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Preface

This book is based on the notes of both authors for a course called “Higher
Algebra,” a graduate level course. Its purpose was to offer the basic abstract algebra
that any student of mathematics seeking an advanced degree might require.
Students may have been previously exposed to some of the basic algebraic objects
(groups, rings, vector spaces, etc.) in an introductory abstract algebra course such as
that offered in the classic book of Herstein. But that exposure should not be a hard
requirement as this book proceeds from first principles. Aside from the far greater
theoretical depth, perhaps the main difference between an introductory algebra
course, and a course in “higher algebra” (as exemplified by classics such as
Jacobson’s Basic algebra [1, 2] and Van der Waerden’s Modern Algebra [3]) is an
emphasis on the student understanding how to construct a mathematical proof, and
that is where the exercises come in.

The authors rotated teaching this one-year course called “Higher Algebra” at
Kansas State University for 15 years—each of us generating his own set of notes
for the course. This book is a blend of these notes.

Listed below are some special features of these notes.

1. (Combinatorial Background) Often the underlying combinatorial contexts—
partially ordered sets etc.—seem almost invisible in a course on modern algebra.
In fact they are often developed far from home in the middle of some specific
algebraic context. Partially ordered sets are the natural context in which to
discuss the following:

(a) Zorn’s Lemma and the ascending and descending chain conditions,

(b) Galois connections,

(c) The modular law,

(d) The Jordan Holder Theorem,

(e) Dependence Theories (needed for defining various notions of
“dimension”).

The Jordan Holder Theorem asserts that in a lower semimodular semilattice, any
semimodular function from the set of covers (unrefinable chains of length one)
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to a commutative monoid extends to an interval measure on all algebraic
intervals (those intervals containing a finite unrefinable chain from the bottom to
the top). The extension exists because the multiset of values of the function on
the covers in any two unrefinable chains connecting @ and b must be the same.
The proof is quite easy, and the applications are everywhere. For example, when
G is a finite group and P is the poset of subnormal subgroups, one notes that P is
a semimodular lower semilattice and the reading of the simple group A/B of a
cover A < B, is a semimodular function on covers by a fundamental theorem of
homomorphisms of groups. By the theorem being described, this function
extends to an interval measure with values in the additive monoid of multisets
on the isomorphism classes of simple groups. The conclusion of the combina-
torial Jordan-Holder version in this context becomes the classical Jordan-Hélder
Theorem for finite groups. One needs no “Butterfly Lemma” or anything else.
(Free Groups) Often a free group on generators X is presented in an awkward
way—by defining a “multiplication” on ‘reduced words’r(w), where w is a word in
the free monoid M (X UX~!). ‘Reduced’ means all factors of the form xx~! have
been removed. Here are the complications: First the reductions, which can often be
performed in many ways, must lead to a common reduced word. Then one must
show r(wy owy) = r(r(wy) o r(wz)) to get “multiplication” defined on reduced
words. Then one needs to verify the associative law and the other group axioms.
In this book the free group is defined to be the automorphism group of a certain
labelled graph, and the universal mapping properties of the free group are easily
derived from the graph. Since full sets of automorphisms of an object always
form a group, one will not be wasting time showing that an akwardly-defined
multiplication obeys the axioms of a group.

. (Universal Mapping Properties) These are always instances of the existence of

an initial or terminal object in an appropriate category.

(Avoiding Determinants of Matrices) Of course one needs matrices to describe
linear transformations of vector spaces, or to record data about bilinear forms
(the Grammian). It is important to know when the rows or columns of a matrix
are linearly dependant. One can calculate what is normally called the determi-
nant by finding the invariant factors. For an n X n matrix, that process involves
roughly n® steps, while the usual procedure for evaluating the determinant using
Lagrange’s rule, involves exponentially many steps.

One of the standard proofs that the trace mapping tr : K — F of a finite sepa-
rable field extension F' C K is nonzero proceeds as follows: First, one forms the
normal closure L of the field K. One then invokes the theorem that L = F(0), a
simple extension, with the algebraic conjugates of 6 as an F-basis of L. And then
one reaches the conclusion by observing that a van der Monde determinant is
non-zero. Perhaps it is an aesthetic quibble, but one does not like to see a nice
“soft” algebraic proof about “soft” algebraic objects reduced to a matrix cal-
culation. In Sect. 11.7 the proof that the trace is non-trivial is accomplished
using only the Dedekind Independence Lemma and an elementary fact about
bilinear forms.
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In general, in this book, the determinant of a transformation 7 acting on an
n-dimension vector space V is defined to be the scalar multiplication it induces
on the n-th exterior product A"(V). Of course there are historical reasons for
making a few exceptions to any decree to ban the usual formulaic definition of
determinants altogether. Our historical discussion of the discriminant on page
395 is such an exception.

In addition, we have shaped the text with several pedagogical objectives in mind.

1. (Catch-up opportunities) Not infrequently, the teacher of a graduate course is
expected to accommodate incoming transfer students whose mathematical
preparation is not quite the same as that of current students of the program, or is
even unknown. At the same time, this accommodation should not sacrifice
course content for the other students. For this this reason we have written each
chapter at a gradient—with simplest explanations and examples first, before
continuing at the level the curriculum requires. This way, a student may “catch
up” by studying the introductory material more intensely, while a more brief
review of it is presented in class. Students already familiar with the introductory
material have merely to turn the page.

2. (Curiosity-driven Appendices) The view of both authors has always been that a
course in Algebra is not an exercise in cramming information, but is instead a
way of inspiring mathematical curiosity. Real learning is basically
curiosity-driven self-learning. Discussing what is is already known is simply
there to guide the student to the real questions. For that reason we have inserted
a number of appendices which are largely centered around incites connected
with proofs in the text. Similarly, in the exercises, we have occasionally wan-
dered into open problems or offered avenues for exploration. Mathematics
education is not a catechism.

3. (Planned Redundancy) Beside its role as a course guide, a textbook often lives
another life as a source book. There is always the need of a student or colleague
in a nearby mathematical field to check on some algebraic fact—say, to make
sure of the hypotheses that accompany that fact. He or she does not need to read
the whole book. But occasionally one wanders into the following scenario: one
looks up topic A in the index, and finds, at the indicated page, that A is defined
by further words B and C whose definition can be deciphered by a further visit
to the index, which obligingly invites one to further pages at which the frus-
tration may be enjoyed once again. It becomes a tree search. In order to intercept
this process, we have tried to do the following: when an earlier-defined key
concept re-inserts itself in a later discussion, we simply recall the definition for
the reader at that point, while offering a page number where the concept was
originally defined.! Nevertheless we are introducing a redundancy. But in the

'If we carried out this process for the most common concepts, pages would be filled with re-
definitions of rings, natural numbers, and what the containment relation is. Of course one has to
limit these reminders of definitions to new key terms.
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view of the authors’ experience in Kansas, redundancy is a valuable tool in
teaching. Inspiration is useless if the student cannot first understand the words—
and no teacher should apologize for redundancy. Judiciously applied, it does not
waste class time; it actually saves it.

Of course there are many topics—direct offshoots of the material of this
course—that cannot be included here. One cannot do justice to such topics in a brief
survey like this. Thus one will not find in this book material about
(1) Representation Theory and Character Theory of Groups, (ii) Commutative Rings
and the world of Ext and Tor, (iii) Group Cohomology or other Homological
Algebra, (iv) Algebraic Geometry, (v) Really Deep Algebraic Number Theory and
(vi) many other topics. The student is better off receiving a full exposition of these
courses elsewhere rather than being deceived by the belief that the chapters of this
book provide such an expertise. Of course, we try to indicate some of these points
of departure as we meet them in the text, at times suggesting exterior references.

A few words are inserted here about how the book can be used.

As mentioned above, the book is a blend of the notes of both authors who
alternately taught the course for many years. Of course there is much more in this
book than can reasonably be covered in a two-semester course. In practice a course
includes enough material from each chapter to reach the principle theorems. That is,
portions of chapters can be left out. Of course the authors did not always present the
course in exactly the same way, but the differences were mainly in the way focus
and depth were distributed over the various topics. We did not “teach” the
appendices to the chapters. They were there for the students to explore on their
own.

The syllabus presented here would be fairly typical. The numbers in parenthesis
represent the number of class-hours the lectures usually consume. A two-semester
course entails 72 class-hours. Beyond the lectures we normally allowed ourselves
10-12 h for examinations and review of exercises.

1. Chapter 1: (1 or 2) [This goes quickly since it involves only two easy proofs.]

2. Chapter 2: (6, at most) [This also goes quickly since, except for three easy
proofs, it is descriptive. The breakdown would be: (a) 2.2.1-2.2.9 (skip 2.2.10),
2.2.10-2.2.15 3 h), (b) 2.3 and 2.5 (2 h) and (c) 2.6 (1 h).]

3. Chapter 3: (3)

4. Chapter 4: (3) [Sometimes omitting 4.2.3.]

5. Chapter 5: (3 or 4) [Sometimes omitting 5.5.]

6. Chapter 6: (3) [Omitting the Brauer-Ree Theorem [6.4] but reserving 15
minutes for Sect. 6.6.]

7. Chapter 7: (3) Mostly examples and few proofs. Section 7.3.6 is often omitted.]

8. Chapter 8: (7 or 8) [Usually (a) 8.1 (2 or 3 h), and (b) 8.2-8.4 (4 h). We
sometimes omitted Sect. 8.3 if behind schedule.]

9. Chapter 9: (4) [One of us taught only 9.1-9.8 (sometimes omitting the local
characterization of UFDs in 9.6.3) while the other would teach all of 9.9-9.12
(Dedekind’s Theorem and the ideal class group.]
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10. Chapter 10: (6) [It takes 3 days for 10.1-10.5. The student is asked to read 10.6,
and 3 days remain for Sect. 10.7 and autopsies on some of the exercises.]

11. Chapter 11: (11) [The content is rationed as follows: (a) 11.1-11.4 (2 h),
sometimes omitting 11.4.2 if one is short a day, (b) 11.5-11.6 (3 h) (¢) 11.7
[One need only mention this.] (d) 11.8-11.9 (3 h) (e) [One of us would often
omit 11.10 (algebraic field extensions are often simple extensions). Many insist
this be part of the Algebra Catechism. Although the result is vaguely inter-
esting, it is not needed for a single proof in this book.] (f) 11.11 (1 h) (g) [Then
a day or two would be spent going through sampled exercises.]]

12. Chapter 12: (5 or 6) [Content divided as (a) 12.1-12.3 (2 h) and (b) 12.4-12.5
(2 h) with an extra hour wherever needed.]

13. Chapter 13: (9 or 10) [Approximate time allotment: (a) 13.1-13.2 (1 h) (only
elementary proofs here), (b) 13.3.1-13.3.2 (1 h), (¢) 13.3.3-13.3.4 (adjunct
functors) (1 h), (d) 13.4-13.5 (1 h), (e) 13.6-13.8 (1 or 2 h), (f) 13.9 (1 h), 13.
10 (2 h) and 13.8 (3 h).]

The list above is only offered as an example. The book provides ample “wiggle
room” for composing alternative paths through this course, perhaps even
re-arranging the order of topics. The one invariant is that Chap. 2 feeds all sub-
sequent chapters.

Beyond this, certain groups of chapters may serve as one semester courses on
their own. Here are some suggestions:

Group THeORY: Chaps. 3—6 (invoking only the Jordan Holder Theorem from
Chap. 2).

TreorY OF FIELDs: After an elementary preparation about UFD’s (their maximal
ideals, and homomorphisms of polynomial rings in Chap. 6), and Groups (their
actions, homomorphisms and facts about subgroup indices from Sects. 3.2, 3.3 and
4.2) one could easily compose a semester course on Fields from Chap. 11.

ArritHMETIC: UFD’s, including PID’s with applications to Linear Algebra using
Chaps. 7-10.

Basic RING THEORY: leading to Wedderburn’s Theorem. Chapters 7, 8 and 12.

Rings AND MobuLEs, TENSOR PrRobUCTS AND MULTILINEAR ALGEBRA: Chaps. 7, 8
and 13.
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In Memory

My colleague and co-author David D. Surowski expired in a Shanghai hospital on
March 2, 2011. He had recently recovered from surgery for pancreatic cancer,
although this was not the direct cause of his death.

David was a great teacher of incite and curiosity about the mathematics that he
loved. He was loved by his graduate students and his colleagues. But most of all he
loved and was deeply loved by his family.

He was my best friend in life.

Eight years ago (2004), David and I agreed that this book should be lovingly
dedicated to our wives:

Jiang Tan Shult and Susan (Yuehua) Zhang.

Ernest Shult
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Chapter 1
Basics

Abstract The basic notational conventions used in this book are described. Compo-
sition of mappings is defined the standard left-handed way: f g means mapping g was
applied first. But things are a little more complicated than that since we must also deal
with both left and right operators, binary operations and monoids. For example, right
operators are sometimes indicated exponentially—that is by right superscripts (as
in group conjugation)—or by right multiplication (as in right R-modules). Despite
this, the “o”-notation for composition will always have its left-handed interpreta-
tion. Of course a basic discussion of sets, maps, and equivalence relations should
be expected in a beginning chapter. Finally the basic arithmetic of the natural and
cardinal numbers is set forth so that it can be used throughout the book without
further development. (Proofs of the Schroder-Bernstein Theorem and the fact that
Ro - Vg = Vg appear in this discussion.) Clearly this chapter is only about everyone
being on the same page at the start.

1.1 Presumed Results and Conventions

1.1.1 Presumed Jargon

Most abstract algebraic structures in these notes are treated from first principles. Even
so, the reader is assumed to have already acquired some familiarity with groups,
cosets, group homomorphisms, ring homomorphisms and vector spaces from an
undergraduate abstract algebra course or linear algebra course. We rely on these
topics mostly as a source of familiar examples which can aid the intuition as well as
points of reference that will indicate the direction various generalizations are taking.

The Abstraction of Isomorphism Classes

What do we mean by saying that object A is isomorphic to object B? In general, in
algebra, we want objects A and B to be isomorphic if and only if one can obtain
a complete description of object B simply by changing the names of the operating
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E. Shult and D. Surowski, Algebra, DOI 10.1007/978-3-319-19734-0_1



2 1 Basics

parts of object A and the names of the relations among them that must hold—and
vice versa. From this point of view we are merely dealing with the same situation, but
under a new management which has renamed everything. This is the “alias” point of
view; the two structures are really the same thing with some name changes imposed.

The other way—the “alibi” point of view—is to form a one-to-one correspondence
(a bijection) of the relevant parts of object A with object B such that a relation holds
among parts in the domain (A) if and only if the corresponding relation holds among
their images (parts of set B).!

There is no logical distinction between the two approaches, only a psychologi-
cal one.

Unfortunately “renaming” is a subjective human conceptualization that is awk-
ward to define precisely. That is why, at the beginning, there is a preference for
describing an isomorphism in terms of bijections rather than “re-namings”, even
though many of us secretly think of it as little more than a re-baptism.

It is a standing habit in abstract mathematics for one to assert that mathematical
objects are “the same” or even “equal” when one only means that the two objects
are isomorphic. It is an abuse of language when we say that “two manifolds are the
same”, “two groups are the same”, or that “A and B are really the same ring”. We
shall meet this over and over again; for this is at the heart of the “abstractness” of
Abstract Algebra.?

1.1.2 Basic Arithmetic

The integers are normally employed in analyzing any finite structure. Thus for ref-
erence purposes, it will be useful to establish a few basic arithmetic properties of
the integers. The integers enjoy the two associative and commutative operations of
addition and multiplication, connected by the distributive law, that every student is
familiar with.

There is a natural (transitive) order relation among the integers: thus

=4 < -3<-2<-1<0<1<2<3<---.
If a < b, in this ordering, we say “integer a is less than integer b”. (This can also

be rendered by saying “b is greater than a”.) In the set Z of integers, those integers
greater than or equal to zero form a set

'We are deliberately vague in talking about parts rather than “elements” for the sake of generality.

2There is acommon misunderstanding of this word “abstract” that mathematicians seem condemned
to suffer. To many, “abstract” seems to mean “having no relation to the world—no applications”.
Unfortunately, this is the overwhelming view of politicians, pundits of Education, and even many
University Administrators throughout the United States. One hears words like “Ivory Tower”, “Intel-
lectuals on welfare”, etc. On the contrary, these people have it just backwards. A concept is “abstract”
precisely because it has more than one application—not that it hasn’t any application. It is very
important to realize that two things introduced in distant contexts are in fact the same structure and
subject to the same abstract theorems.
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N=1{0,1,2,...

called the natural numbers. Obviously, for every integer a that is not zero, exactly
one of the integers a or —a is positive, and this one is denoted |a|, and is called the
absolute value of a. We also define O to be the absolute value of itself, and write
0=10|.

Of course this subset N inherits a total ordering from Z, but it also possesses a
very important property not shared by Z:

(The well-ordering property) Every non-empty subset of N possesses a least
member.

This property is used in the Lemma below.

Lemma 1.1.1 (The Division Algorithm) Let a, b be integers with a # 0. Then there
exist unique integers q (quotient) and r (remainder) such that

b = qga+r, whereQ)<r <|al.

Proof Define the set R := {b —qga| q € Z,b — gqa > 0}; clearly R # . Since
the set of non-negative integers N is well ordered (See p. 34, Example 1), the set R
must have a least element, call it r. Therefore, it follows already that b = ga + r
for suitable integers g, r and where » > 0. If it were the case that » > |a|, then
setting ¥’ ;= r — |al, one has ¥’ < rand r’ > 0, and yet b = ga + r =
qga + (r' + la|) = (g £1)a + r’ (depending on whether a is positive or negative).
Therefore, 1’ = b — (¢ = 1)a € R, contrary to the minimality of r. Therefore, we
conclude the existence of integers g, r with

b = ga+r, where 0 <r < |a|,

as required.
The uniqueness of ¢, r turns out to be unimportant for our purposes; therefore we
shall leave that verification to the reader. [

If n and m are integers, and if n # 0, we say that n divides m, and write n| m, if
m = gn for some integer (possibly 0) ¢g. If a, b are integers, not both 0, we call d a
greatest common divisor of a and b if

@1 d >0,
(i1) d|a and d| b,
(ii1) for any integer c satisfying the properties of d in (i), (ii), above, we must have
cld.

Lemma 1.1.2 Let a, b be integers, not both 0. Then a greatest common divisor of a
and b exists and is unique. Moreover, if d is the greatest common divisor of a and b,
then there exist integers s and t such that

d = sa + tb (The Euclidean Trick).
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Proof Here, we form the set D := {xa + yb| x,y € Z, xa + yb > 0}. Again, it is
routine to verify that D # ¢. We let d be the smallest element of D, and let s and
t be integers with d = sa + tb. We shall show that d|a and that d|b. Apply the
division algorithm to write

a=qd+r, 0<r<d.
If » > 0, then we have
r=a—qd=a—q(sa+tb)=(—gs)a—qthe D,

contrary to the minimality of d € D. Therefore, it must happen that r = 0, i.e., that
d| a. In an entirely similar fashion, one proves that d| b. Finally, if c¢| a and c| b, then
certainly c| (sa + tb), which says that c| d. [J

As a result of Lemma 1.1.2, when the integers a and b are not both 0, we may
speak unambiguously of their greatest common divisor d and write d = GCD(a, b).
When GCD(a, b) = 1, we say that a and b are relatively prime.

One final simple, but useful, number-theoretic result:

Corollary 1.1.3 Let a and b be relatively prime integers with a # 0. If for some
integer ¢, a| bc, then a| c.

Proof By the Euclidean Trick, there exist integers s and ¢ with sa + tb = 1. Mul-
tiplying both sides by c, we get sac + tbc = c. Since a divides bc, we infer that a
divides sac + tbc, which is to say that a| c¢. U

1.1.3 Sets and Maps

1. Sets: Intuitively, a set A is a collection of objects. If x is one of the objects of
the collection we write x € A and say that “x is a member of set A”.
The reader should have a comfortable rapport with the following set-theoretic
concepts: the notions of membership, containment and the operations of inter-
section and union over arbitrary collections of subsets of a set. In order to make
our notation clear we define these concepts:

(a) If A and B are sets, the notation A C B represents the assertion that every
member of set A is necessarily a member of set B. Two sets A and B are
considered to be the same set if and only if every member of A is a member
of B and every member of B is a member of A—thatis, A C Band B C A.
In this case we write A = B3

30f course the sets A and B might have entirely different descriptions, and yet possess the same
collection of members.
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(b) There is a set called the empty set which has no members. It is denoted
by the universal symbol . The empty set is contained in any other set
A. To prove this assertion one must show that x € ¢ implies x € A. By
definition, the hypothesis (the part preceding the word “implies”) is false.
A false statement implies any statement, in particular our conclusion that
x € A. (This recitation reveals the close relation between sets and logic.)
In particular, since any empty set is contained in any other, they are all
considered to be “equal” as sets, thus justifying the use of one single symbol
“@.

(c) Similarly, if A and B are sets, the symbol A — B denotes the set {x € A|x &
B}, that is, the set of elements of A which are not members of B. (The reader
is warned that in the literature one often encounters other notation for this
set—for example “A\B”. We will stick with “A — B”.)

(d) If {As}ser is a collection of sets indexed by the set /, then either of the
symbols

NgerAgs or N{As|o € I}

denotes the set of elements which are members of each A, and this set is
called the intersection of the sets {A,|o € I}.
Similarly, either one of the symbols

UgerAg or U{As|o € 1}

denotes the union of the sets {A,|o € I}—namely the set of elements which
are members of at least one of the A, .
Beyond this, there is the special case of a union which we call a partition.
We say that a collection 7 := {A,|o € I} of subsets of a set X is a partition
of set X if and only if
i. each A, is anon-empty subset of X (called a component of the partition),
and
ii. Each element of X lies in a unique component A,—that is, X =
U{A,|o € I} and distinct components have an empty intersection.

2. The Cartesian product construction, A x B: That would be the collection
of all ordered pairs (a, b) (“ordered” in that we care which element appears
on the left in the notation) such that the element a belongs to set A and the
element b is a member of set B. Similarly for positive integer n we understand
the n-fold Cartesian product of the sets B1, ..., By, to be the collection of all
ordered sequences (sometimes called “n-tuples”), (b1, ..., b,) where, fori =
1,2, ..., n,the element b; is a member of the set B;. This collection of n-tuples
is denoted

By x--- x B,.

3. Binary Relations: The student should be familiar with the device of viewing
relations between objects as subsets of a Cartesian product of sets of these
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objects. Here is how this works: Suppose R is a subset of the Cartesian product

A x B. One uses this theoretical device to provide a setting for saying that object

“a” in set A is related to object “b” in set B: one just says “element a is related
to element “b” if and only if the pair (a, b) belongs to the subset R of A x B.*
(This device seems adequate to handle any relation that is understood in some
other sense. For example: the relation of being “first cousins” among members
of the set P of living U.S. citizens, can be described as the set C of all pairs
(x, y) in the Cartesian product P x P, where x is the first cousin of y.)
The phrase “a relation on a set A is intended to refer to a subset R of A x A.
There are several useful species of such relations, such as equivalence relations,
posets, simple graphs etc.

4. Equivalence relations: Equivalence relations behave like the equal sign in ele-
mentary mathematics. No one should imagine that any assertion that x is equal
to y (an assertion denoted by an “equation x = y”) is saying that x really is y.
Of course that is impossible since one symbol is one side of the equation and
the other is on the other side. One only means that in some respect (which may
be limited by an observer’s ability to make distinctions) the objects x and y do
not appear to differ. It may be two students in class with the same amount of
money on their person, or it may be two presidential candidates with equally
fruitless goals. What we need to know is how this notion that things “are the
same” operates. We say that the relation R (remember it is a subset of A x A) is
an equivalence relation if an only if it obeys these three rules:

(a) (Reflexive Property) For each a € A, (a, a) € R—that is, every element of
A is R-related to itself.

(b) (Symmetric Property) If (a, b) € R, then (b, a) € R—that is, if element a
is related to b, then also element b is related to a.

(c) (Transitive property) If a is related to b and b is related to ¢ then one must
have a related to ¢ by the specified relation R.

Suppose R is an equivalence relation on the set A. Then, for any elementa € A,
the set [a] of all elements related to a by the equivalence relation R, is called the
equivalence class containing a, and such classes possess the following properties:

(a) Foreacha € A, one has a € [a].
(b) For each b € [a], one has [a] = [b].
(¢) No element of A — [a] is R-related to an element of [a].

