
Ernest Shult · David Surowski

Algebra
A Teaching and Source Book



Algebra



Ernest Shult • David Surowski

Algebra
A Teaching and Source Book

123



Ernest Shult
Department of Mathematics
Kansas State University
Manhattan, KS
USA

David Surowski
Manhattan, KS
USA

David Surowski is deceased.

ISBN 978-3-319-19733-3 ISBN 978-3-319-19734-0 (eBook)
DOI 10.1007/978-3-319-19734-0

Library of Congress Control Number: 2015941161

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

This book is based on the notes of both authors for a course called “Higher
Algebra,” a graduate level course. Its purpose was to offer the basic abstract algebra
that any student of mathematics seeking an advanced degree might require.
Students may have been previously exposed to some of the basic algebraic objects
(groups, rings, vector spaces, etc.) in an introductory abstract algebra course such as
that offered in the classic book of Herstein. But that exposure should not be a hard
requirement as this book proceeds from first principles. Aside from the far greater
theoretical depth, perhaps the main difference between an introductory algebra
course, and a course in “higher algebra” (as exemplified by classics such as
Jacobson’s Basic algebra [1, 2] and Van der Waerden’s Modern Algebra [3]) is an
emphasis on the student understanding how to construct a mathematical proof, and
that is where the exercises come in.

The authors rotated teaching this one-year course called “Higher Algebra” at
Kansas State University for 15 years—each of us generating his own set of notes
for the course. This book is a blend of these notes.

Listed below are some special features of these notes.

1. (Combinatorial Background) Often the underlying combinatorial contexts—
partially ordered sets etc.—seem almost invisible in a course on modern algebra.
In fact they are often developed far from home in the middle of some specific
algebraic context. Partially ordered sets are the natural context in which to
discuss the following:

(a) Zorn’s Lemma and the ascending and descending chain conditions,
(b) Galois connections,
(c) The modular law,
(d) The Jordan Hölder Theorem,
(e) Dependence Theories (needed for defining various notions of

“dimension”).

The Jordan Hölder Theorem asserts that in a lower semimodular semilattice, any
semimodular function from the set of covers (unrefinable chains of length one)
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to a commutative monoid extends to an interval measure on all algebraic
intervals (those intervals containing a finite unrefinable chain from the bottom to
the top). The extension exists because the multiset of values of the function on
the covers in any two unrefinable chains connecting a and b must be the same.
The proof is quite easy, and the applications are everywhere. For example, when
G is a finite group and P is the poset of subnormal subgroups, one notes that P is
a semimodular lower semilattice and the reading of the simple group A=B of a
cover A\B, is a semimodular function on covers by a fundamental theorem of
homomorphisms of groups. By the theorem being described, this function
extends to an interval measure with values in the additive monoid of multisets
on the isomorphism classes of simple groups. The conclusion of the combina-
torial Jordan-Hölder version in this context becomes the classical Jordan-Hölder
Theorem for finite groups. One needs no “Butterfly Lemma” or anything else.

2. (Free Groups) Often a free group on generators X is presented in an awkward
way—bydefining a “multiplication”on ‘reducedwords’rðwÞ, wherew is aword in
the free monoid MðX [X�1Þ. ‘Reduced’ means all factors of the form xx�1 have
been removed. Here are the complications: First the reductions, which can often be
performed in many ways, must lead to a common reduced word. Then one must
show rðw1 � w2Þ ¼ rðrðw1Þ � rðw2ÞÞ to get “multiplication” defined on reduced
words. Then one needs to verify the associative law and the other group axioms.
In this book the free group is defined to be the automorphism group of a certain
labelled graph, and the universal mapping properties of the free group are easily
derived from the graph. Since full sets of automorphisms of an object always
form a group, one will not be wasting time showing that an akwardly-defined
multiplication obeys the axioms of a group.

3. (Universal Mapping Properties) These are always instances of the existence of
an initial or terminal object in an appropriate category.

4. (Avoiding Determinants of Matrices) Of course one needs matrices to describe
linear transformations of vector spaces, or to record data about bilinear forms
(the Grammian). It is important to know when the rows or columns of a matrix
are linearly dependant. One can calculate what is normally called the determi-
nant by finding the invariant factors. For an n� n matrix, that process involves
roughly n3 steps, while the usual procedure for evaluating the determinant using
Lagrange’s rule, involves exponentially many steps.
One of the standard proofs that the trace mapping tr : K ! F of a finite sepa-
rable field extension F�K is nonzero proceeds as follows: First, one forms the
normal closure L of the field K. One then invokes the theorem that L ¼ FðθÞ, a
simple extension, with the algebraic conjugates of θ as an F-basis of L. And then
one reaches the conclusion by observing that a van der Monde determinant is
non-zero. Perhaps it is an aesthetic quibble, but one does not like to see a nice
“soft” algebraic proof about “soft” algebraic objects reduced to a matrix cal-
culation. In Sect. 11.7 the proof that the trace is non-trivial is accomplished
using only the Dedekind Independence Lemma and an elementary fact about
bilinear forms.
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In general, in this book, the determinant of a transformation T acting on an
n-dimension vector space V is defined to be the scalar multiplication it induces
on the n-th exterior product ^nðVÞ. Of course there are historical reasons for
making a few exceptions to any decree to ban the usual formulaic definition of
determinants altogether. Our historical discussion of the discriminant on page
395 is such an exception.

In addition, we have shaped the text with several pedagogical objectives in mind.

1. (Catch-up opportunities) Not infrequently, the teacher of a graduate course is
expected to accommodate incoming transfer students whose mathematical
preparation is not quite the same as that of current students of the program, or is
even unknown. At the same time, this accommodation should not sacrifice
course content for the other students. For this this reason we have written each
chapter at a gradient—with simplest explanations and examples first, before
continuing at the level the curriculum requires. This way, a student may “catch
up” by studying the introductory material more intensely, while a more brief
review of it is presented in class. Students already familiar with the introductory
material have merely to turn the page.

2. (Curiosity-driven Appendices) The view of both authors has always been that a
course in Algebra is not an exercise in cramming information, but is instead a
way of inspiring mathematical curiosity. Real learning is basically
curiosity-driven self-learning. Discussing what is is already known is simply
there to guide the student to the real questions. For that reason we have inserted
a number of appendices which are largely centered around incites connected
with proofs in the text. Similarly, in the exercises, we have occasionally wan-
dered into open problems or offered avenues for exploration. Mathematics
education is not a catechism.

3. (Planned Redundancy) Beside its role as a course guide, a textbook often lives
another life as a source book. There is always the need of a student or colleague
in a nearby mathematical field to check on some algebraic fact—say, to make
sure of the hypotheses that accompany that fact. He or she does not need to read
the whole book. But occasionally one wanders into the following scenario: one
looks up topic A in the index, and finds, at the indicated page, that A is defined
by further words B and C whose definition can be deciphered by a further visit
to the index, which obligingly invites one to further pages at which the frus-
tration may be enjoyed once again. It becomes a tree search. In order to intercept
this process, we have tried to do the following: when an earlier-defined key
concept re-inserts itself in a later discussion, we simply recall the definition for
the reader at that point, while offering a page number where the concept was
originally defined.1 Nevertheless we are introducing a redundancy. But in the

1If we carried out this process for the most common concepts, pages would be filled with re-
definitions of rings, natural numbers, and what the containment relation is. Of course one has to
limit these reminders of definitions to new key terms.
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view of the authors’ experience in Kansas, redundancy is a valuable tool in
teaching. Inspiration is useless if the student cannot first understand the words—
and no teacher should apologize for redundancy. Judiciously applied, it does not
waste class time; it actually saves it.

Of course there are many topics—direct offshoots of the material of this
course—that cannot be included here. One cannot do justice to such topics in a brief
survey like this. Thus one will not find in this book material about
(i) Representation Theory and Character Theory of Groups, (ii) Commutative Rings
and the world of Ext and Tor, (iii) Group Cohomology or other Homological
Algebra, (iv) Algebraic Geometry, (v) Really Deep Algebraic Number Theory and
(vi) many other topics. The student is better off receiving a full exposition of these
courses elsewhere rather than being deceived by the belief that the chapters of this
book provide such an expertise. Of course, we try to indicate some of these points
of departure as we meet them in the text, at times suggesting exterior references.

A few words are inserted here about how the book can be used.
As mentioned above, the book is a blend of the notes of both authors who

alternately taught the course for many years. Of course there is much more in this
book than can reasonably be covered in a two-semester course. In practice a course
includes enough material from each chapter to reach the principle theorems. That is,
portions of chapters can be left out. Of course the authors did not always present the
course in exactly the same way, but the differences were mainly in the way focus
and depth were distributed over the various topics. We did not “teach” the
appendices to the chapters. They were there for the students to explore on their
own.

The syllabus presented here would be fairly typical. The numbers in parenthesis
represent the number of class-hours the lectures usually consume. A two-semester
course entails 72 class-hours. Beyond the lectures we normally allowed ourselves
10–12 h for examinations and review of exercises.

1. Chapter 1: (1 or 2) [This goes quickly since it involves only two easy proofs.]
2. Chapter 2: (6, at most) [This also goes quickly since, except for three easy

proofs, it is descriptive. The breakdown would be: (a) 2.2.1–2.2.9 (skip 2.2.10),
2.2.10–2.2.15 (3 h), (b) 2.3 and 2.5 (2 h) and (c) 2.6 (1 h).]

3. Chapter 3: (3)
4. Chapter 4: (3) [Sometimes omitting 4.2.3.]
5. Chapter 5: (3 or 4) [Sometimes omitting 5.5.]
6. Chapter 6: (3) [Omitting the Brauer-Ree Theorem [6.4] but reserving 15

minutes for Sect. 6.6.]
7. Chapter 7: (3) Mostly examples and few proofs. Section 7.3.6 is often omitted.]
8. Chapter 8: (7 or 8) [Usually (a) 8.1 (2 or 3 h), and (b) 8.2–8.4 (4 h). We

sometimes omitted Sect. 8.3 if behind schedule.]
9. Chapter 9: (4) [One of us taught only 9.1–9.8 (sometimes omitting the local

characterization of UFDs in 9.6.3) while the other would teach all of 9.9–9.12
(Dedekind’s Theorem and the ideal class group.]
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10. Chapter 10: (6) [It takes 3 days for 10.1–10.5. The student is asked to read 10.6,
and 3 days remain for Sect. 10.7 and autopsies on some of the exercises.]

11. Chapter 11: (11) [The content is rationed as follows: (a) 11.1–11.4 (2 h),
sometimes omitting 11.4.2 if one is short a day, (b) 11.5–11.6 (3 h) (c) 11.7
[One need only mention this.] (d) 11.8–11.9 (3 h) (e) [One of us would often
omit 11.10 (algebraic field extensions are often simple extensions). Many insist
this be part of the Algebra Catechism. Although the result is vaguely inter-
esting, it is not needed for a single proof in this book.] (f) 11.11 (1 h) (g) [Then
a day or two would be spent going through sampled exercises.]]

12. Chapter 12: (5 or 6) [Content divided as (a) 12.1–12.3 (2 h) and (b) 12.4–12.5
(2 h) with an extra hour wherever needed.]

13. Chapter 13: (9 or 10) [Approximate time allotment: (a) 13.1–13.2 (1 h) (only
elementary proofs here), (b) 13.3.1–13.3.2 (1 h), (c) 13.3.3–13.3.4 (adjunct
functors) (1 h), (d) 13.4–13.5 (1 h), (e) 13.6–13.8 (1 or 2 h), (f) 13.9 (1 h), 13.
10 (2 h) and 13.8 (3 h).]

The list above is only offered as an example. The book provides ample “wiggle
room” for composing alternative paths through this course, perhaps even
re-arranging the order of topics. The one invariant is that Chap. 2 feeds all sub-
sequent chapters.

Beyond this, certain groups of chapters may serve as one semester courses on
their own. Here are some suggestions:

GROUP THEORY: Chaps. 3–6 (invoking only the Jordan Holder Theorem from
Chap. 2).

THEORY OF FIELDS: After an elementary preparation about UFD’s (their maximal
ideals, and homomorphisms of polynomial rings in Chap. 6), and Groups (their
actions, homomorphisms and facts about subgroup indices from Sects. 3.2, 3.3 and
4.2) one could easily compose a semester course on Fields from Chap. 11.

ARITHMETIC: UFD’s, including PID’s with applications to Linear Algebra using
Chaps. 7–10.

BASIC RING THEORY: leading to Wedderburn’s Theorem. Chapters 7, 8 and 12.
RINGS AND MODULES, TENSOR PRODUCTS AND MULTILINEAR ALGEBRA: Chaps. 7, 8

and 13.

References

1. Jacobson N (1985) Basic algebra I, 2nd edn. W. H. Freeingsman and Co., New York
2. Jacobson N (1989) Basic algebra II, 2nd edn. W. H. Freeman and Co., New York
3. van der Waerden BL (1991) Algebra, vols I–II. Springer, New York Inc., New York

September 2014

Preface ix

http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_13
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_6
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_6
http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_4
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_12
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_13


In Memory

My colleague and co-author David D. Surowski expired in a Shanghai hospital on
March 2, 2011. He had recently recovered from surgery for pancreatic cancer,
although this was not the direct cause of his death.

David was a great teacher of incite and curiosity about the mathematics that he
loved. He was loved by his graduate students and his colleagues. But most of all he
loved and was deeply loved by his family.

He was my best friend in life.
Eight years ago (2004), David and I agreed that this book should be lovingly

dedicated to our wives:
Jiang Tan Shult and Susan (Yuehua) Zhang.

Ernest Shult
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Chapter 1
Basics

Abstract The basic notational conventions used in this book are described. Compo-
sition of mappings is defined the standard left-handed way: f g means mapping g was
applied first. But things are a little more complicated than that since we must also deal
with both left and right operators, binary operations and monoids. For example, right
operators are sometimes indicated exponentially—that is by right superscripts (as
in group conjugation)—or by right multiplication (as in right R-modules). Despite
this, the “◦”-notation for composition will always have its left-handed interpreta-
tion. Of course a basic discussion of sets, maps, and equivalence relations should
be expected in a beginning chapter. Finally the basic arithmetic of the natural and
cardinal numbers is set forth so that it can be used throughout the book without
further development. (Proofs of the Schröder-Bernstein Theorem and the fact that
ℵ0 · ℵ0 = ℵ0 appear in this discussion.) Clearly this chapter is only about everyone
being on the same page at the start.

1.1 Presumed Results and Conventions

1.1.1 Presumed Jargon

Most abstract algebraic structures in these notes are treated from first principles. Even
so, the reader is assumed to have already acquired some familiarity with groups,
cosets, group homomorphisms, ring homomorphisms and vector spaces from an
undergraduate abstract algebra course or linear algebra course. We rely on these
topics mostly as a source of familiar examples which can aid the intuition as well as
points of reference that will indicate the direction various generalizations are taking.

The Abstraction of Isomorphism Classes

What do we mean by saying that object A is isomorphic to object B? In general, in
algebra, we want objects A and B to be isomorphic if and only if one can obtain
a complete description of object B simply by changing the names of the operating
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2 1 Basics

parts of object A and the names of the relations among them that must hold—and
vice versa. From this point of view we are merely dealing with the same situation, but
under a new management which has renamed everything. This is the “alias” point of
view; the two structures are really the same thing with some name changes imposed.

The other way—the “alibi” point of view—is to form a one-to-one correspondence
(a bijection) of the relevant parts of object A with object B such that a relation holds
among parts in the domain (A) if and only if the corresponding relation holds among
their images (parts of set B).1

There is no logical distinction between the two approaches, only a psychologi-
cal one.

Unfortunately “renaming” is a subjective human conceptualization that is awk-
ward to define precisely. That is why, at the beginning, there is a preference for
describing an isomorphism in terms of bijections rather than “re-namings”, even
though many of us secretly think of it as little more than a re-baptism.

It is a standing habit in abstract mathematics for one to assert that mathematical
objects are “the same” or even “equal” when one only means that the two objects
are isomorphic. It is an abuse of language when we say that “two manifolds are the
same”, “two groups are the same”, or that “A and B are really the same ring”. We
shall meet this over and over again; for this is at the heart of the “abstractness” of
Abstract Algebra.2

1.1.2 Basic Arithmetic

The integers are normally employed in analyzing any finite structure. Thus for ref-
erence purposes, it will be useful to establish a few basic arithmetic properties of
the integers. The integers enjoy the two associative and commutative operations of
addition and multiplication, connected by the distributive law, that every student is
familiar with.

There is a natural (transitive) order relation among the integers: thus

· · · − 4 < −3 < −2 < −1 < 0 < 1 < 2 < 3 < · · · .

If a < b, in this ordering, we say “integer a is less than integer b”. (This can also
be rendered by saying “b is greater than a”.) In the set Z of integers, those integers
greater than or equal to zero form a set

1We are deliberately vague in talking about parts rather than “elements” for the sake of generality.
2There is a common misunderstanding of this word “abstract” that mathematicians seem condemned
to suffer. To many, “abstract” seems to mean “having no relation to the world—no applications”.
Unfortunately, this is the overwhelming view of politicians, pundits of Education, and even many
University Administrators throughout the United States. One hears words like “Ivory Tower”, “Intel-
lectuals on welfare”, etc. On the contrary, these people have it just backwards. A concept is “abstract”
precisely because it has more than one application—not that it hasn’t any application. It is very
important to realize that two things introduced in distant contexts are in fact the same structure and
subject to the same abstract theorems.
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N = {0, 1, 2, . . .}

called the natural numbers. Obviously, for every integer a that is not zero, exactly
one of the integers a or −a is positive, and this one is denoted |a|, and is called the
absolute value of a. We also define 0 to be the absolute value of itself, and write
0 = |0|.

Of course this subset N inherits a total ordering from Z, but it also possesses a
very important property not shared by Z:

(The well-ordering property) Every non-empty subset of N possesses a least
member.

This property is used in the Lemma below.

Lemma 1.1.1 (The Division Algorithm) Let a, b be integers with a �= 0. Then there
exist unique integers q (quotient) and r (remainder) such that

b = qa + r, where 0 ≤ r < | a|.

Proof Define the set R := {b − qa | q ∈ Z, b − qa ≥ 0}; clearly R �= ∅. Since
the set of non-negative integers N is well ordered (See p. 34, Example 1), the set R
must have a least element, call it r . Therefore, it follows already that b = qa + r
for suitable integers q, r and where r ≥ 0. If it were the case that r ≥ |a|, then
setting r ′ := r − | a|, one has r ′ < r and r ′ ≥ 0, and yet b = qa + r =
qa + (r ′ + |a|) = (q ± 1)a + r ′ (depending on whether a is positive or negative).
Therefore, r ′ = b − (q ± 1)a ∈ R, contrary to the minimality of r . Therefore, we
conclude the existence of integers q, r with

b = qa + r, where 0 ≤ r < | a|,

as required.
The uniqueness of q, r turns out to be unimportant for our purposes; therefore we

shall leave that verification to the reader. �

If n and m are integers, and if n �= 0, we say that n divides m, and write n| m, if
m = qn for some integer (possibly 0) q. If a, b are integers, not both 0, we call d a
greatest common divisor of a and b if

(i) d > 0,
(ii) d| a and d| b,

(iii) for any integer c satisfying the properties of d in (i), (ii), above, we must have
c| d.

Lemma 1.1.2 Let a, b be integers, not both 0. Then a greatest common divisor of a
and b exists and is unique. Moreover, if d is the greatest common divisor of a and b,
then there exist integers s and t such that

d = sa + tb (The Euclidean Trick).

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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Proof Here, we form the set D := {xa + yb | x, y ∈ Z, xa + yb > 0}. Again, it is
routine to verify that D �= ∅. We let d be the smallest element of D, and let s and
t be integers with d = sa + tb. We shall show that d| a and that d| b. Apply the
division algorithm to write

a = qd + r, 0 ≤ r < d.

If r > 0, then we have

r = a − qd = a − q(sa + tb) = (1 − qs)a − qtb ∈ D,

contrary to the minimality of d ∈ D. Therefore, it must happen that r = 0, i.e., that
d| a. In an entirely similar fashion, one proves that d| b. Finally, if c| a and c| b, then
certainly c| (sa + tb), which says that c| d. �

As a result of Lemma 1.1.2, when the integers a and b are not both 0, we may
speak unambiguously of their greatest common divisor d and write d = GCD(a, b).
When GCD(a, b) = 1, we say that a and b are relatively prime.

One final simple, but useful, number-theoretic result:

Corollary 1.1.3 Let a and b be relatively prime integers with a �= 0. If for some
integer c, a| bc, then a| c.

Proof By the Euclidean Trick, there exist integers s and t with sa + tb = 1. Mul-
tiplying both sides by c, we get sac + tbc = c. Since a divides bc, we infer that a
divides sac + tbc, which is to say that a| c. �

1.1.3 Sets and Maps

1. Sets: Intuitively, a set A is a collection of objects. If x is one of the objects of
the collection we write x ∈ A and say that “x is a member of set A”.
The reader should have a comfortable rapport with the following set-theoretic
concepts: the notions of membership, containment and the operations of inter-
section and union over arbitrary collections of subsets of a set. In order to make
our notation clear we define these concepts:

(a) If A and B are sets, the notation A ⊆ B represents the assertion that every
member of set A is necessarily a member of set B. Two sets A and B are
considered to be the same set if and only if every member of A is a member
of B and every member of B is a member of A—that is, A ⊆ B and B ⊆ A.
In this case we write A = B.3

3Of course the sets A and B might have entirely different descriptions, and yet possess the same
collection of members.
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(b) There is a set called the empty set which has no members. It is denoted
by the universal symbol ∅. The empty set is contained in any other set
A. To prove this assertion one must show that x ∈ ∅ implies x ∈ A. By
definition, the hypothesis (the part preceding the word “implies”) is false.
A false statement implies any statement, in particular our conclusion that
x ∈ A. (This recitation reveals the close relation between sets and logic.)
In particular, since any empty set is contained in any other, they are all
considered to be “equal” as sets, thus justifying the use of one single symbol
“∅”.

(c) Similarly, if A and B are sets, the symbol A − B denotes the set {x ∈ A|x �∈
B}, that is, the set of elements of A which are not members of B. (The reader
is warned that in the literature one often encounters other notation for this
set—for example “A\B”. We will stick with “A − B”.)

(d) If {Aσ}σ∈I is a collection of sets indexed by the set I , then either of the
symbols

∩σ∈I Aσ or ∩ {Aσ|σ ∈ I }

denotes the set of elements which are members of each Aσ and this set is
called the intersection of the sets {Aσ|σ ∈ I }.
Similarly, either one of the symbols

∪σ∈I Aσ or ∪ {Aσ|σ ∈ I }

denotes the union of the sets {Aσ|σ ∈ I }—namely the set of elements which
are members of at least one of the Aσ .
Beyond this, there is the special case of a union which we call a partition.
We say that a collection π := {Aσ|σ ∈ I } of subsets of a set X is a partition
of set X if and only if

i. each Aσ is a non-empty subset of X (called a component of the partition),
and

ii. Each element of X lies in a unique component Aσ—that is, X =
∪{Aσ|σ ∈ I } and distinct components have an empty intersection.

2. The Cartesian product construction, A × B: That would be the collection
of all ordered pairs (a, b) (“ordered” in that we care which element appears
on the left in the notation) such that the element a belongs to set A and the
element b is a member of set B. Similarly for positive integer n we understand
the n-fold Cartesian product of the sets B1, . . . , Bn to be the collection of all
ordered sequences (sometimes called “n-tuples”), (b1, . . . , bn) where, for i =
1, 2, . . . , n, the element bi is a member of the set Bi . This collection of n-tuples
is denoted

B1 × · · · × Bn .

