
q(X) and m(X) are both in Z[X ].
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Choose positive integers a and b so that aq(X) and bm(X) are polynomials with
integer coefficients, and where the highest common factors of the coefficients of
aq(X) and bm(X) are both 1. (Indeed, a and b are just the least common multiples
of the denominators of the coefficients of q and m respectively.) Then

(ab) f (X) = aq(X).bm(X).

If ab ≡= 1, choose a prime number p|ab. There are coefficients of aq(X) and bm(X)

not divisible by p. So there are also terms in the product whose coefficients are not
divisible by p (consider the term in the product coming from the first term of aq(X)

with coefficient not divisible by p with the first term of bm(X) with coefficient not
divisible by p). On the other hand, the product is (ab) f (X), so all the coefficients
must be divisible by the integer ab, and therefore by p. This contradiction shows
that ab = 1, and therefore a = b = 1, as a and b are positive integers.

Therefore both q(X) and m(X) are already in Z[X ]. In particular, m(X) ∈ Z[X ],
and so the minimal polynomial of α has integral coefficients. �

Remark 2.23 Here, we have essentially proven Gauss’s Lemma: If a polynomial
f (X) ∈ Z[X ] is reducible in Q[X ] then it is reducible in Z[X ] (that is, if f (X) fac-
torises into polynomials with rational coefficients then it factorises into polynomials
with integer coefficients).

Remark 2.24 Suppose that α is an algebraic number. Then α is the root of some
monic polynomial with coefficients in Q:

Xn + an−1 Xn−1 + an−2 Xn−2 + · · · + a0 = 0.

Let d be an integer which is a common multiple of all the denominators of
an−1, . . . , a0. Then dα is a root of

Xn + an−1d Xn−1 + an−2d2 Xn−2 + · · · + a0dn = 0,

which is a monic polynomial with integer coefficients. Therefore dα is an algebraic
integer. This shows that every algebraic number has an integer multiple which is
an algebraic integer. Equivalently, every algebraic number can be expressed as the
quotient of an algebraic integer by an element of Z.

Exercise 2.10 Show that 1+≥
5

2 is an algebraic integer.

Exercise 2.11 Show that 1+≥
3≥

2
is an algebraic integer.

Exercise 2.12 Let a be an integer. Show that α = (1 + a1/3 + a2/3)/3 is a root of

X3 − X2 + 1 − a

3
X − (1 − a)2

27
= 0.
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[Hint: Expand (α − 1/3)3.] Deduce that if a ∼ 1 (mod 9), then α is an algebraic
integer.

2.6 The Ring of All Algebraic Integers

We will want to study factorisation and so on in number fields. This will require
a definition of integers and primes in these fields. Amongst the properties that we
would like to hold is that the integers in a number field have the same algebraic
structure as the integers Z; in particular, that they form a ring, so that we can add,
subtract and multiply two integers.

Given two integers α and β, we will need to prove, for example, that α + β is an
integer. From the definition, it looks as if this will mean finding a monic polynomial
with integer coefficients that has α + β as a root.

Our approach will resemble the method we used earlier to show that the algebraic
numbers form a field: we will reformulate the condition on integrality into one
involving abstract algebra and which resembles Proposition 2.9. By a process rather
similar to Corollary 2.11, we will show that if α and β are algebraic integers, so are
α + β, α − β and αβ.

Looking back at Proposition 2.9, we reformulated the property of being an alge-
braic number in terms of field extensions of Q of finite degree. We will do something
similar for Z, and our reformulation will involve the ring Z[α], consisting of all poly-
nomial expressions in α with integer coefficients. For algebraic numbers, we then
used results and terminology from vector spaces over fields; the analogous concept
for rings is called a module.

Recall that a module M over a ring R is like a vector space over a field; we should
be able to add two elements of M together to get another element of M , and to
multiply an element of M by an element of R, in such a way that the same rules are
satisfied as for vector spaces.

The theory of modules over rings is a little more complicated than vector spaces
over fields, but for now at least, we just need the concept which is analogous to
“finite dimensional” for vector spaces. The appropriate condition is that the module
Z[α] is finitely generated over Z. This means that there are finitely many elements
ω1, . . . , ωn ∈ Z[α] such that every element of Z[α] can be written as a sum a1ω1 +
· · · + anωn for suitable integers a1, . . . , an ∈ Z.

Proposition 2.25 Let α ∈ C. The following are equivalent:

1. α is an algebraic integer;
2. Z[α] is a finitely generated module over Z.

Proof (1) ⇒ (2). Suppose that α is an algebraic integer. Then it is a root of a monic
polynomial f (X) ∈ Z[X ] of some degree n. Given any polynomial g(X) ∈ Z[X ],
write

g(X) = q(X) f (X) + r(X)
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for q(X), r(X) ∈ Z[X ], and where r(X) = 0 or the degree of r(X) is less than n.
(If f (X) were not monic, we could only deduce that q(X) and r(X) would have
rational coefficients.)

Substitute in X = α; then g(α) = r(α) as α is a root of f . This shows that g(α)

can also be expressed as a polynomial expression of degree less than n, so g(α) can
be written as a linear combination of 1, α, . . . , αn−1 with integer coefficients.

We conclude that any polynomial expression in α with integer coefficients can
be expressed as an integer linear combination of 1, α, . . . , αn−1. Therefore Z[α] is
finitely generated as a Z-module.

(2) ⇒ (1). Suppose that Z[α] = Zω1 + · · · + Zωn . For each i , the product αωi

is again in Z[α], so can be written as a linear combination of the spanning set:

αωi =
n∑

j=1

ai jω j (2.3)

with each ai j ∈ Z. Consider the column vector v = (ω1 · · · ωn)t . Then (2.3) implies
that αv = Av where A = (ai j ). That is, v is an eigenvector of A with eigenvalue α.
As α is an eigenvalue, it is a root of the characteristic polynomial of A. Characteristic
polynomials are always monic; also, as the entries of A are integral, its characteristic
polynomial has coefficients in Z. Thus α is a root of a monic polynomial with integer
coefficients, and so α is integral. �

The next result is really a corollary to the proof of the previous proposition, and
is a mild generalisation:

Corollary 2.26 Let R be a ring containing Z. If R is finitely generated as a Z-
module, then every element α ∈ R is the root of a monic polynomial with coefficients
in Z.

Proof We argue exactly as above; since R is finitely generated, R = Zω1+· · ·+Zωn .
For each i , we have αωi = ∑n

j=1 ai jω j for some integers ai j ∈ Z, and then α is a
root of the characteristic polynomial for the matrix (ai j ), as required. �

Next, consider what happens for two algebraic integers α and β:

Proposition 2.27 Suppose that α and β are algebraic integers. Then Z[α, β] is
finitely generated as a Z-module.

Proof By Proposition 2.25, Z[α] and Z[β] are both finitely generated as Z-modules.
That is, there are elements ω1, . . . , ωm ∈ Z[α] such that every element of Z[α] can
be written as a Z-linear combination of these elements. Similarly, there are elements
θ1, . . . , θn ∈ Z[β] such that every element of Z[β] is a Z-linear combination of these
elements. Let’s show that every element of Z[α, β] is a Z-linear combination of the
finite set {ωiθ j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Every element of Z[α, β] can be written as a polynomial
∑

k,l aklα
kβl , with

akl ∈ Z. Since each αk ∈ Z[α], it can be written as some Z-linear combination
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of {ωi | 1 ≤ i ≤ m}. Similarly, β j can be written as a Z-linear combination of
{θ j | 1 ≤ j ≤ n}. Substituting these in, we see that every element can be written as
a Z-linear combination of the set {ωiθ j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, as required. �

After this reformulation, it is easy to prove that algebraic integers form a ring:

Corollary 2.28 The set of all algebraic integers forms a ring.

Proof Let α and β be algebraic integers. We need to check that α + β, α − β and
αβ are algebraic integers. Since α + β ∈ Z[α, β], and Proposition 2.27 shows that
Z[α, β] is finitely generated as a Z-module, Proposition 2.25 implies that α + β is
an algebraic integer.

As α −β and αβ are also in Z[α, β], the same argument applies to show that they
are also integral. �

Not only does this prove the result we want, but the argument of Proposition 2.25
also suggests a way to construct polynomials satisfied by the sum (or difference, or
product) of two algebraic numbers.

Example 2.29 To explain the procedure, let’s show that the sum

θ =
(

1 + ≥
5

2

⎧
+

(
−1 + ≥−3

2

⎧
= (

≥
5 + ≥−3)/2

is an algebraic integer, by computing its minimal polynomial.
Write α = (1+≥

5)/2 and β = (−1+≥−3)/2. Then α has minimal polynomial
X2 − X − 1 and β has minimal polynomial X2 + X + 1. One way to proceed is as
follows.

Form the vector v = (1 α β αβ)t . We are going to find matrices A and B with
entries in Z such that Av = αv and Bv = βv. That is, α is an eigenvalue of A, and
β is an eigenvalue of B. Then (A + B)v = (α + β)v, and so α + β is an eigenvalue
of A + B. It is therefore a root of the characteristic polynomial of A + B, which is
defined over Z, since the entries of A + B are integers. This gives a polynomial with
α + β as a root.

Let’s first try to construct the matrix A. It should be a 4 × 4 matrix such that

A

⎨

⎩⎩⎝

1
α

β

αβ

⎞

⎟⎟⎠ = α

⎨

⎩⎩⎝

1
α

β

αβ

⎞

⎟⎟⎠ =

⎨

⎩⎩⎝

α

α2

αβ

α2β

⎞

⎟⎟⎠ .

But α is a root of X2 = X + 1, so α2 = α + 1, and so we need to solve

A

⎨

⎩⎩⎝

1
α

β

αβ

⎞

⎟⎟⎠ =

⎨

⎩⎩⎝

α

α + 1
αβ

(α + 1)β

⎞

⎟⎟⎠ ,
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and it is easy to see that

A =

⎨

⎩⎩⎝

0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1

⎞

⎟⎟⎠ .

Similarly, we can find a matrix B with the property that

B

⎨

⎩⎩⎝

1
α

β

αβ

⎞

⎟⎟⎠ = β

⎨

⎩⎩⎝

1
α

β

αβ

⎞

⎟⎟⎠ =

⎨

⎩⎩⎝

β

αβ

β2

αβ2

⎞

⎟⎟⎠ =

⎨

⎩⎩⎝

β

αβ

−(β + 1)

−α(β + 1)

⎞

⎟⎟⎠ ;

take

B =

⎨

⎩⎩⎝

0 0 1 0
0 0 0 1

−1 0 −1 0
0 −1 0 −1

⎞

⎟⎟⎠ .

Then

A + B =

⎨

⎩⎩⎝

0 1 1 0
1 1 0 1

−1 0 −1 1
0 −1 1 0

⎞

⎟⎟⎠ ,

and the argument above shows that θ should be a root of the characteristic polynomial
of A + B.

Exercise 2.13 Show that this characteristic polynomial is X4 − X2 + 4, and verify
explicitly that θ is a root of this polynomial.

In the same way, as ABv = A(Bv) = A(βv) = β(Av) = αβv, αβ is an
eigenvalue of AB, and is therefore a root of the characteristic polynomial of AB.

More generally, if α is a root of an equation of degree m, and β is a root of an
equation of degree n, form the vector of length mn:

v = (1, . . . , αm−1, β, . . . , αm−1β, . . . . . . ;βn−1, . . . , αm−1βn−1)t .

As above, we can find mn ×mn-matrices A and B such that Av = αv and Bv = βv.
Then A and B will be mn × mn-matrices, α + β, α − β and αβ are easily seen to be
eigenvalues of A + B, A − B and AB respectively (with v as eigenvector), and the
characteristic polynomials of A + B, A − B and AB have degree mn.

Further, notice that if α and β are both algebraic integers, then the matrices A and
B have entries in Z, and so the entries of A + B, A − B and AB are all also in Z.
Therefore the characteristic polynomials of these three matrices are all integral, and
are monic by definition, so this gives another proof that the eigenvalues α +β, α −β

and αβ are all algebraic integers.
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Exercise 2.14 Use this method to find a degree 6 polynomial satisfied by
≥

2 + 3
≥

2.

Of course, the same method also shows that the sum, difference and product of any
two algebraic numbers is again algebraic; the two matrices A and B will in general
no longer be integral, but have rational entries. We can extend the method to the case
of quotients; if β ≡= 0, then B will be invertible, and then v is an eigenvector of
AB−1 with eigenvalue α/β. This quotient is a root of the characteristic polynomial
of the rational matrix AB−1, as required.

2.7 Rings of Integers of Number Fields

Now we have an obvious definition for the integers in a number field.

Definition 2.30 Let K be a number field. Then the integers in K are

ZK = {α ∈ K | α is an algebraic integer}.

Probably the first check to make is that this gives the right answer for the rational
number field Q. Luckily, this is straightforward; a rational a ∈ Q has minimal
polynomial X − a, and the coefficients are in Z if and only if a ∈ Z. So the integers
in Q using Definition 2.30 are indeed Z, as one hopes.

Also, if K ∈ L is an extension of number fields and α ∈ K , then α is an integer
in K if and only if it is an integer in L . This follows simply because the condition
determining whether or not α is an algebraic integer makes no reference to any
field K .

Corollary 2.31 Let K be a number field. Then ZK is a ring.

Proof Given α, β ∈ ZK , we need to check that α + β, α − β and αβ all lie in ZK .
But they certainly all lie in K , and Corollary 2.28 implies that they are all algebraic
integers, so they lie in ZK , as required. �

Remark 2.32 ZK is even an integral domain, since ZK ⊂ K , and as K is a field, it
has no zero-divisors.

We say that ZK is the ring of integers of K . In the literature, you will often see
the ring of integers written as OK , for historical reasons (an older terminology for
ring of integers is order—this word is still used to refer to certain subrings of ZK ).

The following generalisation of Proposition 2.25 allows us to characterise the ring
of integers ZK as the largest subring of K which is a finitely generated Z-module:

Proposition 2.33 Suppose R is a subring of a number field K , and that R is finitely
generated as a Z-module. Then R ∈ ZK .

Proof This is immediate from Corollary 2.26. �
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Earlier, we suggested that the ring of integers in Q(i) should be Z[i]. We will now
compute the rings of integers in all quadratic fields Q(

≥
d).

Proposition 2.34 Suppose that d is a squarefree integer (i.e., not divisible by the
square of any prime). Then

1. If d ∼ 2 or 3 (mod 4), then the ring of integers in Q(
≥

d) is

Z[≥d] = {a + b
≥

d | a, b ∈ Z}.

2. If d ∼ 1 (mod 4), then the ring of integers in Q(
≥

d) is

Z[ρd ] = {a + bρd | a, b ∈ Z}

where ρd = 1+≥
d

2 .

Proof Let α = a+b
≥

d with a, b ∈ Q. Then α satisfies the equation (X−a)2 = b2d,
or

X2 − 2aX + (a2 − b2d) = 0.

We seek conditions on a and b to make this have integer coefficients. This implies
that

2a ∈ Z

a2 − b2d ∈ Z

Clearly the first condition implies a ∈ Z or a = A
2 where A is an odd integer. In

the first case, the second condition becomes b2d ∈ Z, and, as d is squarefree, this
requires b ∈ Z. So the set {a + b

≥
d | a, b ∈ Z} is always contained in the ring of

integers.
Let’s examine when the second case can arise. Here a = A

2 , and we need

A2

4
− b2d ∈ Z,

or
A2 − 4b2d ∼ 0 (mod 4).

This certainly requires 4b2d ∈ Z; again, as d is squarefree, 2b must be an integer,
B say. Further, b itself cannot be in Z; otherwise

A2

4
− b2d /∈ Z.

Thus B is an odd integer. Then
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A2 − B2d ∼ 0 (mod 4)

with A and B odd integers. But the squares of odd numbers are all 1 (mod 4). Thus

1 − d ∼ 0 (mod 4).

If d ∼ 1 (mod 4), the second case can arise, and the integers are

{a + b
≥

d | either a, b ∈ Z, or both a and b are halves of odd integers},

a set which is easily seen to be the same as that of the statement. On the other hand,
if d ≡∼ 1 (mod 4), then the only integers are {a + b

≥
d | a, b ∈ Z} as claimed. �

In particular, if d = −1, so that d ∼ 3(mod 4), this result shows that the ring of
integers of Q(i) is Z[i].

However, as already remarked, the ring of integers of Q(
≥

d) is not always just
Z[≥d]. Although every element inZ[≥d] is an algebraic integer, there are sometimes
additional integers; if d = −3, for example, then (−1 + ≥−3)/2 is an integer, as it
is a root of X2 + X + 1. Similarly, if d = 5, then (1 + ≥

5)/2 is an integer, as it is a
root of X2 − X − 1.

Exercise 2.15 Show that the square of the modulus of the complex number a +
b( 1+≥−3

2 ) ∈ Q(
≥−3) is a2 + ab + b2.

[Hint: As usual, write down the real and imaginary parts, and consider the sum
of their squares.]

Find the elements in the ring of integers of Q(
≥−3) with squared modulus 19.

And which elements in the ring of integers of Q(
≥−2) have squared modulus 19?

Exercise 2.16 Use Exercise 2.11 to see that the ring of integers of Q(
≥

2,
≥

3) is
bigger than Z[≥2,

≥
3].



Chapter 3
Fields, Discriminants and Integral Bases

By definition, every number field K is a finite extension of Q. In particular, if K has
degree n, then there must be elements α1, . . . ,αn ≥ K such that every element of
K can be written as a linear combination

x1α1 + x2α2 + · · · + xnαn

where x1, . . . , xn ≥ Q.
We’ve even seen (Corollary 2.18) that there is a particular element γ such that

K = Q(γ), so that every element of K can be written as

x1γ
n−1 + x2γ

n−2 + · · · + xn .1,

a special case of the above, where our basis has a particular form.
We can ask exactly analogous questions about the ring of integers ZK .

1. Do there exist elements α1, . . . ,αn ≥ ZK such that every element of ZK is of
the form

x1α1 + x2α2 + · · · + xnαn

for some xi ≥ Z?
2. Does there exist a single element γ ≥ ZK such that every element of ZK is of the

form
x1γ

n−1 + x2γ
n−2 + · · · + xn .1,

for some xi ≥ Z?

It will turn out that the first question has a positive answer, but the second does not,
in general.

In general, the versions of the questions for ZK are somewhat harder than for K ,
and some of the material of this chapter could be omitted at a first reading. This is
particularly true for Sect. 3.5.

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 39
Mathematics Series, DOI: 10.1007/978-3-319-07545-7_3,
© Springer International Publishing Switzerland 2014
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3.1 Embeddings

Suppose then that K is a number field and that [K : Q] = n. By Corollary 2.18, there
exists an element γ ≥ K such that K = Q(γ). Let f denote the minimal polynomial
of γ over Q; it follows from Corollary 2.10 that f has degree n.

As C is algebraically closed, we can factor f (X) completely over C, and write
it as

f (X) =
n∏

i=1

(X − γi ),

where γ1, . . . , γn ≥ C are the (complex) roots of f . Of course, one of these is γ
itself, so we will assume γ1 = γ.

Definition 3.1 If γ ≥ K has f (X) ≥ Q[X ] as its minimal polynomial as above,
then the roots γ1, . . . , γn are the conjugates of γ.

Notice that conjugate elements have the same minimal polynomial; indeed,
γ1, . . . , γn are all roots of the monic irreducible polynomial f , and so f is the
minimal polynomial for each of them.

By Lemma 2.15, the conjugates of an algebraic number are all distinct.

Example 3.2 Suppose that α = i . Then its minimal polynomial is X2 + 1, and the
two complex roots of this are ±i . Thus the two conjugates of i are i and −i .

The next exercise gives some justification for the terminology:

Exercise 3.1 Suppose that α = a +bi ≥ Q(i). Show that its conjugates (in the sense
above) are just α and α.

Thus the conjugates of a complex number (in this sense) are the same as the
conjugates (in the familiar sense). But the concept is more general, and applies in
other situations.

Exercise 3.2 Find the conjugates of
∈

2.

Exercise 3.3 Find the conjugates of
∈

2 + ∈
3.

Exercise 3.4 Find the conjugates of 3
∈

2.

Remark 3.3 Clearly this concept of conjugacy generalises somewhat; given an exten-
sion L ⊆ K of fields, if α ≥ K has minimal polynomial f (X) ≥ L[X ] over L , then
the conjugates of α over L are the roots of f .

Given any element of K , we can write it as a polynomial expression in γ with
coefficients in Q, simply because K = Q(γ). For each k = 1, . . . , n, the map
σk : γ ≡≤ γk induces a field homomorphism
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σk : Q(γ) −≤ Q(γk) √ C.

n−1∑

i=0

xiγ
i ≡≤

n−1∑

i=0

xiγ
i
k

Remark 3.4 This map is well-defined—that is, if the same element of Q(γ) can be
written in two different ways as a polynomial expression of γ, then applying σk to
either expression gives the same answer.

Indeed, if g1(γ) = g2(γ), then γ is a root of g1−g2, and so the minimal polynomial
of γ divides g1 − g2. But this minimal polynomial is just f . As γk is also a root of
f , we see that f (γk) = 0, and so g1(γk) = g2(γk).

Remark 3.5 A similar argument shows that all these maps are injective. If g1(γ)

and g2(γ) are two elements of K = Q(γ) that map to the same element under σk ,
then g1(γk) = g2(γk), and so γk must be a root of g1 − g2. Therefore the minimal
polynomial of γk divides g1 − g2. But this minimal polynomial is exactly f , and so
f |g1 − g2, from which we conclude that g1(γ) = g2(γ).

Definition 3.6 We will use the word embedding to mean an injective field homo-
morphism; thus σ1, . . . ,σn are all embeddings.

Proposition 3.7 If K is a number field of degree n, then the maps σ1, . . . ,σn are
all of the n distinct field embeddings K −≤ C.

Proof The arguments just given show that they are all well-defined injective field
homomorphisms.

Conversely, if σ : K −≤ C is a field homomorphism, and K = Q(γ), then σ
must be determined by its effect on γ, as

σ

(
n−1∑

i=0

xiγ
i

)
=

n−1∑

i=0

xiσ(γ)i .

Further, applying σ to the equality f (γ) = 0 gives

f (σ(γ)) = σ( f (γ)) = σ(0) = 0,

and so σ(γ) is a root of f , and is therefore γk for some k. It is then clear that
σ = σk . �

As an example, let’s consider the field K = Q(i). We have already seen in
Example 3.2 that the conjugates of i are i and −i , so we get two embeddings from
K into C, given by σ1(a + bi) = a + bi and σ2(a + bi) = a − bi . This gives us two
ways to think of Q(i) as a subfield of C.

Remark 3.8 It is sometimes important to be careful when writing Q(
∈

2), say, to
keep in mind that the element “

∈
2” should be regarded as just an abstract square
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root of 2, and is not necessarily to be identified with the positive real number
1.4142. . . . We are writing Q(

∈
2) as a shorthand for “Q(α) where α is some number

with α2 = 2”.
Then choosing an embedding from Q(

∈
2) into C is tantamount to identifying the

abstract element
∈

2 with the particular number 1.4142. . . or −1.4142. . . .

Exercise 3.5 Write down the embeddings from K = Q(
∈

2,
∈

3) into C.
[Hint: Since [K : Q] = 4, you should find 4 embeddings, σ1, σ2, σ3 and σ4, say.]

1. Find an element α ≥ K such that σ1(α) = σ2(α) = σ3(α) = σ4(α).
2. Find an element β ≥ K such that σ1(β), σ2(β), σ3(β) and σ4(β) are all different.
3. Find an element γ ≥ K such that σ1(γ) = σ2(γ) and σ3(γ) = σ4(γ), but

σ1(γ) →= σ3(γ). (Your answer will depend on the order you wrote down your
embeddings.)

Slightly more generally, the same argument as Proposition 3.7 shows that

Proposition 3.9 Suppose that K ⊆ L is a finite extension of fields, and that we
have a fixed embedding ι : K −≤ C. Then there are [L : K ] ways to extend the
embedding ι to an embedding L −≤ C (that is, to define embeddings L −≤ C

which agree with ι on the elements of L that belong to K ).

Proof By the Theorem of the Primitive Element (Theorem 2.17), we can write L =
K (γ), where γ has minimal polynomial over K of degree n = [L : K ]. Then we
let γ1, . . . , γn denote the roots of the minimal polynomial, and define extensions
σk : L −≤ C by insisting that

σk

(
n−1∑

i=0

xiγ
i

)
=

n−1∑

i=0

ι(xi )γ
i
k .

The verification that these are all the embeddings is then identical to the previous
arguments, and is left to the reader as an exercise. �

Suppose that K is a number field, and that α ≥ K . We will next try to understand
the images of α under each of the embeddings.

Let’s do an example. Suppose that K = Q(
∈

2,
∈

3), and that α = ∈
6. In

Exercise 3.5, you should find four embeddings, given by:

σ1

(
a + b

∈
2 + c

∈
3 + d

∈
6
)

= a + b
∈

2 + c
∈

3 + d
∈

6

σ2

(
a + b

∈
2 + c

∈
3 + d

∈
6
)

= a + b
∈

2 − c
∈

3 − d
∈

6

σ3

(
a + b

∈
2 + c

∈
3 + d

∈
6
)

= a − b
∈

2 + c
∈

3 − d
∈

6

σ4

(
a + b

∈
2 + c

∈
3 + d

∈
6
)

= a − b
∈

2 − c
∈

3 + d
∈

6.
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Then σ1(
∈

6) = σ4(
∈

6) = ∈
6, and σ2(

∈
6) = σ3(

∈
6) = −∈

6. Unsurprisingly,
these images are just the conjugates of

∈
6, but each occurs twice.

To study the general case, where K is any number field, we need one result from
field theory:

Theorem 3.10 Suppose that K ⊆ L ⊆ M is a “tower” of fields. Then, assuming
M is a finite extension of L, and L is a finite extension of K , we have [M : K ] =
[M : L][L : K ].
Proof Suppose that [M : L] = m and [L : K ] = n. Then there are elements
ω1, . . . ,ωn such that every element of L is a linear combination of ω1, . . . ,ωn with
coefficients in K , and elements θ1, . . . , θm such that every element of M is a linear
combination of θ1, . . . , θm with coefficients in L . We claim that {θiω j } is a basis for
M as a K -vector space.

Given μ ≥ M , express it first as a linear combination of θ1, . . . , θm with coef-
ficients in L , and then express each of these coefficients as linear combinations of
ω1, . . . ,ωn with coefficients in K . This shows that μ can be written as a linear
combination of {θiω j } with coefficients in K .

Furthermore, these elements form a linearly independent set. To see this, we take
a linear combination which is 0:

α11θ1ω1 + α12θ1ω2 + · · · + α1nθ1ωn + α21θ2ω1 + · · · + αmnθmωn = 0.

Rearrange this as

(α11ω1 + · · · + α1nωn)θ1 + · · · + (αm1ω1 + · · · + αmnωn)θm = 0.

Now this is a linear combination of θ1, . . . , θm with coefficients in L , and since they
form a basis, each of the coefficients must vanish. Thus, for each i ,

αi1ω1 + · · · + αinωn = 0,

and as ω1, . . . ,ωn forms a basis for L as a vector space over K , we again conclude
that each αi j = 0, as required.

Thus {θiω j } form a basis for M over K , and so [M : K ] = mn, as required. �

Let’s return to the general case, where K is a number field of degree n over Q.
Suppose α ≥ K with minimal polynomial g(X) ≥ Q[X ]. Then α generates a field

Q(α) contained in K . If g has degree dα, then [Q(α) : Q] = dα. Suppose that the
conjugates of α are written α1 = α,α2, . . . ,αdα .

From the tower of fields Q ⊆ Q(α) ⊆ K , we know that

[K : Q] = [K : Q(α)][Q(α) : Q],

and so we see that dα|n. Write r = rα for n/dα.
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Proposition 3.11 The images σi (α) are the conjugates {α1, . . . ,αdα}, each
occurring with multiplicity rα.

Proof We have extension fields Q ⊆ Q(α) ⊆ K . By Proposition 3.7, we know that
there are dα embeddings ιk : Q(α) −≤ C. The embedding ιk is determined by the
property that ιk(α) = αk .

Make a choice of any of these embeddings ιk : Q(α) −≤ C. As the extension
Q(α) ⊆ K has degree rα, we know by Proposition 3.9 that the embedding ιk extends
to an embedding K −≤ C in rα ways; by definition of an extension of embeddings,
each extension maps α to αk .

We can do this for each of the dα embeddings ιk , extending each in rα ways. We
thus obtain dαrα = n embeddings from K to C. But we know that there should be
exactly n embeddings from K into C, again by Proposition 3.7.

We therefore conclude that all of the embeddings σi : K −≤ C have been
obtained, and we have seen that α is taken to each of its conjugates {α1, . . . ,αdα}
with multiplicity rα. �
Corollary 3.12 Suppose α in K has minimal polynomial g of degree dα, and that
rα = n/dα. Then

n∏

i=1

(X − σk(α)) = g(X)rα .

Proof Both sides are monic polynomials with the same roots. �
Exercise 3.6 Verify Corollary 3.12 explicitly for each of the three elements α, β and
γ you found in Exercise 3.5.

3.2 Norms and Traces

Again let K be a number field, with [K : Q] = n. Suppose that α ≥ K . Then
multiplication by α gives a map

mα : K −≤ K

x ≡≤ αx

This map is Q-linear: it is easy to see that

mα(x + x ◦) = α(x + x ◦) = αx + αx ◦ = mα(x) + mα(x ◦)

and that
mα(t x) = α(t x) = t (αx) = tmα(x)

for t ≥ Q. (Of course, the map is even K -linear, since mα(t x) = tmα(x) even for
t ≥ K , but we won’t need that.)
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After choosing a basis for K over Q, the map is represented by a n × n-matrix.
We define the trace of α, written TK/Q(α), to be the trace of this matrix, and the
norm, written NK/Q(α), to be its determinant. Choosing a different basis would give
a conjugate n × n-matrix representing the map; it is a well-known result from linear
algebra that the trace and determinant of an endomorphism do not depend on the
choice of basis. When the field K is clearly understood, we may simply write N (α)

and T (α) for the norm and trace.
In the same way, if L/K is an extension of number fields, there is a notion of

TL/K and NL/K .

Example 3.13 Let’s look at one example. Suppose that K = Q(
∈

2,
∈

3), and take
α = ∈

2 + ∈
3. We can choose a basis {1,

∈
2,

∈
3,

∈
6} for K , and see how multi-

plying by α affects an element:

α(a + b
∈

2 + c
∈

3 + d
∈

6) = (2b + 3c)+ (a + 3d)
∈

2 + (a + 2d)
∈

3 + (b + c)
∈

6,

which we interpret as a map on coefficients

⎧

⎨⎨⎩

a
b
c
d

⎝

⎞⎞⎟ ≡≤

⎧

⎨⎨⎩

2b + 3c
a + 3d
a + 2d
b + c

⎝

⎞⎞⎟ ,

which is the map given by multiplication by

⎧

⎨⎨⎩

0 2 3 0
1 0 0 3
1 0 0 2
0 1 1 0

⎝

⎞⎞⎟ ;

the trace is the sum of the diagonal entries, which is 0, and the norm of α is the
determinant of the matrix, which is 1.

In fact, even more is true. We have defined NK/Q(α) and TK/Q(α) to be the
determinant and trace of the matrix given by multiplication, but in the fact the minimal
polynomial of α is exactly the characteristic polynomial of this matrix; recall that
the determinant and trace are just two coefficients of this polynomial:

Proposition 3.14 Suppose that α is an algebraic number with minimal polynomial
g(X) ≥ Q[X ], and form the map mα as above. Then the characteristic polynomial
of the matrix of mα is g(X).

Proof Suppose that the minimal polynomial for α is given by xn + c1xn−1 +
· · · + cn = 0.

As just mentioned, we can compute the characteristic polynomial after choosing
any basis. One basis for Q(α) over Q is given by {1,α,α2, . . . ,αn−1}, where α has
degree n.
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Sinceα.αk = αk+1 for k = 0, . . . , n−2, andα.αn−1 = αn = −c1α
n−1−· · ·−cn ,

the map mα is given by

mα

(
a0 + a1α + · · · + an−1α

n−1
)

= α
(

a0 + a1α + · · · + an−1α
n−1

)

= a0α + · · · + an−2α
n−1 + an−1α

n

= a0α + · · · + an−2α
n−1

+ an−1

(
−c1α

n−1 − · · · − cn

)

= −an−1cn + (a0 − an−1cn−1)α

+ · · · + (an−2 − an−1c1)α
n−1

and so the map of mα using this basis is given by

⎧

⎨⎨⎨⎩

a0
a1
...

an−1

⎝

⎞⎞⎞⎟ ≡≤

⎧

⎨⎨⎨⎩

−an−1cn

a0 − an−1cn−2
...

an−2 − an−1c1

⎝

⎞⎞⎞⎟ ,

which is the same as multiplication by the matrix

⎧

⎨⎨⎨⎨⎨⎩

−cn

1 −cn−1
1 −cn−2

. . .
...

1 −c1

⎝

⎞⎞⎞⎞⎞⎟
,

and it is easy to check that this matrix has characteristic polynomial given by xn +
c1xn−1 + · · · + cn = 0. �

Now let’s explore some properties of norms and traces.

Lemma 3.15 Suppose α ≥ K . Then NK/Q(α) and TK/Q(α) are both in Q.

Proof This simply follows because they are the trace and determinant of a matrix
with entries in Q. �

This is a rather abstract definition of the trace and norm of an element, but we can
make it a little more concrete.
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Proposition 3.16 Write σ1, . . . ,σn for the embeddings of K into C. If α ≥ K , then

NK/Q(α) =
n∏

k=1

σk(α) and TK/Q(α) =
n∑

k=1

σk(α).

Proof Let g denote the minimal polynomial of α over Q. Note that Q(α) may be
smaller than K (for example, we might even have α ≥ Q), so the degree of g may
be strictly smaller than n. As g is irreducible, [Q(α) : Q] = deg g, and we will write
dα for this degree.

We have field extensions Q ⊆ Q(α) ⊆ K ; let {β1, . . . ,βrα} denote a basis for K
over Q(α), where [K : Q(α)] = rα = n/dα. Clearly {1,α, . . . ,αdα−1} is a basis for
Q(α) over Q. Standard results in field theory (see the proof of Theorem 3.10) now
show that the set of products {βiα

j | 1 ⇒ i ⇒ rα, 0 ⇒ j < dα} forms a basis for K
over Q.

Choose this basis, and fix one of the βi . Consider the multiplication-by-α map
mα on the block spanned by {βi ,βiα, . . . ,βiα

dα−1}. It is easy to see the matrix of
this map on this block is the same for all choices of βi , and that it is the same as the
matrix of the map mα on Q(α), where we use the basis {1,α, . . . ,αdα−1}. We have
already noted that this matrix has characteristic polynomial g.

It follows that the characteristic polynomial of mα on K is given by g(X)rα . But
the roots of g, by definition, are exactly the conjugates of α. The roots of g(X)rα are
therefore the conjugates of α, taken with multiplicity rα.

By Proposition 3.11, these are exactly the images of α under all the embeddings
σi : K −≤ C, and the result then follows. �

Corollary 3.17 If α ≥ ZK , then NK/Q(α) and TK/Q(α) are both in Z.

Proof As α ≥ ZK , its minimal polynomial g(X) ≥ Z[X ]. With the notation
of Corollary 3.12, we see that g(X)rα ≥ Z[X ]. But this implies that the prod-
uct

⎠n
i=1(X − σi (α)) ≥ Z[X ]; the constant coefficient of this polynomial is

(−1)n NK/Q(α), and the coefficient of Xn−1 is −TK/Q(α). �

Exercise 3.7 Compute the norm and trace of a+bi ≥ Q(i), using both the definition
as the determinant and trace of the multiplication map, and also Proposition 3.16.

Exercise 3.8 Compute the norm and trace of
∈

2 + ∈
3 ≥ Q(

∈
2,

∈
3), again both

from the definition and from Proposition 3.16.

3.3 The Discriminant

As before, suppose that K is a number field of degree n over Q. We have seen that
this means that:

1. K is generated over Q by n elements (the definition of the degree);
2. there are n embeddings σ1, . . . ,σn from K into C (see Proposition 3.7).
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Suppose that {ω1, . . . ,ωn} lie in K . For the moment, we won’t assume that these are
a basis as in (1).

Consider the matrix:

M =

⎧

⎨⎨⎨⎩

σ1(ω1) σ1(ω2) · · · σ1(ωn)

σ2(ω1) σ2(ω2) · · · σ2(ωn)
...

...
. . .

...

σn(ω1) σn(ω2) · · · σn(ωn)

⎝

⎞⎞⎞⎟ .

We will use the determinant of M as a measure of how “widely spaced” the set
{ω1, . . . ,ωn} is. (More explanation will be given in Remark 3.25, and again in
Chap. 10.) One reason why this is not quite satisfactory is that this determinant is
defined only up to sign; taking the same set, but in a different order may multiply the
determinant by −1. To avoid this issue, we will use the square of this determinant.

Definition 3.18 Define the discriminant of {ω1, . . . ,ωn} to be Δ{ω1, . . . ,ωn} =
(det M)2.

Here is a reformulation, sometimes more useful for computation:

Lemma 3.19 With the notation as above, form the matrix T , where Ti j = TK/Q

(ωiω j ). Then Δ{ω1, . . . ,ωn} = det T .

Proof Simply notice that det M = det Mt , and so

Δ{ω1, . . . ,ωn} = (det M)2 = det(Mt M).

But

(Mt M)i j =
n∑

k=1

Mt
ik Mkj =

n∑

k=1

Mki Mkj =
n∑

k=1

σk(ωi )σk(ω j ) =
n∑

k=1

σk(ωiω j ),

which is equal to TK/Q(ωiω j ) by Proposition 3.16. The result follows. �

Exercise 3.9 Let K = Q(
∈

2,
∈

3). Compute Δ{1,
∈

2,
∈

3,
∈

6} using the formula
from Definition 3.18, and verify that it agrees with the formula given in Lemma 3.19.

Corollary 3.20 Suppose that {ω1, . . . ,ωn} consists of elements of ZK . Then
Δ{ω1, . . . ,ωn} ≥ Z.

Proof If each ωi ≥ ZK , then ωiω j ≥ ZK , as ZK is closed under multiplication.
By Corollary 3.17, this means that TK/Q(ωiω j ) ≥ Z. Finally, Δ{ω1, . . . ,ωn} is the
square of the determinant of a matrix with entries in Z, so is itself in Z. �

Example 3.21 Let’s consider one special case. As K = Q(γ) for some γ, one natural
basis for K over Q is given by {1, γ, γ2, . . . , γn−1}. As usual, write γ1, . . . , γn for
the conjugates of γ; then the discriminant Δ{1, γ, γ2, . . . , γn−1} is given by

http://dx.doi.org/10.1007/978-3-319-07545-7_10
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∣∣∣∣∣∣∣∣∣

1 γ1 . . . γn−1
1

1 γ2 . . . γn−1
2

...
...

. . .
...

1 γn . . . γn−1
n

∣∣∣∣∣∣∣∣∣

2

.

This is a Vandermonde determinant, and is equal to
⎠

i< j (γi −γ j )
2. We have already

remarked (Lemma 2.15) that the conjugates of γ are distinct, and so we conclude
that the discriminant Δ{1, γ, γ2, . . . , γn−1} is nonzero.

Let’s remark if f (X) is the minimal polynomial of γ, its roots are γ1, . . . , γn ,
and its discriminant is defined to be exactly

⎠
i< j (γi − γ j )

2, so that the discrimi-

nant of f (X) coincides with the discriminant Δ{1, γ, . . . , γn−1}, which justifies the
terminology.

In fact, we shall see that the discriminant of any basis is nonzero. For this, we
need one preliminary result.

Proposition 3.22 Suppose that the elements of two sets {ω1, . . . ,ωn} and
{ω◦

1, . . . ,ω
◦
n} are related by

ω◦
i = c1iω1 + · · · + cniωn

for rational numbers ci j ≥ Q. Write C for the matrix (ci j ). Then

Δ{ω◦
1, . . . ,ω

◦
n} = (det C)2Δ{ω1, . . . ,ωn}.

Proof Set

M ◦ =

⎧

⎨⎨⎨⎩

σ1(ω
◦
1) σ1(ω

◦
2) · · · σ1(ω

◦
n)

σ2(ω
◦
1) σ2(ω

◦
2) · · · σ2(ω

◦
n)

...
...

. . .
...

σn(ω
◦
1) σn(ω◦

2) · · · σn(ω◦
n)

⎝

⎞⎞⎞⎟ ,

so that Δ{ω◦
1, . . . ,ω

◦
n} = (det M ◦)2. Note that

σk(ω
◦
i ) = c1iσk(ω1) + · · · + cniσk(ωn)

since σk is a homomorphism which is the identity on rational numbers.
It is easy to see that this implies that M ◦ = C M , where C = (ci j ). The result

follows from the multiplicativity of the determinant. �

Exercise 3.10 In Example 2.19, we showed that if K = Q(
∈

2,
∈

3), then K = Q(γ)

for γ = ∈
2 + ∈

3. Compute Δ{1, γ, γ2, γ3} using the formula from Example 3.21.
You have also computed Δ{1,

∈
2,

∈
3,

∈
6} (Exercise 3.9). Write the set

{1, γ, γ2, γ3} in terms of the basis {1,
∈

2,
∈

3,
∈

6} and verify the formula
of Proposition 3.22 in this example.
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Now we can prove the claim we made earlier.

Proposition 3.23 Suppose that {ω1, . . . ,ωn} is a basis for K over Q. Then
Δ{ω1, . . . ,ωn} →= 0.

Proof As usual, write K = Q(γ) for some element γ ≥ K . Then {1, γ, . . . , γn−1} is a
basis for K over Q. We can write the basis {ω1, . . . ,ωn} in terms of {1, γ, . . . , γn−1} as

ωi = c1i 1 + c2iγ + · · · + cniγ
n−1.

The condition that {ω1, . . . ,ωn} is also a basis means that det(ci j ) →= 0. Indeed, if it
is a basis, we can write

γi−1 = c◦
1iω1 + c◦

2iω2 + · · · + c◦
niωn,

for some c◦
i j , and it is easy to see that this implies that C ◦C = I , where C = (ci j )

and C ◦ = (c◦
i j ), so that C and C ◦ are invertible. The previous proposition shows that

Δ{ω1, . . . ,ωn} = (det(ci j ))
2Δ

{
1, γ, . . . , γn−1},

and the result follows. �

There is a converse to this result also:

Proposition 3.24 The set {ω1, . . . ,ωn} is a basis for K over Q if and only if
Δ{ω1, . . . ,ωn} →= 0.

Proof We have already done the hard work, to see that the discriminant of a basis is
nonzero.

Conversely, if {ω1, . . . ,ωn} are linearly dependent over Q, then there is some
dependency

xiω1 + · · · + xnωn = 0

for some x1, . . . , xn ≥ Q, not all zero. Apply the embedding σk to this equality; as
σ is a field homomorphism and fixes each element of Q, we get

xiσk(ω1) + · · · + xnσk(ωn) = 0.

This gives a linear dependency between the columns of the matrix M above, with
Mi j = σi (ω j ), and so det M = 0. Thus Δ{ω1, . . . ,ωn} = 0, as required. �

Remark 3.25 As an aside, let’s give a preliminary justification of the comments
above that the discriminant measures how widely spaced the set is. We will cover
this in more detail later in the book (Chap. 10).

Some of the n embeddings may map K into the real numbers R √ C; we call
these real embeddings. The other embeddings occur in complex conjugate pairs; if

http://dx.doi.org/10.1007/978-3-319-07545-7_10
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σ : K −≤ C is an embedding, then so is σ, where σ(ω) = σ(ω). These complex
embeddings therefore occur as complex conjugate pairs.

Write r1 for the number of real embeddings of K into C, and r2 for the number
of complex conjugate pairs of embeddings. Since there are n embeddings in total,
we have r1 + 2r2 = n. Every pair (σ,σ) of complex embeddings together map
K into C2, but it is easy to see that the image is actually contained in a real
2-dimensional subspace; after all, if σ(ω) = a + bi , then σ(ω) = a − bi , so that the
real and imaginary parts of σ(ω) are already determined by the real and imaginary
parts of σ(ω). Since each real embedding maps K into R √ C and each pair of
complex embeddings map K into a 2-dimensional real subspace of C2, we see that
the collection of all embeddings ι = (σ1, . . . ,σn) maps K into a real subspace V of
Cn of real dimension n.

Given our set {ω1, . . . ,ωn}, the image of Zι(ω1) + · · · + Zι(ωn) is contained in
this subspace V . When the set is not a basis, the image will lie in a subspace of V of
strictly smaller dimension, and the discriminant will vanish—but if it is a basis, the
discriminant will measure the volume of a fundamental region (see Definition 7.1)
for the image, and thus how sparsely these points are spaced.

3.4 Integral Bases

We say that the set {ω1, . . . ,ωn} is an integral basis for the ring of integers ZK when
every element of ZK is uniquely expressible as a Z-linear combination of elements
of the set.

Example 3.26 We have already seen examples of integral bases for quadratic
fields (see Proposition 2.34). If K = Q(

∈
d), with d a squarefree integer, and

d ∩ 1 (mod 4), then ZK = Z + Z. 1+∈
d

2 , so an integral basis is {1, 1+∈
d

2 }. Sim-
ilarly, if d ∩ 2 (mod 4) or d ∩ 3 (mod 4), then ZK = Z + Z

∈
d , so an integral basis

is {1,
∈

d}.
In general, it is not obvious that such bases exist, but the main result of this section

is that they do for all number fields K .
Equivalently, we will prove that the ring of integers of K is a free abelian group

of rank n = [K : Q]. Recall that a free abelian group A of rank n is one which
is the direct sum of n subgroups, each infinite cyclic (so isomorphic to Z). Then
A ∼= Zω1 + · · · + Zωn , so that every element of A can be expressed uniquely as
x1ω1 + · · · + xnωn for some xi ≥ Z. This is exactly the property required of an
integral basis.

Suppose that [K : Q] = n. By definition of the degree, we can choose a basis
{ω1, . . . ,ωn} for K over Q; thus every element of K can be written x1ω1+· · ·+xnωn

for xi ≥ Q.

Theorem 3.27 Let K be a number field. Then the ring of integers ZK has an integral
basis.
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Proof Given any basis, it follows from Remark 2.24 that we can replace each element
in our basis with a nonzero multiple so that every basis element is in ZK .

We also know (Proposition 3.23) that the discriminant of every basis consisting
of elements of ZK is an integer.

Choose a basis {ω1, . . . ,ωn}, consisting of elements of ZK , such that
|Δ{ω1, . . . ,ωn}| is as small as possible (since it is always a positive integer, this
bound is attained).

We claim that this set is indeed an integral basis for K . If not, there would be
some element ω ≥ ZK whose expression in terms of this basis

ω = x1ω1 + · · · + xnωn

has coefficients which are in Q, but not all in Z. Reordering our basis elements if
necessary, suppose that x1 /≥ Z. Then we can choose a1 ≥ Z with |x1 − a1| ⇒ 1

2 .
Define ω◦

1 = ω − a1ω1 = (x1 − a1)ω1 + x2ω2 + · · · + xnωn . Then ω◦
1 is again in

ZK (as ω ≥ ZK , ω1 ≥ ZK , and a1 ≥ Z). Define also ω◦
2 = ω2, . . . ,ω

◦
n = ωn .

Then {ω◦
1, . . . ,ω

◦
n} is another basis; it is easy to see that each of the elements of both

sets can be expressed as a linear combination of the other (recall that x1 − a1 →= 0).
We now apply Proposition 3.22. For the change of basis from {ω1, . . . ,ωn} to

{ω◦
1, . . . ,ω

◦
n}, the matrix C is given by

⎧

⎨⎨⎨⎨⎨⎩

x1 − a1 x2 x3 . . . xn

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎝

⎞⎞⎞⎞⎞⎟
,

and Proposition 3.22 gives

Δ{ω◦
1, . . . ,ω

◦
n} = (x1 − a1)

2Δ{ω1, . . . ,ωn}.

But |x1 − a1| ⇒ 1
2 , so this means that

Δ{ω◦
1, . . . ,ω

◦
n} < Δ{ω1, . . . ,ωn}

and this contradicts the minimality of the discriminant of the basis {ω1, . . . ,ωn}. �

So integral bases exist; in particular, the ring of integers of a number field of
degree n is a free abelian group of rank n.

Proposition 3.28 If {ω1, . . . ,ωn} and {ω◦
1, . . . ,ω

◦
n} are two integral bases for a

number field K , then

Δ{ω◦
1, . . . ,ω

◦
n} = Δ{ω1, . . . ,ωn}.
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Proof If {ω1, . . . ,ωn} and {ω◦
1, . . . ,ω

◦
n} are two integral bases, then each element of

the second can be written as an integral linear combination of those in the first; that
is, in the notation of Proposition 3.22, each ci j ≥ Z. The equality

Δ{ω◦
1, . . . ,ω

◦
n} = (det C)2Δ{ω1, . . . ,ωn}

then implies that the integer Δ{ω1, . . . ,ωn} divides the integer Δ{ω◦
1, . . . ,ω

◦
n}. But

the same argument applies in the other direction too; each element of the first basis
can be written as an integral linear combination of the second basis, and a similar
argument shows that the integer Δ{ω◦

1, . . . ,ω
◦
n} divides the integer Δ{ω1, . . . ,ωn}.

From this we see that

Δ{ω◦
1, . . . ,ω

◦
n} = ±Δ{ω1, . . . ,ωn}.

Also each ci j ≥ Z, so that det C ≥ Z, and (det C)2 > 0. Thus

Δ{ω◦
1, . . . ,ω

◦
n} = Δ{ω1, . . . ,ωn},

as required. �

Definition 3.29 Suppose that K is a number field. The discriminant DK of K is
defined to be the discriminant of any integral basis for K . It exists by Proposition 3.28.

Example 3.30 Consider the case K = Q(
∈

d) with d squarefree and d ∩ 1 (mod 4).

Then an integral basis is {1, 1+∈
d

2 }. There are two embeddings into C, given by
σ1(a + b

∈
d) = a + b

∈
d and σ2(a + b

∈
d) = a − b

∈
d. The discriminant is

∣∣∣∣∣∣

σ1(1) σ1

(
1+∈

d
2

)

σ2(1) σ2

(
1+∈

d
2

)

∣∣∣∣∣∣

2

=
∣∣∣∣∣
1 1+∈

d
2

1 1−∈
d

2

∣∣∣∣∣

2

=
(
−∈

d
)2 = d.

Thus if K = Q(
∈

d) as above, DK = d.

Exercise 3.11 Recall that an integral basis for K = Q(
∈

d) with d squarefree and
d ∩ 2 (mod 4) or d ∩ 3 (mod 4) is {1,

∈
d}. Show that in this case DK = 4d.

3.5 Further Theory of the Discriminant

This section contains some further results on the discriminant that are used later in
the book. The reader may wish to skip this section, or at least the proofs, on first
reading.

Proposition 3.31 Suppose that K = Q(γ), and that the minimal polynomial of γ
over Q is f (X) ≥ Q[X ] of degree n. Then
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Δ
{

1, γ, . . . , γn−1
}

= (−1)n(n−1)/2 NK/Q( f ◦(γ)).

Proof By Example 3.21, the discriminant Δ{1, γ, . . . , γn−1} = ⎠
i< j (γi − γ j )

2,
where the conjugates of γ are γ1, . . . , γn . Recall that the conjugates are the roots in
C of the minimal polynomial f (X), and that minimal polynomials are monic. So
f (X) = ⎠n

i=1(X − γi ). Using the product rule,

f ◦(X) =
n∑

k=1

∏

i →=k

(X − γi ), (3.1)

and so
f ◦(γ j ) =

∏

i →= j

(γ j − γi ),

since only the term with k = j in (3.1) doesn’t have a factor (X − γ j ). Then

NK/Q( f ◦(γ)) =
n∏

j=1

f ◦(γ j )

=
n∏

j=1

∏

i →= j

(γ j − γi ),

and notice that if i < j , this product has a bracket (γi − γ j ) and a bracket (γ j − γi ).
It follows that

NK/Q( f ◦(γ)) =
∏

i< j

[
−(γi − γ j )

2
]

= (−1)n(n−1)/2Δ
{

1, γ, . . . , γn−1
}

.

�

This can often be used to compute discriminants, especially when a primitive
element γ is given explicitly; one simply takes its minimal polynomial, and evaluates
the right-hand side of the proposition.

Exercise 3.12 Let K = Q(
3
∈

2), and let γ = 3
∈

2. Use the proposition to compute
Δ{1, γ, γ2}.
Lemma 3.32 Suppose that ω1, . . . ,ωn is a basis for K over Q consisting of elements
of ZK . Then

Δ{ω1, . . . ,ωn}.ZK ⊆ Zω1 + · · · + Zωn .

Proof Let α ≥ ZK . As {ω1, . . . ,ωn} is a basis, we can write

α = x1ω1 + · · · + xnωn, (3.2)
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for some x1, . . . , xn ≥ Q. Multiply through by ω j , and take the trace:

TK/Q(αω j ) =
n∑

i=1

xi TK/Q(ωiω j ). (3.3)

As α and ω j ≥ ZK , we have TK/Q(αω j ) ≥ Z by Corollary 3.17. Similarly, the
traces TK/Q(ωiω j ) on the right-hand side are also in Z for all i, j . So the equa-
tions (3.3) can be regarded as a set of linear equations whose solution is given by
x1, . . . , xn ; Cramer’s rule implies that the solutions are quotients of integers (given
by suitable determinants of integers) by det(TK/Q(ωiω j )) = Δ{ω1, . . . ,ωn}. So
Δ{ω1, . . . ,ωn}xi ≥ Z for all i , and multiplying (3.2) by Δ{ω1, . . . ,ωn}, we see that

Δ{ω1, . . . ,ωn}.α ≥ Zω1 + · · · + Zωn

as required. �

This lemma can be very helpful in finding integral bases for a number field K .
Indeed, one strategy is the following:

Step 1 Find any basis for K over Q, and scale the basis elements so that they are
in ZK . Let {ω1, . . . ,ωn} be the result.

Step 2 Compute Δ = Δ{ω1, . . . ,ωn}. Then Lemma 3.32 shows that

ZK ⊆ 1

Δ
(Zω1 + · · · + Zωn),

so every integer must be of the form

x1ω1 + · · · + xnωn

for xi ≥ Q but where the denominators divide Δ.
Step 3 For a prime p2|Δ, check whether any element of the form ω = x1ω1 +

· · ·+ xnωn is integral, where xi is a rational number with denominator dividing p. If
such an integral ω exists, where some xi is not in Z, so has denominator p, replace
ωi with ω to get a set with discriminant Δ/p2 (by Proposition 3.22). Since the
discriminant of an integral basis must be in Z, we need only do this for primes p
with p2|Δ. Now return to Step 2. If no such element is integral, for any prime p with
p2|Δ, then we have an integral basis.

One simple consequence is the following:

Corollary 3.33 Suppose that K is a number field and ω1, . . . ,ωn are elements of
ZK such that Δ{ω1, . . . ,ωn} is squarefree. Then {ω1, . . . ,ωn} is an integral basis.

However, in practice, it is fairly unusual for a number field K to have squarefree
discriminant, so this corollary is not as useful as one might hope.

The final result in this section will be used in Chap. 9. (The proof is, frankly, not
all that interesting, and the reader is advised to skip it if possible.)

http://dx.doi.org/10.1007/978-3-319-07545-7_9
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Proposition 3.34 Suppose that K1 = Q(γ1) and K2 = Q(γ2) are two number fields
of degree n1 and n2 respectively, such that K = Q(γ1, γ2) has degree n1n2 over
Q. Suppose that {ω1, . . . ,ωn1} and {ω◦

1, . . . ,ω
◦
n2

} are integral bases for K1 and K2
respectively, with discriminants D1 and D2. If D1 and D2 are coprime, then {ωiω

◦
j }

forms an integral basis for K , of discriminant Dn2
1 Dn1

2 .

Proof We first claim that {ωiω
◦
j } form a basis for K over Q. Indeed, every element

of K is a polynomial expression in γ1 and γ2. Every power of γ1 lies in K1, so is a
linear combination of {ω1, . . . ,ωn1}, and similarly every power of γ2 lies in K2 and
is thus a linear combination of {ω◦

1, . . . ,ω
◦
n2

}. Thus every product γa
1 γb

2 is a linear
combination of the elements of {ωiω

◦
j }. Each element of K is a linear combination

of these monomials, so is also a linear combination of this set. As we have n1n2 such
elements, and [K : Q] = n1n2 by hypothesis, they must be linearly independent,
and are therefore a basis.

We now want to show that they form an integral basis.
If α ≥ ZK , we can write

α =
n1∑

i=1

n2∑

j=1

xi jωiω
◦
j ,

and we want to see that xi j ≥ Z. Then

α =
n1∑

i=1

n2∑

j=1

xi jωiω
◦
j =

n1∑

i=1

⎧

⎩
n2∑

j=1

xi jω
◦
j

⎝

⎟ ωi =
n1∑

i=1

yiωi ,

where yi = ∑n2
j=1 xi jω

◦
j ≥ K2.

Since [K : Q] = n1n2 and [K1 : Q] = n1, we conclude from the tower law
(Theorem 3.10) that [K : K1] = n2. Since K = K1(γ2), we see that there are n2
embeddings of K into C which are the identity on K1 (which we regard as a subfield
of C using any fixed embedding). Let {σ◦

1, . . . ,σ
◦
n2

} denote these embeddings of K
into C. (Notice that these embeddings restrict to the n2 different embeddings of K2
into C if we just regard them as maps on the elements of K2 ⊆ K , since they are
determined by sending γ2 to one of its conjugates.)

Then if x =
⎧

⎨⎩
σ◦

1(α)
...

σ◦
n2

(α)

⎝

⎞⎟, and y =
⎧

⎨⎩
y1
...

yn2

⎝

⎞⎟, we have x = My, where Mkl = σ◦
k(ω

◦
l).

By definition, D2 = (det M)2. As in Lemma 3.32, D2 yi = ∑n2
j=1 D2xi jω

◦
j has

coefficients in Z, and so D2xi j ≥ Z. In the same way (exchanging the roles of K1
and K2), D1xi j ≥ Z. As D1 and D2 are coprime, we conclude that each xi j ≥ Z, and
so {ωiω

◦
j } forms an integral basis for ZK .

If {σ1, . . . ,σn1} denotes the embeddings of K into C, which are the identity on
K2, then all the embeddings of K into C are given by {σiσ

◦
j }. (This can easily be

seen by observing that an embedding is uniquely determined by its effect on γ1
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and γ2; these in turn uniquely determine σi and σ◦
j .) Then the discriminant of the

basis {ωiω
◦
j } is given by (det A)2, where A is an n1n2 × n1n2-matrix with Aki,l j =

(σkσ
◦
l)(ωiω

◦
j ) = σk(ωi )σ

◦
l(ω

◦
j ). We can decompose A as A = BC , where B is the

n2 × n2 matrix of n1 × n1-blocks given by

B =

⎧

⎨⎨⎨⎩

Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

⎝

⎞⎞⎞⎟ ,

where Q is the n1 × n1-matrix with Qki = σk(ωi ), and C is the block matrix

C =

⎧

⎨⎨⎨⎩

σ◦
1(ω

◦
1)I σ◦

2(ω
◦
1)I . . . σ◦

n2
(ω◦

1)I
σ◦

1(ω
◦
2)I σ◦

2(ω
◦
2)I . . . σ◦

n2
(ω◦

2)I
...

...
. . .

...

σ◦
1(ω

◦
n2

)I σ◦
2(ω

◦
n2

)I . . . σ◦
n2

(ω◦
n2

)I

⎝

⎞⎞⎞⎟ ,

where I is the n1 × n1-identity matrix.
Clearly det(B) = det(Q)n2 , so that det(B)2 = ((det Q)2)n2 = Dn2

1 . Also,
det(C) = det(σ◦

l(ω
◦
j ))

n1 , so that det(C)2 = Dn1
2 .

As Δ = det(A)2 = det(B)2 det(C)2, the result follows. �
Exercise 3.13 If K1 = Q(

∈
2) and K2 = Q(

∈
5), use Proposition 3.34 to write

down an integral basis for Q(
∈

2,
∈

5), and its discriminant. Verify your answer
directly from the definition of the discriminant.

3.6 Rings of Integers in Some Cubic and Quartic Fields

We have already computed the rings of integers for all quadratic fields, in Proposi-
tion 2.34.

In this section, we will consider several further examples in which we construct
integral bases; in two of these examples, we will also show the ring of integers cannot
be expressed in the form Z[γ] for any element γ.

Incidentally, fields K where ZK = Z[γ] are sometimes called monogenic, and
the basis {1, γ, . . . , γn−1} is sometimes called a power basis.

3.6.1 K = Q(
√

2,
√

3)

Given that the ring of integers of Q(
∈

2) is Z[∈2] and the ring of integers of Q(
∈

3)

is Z[∈3], one might hope that the ring of integers of K = Q(
∈

2,
∈

3) should
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be Z[∈2,
∈

3]. However we have already seen that this is false, in Exercises 2.11
and 2.16. (This is not a contradiction to Proposition 3.34, since the discriminants of
Q(

∈
2) and Q(

∈
3) are not coprime.)

The methods used in this section generalise to other biquadratic fields, that is,
fields of the form Q(

∈
d1,

∈
d2). We will deal with these fields in more generality

once we have developed more theory; the result is given by Proposition 8.22.
Let α ≥ ZK . Then we can write α = a + b

∈
2 + c

∈
3 + d

∈
6 for some

a, b, c, d ≥ Q.
As α ≥ ZK , all of its conjugates

α2 = a − b
∈

2 + c
∈

3 − d
∈

6

α3 = a + b
∈

2 − c
∈

3 − d
∈

6

α4 = a − b
∈

2 − c
∈

3 + d
∈

6

are also algebraic integers. As the set of algebraic integers is closed under addition,
the following are also algebraic integers:

α + α2 = 2a + 2c
∈

3

α + α3 = 2a + 2b
∈

2

α + α4 = 2a + 2d
∈

6.

By Proposition 2.34, these are integral if 2a, 2b, 2c, 2d ≥ Z. Thus

α = A + B
∈

2 + C
∈

3 + D
∈

6

2
,

for A, B, C, D ≥ Z, where A = 2a, B = 2b, C = 2c and D = 2d.
Also,

αα2 = (a + c
∈

3)2 − (b
∈

2 + d
∈

6)2

= a2 + 2ac
∈

3 + 3c2 − 2b2 − 4bd
∈

3 − 6d2

= A2 + 3C2 − 2B2 − 6D2

4
+ AC − 2B D

2

∈
3

is also integral. Thus 4|A2 + 3C2 − 2B2 − 6D2 and 2|AC − 2B D. The second
implies that 2|AC , so that at least one of A and C is even. If only one were even,
then A2 + 3C2 − 2B2 − 6D2 would be odd, and the first requirement would fail. So
both A and C are even.

Then the second divisibility is automatic, and the first reduces to 4|2B2 + 6D2,
or 2|B2 + D2, so that B and D are both even or both odd.
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So integers are all of the form

α = a + b
∈

2 + c
∈

3 + d
∈

6

with a, c ≥ Z and b and d both integral or both halves of odd integers.
It remains to check that elements of this form are all integers. But such elements

are integer linear combinations of 1,
∈

2,
∈

3 and
∈

2+∈
6

2 = 1+∈
3∈

2
. The first three

are obviously integers, and the last is integral by Exercise 2.11.

We now claim that ZK = Z[γ], where γ =
∈

2+∈
6

2 .

Indeed, γ2 = 2 + ∈
3 and γ3 = 5

∈
2+3

∈
6

2 , so

∈
2 = γ3 − 3γ and

∈
3 = γ2 − 2.

Then each element in the integral basis can be written as an element in Z[γ], and so
ZK ⊆ Z[γ]. Conversely, γ ≥ ZK , and so Z[γ] ⊆ ZK , as ZK is a ring.

Exercise 3.14 Compute the discriminant DK using the following four methods: the
original definition (Definition 3.18), the reformulation (Lemma 3.19), and the two
methods which apply when ZK can be written in the form Z[γ] (Example 3.21 and
Proposition 3.31).

3.6.2 K = Q(
√−2,

√−5)

The determination of the ring of integers in this case is very similar to that of
Q(

∈
2,

∈
3).

Exercise 3.15 Verify that if K = Q(
∈−2,

∈−5), then an integral basis is given by

{1,
∈−2,

∈−5,
∈−2+∈

10
2 }.

However, the reader might like to check that if γ =
∈−2+∈

10
2 , the argument above

that ZK = Z[γ] does not work in this case.
Indeed, one can show that there is no element γ such that ZK = Z[γ]. Here is one

way to see this. The argument is elementary, but quite intricate. (We will reinterpret
it in Remark 5.47.)

Consider the elements

α1 =
(

1 + ∈−2
) (

1 + ∈−5
)

α2 =
(

1 + ∈−2
) (

1 − ∈−5
)

α3 =
(

1 − ∈−2
) (

1 + ∈−5
)

α4 =
(

1 − ∈−2
) (

1 − ∈−5
)
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All lie in ZK , and α1 + α2 + α3 + α4 = 4. Notice that

α1α2 =
(

1 + ∈−2
)2 (

1 + ∈−5
) (

1 − ∈−5
)

= 6
(

1 + ∈−2
)2

,

and similarly 3|αiα j for any pair i →= j .
Notice that this implies that

(α1 + α2 + α3 + α4)
n ∩ αn

1 + αn
2 + αn

3 + αn
4 (mod 3);

expanding the left-hand side gives the right-hand side together with lots of terms
involving more than one of the αi . (Of course, the congruence actually takes place
in ZK ; it means that the two sides differ by an element of 3ZK .)

Then

TK/Q(αn
1) = αn

1 + αn
2 + αn

3 + αn
4 ∩ (α1 + α2 + α3 + α4)

n = 4n ∩ 1 (mod 3).

If 3|αn
1, then it would also divide any of its conjugates, so 3|αn

i for all i , so that
3|TK/Q(αn

1). Thus 3 � αn
1 for any n, and similarly 3 � αn

i for any i and any n.
Now suppose that ZK = Z[γ] for some γ, and let f (X) ≥ Z[X ] be its minimal

polynomial. As αi ≥ ZK , we can write αi = fi (γ) for some fi ≥ Z[X ].
Now 3|αiα j for all i →= j , but 3 � αn

i for any i and n.
Let f denote the polynomial f with its coefficients reduced modulo 3, so that

f (X) ≥ F3[X ] (recall that F3 = {0, 1, 2}, the integers modulo 3).

Exercise 3.16 Show that if g(X) ≥ Z[X ], that 3|g(γ) in Z[γ] if and only if g is
divisible by f in F3[X ].

Applying this to fi (X) f j (X), where we know that 3|αiα j , we conclude that
f | f i f j for all i →= j . But 3 � αn

i , so that f � f
n
i for any i and n.

Together, these imply that for all i →= j , f has a factor dividing f i but not f j .
This means that f must have at least four different irreducible factors.

But f is a quartic, so the different factors of f must all be linear. However, there
are only three different linear factors in F3[X ], namely, X , X − 1 and X − 2. This
gives a contradiction.

3.6.3 K = Q(
3√2)

For our first example of a cubic field, we will consider K = Q(
3
∈

2). Write α = 3
∈

2,
and ω = e2πi/3. Notice that 1 + ω + ω2 = 0.

Suppose that θ1 = a+bα+cα2, where a, b, c ≥ Q, lies in ZK . Then its conjugates
are also algebraic integers:
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θ2 = a + bαω + cα2ω2

θ3 = a + bαω2 + cα2ω,

although they are not in K . Then

θ1 + θ2 + θ3 = 3a

θ1θ2 + θ2θ3 + θ3θ1 = 3a2 − 6bc

θ1θ2θ3 = a3 + 2b3 + 4c3 − 6abc

are all also algebraic integers. As they are also rational, they are all in Z. Write
A = 3a, B = 3b and C = 3c. The first equation gives A ≥ Z. Multiplying the
second by 3 gives A2 − 2BC ∩ 0 (mod 3), and the third by 27 gives A3 + 2B3 +
4C3 − 6ABC ∩ 0 (mod 27).

Notice that the second and third give B, C ≥ Z: if A2 −2BC ≥ Z, then 2BC ≥ Z,
and so 6ABC ≥ Z, so the last implies that 2B3 + 4C3 ≥ Z. But the only way that
rationals can satisfy 2BC ≥ Z and 2B3 + 4C3 ≥ Z is if B, C ≥ Z (if a prime p
occurs in the denominator of B, say, then as 2BC ≥ Z, it cannot also occur in the
denominator of C , but then p will be in the denominator of 2B3 + 4C3).

If 3|A, then 2BC ∩ 0 (mod 3), so either B or C is divisible by 3, and then
3|A3 + 2B3 + 4C3 − 6ABC implies that both must be.

If 3 � A, then the only solutions to A2 − 2BC ∩ 0 (mod 3) and A3 + 2B3 +
4C3 − 6ABC ∩ 0 (mod 3) are A ∩ 1, B ∩ 2 and C ∩ 1 (mod 3) or A ∩ 2,
B ∩ 1 and C ∩ 2 (mod 3). Put A = 1 + 3l, B = 2 + 3m, C = 1 + 3n, and then
A3+2B3+4C3−6ABC ∩ 9 (mod 27), whatever the choice of l, m and n. Similarly,
if A = 2+3l, B = 1+3m, C = 2+3n, then A3+2B3+4C3−6ABC ∩ 18 (mod 27)
for any l, m and n. This means that there are no solutions with 3 � A.

Thus 3|A, 3|B and 3|C , which implies that a, b, c ≥ Z, and so the ring of integers
is Z[ 3

∈
2].

3.6.4 K = Q(
3√175)

We consider a more general cubic case, where we adjoin a cube root of an integer
which has a square factor.

Take m = 175 = 52 × 7. We will compute ZK . Note that if α = 3
∈

175, then
α2 = 3

∈
5472 = 5 3

∈
5 × 72 = 7 3

∈
245. So α◦ = 3

∈
245 is another element in K (and

indeed, K = Q(α◦) also). Furthermore, both α and α◦ are integral, as they are roots
of the monic integral polynomials X3 − 175 and X3 − 245 respectively.