“This is not just a matter of silly grammatical style. How many American Calculus books must
students endure which assert that a “function” (for example from the set of real numbers to itself)
is a “rule that assigns to each element of the domain set, a unique element of the “codomain” set?
The “rules” referred to in that definition are presumably instructions in some language (for example
in American English) and so these instructions are strings of symbols in some finite alphabet,
syllabary, ideogramic system or secret code. The point is that such a set is at best only countably
infinite whereas the collection of subsets R of A x B may well be uncountably infinite. So there is
a very good logical reason for viewing relations as subsets of a Cartesian product.
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It follows that for an equivalence relation R on the non-empty set A, the equiva-
lence classes form the components of a partition of the set A in the sense defined
above. Conversely, if 7 := {A,|o € I} is a partition of a set A, then we obtain a
corresponding equivalence relation R defined as follows: the pair (x, y) belongs
to the subset Ry € A x A—that is, x and y are R;-related—if and only if they
belong to the same component of the partition 7. Thus there is a one-to-one
correspondence between equivalence classes on a set A and the partitions of the
set A.

. Partially ordered sets: Suppose a relation R on a set A, satisfies the following

three properties:

(a) (Reflexive Property) For each element a of A, (a, a) € R.

(b) (Transitive property) If a is related to b and b is related to ¢ then one must
have a related to ¢ by the specified relation R.

(c) (Antisymmetric property) If (a, b) and (b, a) are both members of R, then
a=>o.

A set A together with such a relation R is called a partially-ordered set or poset,
for short. Partially ordered sets are endemic throughout mathematics, and are
the natural home for many basic concepts of abstract algebra, such as chain
conditions, dependence relations or the statement of “Zorn’s Lemma”. Even the
famous Jordan-Holder Theorem is simply a theorem on the existence of interval
measures in meet-closed semi-modular posets.

One often denotes the poset relation by writing a < b, instead of (a, b) € R.
Then the three axioms of a partially ordered set (A, <) read as follows:

(a) x <xforall x € A.
(b) Ifx <yandy <z thenx < z.
(c) Ifx <yandy < x,thenx = y.

Note that the third axiom shows that the relations x| < x» < --- < x, < x]
imply that all the x; are equal.

A simple example is the relation of “being contained in” among a collection
of sets. Note that our definition of equality of sets, realizes the anti-symmetric
property. Thus, if set A is contained in set B, and set B is contained in set A then
the two sets are the same collection of objects—that is, they are equal as sets.
Power sets: Given a set X, there is a set 2% of all subsets of X, called the power
set of X. In many books, for example, Keith Devlin’s The Joy of Sets [16], the
notation P(X) is used in place of 2X. In Example 2 on p. 35, we introduce
this notation when we regard 2% as a partially ordered set with respect to the
containment relation between subsets—at which point it is called the “power
poset”. But in fact, virtually every time one considers the set 2%, one is aware of
the pervasive presence of the containment relation, and so might as well regard
it as a poset. Thus in practice, the two notations 2% and P(X) are virtually
interchangeable. Most of the time we will use P(X), unless there is some reason
not to be distracted by the containment relation or for the reason of a previous
commitment of the symbol “P”.
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Mappings: The word “mapping” is intended to be indistinguishable from the
word “function” as it is used in most literature. We may define a mapping R :
X — Yasasubset R C X xY withthe property thatforevery x € X, there exists
exactly one y € Y such that the pair (x, y) isin R 2 Then the notation y = R(x)
simply means (x, y) € R and we metaphorically express this fact by saying
“the function R sends element x to y”—as if the function was actively doing
something. The suggestive metaphors continue when we also render this same
fact—that y = R(x)—by saying that y is the image of element x or equivalently
that x is a preimage of y.

. Images and range: If f : X — Y is a mapping, the collection of all “images”

f(x), as x ranges over X, is clearly a subset of ¥ which we call the image or
range of the function f and it is denoted f(X).

Equality of mappings: Two mappings are considered equal if they “do the same
things”. Thus if f and g are both mappings (or functions) from X to Y we say
that mapping f is equal to mapping g if and only if f(x) = g(x) for all x in X.
(Of course this does not mean that f and g are described or defined in the same
way. Asserting that two mappings are equal is often a non-obvious Theorem.)
Identity mappings: A very special example is the following: The mapping
1x : X — X which takes each element x of X to itself—i.e. f(x) = x—is
called the identity mapping on set X. This mapping is very special and is uniquely
defined just by specifying the set X.

Domains, codomains, restrictions and extensions of mappings: In defining
amapping f : X — Y, the sets X and Y are a vital part of the definition of a
mapping or function. The set X is called the domain of the function; the set Y is
called the codomain of the mapping or function.

A simple manipulation of both sets allows us to define new functions from old
ones. For example, if A is a subset of the domain set X, and f : X — Y isa
mapping, then we obtain a mapping

fla:A—Y

which sends every elementa € A to f(a) (which is defined a fortiori). This new
function is called the restriction of the function f to the subset A.If g = f|a,
we say that f extends function g.

Similarly, if the codomain Y of the function f : X — Y is a subset of a set B
(that is, Y € B), then we automatically inherit a function f |B : X — Bjust
from the definition of “function”. When f : X — Y is the identity mapping
1x : X — X, the replacement of the codomain X by a larger set B yields a
mapping 1x|® : X — B called the containment mapping.

A mapping f : X — Y is said to be one-to-one or injective if any two dis-
tinct elements of the domain are not permitted to yield the same image element.

SNote that there is no grammatical room here for a “multivalued function”.

Unlike the notion of “restriction”, this construction does not seem to enjoy a uniform name.
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This is another way of saying, that the fibre f~!'(y) of each element y of Y is
permitted to have at most one element.

The reader should be familiar with the fact that the composition of two injec-
tive mappings is injective and that the composition of two surjective mappings
(performed in that chronological order) is surjective. She or he should be able
to prove that the restriction f|4 : A — Y of any injective mapping f : X — Y
(here A is a subset of X) is an injective mapping.

One-to-one mappings (injections) and onto mappings (surjections):

A mapping f : X — Y is called onto or surjective if and only if ¥ = f(X) as
sets. That means that every element of set Y is the image of some element of set
X, or, put another way, the fibre f~!(y) of each element y of Y is nonempty.
A mapping f : X — Y is said to be one-to-one or injective if any two distinct
elements of the domain are not permitted to yield the same image element. This
is another way of saying, that the fibre f~!(y) of each element y of Y is permit-
ted to have at most one element.

The reader should be familiar with the fact that the composition of two injec-
tive mappings is injective and that the composition of two surjective mappings
(performed in that chronological order) is surjective. She or he should be able
to prove that the restriction f|4 : A — Y of any injective mapping f : X — Y
(here A is a subset of X) is an injective mapping.

Bijections:

A mapping f : X — Y is a bijection if and only if it is both injective and
surjective—that is, both one-to-one and onto.

When this occurs, the fibre f~!(y) of every element y € Y contains a unique
element which can unambiguously be denoted f~!(y). This notation allows us
to define the unique function f~' : ¥ — X which we call the inverse of the
bijection f. Note that the inverse mapping possesses these properties,

flof=1x, and fo f~' =1y,

where 1x and ly are the identity mappings on sets X and Y, respectively.
Examples using mappings:

(a) Indexing families of subsets of a set X with the notation { X }; (or {Xy}aer)
should be understood in its guise as a mapping I —> 2X.7

(b) The construction hom(A, B) as the set of all mappings A —> B. (This is
denoted B# in some parts of mathematics.) The reader should see that if A is
a finite set, say with n elements, then hom (A, B) is just the n-fold Cartesian
product of B with itself

B x B x --- x B (with exactly n factors).

«

"Note that in the notation, the “c’” is ranging completely over I and so does not itself affect the
collection being described; it is what logicians call a “bound” variable.
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Also if N denotes the collection of all natural numbers (including zero), then
hom(N, B) is the set of all sequences of elements of B.

(c) Recall from an earlier item (p. 5) that a partition of a set X is a collection

{Xa}1 of non-empty subsets X, of X such that (i) Uye; X, = X, and (ii)
the sets X,, are pairwise disjoint—that is, X, N X3 = () whenever a # (3.
The sets X, of the union are called the components of the partition.
A partition may be described in another way: as a surjection 7 : X — I.
Then the collection of fibers—that is, the sets 7 Ha) = {x € X|n(x) = a}
as aranges over / —form the components of a partition. Conversely, if { X, }
is a partition of X, then there is a well-defined surjection 7 : X — I which
takes each element of X to the index of the unique component of the partition
which contains it.

15. A notational convention on partitions: In these lecture notes if A and B are
sets, we shall writte X = A + B (rather than X = AUB or X = A W B) to
express the fact that {A, B} is a partition of X with just two components A and
B. Similarly we write

X=X1+Xo+--+Xp

when X possesses a partition with n components X;, i = 1,2,...,n. This
notation goes back to Galois’ rendering of a partition of a group by cosets of
a subgroup. The notation is very convenient since one doesn’t have to “doctor
up” a “cup” (or “union’) symbol. Unfortunately similar notation is also used in
more algebraic contexts with a different meaning—for example as a set of sums
in some additive group. We resolve the possible ambiguity in this way:

When a partition (rather than, say, a set of sums) is intended, the partition will
simply be introduced by the words “partition” or “decomposition”.

1.1.4 Notation for Compositions of Mappings

There is a perennial awkwardness cast over common mathematical notation for the
composition of two maps. Mappings are sometimes written as left operators and
sometimes as right operators, and the awkwardness is not the same for both choices
due to the asymmetric fact that English is read from left to right. Because of this,
right operators work much better for representing the action of sets with a binary
operation as mappings with compositions.

Then why are left operators used at all? There are two answers: Suppose there is
a division of the operators on X into two sets—say A and B. Suppose also that if
an operator a € A is applied first in chronological order and the operator b € B is
applied afterwards; that the result is always the same had we applied b first and then
applied a later. Then we say that the two operations “commute” (at least in the time
scale of their application, if not the temporal order in which the operators are read
from left to right). This property can often be more conveniently rendered by having
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one set, say A, be the left operators, and the other set B be the “right” operators,
and then expressing the “commutativity“as something that looks like an “associative
law”. So one needs both kinds of operators to do that.

The second reason for using left operators is more anthropological than mathe-
matical. The answer comes from the sociological accident of English usage. In the
English phrase “function of x”, the word “function” comes first, and then its argu-
ment. This is reflected in the left-to-right notation “ f'(x)” so familiar from calculus.

Then if the composition o o § were to mean “« is applied first and then ( is
applied”, one would be obligated to write (« o 3)(x) = [(a(x)). That is, we must
reverse their “reading” order.

On the other hand, if we say « o § means [ is applied first and « is applied
second—so (a o B)(x) = «a(B(x))—then things are nice as far as the treatment
of parentheses are concerned, but we still seem to be reading things in the reverse
chronological order (unless we compensate by reading from right to left). Either way
there is an inconvenience.

In the vast majority of cases, the Mathematical Literature has already chosen the
latter as the least of the two evils. Accordingly, we adopt this convention:

Notation for Composition of Mappings: Ifa : X — Yand f: Y — Z, then
(3 o a denotes the result of first applying mapping « to obtain an element y of Y,
and then applying mapping 3 to y. Thus if the mappings « and (3 are regarded as
left operators of X, and Y, respectively, we have, for each x € X,

(Boa)(x) == flax)).

But if a and /3 are right operators on X and Y, respectively, we have, for each
xeX,

x(Boa)=(xa)s.

But right operators are also very useful. A common instance is when (i) the set
F consists of functions mapping a set X into itself, and (ii) F' itself possesses an
associative binary operation “x” (see Sect. 1.4) and (iii) composition of two such
functions is the function representing the binary operation of them—that is f *x g
acts as go f. In this case, it is really handier to think of the functions as right operators,

so that we can write
(xf)g — xf*g’

forall x € X and f and g in F. For this reason we tend to view the action of groups
or rings as induced mappings which are right operators.

Finally, there are times when one needs to discuss “morphisms” which commute
with all right operators in F. It is then easier to think of these morphisms as left
operators, for if the function & commutes with the right operator g, we can express
this by the simple equation

a(x9) = (a(x))?, forall x € X and g in F.
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So there are cases where both types of operators must be used.
The convention of these notes is to indicate right operators by exponential notation
or with explicit apologies (as in the case of right R-modules), as right multiplications.
Thus in general we adopt these rules:

Rule #1:  The symbol « o 3 denotes the composition resulting from first applying
[ and then « in chronological order. Thus

(o B)(x) = a(B(x)).

Rule #2:  Exponential notation indicates right operators. Thus compositions have

these images:
xaoﬁ — (xﬂ)& .

Exception to Rule #2:  For right R-modules we indicate the right operators by right
“multiplication”, that is right juxtaposition. Ring multiplication still gets repre-
sented the right way since we have (mr)s = m(rs) for module element m and
ring elements r and s (it looks like an associative law). (The reason for eschewing
the exponential notation in this case is that the law m’ ™ = m” + m* for right
R-modules would then not look like a right distributive law.)

1.2 Binary Operations and Monoids

It is not our intention to venture into various algebraic structures at such an early
stage in this book. But we are forced to make an exception for monoids, since they
are always lurking around so many of the most basic definitions (for example, the
definition of interval measures on posets).
Suppose X is a set and let X be the n-fold Cartesian product of X with itself.
For n > 0, a mapping
X 5 x

is called an n-ary operation on X. If n = 1 such an operation is just a mapping of
X into itself. There are certain concepts that are brought to bear at the level of 2-ary
(or binary) operations that fade away for larger n.

We say that set X admits a binary operation if there exists a 2-ary function
f X x X — X.In this case, it is possible to indicate the operation by a constant
symbol (say “x”) inserted between the elements of an ordered pair—thus one might
write “x * y” to indicate f((x, y)) (which we shall write as f(x, y) to rid ourselves
of one set of superfluous parentheses).
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Indeed one might even use the empty symbol in this role—that is f(x, y) is
represented by “juxtaposition” of symbols: that is we write “xy” for f(x, y). The
juxtaposition convention seems the simplest way to describe properties of a general
but otherwise unspecified binary operation.

The binary operation on X is said to be commutative if and only if

xy = yx, forall x and y in X.
The operation is associative if and only if
x(yz) = (xy)zforallx, y,z € X.

Again let us consider an arbitrary binary operation on X. Do not assume that it
is associative or commutative. The operation admits a left identity element if there
exists an element—say ez, in X such that e, x = x for all x € X. Similarly, we say
the operation admits a right identity element if there exists an element e such that
xer = x forall x € X. However, if X admits both a left identity element and a right
identity element, say e;, and eg, respectively, then the two are equal for

€R = €e[eRr = ¢ey.

(The first equality is from ey, being a left identity, and the second is from eg being a
right identity.) We thus have

Proposition 1.2.1 Suppose X is a set admitting a (not necessarily associative)
binary operation indicated by juxtaposition. Suppose this operation on X admits
at least one left identity element and at least one right identity element (they need not
be distinct elements). Then all right identity elements and all left identity elements
are equal to a unique element e for which ex = xe = x for all x € X. (Such an
element e is called an identity element or a two-sided identity for the given binary
operation on X.)

A set admitting an associative binary operation is called a semigroup. For example
if X contains more than two elements and the binary operation is defined by xy = y
for all x, y € X, then with respect to this binary operation, X is a semigroup with
many left identity elements and no right identity elements.

A semigroup with a two-sided identity is called a monoid. A semigroup (or
monoid) with respect to a commutative binary operation is simply called a com-
mutative semigroup (or commutative monoid).

We list several commonly encountered monoids.

1. The set N of non-negative integers (natural numbers) under the operation of
ordinary addition.

2. Let X be any set. We let M (X) be the set of all finite strings (including the empty
string) of the elements of X. A string is simply a sequence of elements of X. It
becomes a monoid under the binary operation of concatenation of strings. The
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concatenation of strings is the string obtained by extending the first sequence by
adjoining the second one as a “suffix”. Thus if s; = (x1, x2, x3) and s> = (y1, »2),
then the concatenation would be s1 * 52 = (x1, X2, X3, ¥1, ¥2). (Note that con-
catenation is an associative operation, and that the empty string is the two sided
identity of this monoid.) For reasons that will be made clear in Chaps.6 and 7,
it is called the free monoid on the set X.

. A multiset of the set X is a function f : X — N that assigns to each element of

X anon-negative integer. In this sense a multiset represents a sort of inventory of
objects of various types drawn from a set of types X . The collection of all multisets
on set X, denoted M (X), admits a commutative binary operation which we call
“addition”. If f, g : X — N are two multisets, their sum f + g is defined to be the
function that sends x to f(x) + g(x). In the language of inventories, addition of
two multisets is just the merging of inventories. Since this addition is associative
and the empty multiset (the function with all values zero) is a two-sided identity,
the multisets on X form a monoid (M(X), +), with respect to addition. This
monoid is also called the free commutative monoid on set X, an appellation fully
justified in Chap.7.

A multiset f is finite if the set of elements x at which the function f assumes
a positive value (called the support of the function) is a finite set. By setting
f@) = a;, i € N, we can write any finite multiset as a countable sequence
(ao, ai, ...) of natural numbers which has only finitely many non-zero entries.
Addition of two multisets (ag, ...) and (b, ...) is then performed coordinate-
wise. We denote this submonoid of finite multisets of elements chosen from X
by the symbol, (M o (X), +). If the set X is itself finite, then, of course, all
elements of M (X) are finite multisets.

1.3 Notation for Special Structures

There are certain sets and structures which are encountered over and over, and these

will have a special fixed notation throughout this book.

Standard Sets

1.

2.

3.
4.
5.

N. The system of natural numbers, {0, 1,2, ...}. It is important for the student
to realize that this term is understood here to include the integer zero. It is a
well-ordered poset with the descending chain condition (see Chap. 2).

Z. This is the collection of all integers, {..., —2,—1,0, 1,2, ...}. It forms an
integral domain under the operations of addition and multiplication (Chap. 7).
Q. The field of rational numbers.

R. The field of real numbers.

C. The field of complex numbers.
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1.4 The Axiom of Choice and Cardinal Numbers

1.4.1 The Axiom of Choice

The student ought to be acquainted with and to be able to use

THE AXIOM OF CHOICE: Suppose {X,}; is a family of pairwise disjoint non-
empty sets. Then there exists a subset R of the union of the X, which meets each
component X, in exactly a one-element set.

This assertion is about the existence of systems of representatives. If only finitely
many of the X, are infinite sets this can be proved from ordinary set theory. But the
reader should be aware that in its full generality it is independant of set theory, and
yet, is consistent with it. The reader is thus encouraged to think of it as an adjunct
axiom to set theory, to make a note of each time it is used, and to quietly produce the
appropriate guilt feelings when using it.

The Axiom of Choice has many uses. For example it guarantees the existence of a
system of coset representatives for any subgroup of any group. In fact we shall see an
application of the axiom of choice in the very next subsection on cardinal numbers.

In the presence of set theory (which is actually ever-present for the purposes of
these notes) the Axiom of Choice is equivalent to another assertion called Zorn’s
Lemma, which should also be familiar to the reader. Since it appears in the setting
of partially ordered sets, a full discussion of Zorn’s Lemma is deferred to a section
of the next chapter.

The reader is not required to know a proof of the equivalence of the Axiom of
Choice and Zorn’s Lemma, or a proof of their consistency with set theory. At this
stage, all that is required to read these notes is the psychological assurance that one
cannot “get into trouble” by using these principles. For a good development of the
many surprising equivalent versions of the Axiom of Choice the curious student is
encouraged to peruse Sect.2.2.7 of the book by Keith Devlin entitled The Joy of
Sets [16].

1.4.2 Cardinal Numbers

Not all collections of things are actually amenable to the axioms of set theory, as
Russell’s paradox illustrates. Nonetheless certain operations and constructions on
such collections can still exist. It is still possible that they may possess equivalence
relations and that is true of the collection of all sets.

We have mentioned that a mapping f : A —> B which is both an injection and
a surjection is called a bijection or a one-to-one correspondence in a slightly older
language.® In that case the partition of A defined by the surjection f (see above) is
the trivial partition of A into its one-element subsets. This means the fibering f~!

8 A “one-to-one correspondence” is not to be confused with the weaker notion of a “one-to-one
mapping” introduced on p. 9. The latter is just an injective mapping which may or may not be a
bijection.
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defines an inverse mapping f~' : B —> A which is also a bijection satisfying
fof ' =14and f~'o f = 1p as described in item 15 on p. 9. It is clear,
using obvious facts about compositions of bijections and identity mappings, that the
relation of two sets having a bijection connecting them is an equivalence relation.
The resulting equivalence classes are called cardinal numbers and the equivalence
class containing set X is denoted | X | and is called the cardinality of X.

Cardinal numbers possess an inherent partial ordering. One writes |X| < |Y]| if
and only there exists an injection f : X —> Y.° We are obligated to show three
things:

1. The relation “<” is well-defined—that is, if, for sets X, Y and Z, we have that
|X| < |Y|and [Y| = |Z], then | X| < |Y].

2. The relation “<” is transitive.

3. The relation “<” is anti-symmetric.

First we observe that our definitions force the transitive law (item 2). Suppose,
for sets X, Y and Z, one has | X| < |Y] and |Y| < |Z]. Then from our definition of
“<”, there exist injective mappings f : X — Y,andg:Y — Z. Thengo f is an
injective mapping from X to Z, and so by definition, | X| < |Y]|.

Next the student may observe that |Y| = |Z]| implies |Y| < |Z|, for the former
statement implies a bijection g : ¥ — Z, and as any bijection is injective, |Y| < |Z|
by definition. This observation together with the transitive law implies the statement
of item 2.

For the anti-symmetric law we appeal to a famous Theorem:

Theorem 1.4.1 (The Schroder-Bernstein Theorem) If, for two sets X and Y, one

has
|X| <|Y|and Y| < |X],

then |X| = |Y|.

Proof By hypothesis there are two injective (one-to-one) mappings f : X — Y
and g : ¥ — X. Our task is to use this data to devise a bijective (one-to-one onto)
mappingh : X — Y.

We may assume that neither of the injective mappings f or g is surjective (onto),
for otherwise either f or g~! will serve as our desired mapping h.

As aresult, f(X) is a proper subset of Y and, as g is injective, g(f(¥Y) = (g o
f)(Y) is a proper subset of g(Y). In this way, one obtains a properly descending
chain of subsets:

X2g9¥)D(go fIX)D(gofog)(¥)D---. (1.1)

Transposing the roles of f and g presents a second properly descending chain:

9Tt should be clear to the student that this partial ordering is on the collection of cardinal numbers.
It is not a relation between the sets themselves.
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Yo f(X)D(fog¥)D(fogo fHX)D:--. (1.2)

Anelementa € X UY is said to be an ancestor of element b € Y UY if and only if
there is a finite string of alternate applications of the mappings f and g which, when
appliedtoa, yields b. Forexample,ifa, b € X,and (go- - -0 f)(a) = b, for some finite
string go- - -o f, then a is an ancestor of b. Thus, the non-empty set X := X —g(Y)
are the members of X which have no ancestors; the set X1 := g(¥Y) — (g o f)(X)
comprise the members of X with exactly one ancestor. We let X be denote the set
of elements of X with exactly k ancestors—namely, the non-empty set

Xp=go(fog® V2= (go H*V2(X), if k is odd, or
Xk = (go H*(X) = go (f og*?(Y), if kis even.

The symbol X, will denote the set of elements of X which possess infinitely
many ancestors. If the intersection of the sets in the tower of Eq. (1.1) is empty, then
there are no elements with infinitely many ancestors. Thus, unlike the Xy, the set
X could be empty.

Next we similarly define the non-empty sets Y, as members of ¥ with exactly
k ancestors, and let Y, denote the set of those members of ¥ with infinitely many
ancestors. Now if an element z of X (or Y) possesses infinitely many ancestors, then
so does g_lz and f(z) (or f_l(z) and ¢g(z) when z € Y). Thus f restricted to X
induces a bijection hy : Xoo —> Yoo Whether the sets are empty or not. It remains
only to devise a bijection X — Xoo — ¥ — Yo

We now have two partitions (into non-empty sets):

X —Xoo=Xo+ X1 +Xo+---
Y —Yoo=Yo+Yi+ Y2+

If k is even, define hy : Xy — Yk as the restriction of the mapping f to the
subset X. Note that Ay is surjective, and so is a bijection. If k is odd, then Xy lies
in g(Y) and so the inverse mapping g~ ! may be applied to it, to produce a mapping
hy : Xx — Yir_1, that is surjective and injective since g was a mapping. Thus &y is
a bijection in this case as well.