3. Binary Relations: The student should be familiar with the device of viewing
relations between objects as subsets of a Cartesian product of sets of these
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objects. Here is how this works: Suppose R is a subset of the Cartesian product
A× B. One uses this theoretical device to provide a setting for saying that object
“a” in set A is related to object “b” in set B: one just says “element a is related
to element “b” if and only if the pair (a, b) belongs to the subset R of A × B.4

(This device seems adequate to handle any relation that is understood in some
other sense. For example: the relation of being “first cousins” among members
of the set P of living U.S. citizens, can be described as the set C of all pairs
(x, y) in the Cartesian product P × P , where x is the first cousin of y.)
The phrase “a relation on a set A” is intended to refer to a subset R of A × A.
There are several useful species of such relations, such as equivalence relations,
posets, simple graphs etc.

4. Equivalence relations: Equivalence relations behave like the equal sign in ele-
mentary mathematics. No one should imagine that any assertion that x is equal
to y (an assertion denoted by an “equation x = y”) is saying that x really is y.
Of course that is impossible since one symbol is one side of the equation and
the other is on the other side. One only means that in some respect (which may
be limited by an observer’s ability to make distinctions) the objects x and y do
not appear to differ. It may be two students in class with the same amount of
money on their person, or it may be two presidential candidates with equally
fruitless goals. What we need to know is how this notion that things “are the
same” operates. We say that the relation R (remember it is a subset of A × A) is
an equivalence relation if an only if it obeys these three rules:

(a) (Reflexive Property) For each a ∈ A, (a, a) ∈ R—that is, every element of
A is R-related to itself.

(b) (Symmetric Property) If (a, b) ∈ R, then (b, a) ∈ R—that is, if element a
is related to b, then also element b is related to a.

(c) (Transitive property) If a is related to b and b is related to c then one must
have a related to c by the specified relation R.

Suppose R is an equivalence relation on the set A. Then, for any element a ∈ A,
the set [a] of all elements related to a by the equivalence relation R, is called the
equivalence class containing a, and such classes possess the following properties:

(a) For each a ∈ A, one has a ∈ [a].
(b) For each b ∈ [a], one has [a] = [b].
(c) No element of A − [a] is R-related to an element of [a].

4This is not just a matter of silly grammatical style. How many American Calculus books must
students endure which assert that a “function” (for example from the set of real numbers to itself)
is a “rule that assigns to each element of the domain set, a unique element of the “codomain” set?
The “rules” referred to in that definition are presumably instructions in some language (for example
in American English) and so these instructions are strings of symbols in some finite alphabet,
syllabary, ideogramic system or secret code. The point is that such a set is at best only countably
infinite whereas the collection of subsets R of A × B may well be uncountably infinite. So there is
a very good logical reason for viewing relations as subsets of a Cartesian product.
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It follows that for an equivalence relation R on the non-empty set A, the equiva-
lence classes form the components of a partition of the set A in the sense defined
above. Conversely, if π := {Aσ|σ ∈ I } is a partition of a set A, then we obtain a
corresponding equivalence relation Rπ defined as follows: the pair (x, y) belongs
to the subset Rπ ⊆ A × A—that is, x and y are Rπ-related—if and only if they
belong to the same component of the partition π. Thus there is a one-to-one
correspondence between equivalence classes on a set A and the partitions of the
set A.

5. Partially ordered sets: Suppose a relation R on a set A, satisfies the following
three properties:

(a) (Reflexive Property) For each element a of A, (a, a) ∈ R.
(b) (Transitive property) If a is related to b and b is related to c then one must

have a related to c by the specified relation R.
(c) (Antisymmetric property) If (a, b) and (b, a) are both members of R, then

a = b.

A set A together with such a relation R is called a partially-ordered set or poset,
for short. Partially ordered sets are endemic throughout mathematics, and are
the natural home for many basic concepts of abstract algebra, such as chain
conditions, dependence relations or the statement of “Zorn’s Lemma”. Even the
famous Jordan-Hölder Theorem is simply a theorem on the existence of interval
measures in meet-closed semi-modular posets.
One often denotes the poset relation by writing a ≤ b, instead of (a, b) ∈ R.
Then the three axioms of a partially ordered set (A,≤) read as follows:

(a) x ≤ x for all x ∈ A.
(b) If x ≤ y and y ≤ z, then x ≤ z.
(c) If x ≤ y and y ≤ x , then x = y.

Note that the third axiom shows that the relations x1 ≤ x2 ≤ · · · ≤ xn ≤ x1
imply that all the xi are equal.
A simple example is the relation of “being contained in” among a collection
of sets. Note that our definition of equality of sets, realizes the anti-symmetric
property. Thus, if set A is contained in set B, and set B is contained in set A then
the two sets are the same collection of objects—that is, they are equal as sets.

6. Power sets: Given a set X , there is a set 2X of all subsets of X , called the power
set of X. In many books, for example, Keith Devlin’s The Joy of Sets [16], the
notation P(X) is used in place of 2X . In Example 2 on p. 35, we introduce
this notation when we regard 2X as a partially ordered set with respect to the
containment relation between subsets—at which point it is called the “power
poset”. But in fact, virtually every time one considers the set 2X , one is aware of
the pervasive presence of the containment relation, and so might as well regard
it as a poset. Thus in practice, the two notations 2X and P(X) are virtually
interchangeable. Most of the time we will use P(X), unless there is some reason
not to be distracted by the containment relation or for the reason of a previous
commitment of the symbol “P”.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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7. Mappings: The word “mapping” is intended to be indistinguishable from the
word “function” as it is used in most literature. We may define a mapping R :
X → Y as a subset R ⊆ X×Y with the property that for every x ∈ X , there exists
exactly one y ∈ Y such that the pair (x, y) is in R.5 Then the notation y = R(x)
simply means (x, y) ∈ R and we metaphorically express this fact by saying
“the function R sends element x to y”—as if the function was actively doing
something. The suggestive metaphors continue when we also render this same
fact—that y = R(x)—by saying that y is the image of element x or equivalently
that x is a preimage of y.

8. Images and range: If f : X → Y is a mapping, the collection of all “images”
f (x), as x ranges over X , is clearly a subset of Y which we call the image or
range of the function f and it is denoted f (X).

9. Equality of mappings: Two mappings are considered equal if they “do the same
things”. Thus if f and g are both mappings (or functions) from X to Y we say
that mapping f is equal to mapping g if and only if f (x) = g(x) for all x in X .
(Of course this does not mean that f and g are described or defined in the same
way. Asserting that two mappings are equal is often a non-obvious Theorem.)

10. Identity mappings: A very special example is the following: The mapping
1X : X → X which takes each element x of X to itself—i.e. f (x) = x—is
called the identity mapping on set X. This mapping is very special and is uniquely
defined just by specifying the set X .

11. Domains, codomains, restrictions and extensions of mappings: In defining
a mapping f : X → Y , the sets X and Y are a vital part of the definition of a
mapping or function. The set X is called the domain of the function; the set Y is
called the codomain of the mapping or function.
A simple manipulation of both sets allows us to define new functions from old
ones. For example, if A is a subset of the domain set X , and f : X → Y is a
mapping, then we obtain a mapping

f |A : A → Y

which sends every element a ∈ A to f (a) (which is defined a fortiori). This new
function is called the restriction of the function f to the subset A. If g = f |A,
we say that f extends function g.
Similarly, if the codomain Y of the function f : X → Y is a subset of a set B
(that is, Y ⊆ B), then we automatically inherit a function f |B : X → B just
from the definition of “function”. When f : X → Y is the identity mapping
1X : X → X , the replacement of the codomain X by a larger set B yields a
mapping 1X |B : X → B called the containment mapping.6

A mapping f : X → Y is said to be one-to-one or injective if any two dis-
tinct elements of the domain are not permitted to yield the same image element.

5Note that there is no grammatical room here for a “multivalued function”.
6Unlike the notion of “restriction”, this construction does not seem to enjoy a uniform name.
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This is another way of saying, that the fibre f −1(y) of each element y of Y is
permitted to have at most one element.
The reader should be familiar with the fact that the composition of two injec-
tive mappings is injective and that the composition of two surjective mappings
(performed in that chronological order) is surjective. She or he should be able
to prove that the restriction f |A : A → Y of any injective mapping f : X → Y
(here A is a subset of X ) is an injective mapping.

12. One-to-one mappings (injections) and onto mappings (surjections):
A mapping f : X → Y is called onto or surjective if and only if Y = f (X) as
sets. That means that every element of set Y is the image of some element of set
X , or, put another way, the fibre f −1(y) of each element y of Y is nonempty.
A mapping f : X → Y is said to be one-to-one or injective if any two distinct
elements of the domain are not permitted to yield the same image element. This
is another way of saying, that the fibre f −1(y) of each element y of Y is permit-
ted to have at most one element.
The reader should be familiar with the fact that the composition of two injec-
tive mappings is injective and that the composition of two surjective mappings
(performed in that chronological order) is surjective. She or he should be able
to prove that the restriction f |A : A → Y of any injective mapping f : X → Y
(here A is a subset of X ) is an injective mapping.

13. Bijections:
A mapping f : X → Y is a bijection if and only if it is both injective and
surjective—that is, both one-to-one and onto.
When this occurs, the fibre f −1(y) of every element y ∈ Y contains a unique
element which can unambiguously be denoted f −1(y). This notation allows us
to define the unique function f −1 : Y → X which we call the inverse of the
bijection f. Note that the inverse mapping possesses these properties,

f −1 ◦ f = 1X , and f ◦ f −1 = 1Y ,

where 1X and 1Y are the identity mappings on sets X and Y , respectively.
14. Examples using mappings:

(a) Indexing families of subsets of a set X with the notation {Xα}I (or {Xα}α∈I )
should be understood in its guise as a mapping I −→ 2X .7

(b) The construction hom(A, B) as the set of all mappings A −→ B. (This is
denoted B A in some parts of mathematics.) The reader should see that if A is
a finite set, say with n elements, then hom(A, B) is just the n-fold Cartesian
product of B with itself

B × B × · · · × B (with exactly n factors).

7Note that in the notation, the “α” is ranging completely over I and so does not itself affect the
collection being described; it is what logicians call a “bound” variable.



10 1 Basics

Also ifN denotes the collection of all natural numbers (including zero), then
hom(N, B) is the set of all sequences of elements of B.

(c) Recall from an earlier item (p. 5) that a partition of a set X is a collection
{Xα}I of non-empty subsets Xα of X such that (i) ∪α∈I Xα = X , and (ii)
the sets Xα are pairwise disjoint—that is, Xα ∩ Xβ = ∅ whenever α �= β.
The sets Xα of the union are called the components of the partition.
A partition may be described in another way: as a surjection π : X −→ I .
Then the collection of fibers—that is, the sets π−1(α) := {x ∈ X |π(x) = α}
as α ranges over I —form the components of a partition. Conversely, if {Xα}I

is a partition of X , then there is a well-defined surjection π : X −→ I which
takes each element of X to the index of the unique component of the partition
which contains it.

15. A notational convention on partitions: In these lecture notes if A and B are
sets, we shall write X = A + B (rather than X = A∪̇B or X = A � B) to
express the fact that {A, B} is a partition of X with just two components A and
B. Similarly we write

X = X1 + X2 + · · · + Xn

when X possesses a partition with n components Xi , i = 1, 2, . . . , n. This
notation goes back to Galois’ rendering of a partition of a group by cosets of
a subgroup. The notation is very convenient since one doesn’t have to “doctor
up” a “cup” (or “union”) symbol. Unfortunately similar notation is also used in
more algebraic contexts with a different meaning—for example as a set of sums
in some additive group. We resolve the possible ambiguity in this way:
When a partition (rather than, say, a set of sums) is intended, the partition will
simply be introduced by the words “partition” or “decomposition”.

1.1.4 Notation for Compositions of Mappings

There is a perennial awkwardness cast over common mathematical notation for the
composition of two maps. Mappings are sometimes written as left operators and
sometimes as right operators, and the awkwardness is not the same for both choices
due to the asymmetric fact that English is read from left to right. Because of this,
right operators work much better for representing the action of sets with a binary
operation as mappings with compositions.

Then why are left operators used at all? There are two answers: Suppose there is
a division of the operators on X into two sets—say A and B. Suppose also that if
an operator a ∈ A is applied first in chronological order and the operator b ∈ B is
applied afterwards; that the result is always the same had we applied b first and then
applied a later. Then we say that the two operations “commute” (at least in the time
scale of their application, if not the temporal order in which the operators are read
from left to right). This property can often be more conveniently rendered by having
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one set, say A, be the left operators, and the other set B be the “right” operators,
and then expressing the “commutativity“as something that looks like an “associative
law”. So one needs both kinds of operators to do that.

The second reason for using left operators is more anthropological than mathe-
matical. The answer comes from the sociological accident of English usage. In the
English phrase “function of x”, the word “function” comes first, and then its argu-
ment. This is reflected in the left-to-right notation “ f (x)” so familiar from calculus.

Then if the composition α ◦ β were to mean “α is applied first and then β is
applied”, one would be obligated to write (α ◦ β)(x) = β(α(x)). That is, we must
reverse their “reading” order.

On the other hand, if we say α ◦ β means β is applied first and α is applied
second—so (α ◦ β)(x) = α(β(x))—then things are nice as far as the treatment
of parentheses are concerned, but we still seem to be reading things in the reverse
chronological order (unless we compensate by reading from right to left). Either way
there is an inconvenience.

In the vast majority of cases, the Mathematical Literature has already chosen the
latter as the least of the two evils. Accordingly, we adopt this convention:

Notation for Composition of Mappings: If α : X → Y and β : Y → Z , then
β ◦ α denotes the result of first applying mapping α to obtain an element y of Y ,
and then applying mapping β to y. Thus if the mappings α and β are regarded as
left operators of X , and Y , respectively, we have, for each x ∈ X ,

(β ◦ α)(x) := β(α(x)).

But if α and β are right operators on X and Y , respectively, we have, for each
x ∈ X ,

x(β ◦ α) = (xα)β.

But right operators are also very useful. A common instance is when (i) the set
F consists of functions mapping a set X into itself, and (ii) F itself possesses an
associative binary operation “∗” (see Sect. 1.4) and (iii) composition of two such
functions is the function representing the binary operation of them—that is f ∗ g
acts as g◦ f . In this case, it is really handier to think of the functions as right operators,
so that we can write

(x f )g = x f ∗g,

for all x ∈ X and f and g in F . For this reason we tend to view the action of groups
or rings as induced mappings which are right operators.

Finally, there are times when one needs to discuss “morphisms” which commute
with all right operators in F . It is then easier to think of these morphisms as left
operators, for if the function α commutes with the right operator g, we can express
this by the simple equation

α(xg) = (α(x))g, for all x ∈ X and g in F.
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So there are cases where both types of operators must be used.
The convention of these notes is to indicate right operators by exponential notation

or with explicit apologies (as in the case of right R-modules), as right multiplications.
Thus in general we adopt these rules:

Rule #1: The symbol α ◦ β denotes the composition resulting from first applying
β and then α in chronological order. Thus

(α ◦ β)(x) = α(β(x)).

Rule #2: Exponential notation indicates right operators. Thus compositions have
these images:

xα◦β = (xβ)α.

Exception to Rule #2: For right R-modules we indicate the right operators by right
“multiplication”, that is right juxtaposition. Ring multiplication still gets repre-
sented the right way since we have (mr)s = m(rs) for module element m and
ring elements r and s (it looks like an associative law). (The reason for eschewing
the exponential notation in this case is that the law mr+s = mr + ms for right
R-modules would then not look like a right distributive law.)

1.2 Binary Operations and Monoids

It is not our intention to venture into various algebraic structures at such an early
stage in this book. But we are forced to make an exception for monoids, since they
are always lurking around so many of the most basic definitions (for example, the
definition of interval measures on posets).

Suppose X is a set and let X (n) be the n-fold Cartesian product of X with itself.
For n > 0, a mapping

X (n) → X

is called an n-ary operation on X. If n = 1 such an operation is just a mapping of
X into itself. There are certain concepts that are brought to bear at the level of 2-ary
(or binary) operations that fade away for larger n.

We say that set X admits a binary operation if there exists a 2-ary function
f : X × X → X . In this case, it is possible to indicate the operation by a constant
symbol (say “∗”) inserted between the elements of an ordered pair—thus one might
write “x ∗ y” to indicate f ((x, y)) (which we shall write as f (x, y) to rid ourselves
of one set of superfluous parentheses).
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Indeed one might even use the empty symbol in this role—that is f (x, y) is
represented by “juxtaposition” of symbols: that is we write “xy” for f (x, y). The
juxtaposition convention seems the simplest way to describe properties of a general
but otherwise unspecified binary operation.

The binary operation on X is said to be commutative if and only if

xy = yx, for all x and y in X.

The operation is associative if and only if

x(yz) = (xy)z for all x, y, z ∈ X .

Again let us consider an arbitrary binary operation on X . Do not assume that it
is associative or commutative. The operation admits a left identity element if there
exists an element—say eL in X such that eL x = x for all x ∈ X . Similarly, we say
the operation admits a right identity element if there exists an element eR such that
xeR = x for all x ∈ X . However, if X admits both a left identity element and a right
identity element, say eL and eR , respectively, then the two are equal for

eR = eL eR = eL .

(The first equality is from eL being a left identity, and the second is from eR being a
right identity.) We thus have

Proposition 1.2.1 Suppose X is a set admitting a (not necessarily associative)
binary operation indicated by juxtaposition. Suppose this operation on X admits
at least one left identity element and at least one right identity element (they need not
be distinct elements). Then all right identity elements and all left identity elements
are equal to a unique element e for which ex = xe = x for all x ∈ X. (Such an
element e is called an identity element or a two-sided identity for the given binary
operation on X .)

A set admitting an associative binary operation is called a semigroup. For example
if X contains more than two elements and the binary operation is defined by xy = y
for all x, y ∈ X , then with respect to this binary operation, X is a semigroup with
many left identity elements and no right identity elements.

A semigroup with a two-sided identity is called a monoid. A semigroup (or
monoid) with respect to a commutative binary operation is simply called a com-
mutative semigroup (or commutative monoid).

We list several commonly encountered monoids.

1. The set N of non-negative integers (natural numbers) under the operation of
ordinary addition.

2. Let X be any set. We let M(X) be the set of all finite strings (including the empty
string) of the elements of X . A string is simply a sequence of elements of X . It
becomes a monoid under the binary operation of concatenation of strings. The
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concatenation of strings is the string obtained by extending the first sequence by
adjoining the second one as a “suffix”. Thus if s1 = (x1, x2, x3) and s2 = (y1, y2),
then the concatenation would be s1 ∗ s2 = (x1, x2, x3, y1, y2). (Note that con-
catenation is an associative operation, and that the empty string is the two sided
identity of this monoid.) For reasons that will be made clear in Chaps. 6 and 7,
it is called the free monoid on the set X.

3. A multiset of the set X is a function f : X → N that assigns to each element of
X a non-negative integer. In this sense a multiset represents a sort of inventory of
objects of various types drawn from a set of types X . The collection of all multisets
on set X , denoted M(X), admits a commutative binary operation which we call
“addition”. If f, g : X → N are two multisets, their sum f +g is defined to be the
function that sends x to f (x) + g(x). In the language of inventories, addition of
two multisets is just the merging of inventories. Since this addition is associative
and the empty multiset (the function with all values zero) is a two-sided identity,
the multisets on X form a monoid (M(X),+), with respect to addition. This
monoid is also called the free commutative monoid on set X , an appellation fully
justified in Chap. 7.
A multiset f is finite if the set of elements x at which the function f assumes
a positive value (called the support of the function) is a finite set. By setting
f (i) = ai , i ∈ N, we can write any finite multiset as a countable sequence
(a0, a1, . . .) of natural numbers which has only finitely many non-zero entries.
Addition of two multisets (a0, . . .) and (b0, . . .) is then performed coordinate-
wise. We denote this submonoid of finite multisets of elements chosen from X
by the symbol, (M<∞(X),+). If the set X is itself finite, then, of course, all
elements of M(X) are finite multisets.

1.3 Notation for Special Structures

There are certain sets and structures which are encountered over and over, and these
will have a special fixed notation throughout this book.

Standard Sets

1. N. The system of natural numbers, {0, 1, 2, . . .}. It is important for the student
to realize that this term is understood here to include the integer zero. It is a
well-ordered poset with the descending chain condition (see Chap. 2).

2. Z. This is the collection of all integers, {. . . ,−2,−1, 0, 1, 2, . . .}. It forms an
integral domain under the operations of addition and multiplication (Chap. 7).

3. Q. The field of rational numbers.
4. R. The field of real numbers.
5. C. The field of complex numbers.

http://dx.doi.org/10.1007/978-3-319-19734-0_6
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_7
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1.4 The Axiom of Choice and Cardinal Numbers

1.4.1 The Axiom of Choice

The student ought to be acquainted with and to be able to use
The Axiom of Choice: Suppose {Xα}I is a family of pairwise disjoint non-

empty sets. Then there exists a subset R of the union of the Xα, which meets each
component Xα in exactly a one-element set.

This assertion is about the existence of systems of representatives. If only finitely
many of the Xα are infinite sets this can be proved from ordinary set theory. But the
reader should be aware that in its full generality it is independant of set theory, and
yet, is consistent with it. The reader is thus encouraged to think of it as an adjunct
axiom to set theory, to make a note of each time it is used, and to quietly produce the
appropriate guilt feelings when using it.

The Axiom of Choice has many uses. For example it guarantees the existence of a
system of coset representatives for any subgroup of any group. In fact we shall see an
application of the axiom of choice in the very next subsection on cardinal numbers.

In the presence of set theory (which is actually ever-present for the purposes of
these notes) the Axiom of Choice is equivalent to another assertion called Zorn’s
Lemma, which should also be familiar to the reader. Since it appears in the setting
of partially ordered sets, a full discussion of Zorn’s Lemma is deferred to a section
of the next chapter.

The reader is not required to know a proof of the equivalence of the Axiom of
Choice and Zorn’s Lemma, or a proof of their consistency with set theory. At this
stage, all that is required to read these notes is the psychological assurance that one
cannot “get into trouble” by using these principles. For a good development of the
many surprising equivalent versions of the Axiom of Choice the curious student is
encouraged to peruse Sect. 2.2.7 of the book by Keith Devlin entitled The Joy of
Sets [16].

1.4.2 Cardinal Numbers

Not all collections of things are actually amenable to the axioms of set theory, as
Russell’s paradox illustrates. Nonetheless certain operations and constructions on
such collections can still exist. It is still possible that they may possess equivalence
relations and that is true of the collection of all sets.

We have mentioned that a mapping f : A −→ B which is both an injection and
a surjection is called a bijection or a one-to-one correspondence in a slightly older
language.8 In that case the partition of A defined by the surjection f (see above) is
the trivial partition of A into its one-element subsets. This means the fibering f −1

8A “one-to-one correspondence” is not to be confused with the weaker notion of a “one-to-one
mapping” introduced on p. 9. The latter is just an injective mapping which may or may not be a
bijection.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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defines an inverse mapping f −1 : B −→ A which is also a bijection satisfying
f ◦ f −1 = 1A and f −1 ◦ f = 1B as described in item 15 on p. 9. It is clear,
using obvious facts about compositions of bijections and identity mappings, that the
relation of two sets having a bijection connecting them is an equivalence relation.
The resulting equivalence classes are called cardinal numbers and the equivalence
class containing set X is denoted |X | and is called the cardinality of X .