We claim that ZK has integral basis {1,α,α◦}.
This is rather like the last example, but we will also use the strategy mentioned in

Sect. 3.5.
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We first compute Δ{1,α,α◦}.
The embeddings into C are given by

σ1(a + bα + cα◦) = a + bα + cα◦

σ2(a + bα + cα◦) = a + bαω + cα◦ω2

σ3(a + bα + cα◦) = a + bαω2 + cα◦ω

so the discriminant is given by the square of the determinant

∣∣∣∣∣∣

1 α α◦
1 αω α◦ω2

1 αω2 α◦ω

∣∣∣∣∣∣
= −3

∈
3iαα◦.

Note that αα◦ = 5 × 7 = 35. So Δ{1,α,α◦} = (−3
∈

3iαα◦)2 = −335272, which
means that all integers must be of the form a+bα+cα◦

d where a, b, c, d ≥ Z and
d|3 × 5 × 7, using Lemma 3.32.

Let’s suppose θ1 = a+bα+cα◦
5 is an integer. Then so are its conjugates

θ2 = a + bαω + cα◦ω2

5
and θ3 = a + bαω2 + cα◦ω

5
.

Then θ1 + θ2 + θ3 = 3a/5 is an integer, so 5|a.
Now θ1 = A + bα+cα◦

5 , where A ≥ Z, so bα+cα◦
5 ≥ ZK . Its norm is the product

of the conjugates:

b3α3 + c3α◦3

53 = 175b3 + 245c3

125
= 35b3 + 49c3

25
.

We need this to be an integer. But if 35b3 + 49c3 ∩ 0 (mod 25), then certainly
35b3 + 49c3 ∩ 0 (mod 5), so that 5|c3, and 5|c. Then as 35b3 + 49c3 ∩ 0 (mod 25),
we see also 5|b. Thus 5 cannot occur in the denominator of an element of ZK .

Exactly the same argument works for 7.
For p = 3, we need to consider θ1 = a+bα+cα◦

3 and determine when it is an
integer.

Exercise 3.17 Show, using the method of the previous example, that if θ1 =
a+bα+cα◦

3 is in ZK , then 3|a, 3|b and 3|c.

It follows that ZK has {1,α,α◦} as an integral basis.
Suppose that there is an integral basis of the form {1, γ, γ2} for some γ. Writing

γ = a + bα+ cα◦, then γ − a = bα+ cα◦; if {1, γ, γ2} is an integral basis, it is easy
to see that {1, γ − a, (γ − a)2} is also an integral basis, so we can assume that γ is
simply of the form bα + cα◦. Then

γ2 = (bα + cα◦)2 = b2α2 + 2bcαα◦ + c2α◦2 = 5b2α◦ + 70bc + 7c2α,
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and so we have expressed the elements {1, γ, γ2} in terms of the basis {1,α,α◦}. The
condition that {1, γ, γ2} is a basis is equivalent to requiring that the change of basis
matrix should have determinant ±1; this is

∣∣∣∣∣∣

1 0 0
0 b c

70bc 7c2 5b2

∣∣∣∣∣∣
= 5b3 − 7c3.

But 5b3 − 7c3 →= ±1 for any integers b and c, as one can see by working modulo 7.
The cubes modulo 7 are 0 and ±1, so we cannot have 5b3 ∩ ±1 (mod 7). This
contradiction shows that ZK has no integral basis of the form {1, γ, γ2}.

We will state the general result in Chap. 8.

http://dx.doi.org/10.1007/978-3-319-07545-7_8


Chapter 4
Ideals

In Chap. 2, we saw that the set of integers ZK in an algebraic number field K forms
a ring. In this chapter and the next, we are going to begin the study of primes.

When we begin to study factorisation in more general settings, we quickly see
that several of the results from Chap. 1 fail to hold in the generality which we would
like. The major drawback is that unique factorisation no longer holds in general.

This failure was already noted by Gauss at the end of the 18th century; these
examples occur in the rings of integers of some quadratic number fields.

We’ll begin with a “toy example”, where some of the features can be easily
explained. You should notice that the set we will consider is not a ring!

Example 4.1 Suppose that we lived in a world where the only positive integers were
1, 4, 7, 10, . . ., the integers of the form 3n + 1. In this world, we would have a
definition of prime number: a prime number will be an integer which cannot be
factored further. For example, the numbers 4, 7, 10, and 13 are all prime (since we
only have integers of the form 3n + 1), whereas 16 = 4 × 4 is not.

Now the integer 100 may be written as a product of primes in two different ways:

100 = 10 × 10 = 4 × 25.

All of the factors, 4, 10 and 25, are prime in this world, and the two factorisations
are genuinely different.

Of course, the problem here is that we do not have enough integers; we have to
enlarge our set of integers. If we also include the integers of the form 3n + 2, then in
this larger world the factors are no longer prime, as we can factorise them further:

4 = 2 × 2

10 = 2 × 5

25 = 5 × 5.
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Using these factorisations, our apparent lack of unique factorisation is resolved:

100 = (2 × 5) × (2 × 5) = (2 × 2) × (5 × 5).

Exercise 4.1 Instead of the set in Example 4.1, consider the set of integers 1, 5, 9, . . .

of integers of the form 4n + 1. Find two factorisations of 441 in this set which are
genuinely different, and explain how adding the remaining odd integers resolves the
problem.

4.1 Uniqueness of Factorisation Revisited

As we remarked above, in Chap. 1, we showed that Z has unique factorisation, but
even there we cautioned that some care has to be taken in defining uniqueness. For
example,

6 = 2 × 3 = (−3) × (−2)

should really be counted as equivalent factorisations—we’ve simply permuted the
factors, and multiplied both by −1, and since (−1)(−1) = 1, this shouldn’t really
matter.

In general, if we have a factorisation r = a × b in some ring R (and we will
be interested in the case where R is the ring of integers in some number field), and
if u and v in R satisfy uv = 1, then we ought to consider r = (ua) × (vb) as an
equivalent factorisation.

Let’s formalise this in the following sequence of definitions:

Definition 4.2 Let R be a ring, and let u ≥ R. If there exists an element v ≥ R with
uv = 1, say that u is a unit in R.

(We have already seen this terminology in Chap. 1 in some special cases.)

Definition 4.3 Two elements r1, r2 ≥ R are associate if there is a unit u ≥ R such
that r2 = ur1. (Note that the relation is symmetric: if r2 = ur1, then r1 = vr2 where
uv = 1.)

Given one factorisation, we want to consider another as “equivalent” if it can be
got from the first by (a) multiplying by units, and (b) rearranging the factors. This
suggests the following definition.

Definition 4.4 We say that two factorisations

r = a1a2 . . . an = b1b2 . . . bn

are equivalent if bi is an associate of aπ(i) for some permutation π of {1, . . . , n}.

http://dx.doi.org/10.1007/978-3-319-07545-7_1
http://dx.doi.org/10.1007/978-3-319-07545-7_1
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Of course, we will be particularly interested in factorisations into primes. In Z,
even prime numbers p can be factorised as p = (−1).(−p), so we should restrict
ourselves to factorisations which do not involve units.

There are two possible generalisations of prime numbers to more general rings:

Definition 4.5 1. Let p ≥ R. Then p is irreducible if

(a) p is not a unit;
(b) whenever p = ab, then either a or b is a unit.

2. Let p ≥ R. Then p is a prime element if, whenever p|ab (in the sense that
ab = pr for some r ≥ R), then p|a or p|b.

When R = Z, these two are equivalent, as we saw in Chap. 1. However, we will
see that they are different in general, and that this is a consequence of failure of
unique factorisation.

Exercise 4.2 Using the results of Sect. 1.4, what are the irreducible elements in Z[i]?

4.2 Non-unique Factorisation in Quadratic Number Fields

As in Chap. 1, where we looked briefly at factorisation in the Gaussian integers,
we’ll consider factorisation in the ring of integers of quadratic fields, giving some
examples where unique factorisation fails.

Suppose that d is squarefree. For simplicity, our examples will involve cases where
d ∈ 2 (mod 4) or d ∈ 3 (mod 4), so that the ring of integers in Q(

√
d) is Z[√d].

Example 4.6 Gauss’s examples of non-unique factorisation come from quadratic
number fields. For example, when d = 10, one has the equalities

6 = 2 × 3 =
(

4 + √
10

) (
4 − √

10
)

,

and, just to show that the same sort of equality can hold for d negative, let’s consider
d = −5:

6 = 2 × 3 =
(

1 + √−5
) (

1 − √−5
)

,

It will take a little time to check that these factors are all irreducible, in the sense
that they cannot be factored further, and also to show that the factorisations really
are different.

To begin, we will follow the prototype of the Gaussian integers (Sect. 1.4). If
α = a+b

√
d ≥ Z[√d], we define α = a−b

√
d , which will play the role of complex

conjugation. Next, we define the norm (following the definition of Sect. 3.2):

http://dx.doi.org/10.1007/978-3-319-07545-7_1
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N
(

a + b
√

d
)

= N (α) = αα =
(

a + b
√

d
) (

a − b
√

d
)

= a2 − db2.

If α ≥ Z[√d], then N (α) ≥ Z (see Corollary 3.17).
If we are given two elements α1 = a1 + b1

√
d and α2 = a2 + b2

√
d , we see that

N (α1α2) = α1α2.α1α2

= α1α1.α2α2

= N (α1)N (α2)

since α1α2 = α1.α2.
We begin with an easy lemma, which will allow us to recognise units, and therefore

associates:

Lemma 4.7 Suppose that u ≥ Z[√d]. Then u is a unit if and only if N (u) = ±1.

Proof If u is a unit, so that there exists v such that uv = 1, then

N (u)N (v) = N (uv) = N (1) = 1

so N (u) and N (v) must both be ±1, as they are integers whose product is 1.
Conversely, if N (u) = ±1, then uu = ±1. Define v = ±u—then uv = 1, and so

u is a unit. �

With that preliminary lemma out of the way, we can check that the factorisations
above are not equivalent.

Lemma 4.8 1. In Z[√10], the two factorisations

6 = 2 × 3 =
(

4 + √
10

) (
4 − √

10
)

are not equivalent.
2. In Z[√−5], the two factorisations

6 = 2 × 3 =
(

1 + √−5
) (

1 − √−5
)

are not equivalent.

Proof If α1 and α2 are associate, then there is a unit u such that α2 = uα1. Then

N (α2) = N (uα1) = N (u)N (α1) = N (α1).

It follows that if two factorisations are equivalent, then the norms of the factors on
both sides will be the same.
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However, in Z[√10],

N (2) = N
(

2 + 0
√

10
)

= 22 − 10 × 02 = 4

N (3) = N
(

3 + 0
√

10
)

= 32 − 10 × 02 = 9

N
(

4 + √
10

)
= 42 − 10 × 12 = 6

N
(

4 − √
10

)
= 42 − 10 × (−1)2 = 6,

and so the norms on the two sides are different.
Similarly, in Z[√−5],

N (2) = N
(

2 + 0
√−5

)
= 22 + 5 × 02 = 4

N (3) = N
(

3 + 0
√−5

)
= 32 + 5 × 02 = 9

N
(

1 + √−5
)

= 12 + 5 × 12 = 6

N
(

1 − √−5
)

= 12 + 5 × (−1)2 = 6,

and again the norms on the two sides are different. �

Now we check that all of the factors involved cannot be factorised further, so are,
in a sense, prime numbers in this setting.

Lemma 4.9

1. In Z[√10], all of the factors in the equality

2 × 3 =
(

4 + √
10

) (
4 − √

10
)

are irreducible.
2. In Z[√−5], all of the factors in the equality

2 × 3 =
(

1 + √−5
) (

1 − √−5
)

are irreducible.

Proof Let’s first see that there aren’t any elements α ≥ Z[√10] with N (α) = ±2. If
α = a+b

√
10, then N (α) = a2 −10b2 = ±2. This means that either a2 −10b2 = 2

or a2 − 10b2 = −2. Consider these equalities modulo 5: we see that we would need
a2 ∈ 2 (mod 5) or a2 ∈ 3 (mod 5), but both of these are impossible. In the same
way, there are no elements β ≥ Z[√10] with N (β) = ±3.

Suppose that 2 factorises as αβ in Z[√10]. Then 4 = N (2) = N (α)N (β).
If N (α) = ±1, N (β) = ±4, then α is a unit; if N (α) = ±4, N (β) = ±1,
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then β is a unit. So the only possibility of factorising 2 into non-units occurs if
N (α) = N (β) = ±2, and we have seen that there are no such elements.

In the same way, if 3 were to factorise as αβ into non-units, then N (α) = N (β) =
±3, and this is not possible.

Finally, the only way to factorise 4 ±√
10 into non-units would be as the product

of an element of norm ±2 and an element of norm ±3, which is impossible.
Exactly the same argument works for Z[√−5]. Indeed, there are again no elements

of norm ±2, as this would require a2 +5b2 = ±2, so that a2 +5b2 = 2 (as a2 +5b2

is necessarily positive), and there are clearly no integral solutions (again, one could
also argue modulo 5). Nor are there any solutions to a2 + 5b2 = 3, so there are no
elements of norm 3. The same argument as in the case of Z[√10] now applies to
Z[√−5]. �

In both of Gauss’s examples, therefore, we have two non-equivalent factorisations
into irreducible elements, and therefore factorisation in these rings is not unique.

Let us also notice that in these cases, the factors are irreducible, but they are not
prime elements (see Definition 4.5): 2|6, so 2|(4 +√

10)(4 −√
10), but 2 � 4 ±√

10
as (4 ± √

10)/2 = 2 ± 1
2

√
10 /≥ Z[√10].

Exercise 4.3 Certainly the set Z[ 1+√−3
2 ] is a ring, as it consists of all the algebraic

integers in Q(
√−3). We have also seen that the ring of integers of Q(

√
3) is Z[√3].

1. Show directly that Z[ 1+√−3
2 ] is a ring. (Hint: the only hard part is closure under

multiplication; for this, write ω = 1+√−3
2 , and use the fact that ω2 = −(ω + 1).)

2. Show that the set {
a + b

(
1 + √

3

2

) ∣∣∣∣∣ a, b ≥ Z

}

is not even closed under multiplication.

3. We shall also see that Z[ 1+√−3
2 ] has unique factorisation. However, show that in

Z[√−3], the two factorisations

4 =
(

1 + √−3
) (

1 − √−3
)

= 2 × 2

are different, so Z[√−3] fails to have unique factorisation.

Exercise 4.4 Let R denote the ring of integers of Q(
√

5). We have

11 =
(

4 + √
5
) (

4 − √
5
)

=
(

2
√

5 + 3
) (

2
√

5 − 3
)

.

Show that these two factorisations are equivalent.
[Hint: show that each of the factors on the left-hand side is a factor of the right-hand
side multiplied by a unit.]
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Exercise 4.5 In Z[i], explain that any element α with N (α) = p, a prime number in
Z, is necessarily irreducible. Find an example of an irreducible α ≥ Z[i] with N (α)

not a prime.
Do the same in Z[√−2].

Exercise 4.6 Another example in Z[√10] is furnished by

10 =
(√

10
)2 = 2 × 5.

Show that these are inequivalent factorisations into irreducible elements.

Exercise 4.7 Factor 6 in two different ways in Z[√−6]. Remember to check that
these really are different…

Exercise 4.8 Show that Z[√−13] does not have unique factorisation, by factoring
14 in two different ways.

Exercise 4.9 Show that in Z[√−26], one has

27 = 3.3.3 =
(

1 + √−26
) (

1 − √−26
)

,

and that each factor is irreducible. This implies that the number of factors in two
factorisations into irreducibles may differ.

4.3 Kummer’s Ideal Numbers

In Example 4.1, we resolved the non-uniqueness of factorisation by enlarging our
world to include “missing” integers.

Kummer tried to repair the non-uniqueness of factorisation in quadratic fields by
enlarging the integers to include “ideal numbers” in a similar way to the example.

In the example of non-unique factorisation of Z[√10] above, Kummer’s idea was
to invent symbols a1, a2, a3, a4 such that

2 = a1 × a2

3 = a3 × a4

4 + √
10 = a1 × a3

4 − √
10 = a2 × a4.

Then the non-unique factorisation

2 × 3 =
(

4 + √
10

) (
4 − √

10
)
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is repaired:
(a1 × a2) × (a3 × a4) = (a1 × a3) × (a2 × a4).

Note that these are purely invented symbols, and do not really have any meaning.
Nevertheless, Kummer hoped that these symbols could be manipulated in such a way
that meaningful results could be obtained.

A little later, Dedekind reformulated this idea of Kummer’s in more concrete
terms, which we shall now explain.

Consider again the factorisations into “ideal numbers”

2 = a1 × a2

and
4 + √

10 = a1 × a3

which we gave above. Then 2 would be a multiple of a1, so any multiple of 2 would
also be a multiple of a1. Similarly, 4+√

10 is again a multiple of a1, so any multiple
of 4 +√

10 is a multiple of a1. Combining these, any Z[√10]-linear combination of
2 and 4 + √

10 should be a multiple of a1.
That is, if R denotes the ring of integers Z[√10] of Q(

√
10), then the set of

multiples of 2, namely 2.R, must be contained in the set of multiples of a1. Thus
2.R ≡ a1 R. Similarly, (4 + √

10)R ≡ a1 R, and thus

2.R +
(

4 + √
10

)
R ≡ a1 R.

A little further thought suggests that this inclusion ought to be an equality. Indeed,
if we had an equality a1 R = R, then a1 would be invertible, and so a1 would be
a unit—but we don’t want our factors to be units. On the other hand, a calculation
gives

2.R +
(

4 + √
10

)
R = {m + n

√
10 | m, n ≥ Z, 2|m},

and this has index 2 in R (informally, half of the elements of R are in this set).
There is no room for anything between R and 2.R + (4 + √

10)R, and as a1 R is
strictly contained in R, and contains 2.R + (4 + √

10)R, we must have a1 R =
2.R + (4 + √

10)R.

Exercise 4.10 Expand 2.(a + b
√

10) + (4 + √
10)(c + d

√
10) and verify that

2.R +
(

4 + √
10

)
R = {m + n

√
10 | m, n ≥ Z, 2|m}.

Exercise 4.11 Suppose that α ≥ R satisfies α|2 and α|4 + √
10. By taking norms,

deduce that α is a unit in Z[√10]. Conclude that a1 really is not an element of
Z[√10].
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Instead of thinking of a1 as an “ideal number”, Dedekind’s idea was to work with
the set a1 R. Since a1 is not actually an element, writing a1 R is rather misleading, and
we shall simply write a1 now for the set. Then a1 is the set of all linear combinations
of 2 and 4 + √

10, i.e.,
a1 = 2.R +

(
4 + √

10
)

R.

In this viewpoint, even the symbol 2, which we would normally think of as a
number, should be viewed as the set 2.R of all multiples of 2.

Remark 4.10 Notice that this makes perfect sense even in Z, and we can reformulate
the property that a divides b in terms of these sets. Indeed, if a divides b, then b
is a multiple of a, and then any multiple of b is also a multiple of a; symbolically,
bZ ≡ aZ. Thus a|b if and only if bZ ≡ aZ.

In the example above, since a1 contains all multiples of 2, one could say that a1
is a divisor of 2. Similarly, a1 is also a divisor of 4 + √

10, as one would hope.
Thus, although there are no elements of R which divide 2 and 4 + √

10 except
units, there are certain subsets of R which contain 2.R and (4 + √

10)R which are
strictly contained in 1.R.

This led Dedekind to reformulate Kummer’s ideal numbers as being certain sub-
sets of the rings of integers, which are now known as ideals.

4.4 Ideals

As motivated above, the prototype for Dedekind’s sets are all the multiples of a
given element of R, or, more generally (when unique factorisation fails), all the
linear combinations of some set of elements. This led Dedekind to the following
abstract definition:

Definition 4.11 An ideal I of a commutative ring R is a subset of R such that

1. 0R ≥ I ;
2. if i and i ≤ ≥ I , then i − i ≤ ≥ I ;
3. if i ≥ I and a ≥ R, then ai ≥ I .

(Notice that the second requirement here is equivalent to I being closed under both
addition and additive inverses.)

Observe that these conditions are exactly the same as those needed for I to be a
module; the only difference is that ideals are subsets of the ring.

Let’s look at some examples.

Example 4.12

1. Any ring R is an ideal in itself.
2. For any ring R, {0R} is an ideal in R.
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3. Let R be any ring, and let r ≥ R. Let I = r R, all the multiples of r . Then I
is an ideal in R. Indeed, writing the axioms in words, 0 is a multiple of r ; the
difference of any two multiples of r is again a multiple of r , and any multiple
of a multiple of r is certainly a multiple of r .

The last example gives a large class of ideals, and, in some rings, all ideals are of
this form:

Lemma 4.13 In Z, every ideal is of the form nZ for some integer n.

Proof Let I be an ideal of Z, and first suppose I √= {0}. As I contains a non-zero
integer, it will contain a positive integer (if k ≥ I , and k < 0, then the definition of
ideal means that (−1) × k = −k ≥ I also).

Let n be the smallest positive integer contained in I . Clearly I then contains all
multiples of n, so I → nZ—but if a ≥ I , we can write a = qn + r by the division
algorithm, where 0 ◦ r < n, and as a and n ≥ I , we conclude that r ≥ I . As n was
the smallest positive integer in I , we conclude that r = 0, so that a is a multiple of
n. Thus I = nZ.

On the other hand, if I = {0}, we can regard it as 0Z, so I is again of the required
form. �

You should be warned that, in the case of a general ring R, not every ideal in R is
of the form r R; the reason that it holds in Z is because of Euclid’s algorithm, but it
is rare that rings have analogues of the Euclidean algorithm.

Let’s now explore some of the elementary properties of ideals.

Lemma 4.14 Let R be a ring.

1. If I and J are ideals of R, then so is I ⇒ J .
2. More generally, if {Iα}α≥π is any family of ideals of R, then so is their intersection⋂

α≥π Iα.
3. If I and J are both ideals of R, then so is

I J = {finite sums of elements of the form i j | i ≥ I and j ≥ J }

and I J ≡ I ⇒ J .
4. If I and J are both ideals of R, then so is

I + J = {i + j | i ≥ I and j ≥ J }.

Proof These are all straightforward verifications of the axioms.

1. We check the axioms. As I and J are ideals, 0R ≥ I and 0R ≥ J , and therefore
0R ≥ I ⇒ J . Next, given two elements in the intersection, we want their difference
to be in the intersection. But if i and j ≥ I ⇒ J , then i and j each lie in both I
and J . As these are ideals, i − j ≥ I and i − j ≥ J—and thus i − j ≥ I ⇒ J .
Finally, if i ≥ I ⇒ J (so i ≥ I and i ≥ J ) and r ≥ R, then ri ≥ I as I is an ideal,
and similarly ri ≥ J , so ri ≥ I ⇒ J . This shows that I ⇒ J is an ideal, as required.
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2. Very similar to the first assertion.
3. As 0R ≥ I (or J ), we see that 0R ≥ I J . Given two finite sums of terms of the

form i j , their difference is clearly again a finite sum of terms of the same form,
and so I J is closed under addition. Finally, given a sum

∑
k ik jk ≥ I J and an

element r ≥ R, we see that

r

(
∑

k

ik jk

)
=

∑

k

(rik) jk,

and as I is an ideal, all the bracketed terms rik ≥ I , so this is again a finite sum
of products of elements of I with elements of J .
For the final assertion, an element of I J is a finite sum of elements of the form i j
with i ≥ I and j ≥ J . As J ∩ R, we have j ≥ R, and so, by definition of ideals,
i j ≥ I R = I . Similarly, I ∩ R, so i ≥ R, and i j ≥ R J = J . It follows that all
terms i j ≥ I ⇒ J , so that I J ≡ I ⇒ J .

4. As 0R ≥ I and 0R ≥ J , we see that 0R = 0R + 0R ≥ I + J . Next, we take i1 + j1
and i2 + j2 ≥ I + J . Their difference is

(i1 + j1) − (i2 + j2) = (i1 − i2) + ( j1 − j2) ≥ I + J,

as i1 − i2 ≥ I and j1 − j2 ≥ J . Finally, given i + j ≥ I + J , and r ≥ R, we have
r(i + j) = ri + r j ≥ I + J as I and J are ideals. We conclude that I + J is an
ideal. �
Note that if I and J are ideals, it is not generally true that I ∼ J is an ideal—if

R = Z, I = 2Z and J = 3Z, then 2 ≥ I ∩ I ∼ J , and 3 ≥ J ∩ I ∼ J , but their
sum, 5, is not in I ∼ J . Thus I ∼ J is not an ideal.

The next lemma is very simple, but surprisingly useful:

Lemma 4.15 Suppose that R is a ring, and that I is an ideal of R. If I contains a
unit of R, then I = R.

Proof Suppose u ≥ I is a unit in R. Then there exists v ≥ R such that uv = 1R .
Thus 1R ≥ I . Now, for all a ≥ R, a.1R = a must lie in the ideal. Thus a ≥ I , and so
R ≡ I . The result follows. �

Along the same lines is the following:

Lemma 4.16 Suppose that R is an integral domain (i.e., has no zero divisors).
Suppose that a, b ≥ R. Then a R = bR if and only if a and b are associate.

Proof Suppose that a R = bR. As a = a.1R ≥ a R = bR, we see that a = bu for
some element u ≥ R. Similarly, b = av for some element v ≥ R. Then a = (av)u =
a(vu). As R is an integral domain, this only happens if vu = 1, i.e., u and v are
units.

Conversely, if a and b are associate, then a = bu for some unit u, and b = av for
the unit v with uv = 1. Thus any multiple br ≥ bR of b can also be written avr , so
lies in a R; then bR ≡ a R, and the reverse inclusion is similar. �



76 4 Ideals

As already hinted, ideals are the right context for factorisation: in Chap. 5, we are
going to prove that ideals in rings of integers of number fields factorise uniquely into
“prime ideals”. Using this lemma, we see that another advantage of working with
ideals is that the units no longer play any role.

Lemma 4.17 R is a field if and only if the only ideals in R are {0R} and R itself.

Proof If R is a field, then every non-zero element is a unit. If I is an ideal of R,
then either I only contains the zero element, or it contains a non-zero element, and
therefore a unit, so I = R by Lemma 4.15.

Conversely, if R is not a field, then there exists some non-zero element r which is
not a unit. Then the collection r R = {ra | a ≥ R} is an ideal in R; it is non-zero as it
contains r = r.1R √= 0, but nor is it all of R, as there is no a ≥ R such that ra = 1R ,
as r is not a unit. �

4.5 Generating Sets for Ideals

Now we consider ideals generated by sets. In practice, this will be the simplest way
to specify ideals, and we will use this notation a lot.

Definition 4.18 Let X be a (possibly infinite) subset of R. Then the intersection of
all ideals containing X is an ideal of R (by Lemma 4.14(2)), and is clearly contained
in all ideals containing X . This ideal is denoted by ⊂X∗, and called the ideal generated
by X .

Proposition 4.19 Let X be a subset of R. Then

⊂X∗ = {all finite sums of elements of the form r x, with r ≥ R, x ≥ X}.

Proof Let I ={all finite sums of elements of the form r x , with r ≥ R, x ≥ X}. We
want to show that I = ⊂X∗. One inclusion is clear from the definition; as I is an
example of an ideal containing X , the intersection ⊂X∗ of all such ideals must be a
subset of I . We need to check the converse, that I ≡ ⊂X∗.

Let J be any ideal containing all x ≥ X . For any r ≥ R, as x ≥ J and J is an
ideal, r x ≥ J . Further, J is closed under addition as well, and as we have just shown
that all elements r1x1, . . . , rn xn with ri ≥ R and xi ≥ X lie in J , so does their sum
r1x1 + · · · + rn xn . But any element of I is of this form, so each element of I lies in
J . This shows that if J is any ideal containing all x ≥ X , then J → I .

However, ⊂X∗ is an ideal containing every element of X , so ⊂X∗ → I . �

So the typical element of ⊂X∗ is r1x1 + r2x2 + · · · + rk xk for some k ≥ N.
In particular, if X = {x1, . . . , xn} is a finite set, then the ideal ⊂X∗, which in this

case we also denote by ⊂x1, . . . , xn∗, consists of all sums of the form
∑n

i=1 ri xi with
ri ≥ R. In other words,

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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⊂x1, . . . , xn∗ = x1 R + · · · + xn R.

This should remind you strongly of the notion of the span of a set of vectors in a
vector space.

Example 4.20 Consider the ideal ⊂2, 3∗ in Z. This consists of every integer n which
can be written as 2a + 3b for integers a, b. But every integer may be written in this
way (n = 2.(−n) + 3.n), so Z = ⊂2, 3∗ = ⊂1∗. Note that ⊂2∗ and ⊂3∗ are both proper
subsets of Z, so this shows that {2, 3} is a minimal set of generators, in the sense
that no proper subset generates the whole ideal. As both {1} and {2, 3} are minimal
generating sets, we see that ideals may have minimal generating sets of different
sizes (in contrast to vector spaces).

Exercise 4.12 Show that another minimal generating set is {6, 10, 15}.
Exercise 4.13 In the ring Z, write each of the following ideals in the form ⊂n∗ for
some integer n:

⊂12∗ ⇒ ⊂20∗; ⊂12∗⊂20∗; ⊂12∗ + ⊂20∗; ⊂12, 20∗.

Exercise 4.14 Let I = ⊂a1, . . . , am∗ and J = ⊂b1, . . . , bn∗ be two ideals of a ring
R. Show that

1. I + J = ⊂a1, . . . , am, b1, . . . , bn∗.
2. I J = ⊂a1b1, a1b2, . . . , a1bn, a2b1, . . . , ambn∗.
Definition 4.21 Ideals of the form ⊂r∗, with one generator, are called principal.

Now let’s remark that rings exist where not every ideal is of the form ⊂r∗ = r R
for some r ≥ R. Here is an example of a non-principal ideal:

Example 4.22 In Z[X ], the set I of polynomials whose constant term is divisible by
2 is an ideal (treat this as an exercise!), and is not of the form rZ[X ] for any r .

Indeed, both 2 and X would have to be multiples of r , which means that r would
have to be ±1. But ±1 does not belong to I , so this is also not possible. In fact,
I = ⊂2, X∗: given a polynomial

f (X) =
d∑

n=0

an Xn ≥ I,

we can write it as

f (X) = a0 + X.

d∑

n=1

an Xn−1,

and a0 ≥ 2Z ≡ 2Z[X ], while clearly X.
∑d

n=1 an Xn−1 ≥ X.Z[X ]. It follows that
every polynomial in I can be written as the sum of something in 2Z[X ] and something
in XZ[X ]. It follows that I ≡ ⊂2, X∗. The opposite inclusion is clear.
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Rings of integers of quadratic fields with non-unique factorisation also have this
property. Here is an example:

Example 4.23 Suppose that R = Z[√10]. Then the set a1 = 2.R + (4 + √
10)R =

⊂2, 4 + √
10∗ is an ideal in R, and it is not possible to write a1 as ⊂α∗ for any α ≥ R.

If it were, then every element of a1 would be a multiple of α. In particular, we would
have 2 = αβ and 4 + √

10 = αγ. Take norms:

4 = N (2) = N (α)N (β)

6 = N
(

4 + √
10

)
= N (α)N (γ),

and as we observed above, this means that N (α) = 1 or N (α) = 2. We have already
seen that there are no elements in Z[√10] with norm 2, but if N (α) = 1, α would
be a unit, so ⊂α∗ would equal R. However, 1 /≥ a1; we saw that every element in a1
has an even number as a coefficient of 1.

Incidentally, it is traditional to use Gothic letters a, b, etc., for ideals in rings of
integers of number fields. However, we will use I , J , etc., for ideals in more general
rings.

Exercise 4.15 Let R = Z[√−5], and consider the ideal a = ⊂2, 1 + √−5∗.
1. By calculating the general element 2β + (1 + √−5)γ in a (where β, γ ≥ R),

show that every element a + b
√−5 ≥ a with a, b ≥ Z has the property that

a ∈ b (mod 2). Deduce that 1 /≥ a.
2. Show that if a = ⊂α∗, then N (α)|2, and deduce that a is not principal.
3. Show that we can also write a as ⊂2, 1 − √

5∗.
I hope that you see from these examples that there seems to be a close relation

between the fact that R does not have unique factorisation, and the fact that we have
an ideal in R which is not principal. We shall explore this relationship more closely
later.

An ideal of R which has a finite generating set is called finitely generated. Rings
in which every ideal is finitely generated are called Noetherian, and are of special
interest for us, since we shall see that rings of integers of number fields have this
property; while there are rings in which some ideals are not finitely generated, we
shall not consider this situation.

Remark 4.24 In Lemma 4.14(3), we claimed that I J ≡ I ⇒ J . Sometimes we can
have equality here: if R = Z, I = 2Z, J = 3Z, then

I J = ⊂2∗.⊂3∗ = ⊂6∗,

and also I ⇒ J consists of all integers in I ⇒ J , which are those integers simultaneously
divisible by 2 (so lie in I ) and by 3 (so lie in J ), and are therefore all multiples of 6.
So I ⇒ J = ⊂6∗ = I J .
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But it is easy to give examples where I J √= I ⇒ J . If R = Z, I = J = 2Z, then
I J = ⊂2∗.⊂2∗ = ⊂4∗, whereas I ⇒ J = ⊂2∗. From these examples, and others you
should invent for yourselves, you should get the impression that the equality of I J
and I ⇒ J should be related to whether they are “coprime” in a certain sense.

Definition 4.25 As already remarked (see Remark 4.10), the notation α|β means
that β is a multiple of α. In particular, any multiple of β is a multiple of α, and so
⊂β∗ ≡ ⊂α∗. We extend the notation to ideals by writing a|b to mean b ≡ a, and we
may use either notation interchangeably.

In Chap. 5, we will see that if a and b are ideals in the ring of integers ZK of
a number field K , then b ≡ a if and only if there is some ideal c of ZK such that
b = ac, which is another definition of division one might have come up with.

4.6 Ideals in Quadratic Fields

We know that Q(
√

d) does not always have unique factorisation. For example, if
d = −5, the ring of integers is Z[√−5], and then

6 = 2 × 3 =
(

1 + √−5
) (

1 − √−5
)

.

In terms of ideals, we can consider the ideal ⊂6∗ ∩ Z[√−5]; then the above factori-
sations correspond to factorisations of ideals:

⊂6∗ = ⊂2∗⊂3∗ =
〈
1 + √−5

〉 〈
1 − √−5

〉
,

where ⊂a∗ denotes the principal ideal generated by a, namely aZ[√−5]. However,
although 2 and 3 are irreducible in Z[√−5] as we saw above, which means that the
ideal ⊂3∗, say, cannot be written as the product of principal ideals (if 3 = α · β, then
⊂3∗ = ⊂α∗⊂β∗), the principal ideal ⊂3∗ may nonetheless be factored as a product of
non-principal ideals. The obstruction to unique factorisation is coming from the fact
that not every ideal in Z[√−5] is principal. Indeed, consider the two ideals

a1 = ⊂3, 1 + √−5∗, a2 = ⊂3, 1 − √−5∗.

Let’s work out the product a1a2. Then

a1a2 =
〈
3 · 3, 3

(
1 − √−5

)
, 3

(
1 + √−5

)
,
(

1 + √−5
) (

1 − √−5
)〉

=
〈
9, 3 − 3

√−5, 3 + 3
√−5, 6

〉

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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That is, every element of the product a1a2 is of the form

9α +
(

3 − 3
√−5

)
β +

(
3 + 3

√−5
)

γ + 6δ

for some α, β, γ and δ ≥ Z[√−5]. It is clear that the collection of such elements
must be contained in the set {A + B

√−5 | 3|A, 3|B}. Conversely, any element
3A + 3B

√−5 lies in a1a2 on taking α = A + B
√−5, β = γ = 0, δ = −α (and

there are lots of other ways of doing this). It follows that

a1a2 =
{

A + B
√−5 | 3|A, 3|B

}
,

i.e., all multiples of 3. Thus a1a2 = ⊂3∗.
In the same way, let

b =
〈
2, 1 + √−5

〉
.

Then a typical element of b2 is given by

4α +
(

2 + 2
√−5

)
β +

(
1 + √−5

)2
γ,

and an easy check shows that b2 = ⊂2∗.
Further, we leave it as an exercise to verify that the ideal ⊂1 + √−5∗ (resp.

⊂1 − √−5∗) is given by a1b (resp. a2b).
Later we will explain that these ideals are “prime”. However, you can already see

that the two distinct factorisations we gave,

6 = 2 × 3 =
(

1 + √−5
) (

1 − √−5
)

,

actually become the same factorisation in terms of the ideals:

⊂6∗ = b2.a1a2 = (a1b).(a2b).

By introducing ideals, we have repaired the non-uniqueness of factorisation in
this case.

Exercise 4.16 Again, let R = Z[√−5], and consider the ideals a1 = ⊂3, 1 + √−5∗
and a2 = ⊂3, 1 − √−5∗.
1. Show that every element a + b

√−5 ≥ a2 has the property that 3|a + b, and
similarly every element c + d

√−5 ≥ a1 satisfies 3|c − d.
2. Show that a1 and a2 are not principal.
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Exercise 4.17 Now let R denote the ring Z[√−6]. We have

10 = 2.5 =
(

2 + √−6
) (

2 − √−6
)

.

1. Show that R has no elements of norm 2 or 5, and deduce that the two factorisations
of 10 are distinct factorisations into irreducibles.

2. Let a denote the ideal ⊂2,
√−6∗ of R. Show that a is not principal.

[Hint: to show that a is proper, show that a is the set of elements a + b
√−6 ≥ R

such that a is even.]
3. Show that a2 = ⊂2∗.
4. Let b1 and b2 denote the ideals ⊂5, 2 + √−6∗ and ⊂5, 2 − √−6∗ respectively.

Compute b1b2, and write ⊂10∗ as a product of ideals of R.
5. Explain that the non-uniqueness of factorisation has been resolved by using ideals.

In Chap. 5, we will consider what it means for ideals to be “prime”, and we will
show that ideals in rings of integers of number fields may be factorised uniquely into
prime ideals.

However, we saw an example at the end of Chap. 1 where it was important that
the rings of integers themselves have unique factorisation, and before we think about
factorisation of ideals into “prime ideals”, we will now study unique factorisation in
rings from a more abstract, ring-theoretical point of view.

4.7 Unique Factorisation Domains and Principal Ideal Domains

What do we mean by unique factorisation? Clearly we should regard two factorisa-
tions as the same if the factors merely occur in a different order, so that 2 × 3 and
3 × 2 are the same factorisation. But we should also say that 2 × 3 is the same as
(−2) × (−3). We are always going to have problems with units in any ring; if u is a
unit, then ab = (au)(bu−1), and we should treat these as the same. This is a general
ring-theoretic version of Definitions 4.3 and 4.4:

Definition 4.26 A ring R is a unique factorisation domain (UFD) if it is an integral
domain in which every non-zero a ≥ R may be written

a = up1 . . . pn,

where u is a unit and each pi is irreducible (i.e., factorisation into irreducibles
exists); further, if a = vq1 . . . qm is another such factorisation, then n = m and
pi is an associate of qπ(i) for some permutation of {1, . . . , n} (i.e., factorisation into
irreducibles is unique).

We have seen that Z and Z[i] both have unique factorisation, and are therefore
UFDs. However, we have seen above that neither Z[√10] nor Z[√−5] are UFDs.

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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We will explain next that there is a class of rings for which one can easily prove
unique factorisation.

Recall that a principal ideal is one of the form a R. For some rings, such as Z,
these are the only ideals (Lemma 4.13).

Definition 4.27 Let R be an integral domain. Then R is a principal ideal domain
(abbreviated PID) if every ideal of R is principal.

We have already seen examples of integral domains which are not PIDs, such
as Z[X ], which has an ideal ⊂2, X∗ which was not principal, and similarly Z[√10],
which has an ideal ⊂2,

√
10∗ which is not principal.

We are going to explain that every PID is also a UFD.
Of course, every field K is a PID, because its only ideals are ⊂0K ∗ and K itself,

which may also be written as ⊂1K ∗. Also, we have already seen that Z is a PID, as in
Lemma 4.13. The proof that Z is a PID relies on Euclid’s algorithm. Any ring with
some kind of “Euclidean algorithm” is going to be a PID, using exactly the same
proof. This motivates the following definition:

Definition 4.28 An integral domain R is a Euclidean domain if there is a function

φ : R − {0R} −⊗ Z>0

such that

1. a|b ⇒ φ(a) ◦ φ(b),
2. if a ≥ R, b ≥ R − {0R}, then there exist q and r in R such that a = bq + r and

either r = 0 or φ(r) < φ(b).

φ is called a Euclidean function on R.

So Z is a Euclidean domain (define φ(n) = |n|) and so is K [X ] for any field K
(define φ( f ) = deg f ). We saw earlier that there is also a Euclidean algorithm in
Z[i] (define φ(a + ib) = a2 + b2).

The argument of Lemma 4.13 shows the following

Proposition 4.29 Every Euclidean domain is a principal ideal domain.

Proof Let I be an ideal of the Euclidean domain R, and suppose I √= {0}. Consider
the set D = {φ(i) | i ≥ I, i √= 0} ≡ Z>0 of all values taken by the Euclidean
function φ on the nonzero elements of the ideal I . Choose b ≥ I such that φ(b) is
the minimal value in D. As b ≥ I , certainly I then contains all multiples of b; that
is, I → ⊂b∗.

Conversely, take a ≥ I . We can write a = qb +r by Definition 4.28, where either
r = 0 or φ(r) < φ(b). As a and b ≥ I , we conclude that r = a − qb ≥ I . But if
φ(r) < φ(b), then this contradicts the choice of b as an element of I with the least
possible value of the Euclidean function. So r = 0, and therefore a = qb; thus every
element of I is a multiple of b, and I = ⊂b∗ is principal. �
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The converse to this is false, but it is not so easy to write down an example. In

fact, if ρ = 1+√−19
2 , then it is known that Z[ρ] is a PID, but not Euclidean. This is

probably the easiest example of such a ring. We will prove this in Chap. 6.
In Chap. 1, we saw that the Euclidean algorithm was a key ingredient in our proof

of unique factorisation in Z (and also in Z[i]). The Euclidean algorithm gives us a
way to compute the highest common factor of two elements in a Euclidean domain.
But this notion exists more generally, in principal ideal domains, and we shall show
the general result that every PID is a UFD.

Definition 4.30 Let R be a PID, and let a and b be in R. The ideal ⊂a, b∗ = a R + bR
is principal, so can be written ⊂d∗ = d R for some element d ≥ R. Then d is a highest
common factor of a and b. Note that highest common factors are unique up to
multiplication by a unit.

This agrees with the usual notion in Z. The difference between PIDs and Euclidean
domains is not in the essential point that highest common factors exist, but rather that
there is a good way to compute them in Euclidean domains, namely the Euclidean
algorithm, which may be absent in more general PIDs.

We already saw that the existence of the Euclidean algorithm implied that unique
factorisation exists. In fact, it is enough that we have the weaker concept of highest
common factor.

Theorem 4.31 Every PID is a UFD.

Proof Suppose first that there exists an element a without any factorisation. Call such
elements ‘bad’, and other elements ‘good’. Then a is not a unit, nor an irreducible,
so we must have a = a1b1 for some a1, b1; at least one of a1 and b1 must be bad
(otherwise the product of the factorisations for a1 and b1 gives a factorisation of a).
Suppose a1 is bad. Then, in the same way, a1 = a2b2 with a2 bad. Continuing in
this way, we get a sequence of bad elements a1, a2, . . .. Further, as ai is a multiple
of ai+1, we see that ⊂ai+1∗ ⊃ ⊂ai ∗ (and these are different as no bi+1 is a unit). Let
I = ⋃∞

i=1⊂ai ∗. It is easy to check that this is an ideal, and therefore I = ⊂c∗ for some
c ≥ R. Thus c ≥ I , so c lies in some ⊂an∗. Then I = ⊂c∗ ≡ ⊂an∗ ∩ ⊂an+1∗ ≡ I . This
is a contradiction—so no bad elements exist, and everything has some factorisation.

Now suppose that there is an element with two factorisations. We first show that
every irreducible element p ≥ R satisfies the following:

p|ab ⇒ p|a or p|b.

Let p be an irreducible element, therefore, and suppose p|ab. If p � a, we show that
p|b (here, the notion of divisibility is that of Definition 1.2).

Consider the ideal ⊂p, a∗ = pR + a R. Then, as R is a PID, ⊂p, a∗ = ⊂d∗. Then
d|p and d|a. As p is irreducible, either d is a unit or d is an associate of p, but this
latter is impossible as p � a. Thus ⊂p, a∗ is generated by a unit d, so ⊂p, a∗ = R.
Thus we can find r and s ≥ R such that pr + as = 1R . Multiply by b to get

http://dx.doi.org/10.1007/978-3-319-07545-7_6
http://dx.doi.org/10.1007/978-3-319-07545-7_1
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p(br) + (ab)s = b,

and we see that b is a multiple of p as p|ab.
Now we show unique factorisation. Suppose we had an element n with two fac-

torisations:
n = up1 . . . pr = vq1 . . . qs

(where u and v are units, and the pi , q j are irreducible). Then p1 divides n and
therefore the right-hand side. Using the above claim, we see that p1 divides one of
the qi , q1 say (permute the qi if not). As both p1 and q1 are irreducible, we must
have q1 = u1 p1 where u1 is a unit. We can cancel p1 and q1 from the factorisations
(as R is an integral domain). We can continue in this way until all prime factors on
the left-hand side are paired off with factors on the right-hand side, and only units
are left. �

Note that the proof that every element has some factorisation (i.e., there are no bad
elements) would work given only the weaker statement that every ideal (in particular,
the ideal I ) has a finite generating set, so that I = ⊂d1, . . . , dk∗; this is the defining
property of a Noetherian ring, and we shall remark in the next section that rings of
integers of number fields are always Noetherian.

For rings of integers in number fields, the converse to this theorem is true: such a
ring is a PID if and only if it is a UFD. We will prove this in Chap. 5. (It turns out to
be false in a general ring—it is known that if R is a UFD, then so is the polynomial
ring R[X ]; this shows that Z[X ] is a UFD, but we have alreay seen that it is not a
PID, as the ideal ⊂2, X∗ is not principal.)

4.8 The Noetherian Property

We’ve remarked already that the property of unique factorisation in a number field
is equivalent to the ring of integers having the property that every ideal is principally
generated, i.e., has 1 generator.

We’ve also seen that many number fields do not have unique factorisation, and
therefore do not have this property. However, there is a weaker property that they
all satisfy which will be very important for us in Chap. 5. It is named after Emmy
Noether, who introduced it:

Definition 4.32 A Noetherian ring is a ring R in which every ideal is finitely
generated.

(Note that there are other equivalent formulations you might see in the literature.)
Recall from Theorem 3.27 that ZK has an integral basis, and that this is equivalent

to the property that ZK is a free abelian group of rank [K : Q]. We will explain that
this implies that ZK is Noetherian.

We need one more result about free abelian groups.

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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Proposition 4.33 Suppose H is a subgroup of a free abelian group G of rank n.
Then H is also a free abelian group of rank at most n.

Proof We will prove the claim by induction. For n = 1, G ∼= Z, and the Euclid-
ean algorithm shows that H = kZ for some k (this argument is exactly that of
Lemma 4.13); if k = 0, then H has rank 0, and otherwise H has rank 1 and is of
finite index.

Now let G have rank n, and suppose the result is true for free abelian groups of
rank n − 1.

We can write G = Zω1 + · · · + Zωn . Let π : G −⊗ Z map a1ω1 + · · · + anωn

to a1, and let K = ker π = Zω2 + · · · + Zωn , a free abelian group of rank n − 1.
Then π(H) ≡ Z, and by the rank 1 case, π(H) = {0} or π(H) is infinite cyclic.

If π(H) = {0}, then H ∩ Zω2 + · · · + Zωn , so is a subgroup of a free abelian
group of rank n − 1, and the result follows by the inductive hypothesis.

If π(H) is infinite cyclic, choose h1 ≥ H such that π(h1) generates π(H). It is
easy to prove (exercise, but use the method of the First Isomorphism Theorem 5.5
if you get stuck) that H = Zh1 ⊕ (H ⇒ K ), and H ⇒ K is contained in K , a free
abelian group of rank n − 1. Then the inductive hypothesis shows that H ⇒ K is a
free abelian group, Zh2 + · · · + Zhr , say, and again the claim follows. �

An ideal is an (additive) subgroup of ZK , and so we can apply this result to
conclude that every ideal is also a free abelian group of finite rank. Equivalently, it
is finitely generated as a Z-module. Thus I = Zω1 + · · · + Zωr for some elements
ω1, . . . ,ωr ≥ I . (In fact, if I √= {0}, it is a consequence of the results of Chap. 5—
see Lemma 5.20, for example—that I has finite index in ZK , and this implies that
r = n.)

That isn’t quite what we want to prove. We’d really like to see that it is finitely gen-
erated as an ideal, so that there is a finite set α1, . . . ,αk such that I = ⊂α1, . . . ,αk∗.

Fortunately, this is nearly immediate. Take a set {ω1, . . . ,ωr } which generates I
as a Z-module. Notice that we must have ωi ≥ I . As I is an ideal, ZK ωi ≡ I . Clearly
ZK ωi → Zωi , and so

ZK ω1 + · · · + ZK ωr → Zω1 + · · · + Zωr .

On the other hand, the right-hand side is exactly I , as we chose {ω1, . . . ,ωr } to be a
generating set for I as a Z-module. But the left-hand side is contained in I , as each
ZK ωi ≡ I . So

I → ZK ω1 + · · · + ZK ωr → Zω1 + · · · + Zωr = I,

and all the inclusions are equalities. In particular, we see that

I = ZK ω1 + · · · + ZK ωr ,

and so I is finitely generated as an ideal.

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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We have therefore shown:

Theorem 4.34 If K is a number field, then ZK is Noetherian.

Exercise 4.18 If K = Q(
√

2), this shows that ZK is Noetherian. Is it a PID or UFD?

Later we will need one further result about Noetherian rings.

Definition 4.35 A ring R is said to satisfy the ascending chain condition (or ACC)
if for every chain of ideals

I1 ≡ I2 ≡ I3 ≡ · · ·

of ideals of R, there exists some positive integer n such that In = In+1 = In+2 = · · · .

Proposition 4.36 A ring R is Noetherian if and only if it satisfies the ACC.

Proof Assume that R is Noetherian, and let I1 ≡ I2 ≡ · · · be an ascending chain of
ideals. Let I = ⋃∞

i=1 Ii ; it is easy to check that this is an ideal. As R is Noetherian,
I has a finite generating set, {r1, . . . , rn}. Each element r j of the generating set must
occur in some In j ; if n = max(n j ), the largest of these numbers, then each element
of the generating set is already contained in In . Thus In = In+1 = · · · = I , and so
the chain becomes stationary.

Conversely, if the ACC is satisfied, then every ideal must be finitely generated. If
not, there is an ideal I which has no finite generating set. Pick r1 ≥ I . Then I √= ⊂r1∗,
as otherwise {r1} would generate I , so we may pick r2 ≥ I −⊂r1∗. Again, I √= ⊂r1, r2∗,
so we may pick r3 ≥ I −⊂r1, r2∗. In this way, we find an infinite sequence of elements
r1, r2, . . ., and an infinite strictly ascending chain ⊂r1∗ ≡ ⊂r1, r2∗ ≡ ⊂r1, r2, r3∗ ≡
· · · , contradicting the ACC. �

Remark 4.37 There is also the notion of a descending chain condition, in which every
descending chain must eventually become stationary. Rings satisfying the DCC are
said to be Artinian. Note that Z is Noetherian (as it is a PID), but that it is not Artinian,
as the descending chain

⊂2∗ ⊃ ⊂4∗ ⊃ ⊂8∗ ⊃ · · ·

never becomes stationary. Rings of integers in number fields are never Artinian, and
we will not refer to Artinian rings again in this book.

The Ascending Chain Condition can be used to prove results like the following
(similar examples will be seen in Chap. 5).

Lemma 4.38 Suppose that I is a proper ideal in a Noetherian ring R. Then I is
contained in a maximal ideal.

Proof Either I is maximal itself, or it is strictly contained in a larger proper ideal
I1. If I1 is maximal, the result follows; otherwise it is strictly contained in a larger
ideal I2. Repeat—since there cannot be arbitrarily long chains I ∩ I1 ∩ I2 ∩ · · · ,
at some point, one of the ideals must be maximal, and the result follows. �

http://dx.doi.org/10.1007/978-3-319-07545-7_5


Chapter 5
Prime Ideals and Unique Factorisation

We have already studied unique factorisation inZ, and seen how it fails in certain rings
of integers of number fields. We have also seen the suggestion that non-uniqueness
of factorisation may be remedied by working with ideals. In order to show that this
procedure will work generally, we will need to have some concept of what it means
for an ideal to be prime.

We have two equivalent ways to define prime numbers inZ. In Chap. 1, we defined
a prime number as one which has no divisor other than 1 and itself. Later in that
chapter (Lemma 1.15), we pointed out that in Z, prime numbers have the property
that if p|ab, then p|a or p|b, and it is easy to see that this property characterises
prime numbers in Z.

We have already generalised these two properties (Definition 4.5) to give two
possible generalisations of prime numbers in rings. We shall now generalise these
two notions to ideals, to get ideals called maximal and prime ideals respectively.

But first we’ll develop some ring theory. If you are familiar with ring homomor-
phisms and quotient rings, feel free to skip this section!

5.1 Some Ring Theory

The notion of a ring homomorphism is very similar to that of a group homomorphism;
it is a map from one ring to another which preserves all the algebraic ring structure.

Definition 5.1 Let R and S be rings. Then φ : R −≥ S is a ring homomorphism if
it preserves the additive and multiplicative structures and the multiplicative identity:

1. for all a, b ∈ R, we have φ(a + b) = φ(a) + φ(b),
2. for all a, b ∈ R, we have φ(ab) = φ(a)φ(b).
3. φ(1R) = 1S .
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If also φ is bijective, then φ is an isomorphism. The kernel of φ is defined as the
set {r ∈ R | φ(r) = 0S}, and is written ker φ; and similarly the set {s ∈ S | s =
φ(r)for some r ∈ R} is called the image of φ, and is written im φ.

Note that some books do not insist on the third of the requirements when defining
a homomorphism.

It is easy to check that if φ : R −≥ S is a ring homomorphism, then

1. φ(0R) = 0S ,
2. if a ∈ R, then φ(−a) = −φ(a).

Our first lemma will have a useful corollary:

Lemma 5.2 Let φ : R −≥ S be a ring homomorphism. Let I be an ideal of S, and
let φ−1(I ) = {a ∈ R | φ(a) ∈ I }. Then φ−1(I ) is an ideal of R.

Proof We have to check that

1. 0R ∈ φ−1(I ),
2. if a and b ∈ φ−1(I ), then so is a − b,
3. if i ∈ φ−1(I ) and a ∈ R, then ai ∈ φ−1(I ).

These are all very easy. For the first, as φ(0R) = 0S ∈ I , we see that 0R ∈ φ−1(I ).
The second follows because φ(a − b) = φ(a) − φ(b), so if φ(a) and φ(b) ∈ I ,
so is φ(a − b). Equivalently, if a and b ∈ φ−1(I ), then a − b ∈ φ−1(I ). Finally,
let i ∈ φ−1(I ) and a ∈ R; then φ(ai) = φ(a)φ(i), so as φ(i) ∈ I , φ(ai) ∈ I , so
ai ∈ φ−1(I ). �

As a corollary, we see that if φ : R −≥ S is a ring homomorphism, then ker φ =
{a ∈ R | φ(a) = 0S} is an ideal in R, simply because it can be rewritten as φ−1(0S),
and {0S} is an ideal in S. (It is also easy to verify this directly.) It is also straightforward
to check that im φ is a subring of S.

Lemma 5.3 A ring homomorphism φ : R −≥ S is injective if and only if its kernel
just consists of the zero element.

Proof Suppose that ker φ = {0R}. Then

φ(r1) = φ(r2) ⇒ φ(r1 − r2) = 0S

⇒ r1 − r2 ∈ ker φ

⇒ r1 − r2 = 0R

⇒ r1 = r2

so that φ is injective.
Conversely, if φ is injective, then its kernel is trivial, for if φ(r) = 0S , we have

φ(r) = φ(0R), so that r = 0R as φ is injective. �



5.1 Some Ring Theory 89

Ideals in rings may be viewed as analogous to normal subgroups of groups. For
example, the kernel of a group homomorphism is a normal subgroup, and the kernel
of a ring homomorphism is an ideal.

Exercise 5.1 Suppose that I is an ideal in a ring R, and that r ∈ R. Show that r ∈ I
if and only if r + I = I , where

r + I = {r + i |i ∈ I }

is the coset of I .

We should emphasise the following consequence of this:

r + I = r ≡ + I ≤⇒ r − r ≡ ∈ I.

We shall see next that one can also take a quotient of a ring by an ideal in the
same way that one can form the quotient of a group by a normal subgroup. There
is an analogue of the First Isomorphism Theorem for the quotient of a ring by the
kernel of a homomorphism.

Proposition 5.4 Let I be an ideal in the ring R. If a ∈ R, let

a + I = {a + i | i ∈ I }

be the coset of I . Then the collection of cosets,

R/I = {a + I | a ∈ R},

may be given the structure of a ring, called the quotient ring.

Proof We define
(a + I ) + (b + I ) = (a + b) + I

and
(a + I )(b + I ) = (ab) + I.

We first verify that this is well-defined, in that choosing a different coset representa-
tive gives the same coset as the answer.

If a + I = a≡ + I , then a − a≡ ∈ I . Let i = a − a≡. As i ∈ I , i + I = I . Then

(a+ I )+(b+ I ) = (a+b)+ I = (a≡+ i +b)+ I = (a≡+b)+ I = (a≡+ I )+(b+ I )

and

(a+ I )(b+ I ) = ab+ I = (a≡+i)b+ I = a≡b+ib+ I = a≡b+ I = (a≡+ I )(b+ I ),

the penultimate equality holding as ib ∈ I (because i ∈ I and I is an ideal).
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Now we check the ring axioms. These are all straightforward, as they are inherited
from R. For example, the additive identity is I = 0R + I , because

(a + I ) + I = (a + I ) + (0R + I ) = (a + 0R) + I = a + I.

In the same way, the multiplicative identity is 1R + I . Let’s just check one of the
axioms—commutativity of addition, say:

(a + I ) + (b + I ) = (a + b) + I

= (b + a) + I

= (b + I ) + (a + I )

where the middle equality holds because of commutativity of addition in R, and the
others from our definition of addition of cosets. Checking the other axioms is similar;
all properties are inherited from the corresponding properties of R. �

The proposition should remind you of the construction of the integers modulo n,
which we now recall.

Fix the positive integer n √ 2. For each integer a, let

a = {. . . , a − 2n, a − n, a, a + n, a + 2n, . . .}

consist of all integers congruent to a (mod n). Note that if a → b (mod n), then a = b.
Then the integers modulo n are given by

{0, 1, . . . , n − 1},

with the addition and multiplication defined using arithmetic modulo n (which is
well-defined): a + b = a + b and a.b = ab. To check any given ring axiom, write
down the corresponding axiom for Z, and reduce it modulo n. Thus all the axioms
are inherited from those for Z.

Note that a = a + nZ, so that the integers mod n are given by {a + nZ | a ∈ Z}.
It follows they can be viewed as the quotient of the ring Z by the ideal nZ of all
integers divisible by n, i.e., as Z/nZ.

We will henceforth use the notation Z/nZ to denote the integers modulo n. We
will also omit the bars on top of the numbers, so that we view Z/nZ as the set
{0, . . . , n − 1}, with addition and multiplication taken modulo n.

Sometimes in books, you will see the integers mod n written as Zn . However, if
p is a prime number, number theorists use Zp for a completely different set than
Z/pZ. For this reason, number theorists never use Zn for the integers modulo n, and
always use Z/nZ. We will mention the construction of Zp in Sect. 10.6; it is a central
concept in modern research (both in number theory and in other areas).

If I is an ideal in the ring R, then there is a naturally-defined quotient map

http://dx.doi.org/10.1007/978-3-319-07545-7_10
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R −≥ R/I

r ◦≥ r + I

which is always a homomorphism. In the case R = Z, I = nZ, then this is exactly
the map Z −≥ Z/nZ which takes m to m (mod n) given above.

Note the following two special cases:

1. if I = R, then R/I is the trivial ring, with just one element. For this, take any
element a + R ∈ R/R. As a ∈ R, we have a + R = R. Thus the only element
of R/R is 0R + R = R.

2. if I = (0R), then R/I is isomorphic to R. Every element of R/I is of the form
a + (0R) for some a ∈ R, but these are all distinct: a + (0R) = b + (0R) implies
that a = b.

Consider the case R = Z[X ] and I = ⇒X2∩ consisting of all multiples of X2. Then
a typical element of R/I may be written f (X)+ ⇒X2∩, where f (X) is a polynomial
with integer coefficients. If f (X) is the polynomial a0 + a1 X + · · · + ad−1 Xd−1 +
ad Xd , then f may be written a0 + a1 X + g(X)X2 for some polynomial g(X). It
follows that f + ⇒X2∩ = a0 + a1 X + ⇒X2∩ because g(X)X2 is in the ideal ⇒X2∩. So
elements of Z[X ]/⇒X2∩ are parametrised only by their constant and linear terms. The
coset corresponding to a + bX is the collection of all polynomials whose constant
term is a and whose linear term is b. We can add two elements:

(a + bX + ⇒X2∩) + (c + d X + ⇒X2∩) = (a + c) + (b + d)X + ⇒X2∩

and multiply them:

(a + bX + ⇒X2∩)(c + d X + ⇒X2∩) = ac + (ad + bc)X + ⇒X2∩

simply by adding and multiplying in the usual way, and ignoring all terms X2 and
above (there should be a term bd X2, of course, but that belongs to the ideal ⇒X2∩,
and so bd X2 + ⇒X2∩ = ⇒X2∩).

A more instructive example, of a kind we will consider again later, is obtained by
letting I = ⇒X2 − 2∩, say, the ideal of all multiples of X2 − 2, in the ring R = Z[X ]
again. Then each f ∈ Z[X ] can be written as q(X)(X2 − 2) + r(X), where q(X)

and r(X) are the quotient and remainder after dividing f by X2 − 2. The degree of
r(X) is at most 1, so r(X) = b0 + b1 X for some b0, b1 ∈ Z. Thus f + I = r + I ,
and so every coset is parametrised by a linear polynomial as before. The addition
rule is the same as before:

(a + bX + ⇒X2 − 2∩) + (c + d X + ⇒X2 − 2∩) = (a + c) + (b + d)X + ⇒X2 − 2∩;

however, the multiplication rule looks rather different:
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(a + bX + ⇒X2 − 2∩)(c + d X + ⇒X2 − 2∩)
= ac + (ad + bc)X + bd X2 + ⇒X2 − 2∩
= ac + (ad + bc)X + bd(2 + (X2 − 2)) + ⇒X2 − 2∩
= ac + (ad + bc)X + 2bd + bd(X2 − 2) + ⇒X2 − 2∩
= (ac + 2bd) + (ad + bc)X + ⇒X2 − 2∩.

Note that if α = a + b
∼

2 ∈ Z[∼2] and β = c + d
∼

2 ∈ Z[∼2], then

α + β = (a + c) + (b + d)
∼

2

αβ = (ac + 2bd) + (ad + bc)
∼

2

which very closely resembles the addition and multiplication law above for the quo-
tient ring Z[X ]/⇒X2 − 2∩. In fact, the map

Z[X ]/⇒X2 − 2∩ −≥ Z[∼2]
a + bX + ⇒X2 − 2∩ ◦≥ a + b

∼
2

is an isomorphism of rings. That it is a homomorphism is verified explicitly using
the above calculations; it is left as an easy exercise to check that it is a bijection.

The First Isomorphism Theorem will provide many similar examples, as we
explain next. You can probably guess what the statement of the First Isomorphism
Theorem for Rings should be, if you remember the statement for groups.

Theorem 5.5 (First Isomorphism Theorem) Let φ : R −≥ S be a ring homomor-
phism. Then there is an isomorphism

R/ker φ ⊂= im φ.

Proof Define a map φ̃ : R/ker φ −≥ im φ by φ̃(r + ker φ) = φ(r).
We should be a little careful here! After all, there may be many ways to write a

coset in R/ker φ as a set r +ker φ, and we should check that if there are two different
ways to write the coset, say, as both r + ker φ and r ≡ + ker φ, then our definition
above gives the same answer. (That is, we need to check that φ̃ is well-defined.)

So suppose that the coset r + ker φ may also be written as r ≡ + ker φ. With one
definition of φ̃ we get φ(r), and with the other we get φ(r ≡). We must check that
these are the same.

As r + ker φ = r ≡ + ker φ, it follows that the element r − r ≡ ∈ ker φ. In other
words, there exists k ∈ ker φ such that r = r ≡ + k. But now

φ(r) = φ(r ≡ + k) = φ(r ≡) + φ(k) = φ(r ≡) + 0S = φ(r ≡).

Now we know that the map φ̃ exists and makes sense. Clearly, it is also valued in
im φ, since applying φ̃ to any coset gives an element which is in the image of φ.
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Now we need to check that φ̃ is a homomorphism, and is bijective. Then φ̃ will
be an isomorphism, as required.

To see that φ̃ is a homomorphism is easy; this follows easily from our definition
of addition and multiplication of cosets; let’s just do addition, and multiplication is
similar:

φ̃((a + ker φ) + (b + ker φ)) = φ̃((a + b) + ker φ)

= φ(a + b)

= φ(a) + φ(b)

= φ̃(a + ker φ) + φ̃(b + ker φ).

Next, let’s check that φ̃ is injective. Suppose we have an element r + ker φ in the
kernel. Then

φ(r) = φ̃(r + ker φ) = 0S,

so certainly r ∈ ker φ, and so r + ker φ = ker φ, the zero element of the quotient
ring R/ker φ. Thus the kernel just consists of the zero element of the quotient ring,
and so φ̃ is injective.

It is clear that the image of φ̃ is exactly the same as the image of φ, so φ̃ is surjective
onto im φ.

This shows that φ̃ is an isomorphism, and completes the proof. �
Remark 5.6 First Isomorphism Theorems occur all over algebra. Probably the first
time you met them was with the rank-nullity theorem for vector spaces over fields,
which is a relationship between the dimensions of the image of a linear map between
vector spaces and of the kernel, but the proof essentially works in the same way. We
will also use a First Isomorphism Theorem between modules of a ring: if φ : M ≥ N
is a homomorphism of modules over a ring R (i.e., a map φ such that φ(m + m≡) =
φ(m)+φ(m≡) and φ(rm) = rφ(m)), then the collection M/ker φ of cosets m +ker φ
is isomorphic to im φ. The idea of the proof is very similar to Theorem 5.5 (or to the
rank-nullity theorem), and is left as an exercise.

Consider the following situation:

Lemma 5.7 Let K be a field, and suppose that γ is algebraic over K , i.e., satisfies
a polynomial equation with coefficients in K . Suppose that f ∈ K [X ] is the minimal
polynomial of γ. Then there is an isomorphism

K [X ]/⇒ f ∩ ⊂= K (γ)

got by mapping X to γ.

Proof Consider the homomorphism (you should check that it is one!)

φγ : K [X ] −≥ K (γ)

g(X) ◦≥ g(γ)
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The kernel of this homomorphism consists of all polynomials which have γ as a root,
and this is precisely the set of all multiples of f , namely ⇒ f ∩.

Clearly φγ is also surjective: every element of K (γ) is just a polynomial adγd +
· · · + a0, with each ai ∈ K , but this is the image under φγ of the polynomial
ad Xd + · · · + a0 ∈ K [X ]. Thus φγ gives an isomorphism

φ̃γ : K [X ]/⇒ f ∩ ⊂= K (γ)

by the First Isomorphism Theorem 5.5. �

For another example, take K = Q and γ = ∼
2. Then γ has minimal polynomial

X2 − 2. By the lemma, there is an isomorphism Q[X ]/⇒X2 − 2∩ ⊂= Q(
∼

2) given by
sending X to

∼
2, i.e., sending a coset a + bX + ⇒X2 − 2∩ to a + b

∼
2, just as we

saw above for Z.

5.2 Maximal Ideals

Recall that we want to generalise the notion of prime number to ideals. We have two
equivalent definitions of prime number in Z, and they will generalise naturally in
different ways.

The first definition of a prime number is that it is a natural number p with no
divisor other than 1 and itself.

It is easy to reformulate this in terms of ideals in Z. Indeed, if a natural number
a exists with a|p, then ⇒p∩ ∗ ⇒a∩. If a differs from p, then the inclusion ⇒p∩ ∗ ⇒a∩
must be strict. Furthermore, if a ⊗= 1, then ⇒a∩ ∗ Z is also a strict inclusion, and so
we have two strict inclusions ⇒p∩ ∗ ⇒a∩ ∗ Z.

But if p is prime, there is no natural number a such that we have strict inclusions
⇒p∩ ∗ ⇒a∩ ∗ Z; in other words, there is no proper ideal which is strictly bigger than
⇒p∩.

This motivates the following definition for a more general integral domain:

Definition 5.8 Let R be an integral domain. An ideal I of R is said to be maximal if

1. I ⊗= R,
2. there is no ideal J ⊗= R which strictly contains I .

To confirm we are on the right track, let’s verify that maximal principal ideals are
generated by irreducible elements (in the sense of Definition 4.5).

Lemma 5.9 Let R be an integral domain, and let p ∈ R. If ⇒p∩ is maximal, then p
is irreducible.

Proof If p is not irreducible, either p would be a unit, when we would have ⇒p∩ = R,
so ⇒p∩ is not maximal, or we could write p = ab for two non-unit elements a and
b. In the latter case, p is a multiple of a, so ⇒p∩ ⊆ ⇒a∩; on the other hand, a is not a
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multiple of p since b is not a unit, and so a /∈ ⇒p∩, showing that ⇒a∩ strictly contains
⇒p∩, so that ⇒p∩ is not maximal. �

Exercise 5.2 If R is a principal ideal domain, show that the converse of this lemma
is also true.

In particular, maximal ideals exactly correspond to irreducible elements in PIDs
(two associate irreducible elements will give the same maximal ideal), suggesting
that the notion of a maximal ideal might be a suitable generalisation to ideals of the
notion of an irreducible element.

There is a useful characterisation of maximal ideals in terms of quotient rings:

Lemma 5.10 I is a maximal ideal of R if and only if R/I is a field.