Now h : X — Y isdefinedby h : x > hi(x) if x € Xi, and x — hoo(x) if
x € Xo- Since the hy are all bijections and the codomains of the % reproduce the
partition of ¥ — Y, given above, A is our desired bijection. []

Remark This elementary proof due to J. Konig may be found in the book of P.M.
Cohn entitled Algebra, vol. 2 [10, p. 11] and in the book of Birkhoff and McLane [8].

These lecture notes presume and use two further results concerning cardinalities
of sets:

Theorem 1.4.2 [f there exists a surjection f : X —> Y then |Y| < | X]|.
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Proof With the axiom of choice one gets a subset X’ containing exactly one element
xy from each fiber f ~1(y) as y ranges over Y. One then has an injection ¥ — X’
taking y to x,. We can then compose this with the inclusion mapping i : X" — X to
obtain the desired injection from Y into X. [

As usual, let N denote the set of natural numbers, that is, the set {0, 1,2, ...} of
all integers which are positive or zero (non-negative).

A cardinal number is defined to be the name of a cardinality equivalence class.
For a finite set F, the cardinality | F'| is simply a natural number. Thus, the cardinality
of the empty set ¢ is 0, and for non-empty finite sets, this association with natural
numbers seems perfectly natural since any finite set is bijective with some finite initial
segment—say (1, 2, ... n)—of the positive integers listed in their natural ordering.
Indeed, producing that bijection is what we usually refer to as “counting”.

One can define a product of two cardinal numbers, in the following way: If a =
|A| and b = |B]| are two cardinal numbers, (A and B chosen representatives from
the equivalence classes of sets denoted by a and b, respectively), then one writes
ab = |A x B|, the cardinality of the Cartesian product of A and B. This product
is well-defined, for if one selected other representatives A’ and B’ of these classes,
there are then bijections & : A — A’ and 3 : B — B’ which can be used to define a
bijection A x B — A’ x B’ defined by

(a, b) — (a(a), B(b)), for all (a,b) € A x B.
Similarly, the mapping
((a,b),c) — (a, (b,c)), forall (a,b,c) € Ax BxC

defines a bijection (A X B) x C — A x (B x C). Thus we see that taking the product
among cardinal numbers is an associative operation.

The reader will appreciate that this definition of product is completely compatible
with the definition of multiplication of positive integers familiar to most children. If
A contains three elements, and B contains seven, then the Cartesian product A x B
contains twenty-one distinct pairs. However now, our definition can be applied to
cardinalities of infinite sets, as well.

The simplest infinite set familiar to the young student is the set of natural numbers
itself. Custom has assigned the rather unique symbol & for the cardinality of N. Any
set is said to be countably infinite, if its cardinality is Rg—or equivalently, there is a
bijection taking such a set to N.

Now a property which distinguishes infinite sets from finite sets is that an infinite
set can be bijective with a proper subset of itself. For example, N is bijective with
the non-negative even integers. It is also bijective with all of the natural numbers that
are perfect squares. Similarly, the integers Z are bijective with N by the mapping
defined by
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nr— 2nforn eN
—nt>2n—1forneN,n>0.

It is also easy to see this:

Theorem 1.4.3 Ifk is a positive integer, then the cardinality of the union of k disjoint
copies of N is [N| = K.

Proof This is left as an exercise.

Now something peculiar happens:

Theorem 1.4.4 R - Ry = Ny

Proof We must produce a bijection f : N — N x N. First we assign the pair
(a, b) € NxNtothe point in the real (Cartesian) plane with those coordinates. All the
integral coordinates in and on the boundary of the first quadrant now represent points
of N x N. Now partition the points into non-empty finite sets according to the sum of
their coordinates. First comes (0, 0), then {(0, 1), (1, 0)}, then {(0, 2), (1, 1), (2, 0)},
and so on. Having ordered the points within each component of the partition by the
natural ordering of its first coordinate, we obtain in this way, a sequence S indexed
by N. Mapping the n-th member of this sequence to n — 1 produces a bijection
g:NxN—-N.[O

Corollary 1.4.5 |N| = |Z x Z|.

It is left as an exercise, to prove that [N| = |Q|, where, as usual, Q is the set of
rational numbers—the fractions formed from the integers.

In the next chapter, we shall generalize Theorem 1.4.4 by showing that for any
infinite cardinal number a, one has Xy - a = a.
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Chapter 2
Basic Combinatorial Principles of Algebra

Abstract Many basic concepts used throughout Algebra have a natural home in
Partially Ordered Sets (hereafter called “posets”). Aside from obvious poset resi-
dents such as Zorn’s Lemma and the well-ordered sets, some concepts are more
wider roaming. Among these are the ascending and descending chain conditions,
the general Jordan-Holder Theorem (seen here as a theorem on interval measures
of certain lower semillattices), Galois connections, the modular laws in lattices, and
general independence notions that lead to the concepts of dimension and transcen-
dence degree.

2.1 Introduction

The reader is certainly familiar with examples of sets X possessing a transitive
relation “<” which is antisymmetric. Such a pair (X, <) is called a partially ordered
set—often abbreviated as poset. For any subset Y of the poset X there is an induced
partial ordering (Y, <) imposed on Y by the partially ordered set (X, <) which
surrounds it: one merely restricts the relation “<” to the pairs of ¥ x Y. We then call
(Y, <) an induced poset of (X, <).

Certainly one example of a partially ordered set familiar to most readers is the poset
P(X) := (2%, ©) called the power poset of all subsets of X under the containment
relation.

Throughout this algebra course one will encounter sets X which are closed under
various n-ary operations subject to certain axioms—that is, some species of “alge-
braic object”. Each such object X naturally produces a partially ordered set whose
members are the subsets of X closed under these operations—that is, the poset of
algebraic subobjects of the same species. For example, If X is a group, then the poset
of algebraic subobjects is the poset of all subgroups of X. If R is aring and M is a
right R-module, then we obtain the poset of submodules of M. Special cases are the
posets of vector subspaces of a right vector space V and the poset of right ideals of
aring R.

In turn these posets have special induced posets: Thus the poset Lo, (V) of all
finite-dimensional vector subspaces of a (possibly infinite-dimensional) vector space
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V is transparently a subposet of the poset of all vector subspaces of V. For example
from a group G one obtains the poset of normal subgroups of G, or more generally,
the poset of subgroups invariant under any fixed subgroup A of the automorphism
group of G. Similarly there are posets of invariant subrings of polynomial rings, and
invariant submodules for an R-module admitting operators. Finally, there are induced
posets of algebraic objects which are closed with respect to a closure operator on a
poset (perhaps defined by a Galois connection).

All of these examples will be made precise later. The important thing to note at
this stage is that

1. Partially ordered sets underly all of the algebraic structures discussed in this book.

2. Many of the crucial conditions which make arguments work are basically proper-
ties of the underlying posets alone and do not depend on the particular algebraic
species within which one is working: Here are the main examples:

(a) Zorn’s Lemma,

(b) the ascending and descending chain conditions,

(c) Galois connections and closure operators,

(d) interval measures on semimodular semilattices (The General Jordan-Holder
Theorem), and

(e) dependence theory (providing the notion of “dimension”).

The purpose of this chapter is to introduce those basic arguments that arise strictly
from the framework of partially ordered sets, ready to be used for the rest of this
book.

2.2 Basic Definitions

2.2.1 Definition of a Partially Ordered Set

A partially ordered set, (P, <), hereafter called a poset, is a set P with a transitive
antireflexive binary relation <. This means that for all elements x, y and z of P,

1. (transitivity) x < y and y < z together imply x < z, and
2. (antireflexivity or antisymmetry)' the assertions x < y and y < x together imply
X =y.

It is often useful to view elements of a poset pictorially, as if they were vertices
placed in vertical plane. Thus we say “x is below y” or “y is above x” if x < y in
some poset.2

!In the literature on binary relations, the term “antisymmetric” often replaces its equivalent “antire-
flexive”.
2This is just metaphorical language, nothing more.
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We write y > x if x < y and write x < y if x < y and x # y. In the latter case
we say that x is properly below Yy, or, equivalently, that y is properly above x.

2.2.2 Subposets and Induced Subposets

Now let (P, <) be a poset, and suppose X is a subset of P with a relation <y for
which (X, <y) is a partially ordered set. In general, there may be no relation between
(X, <x) and the order relation < that the elements of X inherit from (P, <). But if
it is true that for any x and y in X,

x <y y implies x <y, (2.1)

then we say that (X, <y) is a subposet of (P, <). Thus in a general subposet it
might happen that two elements x| and x» of (X, <y) are incomparable with respect
to the ordering <y even though one is bounded by the other (say, x; < x») in the
ambient poset (P, <).

However, if the converse implication in Eq. (2.1) holds for a subposet, we say that
poset is an induced subposet. Formally, (X, <y) is defined to be an induced subposet
of (P, <),if and only if X € P and for any x and y in X,

x <x yifandonly if x < y. 2.2)

Suppose (P, <) is a poset, and X is a subset of P. Then we can agree to induce the
relation < on the subset X—that is, for any two elements x and y of the subset X, we
agree to say that x <y y if and only if x < y in the poset (P, <). Thus an induced
subposet of (P, <) is entirely determined once its set of elements is specified.

The empty set is considered to be an induced subposet of any poset.

Let X and Y be two subsets of P where (P, <) is a poset. We make these obser-
vations:

1. If (X, <y) is a partial ordering on X and if (Y, <y) is a partial ordering on Y
such that (X, <y) is an induced subposet of (Y, <y) and (Y, <y) is an induced
subposet of (P, <), then (X, <y) is also an induced subposet of (P, <). This fact
means that if X is any subset of P, and (P, <) is a poset, we don’t need those
little subscripts attached to the relation “<” any more: we can unambiguously
write (X, <) to indicate the subposet induced by (P, <) on X. In fact, when it is
clear that we are speaking of induced subposets, we may write X for (X, <) and
speak of “the induced poset X”.
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2. If (X, <) and (Y, <) are induced subposets of (P, <) then we can form the
intersection of induced posets (X N'Y, <). In fact, since this notion depends only
on the underlying sets, one may form the intersection of induced posets

(0-)

from any family {(X,, <)|o € I} of induced posets of a poset (P, <).

Perhaps the most important example of an induced poset is the interval. Suppose
(P, <) is a poset and that x < y for elements x, y € P. Consider the induced poset

[x,ylp :={z€ Plx <z <y}

This is called the interval in (P, <) from x to y. If (P, <) is understood, we would
write [x, y] in place of [x, y]p. But we must be very careful: there are occasions in
which one wishes to discuss intervals within an induced poset (X, <), in which case
one would write [x, y]x for the elements z of X between x and y. Clearly one could
mix the notations and write [x, y]x := [x, y] N X, the intersection of two induced
posets.

2.2.3 Dual Posets and Dual Concepts

Suppose now that (P, <) is given. One may obtain a new poset, (P*, <*) whose
elements are exactly those of P, but in which the partial ordering has been reversed!
Thus a < b in (P, <) if and only if b <* a in (P*, <*). In this case, (P*, <*) is
called the dual poset of (P, <).

We might as well get used to the idea that for every definition regarding (P, <),
there is a “dual notion”—that is, the generically-defined property or set in (P, <)
resulting from defining the same property or set in (P*, <*). Examples will follow.

2.2.4 Maximal and Minimal Elements of Induced Posets

An element x is said to be maximal in (X, <) if and only if there is no element in X,
which is strictly larger than x—that is x < y for y € X implies x = y.

Note that this is quite different than the more specialized notion of a global
maximum (over X) which would be an element x in X for which x’ < x for all
elements x” of X. Of course defining something does not posit its existence; (X, <)
may not even possess maximal elements, or if it does, it may not contain a global
maximum.
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We let max X denote the full (but possibly empty) collection of all maximal
elements of (X, <).

By replacing the symbol “<” by “>" in the preceding definitions, we obtain the
dual notions of a minimal element and a global minimum of an induced poset (X, <).

Of course some posets may contain no minimal elements whatsoever.

2.2.5 Global Maxima and Minima

If a poset (P, <) possesses a global minimum, then, by the antisymmetric property,
that element is the unique global minimum, and so deserves a special name. We call
it the zero-element of the poset.

Dually, there may exist a global maximum (a “one-element”, denoted 1p, or
something similar) which is an element in (P, <) with the property that all other
elements are less than or equal to it. Obviously this 1p is the zero-element of the
dual poset, (P*, <*).

Some posets have a “zero”, some have a “one”, some have both, and some have
neither.

But whether or not a “zero” is present in P, one can always adjoin a new element
declared to be properly below all elements of P to obtain a new poset 0(P). For
example, if P contains just one element p, then 0(P) consists of just two elements
{01, p} with 01 < p—-=called a chain of length one. Iterating this construction with
the same meaning of P, we see that 02(P) introduces a “new zero element”, 0;, to
produce a 3-element poset with 0, < 01 < p—that s, a chain of length two. Clearly
0%(P) would be a poset with elements (up to a renaming of the elements) arranged
as

Or <01 <--- <01 < p,

which we call a chain of length k. Of course this construction can also be performed
on any poset P so that 0¥(P) in general becomes the poset P with a tail of length
k — 1 adjoined to it from below—a sort of attached “kite-tail”.

Also, by dually defining 1% (P) one can attach a “stalk” of length k — 1 above an
arbitrary poset P.

2.2.6 Total Orderings and Chains

A poset (P, <) is said to be totally ordered if {c,d} € C implies c < d ord < c.
Sometimes this notion is referred to as “simply ordered”. Obviously any induced
poset of a totally ordered set is also totally ordered. Any maximal (or minimal ele-
ment) of a totally ordered set is in fact a global maximum (or global minimum).
Familiar examples of totally ordered sets are obtained as induced posets of the
real numbers under its usual ordering, for example (1) the rational numbers, (2)
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the integers, (3) the positive integers (4) the open, half-closed or closed intervals
(a, b), [a, b), (a, b], or[a, b] of the real number system, or (5) the intersections of
sets in (4) with those in (1)—(3).

A chain of poset (P, <) is an induced subposet (C, <) which happens to be totally
ordered.

2.2.7 Zornification

Although an induced poset (X, <) of a poset (P, <) may not have a maximum, it
might have an upper bound—that is, an element m in P which is larger than anything
in the subset X (precisely rendered by “m > x for all elements x of X”). (Of course
if it happened that such an element m were already in X then it would be a global
maximum of X).

The dual notion of “lower bound” should be easy to formulate.

The existence upper bounds on a class of induced posets of (P, <) is connected
with a criterion for asserting that maximal elements exist in P.

Zorn’s Lemma: Suppose (P, <) is a poset for which any chain has an upper bound.
Then any element of (P, <) lies below a maximal element.

However, Zorn’s Lemma is not a Lemma or even a Theorem. It does not follow
from the axioms of set theory (Zermelo-Fraenkel), nor does it contradict them. That
is why we called it “a criterion for an assertion”. Using it can never produce a
contradiction with formal set theory. But since its denial also cannot produce such a
contradiction, one can apparently have it either way. The experienced mathematician,
though not always eschewing its use, at least prudently reports each appeal to “Zorn’s
Lemma”.’

Zorn’s Lemma is used in the next subsection. After that, it is used only very

sparingly in this book.

2.2.8 Well-Ordered Sets

A well-ordered set is a special kind of totally ordered set. A poset (X, <) is said to
possess the well-ordered property (or is said to be well-ordered) if and only if

(a) (X <) is totally ordered.
(b) every non-empty subset of X possesses a (necessarily unique) minimal member.

3 Even an appropriate feeling of guilt is not discouraged. Who knows? Each indulgence in Zorni-
fication might revisit some of you in another life.
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It should be clear from this definition that every induced subposet of a well-ordered
set is also well-ordered.*

Any subset X of a well-ordered set A is called an initial segment if it possesses
the property thatif x € X and y < x, then y € X. (In the next subsection, we shall
meet sets with this property in the context of general posets. There they are called
order ideals.) An example of an initial segment of a well-ordered set would be the
set L(a) := {x € Alx < a}. (Note that x < a means x < a while x # a.)

Lemma 2.2.1 Suppose X is an initial segment of the well-ordered set (A, <). Sup-
pose X # A. Then X has the form L(a), for some element a € A.

Proof By hypothesis, the set A — X, being non-empty, possesses a minimal element
a. All elements of L(a) belong to X by the minimality of a. Conversely, all elements
of X are properly less than a by the definition of @. Thus X = L(a). [

Theorem 2.2.2 Any set A possesses a total ordering < with respect to which it is
well-ordered.

Proof This proof is a classic application of Zorn’s lemma. Let V¥V denote the full
collection of possible well-ordered posets (W, <y ), where W is a subset of A. (Note
that the same subset W may possess many possible well-orderings (W, <), each
representing a distinct element of W.) If (W, <1) and (W>, <;) are two elements
of W, we write

(W1, 1) 2 (W2, <)

if and only if (Wy, <1) is an initial segment of the well-ordered poset (W>, <»).
(Specifically, this means that there is an element x € W; such that Wi = {z €
W>|z <2 x} and the relation < is just <, restricted to W; x Wj.) Since an initial
segment of an initial segment is an initial segment, the relation < is transitive and
reflexive. It is clearly antisymmetric. In this way the collection of well-ordered sets
W itself becomes a partially-ordered set with respect to the relation <.

Now consider a chain C = {w) = (W), <))|\ € [}, in the poset (W, x).
Form the set-theoretic union W¢ := U)¢; W). W inherits a natural total ordering
< derived from the <). If x and y are elements of W, then x € Wy andy € W,
for some indices A, u € I. Since C is a chain, one of these W’s is contained in
the other, so we may assume (W), <)) =< (W, <,). Since both x and y lie in the
totally ordered set W,,, we write x < y or y < x accordingasx <, y ory <, x.
In other words, in comparing two elements of W, we utilize the comparison that
works in any of the posets (W), <)) or (W, <) that may contain both of them.
The comparisons will always be consistent since each poset is an initial segment of
any poset above it in the chain.

Next, we must show that the poset (W¢, <) is well-ordered. For that purpose,
consider a non-empty subset S of Wc. Choose any x € S. Then x € W), for some

“We shall see very soon that a well-ordered poset is simply a chain with the descending chain
condition (see p. 44 and Corollary 2.3.6).
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A € I. Now, (W), <)) is a well ordered set, and <) is the global relation < of
W restricted to W). Since S N W) is non-empty, it contains a minimal element
m. We claim that m is a minimal element of the induced poset (S, <). If this were
false, one could find a second element mq € S, with my < m but moy # m. But as
mo € S C W¢, mg lies in some W,,. Now if W, C W), then mg € § N W), against
the minimality of m. Thus, as C is a chain, we must have that (W), <)) < (W, <,).
But in that case, W) is an initial segment of W, so that mo < m implies that m is
in W). We have just seen that this is impossible as that contradicts the minimality of
m in S N W). Thus no such mq exists, and m is the unique minimal element of S.

At this point, (W¢, <) is amember of (JV, <) that is an upper bound of all mem-
bers of the chain C. Since the chain C is arbitrary, we have achieved the conditions
necessary for applying Zorn’s Lemma. Thus we may assume there exists a maximal
element (W,,,, <;,) in the poset (W, <).

If x were a point of A — W,,,, one could extend the relation <, to ({x} U W,,,) x
({x} U W) by declaring w <, x for all w € {x} U W,,. Then W,, would become an
initial segment of ({x} U W,,,, <,,), and the latter is again a well-ordered set. Thus
one obtains (W, <) < ({x} U W,,, <), against the maximality of (W,,, <p,)
in (W, <). So no such x exists, W,, = A, and we have obtained a well-ordering,
(A, <p). O

It is time to examine the actual structure of a well-ordered set. First, any well-
ordered set (A, <) inherits a simple partition into equivalence classes. Let us say that
two elements of x and y of A are near, if and only if there are only a finite number
of elements between x and y—that is, if x < y, the set {z € A|x < z < y} is finite,
andif y < x then {z € A|y < z < x} is finite.

Now, using only the fact that A is a fotally-ordered set, we can conclude that
the nearness relation between points, is transitive. For, given any three points,
{a, b, c}, they possess some order—say a < b < c. Now if two of the intervals
[a, b], [b, c], [a, c] are finite, then so is the third interval. It follows that the relation
of nearness is transitive. It is obviously symmetric and reflexive, and so the “near-
ness” relation is an equivalence relation on the elements of A. We let {A)} denote
the collection of nearness-equivalence classes of the well-ordered set A.

A well-ordered set A may or may not contain a maximal element. For example, any
well-ordered finite set contains a maximal element, while the infinite set of natural
numbers N, under its natural ordering, is a well-ordered set with no maximal member.
If A contains a maximal element m 4, let A,,,, denote the near-ness equivalence
class containing m 4. In that case, there are only finitely many elements between the
minimal element of the set A,,,, and the maximal element m 4, forcing A,,,x to be
a finite set in this case. Otherwise, if there is no maximal element, let A,,,. be the
empty set. Whether or not a maximal element exists in A, let A* denote the set of
non-maximal members of A.

The well-ordered property produces an injective mapping

oA > A
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which takes each non-maximal element a to the least member o (a) of the set {x €
Al|x > a}. Wecall a the predecessor of o(a). Note thata < o(a) and that no elements
properly lie between them. Similarly, for any n € N, if 0" (a) is not maximal, there
are exactly n — 1 elements lying properly between a and o" (a). Thus the elements
of {¢"(a)|0"~'(a) € A*} all belong to the same nearness class.

Lemma 2.2.3 Let A) be any nearness equivalence class of the well-ordered set A.

1. There is a least member ay, of the set A ). It has no predecessors.

2. Conversely, is x is an element of A that has no predecessor, then x is the least
member of the near-ness equivalence class that contains it.

3. If Ay = Apax—that is, it contains an element that is maximal in A—then it is a
finite set.

4. If A\ # Apax, then Ay = {0"(a))|n € N}, where a), is the least member of the
set Ay. In this case A) is an infinite countable set.

Proof Part 1. If ay = o(x), then by the definition of &, x is near a), while being
properly less than it. In that case, a) could not be the least member of its nearness
class.

Part 2. If x has no predecessor and lies in A, then x is near a), forcing x = 0" (a))
for some natural number n. But since x has no predecessor, n = 0, and so x = a).

Part 3. If m 4 were a maximal element of (A, <), then m 4 would be near the least
member a4, of its nearness equivalence class A, forcing m4 = 0" (apqy), for a
natural number n. Since m 4 is maximal in A4y, |Amax| = 1.

Part 4. Suppose A\ # A;qx- Then each element x of Ay is non-maximal, and so
has a successor o(x) that is distinct from it. Thus if @) is the least member of A),
{o"(ay)|n € N} is an infinite set. Clearly, A € {c"(a))|n e N} € A. [J

This analysis of well-ordered sets has implications for cardinal numbers in general.

Corollary 2.2.4 Let A be any infinite set. Then A is bijective with a set of the form
N x B. In other words, any infinite cardinal number a has the form a = Rob, for
some cardinal number b.’

Proof By Theorem 2.2.2 one may impose a total ordering on the set A to produce a
well-ordered set (A, <). By Lemma 2.2.3 the set A,,,, of elements near a maximal
element, is either finite or empty. Since A is infinite, the set A — A4y 1S non-empty
and has a partition

A= Anar = [ JlANN € 1),

where I indexes the nearness classes distinct from A,,,. Each class A) contains a
unique minimal element a) which has no predecessor, and each element of A) can

5The definition of cardinal number appears on p. 18, and Ry is defined to be the cardinality of the
natural numbers in the paragraphs that follow.
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be written as ¢” (a)) for a unique natural number N. Thus we have a bijection
A—Apux > Nx P~

where P~ = {ay|\ € I} is the set of all elements of A which have no predecessor
and are not near a maximal element.. The mapping takes an arbitrary element x of
A — Apgx to the pair (n, ay) € N x P~ where a), is the unique minimal element of
the nearness-class containing x and x = o”(a)).

Now one can adjoin the finite set A,,,, to just one of the classes A) without
changing the cardinality of that class. This produces an adjusted bijection A —
N x P~, as desired. [J

Corollary 2.2.5 Suppose A is an infinite set. Then A is bijective with N x A. For
cardinal numbers, if a is any infinite cardinal number, then a = Ry - a.

Proof 1t suffices to prove the statement in the language of cardinal numbers. By
Corollary 2.2.4, we may write a = 8¢ - b, for come cardinal number b. Now

Rop-a=Rp-Rp-b) =R -Rp)-b=Np-b=a,
by Theorem 1.4.4 and the associative law for multiplying cardinal numbers.[]

The above Corollary is necessary for showing that any two bases of an inde-
pendence theory (or matroid) have the same cardinality when they are infinite (see
Sect. 2.6). That result in turn is ultimately utilized for further dimensional concepts,
such as dimensions of vector spaces and transcendence degrees of field extensions.