Cardinal numbers possess an inherent partial ordering. One writes |X | ≤ |Y | if
and only there exists an injection f : X −→ Y .9 We are obligated to show three
things:

1. The relation “≤” is well-defined—that is, if, for sets X , Y and Z , we have that
|X | ≤ |Y | and |Y | = |Z |, then |X | ≤ |Y |.

2. The relation “≤” is transitive.
3. The relation “≤” is anti-symmetric.

First we observe that our definitions force the transitive law (item 2). Suppose,
for sets X , Y and Z , one has |X | ≤ |Y | and |Y | ≤ |Z |. Then from our definition of
“≤”, there exist injective mappings f : X → Y , and g : Y → Z . Then g ◦ f is an
injective mapping from X to Z , and so by definition, |X | ≤ |Y |.

Next the student may observe that |Y | = |Z | implies |Y | ≤ |Z |, for the former
statement implies a bijection g : Y → Z , and as any bijection is injective, |Y | ≤ |Z |
by definition. This observation together with the transitive law implies the statement
of item 2.

For the anti-symmetric law we appeal to a famous Theorem:

Theorem 1.4.1 (The Schröder-Bernstein Theorem) If, for two sets X and Y , one
has

|X | ≤ |Y | and |Y | ≤ |X |,

then |X | = |Y |.
Proof By hypothesis there are two injective (one-to-one) mappings f : X → Y
and g : Y → X . Our task is to use this data to devise a bijective (one-to-one onto)
mapping h : X → Y .

We may assume that neither of the injective mappings f or g is surjective (onto),
for otherwise either f or g−1 will serve as our desired mapping h.

As a result, f (X) is a proper subset of Y and, as g is injective, g( f (Y ) = (g ◦
f )(Y ) is a proper subset of g(Y ). In this way, one obtains a properly descending
chain of subsets:

X ⊃ g(Y ) ⊃ (g ◦ f )(X) ⊃ (g ◦ f ◦ g)(Y ) ⊃ · · · . (1.1)

Transposing the roles of f and g presents a second properly descending chain:

9It should be clear to the student that this partial ordering is on the collection of cardinal numbers.
It is not a relation between the sets themselves.
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Y ⊃ f (X) ⊃ ( f ◦ g)(Y ) ⊃ ( f ◦ g ◦ f )(X) ⊃ · · · . (1.2)

An element a ∈ X ∪Y is said to be an ancestor of element b ∈ Y ∪Y if and only if
there is a finite string of alternate applications of the mappings f and g which, when
applied to a, yields b. For example, if a, b ∈ X , and (g◦· · ·◦ f )(a) = b, for some finite
string g ◦ · · · ◦ f , then a is an ancestor of b. Thus, the non-empty set X0 := X −g(Y )

are the members of X which have no ancestors; the set X1 := g(Y ) − (g ◦ f )(X)

comprise the members of X with exactly one ancestor. We let Xk be denote the set
of elements of X with exactly k ancestors—namely, the non-empty set

Xk = g ◦ ( f ◦ g)(k−1)/2(Y ) − (g ◦ f )(k+1)/2(X), if k is odd, or

Xk = (g ◦ f )k/2(X) − g ◦ ( f ◦ g)k/2(Y ), if k is even.

The symbol X∞ will denote the set of elements of X which possess infinitely
many ancestors. If the intersection of the sets in the tower of Eq. (1.1) is empty, then
there are no elements with infinitely many ancestors. Thus, unlike the Xk , the set
X∞ could be empty.

Next we similarly define the non-empty sets Yk , as members of Y with exactly
k ancestors, and let Y∞ denote the set of those members of Y with infinitely many
ancestors. Now if an element z of X (or Y ) possesses infinitely many ancestors, then
so does g−1z and f (z) (or f −1(z) and g(z) when z ∈ Y ). Thus f restricted to X∞
induces a bijection h∞ : X∞ → Y∞ whether the sets are empty or not. It remains
only to devise a bijection X − X∞ → Y − Y∞.

We now have two partitions (into non-empty sets):

X − X∞ = X0 + X1 + X2 + · · ·
Y − Y∞ = Y0 + Y1 + Y2 + · · ·

If k is even, define hk : Xk → Yk+1 as the restriction of the mapping f to the
subset Xk . Note that hk is surjective, and so is a bijection. If k is odd, then Xk lies
in g(Y ) and so the inverse mapping g−1 may be applied to it, to produce a mapping
hk : Xk → Yk−1, that is surjective and injective since g was a mapping. Thus hk is
a bijection in this case as well.

Now h : X → Y is defined by h : x �→ hk(x) if x ∈ Xk , and x �→ h∞(x) if
x ∈ X∞. Since the hk are all bijections and the codomains of the hk reproduce the
partition of Y − Y∞ given above, h is our desired bijection. �

Remark This elementary proof due to J. König may be found in the book of P.M.
Cohn entitled Algebra, vol. 2 [10, p. 11] and in the book of Birkhoff and McLane [8].

These lecture notes presume and use two further results concerning cardinalities
of sets:

Theorem 1.4.2 If there exists a surjection f : X −→ Y then |Y | ≤ |X |.
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Proof With the axiom of choice one gets a subset X ′ containing exactly one element
xy from each fiber f −1(y) as y ranges over Y . One then has an injection Y → X ′
taking y to xy . We can then compose this with the inclusion mapping i : X ′ → X to
obtain the desired injection from Y into X . �

As usual, let N denote the set of natural numbers, that is, the set {0, 1, 2, . . .} of
all integers which are positive or zero (non-negative).

A cardinal number is defined to be the name of a cardinality equivalence class.
For a finite set F , the cardinality |F | is simply a natural number. Thus, the cardinality
of the empty set ∅ is 0, and for non-empty finite sets, this association with natural
numbers seems perfectly natural since any finite set is bijective with some finite initial
segment—say (1, 2, . . . n)—of the positive integers listed in their natural ordering.
Indeed, producing that bijection is what we usually refer to as “counting”.

One can define a product of two cardinal numbers, in the following way: If a =
|A| and b = |B| are two cardinal numbers, (A and B chosen representatives from
the equivalence classes of sets denoted by a and b, respectively), then one writes
ab = |A × B|, the cardinality of the Cartesian product of A and B. This product
is well-defined, for if one selected other representatives A′ and B ′ of these classes,
there are then bijections α : A → A′ and β : B → B ′ which can be used to define a
bijection A × B → A′ × B ′ defined by

(a, b) �→ (α(a),β(b)), for all (a, b) ∈ A × B.

Similarly, the mapping

((a, b), c) �→ (a, (b, c)), for all (a, b, c) ∈ A × B × C

defines a bijection (A× B)×C → A×(B ×C). Thus we see that taking the product
among cardinal numbers is an associative operation.

The reader will appreciate that this definition of product is completely compatible
with the definition of multiplication of positive integers familiar to most children. If
A contains three elements, and B contains seven, then the Cartesian product A × B
contains twenty-one distinct pairs. However now, our definition can be applied to
cardinalities of infinite sets, as well.

The simplest infinite set familiar to the young student is the set of natural numbers
itself. Custom has assigned the rather unique symbol ℵ0 for the cardinality of N. Any
set is said to be countably infinite, if its cardinality is ℵ0—or equivalently, there is a
bijection taking such a set to N.

Now a property which distinguishes infinite sets from finite sets is that an infinite
set can be bijective with a proper subset of itself. For example, N is bijective with
the non-negative even integers. It is also bijective with all of the natural numbers that
are perfect squares. Similarly, the integers Z are bijective with N by the mapping
defined by
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n �→ 2n for n ∈ N

−n �→ 2n − 1 for n ∈ N, n > 0.

It is also easy to see this:

Theorem 1.4.3 If k is a positive integer, then the cardinality of the union of k disjoint
copies of N is |N| = ℵ0.

Proof This is left as an exercise.

Now something peculiar happens:

Theorem 1.4.4 ℵ0 · ℵ0 = ℵ0

Proof We must produce a bijection f : N → N × N. First we assign the pair
(a, b) ∈ N×N to the point in the real (Cartesian) plane with those coordinates. All the
integral coordinates in and on the boundary of the first quadrant now represent points
of N×N. Now partition the points into non-empty finite sets according to the sum of
their coordinates. First comes (0, 0), then {(0, 1), (1, 0)}, then {(0, 2), (1, 1), (2, 0)},
and so on. Having ordered the points within each component of the partition by the
natural ordering of its first coordinate, we obtain in this way, a sequence S indexed
by N. Mapping the n-th member of this sequence to n − 1 produces a bijection
g : N × N → N. �

Corollary 1.4.5 |N| = |Z × Z|.
It is left as an exercise, to prove that |N| = |Q|, where, as usual, Q is the set of

rational numbers—the fractions formed from the integers.
In the next chapter, we shall generalize Theorem 1.4.4 by showing that for any

infinite cardinal number a, one has ℵ0 · a = a.
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Chapter 2
Basic Combinatorial Principles of Algebra

Abstract Many basic concepts used throughout Algebra have a natural home in
Partially Ordered Sets (hereafter called “posets”). Aside from obvious poset resi-
dents such as Zorn’s Lemma and the well-ordered sets, some concepts are more
wider roaming. Among these are the ascending and descending chain conditions,
the general Jordan-Hölder Theorem (seen here as a theorem on interval measures
of certain lower semillattices), Galois connections, the modular laws in lattices, and
general independence notions that lead to the concepts of dimension and transcen-
dence degree.

2.1 Introduction

The reader is certainly familiar with examples of sets X possessing a transitive
relation “≤” which is antisymmetric. Such a pair (X,≤) is called a partially ordered
set—often abbreviated as poset. For any subset Y of the poset X there is an induced
partial ordering (Y,≤) imposed on Y by the partially ordered set (X,≤) which
surrounds it: one merely restricts the relation “≤” to the pairs of Y × Y . We then call
(Y,≤) an induced poset of (X,≤).

Certainly one example of a partially ordered set familiar tomost readers is the poset
P(X) := (2X ,⊆) called the power poset of all subsets of X under the containment
relation.

Throughout this algebra course one will encounter sets X which are closed under
various n-ary operations subject to certain axioms—that is, some species of “alge-
braic object”. Each such object X naturally produces a partially ordered set whose
members are the subsets of X closed under these operations—that is, the poset of
algebraic subobjects of the same species. For example, If X is a group, then the poset
of algebraic subobjects is the poset of all subgroups of X . If R is a ring and M is a
right R-module, then we obtain the poset of submodules of M . Special cases are the
posets of vector subspaces of a right vector space V and the poset of right ideals of
a ring R.

In turn these posets have special induced posets: Thus the poset L<∞(V ) of all
finite-dimensional vector subspaces of a (possibly infinite-dimensional) vector space
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V is transparently a subposet of the poset of all vector subspaces of V . For example
from a group G one obtains the poset of normal subgroups of G, or more generally,
the poset of subgroups invariant under any fixed subgroup A of the automorphism
group of G. Similarly there are posets of invariant subrings of polynomial rings, and
invariant submodules for an R-module admitting operators. Finally, there are induced
posets of algebraic objects which are closed with respect to a closure operator on a
poset (perhaps defined by a Galois connection).

All of these examples will be made precise later. The important thing to note at
this stage is that

1. Partially ordered sets underly all of the algebraic structures discussed in this book.
2. Many of the crucial conditions which make arguments work are basically proper-

ties of the underlying posets alone and do not depend on the particular algebraic
species within which one is working: Here are the main examples:

(a) Zorn’s Lemma,
(b) the ascending and descending chain conditions,
(c) Galois connections and closure operators,
(d) interval measures on semimodular semilattices (The General Jordan-Hölder

Theorem), and
(e) dependence theory (providing the notion of “dimension”).

The purpose of this chapter is to introduce those basic arguments that arise strictly
from the framework of partially ordered sets, ready to be used for the rest of this
book.

2.2 Basic Definitions

2.2.1 Definition of a Partially Ordered Set

A partially ordered set, (P,≤), hereafter called a poset, is a set P with a transitive
antireflexive binary relation ≤. This means that for all elements x, y and z of P ,

1. (transitivity) x ≤ y and y ≤ z together imply x ≤ z, and
2. (antireflexivity or antisymmetry)1 the assertions x ≤ y and y ≤ x together imply

x = y.

It is often useful to view elements of a poset pictorially, as if they were vertices
placed in vertical plane. Thus we say “x is below y” or “y is above x” if x ≤ y in
some poset.2

1In the literature on binary relations, the term “antisymmetric” often replaces its equivalent “antire-
flexive”.
2This is just metaphorical language, nothing more.
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We write y ≥ x if x ≤ y and write x < y if x ≤ y and x �= y. In the latter case
we say that x is properly below y, or, equivalently, that y is properly above x .

2.2.2 Subposets and Induced Subposets

Now let (P,≤) be a poset, and suppose X is a subset of P with a relation ≤X for
which (X,≤X ) is a partially ordered set. In general, there may be no relation between
(X,≤X ) and the order relation ≤ that the elements of X inherit from (P,≤). But if
it is true that for any x and y in X ,

x ≤X y implies x ≤ y, (2.1)

then we say that (X,≤X ) is a subposet of (P,≤). Thus in a general subposet it
might happen that two elements x1 and x2 of (X,≤X ) are incomparable with respect
to the ordering ≤X even though one is bounded by the other (say, x1 ≤ x2) in the
ambient poset (P,≤).

However, if the converse implication in Eq. (2.1) holds for a subposet, we say that
poset is an induced subposet. Formally, (X,≤X ) is defined to be an induced subposet
of (P,≤), if and only if X ⊆ P and for any x and y in X ,

x ≤X y if and only if x ≤ y. (2.2)

Suppose (P,≤) is a poset, and X is a subset of P . Then we can agree to induce the
relation≤ on the subset X—that is, for any two elements x and y of the subset X , we
agree to say that x ≤X y if and only if x ≤ y in the poset (P,≤). Thus an induced
subposet of (P,≤) is entirely determined once its set of elements is specified.

The empty set is considered to be an induced subposet of any poset.
Let X and Y be two subsets of P where (P,≤) is a poset. We make these obser-

vations:

1. If (X,≤X ) is a partial ordering on X and if (Y,≤Y ) is a partial ordering on Y
such that (X,≤X ) is an induced subposet of (Y,≤Y ) and (Y,≤Y ) is an induced
subposet of (P,≤), then (X,≤X ) is also an induced subposet of (P,≤). This fact
means that if X is any subset of P , and (P,≤) is a poset, we don’t need those
little subscripts attached to the relation “≤” any more: we can unambiguously
write (X,≤) to indicate the subposet induced by (P,≤) on X . In fact, when it is
clear that we are speaking of induced subposets, we may write X for (X,≤) and
speak of “the induced poset X”.
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2. If (X,≤) and (Y,≤) are induced subposets of (P,≤) then we can form the
intersection of induced posets (X ∩ Y,≤). In fact, since this notion depends only
on the underlying sets, one may form the intersection of induced posets

(⋂
σ∈I

Xσ,≤
)

,

from any family {(Xσ,≤)|σ ∈ I } of induced posets of a poset (P,≤).

Perhaps the most important example of an induced poset is the interval. Suppose
(P,≤) is a poset and that x ≤ y for elements x, y ∈ P . Consider the induced poset

[x, y]P := {z ∈ P|x ≤ z ≤ y}.

This is called the interval in (P,≤) from x to y. If (P,≤) is understood, we would
write [x, y] in place of [x, y]P . But we must be very careful: there are occasions in
which one wishes to discuss intervals within an induced poset (X,≤), in which case
one would write [x, y]X for the elements z of X between x and y. Clearly one could
mix the notations and write [x, y]X := [x, y] ∩ X , the intersection of two induced
posets.

2.2.3 Dual Posets and Dual Concepts

Suppose now that (P,≤) is given. One may obtain a new poset, (P∗,≤∗) whose
elements are exactly those of P , but in which the partial ordering has been reversed!
Thus a ≤ b in (P,≤) if and only if b ≤∗ a in (P∗,≤∗). In this case, (P∗,≤∗) is
called the dual poset of (P,≤).

We might as well get used to the idea that for every definition regarding (P,≤),
there is a “dual notion”—that is, the generically-defined property or set in (P,≤)

resulting from defining the same property or set in (P∗,≤∗). Examples will follow.

2.2.4 Maximal and Minimal Elements of Induced Posets

An element x is said to be maximal in (X,≤) if and only if there is no element in X ,
which is strictly larger than x—that is x ≤ y for y ∈ X implies x = y.

Note that this is quite different than the more specialized notion of a global
maximum (over X ) which would be an element x in X for which x ′ ≤ x for all
elements x ′ of X . Of course defining something does not posit its existence; (X,≤)

may not even possess maximal elements, or if it does, it may not contain a global
maximum.
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We let max X denote the full (but possibly empty) collection of all maximal
elements of (X,≤).

By replacing the symbol “≤” by “≥” in the preceding definitions, we obtain the
dual notions of a minimal element and a global minimum of an induced poset (X,≤).

Of course some posets may contain no minimal elements whatsoever.

2.2.5 Global Maxima and Minima

If a poset (P,≤) possesses a global minimum, then, by the antisymmetric property,
that element is the unique global minimum, and so deserves a special name. We call
it the zero-element of the poset.

Dually, there may exist a global maximum (a “one-element”, denoted 1P , or
something similar) which is an element in (P,≤) with the property that all other
elements are less than or equal to it. Obviously this 1P is the zero-element of the
dual poset, (P∗,≤∗).

Some posets have a “zero”, some have a “one”, some have both, and some have
neither.

But whether or not a “zero” is present in P , one can always adjoin a new element
declared to be properly below all elements of P to obtain a new poset 0(P). For
example, if P contains just one element p, then 0(P) consists of just two elements
{01, p} with 01 < p—called a chain of length one. Iterating this construction with
the same meaning of P , we see that 02(P) introduces a “new zero element”, 02, to
produce a 3-element poset with 02 < 01 < p—that is, a chain of length two. Clearly
0k(P) would be a poset with elements (up to a renaming of the elements) arranged
as

0k < 0k−1 < · · · < 01 < p,

which we call a chain of length k. Of course this construction can also be performed
on any poset P so that 0k(P) in general becomes the poset P with a tail of length
k − 1 adjoined to it from below—a sort of attached “kite-tail”.

Also, by dually defining 1k(P) one can attach a “stalk” of length k − 1 above an
arbitrary poset P .

2.2.6 Total Orderings and Chains

A poset (P,≤) is said to be totally ordered if {c, d} ⊆ C implies c ≤ d or d ≤ c.
Sometimes this notion is referred to as “simply ordered”. Obviously any induced
poset of a totally ordered set is also totally ordered. Any maximal (or minimal ele-
ment) of a totally ordered set is in fact a global maximum (or global minimum).
Familiar examples of totally ordered sets are obtained as induced posets of the
real numbers under its usual ordering, for example (1) the rational numbers, (2)
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the integers, (3) the positive integers (4) the open, half-closed or closed intervals
(a, b), [a, b), (a, b], or [a, b] of the real number system, or (5) the intersections of
sets in (4) with those in (1)–(3).

A chain of poset (P,≤) is an induced subposet (C,≤)which happens to be totally
ordered.

2.2.7 Zornification

Although an induced poset (X,≤) of a poset (P,≤) may not have a maximum, it
might have an upper bound—that is, an elementm in P which is larger than anything
in the subset X (precisely rendered by “m ≥ x for all elements x of X”). (Of course
if it happened that such an element m were already in X then it would be a global
maximum of X ).

The dual notion of “lower bound” should be easy to formulate.
The existence upper bounds on a class of induced posets of (P,≤) is connected

with a criterion for asserting that maximal elements exist in P .

Zorn’s Lemma: Suppose (P,≤) is a poset for which any chain has an upper bound.
Then any element of (P,≤) lies below a maximal element.

However, Zorn’s Lemma is not a Lemma or even a Theorem. It does not follow
from the axioms of set theory (Zermelo-Fraenkel), nor does it contradict them. That
is why we called it “a criterion for an assertion”. Using it can never produce a
contradiction with formal set theory. But since its denial also cannot produce such a
contradiction, one can apparently have it either way. The experiencedmathematician,
though not always eschewing its use, at least prudently reports each appeal to “Zorn’s
Lemma”.3

Zorn’s Lemma is used in the next subsection. After that, it is used only very
sparingly in this book.

2.2.8 Well-Ordered Sets

A well-ordered set is a special kind of totally ordered set. A poset (X,≤) is said to
possess the well-ordered property (or is said to be well-ordered) if and only if

(a) (X ≤) is totally ordered.
(b) every non-empty subset of X possesses a (necessarily unique) minimal member.

3 Even an appropriate feeling of guilt is not discouraged. Who knows? Each indulgence in Zorni-
fication might revisit some of you in another life.
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It should be clear from this definition that every induced subposet of awell-ordered
set is also well-ordered.4

Any subset X of a well-ordered set A is called an initial segment if it possesses
the property that if x ∈ X and y ≤ x , then y ∈ X . (In the next subsection, we shall
meet sets with this property in the context of general posets. There they are called
order ideals.) An example of an initial segment of a well-ordered set would be the
set L(a) := {x ∈ A|x < a}. (Note that x < a means x ≤ a while x �= a.)

Lemma 2.2.1 Suppose X is an initial segment of the well-ordered set (A,≤). Sup-
pose X �= A. Then X has the form L(a), for some element a ∈ A.

Proof By hypothesis, the set A − X , being non-empty, possesses a minimal element
a. All elements of L(a) belong to X by the minimality of a. Conversely, all elements
of X are properly less than a by the definition of a. Thus X = L(a). �

Theorem 2.2.2 Any set A possesses a total ordering ≤ with respect to which it is
well-ordered.

Proof This proof is a classic application of Zorn’s lemma. Let W denote the full
collection of possible well-ordered posets (W,≤W ), where W is a subset of A. (Note
that the same subset W may possess many possible well-orderings (W,≤), each
representing a distinct element of W .) If (W1,≤1) and (W2,≤2) are two elements
of W , we write

(W1,≤1) � (W2,≤2)

if and only if (W1,≤1) is an initial segment of the well-ordered poset (W2,≤2).
(Specifically, this means that there is an element x ∈ W2 such that W1 = {z ∈
W2|z ≤2 x} and the relation ≤1 is just ≤2 restricted to W1 × W1.) Since an initial
segment of an initial segment is an initial segment, the relation � is transitive and
reflexive. It is clearly antisymmetric. In this way the collection of well-ordered sets
W itself becomes a partially-ordered set with respect to the relation �.

Now consider a chain C = {wλ = (Wλ,≤λ)|λ ∈ I }, in the poset (W,�).
Form the set-theoretic union WC := ∪λ∈I Wλ. WC inherits a natural total ordering
≤ derived from the ≤λ. If x and y are elements of WC , then x ∈ Wλ and y ∈ Wμ

for some indices λ,μ ∈ I . Since C is a chain, one of these W ’s is contained in
the other, so we may assume (Wλ,≤λ) � (Wμ,≤μ). Since both x and y lie in the
totally ordered set Wμ, we write x ≤ y or y ≤ x according as x ≤μ y or y ≤μ x .
In other words, in comparing two elements of WC , we utilize the comparison that
works in any of the posets (Wλ,≤λ) or (Wμ,≤μ) that may contain both of them.
The comparisons will always be consistent since each poset is an initial segment of
any poset above it in the chain.