Proof First suppose that I is a maximal ideal of R. Let a ∈ R, but a /∈ I . Then the
set ⇒a, I ∩ = a R + I is an ideal of R which is strictly larger than I as it contains a.
Thus we must have a R + I = R. In particular, 1R ∈ a R + I , so there exists b ∈ R
such that 1R ∈ ab + I . It follows that 1R + I = ab + I = (a + I )(b + I ), and
so b + I is a multiplicative inverse for a + I in R/I . Thus every non-zero coset is
invertible, so R/I is a field.

Conversely, if R/I is a field, then every non-zero coset is invertible. Suppose that
J is an ideal of R strictly containing I , and let a ∈ J − I . Then there exists b ∈ R
such that (a + I )(b + I ) = ab + I = 1R + I , and, as J ⊃ I and ab ∈ J , we must
have 1R ∈ J . But then it follows that J = R (any ideal containing a unit must be
the whole ring by Lemma 4.15). �

Our first example will concern the simplest ring of all, namely Z.

Example 5.11 The maximal ideals of Z are precisely ⇒p∩ = pZ where p is prime.

Proof The ideals of Z are ⇒0∩ and ⇒n∩ = nZ where n is a positive integer (we saw
this in Lemma 4.13). ⇒0∩ is not maximal because it is contained in any proper ideal,
⇒2∩, for example. (Alternatively, Z/⇒0∩ ⊂= Z, which is not a field.) If n is not prime,
it has a divisor d greater than 1 – then nZ is not maximal as it is contained in dZ
(or alternatively because d is not invertible in Z/nZ). However, if n = p is prime,
then we know that Z/pZ is a field, because any non-zero element a ∈ Z/pZ has an
inverse; find elements b and s by the Euclidean algorithm such that ab + ps = 1,
and then ab → 1 (mod p). �

Thus maximal ideals in Z match up nicely with the prime numbers.

Exercise 5.3 Similarly verify that the maximal ideals in Z[i] correspond with the
irreducible elements (see Exercise 4.2).
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5.3 Prime Ideals

The other possible way to generalise the idea of a prime number to ideals is to recall
the property that p is prime if, whenever p|ab, then p|a or p|b (see Definition 4.5
again).

As above, we start by translating this property into ideals. The property says that,
if ab is a multiple of p, then either a is a multiple of p or b is a multiple of p, i.e., if
ab ∈ ⇒p∩, then either a ∈ ⇒p∩ or b ∈ ⇒p∩. This suggests the generalisation.

Definition 5.12 Let R be an integral domain. An ideal I of R is said to be prime if

1. I ⊗= R,
2. if xy ∈ I , then x ∈ I or y ∈ I .

We could reformulate this further; the original property of prime numbers could
be written: ⇒a∩⇒b∩ ⊆ ⇒p∩ implies that ⇒a∩ ⊆ ⇒p∩ or ⇒b∩ ⊆ ⇒p∩. This suggests an
alternative generalisation to ideals; unsurprisingly, these are equivalent.

Lemma 5.13 I is a prime ideal of R if and only if whenever J1 and J2 are ideals of
R such that J1 J2 ⊆ I , either J1 ⊆ I or J2 ⊆ I .

Proof (⇒) Suppose J1 ⊗⊆ I , J2 ⊗⊆ I , but J1 J2 ⊆ I . Then there is some a1 ∈ J1 − I
and some a2 ∈ J2 − I . But J1 J2 ⊆ I , so a1a2 ∈ I . As I is prime, either a1 or a2
must lie in I , contradicting our choices.

(≤) Conversely, if I is not prime, there are elements a1 and a2 not in I but with
a1a2 ∈ I . Let J1 = ⇒a1∩, J2 = ⇒a2∩; note that neither J1 nor J2 is contained in I , but
J1 J2 = ⇒a1a2∩ ⊆ I . �

We will need this second formulation later, when we think about factorisation of
ideals in rings of integers of number fields into prime ideals.

Again, it really is true that principal prime ideals correspond to prime elements.
The situation here is even better than Lemma 5.9 as both directions of the implication
hold for any integral domain:

Lemma 5.14 Let R be an integral domain, and let p ∈ R. Then ⇒p∩ is a prime ideal
in R if and only if p is a prime element.

Proof Suppose that ⇒p∩ is a prime ideal, and let’s show that p is a prime element.
Suppose then that p = ab in R. Then ab ∈ ⇒p∩, so that either a ∈ ⇒p∩ or b ∈ ⇒p∩.
But this means that p|a or p|b respectively. So p is a prime element.

Conversely, suppose that p is a prime element, and let’s show that ⇒p∩ is a prime
ideal. Take a and b with ab ∈ ⇒p∩. Then ab = cp for some c ∈ R. So p|ab, and by
Definition 4.5, p|a or p|b. But this means that a ∈ ⇒p∩ or b ∈ ⇒p∩, showing that ⇒p∩
is a prime ideal. �

In particular, if R were a ring of integers of some number field, where every
ideal was principal, the prime ideals would correspond exactly to prime elements (of
course, two associate prime elements give the same prime ideal).
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Therefore the notion of a prime ideal is a suitable generalisation to ideals of the
definition of a prime element, and therefore of prime numbers.

We have a similar result to Lemma 5.10.

Lemma 5.15 Let R be a ring and I an ideal of R. Then I is a prime ideal if and
only if R/I is an integral domain.

Proof Suppose that I is a prime ideal of R. We have to check that R/I has no zero
divisors. Suppose that

(a + I )(b + I ) = 0R + I = I.

But (a + I )(b + I ) = ab + I , and ab + I = I implies that ab ∈ I . As I is prime,
either a ∈ I , which implies that a + I = I , or b ∈ I , which implies that b + I = I ,
so that one of a + I and b + I is the zero element 0R + I . It follows that there are
no zero divisors in R/I .

Conversely, if R/I has no zero divisors, then if a and b are elements of R such
that a /∈ I , and ab ∈ I , then a + I is a non-zero coset such that

(a + I )(b + I ) = 0R + I.

As there are no zero-divisors, we must have b + I = 0R + I , so that b ∈ I . Thus I
is prime. �
Corollary 5.16 Maximal ideals are prime.

Proof If I is a maximal ideal, then R/I is a field. Every field is an integral domain,
so R/I is an integral domain, and therefore I is prime. �

To see that the converse is not quite true, let’s work out the prime ideals of Z.

Example 5.17 The prime ideals of Z are precisely ⇒p∩ = pZ where p is prime, and
also ⇒0∩.
Proof This time ⇒0∩ is prime, because Z/⇒0∩ ⊂= Z, which is an integral domain.

The other ideals are all of the form nZ for some positive integer n; if n is not
prime, then Z/nZ has zero divisors, so ⇒n∩ is not prime, and if n = p is prime, then
we saw in Example 5.11 that Z/pZ is a field, so certainly an integral domain. �

Therefore ⇒0∩ is a prime ideal of Z which is not maximal, but all other prime
ideals are also maximal.

Note 5.18 Notice that the prime ideal ⇒0∩ of Z is contained inside all the other prime
ideals ofZ; it might seem odd at first to have one prime ideal contained inside another.
Of course, the zero ideal ⇒0∩ is in some sense a rather exceptional prime ideal.

However, perhaps surprisingly, one can find many examples of rings R in which
one prime ideal can contain another, non-trivial, prime ideal. For example, if R =
K [X,Y ], then P1 = ⇒X,Y ∩ and P2 = ⇒X∩ are both prime, and P1 ⊃ P2.

We shall see next, however, that this sort of example does not occur for rings of
integers of number fields, and that every non-zero prime ideal in such rings is also
maximal.
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The fact that every maximal ideal is prime followed from the assertion that every
field is an integral domain. The converse is not true (e.g., Z), but finite integral
domains are always fields.

Lemma 5.19 If R is a finite integral domain, then R is a field.

Proof We just need to check that every non-zero r ∈ R is invertible. Consider the
map (not a homomorphism) φ : R −≥ R given by φ(s) = rs. It is injective: if
φ(s1) = φ(s2), then rs1 = rs2, and so r(s1 − s2) = 0, so that s1 − s2 = 0 as R is an
integral domain and has no zero divisors.

But an injective map from a finite set to itself is also surjective. So there is some
s with φ(s) = 1, so that rs = 1. �

We can use this to show that non-zero prime ideals in rings of integers of number
fields are always maximal. We need a lemma:

Lemma 5.20 Let K be a number field. If p is a non-zero prime ideal in ZK , then
ZK /p is finite.

Proof Let p be a non-zero prime ideal inZK . Then there is a non-zero element α ∈ p.
Its norm N = NK/Q(α) lies in Z (by Corollary 3.17), and is the product of α ∈ p
with all its conjugates. So N ∈ p.

Now ZK has an integral basis, by the results of Chap. 3; so we can write ZK =
Zω1 + · · · + Zωn . Notice that as N ∈ p, we have Nωi ∈ p for each i (just by the
defining rule of ideals). It follows that every element a1ω1 +· · ·+anωn is congruent
modulo p to some element of the form b1ω1 + · · · + bnωn with 0 ≤ bi < N . There
are finitely many such elements, so ZK /p is finite. �

It is easy to see that this proof is valid for any non-zero ideal, not just prime ideals.

Proposition 5.21 Let K be a number field. Then every non-zero prime ideal p in
ZK is maximal.

Proof By Lemma 5.20, ZK /p is finite. As ZK /p is a finite integral domain, it is also
a field by Lemma 5.19. But then p must be maximal, using Lemma 5.10. �

Exercise 5.4 Using Exercise 4.2, what are the prime ideals in the Gaussian inte-
gers Z[i]?
Exercise 5.5 Let K = Q(

∼
2), and let a = ⇒3∩ = 3ZK . Show that ZK /a is a

finite field with 9 elements, which can be identified with {a + b
∼

2 | a, b ∈ Z/3Z}.
Conclude that a is a prime ideal of ZK .

Exercise 5.6 Again let K = Q(
∼

2), and consider the ideal a = ⇒2∩ = 2ZK . Is
ZK /a a field?

If b = ⇒7∩ = 7ZK , show that ZK /b is not a field.

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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5.4 Unique Factorisation into Prime Ideals

If K is a number field, we have already seen in Theorem 4.34 that ZK is Noetherian.
It will be useful to define the notion of a fractional ideal in a number field, and

to show that the collection of all fractional ideals form a group at the same time as
showing unique factorisation into prime ideals.

Definition 5.22 A fractional ideal of ZK is a subset of K which is of the form 1
γ c,

where c is an ideal ofZK and γ is a non-zero element ofZK . We say that the fractional
ideal is principal if c is principal.

Notice that fractional ideals are subsets of K , not just of ZK , and so (despite the
name) are not generally ideals of ZK .

Remark 5.23 Since the product of two ideals is again an ideal, we can see that the
product of two fractional ideals is again a fractional ideal.

We are going to prove two crucial results about ideals in ZK ; firstly, that the non-
zero fractional ideals ofZK form an abelian group under multiplication, and secondly
(and even more important!), that every non-zero ideal of ZK can be written uniquely
as a product of prime ideals. This second statement about unique factorisation is
what we have been aiming for throughout the book so far.

We prove these together, in a series of lemmas.

Lemma 5.24 Let a be a non-zero ideal of ZK . Then there exist prime ideals
p1, . . . , pr such that p1 . . . pr ⊆ a.

Proof If not, then we can choose a as large as possible subject to the condition that
the statement is false (so we choose a so that any larger ideal does have prime ideals
p1, . . . , pr as in the statement).

This is one point where we use the fact that ZK is Noetherian: the Noetherian
condition is equivalent to the Ascending Chain Condition (see Proposition 4.36),
and so if we consider the set of all ideals such that the statement fails, and choose
one, a1 say, either a1 is as large as possible in this sense, or there is a bigger ideal
a2 contradicting the statement of the Lemma. We repeat this process, but the ACC
(Definition 4.35) guarantees that this process must eventually produce an ideal which
is as large as possible with this property.

Clearly a is not prime (otherwise take p1 = a!), so there exist ideals a1 and a2 of
ZK with a1a2 ⊆ a, a1 ⊗⊆ a, a2 ⊗⊆ a. Write

b1 = a + a1, b2 = a + a2.

Then b1b2 ⊆ a, but b1 and b2 both strictly contain a. By maximality of a, there exist
prime ideals pi such that

p1 . . . ps ⊆ b1

ps+1 . . . pt ⊆ b2
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Then p1 . . . pt ⊆ b1b2 ⊆ a, contradicting the choice of a. �

As remarked above, we are going to prove that the set of fractional ideals of ZK

forms an abelian group. The next lemma introduces what will turn out to be the
inverse of an ideal a, but we won’t be able to prove that just yet.

Lemma 5.25 If a is an ideal of ZK , define

a−1 = {α ∈ K | αa ⊆ ZK }.

Then a−1 is a fractional ideal.

Proof Take any γ ∈ a, and put c = γa−1. We claim that c is an ideal of ZK .
Clearly 0 ∈ c. If i, i ≡ ∈ c, so that i = γβ and i ≡ = γβ≡, with β,β≡ ∈ a−1, we need
i + i ≡ ∈ c. But i + i ≡ = γ(β +β≡), so we need β +β≡ ∈ a−1; this follows easily since
(β + β≡)a = βa + β≡a ⊆ (ZK + ZK ) = ZK , as required. Finally, if i = γβ ∈ c, so
β ∈ a−1, and r ∈ ZK , we need ri ∈ c, which would follow from rβ ∈ a−1. Again
this is easy, since (rβ)a = r(βa) ⊆ rZK ⊆ ZK , as r ∈ ZK . We have now explained
that c = γa−1 is an ideal, and so a−1 = 1

γ c is a fractional ideal, as required. �

Lemma 5.26 If a is a proper ideal of ZK , then a−1 strictly contains ZK .

Proof Clearly a−1 contains ZK ; we need to check that the inclusion is strict.
It is easy to see that if a ⊆ b, then b−1 ⊆ a−1. As a is contained in a maximal ideal

p (Lemma 4.38), it suffices to show that p−1 strictly contains ZK . Clearly p−1 ⊇ ZK ,
but we must find a non-integer in p−1.

Choose any non-zero α ∈ p, so ⇒α∩ ⊆ p. Choose the smallest r such that there
exist prime ideals p1, . . . , pr with

p1 . . . pr ⊆ ⇒α∩ ⊆ p.

It exists by Lemma 5.24. As p is prime, some pi ⊆ p; after re-ordering, we may
suppose it to be p1. As non-zero prime ideals are maximal (Proposition 5.21), and
maximal ideals cannot be properly contained in one another, we have p1 = p. As r is
minimal, p2 . . . pr ⊗⊆ ⇒α∩. So there is some β ∈ p2 . . . pr not in ⇒α∩. Then βp ⊆ ⇒α∩,
so βα−1p ⊆ ZK and βα−1 ∈ p−1. As βα−1 /∈ ZK (as β /∈ αZK ), the result
follows. �

The method of proof of the next lemma will be familiar from Chap. 2 (see Propo-
sition 2.33, for example).

Lemma 5.27 If a is a non-zero ideal of ZK , and θ ∈ K satisfies aθ ⊆ a, then
θ ∈ ZK .

Proof As ZK is Noetherian, a is finitely generated; a = ⇒ω1, . . . ,ωm∩. Then

http://dx.doi.org/10.1007/978-3-319-07545-7_2
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ω1θ = a11ω1 + · · · + a1mωm

...
...

ωmθ = am1ω1 + · · · + ammωm

with ai j ∈ Z. This is exactly (2.3); as in the proof of Proposition 2.25, θ is an
eigenvalue of A = (ai j ), and is therefore a root of the characteristic polynomial of a
matrix of integers, and so θ is an algebraic integer. As θ ∈ K , it follows that θ ∈ ZK ,
as required. �

Next we can prove that the fractional ideals defined in Lemma 5.25 are genuinely
inverses, first for maximal ideals, and then in general.

Lemma 5.28 If p is a maximal ideal of ZK , then pp−1 = ZK .

Proof Since p−1 is a fractional ideal, and p is an ideal (and therefore also a fractional
ideal), the product pp−1 is a fractional ideal. However, by definition of p−1, pp−1 ⊆
ZK , so the product is an ideal of ZK . Certainly pp−1 ⊇ p as p−1 ⊇ ZK . As p is
maximal, either pp−1 = p or pp−1 = ZK . The first is impossible, as p contains a
non-integer element θ, and by Lemma 5.27, pθ ⊗⊆ p. The claim follows. �

Lemma 5.29 If a is any non-zero ideal of ZK , then aa−1 = ZK .

Proof If not, choose a to be an ideal such that aa−1 ⊗= ZK which is as large as
possible (as in Lemma 5.24). Let p be a maximal ideal containing a, and consider
ap−1. As ZK ⊆ p−1 ⊆ a−1, we see that

a ⊆ ap−1 ⊆ aa−1 ⊆ ZK .

So ap−1 ⊆ ZK , and so ap−1 is genuinely an ideal (not just a fractional ideal) of
ZK . But we cannot have ap−1 = a, because p−1 contains some non-integral θ by
Lemma 5.26, leading to a contradiction with Lemma 5.27. So a is strictly contained
in ap−1, and by our choice of a as being as large as possible subject to the condition
that the statement is false, we have

ap−1(ap−1)−1 = ZK .

Thus
p−1(ap−1)−1 ⊆ a−1,

and so
ZK = ap−1(ap−1)−1 ⊆ aa−1 ⊆ ZK ,

and the result follows. �

Now we prove the first of the two main results.

Theorem 5.30 The set of fractional ideals form an abelian group.
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Proof We already know how to multiply ideals (and thus fractional ideals), and this
is clearly associative and commutative. The whole ring ZK forms the identity. The
only thing left to check is that we can define an inverse for any given fractional ideal.
But Lemma 5.29 gives us the inverse for any ideal, and any fractional ideal is of the
form b = γ−1c for some ideal of ZK and some non-zero γ ∈ K . Then its inverse
b−1 will be γc−1—note that

bb−1 = γ−1c.γc−1 = cc−1 = ZK ,

as required. �

Lemma 5.31 Every non-zero ideal a is a product of prime ideals.

Proof If not, let a be maximal subject to the condition that it is not a product of
prime ideals (again, as in Lemma 5.24). Then a is contained in some maximal ideal
p, and because a is strictly contained in ap−1, we can write

ap−1 = p1 . . . pr ,

a product of prime ideals. Now a = pp1, . . . pr . �

Finally, we can prove uniqueness of factorisation of ideals inZK into prime ideals.

Theorem 5.32 Factorisation of ideals into prime ideals is unique.

Proof Lemma 5.31 gives a factorisation into ideals; we just need to see that this
decomposition is unique.

Let r be minimal such that there is an ideal a with two different factorisations

a = p1 . . . pr = q1 . . . qs

into prime ideals. Then p1 ⊇ q1 . . . qs . As p1 is a prime ideal, p1 ⊇ qi for some i .
But both are maximal ideals, so p1 = qi . Cancel these (i.e., multiply by p−1

1 ), and
we get two different factorisations of an ideal ap−1

1 where at least one expression is
of shorter length than r , contradicting our choice of r . This proves the result. �

Exercise 5.7 In Exercise 5.6, the two ideals a = ⇒2∩ and b = ⇒7∩ were not prime
ideals in ZK , where K = Q(

∼
2). Factor a and b into prime ideals in ZK .

5.5 Coprimality

In Z, two integers are coprime if their highest common factor is 1, and unique
factorisation shows that this is equivalent to the statement that no prime number
divides both. Now that we have unique factorisation in ZK , a similar statement is
available.
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Given two ideals a and b of ZK , there is a natural notion of coprimality. We say
that a and b are coprime if a + b = ZK , that is, if the ideal generated by both a and
b is the whole ring.

Alternatively, we could factor the two ideals into primes, and then the ideals will
be coprime when no prime ideal occurs in both factorisations.

To see that these are equivalent, suppose first that a and b both have a prime ideal
p in their factorisation. Then a+b ⊆ p, and so they will not generate the whole ring.
Conversely, the proof above shows that if a + b is strictly contained in ZK , then it
has a prime ideal p in its factorisation. Clearly then a ⊆ p and b ⊆ p, and then the
proof shows that a and b both have p in their factorisations.

More generally, the highest common factor of two ideals a and b is the ideal h
such that

1. h|a and h|b;
2. if c|a and c|b, then c|h.

(Compare this definition with Definition 1.5.)

Exercise 5.8 Given two ideals a = ∏
p p

ap and b = ∏
p p

bp , show that the highest
common factor is

a + b =
∏

p

pmin(ap ,bp ).

Theorem 5.33 (Chinese Remainder Theorem) Suppose that K is a number field.
Suppose that a1, . . . , an are ideals in ZK , which are coprime in the sense that ai +
a j = ZK for all i ⊗= j . Then

ZK /(a1 ⊕ . . . ⊕ an) ⊂= ZK /a1 ⊕ · · · ⊕ ZK /an .

Proof The result is clear for n = 1, so we assume that n √ 2.
There is a homomorphism

θ : ZK −≥ ZK /a1 ⊕ · · · ⊕ ZK /an

α ◦≥ (α (mod ai ), . . . ,α (mod ai ))

and the kernel consists of α ∈ ZK mapping to (0, . . . , 0), i.e., those α such that
α ∈ ai for each i , which is the intersection a1 ⊕ . . . ⊕ an . We need to see that the
map is surjective.

We can write 1 = αi + βi where αi ∈ ai , and βi ∈ a j for all j ⊗= i .
Indeed, in the case i = 1, a1 +ai = ZK for all i ⊗= 1, so we can write 1 = xi +yi

for xi ∈ a1, yi ∈ ai . Then

y2y3 · · · yn = (1 − x2)(1 − x3) · · · (1 − xn);



104 5 Prime Ideals and Unique Factorisation

write β1 = y2y3 · · · yn ∈ ai for each i = 2, . . . , n; expanding the right-hand side
gives an expression 1 − α1 where all the terms defining α1 are divisible by some
xi ∈ a1, so that α1 ∈ a1.

Then θ is surjective; given (x1, . . . , xn) ∈ ZK /a1⊕· · ·⊕ZK /an , we have θ(x1β1+
· · · + xnβn) = (x1, . . . , xn). �

You should notice that we haven’t used any properties of number fields here; this
result is valid for any commutative ring, using the definition of coprimality of the
statement.

5.6 Norms of Ideals

Before we study unique factorisation into prime ideals, we will introduce the notion
of norm of an ideal. As we shall see in a moment, this could be regarded as a
generalisation of the concept of norm of an element.

Definition 5.34 The norm NK/Q(a) of a non-zero ideal a in ZK is the cardinality
|ZK /a|. It is finite by Lemma 5.20.

We will use this definition frequently later in the book.
We now have two notions of norm, one for elements (Sect. 3.2) and the one for

ideals just given. If an ideal is principal, generated by a single element, then there is
a nice relationship between the two.

Lemma 5.35 Let α ∈ ZK be non-zero. Then NK/Q(⇒α∩) = |NK/Q(α)|.
Proof Let ZK = Zω1 + · · · + Zωn . Then ⇒α∩ = Zαω1 + · · · + Zαωn . Then
NK/Q(⇒α∩) = |ZK /⇒α∩|; if we write αωi = ∑n

j=1 a jiω j , then the index of ⇒α∩
in ZK is just | det(ai j )|. But we know that NK/Q(α) = det(ai j ), and so we see that
NK/Q(⇒α∩) = |NK/Q(α)|.

Just like the notion of norm of an element, the ideal norm is multiplicative in the
sense that NK/Q(ab) = NK/Q(a)NK/Q(b). We need a lemma.

Lemma 5.36 Suppose that a is a non-zero ideal of ZK and that p is a non-zero
prime ideal of ZK . Then |ZK /p| = |a/ap|.
Proof If a ⊇ b ⊇ ap, then, multiplying through by a−1 gives ZK ⊇ a−1b ⊇ p. As
p is a non-zero prime ideal, it is maximal, and so either a−1b = ZK or a−1b = p.
This shows that b = a or ap.

Fix α ∈ a, but not in ap. Then the ideal generated by α and ap is clearly contained
in a, but is strictly bigger than ap, so must equal a. Then define the map

φ : ZK ≥ a/ap;
x ◦≥ αx + ap

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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φ is a homomorphism of ZK -modules, and is surjective by the above remark. The
kernel clearly contains p, since if x ∈ p, then αx ∈ ap. But 1 /∈ ker φ, as φ(1) =
α+ap, and we chose α /∈ ap. As p is maximal, we see that ker φ = p. Then the First
Isomorphism Theorem for modules (see Remark 5.6) gives ZK /p ⊂= a/p, which in
turn gives the lemma. �

With this lemma, it is easy to deduce the multiplicativity of the norm.

Theorem 5.37 Suppose that a and b are two ideals of ZK . Then

NK/Q(ab) = NK/Q(a)NK/Q(b).

Proof By factorising b into prime ideals, it suffices to deal with the case that b = p,
a prime ideal, and to show that NK/Q(ap) = NK/Q(a)NK/Q(p). By applying the
First Isomorphism Theorem (Theorem 5.5) to the homomorphism

φ : ZK /ap ≥ ZK /a,

α + ap ◦≥ α + a

which is clearly surjective, and whose kernel is easily seen to be the set a/ap =
{α + ap | α ∈ a}, we see that

∣∣∣∣
ZK /ap

a/ap

∣∣∣∣ = |ZK /a|.

Thus
|ZK /ap| = |ZK /a|.|a/ap|,

and then the previous lemma gives

|ZK /ap| = |ZK /a|.|ZK /p|.

Now the definition of the ideal norm gives NK/Q(ap) = NK/Q(a)NK/Q(p), as
required. �

5.7 The Class Group

We now know several important results:

• Chapter 4: Elements in rings of integers of number fields do not generally factorise
uniquely into irreducible elements.

• Theorem 4.31: Every domain in which all ideals are principal (a principal ideal
domain) is one where we do have unique factorisation of elements (a unique
factorisation domain).

http://dx.doi.org/10.1007/978-3-319-07545-7_4


106 5 Prime Ideals and Unique Factorisation

• Theorem 5.32: Ideals in rings of integers of number fields always factorise uniquely
into prime ideals.

As a consequence, if unique factorisation fails, some ideals are not principal. This
serves as a test for uniqueness or non-uniqueness of factorisation.

Using the fact (Theorem 5.30) that the fractional ideals form a group, we can con-
struct a group which measures the success or failure of uniqueness of factorisation.

Suppose that K is a number field, with ring of integers ZK . Let’s form the col-
lection of all ideals:

IK = {ideals in ZK }.

Every element α ∈ ZK generates a principal ideal, ⇒α∩ = αZK . So we can form the
collection

PK = {principal ideals in ZK } ⊆ IK ,

and then unique factorisation would follow from the equality PK = IK . If this does
not happen, it can be useful to quantify the extent to which it fails, and to estimate
what proportion of ideals are principal.

We do this by shifting from ideals to fractional ideals, which have a good group
structure. Write

FK = {fractional ideals of ZK },

and
PFK = {principal fractional ideals of ZK }.

ThenFK forms a group, as already noted;PFK is also a group—after all, its elements
are simply αZK for α ∈ K . Since FK is abelian, every subgroup is normal, and the
quotient

CK = FK

PFK

is again a group, called the class group of K .
Notice that if CK is the trivial group, then FK = PFK , and intersecting with

the collection of genuine ideals of ZK gives IK = PK , which implies unique
factorisation.

Later we will prove that the group CK is always finite. The number of elements
hK in CK measures the proportion of ideals which are principal, and is known as the
class number.

When the class number is 1, this means that CK is trivial, so that every ideal is
principal, and we have unique factorisation. More generally, if the class number is
hK , we see that the proportion of ideals which are principal is 1/hK .

The group structure also provides further information.
There is clearly a surjective group homomorphism

FK −≥ CK ,
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sending a fractional ideal f to its class [f] ∈ CK . We will usually just use this in the
case where f is a genuine ideal.

Since this is a homomorphism, [a][b] = [ab] for all (fractional) ideals a and b.
By Lagrange’s Theorem, the order of every element in a group divides the order

of the group. If a is any (fractional) ideal in ZK , it belongs to a class [a] ∈ CK ,
and [ahK ] = [a]hK is trivial. Thus ahK is in the identity class, which consists of all
principal fractional ideals. So ahK is principal for any a.

Exercise 5.9 Conversely, explain that if m is coprime to hK , and if a is an ideal in
ZK such that am is principal, then a is itself principal.

5.8 Splitting of Primes

Suppose that K is a number field, and that p is a non-zero prime ideal in ZK . Then
ZK /p is a finite field, by Lemma 5.20.

It is well-known that finite fields must have cardinality p f for some prime number
p and some exponent f . Indeed, if k is a finite field, we can consider the sequence
1, 1 + 1, 1 + 1 + 1,…, and eventually the sequence must repeat, as k has only
finitely many elements. Subtracting the shorter expression from the longer gives a
sum 1 + · · · + 1 = 0. That is, for some number n, we must have n = 0 in the field.
If we suppose that n is the smallest positive integer with this property, it is easy to
see that n must be prime; if n = rs, and n = 0, then either r or s must be 0 as fields
have no non-trivial zero-divisors; by the minimality of n, we cannot have 1 < r < n
or 1 < s < n. Then k contains a copy of Fp, the finite field of integers modulo p
(sometimes denoted Zp or Z/pZ); k can be regarded as a field extension of Fp, and
therefore as a vector space over Fp. As Fp has p elements, any vector space over it
has p f elements, where f denotes [k : Fp].

If p is a prime ideal of ZK , we have already seen (by Lemma 5.20) that ZK /p is
a finite field, so p is associated to some prime number p ∈ Z, and its norm is p f for
some f . We sometimes say that p lies above p, or that p lies below p.

Conversely, we can find prime ideals in ZK by trying to factor primes p ∈ Z in
ZK . For example, if K = Q(i), when ZK = Z[i], we can factor the first few primes
as follows:

2 = (1 + i)(1 − i), 3 = 3, 5 = (2 + i)(2 − i), 7 = 7, . . .

and we notice that some primes can be factorised and some can’t. A little thought
should convince the reader that if p = (a + bi)(c + di), then in order that there
should be no imaginary part in the product, we need c + di = a − bi , and then
p = a2 + b2, so that the primes which are the sums of squares (which we know
to be p = 2 and p → 1 (mod 4)) will factor, and those which are not (the primes
p → 3 (mod 4)) will not (see Theorem 1.19).
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These representations are not unique. We also have 5 = (1 + 2i)(1 − 2i), but this
is easily seen to be an equivalent factorisation to the one already given; the factors
differ by units. We know that we can avoid this by working with ideals instead. We
note that ⇒1 + i∩ = ⇒1 − i∩ (as 1 + i = i(1 − i), so 1 + i and 1 − i are associates),
and the factorisations so far become

⇒2∩ = p2
2, ⇒3∩ = p3, ⇒5∩ = p5p

≡
5, ⇒7∩ = p7

where p2 = ⇒1 + i∩ has norm 2, p3 = ⇒3∩ is a prime ideal in Z[i] of norm 9,
p5 = ⇒2 + i∩ and p≡

5 = ⇒2 − i∩ are prime ideals of norm 5.
Indeed, these three primes demonstrate the three different sorts of factorisation

possible in K = Q(i), or indeed in any quadratic field.
In a quadratic field, the following things can happen.

Definition 5.38 Let p a prime, and suppose that K is a quadratic field.

• We say that p splits in K if pZK = pp≡, for two ideals p ⊗= p≡ of norm p.
• We say that p is inert in K if pZK is a prime ideal in ZK , necessarily of norm p2.
• We say that p is ramified in K if pZK = p2 for some prime ideal p of norm p.

Remark 5.39 Of course there are similar definitions for any number field K ; but for
arbitrary number fields, some combination of these may occur. For example, it may
be that in some higher degree number field, pZK = p2p≡, which shows aspects of
ramification (because of the exponent of p), and of splitting (as there is more than
one distinct prime ideal appearing), and if the norms of p or p≡ were greater than p,
there would also be aspects of inert behaviour shown.

Now let’s develop some notation for working in more general number fields. If p
is a prime number in Z, consider ⇒p∩ = pZK . This is an ideal in ZK , and therefore
it should factorise uniquely as a product pe1

1 . . . per
r of prime ideals in ZK . In the

equality pZK = p
e1
1 . . . per

r , the exponents ei are called the ramification indices.
As pi is a prime ideal in ZK , the quotient ZK /pi is a finite field for each i , and

ZK /pi is a field extension of Z/pZ = Fp, so both have the same characteristic, and
we can define fi = [ZK /pi : Fp] to be the inertia degree. Note that NK/Q(pi ) =
|ZK /pi | = p fi .

Example 5.40 In the case of quadratic fields, a prime p splits if ⇒p∩ = pp≡, where p
and p≡ both have ramification index and inertia degree equal to 1. A prime p is inert
if ⇒p∩ is a prime ideal with ramification index 1, and inertia degree 2. A prime p is
ramified if ⇒p∩ = p2 where p has ramification index 2, and inertia degree 1.

This is a special case of the following theorem for general number fields.

Theorem 5.41 Let K be a number field of degree n, and suppose that pZK =
p

e1
1 . . . per

r , and that fi = [ZK /pi : Fp]. Then n = ∑r
i=1 ei fi .



5.8 Splitting of Primes 109

Proof By the Chinese Remainder Theorem (Theorem 5.33), we have

ZK /pZK ⊂=
r⊕

i=1

ZK /p
ei
i .

All these are vector spaces over Fp; we will show that dimFp ZK /pZK = n, and
dimFp ZK /p

ei
i = ei fi . Indeed,

|ZK /pZK | = p[K :Q] = pn,

as p ∈ Z, which gives the first claim, and

|ZK /p
ei
i | = NK/Q(p

ei
i ) = NK/Q(pi )

ei = (p fi )ei ,

using Theorem 5.37, which gives the second. �

There remains the general problem of computing how a prime number factorises
in a number field K . It turns out that, for all but finitely many primes, there is a
simple way to do this.

Suppose that K is a number field. Then we know that K is generated over Q by
a single element γ (Theorem 2.17).

For the rest of the section, we make the simplifying assumption that γ ∈ ZK has
the property that ZK = Z[γ]. The results we shall give can be proven under much
weaker hypotheses; we have already seen in Chap. 3 that this does not always occur.

Proposition 5.42 Suppose that K is a number field, and that ZK = Z[γ]. Write
g(X) ∈ Z[X ] for its minimal polynomial.

Let p be a prime in Z, and let

g(X) = g1(X)e1 · · · gr (X)er

be the factorisation of the minimal polynomial g modulo p of γ into irreducibles.
Then

pZK = p
e1
1 . . . per

r ,

for certain distinct ideals pi of ZK ; the inertia degree of pi is simply given by the
degree of gi (X).

Proof Let gi (X) denote any polynomial whose reduction modulo p is gi (X).
Define the ideal pi = ⇒p, gi (γ)∩. Then

ZK /pi = Z[γ]/⇒p, gi (γ)∩.

The map Z[X ] −≥ Z[γ] induced by X ◦≥ γ has kernel ⇒g(X)∩, and induces an
isomorphism Z[X ]/⇒g(X)∩ ⊂= Z[γ]. Thus

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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Z[γ]/⇒p, gi (γ)∩ ⊂= Z[X ]/⇒g(X), p, gi (X)∩.

On the other hand, the homomorphism Z[X ] −≥ Fp[X ] got by reducing the coef-
ficients mod p gives an isomorphism

Z[X ]/⇒g(X), p, gi (X)∩ ⊂= Fp[X ]/⇒g(X), gi (X)∩.

As gi (X) divides g(X), we see that this last quotient is just Fp[X ]/⇒gi (X)∩. Com-
bining all the isomorphisms above, we get

ZK /pi ⊂= Fp[X ]/⇒gi (X)∩.

As gi (X) is irreducible, the right-hand side is a field, and so pi is a prime ideal.
Similarly, there are isomorphisms

ZK /pZK ⊂= Z[γ]/pZ[γ] ⊂= Z[X ]/⇒p, g(X)∩ ⊂= Fp[X ]/⇒g(X)∩.

The Chinese Remainder Theorem (Theorem 5.33) implies that

Fp[X ]/⇒g(X)∩ ⊂= Fp[X ]/⇒g1(X)e1∩ × · · · × Fp[X ]/⇒gr (X)er ∩.

The map ZK −≥ ZK /pZK has kernel pZK . Using the above isomorphism, we
can view this as a map

ZK −≥ Fp[X ]/⇒g1(X)e1∩ × · · · × Fp[X ]/⇒gr (X)er ∩.

Unravelling the maps above, the map is given by γ ◦≥ (X, . . . , X), and so the kernel
is

⇒p, g1(γ)
e1∩ ⊕ . . . ⊕ ⇒p, gr (γ)

er ∩.

Next, note that pei
i ⊆ ⇒p, gi (γ)

ei ∩; to see this, observe that the generators of
p

ei
i = ⇒p, gi (γ)∩ei are all divisible by p except for gi (γ)

ei itself.
Combining everything, we have

pZK = ⇒p, g1(γ)
e1∩ ⊕ . . . ⊕ ⇒p, gr (γ)

er ∩ ⊇ p
e1
1 · · · per

r ;

the norm of the left-hand side is pn ; the norm of the right-hand side is (p f1)e1

. . . (p fr )er , and these two are the same, by Theorem 5.41. It follows that the inclusion
is an equality, so that

pZK = p
e1
1 · · · per

r . �

Remark 5.43 The proof shows that we can take pi = ⇒p, gi (γ)∩ = pZK +gi (γ)ZK .

Exercise 5.10 How do the ideals ⇒5∩, ⇒7∩ and ⇒31∩ factor into prime ideals inQ(
3
∼

2)?
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We say that a prime ideal pi of ZK above a prime p is unramified if its exponent
in the decomposition

pZK = p
e1
1 . . . per

r

is ei = 1. If ei > 1, we say that pi is ramified. We say that p is unramified if
e1 = · · · = er = 1, and ramified otherwise.

Proposition 5.44 If K is a number field, then there are only finitely many primes p
which are ramified in K . Indeed, p is ramified in K if and only if p divides DK .

Proof By Proposition 5.42,

pZK = ⇒p, f1(γ)∩e1 × · · · × ⇒p, fr (γ)∩er .

By definition, p ramifies in K if and only if some ei > 1. Thus the polynomial f (X)

does not have distinct roots modulo p. But these primes are the ones that divide the
discriminant of f (X). Under the assumption that ZK = Z[γ], the discriminant of
f (X) is equal to DK , by Example 3.21. �

Exercise 5.11 Let K = Q(
∼−2). Using Proposition 5.42, which prime numbers

are ramified, split and inert in K ?
Repeat for other quadratic fields of your choice.

Remark 5.45 We have seen (in Sect. 3.6) that it is not always possible to find elements
γ such that ZK = Z[γ], although they exist when K is a quadratic field, and we shall
see further examples (“cyclotomic fields”) in Chap. 9 where such elements exist.

More generally, we can pick any element γ ∈ ZK such that K = Q(γ). With a
small amount of extra work, one can show that Proposition 5.42 holds more generally
in this setting for the primes p not dividing |ZK /Z[γ]|.

However, Proposition 5.44 remains valid; p ramifies in the number field K if and
only if p divides the discriminant of K . The proof in the general case is a little harder.

Remark 5.46 Much of the content of this section is valid also in a more general
situation of an extension L/K of number fields. The proofs generalise with little
difficulty, although sometimes slight alterations are required to the results.

Remark 5.47 In chap. 3, we gave a rather complicated proof that K = Q(
∼−2,∼−5) does not have an integral basis of the form {1, γ, γ2, γ3} (i.e., K is not mono-

genic in the terminology of Sect. 3.6). The proof we gave there was a rather obscured
version of the following sketch proof.

Suppose that ZK = Z[γ]. Then Proposition 5.42 tells us that the factorisation
of ⇒3∩ = 3ZK corresponds to the factorisation of the minimal polynomial f of γ
modulo 3. We chose the field K so that ⇒3∩ factors as the product of 4 distinct prime
ideals in ZK ; the proposition implies that f must factor into 4 distinct linear factors
modulo 3, but there are only 3 irreducible linear polynomials modulo 3, which gives
a contradiction.

http://dx.doi.org/10.1007/978-3-319-07545-7_3
http://dx.doi.org/10.1007/978-3-319-07545-7_9
http://dx.doi.org/10.1007/978-3-319-07545-7_3
http://dx.doi.org/10.1007/978-3-319-07545-7_3
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Exercise 5.12 In the same way as Remark 5.47, show that if K is a cubic field, and
⇒2∩ = 2ZK factors as the product of 3 distinct prime ideals ⇒2∩ = p1p2p3, then ZK

does not have a basis of the form {1, γ, γ2}.
[Hint: Deduce that the minimal polynomial of γ would factor into 3 distinct linear

factors modulo 2, but there are only 2 possible distinct factors.]

5.9 Primes in Quadratic Fields

As an extended example of the results of the last section, we consider the case of
a quadratic field K = Q(

∼
d), where d is a squarefree integer. Quadratic fields are

monogenic, so do have the property that ZK = Z[γ] for some element γ ∈ ZK , and
so all the results of the previous section are valid.

By Proposition 5.44, the primes p which ramify in K are those which divide the
discriminant DK . Recall that DK = d if d → 1 (mod 4) and DK = 4d otherwise.

We can see how pZK factorises into prime ideals using Proposition 5.42, at least
for p odd. As already noted, p ramifies in K when p|DK

For d → 2, 3 (mod 4), we know ZK = Z[∼d], and the minimal polynomial of∼
d is just X2 − d (note that this quadratic has discriminant 4d). Then a prime p

factorises in ZK in the same way that X2 − d factorises modulo p.

• p is split in Z[∼d] if and only if X2 − d factors into two linear factors modulo p.
That is, if and only if X2 − d has two (distinct) roots modulo p, i.e., if ( d

p ) = 1.

• p is inert in Z[∼d] if and only if X2 − d has no root modulo p, i.e., if ( d
p ) = −1.

For d → 1 (mod 4), ZK = Z[ 1+∼
d

2 ], and the minimal polynomial of 1+∼
d

2 is
X2 − X + ( 1−d

4 ) (a polynomial with discriminant d). The results are identical: a
prime p not dividing DK is split if and only if ( d

p ) = 1, and inert if and only if

( d
p ) = −1.

Using Quadratic Reciprocity, it is not hard to see that these conditions are char-
acterised by congruence conditions modulo DK .

For example, in the case K = Q(i), with d = −1, we have DK = −4, and a
prime p is split if and only if (−1

p ) = 1, and it is well-known that this is equivalent

to p → 1 (mod 4). A prime p is inert if and only if (−1
p ) = −1, and this is equivalent

to p → 3 (mod 4).
For K = Q(

∼−3), with DK = −3, a prime p is split if and only if (−3
p ) = 1,

which is equivalent to p → 1 (mod 3), and is inert if and only if (−3
p ) = −1, which

is equivalent to p → 2 (mod 3).

Exercise 5.13 Classify the splitting or ramification behaviour of a prime number p
in Q(

∼
5) in terms of the congruence class of p. Try to verify this with some explicit

examples.
Repeat for other quadratic fields of your choice.



Chapter 6
Imaginary Quadratic Fields

It won’t be a surprise that fields of low degree over Q are going to be the easiest
cases to understand. Quadratic fields prove a good place to start, but it turns out to be
convenient to split this case into imaginary quadratic fields and real quadratic fields,
since the two cases turn out to be very different. We will deal with some aspects of
the theory of real quadratic fields in Chap. 8.

The case of imaginary quadratic fields, which we treat in this chapter, will form
the most complete example of the general theory that we consider in this book.

Throughout this chapter, we will be considering a field K = Q(
≥

d) where d is
a negative, squarefree integer, that is, it is not divisible by the square of any prime.
Every imaginary quadratic field can be written in this way for a unique choice of d
(as we noted in Example 2.14(3)).

We recall from Proposition 2.34 that the ring of integers is Z[ 1+≥
d

2 ] if d ∈ 1
(mod 4), and is Z[≥d] if not. As d is squarefree, d is not divisible by the square of
any prime, so the case d ∈ 0 (mod 4) is not permitted, so this latter case arises when
d ∈ 2 (mod 4) or d ∈ 3 (mod 4).

What we would really like to be able to do is to determine the fields with unique
factorisation, and to understand the failure of unique factorisation in the other cases.
It will turn out that there are very few imaginary quadratic fields with unique fac-
torisation.

There are many numerical calculations in this chapter. There are comparatively
few exercises—but the reader is strongly invited to make up exercises of your own,
by making up examples in different quadratic fields. (Indeed, it’s probably the best
way to master the material!)

6.1 Units

One difference between the case of imaginary quadratic fields and that of real
quadratic fields concerns the group of units. As we shall see, real quadratic fields
have infinitely many units. Imaginary quadratic fields will have only finitely many
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units, all roots of unity, and it is easy to determine these units. (In fact, we shall see
later that imaginary quadratic fields are the only fields other than Q for which the
ring of integers has a finite group of units.)

Recall from Lemma 4.7 that α ∈ ZK is a unit precisely when N (α) = 1. Since
there are two possibilities for ZK , depending on d (mod 4), we will divide the cal-
culation into two cases.

6.1.1 d ≡ 2, 3 (mod 4)

In this case, we have ZK = Z[≥d]. Then a typical element is α = a + b
≥

d , where
a and b are in Z, and the norm of α is

NK/Q(α) = (a + b
≥

d)(a − b
≥

d) = a2 − db2.

We need to solve NK/Q(α) = 1. But notice that a2 is a non-negative integer, and
−db2 is also a non-negative integer (as d < 0). In order that two non-negative
integers add to 1, we need that one of them is 0, and the other is 1.

If a2 = 1 and −db2 = 0, then a = ±1 and b = 0 (as d ≡= 0). This tells us that
±1 is always a unit (and indeed, they are obviously invertible in ZK ).

The other case is where a2 = 0 and −db2 = 1. If d < −1, then there is clearly
no solution to −db2 = 1. However, if d = −1, then b = ±1 is also possible. So in
the field Q(

≥−1), we also have units 0 ± ≥−1; in other words, ±i are units.

6.1.2 d ≡ 1 (mod 4)

The analysis here is very similar, if slightly more complicated by the fact that the

ring of integers is now Z[ 1+≥
d

2 ]. A typical element is therefore α = a + b( 1+≥
d

2 ) =
(2a + b + b

≥
d)/2. Again, we must compute the norm of α:

N (α) = αα = (2a + b + b
≥

d)(2a + b − b
≥

d)

4
= (2a + b)2 − db2

4
.

Thus the equality N (α) = 1 is equivalent to finding integral solutions to (2a +b)2 −
db2 = 4.

We first consider the case where d < −3, in which case d ≤ −7 (remember
that d ∈ 1 (mod 4)). If b ≡= 0, then −db2 √ 7, and as (2a + b)2 √ 0, there are
no solutions. So b = 0. In this case, our equation becomes (2a + 0)2 = 4, so that
a = ±1. It follows that ±1 are the only units in this case.
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Now let’s consider the case d = −3. If |b| were to be at least 2, then −db2 would
be at least 12, and so there would be no solutions. The only possible solutions occur
when b = −1, 0 or 1.

• When b = −1, we must solve (2a − 1)2 + 3 = 4, giving 2a − 1 = ±1, and so
a = 0 or 1.

• When b = 0, we must solve (2a)2 = 4, giving a = ±1.
• When b = 1, we must solve (2a + 1)2 + 3 = 4, giving 2a + 1 = ±1, and so

a = −1 or 0.

We therefore have six solutions: (a, b) = (0,−1), (1,−1), (−1, 0), (1, 0), (−1, 1)

and (0, 1). The corresponding units α = a + b 1+≥−3
2 are given by:

−1 − ≥−3

2
,

1 − ≥−3

2
, −1, 1,

−1 + ≥−3

2
, and

1 + ≥−3

2
.

These numbers, ±1±≥−3
2 and ±1, are the sixth roots of unity.

Earlier, we used ω to denote the primitive cube root of unity −1+≥−3
2 = e

2π i
3 .

Notice that the ring of integers of Q(
≥−3) is given by Z[ω]. Then ω2 = e

4π i
3 =

−1−≥−3
2 , and so the units are given by {±1,±ω,±ω2}.

6.1.3 Summary

We have shown that the only units in the imaginary quadratic field Q(
≥

d) are the
elements of {±1}, except in two cases. The first is when d = −1; the units in the
Gaussian integers Z[i] are {±1,±i}. The other exceptional case is when d = −3;
the units in the ring of integers Z[ω] of Q(

≥−3) are {±1,±ω,±ω2}.
Notice that these units are all roots of unity (fourth roots, in the case of Q(i), and

sixth roots in the case of Q(
≥−3)). So the units in every imaginary quadratic field

are the roots of unity.
Conversely, it is easy to see that every root of unity is a unit. If λ is a root of unity

in ZK , then λn = 1 for some n. Then λ × λn−1 = 1, and so λ is invertible, with
inverse λn−1 (this lies in ZK as λ ∈ ZK , and ZK is a ring).

Write μk for the set of kth roots of unity in C; then we have proven the following
result:

Theorem 6.1 Let K = Q(
≥

d), with d ∈ Z<0 squarefree. Then λ is a unit in ZK if
and only if λ is a root of unity, and the units in ZK are:

U (ZK ) = Z×
K =






μ4 = {±1,±i}, if d = −1,

μ6 = {±1,±ω,±ω2}, if d = −3,

μ2 = {±1}, otherwise.
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6.2 Euclidean Imaginary Quadratic Fields

We have already explained in Chap. 1 that the Gaussian integers Z[i] possess unique
factorisation, and this was critical when answering the question of which prime
numbers can be written as the sum of two squares. Our proof involved showing that
the norm function is Euclidean, and therefore that Z[i] is a Euclidean domain using
this norm function.

In this section we will work out which imaginary quadratic fields can be shown
to have unique factorisation in the same way; that is, when the ring of integers is a
Euclidean domain.

We shall see later that there are imaginary quadratic fields with unique factorisation
which are not Euclidean in this sense, and this provides examples of UFDs which
are not Euclidean.

First, we will try to generalise the argument that worked for the Gaussian integers
to more general imaginary quadratic fields K . We therefore need to know when the
norm function is Euclidean.

Choose any α and β in ZK . We must be able to find a quotient κ ∈ ZK and a
remainder ρ ∈ ZK such that α = κβ + ρ, and N (ρ) < N (β). As in Chap. 1, the
method is to consider the quotient α/β, and to define κ to be the integer “closest” to
it. Then we define ρ = α − κβ.

It follows that

ρ = β

(
α

β
− κ

)
,

and N (ρ) = N (β)N (α/β − κ), so N (ρ) < N (β) as long as N (α/β − κ) < 1.
In particular, ZK is Euclidean if, for any α/β ∈ Q(

≥
d), there is κ ∈ ZK with

N (α/β − κ) < 1.
Again, the two different forms of ZK mean that we will treat this in two cases.

6.2.1 d ≡ 2, 3 (mod 4)

Now ZK = Z[≥d]. Suppose that α/β = a + b
≥

d, with a and b in Q. We choose κ

to be the “nearest” integer m + n
≥

d ∈ ZK .

http://dx.doi.org/10.1007/978-3-319-07545-7_1
http://dx.doi.org/10.1007/978-3-319-07545-7_1
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This means choosing |m − a| ≤ 1
2 and |n − b| ≤ 1

2 . Then

N (α/β − κ) = N ((a + b
≥

d) − (m + n
≥

d))

= N ((a − m) + ≥
d(b − n))

= (a − m)2 − d(b − n)2

≤ ( 1
2 )2 − d( 1

2 )2.

So if d = −1 or −2, this will definitely be strictly less than 1, as required.
On the other hand, if d ≤ −5, there are certainly quotients α/β where there is no

integer κ satisfying N (α/β − κ) < 1; for example, just take α = 1 + ≥
d, β = 2.

Thus the only imaginary quadratic fields Q(
≥

d) with d ∈ 2, 3 (mod 4) which
are Euclidean with respect to the norm function are Q(

≥−1) and Q(
≥−2).

6.2.2 d ≡ 1 (mod 4)

Now ZK = Z[ 1+≥
d

2 ]. Suppose that α/β = a + b
≥

d , with a and b in Q, and again
choose κ to be the “nearest” integer m + n

≥
d ∈ ZK . However, ZK looks a little

different:
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The collection of points nearest to the origin lie in the shaded hexagon.
As in the first case, it will do to show that every point in Q(

≥
d) lies at a distance

strictly less than 1 from some point in ZK . That is, it would suffice that the hexagon
above lie inside the unit circle. Since the edges are given by the bisectors of the

lines joining the origin and the points ±1 and ±1±≥
d

2 , computing the vertices of the
hexagon is elementary (though slightly painful!), and is left as an exercise.

Exercise 6.1 View the hexagon above as plotted in the (x, y)-plane, and bounded

by the bisectors of the lines joining (0, 0) to (±1, 0) and to (± 1
2 ,±

≥|d|
2 ) with

|d| > 1. Verify that the vertices of the hexagon above are at
(

0,±(
|d|+1
4
≥|d| )

⎧
and

(
± 1

2 ,±(
|d|−1
4
≥|d| )

⎧
.

It is then easy to check that if d = −3, d = −7 or d = −11, the hexagon
lies entirely within the unit circle, and the corresponding field then has a Euclidean
algorithm. However, if d ≤ −19, then

≥|d| > 4, and the hexagon contains points of
Q(

≥
d) at a distance of more than 1 from any point of ZK (e.g., 1

4

≥
d), so that there

can be no Euclidean algorithm using the norm function in these cases.

Exercise 6.2 Suppose that K = Q(
≥−19). Find examples ofα andβ in ZK such that

there is no quotient κ and remainder ρ with α = κβ +ρ with NK/Q(ρ) < NK/Q(β).
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So we conclude that there are only five imaginary quadratic fields, Q(
≥−1),

Q(
≥−2), Q(

≥−3), Q(
≥−7) and Q(

≥−11) which are Euclidean with respect to
their norm function.

It follows from Proposition 4.29 and Theorem 4.31 that these five fields all have
unique factorisation.

We have now seen that there are exactly five imaginary quadratic fields whose
rings of integers are Euclidean domains with respect to their norm function.

But one might wonder whether there might be other functions, different from the
norm function, which make other rings of integers into Euclidean domains. It turns
out that this is false, but the proof is comparatively recent; it was proven by Motzkin
in 1949. We’ll give the complete argument below in the more interesting case where
d ∈ 1 (mod 4), and leave the other case as an exercise.

We first need a general algebraic result.

Theorem 6.2 Suppose that R is a Euclidean domain with respect to a Euclidean
function φ, but that R is not a field. Then there is a non-zero element u of R, which
is not a unit, such that for all x ∈ R, either u|x, or u|x − v for some unit v ∈ R.

Proof Let S denote the set of non-zero elements of R which are not units. As R is
not a field, S is not empty. Consider the set

φ(S) = {φ(s) | s ∈ S}.

As φ(r) is a positive integer for all r ∈ R (see Definition 4.28), we can choose u ∈ S
with φ(u) minimal amongst all the values in φ(S).

Given x ∈ R, the Euclidean property means that x = qu + r , where either r = 0,
or φ(r) < φ(u). When r = 0, we clearly have x = qu, so that u|x . In the second
case, where φ(r) < φ(u), we can’t have r ∈ S, as φ(u) was the smallest value in
φ(S). Since r /∈ S and r ≡= 0, we must have that r is a unit in R. Let’s write v for
this unit, and then qu = x − v shows that u|x − v as required. �

(The element u is often called a universal side divisor in the literature).
We can restate this:

Corollary 6.3 Suppose that R is an integral domain that is not a field. If there are
no elements u as in the theorem, then R is not Euclidean.

Let’s use this to deduce our main result:

Theorem 6.4 Suppose that K = Q(
≥

d) with d squarefree and negative. Suppose
that d ∈ 1 (mod 4), and that d < −11. Then ZK is not Euclidean.

Proof By Corollary 6.3, we simply have to show that there are no elements u as in
Theorem 6.2. In order to get a contradiction, we’ll suppose that u does exist. We

know that ZK = Z[ 1+≥
d

2 ], and, from Theorem 6.1, we know that the units in ZK

are simply {±1}, and so the property implies that for all α ∈ ZK , we need u|α, or
u|α ± 1.
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Let’s apply this with α = 2. So we need u|2, or u|2 ± 1. That is, u divides 1, 2
or 3. But u cannot divide 1, since u is not a unit. So u is a divisor of either 2 or 3.
Let’s see that 2 and 3 are irreducible: if not, there would be some element β of norm

2 or 3. But if β = a +b
(

1+≥
d

2

⎧
, then NK/Q(β) = a2 +ab +b2

⎨ 1−d
4

⎩
, and we note

that as d < −11, we have k = 1−d
4 √ 4. It is easy to see that a2 + ab + kb2 = 2

and a2 + ab + kb2 = 3 have no solution for k √ 4; once b ≡= 0, the left-hand side is
too large, and then there is clearly no solution for a. So both 2 and 3 are irreducible,
and as u divides either 2 or 3, we must have u = 2, −2, 3 or −3.

But now we can take α = 1+≥
d

2 instead. Again, we should have u|α or u|α ± 1.
However, none of these elements have ±2 or ±3 as divisors.

So there can be no element u, and so ZK is not Euclidean. �

A very similar argument applies in the remaining cases.

Exercise 6.3 Suppose K = Q(
≥

d) with d squarefree chosen such that ZK =
Z[≥d], and where d < −2. Recall that in this case, the units in ZK are {±1};
deduce that any element u as in Theorem 6.2 must be a divisor of 1, 2 or 3. Conclude
as above that u = ±2 or ±3, but as these do not divide α or α ± 1, where α = ≥

d,
no element u can exist, and ZK is not Euclidean.

We have therefore proven the following theorem:

Theorem 6.5 Suppose that K = Q(
≥

d) with d < 0 squarefree. Then ZK is Euclid-
ean if and only if d = −1, −2, −3, −7 or −11.

6.3 Quadratic Forms

In the rest of the chapter, we will relate uniqueness of factorisation to the theory of
quadratic forms.

As already remarked, the class group may be viewed as the obstruction to unique
factorisation: if the class group is trivial, then the number field has unique factorisa-
tion, but otherwise unique factorisation fails.

We would like a way to calculate the class group to be able to ascertain whether or
not the field has unique factorisation. While some of the ideas that we will introduce
in the remainder of this chapter have analogues for other number fields, they are most
easily introduced in the context of imaginary quadratic fields.

We will show that the class number can be computed by counting a certain set of
“binary quadratic forms”, which we now introduce.

Definition 6.6 A quadratic form in n variables is a homogeneous polynomial of
degree 2, and is therefore of the form

n⎝

i=1

n⎝

j=1

ai j xi x j .
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Notice that if we write v = (x1 · · · xn)t , and A for the matrix (ai j ), then we can
write the form as vt Av.

We will only consider the situation where ai j ∈ Z.

We will focus on the case where n = 2; such forms are known as binary quadratic
forms.

Definition 6.7 A binary quadratic form is a quadratic form in 2 variables, and is
therefore of the form

f (x, y) = ax2 + bxy + cy2,

for some a, b, c ∈ Z. The discriminant of this form is b2 − 4ac.
We may abbreviate the form ax2 + bxy + cy2 by (a, b, c).

For example, the discriminant of x2 + y2 is −4 and the discriminant of
x2 + (−d)y2 is 4d.

Definition 6.8 Say that a quadratic form f (x, y) is positive definite if

1. f (x, y) √ 0 for all x, y ∈ R;
2. f (x, y) = 0 means that we must have (x, y) = (0, 0).

For completeness, although we will not need these in this book:

Definition 6.9 A quadratic form is positive semi-definite if f (x, y) √ 0 for all
x, y ∈ R. Forms which take both positive and negative values are known as indefinite.

There is a similar definition of negative definite and negative semi-definite, got
by changing the sign in the inequality.

We will only need to consider positive definite forms in what follows. Let’s make
some observations about positive definite forms. Suppose that (a, b, c) = ax2 +
bxy + cy2 is positive definite. We certainly need a > 0, for otherwise substituting
(x, y) = (1, 0) gives a negative value. Similarly we must have c > 0, for otherwise
(x, y) = (0, 1) would give something negative. We can also write (completing the
square):

ax2 + bxy + cy2 = a

(
x + b

2a
y

)2

+
(

c − b2

4a

)
y2,

so we can refine the observation that c > 0 into the more precise observation that
c− b2

4a > 0 (otherwise choose (x, y) = (−b, 2a) to get a negative value of the form).
As a > 0, this is equivalent to b2 − 4ac < 0.

Corollary 6.10 The quadratic form ax2 + bxy+ cy2 is positive definite if and only
if a > 0 and the discriminant b2 − 4ac < 0.

Let’s now hint at the relationship between imaginary quadratic fields and quadratic
forms. As an example of a quadratic form, recall that the norm of a complex number
x + iy is
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N (x + iy) = (x + iy)(x − iy) = x2 + y2;

notice that x2 + y2 is a positive definite quadratic form. More generally, the norm
of the complex number x + y

≥
d (where d is a negative, squarefree integer as usual

in this chapter) is x2 + (−d)y2. Thus, we have started with a general element in an
imaginary quadratic field, and in both cases have recovered a positive definite binary
quadratic form.

When studying quadratic forms, it is quickly apparent that two apparently different
forms may really share many properties. Indeed, two apparently different forms may,
in some sense, be the same. For example, the form x2 + 2xy + 2y2 can be rewritten
(x + y)2 + y2, and a simple change of variable X = x + y, Y = y allows us to
write this as the form X2 + Y 2. For many applications, we may wish to regard the
form x2 + 2xy+ 2y2 as equivalent to the form x2 + y2. This leads to a more general
definition:

Definition 6.11 Two quadratic forms f (x, y) and g(x, y) are equivalent if one can
be transformed into the other by a substitution of the form

(x, y) →◦ (px + qy, r x + sy),

where p, q, r, s are integers with ps − qr = ±1. That is, f (x, y) and g(x, y) are

equivalent if g(x, y) = f (px + qy, r x + sy) for some invertible matrix

(
p q
r s

)
∈

GL2(Z), the general linear group of 2×2 matrices with integer entries whose inverse
also has integer entries.

If ps − qr = +1, we say that f (x, y) and g(x, y) are properly equivalent (and in
this case the matrix above lies in SL2(Z), the special linear group of 2 × 2 matrices
with determinant 1).

If we write f (x, y) = vt Av, and M =
(

p q
r s

)
, then Mv =

(
p q
r s

) (
x
y

)
=

(
px + qy
r x + sy

)
, and then

f (px + qy, r x + sy) = (Mv)t A(Mv) = vt (Mt AM)v.

Thus, in terms of matrices, if f and g correspond to matrices A and B respectively,
then f and g are equivalent if there exists a matrix M ∈ GL2(Z) with B = Mt AM ,
and properly equivalent if M ∈ SL2(Z).

Exercise 6.4 Show that two equivalent forms have the same discriminant.

As a special case of the exercise, the same is true for two properly equivalent
forms.

Exercise 6.5 Show that (a) equivalence, and (b) proper equivalence, are both equiv-
alence relations on the set of binary quadratic forms, and in particular on the set of
binary quadratic forms of any given discriminant.
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Before continuing, it is perhaps worth signalling the reasons for specifying these
two forms of equivalence.

One motivation for studying quadratic forms comes from considering the numbers
they represent—for example, one can ask the question which primes can be written
as the sum of two squares. If p = x2 + y2, then p can also be represented as a value
of any quadratic form which is equivalent to x2 + y2. For this sort of question, it is
equivalence, rather than proper equivalence, which is the more useful notion, as it is
easy to see that equivalent quadratic forms represent the same integers.

Exercise 6.6 Suppose that f and g are two equivalent quadratic forms. Show that
for every natural number n, the number of pairs (x, y) such that f (x, y) = n is equal
to the number of pairs (u, v) such that g(u, v) = n.

[Hint. In Definition 6.11, the matrix
(

p q
r s

)
is invertible, so we can also write

g(u, v) = f (p⇒u + q ⇒v, r ⇒u + s⇒v) for some integers p⇒, q ⇒, r ⇒, s⇒ with p⇒s⇒ − q ⇒r ⇒ =
±1. Use these to get inverse bijections between the two sets.]

However, we will explain in this chapter that there is also a relation between
the class group of a given imaginary quadratic field, and the collection of certain
quadratic forms of a certain discriminant. Indeed, we will give a bijection between
the class group and positive definite binary quadratic forms of this discriminant up
to proper equivalence. For this bijection, which is the main topic of this chapter, it
is therefore proper equivalence which is the better notion. Further, the class group
has a group structure, and we will briefly remark at the end of the chapter that this
group structure carries across to give a group structure on the collection of proper
equivalence classes of quadratic forms. There is no group structure on the collection
of equivalence classes of quadratic forms.

6.4 Reduction Theory

Reduction theory is an elegant theory which allows us to determine when two
quadratic forms are properly equivalent. If we are given a general (positive defi-
nite binary) quadratic form, then we can “reduce” it to a particular “reduced” form,
and two forms are properly equivalent precisely when they both reduce to the same
form.

Definition 6.12 We say that a form (a, b, c) = ax2 +bxy+ cy2 is reduced if either
−a < b ≤ a < c, or 0 ≤ b ≤ a = c.

This may seem a slightly odd definition, but we will see that the precise conditions
are chosen to ensure that, firstly, every form is properly equivalent to some reduced
form, and, secondly, that no two different reduced forms are properly equivalent.

We defined proper equivalence above using matrices of determinant 1. Let’s isolate
some special cases (we will see later that these generate all of SL2(Z)).
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First, we consider the matrix

(
1 1
0 1

)
. We therefore consider the transformation

(
x
y

)
→◦

(
1 1
0 1

) (
x
y

)
=

(
x + y
y

)
.

The form ax2 +bxy+cy2 is then properly equivalent to a(x +y)2 +b(x +y)y+cy2,
which expands to ax2 + (2a + b)xy + (a + b + c)y2. Thus the form (a, b, c) is
properly equivalent to the form (a, b + 2a, c + b + a).

The inverse transformation corresponds to the matrix

(
1 −1
0 1

)
, and using this

matrix we get that (a, b, c) is properly equivalent to (a, b − 2a, c − b + a).

We will use one final transformation, the one corresponding to

(
0 1
−1 0

)
, which

sends (x, y) to (y,−x), and using this matrix we find that (a, b, c) is properly equiv-
alent to (c,−b, a).

Let’s explain that, using these three transformations only, any binary positive
definite quadratic form can be seen to be equivalent to a reduced form.

Take a positive definite binary quadratic form (a, b, c) (recall that this stands for
ax2 + bxy + cy2 and that a and c are necessarily positive), and apply the following
rules repeatedly:

• If a > c, or if a = c and b < 0, apply the third rule, and perform the transformation
(a, b, c) →◦ (c,−b, a).

• Otherwise, we are in one of two situations:

– We could have a < c.
If (a, b, c) is not reduced, it must be because b ≤ −a or b > a. If b ≤ −a,
apply the first rule, (a, b, c) →◦ (a, b + 2a, c + b + a) and if b > a, apply the
second rule (a, b, c) →◦ (a, b − 2a, c − b + a). The result of this should be
a form for which the absolute value |b| of the middle coefficient gets smaller
(except in the case b = −a, when |b| may remain constant for one step only).

– Alternatively, a = c and b √ 0.
If (a, b, c) is not reduced, it must be because b > a. Then apply the second rule
(a, b, c) →◦ (a, b − 2a, c − b + a). The result of this should again be a form
for which the absolute value |b| of the middle coefficient gets smaller.

Let’s see an example of this procedure in action. Consider the form 7x2 −24xy+
21y2, or (7,−24, 21) in our abbreviated notation.

This is not reduced, but we do have a < c, as 7 < 21. But we do not have
−a < b ≤ a. We therefore apply the first rule, to get (7,−24, 21) →◦ (7,−10, 4)

(that is, our original form is properly equivalent to 7x2 − 10xy + 4y2).
Now we have a form which is not reduced because c < a. We therefore apply

the third rule (a, b, c) →◦ (c,−b, a), and find (7,−10, 4) →◦ (4, 10, 7) (so now our
original form is properly equivalent to 4x2 + 10yx + 7y2).
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Now (4, 10, 7) is not reduced as b > a, so we apply the third rule (a, b, c) →◦
(a, b − 2a, c − b + a) to get (4, 10, 7) →◦ (4, 2, 1).

You can see that the numbers are getting smaller! But we still don’t have a reduced
form, as a > c. So we apply the third rule to get (4, 2, 1) →◦ (1,−2, 4), and (finally!)
the first rule gives (1,−2, 4) →◦ (1, 0, 3), which is reduced.

We could have kept track of the changes of variable required as we were going
along, but we can recover this by thinking about the matrix transformations involved.

Indeed, as we noted above, each equivalence is represented by a matrix. The first
time that we applied a rule ((a, b, c) →◦ (a, b + 2a, c + b + a)), we essentially

made the change of variable

(
x
y

)
→◦

(
1 1
0 1

)(
x
y

)
. This means that we make the

transformation (x, y) →◦ (x + y, y). One can easily check that

7(x + y)2 − 24(x + y)y + 21y2 = 7x2 − 10xy + 4y2.

If f0 denotes the original form (7,−24, 21) and f1 denotes the result (7,−10, 4)

after one step, with M1 =
(

1 1
0 1

)
, then this calculation shows that

f0

(
M1

(
x
y

))
= f1

((
x
y

))
.

If we now write
(

x1
y1

)
= M1

(
x
y

)
=

(
1 1
0 1

) (
x
y

)
=

(
x + y
y

)
,

then we can apply the inverse matrix to write (x, y) in terms of (x1, y1), and

(
x
y

)
= M−1

1

(
x1
y1

)
=

(
1 −1
0 1

)(
x1
y1

)
=

(
x1 − y1

y1

)
.

We therefore see

f0

((
x
y

))
= f1

(
M−1

1

(
x
y

))
,

i.e.,

7x2
1 − 24x1y1 + 21y2

1 = 7(x1 − y1)
2 − 10(x1 − y1)y1 + 4y2

1 .

In summary, if v is the vector

(
x
y

)
, we should have

f0(M1v) = f1(v) and f0(v) = f1(M−1
1 v).
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Next we applied the third rule ((a, b, c) →◦ (c,−b, a)) to f1 but we already noted

that this corresponds to the matrix

(
0 1
−1 0

)
. As above, we can write f2 for the form

(4, 10, 7), and we should have

f1(M2v) = f2(v) and f1(v) = f2(M−1
2 v).

But we already knew that

f0(M1v) = f1(v) and f0(v) = f1(M−1
1 v),

so we can combine these to see that

f2(v) = f1(M2v) = f0(M1(M2v)).