2.2.9 Order Ideals and Filters

For this subsection fix a poset (P, <). An order ideal of P is an induced subposet
(J, <), with this property:

Ify € J and x is an element of P withx < y, thenx € J.

In other words, an order ideal is a subset J of P with the property that once some
element belongs to J, then all elements of P below that element are also in J. Note
that the empty subposet is an order ideal.

The reader may check that the intersection of any family of order ideals is an order
ideal. (Since order ideals are a species of induced posets, we are using “intersection”
here in the sense of the previous Sect.2.1.2 on induced subposets.) Similarly, any
set-theoretic union of order ideals is an order ideal.

Then there is the dual notion. Suppose (F, <*) were an order ideal of the dual
poset (P, <*). Then what sort of induced poset of (P, <) is F? It is characterized
by being a subset of (P, <) with this property:
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Ifx € F and y is any element of P withx < y, theny € F.

Any subset of P with this property is called a filter.
There is an easy way to construct order ideals. Take any subset X of P. Then
define
Px :={y € P|y < x for some elementx € X}.

Note that always X C Py. In fact the order ideal Py is “generated” by X in the
sense that it is the intersection of all order ideals that contain X. Also, we understand
that Py = .

In the particular case that X = {x} we write Py for Py, and call Py the principal
order ideal generated by x (or just a principal order ideal if x is left unspecified).

Of course any order ideal has the form Py (all we have to dois set X = Px) butin
general, we do not need all of the elements of X. For example if x| < x, for x; € X,
and if we set X’ := X — {x1}, then Px = Px’. Thus if we throw out elements of X
each of which is below an element left behind, the new set defines the same order
ideal that X did. At first the student might get the idea that we could keep throwing
out elements until we are left with an antichain. That is indeed true when X is a finite
set, or more generally if every element of X is below some member of max(X, <).
But otherwise it is generally false.

There is another kind of order ideal defined by a subset X of poset P. We set

/\Px = ﬂ P, ={y e Ply <xforevery x € X}.
xeX

Of course this order ideal may be empty. If it is non-empty we say that the set X has
a lower bound in P—that is, there exists an element y € P which is below every
element of the set X.

The dual notion of the filter generated by X should be transparent. It is the set
P¥X of elements of P which bound from above at least one element of X. It could be
described as

PY:={yePIP,NX #0}.

If X = {x}, then P¥X is called a principal filter. By duality, the intersection and union
of any collection of filters is a filter.
Then there is also the filter

/\PX :={y € Plx < yforall x € X},

which may be thought of as the set of all “upper bounds” of the set X. Of course it
may very well be the empty set.

An induced subposet (X, <) of (P, <) is said to be convex if, whenever x; and
x7 are elements of X with x; < x, in (P, <), then in fact the entire interval [x, y]p
is contained in X. Any intersection of convex induced subposets is convex. All order
ideals, all filters, and all intersections and unions thereof are convex.



32 2 Basic Combinatorial Principles of Algebra

2.2.10 Antichains

The reader is certainly familiar with many posets which are not totally ordered, such
as the set P(X) of all subsets of a set X of cardinality at least two. Here the relation
“<” is containment of sets. Again there are many structures that can be viewed as a
collection of sets, and thus become a poset under this same containment relation: for
example, subspaces of a vector space, subspaces of a point-line geometry, subgroups
of a group, ideals in a ring and R-submodules of a given R-module and in general
nearly any admissible subobject of an object admitting some specified set of algebraic
properties.

Two elements x and y are said to be incomparable if both of the statements x < y
and y < x are false. A set of pairwise incomparable elements in a poset is called an
antichain.®

The set max(X, <) where (X, <) is an induced subposet of (P, <), is always an
antichain.

2.2.11 Products of Posets

Suppose (P1, <) and (P>, <) are two posets.7 The product poset (P X P>, <) is
the poset whose elements are the elements of the Cartesian product P; x P,, where
element (ay, ap) is declared to be less-than-or-equal to (b1, b>) if and only if

a; < by andalsoay < bs.

It should be clear that this notion can be extended to any collection of posets
{(P,, <)|o € I} to form a direct product of posets.. Its elements are the elements of
the Cartesian product I1,¢; P,—that is, the functions f : I — U, where U is the
disjoint union of the sets P, with the property that at any ¢ in I, f always assumes a

%Tn a great deal of the literature, sets of pairwise incomparable elements are called independent.
Despite this convention, the term “independent” has such a wide usage in mathematics that little is
served by employing it to indicate the property of belonging to what we have called an antichain.
However, some coherent sense of the term “independence” is exposed in Sect.2.6 later in this
chapter.

7Usually authors feel that the two poset relations should always have distinguished notation—that
is, one should write (P, <1) and (P>, <») instead of what we wrote. At times this can produce
intimidating notation that would certainly finish off any sleepy students. Of course that precaution
certainly seems to be necessary if the two underlying sets P; and P, are identical. But sometimes
this is a little over-done. Since we already have posets denoted by pairs consisting of the set P; and a
symbol “<”, the relation “<” is assumed to be the one operating on set P; and we have no ambiguity
except possibly when the ground sets P; are equal. Of course in the case the two “ground-sets”
are equal we do not hesitate for a moment to adorn the symbol “<” with further distinguishing
emblems. This is exactly what we did in defining the dual poset. But even in the case that P; = P>
one could say that in the notation, the relation “<” is determined by the name P; of the set, rather
then the actual set, so even then the “ordered pair” notation makes everything clear.
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value in P,. Then for functions f and g we have f < g if and only if f(0) < g(0)
foreacho € I.

Suppose now, each poset P, contains its own “zero element”, 0, less than or equal
to all other elements of P,. We can define a direct sum of posets {(P,, <)} as the
induced subposet of the direct product consisting only of the functions f € H P,

oel
for which f (o) differs from O, for only finitely many o. This poset is denoted H P,.

oel

2.2.12 Morphisms of Posets

Let (P, <p)and (Q, <p) be two posets. A mapping f : P — (Q is said to be order
preserving (or is said to be a poset morphism) if and only if

x <p yimplies f(x) <g f(¥).

Evidently, the composition g o f of two poset morphisms f : (P, <p) — (Q, <p)
and g : (Q, <g) — (R, <g)isalsoaposet morphism (P, <p) — (R, <g).Clearly
the identity mapping 1p : P — P isamorphism.If f : P — Q isaposet morphism
as above, then f olp = 1g o f = f. The student should be aware that if x and
y are incomparable elements of P, it is still quite possible that f(x) <o f(y) or
F() =g f(x) in the poset (Q. <o).

To clarify this point a bit further, using the morphism f : (P. <p) — (Q, <o),
let us form the image poset f(P) := (f(P), <) whose elements are the images
f(p), p € P,and we write f(x) < f(y) if and only if there is a pair of elements
x',y) e f_l(f(x)) X f_1 (f(y)), the Cartesian product of the fibers above f (x)
and f(y), such that x" <p y’. Then the image poset (f(P), <y) is a subposet of
(0. =0).

We say that the morphism f is full if and only if the image poset ( f(P), <) is an
induced poset of (Q, <p). Thus for a full morphism, we have a <¢ b in the image,
if and only if there exist elements x and y in P such that x <p y and f(x) = a and
f(y)=b.

A bijection f : P — Q is an isomorphism of posets if and only if it is also a full
poset morphism. Thus if f is an isomorphism, we have f(x) <o f(y) if and only
if x <p . In this case the inverse mapping f~! : Q — P is also an isomorphism.
Thus an isomorphism really amounts to changing the names of the elements and the
name of the relation but otherwise does not change anything. Isomorphism of posets
is clearly an equivalence relation and we call the corresponding equivalence classes
isomorphism classes of posets.

If the order preserving mapping f : P — Q is injective then the posets (P, <)
and (f(P), <) are isomorphic, and we say that f is an embedding of poset (P, <)
into (Q, <). The following result, although not used anywhere in this book, at least
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displays the fact that one is interested in cases in which the image poset of an
embedding is not an induced subposet of the co-domain.

Any poset (P, <) can be embedded in a totally ordered set.®

2.2.13 Examples

Example 1 (Examples of totally ordered sets) Isomorphism classes of these sets are
called ordinal numbers. The most familiar examples are these:

1. The natural numbers This is the set of non-negative integers,
N:={0,1,2,3,4,5,6,...},
with the usual ordering
0<1<2<3<4<5---.
Rather obviously, as an ordered set, it is isomorphic to the chain
1<2<3<---

or even
k<k+1l<k+2<k+3<---,

k any integer, under the shift mapping n — n +k — 1.

Recall that a poset (X, <) is said to possess the well-ordered property (or is said
to be well-ordered) if and only if (i) (X, <) is totally ordered, and (ii) every non-
empty subset of X possesses a (necessarily unique) minimal member. It should
be clear from this definition that every induced subposet of a well-ordered poset
is also well-ordered. The point here is that the natural numbers is a well-ordered
poset under the usual ordering. This fundamental principle is responsible for some
of the basic properties concerning greatest common divisors (see Chap. 3, p. 2).

2. The system of integers

Z:={..<-2<—-1<0<1<2<...}.

8 Many books present an equivalent assertion “any poset has a linear extension”. The proof is an
elementary induction for finite posets. For infinite posets it requires some grappling with Zorn’s
Lemma and ordinal numbers.
9This isomorphism explains why it is commonplace to do an induction proof with respect to the
second of these examples beginning with 1 rather than the first, which begins with 0.

In enumerative combinatorics, for example, the “natural numbers” N are defined to be all non-
negative integers, not just the positive integers (see Enumerative Combinatorics, vol 1, p. 1. by R.
Stanley) [1].
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One notes that any subset of Z which possesses a lower bound, forms a well-
ordered induced subposet of Z.

3. The system Q of the rational numbers with respect to the usual ordering—that is
a/b > c/d if and only if ad > bd, an inequality of integers.

4. The real number system R.

5. Any induced subposet of a totally ordered set. We have already mentioned inter-

vals of the real line. (Remark: the word “interval” here is used for the moment as it
is used in Freshman College Algebra, open, closed, and half-open intervals such
as (a, b] or [a, 00). In this context, the intervals of posets that we have defined
earlier, become the closed intervals, [a, D], of the real line, with a consistency of
notation.
Here is an example: Consider the induced poset of the rational numbers (Q, <)
consisting of those positive fractions less than or equal to 1/2 which (in lowest
terms) have a denominator not exceeding the positive integer d in absolute value.
For d = 7 this is the chain

| -
N =
| —
-
A
NN
A
W =
A
(SRS
A
| W
A
=

This is called a Farey series. A curiosity is that if 7 and § are adjacent members
from left to right in such a series, then bc — ad = 1!

Example 2 (Examples of the classical locally finite (or finite) posets which are not
chains) A poset (P, <) is said to be a finite poset if and only if it contains only finitely
many elements—that is, | P| < oo. It is said to be locally finite if and only if every
one of its intervals [x, y] is a finite poset.

1. The Boolean poset B(X) of all finite subsets of a set X, with the containment
relation (C) between subsets as the partial-ordering. (There is, of course, the
power poset P(X), the collection of all subsets of X, as well as the cofinite
poset which is the collection B*(X) of all subsets of X whose complement in
X is finite—both collections being partially ordered by the inclusion relation.
Of course, these two posets P(X), and B*(X) are not locally finite unless X is
finite.)

2. The divisor poset D of all positive integers N under the divisor relation:—that
is, we say a|b if and only if integer a divides integer b evenly—i.e. b/a is an
integer.!”

10There are variations on this theme: In an integral domain a non-unit a is said to be irreducible
if and only if @ = bc implies one of b or ¢ is a unit. Let D be an integral domain in which each
non-unit is a product of finitely many irreducible elements, and let U be its group of units. Let
D* /U be the collection of all non-zero multiplicative cosets Ux. Then for any two such cosets, Ux
and Uy, either every element of U x divides every element of Uy or else no element of Ux divides
any element of Uy. In the former case write Ux < Uy. Then (D*/U, <) is a poset. If D is a unique
factorization domain, then, as above, (D*/U, <) is locally finite for it is again a product of chains
(one factor in the product for each association class Up of irreducible elements).

One might ask what this poset looks like when D is not a unique factorization domain. Must it
be locally finite? It’s something to think about.
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Posets of vector subspaces. The partially ordered set Lo, (V; g) of all finite-
dimensional vector subspaces of a vector space V over a finite field of g elements
is a locally finite poset. (There is a generalization of this: the poset L oo (M)
of all finitely generated submodules of a right R-module M and in particular
the poset L. (V) of all finite-dimensional subspaces of a right-vector space V
over some division ring. But of course these are not locally finite in general.)!!
The partition set: T1,,. Suppose X is a set of just n elements. Recall that a partition
of X is a collection 7 := {Y1, ..., Y} of non-empty subsets ¥; whose join is
X but which pairwise intersect at the empty set. The subsets Y; are called the
components of the partition 7.

Suppose 71 := {Y;|i € I} is a partition of X and 7’ = {Z;|k € K} is a second
partition. We say that partition 7’ refines partition 7 if and only if there exists a
partition I = J; + - - - J; of the index set, such that

Y,‘ = U Zg.

Le Ji

[We can state this another way: A partition 7 can be associated with a surjective
function f; : X — I where the preimages of the points are the fibers partitioning
X: the same being true of 7’ and an surjective function f,7 : X — K. We say that
partition ' refines a partition 7 if and only if there exists a surjective mapping ¢ :
K — I,suchthat f; = ¢ o f,r—thatis, foreachx € X, fr(x) = o(f(x)).]
For example {6}{4, 9}{2, 3, 8}{1, 5, 10}{9, 10}, with five components refines
{1,5,6,9, 10}, {2, 3, 4, 8, 9} with just two components.

Then TI1,, is the partially ordered set of all partitions of the n-set X under the
refinement relation. '

. The Poset of Finite Multisets: Suppose X is any non-empty set. A multiset is

essentially a sort of inventory whose elements are drawn from X. For example:
if X = {oranges, apples, and bananas} then m = {three oranges, two apples} is
an inventory whose elements are multiple instances of elements from X. Letting
O = oranges, A = apples, and B = bananas, one may represent the multiset m
by the symbol 3- O +2- A 4 0 - B or even the sequence (3, 2, 0) (where the
order of the coordinates corresponds to a total ordering of X). But both of these
notations can become inadequate when X is an infinite set. The best way is to
think of a multiset as a mapping. Precisely, a multiset is a mapping

f:X—N,

from X into the set N of non-negative integers.

Hp Aigner’s book (see references), L. (V, ¢) is denoted £ (o0, ¢) in the case that V has countable
dimension over the finite field of ¢ elements. This makes sense when one’s plan is to relate the
structure to certain types of generating functions (the g-series). But of course, it is a well-defined
locally finite poset whatever the dimension of V.

121ts cardinality |IT,| is called the nth Bell number and will reappear in Chap.4 in the context of
permutation characters.


http://dx.doi.org/10.1007/978-3-319-19734-0_4

2.2 Basic Definitions 37
A multiset f is dominated by a multiset g (written f < g) if and only if
f(x) <gx)forallx € X

(where the “<” in the presented assertion reflects the standard total ordering of
the integers).
The collection hom (X, N) of all multisets of a set X forms a partially ordered set
under the dominance relation. Since the multisets are actually mappings from
X to N the dominance relation is exactly that used in comparing mappings in
products. We are saying that the definition of the poset of multisets shows us
that

(hom(X,N), <) = [ N, (2.3)

xeX

—that is a product in which each “factor” P, in the definition of product of
posets is the constant poset (N, <) of non-negative integers.
The multiset f is said to be a finite multiset of magnitude | f| if and only if

f(x) > 0 for only finitely many values of x, and 2.4)
Ifl= D, fw, 2.5)
xeX, f(x)>0

where the sum in the second equation is understood to be the integer O when the
range of summation is empty (i.e. f(x) = 0 for all x € X).

Thus in the example concerning apples, bananas, and oranges above, the multiset
m is finite of magnitude 3 + 2 = 5.

In this way the collection M -, (X) of all finite multisets forms an induced poset
of (hom(X, N), <). Next one observes that a mapping f : X — N is a finite
multiset if and only if f(x) = O for all but a finite number of instances of x € X.
This means Eq. (2.3) has a companion with the product replaced by a sum:

M_oo(X) = [[N. (2.6)

xeX

The above list of examples shall continue in the subsequent sections.

2.2.14 Closure Operators

We need a few other definitions related to poset mappings.
An order preserving mapping f : P — P is said to be monotone non-decreasing
if p < f(p) for all elements p of P.
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A closure operator is a monotone non-decreasing poset homomorphism 7 : P —
P which is idempotent. In other words, T possesses the following three properties:

(i) (Monotonicity) If x € P, then x < 7(x)
(ii)) (Homomorphism) If x < y, then 7(x) < 7(y).
(ii) (Idempotence) 7(x) = 7(7(x)) for all x € P.

We call the images of 7 the closed elements of P.
There are many contexts in which closure operators arise, and we list a few.

. The ordinary topological closure in the poset of subsets of a topological space.

. The mapping which takes a subset of a group (ring or R-module) to the subgroup
(subring or submodule, resp.) generated by that set in the poset of all subsets of
a group (ring or R-module).

3. The mapping which takes a set of points to the subspace which they generate in

a point-line geometry (P, £).13

N =

2.2.15 Closure Operators and Galois Connections

One interesting context in which closure operators arise are Galois connections. Let
(P, <) and (Q, <) be posets. A mapping f : P — Q is said to be order reversing
if and only x < y implies f(x) > f(y).

Example 3 This example displays a common context that produces order reversing
mappings between posets. Suppose X = U,cj Ay, a union of non-empty sets indexed
by 1. Now there is a natural mapping among power posets:

a:PX)— Pd),
which takes each subset Y of X, to
aY) :={ocellY C A}

For example, if Y is contained in no A,, then a(Y) = . Now if Y1 C ¥» C X we
see that a(Y2) € «a(Y])—that is, as the Y; get larger, there are generally fewer A,
that contain them. Thus the mapping « is order-reversing.

Let (P, <) and (Q, <) be posets. A Galois connection (P, Q, a, ) is a pair
of order-reversing mappings o : P — Q and 0 : Q — P, such that the two
compositions § o « : P — Pand a o § : Q — Q are both monotone non-
decreasing.

3Here, the set of lines, £, is simply a family of subsets of the set of points, P. A subspace is a set
S of points, with the property that if a line L € £ contains at least two points of S, then L C .
Thus the empty set and the set P are subspaces. From the definition, the intersection over any
family of subspaces, is a subspace. The subspace generated by a set of points X is defined to be the
intersection of all subspaces which contain X.
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Galois connections arise in several contexts, especially when some algebraic
object acts on something.

Example 4 (Groups acting on sets) Suppose that G is a group of bijections of a set X
into itself. The group operation is composition of bijections and the identity element
is the identity mapping 1y : X — X defined by x — x forall x € X. For g € G,
the corresponding bijection or permutation is described as an exponential operator
by x — x9 for all x € X.

Consider the two posets P(X) and P(G), the power posets of X and G. Define

Cs : P(X) — P(G)

by setting Cg(U) := {g € G| g(u) = u9 = u for all u € U}, for each subset U of
X. This mapping is order reversing: if U € V, then Cg(U) 2 Cg (V). Conversely,
if H is a subset of G, set Fix(H) := {x € X | x = x" forall h € H}.

Then Fix is an order-reversing mapping P(G) — P(X). Therefore, (P(X),
P(G), Cg, Fix) becomes a Galois connection upon verifying that the compositions
Cg o Fix : P(G) — P(G) and Fix o Cg : P(X) — P(X) are monotone non-
decreasing.

Example 5 In the above example, the set X might have extra structure that is pre-
served by G. For example X might itself be a group, ring, field, or a vector space, and
G is a group of automorphisms of X. This situation arises in the classical Galois the-
ory studied in Chap. 11, where X is a field, and where G is a group of automorphisms
fixing a subfield Y of X.

Example 6 A ring R may act as a ring of endomorphisms of an abelian group A
with the (multiplicative) identity element inducing the identity mapping on A. One
can then form a Galois connection (P(A), P(R), Cg, Fix) with

Cr:={reR|u =uforallu € U},

Fix(S) :={a € A|d®* =aforalls € S}

forall U € P(A) and for all S € P(R).

Example 7 Another example arises in algebraic geometry. We say that a polynomial

p(x1, ..., x,) vanishes at a vector v = (ay, ..., a,) in the vector space F®™ of
n-tuples over the field F if and only if p(v) = p(ai,...,a,) = 0 € F. Let
(P, <) be the poset of ideals in the polynomial ring F[x1, ..., x,] with respect to

the containment relation and for each ideal I let (1) be the set of vectors in F
at which each polynomial of [ vanishes. Let (Q, <) be the poset of all subsets of
F® with respect to containment. For any subset X of F M) et ((X) be the set of all
polynomials which vanish simultaneously at every vector in X. Then (P, Q, «, (3)
is a Galois connection.
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The Corollary following the Lemma below shows how closure operators can arise
from Galois connections.

Lemma 2.2.6 Suppose (P, Q, «, 3) is a Galois connection. Then for any elements
p and q of P and Q respectively

a(B(e(p))) = a(p) and B(a(B(q))) = ((q)

Proof For p € P, p < B(a(p)) since § o « is monotone non-decreasing. Thus
a(B(a(p))) < a(p) since « is order reversing.
On the other hand

a(p) = a(f(a(p)) = (o B)(a(p))

since («vo/3) is monotone non-decreasing. By antisymmetry, we have the first equation
of the statement of the Lemma.

The second statement then follows from the symmetry of the definition of Galois
connection—that is (P, Q, «, 3) is a Galois connection if and only if (Q, P, 3, «)
is. J

Corollary 2.2.7 If (P, Q, «, B) is a Galois connection, then T := o« is a closure
operator on (P, <).

Proof Immediate upon taking the $-image of both sides of the first equation of the
preceding Lemma. [

Example 8 Once again consider the order reversing mapping « : P(X) — P([) of
Example 3, where X was a union of non-empty sets A, indexed by a parameter o
ranging over a set /. For every subset Y of X, a(Y) was the set of those o for which
Y CA,.

There is another mapping (5 : P(I) — P(X) defined as follows: If J C I set
B(J) := Nyej Ay, with the understanding that if J = ¢, then 5(J) = X. Then j is
easily seen to be an order-reversing mapping between the indicated power posets.

Now the mapping 7 = S o a : P(X) — P(X) takes each subset Y of X to the
intersection of all of the A, which contain it (with the convention that an intersections
over an empty family of sets denotes the set X itself). Thus 7 is a nice closure operator.

Similarly, p = a0 5 : P(I) — P(I) takes each subset J to the set

p(J) ={o € I|A; 2 NjesAj}.
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2.3 Chain Conditions

2.3.1 Saturated Chains

Recall that a chain C of poset (P, <) is simply a (necessarily induced) subposet
(C, <) which is totally ordered. In case C is a finite set, [C| — 1 is called the length
of the chain.

We say that a chain C; refines a chain Cy if and only if C; € C,. The chains of
a poset (P, <) themselves form a partially ordered set under the inclusion relation
(the dual of the refinement relation) which we denote (ch(P, <), C).

Suppose now that

CocCr S+

is an ascending chain in the poset (ch (P, <), C). Then the set-theoretic union | J C;
is easily seen to be totally ordered and so is an upper bound in (ck(P, <), C) of this
chain. An easy application of Zorn’s Lemma then shows that every element of the
poset (ch(P, <), ©) lies below a maximal member. These maximal chains are called
unrefinable chains. Thus

Theorem 2.3.1 If C is a chain in any poset (P, <), then C is contained in an
unrefinable chain of (P, <).

Of course we can restrict this in special ways to an interval. In a poset (P, <), a
chain from x to y is a chain (C, <) with x as its unique minimal element and y as it
unique maximal element. Thus x < y and {x, y} € C C [x, y].

The collection of all chains of (P, <) from x to y itself becomes a poset
(chlx, y], €) under the containment (or “corefinement”) relation. A chain from x to
y is said to be saturated if it is a maximal element of (ch[x, y], g).”

We can apply Theorem 2.3.1 for P = [x, y] and the chains C in it that do contain
{x, y} to obtain:

Corollary 2.3.2 [If C is a chain from x to y in a poset (P, <), then there exists a
saturated chain C' from x to y which refines C. In particular, given an interval [x, y]
of a poset (P, <), there exists an unrefinable chain in P from x to y.