Next, we must show that the poset (WC ,≤) is well-ordered. For that purpose,
consider a non-empty subset S of WC . Choose any x ∈ S. Then x ∈ Wλ, for some

4We shall see very soon that a well-ordered poset is simply a chain with the descending chain
condition (see p. 44 and Corollary 2.3.6).
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λ ∈ I . Now, (Wλ,≤λ) is a well ordered set, and ≤λ is the global relation ≤ of
WC restricted to Wλ. Since S ∩ Wλ is non-empty, it contains a minimal element
m. We claim that m is a minimal element of the induced poset (S,≤). If this were
false, one could find a second element m0 ∈ S, with m0 ≤ m but m0 �= m. But as
m0 ∈ S ⊂ WC , m0 lies in some Wμ. Now if Wμ ⊆ Wλ, then m0 ∈ S ∩ Wλ, against
the minimality of m. Thus, as C is a chain, we must have that (Wλ,≤λ) � (Wμ,≤μ).
But in that case, Wλ is an initial segment of Wμ so that m0 < m implies that m0 is
in Wλ. We have just seen that this is impossible as that contradicts the minimality of
m in S ∩ Wλ. Thus no such m0 exists, and m is the unique minimal element of S.

At this point, (WC ,≤) is a member of (W,�) that is an upper bound of all mem-
bers of the chain C . Since the chain C is arbitrary, we have achieved the conditions
necessary for applying Zorn’s Lemma. Thus we may assume there exists a maximal
element (Wm,≤m) in the poset (W,�).

If x were a point of A − Wm , one could extend the relation ≤m to ({x} ∪ Wm) ×
({x} ∪ Wm) by declaring w ≤m x for all w ∈ {x} ∪ Wm . Then Wm would become an
initial segment of ({x} ∪ Wm,≤m), and the latter is again a well-ordered set. Thus
one obtains (Wm,≤m) ≺ ({x} ∪ Wm,≤m), against the maximality of (Wm,≤m)

in (W,�). So no such x exists, Wm = A, and we have obtained a well-ordering,
(A,≤m). �

It is time to examine the actual structure of a well-ordered set. First, any well-
ordered set (A,≤) inherits a simple partition into equivalence classes. Let us say that
two elements of x and y of A are near, if and only if there are only a finite number
of elements between x and y—that is, if x ≤ y, the set {z ∈ A|x ≤ z ≤ y} is finite,
and if y ≤ x then {z ∈ A|y ≤ z ≤ x} is finite.

Now, using only the fact that A is a totally-ordered set, we can conclude that
the nearness relation between points, is transitive. For, given any three points,
{a, b, c}, they possess some order—say a ≤ b ≤ c. Now if two of the intervals
[a, b], [b, c], [a, c] are finite, then so is the third interval. It follows that the relation
of nearness is transitive. It is obviously symmetric and reflexive, and so the “near-
ness” relation is an equivalence relation on the elements of A. We let {Aλ} denote
the collection of nearness-equivalence classes of the well-ordered set A.

Awell-ordered set Amayormay not contain amaximal element. For example, any
well-ordered finite set contains a maximal element, while the infinite set of natural
numbersN, under its natural ordering, is awell-ordered set with nomaximalmember.
If A contains a maximal element m A, let Amax denote the near-ness equivalence
class containing m A. In that case, there are only finitely many elements between the
minimal element of the set Amax and the maximal element m A, forcing Amax to be
a finite set in this case. Otherwise, if there is no maximal element, let Amax be the
empty set. Whether or not a maximal element exists in A, let A∗ denote the set of
non-maximal members of A.

The well-ordered property produces an injective mapping

σ : A∗ → A
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which takes each non-maximal element a to the least member σ(a) of the set {x ∈
A|x > a}.We call a the predecessor ofσ(a). Note that a < σ(a) and that no elements
properly lie between them. Similarly, for any n ∈ N, if σn(a) is not maximal, there
are exactly n − 1 elements lying properly between a and σn(a). Thus the elements
of {σn(a)|σn−1(a) ∈ A∗} all belong to the same nearness class.

Lemma 2.2.3 Let Aλ be any nearness equivalence class of the well-ordered set A.

1. There is a least member aλ, of the set Aλ. It has no predecessors.
2. Conversely, is x is an element of A that has no predecessor, then x is the least

member of the near-ness equivalence class that contains it.
3. If Aλ = Amax —that is, it contains an element that is maximal in A—then it is a

finite set.
4. If Aλ �= Amax , then Aλ = {σn(aλ)|n ∈ N}, where aλ is the least member of the

set Aλ. In this case Aλ is an infinite countable set.

Proof Part 1. If aλ = σ(x), then by the definition of σ, x is near aλ, while being
properly less than it. In that case, aλ could not be the least member of its nearness
class.

Part 2. If x has no predecessor and lies in Aλ, then x is near aλ, forcing x = σn(aλ)

for some natural number n. But since x has no predecessor, n = 0, and so x = aλ.
Part 3. If m A were a maximal element of (A,≤), then m A would be near the least

member amax of its nearness equivalence class Amax , forcing m A = σn(amax ), for a
natural number n. Since m A is maximal in Amax , |Amax | = n.

Part 4. Suppose Aλ �= Amax . Then each element x of Aλ is non-maximal, and so
has a successor σ(x) that is distinct from it. Thus if aλ is the least member of Aλ,
{σn(aλ)|n ∈ N} is an infinite set. Clearly, A ⊆ {σn(aλ)|n ∈ N} ⊆ A. �

This analysis ofwell-ordered sets has implications for cardinal numbers in general.

Corollary 2.2.4 Let A be any infinite set. Then A is bijective with a set of the form
N × B. In other words, any infinite cardinal number a has the form a = ℵ0b, for
some cardinal number b.5

Proof By Theorem 2.2.2 one may impose a total ordering on the set A to produce a
well-ordered set (A,≤). By Lemma 2.2.3 the set Amax of elements near a maximal
element, is either finite or empty. Since A is infinite, the set A − Amax is non-empty
and has a partition

A − Amax =
⋃

{Aλ|λ ∈ I }.

where I indexes the nearness classes distinct from Amax . Each class Aλ contains a
unique minimal element aλ which has no predecessor, and each element of Aλ can

5The definition of cardinal number appears on p. 18, and ℵ0 is defined to be the cardinality of the
natural numbers in the paragraphs that follow.
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be written as σn(aλ) for a unique natural number N. Thus we have a bijection

A − Amax → N × P−

where P− = {aλ|λ ∈ I } is the set of all elements of A which have no predecessor
and are not near a maximal element.. The mapping takes an arbitrary element x of
A − Amax to the pair (n, aλ) ∈ N × P− where aλ is the unique minimal element of
the nearness-class containing x and x = σn(aλ).

Now one can adjoin the finite set Amax to just one of the classes Aλ without
changing the cardinality of that class. This produces an adjusted bijection A →
N × P−, as desired. �

Corollary 2.2.5 Suppose A is an infinite set. Then A is bijective with N × A. For
cardinal numbers, if a is any infinite cardinal number, then a = ℵ0 · a.

Proof It suffices to prove the statement in the language of cardinal numbers. By
Corollary 2.2.4, we may write a = ℵ0 · b, for come cardinal number b. Now

ℵ0 · a = ℵ0 · (ℵ0 · b) = (ℵ0 · ℵ0) · b = ℵ0 · b = a,

by Theorem 1.4.4 and the associative law for multiplying cardinal numbers.�

The above Corollary is necessary for showing that any two bases of an inde-
pendence theory (or matroid) have the same cardinality when they are infinite (see
Sect. 2.6). That result in turn is ultimately utilized for further dimensional concepts,
such as dimensions of vector spaces and transcendence degrees of field extensions.

2.2.9 Order Ideals and Filters

For this subsection fix a poset (P,≤). An order ideal of P is an induced subposet
(J,≤), with this property:

If y ∈ J and x is an element of P with x ≤ y, then x ∈ J .

In other words, an order ideal is a subset J of P with the property that once some
element belongs to J , then all elements of P below that element are also in J . Note
that the empty subposet is an order ideal.

The reader may check that the intersection of any family of order ideals is an order
ideal. (Since order ideals are a species of induced posets, we are using “intersection”
here in the sense of the previous Sect. 2.1.2 on induced subposets.) Similarly, any
set-theoretic union of order ideals is an order ideal.

Then there is the dual notion. Suppose (F,≤∗) were an order ideal of the dual
poset (P,≤∗). Then what sort of induced poset of (P,≤) is F? It is characterized
by being a subset of (P,≤) with this property:

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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If x ∈ F and y is any element of P with x ≤ y, then y ∈ F .

Any subset of P with this property is called a filter.
There is an easy way to construct order ideals. Take any subset X of P . Then

define
PX := {y ∈ P|y ≤ x for some elementx ∈ X}.

Note that always X ⊆ PX . In fact the order ideal PX is “generated” by X in the
sense that it is the intersection of all order ideals that contain X . Also, we understand
that P∅ = ∅.

In the particular case that X = {x} we write Px for P{x}, and call Px the principal
order ideal generated by x (or just a principal order ideal if x is left unspecified).

Of course any order ideal has the form PX (all we have to do is set X = PX ) but in
general, we do not need all of the elements of X . For example if x1 < x2 for xi ∈ X ,
and if we set X ′ := X − {x1}, then PX = PX ′ . Thus if we throw out elements of X
each of which is below an element left behind, the new set defines the same order
ideal that X did. At first the student might get the idea that we could keep throwing
out elements until we are left with an antichain. That is indeed true when X is a finite
set, or more generally if every element of X is below some member of max(X,≤).
But otherwise it is generally false.

There is another kind of order ideal defined by a subset X of poset P . We set

∧
PX :=

⋂
x∈X

Px = {y ∈ P|y ≤ x for every x ∈ X}.

Of course this order ideal may be empty. If it is non-empty we say that the set X has
a lower bound in P—that is, there exists an element y ∈ P which is below every
element of the set X .

The dual notion of the filter generated by X should be transparent. It is the set
P X of elements of P which bound from above at least one element of X . It could be
described as

P X := {y ∈ P|Py ∩ X �= ∅}.

If X = {x}, then P X is called a principal filter. By duality, the intersection and union
of any collection of filters is a filter.

Then there is also the filter∧
P X := {y ∈ P|x ≤ y for all x ∈ X},

which may be thought of as the set of all “upper bounds” of the set X . Of course it
may very well be the empty set.

An induced subposet (X,≤) of (P,≤) is said to be convex if, whenever x1 and
x2 are elements of X with x1 ≤ x2 in (P,≤), then in fact the entire interval [x, y]P

is contained in X . Any intersection of convex induced subposets is convex. All order
ideals, all filters, and all intersections and unions thereof are convex.
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2.2.10 Antichains

The reader is certainly familiar with many posets which are not totally ordered, such
as the set P(X) of all subsets of a set X of cardinality at least two. Here the relation
“≤” is containment of sets. Again there are many structures that can be viewed as a
collection of sets, and thus become a poset under this same containment relation: for
example, subspaces of a vector space, subspaces of a point-line geometry, subgroups
of a group, ideals in a ring and R-submodules of a given R-module and in general
nearly any admissible subobject of an object admitting some specified set of algebraic
properties.

Two elements x and y are said to be incomparable if both of the statements x ≤ y
and y ≤ x are false. A set of pairwise incomparable elements in a poset is called an
antichain.6

The set max(X,≤) where (X,≤) is an induced subposet of (P,≤), is always an
antichain.

2.2.11 Products of Posets

Suppose (P1,≤) and (P2,≤) are two posets.7 The product poset (P1 × P2,≤) is
the poset whose elements are the elements of the Cartesian product P1 × P2, where
element (a1, a2) is declared to be less-than-or-equal to (b1, b2) if and only if

a1 ≤ b1 and also a2 ≤ b2.

It should be clear that this notion can be extended to any collection of posets
{(Pσ,≤)|σ ∈ I } to form a direct product of posets.. Its elements are the elements of
the Cartesian product �σ∈I Pσ—that is, the functions f : I → U , where U is the
disjoint union of the sets Pσ with the property that at any σ in I, f always assumes a

6In a great deal of the literature, sets of pairwise incomparable elements are called independent.
Despite this convention, the term “independent” has such a wide usage in mathematics that little is
served by employing it to indicate the property of belonging to what we have called an antichain.
However, some coherent sense of the term “independence” is exposed in Sect. 2.6 later in this
chapter.
7Usually authors feel that the two poset relations should always have distinguished notation—that
is, one should write (P1,≤1) and (P2,≤2) instead of what we wrote. At times this can produce
intimidating notation that would certainly finish off any sleepy students. Of course that precaution
certainly seems to be necessary if the two underlying sets P1 and P2 are identical. But sometimes
this is a little over-done. Since we already have posets denoted by pairs consisting of the set Pi and a
symbol “≤”, the relation “≤” is assumed to be the one operating on set Pi and we have no ambiguity
except possibly when the ground sets Pi are equal. Of course in the case the two “ground-sets”
are equal we do not hesitate for a moment to adorn the symbol “≤” with further distinguishing
emblems. This is exactly what we did in defining the dual poset. But even in the case that P1 = P2
one could say that in the notation, the relation “≤” is determined by the name Pi of the set, rather
then the actual set, so even then the “ordered pair” notation makes everything clear.
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value in Pσ . Then for functions f and g we have f ≤ g if and only if f (σ) ≤ g(σ)

for each σ ∈ I .
Suppose now, each poset Pσ contains its own “zero element”, 0σ less than or equal

to all other elements of Pσ . We can define a direct sum of posets {(Pσ,≤)} as the
induced subposet of the direct product consisting only of the functions f ∈

∏
σ∈I

Pσ

for which f (σ) differs from 0σ for only finitelymany σ. This poset is denoted
∐
σ∈I

Pσ .

2.2.12 Morphisms of Posets

Let (P,≤P ) and (Q,≤Q) be two posets. A mapping f : P → Q is said to be order
preserving (or is said to be a poset morphism) if and only if

x ≤P y implies f (x) ≤Q f (y).

Evidently, the composition g ◦ f of two poset morphisms f : (P,≤P ) → (Q,≤Q)

and g : (Q,≤Q) → (R,≤R) is also a poset morphism (P,≤P ) → (R,≤R). Clearly
the identity mapping 1P : P → P is a morphism. If f : P → Q is a poset morphism
as above, then f ◦ 1P = 1Q ◦ f = f . The student should be aware that if x and
y are incomparable elements of P , it is still quite possible that f (x) ≤Q f (y) or
f (y) ≤Q f (x) in the poset (Q,≤Q).
To clarify this point a bit further, using the morphism f : (P. ≤P ) → (Q,≤Q),

let us form the image poset f (P) := ( f (P),≤ f ) whose elements are the images
f (p), p ∈ P , and we write f (x) ≤ f (y) if and only if there is a pair of elements
(x ′, y′) ∈ f −1( f (x)) × f −1( f (y)), the Cartesian product of the fibers above f (x)

and f (y), such that x ′ ≤P y′. Then the image poset ( f (P),≤ f ) is a subposet of
(Q,≤Q).

We say that the morphism f is full if and only if the image poset ( f (P),≤) is an
induced poset of (Q,≤Q). Thus for a full morphism, we have a ≤Q b in the image,
if and only if there exist elements x and y in P such that x ≤P y and f (x) = a and
f (y) = b.
A bijection f : P → Q is an isomorphism of posets if and only if it is also a full

poset morphism. Thus if f is an isomorphism, we have f (x) ≤Q f (y) if and only
if x ≤P y. In this case the inverse mapping f −1 : Q → P is also an isomorphism.
Thus an isomorphism really amounts to changing the names of the elements and the
name of the relation but otherwise does not change anything. Isomorphism of posets
is clearly an equivalence relation and we call the corresponding equivalence classes
isomorphism classes of posets.

If the order preserving mapping f : P → Q is injective then the posets (P,≤)

and ( f (P),≤ f ) are isomorphic, and we say that f is an embedding of poset (P,≤)

into (Q,≤). The following result, although not used anywhere in this book, at least
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displays the fact that one is interested in cases in which the image poset of an
embedding is not an induced subposet of the co-domain.

Any poset (P,≤) can be embedded in a totally ordered set.8

2.2.13 Examples

Example 1 (Examples of totally ordered sets) Isomorphism classes of these sets are
called ordinal numbers. The most familiar examples are these:

1. The natural numbers This is the set of non-negative integers,

N := {0, 1, 2, 3, 4, 5, 6, . . .},

with the usual ordering

0 < 1 < 2 < 3 < 4 < 5 · · · .

Rather obviously, as an ordered set, it is isomorphic to the chain

1 < 2 < 3 < · · ·

or even
k < k + 1 < k + 2 < k + 3 < · · · ,

k any integer, under the shift mapping n → n + k − 1.9

Recall that a poset (X,≤) is said to possess the well-ordered property (or is said
to be well-ordered) if and only if (i) (X,≤) is totally ordered, and (ii) every non-
empty subset of X possesses a (necessarily unique) minimal member. It should
be clear from this definition that every induced subposet of a well-ordered poset
is also well-ordered. The point here is that the natural numbers is a well-ordered
poset under the usual ordering. This fundamental principle is responsible for some
of the basic properties concerning greatest common divisors (see Chap. 3, p. 2).

2. The system of integers

Z := {. . . < −2 < −1 < 0 < 1 < 2 < . . .}.

8 Many books present an equivalent assertion “any poset has a linear extension”. The proof is an
elementary induction for finite posets. For infinite posets it requires some grappling with Zorn’s
Lemma and ordinal numbers.
9This isomorphism explains why it is commonplace to do an induction proof with respect to the
second of these examples beginning with 1 rather than the first, which begins with 0.

In enumerative combinatorics, for example, the “natural numbers” N are defined to be all non-
negative integers, not just the positive integers (see Enumerative Combinatorics, vol 1, p. 1. by R.
Stanley) [1].

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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One notes that any subset of Z which possesses a lower bound, forms a well-
ordered induced subposet of Z.

3. The systemQ of the rational numbers with respect to the usual ordering—that is
a/b > c/d if and only if ad > bd, an inequality of integers.

4. The real number system R.
5. Any induced subposet of a totally ordered set. We have already mentioned inter-

vals of the real line. (Remark: the word “interval” here is used for themoment as it
is used in Freshman College Algebra, open, closed, and half-open intervals such
as (a, b] or [a,∞). In this context, the intervals of posets that we have defined
earlier, become the closed intervals, [a, b], of the real line, with a consistency of
notation.
Here is an example: Consider the induced poset of the rational numbers (Q,≤)

consisting of those positive fractions less than or equal to 1/2 which (in lowest
terms) have a denominator not exceeding the positive integer d in absolute value.
For d = 7 this is the chain

1

7
<

1

6
<

1

5
<

1

4
<

2

7
<

1

3
<

2

5
<

3

7
<

1

2
.

This is called a Farey series. A curiosity is that if a
b and c

d are adjacent members
from left to right in such a series, then bc − ad = 1!

Example 2 (Examples of the classical locally finite (or finite) posets which are not
chains) A poset (P,≤) is said to be a finite poset if and only if it contains only finitely
many elements—that is, |P| < ∞. It is said to be locally finite if and only if every
one of its intervals [x, y] is a finite poset.
1. The Boolean poset B(X) of all finite subsets of a set X , with the containment

relation (⊆) between subsets as the partial-ordering. (There is, of course, the
power poset P(X), the collection of all subsets of X , as well as the cofinite
poset which is the collection B∗(X) of all subsets of X whose complement in
X is finite—both collections being partially ordered by the inclusion relation.
Of course, these two posets P(X), and B∗(X) are not locally finite unless X is
finite.)

2. The divisor poset D of all positive integers N+ under the divisor relation:—that
is, we say a|b if and only if integer a divides integer b evenly—i.e. b/a is an
integer.10

10There are variations on this theme: In an integral domain a non-unit a is said to be irreducible
if and only if a = bc implies one of b or c is a unit. Let D be an integral domain in which each
non-unit is a product of finitely many irreducible elements, and let U be its group of units. Let
D∗/U be the collection of all non-zero multiplicative cosets U x . Then for any two such cosets, U x
and U y, either every element of U x divides every element of U y or else no element of U x divides
any element of U y. In the former case writeU x ≤ U y. Then (D∗/U,≤) is a poset. If D is a unique
factorization domain, then, as above, (D∗/U,≤) is locally finite for it is again a product of chains
(one factor in the product for each association class U p of irreducible elements).

One might ask what this poset looks like when D is not a unique factorization domain. Must it
be locally finite? It’s something to think about.
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3. Posets of vector subspaces. The partially ordered set L<∞(V ; q) of all finite-
dimensional vector subspaces of a vector space V over a finite field of q elements
is a locally finite poset. (There is a generalization of this: the poset L<∞(M)

of all finitely generated submodules of a right R-module M and in particular
the poset L<∞(V ) of all finite-dimensional subspaces of a right-vector space V
over some division ring. But of course these are not locally finite in general.)11

4. The partition set: �n . Suppose X is a set of just n elements. Recall that a partition
of X is a collection π := {Y1, . . . , Yk} of non-empty subsets Y j whose join is
X but which pairwise intersect at the empty set. The subsets Y j are called the
components of the partition π.
Suppose π1 := {Yi |i ∈ I } is a partition of X and π′ = {Zk |k ∈ K } is a second
partition. We say that partition π′ refines partition π if and only if there exists a
partition I = J1 + · · · Jk of the index set, such that

Yi :=
⋃
�∈ Ji

Z�.

[We can state this another way: A partition π can be associated with a surjective
function fπ : X → I where the preimages of the points are the fibers partitioning
X : the same being true of π′ and an surjective function fπ′ : X → K .We say that
partition π′ refines a partition π if and only if there exists a surjectivemappingφ :
K → I , such that fπ = φ ◦ fπ′—that is, for each x ∈ X, fπ(x) = φ( fπ′(x)).]
For example {6}{4, 9}{2, 3, 8}{1, 5, 10}{9, 10}, with five components refines
{1, 5, 6, 9, 10}, {2, 3, 4, 8, 9} with just two components.
Then �n is the partially ordered set of all partitions of the n-set X under the
refinement relation.12

5. The Poset of Finite Multisets: Suppose X is any non-empty set. A multiset is
essentially a sort of inventory whose elements are drawn from X . For example:
if X = {oranges, apples, and bananas} then m = {three oranges, two apples} is
an inventory whose elements are multiple instances of elements from X . Letting
O = oranges, A = apples, and B = bananas, one may represent the multiset m
by the symbol 3 · O + 2 · A + 0 · B or even the sequence (3, 2, 0) (where the
order of the coordinates corresponds to a total ordering of X ). But both of these
notations can become inadequate when X is an infinite set. The best way is to
think of a multiset as a mapping. Precisely, a multiset is a mapping

f : X → N,

from X into the set N of non-negative integers.