Recall that v =
(

x
y

)
, M1 =

(
1 1
0 1

)
, and M2 =

(
0 1
−1 0

)
, so we get

f2(x, y) = f0

((
1 1
0 1

) (
0 1
−1 0

) (
x
y

))
= f0(−x + y,−x),

which can easily be verified by a simple calculation.

This pattern continues; M3 =
(

1 −1
0 1

)
, M4 =

(
0 1
−1 0

)
and M5 =

(
1 1
0 1

)
are

the matrices for the remaining three steps, and because we saw that f5 = (1, 0, 3) =
x2 + 3y2 is the final step, it follows that

f5(x, y) = f0(M1 M2 M3 M4 M5(x, y)t ).

It is easy to calculate that

M = M1 M2 M3 M4 M5 =
(−2 −3

−1 −2

)
,

and to verify that

f0

(
M

(
x
y

))
= 7(−2x−3y)2−24(−2x−3y)(−x−2y)+21(−x−2y)2 = x2 + 3y2,

as expected.

Exercise 6.7 Reduce the following quadratic forms f (x, y), and hence find matrices
M such that f (M(x, y)T ) = g(x, y), where g(x, y) is a reduced quadratic form.
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1. 6x2 − 7xy + 8y2;
2. 13x2 + 12xy + 11y2;
3. 43x2 + 71xy + 67y2.

Invent your own examples—remember that (a, b, c) must be chosen to be positive
definite, so a > 0, c > 0 and b2 − 4ac < 0.

Exercise 6.8 We can also use this to solve one of the questions in Chap. 1.
Given a prime number p ∈ 1 (mod 4), how can we write it as the sum of two squares?
First, find a value of m with m2 ∈ −1 (mod p) as in Remark 1.22. So m2 = kp−1 for
some value of k. Then the form f (x, y) = px2 + 2mxy + ky2 has discriminant −4,
and f (1, 0) = p. We now reduce this form, keeping track of the changes of variable,
finding a reduced form g(x, y) = f (M(x, y)t ) for some matrix M . But since dis-
criminants are unchanged by equivalence, the discriminant of g(x, y) is still −4, and
we will see that the only reduced form of discriminant −4 is g(x, y) = x2 + y2. Now
we can find values x0 and y0 such that g(x0, y0) = f (1, 0) = p, so p = x2

0 + y2
0,

as required.
Carry out this procedure for p = 1009, using your value of m from Exercise 1.12.

We have now explained why we might believe the following theorem:

Theorem 6.13 Every positive definite binary quadratic form is properly equivalent
to a reduced form.

We will actually prove something stronger.
We haven’t really used the full strength of the definition of what it means for a

form to be reduced. The point of the definition is that any positive definite binary
quadratic form should be properly equivalent to precisely one reduced form, or,
equivalently, that every proper equivalence class of positive definite binary quadratic
forms contains a unique reduced form. This gives the enhanced version of the above
result:

Theorem 6.14 Every positive definite binary quadratic form is properly equivalent
to a unique reduced form.

Before we prove this, we need a lemma.

Lemma 6.15 Suppose that f (x, y) = ax2 + bxy+ cy2 is a reduced form. If a < c,
then the smallest non-zero values taken by f (x, y) for x and y coprime are a and c;
furthermore, the only values of (x, y) with f (x, y) = a are (±1, 0). If a = c, then
the smallest non-zero value of f (x, y) is a, and there are either 4 (if 0 ≤ b < a = c)
or 6 (if a = b = c) pairs (x, y) with f (x, y) = a.

Proof As (x, y) = 1, if y = 0, then x = ±1, and f (±1, 0) = a. If |y| = 1 and
|x | √ 2, then

|2ax + by| √ |2ax | − |by| √ 4a − |b| √ 3a,

http://dx.doi.org/10.1007/978-3-319-07545-7_1
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so

4a f (x, y) = (2ax + by)2 − dy2 √ 9a2 − d

= 4ac + (9a2 − b2) = 4ac + 8a2 + (a2 − b2) √ 4ac

as |b| ≤ a. So f (x,±1) > c if |x | √ 2. If |y| √ 2, then

4a f (x, y) = (2ax + by)2 − dy2 √ −dy2 √ −4d = 16ac − 4b2

√ 12ac + 4(ac − b2) √ 12ac √ 4ac,

as |b| ≤ a ≤ c, and again f (x, y) > c if |y| √ 2. In summary, f (x, y) > c if |x | √ 2
or |y| √ 2. It remains to consider f (±1, 0) = a, f (0,±1) = c, f (±1,±1) =
a + b + c > c and f (±1,∩1) = a − b + c √ c. The result follows easily in each
case. �

Now we prove Theorem 6.14.

Proof (of Theorem) Firstly, we should verify that the algorithmic process for reducing
quadratic forms really does terminate after a finite number of steps with a reduced
form. This is rather easy: at each step, none of the operations increase the coefficient
of x2. As this is always a natural number, eventually it must become constant. At
this point, the remaining operations do not increase the natural number |b|, and again
eventually |b| must become constant. Suppose that one rule maps (a, b, c) to another
form with the same values of a and |b|. An examination of the rules shows that this
is only possible if a = b (and then c is also fixed, as the discriminant b2 − 4ac is
fixed) or if a = −b, and the first rule (a, b, c) →◦ (a, b + 2a, c + b + a) is applied.
Then a = b ≤ c, and the form is now reduced.

Thus every form is equivalent to some reduced form. If a form were equivalent
to two different reduced forms, then these reduced forms would be equivalent to
each other. The final step will be to show that two distinct reduced forms cannot be
equivalent to each other. So suppose that f (x, y) = ax2 + bxy + cy2 and g(x, y) =
Ax2 + Bxy + Cy2 are two reduced forms which are properly equivalent. We claim
that f = g, using Lemma 6.15 repeatedly.

The smallest positive number represented by f (x, y) is a, and the smallest positive
number represented by g(x, y) is A. On the other hand, equivalent forms represent
the same numbers (Exercise 6.6). So a = A.

If c > a, then there are precisely two pairs (±1, 0) with f (x, y) = a. As f and
g are equivalent, the same will be true of g, so C > A. As c is the second smallest
positive number represented by f (x, y) and C is the second smallest positive number
represented by g(x, y), then c = C . Now f and g have the same discriminant, so
b = ±B. We want to see that b = B. However, g(x, y) = f (px + qy, r x + sy)

for

(
p q
r s

)
of determinant 1, and both have the same coefficient of x2, we see that

p = ±1 and r = 0. We can assume p = 1 by multiplying all of p, q, r and s by −1
if needed. As ps − qr = 1, we see that s = p = 1. Then g(x, y) = f (x + qy, y).
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If f (x, y) is (a, b, c), then f (x + qy, y) is (a, b + 2qa, c + qb + q2a). However,
both are reduced, so we need −a < b ≤ a and −a < b + 2qa ≤ a, and this is only
possible with q = 0. So B = b also.

If c = a, then there are either 4 or 6 pairs (x, y) with f (x, y) = a, and so the
same is true of g. Thus C = A also. By the definition of reduced form, 0 ≤ b ≤ a
and 0 ≤ B ≤ A. As the discriminants of f and g coincide, we deduce that b = ±B,
but as both are non-negative, we see that b = B as required. �

The proof has an interesting consequence, which should remind you of some of
the results on units at the start of the chapter.

Definition 6.16 Let f (x, y) be a binary quadratic form. We say that a matrix M =(
p q
r s

)
∈ SL2(Z) is an automorph of f if f (x, y) = f (px + qy, r x + sy).

Corollary 6.17 Suppose that f (x, y) is a reduced binary quadratic form. Then if

f (x) = x2 + y2, there are 4 automorphs of f , given by

⎞
±I,±

(
0 1
−1 0

)⎟
; if f (x) =

x2 + xy+ y2, there are 6 automorphs of f , given by

⎞
±I,±

(
1 1
−1 0

)
,±

(
0 −1
1 1

)⎟
;

in all other cases, there are just 2 automorphs, given by {±I }.
Proof Suppose first that a < c. Then Lemma 6.15 shows that the only pairs (x, y)
with f (x, y) = a are given by (±1, 0). Thus a matrix M which is an automorph must

map

(
1
0

)
into

(±1
0

)
. So the first column of M must be

(±1
0

)
. As M has determinant

1, this shows that M = ±
(

1 m
0 1

)
for some m ∈ Z; however, f (x + my, y) can only

be the same as f (x, y) if m = 0 (by looking at the coefficient of xy say). Thus
M = ±I .

Next, consider the cases where a = c. If 0 ≤ b < a = c, then Lemma 6.15 gives
4 pairs (x, y) with f (x, y) = a; these are clearly (±1, 0) and (0,±1). Then we

argue as above, to conclude that M = ±
(

1 m
0 1

)
(and m = 0 for the same reasons

as when a < c) or that M = ±
(

0 −1
1 m

)
. In this latter case, Mv =

( −y
x + my

)
, and

if f (x, y) = ax2 + bxy + cy2, then

f (−y, x + my) = cx2 + (2mc − b)xy + (a − mb + m2c)y2.

Comparing coefficients of xy gives b = 2mc−b, i.e., b = mc. However, 0 ≤ b < c,
and the only possibility is b = 0, giving m = 0, and then there are 4 automorphs, as
claimed.

Finally, there is the case b = a = c; again the proof of Lemma 6.15 gives 6 pairs
(x, y) with f (x, y) = a, given by (±1, 0), (0,±1) and (±1,∩1). These are again
the first columns of possible matrices M giving automorphs, and a similar argument
to the above gives the 6 different matrices of the statement. �
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Before discussing the relation to class numbers, it is worth noting the following
interesting corollary:

Corollary 6.18 SL2(Z) is generated by the two matrices

(
1 1
0 1

)
and

(
0 1
−1 0

)
.

Proof Let M ∈ SL2(Z). Let f (x, y) be the reduced form x2 + 2y2 say (any other
form with 2 automorphs will do). Then consider f ⇒(x, y) = f (M(x, y)t ), another
quadratic form which is properly equivalent to f . Reduce this form by the above
method; we must end up with the reduced form in the same class as f ⇒—but this
must be f itself, since it is a reduced form, properly equivalent to f ⇒, and we have
explained that there is a unique such form. We have also explained that the reduction
steps correspond to application of the matrices

(
1 1
0 1

)
,

(
1 −1
0 1

)
,

(
0 1
−1 0

)
,

but notice that

(
1 −1
0 1

)
=

(
1 1
0 1

)−1

,

so that all the reduction steps can be expressed in terms of

T =
(

1 1
0 1

)
and S =

(
0 1
−1 0

)
,

and their inverses (note that S−1 = −S). The reduction of f ⇒ to f involves writing

f ⇒(M1 M2 . . . Mt (x, y)t ) = f ((x, y)t )

where M1, . . . Mt are T , T −1 or S. But by definition of f ⇒, this means that

f (M M1 M2 . . . Mt (x, y)t ) = f ((x, y)t ),

and this can only happen (see Corollary 6.17) if

M M1 M2 . . . Mt = ±I.

But this means that
M = M−1

t . . . M−1
1 ,

and so we have written M as a product of matrices which are T , T −1 or S−1 =
−S = S3. �
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6.5 Class Numbers and Quadratic Forms

Quadratic forms are interesting objects in their own right, and the reader could omit
this section and still discover an interesting theory of quadratic forms. However, it
will be more complete if we relate quadratic forms to class groups of imaginary
quadratic fields.

The main aim of this section is to prove the following theorem. Recall that d is a
negative squarefree integer:

Theorem 6.19 The class number of K = Q(
≥

d) is equal to the number of reduced
quadratic forms with discriminant D, where D = DK is given by

D =
⎞

4d, if d ∈ 2, 3 (mod 4),

d, if d ∈ 1 (mod 4).

To prove this theorem we will show that there exists a bijection between the ideal
classes of Q(

≥
d) and reduced quadratic forms with discriminant D. To show this

bijection exists we will give a mapping from ideals to quadratic forms and an inverse
mapping from quadratic forms to ideals. This means we must show that every ideal
generates a quadratic form and that every quadratic form comes from an ideal. We
also then need to show that any ideals in the same ideal class generate properly
equivalent quadratic forms, and that two properly equivalent quadratic forms are
come from ideals in the same ideal class.

Before we prove the theorem, let’s give a motivating example.
Recall that Q(

≥−5) does not have unique factorisation; the number 6 can be
factorised as 2×3, and as (1+≥−5)(1−≥−5). These were genuinely distinct fac-
torisations, but we could resolve the non-uniqueness of factorisation by introducing
ideals in the ring of integers Z[≥−5]:

a1 = ∼2, 1 + ≥−5⊂;
a2 = ∼2, 1 − ≥−5⊂ = a1;
a3 = ∼3, 1 + ≥−5⊂;
a4 = ∼3, 1 − ≥−5⊂;

Then

∼2⊂ = a1a2;
∼3⊂ = a3a4;

∼1 + ≥−5⊂ = a1a3;
∼1 − ≥−5⊂ = a2a4,

and the two distinct factorisations are resolved when we use non-principal ideals.
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Notice next that Z[≥−5] ∗ C. We can plot elements of ideals in the complex
plane. For example, if we consider the ideal a1 = ∼2, 1 + ≥−5⊂, its elements are
given by

{2(a + b
≥−5) + (1 + ≥−5)(c + d

≥−5) | a, b, c, d ∈ Z}
= {(2a + c − 5d) + (2b + c + d)

≥−5 | a, b, c, d ∈ Z}
= {A + B

≥−5 | A, B ∈ Z, 2|A − B}
= {2x + (1 + ≥−5)y | x, y ∈ Z}.

Not only are 2 and 1 + ≥−5 generators for this ideal as a Z[≥−5]-module, but also
as a Z-module, meaning that any element of the ideal can be written as 2x + (1 +≥−5)y with x, y ∈ Z. So the general element of this ideal is (2x + y) + y

≥−5 for
x, y ∈ Z. The norm of this element is

(2x + y)2 + 5y2 = 4x2 + 4xy + 6y2 = 2(2x2 + 2xy + 3y2).

After taking out the common factor of 2, we have the quadratic form (2, 2, 3), which
is a positive definite quadratic form of discriminant −20.

Let’s try a3 = ∼3, 1 + ≥−5⊂. Again, we will try to give a set of 2 generators
for a over Z, and consider the norm of a general element of the ideal. We note that
elements of a3 are given by:

{3(a + b
≥−5) + (1 + ≥−5)(c + d

≥−5) | a, b, c, d ∈ Z}
= {(3a + c − 5d) + (3b + c + d)

≥−5 | a, b, c, d ∈ Z}
= {A + B

≥−5 | A, B ∈ Z, 3|A − B}
= {3x + (1 + ≥−5)y | x, y ∈ Z}.

Once again, generators for this ideal as a Z-module are given by 3 and by 1 + ≥−5,
so a general element of the ideal is 3x + (1+≥−5)y with x, y ∈ Z, and this element
has norm

(3x + y)2 + 5y2 = 9x2 + 6xy + 6y2 = 3(3x2 + 2xy + 2y2),

which is 3 times the non-reduced form (3, 2, 2). We can reduce (3, 2, 2) in the usual
way:

(3, 2, 2) →◦ (2,−2, 3) →◦ (2, 2, 3),

using (a, b, c) →◦ (c,−b, a) and then (a, b, c) →◦ (a, b + 2a, c + b + a).
Here is the surprise: if we start with any pairs of generators α and β for a non-

principal ideal a in Z[≥−5], and do the same thing, writing a general element in
the form αx + βy, and taking the norm, the result is always (a multiple of) a form
properly equivalent to (2, 2, 3).
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Now let’s take a principal ideal; the easiest is the whole ring of integers: ∼1⊂. So
the general element is 1.(x + y

≥−5) for x, y ∈ Z, and the norm of x + y
≥−5 is

x2 + 5y2.
Another example might be the principal ideal ∼1+≥−5⊂. The general element of

this ideal is (1 + ≥−5)(x + y
≥−5) = (x − 5y) + (x + y)

≥−5, and this has norm

(x − 5y)2 + 5(x + y)2 = 6x2 + 30y2 = 6(x2 + 5y2).

Again, we see the quadratic form (1, 0, 5) appearing.
You should find that if one starts with a principal ideal a of norm N , when one

writes a general element in the form αx + βy for generators α and β, and then takes
the norm of this general element, one obtains something of the form N . f (x, y),
where f (x, y) is a quadratic form which reduces to (1, 0, 5).

Exercise 6.9 Consider K = Q(
≥−6), and the factorisation 6 = 2 × 3 = (

≥
6)2.

Then ∼2⊂ = p2
2, ∼3⊂ = p2

3 and ∼≥−6⊂ = p2p3 where p2 = ∼2,
≥−6⊂ and p3 =

∼3,
≥−6⊂.
What are the quadratic forms associated to the non-principal ideals p2 and p3?
What are the quadratic forms associated to the principal ideals ∼2⊂, ∼3⊂ and ∼≥−6⊂?

Remark 6.20 Actually, these two examples are rather fortunate in one sense: in both
examples, the order of the generators didn’t matter. In general, if we switch the
generators α and β, this is equivalent to interchanging x and y. We already know
that the quadratic form (c, b, a) is not generally properly equivalent to (a, b, c). In
the case of Q(

≥−5), and quadratic forms of discriminant −20, it is the case that
(5, 0, 1) is properly equivalent to (1, 0, 5), and that (3, 2, 2) is properly equivalent
to (2, 2, 3).

This means that we shall need to make a choice of the order in which we choose
our generators. We will always pick α and β so that, in the Argand diagram, the angle
of clockwise rotation from β to α is greater than from α to β. The reader should try
to convince themselves that this translates into the condition that β/α should lie in
the upper-half complex plane, i.e., should have positive imaginary part.

Definition 6.21 A pair (α, β) of complex numbers is ordered if im(β/α) > 0.

The reader should invent some more examples of ideals in rings of integers in
other imaginary quadratic fields, taking care over the ordering of generating pairs
for ideals.

But the basic result should be the same. Given any ideal in a ring of integers
of an imaginary quadratic field Q(

≥
d), we can find an ordered pair of generators,

(α, β), for the ideal as a Z-module, so that every element of the ideal is written as
αx + βy for x, y ∈ Z. Then the norm of this general element turns out to be the
norm of the ideal multiplied by a quadratic form in x and y, and this quadratic form
has discriminant D. Different choices of ordered generators give properly equivalent
quadratic forms, and this gives us a map from ideals to proper equivalence classes
of quadratic forms. It will also turn out that two ideals which are in the same ideal



134 6 Imaginary Quadratic Fields

class will map to two properly equivalent forms. The reader should be able to try
examples of principal ideals, and see that principal ideals in the same field always
map to the same quadratic form.

This will give a map from the class group to the set of proper equivalence classes
of positive definite binary quadratic forms of discriminant D, and we will see that
this is a bijection.

Throughout we work in the imaginary quadratic field K = Q(
≥

d) with d square-
free and negative. Write D for d or 4d, as in Theorem 6.19 above. For simplicity,
the complete proof will be given for d ∈ 2, 3 (mod 4), where ZK = Z[≥d], in what
follows; the arguments for d ∈ 1 (mod 4) are very similar, but almost all the details
need minor amendment; these will be left as an exercise. The two cases can be treated
together (see [3], for example), but once the easier case is understood, the other case
really is similar, but the formulae are just a little more intricate.

6.5.1 d ≡ 2, 3 (mod 4)

We fix d ∈ 2, 3 (mod 4), and write D = 4d for the discriminant of Q(
≥

d).
We will show that there is a bijection between classes of ideals in Z[≥d] and proper

equivalence classes of (positive definite) quadratic forms of discriminant D = 4d.
This will involve several steps.

1. Given an ideal a in ZK , we start by choosing a particular ordered basis, and
observe that this basis gives a quadratic form of discriminant D.

2. In fact, changing the ordered basis of the ideal produces a properly equivalent
quadratic form. So our map can be viewed as a map from ideals to proper equiv-
alence classes of quadratic forms of discriminant D.

3. Two ideals in the same equivalence class map to the same proper equivalence class
of quadratic forms, so we get a map Φ from ideal classes to proper equivalence
classes of quadratic forms.

4. Finally, we write down a map Ψ from proper equivalence classes of quadratic
forms of discriminant D to ideal classes, and check Ψ = Φ−1.

Stage 1: Ordered bases of ideals

The following lemma is a stronger version of the results of Sect. 3.4. We find a special
choice of ordered basis of an ideal with which we can make computations.

Lemma 6.22 Let a be an ideal in the ring of integers ZK . Then there are positive
integers a, b, c ∈ Z with c|a and c|b such that

a = aZ + (b + c
≥

d)Z.

Proof Let a be the smallest positive integer in a and let b + c
≥

d be any element in
a with a positive integer c as small as possible.

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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We first claim that a = aZ + (b + c
≥

d)Z.
For this, we want to show that the only elements in a are of this form. Suppose

m + n
≥

d ∈ a.
Choose s ∈ Z so that the coefficient of

≥
d of (m + n

≥
d) − s(b + c

≥
d) satisfies

0 ≤ n − sc < c; by our choice of b + c
≥

d , we must have n − sc = 0, so n = sc,
and so (m + n

≥
d) − s(b + c

≥
d) = m − sb, a non-negative integer, still in a. We

can now subtract a multiple of a so that 0 ≤ (m − sb) − ta < a; by minimality of
a, we have (m − sb) − ta = 0. Combining these gives

(m + n
≥

d) − s(b + c
≥

d) − ta = 0,

so that m + n
≥

d ∈ aZ + (b + c
≥

d)Z.
We next want to see that c|a. If not, we have a ∈ a, and so a

≥
d ∈ a by the

multiplicative property of ideals. We also have b + c
≥

d ∈ a, and if c � a, then we
can subtract some multiple of b + c

≥
d from a

≥
d to get

a
≥

d − t (b + c
≥

d) = −b + (a − tc)
≥

d ∈ a,

and we can choose t so that 0 < a − tc < c, contradicting the minimality of c.
So c|a.

Finally, we claim that c|b. We argue in a similar way to the last claim. So we
suppose that c � b. As b + c

≥
d ∈ a, we also have (b + c

≥
d)

≥
d = b

≥
d + dc ∈ a.

Then, as c � b, we can subtract some multiple of b + c
≥

d to get

b
≥

d + dc − t (b + c
≥

d) = (dc − tb) + ≥
d(b − tc) ∈ a

and if c � b, we can choose t so that 0 < b − tc < c, again contradicting the
minimality of c. So c|b in this case.

This completes the proof of the lemma. �

Let’s remark that when we write
≥

d , we will choose the square root of d lying in
the upper-half complex plane; then the pair (a, b + c

≥
d) of the lemma is ordered.

Lemma 6.23 Suppose that the ideal a of ZK is written

a = aZ + (b + c
≥

d)Z,

as in Lemma 6.22. Then NK/Q(a) = ac.

Proof NK/Q(a) is the index of a in Z[≥d]. But it is clear that coset representatives
for the quotient Z[≥d]/a are given by {x + y

≥
d | 0 ≤ x < a, 0 ≤ y < c} and that

this set has cardinality ac. �

We will also need a partial converse:
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Lemma 6.24 Let a, b and c be in Z. Then the Z-module a = aZ + (b + c
≥

d)Z is
an ideal in ZK if and only if c|a, c|b and ac|c2d − b2.

Proof The difference between a Z-module and a ZK -ideal is the following. To be
a Z-module, we need to be able to multiply members of the set by elements of Z

and remain in the set. To be an ideal of ZK , however, we need to be able to multiply
members of the set by elements of ZK and remain in the set.

The extra condition we need follows from the requirement that if α ∈ a, then
α
≥

d ∈ a.
Let α = ax + (b + c

≥
d)y = (ax + by) + c

≥
dy. Then

α
≥

d = cdy + (ax + by)
≥

d.

For all choices of x, y ∈ Z, we need that this is in a. That is, for all x, y ∈ Z, we
need α

≥
d = as + (b + c

≥
d)t for some s, t ∈ Z.

Comparing coefficients of 1 and
≥

d , we need that the equations

as + bt = cdy

ct = ax + by

have solutions with s, t ∈ Z, for all x, y ∈ Z. We can read off the value of t from the
second equation:

t = ax + by

c
,

and t ∈ Z for all x, y ∈ Z if c|a and c|b. Conversely, if t ∈ Z, for all x, y ∈ Z, we
see that c|a (choose x = 1, y = 0) and c|b (choose x = 0, y = 1). So the condition
that t ∈ Z is equivalent to c|a and c|b.

Having solved for t , we can read off

s = cdy − bt

a
= cdy − b(

ax+by
c )

a
= −abx + (c2d − b2)

ac
,

and this is an integer for all x, y ∈ Z if and only if ac|ab (which follows if c|b) and
ac|c2d − b2.

The result follows. �

Now we want to associate a quadratic form to each ideal.

Proposition 6.25 Let a = Za + Z(b + c
≥

d) be an ideal of ZK . Then

NK/Q(ax + (b + c
≥

d)y)

NK/Q(a)

is a quadratic form with integer coefficients of discriminant D.
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Proof Notice that

NK/Q(ax + by + c
≥

dy) = (ax + by)2 − dc2y2

= a2x2 + 2ab.xy + (b2 − c2d)y2

giving the quadratic form (a2, 2ab, b2 − c2d) of discriminant 4a2c2d. Each of a2,
2ab and b2 − c2d is divisible by ac by Lemma 6.24, and so the quadratic form can
be written

ac

(
a

c
x2 + 2

b

c
xy +

(
b2 − c2d

ac

)
y2

)
= NK/Q(a)Φ(a).

Now

a

c
x2 + 2

b

c
xy +

(
b2 − c2d

ac

)
y2

has integer coefficients, and its discriminant is indeed D = 4d. �

We also need to see that this is a positive definite form. We verify this in a slightly
more general situation. As above, let a be an ideal of Z[≥d], and let (α, β) be an
ordered basis for a. If (x, y) ≡= (0, 0), we see NK/Q(αx + βy) > 0 is the square
of the modulus of a non-zero complex number; thus NK/Q(αx + βy) is positive
definite.

Further, in this situation, the same method as above shows that

NK/Q(αx + βy) = (αx + βy)(αx + βy)

= (αα)x2 + (αβ + αβ)xy + (ββ)y2

= NK/Q(α)x2 + TK/Q(αβ)xy + NK/Q(β)y2,

and this is clearly a quadratic form; as α, β ∈ Z[≥d], we see that the coefficients
are all in Z by Corollary 3.17.

Stage 2: The effect of changing ordered generators

The aim here is to see how the quadratic form changes when we change the ordered
generating set. So suppose that (α, β) is one ordered generating set for a; as above,
we could choose this to be of the form (a, b + c

≥
d).

Suppose that γ, δ ∈ Z[≥d] is another basis for a as a free abelian group, and
(γ, δ) is ordered. Then

(
α

β

)
= M

(
γ

δ

)
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for some matrix M =
(

p r
q s

)
with entries in Z of determinant ±1. We need a little

lemma:

Lemma 6.26 Suppose that z is in the upper-half complex plane, and M =
(

p r
q s

)
∈

GL2(Z). Then q+sz
p+r z is in the upper-half complex plane if and only if M ∈ SL2(Z).

Proof An easy calculation gives the imaginary part of q+sz
p+r z :

q + sz

p + r z
= (q + sz)(p + r z)

(p + r z)(p + r z)
= (pq + rszz) + (psz + qrz)

|p + r z|2 ,

and so the imaginary part is

im(z).(ps − qr)

|p + r z|2 ,

which is positive if and only if ps − qr = det M > 0. �

Notice that

β

α
= qγ + sδ

pγ + rδ
= q + s(δ/γ )

p + r(δ/γ )
.

As (α, β) and (γ, δ) are both ordered, both β/α and δ/γ lie in the upper-half complex
plane, and we conclude from the lemma that det M = 1, so M ∈ SL2(Z).

We get a quadratic form from the ordered basis (α, β), given by

fα,β(x, y) = NK/Q(αx + βy)

NK/Q(a)
;

we have already seen that this is integral and positive definite in the particular case
(α, β) = (a, b + c

≥
d) above.

If (γ, δ) is another ordered basis as above, we get a positive definite quadratic
form

fγ,δ(x, y) = NK/Q(γ x + δy)

NK/Q(a)

in the same way. We have



6.5 Class Numbers and Quadratic Forms 139

NK/Q(a). fα,β(x, y) = (αx + βy)(αx + βy)

= ⎨
x y

⎩ (
α

β

) ⎨
α β

⎩ (
x
y

)

= ⎨
x y

⎩ (
p r
q s

)(
γ

δ

) ⎨
γ δ

⎩ (
p r
q s

)T (
x
y

)

= ⎨
px + qy r x + sy

⎩ (
γ

δ

) ⎨
γ δ

⎩ (
px + qy
r x + sy

)

= NK/Q(a). fγ,δ(px + qy, r x + sy),

and since det M = 1, the two quadratic forms are properly equivalent, as required.
Since fα,β(x, y) is integral and positive definite of discriminant D in the particular
case (α, β) = (a, b + c

≥
d) as above, we conclude that fγ,δ(x, y) is integral and

positive definite of discriminant D for any ordered basis for a.
If a is an ideal of ZK , we know that we can write it in the form Za + Z(b + c

≥
d)

and that its norm is ac. Write

Φ(a) =
⎠

NK/Q(ax + (b + c
≥

d)y)

NK/Q(a)

]
,

sending a to a proper equivalence class of quadratic forms. (Note that the square
brackets indicate that the image is the proper equivalence class of forms). The dis-
cussion above shows that we could use any ordered basis for a, and still get the same
proper equivalence class, so Φ really does only depend on a, not on the basis.

So Φ maps an ideal a to the proper equivalence class of quadratic forms
[ fα,β(x, y)] of discriminant D, where a has ordered basis (α, β).

Stage 3: From ideal classes to proper equivalence classes of quadratic forms…

Next we need to see that ideals in the same class have the same image under Φ.

Proposition 6.27 If a and b belong to the same ideal class, then Φ(a) and Φ(b) are
properly equivalent.

Proof Suppose that a and b are two ideals in the same ideal class. Then there exists
θ ∈ K such that b = θa; if we write θ = γ /δ for γ, δ ∈ ZK = Z[≥d], then this is
equivalent to δb = γ a.

Suppose that a can be written Zα +Zβ. Then γ a can be written Z(γ α)+Z(γβ);
by the multiplicativity of the norm,

NK/Q(αγ x + βγ y) = NK/Q(γ )NK/Q(αx + βy).

Further, the multiplicativity of the norm of ideals (Theorem 5.37) gives

NK/Q(∼γ ⊂a) = NK/Q(∼γ ⊂)NK/Q(a) = |NK/Q(γ )|NK/Q(a).
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Since K is imaginary quadratic, NK/Q(γ ) > 0. Consequently we have an equality

fγα,γβ(x, y) = fα,β(x, y),

and so Φ(γ a) = Φ(a).
Similarly Φ(δb) = Φ(b). But γ and δ were chosen so that δb = γ a; it follows

that Φ(a) = Φ(b). �

So Φ can be viewed as a map from the set of equivalence classes of ideals of
ZK to the set of proper equivalence classes of positive definite quadratic forms of
discriminant DK .

Stage 4: …and back again—the main result

Conversely, we can associate an ideal to a quadratic form of discriminant D = 4d
by the map

Ψ ((a, b, c)) = Za + Z

(
b

2
+ ≥

d

)
.

(Notice that since D = b2 − 4ac is even, so is b). We can check that this is an ideal
using Lemma 6.24; as c = 1, only the final condition requires checking, but this is
just a| b2

4 − d. As D = b2 − 4ac = 4d, this is immediate.

Proposition 6.28 If (a, b, c) and (a⇒, b⇒, c⇒) are properly equivalent, then the ideals
Ψ ((a, b, c)) and Ψ ((a⇒, b⇒, c⇒)) lie in the same ideal class.

Proof Proper equivalences are built up from the basic equivalences

(a, b, c) ⊗ (a, b ± 2a, c ± b + a), (a, b, c) ⊗ (c,−b, a).

We have

• Ψ ((a, b ± 2a, c ± b + a)) = Za + Z

(
b±2a

2 + ≥
d
⎧

= Za + Z

(
b
2 + ≥

d
⎧

=
Ψ ((a, b, c)).

• Ψ ((c,−b, a)) = Zc + Z

(
− b

2 + ≥
d
⎧

. We want to see that this is an ideal which

is in the same ideal class as Ψ ((a, b, c)). But

(
b + 2

≥
d

2c

)
Ψ ((c,−b, a)) =

(
b + 2

≥
d

2c

) [
Zc + Z

(
−b

2
+ ≥

d

)]

=
⎠

Z

(
b + 2

≥
d

2

)
+ Z

(
d − b2

4

c

)]

= Z

(
b

2
+ ≥

d

)
+ Z(−a)

= Ψ ((a, b, c))
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where the second equality is just scaling the generators by b+2
≥

d
2c ∈ Z[≥d], and

where we use b2 − 4ac = 4d and Za = Z(−a). Thus the ideal Ψ ((c,−b, a)) is
just a multiple of the ideal Ψ ((a, b, c)) by some constant, and they therefore lie
in the same ideal class. �

Thus Ψ gives a map from proper equivalence classes of quadratic forms of dis-
criminant DK = 4d to ideal classes in ZK = Z[≥d].
Theorem 6.29 The maps Φ and Ψ give inverse bijections between the set of proper
equivalence classes of quadratic forms of discriminant 4d and the set of ideal classes
in Z[≥d].
Proof We need to prove that the maps are two-sided inverses, i.e., that if (a, b, c) is a
quadratic form of discriminant 4d, then Φ(Ψ ((a, b, c))) is a quadratic form properly
equivalent to (a, b, c), and that if a is an ideal in Z[≥d], then Ψ (Φ(a)) is an ideal
which is in the same ideal class as a.

So suppose that (a, b, c) is a quadratic form of discriminant 4d. Then Ψ ((a, b,

c)) = Za + Z

(
b
2 + ≥

d
⎧

is an ideal of norm a and

NK/Q

(
ax +

(
b
2 + ≥

d
⎧
y
⎧

a
= 1

a

(
a2x2 + abxy +

(
b2

4
− d

)
y2

)

= ax2 + bxy +
(

b2 − 4d

4a

)
y2

= ax2 + bxy + cy2,

the last equality following as 4d = b2 − 4ac. We see that Φ(Ψ ((a, b, c))) is not
only properly equivalent to (a, b, c), but is actually equal to it.

Finally, let a denote an ideal in Z[≥d], and write it Za + Z(b + c
≥

d) with c|a
and c|b, so that NK/Q(a) = ac. Then

Φ(a) = NK/Q(ax + (b + c
≥

d)y)

NK/Q(a)
= a

c
x2 + 2

b

c
xy + b2 − c2d

ac
y2,

and

Ψ (Φ(a)) = Z
a

c
+ Z

(
b

c
+ ≥

d

)
= 1

c

(
Za + Z(b + c

≥
d)

⎧
,

and therefore in the same ideal class as a, as required. �
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6.5.2 d ≡ 1 (mod 4)

The arguments for the case where d ∈ 1 (mod 4) are identical to the case where
d ∈ 2, 3 (mod 4), but one needs to make minor changes to almost all the details,
arising from the differences in the rings of integers. We will leave the verification of
these details as an exercise for the reader.

Let us fix d ∈ 1 (mod 4), and write D = d for the discriminant of K = Q(
≥

d).
At Stage 1, there are several adjustments to make to the structure theory of ideals.
The statement of Lemma 6.22 will be the same, except to replace

≥
d by ρd =

1+≥
d

2 :

Lemma 6.30 Let a be an ideal in the ring of integers ZK . Then there are integers
a, b, c ∈ Z with c|a and c|b such that

a = aZ + (b + cρd)Z.

The proof is very similar to that of Lemma 6.22.
The norm of the ideal a = aZ + (b + cρd) is ac, just as in Lemma 6.23.
The condition (see Lemma 6.24) that such a set is an ideal needs some amendment

(although the proof is essentially the same):

Lemma 6.31 Suppose that d ∈ 1(mod 4).
Let a, b and c be in Z. Then the Z-module a = aZ + (b + cρd)Z is an ideal in

ZK if and only if c|a, c|b and ac|c2( d−1
4 ) − b2 − bc.

Given an ideal a = Za + Z(b + cρd), one easily sees that

Φ(a) = NK/Q(ax + (b + cρd)y)

NK/Q(a)

is a quadratic form with integer coefficients of discriminant D = d. Indeed,

NK/Q(ax + by + cρdy)

= (ax + by + c
2y)

2 − c2

4 dy2

= a2x2 + (2ab + ac) xy +
(

b2 + bc + c2
(

1 − d

4

))
y2

giving the quadratic form (a2, 2ab + ac, b2 + bc + (1 − d)c2/4) of discriminant
a2c2d. Again, extracting the common factor of ac from each coefficient gives

Φ(a) = a

c
x2 +

(
2b

c
+ 1

)
xy +

(
b2 + bc + c2

⎨ 1−d
4

⎩

ac

)
y2,

which has integer coefficients by the conditions just noted, and is easily computed
to have discriminant D = d.
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The rest of this stage is unchanged, as this just depends on the definition of the
quadratic form as associated to an ordered pair of generators for an ideal. Stage 2
is unchanged, as this is essentially just a result in linear algebra; Stage 3 is also
unchanged. In Stage 4, the inverse map Ψ is defined by

Ψ ((a, b, c)) = Za + Z

(
b − 1

2
+ ρd

)
= Za + Z

(
b + ≥

d

2

)

(recall that b is odd, as d = b2 − 4ac ∈ 1 (mod 4)). The proof of Proposition 6.28
is unchanged, except that with the amended definition of Ψ , we see that

(
b + ≥

d

2c

)
Ψ ((c,−b, a)) = Ψ ((a, b, c)).

6.6 Counting Quadratic Forms

We know:

• There is a bijection from the class group in an imaginary quadratic number field
to the collection of positive definite binary quadratic forms with the appropriate
discriminant;

• Every positive definite binary quadratic form is equivalent to a unique reduced
form with the same discriminant.

This means that the size of the class group of K = Q(
≥

d) is the same as the number
of reduced quadratic forms of discriminant DK , and to calculate the class number of
Q(

≥
d), it suffices to count the number of reduced quadratic forms of discriminant

D = DK .
This, however, turns out to be rather straightforward.
Let’s first note that if (a, b, c) is reduced, then 0 ≤ |b| ≤ a ≤ c, so certainly

0 ≤ b2 ≤ ac. Then −4ac ≤ b2 − 4ac ≤ ac − 4ac = −3ac, and so

−4ac ≤ D ≤ −3ac.

This gives a finite range for ac:

−D

4
≤ ac ≤ −D

3
.

There are finitely many possibilities for a, since a2 ≤ ac (as a ≤ c), and, in
particular,

a2 ≤ ac ≤ −D

3
.



144 6 Imaginary Quadratic Fields

So a is bounded; as |b| ≤ a, so is b, and for each choice of a and b, there is at most
one value of c with b2 − 4ac = D.

We have therefore proven the following result:

Theorem 6.32 There are only finitely many reduced quadratic forms of discrimi-
nant D.

Since we have a bijection between this set and the class group, we conclude:

Theorem 6.33 The class group of an imaginary quadratic field is finite.

We will give another proof of this theorem for more general number fields later.
However, the relation to binary quadratic forms is very useful; it gives us a simple
way to compute the class number.

Let’s give an example.

Example 6.34 Suppose we want to compute the class number of Q(
≥−13). We note

that as −13 ∈ 3 (mod 4), we have D = −52, and the class group of Q(
≥−13) is in

bijection with the collection of reduced quadratic forms of discriminant −52.
We are looking for triples (a, b, c) with b2 − 4ac = −52, and satisfying the

reduction conditions. Above, we noted that we must have 52
4 ≤ ac ≤ 52

3 , so that
13 ≤ ac ≤ 17. We try each possibility.

If ac = 13, then b = 0 as we need b2 − 4ac = −52. We have ac = 13, and
0 ≤ a ≤ c, so the only possibility is a = 1, c = 13, and we find the triple (1, 0, 13).

If ac = 14, then b2 = 4 to get b2 − 4ac = −52. So b = ±2 and ac = 14, with
0 < a ≤ c, so the possibilities for (a, c) are (a, c) = (1, 14) and (2, 7). This gives
4 possible triples:

• (a, b, c) = (1, 2, 14); not reduced, as |b| > a (applying (a, b, c) →◦ (a, b −
2a, c − b + a) gives (1, 2, 14) →◦ (1, 0, 13)).

• (a, b, c) = (1,−2, 14); not reduced, as |b| > a (applying (a, b, c) →◦ (a, b +
2a, c + b + a) gives (1,−2, 14) →◦ (1, 0, 13)).

• (a, b, c) = (2, 2, 7), reduced.
• (a, b, c) = (2,−2, 7); not reduced, as b = −a (applying (a, b, c) →◦ (a, b +

2a, c + b + a) gives (2,−2, 7) →◦ (2, 2, 7)).

If ac = 15, then b2 must be 8, but this is not a square.
If ac = 16, then b2 must be 12, but this is not a square.
If ac = 17, then b2 must be 16. So b = ±4—but there are no solutions to ac = 17

which satisfy 4 = |b| ≤ a ≤ c.
We conclude that there are two reduced forms of discriminant −52, namely

(1, 0, 13) and (2, 2, 7). The class number of Q(
≥−13) is therefore 2.

Exercise 6.10 Show that the class number of Q(
≥−14) is 4. Try some more exam-

ples for yourself.

Example 6.35 Now let us compute the class number of Q(
≥−19).

This time, −19 ∈ 1 (mod 4), so D = −19. We need to count the number of
reduced forms with discriminant −19.
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We can do this as above; we see that 19
4 ≤ ac ≤ 19

3 , so ac = 5 or ac = 6. If
ac = 5, we need b2 = 1 so that b2 − 4ac = −19; we get (1, 1, 5) and (1,−1, 5)

as the only possibilities. The first is reduced, but the second is not—it is properly
equivalent to (1, 1, 5) by applying (a, b, c) →◦ (a, b + 2a, c + b + a). If ac = 6, we
need b2 = 5, but this is not a square, so there are no reduced forms with ac = 6.

We conclude that there is 1 reduced form of discriminant −19, namely (1, 1, 5).
Because of the bijection with the class group, we see that the class number of
Q(

≥−19) is 1.

This last example is a very interesting one. We have found a quadratic field with
class number 1—so it has unique factorisation! It was not on our list of fields which
were Euclidean, so we have found an example of a field with unique factorisation
which is not Euclidean.

Exercise 6.11 For each of Q(
≥−43), Q(

≥−67) and Q(
≥−163), use the above

method to show that the class number is 1.
It is a famous observation of Euler that the polynomial X2 + X + 41 is prime for

all X = 0, . . . , 39. What is the discriminant of this quadratic? Explain why Euler’s
observation implies that Q(

≥−163) has class number 1.
Verify similar results for X2 + X + 11 and X2 + X + 17.

We have now seen the following examples where the class group of an imaginary
quadratic field is trivial, so that the field has unique factorisation: Q(

≥−1), Q(
≥−2),

Q(
≥−3), Q(

≥−7), Q(
≥−11), Q(

≥−19), Q(
≥−43), Q(

≥−67) and Q(
≥−163).

All these examples were known to Gauss. Gauss also predicted that these were the
only such fields, and this was for a long time a central problem in algebraic number
theory, known as the “Class Number One Problem”. It was not until the 1960s that a
proof was given, by Alan Baker and Harold Stark independently; subsequently, it was
observed that an earlier, rather obscurely written, attempt by Kurt Heegner (dating
from the early 1950s) was also valid. Baker won the Fields Medal (the mathematical
equivalent of the Nobel Prize) for the techniques he introduced in his solution of the
problem.

The proof of the full theorem is therefore rather beyond an undergraduate textbook.
Nevertheless, we can prove easily the following partial result:

Theorem 6.36 Suppose that d ∈ 2, 3 (mod 4) is a negative squarefree integer. Then
Q(

≥
d) has unique factorisation if and only if d = −1 or d = −2.

In view of the bijection between class numbers and quadratic forms, we can restate
our result in terms of quadratic forms:

Theorem 6.37 Suppose that d ∈ 2, 3 (mod 4) is negative and squarefree, and
write D = 4d. The only cases where there is only one reduced quadratic form of
discriminant D is where d = −1 or d = −2.

Actually, we shall prove a result which applies to more general values of d (note
that −4 is divisible by 4, and that −3 and −7 are both congruent to 1 (mod 4)):
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Theorem 6.38 Suppose that d is negative, and write D = 4d. The only cases
where there is only one reduced quadratic form of discriminant D is where d =
−1,−2,−3,−4,−7.

Proof In each case, (1, 0,−d) is one reduced quadratic form of discriminant D. For
all values of d except those listed in the theorem, we will simply write down another
one, thus proving the theorem.

If −d is not a prime power, then we can write −d = ac with (a, c) = 1, and
1 < a < c (for example, if −d = 45, we can choose a = 5, c = 9). Then (a, 0, c)
is a reduced form of discriminant D and is different from (1, 0,−d).

If −d = 2r , then if r √ 4, we can use (4, 4, 2r−2 + 1), and this is easily checked
to be reduced, as 4 < 2r−2 + 1. For r = 3, when d = −8, we also have (3, 2, 3).
This just leaves −d = 1, 2, 4, which are all in the statement of the theorem.

If −d = pr , where p is an odd prime and r √ 1, then consider pr +1, which will
be even. If pr + 1 = ac with 2 ≤ a < c and (a, c) = 1, we can use (a, 2, c). This
can be done whenever pr + 1 is not a power of 2. (For example, if −d = 27, then
use 28 = 4 × 7, and use (4, 2, 7).) If pr + 1 = 2s with s √ 6, use (8, 6, 2s−3 + 1),
again reduced. If pr + 1 = 32 (so that p = 31, r = 1), use (5, 4, 7) or (5,−4, 7).
The equation pr + 1 = 16 has no solutions, since 15 is not a prime power. The
possibilities pr + 1 = 8 (so p = 7, r = 1 giving d = −7), pr + 1 = 4 (giving
d = −3), pr + 1 = 2 (so d = −1) are given in the statement of the theorem. �

Let us end this chapter by remarking that there is even more to the bijection
between the class group and the collection of reduced quadratic forms of the appro-
priate discriminant. After all, the class group has a group structure, as it is the quotient
of the abelian group of all fractional ideals (see Theorem 5.30) by the normal sub-
group of all principal fractional ideals. The bijection from the class group to the set of
all reduced quadratic forms of the appropriate discriminant certainly gives us some
group structure on the collection of all reduced quadratic forms of the appropriate
discriminant, but we might wonder whether there is a more natural description of
this group structure. This is really beyond the scope of this book, but we remark that
the group structure can indeed be seen with quadratic forms. Indeed, the identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2

from Lemma 1.18 is an example where we multiply two copies of the unique quadratic
form x2 + y2 of discriminant −4. We expect the answer to be the unique quadratic
form of discriminant −4, and indeed this appears on the right-hand side of the identity.

For a slightly more interesting example of this identity, consider the product of
forms of discriminant −20. Here there are two classes, the form x2 + 5y2 corre-
sponding to the principal ideal class, and the form 2x2 + 2xy + 3y2 corresponding
to the non-principal ideals. The class group has order 2, and multiplying the identity
by the other element will give the other element. This is indeed demonstrated with
the quadratic forms:

(a2 + 5b2)(c2 + 5d2) = m2 + 5n2,
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where m = ac − 5bd, n = ad + bc;

(2a2 + 2ab + 3b2)(c2 + 5d2) = 2m2 + 2mn + 3n2,

where m = ac − ad − 3bd, n = 2ad + bc + bd, and

(2a2 + 2ab + 3b2)(2c2 + 2cd + 3d2) = m2 + 5n2,

where m = 2ac + ad + bc − 2bd, n = ad + bc + bd.

Exercise 6.12 In Exercise 6.10, you should have found 4 reduced quadratic forms
f1, f2, f3 and f4 of discriminant −56. Thus the class group of Q(

≥−14) has order 4.
It must be either cyclic or isomorphic to the Klein 4-group, where each non-identity
element has order 2. For each i = 1, . . . , 4, try to write each fi (a, b) fi (c, d) as
fk(m, n) for suitable m and n, and hence decide whether the class group is cyclic
or not.

If you wish to make the exercise more lengthy still, you could verify your answer
by writing each product fi (a, b) f j (c, d) as fk(m, n) for suitable m and n, so con-
firming the complete group multiplication table.



Chapter 7
Lattices and Geometrical Methods

In this chapter, we will prove two fundamental results in algebraic number theory: the
finiteness of the class group, and Dirichlet’s Unit Theorem, which gives the structure
of the group of units in the rings of integers of number fields.

Surprisingly, both use geometrical techniques, based around the geometry of lat-
tices. Before we consider the special case of lattices arising from number fields, we
will begin the chapter with an overview of the main results of the theory of lattices.

7.1 Lattices

Definition 7.1 Let V be an n-dimensional real vector space. A lattice in V is a
subgroup of the form

π = Zv1 + · · · + Zvm,

where {v1, . . . , vm} is a linearly independent set of vectors in V . The lattice is called
complete if m = n. To π (or rather, to its generating set {v1, . . . , vm}) is associated
its fundamental mesh or fundamental region, απ , defined as

απ = {β1v1 + · · · + βmvm | 0 ≥ βi < 1}.

Note that completeness is equivalent to

V =
⋃

κ∈π

(απ + κ );

the right-hand side is easily seen to be equal to the real vector space spanned by
v1, . . . , vm . In order words, π is complete if every element of V is a translate of an
element in the fundamental region by a lattice point.

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 149
Mathematics Series, DOI: 10.1007/978-3-319-07545-7_7,
© Springer International Publishing Switzerland 2014
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Definition 7.2 A subset π of Rn is said to be discrete if, for any radius r ≥ 0, π

contains only finitely many points at a radius at most r from 0.

The next proposition gives a characterisation of discrete subgroups of Rn . The
proof is somewhat analytical, and readers may prefer to take it on trust.

Proposition 7.3 A subgroup π ≡ V is a lattice if and only if it is discrete.

Proof If π is a lattice, choose a basis v1, . . . , vm , and consider the vector space V0
spanned by these vectors. By linear independence of the set, every vector v ∈ V0
can be expressed uniquely as a linear combination of the basis, and we can define a
continuous map ρ : Rm −≤ Rm by ρ(a1v1 + · · · + amvm) = (a1, . . . , am). Now
pick some radius r ≥ 0, and consider the closed ball B of radius r around 0. Since
B is closed and bounded, it is compact, and thus ρ(B) is also compact, and thus is
a subset of the closed ball of some radius M , say. If v = a1v1 + · · · + amvm ∈ B,
then we must have √ρ(v)√ ≥ M , and so √(a1, . . . , am)√ ≥ M , which implies that
|ai | ≥ M for all i . There are thus only finitely many points in π with this property,
and so π is discrete.

Conversely, suppose π is discrete. Again let V0 be the R-span of π , of some
dimension m. Let {u1, . . . , um} be a basis of V0 formed of elements in π , and let
π0 = Zu1 + · · · + Zum → π . Suppose

π =
⋃

i∈I

(π0 + κi ),

a (disjoint) union of cosets of π0 in π . Since π0 is complete in V0, and κi ∈ V0, it is
the translate of some element μi ∈ απ0 by an element of π0. Then π0+κi = π0+μi ,
and so

π =
⋃

i∈I

(π0 + μi ).

However, μi ∈ π as well as μi ∈ απ0 . As π is discrete, π ◦απ0 is finite, since απ0

certainly lies inside some closed ball. It follows that I is finite. Thus, if q denotes
the index of π0 in π , we have qπ ≡ π0. Then

π ≡ Z

(
1

q
u1

)
+ · · · + Z

(
1

q
um

)
.

But now we can apply Proposition 4.33; π is a subset of a free abelian group of
rank m, and so π admits a Z-basis, i.e.,

π = Zv1 + · · · + Zvr

for some r ≥ m. The set {v1, . . . , vr } is linearly independent as the vectors span V0
(so that in fact r = m). �
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To illustrate what can go wrong, think about Z.1 + Z.
⇒

2 inside R; this is a
perfectly good subgroup of R (under addition), but is not a lattice, as the basis
elements are linearly dependent—each is a multiple of the other. Nor is it discrete,
as we can find a, b ∈ Z such that a + b

⇒
2 is arbitrarily close to 0.

Next we give a criterion for a lattice to be complete.

Proposition 7.4 A lattice π ≡ V is complete if and only if there exists a bounded
BV ≡ V such that

V =
⋃

κ∈π

(BV + κ ).

Proof If π is complete, taking BV = απ suffices.
Now we prove the converse. Since BV is bounded, there exists a constant d such

that every point of BV lies at a distance of at most d from 0. Then the collection of
translates {BV + κ | κ ∈ π } contains no point which lies at a distance greater than
d from some element of π . However, if V0 denotes the span of π , and V0 is not all
of V , then it is of strictly smaller dimension, and there exist points in V which lie
arbitrarily far from V0. (Think about the situation where V0 is a 1-dimensional subset
of the 2-dimensional vector space R2.) �

Having defined lattices in Rn , we need next to compute the volumes of their
fundamental domains. Since Rn has a natural inner product, we can define lengths,
areas, volumes and so on for subsets of the vector space Rn (not every subset has
a volume, but we shall only need to work with nice sets where we do have a well-
defined volume). In particular, we can compute the volume for a lattice in Rn : if π

is a lattice, write vol(π ) for vol(απ ).

Proposition 7.5 Suppose that π = Zv1 + · · · + Zvn is a lattice in Rn. If vi =
(ai1 . . . ain), then

vol(π ) = | det(ai j )|.

Proof Write {e1, . . . , en} for the standard basis of Rn , so that vi = ∑n
i=1 ai j e j .

Writing x1, . . . , xn for the co-ordinates of a general point of Rn with respect to the
standard basis, we have

vol(π ) =
∫

απ

1 dx1 dx2 . . . dxn .

We want to change basis from the standard basis to {v1, . . . , vn}, as απ is given very
simply in co-ordinates with respect to this basis: απ is the set of points β1v1 +· · ·+
βnvn whose co-ordinates satisfy 0 ≥ βi < 1.

As vi = ∑n
i=1 ai j e j , the change of basis matrix from {v1, . . . , vn} to {e1, . . . , en}

is given by A = (ai j ); if x ∈ Rn is equal to
∑n

i=1 xi ei and
∑n

i=1 yivi , then the
coefficients are transformed by the matrix A. The co-ordinates of απ in the basis
{v1, . . . , vn} are 0 ≥ yi < 1 by definition. The formula for changing the variable in
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multiple integrals involves the Jacobian of the transformation, which is just | det A|.
More precisely

vol(π ) =
∫

απ

1 dx1 dx2 . . . dxn

=
∫

απ

| det A| dy1 dy2 . . . dyn

= | det A|
∫ 1

0
· · ·

∫ 1

0
1 dy1 dy2 . . . dyn

= | det A|,

as claimed. �

The main result we will need is Minkowski’s theorem on lattice points. For this,
we take a vector space V , which we identify with Rn so that we can define a volume
for subsets of V .

Definition 7.6 A region X ≡ V is centrally symmetric if x ∈ X implies −x ∈ X .

Definition 7.7 A region X ≡ V is convex if given x , y ∈ X , and t ∈ [0, 1], then
t x + (1 − t)y ∈ X . (That is, if x and y lie in X , so does the line joining them.)

Minkowski’s theorem guarantees the existence of non-zero lattice points inside
certain subsets of V .

Theorem 7.8 (Minkowski) Let π be a complete lattice in V . Let X be a centrally
symmetric convex subset of V . Suppose

vol(X) > 2nvol(π ).

Then X contains at least one non-zero lattice point of V .

Proof It suffices to prove that there exist distinct κ1, κ2 ∈ π such that

(
1
2 X + κ1

⎧
◦

(
1
2 X + κ2

⎧
∩= ∼.

For, if so, κ1 − κ2 ∈ X ◦ π ; if

κ1 + 1
2 x1 = κ2 + 1

2 x2,

then κ1 − κ2 = 1
2 x2 + 1

2 (−x1) ∈ X , using the convexity and central symmetricity
of X .

If { 1
2 X + κ }κ∈π are pairwise disjoint, the same holds for the intersections {απ ◦

( 1
2 X + κ )}κ∈π with απ . In particular, since these sets are all contained in απ , we

have vol(π ) ≥ ∑
κ∈π vol(απ ◦ ( 1

2 X + κ )).
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But απ ◦ ( 1
2 X + κ ) and (απ − κ ) ◦ 1

2 X have the same volume (the second is a
translation of the first by −κ ).

The set {απ − κ }κ∈π covers V , so {(απ − κ ) ◦ 1
2 X}κ∈π covers 1

2 X . Then

vol(π ) ≥
⎨

κ∈π

vol
(
(απ − κ ) ◦ 1

2 X
⎧

= vol
(

1
2 X

⎧
= 1

2n
vol(X),

contradicting the hypothesis on vol(X).

7.2 Geometry of Number Fields

We want to apply geometrical techniques, and Minkowski’s Theorem particularly,
to number fields. For this, we need to work with lattices in vector spaces; we will
begin by defining some of the appropriate vector spaces and lattices.

Let K be a number field. Inside ZK, we have the units Z×
K . Recall that γ ∈ ZK

is a unit if and only if NK/Q(γ) = ±1 and that non-zero elements x1, x2 ∈ ZK are
associates if x1

x2
∈ Z×

K .
Suppose [K : Q] = n. From Proposition 3.7, we recall that there are n embeddings

of K into C.

Definition 7.9 If σ : K φ≤ C has σ(K ) ≡ R, then σ is said to be real. Otherwise
σ is said to be complex, and, in this case, its conjugate, σ , defined by

σ(k) = σ(k),

is also an embedding.

Thus, if there are r1 real embeddings and r2 conjugate pairs of complex embed-
dings, one has r1 + 2r2 = n.

We will tend to write Φ for a real embedding, σ and σ for complex pairs, and Ψ

when discussing an arbitrary embedding. So the real embeddings are {Φ1, . . . , Φr1},
and the complex embeddings will be {σ1, σ 1, . . . , σr2 , σ r2}. That is, we choose one
of each complex pair to be denoted σi ; then the other is σ i .

Define a map

i : K φ≤ Rr1 × Cr2

β ⊂≤ (Φ1(β), . . . , Φr1(β), σ1(β), . . . , σr2(β))

If addition and multiplication on the right-hand side are defined componentwise,
then this i preserves the additive and multiplicative structure of K . Write

KR = Rr1 × Cr2 ,
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and note that KR is an n-dimensional real vector space, as C ∗= R2 and r1 +2r2 = n.
The map i embeds K into KR. (Readers aware of the tensor product will realise that
KR = K ⊗Q R.)

One has the norm map NK/Q on K , where NK/Q(β) was defined as the determi-
nant of the map mβ : x ⊂≤ βx on K (using any basis for K as a Q-vector space),
and we can similarly define a map N : KR −≤ R so that if β ∈ KR, then N (β) is
defined as the determinant of the multiplication map x ⊂≤ βx on the space KR. It is
easy to see that the map is given explicitly by

N : KR −≤ R

(x1, . . . , xr1 , z1, . . . , zr2) ⊂≤
r1⎩

i=1

xi .

r2⎩

i=1

|zi |2

and that the following diagram commutes:

K
i−−−−≤ KR

NK/Q

⎝⎝⎞
⎝⎝⎞N

Q −−−−≤ R

In other words, given β ∈ K , there is an equality

N (i(β)) = NK/Q(β).

In order to apply the theory of lattices to KR, we need some notion of volume,
which we can explicitly compute in order to apply Minkowski’s Theorem.

In fact, there are two natural notions of volume one can use; the first one we will
give is more natural, but the second is easier to use for making explicit computations.

First, think of KR as a subset of Cn by sending

(x1, . . . , xr1 , z1, . . . , zr2) ⊂≤ (x1, . . . , xr1 , z1, z1, . . . , zr2 , zr2).

Write iC : KR φ≤ Cn for this embedding. Notice that the map K φ≤ KR φ≤ Cn is
then given by

x ⊂≤ (Φ1(x), . . . , Φr1(x), σ1(x), σ 1(x), . . . , σr2(x), σ r2(x)).

(Note that this is a ring homomorphism, although we won’t require this.)
Then Cn has a natural inner product; given two elements z = (z1, . . . , zn) and

z′ = (z′
1, . . . , z′

n), define

(z, z′) =
n⎨

i=1

zi z
′
i .
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This gives us a length on Cn , where √z√ = (z, z)1/2. As KR is a subset, we get a
length, distance, etc., on KR. In particular, we can define the volume vol(X) of a
subset X of KR (not every subset has a volume, but the ones we meet will do).

This looks natural because all the embeddings are used (so no arbitrary choice of
one embedding in each pair is made) and because the map preserves the multiplicative
structure of KR, amongst others. But it is not quite so easy to use in practice as the
second we will give.

For the second method, we can identify KR with Rn using the isomorphism

iR : (x1, . . . , xr1 , z1, . . . , zr2) ⊂≤ (x1, . . . , xr1 , u1, v1, . . . , ur2 , vr2),

where zk = uk +ivk for k = 1, . . . , r2. (You should notice that iR is a linear map, but
the multiplicative structure of KR is not preserved.) The space Rn has a natural inner
product, essentially just the usual vector dot product; given two elements (a1, . . . , an)

and (b1, . . . , bn) in Rn , the inner product is given by ⊃a, b〉 = ∑n
i=1 ai bi . This gives

a notion of length of a vector x ∈ Rn :

√x√ = ⎟⊃x, x〉,

the usual (Euclidean) length, and then we get the usual notions of distances, areas,
volumes etc. We will write volR(X) for the volume of a subset X ≡ KR using this
definition.

We are going to be able to make computations of volumes of lattices in KR by
mapping them to Rn using iR, and then using Proposition 7.5.

Because we can use Proposition 7.5 to compute volumes of lattices in Rn , it is
often easier to make explicit computations in Rn . However, the statements of most
of the results look nicer if we use iC to map KR into Cn . We start by explaining the
relation between the two volumes.

Proposition 7.10 If π is a lattice in KR, then vol(π ) = 2r2 volR(π ).

Rather than give a general proof, we illustrate it with a short example; the general
case is exactly the same, but the determinants involved are larger.

Example 7.11 Suppose [K : Q] = 3, and we have one real embedding Φ, and
one pair of complex embeddings σ and σ . Given 3 elements ω1, ω2 and ω3 in K ,
the volume of the lattice π they generate in KR is got by taking the embedding
iC : KR φ≤ Cn and computing (as in Proposition 7.5):

vol(π ) =
⎠⎠⎠⎠⎠⎠

Φ(ω1) σ (ω1) σ (ω1)

Φ(ω2) σ (ω2) σ (ω2)

Φ(ω3) σ (ω3) σ (ω3)

⎠⎠⎠⎠⎠⎠
.

On the other hand, if we use iR to regard KR as a subset of Rn , the relevant determinant
is computed (by Proposition 7.5) as
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volR(π ) =
⎠⎠⎠⎠⎠⎠

Φ(ω1) Re(σ (ω1)) Im(σ (ω1))

Φ(ω2) Re(σ (ω2)) Im(σ (ω2))

Φ(ω3) Re(σ (ω3)) Im(σ (ω3))

⎠⎠⎠⎠⎠⎠
.

Write σ(ω j ) = u j + iv j ; simple column operations give

vol(π ) =
⎠⎠⎠⎠⎠⎠

Φ(ω1) u1 + iv1 u1 − iv1
Φ(ω2) u2 + iv2 u2 − iv2
Φ(ω3) u3 + iv3 u3 − iv3

⎠⎠⎠⎠⎠⎠
=

⎠⎠⎠⎠⎠⎠

Φ(ω1) 2u1 u1 − iv1
Φ(ω2) 2u2 u2 − iv2
Φ(ω3) 2u3 u3 − iv3

⎠⎠⎠⎠⎠⎠

= 2

⎠⎠⎠⎠⎠⎠

Φ(ω1) u1 u1 − iv1
Φ(ω2) u2 u2 − iv2
Φ(ω3) u3 u3 − iv3

⎠⎠⎠⎠⎠⎠
= 2

⎠⎠⎠⎠⎠⎠

Φ(ω1) u1 −iv1
Φ(ω2) u2 −iv2
Φ(ω3) u3 −iv3

⎠⎠⎠⎠⎠⎠

= | − 2i |
⎠⎠⎠⎠⎠⎠

Φ(ω1) u1 v1
Φ(ω2) u2 v2
Φ(ω3) u3 v3

⎠⎠⎠⎠⎠⎠

= 2 volR(π ).

Exactly the same happens in the general case; every pair of complex conjugate
embeddings gives an extra factor of 2 in the volume computation.

Now let’s compute the volume of the ring of integers and other ideals.

Proposition 7.12 π = i(ZK ) is a complete lattice in KR and vol(π ) = |DK | 1
2 .

Proof Let
ZK = Zω1 + · · · + Zωn,

so that
π = Zi(ω1) + · · · + Zi(ωn) ≡ KR.

Let M be the matrix (Ψiω j ) as Ψi runs over all embeddings of K into C (note that
this is exactly the same matrix as in Sect. 3.3). By Definition 3.18,

DK = δ{ω1, . . . , ωn} = det(M)2,

and so |DK | 1
2 = | det(M)|.

But the same argument as Proposition 7.5 (the same argument works in Cn rather
than Rn) shows that vol(π ) = | det(Ψiω j )|, and so we conclude that vol(π ) =
|DK | 1

2 . �

Recall (from Sect. 4.8) that if a is an integral ideal of K, then a admits a Z-basis,

a = Zβ1 + · · · + Zβn,

where n = [K : Q] is as above. Define the discriminant of the ideal a to be

http://dx.doi.org/10.1007/978-3-319-07545-7_3
http://dx.doi.org/10.1007/978-3-319-07545-7_4


7.2 Geometry of Number Fields 157

D(a) = δ{β1, . . . , βn} = det(Ψiβ j )
2,

where Ψi runs over all of the embeddings of K into C. The same argument as in
Proposition 3.28 shows that it is independent of the choice of Z-basis. By definition,
DK = D(ZK ).

The previous result easily generalises to ideals. It could be proven in exactly the
same way, but we might as well deduce it from the previous proposition.

Proposition 7.13 If a is a non-zero ideal of ZK , then π = i(a) is a complete lattice
in KR. Further, D(a) = NK/Q(a)2 DK , and απ has volume

vol(π ) = |D(a)| 1
2 = NK/Q(a).|DK | 1

2 .

Proof By definition of the ideal norm, ZK is the (disjoint) union of NK/Q(a) cosets
of a. Then i(a) has volume vol(i(ZK ))/NK/Q(a). The result now follows from the
calculation of the volume of i(ZK ) in Proposition 7.12. �

We now apply Minkowski’s Theorem to give a result which is the key result for
the finiteness of the class number for any number field K .

Proposition 7.14 Let π be a lattice in KR, and let c1, . . . , cr1 , C1, . . . , Cr2 ∈ R>0
satisfy

c1 · · · cr1(C1 · · · Cr2)
2 >

(
2

π

)r2

vol(π ).

Then there exists a non-zero v = (x1, . . . , xr1 , z1, . . . , zr2) ∈ π such that |x j | < c j

for all j = 1, . . . , r1, and |zk | < Ck for all k = 1, . . . , r2.

Proof Let X denote the set of all elements (x1, . . . , xr1 , u1 + iv1, . . . , ur2 + ivr2) in
KR = Rr1 ×Cr2 such that |x j | < c j for j = 1, . . . , r1 and |uk + ivk |2 = u2

k + v2
k <

C2
k for k = 1, . . . , r2. Then X is centrally symmetric and convex. It is the Cartesian

product of r1 intervals −ci < xi < ci and r2 circles u2
k + v2

k < C2
k , and so

volR(X) = (2c1) . . . (2cr1)(πC2
1 ) . . . (πC2

r2
) = 2r1πr2 c1 . . . cr1(C

2
1 . . . C2

r2
).

Under the hypothesis of the statement, we see that

vol(X) = 2r2 volR(X) > 2r1+r2πr2 .

(
2

π

)r2

vol(π ) = 2nvol(π )

as r1 + 2r2 = n. The result now follows from Minkowski’s Theorem
(Theorem 7.8). �

We will be particularly interested in the special case where π = i(a) is the lattice
associated to an ideal.
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Proposition 7.15 Let a be a non-zero integral ideal of ZK . Then there exists a non-
zero β ∈ a such that

|NK/Q(β)| ≥
(

2

π

)r2

NK/Q(a)|DK |1/2.

Proof Choose any

M >

(
2

π

)r2

NK/Q(a)|DK |1/2 =
(

2

π

)r2

vol(a),

the last equality coming from Proposition 7.13. Then choose c1, . . . , cr1 , C1, . . . ,

Cr2 ∈ R>0 satisfying c1 . . . cr1(C1 . . . Cr2)
2 = M . By the previous proposition,

there is a non-zero element β ∈ a such that |Φ1(β)| < c1,…, |Φr1(β)| < cr1 ,
|σ1(β)| < C1,…, |σr2(β)| < Cr2 . Note that this also implies that |σ j (β)| < C j . As
NK/Q(β) is formed from the product over all embeddings (including the complex
conjugates), we conclude that

NK/Q(β) < c1 . . . cr1(C1 . . . Cr2)
2 = M.

We can do this for any M bigger than the given bound, and so we conclude that there
exists a non-zero β ∈ a as in the statement. �

7.3 Finiteness of the Class Number

One of the two main applications of this theory comes with the finiteness of the class
number. Recall that the class group is the group of all fractional ideals of ZK, modulo
the principal fractional ideals. We had already shown this finiteness in Chap. 6 in
the case of imaginary quadratic fields; using the geometrical methods above, we can
now show this for any number field. We write C(K ) for the class group, and its order,
hK, is the class number.

Theorem 7.16 The class group C(K ) is finite.

Proof We will first show that every ideal class [a] contains an integral ideal c of

norm at most M = ( 2
π

)r2 |DK | 1
2 .

We first take any representative b of the class [a−1]; we assume that b is con-
tained in ZK (otherwise we can multiply through by a suitable element in ZK ).
Proposition 7.15 shows that there exists β ∈ b, with β ∩= 0, such that

|NK/Q(β)| ≥
(

2

π

)r2

|DK | 1
2 NK/Q(b).

http://dx.doi.org/10.1007/978-3-319-07545-7_6
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Then let c = ⊃β〉b−1 ∈ [a]; also since β ∈ b, every element of c is integral, and so
c → ZK .