2.3.2 Algebraic Intervals and the Height Function

Let (P, <) be any poset. An interval [x, y] of (P, <) is said to be algebraic (or
of finite height) if and only if there exists a saturated chain from x to y of finite

14 Note that (ch[x, y], ©) is not quite the same as (ch([x, y], <) since the latter may contain chains
which, although lying in the interval [x, y], do not contain x or y.
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length.!> Note that to assert that [a, b] is an algebraic interval, does not preclude
the simultaneous existence of infinite chains from a to b. The height of an algebraic
interval [x, y] is then defined to be the minimal length of a saturated chain from x to
y.16

If [a, b] is an algebraic interval, its height is denoted h(a, b), and is always a
non-negative integer. We denote the collection of all algebraic intervals of (P, <) by
the symbol Ap.

Proposition 2.3.3 The following hold:

(i) Ifla, b] and [b, c] are algebraic intervals of poset (P, <), then [a, c] is also an
algebraic interval.

(ii) The height function h : Ap — N from the non-empty algebraic intervals of
(P, <) to the non-negative integers, satisfies this property: If [a, b] and [b, c]
are algebraic intervals, then

h(a,c) < h(a,b)+ h(b.c)

2.3.3 The Ascending and Descending Chain Conditions
in Arbitrary Posets

Let (P, <) be any partially ordered set. We say that P satisfies the ascending chain
condition or ACC if and only if every ascending chain of elements of P stabilizes
after a finite number of steps—that is, for any chain

PL=p2=p3=--,
there exists a positive integer N, such that
PN = PN+1 = - -+ = pk, for all integers k greater than N.
Put another way, (P, <) has the ACC if and only if every properly ascending chain

pPL<p2<--

I5This adjective “algebraic” does not enjoy uniform usage. In Universal Algebras, elements which
are the join of finitely many atoms are called algebraic elements (perhaps by analogy with the theory
of field extensions). Here we are applying the adjective to an interval, rather than an element of a
poset.

16Since the adjective “algebraic” entails the existence of a finite unrefinable chain, the height of a
algebraic interval is always a natural number. The term “height” is used here instead of “length”
which is appropriate when all unrefineable chains have the same length, as in the semimodular
lower semilattices that appear in the Jordan-Holder Theorem.
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terminates after some finite number of steps. Finally, it could even be put a third way:
(P, <) satisfies the ascending chain condition if and only if there is no countable

sequence {py, ;’loz | with p, < p,1 for all natural numbers n.

Lemma 2.3.4 For any poset P = (P, <) the following assertions are equivalent:

(i) (P, <) satisfies the ascending chain condition (ACC).
(ii) (The Maximum Condition) Every non-empty subset X of P the induced subposet
(X, <) contains a maximal member.

(iii) (The Second form of the Maximum Condition) In particular, for every induced
poset X of (P, <), and every element x € X, there exists an element y € X
such that x is bounded by y and y is maximal in (X, <). (To just make sure that
we understand this: for every x € X there exists an element y € X such that

(a) x <y.
(b) Ifue Xandy <u thenu =Yy.)

Remark The student is reminded: to say that “x is a maximal member of a subset X
of a poset P”” simply means x is an element of X which is not properly less than any
other member of X.

Proof of Lemma 2.3.4:

1. (The ACC implies the Maximum Condition). Let X be any nonempty subset of
P. By way of contradiction, assume that X contains no maximal member. Choose
x1 € X. Since x7 is not maximal in X, there exists an element x, € X with x| < x».
Suppose now, that we have been able to extend the chain x; < xptox; < -+ < Xxp,.
Since x;, is not maximal in X, there exists an element x,,+1 € X, suchthatx, < x,41.
Thus, by mathematical induction, for every positive integer n, the chain x; < --- <
Xy, can be extended to x; < - -+ < X, < X,41. Taking the union of these extensions
one obtains an infinite properly ascending chain

X <X < X3 <:--,

contrary to the assumption of ACC.!”

2. (The first version of the Maximum Principle implies the second.) Now assume
only the first version of the maximum condition. Take a subset X and an element
x € X. Then set X’ = X N P* where P* := {z € P|x < z} is the principal filter

17 The graduate student has probably encountered arguments like this many times, where a sequence
with certain properties is said to exist because after the first » members of the sequence are con-
structed, it is always possible to choose a suitable n + 1-st member. This has an uncomfortable feel
to it, for the sequence alleged to exist must exemplify infinitely many of these choices—at least
invoking the Axiom of Choice in choosing the x;. But in a sense it appears worse. The sets are not
just sitting there as if we had prescribed non-empty sets of socks in closets lined up in an infinite
hallway (the traditional folk-way model for the Axiom of Choice). Here, it as if each new closet
was being defined by our choice of sock in a previous closet, so that it is really a statement about
the existence of infinite paths in trees having no vertex of degree one. All we can feebly tell you is
that it is basically equivalent to the Axiom of Choice.
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generated by x in the induced poset (X, <). Then X’ is non-empty (it contains x)
and so we obtain an element y maximal in X’ from the first version of the maximum
condition. Now if y were not a maximal member of X there would exist an element
y' € X with y < y’. But in that case x < y’ so y’ € X N P* = X’. But that would
contradict y being maximal in X’. Thus y is in in fact maximal in X and dominates
x as desired.

3. (The second version of the Maximum Principle implies the ACC.) Assume the
second version of the Maximum Principle. Suppose the ACC failed. Then there must
exist an infinite properly ascending chain xo < x; < ---. Setting X = {x;|i € N},
and x = xo, we see there is no maximal member of X dominating x, contrary to the
statement of the second version of the Maximum Principle. [

Of course, by replacing the poset (P, <) by its dual P* := (P, >) and applying
the above, we have the dual development:

We say a poset (P, <) possesses the descending chain condition or DCC if and
only if every descending chain

p1=p2=--->pj€EP,

stabilizes after a finite number of steps. That is, there exists a positive integer N such
that py = pn+1 = - - - pn+k for all positive integers k.

We say that x is a minimal member of the subset X of P if and only if y > x for
y € X implies x = y. A poset (P, <) is said to possess the minimum condition if
and only if

(Minimum Condition) Every nonempty subset of elements of the poset P =
(P, <) contains a minimal member.

Then we have:

Lemma 2.3.5 A poset P = (P, <) has the descending condition (DCC)

(i) if and only if it satisfies the minimum condition or

(ii) if and only if it satisfies this version of the minimum condition: for any induced
poset X any x € X, there exists an element y minimal in X which is bounded
above by x.

Proof: Just the dual statement of Lemma 2.3.4. (J

Corollary 2.3.6 Every non-empty totally ordered poset with the descending chain
condition (DCC), is a well-ordered set.

Proof Let (P, <) be a non-empty totally-ordered poset with the DCC. By Lemma
2.3.5, the minimum condition holds. The latter implies that any non-empty subset
X contains a minimal member, say m. Since (X, <) is totally ordered, m is a global
minimum of (X, <). Thus (P, <) is well-ordered.!8 O

I8This conclusion reveals the incipient presence of the Axiom of Choice/Zorn’s Lemma in the
argument of the first paragraph of the proof of Lemma 2.3.4.
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Corollary 2.3.7 (The chain conditions are hereditary) If X is any induced poset of
(P, <), and P satisfies the ACC (or DCC), then X also satisfies the ACC (or DCC,
respectively).

Proof This is not really a Corollary at all. It follows from the definition of “induced
poset” and the chain-definitions directly. Any chain in the induced poset is a fortiori a
chain of its ambient parent. We mention it only to have a signpost for future reference.

In the next section, Theorem 2.4.2 will have a surprising consequence for lower
semilattices with the DCC.
Any poset satisfying both the ACC and the DCC also satisfies

(FC) Any unrefinable chain of P has finite length.

This is because patently one of the two chain conditions is violated by an infinite
unrefinable chain. Conversely, if a poset P satisfies condition (FC) then there can be
no properly ascending or descending chain of infinite length since by Theorem 2.3.1
it would then lie in a saturated chain which was also infinite against (FC). Thus

Lemma 2.3.8 The condition (FC) is equivalent to the assumption of both DCC and
ACC.

2.4 Posets with Meets and/or Joins

2.4.1 Meets and Joins

Let W be any subset of a poset (P, <). The join of the elements of W is an element
v in (P, <) with these properties:

1. w<vforallw e W.
2. If v’ is an element of (P, <) such that w < v/ forall w € W, thenv < v’.

Similarly there is the dual notion: the meet of the elements of W in P would be
an element m in P such that

1. m<wforallw e W.
2. If m’ is an element of (P, <) such that m’ < w forall w € W, then m’ < m.

Of course, P may or may not possess a meet or a join of the elements of W. But
one thing is certain: if the meet exists it is unique; if the join exists, it is unique.
Because of this uniqueness we can give these elements names. We write A\ , (W) (or
just A\ (W) if the ambient poset P is understood) for the meet of the elements of W
in P (if it exists). Similarly, we write \/ , (W) (or \/(W)) for the join in P of all of
the elements of W (if that exists).
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In the case that W is the set {a, b}, we render the meet and join of a and b by a A b
and a V b, respectively. The reader may verify

anb=bAa 2.7)
an(bArc)=(aAnb)Ac (2.8)
(anb)yv@nc)<anbdvc) (2.9)

and the three dual statements when the indicated meets and joins exist.

We say that (P, <) is a lower semilattice if it is “meet-closed”—that is, the meet
of any two of its elements exists. In this case it follows that the meet of any finite
subset {a;, ap, ..., a,} exists (see Exercise (9) in Sect.2.7.2). We denote this meet
by a; Aax A -+ A a,. We then have

Lemma 2.4.1 Suppose P is a lower semilattice, containing elements x, a1, az, . . .,
an € P suchthatx < a;j fori =1,2,...,n. Then

x<ayNa)N\---Nay.

Dually we can define an upper semilattice (it is “join closed”).

A lattice is a poset (P, <) that is both a lower semilattice and an upper
semilattice—that is, the meet and join of any two of its elements both exist in P.
Thus, a lattice is a self-dual concept: If P = (P, <) is a lattice, then so is its dual
poset P* = (P, <*).

If every non-empty subset U of P has a meet (join) we say that arbitrary meets
(joins) exists. If both arbitrary meets and joins exist we say that P is a complete
lattice.

Example 9 Here are some familiar lattices:

1. Any totally ordered poset is a lattice. The meet of a finite set is its minimal
member; its join is its maximal member. Considering the open real interval (0, 1)
with its induced total ordering from the real number system, it is easy to see

(a) that there are lattices with no “zero” or “one”,
(b) that there can be (infinite) subsets of a lattice with no lower bound or no
upper bound.

2. The power set P(X) is the poset of all subsets of a set X under the containment
relation. It is a lattice with the intersection of two sets being their meet, and the
union of two sets being their join. This lattice is self dual and is a complete
lattice, meaning that any subset of elements of P (X), whether infinite or not, has
a least upper bound and greatest lower bound—i.e. a meet and a join. Of course
the lattice has X as its “one” and the empty set as its “zero”.



2.4 Posets with Meets and/or Joins 47

2.4.2 Lower Semilattices with the Descending Chain Condition

The proof of the following theorem is really due to Richard Stanley, who presented
it for the case that P is finite [36, Proposition 3.3.1, p. 103].

Theorem 2.4.2 Suppose P is a meet-closed poset (that is, a lower semilattice) with
the DCC condition.
Then the following assertions hold:

(i) If X is a meet-closed induced poset of P, then X contains a unique minimal
member.
(ii) Suppose, for some subset X of P, the filter of upper bounds

/\PX ={yePlx <yforallx € X}

is non-empty. Then the join \/ (X) exists in P.
In particular, if (P, <) possesses a one-element 1, then for any arbitrary subset
X of P, there exists a join \/ (X). Put more succinctly, if 1 exists, unrestricted
Jjoins exist.

(iii) For any non-empty subset X of P, the universal meet \(X) exists and is
expressible as a meet of a finite number of elements of X.

(iv) The poset P contains a 0.

(v) If P contains a 1, then P isa complete lattice.

Proof (i) The set of minimal elements of X is non-empty (Lemma 2.3.5 of the section
on chain conditions.) Suppose there were at least two distinct minimal members of
X, say x1 and x3. Then x1 A x> is also a member of X by the meet-closed hypothesis.
But by minimality of each x;, one has

X1 = X1 A X2 = X).

Since any two minimal members of the set X are now equal (and the set of them is
non-empty) there exists a unique minimal member. The proof of Part (i) is complete.

(ii) Let X be any subset of P for which the filter \ PX is non-empty. One observes
that /\ P% is ameet-closed induced poset and so by part 1, contains a unique minimal
member j(X). Then, by definition, j(X) is the join \/(X). If 1 € P then of couse
A P¥ is non-empty for all subsets X and the result follows.

(iii) Let W(X) be the collection of all elements of P which can be expressed as
a meet of finitely many elements of X, viewed as an induced poset. Then W (X) is
meet-closed, and so has a unique minimal member xq by (i). In particular xo < x for
all x € X. Now suppose z < x for all x € X. Then by Lemma2.4.1, z is less than
or equal to any finite meet of elements of X, and so is less than or equal to xp. Thus
x0 = A (X), by definition of a global meet.

(iv) By (i), P contains minimal non-zero elements (often called “atoms”). Suppose
m is such an atom. If m < x for all x € P then x would be the element f), against our
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definition of “minimal element”. Thus there exists an element y € P such that y is
not greater than or equal to m. Then y A m (which exists by meet-closure) is strictly
less than m. Since m is an atom, we have y A m = 0epP.

) If 1 exists, P enjoys both unrestricted joins by (ii). But by (iii), unrestricted
meets exist, and so now P is a complete lattice.

The proof is complete. [

Example 10 The following posets are all lower semilattices with the DCC:

I. Nt* = {1 <2 < ---} of all positive integers with the usual ordering. This is a
chain.

2. D, the positive integers under the partial ordering of “dividing”—that is, a < b

if and only if integer a divides the integer b.

B(X), the poset of all finite subsets of a set X.

L -5 (V), the poset of finite-dimensional subspaces of a vector space V.

5. M (1), the finite multisets over a set /.

halie

It follows that arbitrary meets exist and a 0 exists.

Remark Of course, we could also adjoin a global maximum 1 to each of these
examples and obtain complete lattices in each case.

2.4.3 Lower Semilattices with both Chain Conditions

Recall from Sect.2.4.3, Lemma 2.3.8, that a poset has both the ACC and the DCC if
and only if it possesses condition

(FC) Every proper chain in P has finite length.

An observation is that if P satisfies (FC), then so does its dual P*. Similarly, if
P has finite height, then so does its dual. This is trivial. It depends only on the fact
that rewriting a finite saturated chain in descending order produces a saturated chain
of P*.

We obtain at once

Lemma 2.4.3 Suppose P is a lower semilattice satisfying (FC).

(i) P contains a 0. If P contains a 1then Pisa complete lattice.

(ii) Every element of P — {i} is bounded by a maximal member of P — {i} (that is,
an element of max(P)).

(iii) Every element of P — {6} is above a minimal element of P — 0 (that is, an
element of min(P)).

(iv) The meet of all maximal elements of P—that is )\ (max(P)) (called the Frattini
element or radical of (P, <)) exists and is the meet of just finitely many elements
of max(P).
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v) If 1e P, the join of all atoms, \/ (min(P)) (called the socle of P and denoted
soc(P)) exists and is the join of just finitely many atoms.

Proof Parts (i) and (iv) follow from Theorem 2.4.2. Parts (ii) and (iii) are imme-
diate consequences of the hypothesis (FC), and Part (v) follows from Parts (i) and
(iii). O

Remark Hopefully the reader will notice that the hypothesis that P contained the
element 1 played a role—even took a bow—in Parts (i) and (v) of the above Lemma.
Is this necessary? After all, we have both the DCC and the ACC. Well, there is an
asymmetry in the hypotheses. P is a lower semilattice, but not an upper semilattice
(though this symmetry is completely restored once 1 exists in P, because then we
have arbitrary joins).

Example 11 Consider any one of the posets D, B(X), L .oo(V). These are ranked
posets, with the rank of an element being (1) the number of prime factors, (2) the
cardinality of a set, or (3) the vector-space dimension of a subspace, respectively.
Select a positive integer r and consider the induced poset tr,-(P) of all elements of
rank at most » in P where P = D, B(X), L .oo(V). Then tr,(P) is still a lower
semilattice with both the DCC and the ACC. But it has no 1.

2.5 The Jordan-Holder Theory

In the previous two sections we defined the notions of “algebraic interval”, “height
of an algebraic interval” and the meet-closed posets which we called “lower semi-
lattices”. They shall be used with their previous meanings without further comment.

This section concerns a basic theorem that emerges when a certain property, that of
semimodularity, is imposed on lower semilattices. Many important algebraic objects
give rise to lower semilattices which are semimodular (for example the posets of
subnormal subgroups of a finite group, or the submodule poset of an R-module) and
each enjoys its own “Jordan-Holder Theorem”—it always being understood there is
a general form of this theorem. It is in fact a very simple theorem about extending
“semimodular functions”!” on the set of covers of a semimodular lower semilattice
to an interval measure on that semilattice. It sounds like a mouthful, but it is really
quite simple.

Fix a poset (P, <). An unrefinable chain of length one is called a cover and is
denoted by (a, b) (which is almost the name of its interval [a, b]—altered to indicate
that we are talking about a cover). Thus (a, b) is acover if and only if a < b and there
is no element ¢ in P with a < ¢ < b—i.e. a is a maximal element in the induced

19The prefix “semi-" is justified for several reasons. The term “modular function” has quite another
meaning as a certain type of meromorphic function of a complex variable. Secondly the function in
question is defined in the context of a semimodular lower semilattice. So why not put in the “semi”?
We do not guarantee that every term coined in this book has been used before.
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poset of all elements properly below b (the principal order ideal P, minus {b}). The
collection of all covers of (P, <) is denoted Covp. Note that Covp is a subset of Ap,
the collection of all algebraic intervals of (P, <).

2.5.1 Lower Semi-lattices and Semimodularity

A lower semilattice (P, <) is said to be semimodular if, whenever (x1, b) and (x», b)
are both covers with xp # x7, then both (x1 Ax2, x1) and (x] Ax2, x2) are also covers.

Lemma 2.5.1 Suppose (P, <) is a semimodular lower semilattice. Suppose [x, a]
is algebraic and (b, a) is a cover, where x < b. Then [x, b] is algebraic.

Proof Since [x, a] is algebraic, there exists a finite unrefinable chain from x to a,
say A = (x = ao, ai, ...,a, = a). Clearly each interval [x, a;] is algebraic. See
Fig.2.1.

By hypothesis, x < b and so there is a largest subscript i such that a; < b. Clearly
i <n.Ifi =n—1thena,_1 = b so [x, b] is algebraic by the previous paragraph.
Thus we may assume that b # a, 1. (See Fig.2.1.) Since both (a,—1, a) and (b, a)
are covers, then by semimodularity, both (a,—1 A b, a,—1) and (a,—1 A b, D) are
covers. Continuing in this way we obtain that (ax A b, ax) and (ar A b, ap—1 A b)
are covers for all k larger than i. Finally, as a; < b, this previous statement yields
ai+1 A b = a; and (by semimodularity) (a;, aj+2 A b) must be a cover). Note that

(x=ag,...,ai,ai42 Nb,ajx3 ANb,...,a,_1 ANb,D)

is an finite unrefinable chain since its successive pairs are covers. This makes [x, b]
algebraic, completing the proof. [

Fig. 2.1 The poset showing an = a
[x, b] is algebraic. The COV \COV
symbol “cov” on a depicted a;—q b
interval indicates that it is a Coy \COV
cover . -
cov|
az

CO\N )
aq
CO\N /
x
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2.5.2 Interval Measures on Posets

Let M be a commutative monoid. This means M possesses a binary operation, say

9

*,” which is commutative and associative, and that M contains an identity element,

say “e”,suchthatm = exm =m xeforallm e M.

There is one commutative monoid that plays an important role in the applications
of our main theorem and that is the monoid M (X) of all finite multisets over a set X.
We have met this object before in the guise of a locally finite poset M . (X) (see
the last item under Example 2 of this chapter). We have seen that any finite multiset
over X can be represented as a function f : X — N from X to the non-negative
integers N whose “support” is finite—i.e. the function achieves a non-zero value
in only finitely many instances as x wanders over X. Now, if f and g are two such
functions, we may let “ f +¢”” denote the function that takes x € X to the non-negative
integer f(x)+ g(x), the sum of two integers. Clearly f + g has finite support, and so
(M ~o0(X), 4) (under this definition of “plus”) becomes a commutative semigroup.
But as the constant function Oy : X — {0} is an identity element with respect to this
operation, M(X) := (Mo (X), +) is actually a commutative monoid. We call this
the commutative monoid of finite multisets over X.

An interval measure 11 of a poset (P, <) is a mapping p : Ap — M from the set
of algebraic intervals of P into a commutative monoid (M, ) with identity element
e such that

wla,a) =eforalla € P. (2.10)
w(a, b) x (b, ¢) = u(a, c) whenever [a, b] and [b, c] are in Ap  (2.11)

[Notice that we have found it convenient to write p(a, b) for u([a, b]).]
Here are some examples of interval measures on posets:

Example 12 Let M be the multiplicative monoid of positive integers. Let (P, <) be
the set of positive integers and write x < y if x divides y evenly. Then every interval
of (P, <) is algebraic. Define i by setting p(a, b) := b/a for every interval (a, b).

Example 13 Let (P, <) be as in Example 14, but now let M be the additive monoid
of all non-negative integers. Now if we set u(a, b); = the total number of prime
divisors of b/a, then p is a measure.

Example 14 Let (P, <) be the poset of all finite-dimensional subspaces of some
(possibly infinite dimensional) vector space V, where “<” is the relation of “con-
tained in”.

(i) Let M be the additive monoid of all non-negative integers. If we define
w(A, B) := dim(B/A), then y is a measure on (P, <).

(ii) If M is the multiplicative group {1, —1}, then setting (A, B) := (—1)4im(4/B)
for every algebraic interval (A, B) also defines a measure.
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2.5.3 The Jordan-Hoélder Theorem

Now we can prove

Theorem 2.5.2 (The Jordan-Ho6lder Theorem) Let (P, <) be a semimodular lower
semilattice. Suppose p : Covp —> (M, +) is a mapping from the set of covers of P
to a commutative monoid (M, +), and suppose this mapping is “semimodular” in
the sense that

w(b, y) = pla A b, a) whenever (a, y) and (b, y) are distinct covers. (2.12)

Then for any two finite unrefinable chains U = (u = ug,...,up, = v)and V =
(u=vg,..., vy, =) fromu to v, we have
n—1 m—1
D i, i) = D pu(vi, vig1) (2.13)
i=0 i=0

and n = m (the finite summation is taking place in the additive monoid (M .+)). In
particular, i extends to a well-defined interval measure [i : Ap —> M.

Proof If n = 0 or 1, then U = V, and the conclusion holds. We therefore pro-
ceed by induction on the minimal length %(u, v) of an unrefinable chain from
u to v for any algebraic interval [u, v]—that is, the height of [u, v]. It suffices
to assume U = (u = ug,uy,...,u, = v) is such a minimal chain (so that
n = h(u,v)) and prove Eq.(2.13), and n = m for any other unrefinable chain
V=W=uvyvi,...,0 = V).

If ty—1 = Up—1, h(u, v,—1) = n — 1, so by induction, 37~ u(u;, uj41) =
Z;"Z_Oz w(vi, viy1) and m — 1 = n — 1 and the conclusion follows.

Soassume u,,—1 7 Vy—1.Setz = up—1 Avy—1. Since (u,—1, v) and (v, —1, v) are
both covers, by semi-modularity, so also are (z, #,—1) and (z, v,,—1) (see Fig.2.2).

Fig. 2.2 The main figure for Up =V = Uy

the Jordan Holder Theorem /\
/ Up—1 Um—1
! n—2 z _m—2
Usg V2
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Since u < z, (z, v,—1) is a cover, and [u, v,_1] is algebraic, we see that Lemma
2.5.1 implies that [u, z] is also algebraic. So a finite unrefinable chain

Z=W=20,21,---,%r =2)

from u to z exists. Since h(u, u,—1) =n — 1 < n, by induction

r—1 n—1
(Z i, zfm) + (2 1) = D i, i) (2.14)

i=0 i=0

andr+1=n—1.Buth(u, v;—1) <r+1 =n—1soinduction can also be applied
to the algebraic interval [u, v, _1] to yield

r—1 m—1
(z (zis Zi+l)) + 12, V1) = D i, Vig) (2.15)

i=0 i=0

and the fact that» +1 = m — 1. Thus n = m.