11InAigner’s book (see references),L<∞(V, q) is denotedL(∞, q) in the case that V has countable
dimension over the finite field of q elements. This makes sense when one’s plan is to relate the
structure to certain types of generating functions (the q-series). But of course, it is a well-defined
locally finite poset whatever the dimension of V .
12Its cardinality |�n | is called the nth Bell number and will reappear in Chap.4 in the context of
permutation characters.

http://dx.doi.org/10.1007/978-3-319-19734-0_4
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A multiset f is dominated by a multiset g (written f ≤ g) if and only if

f (x) ≤ g(x) for all x ∈ X

(where the “≤” in the presented assertion reflects the standard total ordering of
the integers).
The collection hom(X,N) of all multisets of a set X forms a partially ordered set
under the dominance relation. Since the multisets are actually mappings from
X to N the dominance relation is exactly that used in comparing mappings in
products. We are saying that the definition of the poset of multisets shows us
that

(hom(X,N),≤) =
∏
x∈X

N, (2.3)

—that is a product in which each “factor” Pσ in the definition of product of
posets is the constant poset (N,≤) of non-negative integers.
The multiset f is said to be a finite multiset of magnitude | f | if and only if

f (x) > 0 for only finitely many values of x, and (2.4)

| f | =
∑

x∈X, f (x)>0

f (x), (2.5)

where the sum in the second equation is understood to be the integer 0 when the
range of summation is empty (i.e. f (x) = 0 for all x ∈ X ).
Thus in the example concerning apples, bananas, and oranges above, themultiset
m is finite of magnitude 3 + 2 = 5.
In this way the collectionM<∞(X) of all finite multisets forms an induced poset
of (hom(X,N),≤). Next one observes that a mapping f : X → N is a finite
multiset if and only if f (x) = 0 for all but a finite number of instances of x ∈ X .
This means Eq. (2.3) has a companion with the product replaced by a sum:

M<∞(X) =
∐
x∈X

N. (2.6)

The above list of examples shall continue in the subsequent sections.

2.2.14 Closure Operators

We need a few other definitions related to poset mappings.
An order preserving mapping f : P → P is said to be monotone non-decreasing

if p ≤ f (p) for all elements p of P .
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A closure operator is a monotone non-decreasing poset homomorphism τ : P →
P which is idempotent. In other words, τ possesses the following three properties:

(i) (Monotonicity) If x ∈ P , then x ≤ τ (x)

(ii) (Homomorphism) If x ≤ y, then τ (x) ≤ τ (y).
(ii) (Idempotence) τ (x) = τ (τ (x)) for all x ∈ P .

We call the images of τ the closed elements of P .
There are many contexts in which closure operators arise, and we list a few.

1. The ordinary topological closure in the poset of subsets of a topological space.
2. The mapping which takes a subset of a group (ring or R-module) to the subgroup

(subring or submodule, resp.) generated by that set in the poset of all subsets of
a group (ring or R-module).

3. The mapping which takes a set of points to the subspace which they generate in
a point-line geometry (P,L).13

2.2.15 Closure Operators and Galois Connections

One interesting context in which closure operators arise are Galois connections. Let
(P,≤) and (Q,≤) be posets. A mapping f : P → Q is said to be order reversing
if and only x ≤ y implies f (x) ≥ f (y).

Example 3 This example displays a common context that produces order reversing
mappings between posets. Suppose X = ∪σ∈I Aσ , a union of non-empty sets indexed
by I . Now there is a natural mapping among power posets:

α : P(X) → P(I ),

which takes each subset Y of X , to

α(Y ) := {σ ∈ I |Y ⊆ Aσ}.

For example, if Y is contained in no Aσ , then α(Y ) = ∅. Now if Y1 ⊆ Y2 ⊆ X we
see that α(Y2) ⊆ α(Y1)—that is, as the Yi get larger, there are generally fewer Aσ

that contain them. Thus the mapping α is order-reversing.

Let (P,≤) and (Q,≤) be posets. A Galois connection (P, Q,α,β) is a pair
of order-reversing mappings α : P → Q and β : Q → P , such that the two
compositions β ◦ α : P → P and α ◦ β : Q → Q are both monotone non-
decreasing.

13Here, the set of lines, L, is simply a family of subsets of the set of points, P . A subspace is a set
S of points, with the property that if a line L ∈ L contains at least two points of S, then L ⊆ S.
Thus the empty set and the set P are subspaces. From the definition, the intersection over any
family of subspaces, is a subspace. The subspace generated by a set of points X is defined to be the
intersection of all subspaces which contain X .
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Galois connections arise in several contexts, especially when some algebraic
object acts on something.

Example 4 (Groups acting on sets) Suppose that G is a group of bijections of a set X
into itself. The group operation is composition of bijections and the identity element
is the identity mapping 1X : X → X defined by x �→ x for all x ∈ X . For g ∈ G,
the corresponding bijection or permutation is described as an exponential operator
by x �→ xg for all x ∈ X .

Consider the two posets P(X) and P(G), the power posets of X and G. Define

CG : P(X) → P(G)

by setting CG(U ) := {g ∈ G | g(u) = ug = u for all u ∈ U }, for each subset U of
X . This mapping is order reversing: if U ⊆ V , then CG(U ) ⊇ CG(V ). Conversely,
if H is a subset of G, set Fix(H) := {x ∈ X | x = xh for all h ∈ H}.

Then Fix is an order-reversing mapping P(G) → P(X). Therefore, (P(X),

P(G),CG ,Fix) becomes a Galois connection upon verifying that the compositions
CG ◦ Fix : P(G) → P(G) and Fix ◦ CG : P(X) → P(X) are monotone non-
decreasing.

Example 5 In the above example, the set X might have extra structure that is pre-
served by G. For example X might itself be a group, ring, field, or a vector space, and
G is a group of automorphisms of X . This situation arises in the classical Galois the-
ory studied in Chap.11, where X is a field, and where G is a group of automorphisms
fixing a subfield Y of X .

Example 6 A ring R may act as a ring of endomorphisms of an abelian group A
with the (multiplicative) identity element inducing the identity mapping on A. One
can then form a Galois connection (P(A),P(R),CR,Fix) with

CR := {r ∈ R | ur = u for all u ∈ U },

Fix(S) := {a ∈ A | as = a for all s ∈ S}

for all U ∈ P(A) and for all S ∈ P(R).

Example 7 Another example arises in algebraic geometry. We say that a polynomial
p(x1, . . . , xn) vanishes at a vector v = (a1, . . . , an) in the vector space F (n) of
n-tuples over the field F if and only if p(v) := p(a1, . . . , an) = 0 ∈ F . Let
(P,≤) be the poset of ideals in the polynomial ring F[x1, . . . , xn] with respect to
the containment relation and for each ideal I let α(I ) be the set of vectors in F (n)

at which each polynomial of I vanishes. Let (Q,≤) be the poset of all subsets of
F (n) with respect to containment. For any subset X of F (n), let β(X) be the set of all
polynomials which vanish simultaneously at every vector in X . Then (P, Q,α,β)

is a Galois connection.

http://dx.doi.org/10.1007/978-3-319-19734-0_11
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The Corollary following the Lemma below shows how closure operators can arise
from Galois connections.

Lemma 2.2.6 Suppose (P, Q,α,β) is a Galois connection. Then for any elements
p and q of P and Q respectively

α(β(α(p))) = α(p) and β(α(β(q))) = β(q)

Proof For p ∈ P , p ≤ β(α(p)) since β ◦ α is monotone non-decreasing. Thus
α(β(α(p))) ≤ α(p) since α is order reversing.

On the other hand

α(p) ≤ α(β(α(p))) = (α ◦ β)(α(p))

since (α◦β) ismonotone non-decreasing.By antisymmetry,wehave thefirst equation
of the statement of the Lemma.

The second statement then follows from the symmetry of the definition of Galois
connection—that is (P, Q,α,β) is a Galois connection if and only if (Q, P,β,α)

is. �

Corollary 2.2.7 If (P, Q,α,β) is a Galois connection, then τ := β ◦α is a closure
operator on (P,≤).

Proof Immediate upon taking the β-image of both sides of the first equation of the
preceding Lemma. �

Example 8 Once again consider the order reversing mapping α : P(X) → P(I ) of
Example3, where X was a union of non-empty sets Aσ indexed by a parameter σ
ranging over a set I . For every subset Y of X , α(Y ) was the set of those σ for which
Y ⊆ Aσ .

There is another mapping β : P(I ) → P(X) defined as follows: If J ⊆ I set
β(J ) := ∩σ∈J Aσ , with the understanding that if J = ∅, then β(J ) = X . Then β is
easily seen to be an order-reversing mapping between the indicated power posets.

Now the mapping τ = β ◦ α : P(X) → P(X) takes each subset Y of X to the
intersection of all of the Aσ which contain it (with the convention that an intersections
over an empty family of sets denotes the set X itself). Thus τ is a nice closure operator.

Similarly, ρ = α ◦ β : P(I ) → P(I ) takes each subset J to the set

ρ(J ) = {σ ∈ I |Aσ ⊇ ∩ j∈J A j }.
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2.3 Chain Conditions

2.3.1 Saturated Chains

Recall that a chain C of poset (P,≤) is simply a (necessarily induced) subposet
(C,≤) which is totally ordered. In case C is a finite set, |C | − 1 is called the length
of the chain.

We say that a chain C2 refines a chain C1 if and only if C1 ⊆ C2. The chains of
a poset (P,≤) themselves form a partially ordered set under the inclusion relation
(the dual of the refinement relation) which we denote (ch(P,≤),⊆).

Suppose now that
C0 ⊆ C1 ⊆ · · ·

is an ascending chain in the poset (ch(P,≤),⊆). Then the set-theoretic union
⋃

Ci

is easily seen to be totally ordered and so is an upper bound in (ch(P,≤),⊆) of this
chain. An easy application of Zorn’s Lemma then shows that every element of the
poset (ch(P,≤),⊆) lies below amaximal member. These maximal chains are called
unrefinable chains. Thus

Theorem 2.3.1 If C is a chain in any poset (P,≤), then C is contained in an
unrefinable chain of (P,≤).

Of course we can restrict this in special ways to an interval. In a poset (P,≤), a
chain from x to y is a chain (C,≤) with x as its unique minimal element and y as it
unique maximal element. Thus x ≤ y and {x, y} ⊆ C ⊆ [x, y].

The collection of all chains of (P,≤) from x to y itself becomes a poset
(ch[x, y],⊆) under the containment (or “corefinement”) relation. A chain from x to
y is said to be saturated if it is a maximal element of (ch[x, y],⊆).14

We can apply Theorem 2.3.1 for P = [x, y] and the chains C in it that do contain
{x, y} to obtain:
Corollary 2.3.2 If C is a chain from x to y in a poset (P,≤), then there exists a
saturated chain C ′ from x to y which refines C. In particular, given an interval [x, y]
of a poset (P,≤), there exists an unrefinable chain in P from x to y.

2.3.2 Algebraic Intervals and the Height Function

Let (P,≤) be any poset. An interval [x, y] of (P,≤) is said to be algebraic (or
of finite height) if and only if there exists a saturated chain from x to y of finite

14 Note that (ch[x, y],⊆) is not quite the same as (ch([x, y],≤) since the latter may contain chains
which, although lying in the interval [x, y], do not contain x or y.
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length.15 Note that to assert that [a, b] is an algebraic interval, does not preclude
the simultaneous existence of infinite chains from a to b. The height of an algebraic
interval [x, y] is then defined to be the minimal length of a saturated chain from x to
y.16

If [a, b] is an algebraic interval, its height is denoted h(a, b), and is always a
non-negative integer. We denote the collection of all algebraic intervals of (P,≤) by
the symbol AP .

Proposition 2.3.3 The following hold:

(i) If [a, b] and [b, c] are algebraic intervals of poset (P,≤), then [a, c] is also an
algebraic interval.

(ii) The height function h : AP → N from the non-empty algebraic intervals of
(P,≤) to the non-negative integers, satisfies this property: If [a, b] and [b, c]
are algebraic intervals, then

h(a, c) ≤ h(a, b) + h(b.c)

2.3.3 The Ascending and Descending Chain Conditions
in Arbitrary Posets

Let (P,≤) be any partially ordered set. We say that P satisfies the ascending chain
condition or ACC if and only if every ascending chain of elements of P stabilizes
after a finite number of steps—that is, for any chain

p1 ≤ p2 ≤ p3 ≤ · · · ,

there exists a positive integer N , such that

pN = pN+1 = · · · = pk, for all integers k greater than N .

Put another way, (P,≤) has the ACC if and only if every properly ascending chain

p1 < p2 < · · ·

15This adjective “algebraic” does not enjoy uniform usage. In Universal Algebras, elements which
are the join of finitelymany atoms are called algebraic elements (perhaps by analogywith the theory
of field extensions). Here we are applying the adjective to an interval, rather than an element of a
poset.
16Since the adjective “algebraic” entails the existence of a finite unrefinable chain, the height of a
algebraic interval is always a natural number. The term “height” is used here instead of “length”
which is appropriate when all unrefineable chains have the same length, as in the semimodular
lower semilattices that appear in the Jordan-Hölder Theorem.
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terminates after some finite number of steps. Finally, it could even be put a third way:
(P,≤) satisfies the ascending chain condition if and only if there is no countable
sequence {pn}∞n=1 with pn < pn+1 for all natural numbers n.

Lemma 2.3.4 For any poset P = (P,≤) the following assertions are equivalent:

(i) (P,≤) satisfies the ascending chain condition (ACC).
(ii) (The Maximum Condition) Every non-empty subset X of P the induced subposet

(X,≤) contains a maximal member.
(iii) (The Second form of the Maximum Condition) In particular, for every induced

poset X of (P,≤), and every element x ∈ X, there exists an element y ∈ X
such that x is bounded by y and y is maximal in (X,≤). (To just make sure that
we understand this: for every x ∈ X there exists an element y ∈ X such that

(a) x ≤ y.
(b) If u ∈ X and y ≤ u then u = y.)

Remark The student is reminded: to say that “x is a maximal member of a subset X
of a poset P” simply means x is an element of X which is not properly less than any
other member of X .

Proof of Lemma 2.3.4:
1. (The ACC implies the Maximum Condition). Let X be any nonempty subset of

P . By way of contradiction, assume that X contains no maximal member. Choose
x1 ∈ X . Since x1 is not maximal in X , there exists an element x2 ∈ X with x1 < x2.
Suppose now, that we have been able to extend the chain x1 < x2 to x1 < · · · < xn .
Since xn is not maximal in X , there exists an element xn+1 ∈ X , such that xn < xn+1.
Thus, by mathematical induction, for every positive integer n, the chain x1 < · · · <

xn , can be extended to x1 < · · · < xn < xn+1. Taking the union of these extensions
one obtains an infinite properly ascending chain

x1 < x1 < x3 < · · · ,

contrary to the assumption of ACC.17

2. (The first version of the Maximum Principle implies the second.) Now assume
only the first version of the maximum condition. Take a subset X and an element
x ∈ X . Then set X ′ = X ∩ Px where Px := {z ∈ P|x ≤ z} is the principal filter

17 The graduate student has probably encountered arguments like this many times, where a sequence
with certain properties is said to exist because after the first n members of the sequence are con-
structed, it is always possible to choose a suitable n + 1-st member. This has an uncomfortable feel
to it, for the sequence alleged to exist must exemplify infinitely many of these choices—at least
invoking the Axiom of Choice in choosing the xi . But in a sense it appears worse. The sets are not
just sitting there as if we had prescribed non-empty sets of socks in closets lined up in an infinite
hallway (the traditional folk-way model for the Axiom of Choice). Here, it as if each new closet
was being defined by our choice of sock in a previous closet, so that it is really a statement about
the existence of infinite paths in trees having no vertex of degree one. All we can feebly tell you is
that it is basically equivalent to the Axiom of Choice.
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generated by x in the induced poset (X,≤). Then X ′ is non-empty (it contains x)
and so we obtain an element y maximal in X ′ from the first version of the maximum
condition. Now if y were not a maximal member of X there would exist an element
y′ ∈ X with y < y′. But in that case x < y′ so y′ ∈ X ∩ Px = X ′. But that would
contradict y being maximal in X ′. Thus y is in in fact maximal in X and dominates
x as desired.

3. (The second version of the Maximum Principle implies the ACC.) Assume the
second version of theMaximum Principle. Suppose the ACC failed. Then there must
exist an infinite properly ascending chain x0 < x1 < · · · . Setting X = {xi |i ∈ N},
and x = x0, we see there is no maximal member of X dominating x , contrary to the
statement of the second version of the Maximum Principle. �

Of course, by replacing the poset (P,≤) by its dual P∗ := (P,≥) and applying
the above, we have the dual development:

We say a poset (P,≤) possesses the descending chain condition or DCC if and
only if every descending chain

p1 ≥ p2 ≥ · · · ≥ p j ∈ P,

stabilizes after a finite number of steps. That is, there exists a positive integer N such
that pN = pN+1 = · · · pN+k for all positive integers k.

We say that x is a minimal member of the subset X of P if and only if y ≥ x for
y ∈ X implies x = y. A poset (P,≤) is said to possess the minimum condition if
and only if

(Minimum Condition) Every nonempty subset of elements of the poset P =
(P,≤) contains a minimal member.

Then we have:

Lemma 2.3.5 A poset P = (P,≤) has the descending condition (DCC)

(i) if and only if it satisfies the minimum condition or
(ii) if and only if it satisfies this version of the minimum condition: for any induced

poset X any x ∈ X, there exists an element y minimal in X which is bounded
above by x.

Proof: Just the dual statement of Lemma 2.3.4. �

Corollary 2.3.6 Every non-empty totally ordered poset with the descending chain
condition (DCC), is a well-ordered set.

Proof Let (P,≤) be a non-empty totally-ordered poset with the DCC. By Lemma
2.3.5, the minimum condition holds. The latter implies that any non-empty subset
X contains a minimal member, say m. Since (X,≤) is totally ordered, m is a global
minimum of (X,≤). Thus (P,≤) is well-ordered.18 �

18This conclusion reveals the incipient presence of the Axiom of Choice/Zorn’s Lemma in the
argument of the first paragraph of the proof of Lemma 2.3.4.
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Corollary 2.3.7 (The chain conditions are hereditary) If X is any induced poset of
(P,≤), and P satisfies the ACC (or DCC), then X also satisfies the ACC (or DCC,
respectively).

Proof This is not really a Corollary at all. It follows from the definition of “induced
poset” and the chain-definitions directly. Any chain in the induced poset is a fortiori a
chain of its ambient parent.Wemention it only to have a signpost for future reference.

In the next section, Theorem 2.4.2 will have a surprising consequence for lower
semilattices with the DCC.

Any poset satisfying both the ACC and the DCC also satisfies

(FC) Any unrefinable chain of P has finite length.

This is because patently one of the two chain conditions is violated by an infinite
unrefinable chain. Conversely, if a poset P satisfies condition (FC) then there can be
no properly ascending or descending chain of infinite length since by Theorem 2.3.1
it would then lie in a saturated chain which was also infinite against (FC). Thus

Lemma 2.3.8 The condition (FC) is equivalent to the assumption of both DCC and
ACC.

2.4 Posets with Meets and/or Joins

2.4.1 Meets and Joins

Let W be any subset of a poset (P,≤). The join of the elements of W is an element
v in (P,≤) with these properties:

1. w ≤ v for all w ∈ W .
2. If v′ is an element of (P,≤) such that w ≤ v′ for all w ∈ W , then v ≤ v′.

Similarly there is the dual notion: the meet of the elements of W in P would be
an element m in P such that

1. m ≤ w for all w ∈ W .
2. If m′ is an element of (P,≤) such that m′ ≤ w for all w ∈ W , then m′ ≤ m.

Of course, P may or may not possess a meet or a join of the elements of W . But
one thing is certain: if the meet exists it is unique; if the join exists, it is unique.
Because of this uniqueness we can give these elements names. We write

∧
P (W ) (or

just
∧

(W ) if the ambient poset P is understood) for the meet of the elements of W
in P (if it exists). Similarly, we write

∨
P (W ) (or

∨
(W )) for the join in P of all of

the elements of W (if that exists).
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In the case that W is the set {a, b}, we render the meet and join of a and b by a ∧b
and a ∨ b, respectively. The reader may verify

a ∧ b = b ∧ a (2.7)

a ∧ (b ∧ c) = (a ∧ b) ∧ c (2.8)

(a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c) (2.9)

and the three dual statements when the indicated meets and joins exist.
We say that (P,≤) is a lower semilattice if it is “meet-closed”—that is, the meet

of any two of its elements exists. In this case it follows that the meet of any finite
subset {a1, a2, . . . , an} exists (see Exercise (9) in Sect. 2.7.2). We denote this meet
by a1 ∧ a2 ∧ · · · ∧ an . We then have

Lemma 2.4.1 Suppose P is a lower semilattice, containing elements x, a1, a2, . . . ,
an ∈ P such that x ≤ ai for i = 1, 2, . . . , n. Then

x ≤ a1 ∧ a2 ∧ · · · ∧ an .

Dually we can define an upper semilattice (it is “join closed”).
A lattice is a poset (P,≤) that is both a lower semilattice and an upper

semilattice—that is, the meet and join of any two of its elements both exist in P .
Thus, a lattice is a self-dual concept: If P = (P,≤) is a lattice, then so is its dual
poset P∗ = (P,≤∗).

If every non-empty subset U of P has a meet (join) we say that arbitrary meets
(joins) exists. If both arbitrary meets and joins exist we say that P is a complete
lattice.

Example 9 Here are some familiar lattices:

1. Any totally ordered poset is a lattice. The meet of a finite set is its minimal
member; its join is its maximal member. Considering the open real interval (0, 1)
with its induced total ordering from the real number system, it is easy to see

(a) that there are lattices with no “zero” or “one”,
(b) that there can be (infinite) subsets of a lattice with no lower bound or no

upper bound.

2. The power set P(X) is the poset of all subsets of a set X under the containment
relation. It is a lattice with the intersection of two sets being their meet, and the
union of two sets being their join. This lattice is self dual and is a complete
lattice, meaning that any subset of elements of P(X), whether infinite or not, has
a least upper bound and greatest lower bound—i.e. a meet and a join. Of course
the lattice has X as its “one” and the empty set as its “zero”.
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2.4.2 Lower Semilattices with the Descending Chain Condition

The proof of the following theorem is really due to Richard Stanley, who presented
it for the case that P is finite [36, Proposition 3.3.1, p. 103].

Theorem 2.4.2 Suppose P is a meet-closed poset (that is, a lower semilattice) with
the DCC condition.

Then the following assertions hold:

(i) If X is a meet-closed induced poset of P, then X contains a unique minimal
member.

(ii) Suppose, for some subset X of P, the filter of upper bounds

∧
P X := {y ∈ P|x ≤ y for all x ∈ X}

is non-empty. Then the join
∨

(X) exists in P.
In particular, if (P,≤) possesses a one-element 1̂, then for any arbitrary subset
X of P, there exists a join

∨
(X). Put more succinctly, if 1̂ exists, unrestricted

joins exist.
(iii) For any non-empty subset X of P, the universal meet

∧
(X) exists and is

expressible as a meet of a finite number of elements of X.
(iv) The poset P contains a 0̂.
(v) If P contains a 1̂, then P is a complete lattice.

Proof (i) The set ofminimal elements of X is non-empty (Lemma 2.3.5 of the section
on chain conditions.) Suppose there were at least two distinct minimal members of
X , say x1 and x2. Then x1 ∧ x2 is also a member of X by the meet-closed hypothesis.
But by minimality of each xi , one has

x1 = x1 ∧ x2 = x2.

Since any two minimal members of the set X are now equal (and the set of them is
non-empty) there exists a unique minimal member. The proof of Part (i) is complete.