Finally,

NK/Q(c) = |NK/Q(β)|NK/Q(b)−1 ≥
(

2

π

)r2

|DK | 1
2 = M.

But there are only finitely many integral ideals whose norm is at most any given bound
M (consider the factorisation of an integral ideal into primes, use the multiplicativity
of the norm, and observe that there can only be finitely many primes whose norm is
bounded). Thus there can only be finitely many ideal classes. �

For the finiteness of the class number, it sufficed to show that every ideal class
contains an ideal of norm at most some fixed bound M . But the method of proof
also suggests a way to construct the class group, at least for number fields of small
discriminant. Given a number field K, compute DK and the constant M . Then we
know that every ideal of ZK is equivalent to an ideal with norm at most M . We also
know that ideals factor uniquely into prime ideals, and that the norm is multiplicative.
We therefore list all prime ideals whose norm is bounded by M , and then all products
of those whose norm is at most M . Every integral ideal will be equivalent to at least
one ideal on this list, and so the class number is bounded by the number of these
ideals.

In fact, the claim that every ideal class contains an ideal of norm at most M =( 2
π

)r2 |DK | 1
2 is far from being best possible. When it comes to finding the class group

explicitly, it is helpful to have a much better bound.
The main problem is that the convex shape X is defined as a “hypercube”, and

something more spherical gives better bounds. For example, in R2, there is an open
square of area 4 given by {(x, y) | |x | < 1, |y| < 1} with no lattice point other than
(0, 0). But the bound for circles is much better; there is no circle of area more than
π containing no lattice point other than (0, 0). Better still is to use a square with
sides which are diagonal, parallel to y = ±x ; every such square of area more than 2
contains a lattice point other than (0, 0).

We will now spend some time finding a better bound, and using it to compute
some class groups of fields with small discriminants.

If instead, for t > 0, we consider the subset of KR defined by

Xt = {
(x1, . . . , xr1 , z1, . . . , zr2)

⎠⎠ |x1| + · · · + |xr1 | + 2|z1| + · · · + 2|zr2 | < t
}
,

we get a region of a different shape. It is clearly bounded and centrally symmetric.

Exercise 7.1 Show that Xt is also convex.

Lemma 7.17 The volume of Xt is vol(Xt ) = 2r1πr2
tn

n! .

Proof Use iR to write Xt as a subset of Rn .
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Then iR(Xt ) is the set of points {(x1, . . . , xr1 , u1, v1, . . . , ur2 , vr2)} satisfying

|x1| + · · · + |xr1 | + 2
√

u2
1 + v2

1 + · · · + 2
√

u2
r2

+ v2
r2

< t,

where z j = u j + iv j for j = 1, . . . , r2.
We compute vol(X) = 2r2 volR(X). Make a change of variable to put (u j , v j ) =(

R j
2 cos θ j ,

R j
2 sin θ j

⎧
; the usual formula for change of variables to polar co-ordinates

gives 4du j dv j = R j d R j dθ j . Then

volR(Xt ) =
∫

Xt

1 dx1 . . . dxr1 du1dv1 . . . dur2 dvr2

= 2r1

∫

Xt , xi ≥0

1 dx1 . . . dxr1 du1dv1 . . . dur2 dvr2

= 2r1 4−r2

∫

Xt , xi ≥0

R1 · · · Rr2 dx1 . . . dxr1 d R1dθ1 . . . d Rr2 dθr2

= 2r1 4−r2(2π)r2

∫

Yt

R1 · · · Rr2 dx1 . . . dxr1 d R1 . . . d Rr2

where

Yt = {(x1, . . . , xr1 , R1, . . . , Rr2) | x j , Rk ≥ 0, x1 +· · ·+ xr1 + R1 +· · ·+ Rr2 < t}.

Write

Ir1,r2(t) =
∫

Yt

R1 · · · Rr2 dx1 . . . dxr1 d R1 . . . d Rr2 .

Then simple changes of variables show that

Ir,s(t) = tr+2s Ir,s(1), Ir,s(1) = Ir−1,s(1)

r + 2s
, I0,s(1) = I0,s−1(1)

2s(2s − 1)
. (7.1)

Using the second repeatedly gives

Ir,s(1) = (2s)!
(r + 2s)! I0,s(1),

and then the third gives

I0,s(1) = 1

(2s)!
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using I0,0(1) = 1. Then

Ir1,r2(t) = tn Ir1,r2(1) = tn (2r2)
!

n! I0,r2(1) = 1

n! tn .

Combining these shows that

vol(Xt ) = 2r2 volR(Xt )

= 2r2 .2r1 4−r2(2π)r2 Ir1,r2(t)

= 2r1πr2
tn

n!
as required. �
Exercise 7.2 Verify the relations given in (7.1).

With this new region, we can use the method of Proposition 7.15 and get a better
result:

Proposition 7.18 Every ideal class of K contains an integral ideal c of norm at most

n!
nn

(
4

π

)r2

|DK |1/2.

Proof We first remark that the set Xt , whose definition above might have looked a
bit unmotivated, has a more natural interpretation when we consider those elements
β ∈ K such that i(β) ∈ Xt . If β ∈ K, and i(β) = (x1, . . . , xr1 , z1, . . . , zr2), then
x j = Φ j (β), and zk = σk(β). As 2|zk | = |zk | + |zk |, the expression |x1| + · · · +
|xr1 | + 2|z1| + · · · + 2|zr2 | can be viewed as

∑
Ψ |Ψ(β)|, where Ψ runs over all

embeddings of K into C.
We argue as above. Let [a] be any ideal class, and take any integral representative

b of [a−1]. Then in order to apply Minkowski’s Theorem, we choose a value of
t for which the volume of Xt is at least 2n NK/Q(b)|DK |1/2. This simply requires
choosing t so that

2r1πr2
tn

n! > 2nvol(b) = 2n NK/Q(b)|DK |1/2,

or, as n = r1 + 2r2,

tn > n!
(

4

π

)r2

NK/Q(b)|DK |1/2.

Then there exists a non-zero element β ∈ b with i(β) in Xt , by Minkowski’s Theo-
rem. Since this is valid for any t satisfying this inequality, we deduce that there is a
non-zero element β ∈ b in Xt , where

tn = n!
(

4

π

)r2

NK/Q(b)|DK |1/2.
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The arithmetic mean–geometric mean inequality implies that
( ∏

Ψ |Ψ(β)|
⎧1/n ≥

1
n

∑
Ψ |Ψ(β)|. The left-hand side is just NK/Q(β), and the right-hand side is at most

1
n t , by definition of Xt . Thus

|NK/Q(β)|1/n ≥ t

n
,

i.e., that

|NK/Q(β)| <

(
t

n

)n

.

By picking tn as above, we conclude that there exists β ∈ i−1(Xt ) ◦ b such that

|NK/Q(β)| <
n!
nn

(
4

π

)r2

NK/Q(b)|DK |1/2.

So if c = ⊃β〉b−1 ∈ [a], then

NK/Q(c) = |NK/Q(β)|NK/Q(b)−1,

and the result follows. �

This bound is known as the Minkowski bound.
We can use this to compute class groups for fields with reasonably small discrim-

inant.

Example 7.19 For K = Q(
⇒

5), the discriminant is 5, and r2 = 0. So the Minkowski
bound is

⇒
5/2 = 1.118 . . . . So every ideal is equivalent to one with norm 1, but the

only ideal of norm 1 is the full ring of integers, which is principal. Thus the class
number is 1.

Example 7.20 For K = Q(
3
⇒

2), the discriminant is 108, and r2 = 1. So the
Minkowski bound is

6

27

(
4

π

) ⇒
108 = 2.940 . . . .

So every ideal is equivalent to one whose norm is at most 2. The only ideal of norm
1 is the full ring of integers, which is principal; the ideal ⊃2〉 = p3

2, where p2 = ⊃ 3
⇒

2〉
is also principal. Thus every ideal is equivalent to a principal ideal, so the class group
is trivial.

Example 7.21 For K = Q(
⇒−5), the discriminant is −20, and r2 = 1, so the

Minkowski bound is 2
π

⇒
20 = 2.84 . . . . So every ideal is equivalent to an integral

ideal of norm at most 2. The full ring of integers is the only ideal of norm 1. An ideal
of norm 2 must divide the prime 2, and
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⊃2〉 = p2
2,

where p2 = ⊃2, 1 + ⇒−5〉, so there is a unique prime ideal of norm 2, and it is not
principal. Thus the class number is 2.

We can use this result to prove a similar result to the main result of Sect. 1.5.

Corollary 7.22 There are no integer solutions to x3 = y2 + 5.

Proof If x is even, then y is odd, but then y2 + 5 ≡ 2 (mod 4), which is impossible,
as 8|x3. So x is odd.

If p|(x, y), then p|x3 − y2, so p|5, and the only possible common factor is 5. But
if 5|x and 5|y, then 53|x3 whereas 52 � y2 + 5. So x and y are coprime.

Suppose that x3 = y2 + 5. Then

x3 = (y + ⇒−5)(y − ⇒−5).

Suppose y + ⇒−5 and y − ⇒−5 both lie in some prime ideal p (i.e., they are not
coprime). Notice that this implies that x3 ∈ p, and, as p is prime, that x ∈ p. Then
2y is in p. As x is odd, 2 is not in p. But p is prime, so this implies that y ∈ p. This
contradicts the coprimality of x and y.

Then

⊃y + ⇒−5〉 = a3

⊃y − ⇒−5〉 = b3,

and as the class number of Q(
⇒−5) is 2, the fact that a is an ideal whose cube is

principal is enough to see that a is principal. (Similarly, b is also principal.)
So y +⇒−5 = uβ3 for some unit u. But the units in Q(

⇒−5) are just ±1, which
are both cubes, so y + ⇒−5 = β3 for some β = a + b

⇒−5. Then

y + ⇒−5 = (a + b
⇒−5)3,

and so 1 = b(3a2 − 5b2), by considering the coefficients of
⇒−5. Then b = ±1, so

3a2 − 5 = ±1—but this has no integral solutions for a. �

Exercise 7.3 More generally, suppose that k ≡ 1, 2 (mod 4), that k is squarefree,
and k is not of the form 3t2 ± 1 for some integer t . If 3 does not divide the class
number of Q(

⇒−k), show that x3 = y2 + k has no solution in integers.

Exercise 7.4 Show that the Minkowski bound for Q(
⇒−1), Q(

⇒−2), Q(
⇒−3) and

Q(
⇒−7) is less than 2, and deduce that these fields all have unique factorisation.

Exercise 7.5 Show that the Minkowski bound for Q(
⇒

2), Q(
⇒

3) and Q(
⇒

13) is
less than 2, and deduce that these fields all have unique factorisation.

Exercise 7.6 Find the class numbers of Q(
⇒

6) and Q(
⇒−6).

http://dx.doi.org/10.1007/978-3-319-07545-7_1
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Exercise 7.7 Find the class number of Q(
3
⇒

3).

Exercise 7.8 Find the class numbers of some more fields of small discriminant.

Corollary 7.23 If K is a number field with [K : Q] > 1, then |DK | > 1.

Proof The Minkowski bound shows that

1 ≥ n!
nn

(
4

π

)r2

|DK |1/2,

by choosing any ideal a in ZK (as its norm is at least 1). So

|DK |1/2 ≥ nn

n!
(π

4

⎧r2 ≥ nn

n!
(π

4

⎧n/2
.

Let κn denote the constant on the right-hand side of this inequality. Then κ2 = π/2 >

1, and for n ≥ 2,
κn+1

κn
=

(π

4

⎧1/2
(

1 + 1

n

)n

> 1

(and it tends to e
⇒

π

2 ), so the κn are increasing. Thus |DK | > 1. �

Corollary 7.24 If K is a number field with [K : Q] > 1, then some prime p ramifies
in K .

Proof The primes that ramify in K include all those dividing the discriminant, and
so the result follows from the last corollary. �

7.4 Dirichlet’s Unit Theorem

In this section, we prove Dirichlet’s unit theorem, which describes the structure of
the group of units Z×

K for any number field K . The standard proof nowadays involves
Minkowski’s theorem, but Dirichlet’s proof actually dates from somewhat earlier.

As part of a result which applies for general number fields, we will recover the
fact that imaginary quadratic fields have finite groups of units, and we will also see
that these are the only fields other than Q with this property. In Chap. 8, we will say
a little more about the case of real quadratic fields, and will briefly mention some
other fields of small degree.

Because the unit group is multiplicative, and Minkowski’s theorem refers to vector
spaces, which are additive, we need some sort of logarithm so that we can work in
an additive setting. Define such a logarithm map by

� : K ×
R

−≤ Rr1+r2

(x1, . . . , xr1 , z1, . . . , zr2) ⊂≤ (log |x1|, . . . , log |xr1 |, log |z1|2, . . . , log |zr2 |2)

http://dx.doi.org/10.1007/978-3-319-07545-7_8
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and another logarithm map (we will use the same letter, but this should cause no
confusion):

� : R× −≤ R

x ⊂≤ log |x |

Then one has the commutative diagram:

K × i−−−−≤ K ×
R

�−−−−≤ Rr1+r2

NK/Q

⎝⎝⎞ N

⎝⎝⎞ tr

⎝⎝⎞

Q× −−−−≤ R× �−−−−≤ R

Here, tr denotes the map

Rr1+r2 −≤ R

(x1, . . . , xr1+r2) ⊂≤ x1 + · · · + xr1+r2

Recall that Z×
K = {γ ∈ ZK | NK/Q(γ) = ±1}, and put

S = {y ∈ K ×
R

| N (y) = ±1},
H = {x ∈ Rr1+r2 | tr (x) = 0}.

Notice that i maps Z×
K into S, and that � maps S ≡ K ×

R
into H ≡ Rr1+r2 . Thus the

composite map takes the units Z×
K into the vector space H .

Remark 7.25 Since Rr1+r2 has dimension r1 +r2, and H is defined by the vanishing
of a single linear function, H is a subspace of dimension r = r1 + r2 − 1. It is in
this vector space that we will work.

Let λ denote the composite map, taking Z×
K into H :

λ : Z×
K

i−≤ S
�−≤ H,

and let π = λ(Z×
K ) ≡ H . We need to understand the kernel of λ and also the structure

of π .

Proposition 7.26 The kernel of λ is μ(K ), the group of roots of unity in K .

Proof Clearly μ(K ) ≡ ker(λ), as for all x ∈ μ(K ), and all embeddings Ψ of K into
C, one has |Ψ(x)| = 1, so the image of x in K ×

R
is killed by �.

Conversely, if γ ∈ ker λ, then |Ψ(γ)| = 1 for all embeddings Ψ . Thus i(γ) lies in
a bounded region of KR. Also, i(γ) ∈ i(ZK ), a lattice in KR. Thus there are finitely
many possibilities for i(γ) as lattices are discrete, so that ker(λ) is finite. It is also
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closed under multiplication, so every element in ker(λ) is of finite order, and thus is
a root of unity. �

Exercise 7.9 If [K : Q] is odd, show that K has a real embedding, and deduce that
μ(K ) = {±1}.

Having understood the kernel of λ, we now need to understand its image. It will
turn out that Dirichlet’s Theorem is equivalent to understanding the structure of π .

Lemma 7.27 π is a subgroup of H.

Proof Z×
K is a group, and λ is a homomorphism, so π = λ(Z×

K ) is a group, contained
in H . �

Proposition 7.28 π is a lattice in H.

Proof Since π = λ(Z×
K ) is a subgroup of H , we simply need to check that π is

discrete.
Let B denote a ball of radius r ≥ 0 in H . We need to see that π ◦ B is finite

(Definition 7.2). But �−1(π ◦ B) = �−1(π ) ◦ �−1(B) = i(Z×
K ) ◦ �−1(B). But

by definition of �, we see that �−1(B) is contained in a bounded region in KR, and
thus in a ball of some radius. Also, i(ZK ) is a lattice in KR, so is discrete, and so
i(Z×

K ) ◦ �−1(B) → i(ZK ) ◦ �−1(B) is finite. Applying � again, we see that π ◦ B
is finite as required. �

The hard part is to prove that π is a complete lattice, so that its span is all of
H . We want to apply the criterion of Proposition 7.4 and find some bounded region
BH ≡ H such that every element of H can be expressed as the sum of something in
BH and something in π .

However, although the result is stated in H, we will construct our region by
working in S ≡ K ×

R
, and applying �.

Proposition 7.29 There is a bounded region BS ≡ S such that

S =
⋃

γ∈Z×
K

i(γ)BS .

Proof Let y denote an element of S. We want to write this as i(γ)x for some unit γ

and some element x in a bounded region BS of S.
Consider the lattice i(ZK ) ≡ KR, of volume |DK |1/2. The lattice yi(ZK ) also

has volume |DK |1/2, since multiplication by y has determinant N (y) = ±1 (recall
that y ∈ S).

Choose c1, . . . , cr1 , C1, . . . , Cr2 ∈ R>0 with M = c1 . . . cr1(C1 . . . Cr2)
2 >

( 2
π
)r2 |DK | 1

2 . Put

X = {(x1, . . . , xr1 , z1, . . . , zr2) ∈ KR | |x j | < c j , |zk | < Ck}.
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Then by Proposition 7.14, X contains a non-zero point x ∈ yi(ZK ).
As x = yi(β), for some β ∈ ZK, we have N (x) = N (y)N (i(β)) = ±NK/Q(β),

and so NK/Q(β) < M . Only finitely many ideals of ZK have norm at most M ; since
any element of norm at most M would generate a principal ideal of norm at most M ,
it follows that there are only finitely many non-associate numbers of norm at most
M . Choose a set {β1, . . . , βN } consisting of a complete set of non-associate numbers
of norm at most M .

So β = γ−1βk for some k and some unit γ. But then y = xi(β)−1 = xi(βk)
−1i(γ).

Consider the set BS = {s ∈ S | s ∈ i(βk)
−1 X for some k}. As X is bounded, and

BS is the union of finitely many translates of X , we conclude that BS is bounded.
Further, every element y ∈ S is of the form xi(γ) for some x ∈ BS and unit γ, and
so S = ⋃

γ∈Z×
K

i(γ)BS , which is what we wanted. �

Corollary 7.30 π is a complete lattice in H.

Proof In S ≡ K ×
R

, there is a bounded region BS with

S =
⋃

γ∈Z×
K

i(γ)BS . (7.2)

Then we will apply our logarithm maps, and take BH = �(BS). Since � is a logarithm
map, one does need to verify that BH is bounded (after all, the usual logarithm sends
the bounded interval (0, 1] to the unbounded interval (−⊕, 0]).

We defined BS explicitly in the proof of the proposition; it is a finite set of
translates of X . But �(X) is bounded, since X ≡ S, so every element x =
(x1, . . . , xr1 , z1, . . . , zr2) ∈ X has N (x) = ±1; as |x j | and |zk | are bounded for
each component, so that

∏r1
j=1 |x j |.∏r2

k=1 |zk |2 = 1, we see that each |x j | and |zk | is
bounded away from 0 (so there is a constant c > 0 such that each |x j | > c and each
|zk | > c). Then it follows easily that �(X) is bounded in H . A very similar argument
applies to each translate �(i(βk)

−1 X), and it follows that BH = �(BS) is bounded.
Applying � to (7.2), the equality becomes

H =
⋃

γ∈Z×
K

(λ(γ) + BH ).

But π = λ(Z×
K ), so this becomes

H =
⋃

κ∈π

(κ + BH ),

and the result follows from Proposition 7.4. �

We can now deduce Dirichlet’s Unit Theorem in its usual form. Write r = r1 +
r2 − 1.
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Theorem 7.31 (Dirichlet) Z×
K

∗= μ(K ) × Zr , where μ(K ) denotes the group of
roots of unity in K and r = r1 + r2 −1. Equivalently, there exist γ1, . . . , γr such that
all γ ∈ Z×

K can be written uniquely in the form

γ = ζ γ
ν1
1 . . . γνr

r

with ζ ∈ μ(K ) and νi ∈ Z.

Proof The map λ : K × −≤ Rr1+r2 restricts to a map λ : Z×
K −≤ H . Its kernel is

μ(K ), and its image is π ; by Corollary 7.30, we have π ∗= Zr as it is a complete
lattice in an r -dimensional vector space. �

Definition 7.32 The γi are called fundamental units.

We have already seen (in Chap. 6) that imaginary quadratic fields have finitely
many units; we can also deduce this from the theorem, since r1 = 0 and r2 = 1, and
so r = r1 + r2 − 1 = 0.

Exercise 7.10 Show that imaginary quadratic fields are the only number fields apart
from Q with finitely many units.

http://dx.doi.org/10.1007/978-3-319-07545-7_6


Chapter 8
Other Fields of Small Degree

The results of Chapter 6 give a fairly complete description of imaginary quadratic
fields. But other fields have some different properties, and we will meet some of
these for the first time in this chapter.

The main class of fields we will consider are the real quadratic fields. While we
will not treat them in quite the same detail as the imaginary quadratic case, we will
nevertheless give fairly complete proofs for the results we prove. After that, we will
also consider some aspects of biquadratic fields, obtained by adjoining two square
roots to Q, before listing some results for cubic fields; full proofs of results for these
cases would take too long, and we merely state the main results.

The main new phenomenon in the case of real quadratic fields is the structure
of the units; for Q and for imaginary quadratic fields, we always have an easily
identifiable finite set of units, but, as we shall see, real quadratic fields will have
infinitely many units.

In order to treat real quadratic fields, we need a digression into continued fractions
and Pell’s equation.

Write K for the number field Q(
≥

d), where d > 0. As in Chap. 6, we can assume
d is a squarefree integer. We will assume that

≥
d is chosen to be the positive square

root of d; this is equivalent to choosing an embedding from K into R, and will allow
us to regard one element of K as larger or smaller than another.

Let’s work out some units for Q(
≥

2). Our previous calculations show that the
ring of integers is Z[≥2], and so a general integer is one of the form a + b

≥
2 for

a, b ∈ Z.
The norm of a + b

≥
2 is given by

NQ(
≥

2)/Q(a + b
≥

2) = (a + b
≥

2)(a − b
≥

2) = a2 − 2b2,

and units have the property that their norm is ±1. We therefore need to solve the
equation

a2 − 2b2 = ±1;
this is essentially an example of Pell’s equation, x2 − ny2 = 1, and we shall see in
Sect. 8.2 how to solve it using continued fractions.

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 169
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But we can spot some solutions easily; we observe that, other than trivial solutions
a = ±1, b = 0, which correspond to the elements ±1 in Q(

≥
2), we can see that

a = ±1, b = ±1, also give solutions, corresponding to units ±1 ± ≥
2. Notice that

−(1+≥
2) = −1−≥

2; (1+≥
2)−1 = −1+≥

2; −(1+≥
2)−1 = 1−≥

2,

so all these units are easily generated from 1 + ≥
2.

In the imaginary quadratic case, it was always true that the units were roots of
unity. But we can easily see that 1 + ≥

2 is not a root of unity: it is a real number
greater than 1. As the product of units is again a unit, any power of 1 + ≥

2 is also
a unit; thus, for example, (1 + ≥

2)2 = 3 + 2
≥

2 is a unit (it is easy to see that its
inverse is 3 − 2

≥
2).

More generally, this argument shows that (1 + ≥
2)n is a unit for all n ≥ 1. Since

(1 + ≥
2)−1 = (−1 + ≥

2), we can conclude that (1 + ≥
2)n is a unit for every

integer n. So, from the single unit 1 + ≥
2, we can generate infinitely many units

{±(1 + ≥
2)n}. We shall see later that these are the only units in Z[≥2].

Let’s think about the case where ZK = Z[≥d]. Then an element π = a + b
≥

d
is a unit if and only if its norm is ±1. The norm is given by

NK/Q(π) = (a + b
≥

d)(a − b
≥

d) = a2 − db2,

and so we need (a, b) to be a solution of the equation

x2 − dy2 = ±1.

The equation x2 − dy2 = 1, where d is a positive integer and not a square, is
known as Pell’s equation, and it always has infinitely many integral solutions. To
find them, one way is to observe that the equation x2 − dy2 = 1 implies that x2 and
dy2 are very close, so that x2/y2 is approximately d. In particular, x/y is very close
to

≥
d. Finding rational numbers close to a given real number can be done using

the theory of continued fractions; since this is not treated in [7], we will prove the
main relevant results here, although it may be part of many undergraduate courses
in elementary number theory.

8.1 Continued Fractions

In the first chapter, we considered Euclid’s algorithm for the pair 630 and 132:

630 = 4 × 132 + 102
132 = 1 × 102 + 30
102 = 3 × 30 + 12
30 = 2 × 12 + 6
12 = 2 × 6 + 0
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We can interpret this as telling us more about the quotient 630
132 . As well as telling us that

we can cancel the highest common factor of 6 from the numerator and denominator
to get the fraction 105

22 in lowest terms, we also see that:

630

132
= 4 + 102

132
132

102
= 1 + 30

102
102

30
= 3 + 12

30
30

12
= 2 + 6

12
12

6
= 2 + 0

6
,

and we see that the left-hand side of each equation is the reciprocal of the final term
on the right-hand side of the previous one. We can combine all these equations into
a single expression:

630

132
= 4 + 102

132
= 4 + 1

132
102

= 4 + 1

1 + 30
102

= 4 + 1

1 + 1
102
30

= · · ·

= 4 + 1

1 + 1

3 + 1

2 + 1

2

This last expression is the continued fraction for 630
132 . The reader should convince

themselves that the right-hand side really is equal to the left-hand side, by evaluating
the fraction from the bottom, first replacing 2 + 1

2 by 5
2 , then 3 + 2

5 by 17
12 , etc.

The algorithm takes the left-hand side as an input, and writes its integer part and
remainder on the right-hand side. Then the input to the next line is the reciprocal of
the remainder.

The notation above for the continued fraction is rather cumbersome, and we shall
use the abbreviated form [4; 1, 3, 2, 2].

We can obtain fractions which approximate the original expression by taking only
the initial parts of the expression:

[4] = 4

[4; 1] = 4 + 1

1
= 5
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[4; 1, 3] = 4 + 1

1 + 1
3

= 19

4

[4; 1, 3, 2] = 4 + 1

1 + 1

3 + 1
2

= 43

9

These fractions approach the original expression very quickly; they are known as the
convergents. Another way to recover the convergents is to list the numbers appearing
in the continued fraction expansion, together with two further rows, in a table as
follows:

4 1 3 2 2
0 1
1 0

Then we complete the table; each successive column is completed by taking the
previous column and multiplying by the integer at the top, and adding the column
before that:

4 1 3 2 2
0 1 4 × 1 + 0
1 0 4 × 0 + 1

and then
4 1 3 2 2

0 1 4 1 × 4 + 1
1 0 1 1 × 1 + 0

Repeating this gives:
4 1 3 2 2

0 1 4 5 3 × 5 + 4
1 0 1 1 3 × 1 + 1

and two more iterations of the process leads to

4 1 3 2 2
0 1 4 5 19 43 105
1 0 1 1 4 9 22

and the numerator and denominator of the convergents appear as the columns.

Exercise 8.1 Find the continued fraction of 999
700 , and compute all the convergents.

Let us write αn = pn/qn for the convergents to a number β ∈ R, with p0/q0
corresponding to the entry below the first number, so that p0 = ≡β≤, q0 = 1. We
extend this to the left, so that p−2 = 0, q−2 = 1 and p−1 = 1, q−1 = 0 represent
the first two columns of the table.
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If the continued fraction of β is [a0; a1, a2, . . .], then pk = ak pk−1 + pk−2 and
qk = akqk−1 + qk−2.

Lemma 8.1 If pn
qn

and pn+1
qn+1

are successive convergents, then pn+1qn − pnqn+1 =
(−1)n.

Proof We prove this by induction on n. For n = −2, we have p−1q−2− p−2q−1 = 1.
Now suppose that pk+1qk − pkqk+1 = (−1)k . As pk+2 = ak+2 pk+1 + pk and
qk+2 = ak+2qk+1 + qk , it follows that

pk+2qk+1 − pk+1qk+2 = (ak+2 pk+1 + pk)qk+1 − pk+1(ak+2qk+1 + qk)

= −(pk+1qk − pkqk+1)

and the result follows. �

Exercise 8.2 Verify this for the convergents of 999
700 , computed in Exercise 8.1.

Let’s fix some more notation. Given β = [a0; a1, a2, . . .] = a0 + 1

a1 + 1

a2 + · · ·
,

put βn = [an; an+1, an+2, . . .], so that, for example,

β = a0 + 1

β1
= a0 + 1

a1 + 1

β2

= · · · .

Lemma 8.2 With the notation above,

β = [a0; a1, . . . , an−1, βn] = βn pn−1 + pn−2

βnqn−1 + qn−2
.

Proof The first equality follows by definition. The second is a special case of the
general claim that for all x ,

[a0; a1, . . . , an, x] = xpn + pn−1

xqn + qn−1
,

which we will prove by induction.
This general statement is clearly true for n = 0. Suppose that it is also true when

n = k − 1. Then

[a0; a1, . . . , ak, x] = [a0; a1, . . . , ak + 1
x ]

= (ak + 1
x )pk−1 + pk−2

(ak + 1
x )qk−1 + qk−2
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= x(ak pk−1 + pk−2) + pk−1

x(akqk−1 + qk−2) + qk−1

= xpk + pk−1

xqk + qk−1
,

where the second equality uses the induction hypothesis for n = k −1, and the result
follows by induction. �

We show now that if β is irrational, the continued fraction convergents are very
close rational approximations.

Proposition 8.3 Suppose that β is irrational. For any n ≥ 0,

∣∣∣∣β − pn

qn

∣∣∣∣ <
1

qnqn+1
.

Proof This follows as

β − pn

qn
= βn+1 pn + pn−1

βn+1qn + qn−1
− pn

qn

= pn−1qn − pnqn−1

qn(βn+1qn + qn−1)

= (−1)n

qn(βn+1qn + qn−1)

using Lemma 8.1, and so

∣∣∣∣β − pn

qn

∣∣∣∣ = 1

qn(βn+1qn + qn−1)
<

1

qn(an+1qn + qn−1)
= 1

qnqn+1
.

The inequality follows as an+1 = ≡βn+1≤, so an+1 < βn+1. �

Let’s extract one useful result from the proof:

Corollary 8.4 If αn = pn
qn

are the convergents to β , then if β < αn, it follows that
β > αn+1 and vice versa.

Proof This follows from the expression

β − pn

qn
= (−1)n

qn(βn+1qn + qn−1)

which is clearly alternating in sign. �

We are aiming towards a result in the other direction, so that we have a criterion
for when a given rational is definitely a convergent.
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Proposition 8.5 If a/b is a rational number such that |bβ − a| < |qnβ − pn|, then
b ≥ qn+1.

Proof Suppose that we have |bβ − a| < |qnβ − pn| for some b < qn+1.
Because pnqn+1 − pn+1qn = ±1, there are integers x and y such that

xpn + ypn+1 = a,

xqn + yqn+1 = b.

Clearly x √= 0, for otherwise yqn+1 = b, and so b ≥ qn+1. If y = 0, then a = xpn

and b = xqn , so that

|bβ − a| = |x |.|qnβ − pn| ≥ |qnβ − pn|,

a contradiction.
If y < 0, then xqn = b − yqn+1, so x > 0. And if y > 0, then, as b < qn+1, we

see that xqn = b − yqn+1 < 0, so x < 0. So x and y have opposite signs, and then
x(qnβ − pn) and y(qn+1β − pn+1) have the same signs (using Corollary 8.4).

Then

|bβ − a| = |x(qnβ − pn) + y(qn+1β − pn+1)| > |x(qnβ − pn)| ≥ |qnβ − pn|,

a contradiction. �

We can now show that pn
qn

is the best convergent amongst rationals with denomi-
nators of the same size or smaller.

Corollary 8.6 If a/b is a rational number such that |β − a/b| < |β − pn/qn| for
some n, then b > qn.

Proof Suppose that there is some a/b with |β − a/b| < |β − pn/qn| and b → qn ,
then

b
∣∣∣β − a

b

∣∣∣ < qn

∣∣∣∣β − pn

qn

∣∣∣∣ ,

and so |bβ − a| < |qnβ − pn|, contradicting the proposition. �

Next, we can give the desired criterion for a good rational approximation to be a
convergent.

Proposition 8.7 Suppose that β is irrational and that a/b is a rational with

∣∣∣β − a

b

∣∣∣ <
1

2b2 .

Then a/b is a continued fraction convergent to β .
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Proof As before, write pn/qn for the convergents to β , and suppose that a/b is not
a convergent. Then qn → b < qn+1 for some n. By Proposition 8.5, we also have
|bβ − a| ≥ |qnβ − pn|. Then

|qnβ − pn| → |bβ − a| <
1

2b
,

and so

∣∣∣∣β − pn

qn

∣∣∣∣ <
1

2bqn
. But this means that

1

bqn
→ |bpn − aqn|

bqn
=

∣∣∣∣
pn

qn
− a

b

∣∣∣∣ →
∣∣∣∣β − pn

qn

∣∣∣∣ +
∣∣∣β − a

b

∣∣∣ <
1

2bqn
+ 1

2b2 ,

which implies that b < qn , a contradiction. �

8.2 Continued Fractions of Square Roots

Square roots have particularly interesting continued fractions.

Example 8.8 Let’s compute the continued fraction of
≥

19. It turns out that we just
need to know that 4 <

≥
19 < 5.

As usual, start by taking the integer part and remainder:

≥
19 = 4 + (

≥
19 − 4).

Then do the same for the reciprocal of the remainder, rationalising the denominator:

1≥
19 − 4

=
≥

19 + 4

3
= 2 +

≥
19 − 2

3
.

This repeats:

3≥
19 − 2

=
≥

19 + 2

5
= 1 +

≥
19 − 3

5

5≥
19 − 3

=
≥

19 + 3

2
= 3 +

≥
19 − 3

2

2≥
19 − 3

=
≥

19 + 3

5
= 1 +

≥
19 − 2

5

5≥
19 − 2

=
≥

19 + 2

3
= 2 +

≥
19 − 4

3
3≥

19 − 4
= ≥

19 + 4 = 8 + (
≥

19 − 4)
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and the process repeats. We get the infinite continued fraction

[4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .],

which we abbreviate [4; 2, 1, 3, 1, 2, 8].
Exercise 8.3 Compute the continued fraction expansions of

≥
21 and

≥
71. (As

usual, you should make up some more examples for yourself!)

Hopefully you should have observed that each term in the calculation is of the form

βn =
≥

d+Mn
Nn

for some integers Mn and Nn . In Example 8.8, we have β1 =
≥

19+4
3 ,

so M1 = 4 and N1 = 3. In the same way, β2 =
≥

19+2
5 , so M2 = 2 and N2 = 5, and

so on. Let’s prove first that this is always the case.

Proposition 8.9 Let d be a positive integer, not a square. Put M0 = 0, N0 = 1,
β0 = ≥

d and a0 = ≡β0≤. Then define recursively sequences by Mn+1 = an Nn − Mn,

Nn+1 = d−M2
n+1

Nn
, βn+1 =

≥
d+Mn+1
Nn+1

and an+1 = ≡βn+1≤. Then

1. Mn and Nn are integers for all n;
2. βn = an + 1/βn+1, and so β = [a0; a1, a2, . . .].

Proof 1. We’ll prove this by induction. Clearly M0 and N0 are integers, and our
inductive hypothesis will be that Mk and Nk are integers for k → n. By definition,
an is always an integer, so clearly Mn+1 = an Nn − Mn is an integer. The real
content of this proposition is that Nn+1 should be an integer. But

Nn+1 = d − M2
n+1

Nn
= d − (an Nn − Mn)2

Nn
= d − M2

n

Nn
+ 2an Mn − a2

n Nn,

so we just need to check that d−M2
n

Nn
is an integer. If n ≥ 1, Nn = d−M2

n
Nn−1

and so

Nn|d − M2
n . If i = 0, N0 = 1, and so N0|d − M2

0 .
2. This now follows easily, by substituting the expressions for βn and βn+1 into the

expression. �

Lemma 8.10 With the notation of the previous result, Nn > 0 for all sufficiently
large n.

Proof Write β ◦
n = −≥

d+Mn
Nn

for the conjugate of βn . We know from Lemma 8.2 that

β = β0 = βn pn−1 + pn−2

βnqn−1 + qn−2
,

and so

β ◦
0 = β ◦

n pn−1 + pn−2

β ◦
nqn−1 + qn−2

,
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which rearranges to give

β ◦
n = −qn−2

qn−1

(
β ◦

0 − pn−2/qn−2

β ◦
0 − pn−1/qn−1

)
.

As k ⇒ ∩, pk/qk ⇒ β0, and so the bracket tends to 1. Thus for large enough n,
β ◦

n < 0. Thus βn > 0 and β ◦
n < 0 for such n, and

2
≥

d

Nn
= βn − β ◦

n > 0,

showing that Nn > 0. �

Lemma 8.11 With the notation of the previous results, there exists an integer k > 0
with β j = β j+k for some j .

Proof We know that βn =
≥

d+Mn
Nn

. As Nn Nn+1 = d − M2
n+1, and Nn > 0 for

sufficiently large n, we see that for all such n, that M2
n+1 < d. This means that there

are only finitely many possibilities for each Mn . Also, Nn Nn+1 < d, and if Nn > 0,
this means that Nn+1 < d , so that there are only finitely many possibilities for Nn

also. This shows that eventually, β j = β j+k for some j and k > 0. �

Theorem 8.12 The continued fraction of
≥

d has the form [b0; b1, . . . , bk] where
bk = 2b0.

Proof Take β0 = ≥
d +≡≥d≤, and we work out the continued fraction [a0, a1, . . .] of

β0. Then certainly β0 > 1 and a0 ≥ 1, and β ◦
0 = ≡≥d≤ − ≥

d satisfies −1 < β ◦
0 < 0.

In fact, we claim that −1 < β ◦
n < 0 for all non-negative integers n, and we prove

this by induction.
As 1/βn+1 = βn − an , we have 1/β ◦

n+1 = β ◦
n − an . If β ◦

n < 0, clearly 1/β ◦
n+1 < 0,

so β ◦
n+1 < 0, and further, 1/β ◦

n+1 < −1 (recall that an ≥ 1 as d is not a square), so
that −1 < β ◦

n+1. Thus −1 < β ◦
n+1 < 0, and the claim follows by induction.

In particular, −1 < β ◦
n < 0, so that −1 < 1

β ◦
n+1

− an < 0, and then

an =
⌊

− 1

β ◦
n+1

⌋
.

By the previous lemma, there are integers j and k > 0 with β j = β j+k . But this
implies that β ◦

j = β ◦
j+k , and then

a j−1 =
⌊

− 1

β ◦
j

⌋
=

⌊
− 1

β ◦
j+k

⌋
= a j+k−1.
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Finally,

β j−1 = a j−1 + 1

β j
= a j+k−1 + 1

β j+k
= β j+k−1.

Applying this repeatedly, we see that β0 = βk , and so the continued fraction repeats.
We get that

β0 = [a0, a1, . . . , ak−1].

As β0 = ≥
d + ≡≥d≤, the continued fraction [a0, a1, . . .] of β0 is identical to the

continued fraction [b0, b1, . . .] of
≥

d except that b0 = a0 −≡≥d≤. But a0 = ≡β0≤ =
2≡≥d≤, so b0 = ≡≥d≤, and a0 = 2b0. By the periodicity of the continued fraction
for β0, we have a0 = ak = bk , and so bk = 2b0 as claimed. �
Definition 8.13 We say that k > 0 is the period of

≥
d if it is the smallest index

with βk = β0.

Recall that if β = ≥
d , we put βn =

≥
d+Mn
Nn

. We are going to relate the convergent

pn/qn of
≥

d with the denominator Nn+1 of βn+1:

Proposition 8.14 If pn
qn

denotes the nth convergent to
≥

d, then p2
n − dq2

n =
(−1)n+1 Nn+1.

Proof Put β0 = ≥
d, and define βn as above. By Lemma 8.2,

≥
d = βn+1 pn + pn−1

βn+1qn + qn−1
.

We also have βn+1 =
≥

d+Mn+1
Nn+1

, and we substitute this in. After simplifying, we get

≥
d = Mn+1 pn + Nn+1 pn−1 + pn

≥
d

Mn+1qn + Nn+1qn−1 + qn
≥

d
.

Rearranging this gives

dqn + ≥
d(Mn+1qn + Nn+1qn−1) = Mn+1 pn + Nn+1 pn−1 + ≥

d pn .

Equating coefficients of
≥

d and the remaining terms gives the two equations

Mn+1 pn + Nn+1 pn−1 = dqn

Mn+1qn + Nn+1qn−1 = pn .

Multiply the first equation by qn , and the second by pn , and subtract to get

p2
n − dq2

n = Nn+1(pnqn−1 − qn pn−1),

and the result follows from Lemma 8.1. �
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We can put everything together, and deduce the main result on Pell’s equation. If
x2 − dy2 = 1, then x2/y2 will be close to d , and so x/y will be close to

≥
d. This

suggests that we look for solutions amongst the convergents to
≥

d.

Theorem 8.15 Let d > 0 be an integer, not a square. Then the equation x2−dy2 = 1
has infinitely many solutions. The equation x2 − dy2 = −1 has infinitely many
solutions if the continued fraction for

≥
d has odd period.

Proof From the previous result, we know that p2
n − dq2

n = (−1)n+1 Nn+1, where
pn/qn is a convergent to

≥
d , and Nn+1 is the denominator of βn+1 as above. We

also know that the sequence (βn) repeats with some period k; this means that (Nn)

repeats with period k. As N0 = 1, we deduce that Nsk = 1 for all integers s ≥ 0.
For any n of the form sk − 1 with s or k even, then (pn, qn) solves x2 − dy2 = 1,
and there are therefore always infinitely many solutions. If k is odd, and n = sk − 1
with s odd, then (pn, qn) solves x2 − dy2 = −1. �

To illustrate these, here is the table of convergents for
≥

19 (using the calculations
of Example 8.8), with an extra row corresponding to the p2

n − dq2
n :

4 2 1 3 1 2 8
0 1 4 9 13 48 61 170 1421
1 0 1 2 3 11 14 39 326

p2
n − dq2

n −3 5 −2 5 −3 1 −3

Exercise 8.4 Compute the values of p2
n − dq2

n for the convergents of
≥

31.

Exercise 8.5 Solve x2 − 11y2 = 1 and x2 − 31y2 = 1.

Further details on the theory of continued fractions may be found in various books
on elementary number theory, [12] for example.

8.3 Real Quadratic Fields

Now we turn our attention back to the study of number fields, and real quadratic
fields in particular.

Write K for the number field Q(
≥

d), where d > 0 is squarefree. At the start
of the chapter, we observed that numbers of the form ±(1 + ≥

2)n were all units in
Z[≥2], and so Q(

≥
2) has infinitely many units.

Exercise 8.6 Find infinitely many units in Z[≥7].
We suggested that, in general, units s + t

≥
d (for the moment, we will suppose

ZK = Z[≥d]) should have the property that s/t is a continued fraction convergent
to

≥
d, and in the previous sections we have shown how to compute these. We will

now explain that this is indeed the case.
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Theorem 8.16 Let d be a squarefree positive integer, and write pn
qn

for the conver-

gents to
≥

d. Suppose that m is an integer with |m| <
≥

d. Then any solution (s, t)
to x2 − dy2 = m with (s, t) = 1 satisfies s = pn and t = qn for some n.

Proof First consider the case m > 0.

Suppose that s2 − dt2 = m. Then s
t =

√
d + m

t2 >
≥

d, and

0 <
s

t
− ≥

d = m

t (s + t
≥

d)
<

≥
d

t (s + t
≥

d)
= 1

t2(s/(t
≥

d) + 1)
.

As s
t >

≥
d, the quotient s/(t

≥
d) is greater than 1, and so

∣∣∣
s

t
− ≥

d
∣∣∣ <

1

2t2 .

The result follows from Proposition 8.7.
A similar argument applies when m < 0, but with some complications. It is easy

to check that s/t is a convergent to
≥

d precisely if t/s is a convergent to 1/
≥

d. We
rewrite the expression s2 − dt2 = m as

t2 −
(

1

d

)
s2 =

⎧
−m

d

⎨
,

and apply the argument above; after all, −m
d > 0 and

∣∣m
d

∣∣ <

√
1
d . The argument

works in the same way to conclude that t/s is a convergent to
√

1
d , and so s/t is a

convergent to
≥

d. �
It follows that units s + t

≥
d can be computed by looking through the con-

tinued fraction convergents to
≥

d , and finding those convergents pn/qn with
p2

n − dq2
n = ±1.

It remains to check that there are solutions to this equation. But we have already
remarked that Nsk = 1 for all values of s, where k denotes the period of

≥
d. This

means that there are convergents pn/qn with p2
n − dq2

n = ±1.
The same method works also for the case d ∼ 1(mod 4). Here, though, integers

are of two forms. Some integers are of the form a + b
≥

d with a, b ∈ Z; we can find
units of this form by solving a2 − db2 = ±1 as above. But other integers are of the
form a + b

≥
d where a and b are halves of odd integers. In this case, we need also

to find solutions to a2 − db2 = ±1 with a, b ∈ 1
2 Z. Multiplying through by 4, we

need to solve A2 − d B2 = ±4 with A, B ∈ Z. Again, Theorem 8.16 guarantees that
all solutions may be found in the continued fraction convergents to

≥
d (at least for

d ≥ 17; smaller cases can be treated by hand).

Example 8.17 Let’s find some units for Q(
≥

61). The continued fraction expansion
of

≥
61 is given by [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]. We can compute the convergents
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and the corresponding values of p2
n−61q2

n ; we find that the 7th convergent is 39/5 and

392 −61×52 = −4. It follows that 39+5
≥

61
2 is a unit, and then so are ±(39+5

≥
61)n

for any integer n.

Let’s now return to Z[≥2] and explain that the units ±(1 + ≥
2)n are the only

units.
We first compute the continued fraction:

≥
2 = 1 + (

≥
2 − 1)

1≥
2 − 1

= ≥
2 + 1 = 2 + (

≥
2 − 1),

and the process repeats with period 1. Thus the continued fraction is [1; 2], and the
table of convergents begins:

an 1 2 2 2 2 2
0 1 1 3 7 17 41 99
1 0 1 2 5 12 29 70

p2
n − 2q2

n −1 1 −1 1 −1 1

If κ denotes the smallest unit of Z[≥2] satisfying κ > 1, and κ = a + b
≥

2, then
a/b must be a continued fraction convergent of

≥
2. The calculation above shows

that κ = 1 + ≥
2.

Now we can explain that the units in Z[≥2] are all necessarily of the form ±κn .
Suppose that π is a unit of Z[≥2], and that π √= ±1. Then one of π, −π, 1/π and

−1/π is greater than 1. Suppose it is π (if not, redefine π so that it is this unit).
For some n, we have κn → π < κn+1. By multiplying throughout by κ−n , we get

1 → πκ−n < κ, and so we find a unit πκ−n strictly less than κ, and at least 1. But κ

was chosen to be the smallest unit which was greater than 1, and so we must have
πκ−n = 1. Then π = κn , as required.

It is easy to see that the argument above generalises to any real quadratic field.

Theorem 8.18 Suppose that K is a real quadratic field. Then there exists some unit
κ > 1 such that every unit of ZK is of the form ±κn for some integer n.

Proof Let κ denote the smallest unit of ZK greater than 1; this can always be found
from the continued fraction convergents of

≥
d . Let π be a unit of ZK , and that

π √= ±1 (which clearly correspond to the case n = 0). Suppose first that π > 1.
For some n ≥ 1, we have κn → π < κn+1. By multiplying throughout by κ−n ,

we get 1 → πκ−n < κ, and so we find a unit πκ−n strictly less than κ, and at least 1.
But κ was chosen to be the smallest unit which was greater than 1, and so we must
have πκ−n = 1. Then π = κn for some integer n ≥ 1.

If π √= ±1 is any unit, then one of π, −π, 1/π and −1/π is greater than 1, and
therefore of the form κn for some n ≥ 1, and so π = ±κn for some n ∈ Z. �
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Definition 8.19 A unit κ > 1 such that every unit in ZK is of the form ±κn is called
a fundamental unit.

From the proof of Theorem 8.18, it is clear that κ may be chosen to be the smallest
unit of ZK greater than 1, and we know that these may be found by examining the
continued fraction expansion of

≥
d .

The units in ZK , written U (ZK ) or Z×
K , are therefore given by {±1} × κZ,

and are isomorphic as an abstract group to C2 ×Z, the first component corresponding
to the choice of sign, and the second to the power of the fundamental unit.

Exercise 8.7 Find the fundamental units for Q(
≥

11), Q(
≥

51) and Q(
≥

58)

Exercise 8.8 Find fundamental units for Q(
≥

29) and Q(
≥

33). (Note that that d ∼
1(mod 4) in these cases.)

Sometimes it turns out that the continued fraction expansions of
≥

d only repeat
with quite a long period. In this case, one has to look a long way to find the funda-
mental unit.

Exercise 8.9 Find the fundamental unit for Q(
≥

94). You may assume that the con-
tinued fraction expansion for

≥
94 is [9; 1, 2, 3, 1, 1, 5, 1, 8, 1, 5, 1, 1, 3, 2, 1, 18].

As in the imaginary quadratic case, there is a link between class numbers of real
quadratic fields and quadratic forms. This time, however, the quadratic forms are
not positive definite, and counting the forms is not so straightforward in practice;
although there is a notion of reduced form, it works much less well.

The proofs are rather similar to those in the imaginary quadratic case (for a sketch
of the argument, see [3]). We will simply state the main result.

Suppose that K = Q(
≥

d) is a real quadratic field, with d a squarefree integer.
Let FK denote the set of proper equivalence classes of quadratic forms (a, b, c) of
discriminant DK where a, b and c do not share a common factor, and let C+

K denote
the narrow class group of K , defined as the quotient of the group of fractional ideals
of K by the subgroup of principal fractional ideals which admit a generator with
positive norm. Note that the class group CK is a quotient of the group of fractional
ideals by a possibly larger subgroup, so CK is a quotient of C+

K .
As in Sect. 6.5, each ideal a of ZK is of the form Za+Z(b+cαd), where αd = ≥

d

or 1+≥
d

2 depending on the value of d(mod 4), and we can define

ρ(a) = NK/Q(ax + (b + cαd)y)

NK/Q(a)
,

and this is a quadratic form of discriminant DK . Unlike the imaginary quadratic
case, it will not be positive (or negative) definite; some values of (x, y) will produce
positive values, and others negative.

Theorem 8.20 ρ induces a bijection from the narrow class group C+
K to FK . The

inverse is the map γ which associates to (a, b, c) ∈ FK the ideal

http://dx.doi.org/10.1007/978-3-319-07545-7_6
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γ ((a, b, c)) =
(

aZ + −b + ≥
DK

2
Z

)
σ,

where σ ∈ K × is any element such that aNK/Q(σ) > 0.
Write FK for the quotient of FK got from the equivalence relation (a, b, c) ⊂

(−a, b,−c). Then ρ induces a bijection from the class group CK to FK .

Rather less is known about the class numbers of real quadratic fields. For example,
it does seem that there are a lot of real quadratic fields with class number 1—it is
conjectured that there are infinitely many real quadratic fields with class number
1, but this is not known. More precisely, the Cohen-Lenstra heuristics suggest that
about 75 % of real quadratic fields ought to have class number 1.

There are explicit formulae for class numbers of any quadratic field (see Sect. 10.5);
the formula for the class number of a real quadratic field involves the logarithm of
the fundamental unit, and, as already noted, the behaviour of the fundamental unit is
erratic, and the relevant term in the explicit formula is hard to control.

8.4 Biquadratic Fields

One might imagine that fields of degree 3 might be the next easiest case to consider,
but in fact there is an interesting class of degree 4 number fields to consider. Degree
4 extensions fall into a number of classes, and we will consider those of the form
Q(

≥
m,

≥
n), where m and n are two squarefree integers with m √= n. Such fields

are known as biquadratic.
We use the techniques already developed to compute the rings of integers for the

biquadratic field K = Q(
≥

m,
≥

n). Note that
≥

k ∈ K , where k = mn/(m, n)2; the
three fields Q(

≥
m), Q(

≥
n) and Q(

≥
k) form the three quadratic subfields of K .

There are four embeddings from K into C:

a + b
≥

m + c
≥

n + d
≥

k ∗⇒

⎩
⎝⎝⎞

⎝⎝⎟

a + b
≥

m + c
≥

n + d
≥

k,

a + b
≥

m − c
≥

n − d
≥

k,

a − b
≥

m + c
≥

n − d
≥

k,

a − b
≥

m − c
≥

n + d
≥

k.

.

Apart from the identity, notice that these can be viewed as “conjugations” fixing
each of the three quadratic subfields in turn—for example, the final embedding in
the list above conjugates

≥
m and

≥
n, and therefore fixes

≥
m

≥
n = (m, n)

≥
k, and

is a conjugation fixing Q(
≥

k). Notice that each embedding actually has image equal
to K , so these embeddings are automorphisms of K . (This would not necessarily
happen for more general degree 4 number fields.)

Lemma 8.21 If K = Q(
≥

m,
≥

n), then we can assume, without loss of generality,
that we are in one of the following cases:

http://dx.doi.org/10.1007/978-3-319-07545-7_6
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1. m ∼ 3 (mod 4), k ∼ n ∼ 2 (mod 4);
2. m ∼ 1 (mod 4), k ∼ n ∼ 2 (mod 4);
3. m ∼ 1 (mod 4), k ∼ n ∼ 3 (mod 4);
4. m ∼ 1 (mod 4), k ∼ n ∼ 1 (mod 4).

Proof First, if 2|m and 2|n, clearly k is odd (recall m and n are squarefree, so neither
is divisible by 4). Then as Q(

≥
m,

≥
n) = Q(

≥
m,

≥
k), we see that we can always

assume that (at least) one of the two generators is the square root of an odd integer.
If m ∼ 3(mod 4) and n ∼ 1 (mod 4), we can simply interchange m and n as

Q(
≥

m,
≥

n) = Q(
≥

n,
≥

m).
If m ∼ 3 (mod 4) and n ∼ 3 (mod 4), we can replace n by k. Note that k ∼

mn (mod 4), as mn = k(m, n)2, and (m, n) is odd (as m and n are), so has square
congruent to 1 (mod 4). This implies that k ∼ mn ∼ 1 (mod 4), and Q(

≥
m,

≥
n) =

Q(
≥

m,
≥

k).
Thus after permuting m, n and k, we can assume that m and n satisfy the given

congruences; then k ∼ mn (mod 4) by the argument just given (m is always odd, so
(m, n) is), and also satisfies the given congruence. �

Let us begin by finding the rings of integers of K .

Proposition 8.22 With the numbering of Lemma 8.21, an integral basis for (the
rings of integers of) Q(

≥
m,

≥
n) are given by

1. {1,
≥

m,
≥

n,
≥

n+≥
k

2 };
2. {1,

1+≥
m

2 ,
≥

n,
≥

n+≥
k

2 };
3. {1,

1+≥
m

2 ,
≥

n,
≥

n+≥
k

2 };
4. {1,

1+≥
m

2 ,
1+≥

n
2 ,

(1+≥
m)(1+≥

n)
4 }.

Proof We will follow the method of Sect. 3.6.
Let σ ∈ ZK . Then we can write σ = a + b

≥
m + c

≥
n + d

≥
k for some

a, b, c, d ∈ Q.
As σ ∈ ZK , all of its conjugates

σ2 = a − b
≥

m + c
≥

n − d
≥

k

σ3 = a + b
≥

m − c
≥

n − d
≥

k

σ4 = a − b
≥

m − c
≥

n + d
≥

k

are also algebraic integers. As the set of algebraic integers is closed under addition,
the following are also algebraic integers:

σ + σ2 = 2a + 2c
≥

n

σ + σ3 = 2a + 2b
≥

m

σ + σ4 = 2a + 2d
≥

k.

http://dx.doi.org/10.1007/978-3-319-07545-7_6
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In the first case, where m ∼ 3 (mod 4), k ∼ n ∼ 2 (mod 4), Proposition 2.34
shows that these are integral if 2a, 2b, 2c, 2d ∈ Z. Thus

σ = A + B
≥

m + C
≥

n + D
≥

k

2
,

for A, B, C, D ∈ Z, where A = 2a, B = 2b, C = 2c and D = 2d.
Also,

σσ3 = (a + b
≥

m)2 − (c
≥

n + d
≥

k)2

= a2 + 2
≥

mab + mb2 − nc2 − 2ncd
≥

m/(m, n) − kd2

= A2 + m B2 − nC2 − k D2

4
+ AB − nC D/(m, n)

2

≥
m

is also integral. Thus 4|A2 + m B2 − nC2 − k D2 and 2|AB − nC D/(m, n). The
second implies that 2|AC (n is even and m is odd, so (m, n) is odd and n/(m, n)

is even), so that at least one of A and B is even. If only one were even, then
A2 +m B2 −nC2 − k D2 would be odd, and the first requirement would fail. So both
A and B are even.

The second divisibility is automatic, and the first reduces to 4|nC2 + k D2, or
2|C2 + D2, so that C and D are both even or both odd.

So integers are all of the form

σ = a + b
≥

m + c
≥

n + d
≥

k

with a, b ∈ Z and c and d both integral or both halves of odd integers.

Such elements are integer linear combinations of 1,
≥

m,
≥

n and
≥

n+≥
k

2 . The

first three are obviously integral, and it is a simple check that if φ =
≥

n+≥
k

2 , then

(4φ 2 − (n + k))2 = 4mn2/(m, n)2,

and that the congruence conditions on m, n and k imply that this simplifies to a monic
polynomial with integer coefficients,

φ 4 − (n + k)φ 2/2 +
(

n + k

4

)
= mn2/4(m, n)2,

so φ is also integral.

Thus an integral basis is {1,
≥

m,
≥

n,
≥

n+≥
k

2 }.
The remaining cases are similar, and some details will be left to the reader.
In the second and third cases, which can be treated together, m ∼ 1 (mod 4) and

k ∼ n ∼ 2 or 3 (mod 4). Again, suppose σ = a + b
≥

m + c
≥

n + d
≥

k ∈ ZK ; one
shows as in the first case that



8.4 Biquadratic Fields 187

σ = a + b
≥

m + c
≥

n + d
≥

k

with 2a, 2b, 2c, 2d ∈ Z. Again let σ2, σ3 and σ4 denote the conjugates of σ. Con-
sidering σ + σi again, one sees that a and b are both integers or both halves of odd
integers, and c and d are both integers or both halves of odd integers. Then every inte-

ger must be an integer linear combination of 1,
1+≥

m
2 ,

≥
n,

≥
n+≥

k
2 , and one shows

easily that these are all integral.
The final case, m ∼ k ∼ n ∼ 1 (mod 4) is a little different. Again we

consider σ + σ2, σ + σ3 and σ + σ4. By Proposition 2.34, these are integral if
4a, 4b, 4c, 4d ∈ Z, with 2a, 2b, 2c and 2d all integral or all halves of odd integers.
Thus

σ = A + B
≥

m + C
≥

n + D
≥

k

4
,

for A, B, C, D ∈ Z, where A = 4a, B = 4b, C = 4c and D = 4d are all even or
all odd. So we can write

σ = A◦ + B ◦≥m + C ◦≥n

4
+ D◦

(
1 + ≥

m

2

)(
1 + ≥

n

2

)
,

with D◦ ∈ Z. As

A◦ + B ◦≥m + C ◦≥n

4
= σ − D◦

(
1 + ≥

m

2

)(
1 + ≥

n

2

)
,

it must be integral, so A◦, B ◦, C ◦ are all even (the coefficient of
≥

k is 0, which is

even). Thus A◦ = 2a◦, B ◦ = 2b◦ and C ◦ = 2c◦, and we consider a◦+b◦≥m+c◦≥n
2 . This

is the sum of b◦
⎧

1+≥
m

2

⎨
+ c◦

⎧
1+≥

n
2

⎨
and a◦−b◦−c◦

2 ; it is an integer, so 2|a◦ − b◦ − c◦.
It follows that the integral basis is as given in the statement. �

Exercise 8.10 With the numbering of Lemma 8.21, show that the discriminant of K
is 64mnk in (1), 16mnk in (2) and (3), and mnk in (4).

Let us next work out the possible roots of unity in K .

Lemma 8.23 If K = Q(
≥

m,
≥

n), then the roots of unity in K have order 2, 4, 6,
8 or 12.

Proof Suppose K contains the r th roots of unity. Then μr ⊗ K , and so Q(μr ) ⊆ K .
Then we must have [Q(μr ) : Q] → 4. However, we will see in Corollary 9.9 that
[Q(μr ) : Q] = Φ(r), and so r must satisfy Φ(r) → 4.

If r = ⎠
p|r prp , then Φ(r) = ⎠

p|r prp−1(p−1). This shows that no prime p ≥ 7

can divide n (otherwise p − 1 ≥ 6 would divide Φ(r)); that 52 � r , 32 � r and 24 � r .
This leads to a small list of possibilities for r , and one quickly finds that r = 1, 2, 3,
4, 5, 6, 8, 10 or 12. Of course, −1 ∈ K , so we always have square roots, so r will be
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even. K = Q(μ10) is ruled out as it is not biquadratic; although it contains Q(
≥

5),
there is no other integer d with Q(

≥
d) ⊆ Q(μ10), and so Q(μ10) cannot be written

Q(
≥

5,
≥

n) for any n. This just leaves the list in the statement. �

The only possibility with r = 12 is Q(μ12) = Q(μ4, μ6) = Q(i,
≥−3), and the

only possibility with r = 8 is Q(μ8) = Q(i,
≥

2).
If both m > 0 and n > 0, then also k > 0, and every embedding of

≥
m,

≥
n

and
≥

k is real. We shall refer to this case as a real biquadratic field. Since the only
real roots of unity are ±1, Dirichlet’s Unit Theorem (Theorem 7.31) implies that
there are three units, Ψ1, Ψ2 and Ψ3 such that every unit can be written in the form
±Ψ

a1
1 Ψ

a2
2 Ψ

a3
3 , where a1, a2 and a3 are in Z. The fundamental units Ψi are, in general,

difficult to compute; we have already seen this for real quadratic fields, and the real
biquadratic case is considerably harder.

If m < 0, say, then each embedding maps
≥

m to ±≥
m, and this is not real. So

all the embeddings are complex, and occur in two complex conjugate pairs. We shall
refer to this case as an imaginary biquadratic field. Dirichlet’s Unit Theorem shows
that there is a single unit Ψ such that every unit can be written as ζ Ψa , where ζ is a
root of unity in K , and a ∈ Z. Here, however, the computation of the fundamental
unit Ψ is more tractable, and we state the result without proof (see [5], Theorem 42):

Theorem 8.24 Suppose that K = Q(
≥

m,
≥

n) is an imaginary biquadratic field.
Then there is a unique real quadratic subfield k ⊗ K . Let κ denote a fundamental
unit of k. Then either Ψ = κ is also a fundamental unit of K or Ψ2 = ζκ for some
ζ ∈ μK . In the first case, the units of UK are UkμK , and in the second case UkμK

has index 2 in UK .

8.5 Cubic Fields

A cubic field is a degree 3 extension of Q, and can therefore be defined as K = Q(φ ),
where φ is a root of an irreducible cubic equation f (X) ∈ Q[X ]. If φ1 = φ , φ2 and
φ3 denote the three complex roots of f (X), the three embeddings from K into C are
given by sending φ to each of the three roots—thus we have

δi : Q(φ ) −⇒ C.
∑

k

akφ
k ∗⇒

∑

k

akφ
k
i

There is a new phenomenon in the cubic case, not present in the cases considered
so far: the image of the embeddings may differ from K . Indeed, the image of the
embedding δi is Q(φi ), and we may have φi /∈ Q(φ ).

For example, suppose that f (X) = X3 − 2, so that we could have K = Q(
3
≥

2).
Then the other roots of f (X), which are ω

3
≥

2 and ω2 3
≥

2, where ω = e2π i/3 =
−1+i

≥
3

2 , do not belong to K .
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We can consider the splitting field L = Q(φ1, φ2, φ3), the field generated over Q

by all of the roots of f (X). (Notice that φ3 ∈ Q(φ1, φ2), so that L = Q(φ1, φ2).)

Lemma 8.25 If L is the splitting field of an irreducible cubic equation f (X), then
[L : Q] = 3 or 6.

Proof Certainly L contains φ1, and so L ⊃ Q(φ1). As the minimal polynomial of φ1
is a cubic, [Q(φ1) : Q] = 3. Over Q(φ1), the cubic f (X) must factor as

f (X) = (X − φ1) f1(X),

where f1(X) ∈ Q(φ1)[X ] is a quadratic with roots φ2 and φ3. If φ2 ∈ Q(φ1), then so
is φ3, and L = Q(φ1), of degree 3.

Otherwise, φ2 and φ3 are roots of an irreducible quadratic f1(X) over Q(φ1), and
so [Q(φ1, φ2) : Q(φ1)] = 2. The tower law for degrees of field extensions now gives
[L : Q] = 6. �

The reason that general cubic number fields are more complicated than biquadratic
number fields is that we often have to deal with the splitting field, which is generally
of degree 6. The cubic fields whose splitting field are of degree 3 are rather unusual,
and none of the natural family of cubic fields Q( 3

≥
a) have this property, whereas the

biquadratic fields are more natural examples of quartic number fields with a degree
4 splitting field.

The cubic equation might have three real roots; in this case, each of the embeddings
δi are real. Dirichlet’s Unit Theorem (see Theorem 7.31) then implies that every unit
is ±κ

a1
1 κ

a2
2 , for certain fundamental units κ1 and κ2, where a1 and a2 run through

integers.
Alternatively, the cubic might have one real root, and one complex conjugate

pair of roots. Then there is one real embedding, and one conjugate pair of complex
embeddings. Dirichlet’s Unit Theorem implies that the units are then of the form
ζκa , where ζ is a root of unity in K , κ is a fundamental unit, and a ∈ Z.

The most natural family of cubics to consider are those of the form Q( 3
≥

a), where
a is an integer not divisible by a cube. Then the minimal polynomial of 3

≥
a is X3 −a,

and the three roots of this are 3
≥

a, ω 3
≥

a and ω2 3
≥

a, where ω = e2π i/3 (note that
−ω − 1 = ω2). We therefore have one real root, and one complex conjugate pair, so
these cubics belong to the second group above.

We have already seen some examples of the computation of the rings of integers
of some cubic fields, in Sect. 3.6. The general case can be done in a similar way, and
we leave the details as an exercise (see also [9], pp. 49–51). Here is the main result:

Theorem 8.26 Suppose that K = Q( 3
≥

m), where m = m1m2
2, with m1 and m2

coprime and squarefree. Write m◦ = m2
1m2. Then if m2 √∼ 1 (mod 9), the ring of

integers has integral basis {1, 3
≥

m,
3
≥

m◦}, and K has discriminant −27m2
1m2

2. If

m2 ∼ 1 (mod 9), the ring of integers has integral basis {1, 3
≥

m,
m2±m2

3≥m+ 3≥m◦
3 },

and K has discriminant −3m2
1m2

2.
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Chapter 9
Cyclotomic Fields and the Fermat Equation

Cyclotomic fields are the number fields generated over Q by roots of unity. They
played (and still play) an important role in developing modern algebraic number
theory, most notably because of their connection with Fermat’s Last Theorem (see
Sect. 9.4). Whole books have been written about cyclotomic fields, but we will just
begin to develop a few of their properties.

9.1 Definitions

We have already used the notion of roots of unity at a number of points in the book,
but here is a formal definition:

Definition 9.1 An nth root of unity is a number π ≥ C such that π n = 1, so that
π = e2α ik/n for some k. We say that π is primitive if π a ∈= 1 for any 0 < a < n, so
that π = e2α ik/n for k coprime to n.

It follows that the number of primitive nth roots of unity is

β(n) = |{0 ≤ k < n | k and n are coprime}| .

Definition 9.2 The nth cyclotomic field is the number field Q(π ), where π is any
primitive nth root of unity.

Exercise 9.1 Check that this definition does not depend on π ; two different choices
of primitive nth roots of unity produce the same number field.

Example 9.3 Let π ≥ C be a primitive 5th root of unity. The minimal polynomial of
π over Q is X4 + X3 + X2 + X + 1. The remaining roots of this polynomial are the
other three primitive 5th roots of unity. If κ is one of them, then κ = π j for some j .
It follows that Q(κ) = Q(π ).

F. Jarvis, Algebraic Number Theory, Springer Undergraduate 191
Mathematics Series, DOI: 10.1007/978-3-319-07545-7_9,
© Springer International Publishing Switzerland 2014
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In order to state the most general result, we need to know more about cyclotomic
polynomials.

Definition 9.4 Let n ≡ 1. Define the nth cyclotomic polynomial by

ρn(X) =
∏

primitive nth roots of unity

(X − π ).

Let’s write down the first few:

ρ1(X) = X − 1

ρ2(X) = X + 1

ρ3(X) = (X − γ)(X − γ2) = X2 + X + 1

ρ4(X) = (X + i)(X − i) = X2 + 1

ρ5(X) = X5 − 1

X − 1
= X4 + X3 + X2 + X + 1

ρ6(X) = (X + γ)(X + γ2) = X2 − X + 1

where γ denotes a primitive cube root of unity. In general, one can see that ρp(X) =
X p−1
X−1 = X p−1 + · · · + 1 when p is a prime.

We have the following lemma:

Lemma 9.5
Xn − 1 =

∏

d|n
ρd(X).

Proof Any nth root of unity will be a primitive dth root for some d|n. Conversely,
if d|n, a primitive dth root of unity is an nth root of unity. �

For example, if n = 6, the 6th roots of unity are 1, −1, ±γ and ±γ2, where

γ = e2α i/3 = −1+≤−3
2 is a primitive cube root of unity. We split these into the

primitive 1st roots, i.e., 1, the primitive square roots, i.e., −1, the primitive cube
roots, i.e., γ and γ2, and the primitive 6th roots, −γ and −γ2. It is clear then that
the product of the cyclotomic polynomials ρd for d|6 is X6 − 1. As there is a factor
of ρn for every primitive nth root of unity, it follows that deg ρn = β(n).

The lemma allows us to compute cyclotomic polynomials recursively.

Proposition 9.6 ρn is a monic polynomial with integer coefficients.