But by (2.12), pu(z, up—1) = p(Um-1,v) and p(z, vu—1) = p(uy—1,v). The
result (2.13) now follows from (2.14) and the commutativity of (M, +). The proof
is complete. [

To see how this theorem works in a semimodular lattice in which not all intervals
are algebraic, the reader is referred to Example 15 on p. 53 and the remark following.

There are many applications of this theorem. In the case of finite groups
(R-modules) we let (M, +) be the commutative monoid of multisets of all iso-
morphism classes of finite simple groups (or all isomorphism classes of irreducible
R-modules, resp.). These are the classical citations of the Jordan-Holder Theorem
for Groups and R-modules.?”

2.5.4 Modular Lattices

Consider for the moment the following example:

Example 15 The poset (P, <) contains as elements P = {a, b, c} U Z, where Z is
the set of integers, with ordering defined by these rules:

20We beg the reader to notice that in the case of groups there is no need for Zassenhaus’ famous
“butterfly lemma”, nor the need to prove that subnormal subgroups of a finite group form a lattice.
A lower semilattice will do. One of the classic homomorphism theorems, provides the semimodular
function from Covp to finite simple groups. The result is then immediate from Theorem 2.4.2,
Eq. (2.13), where the interval measure displays the multiset of “chief factors” common to all satu-
rated chains in P.
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a < pforall p € P—i.e. a is the poset “zero”,

c > pforall p € P, so cis the poset “one”,

b is not comparable to any integer in Z, and

the integers Z are totally ordered in the natural way.

Sl .

Notice that the meet or join of b and any integer are a and c respectively. Thus (P, <)
is a lattice with its “zero” and “one” connected by an unrefinable proper chain of
length 2 and at the same time by an infinite unrefinable chain. The lattice is even
lower semimodular since the only covers are (a, b), (b, c) and (n,n + 1), for all
integers n.

Remark For the purposes of the Jordan-Holder theory, such examples did not bother
us, for the J-H theory was phrased as an assertion about measures which take values
on algebraic intervals—that is to say, non-algebraic intervals could be ignored—
and the calculation of the measure used only finite unrefinable chains. In Example
15, the only intervals of the semimodular lattice (P, <) which are not algebraic
are those of the form [n, c], n € Z. The Jordan-Holder Theorem is valid here: In
fact if f is any function from the set of covers, into a commutative monoid M,
then by Theorem 2.5.2, f extends to an interval measure p : Ap — M. Note that
pla,c) = f(a,b)+ f(b, o).

However, unlike Example 15, many of the most important posets in Algebra are
actually lattices with a property called “the modular law”, which prevents elements
x and y from being connected by both a finite unrefinable chain and an infinite
chain. This modular law always occurs in posets of congruence subalgebras which
are subject to one of the so-called “Fundamental Theorems of Homomorphisms”.

Recall the definition of lattice (p. 46). A lattice L is called a modular lattice or L
is said to be modular if and only if

(M) for all elements a, b, ¢ of L witha > b,
anbve)=bV(anc).
The dual condition is
(M*) for all elements a, b, c of L witha < b,
avbnrc)=bA(aVc).

But by transposing the roles of @ and b it is easy to see that the two conditions are
equivalent. Thus

Lemma 2.5.3 A lattice satisfies (M) if and only if it satisfies (M*). Put another way:
a lattice L is modular if and only if its dual lattice L™ is.

An immediate consequence of the modular law is the following
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Lemma 2.5.4 (Identification Principle) Let x, y and n be elements of the modular
lattice L. Suppose

xVvVn=yvVvn, and (2.16)
XAn=YyAHn. 2.17)

Then either x = y or else x and y are incomparable. Equivalently, either x <y
ory < x implies x = y.

Proof Assume the hypotheses and assume x and y are comparable. Because x and
y play symmetric roles in the hypothesis, we may assume that x < y. Now by the
modular law (M):

YA(XVR)=xV(yAn). (2.18)

But by Eq.(2.16), the left side of (2.18) is y. On the other hand, by Eq.(2.17), the
right side of (2.18) is x. Thus x = y. [J

The most important property of a modular lattice is given in the following:

Theorem 2.5.5 (The Correspondence Theorem for Modular Lattices) Suppose L
is a modular lattice. Then for any two elements a and b of L, there is a poset
isomorphism

w:la,av bl — [aAnb,b],

taking each element x of the domain to x A b.

Proof As p is defined, p(a) =a A b, u(avb) =(@a@Vvb)ANb=b,andifa <x <
y < b, then u(x) = x Ab <y Ab = u(y). Thus p is poset homomorphism and
takes values in [a A b, b].

Suppose now that x, y € [a,a V b] and pu(x) = p(y). Thenx Ab = y A b and
soaV (xAb)=aV (yAb).Sincea < x and a < y we may apply the law (M) to
each side of the last equation. This yieldsx = x A (aV b) =y A (a Vv b) =y, since
a Vv b dominates both x and y. Thus p is injective.

Now suppose x is an arbitrary element of the interval [a A b, b], thatis,a A D <
x < b. Then by the first inequality, x = x V (b A a). Since x < b, applying (M*)
(with x and a in the role of @ and ¢ in M*)), x = b A (x Va) = u(x VvV a). Thus u
is onto.

Finally, we must show that for any x, y € [a, a Vv b], one has pu(x) < u(y) if and
only if x < y.

Obviously if x < y, then clearly x AD < y A b, so pu(x) < p(y).

Conversely, suppose p(x) < u(y). Thenx A b < y A b, giving us

aVv (xAb)<avVv (yAb). (2.19)
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Since a < x and a < y, applying (M*) to each side of (2.19) yields
xA(@vb)<yn(avb)

which gives us x < y, since x and y are in [a, a V D].
Thus p is a poset isomorphism. [

Recognizing the Chain Conditions in Modular Lattices

Lemma 2.5.6 Assumea < b < cisachaininamodular lattice L. Then the interval
[a, c] has the ACC (DCC) if and only if both intervals [a, b] and [b, c] have the ACC
(DCC).

Proof Recall from Corollary 2.3.7 thatif [a, c] has either of the two chain conditions,
then its subintervals [a, b] and [b, c] also possess the same condition.

So we assume that the two intervals [a, b] and [b, c] possess the ascending chain
condition (ACC). We must show that [a, c] has the ascending chain condition. By
way of contradiction, suppose

a=c)<Cc < <---

is an infinite properly ascending chain in the poset [a, c]. Then we have ascending
chains
coVb<civb<---andcoAb<ciAb<---

in posets [b, c] and [a, b], respectively. Since these two posets are assumed to possess
the ACC, there exists a natural number k such that for every integer m exceeding k
we have

ck Vb =c, VDb, (2.20)
ck ANb=cy, AD. (2.21)

Since c¢; < ¢, the Identification Principle, Lemma 2.5.4, forces c¢; = ¢;,. But that
is impossible since these are distinct entries in a properly ascending chain.

The argument that the presence of the descending chain condition for both [a, b]
and [b, c] implies the same condition for [a, c¢] now follows by duality from our result
for the ACC. (It can also be proved by considering an infinite properly descending
chain ¢y > ¢; > ---, and again obtaining a natural number k such that Egs. (2.20)
and (2.21) hold and again invoking the Identification Principle.) O

Lemma 2.5.7 Assume L is a modular lattice and {ay, . .., a,} is a finite subset of
L.

(i) Suppose ¢ < aj foralli = 1,2,...,n. Then [c,a1 V --- V a,] has the ACC
(DCC) if and only if each interval [c, a;] possesses the ACC (DCC).
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(ii) Suppose a; < c foralli = 1,2,...,n. Then [a; A --- A ay, c] has the ACC
(DCC) if and only if each interval [a;, c] has the ACC (DCC).

Proof Part (i). We assume ¢ < qg; for all i. Of course, by Corollary 2.3.7, if [c, a1 V
a V ---V ay] has the ACC (DCC) then so does any of its intervals [c, a;]. So we
need only prove the reverse implication.

Assumeeachinterval [c, a;],i = 1,2, ..., n,possesses the ACC (DCC). A simple
induction on n reduces us to the case that n = 2. By Theorem 2.5.5, [a2, a1 V az] =~
[a1 Aaa, a1] which has the ACC since itis an interval of [c, a1 ] which is hypothesized
to have this chain condition. But the interval [a; A a», ap] is a subinterval of [c, a3 ]
which has the ACC (DCC). So we see that both intervals [a; Aay, a>] and [a>, a1 Va3 ]
have the ACC (DCC) and so by Lemma 2.5.6, the interval [a; A a3, a1 Vv az] also
possesses the ACC (DCC). Finally, noting that [c, a; A az] has the ACC (DCC)
because it is an interval of [c, a;] hypothesized to have this chain condition, one
more application of Lemma 2.5.6 now yields the fact that [c, a1 Vv a3] also enjoys
this condition.

Part (ii) follows from Part (i) by duality. [

Corollary 2.5.8 Any modular lattice is a semi-modular lower semilattice and so
is subject to the Jordan-Holder theory (See Theorem 2.5.2.). In particular, any two
finite unrefinable chains that may happen to connect two elements x and y of the
lattice, must have the same length, a length which depends only on the pair (x, y).

Proof Apply the previous Lemma for the case [a,a Vv b] and [b, a Vv b] are both
covers. [J

The preceeding Corollary only compared two finite unrefinable chains from x to
y. Could one still have both a finite unrefinable chain from x to y as well as an infinite
one as in Example 15 at the beginning of this subsection? The next result shows that
such examples are banned from the realm of modular lattices.

Theorem 2.5.9 Suppose L is a modular lattice and supposea = ap < a; < --- <
an = b is an unrefinable proper chain of length n preceding from a to b. Then every
other proper chain proceeding from a to b has length at most n.

Proof Of course, by Zorn’s lemma, any proper chain is refined by a proper unrefinable
chain. So, if we can prove that all proper chains connecting a and b are finite, such a
chain possesses a well-defined measure by the Jordan-Holder Theory. In particular
all such chains possess the same fixed length n. So it suffices to show that any proper
chain connecting a and » must be finite.

We propose to accomplish this by induction on the parameter n given in the
statement of the theorem. But this means that we shall have to keep track of the
bound on length asserted by the induction hypothesis, in order to obtain new intervals
[a’, D] to which induction may be applied.

So we begin by considering a (possibly infinite) totally ordered subposet X of
(P, <) having a as its minimal member and b as its maximal member. We must
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show that X is a finite proper chain. If n = 1, then {a, b} = X is a cover, and we are
done.

If each x € X satisfies x < a,_1, then X — {b} is finite by induction on n, and so
X is finite. So we may suppose that for some xg € X, we have x5 V a,_1 = b. By
Theorem2.5.5 (a,—1 A xg, Xg) is a cover.

Now the distinct members of the set

Y={zAan—1lz € X}

form a totally ordered set whose maximal member is a,—; = b A a,—1, and whose
minimal member is a = a A a,—1. By induction on n, Y is a finite set of at most
n — 1 elements. On the other hand, it is the concatenation of two proper chains

YT :i={yeYly=>ariAxg)
Y= :={yeYly <an1 ANxa},

whose lengths are non-zero and sum to at most n — 1.
Now the poset isomorphism i : [xg, b] — [a,—1 A X3, a,—1] takes the members
of X dominating x3 to Y. Thus

X N [xg, b]

is a chain of the same length as ¥ . It remains only to show that the remaining part
of X, the chain X N [a, x3] is finite.

Letindex i be maximal with respect to the condition a; < x3. Then for each index
J exceeding i but bounded by n — 1,

aj=aj_1V(aj ANxg)and (aj_1 Axg, Xj AXxp)

is a cover or is length zero. It follows that a is connected to xg by an unrefinable chain
of length at most n — 1. By induction X N [a, x3] is finite. The proof is complete. [J

Corollary 2.5.10 Let L be a modular lattice with minimum element O and maximum
element 1. The following conditions are equivalent:

1. There exists a finite unrefinable chain proceeding from 0 to 1.
2. Every proper chain has length below a certain finite universal bound.
3. L has both the ascending and descending chain conditions (see p. 48).

Proof The Jordan-Holder theory shows all chains connecting O to 1 are bounded by
the length of any unrefinable one. How this affects all proper chains is left as an
exercise. [

Any modular lattice which satisfies the conditions of Corollary 2.5.10 is said to
possess a composition series.
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Example 16 Let L be the lattice D of all positive integers where a < b if and only if
a divides b. Then D is a modular lattice which possesses the DCC but not the ACC.
There is a “zero” (the integer 1), but no lattice “one”. However, every interval [a, b]
possesses a composition series.

2.6 Dependence Theories

2.6.1 Introduction

If we say A “depends” on B, what does this mean? In ordinary language one might
intend several things: “A depends entirely on B” or that “A depends just a little on
B”—a statement so mild that it might suggest only that B has a “slight influence” on
A. But some syntax seems to be applied all the same: thus if we say that A depends
on B and that B in turn depends on C, then A (we suppose to some small degree)
depends on C.

In mathematics we also usually use the word “depends” in both senses. When one
asserts that f(x, y) depends (to some degree) upon the variable x, one means only
that f might be influenced by x. After all, it could be that f is a “constant” function
as far as x is concerned. But on the other hand the mathematician also intends that f
is entirely determined by the pair (x, y). Thus we may consider the phrase “ f (x, y)
depends on x” as one borrowed from ordinary everyday speech. In its various guises,
the stronger idea of total and entire dependence appears throughout mathematics
with such a common strain of syntactical features as to deserve codification.

But as you will see, the theory here is highly special.

2.6.2 Dependence

Fix a set S, and let F(S) be the set of all finite subsets of the set S. A dependence
relation on S is arelation D from § to F(§)—that is, a subset of S x F(§)—subject
to the axioms (D1)—(D3) listed below. We shall say that the element s in S depends
on the subset A € F(S) if and only if (s, A) € D. The dependence relation must
satisfy these conditions:

(D1) (The Reflexive Condition) If s € S and if s € A € F(S), then s depends on
A—that is, s depends on any finite subset of S that contains it.

(D2) (The Transitivity Condition) If the element s depends on the finite set A, and
if every member of A depends on the finite set B, then s depends on B.
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(D3) (TheExchange Condition)Ifs, ay, ..., a, are elements of S such thats depends
on the set {ay, ..., a,} but does not depend on the set {ay, ....a,—_1}, then a,
depends on the set {ay, ..., a,—1, S}.

Before concluding anything from this, let us consider some examples.

Example 17 (Linear dependence) Suppose V is a left vector space over some field
or division ring D. Let us say that a vector v depends on a finite set of vectors
{vi, ..., vy} if and only if v can be expressed as a linear combination of those
vectors,—that is, Z:’l:l(si v; = v for some choice of §; in D. One checks that this
defines a dependence relation on V.

Example 18 (Algebraic dependence) Let K be a field containing & as a subfield. (For
example, one might let K and k respectively be the complex and rational number
fields.) We say that an element b of K depends on a finite subset X = {ay, ....a,—1}
of K if and only if b is the root of a polymonial equation whose coefficients are
expressible as a k-polynomial expressions in X. This means that there exists a poly-
nomial p(x, x1, ..., X,) in the polynomial ring k[x, x1, ..., x,] when evaluated at
x =b,x; =a;,1 <i <nyields 0. We shall see in Chap. 11 that all three axioms of
a dependence theory hold for this definition of dependence among elements of the
field K.

2.6.3 Extending the Definition to S x P(S)

Our first task will be to extend the definition of a dependence relation D € S x F(S)
to a relation D C S x P(S), where P(S) is the collection of all subsets of S (the
power set). Thus, it will be possible to speak of element x depending on a (possibly
infinite) subset A of S. Namely, for any subset A of S, we say that the element x
depends on A if and only there exists a finite subset A; of A such that x depends
on A (in the original sense). We leave it as an exercise to the reader to prove the
following:

Lemma 2.6.1 In the following, the sets A and B may be infinite sets:

(i) Element x of S depends on any set A which contains it.
(ii) If A and B are subsets of S, if x depends on A and every element of A depends
on set B, then x depends on B.
(iii) Ifa € A, a subset of S, and x is an element of S which depends on A but does
not depend on A — {a}, then a depends on (A — {a}) U {x}

(See Exercise (1) in Sect.2.7.4.)
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2.6.4 Independence and Spanning

Let S be a set with dependence relation D C S x F(S§), and let DCSx P(S) be
the extension of this relation to infinite subsets as in Lemma2.6.1 above. Now let A
be any subset of S. The flat generated by A is the set (A) := {y|y depends on A}.
A subset X of S is called a spanning set if and only if (X) = S.

Next, we say that a subset Y of S is independent if and only if for each element
x of Y, x does not depend on ¥ — {x}.

Now the collections of all spanning sets form a partially ordered set under the
containment relation. A similar statement holds for the collection of all independent
sets. Thus it makes perfect sense to speak of a minimal spanning set and a maximal
independent set (should such sets exist). We wish to show that these two concepts
coincide.

Theorem 2.6.2 Let S be a set with dependence relation D C S x P(S) as above.

(i) Every minimal spanning set is a maximal independent set.
(ii) Every maximal independent set is a minimal spanning set.

Proof We prove (i). Suppose U is a minimal spanning set. If U is not independent
then there exists an element # in U such that u depends on a finite subset U; of
U — {u}. Thus every element of S depends on U and by Lemma 2.6.1, part 1, and
what we know of u, every element of U depends on U — {u}. Thus by Lemma 2.6.1,
part (ii), every element of S depends on U — {u}. Thus U — {u} is a spanning set,
against the minimality of U. Thus U must be independent.

If U were not a maximal independent set there would exist an element z in S — U
which did not depend on U. But that is impossible as U spans S.

Next we show (ii). If X is a maximal independent set, then by maximality, X spans
S. If a proper subset X of X also spanned S, then any element x of X — X; would
depend on X; and so would depend on X — {x} by the definition of dependence.
But this contradicts the fact that X is independent. Thus X is actually minimal as a
spanning set. The proof is complete. []

Next, we have the following important result.
Theorem 2.6.3 Maximal independent subsets of S exist.

Proof This is a straightforward application of Zorn’s Lemma. As remarked above,
the collection 7 of all independent subsets of S form a partially ordered set (7, <)
under the inclusion relation. Now consider any chain C = {J,} of independent sets
and form their union C := |J o Ja. Then if C were not an independent set, there
would exist an element x in C and a finite subset F of C — {x} such that x depends
on F. But since the chain C is totally ordered and F' U {x} is finite, there exists an
index o such that F U x C J, . But this contradicts J, independent. Thus we see
that C must be an independent set.

Thus every chain C in J possesses an upper bound C in (7, <). By the Zorn
Principle, 7 contains maximal elements. The proof is complete. [
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2.6.5 Dimension

The purpose of this section is to establish
Theorem 2.6.4 If X and Y are two maximal independent sets, then | X| = |Y|.

Proof By the Schroder-Bernstein Theorem (Theorem 1.4.1, p. 16), it suffices to show
only that | X| > |Y| for any two maximal independent sets X and Y.

The proof has a natural division into two cases: the case X is a finite set and the
case that X is infinite.

First assume X is finite. We proceed by induction on the parameter k := |X| —
I XNY|.Ifk =0,then X = X NY C Y. Butas Y is independent and each of its
elements depends on its subset X, we must have X = Y, whence |X| = |Y| and we
are done. Thus we may assume k > 0.

Suppose X = {xi,...,x,} where the x; are pairwise distinct elements of §
and the indexing is chosen so {xi,...,x,} = X NY, thereby making k = n — r.
From maximality of the independent set X, every element of ¥ — X depends on X.
Similarly, every element of X depends on Y. If every element of Y depended on X :=
{x1,...,xy,-1}, then x,, which depends on Y, would depend on X( by Lemma2.6.1
(i) above, against the independence of X. Thus there is some element y € ¥ —X which
depends on X but does not depend on X(. By the exchange condition, x, depends
on X1 := {x1,...,x,—1, y}. Moreover, if X; were not independent, then either y
dependson X1 —{y} = {x1, ..., x,—1} or some x; depends on (Xo — {x;}) U{y}. The
former alternative is ruled out by our choice of y. If the latter dependence held, then
as the independence of X prevents x; from depending on Xo — {x;}, the exchange
condition would force y to depend on X, again contrary to the choice of y. Thus X
is an independent set of n distinct elements. But as x,, depends on X, each element
of X depends on X. Thus as all elements of S depend on X, they all depend on X}
as well. Thus X is a maximal independent set. But since | X1 NY| =1+ |XNY],
induction on k yields | X1| > |Y|. The result now follows from | X| = | X|.

Now assume X is an infinite set. Since Y is a maximal independent set, it is a
spanning set. Thus for each element x in X there is at least one finite non-empty
subset Yy of ¥ on which it depends. Choose, if possible y € (Y — | JyYx). Since y
depends on X and by construction every element of X depends on | J Yy, we see
that y depends on |J Y, C Y, contradicting the independence of Y. Thus we see
that no such y can exist and so ¥ = (Jy Yx.

Our goal is to produce an injective mapping

¢:Y - X xN,

where, as usual, N denotes the natural numbers. Since, for each x € X, the set Y,
is finite, there exists an injective mapping ¢, : Yy — N. The problem is that the
sets Y, may intersect non-trivially, so that merely combining the ¢, does not yield a
well-defined ¢.

We get around this problem as follows: First, by Theorem 2.2.2, the set X can be
well-ordered. Next given y € Y, let S(y) := {x € X|y € Y.}, and let £(x) be the
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least element of the set S(y). Now define ¢ : ¥ — X x N, by setting

P(y) := (E(Y), Doy (¥)) € X x N (2.22)

foreach y € Y. If ¢(y1) = ¢(y2), then £(y;) = £(y2) and then y; = y, follows
from the injectivity of ¢y(y). Thus the mapping ¢ defined in (2.22) is injective.
It follows that
Y] <X x NJ.

Now by Corollary 2.2.5 near the beginning of this chapter, | X| = |X x N, since X
is infinite.
Thus |Y| < | X]| as required. The proof is complete. [

This common cardinality of maximal independent sets is called the dimension of
the dependence system (S, D).

2.6.6 Other Formulations of Dependence Theory

For the sake of completeness, this subsection surveys a number other views of depen-
dence theory. Since this subsection is not essential for anything further in the book,
many results are not proved. Most of the missing proofs can be found in the book by
Oxley [1].

Fix a set X and let 7 be a family of subsets of X. The pair (X, Z) is called a
matroid if and only if the following axioms hold:

(M1) The family 7 is closed under taking subsets.

(M2) (Exchange axiom) If A, B € Z with |A| > |B], then there exists an element
a € A— B,suchthat {a}UB € I.

(M3) If every finite subset of a set A belongs to Z, then A belongs to Z.

Note that if A and B are maximal elements of (Z, C), then |A| = |B] is an
immediate consequence of axiom (M2). However, from axioms (M1) and (M2) alone,
it does not follow that maximal elements even exist. One needs (M3) for that.

Lemma 2.6.5 If (X,Z) is a matroid, then every element of I lies in a maximal
element of L.

Proof This proof utilizes Zorn’s lemma. Let Ay be an arbitrary member of Z. We
examine the poset of all subsets in Z which contain Ag. Let Ay € A € --- bea
chain in this poset and let B be the union of all the sets A;. Consider any finite subset
F of B. Then each element f € F lies in some member A; (s of the chain. Setting
m to be the maximal index in the finite set {i (f)|f € F}, we see that F C A,,.
Since A, € Z, (M1) implies F € Z. But since F was an arbitrary finite subset of
B, (M3) shows that B € Z. Thus every finite chain in the poset of elements of Z
which contain A¢ has an upper bound in that poset, so, by Zorn’s lemma, that poset



64 2 Basic Combinatorial Principles of Algebra

contains a maximal element M. Clearly M is a maximal member of Z, since any
member of Z which contains M also contains Ao, and so lies in the poset of which
M is a maximal member. Thus Ag lies in a maximal member of Z, as required. [

Example 19 Let D C X x F(S) be a dependence theory. Let Z be the set of inde-
pendent sets of the dependence theory D. Then (X, 7) is a matroid.

Example 20 Suppose (V, E) is a simple graph with vertex set V and edge set E.
(The adjective “simple” just means that edges are just certain unordered pairs of
distinct vertices.) A cycle is a sequence of edges (eg, ey, . .., €,) such that e¢; shares
Jjust one vertex with e; 41, and another vertex with e;_1, indices i taken modulo 7.
Thus e, shares a vertex with e,, = ¢g, and the “length” of the cycle, n, cannot be
one or two. A graph with no cycles is called a forest—its connected components are
called trees. Now let Z be the collection of all subsets A of E such that the graph
(V, A) is a forest. Then (E, Z) is a matroid.