(ii) Let X be any subset of P for which the filter
∧

P X is non-empty. One observes
that

∧
P X is ameet-closed induced poset and so by part 1, contains a uniqueminimal

member j (X). Then, by definition, j (X) is the join
∨

(X). If 1̂ ∈ P then of couse∧
P X is non-empty for all subsets X and the result follows.
(iii) Let W (X) be the collection of all elements of P which can be expressed as

a meet of finitely many elements of X , viewed as an induced poset. Then W (X) is
meet-closed, and so has a unique minimal member x0 by (i). In particular x0 ≤ x for
all x ∈ X . Now suppose z ≤ x for all x ∈ X . Then by Lemma2.4.1, z is less than
or equal to any finite meet of elements of X , and so is less than or equal to x0. Thus
x0 = ∧

(X), by definition of a global meet.
(iv) By (i), P containsminimal non-zero elements (often called “atoms”). Suppose

m is such an atom. If m ≤ x for all x ∈ P then x would be the element 0̂, against our
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definition of “minimal element”. Thus there exists an element y ∈ P such that y is
not greater than or equal to m. Then y ∧ m (which exists by meet-closure) is strictly
less than m. Since m is an atom, we have y ∧ m = 0̂ ∈ P .

(v) If 1̂ exists, P enjoys both unrestricted joins by (ii). But by (iii), unrestricted
meets exist, and so now P is a complete lattice.

The proof is complete. �

Example 10 The following posets are all lower semilattices with the DCC:

1. N
+ = {1 < 2 < · · · } of all positive integers with the usual ordering. This is a

chain.
2. D, the positive integers under the partial ordering of “dividing”—that is, a ≤ b

if and only if integer a divides the integer b.
3. B(X), the poset of all finite subsets of a set X .
4. L<∞(V ), the poset of finite-dimensional subspaces of a vector space V .
5. M<∞(I ), the finite multisets over a set I .

It follows that arbitrary meets exist and a 0̂ exists.

Remark Of course, we could also adjoin a global maximum 1̂ to each of these
examples and obtain complete lattices in each case.

2.4.3 Lower Semilattices with both Chain Conditions

Recall from Sect. 2.4.3, Lemma 2.3.8, that a poset has both the ACC and the DCC if
and only if it possesses condition

(FC) Every proper chain in P has finite length.

An observation is that if P satisfies (FC), then so does its dual P∗. Similarly, if
P has finite height, then so does its dual. This is trivial. It depends only on the fact
that rewriting a finite saturated chain in descending order produces a saturated chain
of P∗.

We obtain at once

Lemma 2.4.3 Suppose P is a lower semilattice satisfying (FC).

(i) P contains a 0̂. If P contains a 1̂ then P is a complete lattice.
(ii) Every element of P − {1̂} is bounded by a maximal member of P − {1̂} (that is,

an element of max(P)).
(iii) Every element of P − {0̂} is above a minimal element of P − 0̂ (that is, an

element of min(P)).
(iv) The meet of all maximal elements of P—that is

∧
(max(P)) (called the Frattini

element or radical of (P,≤)) exists and is the meet of just finitely many elements
of max(P).
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(v) If 1̂ ∈ P, the join of all atoms,
∨

(min(P)) (called the socle of P and denoted
soc(P)) exists and is the join of just finitely many atoms.

Proof Parts (i) and (iv) follow from Theorem 2.4.2. Parts (ii) and (iii) are imme-
diate consequences of the hypothesis (FC), and Part (v) follows from Parts (i) and
(iii). �

Remark Hopefully the reader will notice that the hypothesis that P contained the
element 1̂ played a role—even took a bow—in Parts (i) and (v) of the above Lemma.
Is this necessary? After all, we have both the DCC and the ACC. Well, there is an
asymmetry in the hypotheses. P is a lower semilattice, but not an upper semilattice
(though this symmetry is completely restored once 1̂ exists in P , because then we
have arbitrary joins).

Example 11 Consider any one of the posets D, B(X), L<∞(V ). These are ranked
posets, with the rank of an element being (1) the number of prime factors, (2) the
cardinality of a set, or (3) the vector-space dimension of a subspace, respectively.
Select a positive integer r and consider the induced poset trr (P) of all elements of
rank at most r in P where P = D, B(X), L<∞(V ). Then trr (P) is still a lower
semilattice with both the DCC and the ACC. But it has no 1̂.

2.5 The Jordan-Hölder Theory

In the previous two sections we defined the notions of “algebraic interval”, “height
of an algebraic interval” and the meet-closed posets which we called “lower semi-
lattices”. They shall be used with their previous meanings without further comment.

This section concerns a basic theorem that emergeswhen a certain property, that of
semimodularity, is imposed on lower semilattices. Many important algebraic objects
give rise to lower semilattices which are semimodular (for example the posets of
subnormal subgroups of a finite group, or the submodule poset of an R-module) and
each enjoys its own “Jordan-Holder Theorem”—it always being understood there is
a general form of this theorem. It is in fact a very simple theorem about extending
“semimodular functions”19 on the set of covers of a semimodular lower semilattice
to an interval measure on that semilattice. It sounds like a mouthful, but it is really
quite simple.

Fix a poset (P,≤). An unrefinable chain of length one is called a cover and is
denoted by (a, b) (which is almost the name of its interval [a, b]—altered to indicate
that we are talking about a cover). Thus (a, b) is a cover if and only if a < b and there
is no element c in P with a < c < b—i.e. a is a maximal element in the induced

19The prefix “semi-” is justified for several reasons. The term “modular function” has quite another
meaning as a certain type of meromorphic function of a complex variable. Secondly the function in
question is defined in the context of a semimodular lower semilattice. So why not put in the “semi”?
We do not guarantee that every term coined in this book has been used before.
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poset of all elements properly below b (the principal order ideal Pb minus {b}). The
collection of all covers of (P,≤) is denoted CovP . Note that CovP is a subset ofAP ,
the collection of all algebraic intervals of (P,≤).

2.5.1 Lower Semi-lattices and Semimodularity

A lower semilattice (P,≤) is said to be semimodular if, whenever (x1, b) and (x2, b)

are both covers with x2 �= x2, then both (x1∧x2, x1) and (x1∧x2, x2) are also covers.

Lemma 2.5.1 Suppose (P,≤) is a semimodular lower semilattice. Suppose [x, a]
is algebraic and (b, a) is a cover, where x ≤ b. Then [x, b] is algebraic.

Proof Since [x, a] is algebraic, there exists a finite unrefinable chain from x to a,
say A = (x = a0, a1, . . . , an = a). Clearly each interval [x, a j ] is algebraic. See
Fig. 2.1.

By hypothesis, x ≤ b and so there is a largest subscript i such that ai ≤ b. Clearly
i < n. If i = n − 1 then an−1 = b so [x, b] is algebraic by the previous paragraph.
Thus we may assume that b �= an−1. (See Fig. 2.1.) Since both (an−1, a) and (b, a)

are covers, then by semimodularity, both (an−1 ∧ b, an−1) and (an−1 ∧ b, b) are
covers. Continuing in this way we obtain that (ak ∧ b, ak) and (ak ∧ b, ak−1 ∧ b)

are covers for all k larger than i . Finally, as ai ≤ b, this previous statement yields
ai+1 ∧ b = ai and (by semimodularity) (ai , ai+2 ∧ b) must be a cover). Note that

(x = a0, . . . , ai , ai+2 ∧ b, ai+3 ∧ b, . . . , an−1 ∧ b, b)

is an finite unrefinable chain since its successive pairs are covers. This makes [x, b]
algebraic, completing the proof. �

Fig. 2.1 The poset showing
[x, b] is algebraic. The
symbol “cov” on a depicted
interval indicates that it is a
cover



2.5 The Jordan-Hölder Theory 51

2.5.2 Interval Measures on Posets

Let M be a commutative monoid. This means M possesses a binary operation, say
“∗,” which is commutative and associative, and that M contains an identity element,
say “e”, such that m = e ∗ m = m ∗ e for all m ∈ M .

There is one commutative monoid that plays an important role in the applications
of our main theorem and that is the monoidM(X) of all finite multisets over a set X .
We have met this object before in the guise of a locally finite poset M<∞(X) (see
the last item under Example2 of this chapter). We have seen that any finite multiset
over X can be represented as a function f : X → N from X to the non-negative
integers N whose “support” is finite—i.e. the function achieves a non-zero value
in only finitely many instances as x wanders over X . Now, if f and g are two such
functions,wemay let “ f +g” denote the function that takes x ∈ X to the non-negative
integer f (x)+g(x), the sum of two integers. Clearly f +g has finite support, and so
(M<∞(X),+) (under this definition of “plus”) becomes a commutative semigroup.
But as the constant function 0X : X → {0} is an identity element with respect to this
operation,M(X) := (M<∞(X),+) is actually a commutative monoid. We call this
the commutative monoid of finite multisets over X .

An interval measure μ of a poset (P,≤) is a mapping μ : AP → M from the set
of algebraic intervals of P into a commutative monoid (M, ∗) with identity element
e such that

μ(a, a) = e for all a ∈ P. (2.10)

μ(a, b) ∗ μ(b, c) = μ(a, c) whenever [a, b] and [b, c] are in AP (2.11)

[Notice that we have found it convenient to write μ(a, b) for μ([a, b]).]
Here are some examples of interval measures on posets:

Example 12 Let M be the multiplicative monoid of positive integers. Let (P,≤) be
the set of positive integers and write x ≤ y if x divides y evenly. Then every interval
of (P,≤) is algebraic. Define μ by setting μ(a, b) := b/a for every interval (a, b).

Example 13 Let (P,≤) be as in Example 14, but now let M be the additive monoid
of all non-negative integers. Now if we set μ(a, b);= the total number of prime
divisors of b/a, then μ is a measure.

Example 14 Let (P,≤) be the poset of all finite-dimensional subspaces of some
(possibly infinite dimensional) vector space V , where “≤” is the relation of “con-
tained in”.

(i) Let M be the additive monoid of all non-negative integers. If we define
μ(A, B) := dim(B/A), then μ is a measure on (P,≤).

(ii) If M is the multiplicative group {1,−1}, then setting μ(A, B) := (−1)dim(A/B)

for every algebraic interval (A, B) also defines a measure.
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2.5.3 The Jordan-Hölder Theorem

Now we can prove

Theorem 2.5.2 (The Jordan-Hölder Theorem) Let (P,≤) be a semimodular lower
semilattice. Suppose μ : CovP −→ (M,+) is a mapping from the set of covers of P
to a commutative monoid (M,+), and suppose this mapping is “semimodular” in
the sense that

μ(b, y) = μ(a ∧ b, a) whenever (a, y) and (b, y) are distinct covers. (2.12)

Then for any two finite unrefinable chains U = (u = u0, . . . , un = v) and V =
(u = v0, . . . , vm = v) from u to v, we have

n−1∑
i=0

μ(ui , ui+1) =
m−1∑
i=0

μ(vi , vi+1) (2.13)

and n = m (the finite summation is taking place in the additive monoid (M.+)). In
particular, μ extends to a well-defined interval measure μ̂ : AP −→ M.

Proof If n = 0 or 1, then U = V , and the conclusion holds. We therefore pro-
ceed by induction on the minimal length h(u, v) of an unrefinable chain from
u to v for any algebraic interval [u, v]—that is, the height of [u, v]. It suffices
to assume U = (u = u0, u1, . . . , un = v) is such a minimal chain (so that
n = h(u, v)) and prove Eq. (2.13), and n = m for any other unrefinable chain
V = (u = v0, v1, . . . , vm = v).

If un−1 = vm−1, h(u, vn−1) = n − 1, so by induction,
∑n−2

i=0 μ(ui , ui+1) =∑m−2
i=0 μ(vi , vi+1) and m − 1 = n − 1 and the conclusion follows.
So assume un−1 �= vm−1. Set z = un−1∧vm−1. Since (un−1, v) and (vm−1, v) are

both covers, by semi-modularity, so also are (z, un−1) and (z, vm−1) (see Fig. 2.2).

Fig. 2.2 The main figure for
the Jordan Hölder Theorem
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Since u ≤ z, (z, vn−1) is a cover, and [u, vn−1] is algebraic, we see that Lemma
2.5.1 implies that [u, z] is also algebraic. So a finite unrefinable chain

Z = (u = z0, z1, . . . , zr = z)

from u to z exists. Since h(u, un−1) = n − 1 < n, by induction

(
r−1∑
i=0

μ(zi , zi+1)

)
+ μ(z, un−1) =

n−1∑
i=0

μ(ui , ui+1) (2.14)

and r +1 = n −1. But h(u, vm−1) ≤ r +1 = n −1 so induction can also be applied
to the algebraic interval [u, vm−1] to yield

(
r−1∑
i=0

μ(zi , zi+1)

)
+ μ(z, vm−1) =

m−1∑
i=0

μ(vi , vi+1). (2.15)

and the fact that r + 1 = m − 1. Thus n = m.
But by (2.12), μ(z, un−1) = μ(vm−1, v) and μ(z, vm−1) = μ(un−1, v). The

result (2.13) now follows from (2.14) and the commutativity of (M,+). The proof
is complete. �

To see how this theorem works in a semimodular lattice in which not all intervals
are algebraic, the reader is referred to Example 15 on p. 53 and the remark following.

There are many applications of this theorem. In the case of finite groups
(R-modules) we let (M,+) be the commutative monoid of multisets of all iso-
morphism classes of finite simple groups (or all isomorphism classes of irreducible
R-modules, resp.). These are the classical citations of the Jordan-Hölder Theorem
for Groups and R-modules.20

2.5.4 Modular Lattices

Consider for the moment the following example:

Example 15 The poset (P,≤) contains as elements P = {a, b, c} ∪ Z, where Z is
the set of integers, with ordering defined by these rules:

20We beg the reader to notice that in the case of groups there is no need for Zassenhaus’ famous
“butterfly lemma”, nor the need to prove that subnormal subgroups of a finite group form a lattice.
A lower semilattice will do. One of the classic homomorphism theorems, provides the semimodular
function from CovP to finite simple groups. The result is then immediate from Theorem 2.4.2,
Eq. (2.13), where the interval measure displays the multiset of “chief factors” common to all satu-
rated chains in P .
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1. a ≤ p for all p ∈ P—i.e. a is the poset “zero”,
2. c ≥ p for all p ∈ P , so c is the poset “one”,
3. b is not comparable to any integer in Z, and
4. the integers Z are totally ordered in the natural way.

Notice that the meet or join of b and any integer are a and c respectively. Thus (P,≤)

is a lattice with its “zero” and “one” connected by an unrefinable proper chain of
length 2 and at the same time by an infinite unrefinable chain. The lattice is even
lower semimodular since the only covers are (a, b), (b, c) and (n, n + 1), for all
integers n.

Remark For the purposes of the Jordan-Hölder theory, such examples did not bother
us, for the J-H theory was phrased as an assertion about measures which take values
on algebraic intervals—that is to say, non-algebraic intervals could be ignored—
and the calculation of the measure used only finite unrefinable chains. In Example
15, the only intervals of the semimodular lattice (P,≤) which are not algebraic
are those of the form [n, c], n ∈ Z. The Jordan-Hölder Theorem is valid here: In
fact if f is any function from the set of covers, into a commutative monoid M ,
then by Theorem 2.5.2, f extends to an interval measure μ : AP → M . Note that
μ(a, c) = f (a, b) + f (b, c).

However, unlike Example 15, many of the most important posets in Algebra are
actually lattices with a property called “the modular law”, which prevents elements
x and y from being connected by both a finite unrefinable chain and an infinite
chain. This modular law always occurs in posets of congruence subalgebras which
are subject to one of the so-called “Fundamental Theorems of Homomorphisms”.

Recall the definition of lattice (p. 46). A lattice L is called a modular lattice or L
is said to be modular if and only if

(M) for all elements a, b, c of L with a ≥ b,

a ∧ (b ∨ c) = b ∨ (a ∧ c).

The dual condition is

(M∗) for all elements a, b, c of L with a ≤ b,

a ∨ (b ∧ c) = b ∧ (a ∨ c).

But by transposing the roles of a and b it is easy to see that the two conditions are
equivalent. Thus

Lemma 2.5.3 A lattice satisfies (M) if and only if it satisfies (M∗). Put another way:
a lattice L is modular if and only if its dual lattice L∗ is.

An immediate consequence of the modular law is the following
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Lemma 2.5.4 (Identification Principle) Let x, y and n be elements of the modular
lattice L. Suppose

x ∨ n = y ∨ n, and (2.16)

x ∧ n = y ∧ n. (2.17)

Then either x = y or else x and y are incomparable. Equivalently, either x ≤ y
or y ≤ x implies x = y.

Proof Assume the hypotheses and assume x and y are comparable. Because x and
y play symmetric roles in the hypothesis, we may assume that x ≤ y. Now by the
modular law (M):

y ∧ (x ∨ n) = x ∨ (y ∧ n). (2.18)

But by Eq. (2.16), the left side of (2.18) is y. On the other hand, by Eq. (2.17), the
right side of (2.18) is x . Thus x = y. �

The most important property of a modular lattice is given in the following:

Theorem 2.5.5 (The Correspondence Theorem for Modular Lattices) Suppose L
is a modular lattice. Then for any two elements a and b of L, there is a poset
isomorphism

μ : [a, a ∨ b] → [a ∧ b, b],

taking each element x of the domain to x ∧ b.

Proof As μ is defined, μ(a) = a ∧ b, μ(a ∨ b) = (a ∨ b) ∧ b = b, and if a ≤ x ≤
y ≤ b, then μ(x) = x ∧ b ≤ y ∧ b = μ(y). Thus μ is poset homomorphism and
takes values in [a ∧ b, b].

Suppose now that x, y ∈ [a, a ∨ b] and μ(x) = μ(y). Then x ∧ b = y ∧ b and
so a ∨ (x ∧ b) = a ∨ (y ∧ b). Since a ≤ x and a ≤ y we may apply the law (M) to
each side of the last equation. This yields x = x ∧ (a ∨ b) = y ∧ (a ∨ b) = y, since
a ∨ b dominates both x and y. Thus μ is injective.

Now suppose x is an arbitrary element of the interval [a ∧ b, b], that is, a ∧ b ≤
x ≤ b. Then by the first inequality, x = x ∨ (b ∧ a). Since x ≤ b, applying (M∗)
(with x and a in the role of a and c in (M∗)), x = b ∧ (x ∨ a) = μ(x ∨ a). Thus μ
is onto.

Finally, we must show that for any x, y ∈ [a, a ∨ b], one has μ(x) ≤ μ(y) if and
only if x ≤ y.

Obviously if x ≤ y, then clearly x ∧ b ≤ y ∧ b, so μ(x) ≤ μ(y).
Conversely, suppose μ(x) ≤ μ(y). Then x ∧ b ≤ y ∧ b, giving us

a ∨ (x ∧ b) ≤ a ∨ (y ∧ b). (2.19)
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Since a ≤ x and a ≤ y, applying (M∗) to each side of (2.19) yields

x ∧ (a ∨ b) ≤ y ∧ (a ∨ b)

which gives us x ≤ y, since x and y are in [a, a ∨ b].
Thus μ is a poset isomorphism. �

Recognizing the Chain Conditions in Modular Lattices

Lemma 2.5.6 Assume a ≤ b ≤ c is a chain in a modular lattice L. Then the interval
[a, c] has the ACC (DCC) if and only if both intervals [a, b] and [b, c] have the ACC
(DCC).

Proof Recall fromCorollary 2.3.7 that if [a, c] has either of the two chain conditions,
then its subintervals [a, b] and [b, c] also possess the same condition.

So we assume that the two intervals [a, b] and [b, c] possess the ascending chain
condition (ACC). We must show that [a, c] has the ascending chain condition. By
way of contradiction, suppose

a = c0 < c1 < c2 < · · ·

is an infinite properly ascending chain in the poset [a, c]. Then we have ascending
chains

c0 ∨ b ≤ c1 ∨ b ≤ · · · and c0 ∧ b ≤ c1 ∧ b ≤ · · ·

in posets [b, c] and [a, b], respectively. Since these two posets are assumed to possess
the ACC, there exists a natural number k such that for every integer m exceeding k
we have

ck ∨ b = cm ∨ b, (2.20)

ck ∧ b = cm ∧ b. (2.21)

Since ck ≤ cm , the Identification Principle, Lemma 2.5.4, forces ck = cm . But that
is impossible since these are distinct entries in a properly ascending chain.

The argument that the presence of the descending chain condition for both [a, b]
and [b, c] implies the same condition for [a, c] now follows by duality from our result
for the ACC. (It can also be proved by considering an infinite properly descending
chain c0 > c1 > · · · , and again obtaining a natural number k such that Eqs. (2.20)
and (2.21) hold and again invoking the Identification Principle.) �

Lemma 2.5.7 Assume L is a modular lattice and {a1, . . . , an} is a finite subset of
L.

(i) Suppose c ≤ ai for all i = 1, 2, . . . , n. Then [c, a1 ∨ · · · ∨ an] has the ACC
(DCC) if and only if each interval [c, ai ] possesses the ACC (DCC).
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(ii) Suppose ai ≤ c for all i = 1, 2, . . . , n. Then [a1 ∧ · · · ∧ an, c] has the ACC
(DCC) if and only if each interval [ai , c] has the ACC (DCC).

Proof Part (i). We assume c ≤ ai for all i . Of course, by Corollary 2.3.7, if [c, a1 ∨
a2 ∨ · · · ∨ an] has the ACC (DCC) then so does any of its intervals [c, ai ]. So we
need only prove the reverse implication.

Assume each interval [c, ai ], i = 1, 2, . . . , n, possesses theACC (DCC).A simple
induction on n reduces us to the case that n = 2. By Theorem 2.5.5, [a2, a1 ∨ a2] �
[a1∧a2, a1]which has the ACC since it is an interval of [c, a1]which is hypothesized
to have this chain condition. But the interval [a1 ∧ a2, a2] is a subinterval of [c, a2]
which has theACC (DCC). Sowe see that both intervals [a1∧a2, a2] and [a2, a1∨a2]
have the ACC (DCC) and so by Lemma 2.5.6, the interval [a1 ∧ a2, a1 ∨ a2] also
possesses the ACC (DCC). Finally, noting that [c, a1 ∧ a2] has the ACC (DCC)
because it is an interval of [c, a1] hypothesized to have this chain condition, one
more application of Lemma 2.5.6 now yields the fact that [c, a1 ∨ a2] also enjoys
this condition.

Part (ii) follows from Part (i) by duality. �

Corollary 2.5.8 Any modular lattice is a semi-modular lower semilattice and so
is subject to the Jordan-Hölder theory (See Theorem 2.5.2.). In particular, any two
finite unrefinable chains that may happen to connect two elements x and y of the
lattice, must have the same length, a length which depends only on the pair (x, y).

Proof Apply the previous Lemma for the case [a, a ∨ b] and [b, a ∨ b] are both
covers. �

The preceeding Corollary only compared two finite unrefinable chains from x to
y. Could one still have both a finite unrefinable chain from x to y as well as an infinite
one as in Example 15 at the beginning of this subsection? The next result shows that
such examples are banned from the realm of modular lattices.

Theorem 2.5.9 Suppose L is a modular lattice and suppose a = a0 < a1 < · · · <

an = b is an unrefinable proper chain of length n preceding from a to b. Then every
other proper chain proceeding from a to b has length at most n.

Proof Ofcourse, byZorn’s lemma, anyproper chain is refinedby aproper unrefinable
chain. So, if we can prove that all proper chains connecting a and b are finite, such a
chain possesses a well-defined measure by the Jordan-Hölder Theory. In particular
all such chains possess the same fixed length n. So it suffices to show that any proper
chain connecting a and b must be finite.