Proof We prove this by induction on n. Note ρ1 = X − 1 satisfies the statement. Let
f (X) = ∏

d|n,d<n ρd(X). Then by induction, f is monic with integer coefficients.
By Lemma 9.5, Xn − 1 = f ρn . Now we claim that if p = qr is a product of
polynomials, where p and q are monic with integer coefficients, then so is r .
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For this, we suppose that

p(X) = Xs+t + p1 Xs+t−1 + · · · + ps+t

q(X) = Xs + q1 Xs−1 + · · · + qs

r(X) = r0 Xt + r1 Xt−1 + · · · + rt

By comparing coefficients of Xs+t , we see r0 = 1, so r is monic. Also, suppose we
have shown that r0, . . . rk−1 ≥ Z. Then, comparing coefficients of Xs+t−k , we see
that

pk = qk + qk−1r1 + · · · + q1rk−1 + rk,

so we see rk ≥ Z. Inductively, each ri ≥ Z, so r ≥ Z[X ]. This proves the claim.
Now we apply this with p = Xn − 1, q = f and r = ρn , to see that ρn ≥ Z[X ]

has integer coefficients. �

In fact, ρn(X) is irreducible in Q[X ] and hence is the minimal polynomial of any
primitive nth root of unity. There’s a simple proof if n is a prime number p, which
we will give first, using Eisenstein’s criterion.

Lemma 9.7 If p is prime, the polynomial ρp(X) is irreducible.

Proof In this case, ρp(X) = X p−1
X−1 , so that

ρp(X + 1) = (X + 1)p − 1

(X + 1) − 1

= (X + 1)p − 1

X

= X p−1 +
(

p

1

)
X p−2 +

(
p

2

)
X p−3 + · · · +

(
p

p − 2

)
X +

(
p

p − 1

)
,

and all the coefficients except the leading term are divisible by p, with the constant
term equal to p. Then Eisenstein’s criterion shows that ρp(X +1) is irreducible, and
therefore ρp(X) is also irreducible. �

The general case is harder; it seems first to have been proven by Kronecker, but
the proof we will give is due to Schur (1929).

Proposition 9.8 The polynomial ρn(X) is irreducible.

Proof Let fn(X) = Xn − 1, and we work out the discriminant of fn(X), defined
as the product the squares of the differences of roots. The same argument as in the
proof of Proposition 3.31 shows that

∏

i< j

(π i − π j )2 =
n∏

j=1

f √
n(π i ).
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But f √
n(X) = nXn−1, and so

∏

i< j

(π i − π j )2 = nn




n∏

j=1

π i

⎧

⎨
n−1

= ±nn .

Suppose that g(X)| fn(X), and that π is a root of g(X). Then we claim that π p is a
root of g(X) for any prime number p � n.

Suppose not, so that g(π p) ∈= 0. As g(X)| fn(X), we can factor g(X) = (X −
π1) · · · (X − πd) for some d. Then g(π p) is a product of differences of nth roots
of unity, so divides the discriminant ±nn already calculated. Modulo p, we have
g(X p) → g(X)p (mod p), and so p|g(π p) − g(π )p. Thus p|g(π p) as g(π ) = 0. But
g(π p) is an algebraic number dividing nn , and so p|n, a contradiction.

So if g(X) is a nontrivial factor of ρn(X), and therefore of fn(X), and π is a
primitive nth root of unity which is a root of g(X), then all powers π k must be roots
of g(X) for all k coprime to n; simply factor k into primes, and apply the result
above successively. In particular, every primitive nth root of unity is a root of g(X),
showing that g(X) = ρn(X), i.e., that ρn(X) is irreducible. �

Corollary 9.9 If π is a primitive nth root of unity, then [Q(π ) : Q] = β(n).

Exercise 9.2 xn > 1 is odd, ρ2n(X) = ρn(−X).

[Hint: show that π is a primitive 2nth root of unity if and only if −π is a primitive
nth root of unity.]

Exercise 9.3

1. Show that if m|n, then the degree of ρmn(X) is the same as the degree of ρn(Xm).
2. Prove also that these two polynomials have the same roots, and deduce that

ρmn(X) = ρn(Xm).
3. As a special case, deduce that ρpr (X) = ρp(X pr−1

), and is therefore equal to
X pr −1

X pr−1 −1
.

We will use the final part in the next section.

Exercise 9.4 Now let p and q be distinct primes. By considering X pq −1, show that
ρq(X p) = ρq(X)ρpq(X).

Exercises 1.2 and 1.3 shows that there are infinitely many primes congruent to
1 (mod 4) and to 1 (mod 6) respectively. The reader should observe that the 4th and
6th cyclotomic polynomials play a crucial role in these exercises. The next exercise
shows that the argument generalises (with some mild complication) to any n.

Exercise 9.5 Suppose that there are finitely many primes p1, . . . , pr which are con-
gruent to 1 (mod n). Write x = np1 . . . pr , and suppose that p|ρn(x).
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1. Deduce that p|xn − 1, and conclude that xn → 1 (mod p).
2. By considering which roots of unity are roots of the two sides, show that if n = kl

with l > 1, then ρn(X)| Xn−1
Xk−1

.

3. Suppose that xk → 1 (mod p) for some k < n and k|n. By considering the
expansion

xn − 1

xk − 1
= xk(l−1) + xk(l−2) + · · · + xk + 1,

modulo p, derive a contradiction.
4. Deduce that there are infinitely many primes congruent to 1 (mod n).

9.2 Discriminants and Integral Bases

In this section, we will compute integral bases for the cyclotomic fields Q(π ), and
their discriminants.

More precisely, put K = Q(π ) where π is a primitive nth root of unity, and then
we will show that ZK = Z[π ]; this implies that {1, π, . . . , π β(n)−1} forms an integral
basis. We will use this later (Sect. 9.4) only in the case where n is prime.

We first treat the case when n = pr is a power of a single prime p. We need a
lemma, which describes the ramification behaviour of p in K :

Lemma 9.10 Let n = pr , let π denote a primitive nth root of unity, and put α =
1 − π . Then

pZK = ◦α⇒k

where k = [Q(π ) : Q] = β(pr ) = pr−1(p − 1). Furthermore, NK/Q(α) = p.

Proof As above, the minimal polynomial of π is the nth cyclotomic polynomial. In
the case of a prime power n = pr ,

ρpr (X) = X pr − 1

X pr−1 − 1
= X pr−1(p−1) + X pr−1(p−2) + · · · + X pr−1 + 1.

The roots of ρpr (X) are all the primitive nth roots of unity, which are given by π g ,
with g ≥ G = {1 ≤ k ≤ n | p � g}. So

ρpr (X) =
∏

g≥G

(X − π g).

We now put X = 1 in these two expressions for ρpr (X). In the first, the explicit
expression on the right-hand side shows that ρpr (1) = p, and substituting this into
the second gives
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p =
∏

g≥G

(1 − π g),

so that
pZK = ◦p⇒ =

∏

g≥G

◦1 − π g⇒.

We claim that the ideals in the factorisation in this product are all the same. This
follows as the generators are associates:

1 − π g

1 − π
= 1 + π + · · · + π g−1 ≥ Z[π ],

and conversely, we can find h ≥ G with gh → 1 (mod pr ), and then

1 − π

1 − π g
= 1 − (π g)h

1 − π g
= 1 + π g + · · · + π g(h−1) ≥ Z[π ].

Thus ◦1 − π g⇒ = ◦1 − π ⇒ for all g ≥ G. Then

pZK =
∏

g≥G

◦1 − π g⇒ = ◦1 − π ⇒|G| = ◦α⇒k,

with k as in the statement of the lemma.
To get the claim about the norm, we simply apply NK/Q to this equality. We know

that NK/Q(p) = p[K :Q] = pk . On the other hand, the norm of the right-hand side is
NK/Q(α)k , so that NK/Q(α) = p. �

Next, we can compute the discriminant of the basis {1, π, . . . , π k−1}:
Lemma 9.11 With notation as in the previous lemma, the discriminant
σ{1, π, . . . , π k−1} = ±ps for some exponent s.

Proof Write ρ(X) = ρpr (X) = X pr −1
X pr−1 −1

, and rearrange this as

(X pr−1 − 1)ρ(X) = X pr − 1. (9.1)

We will use Proposition 3.31 to compute the discriminant, so we need to compute
the norm of ρ√(π ). Differentiate (9.1), to get

(pr−1 X pr−1−1)ρ(X) + (X pr−1 − 1)ρ√(X) = pr X pr −1.

Substitute X = π :

(π pr−1 − 1)ρ√(π ) = prπ pr −1 = prπ−1.
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Put κ = π pr−1
; this is a pth root of unity, and so NQ(κ)/Q(κ − 1) = ±p by

Lemma 9.10. Then NQ(π )/Q(κ − 1) = (±p)[Q(π ):Q(κ)] = ±p pr −1. Take norms
of the equality (κ − 1)ρ√(π ) = prπ−1, and find

NQ(π )/Q(κ − 1)NQ(π )/Q(ρ√(π )) = NQ(π )/Q(pr )NQ(π )/Q(π )−1.

Substituting in the earlier calculations, noting that π is a root of unity (and thus has
norm ±1), this becomes:

±p pr−1
NQ(π )/Q(ρ√(π )) = (pr )pr−1(p−1).

By Proposition 3.31, σ{1, π, . . . , π k−1} can be computed as NQ(π )/Q(ρ√(π )), which
can now be read off as ±ps , where s = r pr−1(p − 1) − pr−1 by Proposition 3.31.
�

In passing, we note that this implies that p is the only prime ramifying in Q(πpr )

(see Proposition 5.44). We can also use this to see that Q(π ) is monogenic, so that it
has an integral basis generated by a single element.

Proposition 9.12 Let n = pr , and let π denote a primitive nth root of unity. Then
the ring of integers of K = Q(π ) is given by Z[π ].
Proof Write ZK for the ring of integers. As σ{1, π, . . . , π k−1} = ±ps for some
integer s, where k = [Q(π ) : Q], we know from Lemma 3.32 that

psZK ∩ Z[π ] ∩ ZK .

As in Lemma 9.10, if α = 1 − π , then NQ(π )/Q(α) = p. Thus ZK /αZK ∼= Z/pZ,
so that ZK = Z + αZK, and therefore

ZK = Z[π ] + αZK . (9.2)

Multiplying through by α gives

αZK = αZ[π ] + α2ZK ,

and substituting this into (9.2) gives

ZK = Z[π ] + (αZ[π ] + α2ZK ) = Z[π ] + α2ZK . (9.3)

We can repeat this procedure to see that

ZK = Z[π ] + αmZK

for all m ≡ 1. However, if we put m = s, we have already observed that α sZK ∩
Z[π ], and so we conclude that ZK = Z[π ], as required. �



198 9 Cyclotomic Fields and the Fermat Equation

This completes the argument for prime power exponents; given a general
exponent, we just need to combine the information from each of its prime powers.

Theorem 9.13 Let n ≥ Z≡1, and let π denote a primitive nth root of unity. Then the
ring of integers of K = Q(π ) is given by Z[π ].

Proof Write n = pr1
1 . . . prs

s . For i = 1, . . . , s, write πi = π n/p
ri
i , which are pri

i th
roots of unity. Write Ki = Q(πi ) ∩ Q(π ). The Ki are cyclotomic fields, and ZKi =
Z[πi ] by Proposition 9.12. So each ZKi is generated by powers of πi, which, in turn,
are therefore powers of π .

As the discriminants of K1 and K2 are coprime, we conclude from Proposition 3.34
that the ring of integers of K1 K2 = Q(π1, π2) has a basis consisting of powers π

a1
1 π

a2
2 ,

and that these are again all powers of π .
Similarly we conclude that the ring of integers of K1 K2 K3 = Q(π1, π2, π3) also

has a basis consisting of powers of π; continuing in this way, we see that the ring of
integers of K1 . . . Ks = Q(π1, . . . , πs) = Q(π ) has a basis consisting of powers of
π , and so ZK = Z[π ] as required. �

9.3 Gauss Sums and Quadratic Reciprocity

In this section, we give a proof of quadratic reciprocity using “Gauss sums”, which
arise as weighted sums of roots of unity.

We will also sketch a proof that cyclotomic fields need not always have unique
factorisation. Even in the case Q(π ), with π a pth root of unity for some prime p,
of most interest for the Fermat equation (see Sect. 9.4), it turns out that Q(π ) does
not always have unique factorisation. In fact, Q(π ) has unique factorisation for all
p ≤ 19, but for all p > 19, Q(π ) fails to have unique factorisation (and the class
group grows quickly; already for p = 97, the class number of Q(π ) is greater than
1011). We will sketch the argument that Q(π23) fails to have unique factorisation.

Partly for this reason, we will initially develop some theory of Gauss sums just
for this example. We first show that the Q(π23) contains Q(

≤−23) as a subfield, and
the proof will introduce what will be a Gauss sum.

Lemma 9.14 Q(
≤−23) ⊂ Q(π23) and [Q(π23) : Q(

≤−23)] = 11.

Proof Put

φ =
22⎩

a=1

⎝ a

23

⎞
π a,

where π = π23, and
⎟ a

23

⎠
is the Legendre symbol. We claim that φ 2 = −23, so that≤−23 = ±φ ≥ Q(π23).
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Indeed,

φ 2 =
22⎩

a=1

22⎩

b=1

⎝ a

23

⎞
π a

(
b

23

)
π b.

Given a pair (a, b), define c by b → ac (mod 23), and note that if a is fixed, then
when b runs through all values 1, . . . , 22, so does c. Thus:

φ 2 =
22⎩

a=1

22⎩

b=1

⎝ a

23

⎞
π a

(
b

23

)
π b

=
22⎩

a=1

22⎩

c=1

(
a2c

23

)
π a+ac

=
22⎩

a=1

21⎩

c=1

⎝ c

23

⎞
π a(1+c) +

22⎩

a=1

(−1

23

)

=
21⎩

c=1

[⎝ c

23

⎞ 22⎩

a=1

π a(1+c)

]
+ 22 · (−1)

as

(−1

23

)
= −1

=
[⎩21

c=1

⎝ c

23

⎞
· (−1)

]
− 22

as
∑22

a=0 π ka = 0 for k ∈→ 0 (mod 23), so that
∑22

a=1 π ak = −1

= 1 · (−1) − 22 = −23

using
∑22

c=1

⎟ c
23

⎠ = 0, so that
∑21

c=1

⎟ c
23

⎠ = − ⎟−1
23

⎠
.

The second claim follows from the tower law for field extensions; we know
[Q(π23) : Q] = β(23) = 22, and [Q(

≤−23) : Q] = 2. �

Exercise 9.6 Generalise Lemma 9.14 to show that in Q(πp), with p prime, the Gauss

sum φ = ∑p−1
a=1

⎝
a
p

⎞
π a

p satisfies

φ 2 =
{

p, if p → 1 (mod 4),
−p, if p → 3 (mod 4).

and so φ 2 =
⎝−1

p

⎞
p.
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Gauss sums allow us to give a fairly simple proof of the famous Quadratic
Reciprocity Theorem, using the generalisation Exercise 9.6 of Lemma 9.14:

Theorem 9.15 Suppose that p and q are distinct odd primes. Then

(
p

q

) (
q

p

)
= (−1)(p−1)(q−1)/4.

Proof As above, write π = πp, and consider again the Gauss sum φ(π ) =
∑p−1

a=1

⎝
a
p

⎞
π a , and consider also φ(π q) = ∑p−1

a=1

⎝
a
p

⎞
(π q)a . Observe that

(
q

p

)
φ(π q) =

p−1⎩

a=1

(
aq

p

)
π aq = φ(π ), (9.4)

using the multiplicativity of the Legendre symbol.
We can also evaluate φ(π q) by working modulo qZ[πp]:

φ(π q) → φ(π )q

= φ(π )
⎝
φ(π )2

⎞(q−1)/2

= φ(π )p∗(q−1)/2

= φ(π )

(
p∗

q

)

where we write p∗ =
⎝−1

p

⎞
p as in Exercise 9.6, using Euler’s criterion a(q−1)/2 →

⎝
a
q

⎞
(mod q). Comparing this with (9.4), we see that

⎝
q
p

⎞ ⎝
p∗
q

⎞
= 1. But

(
p∗

q

)
=

(
(−1)(p−1)/2 p

q

)
=

(−1

q

)(p−1)/2 (
p

q

)
= (−1)(p−1)(q−1)/4

(
p

q

)
,

and the result follows. �

Now let’s sketch the argument that Q(π23) fails to have unique factorisation. This
uses a new concept which will not be used elsewhere in the book; we will merely give
the definition, and state its main properties. The interested reader will find proofs
in [10] and many other graduate level textbooks in the subject.

Definition 9.16 Suppose that L ⊗ K is an extension of number fields, and that A is
an ideal in ZL . Then the relative ideal norm NL/K (A) is the ideal in ZK generated
by all of the elements NL/K (A), where A ≥ A.
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The relative ideal norm has the following properties.

1. NL/K (AB) = NL/K (A)NL/K (B) for ideals A and B in ZL ;
2. if P is a prime ideal in ZL , then NL/K (P) = p f , where p = P∩ ZK, and where

f is the degree of the residue field extension ZL/P ⊗ ZK /p;
3. if a is an ideal of ZK , then NL/K (aZL) = a[L:K ];
4. if A = ◦Φ⇒ is a principal ideal of ZL , then NL/K (A) = ◦NL/K (Φ)⇒ is a principal

ideal of ZK ;
5. if M ⊗ L ⊗ K are extensions of number fields, then NM/K (A) = NL/K (NM/L

(A)), if A is an ideal of ZM .

Recall that the ring of integers of Q(
≤−23) is Z[Ψ], where Ψ = 1+≤−23

2 . We can
compute the class number of Q(

≤−23) using the quadratic forms method of Chap. 6;
we find that there are three distinct reduced forms of discriminant −23, namely

x2 + xy + 6y2, 2x2 + xy + 3y2, 2x2 − xy + 3y2.

Thus the class number of Q(
≤−23) is 3, and the class group is therefore isomorphic

to C3, the cyclic group of order 3.
We will also consider the factorisation of the prime 2 in Q(

≤−23) by using
Proposition 5.42. The minimal polynomial of Ψ is X2 − X + 6, and

X2 − X + 6 → X2 + X = X (X + 1) (mod 2),

so that in Z[Ψ], we have 2Z[Ψ] = pp√. Again, the general techniques earlier (see
Remark 5.43) show that we can take

p = ◦2, Ψ⇒, p√ = ◦2, Ψ − 1⇒.

Note that the methods of Chap. 4 show that p and p√ are not principal; there are no
elements of norm 2 in the ring of integers of Q(

≤−23). Thus p is not trivial in the
class group.

Since the class number of Q(
≤−23) is 3, we see that p3 is principal, and so p has

order 3 in the class group.
Let P be a prime ideal of Q(π23) lying above p. Write NQ(π23)/Q(

≤−23)(P) as p f

for some f . As f |[Q(π23) : Q(
≤−23)] (proven in the same way as Theorem 5.41),

we see that f |11. It follows that NQ(π23)/Q(
≤−23)(P) = p or p11.

But p has order 3 in the class group, and so p f can only be principal if 3| f . We
conclude that NQ(π23)/Q(

≤−23)(P) is not a principal ideal in Q(
≤−23).

But if P were a principal ideal in Q(π23), the norm NQ(π23)/Q(
≤−23)(P) would

be a principal ideal in Q(
≤−23), and we conclude that P is not a principal ideal in

Q(π23).
It follows that Q(π23) does not have unique factorisation.

http://dx.doi.org/10.1007/978-3-319-07545-7_6
http://dx.doi.org/10.1007/978-3-319-07545-7_4
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Exercise 9.7 Verify explicitly that p3 is principal in the above calculation by listing
the generators 23, 22Ψ, 2Ψ2 and Ψ3 for p3, verifying that each is divisible by the

element 3−≤−23
2 , so that p3 ∩ ◦ 3−≤−23

2 ⇒, and checking that both sides have norm 8.

Remark 9.17 In fact, it was already known to Kummer that Q(π23) fails to have
unique factorisation. Kummer’s argument was based on the product

⎝
1 + π + π 5 + π 6 + π 7 + π 9 + π 11

⎞ ⎝
1 + π 2 + π 4 + π 5 + π 6 + π 10 + π 11

⎞
,

where we write π for π23. This is easily seen to be divisible by 2 (see Exercise 9.8). It
is also clear that neither factor is divisible by 2. However, Kummer showed that 2 is
irreducible in Z[π ], the ring of integers in Q(π23), and therefore the same methods as
Chap. 4 show that 2 is not a prime element, and therefore that Z[π ] cannot be a UFD.

Exercise 9.8 Verify the assertion that the product in Remark 9.17 is divisible by 2,
by multiplying out the brackets.

9.4 Remarks on Fermat’s Last Theorem

The Fermat equation, xn + yn = zn , has inspired more mathematical breakthroughs
than any other. As is well-known, around 1638, Fermat wrote in the margin of his
copy of a translation of the Arithmetica of Diophantus:

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et gen-
eraliter nullam in infinitum ultra quadratum potestatem in duos eiusdem nominis fas est
dividere cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non
caperet.

In modern notation, this translates to the statement that when n ≡ 3, the Fermat
equation has no solution with x , y and z all nonzero integers. Fermat’s comments
that he had a marvellous proof but that the margin was too small led to this becoming
the most notorious unsolved problem in mathematics for centuries. Several organ-
isations offered prizes for its proof, but it was not until the work of Wiles [17],
partly with Taylor [14], that the proof was finally completed. The work of Wiles and
Taylor–Wiles is well beyond the scope of an undergraduate course, although Fermat’s
proof for n = 4, and Euler’s proof for n = 3 would be more accessible.

The importance of the result is slight; however, the results which it inspired have
been enormously influential (and include most of the contents of this book!). Thus
the book would seem incomplete without a short sketch of how the Fermat equation
has influenced the subject.

Following Fermat’s proof of the case n = 4 (see [7], for example), it suffices to
prove the result in the case that n = p is an odd prime. It is usual to distinguish two
cases, the first case, where none of x , y and z are divisible by p, and the second case,
where exactly one of x , y and z is divisible by p. It tends to be easier to prove results

http://dx.doi.org/10.1007/978-3-319-07545-7_4
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using the elementary techniques available to us in the first case, and we shall restrict
attention to that case in this sketch; however, with more work, the same results can
generally be obtained in the second case also.

We now sketch an elementary (but false!) argument to prove Fermat’s Last The-
orem in the first case.

For p = 3, the equality x p + y p = z p can be regarded as a congruence modulo 9;
as cubes are congruent to ±1 or to 0, we can only recover the congruence if one of
the cubes is 0 (mod 9). Suppose it is x3, say. But this implies that x must be divisible
by 3, and this contradicts the requirement of the first case, that p � x .

Now consider the case where p ≡ 5, and suppose that x , y and z are a nontrivial
solution to the first case of the Fermat equation. Dividing throughout by a common
factor, we can assume x , y and z have no common factor. We will try to establish a
contradiction.

Let π = e
2α i

p ∈= 1 be a pth root of unity. Write K = Q(π ); we know that
[K : Q] = p − 1. From the Fermat equation, we deduce

z p = x p + y p

= (x + y)(x + π y)(x + π 2 y) · · · (x + π p−1 y),

an equality in Z[π ].
The left-hand side of this equation is a pth power. We claim that the factors on the

right-hand side are all coprime. Indeed, if x + y and x + π y, say, shared a common
factor θ ≥ Z[π ] which is not a unit in Z[π ], then θ |x + y and θ |x + π y would imply
that θ |(x + y) − (x + π y), and so θ |(1 − π )y.

But we can’t have θ |1 − π , as NK/Q(1 − π ) = p, and if θ is not a unit, then we
would need NK/Q(θ) = p. But θ |x + y, and x + y is one of the factors of z. So
NK/Q(θ) would divide NK/Q(z) = z p−1. We would conclude that p|z p−1, and so
p|z, contradicting the assumption that we are in the first case.

So we must have θ |y. But then θ |x + y and θ |y implies that θ |x , and so θ

is a common factor of x and y (and therefore z). Then NK/Q(θ)|NK/Q(x) and
NK/Q(θ)|NK/Q(y), so that NK/Q(θ) is an integer dividing x p−1 and y p−1. As x and
y are coprime, we must have NK/Q(θ) = 1, so that θ is a unit, again a contradiction.

Similar arguments apply (the reader might like to treat this as an exercise) if any
pair x +π i y and x +π j y shared a common factor; this again leads to a contradiction.

So the factors on the right-hand side of the equality

z p = (x + y)(x + π y)(x + π 2 y) · · · (x + π p−1 y)

are coprime; any divisor of z p can therefore only divide one of the factors on the
right-hand side—and since any divisor of z p occurs to multiplicity p, we must have
that each factor on the right-hand side is a pth power.

We have seen (Proposition 9.12) that an integral basis for Z[π ] is given by
{1, π, . . . , π p−2}.
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We can write x + π y = Φ p for some Φ ≥ Z[π ], and can write Φ = a0 + a1π +
· · · + ap−2π

p−2. Then

Φ p → a p
0 + a p

1 π p + · · · + a p
p−2(π

p−2)p (mod p)

→ a p
0 + a p

1 + · · · + a p
p−2 (mod p),

where we regard two elements of Z[π ] as congruent modulo p if each of the coeffi-
cients of 1, π, . . . , π p−2 differs by a multiple of p.

Let Φ denote the complex conjugate of Φ; if π = e
2α i

p , say, then π = e− 2α i
p =

π p−1. It follows that Φ = a0 + a1π
p−1 + a2π

p−2 + · · · + ap−2π
2, and the same

argument shows that Φ p is also congruent modulo p to a p
0 +a p

1 +· · ·+a p
p−2 (mod p).

On the other hand, Φ p = x + π y = x + π p−1 y. So we see that π y →
π p−1 y (mod p). Then p|π y(π p−2 −1), and so NK/Q(p)|NK/Q(y)NK/Q(π p−2 −1).
But p � y, as we are in the first case, and NK/Q(p) = p p−1, and NK/Q(π p−2−1) = p
by Lemma 9.10.

This is a contradiction.
Of course, things are really more complicated! We’ve made two false deductions

in the course of this argument, and alert readers will probably have spotted both.
Firstly, we cannot conclude that x + π y = Φ p; there may be units involved. It

would have been more correct to conclude that x + π y = δΦ p for some unit δ and
Φ ≥ Z[π ]. In fact, this is not such a serious issue; Kummer was able to study the
structure of the units in Z[π ] carefully, and prove that the units are all of the form
rπ k , where r is a real number. The argument above can be modified to derive the
same contradiction, with just a little more work.

More importantly, though, it may happen that Z[π ] does not have unique factori-
sation. This is a much more serious issue.

When Z[π ] does have unique factorisation, this does indeed complete the proof
of Fermat’s Last Theorem in the first case. However, this is rare!

As we have already seen, Kummer’s solution was to work with ideals instead of
elements. We use the above argument, and reach the equality

z p = (x + y)(x + π y)(x + π 2 y) · · · (x + π p−1 y)

as before. We regard this now as an equality of principal ideals:

◦z⇒p = ◦x + y⇒◦x + π y⇒◦x + π 2 y⇒ · · · ◦x + π p−1 y⇒.

Since we have unique factorisation into ideals, we can now conclude that each ideal
on the right-hand side is a pth power. That is, we have

◦x + π y⇒ = ap



9.4 Remarks on Fermat’s Last Theorem 205

for some ideal a. The rest of the argument given above would work if we knew that
a was a principal ideal; then we could choose a = ◦Φ⇒, and use this Φ in the rest of
the argument.

This is often possible. Indeed, it is clearly valid if every ideal is principal (which
would mean that the class number is 1). But in fact we can see that it will hold in
greater generality. We know that ap = ◦x + π y⇒ is principal, and therefore the class
of ap is trivial in the class group of K . If the size of this class group is coprime to p,
we could conclude that the class of a would have to be trivial also, as elements whose
pth power is trivial in groups of order prime to p are necessarily themselves trivial.
So as long as the class number of K is not divisible by p, we can derive the result.

Definition 9.18 The prime number p is regular if p does not divide the class number
of Q(πp). If a prime p is not regular, it is irregular

In this way, Kummer was able to prove the first case of Fermat’s Last Theorem for
all regular primes p, and, as already remarked, he was also able to treat the second
case using similar, but rather more complicated, ideas. The reader is referred to [1]
or to [6] for complete details. Thus:

Theorem 9.19 (Kummer) If p is a regular prime, then x p + y p = z p has no
nontrivial solution.

Many primes are regular; indeed, computational evidence suggests that, up to any
given bound, there are more regular primes than irregular ones. Of the primes up to
100,000, for example, 3,789 are irregular, and 5,803 are regular. Unfortunately, it is
not known that there are infinitely many regular primes, although it is known that
there are infinitely many irregular primes. The first irregular primes are 37, 59, 67,
101 and 103.

In fact, there is a reasonably simple way to recognise regular primes, but again the
details are sufficiently complicated that the reader is referred to [1]. The Bernoulli
numbers appear in the evaluation of the Riemann zeta function at even integers, and
are defined by the series expansion

x

ex − 1
=

⊃⎩

n=0

Bn

n! xn .

Then B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 ,…. (In fact, B2k+1 = 0 for all

k ≡ 1, as is easy to see from the observation that x
ex −1 + x

2 is an even function of x .)
They can easily be computed recursively, given B0 = 1, from the relation

(
k + 1

0

)
B0 +

(
k + 1

1

)
B1 + · · · +

(
k + 1

k

)
Bk = 0

for all k ≡ 1.
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Then Kummer showed that

Proposition 9.20 The prime p is regular if and only if it does not divide any numer-
ator of B2, B4, . . . , Bp−3.

Exercise 9.9 Use this to compute Bk recursively for k = 1, . . . , 16. Deduce that all
primes up to 19 are regular, and use the proposition to give an irregular prime. Extend
your calculations as far as you wish; you will need a computer algebra package to
get far enough to see that 37 is irregular.



Chapter 10
Analytic Methods

Although this is a textbook on algebraic number theory, some interesting algebraic
results can be obtained by incorporating some analytic techniques.

One well-known result is Dirichlet’s Theorem on primes in arithmetic progres-
sions. This states that for all a coprime to a modulus m, there are infinitely many
primes which are congruent to a (mod m). However, the proof is largely analytic in
nature, and the use of algebraic objects (modular characters) in the analytic proof
has a different nature from most of the topics previously developed in this book.

Instead, we will focus on another theorem of Dirichlet, the Analytic Class Number
Formula. This formula expresses the residue of the zeta function of a number field
(to be defined below) in terms of many of the invariants associated to the number
fields which we have defined earlier in this text.

10.1 The Riemann Zeta Function

Recall that the zeta function was introduced by Euler, as a function on real numbers
s > 1, and defined by

π(s) =
≥∑

n=1

1

ns
.

Euler computed the values of π(2k) (for k ∈ 1), and was aware of the behaviour
of the function as s gets closer to 1. Its importance lies in its relation to prime
numbers; Euler also defined an alternative Euler product expression for π(s) as a
product of terms for each prime (see Proposition 10.2) which begins to hint at the
deep connections.

But it was Riemann who really developed the theory of the zeta function, to the
extent that it is now named after him. He seems to have been the first to consider s
as a complex variable, and to realise that questions about the distribution of prime
numbers are inextricably linked with the complex behaviour of the zeta function,
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Mathematics Series, DOI: 10.1007/978-3-319-07545-7_10,
© Springer International Publishing Switzerland 2014



208 10 Analytic Methods

and, in particular, the values it takes to the left of the line Re(s) = 1, where the
definition above no longer converges.

To do this, he explained that the zeta function had a meromorphic continuation to
the entire complex plane, with a simple pole at s = 1 (with residue 1). Furthermore,
this continuation has a symmetry, relating the values of π at s and at 1 − s, known as
the functional equation: if we write α(s) = β−s/2κ (s/2)π(s), where κ (z) denotes
the usual Gamma function κ (z) = ∫ ≥

0 e−t t z dt
t , then

α(s) = α(1 − s).

There are several proofs of this, and we will give one in the next section. Using
classical formulae for the Gamma function, this formula can be rewritten

π(s) = 2sβ s−1 sin(βs/2)κ (1 − s)π(1 − s).

Let’s look at how
∑≥

n=1
1
ns behaves on the real line.

Proposition 10.1
∑≥

n=1
1
ns converges absolutely for any real s > 1, and is not

convergent for s ≤ 1.

Proof This is a standard result in analysis. We will prove the two statements using
the comparison test.

First, consider the case s ≤ 1. Then 1
ns ∈ 1

n . But the sum
∑≥

n=1
1
n diverges, as

can be seen by grouping the terms:

≥∑

n=1

1

n
= 1 + 1

2
+

(
1

3
+ 1

4

)
+

(
1

5
+ · · · + 1

8

)
+

(
1

9
+ · · · + 1

16

)
+ · · ·

> 1 + 1

2
+

(
1

4
+ 1

4

)
+

(
1

8
+ · · · + 1

8

)
+

(
1

16
+ · · · + 1

16

)
+ · · ·

= 1 + 1

2
+ 1

2
+ 1

2
+ 1

2
+ · · ·

which diverges.
Now let’s treat the case s > 1. We can group the terms very slightly differently:

≥∑

n=1

1

ns
= 1 +

(
1

2s
+ 1

3s

)
+

(
1

4s
+ · · · + 1

7s

)
+

(
1

8s
+ · · · + 1

15s

)
+ · · ·

< 1 +
(

1

2s
+ 1

2s

)
+

(
1

4s
+ · · · + 1

4s

)
+

(
1

8a
+ · · · + 1

8s

)
+ · · ·

= 1 + 2.
1

2s
+ 4.

1

4s
+ 8.

1

8s
+ · · ·

= 1 + 1

2s−1 + 1

4s−1 + 1

8s−1 + · · ·
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= 2s−1

2s−1 − 1
,

using the formula for summing a geometric progression. This completes the proof.
�

We must therefore restrict attention to s > 1 when viewing π(s) as a real function.
In fact, the definition makes sense for s a complex number, although this won’t

be important for us, and we won’t prove it; it turns out that the definition above of
π(s) converges for Re(s) > 1.

One method to estimate the value of π(s) is to compare it with the integral
∫ ≥

1
dx
xs .

As
n+1∫

n

dx

xs
= n1−s − (n + 1)1−s

s − 1
,

and x−s is a decreasing function, the area under the graph on this interval of length
1 lies in between the values of the function at n and at n + 1:

(n + 1)−s <
n1−s − (n + 1)1−s

s − 1
< n−s;

summing this over n = 1, 2, 3 . . . gives

π(s) − 1 <
1

s − 1
< π(s).

Writing this as two inequalities, and rearranging them gives

1

s − 1
< π(s) <

1

s − 1
+ 1.

This gives the rate at which π(s) ≡ ≥ as s ≡ 1. (The analytic class number formula,
which forms the main result of the chapter, will be the corresponding formula for
the zeta function of a number field.)

We have not yet explained the relationship of the π function to prime numbers.
This is due to the Euler product for π(s).

Proposition 10.2 If Re(s) > 1, then

π(s) =
≥∑

n=1

1

ns
=

⎧

p

(
1 − 1

ps

)−1

.
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Proof Simply observe that |p−s | = p−Re(s) < 1, so that

(
1 − 1

ps

)−1

= 1 + 1

ps
+ 1

p2s
+ 1

p3s
+ · · · .

Now multiply all these together:

⎧

p

(
1 − 1

ps

)−1

=
⎧

p

(
1 + 1

ps
+ 1

p2s
+ · · ·

)

= π(s),

as every 1
ns appears exactly once in the product (by uniqueness of prime factorisation).

�
As a corollary, we note that this gives a proof that there are infinitely many prime

numbers. Here are two ways to deduce this from the Euler product:

1. We know that π(s) ≡ ≥ as s ≡ 1. This would not happen if there were only
finitely many terms in the product (each term tends to the finite limit p

p−1 ).
2. Alternatively, you may know that

π(2) =
≥∑

n=1

1

n2 = β2

6
.

But β2 is irrational, so we see that
⎨

p(1 − p−2)−1 = ⎨
p

p2

p2−1
= π(2) = β2

6 is
irrational, which would not happen if there were only finitely many terms in the
product.

Another implication of the Euler product is that

log π(s) =
∑

p

− log(1 − p−s).

But recall that log(1 − z) = −(z + z2/2 + z3/3 + · · · ) if |z| < 1, so p−s is a good
approximation to − log(1 − p−s): the error is less than p−2s . Indeed, for s > 1 real,

log π(s) =
∑

p

p−s +
∑

p

(
p−2s

2
+ p−3s

3
+ p−4s

4
+ · · ·

)
.

As

p−2s

2
+ p−3s

3
+ p−4s

4
+· · · <

p−2s

2
+ p−3s

2
+ p−4s

2
+· · · = p−2s

2

(
1

1 − p−s

)
< p−2s
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for s > 1 (so p−s < 2−1 = 1
2 ),0

log π(s) ≤
∑

p

p−s

for s > 1; the error is at most
∑

p p−2s <
∑

n n−2s = π(2s) < π(2). We deduce
that, for s > 1 but near 1, ∑

p

p−s ≤ log
1

s − 1
.

Note that this proves that
∑

p
1
p diverges (and therefore yet another proof that there

are infinitely many primes).

10.2 The Functional Equation of the Riemann Zeta Function

In fact, in this book we will only really need to understand the behaviour of the
function for real values of s. However, in analytic number theory, one can prove
some wonderful results about the distribution of the prime numbers by allowing s to
be a complex variable. For completeness, although we will not need it elsewhere in
the book, we sketch a proof of the functional equation for π(s). The reader should
note that it will be valid for all s √ C.

First set ρ(t) = ∑
n√Z e−βn2t2

. We will need this only for t √ R; for t →= 0, the
individual terms in the sum converge so fast to 0 that ρ(t) converges for all t →= 0.

Lemma 10.3 For t →= 0, we have ρ(1/t) = tρ(t).

Proof Recall that
∫ ≥
−≥ e−βx2

dx = 1. Fix t > 0, and write f (x) = e−β t2x2
. Define

F(x) =
∑

n√Z
f (x + n) =

∑

n√Z
e−β t2(x+n)2

,

which again converges because the terms tend to 0 very quickly.
By definition, F(0) = ρ(t). Also, note that F is periodic with F(x) = F(x + 1),

so it will have a Fourier series

F(x) =
∑

m√Z
ame2β imx ,

where

am =
1∫

0

F(x)e−2β imx dx
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=
∑

n√Z

1∫

0

f (x + n)e−2β imx dx

=
∑

n√Z

1∫

0

f (x + n)e−2β im(x+n) dx

(as e2β imn = 1 for m, n √ Z)

=
≥∫

−≥
f (x)e−2β imx dx

=
≥∫

−≥
e−β t2x2−2β imx dx

=
≥∫

−≥
e−β(t x+i m

t )2
e−βm2/t2

dx

= e−βm2/t2

≥∫

−≥
e−β(t x+i m

t )2
dx

= t−1e−βm2/t2

by a change of variable (put y = t x + i m
t ), and using Cauchy’s Theorem to see that

the integral along the real axis is the same as the integral along the line Im(z) = m
t .

Now

ρ(t) = F(0) =
∑

m√Z
am =

∑

m√Z
t−1e−βm2/t2 = t−1ρ(1/t),

so the result follows. �

Next, we give a relationship between this function and the Riemann zeta function;
the functional equation of the Riemann zeta function will follow from the lemma
we’ve just proven.

Proposition 10.4 For Re(s) > 1, we have

≥∫

0

(ρ(t) − 1) t s−1 dt = β−s/2κ (s/2)π(s),

where κ (z) is the usual Gamma function, defined by κ (z) = ∫ ≥
0 e−t t z dt

t .
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Proof For Re(s) > 1, and from the definition of ρ(t), the integral is

2

≥∫

0

∑

n∈1

e−βn2t2
t s−1 dt = 2

∑

n∈1

≥∫

0

e−βn2t2
t s−1 dt

= 2
∑

n∈1

n−s

≥∫

0

e−βu2
us−1 du = 2π(s)

≥∫

0

e−v(v/β)s/2−1(2β)−1dv

= β−s/2κ (s/2)π(s),

using the changes of variable u = nt and v = βu2, as required. �

Now we prove the functional equation:

Theorem 10.5 Suppose that Re(s) > 1. Write α(s) = β−s/2κ (s/2)π(s). Then

α(s) = α(1 − s).

Proof We break up the integral defining α(s) for Re(s) > 1:

α(s) =
≥∫

1

(ρ(t) − 1) t s−1 dt +
1∫

0

(ρ(t) − 1) t s−1 dt.

Now make the change of variable u = 1/t in the second integral, and recall that
ρ(t) = ρ(1/t)/t to get

α(s) =
≥∫

1

(ρ(t) − 1) t s−1 dt +
1∫

0

(ρ(t) − 1) t s−1 dt

=
≥∫

1

(ρ(t) − 1) t s−1 dt +
≥∫

1

(uρ(u) − 1) u−s−1 du

=
≥∫

1

(ρ(t) − 1) t s−1 dt +
≥∫

1

ρ(u)u−s du −
≥∫

1

u−s−1 du

=
≥∫

1

(ρ(t) − 1) t s−1 dt +
≥∫

1

ρ(u)u−s du − 1

s

=
≥∫

1

(ρ(t) − 1) t s−1 dt +
≥∫

1

(ρ(u) − 1) u−s du − 1

s
− 1

1 − s
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=
≥∫

1

(ρ(t) − 1)
⎩
t s−1 + t−s

⎝
dt − 1

s
− 1

1 − s
.

This integral converges for all s √ C to a holomorphic function, and the final
expression is clearly unchanged when s is replaced by 1 − s. So we see that α(s) =
α(1 − s) (and also that α has simple poles at s = 0 and s = 1 with residues −1 and
+1 respectively). �

Since α(s) is defined for all s →= 0, 1 from the proof above, and α(s) =
β−s/2κ (s/2)π(s), we can define π(s) for all s →= 0, 1. The theorem then gives
a relation, known as the functional equation, between π(s) and π(1 − s). In fact,
standard properties of the Gamma function allow one to rewrite this as

π(s) = 2sβ s−1 sin
⎞βs

2

⎟
κ (1 − s)π(1 − s).

10.3 Zeta Functions of Number Fields

Around the same time that Riemann was doing his work on the zeta function, others
(notably Kummer, Dedekind and Dirichlet) were developing the theory of number
fields. We know that we do not have unique factorisation in general number fields,
so if we were to try to generalise the definition of the Riemann zeta function to other
number fields using elements in the ring of integers, we would not have an Euler
product. However, as we have seen, ideals in the ring of integers do factorise uniquely
into prime ideals, and we will therefore generalise the definition of the zeta function
by using ideals.

For this reason, it is natural to make the definition:

Definition 10.6 The Dedekind zeta function of K is given by

πK (s) =
∑

a

1

NK/Q(a)s
,

where a runs through all distinct non-zero integral ideals of the field K (i.e., the
ideals of ZK ).

Note that when K = Q, we get exactly the Riemann zeta function. We will see
later that the Dedekind zeta function is also convergent for Re(s) > 1.

Remark 10.7 πK (s) has an Euler product (valid for Re(s) > 1):

πK (s) =
⎧

p

1

1 − NK/Q(p)−s
,
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where the product is taken over all of the prime ideals of ZK . The proof is identical
to that for the Riemann zeta function, and is equivalent to unique factorisation of
ideals.

It is natural to ask for generalisations of Riemann’s results for π(s) to πK (s).
The first important result is due to Dirichlet, who proved the analytic class number
formula, showing that πK (s) has a singularity at s = 1, and computing the limit of
(s − 1)πK (s) as s ≡ 1. (In complex variable language, πK (s) has a simple pole
at s = 1, and Dirichlet’s formula gives the residue.) The formula for the residue
involves many of the arithmetic quantities related to K, such as the class number, the
discriminant, the numbers of real and complex embeddings, and so on.

It is also true that πK (s) has a meromorphic continuation to the whole complex
plane, and satisfies a functional equation. This proof is just beyond the scope of this
book. It was first done by Hecke in the 1920s, but nowadays it is usual to follow
Tate’s argument from his thesis of 1950. A modern treatment of Hecke’s proof can
be found in [10]; Tate’s thesis was republished in [2].

10.4 The Analytic Class Number Formula

The geometrical methods of Chap. 7, together with a little analysis, allow us to prove
the beautiful analytic class number formula.

First we need to recall some definitions from Chap. 7, and especially concerning
Dirichlet’s Unit Theorem Theorem 7.31). There, we showed that if K is a number
field with r1 real embeddings {γ1, . . . , γr1} and r2 pairs of complex embeddings
{σ1, σ 1, . . . , σr2 , σ r2}, then there are r = r1 + r2 − 1 fundamental units φ1, . . . , φr

such that every unit φ can be written

φ = π φ
Φ1
1 . . . φΦr

r

with π √ μ(K ), the roots of unity in K , and Φi √ Z.
The proof of this result used lattice-theoretic methods, and Minkowski’s Theorem

in particular. Recall that we had a commutative diagram:

where KR = Rr1 × Cr2 . The proof of Dirichlet’s Unit Theorem worked by showing
that the units Z×

K ◦ K × mapped to a complete lattice in the r -dimensional subspace
H ◦ Rr1+r2 defined by H = {x √ Rr1+r2 | tr(x) = 0}. In particular, the image
of Z×

K is an r -dimensional lattice in Rr1+r2 , and if we write Ψ = � ⇒ i , the vectors
Ψ(φ1), . . . , Ψ(φr ) are a basis for the lattice, and so span H .

http://dx.doi.org/10.1007/978-3-319-07545-7_7
http://dx.doi.org/10.1007/978-3-319-07545-7_7
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The analytic class number formula will also involve a term describing how “widely
spaced” the units are in H (in a similar way to how the discriminant describes how
widely spaced the integers ZK are). Recall that if x √ ZK,

Ψ(x) = (log |γ1(x)|, . . . , log |γr1(x)|, log |σ1(x)|2, . . . , log |σr2(x)|2).

We can measure how widely spaced the units are in H , by applying Ψ to the
fundamental units, and taking a determinant.

Definition 10.8 Let φ1, . . . , φr denote a set of fundamental units, where r =
r1 + r2 − 1. Consider the map Ψ : K −≡ Rr1+r2 above, and write Ψ(x) =
(Ψ1(x), . . . , Ψr1+r2(x)), so that Ψi (x) = log |γi (x)| if 1 ≤ i ≤ r1 and is
log |σi−r1(x)|2 if i > r1. Consider the (r + 1) × r -matrix whose entries are Ψi (φ j ),
and define the regulator RK to be the absolute value of the determinant of any
r × r -minor of this matrix.

Exercise 10.1 Show that the value of the regulator does not depend on the choice of
the r × r -minor.

Exercise 10.2 If K is a real quadratic field, show that RK = log δ, where δ > 1 is
a fundamental unit for K . Hence give the regulator of Q(

∩
2).

Now we turn to the statement and proof of the analytic class number formula.

Theorem 10.9 (Analytic Class Number Formula) πK (s) converges for all Re(s) > 1.
It has a simple pole at s = 1, and

lim
s≡1

(s − 1)πK (s) = 2r1+r2βr2 RK

m|DK | 1
2

hK ,

where RK is the regulator of K, hK is the class number of K, and m = |μ(K )|, the
number of roots of unity in K .

We are going to translate the result into a calculation of volumes of certain regions
in KR

∼= Rn .

Definition 10.10 We say that a cone in Rn is a subset X ◦ Rn such that if x √ X
and Ψ √ R>0, then Ψx √ X .

Note that the same definition applies to any real vector space, such as KR.

Proposition 10.11 Let X be a cone in Rn, and let

F : X −≡ R>0

be a function satisfying F(α x) = αn F(x) for x √ X, α √ R>0. Suppose that the set
T = {x √ X | F(x) ≤ 1} is bounded, with non-zero volume v = vol(T ), and let κ

be a lattice in Rn, with ∆ = vol(κ ). Then the function
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Z(s) =
∑

κ ⊂X

1

F(x)s

converges for Re(s) > 1 and lim
s≡1

(s − 1)Z(s) = v
∆

.

Proof Note that, for all r √ R>0, vol( 1
r κ ) = ∆

rn . If N (r) denotes the number of
points in 1

r κ ⊂ T , then

v = vol(T ) = lim
r≡≥ N (r)

∆

rn
= ∆ lim

r≡≥
N (r)

rn
.

But N (r) is also the number of points in {x √ κ ⊂ X | F(x) ≤ rn}, at least for the
nice F we consider. Order the points of κ ⊂ X so that

0 < F(x1) ≤ F(x2) ≤ . . . ,

and let rk = F(xk)
1
n . Then N (rk − φ) < k ≤ N (rk) for all φ > 0. It follows that

N (rk − φ)

(rk − φ)n

(
rk − φ

rk

)n

<
k

rn
k

≤ N (rk)

rn
k

,

and thus

lim
rk≡≥

k

rn
k

= lim
k≡≥

k

F(xk)
= v

∆
,

as the two outer terms have the same limit. We use this to approximate the terms in
the sum Z(s). From the above, given φ > 0, there exists k0 such that for all k ∈ k0,
one has ⎞ v

∆
− φ

⎟ 1

k
<

1

F(xk)
<

⎞ v

∆
+ φ

⎟ 1

k
.

Summing,

⎞ v

∆
− φ

⎟s ≥∑

k=k0

1

ks
<

≥∑

k=k0

1

F(xk)s
<

⎞ v

∆
+ φ

⎟s ≥∑

k=k0

1

ks
.

Note also that as the Riemann zeta function converges for Re(s) > 1, the same holds
for Z(s). We also know the residue of π(s) at s = 1, so we multiply through by
(s − 1), and let s tend to 1 from above.

As
lim
s≡1

(s − 1)π(s) = 1,

and we observe that
lim
s≡1

(s − 1)[a finite sum] = 0,
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we conclude that
v

∆
− φ ≤ lim

s≡1
(s − 1)Z(s) ≤ v

∆
+ φ.

As this holds for all φ > 0, the result follows. �

This will be useful both to see the convergence of πK (s) for Re(s) > 1 and in
studying the behaviour of πK (s) as s ≡ 1 from above.

We begin by making a few simple manipulations. Write

πK (s) =
∑

C√CK

fC (s),

the sum running over ideal classes in the class group, and where

fC (s) =
∑

a√C

1

NK/Q(a)s
.

We will compute lim
s≡1

(s − 1) fC (s) for each ideal class C, and will observe that

the result is independent of C . This will account for the factor hK in the formula.

Choose any integral b in the class C−1, the inverse class; then for all a √ C , ab
is therefore principal, ∗α⊗, say. The association a �≡ ∗α⊗ gives a bijection between
integral ideals a √ C , and principal ideals ∗α⊗ divisible by b (i.e., elements α √ b).

It follows that

fC (s) = NK/Q(b)s
∑

b|∗α⊗

1

|NK/Q(α)|s .

Note that ∗α⊗ = ∗α⊃⊗ if and only if α and α⊃ are associate. We may therefore assume
that α runs over a complete set B of non-associate members of b.

Let
κ = i(b) = {x √ KR | x = i(α) for some α √ b},

and
� = {x √ KR | x = i(α) for some α √ B}.

Thus

fC (s) = NK/Q(b)s
∑

x√�

1

|N (x)|s .

We will find a cone X ◦ KR such that every α √ B has i(α) associate to precisely
one member of X . Then � = κ ⊂ X , and we will be able to apply Proposition 10.11
with F(x) = |N (x)|.

First, we define the cone X . Let φ1, . . . , φr be fundamental units (where r = r1 +
r2 − 1). Write Ψ = (1, . . . , 1, 2, . . . , 2) be the vector in Rr1+r2 whose components
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are Ψi = 1 if i ≤ r1 (corresponding to the real components in KR) and Ψi = 2 if
i > r1 (corresponding to the complex embeddings).

The vectors Ψ(φ1), . . . , Ψ(φr ) span H , as we saw in Corollary 7.30; thus the set

{Ψ, Ψ(φ1), . . . , Ψ(φr )}

are a basis for Rr1+r2 . So for all �(x) √ Rr1+r2 , we can write

�(x) = αΨ + α1Ψ(φ1) + · · · + αrΨ(φr ) (10.1)

for some coefficients α , αi √ R.
Observe that tr Ψ(φi ) = 0 (as Ψ(φi ) √ H ), and so tr �(x) = α.tr Ψ = αn. But

tr �(x) = log |N (x)|, and so α = 1
n log |N (x)|.

Definition 10.12 The cone X ◦ KR will be defined to consist of all x such that

1. N (x) →= 0
2. the coefficients αi (i = 1, . . . , r ) of �(x) satisfy 0 ≤ αi < 1
3. 0 ≤ arg(x1) < 2β

m , where x1 is the first component of x .

Let α √ R>0. Then N (α x) = αn N (x) →= 0. Next, �(α x) = (log α)Ψ + �(x), so
the coefficients of Ψ(φi ) are unchanged. Finally, arg(α x1) = arg(x1). Thus if x √ X ,
and α √ R>0, then α x √ X , and we deduce that X is a cone in KR.

Lemma 10.13 Let y √ Rn, with N (y) →= 0. Then y is uniquely of the form x .i(φ),
where x √ X and φ √ Z×

K .

Proof One has
�(y) = γ Ψ + γ1Ψ(φ1) + · · · + γrΨ(φr ).

Write γi = ki + αi , with ki √ Z, αi √ [0, 1). Let

δ = φ
k1
1 . . . φkr

r ,

and put z = y.i(δ−1). Suppose arg(z1) = φ, and write

0 ≤ φ − 2βk

m
<

2β

m

for some integer k. Choose π √ μ(K ) such that ζ1(π ) = e
2β i
m , where ζ1 gives the

first component of the map K −≡ KR, and then x = y.i(δ−1).i(π−k) √ X . Clearly
then y = x .i(φ) for a unit φ, and this decomposition is clearly unique from the
construction. �

It follows that in every class of associate members of ZK, there is a unique one
whose image in Rn lies in X .

Then we have
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fC (s) = NK/Q(b)s
∑

x√κ ⊂X

1

|N (x)|s

and we can evaluate the sum exactly as in Proposition 10.11.
Recall that we needed to calculate v = vol(T ), where T was the set

{x √ X | |N (x)| ≤ 1}

and ∆ = vol(κ ). But we computed the latter in Proposition 7.13; ∆ = NK/Q(b)

|DK | 1
2 . It merely remains to calculate v.

Proposition 10.14 vol(T ) is given by

v = 2r1+r2βr2 RK

m
.

Proof First note that if φ √ Z×
K , then multiplication by φ is volume-preserving. This

is simply because the volume form is multiplied by value of the determinant of the
transformation x �≡ x .i(φ), which is |NK/Q(φ)| = 1.

Put

⎠T =
m−1⋃

k=0

T .i(π k).

Then ⎠T corresponds to the cone X defined only by conditions (1) and (2) of Defini-
tion 10.12. It follows that vol(⎠T ) = m.vol(T ).

Now let T denote the set

{x √ ⎠T | xi > 0 for all i = 1, . . . , r1}.

It follows that

vol(T ) = 2r1

m
vol(T ).

Thus it suffices to calculate vol(T ). We make several changes of variables, before
computing the volume. Firstly, we consider the isomorphism

KR −≡ Rn

(x1, . . . , xr1 , z1, . . . , zr2) �≡ (x1, . . . , xr1 , R1, φ1, . . . , Rr2 , φr2)

where zk = Rkeiφk , so that

�(x1, . . . , xr1 , z1, . . . , zr2) = (log x1, . . . , log xr1 , log R2
1, . . . , log R2

r2
).

The Jacobian of this change of variables is easily computed to be R1 . . . Rr2 .
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Then T is given by

1. x1 > 0, . . . , xr1 > 0, R1 > 0, . . . , Rr2 > 0 and x1 · · · xr1(R1 · · · Rr2)
2 ≤ 1; note

that this quantity is N (x).
2. in the formula (10.1) giving the j th component of �(x),

�(x) = αΨ + α1Ψ(φ1) + · · · + αrΨ(φr ),

one has 0 ≤ αk < 1.

The φr1+1, . . . , φr1+r2 independently take values in [0, 2β). We replace the vari-
ables x1, . . . , xr1 , R1, . . . , Rr2 by the variables α, α1, . . . , αr , got from the formula

�(x) = αΨ + α1Ψ(φ1) + · · · + αrΨ(φr ),

so that α = N (x). Now the image of T is given simply by 0 < α ≤ 1, 0 ≤ αk < 1
for all k. We need to compute the Jacobian of this change of variable. Considering
the j th components, we get

log x j = 1

n
log α +

r∑

k=1

αkΨ j (φk)

log R2
j = 2

n
log α +

r∑

k=1

αkΨr1+ j (φk)

and we can read off

νx j

να
= x j

nα
; νx j

ναk
= x jΨ j (φk); ν R j

να
= R j

nα
; ν R j

ναk
= R j

2
Ψr1+ j (φk).

Thus the Jacobian of this change of variables is given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
nα

x1Ψ1(φ1) . . . x1Ψ1(φr )

...
...

. . .
...

xr1
nα

xr1Ψr1(φ1) . . . x1Ψr1(φr )
R1
nα

R1
2 Ψr1+1(φ1) . . . R1

2 Ψr1+1(φr )

...
...

. . .
...

Rr2
nα

Rr2
2 Ψr1+r2(φ1) . . .

Rr2
2 Ψr1+r2(φr )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



222 10 Analytic Methods

= x1 . . . xr1 R1 . . . Rr2

2r2 nα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 Ψ1(φ1) . . . Ψ1(φr )
...

...
. . .

...

1 Ψr1(φ1) . . . Ψr1(φr )

2 Ψr1+1(φ1) . . . Ψr1+1(φr )
...

...
. . .

...

2 Ψr1+r2(φ1) . . . Ψr1+r2(φr )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

One adds all rows to the top one to get

J = x1 . . . xr1 R1 . . . Rr2

2r2 nα

∣∣∣∣∣∣∣∣∣

n 0 · · · 0
· Ψ2(φ1) · · · Ψ2(φr )
...

...
. . .

...

· Ψr1+r2(φ1) · · · Ψr1+r2(φr )

∣∣∣∣∣∣∣∣∣

Expanding along the top row, we see that this determinant is exactly n RK, where RK

denotes the regulator. Recalling that α = x1 . . . xr1(R1 . . . Rr2)
2, it follows that

|J | = RK

2r2 R1 . . . Rr2

.

Finally, we can deduce the result:

vol(T ) = 2r2 volR(T )

= 2r2

∫

T

dx1 . . . dxr1 dyr1+1dzr1+1 . . . dyr1+r2 dzr1+r2

= 2r2

∫

T

R1 . . . Rr2 dx1 . . . dxr1 d R1 . . . d Rr2 dφ1 . . . dφr2

= 2r2(2β)r2

∫
R1 . . . Rr2 dx1 . . . dxr1 d R1 . . . d Rr2

= 2r2(2β)r2

∫
|J |R1 . . . Rr2 dαdα1 . . . dαr

= 2r2βr2 RK .

Thus

vol(T ) = 2r1+r2βr2 RK

m
.

�
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Thus

lim
s≡1

(s − 1) fC (s) = NK/Q(b)
v

∆
= NK/Q(b)

2r1+r2βr2 RK

m

/
NK/Q(b)|DK | 1

2 .

So

lim
s≡1

(s − 1) fC (s) = 2r1+r2βr2 RK

m|DK | 1
2

,

which is independent of C . Summing over the ideal classes gives

lim
s≡1

(s − 1)πK (s) = 2r1+r2βr2 RK

m|DK | 1
2

hK ,

which is the analytic class number formula.

10.5 Explicit Class Number Formulae

The main result of the last section, that

lim
s≡1

(s − 1)πK (s) = 2r1(2β)r2 hK RK

m|DK | 1
2

,

can be used to give explicit expressions for class numbers. Indeed, apart from the class
number, the other terms in the formula, as well as the residue of the zeta function,
can often be calculated numerically with relative ease, and so the class number can
be recovered from these calculations.

We will present explicit formulae for quadratic fields. Thus we consider K =
Q(

∩
d), with d squarefree. As already noted, the principal ideal ∗p⊗ for a prime p of

Z can factorise in ZK in three different ways:

1. p can split, so that ∗p⊗ = p1p2 with p1 →= p2, and NK/Q(p1) = NK/Q(p2) = p;
2. p can be inert, so that ∗p⊗ remains a prime ideal in ZK, with norm p2;
3. p can ramify, so that ∗p⊗ = p2 for some prime ideal p of norm p.

We define

χ(p) =





1, p splits
−1, p is inert

0, p ramifies

As we remarked in Sect. 5.9, χ is actually a Dirichlet character modulo DK, that is,
χ(p) depends only on the value of p (mod DK ), and it can be extended to all integers
n, in such a way that if m and n are coprime, then χ(mn) = χ(m)χ(n).

http://dx.doi.org/10.1007/978-3-319-07545-7_5
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Consider the factors corresponding to the primes dividing ∗p⊗ in the Euler product

πK (s) =
⎧

p

(
1 − 1

NK/Q(p)s

)−1

.

By the remark above, these are

(
1 − 1

ps

)−2

,

(
1 − 1

p2s

)−1

,

(
1 − 1

ps

)−1

in the split, inert and ramified cases respectively. In each case, there is a factor⎞
1 − 1

ps

⎟−1
, which is the Euler factor of the Riemann zeta function at p, and the

other factor is given by
⎞

1 − χ(p)
ps

⎟−1
. We define the Dirichlet L-function

L(s, χ) =
⎧

p

(
1 − χ(p)

ps

)−1

,

and we conclude that
πK (s) = π(s)L(s, χ).

(Note in passing that the multiplicativity of χ and unique factorisation in Z give the
alternative expression L(s, χ) = ∑≥

n=1
χ(n)

ns .)
We can multiply through by (s−1) and let s ≡ 1 in this expression. The Riemann

zeta-function has a simple pole at s = 1 with residue 1, and the residue of πK (s) is
given by the analytic class number formula. We get

2r1(2β)r2 hK RK

m|DK | 1
2

= L(1, χ).

In the case of a real quadratic field, we have r1 = 2, r2 = 0, m = 2, and
RK = log φ, where φ > 1 is a fundamental unit, and we conclude that

hK =
∩|DK |
2 log φ

L(1, χ).

If K is imaginary quadratic, then r1 = 0, r2 = 1, RK = 1, and so

hK = m
∩|DK |
2β

L(1, χ).

(Recall that m = 2 except for the fields Q(i) and Q(
∩−3), both of which have class

number one.)
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The quantities L(1, χ) are not so easy to compute exactly (see [1] for more
details); however, it is sometimes relatively easy to compute enough terms in the
sum L(1, χ) = ∑≥

n=1
χ(n)

n to get an idea of the value of hK (especially in the
imaginary quadratic case), recalling that it must be integral.

Example 10.15 Consider K = Q(
∩

2). Then the fundamental unit is φ = 1 + ∩
2,

and the discriminant is DK = 8. Then

hK =
∩

8

2 log(1 + ∩
2)

L(1, χ) ≤ 1.605L(1, χ).

But

L(1, χ) = 1 − 1

3
− 1

5
+ 1

7
+ · · · < 1,

as is easily seen by grouping terms suitably, and so hK is a positive integer less than
1.605; we conclude that hK = 1.

Exercise 10.3 Show that the class number of Q(
∩

3) is 1.

As a final comment, we remark that there are closed form expressions for L(1, χ)

in both the real and imaginary quadratic cases, but their evaluation is beyond the
scope of this book, and we merely state the result, referring the reader to [1] for
details.

Theorem 10.16 Let K = Q(
∩

d) be a quadratic field with discriminant DK and
character χ .

If d > 0, let φ > 1 denote its fundamental unit; the product

δ =
⎧

0<a<DK /2

sin

(
βa

DK

)χ(a)

is a unit in K , and hK can be computed from the equality δ = φ−hK .
If d < 0 and DK < −4, then

hK = 1

2 − χ(2)

∑

0<a<|DK |/2

χ(a),

where χ(a) = 0 if a and DK are not coprime.

Exercise 10.4 Use these closed form expressions to compute the class numbers of
Q(

∩
17) and Q(

∩−23).

For more on the numerical computation of class numbers, see [3].
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10.6 Other Embeddings

In Chap. 7 and again in this chapter, we have proven results about number fields by
using their embeddings into R and C. The aim of this short section is to orient the
reader towards further topics, although lack of space means that we will merely hint
at some consequences of the theory we begin to develop.

These embeddings arise as completions of K with respect to valuations defined
with the aid of embeddings. For example, a real embedding K −≡ R enables us
to give some notion of “size” to elements of K , as the real numbers come equipped
with a notion of absolute value. Similarly, complex numbers have a modulus, and this
enables us to assign a notion of size with respect to (conjugate pairs of) embeddings.

Any notion of “size” ought to satisfy the following:

Definition 10.17 A norm on a number field K is a function | | : K −≡ R∈0 such
that

• |a| = 0 if and only if a = 0;
• |ab| = |a|.|b| for all a, b √ K ;
• |a + b| ≤ |a| + |b| for all a, b √ K .

This should look a little like the definition of a metric, but we are using both the
multiplicative and additive properties of the field here. The third condition is known
as the triangle inequality. These properties encapsulate what we know about the
absolute value on R, and the modulus on C, and it follows that each embedding ζ

from K into R or C then gives us a norm | |ζ , defined by

|α|ζ = |ζ(α)|,

where the right-hand side is the absolute value if ζ is a real embedding, and is the
modulus if ζ is a complex embedding. Notice that ζ and ζ give the same norm in the
latter case.

Exercise 10.5 Verify that |1| = 1 and that | − 1| = 1.

Here is another (not very interesting) example of a norm:

Definition 10.18 The trivial norm | |0 is defined by

|a|0 =
{

0 if a = 0,

1 if a →= 0.

Exercise 10.6 Show that if | | is a norm on K such that |x | = 1 for all nonzero
x √ ZK then | | is the trivial norm.

There are more interesting norms on Q! Another interesting family is given by
the p-adic norms, defined in the following exercise:

http://dx.doi.org/10.1007/978-3-319-07545-7_7
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Exercise 10.7 Suppose that p is a prime number. If a
b √ Q, write a

b = pr m
n , where

neither m nor n is divisible by p. Show that the function | |p, defined by

∣∣∣
a

b

∣∣∣
p

= p−r

is a norm on Q.

The problem of classifying all norms on Q was solved by Ostrowski. Let us write
| |≥ for the usual absolute value on Q.

Theorem 10.19 (Ostrowski’s Lemma) Every non-trivial norm on Q is either equal
to a power |a|t≥ of the ordinary absolute value, where 0 < t ≤ 1, or is a power |a|tp
of the p-adic norm for some prime p, and some t > 0.

Proof Suppose that | | is a non-trivial norm. We will distinguish two cases.
Firstly, suppose that for every integer m ∈ 1, we have |m| ≤ 1. If |m| = 1 for all

m √ Z, then | | is trivial. So there must be some m > 1 with |m| < 1. Let p be the
smallest such integer; we’ll show that it is prime. If not, we could write p = rs with
r > 1, s > 1, and as |r ||s| = |p| < 1, either |r | < 1 or |s| < 1, contradicting the
minimality of p.

If m √ Z, with p � m, write m = qp + r with 0 < r < p, and q √ Z. As q √ Z,
|q| ≤ 1, and so |qp| = |q||p| < 1. Also |r | = 1, as p was the smallest positive
integer with |p| < 1, and r < p. So |m| = 1.

That is, if m √ Z is nonzero, we have |m| = 1 if p � m. Write c = |p| < 1. Given
any integer n, take its prime factorisation

n =
⎧

q

qnq ,

and then the multiplicativity of the norm shows that |n| = cn p . The same conclusion
applies to quotients of two integers m

n , and we conclude that | | is a power of the
p-adic norm as in the statement.

The second case occurs when |x | > 1 for some x √ Z. We can assume that x > 1
(using the fact that |−1| = 1). We need to show that | | is then a power of the absolute
value.

We will consider powers xn of x , and let n vary. Let y > 1 be an integer, and
write xn in base y:

xn = cm ym + cm−1 ym−1 + · · · + c0,

where cm, . . . , c0 √ {0, 1, . . . , y − 1} and cm →= 0. Of course y and the coefficients
ci depend on n. Then

m ≤ log xn

log y
= n log x

log y
.
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By the triangle inequality,

|x |n = |xn| ≤ (m + 1)M max{|y|m, 1},

where M = max{|1|, . . . , |m − 1|} is independent of n. So

|x |n = |xn| ≤
(

n log x

log y
+ 1

)
M max{|y|n log x/ log y, 1};

taking nth roots and letting n ≡ ≥ gives

|x | ≤ max{|y|log x/ log y, 1}.

But x was chosen so that |x | > 1, and we conclude that |y| > 1 also.
So if |x | > 1 for some integer x > 1, we see that |y| > 1 for all integers y > 1,

and we conclude that
|x | ≤ |y|log x/ log y

or
|x |1/ log x ≤ |y|1/ log y .

Now we know that |y| > 1, we see that we can apply the same argument with x and
y interchanged, to get the opposite inequality, and therefore an equality

|x |1/ log x = |y|1/ log y .

If |x |1/ log x = c, we conclude that |y|1/ log y = c for all integers y > 1. Then
|y| = clog y = yt for some t . As | − 1| = 1, we see that |y| = |y|t≥ for all y √ Z,
and then, again using the multiplicativity of norms, that |y| = |y|t≥ for all y √ Q.
Note that we need 0 < t ≤ 1 here so that the triangle inequality is satisfied. �

Definition 10.20 Two norms, | | and | |⊃ are equivalent if one is a power of the other.

Two equivalent norms have the same open sets, and therefore the same topology;
we may wish to identify them for this reason. Notice that the absolute value is not
equivalent to any p-adic norm, and nor is any p-adic norm equivalent to any q-adic
norm if p and q are different primes.

Remarkably, then, the usual absolute value and the p-adic norms introduced in
Exercise 10.7 are essentially all the possible norms on Q—every non-trivial norm is
equivalent to one of these.

So norms are (essentially) in bijection with the set of all primes, plus one other
(we often write | |≥ for the absolute value, and then write ≥ for the other member
of the set). We say that a norm is nonarchimedean if we have a stronger version
of the triangle inequality: |a + b| ≤ max(|a|, |b|) (this is known as the ultrametric
inequality); the standard p-adic norms are all nonarchimedean, whereas the usual
absolute value is not (so it is archimedean).
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We remark that there is a similar result in the case of a general number field; the
non-trivial nonarchimedean norms are in bijection with the prime ideals in the ring
of integers, while the archimedean norms can be derived after taking the usual real
or complex absolute values after some embedding K ↪≡ C. Let’s simply state the
nonarchimedean result:

Theorem 10.21 Every nontrivial nonarchimedean norm on a number field K is
equivalent to one of the form

|x |p = cvp (x),

where p is some nonzero prime ideal of ZK , and vp(x) is defined for x √ ZK to
be the largest integer m such that x √ pm, and extended multiplicatively to nonzero
elements of K .