Example 21 Let F be a fixed family of subsets of a set X. A finite subset
{x1,x2,...,x,} of X is said to be a partial transversal of F if and only if there
are pairwise distinct subsets Ay, ... A, of F such thatx; € A;,i = 1,...,n—
that is, the set {x1, ..., x,,} is a “system of distinct representatives” of the sets {A;}.
Now let 7 be the collection of all subsets of X all of whose finite subsets are partial
transversals. Then (X, 7) is a matroid.

Example 22 Suppose (X, Z) is any given matroid, and Y is any subset of X. Let
Z(Y) be all members of Z which happen to be contained in the subset Y. Then it
is straightforward that the axioms (M1), M(2) and (M3) all hold for (¥, Z(Y)). The
matroid (Y, Z(Y)) is called the induced matroid on Y .

Here is another approach to matroids, using a so-called rank function.

Theorem 2.6.6 Suppose r is a map from the set of all subsets of a set X, into the
cardinal numbers, satisfying these three rules:

(R1) For each subsetY of X, 0 < p(Y) < |Y|.
(R2) (Monotonicity) If Y1 € Y, C X, then p(Y1) < p(Y2).
(R3) (The submodular inequality) If A and B are subsets of X, then

p(AUB) + p(A N B) < p(A) + p(B).
Let T be the collection of a subsets Y of X with the following property:

(*) For every finite subset Fy of Y we have |Fy| = r(Fy).
Then (X, T) is a matroid.
Now suppose we are given a matroid (X, 7). Can we recover a dependence theory

from this matroid? Clearly we need to have a definition of “dependence” constructed
exclusively from matroid notions. Consider this definition:
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Definition: Let x be an element of X and let A be a finite subset of X. We say that
x depends on A if and only if there exists a subset Ag of A which lies in 7, such
that either (i) x € Ag, or (ii) {x} U Ag isnotin Z.

Theorem 2.6.7 Given a matroid (X, I), let the relation of “dependence” between
elements of X and finite subsets of X be given as in the preceding definition. Then
this notion satisfies the axioms of a dependence theory.

It now follows from Example 19, and the assertion of Theorem 2.6.7, that matroids
and dependence theories are basically the same thing.

There are purely combinatorial ways to express the gist of a dependence theory,
and these are the various formulations of the notion of a matroid in terms of circles,
in terms of flats, or in terms of closure operators.

Let us consider flats, for a moment. We have already defined them from the point
of view a dependence theory. From a matroid point of view, the flat (A) spanned by
subset A in matroid (X, 7), is the set of all elements x for which {x} U A, ¢ Z for
some finite subset A of A. Itis an easy exercise (Exercise (6) in Sect.2.7.4) to show
that ((A)) = (A), for all subsets A of X. In fact the reader should be able to prove
the following:

Theorem 2.6.8 The mapping T which sends each subset A of X to the flat (A)
spanned by A, is a closure operator on the lattice of all subsets of X. The image
sets—or “closed” sets—form a lattice:

1. The intersection of two closed sets is closed, and is the meet in this lattice.
2. The closure of the set-theoretic union of two sets is a join, that is, a global minimum
in the poset of all flats above the two sets.

The characterization of matroids by closure operators is the following:

Proposition 2.6.9 Suppose P = P(X) is the poset of all subsets of a set X and
T : P — P satisfies

(Increasing)  For each subset A, A C T(A).

(Closure)  The mapping T is a closure operator—that is, it is an idempotent
monotone mapping of a poset into itself.

(The Steinitz-MacLane Exchange Property) If X € Pandy,z € P — 7(X) then
y € (X U{z}) implies z € T(X U {y}).

Then, setting
IT={AC X|x ¢ 7(A—{x})forall x € A},

we have that M := (X, Z) is a matroid.

Conversely, if (X, 1) is a matroid, then the mapping T which takes each subset of
A to the flat (A) which it spans, is a monotone increasing closure operator P — P
possessing the Steinitz-MacLane Exchange Property.
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2.7 Exercises

2.7.1 Exercises for Sect. 2.2

1. Suppose < is a reflexive and transitive relation on a set X. (Such a relation is
called a pseudo-order.) For any two elements x and y of X, let us write s ~ y if
and only if x<y and also y<x.

(a) Show that “~” is an equivalence relation.

(b) For each element x of X, let [x] be the ~-equivalence class containing
element x. Show that if x<y then a<b for every element ¢ € [x] and
element b € [y]. (In this case we write “[x] < [y]”.)

(c) Let X/~ denote the collection of all ~-classes of X. Show that (X/ ~, <)
is a poset.

2. Make a full list of the posets defined in Examples 1 and 2 above which

(a) have a zero element.
(b) have a one element.
(c) are locally finite.

3. Let P be a fixed poset. If there is a bijection f : X — Y prove that there exists
an isomorphisms of posets:

[1P-1]>

xeX yey
Z P — H P, if P has a zero element.
xeX yeY

(This means that the index set X has only a weak effect on the definition of a
product.)

4. Recall that the elements of the divisor poset D are the positive integers, witha < b
if and only if the integer a divides the integer b.
The poset of all finite multisets on the set of natural numbers consists of all
infinite sequences of natural numbers with only finitely many positive entries.
This multiset is denoted M - (N).
For this exercise, the student is asked to assemble a proof of the following theorem.

Theorem 2.7.1 The divisor poset D is isomorphic to the poset M . (N) of all finite
multisets over the set NT of positive integers. That is, we have an isomorphism

e: (D, <) — Z N; (2.23)

ieNt

where each N; is a copy of the totally ordered poset of the natural numbers.
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[Hint: We sketch the argument: Notice that the right side of (2.23) consists of
all sequences of non-negative integers of which only finitely many are positive
(equivalently, all finite sequences of positive integers). The mapping € is easy
to define. First place the positive prime numbers in ascending (natural) order
2 = p; < p2 < ---.Forexample ps = 13. Now any integer d € ID greater than
one has a unique factorization into positive prime powers, with the primes placed
from left to right in ascending order:

d= 1] ry.

o€y

for some (possibly empty) ascending sequence of positive integers J,. If one
declares €(d) to be the function f : NT — Ny such that

a, ifo e Jy,

f(")zlo ifo ¢ Jg.

and declares (1) := 0, the constant function with all values 0, then one sees that
f(c) < f(d) in the sum on the right side of Eq.(2.23) if and only if ¢ divides d
evenly—i.e. ¢ < d in (D, <). Clearly ¢ is a bijection.]

5. Recall that if (P, <) and X C P, then the symbol Px denoted the order ideal
Px :={z € P|z < x for some x € X}.

Show that Py = | J{Px|x € X}.
6. For the filters PX and PY generated by these sets, show that

(/\ PX) ﬂ (/\ PY) _ /\ pxuY)

7. Let X be a subset of a poset (P, <), and let Py be the order ideal of all elements
bounded above by at least one element of X (see p. 31 or Exercise (5) in Sect.2.7.1
in this section). Prove that Py is the intersection of all order ideals of P which
contain X.

8. Give an example of a poset P and subset X for which the order ideal Py is not
generated by an antichain.

9. Give an example of a poset (P, <) and an order ideal J of P such that J does
not have the form Px for any antichain X.

10. Let X be an infinite set. Recall that a partition of X is a decomposition m = {X}
of X into pairwise disjoint non-empty subsets X, called the components of the
partition. (The word “decomposition” is there to indicate that the union of the
X5 is X.) A component X, is said to be trivial if it contains exactly one element
of X. Such a partition 7 is said to be a finitary partition if and only if finitely
many of the components are non-trivial and each of these is a finite set.
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Let FP(X) be the full collection of finitary partitions of X. Show that with
respect to the refinement relation, F P (X) is a locally finite poset.

11. Let F := {A,; ]| 0 € I} € P(X). Let a : P(X) — P(I) be the mapping of
posets which sends each subset U of X totheseta(U) :={oc € [ |U C A,}. (If
no such subset A, contains U, then a(U) is the empty set.) Similarly, for each
subset K of I, set B(K) := ﬂ Ay sothat G : P(I) — P(X) is a mapping of

cekK
posets.

(a) Show that o and [ are both order reversing and that (P(X), P(I), «, (3)
is a Galois connection.

(b) Show that the closed elements of X are those subsets expressible as inter-
sections of A,’s.

(c) Show that a subset J of [ is closed if and only if it has the property: If
A; 2 () As.thenT e J.

oel

2.7.2 Exercises for Sects.2.3 and 2.4

1. We let [n] be the chain {1 < 2 < --- < n} in the usual total ordering of the
positive integers. Show that the infinite union of disjoint chains,

[(ITU2IU[3]U---,

satisfies (FC) but does not possess finite height, and possesses neither a 1nora
0.

2. If we adjoin 0 to the poset presented in the previous Exercise, show that the
Frattini element exists, and is 0.

3. Show that the product of posets.

(1] % [2] x [3] x -,

does not satisfy (FC).

4. Let P be alower semilattice with 0 and 1 satisfying (FC). Set B := max(P) and
let P be the induced subposet generated by B—that is, the set of elements of P
expressible as a finite meet of elements of B. We understand the empty meet to
be the element i, so the latter is an element of P.

(a) Show that P has the Frattini element ¢(P) as its zero element, 0 B
(b) Foreachx € P — {i}, show that the induced poset P* N P has a unique
minimal member (which we shall call o(x)).
(c) Defining a(i) =1 show the following:
i. Forall x € P, x < o(x). (This is built into the definition of ¢.)
ii. The mapping o : P — P is a surjective morphism of posets.
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iii. For each x € P, one has o(o(x)) = o(x).
(Recall that any morphism onto an induced subposet which satisfies these
three conditions is called a closure operator.)

. Suppose P = N x {0, 1}. We totally order P (lexicographically) as follows:

(a) (a,0) < (b, 1) foranya,b e N.
(b) (a,0) < (b,0)ifand only ifa < b,a,b € N.
(¢) (a,1) < (b,1)ifand onlyifa < b,a,b € N.

Show that (P, <) has the Descending Chain Condition (DCC), but that there
exist intervals (x, y) with no finite unrefinable chain from x to y.

. Suppose (P, <) is a poset with a zero element 0. Recall from Sect. 2.4.2 that in

this case an atom of (P, <) is an element a distinct from 0 with the property
that there is no element x € P such that 0 < x < a,—that is, (6, a) is a cover.
Let A be the set of atoms of P. Assume now that (P, <) has the property that
every interval [0, 5] possesses the DCC. Show that either P = {0} or that the set
A of atoms is non-empty.

. Give an example of a locally finite poset which does not possess the descending

chain condition.

. Suppose (P, <) is a locally finite poset which possesses a zero element 0. Show

by means of an example, that such a poset need not possess the descending chain
condition.

. Suppose L is a lattice. Give an induction proof showing that for any finite col-

lection {ay, ..., a,} of elements of L, the elements
aiV---Vaganday A --- Aay,

exist and are respectively the greatest lower bound and greatest upper bound in
L of the set {ay, ..., a,}.

Suppose (P, <) is a lower semilattice with the descending chain condition
(DCC). Show that any principle order ideal is a lattice. Conclude that for any
non-empty subset X C P, the order ideal

P.:={z€ P|z <xforall x € X}

is always a lattice.
Suppose (P, <) is a locally finite poset.

(a) Suppose (P, <) possesses a zero element 0 and at least one other element.
Show that the set A of atoms of (P, <) is not empty. (Note that we are not
assuming the Descending Condition, so this is a little different than Problem
(6) in Sect.2.7.2.)

(b) Now assume that (P, <) is a lower semilattice. Show that any principle
order ideal is a finite lattice.
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12. Alattice L := (L, <) is said to be distributive if and only if, for any elements
a and b in L, one always has:

anbvec)y=(@Ab)Vv(anc). (2.24)

An example of a distributive lattice is the power poset P (X) of all subsets of a
set X.

(a) Prove that if L is a distributive lattice and (M, <) is an induced subposet
closed under taking pair-wise meets and joins, then M is also a distributive
lattice.

(b) Use the result of item (a) to prove the following:

i. The Boolean poset B(X)—of all finite subsets of X is a distributive
lattice.

ii. Let J(P) be the poset of all order ideals of a poset (P, <) under the
containment relation. Use item (a) to prove that 7 (P) is a distributive

lattice. [One must define “meet” and “‘join” of order ideals and set
L = P(P) in item (a) of this exercise.]

2.7.3 Exercises for Sect. 2.5

1. (The Jordan-Holder Theorem implies the Fundamental Theorem of Arithmetic.)
Let (P, <) be the poset of positive integers where a < b if and only if integer a
divides integer b evenly (Example 1, of this chapter).

(a) Show that (P, <) is a lower semimodular semilattice with all intervals alge-
braic. Let i : Covp — N be the function which records the prime number
b/a at every cover (a, b) of (P, <). Indicate why x is a semimodular func-
tion in the sense given in Eq.(2.12) of the Jordan-Ho6lder Theorem.

(b) Suppose integer a properly divides integer b. For every factorization b/a =
p1p2 - pr of b/a into primes show that there exists a finite unrefineable
chain (@ = ag, a1, az, ...ar = b) suchthata;/a;_; = p;fori =1,...r.

(c) Conclude from the Jordan-Ho6lder Theorem that every positive integer pos-
sesses a factorization into prime numbers, and that the multiset of positive
prime numbers involved in the factorization is unique.

2. Show that the following lattices are modular:

(i) The poset of subspaces of a vector space.
(i) The poset of subgroups of an abelian group.

In both cases, the order relationship is that of containment.
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Show that the product L x Ly of two modular lattices is modular. If the lattices
L;, 0 € I are modular and possess a “zero”, does the modularity extend to the
direct sum H L,?

oel
Is the lattice of partitions of a finite set, modular? (Here the order relationship is

refinement of one partition by another.)
Write out an explicit proof of Corollary 2.5.10.

2.7.4 Exercises for Sect. 2.6

(O8]

. Prove the three parts of Lemma?2.6.1 for the extended definition of dependence

allowing infinite subsets of .

Verify the axioms of a matroid for Example 22, on the edge-set of a graph.
Verify the axioms of a matroid for Example 23, on finite partial transversals.
LetI" = (V, E) beasimple graph. Let M = (E, Z) be the matroid of Example 20.
For any subset F' of the edge set E, let

Vv, F)=J V. Fy)

oek

be a decomposition of I' into connected components. For each connected com-
ponent (V,, Fy), let E; be the collection of edges connecting two vertices in V.
Thus (V,, E,) is the subgraph induced on the vertex set V.. Prove that in the
matroid, the flat spanned by F is the union U,cg E,;.

. Let M = (X, Z) be a matroid. A set which is minimal with respect to not lying

in Z is called a circuit. Show that any circuit is finite. (Remark: There is also a
characterization of matroids by circuits. See Matroid Theory, by James G. Oxley
[1], Proposition 1.3.10.)

Let M = (X, Z) be a matroid. For each subset A of X, let (A) be defined as the
set of all elements x € X for which there exists a finite subset A, C A such that
{x} U A, & 7 (this is the matroid version of “the flat generated by A defined on
p. 65. Show that (A) = ((A)).
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Chapter 3
Review of Elementary Group Properties

Abstract Basic properties of groups are collected in this chapter. Here are exposed
the concepts of order of a group (any cardinal number) or of a group element (finite
or countable order), subgroup, coset, the three fundamental theorems of homomor-
phisms, semi-direct products and so forth.

3.1 Introduction

Groups are systems of symmetries of objects, in particular mathematical objects.
Understanding groups can be useful in classifying objects in a particular class. One
uses a group of symmetries to transfer any object of the class to a representative
object which is an easily-studied canonical form. For example, the group GL(n, F) x
GL(n, F), generated by elementary row and column operations on the class M, (F)
of n x n matrices is used to transport an arbitrary matrix to a more easily studied
canonical form.

This is just one of the reasons that group theory is needed, whatever field of
mathematics you might choose to enter. There are of course many other reasons
having to do with special uses of groups (such as “Polya counting”,! quantum physics,
invariant theory etc.). But overall, the need to classify things seems the broadest
reason that group theory is pertinent to all of mathematics.

Groups are defined by a hallowed set of axioms which are useful only for the
purpose of banishing all ambiguities from the subject. Somehow, staring at the axioms
of a group mesmerizes one away from their basic and natural habitat. Every group
that ever exists in the world is in fact the full group of symmetries of something. That
is what the theory of groups is: the study of symmetries. But it is useful to know this
only on a philosophical plane. Knowing that there is a set of objects such that every
group—or even every finite group—is the full group of automorphisms of at least
one of these objects, is not very helpful for classifying the groups themselves.

I'This has a long pre-Polya history.
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3.2 Definition and Examples

This is probably a good place to explain a convention. A group is a set G with a binary
operation with certain properties—of which there are a good many examples. In some
of these examples the binary operation is written as “+; in others, it is written as “o”
or “x”. (If one uses “+”, one might think the operation is commutative. If one uses
“0”, the elements seem to be mappings, and if one uses “x”, Cartesian products can
confuse the issue). How then does one speak generally about all possible groups? The
standard solution is this: The group operation of an arbitrary group, will be indicated
by simple juxtaposition, the act of writing one symbol directly after the other—thus,
the group operation, applied to the ordered pair (x, y) will be denoted xy.

A group is a set G equipped with a binary operation G x G — G (denoted here
by juxtaposition) such that the following axioms hold:

1. (The Associative Law) The binary operation is associative—that is (ab)c = a(bc)
forall elements a, b, c of G. (The parentheses indicate the temporal order in which
operations were performed. This axiom more-or-less says that the temporal order
of applying the group operations doesn’t matter, while, of course, the left-right
order of the elements being operated on does matter.)

2. (Identity Element) There exists an element, say e, such that eg = g = ge for all
elements g in G.

3. (The Existence of Inverses) For each element x in G, there exists an element x’
such that x'x = xx’ = e where e is the element referred to in Axiom 2.

One immediately deduces the following:

Lemma 3.2.1 For any group G one has:

1. The identity element e is the unique element of G possessing the property of Axiom
2.

2. Given element g in G, there is at most one element ¢’ such that g¢' = ¢'g = e.

3. In light of the preceding item 2, we may denote the unique inverse of g by the
symbol g~'. Then note that

(i) (ab)~1 = (bil)(afl)for all elements a, b € G.
(i) (@=H~1 = a, for each element a € G.
(iii) Forany element x and natural number k, the product xx . . . x (with k factors)
is a unique element which we denote as xX. We have (x"‘)_1 = (x_l)k. (As
a notational convention, this element is also written as x . ).

Zpeople have figured out how to “improve” these axioms, by hypothesizing only right identities
and left inverses and so on. There is no attempt here to make these axioms independent or logically
neat. Of course, the axioms indeed over-state their case; but a little redundancy won’t hurt at this
beginning stage.
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Example 23 Familiar Examples of Groups:

(@)
(b)
(©)
(d)

(e)

®)

(2)

(h)

The group (Z, +) of integers under the operation of addition.

The group of non-zero rational numbers under multiplication.

The group of non-zero complex numbers under multiplication.

The cyclic group 7, of order n. This can be thought of as the group of rotations of
a regular n-gon. This group consists of the elements {1, x, x” ..., x"~!} where
x is a clockwise rotation of 27/n radians and “1” is the identity transformation.
All multiplications of the powers of x can be deduced solely from the algebraic
identity x" = 1.

The dihedral group Dy, of order 2n. This is the group of all rigid symmetries of
the regular n-gon. In addition to the group of n rotations just considered, it also
contains n reflections which are symmetries of the n-gon. If # is an odd number,
these reflections are about an axis through a corner or vertex of the polygon and
bisecting an opposite side. If n is even, the axes of the reflections are of two
sorts: those which go from a vertex through its opposite vertex, and those which
bisect a pair of opposite sides. There are then n/2 of each type. The elements of
the group all have the form tix/, where ¢ is any reflection, x is the clockwise
rotation by 27/n radians and 0 < i < 1 and 0 < j < n — 1. The results of
all multiplications of such elements can be deduced entirely from the relations
x"=1,12 = Litx=xt (and its consequence, tx~ ! = xt).

The isomorphism type of the dihedral group of order 2n is denoted D,,,. In the
special case that n = 2, each group in the resulting class Dy is called a fours
group. It is distinguished from the cyclic group of order four by the fact that the
square of any of its elements is the identity element.

The symmetric groups Sym(X). Let X be a set. A permutation of the elements
of X is a bijective mapping X — X. This class of mappings is closed under
composition of mappings, inverses exists, and it is easy to verify that they form
a group with the identity mapping 1x which takes each element to itself, as
the group identity element. This group is called the symmetric group on X and
is denoted Sym(X). If |X| = n it is well known from elementary counting
principles that there are exactly n! permutations of X. In this case one writes
Sym(n) for Sym(X), since the names or identities of the elements of X do not
really affect the nature of the group of all permutations.

The group of rigid motions of a (regular) cube. Just imagine a wooden cube on
the desk before you. We consider the ways that cube can be rotated so that it
achieves a position congruent to the original one. The result of doing one rotation
after another is still some sort of rotation. It should be clear that these rotations
can have axes which are situated in three different ways with respect to the cube.
The axis of rotation may pass through the centers of opposite faces, it may pass
though the midpoints of opposite edges, or it could be passing through opposite
vertices.

Let G = (V, E) be a simple graph. This means the edges E are pairwise distinct
2-subsets of the vertex set V. Two (distinct) vertices are said to be adjacent if
and only if they are the elements of an edge. Now the group of automorphisms
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of the graph G 1is the set of permutations of the set of vertices V which preserve
the adjacency relation. The group operation is composition of the permutations.
Let R be any ring with identity element e.> An element u of R is said to be a
unit if and only there exists a two-sided multiplicative inverse in R—that is, an
element u’ such that u'u = e = uu’. (Observe in this case, that u’ itself must be
a unit.) Then the set U(R) of all units of the ring R forms a group under ring
multiplication. Some specific cases:

®

(i)

(iii)

(iv)

The group U (Z) of units of the ring of integers Z, is the set of numbers
{+1, —1} under multiplication. Clearly this group behaves just like the cyclic
group of order 2, one of those introduced in part (d) above.

Let D = 7Z @ Zi, where i> = —1, the ring of Gaussian integers {a +
bila, b € Z} as a multiplicatively and additively closed subset (that is a sub-
ring) of the ring of all complex numbers. Then the reader may check that
U (D) is the set {£1, i} under multiplication. This is virtually identical
with the cyclic group of order four as defined in part (d) of this series of
examples.

Let V be aleft vector space over adivisionring D. Lethom(V, V) be the col-
lection of all linear transformations f : V — V (viewed as right operators
on the set of vectors V). This is an additive group under the operation “+”
where, for all f, g € hom(V, V), (f + g) is the linear transformation which
takes each vector v to vf + vg. With composition of such transformations
as “multiplication” the set hom(V, V) becomes a ring.*

Now the group of units of hom(V, V') would be the set GL(V) of all linear
transformations  : V — V where t is bijective on the set of vectors (i.e.
a permutation of the set of vectors. (V is not assumed to be finite or even
finite-dimensional in this example.) The group GL(V) is called the general
linear group of V.

The group GL(n, F). Let F be a field, and let G = GL(n, F) be the set
of all invertible n x n matrices with entries in F.> This set is closed under
multiplication and forms a group. In fact it is the group of units of the ring of
all n x n matrices with respect to ordinary matrix multiplication and matrix
addition.

31t is presumed that the reader has met rings before. Not much beyond the usual definitions are
presumed here.

4Actually it is more, for hom(V, V) can be made to have the structure of a vector space, and hence
an algebra if D possesses an anti-automorphism—e.g. when D is a field. But we can get into this
later.

SRecall from your favorite undergraduate linear algebra or matrix theory course that if z is a positive
integer, then an n-by-n matrix M has a right inverse if and only if it has a left inverse (this is a
consequence of the equality of row and column ranks).
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3.2.1 Orders of Elements and Groups

Suppose x is an element of a group G. We set xVi=e, x! = x, x? := xx, and

for each natural number 7, inductively define x := xx"~!. If there exists a natural
number n such that x" = e, then x is said to have finite order. If n is the smallest
positive integer such that x"” = e then we write o(x) = n, calling n the order of the
element x. Otherwise, we say that x has infinite order and write o(x) = oo. In the
latter case, the powers e, x, x2, ... of x are all distinct, for if x* = x™ forn < m,
then e = x"x ™" = x™x~" = x™=") _and so x would have finite order.

Lemma 3.2.2 Let G be a group, and let x € G be an element of finite order n.

(i) If x™ = e, then n| m.
(ii) If n and m are relatively prime, then o(x™) = n.