We propose to accomplish this by induction on the parameter n given in the
statement of the theorem. But this means that we shall have to keep track of the
bound on length asserted by the induction hypothesis, in order to obtain new intervals
[a′, b′] to which induction may be applied.

So we begin by considering a (possibly infinite) totally ordered subposet X of
(P,≤) having a as its minimal member and b as its maximal member. We must
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show that X is a finite proper chain. If n = 1, then {a, b} = X is a cover, and we are
done.

If each x ∈ X satisfies x ≤ an−1, then X − {b} is finite by induction on n, and so
X is finite. So we may suppose that for some xβ ∈ X , we have xβ ∨ an−1 = b. By
Theorem2.5.5 (an−1 ∧ xβ, xβ) is a cover.

Now the distinct members of the set

Y = {z ∧ an−1|z ∈ X}

form a totally ordered set whose maximal member is an−1 = b ∧ an−1, and whose
minimal member is a = a ∧ an−1. By induction on n, Y is a finite set of at most
n − 1 elements. On the other hand, it is the concatenation of two proper chains

Y + : = {y ∈ Y |y ≥ an−1 ∧ xβ}
Y − : = {y ∈ Y |y ≤ an−1 ∧ xβ},

whose lengths are non-zero and sum to at most n − 1.
Now the poset isomorphism μ : [xβ, b] → [an−1 ∧ xβ, an−1] takes the members

of X dominating xβ to Y +. Thus

X ∩ [xβ, b]

is a chain of the same length as Y +. It remains only to show that the remaining part
of X , the chain X ∩ [a, xβ] is finite.

Let index i be maximal with respect to the condition ai ≤ xβ . Then for each index
j exceeding i but bounded by n − 1,

a j = a j−1 ∨ (a j ∧ xβ) and (a j−1 ∧ xβ, x j ∧ xβ)

is a cover or is length zero. It follows that a is connected to xβ by an unrefinable chain
of length at most n − 1. By induction X ∩ [a, xβ] is finite. The proof is complete. �

Corollary 2.5.10 Let L be a modular lattice with minimum element 0 and maximum
element 1. The following conditions are equivalent:

1. There exists a finite unrefinable chain proceeding from 0 to 1.
2. Every proper chain has length below a certain finite universal bound.
3. L has both the ascending and descending chain conditions (see p. 48).

Proof The Jordan-Hölder theory shows all chains connecting 0 to 1 are bounded by
the length of any unrefinable one. How this affects all proper chains is left as an
exercise. �

Any modular lattice which satisfies the conditions of Corollary2.5.10 is said to
possess a composition series.
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Example 16 Let L be the latticeD of all positive integers where a ≤ b if and only if
a divides b. Then D is a modular lattice which possesses the DCC but not the ACC.
There is a “zero” (the integer 1), but no lattice “one”. However, every interval [a, b]
possesses a composition series.

2.6 Dependence Theories

2.6.1 Introduction

If we say A “depends” on B, what does this mean? In ordinary language one might
intend several things: “A depends entirely on B” or that “A depends just a little on
B”—a statement so mild that it might suggest only that B has a “slight influence” on
A. But some syntax seems to be applied all the same: thus if we say that A depends
on B and that B in turn depends on C , then A (we suppose to some small degree)
depends on C .

In mathematics we also usually use the word “depends” in both senses. When one
asserts that f (x, y) depends (to some degree) upon the variable x , one means only
that f might be influenced by x . After all, it could be that f is a “constant” function
as far as x is concerned. But on the other hand the mathematician also intends that f
is entirely determined by the pair (x, y). Thus we may consider the phrase “ f (x, y)

depends on x” as one borrowed from ordinary everyday speech. In its various guises,
the stronger idea of total and entire dependence appears throughout mathematics
with such a common strain of syntactical features as to deserve codification.

But as you will see, the theory here is highly special.

2.6.2 Dependence

Fix a set S, and let F(S) be the set of all finite subsets of the set S. A dependence
relation on S is a relationD from S to F(S)—that is, a subset of S ×F(S)—subject
to the axioms (D1)–(D3) listed below. We shall say that the element s in S depends
on the subset A ∈ F(S) if and only if (s, A) ∈ D. The dependence relation must
satisfy these conditions:

(D1) (The Reflexive Condition) If s ∈ S and if s ∈ A ∈ F(S), then s depends on
A—that is, s depends on any finite subset of S that contains it.

(D2) (The Transitivity Condition) If the element s depends on the finite set A, and
if every member of A depends on the finite set B, then s depends on B.
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(D3) (TheExchangeCondition) If s, a1, . . . , an are elements of S such that s depends
on the set {a1, . . . , an} but does not depend on the set {a1, . . . .an−1}, then an

depends on the set {a1, . . . , an−1, s}.
Before concluding anything from this, let us consider some examples.

Example 17 (Linear dependence) Suppose V is a left vector space over some field
or division ring D. Let us say that a vector v depends on a finite set of vectors
{v1, . . . , vn} if and only if v can be expressed as a linear combination of those
vectors,—that is,

∑n
i=1δivi = v for some choice of δi in D. One checks that this

defines a dependence relation on V .

Example 18 (Algebraic dependence) Let K be a field containing k as a subfield. (For
example, one might let K and k respectively be the complex and rational number
fields.) We say that an element b of K depends on a finite subset X = {a1, . . . .an−1}
of K if and only if b is the root of a polymonial equation whose coefficients are
expressible as a k-polynomial expressions in X . This means that there exists a poly-
nomial p(x, x1, . . . , xn) in the polynomial ring k[x, x1, . . . , xn] when evaluated at
x = b, xi = ai , 1 ≤ i ≤ n yields 0. We shall see in Chap.11 that all three axioms of
a dependence theory hold for this definition of dependence among elements of the
field K .

2.6.3 Extending the Definition to S ×P(S)

Our first task will be to extend the definition of a dependence relationD ⊆ S ×F(S)

to a relation D ⊆ S × P(S), where P(S) is the collection of all subsets of S (the
power set). Thus, it will be possible to speak of element x depending on a (possibly
infinite) subset A of S. Namely, for any subset A of S, we say that the element x
depends on A if and only there exists a finite subset A1 of A such that x depends
on A1 (in the original sense). We leave it as an exercise to the reader to prove the
following:

Lemma 2.6.1 In the following, the sets A and B may be infinite sets:

(i) Element x of S depends on any set A which contains it.
(ii) If A and B are subsets of S, if x depends on A and every element of A depends

on set B, then x depends on B.
(iii) If a ∈ A, a subset of S, and x is an element of S which depends on A but does

not depend on A − {a}, then a depends on (A − {a}) ∪ {x}
(See Exercise (1) in Sect. 2.7.4.)

http://dx.doi.org/10.1007/978-3-319-19734-0_11
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2.6.4 Independence and Spanning

Let S be a set with dependence relation D ⊆ S × F(S), and let D ⊆ S × P(S) be
the extension of this relation to infinite subsets as in Lemma2.6.1 above. Now let A
be any subset of S. The flat generated by A is the set 〈A〉 := {y|y depends on A}.
A subset X of S is called a spanning set if and only if 〈X〉 = S.

Next, we say that a subset Y of S is independent if and only if for each element
x of Y , x does not depend on Y − {x}.

Now the collections of all spanning sets form a partially ordered set under the
containment relation. A similar statement holds for the collection of all independent
sets. Thus it makes perfect sense to speak of a minimal spanning set and a maximal
independent set (should such sets exist). We wish to show that these two concepts
coincide.

Theorem 2.6.2 Let S be a set with dependence relation D ⊆ S × P(S) as above.

(i) Every minimal spanning set is a maximal independent set.
(ii) Every maximal independent set is a minimal spanning set.

Proof We prove (i). Suppose U is a minimal spanning set. If U is not independent
then there exists an element u in U such that u depends on a finite subset U1 of
U − {u}. Thus every element of S depends on U and by Lemma 2.6.1, part 1, and
what we know of u, every element of U depends on U −{u}. Thus by Lemma 2.6.1,
part (ii), every element of S depends on U − {u}. Thus U − {u} is a spanning set,
against the minimality of U . Thus U must be independent.

If U were not a maximal independent set there would exist an element z in S −U
which did not depend on U . But that is impossible as U spans S.

Next we show (ii). If X is a maximal independent set, then bymaximality, X spans
S. If a proper subset X1 of X also spanned S, then any element x of X − X1 would
depend on X1 and so would depend on X − {x} by the definition of dependence.
But this contradicts the fact that X is independent. Thus X is actually minimal as a
spanning set. The proof is complete. �

Next, we have the following important result.

Theorem 2.6.3 Maximal independent subsets of S exist.

Proof This is a straightforward application of Zorn’s Lemma. As remarked above,
the collection J of all independent subsets of S form a partially ordered set (J ,≤)

under the inclusion relation. Now consider any chain C = {Jα} of independent sets
and form their union C̄ := ⋃

α Jα. Then if C̄ were not an independent set, there
would exist an element x in C̄ and a finite subset F of C̄ − {x} such that x depends
on F . But since the chain C is totally ordered and F ∪ {x} is finite, there exists an
index σ such that F ∪ x ⊆ Jσ . But this contradicts Jσ independent. Thus we see
that C̄ must be an independent set.

Thus every chain C in J possesses an upper bound C̄ in (J ,≤). By the Zorn
Principle, J contains maximal elements. The proof is complete. �
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2.6.5 Dimension

The purpose of this section is to establish

Theorem 2.6.4 If X and Y are two maximal independent sets, then |X | = |Y |.
Proof By the Schröder-Bernstein Theorem (Theorem1.4.1, p. 16), it suffices to show
only that |X | ≥ |Y | for any two maximal independent sets X and Y .

The proof has a natural division into two cases: the case X is a finite set and the
case that X is infinite.

First assume X is finite. We proceed by induction on the parameter k := |X | −
|X ∩ Y |. If k = 0, then X = X ∩ Y ⊆ Y . But as Y is independent and each of its
elements depends on its subset X , we must have X = Y , whence |X | = |Y | and we
are done. Thus we may assume k > 0.

Suppose X = {x1, . . . , xn} where the xi are pairwise distinct elements of S
and the indexing is chosen so {x1, . . . , xr } = X ∩ Y , thereby making k = n − r .
From maximality of the independent set X , every element of Y − X depends on X .
Similarly, every element of X depends onY . If every element ofY depended on X0 :=
{x1, . . . , xn−1}, then xn , which depends on Y , would depend on X0 by Lemma2.6.1
(i) above, against the independence of X . Thus there is someelement y ∈ Y −X which
depends on X but does not depend on X0. By the exchange condition, xn depends
on X1 := {x1, . . . , xn−1, y}. Moreover, if X1 were not independent, then either y
depends on X1−{y} = {x1, . . . , xn−1} or some xi depends on (X0−{xi })∪{y}. The
former alternative is ruled out by our choice of y. If the latter dependence held, then
as the independence of X prevents xi from depending on X0 − {xi }, the exchange
condition would force y to depend on X0, again contrary to the choice of y. Thus X1
is an independent set of n distinct elements. But as xn depends on X1, each element
of X depends on X1. Thus as all elements of S depend on X , they all depend on X1
as well. Thus X1 is a maximal independent set. But since |X1 ∩ Y | = 1 + |X ∩ Y |,
induction on k yields |X1| ≥ |Y |. The result now follows from |X | = |X1|.

Now assume X is an infinite set. Since Y is a maximal independent set, it is a
spanning set. Thus for each element x in X there is at least one finite non-empty
subset Yx of Y on which it depends. Choose, if possible y ∈ (Y − ⋃

X Yx ). Since y
depends on X and by construction every element of X depends on

⋃
X Yx , we see

that y depends on
⋃

X Yx ⊆ Y , contradicting the independence of Y . Thus we see
that no such y can exist and so Y = ⋃

X Yx .
Our goal is to produce an injective mapping

φ : Y → X × N,

where, as usual, N denotes the natural numbers. Since, for each x ∈ X , the set Yx

is finite, there exists an injective mapping φx : Yx → N. The problem is that the
sets Yx may intersect non-trivially, so that merely combining the φx does not yield a
well-defined φ.

We get around this problem as follows: First, by Theorem 2.2.2, the set X can be
well-ordered. Next given y ∈ Y , let S(y) := {x ∈ X |y ∈ Yx }, and let �(x) be the

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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least element of the set S(y). Now define φ : Y → X × N, by setting

φ(y) := (�(y),φ�(y)(y)) ∈ X × N (2.22)

for each y ∈ Y . If φ(y1) = φ(y2), then �(y1) = �(y2) and then y1 = y2 follows
from the injectivity of φ�(y). Thus the mapping φ defined in (2.22) is injective.

It follows that
|Y | ≤ |X × N|.

Now by Corollary 2.2.5 near the beginning of this chapter, |X | = |X × N|, since X
is infinite.

Thus |Y | ≤ |X | as required. The proof is complete. �

This common cardinality of maximal independent sets is called the dimension of
the dependence system (S,D).

2.6.6 Other Formulations of Dependence Theory

For the sake of completeness, this subsection surveys a number other views of depen-
dence theory. Since this subsection is not essential for anything further in the book,
many results are not proved. Most of the missing proofs can be found in the book by
Oxley [1].

Fix a set X and let I be a family of subsets of X . The pair (X, I) is called a
matroid if and only if the following axioms hold:

(M1) The family I is closed under taking subsets.
(M2) (Exchange axiom) If A, B ∈ I with |A| > |B|, then there exists an element

a ∈ A − B, such that {a} ∪ B ∈ I.
(M3) If every finite subset of a set A belongs to I, then A belongs to I.

Note that if A and B are maximal elements of (I,⊆), then |A| = |B| is an
immediate consequence of axiom (M2).However, fromaxioms (M1) and (M2) alone,
it does not follow that maximal elements even exist. One needs (M3) for that.

Lemma 2.6.5 If (X, I) is a matroid, then every element of I lies in a maximal
element of I.

Proof This proof utilizes Zorn’s lemma. Let A0 be an arbitrary member of I. We
examine the poset of all subsets in I which contain A0. Let A1 ⊆ A2 ⊆ · · · be a
chain in this poset and let B be the union of all the sets Ai . Consider any finite subset
F of B. Then each element f ∈ F lies in some member Ai( f ) of the chain. Setting
m to be the maximal index in the finite set {i( f )| f ∈ F}, we see that F ⊆ Am .
Since Am ∈ I, (M1) implies F ∈ I. But since F was an arbitrary finite subset of
B, (M3) shows that B ∈ I. Thus every finite chain in the poset of elements of I
which contain A0 has an upper bound in that poset, so, by Zorn’s lemma, that poset
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contains a maximal element M . Clearly M is a maximal member of I, since any
member of I which contains M also contains A0, and so lies in the poset of which
M is a maximal member. Thus A0 lies in a maximal member of I, as required. �
Example 19 Let D ⊆ X × F(S) be a dependence theory. Let I be the set of inde-
pendent sets of the dependence theory D. Then (X, I) is a matroid.

Example 20 Suppose (V, E) is a simple graph with vertex set V and edge set E .
(The adjective “simple” just means that edges are just certain unordered pairs of
distinct vertices.) A cycle is a sequence of edges (e0, e1, . . . , en) such that ei shares
just one vertex with ei+1, and another vertex with ei−1, indices i taken modulo n.
Thus en−1 shares a vertex with en = e0, and the “length” of the cycle, n, cannot be
one or two. A graph with no cycles is called a forest—its connected components are
called trees. Now let I be the collection of all subsets A of E such that the graph
(V, A) is a forest. Then (E, I) is a matroid.

Example 21 Let F be a fixed family of subsets of a set X . A finite subset
{x1, x2, . . . , xn} of X is said to be a partial transversal of F if and only if there
are pairwise distinct subsets A1, . . . An of F such that xi ∈ Ai , i = 1, . . . , n—
that is, the set {x1, . . . , xn} is a “system of distinct representatives” of the sets {Ai }.
Now let I be the collection of all subsets of X all of whose finite subsets are partial
transversals. Then (X, I) is a matroid.

Example 22 Suppose (X, I) is any given matroid, and Y is any subset of X . Let
I(Y ) be all members of I which happen to be contained in the subset Y . Then it
is straightforward that the axioms (M1), M(2) and (M3) all hold for (Y, I(Y )). The
matroid (Y, I(Y )) is called the induced matroid on Y .

Here is another approach to matroids, using a so-called rank function.

Theorem 2.6.6 Suppose r is a map from the set of all subsets of a set X, into the
cardinal numbers, satisfying these three rules:

(R1) For each subset Y of X, 0 ≤ ρ(Y ) ≤ |Y |.
(R2) (Monotonicity) If Y1 ⊆ Y2 ⊆ X, then ρ(Y1) ≤ ρ(Y2).
(R3) (The submodular inequality) If A and B are subsets of X, then

ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B).

Let I be the collection of a subsets Y of X with the following property:

(*) For every finite subset FY of Y we have |FY | = r(FY ).

Then (X, I) is a matroid.

Now suppose we are given a matroid (X, I). Can we recover a dependence theory
from this matroid? Clearly we need to have a definition of “dependence” constructed
exclusively from matroid notions. Consider this definition:
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Definition: Let x be an element of X and let A be a finite subset of X . We say that
x depends on A if and only if there exists a subset A0 of A which lies in I, such
that either (i) x ∈ A0, or (ii) {x} ∪ A0 is not in I.

Theorem 2.6.7 Given a matroid (X, I), let the relation of “dependence” between
elements of X and finite subsets of X be given as in the preceding definition. Then
this notion satisfies the axioms of a dependence theory.

It now follows fromExample19, and the assertion of Theorem2.6.7, that matroids
and dependence theories are basically the same thing.

There are purely combinatorial ways to express the gist of a dependence theory,
and these are the various formulations of the notion of a matroid in terms of circles,
in terms of flats, or in terms of closure operators.

Let us consider flats, for a moment. We have already defined them from the point
of view a dependence theory. From a matroid point of view, the flat 〈A〉 spanned by
subset A in matroid (X, I), is the set of all elements x for which {x} ∪ Ax /∈ I for
some finite subset Ax of A. It is an easy exercise (Exercise (6) in Sect. 2.7.4) to show
that 〈〈A〉〉 = 〈A〉, for all subsets A of X . In fact the reader should be able to prove
the following:

Theorem 2.6.8 The mapping τ which sends each subset A of X to the flat 〈A〉
spanned by A, is a closure operator on the lattice of all subsets of X. The image
sets—or “closed” sets—form a lattice:

1. The intersection of two closed sets is closed, and is the meet in this lattice.
2. The closure of the set-theoretic union of two sets is a join, that is, a global minimum

in the poset of all flats above the two sets.

The characterization of matroids by closure operators is the following:

Proposition 2.6.9 Suppose P = P(X) is the poset of all subsets of a set X and
τ : P → P satisfies

(Increasing) For each subset A, A ⊆ τ (A).
(Closure) The mapping τ is a closure operator—that is, it is an idempotent

monotone mapping of a poset into itself.
(The Steinitz-MacLane Exchange Property) If X ⊆ P and y, z ∈ P − τ (X) then

y ∈ τ (X ∪ {z}) implies z ∈ τ (X ∪ {y}).
Then, setting

I = {A ⊆ X |x /∈ τ (A − {x}) for all x ∈ A},

we have that M := (X, I) is a matroid.
Conversely, if (X, I) is a matroid, then the mapping τ which takes each subset of

A to the flat 〈A〉 which it spans, is a monotone increasing closure operator P → P
possessing the Steinitz-MacLane Exchange Property.
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2.7 Exercises

2.7.1 Exercises for Sect. 2.2

1. Suppose <̄ is a reflexive and transitive relation on a set X . (Such a relation is
called a pseudo-order.) For any two elements x and y of X , let us write s ∼ y if
and only if x<̄y and also y<̄x .

(a) Show that “∼” is an equivalence relation.
(b) For each element x of X , let [x] be the ∼-equivalence class containing

element x . Show that if x<̄y then a<̄b for every element a ∈ [x] and
element b ∈ [y]. (In this case we write “[x] ≤ [y]”.)

(c) Let X/∼ denote the collection of all ∼-classes of X . Show that (X/ ∼,≤)

is a poset.

2. Make a full list of the posets defined in Examples 1 and 2 above which

(a) have a zero element.
(b) have a one element.
(c) are locally finite.

3. Let P be a fixed poset. If there is a bijection f : X → Y prove that there exists
an isomorphisms of posets:

∏
x∈X

P →
∏
y∈Y

P,

∑
x∈X

P →
∐
y∈Y

P, if P has a zero element.

(This means that the index set X has only a weak effect on the definition of a
product.)

4. Recall that the elements of the divisor posetD are the positive integers, with a ≤ b
if and only if the integer a divides the integer b.
The poset of all finite multisets on the set of natural numbers consists of all
infinite sequences of natural numbers with only finitely many positive entries.
This multiset is denoted M<∞(N).
For this exercise, the student is asked to assemble a proof of the following theorem.

Theorem 2.7.1 The divisor poset D is isomorphic to the poset M<∞(N) of all finite
multisets over the set N+ of positive integers. That is, we have an isomorphism

ε : (D,≤) →
∑

i∈N+
Ni (2.23)

where each Ni is a copy of the totally ordered poset of the natural numbers.
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[Hint: We sketch the argument: Notice that the right side of (2.23) consists of
all sequences of non-negative integers of which only finitely many are positive
(equivalently, all finite sequences of positive integers). The mapping ε is easy
to define. First place the positive prime numbers in ascending (natural) order
2 = p1 < p2 < · · · . For example p6 = 13. Now any integer d ∈ D greater than
one has a unique factorization into positive prime powers, with the primes placed
from left to right in ascending order:

d =
∏
σ∈Jd

paσ
σ ,

for some (possibly empty) ascending sequence of positive integers Jσ . If one
declares ε(d) to be the function f : N+ → N0 such that

f (σ) =
{

aσ if σ ∈ Jd ,

0 if σ �∈ Jd ,

and declares ε(1) := 0, the constant function with all values 0, then one sees that
f (c) ≤ f (d) in the sum on the right side of Eq. (2.23) if and only if c divides d
evenly—i.e. c ≤ d in (D,≤). Clearly ε is a bijection.]

5. Recall that if (P,≤) and X ⊆ P , then the symbol PX denoted the order ideal

PX := {z ∈ P|z ≤ x for some x ∈ X}.

Show that PX = ⋃{Px |x ∈ X}.
6. For the filters P X and PY generated by these sets, show that

(∧
P X

) ⋂ (∧
PY

)
=

∧
P(X∪Y ).

7. Let X be a subset of a poset (P,≤), and let PX be the order ideal of all elements
bounded aboveby at least one element of X (see p. 31 orExercise (5) inSect. 2.7.1
in this section). Prove that PX is the intersection of all order ideals of P which
contain X .

8. Give an example of a poset P and subset X for which the order ideal PX is not
generated by an antichain.

9. Give an example of a poset (P,≤) and an order ideal J of P such that J does
not have the form PX for any antichain X .

10. Let X be an infinite set. Recall that a partition of X is a decomposition π = {Xσ}
of X into pairwise disjoint non-empty subsets Xσ called the components of the
partition. (The word “decomposition” is there to indicate that the union of the
Xσ is X .) A component Xσ is said to be trivial if it contains exactly one element
of X . Such a partition π is said to be a finitary partition if and only if finitely
many of the components are non-trivial and each of these is a finite set.
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Let F P(X) be the full collection of finitary partitions of X . Show that with
respect to the refinement relation, F P(X) is a locally finite poset.