Remark 10.22 Fix any 0 < c < 1. From the proof of Ostrowski’s Lemma, defining
| a

b | = cr , where a
b = pr s

t , gives us a p-adic norm. One might wonder why we have
chosen to fix c = p−1. The answer is that it is sometimes useful to have the product
formula: for all x √ Q×,

|x |≥ ×
⎧

p

|x |p = 1,

and it is an easy exercise to convince yourself that the normalisation c = p−1 in the
p-adic norm makes this hold.

Exercise 10.8 Put x = − 360
91 . Verify the product formula in the remark.

Recall that we can complete a metric space with respect to a metric; the completion
consists of all Cauchy sequences in the spaces modulo the set of sequences with
limit 0.

A norm | | on a number field gives a metric via d(x, y) = |x − y|; the metric
given by the usual absolute value, for example, is just the usual distance apart of
two rationals on the number line. As any real number can be the limit of a Cauchy
sequence in Q, we can identify the completion of Q with respect to the usual absolute
value | |≥ with R.

We can consider the completion of Q with respect to the metrics coming from the
other norms, and we write Qp for the completion of Q with respect to the p-adic
metric induced by | |p. In fact, Z is not complete with respect to the p-adic metrics,
and we also write Zp for the completion of Z with respect to the p-adic metric. There
is a sense in which Zp is the ring of integers of Qp. Similarly, every nonzero prime
ideal p of ZK gives a p-adic norm | |p, which gives a p-adic metric, and completions
Kp and ZK ,p.

These completions are very important in modern algebraic number theory. The
rings Zp are local; they have a unique maximal ideal consisting of all multiples of p.
Very often problems relating to a number field as a whole can be tackled by passing
to the completions at all finite primes. This has the effect of isolating the part of the
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problem relating to one prime at a time, and one can sometimes deal with the primes
individually.

In particular, we studied Dirichlet’s Analytic Class Number Formula earlier in
this chapter, which generalised the well-known result on the pole and residue of the
Riemann zeta function at s = 1 to the Dedekind zeta function of a number field.
One might reasonably expect other properties of the zeta function to generalise also;
in particular, one might expect the Dedekind zeta function to have a meromorphic
continuation to the whole complex plane, and satisfy some sort of functional equation.
This was first proven by Hecke, around 1920, but the proof is cumbersome (see [10]
for a modern treatment). Tate’s thesis (1950, but published in [2]) gave a new way
to view zeta functions, with the term at p in the Euler product for the Dedekind
zeta function coming from an integral on ZK ,p. Then one can get the functional
equation by developing a theory of integration (and particularly Fourier theory) for
these completions.



Chapter 11
The Number Field Sieve

Like most pure mathematics, number theory developed with little thought to applica-
tions. The advent of the computer, however, has led to increasing importance of pure
mathematics within cryptography and data-transmission. The problem of factorising
large numbers, as we shall see in a moment, is of great importance in cryptography,
and the fastest factorisation method currently known uses algebraic number theory in
a crucial way. In this chapter, we will introduce this method, the number field sieve,
in some detail.

We’ll begin by reminding the reader about the RSA algorithm, which motivates
the problem of factorisation, and also the quadratic sieve, one of the previous factor-
ing methods of choice, many elements of which continue to be useful in the number
field sieve.

11.1 The RSA Cryptosystem and the Problem of Factorisation

A very well-known protocol is the RSA system for encryption and decryption of
messages. At the heart of this system lies the observation that while multiplication
of two numbers is easy, recovering the factors of a product is difficult. Sometimes
the analogy is made with mixing pots of paint of different colours—mixing a pot of
red paint and a pot of white paint to get a suitable shade of pink is easy, but given a
mixed pot of pink paint, separating out the white and red paints is very difficult!

Let’s briefly recall the RSA system.
We suppose that Bob wishes to send a message to Alice.
Alice chooses two primes, p and q, which she keeps secret. She computes

N = pq, and tells this to Bob. Alice also publishes an encryption key, a number e
(as we will see below, e should be coprime to φ(N ) = (p − 1)(q − 1)).

They agree on a system to convert any message into a sequence of numbers less
than N .
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In order to transmit a number M to Alice, Bob computes Me (mod N ) and sends
it to Alice.

Unless Bob is so unlucky that M happens not to be coprime to N , the Fermat-Euler
theorem tells us that Mφ(N ) ≥ 1 (mod N ).

Since Alice knows p and q, she knows φ(N ) = (p −1)(q −1), and can compute
the decryption key d so that de ≥ 1 (mod φ(N )), and she can therefore compute
(Me)d ≥ M (mod N ) to recover the original transmitted message M .

Anyone who can factor N to discover the primes p and q can decrypt the message;
the primes p and q are therefore chosen very large. No-one has yet discovered a fast
way to decrypt the message without factoring N .

This system has meant that the problem of factorisation is increasingly important.
For fairly small numbers, the simplest factoring idea is simply to test N for

divisibility by primes not exceeding
∈

N . After all, if N = ab with a, b > 1, then
we can’t have both of a and b larger than

∈
N , so N must have some non-trivial

divisor no larger than
∈

N—and then any prime divisor of this will again be no
larger than

∈
N . Therefore if N is composite, it will have some prime factor at most∈

N . For example, to factor 10001, it suffices to check just the 25 primes up to
�∈10001≡ = 100.

However, if N gets bigger, this trial division method quickly becomes impractical.
Even for 20-digit numbers it would involve testing by all primes up to 1010; this is
feasible, but still lengthy. For numbers of 30 digits, it is not really feasible.

But here is another way to factor 10001: try to write it as x2 − y2, the difference
of two squares. Then the factorisation x2 − y2 = (x + y)(x − y) will give us a
factorisation of 10001.

We therefore list the squares just larger than 10001:

1012 = 10201, 1022 = 10404, . . .

and check the differences between these squares and 10001; if we find that the
difference is a square, we can then view 10001 as the desired difference of two
squares. We soon find that 1052 = 11025 differs from 10001 by 1024 = 322. Thus

10001 = 1052 − 322 = (105 + 32)(105 − 32) = 137 × 73,

and we have factored 10001.

Exercise 11.1 Factor N = 12707 using this method.

This approach works well for numbers which are the product of two similar-sized
numbers. But if we had a number N = pq which was the product of two primes, say
of 40 digits and 50 digits, this approach would also take too long. The two primes
might seem “close” as 40 and 50 are similar—but the second is of course about 1010

times larger than the first, so this method is no better than trial division.
The next observation is that solving N = x2 − y2 is stronger than needed—it may

be enough to solve x2 − y2 ≥ 0 (mod N ). This means that N divides (x + y)(x − y),
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and unless x ≥ ±y (mod N ), neither x + y nor x − y is divisible by N ; it follows
that N breaks up as a product, part of which divides x + y and the other part divides
x − y. For example, given that

1072 ≥ 382 (mod 667),

we could deduce that 667|(107 + 38)(107 − 38) = 145 × 69. Since 667 � 145 and
667 � 69, we deduce that 667 is not prime, and that we can write 667 = ab with
a|145 and b|69. We can compute a and b since a is a common factor of 667 and 145,
and b is a common factor of 667 and 69. Euclid’s algorithm gives (667, 145) = 29
and (667, 69) = 23, and we can check that 667 = 23 × 29.

The idea of finding a pair of integers x and y with x2 ≥ y2 (mod N ) is at the
heart of most of today’s factoring algorithms, and this is the approach taken by the
number field sieve, and its precursor, the quadratic sieve, which we will discuss first.

11.2 The Quadratic Sieve

The quadratic sieve was invented in the early 1980s by Carl Pomerance. It is still
the fastest factorisation method for numbers up to 100 digits or so, but the more
complicated number field sieve is asymptotically faster, as we shall explain below.

As mentioned above, the approach to factorisation taken by the quadratic sieve
and the number field sieve is to find x and y with x2 ≥ y2 (mod N ).

Since we include the quadratic sieve only as motivation for the number field sieve,
we shall not go into any practical implementation issues here.

The quadratic sieve is a refinement of the naive idea:

Choose x so that x2 is “small” modulo N . If we are lucky, we will find x so that x2 ≥
y2 (mod N ). Choosing x near to the square root of N is likely to give small values of
x2 (mod N ). If we do not get a square, try another value of x , and keep going until a square
is found.

Example 11.1 Let’s factor N = 24511. First compute its square root:
∈

N =
156.559 . . . . Then select values of x near this square root, and compute x2 (mod N ).

x x2 (mod N ) Square?

157 138 No
158 453 No
159 770 No
160 1089 Yes (332)

So 1602 ≥ 332 (mod 24511), and this gives

24511|1602 − 332 = (160 + 33)(160 − 33) = 193 × 127.
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However, finding squares like this is rather unusual. Our refinement makes use of
index calculus.

Even though we may not easily find a square, all is not lost. The idea is to multiply
together several of these congruences so that the right-hand side becomes a square.
Since each left-hand side is already a square, the product of the left-hand sides is
automatically square.

We select a smoothness bound B, which will depend on the number N to some
extent. We say that a number is B-smooth if all of its prime factors are no larger than
B, and that the factorbase consists of primes below B.

The idea is to find squares which are B-smooth modulo N . Since numbers are
more likely to factorise into small primes if they themselves are not too big, we run
through values of x with x2 “small” modulo N , and then try to factorise these values.
Ignore the results if they are not B-smooth, but if they are, store them for the next
stage of the algorithm, when we combine some subset of those obtained to give a
congruence of the desired form. Let’s explain this with an example.

Example 11.2 Let’s select N = 227179. Then
∈

N = 476.732 . . . ; consider the
numbers either side of

∈
N .

4762 ≥ −603 = −32 × 67 (mod N )

and
4772 ≥ 350 = 2 × 52 × 7 (mod N ).

If our smoothness bound is B = 25, say, ignore the first congruence, but keep the
second; the largest factor involved in 350 is 7, so 4772 is B-smooth for B = 25.

Generally, one looks at all values of x in some interval either side of
∈

N . Because
we will allow negative small values of x2 (mod N ), we will factorise x2 − N . Let’s
tabulate the 25-smooth values of x2 − N , where we allow x to be in the range
460 ≤ x ≤ 495, within about 15 of

∈
N .

x x2 − N Factorisation

470 − 6729 −3 × 7 × 13 × 23
473 − 3450 −2 × 3 × 52 × 23
477 350 2 × 52 × 7
482 5145 3 × 5 × 73

493 15870 2 × 3 × 5 × 232

Now we combine these in such a way to form squares. In this example, it is easy
to do this by inspection.

Notice that the last three values of x combine so that the right-hand side is a
square:
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(477 × 482 × 493)2 = 4772 × 4822 × 4932

≥ (2 × 52 × 7) × (3 × 5 × 73) × (2 × 3 × 5 × 232)

≥ 22 × 32 × 54 × 74 × 232

≥ (2 × 3 × 52 × 72 × 23)2 (mod 227179).

We also compute

477 × 482 × 493 ≥ 212460 (mod 227179)

2 × 3 × 52 × 72 × 23 ≥ 169050 (mod 227179).

It follows that
2124602 ≥ 1690502 (mod 227179),

and so 227179|(2124602 − 1690502), and we compute

(227179, 212460 + 169050) = 157, (227179, 212460 − 169050) = 1447,

giving the factorisation
227179 = 157 × 1447.

So the outcome of the first stage of the algorithm is a matrix consisting of values of
x such that x2 (mod N ) is B-smooth, and we need to find some combination whose
product is a square.

In general, in order to find combinations giving squares systematically, we need
to do some linear algebra modulo 2 on the exponents. Squares which are B-smooth
should be converted into vectors modulo 2, with components corresponding to −1
and each prime in the factorbase.

In the example just seen, the factorbase consists of those primes up to 25; there
are 9 such primes, and so our vectors are of the form

(x−1, x2, x3, x5, x7, x11, x13, x17, x19, x23),

where x p is 1 if the exponent of p in the factorisation of x2 (mod N ) is odd, and 0 if
it is even (and x−1 = 1 if x2 − N < 0 and is 0 if x2 − N > 0). The five B-smooth
values in Example 11.2 become:

x Factorisation Vector

470 −3 × 7 × 13 × 23 (1, 0, 1, 0, 1, 0, 1, 0, 0, 1)

473 −2 × 3 × 52 × 23 (1, 1, 1, 0, 0, 0, 0, 0, 0, 1)

477 2 × 52 × 7 (0, 1, 0, 0, 1, 0, 0, 0, 0, 0)

482 3 × 5 × 73 (0, 0, 1, 1, 1, 0, 0, 0, 0, 0)

493 2 × 3 × 5 × 232 (0, 1, 1, 1, 0, 0, 0, 0, 0, 0)
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and the congruence of squares that we found is equivalent to the sum of the last three
vectors being (0, 0, 0, 0, 0, 0, 0, 0, 0, 0) modulo 2.

To guarantee that we can find nontrivial linear relations between the exponent
vectors, elementary linear algebra tells us that we need to have more B-smooth
squares than primes in the factorbase. With a factorbase of size 10, we would generally
need at least 11 B-smooth values of x2 − N to guarantee a nontrivial relation.

It is worth remarking that even for nontrivial linear relations, it happens quite often
that in the resulting expression x2 ≥ y2 (mod N ), we find that x ≥ ±y (mod N ).
In this case, all the factors of N divide x + y and none divide x − y, or vice versa.
When this happens, we need to find alternative combinations, and try again.

Doing mod 2 linear algebra on the exponent vectors is known as index calculus.
Note that the size of the smoothness bound is rather critical. If B is chosen too

small, it will be very difficult to find many squares which are B-smooth. But if
B is too large, we will need to find many B-smooth squares—the linear algebra
involves a matrix with a row for each B-smooth square and a column for each prime
in the factorbase; cutting the size of the matrix can save a lot of time in the linear
algebra section.

Exercise 11.2 Factor 21311 by this method using the values x = 132 and x = 144,
and using index calculus.

Remark 11.3 Notice that a prime p can only divide x2−N if N is a quadratic residue
modulo p, and so we need only include these primes in our factorbase. Again in the
setting of Example 11.2, with B = 25, this rules out the possibility of 11 or 19 ever
dividing any of the values of x2 − N . We could therefore have chosen the factorbase
{−1, 2, 3, 5, 7, 13, 17, 23} (of size 8), and we can guarantee a nontrivial relationship
between exponent vectors if we had at least 9 B-smooth values of x2 − N .

This process has been automated to factorise numbers in excess of 100 digits.

Remark 11.4 We should remark that there is a simple way to find candidate values
of x for which x2 − N is smooth, which justifies the inclusion of the word “sieve”
in the name of the algorithm.

Having chosen our interval, we then proceed as follows. For every prime p in
our factorbase, we work out the solutions to x2 ≥ N (mod p). In general, this will
have two solutions, x ≥ ap (mod p) or x ≥ bp (mod p). We observe that this means
that the values of x where x2 − N has a factor of p are exactly those satisfying
one of the congruences x ≥ ap (mod p) or x ≥ bp (mod p). Rather than compute
each x2 − N , and factor the result, it is much faster to find the first solutions in our
interval to the congruences x ≥ ap (mod p) or x ≥ bp (mod p). We record that
these values of x give values of x2 − N with factors of p. Then we step through our
interval, exactly as in the sieve of Eratosthenes (see [7]), successively adding p to the
values of solutions, and recording that these x-values also satisfy the congruences,
and therefore that the corresponding values of x2 − N also have factors of p.

After sieving for each prime in the factorbase, we have now recorded the primes
in the factorbase dividing each value of x2 − N . We can even adapt this method to
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deal with powers of primes in the factorbase, so that for every x in our interval, we
can easily compute whether or not every prime dividing x2 − N (mod N ) lies in our
factorbase.

(This is not exactly how sieving is performed in practice, although it is essentially
similar. For more details, see Crandall and Pomerance [4], for example.)

Remark 11.5 In practice, often a “large prime” variant is used. This means that
relations are retained if x2 − N factors completely over the factorbase except possibly
for one large prime between B and B2. It is easy to incorporate this into the sieving
process, and it clearly may give extra relations. If two relations both involve the same
large prime, they can be multiplied, and this gives another relation purely involving
primes in the factorbase.

11.3 The Number Field Sieve: A First Example

The number field sieve may be viewed as a much more sophisticated variant of the
quadratic sieve, but working in an algebraic number field.

We will build up towards a fairly full description of the algorithm gradually,
starting with a very simple example. However, we will be extremely fortunate in this
example that everything works so simply!

It will be extremely rare that we can find everything working so well—we will
successively improve our algorithm so that it works for more and more situations,
but (at least before the final description) we will explain that there are still reasons
why our procedure will not work in general.

Example 11.6 Let us begin by factoring N = 119, using a different method to find
a congruence of the form x2 ≥ y2 (mod 119).

We observe that 119 = 112 − 2, i.e., that 11 is a root of x2 − 2 modulo 119. This
means that there is a ring homomorphism

φ : Z[∈2] −√ Z/119Z

a + b
∈

2 →√ a + 11b (mod 119)

from the ring Z[∈2] to the integers modulo 119.
Now we observe that 3 + 2

∈
2 maps to 3 + 11 · 2 = 25 = 52.

However, we also observe that 3 + 2
∈

2 = (1 + ∈
2)2, and that 1 + ∈

2 maps to
1 + 11 · 1 = 12. As

3 + 2
∈

2 = (1 + ∈
2)2,

and φ is a ring homomorphism, it must be true that

φ(3 + 2
∈

2) = φ(1 + ∈
2)2.
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This means that 25 = 122 in Z/119Z, or that 52 ≥ 122 (mod 119). As above, we
compute (119, 12 + 5) = 17 and (119, 12 − 5) = 7, and find the factorisation
119 = 17 × 7.

We have therefore recovered our factorisation partly by using arithmetic in Z[∈2].
We were very lucky for several reasons. Firstly, it happened that we could write

119 in the form x2 − 2. This enabled us to find a ring homomorphism φ of a
convenient form. More importantly, we found a square 3 + 2

∈
2 = (1 + ∈

2)2 in
Z[∈2] which itself mapped to a square under this homomorphism. This allowed us
to recover a congruence of squares modulo 119. As we try to extend this calculation
to cover more and more cases, we’ll see that, in fact, there were even more lucky
features than those mentioned so far: for example, that Z[∈2] is the full ring of
integers in its field of fractions Q(

∈
2), and that it has unique factorisation.

Exercise 11.3 Factorise 527 = 232 − 2 using this method, again considering 3 +
2
∈

2.

Our goal will be to extend this to cover more and more examples. Since most of
the difficulties are already apparent in the case of quadratic fields, we will restrict
attention to this case for all of the chapter. Our rings will (usually) be Z[∈d] for
some d, and we will write K for the field of fractions of Z[∈d], which will be the
field in which some of the calculations take place. (There will be different d for each
example, but we will just write K for simplicity in each case.)

11.4 Index Calculus

One lucky point above is that we chose a square that happened to map to a square.
This is lucky in the same way as Example 11.1, and generally we need to use some
form of index calculus to combine smooth relations into those where squares map to
squares.

In this first example, with N = 119 = 112 − 2, we plucked 3 + 2
∈

2 from
nowhere, and observed that it could be used to give the factorisation. In general, if
we hadn’t been so lucky, we would have had to find many pairs (a, b), and consider
the corresponding elements a + b

∈
2 and their images a + 11b (mod 119), and do

some linear algebra to determine a collection of pairs (a, b) such that the product of
the corresponding a + b

∈
2 and also the product of the images a + 11b (mod 119)

are squares.
We need to find a set S of pairs (a, b), corresponding to a + bα and a +

bm (mod N ), where both
∏

(a,b)◦S(a + bα) ◦ Z[α], and
∏

(a,b)◦S(a + bm)

(mod N ) are squares.
We will again follow the idea of the quadratic sieve, and choose a smoothness

bound B. We will look at many pairs (a, b) and hope that both a + bα ◦ Z[α] and
a + bm ◦ Z/NZ are B-smooth. We will then hope that we can combine pairs by
doing some mod 2 linear algebra so that the products are squares.
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We have already defined smoothness for integers—recall that an integer is B-
smooth if all of its prime factors are no greater than B. But we also need a similar
notion for elements in Z[α].
Definition 11.7 Let B be a positive number. An algebraic number is called B-smooth
if every prime number dividing its norm is at most B.

Recall that algebraic number fields have unique factorisation of ideals into prime
ideals, and that every prime ideal has norm which is the power of a prime number
in Z. Given an algebraic integer β in some number field K , we can consider the
ideal ⇒β∩, and factor it as a product of prime ideals of ZK . Then β will be B-smooth
if all the prime ideals in its factorisation are B-smooth (since the norm of ⇒β∩ is
the product of the norms of the ideals in the prime factorisation). The norm of any
prime ideal in ZK must be the power of a prime number, and so for β to be smooth,
we really require that all prime ideals in the factorisation of ⇒β∩ lie above a prime
number which is at most B.

Example 11.8 Let N = 115, and observe that 115 = 112 − 6. So 11 is a root of
x2 −6 modulo 115, and so there is a ring homomorphism Z[∈6] −√ Z/115Z given
by a + b

∈
6 →√ a + 11b (mod 115).

We will tabulate pairs (a, b), and consider when a +b
∈

6 is B-smooth, and when
a + 11b (mod 115) is B-smooth (one could use different smoothness bounds on the
algebraic side from the mod 115 side, but for simplicity we will use the same bound).
A moment’s thought should convince you that we needn’t bother with those where a
and b share a non-trivial common factor; it will essentially just give a duplicate row
in the matrix.

Choose B = 7.
By definition, a + b

∈
6 is smooth when N (a + b

∈
6) is smooth, i.e., when

a2 − 6b2 is smooth.

(a, b) a2 − 6b2 −1 2 3 5 7 a + 11b 2 3 5 7

(3, 1) 3 0 0 1 0 0 14 1 0 0 1
(4, 1) 10 0 1 0 1 0 15 0 1 1 0
(9, 1) 75 0 0 1 0 0 20 0 0 1 0
(−1, 1) −5 1 0 0 1 0 10 1 0 1 0
(−2, 1) −2 1 1 0 0 0 9 0 0 0 0
(−3, 1) 3 0 0 1 0 0 8 1 0 0 0
(−4, 1) 10 0 1 0 1 0 7 0 0 0 1
(−6, 1) 30 0 1 1 1 0 5 0 0 1 0
(−9, 1) 75 0 0 1 0 0 2 1 0 0 0
(3, 2) −15 1 0 1 1 0 25 0 0 0 0
(2, 3) −50 1 1 0 0 0 35 0 0 1 1
(7, 3) −5 1 0 0 1 0 40 1 0 1 0
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We will list pairs (a, b) with −10 ≤ a ≤ 10, 1 ≤ b ≤ 3 where both a2 − 6b2

and a + 11b (mod 115) are 7-smooth. As in the quadratic sieve case, it may be that
a2 − 6b2 < 0, and so we will have an additional column to deal with a possible
minus sign.

We have 9 columns corresponding to our factorbase, and 12 rows. Since we have
more rows in the matrix than we have columns, there will be some combination of
pairs for which the products give squares on both sides. (Again, we should note that
the choice of the smoothness bound is crucial—if B is too small, it will be hard to
find rows at all, whereas if B is too big, we will have many columns, and although
it will be easier to find rows, the linear algebra required to find the desired relations
may become difficult.)

In this example, we can see that the pairs (−3, 1) and (−9, 1) are the same, and
so multiplying them (which corresponds to adding rows) should give what we want.
Indeed,

(−3 + ∈
6)(−9 + ∈

6) = 33 − 12
∈

6 = (−3 + 2
∈

6)2.

We also see that φ(33 − 12
∈

6) = 16 = 42, and can easily compute

φ(−3 + 2
∈

6) = −3 + 2 · 11 = 19,

so we get that

42 = φ(33 − 12
∈

6) = φ((−3 + 2
∈

6)2) = φ(−3 + 2
∈

6)2 = 192

in Z/115Z, and therefore get the congruence 192 ≥ 42 (mod 115). We compute the
highest common factors (115, 19 + 4) = 23 and (115, 19 − 4) = 5, and get the
factorisation 115 = 23 × 5.

We have therefore incorporated index calculus into the method we gave earlier.
Once again, we could actually compute all the rows in the matrix by means of a sieving
process, but we will not go into implementation details here, referring instead to [4].

Exercise 11.4 Factorise 1679 by writing it as 412 − 2, and using the pairs (a, b) =
(−1, 2) and (5, 4).

Before we go on, it is perhaps worth noting that there are no entries in the final
column corresponding to the prime 7 on the algebraic side. It is easy to see why; we
would need a2 − 6b2 to be divisible by 7, and this would require 6 to be a square
modulo 7. The same argument suggests that primes which occur on the algebraic
side must have 6 as a quadratic residue. We will return to this observation in the next
section, when we discuss the algebraic factorbase more precisely.

In the quadratic sieve, one side of the congruence is automatically a square,
by the way we try to construct our congruences. Indeed, our aim there is to find
squares which are fairly small, and to hope that this means that they are smooth.
So our congruences are “squares ≥ smooth”. In the Number Field Sieve, we will
not necessarily have a square on either side of the congruence, but will instead
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look for smooth algebraic numbers which map to smooth numbers modulo N , and
then the linear algebra will try to combine “smooth ≥ smooth” relations to get the
“square ≥ square” congruence we want.

To do index calculus, it is necessary to have a factorbase. If B is the smoothness
bound, then the factorbase on the modular arithmetic side just consists of −1 and all
primes up to B. The factorbase on the algebraic side is the topic of the next section.

11.5 Prime Ideals and the Algebraic Factorbase

This last example worked well, but we’ve been lucky again! Here is an example
where the same method as the last example appears to work, but then something
goes wrong.

Consider the following example:

Example 11.9 Let N = 9019 = 952 − 6. There is a ring homomorphism from
Z[∈6] to Z/9019Z, which sends a + b

∈
6 to a + 95b (mod 9019). Consider the

following two rows of the matrix (just including the relevant columns):

(a, b) a2 − 6b2 −1 5 a + 11b 2

(−17, 7) −5 1 1 23 · 34 1
(−7, 23) −55 1 1 2 · 32 · 112 1

The product (−17 + 7
∈

6)(−7 + 23
∈

6) = 1085 − 440
∈

6 is not a square, even
though the product of the two norms is a square.

We can use the factorisation of ideals into prime ideals to see what is going wrong
in the above example. In Z[∈6], ideals factor in the following manner:

⇒2∩ = ⇒2 + ∈
6∩2

⇒3∩ = ⇒3 + ∈
6∩2

⇒5∩ = ⇒∈6 + 1∩⇒∈6 − 1∩
⇒7∩ = ⇒7∩

Let’s write p5 = ⇒∈6 + 1∩ and p∼
5 = ⇒∈6 − 1∩. Then, in terms of the generators of

these ideals, we can factor the numbers appearing in the last example as

−17 + 7
∈

6 = (
∈

6 − 1)(5 − 2
∈

6)

−7 + 23
∈

6 = (
∈

6 + 1)5(5 − 2
∈

6),

where 5 − 2
∈

6 is a unit in Z[∈6]. So the product is
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(
∈

6 − 1)(
∈

6 + 1)5(5 − 2
∈

6)2 = 5(
∈

6 + 1)4(5 − 2
∈

6)2,

5 times a square. The problem in terms of ideals is that

⇒−17 + 7
∈

6∩ = p∼
5, ⇒−7 + 23

∈
6∩ = p5

5,

and so the product ideal is p5
5p

∼
5, not the square of an ideal.

Here, there are two ideals, p5 and p∼
5, with the same norm, and their product

therefore has square norm. However, the ideal itself is not square, since it is the
product of an odd power of two different ideals.

The left-hand side of the matrix should therefore consist of the powers of the prime
ideals involved in the factorisation of ⇒a + bα∩. The factorbase on the algebraic side
should therefore consist of prime ideals of K lying above rational primes which are
less than or equal to B. The matrix should really read:

(a, b) ⇒a + b
∈

6∩ p5 p∼
5 a + 11b 2

(−17, 7) ⇒−17 + 7
∈

6∩ 0 1 23 · 34 1
(−7, 23) ⇒−7 + 23

∈
6∩ 1 0 2 · 32 · 112 1

and we can read off that the product ideal is not the square of an ideal; this means in
particular that the product of the elements cannot be a square.

This certainly suggests that considering the norm is not sufficient on the alge-
braic side (although it may be a useful first check), and that we should instead be
considering the factorisations of the elements in the number field itself.

But there is another more serious reason why we should consider factorisation
into prime ideals on the algebraic side, namely the possible failure of unique factori-
sation. As it happens, Z[∈6] has unique factorisation, but in general, factorisation
of elements in number fields is of course not unique.

There is a danger that this non-uniqueness might make us miss relations. To take
one of our examples from Chap. 4, we might find a relation in Z[∈10], say, involving
2 and 3 and another involving 4 + ∈

10 and 4 − ∈
10 without realising that if we

combine them, the equality 2 × 3 = (4 + ∈
10)(4 − ∈

10) would give us a relation.
The only way we can be really sure that we get all relations is by using the

uniqueness of factorisation of ideals into prime ideals in the number field, and forming
the algebraic factorbase by taking some collection of prime ideals.

Let us now consider the prime ideals which do appear in the algebraic factorbase.
We will consider prime ideals whose norm is of the form pk with p a prime which
is at most the smoothness bound B.

Recall also that we are restricting attention to the special case where the ring is
Z[∈d] for some d with d a squarefree integer (as in all our examples at the moment),
although this is never the case in practice!

http://dx.doi.org/10.1007/978-3-319-07545-7_4
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Then the norm of an element a + b
∈

d is therefore a2 − db2, and this norm is
divisible by p if a2 − db2 is divisible by p; it is easy to see that this can happen if
and only if d is a square modulo p.

Lemma 11.10 Suppose that a and b are given, with (a, b) = 1. Then p|a2 − db2 if
and only if ab−1 ≥ r (mod p), where r is a square root of d modulo p.

Proof Indeed, if a2 − db2 ≥ 0 (mod p), then a2 ≥ db2 (mod p). If b ≥ 0 (mod p),
then we would need a2 ≥ 0 (mod p), and so a ≥ 0 (mod p); we see that p|b and
p|a, and this contradicts the coprimality of a and b.

So b is invertible modulo p, with inverse b−1, say. We then derive that (ab−1)2 ≥
d (mod p), and so d will be a square modulo p. Furthermore, ab−1 must be a root
of x2 − d modulo p.

If p is a nonzero prime ideal in ZK , then ZK /p must be a finite field (as nonzero
prime ideals are maximal, and using Lemma 5.10). The ideal p must have norm p or
p2, depending on the factorisation of ⇒p∩ in ZK . We want to consider those primes p
which can occur in the factorisation of ⇒a + b

∈
d∩, and claim that the primes which

can occur must have norm p.

Proposition 11.11 Ifp is a nonzero prime ideal in ZK appearing in the factorisation
of ⇒a + b

∈
d∩ for some coprime pair (a, b), thenp has norm p, a prime. Furthermore,

the prime ideal p can be written ⇒p,
∈

d − r∩ where ab−1 ≥ r (mod p) is a square
root of d modulo p.

Proof The map φ : ZK −√ ZK /p is a surjection from ZK to the finite field ZK /p
and this must contain the finite field Fp = Z/pZ. We’ll claim that the image is just
Fp. Indeed, certainly Z ⊂ ZK maps to Fp, so we just need to check that

∈
d maps

to something in Fp also.
But a + b

∈
d lies in p, and so maps to 0 in the quotient. Thus φ(a) +

φ(b)φ(
∈

d) = 0, and so φ(
∈

d) = −φ(ab−1) = −ab−1 (mod p), and we have
already noted that this lies in Fp. So the image of φ is Fp—but φ was a surjection
onto ZK /p. It follows that p is an ideal of ZK of norm p.

We also know that φ(a + b
∈

d) = 0; as a + br ≥ 0 (mod p), we see also
that φ(a + br) = 0. So φ(

∈
d) = φ(r) as φ is a homomorphism, showing that

φ(
∈

d − r) = 0, or in other words that
∈

d − r ◦ p.
So p is a prime ideal containing p and also

∈
d − r . It is easy to see that

p = ⇒p,
∈

d − r∩,

as the right-hand side is in the left-hand side, and both sides have norm p. �

We have shown the following:

Theorem 11.12 Prime ideals occurring in the factorisation of any ⇒a + b
∈

d∩ with
(a, b) = 1 are of the form ⇒p,

∈
d − r∩, where
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• p is a prime number p with ( d
p ) = 1;

• r is a square root of d modulo p.

Write p[p,r ] for the prime ideal in Z[∈d] generated by p and
∈

d − r .

The argument above shows that p[p,r ] should divide ⇒a + b
∈

d∩ if and only if
ab−1 ≥ r (mod p). Furthermore, given that ab−1 (mod p) is unique, only one prime
ideal of norm p can divide ⇒a + b

∈
d∩, and as it has norm p, its exponent can simply

be read off as the exponent of p in NK/Q(⇒a+b
∈

d∩) = NK/Q(a+b
∈

d) = a2−db2.
Then the factorbase on the algebraic side is

{p[p,r ] = ⇒p,
∈

d − r∩ | r2 ≥ d (mod p), p ≤ B is prime}.

Exercise 11.5 Suppose we wish to factor N = 9019 as above with the Number Field
Sieve by writing it as 952 − 6. Put B = 20. What is the factorbase?

11.6 Further Obstructions

At this stage, the strategy is to try lots of pairs (a, b) to find those which are smooth
on the algebraic side, in the sense that ⇒a + bα∩ factors only with prime ideals in the
algebraic factorbase, and also smooth on the modular arithmetic side, in the sense
that a + bm (mod N ) is a B-smooth integer.

Suppose that B denotes the complete factorbase, made up of both the algebraic
factorbase and the modular arithmetic factorbase. If we can find more than |B| pairs
(a, b) which are smooth on both sides, then mod 2 linear algebra on the exponent
vectors will give us some combination of pairs S = {(a, b)} such that

∏⇒a + bα∩ is
a square ideal, and

∏
a + bm (mod N ) is a square number.

However, there is still quite a lot that can go wrong on the algebraic side. What
we really need is that

∏
a + bα is a square in Z[α] so that we can apply the map φ.

Example 11.13 Consider N = 33499 = 1832 +10, and use the Number Field Sieve
with polynomial f (X) = X2 + 10 and m = 183. There is a homomorphism

φ : Z[∈−10] −√ Z/33499Z.

a + b
∈−10 →√ a + 183b (mod 33499)

Consider just the pairs (a, b) = (9, 2) and (a, b) = (3, 4).
The pair (a, b) = (9, 2) corresponds to the element 9 + 2

∈−10 of norm 121,
and the ideal ⇒9 + 2

∈−10∩ factors as the square of an ideal of norm 11. In fact,
⇒9 + 2

∈−10∩ = p2[11,10] (notation as above). It maps to 9+183×2 = 375 = 3×53.

The pair (a, b) = (3, 4) corresponds to the element 3 + 4
∈−10 of norm 169, and

the ideal ⇒3 + 4
∈−10∩ factors as the square of an ideal of norm 13: ⇒3 + 4

∈−10∩ =
p2[13,4]. It maps to 3 + 183 × 4 = 735 = 3 × 5 × 72.
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Let’s consider the matrix of factorisations with irrelevant rows and columns
removed. Since both pairs generate square ideals, there will be no nontrivial columns
on the algebraic side, and the only nontrivial columns will be on the modular arith-
metic side, where 3 and 5 are the only primes to divide the images to an odd power.

(a, b) ⇒a + b
∈−10∩ a + 183b 3 5

(9, 2) p2[11,10] 3 × 53 1 1
(3, 4) p2[13,4] 3 × 5 × 72 1 1

It is clear that combining these two pairs will give a square ideal that maps to a
square. Further

⇒9 + 2
∈−10∩⇒3 + 4

∈−10∩ = (p[11,10]p[13,4])2.

Suppose that (9 + 2
∈−10)(3 + 4

∈−10) = γ 2 for some element γ ◦ Z[∈−10].
Then the product ideal would be of the form ⇒γ 2∩ = ⇒γ ∩2, and by unique factorisation,
⇒γ ∩ = p[11,10]p[13,4].

In fact, p[11,10] is principal and p[13,4] is not principal. (Q(
∈−10) does not have

unique factorisation, and the class group has order 2.) This means that there can be
no element γ as above.

One way to see that p[11,10] is principal is to consider another factorisation:

⇒−23 + ∈−10∩ = p2[7,5]p[11,10];

as the class group has order 2, the ideal p2[7,5] is principal; clearly the left-hand side
is principal, and so p[11,10] must also be principal.

Similarly, the factorisation

⇒−5 + 2
∈−10∩ = p[5,0]p[13,4]

can be used to see that p[13,4] is not principal, since it is easy to verify that p[5,0] =
⇒5,

∈−10∩ is not principal.

Thus the class group gives an obstruction; the ideal I = ∏⇒a + bα∩ may be the
square of an ideal J , but that J may not be principal, and so we cannot write J = ⇒γ ∩.

However, the class group is a finite group, and if we gather enough such examples
with squares of nonprincipal ideals, it will be possible to find a product of some of
them which gives something principal.

But even if J = ⇒γ ∩, further issues may arise.

Example 11.14 Now let N = 3019 = 552 − 6, and try to use the Number Field
Sieve with f (X) = X2 − 6 and m = 55. There is a homomorphism
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φ : Z[∈6] −√ Z/3019Z.

a + b
∈

6 →√ a + 55b (mod 3019)

Fix a smoothness bound of B = 20. The ring Z[∈6] is the ring of integers of
Q(

∈
6), and has unique factorisation. Then the class number is 1, and so every ideal

is principal. This shows that the problem preventing Example 11.13 from working
is not relevant to this example.

We find that the algebraic factorbase consists of 6 prime ideals:

p[2,0], p[3,0], p[5,1], p[5,4], p[19,5], p[19,14],

and the modular arithmetic factorbase contains {2, 3, 5, 7, 11, 13, 17, 19}.
Consider just the pairs (a, b) = (−5, 1) and (a, b) = (13, 5).
The pair (a, b) = (−5, 1) corresponds to the element −5 + ∈

6 in Z[∈6], and
maps to −5 + 55 = 50 = 2 × 52. The element −5 + ∈

6 has norm 19, so the same
is true for the ideal ⇒−5 + ∈

6∩. It therefore just has a prime ideal of norm 19 in its
factorisation; using Theorem 11.2, it is p[19,14], as (−5).1−1 ≥ 14 (mod 19). (As
already remarked, p[19,14] is principal, and one can show that both 19 and

∈
6 − 14

are multiples of 5 − ∈
6, and deduce that p[19,14] = ⇒5 − ∈

6∩.)
Similarly, (a, b) = (13, 5) corresponds to 13 + 5

∈
6 in Z[∈6], and maps to

13 + 55.5 = 288 = 2532. The element 13 + 5
∈

6 has norm 19, so ⇒13 + 5
∈

6∩ just
has a prime ideal of norm 19 in its factorisation; it is again p[19,14], as 13.5−1 ≥
14 (mod 19).

The matrix (with irrelevant rows and columns removed) is simply:

(a, b) ⇒a + b
∈

6∩ p[19,14] a + 55b 2

(−5, 1) ⇒−5 + ∈
6∩ 1 2 × 52 1

(13, 5) ⇒13 + 5
∈

6∩ 1 25 × 34 1

However, (−5 + ∈
6)(13 + 5

∈
6) = −35 − 12

∈
6, which is not the square of an

element. (If it were the square of an element, it would have to be positive.)
So even though the ideal I generated by the product of the elements is a square

ideal, the product itself is not a square. In fact,

−35 − 12
∈

6 = (−5 − 2
∈

6)(5 − ∈
6)2,

so
⇒−5 + ∈

6∩.⇒13 + 5
∈

6∩ = ⇒5 − ∈
6∩2

is the square of a principal ideal.
But −5−2

∈
6 is a unit which is not a square, and does not show up when working

with the corresponding ideals.
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It is therefore not enough that the product ideal should be the square of a principal
ideal to see that the product of the corresponding elements is the square of an element
in Z[α], as units may be present.

In this example, Z[∈6] has units of the form

{±(5 + 2
∈

6)n | n ◦ Z}

as η = 5 + 2
∈

6 is a fundamental unit. The square units are

{+(5 + 2
∈

6)2n | n ◦ Z},

and these have index 4 in the full unit group. It follows that if I is principal, given
by ⇒β∩, say, then β can be written in one of the forms γ 2, −γ 2, ηγ 2 or −ηγ 2. If we
were to gather sufficiently many examples where nonsquare units appeared, it would
be possible to multiply them together to get a square. (In fact, it is easy to see that
three examples suffices in this case.)

In general, Dirichlet’s Unit Theorem gives the structure of the full unit group, and
for any Z[α], there will be a bound on the number of examples required to guarantee
that a combination of some subset will produce a square.

Exercise 11.6 Suppose that f (X) is actually a cubic. Use Dirichlet’s Unit Theorem
to conclude that any set of 4 units in Q(α) contains a subset whose product is a
square.

There is a technique (“Adleman columns”) for adding extra columns to the matrix
which can deal with both the class group obstruction and the unit obstruction. We
will say a little more about this in the next section, but the reader is referred to [4]
for more details.

Example 11.15 Let N = 6893 = 832 + 4. As usual, this means that m = 83 is a
root of the polynomial f (x) = x2 +4 modulo 6893, and this gives a homomorphism
Z[2i] −√ Z/6893Z given by a + b · 2i →√ a + 83b (mod 6893). (Of course, we are
choosing 2i as our root of x2 + 4.)

Now let a = 3 and b = 2, and observe that

3 + 2 · 2i = 3 + 4i →√ 3 + 2 · 83 = 169 = 132.

However, although 3 + 4i is a square in Z[i], since 3 + 4i = (2 + i)2, it is not a
square in the ring Z[2i].

There is a simple remedy in this case; we simply multiply our square root by a
suitable factor so that it is in our ring—we use 2(2 + i) = 4 + 2i instead of 2 + i .
This corresponds to scaling our (a, b) by 4, so we use a = 12, b = 8:

12 + 8 · 2i = 12 + 16i = (4 + 2i)2,
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and 12 + 8 · 2i →√ 12 + 8 · 83 = 262. Also, 4 + 2i →√ 4 + 1 · 83 = 87, so we get
a congruence 262 ≥ 872 (mod 6893), giving the factorisation 6893 = 61 × 113, as
required.

Having to use a ring which is a proper subring of the ring of integers of the number
field arising can cause problems. These subrings may not share good arithmetic
properties of ZK ; we have not proven unique factorisation of ideals into prime ideals
for these subrings, for example.

In general, the situation is even worse than this; we have only been working with
monic polynomials for simplicity, so that the root α is an algebraic integer. In this
case, if K denotes the field of fractions of Z[α], then Z[α] ∗ ZK , but in general
when f need not be monic, we need have no such inclusion.

These are, essentially, all the possible obstructions. However, one problem
remains; even if we know that

∏
a + bα = γ 2 for some element γ ◦ Z[α], it

is not generally a trivial matter to work out what γ is, expressed as a polynomial
in α.

11.7 The General Case

The reader who has followed the discussion so far should now realise how the general
case will proceed. We will give a fairly complete description of the algorithm, but
there are numerous refinements which would be made in actual implementations.

Suppose that a number N is given to be factorised. The aim is to find integers x
and y such that x2 ≥ y2 (mod N ).

Step 1: Find a Polynomial f (X) ∈ Z[X] and an Integer m

We start by trying to find a polynomial f (X) ◦ Z[X ] and an integer m such that
f (m) ≥ 0 (mod N ). Then if α denotes a root of f (X) in C, the algebraic side of the
Number Field Sieve will take place in Z[α].
Remark 11.16 One never needs to compute an actual value for α; one just has to
know the polynomial f (X), and deduce properties of Z[α] and Q(α).

The norm on the algebraic side is closely related to the values taken by the poly-
nomial, and therefore to the size of its coefficients. Thus we are more likely to find
smooth values on the algebraic side if the size of the coefficients can be made as
small as possible.

Let’s justify this comment now.
We are going to consider only elements of Z[α] of the form a + bα. One reason

is that it will be easy to see whether or not a + bα is B-smooth. Indeed, if α1 = α,
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α2, . . . αd are the roots of f , which we will again suppose monic for simplicity, then
we have

f (X) = (X − α)(X − α2) · · · (X − αd).

The norm of a + bα is the product of the conjugates of a + bα, and these are a + bα,
a + bα2, . . . , a + bαd . Then

N (a + bα) = (a + bα)(a + bα2) · · · (a + bαd)

= (−b)d
(
−a

b
− α

) (
−a

b
− α2

)
· · ·

(
−a

b
− αd

)

= (−b)d f
(
−a

b

)
,

so it is very easy to compute the norm of a + bα. Indeed, if we write f (X) =
Xd + cd−1 Xd−1 + · · · + c0, let F(X, Y ) = Xd + cd−1 Xd−1Y + · · · + c0Y d be the
corresponding homogeneous degree d polynomial; then F(X, Y ) = Y d f ( X

Y ) and
the formula above shows that N (a + bα) = F(a,−b).

Remark 11.17 It may seem as if we are losing possible useful information by con-
sidering only numbers of the form a + bα ◦ Z[α], but it is less easy to compute
norms of other numbers in this ring, and in practice, there seems to be little to be
gained by using other elements of Z[α].

Here’s one way to find a polynomial with fairly small coefficients. We begin by
selecting the degree d of the polynomial (we will comment on the choice of d in the

final section). Next, we choose m to be �N
1
d ≡, and write N in base m, as

N = md + cd−1md−1 + · · · + c0,

where each ci is between 0 and m − 1. We then simply choose f to be

f (X) = Xd + cd−1 Xd−1 + · · · + c0.

For example, if N = 5731, and we chose d to be 3, our formula gives m = 17. Then
we write N in base 17:

5731 = 173 + 2 · 172 + 14 · 17 + 2,

and let f (x) = x3 + 2x2 + 14x + 2. Then f (17) = 5731 ≥ 0 (mod 5731), and so
17 is a root of f (x) modulo 5731, as required.

Since the size of m is about the dth root of N , and the coefficients are all less than
m, we can see that the coefficient size is of the order N

1
d .

Remark 11.18 While this is one of the easiest ways to produce polynomials with
coefficients of the right sort of size, there are better techniques which are actually
used in practice.
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Step 2: Form the Homomorphism φ

We claimed above that there is a ring homomorphism φ : Z[α] −√ Z/NZ. We will
suppose that f is a monic polynomial for simplicity here—as it is irreducible, this
means that f will be the minimal polynomial of α. (If α is not an algebraic integer,
the argument below will work as long as the coefficients of f are integers with no
common factor, even though it may not be monic.)

Lemma 11.19 There is a ring homomorphism φ : Z[α] −√ Z/NZ taking α to m.

Proof We need to check that φ is well-defined, and is a homomorphism. Once we
show that it is well-defined, it will be easy to see that it is a homomorphism, so we
will just show that it is well-defined.

Suppose g(α) and h(α) are two elements of Z[α], that is, they are polynomial
expressions in α with integer coefficients. We need to check that if g(α) and h(α)

have the same value, then φ(g(α)) = φ(h(α)).
But if g(α) = h(α), we see that α is a root of g − h. Since f is the minimal

polynomial of α, we have f |g − h. This divisibility is in Z[x], not just Q[x], by
Gauss’s Lemma (Remark 2.23). So g − h = f q for some polynomial q(x) ◦ Z[x].
In particular,

g(m) − h(m) = f (m)q(m);

as f (m) ≥ 0 (mod N ), the right-hand side is therefore divisible by N . So g(m) ≥
h(m) (mod N ). This shows that φ is well-defined. It is clear that it is a homomorphism
from the definition. �

Step 3: Compile a Factorbase

Select a smoothness bound B. (In practice, one might want different smoothness
bound on the algebraic side and the modular arithmetic side.) The choice of B will
be discussed in the final section.

The proof earlier that the algebraic factorbase only consists of prime ideals of norm
p, a prime, continues to be valid, as does the description of the prime ideals involved.
So we form the algebraic factorbase from the prime ideals in the ring of integers of
Q(α) of the form p[p,r ] = ⇒p, α − r∩, where p ≤ B and f (r) ≥ 0 (mod p).

The modular arithmetic factorbase will consist of all the prime numbers up to B,
together with −1.

Then the complete factorbase consists of the union of these two factorbases.
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Step 4: Sieve to Find Relations

Now we select a region consisting of many pairs (a, b). In order to perform sieving to
find relations, it is helpful if the region has a convenient shape, perhaps a rectangular
region of the form

{(x, y) | − L ≤ x ≤ L , 0 < y ≤ W }

for some length L and width W .
For every pair (a, b) in the region with (a, b) = 1, compute the norm N (a + bα) =

F(a,−b) as above (a sieving process), and hence factor the ideal ⇒a+bα∩, if possible,
in the algebraic factorbase. A prime p divides N (a + bα) if and only if a prime
p[p,r ] divides ⇒a + bα∩ for some r . Since a and b are coprime, either a or b is
not divisible by p. It is easy to see (as above) that F(a,−b) ≥ 0 (mod p) means
that a + br ≥ 0 (mod p) for some r which is a root of f (x) modulo p. Since r is
uniquely determined by a and b, there is a unique prime above p dividing ⇒a + bα∩,
and since it has norm p, its exponent must be the same as the exponent of p in
N (a + bα) = F(a,−b).

Also factor the integer a + bm (mod N ), if possible, in the modular arithmetic
factorbase.

Say that a pair (a, b) is smooth if ⇒a + bα∩ and a + bm (mod N ) both factor in
the factorbase.

Every smooth pair (a, b) gives a row of a matrix whose columns consist of ele-
ments of the factorbase (and also Adleman columns, discussed as part of the next
step).

Remark 11.20 One might want to use a large prime variant, as in Remark 11.5 for
the quadratic sieve.

Step 5: Linear Algebra

The aim of the linear algebra modulo 2 is to produce from all the smooth pairs
a subset S such that I = ∏

(a,b)◦S⇒a + bα∩ is a square ideal in Z[α], and also∏
(a,b)◦S(a +bm) (mod N ) is a square integer. Write β = ∏

(a,b)◦S(a +bα), so that
I = ⇒β∩.

As already seen in the quadratic examples above, quite a lot can still go wrong!

1. I may be the square of an ideal in Z[α], but this differs in general from the ring
of integers ZK of K = Q(α).

2. Even if I is the square of an ideal J in ZK , the ideal J may not be principal.
3. Even if J is principal, so that ⇒β∩ = ⇒γ ∩2, it may not be true that β = γ 2.
4. Next, if β = γ 2 for some γ, we only know that γ ◦ ZK , and it may not be true

that γ ◦ Z[α].
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As already mentioned in Example 11.15, the final difficulty is dealt with by scaling,
and is easy to overcome.

In practice, the first three obstructions are ignored, but extra tests are built in to
the linear algebra stage to try to guarantee that β = γ 2 for some γ . The method used
is to add extra columns (“Adleman columns”) to the linear algebra matrix. We are
seeking a set S so that β = ∏

(a,b)◦S(a + bα) is a square.
Suppose that q is a prime, and s is chosen so that f (s) ≥ 0 (mod q). Just as for

the map φ, there will be a homomorphism φq : Z[α] −√ Z/qZ sending α to s.
If β is a square, then φq(β) = ∏

(a,b)◦S(a + bs) (mod q) will be a square
modulo q, and this can be checked with Legendre symbols: if β is a square, then
∏

(a,b)◦S

(
a+bs

q

)
= 1.

We add columns to the matrix corresponding to several pairs (q, s) as above.
For each smooth pair (a, b), as well as storing its factorisations with respect to the

factorbase, we also store the values of
(

a+bs
q

)
for each pair (q, s). (More precisely,

put ‘0’ in the matrix under the column (q, s) if
(

a+bs
q

)
= 1 and ‘1’ if

(
a+bs

q

)
= −1.)

In the linear algebra stage, we find a set S such that ⇒β∩ = ∏
(a,b)◦S⇒a + bα∩ is a

square ideal,
∏

(a,b)◦S(a + bm) (mod N ) is a square and also the Adleman columns

satisfy
∏

(a,b)◦S

(
a+bs

q

)
= 1 for each (q, s) pair.

If β is a square, it would be automatic that
∏

(a,b)◦S

(
a+bs

q

)
= 1 for each

(q, s) pair, but if not, there should be no reason why this should be +1 or −1
for any (q, s) column. Thus if we choose enough (q, s) pairs, and all of the results
∏

(a,b)◦S

(
a+bs

q

)
= 1, it is very likely that β is a square.

Step 6: Square Roots

With the notation of the previous step, if β = γ 2 for some γ ◦ Z[α], it is not clear
how to go about finding γ in general (in our quadratic cases, this is easy, but in
higher degree number fields, it is not so clear). This is a difficult problem, but not
insurmountable. One approach sketched in [4] is to choose primes p such that f (X)

is irreducible modulo p. Then we can reduce β ◦ Z[α] to β ◦ Fp[α], and try to
solve γ 2 = β as a power series in α with coefficients mod p. With enough primes,
it is possible to reconstruct γ ◦ Z[α] using the Chinese Remainder Theorem. The
authors remark, however, that in practice, various refinements of this technique are
used.
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Step 7: Factorise N—or Not!

Once we have γ ◦ Z[α], we should be able to find integers x and y, and a congruence
x2 ≥ y2 (mod N ). At this stage, we know β = γ 2 in Z[α], and β = ∏

(a,b)◦S(a +
bα) maps to a square y2 = ∏

(a,b)◦S(a +bm) (mod N ). Write x = φ(γ ); as φ(β) =
φ(γ )2, we get y2 = x2 in Z/NZ, which is the desired congruence x2 ≥ y2 (mod N ).

Now N |x2 − y2 = (x + y)(x − y), and if we are lucky, N may split into two parts,
one of which divides x + y, and the other dividing x − y. These may be computed
using Euclid’s algorithm on N and x ± y, and if both are smaller than N , we get a
factorisation of N . (However, it may be that N |x + y or N |x − y, and then one has
to find another set S of pairs with the same properties.)

Exercise 11.7 Make up lots of examples of your own; the best way to understand
the algorithm is to try to work through it and see what can go wrong, and how to put
it right. All of the features of the algorithm should be apparent in the quadratic case,
and I recommend treating only the quadratic case until you are confident about all
the issues.

Readers with a suitable background may wish to try to program parts of the
algorithm.

11.8 Closing Comments

The Number Field Sieve looks a very complicated algorithm, and one may ask why
we use it in preference to, say, the quadratic sieve.

The answer is that it allows us to factor larger numbers. When considering the two
algorithms, one can see that both depend on having a significant supply of smooth
numbers. The approach of the number field sieve produces more numbers of small
norm; so we should get more numbers on the algebraic side which stand a chance
of being smooth. Indeed, for the quadratic sieve, we need to find x near

∈
N and

consider whether x2 − N is B-smooth. But if x ⊗ ∈
N , then x2 − N is of magnitude

about
∈

N . On the other hand, the number field sieve requires both N (a + bα) and
a + bm (mod N ) to be smooth; the first is equivalent to F(a,−b) being smooth,

but F(a,−b) has coefficients of order N
1
d , and, with suitable choices of m, and the

region of (a, b) pairs, we need two numbers to be smooth which are both of order

about N
1
d . Informally at least, this gives more chances of finding smooth relations,

at least if d is sufficiently large (d ≥ 5 should suffice).
For more details of the running time analysis, the reader should consult either of

the two books [4] or [8] on the Number Field Sieve mentioned at the end of the book.
Given a number N , there are some choices to be made. We need to find a poly-

nomial of some degree d, and then choose a smoothness bound B. The approximate
running time of the algorithm can be computed in terms of d and B, and this can
be optimised by making appropriate choices for these parameters. Various approxi-
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mations are made in the course of this analysis, and if X and Y are two expressions
depending on N , we will use the notation X ⊃ Y to mean that X/Y √ 1 as N √ ∞.
We may say that X tends to Y asymptotically in this case.

It turns out that the best value for d is:

d ⊃
(

3 ln N

ln ln N

)1/3

.

The value of B should be chosen to be about

B ⊃ exp
(
( 8

9 )
1
3 (ln N )

1
3 (ln ln N )

2
3

)
,

and these choices give a running time of (asymptotically) about

exp
(
( 64

9 )
1
3 (ln N )

1
3 (ln ln N )

2
3

)
.

(Actually, this is not quite right; it is really

exp

((
64
9 + o(1)

) 1
3
(ln N )

1
3 (ln ln N )

2
3

)
,

meaning that it is better than exp
(

c(ln N )
1
3 (ln ln N )

2
3

)
for any c > 3

√
64
9 .)

In comparison, the corresponding figures for the quadratic sieve (here there is no
parameter d, just a smoothness bound B):

B ⊃ exp( 1
2

∈
ln N ln ln N ),

and the expected running time tends asymptotically to exp(
∈

ln N ln ln N ).
One can readily see that as N gets bigger and bigger, the Number Field Sieve

begins to outshine the quadratic sieve; in practice, this happens when one expects to
choose d ≥ 5 in the Number Field Sieve, meaning that N should have around 100
digits. The quadratic sieve begins to become impractical for numbers with too many
more digits; the Number Field Sieve has factored numbers with over 200 digits.

These running time estimates arise from an estimate of the number of pairs (a, b)

such that a + bα is smooth; by the earlier result, this means that F(a,−b) should
be smooth, and the estimates above suppose that the coefficients of F can be chosen
to be about N 1/d . Sometimes one wants to use these methods to factor numbers of
a very particular form, for which one can choose the coefficients of f to be very
small. For example, one of the first applications of the method was to factor the
ninth Fermat number, N = 229 + 1; the polynomial f (x) = x5 + 8 was used, with
m = 2103, and f (m) = 2515 + 8 = 8(2512 + 1) ≥ 0 (mod N ). When we can
choose our polynomials to have smaller coefficients than we expect, we can improve
our running time—if the coefficients of f are of size N e/d , then the running time
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becomes

exp

((
32(1+e)

9 + o(1)
) 1

3
(ln N )

1
3 (ln ln N )

2
3

)
,

so the best we can do is when e = 0, with a running time of

exp

((
32
9 + o(1)

) 1
3
(ln N )

1
3 (ln ln N )

2
3

)
.

When we are dealing with numbers where we can choose e near 0 (like the Fermat
number mentioned above), the Number Field Sieve is known as the Special Number
Field Sieve. In general, however, we expect the coefficients to be about N 1/d , with
running time given above, and this is the General Number Field Sieve.



Appendix A
Solutions and Hints to Exercises

Chapter 1

1.1 1. Suppose that there are only finitely many prime p ≥ 3 (mod 4), and label
them p1, . . . , pn .
Then consider N = 4p1 . . . pn − 1. This number is clearly odd, and has
remainder 3 after dividing by 4. So its prime divisors are all odd, and they
can’t all be 1 (mod 4), as the product of numbers which are 1 (mod 4) is
again 1 (mod 4). So N has a prime divisor p ≥ 3 (mod 4). But p must be
different from all the pi , since p|N but pi � N for all i = 1, . . . , n. So there
must be infinitely many primes p ≥ 3 (mod 4).

2. Suppose that there are only finitely many prime p ≥ 5 (mod 6), and label
them p1, . . . , pn .
Then consider N = 6p1 . . . pn − 1. This number is clearly odd, and has
remainder 5 after dividing by 6. So (6, N ) = 1, and the prime divisors of
N can’t all be 1 (mod 6), as the product of numbers which are 1 (mod 6) is
again 1 (mod 6). So N has a prime divisor p ≥ 5 (mod 6). But p must be
different from all the pi , since p|N but pi � N for all i = 1, . . . , n. So there
must be infinitely many primes p ≥ 5 (mod 6).

1.2 1. Suppose that p|x2 +1. If x is even, clearly p is odd. Then x2 ≥ −1 (mod p)
(and as p ∈= 2, we have x2 ∈≥ 1 (mod p)), and so x4 ≥ 1 (mod p). Thus x
has order 4 modulo p. So the order of the multiplicative group is a multiple
of 4, which is the order of x . But the multiplicative group has order p − 1.
Thus 4|p − 1, and so p ≥ 1 (mod 4).

2. Suppose that there are only finitely many prime p ≥ 1 (mod 4), and label
them p1, . . . , pn .
Then consider N = (2p1 . . . pn)

2 + 1. This number is clearly odd. Let p
be a prime divisor of N . By (1), p ≥ 1 (mod 4). But p must be different
from all the pi , since p|N but pi � N for all i = 1, . . . , n. So there must be
infinitely many primes p ≥ 1 (mod 4).

1.3 Suppose that x ∈≥ 1 (mod 3). Then x2 + x + 1 ≥ 1 (mod 6). Let p|x2 + x + 1.
Then (x2 + x + 1)(x − 1) = x3 − 1 ≥ 0 (mod p). Thus x3 ≥ 1 (mod p). As
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above, 3|p − 1, and so p ≥ 1 (mod 3).
Now suppose that there are only finitely many prime p ≥ 1 (mod 6), and label
them p1, . . . , pn .
Then consider N = (6p1 . . . pn)

2 + (6p1 . . . pn) + 1. Let p be a prime divisor
of N . By the above, p ≥ 1 (mod 3). Also, N is odd, so p must be odd too, and
so p ≥ 1 (mod 6). But p must be different from all the pi , since p|N but pi � N
for all i = 1, . . . , n. So there must be infinitely many primes p ≥ 1 (mod 6).

1.4 1. If rn+1 < rn/2, then certainly rn+2 < rn+1. If rn+1 = rn/2, in the next step,
rn+2 = 0. Finally, if rn+1 > rn/2, in the next step, rn+2 = rn −rn+1 < rn/2.
So in all cases, rn+2 < rn/2.

2. For every two steps of the algorithm, the remainder halves (at least).
3. If b < 2n , this means that the remainder after 2n steps is less than 1, so must

be 0, and the algorithm has terminated. Thus numbers which are at most 2n

require at most 2n applications of the division algorithm.
1.5 1. Allowing negative remainders, we have

630 = 5 × 132 − 30
132 = 4 × 30 + 12
30 = 2 × 12 + 6
12 = 2 × 6 + 0

(so only one step is saved in this case).
2. Similar to the last exercise.

1.6 The existence of the division algorithm just follows from long division of poly-
nomials, and the Euclidean algorithm is again simply a repetition of the division
algorithm. For the example, the first step is

x5+4x4+10x3+15x2+14x+6 = x(x4+4x3+9x2+12x+9)+x3+3x2+5x+6

and then repeating in the same way as the Euclidean algorithm gives

x4 + 4x3 + 9x2 + 12x + 9 = (x + 1)(x3 + 3x2 + 5x + 6) + x2 + x + 3

and finally
x3 + 3x2 + 5x + 6 = (x + 2)(x2 + x + 3) + 0,

so the highest common factor is x2 + x + 3.
1.7 We’ll use the modified algorithm of Exercise 1.5 as an example.

999 = 1 × 700 + 299
700 = 2 × 299 + 102
299 = 3 × 102 − 7
102 = 15 × 7 − 3

7 = 2 × 3 + 1
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Then

1 = 7 − 2 × 3 = 7 − 2 × (15 × 7 − 102) = 2 × 102 − 29 × 7

= 2 × 102 − 29 × (3 × 102 − 299) = 29 × 299 − 85 × 102

= 29 × 299 − 85 × (700 − 2 × 299) = 199 × 299 − 85 × 700

= 199 × (999 − 700) − 85 × 700 = 199 × 999 − 284 × 700

1.8 As in Lemma 1.20.
1.9 As in Theorem 1.19, using the result of the last exercise to derive unique fac-

torisation in Z[√−2].
1.10 Given α and γ in Z[√2], write α/γ = x + y

√
2 with x, y ≡ Q, and let m

and n be the closest integers to x and y respectively. Put σ = m + n
√

2, and
then N (α/γ − σ) = |(x − m)2 − 2(y − n)2| ≤ 1

2 . The result follows as in
Lemma 1.20.

1.11 We can take α = √−7 and γ = 2. Then the imaginary part of α/γ is
√

7
2 , and

this is at least
√

7
2 > 1 from any point of Z[√−7], since points in Z[√−7] have

imaginary parts which are integer multiples of
√

7. We will see later that the
problem is that we are working with the wrong ring!

1.12 We find ( 2
1009 ) = ( 3

1009 ) = ( 5
1009 ) = ( 7

1009 ) = 1, but ( 11
1009 ) = −1 (ei-

ther by using known properties of Legendre symbols or using Euler’s formula
a(p−1)/2 ≥ ( a

p ) (mod p)). Compute 11(1009−1)/4 = 11252 ≥ 469 (mod 1009).
Then x = 469 is a solution (and so is x = −469 ≥ 540 (mod 1009)).

1.13 1. The elements except for those where f (s) = s may be partitioned into
pairs {s, f (s)}. So S is the union of FixS( f ) with all the pairs {s, f (s)},
and so |S| is the sum of |FixS( f )| and 2r , where r is the number of pairs.

2. This is rather fiddly! First take (x, y, z) with x < y − z. Then f (x, y, z) =
(X, Y, Z), where X = x + 2z, Y = z and Z = y − x − z. Then
f ( f (x, y, z)) = f (X, Y, Z). But clearly X = x + 2z > 2z = 2Y , and as
X > 2Y , f (X, Y, Z) = (X − 2Y, X − Y + Z , Y ) = (x, y, z). The other
two cases are similar.

3. Suppose that f (x, y, z) = (x, y, z). It is easy to see that (x, y, z) must
satisfy y − z < x < 2y, as the other two possibilities get mapped to triples
with different conditions. Then f (x, y, z) = (2y − x, y, x − y + z) =
(x, y, z), so x = y. Then (x, x, z) ≡ S means that x2 + 4xz = p, so
p = x(x+4z). But p is prime, so x = 1 and then z = k (where p = 4k+1).
So the unique fixed point is (1, 1, k). By the first part, |S| is odd.

4. It is clear that f √ is another involution on S. As |S| is odd (by the last part),
f √ has a fixed point (by the first part).

5. If (x, y, z) is a fixed point of f √, then (x, z, y) = (x, y, z), so y = z. So
there is a point of S of the form (x, y, y), and so x2 + 4y2 = p, and thus
p is the sum of two squares.

1.14 For Step 1, we have already found x = 469 in Exercise 1.12. The Euclidean
algorithm for 1009 and 469 is:



260 Appendix A: Solutions and Hints to Exercises

1009 = 2 × 469 + 71
469 = 6 × 71 + 43
71 = 1 × 43 + 28
43 = 1 × 28 + 15
28 = 1 × 15 + 13
15 = 1 × 13 + 2
13 = 6 × 2 + 1
2 = 2 × 1 + 0

and the algorithm gives 1009 = 282 + 152.
1.15 Write x3 = (y + √−2)(y − √−2). If x were even, we would have y2 + 2 ≥

0 (mod 8), which is not possible, so x is odd, and then y will also be odd.

If α is a common divisor of y + √−2 and y − √−2, then α|2√−2, and so
N (α)|N (2

√−2) = 8. So α is a unit, or
√−2|α. But if

√−2|α, and α|y+√−2,
then

√−2|y, and then y would be even. So this is not possible, and α is a unit.

Then we have y + √−2 = uγ3, y − √−2 = vβ3 for units u and v. The only
units in Z[√−2] are ±1, so we need

y + √−2 = ±(a + b
√−2)3.

Expanding, and taking the imaginary parts gives 1 = ±(3a2b − 2b3), or
b(3a2 − 2b2) = ±1. This is solved with b = ±1, a = ±1, so y + √−2 =
±(1 ± √−2)3, and we can read off y = ±5, and then it is easy to recover
x = 3.

1.16 This is very similar to the example in the chapter.

Chapter 2

2.1 These numbers are all transcendental for the same reasons as for Liouville’s
number (and you will be able to see that many other numbers are transcen-
dental for the same reason). Suppose there are countably many such numbers,
α1,α2, . . ., where αi = ∑→

k=1 s(i)
k 10−k!. Then let tk = 1 if s(k)

k = −1 and vice
versa. The number γ = ∑→

k=1 tk10−k! differs from any given αi because it has
a different coefficient of 10−i !, and so is a new number in the set. Thus any
list indexed by the natural numbers must be incomplete, and so the set must be
uncountable.

2.2 Let α = √
2 + √

3. Then α2 = 5 + 2
√

6, and so (α2 − 5) = 2
√

6. Squar-
ing gives α4 − 10α2 + 25 = 24, and so α is a root of X4 − 10X2 +
1 = 0. This is the minimal polynomial over Q; this is not completely
obvious, but one way to see this is to observe that the other roots are
±√

2 ± √
3, and to try polynomials of smaller degree, such as (X − (

√
2 +√

3))(X − (
√

2 − √
3)) and see that none of them have rational coeffi-

cients. (There are better ways available given some knowledge of Galois
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Theory.)

Over Q(
√

2), we simply need to eliminate the
√

3. Write α − √
2 = √

3 and
square to get α2 − 2

√
2α + 2 = 3; so α is a root of X2 − 2

√
2X − 1 = 0,

which is the minimal polynomial over Q(
√

2). (Since α /≡ Q(
√

2), the minimal
polynomial must be at least quadratic, so this quadratic must be the minimal
polynomial over Q(

√
2).)

2.3
√

2α = 1 + i . Squaring gives 2α2 = 2i , and the minimal polynomial over
Q(i) is therefore X2 − i . Alternatively,

√
2α−1 = i , and squaring gives 2α2 −

2
√

2α+1 = −1. Thus α is a root of X2−√
2X +1 = 0, and this is the minimal

polynomial for α over Q(
√

2). Now multiply the top and bottom of the fraction
by i to see that α = i−1√−2

. Then
√−2α + 1 = i , and squaring gives −2α2 +

2
√−2α+1 = −1, so α is a root of X2−√−2X−1 = 0, and this is the minimal

polynomial over Q(
√−2). (In these cases, it is easy to see that these really are

the minimal polynomials; clearly α is not in any of these quadratic fields, and so
the polynomial of smallest degree with α as a root must be at least quadratic.)