Proof We apply the Division Algorithm (Lemma 1.1.1 of Chap. 1) and write m =
gn + r with 0 < r < n. From this, one has r = m — gn and so x" = x"79" =
xMx79" = e. By definition of o(x) = n together with 0 < r < n, we must have
r = 0, i.e., that n| m, proving part (i).

Next, let o(x™) = k, and so x* = e. By part (i), we infer that n|km. By
Lemma 1.1.3 we have n| k. Since it is clear that (x™)" = e, we conclude that, k|n as
well, forcingn = k = o(x™). O

Elements of order 2 play a special role in finite group theory, and so are given a
special name: any element of order two is called an involution.
The order of a group G is the number |G| of elements within it.

3.2.2 Subgroups

Let G be a group. For any two subsets X and Y of G, the symbol XY denotes the
set of all group products xy where x ranges over X and y ranges independently over
Y. (It is not immediately clear just how many group elements are produced in this
way, since a single element g might be expressible as such a product in more than
one way. At least we have | XY| < |X| - |Y].)

A second convention is to write X! for the set of all inverses of elements of
the subset X. Thus X! := {x~!|x € X}. This time |X~!| = |X], since the corre-
spondence x — x~! defines a bijection X — X! (using Lemma 3.2.1, part 3(ii)
here).

A subset H of G is said to be a subgroup of G if and only if

1. HH C H, so that by restriction H admits the group operation of G, and
2. with respect to this operation, H is itself a group.

One easily obtains the useful result:
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Lemma 3.2.3 (Subgroup Criterion) For any subset X of G, the following are equiv-
alent:

1. X is a subgroup of G.
2. X=X'and XX C X.
3 xx~'cx.

A remark on notation Whenever subset X is a subgroup of G, we write X < G
instead of X € G. This is in keeping with the general practice in abstract algebra of
writing A < B whenever A is a subobject of the same algebraic species as B. For
example we write this if A is an R-submodule of the R-module B, and its special
case: when A is a vector subspace of a vector space B. Usually the context should
make it clear what species of algebraic object we are talking about. Here it is groups.

Corollary 3.2.4 1. The set-intersection over any family of subgroups of G is a
subgroup of G.

2. If A and B are subgroups of G, then AB is a subgroup of G if and only if
AB = BA (an equality of sets).

3. Forany subset X of G, the set (X)¢ of all finite products y1y> ... yn, n € Nwhere
the y; range independently over X U X ™!, is a subgroup of G, which is contained
in any subgroup of G which contains subset X.
Thus we can also write

(X)6 =NxcH<=cH

where the intersection on the right is taken over all subgroups of G which contain
set X.

The proof is left to the reader (see Exercise (2) in Sect.3.7.1). The subgroup (X) ¢
(which is often written (X) when the “parent” group G is understood) is called the
subgroup generated by X . As is evident from the Corollary, it is the smallest subgroup
in the poset of all subgroups of G which contains set X.

Example 24 Examples of Subgroups.

(a) LetI'(V, E) be a graph with vertex set V and edge set E, and set H := Aut(I"),
the group of automorphisms of the graph I', as in Example 23, part (h) in the
previous subsection. Then H is a subgroup of Sym(V'), the symmetric group on
the vertex set.

(b) Cyclic Subgroups Let x be an element of the group G. The set (x) := {x"|n € Z}
(where, for negative integers n, we adopt the convention of Lemma 3.2.1 3(iii)
that x ™" = (x " H") is clearly a subgroup of G (Corollary 3.2.4). Now one sees
that the order of the element x is the (group) order of the subgroup (x).

(c) Let Y be a subset of X. The set of all permutations of X which map the subset
Y onto itself forms a subgroup of Sym(X) called the stabilizer of Y. If G is any
subgroup of Sym(X), then the intersection of the stabilizer of ¥ with G is called
the stabilizer of Y in G and is denoted Stabg (Y). This is clearly a subgroup
of G. Thus it makes sense to speak of the stabilizer of a specified vertex in
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the automorphism group Aut(I") of a graph I'. (For sets with a single member,
the convention is to write Stab(y) instead of Stab({y}). Note also that all these
definitions apply when G = Sym(X), as well.

(d) Letus return once more to the example of the group of rotations of a regular cube
(Example (g) of the previous subsection). We asserted that each non-identity rigid
motion was a rotation in ordinary Euclidean 3-space about an axis symmetrically
placed on the cube.

One can see that the group of rotations about an axis through the center of a square
face and through the center of its opposite face, is a cyclic group generated by a
rotation y of order four. There are 6/2 = 3 such axes: in fact, they can be taken to
be the three pair-wise orthogonal coordinate axes of the surrounding Euclidean
space. This contributes 6 elements y of order four and 3 elements of order two
(such as y2).

Another type of axis extends from the midpoint of one edge to the midpoint of
an opposite edge. Rotations about such an axis form a subgroup of order two.
The generating rotation ¢ of order two does not stabilize any face of the cube,
and so is not any of the involutions (elements of order two) stabilizing any of the
previous “face-to-face” axes. Since there are twelve edges in six opposite pairs,
these “edge-to-edge” axes contribute 6 new involutions to the group.

Finally there are 8/2 = 4 “vertex-to-vertex” axes, the rotations about which form
cyclic subgroups generated by a rotation of order three. Thus each of these four
groups contribute two elements of order three.

Thus the group of rotations of the cube contains 1 identity element, 6 elements
of order four, 3 involutions stabilizing a face, 6 involutions not stabilizing a face,
and 8 elements of order three—a total of 24 elements.

3.2.3 Cosets, and Lagrange’s Theorem in Finite Groups

Suppose H is a subgroup of a group G. If x is any element of G, we write Hx for
the product set H {x} introduced in the last subsection. Such a set Hx is a right coset
of H in G.If x and y are elements of G and H < G, then y is an element of Hx if
and only if Hy = Hx. This is any easy exercise. It follows that all the elements of G
are partitioned into right cosets as

G = Uyer Hx a disjoint union of right cosets, for appropriate 7.

Here T is merely a set consisting of one element from each right coset. Such a set
is called a system of right coset representatives of H in G, or sometimes a (right)
transversal of H in G.

The components of this partition—that is the sets { Hx|x € T} for any transversal
T—is denoted G/H. It is just the collection of all right cosets themselves. The
cardinality of this set is called the index of H in G and is denoted [G : H].
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One notes that right multiplication by element x induces a bijection H — Hx.
Thus all right cosets have the same cardinality. Since they partition all the elements
of G we have the following:

Lemma 3.2.5 (Lagrange’s Theorem)

1. IfH <G, then |G| =[G : H]-|H|.
2. The order of any subgroup divides the order of the group.
3. The order of any element of G divides the order of G.

‘We conclude with a useful result.

Lemma 3.2.6 Suppose A and B are subgroups of the finite group G. Then |AB]| -
|[ANB|=[A]-[B|.

Proof Consider the mapping f : A x B — AB, which maps every element (a, b)
of the Cartesian product to the group product ab. This map is surjective, and the fibre
f ~1(ab) contains all pairs {(ax, x~1b) |x € AN B}. (Note that in order for (ax, x~1b)
to be in the designated fibre, one must have ax € A, and x b e B, forcing x € A
and x~! € B—thatis,x € ANB.) Thus |A x B| > |AN B|-|AB|. On the other hand,
if ab = a'b’ for (a,b) and (a’, ') in A x B, thena'a’ = b)) =x € ANB.
But then ax = a’, x~'b = b’. So the fibers are no larger than |A N B|. This gives the
inequality in the other direction. [

3.3 Homomorphisms of Groups

3.3.1 Definitions and Basic Properties

Let G and H be groups. A mapping f : G — H is called a homomorphism of groups
if and only if
f(xy) = f(x)f(y) for all elements x, y € G. (3.1

Here, as was our convention, we have represented the group operation of both abstract
groups G and H by juxtaposition. Of course in actual practice, the operations may
already possess some other notation customary for familiar examples.

For any subset X, we set f(X) := {f(x)|x € X}. In particular, the set f(G) is
called the homomorphic image of G.

We have the usual glossary for special properties of homomorphisms. Suppose
f 1 G — H is a homomorphism of groups. Then

1. fis an epimorphism if f is onto—thatis, f is a surjection of the underlying sets
of group elements. Equivalently, f is an epimorphism if and only if f(G) = H.

2. f is an embedding of groups whenever f is an injection of the underlying set of
group elements. (It need not be surjective).
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3. fisan isomorphism of groups if and only if f is a bijection of the underlying set
of elements—that is, f is both an embedding and an epimorphism.

4. f is an endomorphism of groups if it is a homomorphism of G into itself.

5. f is an automorphism of a group G if it is an isomorphism G — G of G to itself.

The following is an elementary exercise.
Lemma 3.3.1 Suppose f : G — H is a homomorphism of groups. Then

1. If 1g and 1y denote the unique identity elements of G and H, respectively, then
fg) =1p.

2. Forany element x of G, f(x~1) = (f(x))~".

3. The homomorphic image f(G) is a subgroup of H.

Lemma 3.3.2 Suppose f : G — H and g : H — K are group homomorphisms.
Then the composition go f : G — K is also a homomorphism of groups. Moreover:

1. If f and g are epimorphisms, then so is g o f.

2. If f and g are both embeddings of groups, then so is g o f,

3. If f and g are both isomorphisms, then so is g o f, and the inverse mapping
f1:H—> G

4. If f and g are both endomorphisms (i.e. G = H = K), then sois go f.

5. If f and g are both automorphisms of G then so are g o f and .

Thus the set of automorphisms of a group G form a group under composition of auto-
morphisms. (This is called the automorphism group of G and is denoted Aut(G)).

Finally we introduce an invariant associated with every homomorphism of groups.
The kernel of the group homomorphism f : G — H is the set

ker f:={x e G| f(x) = 1x}.

The beginning reader should use the subgroup criterion to verify that ker f is a
subgroup of G. If f(x) = f(y) for elements x and y in G, then xy~! € ker f, or
equivalently, (ker f)x = (ker f)y as cosets. Thus we see

Lemma 3.3.3 The group homomorphism f : G — H is an embedding if and only
ifker f = 1, the identity subgroup of G.

We shall have more to say about kernels later.

3.3.2 Automorphisms as Right Operators

As noted just above, homomorphisms of groups may be composed when the arrange-
ment of domains and codomains allows this. In that case we wrote (g o f)(x) for
g(f(x))—thatis, f is applied first, then g.

As remarked in Chap. 1, that notation is not very convenient if composition of
mappings is to reflect a binary operation on the set of mappings itself. We have
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finally reached such a case. The automorphisms of a group G themselves form a
group Aut(G). To represent how the group operation is realized by composition of
the induced mappings, it is notationally convenient to represent then in “exponential
notation” and view the composition as a composition of right operators.

(The exponential convention) 1If o is an automorphism of a group G, and g € G,
we rewrite o(g) as ¢°. This way, passing from the group operation (in Aut(G))
to composition of the automorphisms does not entail a reversal in the order of the
group arguments.®

Thus for automorphisms o and 7 of G and any x € G we then have,

xO’T — (XU)T.

3.3.3 Examples of Homomorphisms

Symmetries that are induced by group elements on some object X are a great source
of examples of group homomorphisms. Where possible in these examples we write
these as left operators with ordinary composition “o”—but we will begin to render
these things in exponential notation here and there, to get used to it. In the next
chapter on group actions, we will be using the exponential notation uniformly when

a group acts on anything.

Example 25 Examples of homomorphisms.

(a) Suppose there is a bijection between sets X and Y. Then there is an isomorphism
Sym(X) — Sym(Y). This just amounts to changing the names of the objects
being permuted.

(b) Let R* be the multiplicative group of all nonzero real numbers, and let R**
be the multiplicative group of the positive real numbers. Then the “squaring”
mapping, which sends each element to its square, defines a homomorphism of
groups

o:R* > R,
and, by restriction, an embedding
O'|]R+* :R* — R*.

The kernel of o is the multiplicative group consisting of the real numbers +1.

OThis is part of a general scheme in which elements of some ‘abstract group’ G (with its own
multiplication) induce a group of symmetries Aut(X) of some object X so that group multiplication
is represented by composition of the automorphisms. These are called “group actions” and are
studied carefully in the next chapter.
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In any intermediate algebra course (cf. books of Dean or Herstein, for exam-
ple), one learns that complex conjugation (which sends any complex number
z=a+bitoz:=a—bi,a and b real) is an automorphism of the field of com-
plex numbers. The norm mapping N : C* — R** from the multiplicative group
of non-zero complex numbers to the multiplicative group of positive real numbers
is defined by setting N (z) := z - z for each complex number z. Since complex
conjugation is an automorphism of the commutative multiplicative group C*, it
follows that the norm mapping N satisfies N(z1z2) = N(z1) N(z2) and hence is
a homomorphism of groups. The kernel of the homomorphism is the group C;
of complex numbers of norm 1—the so-called circle group.

(When one considers that N (a + bi) = a’> +b% a,b € R, it is not mysterious
that the set of integers which are the sum of two perfect squares is closed under
multiplication.)

(Part 1.) Now consider the group of rigid rotations of the (regular) cube. There
are four diagonal axes intersecting the cube from a vertex to its opposite vertex.
These four axes intersect at the center of the cube, which we take to be the origin
of Euclidean 3-space. The angle o formed at the origin by the intersection of any
of these two axes, satisfies cos(ar) = £1/3. Let us label these four axes 1, 2, 3, 4
in any manner. As we rotate the cube to a new congruent position, the four axes
are permuted among themselves. Thus we have a mapping

rotations of the cube — permutations of the labeled axes
which defines a group homomorphism
rigid rotations of the cube — Sym(4),

the symmetric group on the four labels of the axes. The kernel would be a group of
rigid motions which stabilizes each of the four axes. Of course it is conceivable
that some axes are reversed (sent end-to-end) by such a motion while others
are fixed point-wise by the same motion. In fact if we had used the three face-
centered axes, it would be possible to reverse two of the axes while rigidly fixing
the third. But with these four vertex-centered axes, that is not possible. (Can you
show why? It has to do with the angle and the rigidity of the motion.) So the
kernel here is the identity rotation of the cube. Thus we have an embedding of the
rotations of the cube into Sym(4). But we have seen in the previous subsection
that both of these groups have order 24. Thus by the “pigeon-hole principle”,
the homomorphism we have defined is an isomorphism.

(Part 2.) Again G is the group of rigid rotations of the cube. There are exactly
three face-centered axes which are at right angles to one another. A 90° rotation
about one of these three axes fixes it, but transposes the other two. Thus if we
label the three face-centered axes by the letters {1, 2, 3}, and send each rotation
in the group G to the permutation of the labels of the three face-centered axes
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which it induces, we obtain an epimorphism of groups G — Sym(3), or, in view
of part 1 of (d), a homomorphism Sym(4) — Sym(3). The kernel is the group
K which stabilizes each of the three face-centered axes. This group consists of
the identity element, together with three involutions, each being a 180° rotation
about one of the three face-centered axes. Multiplication in K is commutative.

(e) Linear groups to matrix groups. Now let V be a vector space over a field F of
finite dimension n. We have seen in the previous subsection that the bijective
linear transformations from V into itself form a group which we called GL(V),
the general linear group on V. Now fix a basis A = {vy, ..., vy} of V. Any
linear transformation 7 : V — V , viewed as a right operator of V can be
represented as a matrix

AT 4 = (pij)
where
()T = pi1v1 + pi2va + -+ + Pintn

(so that the rows of the matrix depict the fate of the vector v; under T').” For
composition of the right operators S and 7 on V let us write

v(T x8S)=((v)T)S,veV,

so that 7" S is simply S o T in the standard notation for composition. Then we
see that

AT )= A(T) 4 A5 A
(where chronologically, the notation intends that 7 is applied first, then S, being
right operators and “-”” denotes ordinary multiplication of matrices.) This way the
symbolism does not transpose the order of the arguments, so in fact the mapping
T —-4Ty

defines a group homomorphism

fa:GL(V) — GL(n, F)

TThanks to the analysts’ notation for functions, combined with our habit of reading from left to
right, many linear algebra books make linear transformations left operators of their vector spaces,
so that their matrices are then the transpose of those you see here. That is, the columns of their
matrices record the fates of their basis vectors. However as algebraists are aware, this is actually a
very awkward procedure when one wants to regard the composition of these transformations as a
binary operations on any set of such transformations.
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of the group of linear bijections into the group of n x n invertible matrices under
ordinary matrix multiplication.

What is the kernel? This would be the group of linear transformations which fix
each basis element, hence every linear combination of them, and hence every
vector of V. Only the identity mapping can do this, so we see that f 4 is an
isomorphism of groups.

The determinant homomorphism of matrix groups. The determinant associates
with each n x n matrix, a scalar which is non-zero if the matrix is invertible.
That determinants preserve matrix multiplication is not very obvious from the
formulae expressing it as a certain sum over the elements of a symmetric group.®
Taking it on faith, for the moment, this would mean that the mapping

det : GL(n, F) — F*,

taking each invertible matrix to its determinant is a group homomorphism into
the multiplicative group of non-zero elements of the ground field F. The kernel,
then, is the group of all n x n matrices of determinant 1, which is called the
special linear group and is denoted SL(n, F).

Even and odd permutations and the sgn homomorphism. Now consider the sym-
metric group on n letters. In view of Example (a) above, the symmetric groups
Sym(X) on finite sets X of size n are all isomorphic to one another, and so are
given a neutral uniform description: Sym(n) is the group of all permutations of
the set of “letters” {1, 2, ..., n}. Subgroups of Sym(n) are called permutation
groups on n letters. Representing an abstract group as such a group of permuta-
tions provides an environment for calculating products. Many properties of finite
groups are in fact proved by such calculations. In general, the way to transport
arguments with symmetric groups to arbitrary groups G is to exploit homomor-
phisms G — Sym(n). These are called “group actions” and are fully described
in the next chapter.

Now we can imagine that the neutral set of letters 2, := {1,2,...,n} are
formally a basis A of an n-dimensional vector space over any chosen field F.
Then any permutation becomes a permutation of the basis elements of V, which
extends to a linear transformation 7 of V, and can then be rendered as a matrix
AT 4 with respect to the basis A as in Example (f). Thus, by a composition
of several isomorphisms that we understand, together with their restrictions to
subgroups, we have obtained an embedding of groups

Sym(n) — GL(n, F)

8The multiplicative properties follow easily from a much nicer definition of determinate which will
emerge from the exterior algebras studied in Chap. 13.
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which represents each permutation by a matrix possessing exactly one 1 in each
row and in each column, all other entries being zero. Such a matrix is called
a a permutation matrix.
Now even the usual sum formula for the determinant shows that the determinant
of a permutation matrix is 1. Now if we accept the thesis of Example (f) just
above, that the determinant function is in fact multiplicative, we obtain a useful
group homomorphism:
sgn : Sym(n) — {£1}

into the multiplicative group Z, of numbers 1, which records the determinant
of each permutation matrix representing a permutation. The kernel of sgn is
called the alternating group, denoted Alt(n), and its elements are called even
permutations. All other permutations are called odd permutations. Since sgn is
a group homomorphism, we see that

An even permutation times an even permutation is even.
An odd permutation times an odd permutation is even.
An even permutation times an odd permutation (in any order) is odd.

Since the argument developed for this example assumed the thesis of part (f)
(of this same Example 25)—that the determinant of a product of matrices is the
product of their determinants—and since that thesis may not be known from first
principles by some students, we shall give an elementary proof of the existence
of the sgn homomorphism in Sect.4.2.2 of the next chapter, without any appeal
to determinants.

The automorphism group of a cyclic group of order n. Finally, perhaps, we should
consider an example of an automorphism group of a group. We consider here,
the group Aut(Z,), the group of automorphisms of the cyclic group of order n,
where n is any natural number. Suppose, then, that C is the additive group of
integers mod n—that is, the additive group of residue classes modulo n. Thus
{ljl1:=j+nZ}, j=1,2,...,n—1,n. The addition rule becomes

[i(1+[jl1=1[i + jlor[i + j — n], whichever does not exceed n,

where 1 < i < j < n. Then element [1] generates this group. Indeed so does
[m] if and only if ged(m,n) = 1. Thus, if f : C — C is an automorphism
of C it follows than f([1]) = [m] where gcd(m,n) = 1. Moreover, since f
is a homomorphism, f[k] = [mk]. Thus the automorphism f is completely
determined by the natural number m coprime to and less than n. The number of
such numbers is called the Euler ¢-function, and it’s value at n is denoted ¢(n).
Thus ¢(n) = |Aut(Z,)|.

It now follows that Aut(C) is isomorphic to the multiplicative group ® (n) of all
residues mod n which consist only of numbers which are relatively prime to n.°

9 We will obtain a more exact structure of this group when we encounter the Sylow theorems.
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(1) The inner automorphism group. Let G be a general abstract group and let x be
a fixed element of G. We define a mapping

Py 1 G — G,

called conjugation by x, by the rule 1 (g) := x'gx, for all ¢ € G. One can
easily verify that v, (gh) = ¥y (g)1,(h), and as 1, is a bijection, it is an auto-
morphism of G. Any automorphism of G which is of the form 1), for some x in
G, is called an inner automorphism of G.

Now if {x, y, g} € G, one always has

1

y gy = (' x T hgly) = ()T gl) (3.2)

which means

"/}y oty = wxy (3.3)

for all x, y. Thus the set of inner automorphisms is closed under composition of
morphisms. Setting y = x~! in Eq. (3.3) we have

e =97, (34

and so the set of inner automorphisms is also closed under taking inverses. It
now follows that the set of inner automorphisms of a group G forms a subgroup
of the full automorphism group Aut(G). We call this subgroup the inner auto-
morphism group of G, denoted by Inn(G).

Now Eq. (3.3) would suggest that there is a homomorphism from G to Aut(G)
except for one thing: the arguments of the ¢)-morphisms come out in the wrong
order in the right side of the equation. That is because the operation “o” is
denoting composition of left operators.

This reveals the efficacy of using the exponential notation for denoting automor-

phisms as right operators. We employ the following:

(Convention of writing conjugates in groups) If a and b are elements of a
group G, we write

a~'ba in the exponential form b®.
In this notation Eq. (3.2) reads as follows:
g =g" (3.5)

for all {g, x, y} € G. What could be simpler?
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Then we understand Eq. (3.3) to read

7/}xy = 'l/)x"/)ya (3.6)

where the juxtaposition on the right hand side of the equation indicates compo-
sition of right operators—that is the chronological order in which the mappings
are performed reads from left to right, v, first and then 1),

Now Eq. (3.6) provides us with a group homomorphism:

¥ : G — Aut(G)

taking element x to the inner automorphism 1), the automorphisms of Aut(G)
being composed as right operators (as in the exponential convention for isomor-
phisms on p. 81).

What is the kernel of the homomorphism ¢/? This would be the set of all elements
z € G such that ¢, = 1¢, the identity map on G. Thus this is the set Z(G) of
elements z of G satisfying any one of the following equivalent conditions:

(a) 1, = 1¢, the identity map on G,
(b) z7'gz = g for all elements g of G,
(c) zg = gz for all elements g of G.

The subgroup Z(G) is called the center of G. The identity element is always
in the center. If Z(G) = G, then multiplication in G is “commutative”—that is
xy = yx forall (x, y) € G x G. Such a group is said to be commutative, and is
affixed with the adjective abelian. Thus G is abelian if and only if G = Z(G).

A Glossary of Terms Expected to be Understood from the Examples

el e N BN S

—_—— —
o = OO

. Homomorphism of groups.

. Epimorphism of groups.

. Embedding of groups.

. Isomorphism of groups.

. Endomorphism of a group.

. Automorphism of a group.

. The kernel of a homomorphism, ker f.

. The automorphism group, Aut(G), of a group G.
. The inner automorphism group, Inn(G), of a group, G.
. An inner automorphism.

. The center of a group, Z(G).

. Abelian groups.
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3.4 Factor Groups and the Fundamental Theorems
of Homomorphisms

3.4.1 Introduction

A teacher is sometimes obliged to present to a class a Theorem labeled as some
sort of “Fundamental Theorem”. More often than not, such a theorem is not quite as
fundamental as it must have seemed at an earlier time in our history.'?

At a minimum it would seem that a proposition should be labelled “a fundamental
theorem” if it has these properties:

1. It should be used so constantly in the daily life of a scholar of the field, that
quoting it becomes repetitive.

2. It’s logical distance from the “first principles” of the field should be short enough
to bear a short explanation to a puzzled student (that is, the alleged “fundamental
theorem” should be “teachable”).

We are lucky today! The fundamental theorems of homomorphisms of groups
actually meets both of these criteria. They tell us that the homomorphic images of
groups, their compositions, and their effects on subgroups, can all be derived from
an internal study of the groups themselves.

The custom has been to name these thre