2.4 Suppose that a + b
√

2 + c
√

3 + d
√

6 = 0. Rearrange this as

a + b
√

2 = −c
√

3 − d
√

6,

so that √
3 = −a + b

√
2

c + d
√

2
,

and so
√

3 would lie in Q(
√

2), whose elements are expressible in the form
p + q

√
2 for p, q ≡ Q. Let’s show that

√
3 /≡ Q(

√
2). If

√
3 = p + q

√
2, we

can square to get p2 + 2q2 + 2pq
√

2 = 3, and the irrationality of
√

2 implies
that pq = 0. This leads to the conclusion that either

√
3 ≡ Q, or is a rational

multiple of
√

2; the first is well-known to be false, and the second (after scaling
by

√
2) implies that

√
6 would be rational, which is again known to be false.

2.5 We can use α = √
2+√

3, and note that
√

2−√
3 is not of this form. (α = 3

√
2

is another natural choice.)
2.6 As α3 − 2 = 0, we use the Euclidean algorithm on X3 − 2 and X + 2. We

find that X3 − 2 = (X2 − 2X + 4)(X + 2) − 10, and substituting α gives
(α2 − 2α + 4)(α + 2) = 10. Then 1

α+2 = α2−2α+4
10 , and so

α2 − 1

α + 2
= (α2 − 1)(α2 − 2α + 4)

10
= 3α2 + 4α − 8

10
,

using the fact that α3 = 2.
2.7 Similar to 2.6. When you do the Euclidean algorithm, you will notice that

fractions appear in the calculations. You should find that
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1

α2 − 2α + 2
= 2α3 + 3α2 + 2α + 2

5
,

and then the answer to the exercise is (2α4 + 5α3 + 5α2 + 4α + 2)/5, and
using α4 = −2α − 1, this simplifies to α3 + α2.

2.8 The degree of Q(
3
√

2,
√

2) over Q is 6.
2.9 If α = √

3 + √
5, then α3 = 18

√
3 + 14

√
5. Then

√
3 = (α3 − 14α)/4,√

5 = (18α − α3)/4, and the rest of the argument follows Example 2.19.

2.10 If α = 1+√
5

2 , then α2 − α − 1 = 0.

2.11 If α = 1+√
3√

2
, then α

√
2 = 1 + √

3, so 2α2 = 4 + 2
√

3, and (α2 − 2)2 = 3,

giving α4 − 4α2 + 1 = 0.
2.12 (α − 1/3)3 = α3 − α2 + α/3 − 1/27. But α − 1/3 = a1/3+a2/3

3 , so

(α − 1/3)3 = a2 + 3a5/3 + 3a4/3 + a

27
= a2 − 2a

27
+ 3a + 3a4/3 + 3a5/3

27
.

Equating these gives

α3 − α2 + α

3
− 1

27
= a2 − 2a

27
+ aα

3
,

which simplifies to the given equation. Clearly, if a ≥ 1 (mod 9), then this
equation has integral coefficients, so that α is an algebraic integer.

2.13 The calculation of the characteristic polynomial is standard. If ι = (
√

5 +√−3)/2, then ι2 = 1+√−15
2 , and so (ι2 − 1

2 )2 = − 15
4 . This expands to

ι4 − ι2 + 1
4 = − 15

4 , which gives the solution.
2.14 Write α = √

2 and γ = 3
√

2. Let v = (1 α γ γα γ2 γ2α)T , and note that if

A =





0 1 0 0 0 0
2 0 0 0 0 0
0 0 0 1 0 0
0 0 2 0 0 0
0 0 0 0 0 1
0 0 0 0 2 0



⎧
, B =





0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 0 0 0 0 0
0 2 0 0 0 0



⎧
,

that Av = αv and Bv = γv. Then (A+B)v = (α+γ)v, so α+γ is a root of the
characteristic polynomial of A+B, which is X6−6X4−4X3+12X2−24X−4.

2.15 If α = a + b( 1+√−3
2 ), then α = 2a+b

2 + b
√−3

2 , and so its modulus is
⎨ 2a+b

2

⎩2 + 3b2

4 = a2 + ab + b2 as required.

We need to solve a2 + ab + b2 = 19. Let’s complete the square, and write this
as (2a +b)2 +3b2 = 76. If b ◦ 6, the term 3b2 is too big. Trying b = 0, . . . , 5
gives solutions for (a, b): (3, 2), (−5, 2), (2, 3), (−5, 3), (−2, 5), (−3, 5) and
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if (a, b) is a solution, so is (−a,−b). These correspond to elements ±4±√−3,
±7±3

√−3
2 and ±1±5

√−3
2 .

An element a + b
√−2 ≡ Z[√−2] has modulus a2 + 2b2, and a similar but

easier calculation gives the elements as ±1 ± 3
√−2.

2.16 We just need to check that α = 1+√
3√

2
is not in Z[√2,

√
3]. But α =

1
2

√
2 + 1

2

√
6, whereas elements of Z[√2,

√
3] should be of the form a +

b
√

2 + c
√

3 + d
√

6 with a, b, c, d ≡ Z.

Chapter 3

3.1 Given α = a + bi , it is a root of X2 − 2aX + (a2 + b2); the other root of this
equation is α = a − bi .

3.2 The minimal polynomial of
√

2 is X2 − 2, and the roots are ±√
2.

3.3 The minimal polynomial of
√

2 +√
3 was worked out above (in Exercise 2.2);

it is X4 − 10X2 + 1. Looking at the construction of the polynomial, it is clear
that ±√

2 ± √
3 are also roots, and so these are the conjugates.

3.4 The minimal polynomial is X3 − 2 (this is irreducible by Eisenstein’s criterion

with p = 2). The roots are 3
√

2, ω 3
√

2 and ω2 3
√

2, where ω = e2θi/3 = −1+√−3
2 ,

and so these are the conjugates. Note that in this example, the conjugates of
3
√

2 do not lie in Q(
3
√

2).
3.5 The embeddings are those where we map

√
2 ≡ Q(

√
2,

√
3) to the positive

square root +1.4142 . . . ≡ R or to the negative square root −1.4142 . . . ≡ R

and similarly for
√

3. They are given by

π1 : a + b
√

2 + c
√

3 + d
√

6 ≡ Q(
√

2,
√

3) ⇒∩ a + b
√

2 + c
√

3 + d
√

6 ≡ C

π2 : a + b
√

2 + c
√

3 + d
√

6 ≡ Q(
√

2,
√

3) ⇒∩ a + b
√

2 − c
√

3 − d
√

6 ≡ C

π3 : a + b
√

2 + c
√

3 + d
√

6 ≡ Q(
√

2,
√

3) ⇒∩ a − b
√

2 + c
√

3 − d
√

6 ≡ C

π4 : a + b
√

2 + c
√

3 + d
√

6 ≡ Q(
√

2,
√

3) ⇒∩ a − b
√

2 − c
√

3 + d
√

6 ≡ C.

1. We can pick any α ≡ Q, such as α = 1, say.
2. Clearly γ = √

2 + √
3 is one such element.

3. With the order above, we can choose β = 1 + √
2, say.

Many other choices are possible in each case.
3.6 The minimal polynomial of α = 1 is just X − 1, so dα = 1 and rα = 4. Its

image under all four embeddings is 1, so
⎝4

i=1(X − πk(1)) = (X − 1)4.

The minimal polynomial of γ = √
2 + √

3 is X4 − 10X2 + 1, so dγ = 4 and
rγ = 1. It can also be written as

⎝4
i=1(X − πk(

√
2 + √

3)), since this is the
same as

(X − (
√

2 + √
3))(X − (

√
2 − √

3))(X − (−√
2 + √

3))(X − (−√
2 − √

3)).
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Finally, if β = 1+√
2, its minimal polynomial is X2 −2X −1, so dβ = rβ = 2.

Under two embeddings, β is mapped to 1 + √
2, and under the other two, it is

mapped to 1 − √
2. Then

4⎞

i=1

(X − πk(β)) = (X − (1 + √
2))2(X − (1 − √

2))2 = (X2 − 2X − 1)2.

3.7 We can choose a basis {1, i} for Q(i) as a Q-vector space. Then (a + bi)1 =
a.1 + b.i and (a + bi)i = −b.1 + ai , so that the matrix of the multiplication

by a + bi is given by

⎟
a b
−b a

⎠
, which has trace 2a and determinant a2 + b2.

With the reformulation of Proposition 3.16, we compute the conjugates, namely
a + bi and a − bi ; the norm is their product (a + bi)(a − bi) = a2 + b2, and
the trace is their sum (a + bi) + (a − bi) = 2a.

3.8 Choose a basis {1,
√

2,
√

3,
√

6} for Q(
√

2,
√

3) over Q. Then

(
√

2 + √
3)1 = 0.1 + 1.

√
2 + 1.

√
3 + 0.

√
6

(
√

2 + √
3)

√
2 = 2.1 + 0.

√
2 + 0.

√
3 + 1.

√
6

(
√

2 + √
3)

√
3 = 3.1 + 0.

√
2 + 0.

√
3 + 1.

√
6

(
√

2 + √
3)

√
6 = 0.1 + 3.

√
2 + 2.

√
3 + 0.

√
6

so the multiplication is represented by the matrix





0 1 1 0
2 0 0 1
3 0 0 1
0 3 2 0



⎧, which has

determinant 1 and trace 0.

Alternatively, the conjugates are ±√
2 ± √

3, which sum to 0, and

(
√

2 + √
3)(−√

2 + √
3)(

√
2 − √

3)(−√
2 − √

3) = 1

as follows easily from the formula x2 − y2 = (x + y)(x − y).

3.9 The matrix M is given by M =





1
√

2
√

3
√

6
1

√
2 −√

3 −√
6

1 −√
2

√
3 −√

6
1 −√

2 −√
3

√
6



⎧, of determinant

−96, so the discriminant is 9216.

With the reformulation as in Lemma 3.19, we have TK/Q(ω1ω1) = 4,
TK/Q(ω1ω2) = 0, TK/Q(ω1ω3) = 0, TK/Q(ω1ω4) = 0, TK/Q(ω2ω1) = 0,
TK/Q(ω2ω2) = 8, TK/Q(ω2ω3) = 0, TK/Q(ω2ω4) = 0, TK/Q(ω3ω1) = 0,
TK/Q(ω3ω2) = 0, TK/Q(ω3ω3) = 12, TK/Q(ω3ω4) = 0, TK/Q(ω4ω1) = 0,
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TK/Q(ω4ω2) = 0, TK/Q(ω4ω3) = 0, TK/Q(ω4ω4) = 24, and so the discrimi-

nant is the determinant of





4 0 0 0
0 8 0 0
0 0 12 0
0 0 0 24



⎧, which is again 9216.

3.10 The conjugates are β1 = √
2 + √

3, β2 = √
2 − √

3, β3 = −√
2 + √

3 and
β4 = −√

2−√
3. Then β1−β2 = 2

√
2, β1−β3 = 2

√
3, β1−β4 = 2(

√
2+√

3),
β2 − β3 = 2(

√
2 − √

3), β2 − β4 = 2
√

2, β3 − β4 = 2
√

3, and so⎝
i< j (βi − β j ) = −384, and

⎝
i< j (βi − β j )

2 = 147456.

We also have β = 0.1 + 1.
√

2 + 1.
√

3 + 0.
√

6, β2 = 5.1 + 0
√

2 +
0.

√
3 + 2.

√
6 and β3 = 0.1 + 11

√
2 + 9

√
3 + 0.

√
6. So the change of

basis matrix is





1 0 0 0
0 1 1 0
5 0 0 2
0 11 9 0



⎧, of determinant 4. Then we expect that

π{1, β, β2, β3} = 42π{1,
√

2,
√

3,
√

6}; we computed π{1,
√

2,
√

3,
√

6} =
9216 in Exercise 3.9, and 42 × 9216 = 147456, as expected.

3.11 We simply need to work out

∣∣∣∣
π1(1) π1(

√
d)

π2(1) π2(
√

d)

∣∣∣∣
2

=
∣∣∣∣
1

√
d

1 −√
d

∣∣∣∣
2

= (−2
√

d)2 = 4d.

3.12 The minimal polynomial is f (X) = X3 − 2. Then f √(X) = 3X2, and
f √( 3

√
2) = 3 3

√
4, whose conjugates are 3 3

√
4, 3ω 3

√
4 and 3ω2 3

√
4, where

ω = e2θi/3. The norm is the product of the conjugates, which is 108. So
DK = (−1)3(3−1)/2108 = −108.

3.13 If K = Q(
√

2,
√

5), put K1 = Q(
√

2) and K2 = Q(
√

5). These fields satisfy

the conditions of Proposition 3.34; an integral basis is therefore {1,
√

2, 1+√
5

2 ,√
2+√

10
2 }. As the discriminant of K1 is 8, and the discriminant of K2 is 5, the

Proposition gives DK = (8252) = 1600. We can also work it out from the
given integral basis: it will be

∣∣∣∣∣∣∣∣∣∣

1
√

2 1+√
5

2

√
2+√

10
2

1
√

2 1−√
5

2

√
2−√

10
2

1 −√
2 1+√

5
2

−√
2−√

10
2

1 −√
2 1−√

5
2

−√
2+√

10
2

∣∣∣∣∣∣∣∣∣∣

2

= (−40)2 = 1600.

3.14 Let’s compute DK from the definition: it is
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∣∣∣∣∣∣∣∣∣

1
√

2
√

3
√

2+√
6

2

1
√

2 −√
3

√
2−√

6
2

1 −√
2

√
3 −√

2−√
6

2

1 −√
2 −√

3 −√
2+√

6
2

∣∣∣∣∣∣∣∣∣

2

= (−48)2 = 2304.

With the reformulation of Lemma 3.19, we compute

DK =

∣∣∣∣∣∣∣∣∣

TK/Q(1) TK/Q(
√

2) TK/Q(
√

3) TK/Q(
√

2+√
6

2 )

TK/Q(
√

2) TK/Q(2) TK/Q(
√

6) TK/Q(1 + √
3)

TK/Q(
√

3) TK/Q(
√

6) TK/Q(3) TK/Q(
√

6+3
√

2
2 )

TK/Q(
√

2+√
6

2 ) TK/Q(1 + √
3) TK/Q(

√
3+3

√
2

2 ) TK/Q(2 + √
3)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

4 0 0 0
0 8 0 4
0 0 12 0
0 4 0 8

∣∣∣∣∣∣∣∣

= 2304.

Now write β = β1 =
√

2+√
6

2 . Its conjugates are β2 =
√

2−√
6

2 , β3 = −√
2−√

6
2 ,

and β4 = −√
2+√

6
2 , so Example 3.21 gives

DK =
⎞

i< j

(βi − β j )
2

= (
√

2)2(
√

6)2(
√

2 + √
6)2(

√
2)2(

√
2 − √

6)2(−√
6)2

= 2304.

Finally, the minimal polynomial of β is easily computed to be f (X) = X4 −
4X2 + 1 (see Exercise 2.11), so we conclude that DK = ±NK/Q( f √(β)) =
(−1)4(4−1)/2 NK/Q(4β3 − 8β) = 2304.

3.15 A basis for K = Q(
√−2,

√−5) over Q is clearly {1,
√−2,

√−5,
√

10};
write α = a + b

√−2 + c
√−5 + d

√
10 ≡ K . If α ≡ ZK , so is α + α2,

where α2 = a + b
√−2 − c

√−5 − d
√

10 (since α2 is a conjugate of α, so
they satisfy the same minimal polynomial). Then 2a + 2b

√−5 is an algebraic
integer, so A = 2a and B = 2b ≡ Z. Similar arguments show that C = 2c and
D = 2d ≡ Z.

Next, αα2 =
⎟

A2 + 2B2 − 5C2 − 10D2

4

⎠
+

⎟
AC − 2B D

2

⎠ √−5 is also an

algebraic integer. So 2|AC − 2B D, and so 2|AC and at least one of A and C
is even. As 2|A2 + 2B2 − 5C2 − 10D2, both A and C must be even. Then in
order that 4|A2 + 2B2 − 5C2 − 10D2, we need 2|B2 − 5D2, so both B and D
are even, or both are odd. Such elements are then Z-linear combinations of the
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given basis {1,
√−2,

√−5,
√−2+√

10
2 }; all these elements are integers, and so

this is an integral basis.
3.16 The condition that 3|g(β) means that g(β) = 3a(β) for some a(X) ≡ Z[X ].

Thus β is a root of g − 3a, and so f |(g − 3a). So this shows that g(X) =
3a(X) + f (X)b(X) for some b(X) =≡ Z[X ]. Reducing modulo 3, we see
that f |g. All these steps are easily seen to be reversible, and the result follows.
(Readers with knowledge of ring theory might rephrase this argument, using
the First Isomorphism Theorem to deduce an isomorphism Z[X ]/∼ f ⊂ ∗= Z[β],
and using this to see that 3|g(β) would imply that g ≡ ∼ f, 3⊂.)

3.17 Put ι1 = ι = a + bα + cα√

3
, so that ι2 = a + bαω + cα√ω2

3
and ι3 =

a + bαω2 + cα√ω
3

are the conjugates. Then

ι1ι2 + ι2ι3 + ι3ι1 = a2 − 35bc

3
,

so that 3|a2 − 35bc, and

ι1ι2ι3 = a3 + 175b3 + 245c3 − 105abc

27
,

so that 27|a3 + 175b3 + 245c3 − 105abc. If 3|a, it follows easily that 3|b
and 3|c. Suppose 3 � a. Then a2 ≥ 1 (mod 3), so that bc ≥ 2 (mod 3). The
only solutions that also make 9|a3 + 175b3 + 245c3 − 105abc are a ≥ b ≥
1 (mod 3) and c ≥ 2 (mod 3), and a ≥ b ≥ 2 (mod 3) and c ≥ 1 (mod 3).
For the first case, put a = 1 + 3l, b = 1 + 3m, c = 2 + 3n, and then
a3 + 175b3 + 245c3 − 105abc ≥ 9 (mod 27); for the second, put a = 2 + 3l,
b = 2+3m, c = 1+3n, and then a3+175b3+245c3−105abc ≥ 18 (mod 27),
so that we never find any integers. Thus it follows that 3|a, 3|b and 3|c.

Chapter 4

4.1 441 = 21 × 21 = 9 × 49.
4.2 The irreducible elements are a + ib, where a2 + b2 = p for some prime

p ≥ 1 (mod 4) or p = 2, and ±p and ±i p, where p ≥ 3 (mod 4).
4.3 1. Clearly the set {a + bω | a, b ≡ Z} is closed under addition. Further

(a + bω)(c + dω) = (ac − bd) + (ad + bc − bd)ω,

so it is also closed under multiplication. The remaining axioms follow as
it is a subset of C.

2. Consider
(

1+√
3

2

)2 = 2 +
√

3
2 ; this does not belong to the given set.
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3. Neither quotient (1 + √−3)/2 or 2/(1 + √−3) = (1 − √−3)/2
lies in Z[√−3], so they are not associates, and therefore give different
factorisations.

4.4 Note that
4 + √

5

2
√

5 − 3
= (4 + √

5)(2
√

5 + 3)

11
= 2 + √

5,

a unit, and so 4 + √
5 is a unit multiplied by 2

√
5 − 3. Similarly, 4 − √

5 =
(
√

5 − 2)(2
√

5 + 3).
4.5 Using the multiplicativity of the norm, if α = γβ, and N (α) = p, then

N (γ) = 1 or N (β) = 1, and so either γ or β must be prime. If α = 3, then
N (α) = 9, but there are no elements of norm 3, so 3 has no factorisation into
elements with norm bigger than 1.

In Z[√−2], a similar conclusion can be drawn for elements of prime norm (for
the same reasons). If α = a + b

√−2 had norm 5, then a2 + 2b2 = 5, and this
has no solutions. So there are no elements of norm 5, and so 5 is irreducible,
although its norm is 25.

4.6 The norms in these factorisations are 10 × 10 = 4 × 25, so the elements on the
two sides are not associate; further, there are no elements in Z[√10] of norm
2 (consider a2 − 10b2 = ±2 modulo 10) so

√
10 and 2 are irreducible. (In

fact, 5 is also irreducible; one can see that a2 − 10b2 = ±5 has no solution by
working modulo 5 to see that 5|a, and then modulo 25 to see that there is no
solution for b.)

4.7 6 = 2 × 3 = (−√−6)
√−6. The norms are 4 × 9 = 6 × 6, and there are no

elements of norm 2, since there is no solution to a2 +6b2 = 2, and no elements
of norm 3 (use a2 + 6b2 = 3).

4.8 14 = 2 × 7 = (1 + √−13)(1 − √−13). Again the norms are different, and
there are no elements of norm 2 or 7.

4.9 The equalities are clear. The norms are 9 × 9 × 9 = 27 × 27. However, there
are no elements of norm 3, so each factor is irreducible.

4.10 2(a +b
√

10)+(4+√
10)(c+d

√
10) = (2a +4c+10d)+√

10(2b+c+4d).
We claim that given any A + B

√
10 ≡ Z[√10] we can write it in this form

precisely when 2|A. This condition is clearly necessary. Conversely, we can
choose c and d so that c + 4d = B, then pick b = 0, and finally choose a so
that 2a = A − (4c − 10d). (There are other ways to do this.)

4.11 If α|2 and α|4+√
10, then taking norms gives N (α)|4 and N (α)|6. Thus α has

norm 1 or norm 2. But α cannot have norm 2, since Z[√10] has no elements
of norm 2. So α is a unit. But a1 cannot be a unit; it generates the ideal of
Exercise 4.10, and this is a proper ideal, as 1 /≡ a1. So a1 is not an element of
Z[√10].

4.12 Given a ≡ Z, we need to write a as 6p + 10q + 15r . But 1 = 6 + 10 − 15,
so a = 6a + 10a + 15(−a). However, {6, 10} is not enough to generate any
integer, as all linear combinations are even. Similarly, every linear combination
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of {6, 15} is divisible by 3, and every linear combination of {10, 15} is divisible
by 5, so {6, 10, 15} is minimal.

4.13 ∼12⊂ ⊗ ∼20⊂ = ∼60⊂; ∼12⊂∼20⊂ = ∼240⊂; ∼12⊂ + ∼20⊂ = ∼4⊂, and ∼12, 20⊂ = ∼4⊂.
4.14 1. An element of I + J is the sum of something in I and something in J ; an

element of I is a linear combination of a1, . . . , am , and an element of J is a
linear combination of b1, . . . , bn ; clearly their sum is a linear combination
of a1, . . . , am, b1, . . . , bn . Conversely, given such a linear combination, we
split into a sum of those multiples of a1, . . . , am and those of b1, . . . , bn ;
this sum lies in I + J . (Hopefully you got the same answers to the last two
parts of the previous exercise; this explains why.)

2. An element of I J is the sum of terms of the form i j with i a linear combi-
nation of a1, . . . , am and j a linear combination of b1, . . . , bn ; clearly i j
is then a linear combination of the given set. Conversely, each generator
ar bs lies in I J , and so any linear combination of them does.

4.15 1. 2(a + b
√−5) + (1 + √−5)(c + d

√−5) = (2a + c − 5d) + (2b +
c + d)

√−5, and so is of the form A + B
√−5 with A ≥ B (mod 2)

as claimed. Conversely, given A + B
√−5 with A ≥ B (mod 2), choose

any c and d with c + d = B, and let b = 0; then we need to find a so
that 2a + c − 5d = A; this means solving 2a = (A − B) + 6d, which
can be solved. Thus a = {A + B

√−5 | A ≥ B (mod 2)}. In particular,
1 = 1 + 0

√−5 /≡ a.
2. Suppose that a = ∼α⊂. Then N (a) = N (α); as N (a)|N (2) = 4 and

N (a)|N (1 + √−5) = 6, we see that N (α)|2. But a ∈= R, since 1 /≡ a; we
conclude that N (α) > 1, and so N (α) = 2. But there are no elements of
norm 2.

3. Let a√ = ∼2, 1 − √
5⊂. As 2 ≡ a, and 1 − √

5 = 2 + (−1)(1 − √
5) ≡ a,

both generators of a√ lie in a, so that a√ ⊆ a. The other inclusion is similar.
4.16 1. 3(a+b

√−5)+(1−√−5)(c+d
√−5) = (3a+c+5d)+(3b−c+d)

√−5,
and the remaining claims follow as in Exercise 4.15(1).

2. Again, this follows as any generator would have to have norm dividing
N (3) = 9 and N (1±√−5) = 6. But there are no elements of norm 3, and
the generator could not be a unit, since the ideals are not the whole ring
(by the characterisation in the previous part, 1 does not belong to either
ideal).

4.17 1. There are no solutions to a2 + 6b2 = 2 or 5. The norms on both sides are
different, and if any factor were reducible, the factors would have to have
norms 2 or 5, which is impossible.

2. If ∼2,
√−6⊂ were principal, any generator would need to divide both

N (2) = 4 and N (
√−6) = 6, so the norm of any generator would be

1 or 2; it cannot have norm 1, otherwise it would be a unit, and the ideal it
generated would be the whole ring (but 1 is not in the ideal), and there are
no elements of norm 2.

3. a2 = ∼22, 2
√−6, (

√−6)2⊂ = ∼4,−6,
√−6⊂, and each factor is divisible

by 2. Thus a2 ⊆ ∼2⊂. Conversely, 2 ≡ a2, as 4 and −6 lie in a2, and
2 = (−1)4 + (−1)(−6).
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4. b1b2 = ∼25, 5(2 + √−6), 5(2 − √−6), 10⊂, so b1b2 ⊆ ∼5⊂; conversely,
as 5 = 25 − 2 × 10, we see 5 ≡ b1b2. So b1b2 = ∼5⊂. Then

∼10⊂ = a2b1b2.

5. The two factorisations are

∼10⊂ = (a2)(b1b2) = (ab1)(ab2);

the equalities ∼2 + √−6⊂ = ab1 and ∼2 − √−6⊂ = ab2 are proven as
above.

4.18 We have already seen that Z[√2] has a Euclidean algorithm, and that this
implies that it has unique factorisation and is a PID.

Chapter 5

5.1 Suppose that r ≡ I . Let’s see that r + I = I . Given any i ≡ I , we can write
i = r + (i − r) ≡ r + I , so I ⊆ r + I . Conversely, if i ≡ I , then the element
r + i of r + I must be in I by the definition of ideal. So r + I ⊆ I , and
r + I = I , as required. Conversely, if r + I = I , then every element of r + I
lies in I , and in particular r + 0 = r is in I .

5.2 Suppose that R is a PID, and that p is an irreducible element. We claim that
∼p⊂ is maximal. If not, there is an ideal ∼p⊂ ⊃ I ⊃ R, with both inclusions
proper. As R is a PID, I = ∼a⊂ for some a. As ∼p⊂ ⊃ ∼a⊂, we see p ≡ ∼a⊂, so
that p = ab for some b ≡ R. As ∼p⊂ ⊃ ∼a⊂ is proper, we cannot have that b is
a unit. As ∼a⊂ ⊃ R is proper, clearly a is not a unit either. So p = ab for two
non-units a and b, so p was not irreducible, a contradiction.

5.3 This argument is the same as that of Example 5.11 (the existence of a Euclidean
algorithm for Z[i] means that it is a PID, and the analogue of Lemma 4.13
holds).

5.4 Similarly, the prime ideals in Z[i] are ∼α⊂ where α is an element of prime norm
p ≥ 1 (mod 4) and also ∼p⊂ where p ≥ 3 (mod 4) is a prime, as well as the
zero ideal ∼0⊂.

5.5 Almost all the field axioms hold because we are working in a quotient of an
integral domain; we just need to check that every nonzero element is invertible.
This follows because:

1 × 1 = 1

2 × 2 = 1√
2 × 2

√
2 = 1

(1 + √
2) × (2 + √

2) = 1

(1 + 2
√

2) × (2 + 2
√

2) = 1,
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It follows that every element is invertible. (You might like to check that the
multiplication table is that of a cyclic group; it is a fact that the multiplicative
group of any finite field is cyclic.) Thus ZK /a is a finite field, and so a is prime.

5.6 Now ZK /a is not a field, since a ⊃ ∼√2⊂ is a proper inclusion, so that a is
not maximal. (Alternatively, ZK /a has zero-divisors:

√
2 × √

2 = 0 in the
quotient, so ZK /a is not even an integral domain, so a is not prime.)

For b = ∼7⊂, one can argue similarly, using the factorisation 7 = (3+√
2)(3−√

2) to see that either b ⊃ ∼3 ± √
2⊂ is an inclusion of b into a proper ideal, or

that ZK /b has zero-divisors.
5.7 From the previous exercise, a = ∼2⊂ = p2

2, where p2 = ∼√2⊂, and b = ∼7⊂ =
p7p

√
7, where p7 = ∼3 + √

2⊂ and p√
7 = ∼3 − √

2⊂.
5.8 We need to check two things; firstly, given a and b as in the exercise, that the

highest common factor is
⎝

p p
min(ap ,bp ), and secondly, that a+b also satisfies

the defining property to be the highest common factor. (Then this shows that
a + b is also equal to the given expression.)

Write h for
⎝

p p
min(ap ,bp ), and we will show that it satisfies the conditions

required to be the highest common factor. It is clear that h|a and that h|b, since
the exponents of any given prime ideal in h is at most the corresponding expo-
nents in a and b. If c = ⎝

p p
cp , and c|a and c|b, then cp ≤ ap and cp ≤ bp,

and so cp ≤ min(ap, bp), so that c|h as required. (This is an analogue of the
well-known result for elements of Z.)

Also, notice that a + b|a and a + b|b and that if c|a and c|b, then c|a + b, so
that a + b satisfies the two requirements to be the highest common factor.

5.9 If m is coprime to hK , then there are integers s and t such that sm + thK = 1.
Then a = asmathK . As ahK is principal, and am is principal, we conclude that
a is principal.

5.10 We saw in Chap. 3 that the ring of integers is given by Z[ 3
√

2].

By Proposition 5.42, it suffices to see how the polynomial X3 − 2 factorises
modulo 5, 7 and 11. But

X3 − 2 ≥ (X − 3)(X2 − 2X − 1) (mod 5)

X3 − 2 ≥ X3 − 2 (mod 7)

X3 − 2 ≥ (X − 4)(X − 7)(X − 20) (mod 31),

where each factor is irreducible. So

∼5⊂ = p5p
√
5,

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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where p5 is a prime ideal of norm 5, and p√
5 is a prime ideal of norm 25.

Further, we can read off from Remark 5.43 that p5 = ∼p,
3
√

2 − 3⊂ and that

p√
5 = ∼p,

3
√

2
2 − 2 3

√
2 − 1⊂.

Similarly, ∼7⊂ is already a prime ideal of Q(
3
√

2), and

∼31⊂ = p31p
√
31p

√√
31,

where p31 = ∼31,
3
√

2 − 4⊂, p√
31 = ∼31,

3
√

2 − 7⊂ and p√√
31 = ∼31,

3
√

2 − 20⊂.
5.11 The discriminant of the polynomial (or the number field) is −8, so the only

ramified prime is 2, and ∼2⊂ = ∼√−2⊂2.

We have to consider how X2 + 2 factorises modulo p for all primes p. Now
X2 + 2 is irreducible if −2 is not a square modulo p, i.e., if (−2

p ) = −1.

The expressions for (−1
p ) and ( 2

p ) are well-known; combining these shows

that X2 + 2 is irreducible modulo p if p ≥ 5 (mod 8) or p ≥ 7 (mod 8). By
Proposition 5.42, these are the inert primes for K . The primes p ≥ 1 (mod 8)
and p ≥ 3 (mod 8) are split. (Notice that the splitting behaviour is given by a
congruence condition modulo DK ; this is a general phenomenon.)

5.12 Suppose ZK = Z[β]. If ∼2⊂ factors as the product of three distinct prime ideals
of norm 2, then Proposition 5.42 shows that the minimal polynomial of β (a
cubic polynomial) would have three distinct linear factors modulo 2. But the
only linear polynomials modulo 2 are X and X − 1, so this is a contradiction.

5.13 Using Proposition 5.42 again, we need to see how the minimal polynomial
of β factorises, where β is such that ZK = Z[β]. In this case, we can take

β = 1+√
5

2 , and its minimal polynomial is X2 − X − 1. The discriminant of
this field is 5, so the only ramified prime is 5.

For p = 2, X2 − X − 1 is irreducible, so ∼2⊂ is inert.

For all other primes, we have

X2 − X − 1 = (X − 1
2 )2 − 5

4 ,

and this is soluble if ( 5
p ) = 1. This happens when (

p
5 ) = 1, by Quadratic

Reciprocity, which is when p ≥ 1 (mod 5) or p ≥ 4 (mod 5). So these primes
split, whereas the primes p ≥ 2 (mod 5) and p ≥ 3 (mod 5) are inert.

Chapter 6

6.1 The line joining (0, 0) to ( 1
2 ,

√|d|
2 ) has gradient

√|d|, so its perpendicular
bisector will have gradient −1/

√|d|. Its equation is therefore Y = −X/
√|d|+

c, and it passes through the midpoint ( 1
4 ,

√|d|
4 ) of the two given points. We can

then read off c = |d|+1
4
√|d| . By symmetry, the line meets the perpendicular bisector
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of the line joining (0, 0) to (− 1
2 ,

√|d|
2 ) when X = 0, which is the point Y = c,

i.e., at
(

0,
|d|+1
4
√|d|

)
. The bisector of the line joining (0, 0) to (1, 0) is just X = 1

2 ,

and then we can read off Y = |d|−1
4
√|d| .

6.2 We can take α = √−19 and γ = 4. Then α/γ = √−19/4 has imaginary part√−19/4 = (1.0897 . . . )i . However, every integer of Q(
√−19) has imaginary

part which is an integer multiple of
√−19.2 = (2.1794 . . . )i ; it follows that

α/γ differs from every σ ≡ ZK by at least 1. So for every σ ≡ ZK , we have

NK/Q

(
α
γ − σ

)
> 1. Multiplying up, NK/Q(α − σγ) > NK/Q(γ) for every

σ ≡ ZK .
6.3 When ZK = Z[√d] and d < −2, Theorem 6.1 gives that the units are {1,−1}.

Suppose that a universal side-divisor exists as in Theorem 6.2. Now take α = 2,
and apply the theorem; either u|α or u|α ± 1. So u|1 (impossible as u is not
a unit) or u|2 or u|3. But 2 and 3 are irreducible, as any factor would have
to have norm 2 or 3. Notice that d ≤ −5 (as d = −3 is covered by the case
d ≥ 1 (mod 4)), and the norm of a + b

√
d is a2 + (−d)b2, and this can never

equal 2 or 3 when d ≤ −5. So u = ±2 or ±3. But if α = √
d , it is easy to

see that none of α or α ± 1 is divisible by ±2 or ±3, so u cannot exist, and we
conclude from Corollary 6.3 that ZK is not Euclidean.

6.4 Suppose that f and g are equivalent. Then g(px + qy, r x + sy) = f (x, y) for
some p, q, r and s with ps−qr = ±1. Suppose that g(x, y) = ax2+bxy+cy2,
with discriminant Dg = b2 − 4ac. Then

f (x, y) = a(px + qy)2 + b(px + qy)(r x + sy) + c(r x + sy)2,

which expands to

(ap2 + bpr + cr2)x2 + (2apq + bps + bqr + 2crs)xy + (aq2 + bqs + cs2)y2,

and this has discriminant

D f = (2apq + bps + bqr + 2crs)2 − 4(ap2 + bpr + cr2)(aq2 + bqs + cs2);

it is easy to expand this and simplify, to get D f = (b2 − 4ac)(ps − qr)2, so
that D f = Dg .

6.5 A tedious calculation shows that if f (x, y) = g(px + qy, r x + sy) for some

matrix M1 =
⎟

p q
r s

⎠
, and g(x, y) = h(t x + uy, vx + wy) for some matrix

M2 =
⎟

t u
v w

⎠
, then f (x, y) = h(kx + ly, mx + ny), where

⎟
k l
m n

⎠
= M2 M1 =

⎟
pt + ru qt + su
pv + rw qv + sw

⎠
.
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Both relations are clearly reflexive (use p = s = 1, q = r = 0). They are also

symmetric: if f (x, y) = g(px +qy, r x + sy) for some matrix M =
⎟

p q
r s

⎠
,

then the calculation shows that g(x, y) = f (p√x + q √y, r √x + s√y), where

M−1 =
⎟

p√ q √
r √ s√

⎠
(so we can take p√ = s, q √ = −q, r √ = −r and s√ = p) so

that g(x, y) = f (sx − qy,−r x + py). The calculation above (together with
the multiplicativity of the determinant) shows immediately that both relations
are also transitive.

6.6 From the calculations in the previous exercise, g(x, y) = f (sx − qy,−r x +
py). Then f (x, y) = n if and only ifg(u, v) = n, where

⎟
u
v

⎠
=

⎟
p q
r s

⎠ ⎟
x
y

⎠
,

and that this is equivalent to

⎟
x
y

⎠
=

⎟
s −q
−r p

⎠ ⎟
u
v

⎠
.

If X = {(x, y) | f (x, y) = n} and U = {(u, v) | g(u, v) = n}, we see that

(x, y) ≡ X if and only if (u, v) ≡ U , where

⎟
u
v

⎠
=

⎟
p q
r s

⎠ ⎟
x
y

⎠
, and the

inverse matrix gives a map in the other direction, so these are inverse bijections.
6.7 1. (6,−7, 8) ⇒∩ (6, 5, 7) which is reduced. We just needed one application

of the rule corresponding to the matrix

⎟
1 1
0 1

⎠
.

2. (13, 12, 11) ⇒∩ (11,−12, 13) ⇒∩ (11, 10, 12), which is reduced. We

needed

⎟
0 1
−1 0

⎠
followed by

⎟
1 1
0 1

⎠
, so the matrix is the product,

⎟
0 1
−1 −1

⎠
.

3. (43, 71, 67) ⇒∩ (43,−15, 39) ⇒∩ (39, 15, 43), which is reduced. The
same steps are used as in the previous example, so the matrix is again⎟

0 1
−1 −1

⎠
.

6.8 We had m = 469, and 4692 = 218 × 1009 − 1. So we consider the quadratic
form 1009x2 + 938xy + 218y2, of discriminant −4. Let us reduce this form:

(1009, 938, 218) ⇒∩ (218,−938, 1009) ⇒∩ (218,−502, 289) ⇒∩ (218,−66, 5)

⇒∩ (5, 66, 218) ⇒∩ (5, 56, 157) ⇒∩ (5, 46, 106) ⇒∩ (5, 36, 65)

⇒∩ (5, 26, 34) ⇒∩ (5, 16, 13) ⇒∩ (5, 6, 2) ⇒∩ (2,−6, 5)

⇒∩ (2,−2, 1) ⇒∩ (1, 2, 2) ⇒∩ (1, 0, 1).

A calculation shows that the matrix used to do the reduction is

⎟
28 13
15 7

⎠
, so

that
1009x2 + 938xy + 218y2 = (28x + 13y)2 + (15x + 7y)2.

Now put x = 1, y = 0, and we see that 1009 = 282 + 152.
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6.9 p2 has generators 2 and
√−6 as a Z-module, and has norm 2, so the associated

form is

NQ(
√−6)/Q(2x + √−6y)/2 = (4x2 + 6y2)/2 = 2x2 + 3y2.

p3 has generators 3 and
√−6 as a Z-module, and has norm 3, so the associated

form is

NQ(
√−6)/Q(3x + √−6y)/3 = (9x2 + 6y2)/3 = 3x2 + 2y2.

This form is not reduced, but (3, 0, 2) reduces to (2, 0, 3) via (a, b, c) ⇒∩
(c,−b, a).

∼2⊂ has generators 2 and 2
√−6 as a Z-module, and has norm 4, so the associated

form is

NQ(
√−6)/Q(2x + 2

√−6y)/4 = (4x2 + 24y2)/4 = x2 + 6y2.

∼3⊂ has generators 3 and 3
√−6 as a Z-module, and has norm 9, so the associated

form is

NQ(
√−6)/Q(3x + 3

√−6y)/9 = (9x2 + 54y2)/9 = x2 + 6y2.

∼√−6⊂ has generators −6 and
√−6 as a Z-module, and has norm 6, so the

associated form is

NQ(
√−6)/Q(−6x + √−6y)/6 = (36x2 + 6y2)/6 = 6x2 + y2.

This form is not reduced, but (6, 0, 1) reduces to (1, 0, 6) via (a, b, c) ⇒∩
(c,−b, a).

6.10 We need to compute the number of distinct reduced quadratic forms of dis-
criminant −56. If b2 − 4ac = −56, then 3ac ≤ 56 ≤ 4ac, so 14 ≤ ac ≤ 18.

When ac = 14, we need b2 = 0, and we get 2 reduced forms, (1, 0, 14) and
(2, 0, 7).

When ac = 15, we need b2 = 4, and we get 2 reduced forms, (3, 2, 5) and
(3,−2, 5). (Note that (1,±2, 15) are not reduced.)

When ac = 16, we need b2 = 8, which has no solutions. When ac = 17, we
need b2 = 12, which has no solutions. When ac = 18, we need b2 = 16, but if
ac = 18, and a ≤ c, we need a ≤ 3, and if b = ±4, there are no reduced forms.

We get 4 distinct reduced forms, and conclude that the class number of
Q(

√−14) is 4.
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6.11 The discriminant of Q(
√−43) is −43, so we are looking for reduced quadratic

forms of discriminant −43. We need to solve 3ac ≤ 43 ≤ 4ac, so 11 ≤ ac ≤
14. If ac = 11, b2 = 1, and we get the form (1,±1, 11); note that (1,−1, 11)

is equivalent to (1, 1, 11) via (a, b, c) ∗ (a, b +2a, c +b +a), so we get 1 re-
duced form. If ac = 12, we need b2 = 5, which has no solutions; if ac = 13,
we need b2 = 9, but we also need a = 1, so there are no reduced forms; if
ac = 14, we need b2 = 13, which has no solutions.

The arguments for Q(
√−67) and Q(

√−163) are similar.

The discriminant of X2 + X + 41 is −163. If we consider the values of ac
when b2 − 4ac = −163, we see that if b = 1, we get ac = 41; if b = 3, then
ac = 43; if b = 5, then ac = 47; if b = 7, then ac = 53, etc. The values of ac
obtained are 41, 43, 47, 53,…, exactly the values taken on by X2 + X + 41.
Since they are all prime, the only factorisations have a = 1, and it follows
that the resulting forms cannot be reduced. So the only reduced form can arise
when b = 1 and a = 1, namely (1, 1, 41).

The polynomial X2 + X + 11 is prime for X = 0, . . . , 9, and the polynomial
X2 + X + 17 is prime for X = 0, . . . , 15. Again it follows that Q(

√−43) and
Q(

√−67) both have class number 1.

These are also related to the curious observations that eθ
√

43, eθ
√

67 and eθ
√

163

are extremely close to integers. Indeed, eθ
√

163 differs from an integer by less
than 10−12. The explanation lies beyond the scope of this book! However, the
reader might like to compute the values of eθ

√
n for many values of n; the

results are striking.
6.12 The forms are f1(x, y) = x2 + 14y2, f2(x, y) = 2x2 + 7y2, f3(x, y) =

3x2 + 2xy + 5y2 and f4(x, y) = 3x2 − 2xy + 5y2. Notice that

(a + b
√−14)(c + d

√−14) = (ac − 14bd) + (ad + bc)
√−14

shows that

(a2 + 14b2)(c2 + 14d2) = (ac − 14bd)2 + 14(ad + bc)2,

so that f1(a, b) f1(c, d) = f1(ac − 14bd, ad + bc).

As f2(x, y) = 2x2 + 7y2, we can think of f2(x, y) = (4x2 + 14y2)/2 =
f1(2x, y)/2. Then

f2(a, b) f2(c, d) = f1(2a, b) f1(2c, d)/4

= f1(4ac − 14bd, 2ad + 2bc)/4

= f1(2ac − 7bd, ad + bc).
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Thus f2 has order 2 in the class group.

Similarly, f3(x, y) = 3x2+2xy+5y2 = (9x2+6xy+15y2)/3 = ((3x+y)2+
14y2)/3 = f1(3x + y,±y)/3. Use this to write f3(a, b) = f1(3a + b, b)/3
and f3(c, d) = f1(3c + d,−d)/3 (note the minus sign). Then

f3(a, b) f3(c, d) = f1(3a + b, b) f1(3c + d,−d)/9

= f1((3a + b)(3c + d) + 14bd,−(3a + b)d + b(3c + d))/9

= f1(9ac + 3bc + 3ad + 15bd,−3ad + 3bc)/9

= f1(3ac + bc + ad + 5bd,−ad + bc)

So f3 also has order 2 in the class group. At this point, we can deduce that the
class group looks like the Klein 4-group; if it were cyclic, it would only have
1 nontrivial element of order 2.

For completeness, we can work out f4(a, b) f4(c, d) similarly: f4(x, y) =
f1(3x − y,±y)/3, so that f4(a, b) = f1(3a −b, b)/3 and f4(c, d) = f1(3c −
d,−d)/3, and

f4(a, b) f4(c, d) = f1(3ac − bc − ad + 5bd,−ad + bc).

Chapter 7

7.1 The convexity should not be a surprise, if you try to visualise the shape in
Rn . However, a formal proof is a little tedious! Let x, y ≡ Xt . We need to
see that if λμ ◦ 0 and λ + μ = 1, then λx + μy ≡ Xt . At real embeddings
(i = 1, . . . , r1), it is certainly true that

|λxi + μyi | ≤ λ|xi | + μ|yi |

by the triangle inequality. The same inequality holds for complex embeddings
(i = r1 + 1, . . . , r1 + r2); again, the triangle inequality holds for complex
numbers. Now

r1+r2∑

i=1

|λxi +μyi | ≤
r1+r2∑

i=1

λ|xi |+μ|yi | = λ

r1+r2∑

i=1

|xi |+μ

r1+r2∑

i=1

|yi | < λt +μt = t,

using the facts that x and y belong to Xt , and that λ+μ = 1. Thus λx+μy ≡ Xt ,
and so Xt is convex.

7.2 Make a change of variable in Ir,s(t) = ∫
Yt

R1 · · · Rr2 dx1 . . . dxr1 d R1 . . . d Rr2

so that xi = t x √
i and Ri = t R√

i . Then (x1, . . . , xr1 , R1, . . . , Rr2) ≡ Yt if and only
if (x √

1, . . . , x √
r1

, R√
1, . . . , R√

r2
) ≡ Y1. Also, dxi = t dx √

i and Ri d Ri = t2 R√
i d R√

i .
The first equality follows.
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Note that

Ir,s(1) =
1∫

0

Ir−1,s(1 − xr ) dxr .

From the first relation, Ir−1,s(1 − xr ) = (1 − xr )
r−1+2s Ir−1,s(1), so

Ir,s(1) =
1∫

0

(1 − xr )
r−1+2s Ir−1,s(1) dxr = Ir−1,s(1)

1∫

0

(1 − xr )
r−1+2s dxr .

A change of variable x = 1 − xr now gives

Ir,s(1) = Ir−1,s(1)

1∫

0

xr−1+2s dx = Ir−1,s(1)

r + 2s
.

Finally, in the same way,

I0,s(1) =
1∫

0

I0,s−1(1 − Rs)Rs d Rs =
1∫

0

(1 − Rs)
2(s−1) I0,s−1(1)Rs d Rs .

Again, write R = 1 − Rs :

I0,s(1) = I0,s−1(1)

1∫

0

R2s−2(1 − R) d R = I0,s−1(1)

[
R2s−1

2s − 1
− R2s

2s

]1

0
,

and the result follows.
7.3 This is just like Corollary 7.22. The condition on k implies that x is odd (when

k ≥ 2 (mod 4), if y is even, then y2 + k ≥ 2 (mod 4), so cannot be the cube
of an even number). Again x and y must be coprime, using the hypothesis
that k is squarefree, and the next part of the argument goes through to see that
y +√−k = uα3 for some unit u ≡ Z[√−k]. All the fields under consideration
have ±1 as the only units, and again we conclude that y+√−k = (a+b

√−k)3

for some integers a and b. Comparing imaginary parts gives 1 = b(3a2 −kb2),
so b = ±1, and then the condition on k implies that there are no solutions for a.

7.4 All the fields have n = 2 and r2 = 1. The Minkowski bound for Q(
√−1) is

2!
22

⎟
4

θ

⎠
|4|1/2 = 1.273 . . . .
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For Q(
√−2), Q(

√−3) and Q(
√−7) the corresponding values are 1.800 . . .,

1, 102 . . ., 1.684 . . ., the only differences in the calculations coming from re-
placing |4|1/2 with |DK |1/2. The answer follows as in Example 7.19.

7.5 All the fields have n = 2 and r2 = 0. The Minkowski bound is then

2!
22 |DK |1/2;

for Q(
√

2) we get a Minkowski bound of
√

8/2 = 1.414 . . .; for Q(
√

3) we
get

√
12/2 = 1.732 . . .; for Q(

√
13) the bound is

√
13/2 = 1.802 . . ..

7.6 The Minkowski bound for Q(
√

6) is
√

24/2 = 2.449 . . ., and the Minkowski
bound for Q(

√−6) is 3.118 . . .. For Q(
√

6), this shows that every ideal is
equivalent to an ideal of norm 1 or 2. As any ideal of norm 2 would divide ∼2⊂,
and ∼2⊂ = ∼√6+2⊂2, the only ideal of norm 2 is principal. Thus, as every ideal
of norm 1 or 2 is principal, Q(

√
6) has class number 1. For Q(

√−6), we need to
consider ideals of norm at most 3. As ∼2⊂ = ∼2,

√−6⊂2 and ∼3⊂ = ∼3,
√−6⊂2,

we see that not every ideal is principal. We can see that ideals of norm at most 3
all have order dividing 2 in the class group, and as there are only two distinct
ideals which might represent different elements in the class group, the class
group has at most 3 elements. We conclude that the class group is cyclic with 2
elements, and thus the class number is 2. (Alternatively, we could say that
∼2,

√−6⊂∼3,
√−6⊂ = ∼√−6⊂ is principal, so that ∼2,

√−6⊂ and ∼3,
√−6⊂ are

inverse in the class group – as both have order 2, they must therefore be the
same element, and the class number is 2.)

7.7 In this case, we have n = 3, r2 = 1 and |DK | = 243. This gives the Minkowski
bound of 4.410 . . . , so every ideal is equivalent to one of norm at most 4. Write
α = 3

√
3.

We show that every such ideal is principal. Clearly it suffices to treat the prime
ideals below this bound, as every ideal is a product of prime ideals. Any prime
ideal of norm 2 or 4 will divide ∼2⊂. Proposition 5.42 shows that the prime fac-
torisation of ∼2⊂ is the product of one prime of norm 2, and one of norm 4. But
we also see that 2 = α3−1 = (α−1)(α2+α+1), so ∼2⊂ = ∼α−1⊂∼α2+α+1⊂,
and so these are the desired primes, and both are principal. Similarly, every
prime ideal of norm 3 divides ∼3⊂, but obviously 3 = α3, and so ∼3⊂ = ∼α⊂3,
and so there is just one prime ideal of norm 3, and it is also principal. Thus the
class number is 1.

7.8 Do some!
7.9 We know that r1 + 2r2 = n. If n is odd, it follows that r1 is odd, and so K has

a real embedding. So there is a map K α∩ R; as the only roots of unity in R

are ±1, these are the only roots of unity lying in K , and so μ(K ) = {±1} (of
course, every field has ±1).

7.10 The unit group has infinitely many elements if r = r1 + r2 − 1 > 0. We can
only have r1 + r2 − 1 = 0 if r1 = 1, r2 = 0, when we have a field of degree
r1 + 2r2 = 1 which must be Q, or if r1 = 0, r2 = 1, when we have a field K
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of degree r1 + 2r2 = 2, so must be quadratic – and then as there are no real
embeddings, K must be imaginary quadratic.

Chapter 8

8.1 Use the Euclidean algorithm: 999 = 1 × 700 + 299, 700 = 2 × 299 + 102,
299 = 2 × 102 + 95, 102 = 1 × 95 + 7, 95 = 13 × 7 + 4, 7 = 1 × 4 + 3,
4 = 1 × 3 + 1 and 3 = 3 × 1 + 0. We can compute the convergents using the
table:

1 2 2 1 13 1 1 3
0 1 1 3 7 10 137 147 284 999
1 0 1 2 5 7 96 103 199 700

and the convergents are 1
1 , 3

2 , 7
5 , 10

7 , 137
96 , 147

103 and 284
199 .

8.2 Easy from the previous exercise.
8.3

√
21 = [4, 1, 1, 2, 1, 1, 8] and

√
71 = [8, 2, 2, 1, 7, 1, 2, 2, 16].

8.4
√

31 = [5, 1, 1, 3, 5, 3, 1, 1, 10], so the table of convergents begins

an 5 1 1 3 5 3 1 1 10
0 1 5 6 11 39 206 657 863 1520 16063
1 0 1 1 2 7 37 118 155 273 2885

p2
n − dq2

n −6 5 −3 2 −3 5 −6 1 −6

8.5
√

11 = [3, 3, 6], and the first solution to x2 − 11y2 = 1 is 102 − 11 ×
32 = 1. All solutions are given by xn + yn

√
11 = ±(10 + 3

√
11)n . Similarly,√

31 = [5, 1, 1, 3, 5, 3, 1, 1, 10] as in Exercise 8.4; from the table of Nn , we
find the first solution 1520+273

√
31; all solutions are given by xn + yn

√
31 =

±(1520 + 273
√

31)n .
8.6

√
7 = [2, 1, 1, 1, 4], and it is then easy to find the unit 8 + 3

√
7 from the

convergents to
√

7. Then every number of the form ±(8+3
√

7)n also is a unit.
8.7 We have already seen (Exercise 8.6) that the fundamental unit for Q(

√
11) is

10 + 3
√

11. Similarly,
√

51 = [7, 7, 14], and one can find the fundamental
unit as 50 + 7

√
51;

√
58 = [7, 1, 1, 1, 1, 1, 1, 14], and the fundamental unit is

99 + 13
√

58 (note that the corresponding Nn here is −1).
8.8

√
29 = [5, 2, 1, 1, 2, 10] and we find quickly that 52 − 29 × 12 = −4, so that

5+√
29

2 is a unit with norm −1.
√

33 = [5, 1, 2, 1, 10], and the first unit we find
is 23 + 4

√
33.

8.9 The fundamental unit is 2143295 + 221064
√

94.
8.10 Here we compute the discriminants as in Chap. 3. For simplicity, we just do one

case, (2) say. Then ω1 = 1, ω2 = 1+√
m

2 , ω3 = √
n and ω4 =

√
n+√

k
2 , where

m ≥ 1 (mod 4). With the usual embeddings, the discriminant is the square of
the determinant

http://dx.doi.org/10.1007/978-3-319-07545-7_3
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∣∣∣∣∣∣∣∣∣∣

1 1+√
m

2

√
n

√
n+√

k
2

1 1−√
m

2

√
n

√
n−√

k
2

1 1+√
m

2 −√
n −√

n−√
k

2

1 1−√
m

2 −√
n −√

n+√
k

2

∣∣∣∣∣∣∣∣∣∣

.

Subtract row 1 from row 2, and row 3 from row 4 to get

∣∣∣∣∣∣∣∣∣

1 1+√
m

2

√
n

√
n+√

k
2

0 −√
m 0 −√

k

1 1+√
m

2 −√
n −√

n−√
k

2
0 −√

m 0
√

k

∣∣∣∣∣∣∣∣∣

.

Subtract row 1 from row 3, and row 2 from row 4 to get

∣∣∣∣∣∣∣∣∣

1 1+√
m

2

√
n

√
n+√

k
2

0 −√
m 0 −√

k
0 0 −2

√
n −√

k
0 0 0 2

√
k

∣∣∣∣∣∣∣∣∣

which is upper triangular, so the determinant is the product of the diagonal
entries, namely 4

√
kmn; thus the discriminant is 16kmn, as required.

Chapter 9

9.1 If ζ and ζ √ are any two primitive nth roots of unity, then ζ √ = ζr for some r , and
conversely ζ = ζ √s , where rs ≥ 1 (mod n). Then Q(ζ √) ⊆ Q(ζ) as ζ √ is a power
of ζ, and the other inclusion follows as ζ is a power of ζ √.

9.2 We claim that ζ is a primitive nth root of 1 if and only if −ζ is a primitive 2nth
root of 1.

If ζ is a primitive nth root of 1, then (−ζ)n = (−1)nζn = −1 as n is odd.
Then (−ζ)2n = 1. So −ζ is a 2nth root of 1. Let m be the order of −ζ, so that
m|2n. As (−ζ)m = 1, squaring shows that ζ2m = 1. But ζ has order n, so n|2m.
Also, n is odd, so we conclude that n|m. So m = n or m = 2n. But m ∈= n, as
(−ζ)n = −1. So the order of −ζ is 2n.

Conversely, if −ζ is a primitive 2nth root of 1, then (−ζn)2 = 1, so (−ζ)n = ±1.
But −ζ is a primitive 2nth root of unity, so (−ζ)n ∈= 1. Thus (−ζ)n = −1, and
thus, as n is odd, ζn = 1. In a similar way to the above, ζ must have order exactly
n (if its order is m, then squaring shows that (−ζ)2m = ζ2m = 1, but −ζ has
order 2n, so 2n|2m, so n|m).

Finally,
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λ2n(x) =
⎞

primitive 2nth roots

(x − ξ)

=
⎞

primitive nth roots

(x + ζ)

(by the above remarks)

= (−1)φ(n)
⎞

primitive nth roots

(−x − ζ)

= (−1)φ(n)λn(−x)

If n is odd, φ(n) is even, unless n = 1. So, for n odd and greater than 1, λ2n(x) =
λn(−x). (Note that for n = 1, the statement is false—instead, λ2(x) = −λ1(x).)

9.3 1. The degree of λmn(X) is φ(mn); the degree of λn(X) is φ(n). Recall that

φ(n) = n
⎝

p|n
(

1 − 1
p

)
; as the primes dividing mn are exactly the same

as those dividing n, it easily follows that φ(mn) = mφ(n). As λn(X) has
degree φ(n), then λn(Xm) has degree mφ(n) = φ(mn) as required.

2. We claim that if ξ is any mth root of ζ, then ζ is a primitive nth root of unity
if and only if ξ is a primitive mnth root of unity. Perhaps the easiest way to
do this (although there are others) is to argue in the following way.

ζ is a primitive nth root of unity if and only if ζ = e
2θik

n for some k prime

to n. Then the possible values of ξ are e
2θi(k+tn)

mn for t = 0, . . . , m − 1. But
k is coprime to n, and therefore so is k + tn; as m|n, it follows that k + tn
is coprime to mn. Thus ξ is a primitive mnth root of unity.

Conversely, if ξ is a primitive mnth root of unity, then ξ = e
2θik
mn for some k

coprime to mn. Then ξm = e
2θik

n , which is a primitive nth root of unity as k
is coprime to n. Then

λmn(x) =
⎞

primitive mnth roots

(x − ξ)

=
⎞

primitive th rootsζ

⎞

ξm=ζ

(x − ξ)

(by the above remarks)

=
⎞

primitive nth roots

(xm − ζ)

= λn(xm)

3. Put m = p, n = p to deduce that λp2(X) = λp(X p). Next use m = p2,

n = p to get λp3(X) = λp2(X p), and we know that this is λp(X p2
). Repeat

(or write a proof using induction).
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9.4 Xq − 1 = (X − 1)λq(X), so X pq − 1 = (X p − 1)λq(X p). We also know that
X pq − 1 = λpq(X)λp(X)λq(X)λ1(X), and that X p − 1 = λp(X)λ1(X), so
X pq − 1 = (X p − 1)λq(X)λpq(X), and the result follows by comparing with
the earlier expression for X pq − 1.

9.5 1. Simply because p|λn(x) and λn(x)|xn − 1.
2. The roots of Xn − 1 are all the nth roots of unity; the roots of Xk − 1 are

all the kth roots of unity. So the roots of the quotient are all the nth roots of
unity which are not kth roots of unity. Since these include all primitive nth
roots of unity (as k < n), we deduce the result.

3. As xk ≥ 1 (mod p), we see that

xk(l−1) + xk(l−2) + · · · + 1 ≥ l (mod p)

as each of the l terms is congruent to 1 (mod p). As xn ≥ 1 (mod p), and
n|x , we see that p � n. Also, l|n, so p � l. Therefore p � xn−1

xk−1
. However,

λn(x)| xn−1
xk−1

, and p was chosen as a factor of λn(x). This is a contradiction.
4. Let x be as above, and choose p to be a divisor of λn(x). Then xn ≥

1 (mod p). Let k be the order of x modulo p; this shows that k|n. If k < n,
the previous part gives a contradiction, so k = n. Thus x has order n in the
group of integers modulo p of order p − 1, and so n|p − 1. This shows that
p ≥ 1 (mod n). As xn ≥ 1 (mod p), we see that p � x , so that p is not any
of p1, . . . , pr .

9.6 This is almost identical to Lemma 9.14; of course, the difference in sign is due
to the properties of the quadratic residue symbol.

9.7 Recall that p = ∼2, 1+√−23
2 ⊂. Write ρ = 1+√−23

2 . Then p = ∼8, 4ρ, 2ρ2, ρ3⊂.
But 4ρ = 2 + 2

√−23, 2ρ2 = −11 + √−23, and ρ3 = − 17+5
√−23
2 . It is easy

to check that

8 =
(

3 + √−23

2

)(
3 − √−23

2

)

2 + 2
√−23 =

(
−5 + √−23

2

) (
3 − √−23

2

)

−11 + √−23 =
(

−7 − √−23

2

) (
3 − √−23

2

)

−17 + 5
√−23

2
= (2 − √−23)

(
3 − √−23

2

)

Thus p3 ⊆ ∼ 3−√−23
2 ⊂. The norm of p is 2, so the norm of p3 is 8. Also, the norm

of 3−√−23
2 is just its modulus as a complex number, and this is easily seen to

be 8 also. It follows that p3 = ∼ 3−√−23
2 ⊂.
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9.8 Simply multiply out the brackets. You should get 49 terms, and should find
that each power ζa occurs an odd number of times in the product. However,
1 + ζ + ζ2 + · · · + ζ22 = 0, since ζ is a root of the 23rd cyclotomic polynomial
λ23. After substituting this into the expression for the product, every term now
occurs an even number of times, and so there is a factor of 2.

9.9 B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , B10 = 5
66 , B12 = − 691

2730 , B14 = 7
6 ,

B16 = − 3617
510 . All B2k+1 = 0, except for B1 = − 1

2 . By the proposition, both
691 and 3617 are irregular primes.

Chapter 10

10.1 Write ε1, . . . , εr for the fundamental units, and τ1, . . . , τr1+r2 for the em-
beddings. As εi is a unit, we have tr(λ(ε j )) = 0 for each i . In particular,∑r1+r2

i=1 λi (ε j ) = 0. This implies that the absolute value of the determinant of
the submatrix got by deleting one column is independent of the column.

10.2 We have 2 real embeddings, and from the previous exercise can choose either
in calculating the regulator. Let us make the natural choice of embedding so
that

√
d maps to the positive real square root of d in R. With this embedding,

we can choose the fundamental unit η > 1, and the regulator formula shows
that RK is | log η|. We have chosen η > 1, so that log η > 0, and so RK = log η.

For Q(
√

2), we know that the fundamental unit is 1 + √
2, and the regulator is

therefore log(1 + √
2).

10.3 If K = Q(
√

3), the fundamental unit is 2 + √
3, and so the regulator is

log(2 + √
3). The discriminant is 12, and the corresponding Dirichlet char-

acter is χ(1) = χ(11) = 1, χ(5) = χ(7) = −1. Then

L(s,χ) = 1 − 1

5s
− 1

7s
+ 1

11s
+ 1

13s
− 1

17s
− 1

19s
+ 1

23s
+ · · · ;

we compute

hK =
√

12

2 log(2 + √
3)

L(1,χ) ≈ 1.315L(1,χ),

and

L(1,χ) = 1 −
⎟

1

5
+ 1

7
− 1

11
− 1

13

⎠
−

⎟
1

17
+ 1

19
− 1

23
− 1

25

⎠
− · · · < 1,

so hK = 1.
10.4 The fundamental unit for K = Q(

√
17) is 4+√

17 = 8.123 . . .. Its discriminant
is 17, so we need to take the product over 0 < a < 17/2. We compute⎨ 1

17

⎩ = ⎨ 2
17

⎩ = ⎨ 4
17

⎩ = ⎨ 8
17

⎩ = 1, and
⎨ 3

17

⎩ =
(

5
17

)
= ⎨ 6

17

⎩ = ⎨ 7
17

⎩ = −1.

Then we compute
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sin
⎨

θ
17

⎩
sin

⎨ 2θ
17

⎩
sin

⎨ 4θ
17

⎩
sin

⎨ 8θ
17

⎩

sin
⎨ 3θ

17

⎩
sin

(
5θ
17

)
sin

⎨ 6θ
17

⎩
sin

⎨ 7θ
17

⎩ = 0.1231 . . . ,

and we see that this is ε−1, so that hK = 1.

For K = Q(
√−23), we have DK = −23, and can compute the values χ(a) =⎨ a

23

⎩
. We find that χ(2) = 1, and that

∑11
a=1 χ(a) = 3, so that hK = 3.

10.5 By multiplicativity, |1| · |1| = |1|, so |1| = 0 or |1| = 1. However, |x | = 0
only for x = 0, so |1| = 1.

Similarly, | − 1|.| − 1| = |1| = 1, so | − 1| = ±1. However, norms can only
take non-negative values, so | − 1| = 1.

10.6 Every nonzero element of K can be written β = α/γ for α and γ nonzero
elements of ZK . Then α = γβ, and so |α| = |γ| · |β|. If |x | = 1 for all
elements of ZK , this gives |α| = |γ| = 1, and then |β| = 1 also, so that every
nonzero element of K has norm 1, and the norm is trivial.

10.7 It is clear that |1|p = 1 and that |ab|p = |a|p|b|p. It remains to check the
triangle inequality. In fact, we will prove the stronger inequality

|a + b|p ≤ max{|a|p, |b|p},

known as the ultrametric inequality. Suppose a = ps m
n and b = pt m√

n√ are
two rational numbers, and that p � mn and p � m√n√. Then |a|p = p−s and
|b|p = p−t . Clearly max{|a|p, |b|p} = p− min{s,t}. On the other hand, it is
clear that if a + b = pu q

r where p � qr , that u ◦ min{s, t} (if s ∈= t ,
then this is an equality, but if s = t , we might have a strict inequality). Then
|a + b|p = p−u ≤ p− min{s,t} = max{|a|p, |b|p}, as required.

10.8 If x = − 360
91 = 23×32×5

7×13 , then |x |2 = 2−3, |x |3 = 3−2, |x |5 = 5−1, |x |7 = 7

and |x |13 = 13. For all other primes p, we have |x |p = 1. Since |x |→ = 360
91 ,

we have

|x |→ ×
⎞

p

|x |p = 360

91
.2−33−25−17 × 13 = 1,

as required.

Chapter 11

11.1
√

12707 = 112.725 . . . , so we start with 1132. We note that 1132 − 12707 =
62, not a square, but that 1142 − 12707 = 289 = 172. Then we find the
factorisation 12707 = 97 × 131.

11.2 1322 − 21311 = −3887 = −132 × 23 and 1442 − 21311 = −575 =
−52 × 23, so

(132 × 144)2 ≥ (5 × 13 × 23)2 (mod 21311),
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or 190082 ≥ 14952 (mod 21311). Then (21311, 19008 + 1495) = 101 and
(21311, 19008 − 1495) = 211, giving 21311 = 101 × 211.

11.3 There is a homomorphism Z[√2] −∩ Z/527Z given by a + b
√

2 ⇒∩
a+23b (mod 527), and 3+2

√
2 maps to 49 = 72. Also, 3+2

√
2 = (1+√

2)2,
and 1 + √

2 ⇒∩ 24. So 72 ≥ 242 (mod 527), and we get that 527 = 31 × 17.
11.4 There is a homomorphism Z[√2] −∩ Z/1679Z given by a + b

√
2 ⇒∩ a +

41b (mod 1679), and −1+2
√

2 maps to 81 = 34, while 5+4
√

2 maps to 169 =
132. Neither −1 + 2

√
2 nor 5 + 4

√
2 is a square in Z[√2], but their product

is 11 + 6
√

2 = (3 + √
2)2. We also have 3 + √

2 ⇒∩ 44, and we conclude that

34 × 132 ≥ 442 (mod 1679),

or that 1172 ≥ 442 (mod 1679), leading to 1679 = 73 × 23.
11.5 On the modular arithmetic side, the factorbase is −1, 2, 3, 5, 7, 11, 13, 17, 19.

Harder is to compute the factorbase on the algebraic side. We factor the prime
numbers at most B.

∼2⊂ = p2[2,0], where p[2,0] = ∼2,
√

6⊂ = ∼√6 + 2⊂.

∼3⊂ = p2[3,0], where p[3,0] = ∼3,
√

6⊂ = ∼√6 + 3⊂.

∼5⊂ = p[5,1]p[5,4], where p[5,1] = ∼5,
√

6 − 1⊂, p[5,4] = ∼5,
√

6 − 4⊂. (Note that
Z[√6] has unique factorisation, so these ideals will be principal.)

∼7⊂, ∼11⊂, ∼13⊂ and ∼17⊂ are all inert, so have norm p2, and are thus not part of
the factorbase.

∼19⊂ = p[19,5]p[19,14], where p[19,5] = ∼19,
√

6−5⊂, p[19,14] = ∼19,
√

6 − 14⊂.

Thus the algebraic factorbase consists of p[2,0], p[3,0], p[5,1], p[5,4], p[19,5],
p[19,14]}.

11.6 There are two cases: f (X) has 3 real roots, or f (X) has 1 real root and 2 com-
plex roots. In both cases, there is a real embedding, so that the only roots of
unity in the field Q(α) are ±1. In the first case, every unit is of the form ±εa1

1 εa2
2 ,

where {ε1, ε2} are fundamental units, and these are square if the sign is +, and
both a1 and a2 are even. It is easy to see that any set of 4 such units contain a sub-
set whose product is a square. Indeed, we can identify units with 3-dimensional
vectors modulo 2, where the first co-ordinate is 1 if the sign is − and 0 if it is +,
and the second and third co-ordinates are the values of a1 and a2 modulo 2. Lin-
ear algebra tells us that any 4 vectors in a 3-dimensional vector space are linearly
dependent, so given 4 units, we can find some subset whose product is a square.

In the second case, r1 = r2 = 1, and every unit is of the form ±εa , where ε
is a fundamental unit. As above, any set of 3 units will contain a subset whose
product is a square. (You should now see how to do the general case.)

11.7 Do some examples!
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