11. Let F := {Aσ | σ ∈ I } ⊆ P(X). Let α : P(X) → P(I ) be the mapping of
posets which sends each subsetU of X to the set α(U ) := {σ ∈ I | U ⊆ Aσ}. (If
no such subset Aσ contains U , then α(U ) is the empty set.) Similarly, for each
subset K of I , set β(K ) :=

⋂
σ∈K

Aσ so that β : P(I ) → P(X) is a mapping of

posets.

(a) Show that α and β are both order reversing and that (P(X),P(I ),α,β)

is a Galois connection.
(b) Show that the closed elements of X are those subsets expressible as inter-

sections of Aσ’s.
(c) Show that a subset J of I is closed if and only if it has the property: If

Aτ ⊇
⋂
σ∈J

Aσ , then τ ∈ J .

2.7.2 Exercises for Sects. 2.3 and 2.4

1. We let [n] be the chain {1 < 2 < · · · < n} in the usual total ordering of the
positive integers. Show that the infinite union of disjoint chains,

[1] ∪ [2] ∪ [3] ∪ · · · ,

satisfies (FC) but does not possess finite height, and possesses neither a 1̂ nor a
0̂.

2. If we adjoin 0̂ to the poset presented in the previous Exercise, show that the
Frattini element exists, and is 0̂.

3. Show that the product of posets.

[1] × [2] × [3] × · · · ,

does not satisfy (FC).
4. Let P be a lower semilattice with 0̂ and 1̂ satisfying (FC). Set B := max(P) and

let P̄ be the induced subposet generated by B—that is, the set of elements of P
expressible as a finite meet of elements of B. We understand the empty meet to
be the element 1̂, so the latter is an element of P̄ .

(a) Show that P̄ has the Frattini element φ(P) as its zero element, 0̂P̄ .
(b) For each x ∈ P − {1̂}, show that the induced poset Px ∩ P̄ has a unique

minimal member (which we shall call σ(x)).
(c) Defining σ(1̂) = 1̂ show the following:

i. For all x ∈ P , x ≤ σ(x). (This is built into the definition of σ.)
ii. The mapping σ : P → P̄ is a surjective morphism of posets.
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iii. For each x ∈ P , one has σ(σ(x)) = σ(x).
(Recall that any morphism onto an induced subposet which satisfies these
three conditions is called a closure operator.)

5. Suppose P = N × {0, 1}. We totally order P (lexicographically) as follows:

(a) (a, 0) ≤ (b, 1) for any a, b ∈ N.
(b) (a, 0) ≤ (b, 0) if and only if a ≤ b, a, b ∈ N.
(c) (a, 1) ≤ (b, 1) if and only if a ≤ b, a, b ∈ N.

Show that (P,≤) has the Descending Chain Condition (DCC), but that there
exist intervals (x, y) with no finite unrefinable chain from x to y.

6. Suppose (P,≤) is a poset with a zero element 0̂. Recall from Sect. 2.4.2 that in
this case an atom of (P,≤) is an element a distinct from 0̂ with the property
that there is no element x ∈ P such that 0̂ < x < a,—that is, (0̂, a) is a cover.
Let A be the set of atoms of P . Assume now that (P,≤) has the property that
every interval [0̂, b] possesses the DCC. Show that either P = {0̂} or that the set
A of atoms is non-empty.

7. Give an example of a locally finite poset which does not possess the descending
chain condition.

8. Suppose (P,≤) is a locally finite poset which possesses a zero element 0̂. Show
bymeans of an example, that such a poset need not possess the descending chain
condition.

9. Suppose L is a lattice. Give an induction proof showing that for any finite col-
lection {a1, . . . , an} of elements of L , the elements

a1 ∨ · · · ∨ an and a1 ∧ · · · ∧ an,

exist and are respectively the greatest lower bound and greatest upper bound in
L of the set {a1, . . . , an}.

10. Suppose (P,≤) is a lower semilattice with the descending chain condition
(DCC). Show that any principle order ideal is a lattice. Conclude that for any
non-empty subset X ⊆ P , the order ideal

Px := {z ∈ P|z ≤ x for all x ∈ X}

is always a lattice.
11. Suppose (P,≤) is a locally finite poset.

(a) Suppose (P,≤) possesses a zero element 0̂ and at least one other element.
Show that the set A of atoms of (P,≤) is not empty. (Note that we are not
assuming the Descending Condition, so this is a little different than Problem
(6) in Sect. 2.7.2.)

(b) Now assume that (P,≤) is a lower semilattice. Show that any principle
order ideal is a finite lattice.
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12. A lattice L := (L ,≤) is said to be distributive if and only if, for any elements
a and b in L , one always has:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). (2.24)

An example of a distributive lattice is the power poset P(X) of all subsets of a
set X .

(a) Prove that if L is a distributive lattice and (M,≤) is an induced subposet
closed under taking pair-wise meets and joins, then M is also a distributive
lattice.

(b) Use the result of item (a) to prove the following:
i. The Boolean poset B(X)—of all finite subsets of X is a distributive

lattice.
ii. Let J (P) be the poset of all order ideals of a poset (P,≤) under the

containment relation. Use item (a) to prove that J (P) is a distributive
lattice. [One must define “meet” and “‘join” of order ideals and set
L = P(P) in item (a) of this exercise.]

2.7.3 Exercises for Sect. 2.5

1. (The Jordan-Hölder Theorem implies the Fundamental Theorem of Arithmetic.)
Let (P,≤) be the poset of positive integers where a ≤ b if and only if integer a
divides integer b evenly (Example 1, of this chapter).

(a) Show that (P,≤) is a lower semimodular semilattice with all intervals alge-
braic. Let μ : CovP → N

+ be the function which records the prime number
b/a at every cover (a, b) of (P,≤). Indicate why μ is a semimodular func-
tion in the sense given in Eq. (2.12) of the Jordan-Hölder Theorem.

(b) Suppose integer a properly divides integer b. For every factorization b/a =
p1 p2 · · · pr of b/a into primes show that there exists a finite unrefineable
chain (a = a0, a1, a2, . . . ar = b) such that ai/ai−1 = pi for i = 1, . . . r .

(c) Conclude from the Jordan-Hölder Theorem that every positive integer pos-
sesses a factorization into prime numbers, and that the multiset of positive
prime numbers involved in the factorization is unique.

2. Show that the following lattices are modular:

(i) The poset of subspaces of a vector space.
(ii) The poset of subgroups of an abelian group.

In both cases, the order relationship is that of containment.
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3. Show that the product L1 × L2 of two modular lattices is modular. If the lattices
Lσ, σ ∈ I are modular and possess a “zero”, does the modularity extend to the
direct sum

∐
σ∈I

Lσ?

4. Is the lattice of partitions of a finite set, modular? (Here the order relationship is
refinement of one partition by another.)

5. Write out an explicit proof of Corollary 2.5.10.

2.7.4 Exercises for Sect. 2.6

1. Prove the three parts of Lemma2.6.1 for the extended definition of dependence
allowing infinite subsets of S.

2. Verify the axioms of a matroid for Example 22, on the edge-set of a graph.
3. Verify the axioms of a matroid for Example 23, on finite partial transversals.
4. Let� = (V, E) be a simple graph. Let M = (E, I) be thematroid of Example20.

For any subset F of the edge set E , let

(V, F) =
⋃
σ∈K

(Vσ, Fσ)

be a decomposition of � into connected components. For each connected com-
ponent (Vσ, Fσ), let Eσ be the collection of edges connecting two vertices in Vσ .
Thus (Vσ, Eσ) is the subgraph induced on the vertex set Vσ . Prove that in the
matroid, the flat spanned by F is the union ∪σ∈K Eσ .

5. Let M = (X, I) be a matroid. A set which is minimal with respect to not lying
in I is called a circuit. Show that any circuit is finite. (Remark: There is also a
characterization of matroids by circuits. See Matroid Theory, by James G. Oxley
[1], Proposition 1.3.10.)

6. Let M = (X, I) be a matroid. For each subset A of X , let 〈A〉 be defined as the
set of all elements x ∈ X for which there exists a finite subset Ax ⊆ A such that
{x} ∪ Ax �∈ I (this is the matroid version of “the flat generated by A” defined on
p. 65. Show that 〈A〉 = 〈〈A〉〉.
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Chapter 3
Review of Elementary Group Properties

Abstract Basic properties of groups are collected in this chapter. Here are exposed
the concepts of order of a group (any cardinal number) or of a group element (finite
or countable order), subgroup, coset, the three fundamental theorems of homomor-
phisms, semi-direct products and so forth.

3.1 Introduction

Groups are systems of symmetries of objects, in particular mathematical objects.
Understanding groups can be useful in classifying objects in a particular class. One
uses a group of symmetries to transfer any object of the class to a representative
object which is an easily-studied canonical form. For example, the groupGL(n, F)×
GL(n, F), generated by elementary row and column operations on the class Mn(F)

of n × n matrices is used to transport an arbitrary matrix to a more easily studied
canonical form.

This is just one of the reasons that group theory is needed, whatever field of
mathematics you might choose to enter. There are of course many other reasons
having to dowith special uses of groups (such as “Polya counting”,1 quantumphysics,
invariant theory etc.). But overall, the need to classify things seems the broadest
reason that group theory is pertinent to all of mathematics.

Groups are defined by a hallowed set of axioms which are useful only for the
purpose of banishing all ambiguities from the subject. Somehow, staring at the axioms
of a group mesmerizes one away from their basic and natural habitat. Every group
that ever exists in the world is in fact the full group of symmetries of something. That
is what the theory of groups is: the study of symmetries. But it is useful to know this
only on a philosophical plane. Knowing that there is a set of objects such that every
group—or even every finite group—is the full group of automorphisms of at least
one of these objects, is not very helpful for classifying the groups themselves.

1This has a long pre-Polya history.
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3.2 Definition and Examples

This is probably a good place to explain a convention. A group is a set G with a binary
operationwith certain properties—ofwhich there are a goodmany examples. In some
of these examples the binary operation is written as “+”; in others, it is written as “◦”
or “×”. (If one uses “+”, one might think the operation is commutative. If one uses
“◦”, the elements seem to be mappings, and if one uses “×”, Cartesian products can
confuse the issue). How then does one speak generally about all possible groups? The
standard solution is this: The group operation of an arbitrary group, will be indicated
by simple juxtaposition, the act of writing one symbol directly after the other—thus,
the group operation, applied to the ordered pair (x, y) will be denoted xy.

A group is a set G equipped with a binary operation G × G → G (denoted here
by juxtaposition) such that the following axioms hold:

1. (TheAssociative Law) The binary operation is associative—that is (ab)c = a(bc)
for all elements a, b, c ofG. (The parentheses indicate the temporal order inwhich
operations were performed. This axiommore-or-less says that the temporal order
of applying the group operations doesn’t matter, while, of course, the left-right
order of the elements being operated on does matter.)

2. (Identity Element) There exists an element, say e, such that eg = g = ge for all
elements g in G.

3. (The Existence of Inverses) For each element x in G, there exists an element x ′
such that x ′x = xx′ = e where e is the element referred to in Axiom 2.2

One immediately deduces the following:

Lemma 3.2.1 For any group G one has:

1. The identity element e is the unique element of G possessing the property of Axiom
2.

2. Given element g in G, there is at most one element g′ such that gg′ = g′g = e.
3. In light of the preceding item 2, we may denote the unique inverse of g by the

symbol g−1. Then note that

(i) (ab)−1 = (b−1)(a−1) for all elements a, b ∈ G.
(ii) (a−1)−1 = a, for each element a ∈ G.

(iii) For any element x and natural number k, the product xx . . . x (with k factors)
is a unique element which we denote as xk . We have (xk)−1 = (x−1)k . (As
a notational convention, this element is also written as x−k .).

2People have figured out how to “improve” these axioms, by hypothesizing only right identities
and left inverses and so on. There is no attempt here to make these axioms independent or logically
neat. Of course, the axioms indeed over-state their case; but a little redundancy won’t hurt at this
beginning stage.
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Example 23 Familiar Examples of Groups:

(a) The group (Z,+) of integers under the operation of addition.
(b) The group of non-zero rational numbers under multiplication.
(c) The group of non-zero complex numbers under multiplication.
(d) The cyclic groupZn of order n. This can be thought of as the group of rotations of

a regular n-gon. This group consists of the elements {1, x, x2 . . . , xn−1} where
x is a clockwise rotation of 2π/n radians and “1” is the identity transformation.
All multiplications of the powers of x can be deduced solely from the algebraic
identity xn = 1.

(e) The dihedral group D2n , of order 2n. This is the group of all rigid symmetries of
the regular n-gon. In addition to the group of n rotations just considered, it also
contains n reflections which are symmetries of the n-gon. If n is an odd number,
these reflections are about an axis through a corner or vertex of the polygon and
bisecting an opposite side. If n is even, the axes of the reflections are of two
sorts: those which go from a vertex through its opposite vertex, and those which
bisect a pair of opposite sides. There are then n/2 of each type. The elements of
the group all have the form t i x j , where t is any reflection, x is the clockwise
rotation by 2π/n radians and 0 ≤ i ≤ 1 and 0 ≤ j ≤ n − 1. The results of
all multiplications of such elements can be deduced entirely from the relations
xn = 1, t2 = 1, t x = x−1t (and its consequence, t x−1 = xt).
The isomorphism type of the dihedral group of order 2n is denoted D2n . In the
special case that n = 2, each group in the resulting class D4 is called a fours
group. It is distinguished from the cyclic group of order four by the fact that the
square of any of its elements is the identity element.

(f) The symmetric groups Sym(X). Let X be a set. A permutation of the elements
of X is a bijective mapping X → X . This class of mappings is closed under
composition of mappings, inverses exists, and it is easy to verify that they form
a group with the identity mapping 1X which takes each element to itself, as
the group identity element. This group is called the symmetric group on X and
is denoted Sym(X). If |X | = n it is well known from elementary counting
principles that there are exactly n! permutations of X . In this case one writes
Sym(n) for Sym(X), since the names or identities of the elements of X do not
really affect the nature of the group of all permutations.

(g) The group of rigid motions of a (regular) cube. Just imagine a wooden cube on
the desk before you. We consider the ways that cube can be rotated so that it
achieves a position congruent to the original one. The result of doing one rotation
after another is still some sort of rotation. It should be clear that these rotations
can have axes which are situated in three different ways with respect to the cube.
The axis of rotation may pass through the centers of opposite faces, it may pass
though the midpoints of opposite edges, or it could be passing through opposite
vertices.

(h) Let G = (V, E) be a simple graph. This means the edges E are pairwise distinct
2-subsets of the vertex set V . Two (distinct) vertices are said to be adjacent if
and only if they are the elements of an edge. Now the group of automorphisms



76 3 Review of Elementary Group Properties

of the graph G is the set of permutations of the set of vertices V which preserve
the adjacency relation. The group operation is composition of the permutations.

(i) Let R be any ring with identity element e.3 An element u of R is said to be a
unit if and only there exists a two-sided multiplicative inverse in R—that is, an
element u′ such that u′u = e = uu′. (Observe in this case, that u′ itself must be
a unit.) Then the set U (R) of all units of the ring R forms a group under ring
multiplication. Some specific cases:

(i) The group U (Z) of units of the ring of integers Z, is the set of numbers
{+1,−1} undermultiplication.Clearly this group behaves just like the cyclic
group of order 2, one of those introduced in part (d) above.

(ii) Let D = Z ⊕ Zi , where i2 = −1, the ring of Gaussian integers {a +
bi |a, b ∈ Z} as a multiplicatively and additively closed subset (that is a sub-
ring) of the ring of all complex numbers. Then the reader may check that
U (D) is the set {±1,±i} under multiplication. This is virtually identical
with the cyclic group of order four as defined in part (d) of this series of
examples.

(iii) Let V be a left vector space over a division ring D. Let hom(V, V ) be the col-
lection of all linear transformations f : V → V (viewed as right operators
on the set of vectors V ). This is an additive group under the operation “+”
where, for all f, g ∈ hom(V, V ), ( f + g) is the linear transformation which
takes each vector v to v f + vg. With composition of such transformations
as “multiplication” the set hom(V, V ) becomes a ring.4

Now the group of units of hom(V, V ) would be the set GL(V ) of all linear
transformations t : V → V where t is bijective on the set of vectors (i.e.
a permutation of the set of vectors. (V is not assumed to be finite or even
finite-dimensional in this example.) The group GL(V ) is called the general
linear group of V .

(iv) The group GL(n, F). Let F be a field, and let G = GL(n, F) be the set
of all invertible n × n matrices with entries in F .5 This set is closed under
multiplication and forms a group. In fact it is the group of units of the ring of
all n × n matrices with respect to ordinary matrix multiplication and matrix
addition.

3It is presumed that the reader has met rings before. Not much beyond the usual definitions are
presumed here.
4Actually it is more, for hom(V, V ) can be made to have the structure of a vector space, and hence
an algebra if D possesses an anti-automorphism—e.g. when D is a field. But we can get into this
later.
5Recall from your favorite undergraduate linear algebra or matrix theory course that if n is a positive
integer, then an n-by-n matrix M has a right inverse if and only if it has a left inverse (this is a
consequence of the equality of row and column ranks).
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3.2.1 Orders of Elements and Groups

Suppose x is an element of a group G. We set x0 := e, x1 := x, x2 := xx, and
for each natural number n, inductively define xn := xxn−1. If there exists a natural
number n such that xn = e, then x is said to have finite order. If n is the smallest
positive integer such that xn = e then we write o(x) = n, calling n the order of the
element x . Otherwise, we say that x has infinite order and write o(x) = ∞. In the
latter case, the powers e, x, x2, . . . of x are all distinct, for if xn = xm for n < m,
then e = xn x−n = xm x−n = x (m−n), and so x would have finite order.

Lemma 3.2.2 Let G be a group, and let x ∈ G be an element of finite order n.

(i) If xm = e, then n| m.
(ii) If n and m are relatively prime, then o(xm) = n.

Proof We apply the Division Algorithm (Lemma 1.1.1 of Chap.1) and write m =
qn + r with 0 ≤ r < n. From this, one has r = m − qn and so xr = xm−qn =
xm x−qn = e. By definition of o(x) = n together with 0 ≤ r < n, we must have
r = 0, i.e., that n| m, proving part (i).

Next, let o(xm) = k, and so xkm = e. By part (i), we infer that n| km. By
Lemma 1.1.3 we have n| k. Since it is clear that (xm)n = e, we conclude that, k|n as
well, forcing n = k = o(xm). �

Elements of order 2 play a special role in finite group theory, and so are given a
special name: any element of order two is called an involution.

The order of a group G is the number |G| of elements within it.

3.2.2 Subgroups

Let G be a group. For any two subsets X and Y of G, the symbol XY denotes the
set of all group products xy where x ranges over X and y ranges independently over
Y . (It is not immediately clear just how many group elements are produced in this
way, since a single element g might be expressible as such a product in more than
one way. At least we have |XY | ≤ |X | · |Y |.)

A second convention is to write X−1 for the set of all inverses of elements of
the subset X . Thus X−1 := {x−1|x ∈ X}. This time |X−1| = |X |, since the corre-
spondence x → x−1 defines a bijection X → X−1 (using Lemma 3.2.1, part 3(ii)
here).

A subset H of G is said to be a subgroup of G if and only if

1. HH ⊆ H , so that by restriction H admits the group operation of G, and
2. with respect to this operation, H is itself a group.

One easily obtains the useful result:

http://dx.doi.org/10.1007/978-3-319-19734-0_1
http://dx.doi.org/10.1007/978-3-319-19734-0_1
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Lemma 3.2.3 (Subgroup Criterion) For any subset X of G, the following are equiv-
alent:

1. X is a subgroup of G.
2. X = X−1 and XX ⊂ X.
3. XX−1 ⊆ X.

A remark on notation Whenever subset X is a subgroup of G, we write X ≤ G
instead of X ⊆ G. This is in keeping with the general practice in abstract algebra of
writing A ≤ B whenever A is a subobject of the same algebraic species as B. For
example we write this if A is an R-submodule of the R-module B, and its special
case: when A is a vector subspace of a vector space B. Usually the context should
make it clear what species of algebraic object we are talking about. Here it is groups.

Corollary 3.2.4 1. The set-intersection over any family of subgroups of G is a
subgroup of G.

2. If A and B are subgroups of G, then AB is a subgroup of G if and only if
AB = B A (an equality of sets).

3. For any subset X of G, the set 〈X〉G of all finite products y1y2 . . . yn, n ∈ Nwhere
the yi range independently over X ∪ X−1, is a subgroup of G, which is contained
in any subgroup of G which contains subset X.
Thus we can also write

〈X〉G = ∩X⊆H≤G H

where the intersection on the right is taken over all subgroups of G which contain
set X.

The proof is left to the reader (see Exercise (2) in Sect. 3.7.1). The subgroup 〈X〉G

(which is often written 〈X〉 when the “parent” group G is understood) is called the
subgroup generated by X . As is evident from theCorollary, it is the smallest subgroup
in the poset of all subgroups of G which contains set X .

Example 24 Examples of Subgroups.

(a) Let �(V, E) be a graph with vertex set V and edge set E , and set H := Aut(�),
the group of automorphisms of the graph �, as in Example 23, part (h) in the
previous subsection. Then H is a subgroup of Sym(V ), the symmetric group on
the vertex set.

(b) Cyclic Subgroups Let x be an element of the group G. The set 〈x〉 := {xn|n ∈ Z}
(where, for negative integers n, we adopt the convention of Lemma 3.2.1 3(iii)
that x−n = (x−1)n) is clearly a subgroup of G (Corollary 3.2.4). Now one sees
that the order of the element x is the (group) order of the subgroup 〈x〉.

(c) Let Y be a subset of X . The set of all permutations of X which map the subset
Y onto itself forms a subgroup of Sym(X) called the stabilizer of Y . If G is any
subgroup of Sym(X), then the intersection of the stabilizer of Y with G is called
the stabilizer of Y in G and is denoted StabG(Y ). This is clearly a subgroup
of G. Thus it makes sense to speak of the stabilizer of a specified vertex in
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the automorphism group Aut(�) of a graph �. (For sets with a single member,
the convention is to write Stab(y) instead of Stab({y}). Note also that all these
definitions apply when G = Sym(X), as well.

(d) Let us return once more to the example of the group of rotations of a regular cube
(Example (g) of the previous subsection).Weasserted that each non-identity rigid
motionwas a rotation in ordinary Euclidean 3-space about an axis symmetrically
placed on the cube.
One can see that the group of rotations about an axis through the center of a square
face and through the center of its opposite face, is a cyclic group generated by a
rotation y of order four. There are 6/2 = 3 such axes: in fact, they can be taken to
be the three pair-wise orthogonal coordinate axes of the surrounding Euclidean
space. This contributes 6 elements y of order four and 3 elements of order two
(such as y2).
Another type of axis extends from the midpoint of one edge to the midpoint of
an opposite edge. Rotations about such an axis form a subgroup of order two.
The generating rotation t of order two does not stabilize any face of the cube,
and so is not any of the involutions (elements of order two) stabilizing any of the
previous “face-to-face” axes. Since there are twelve edges in six opposite pairs,
these “edge-to-edge” axes contribute 6 new involutions to the group.
Finally there are 8/2 = 4 “vertex-to-vertex” axes, the rotations about which form
cyclic subgroups generated by a rotation of order three. Thus each of these four
groups contribute two elements of order three.
Thus the group of rotations of the cube contains 1 identity element, 6 elements
of order four, 3 involutions stabilizing a face, 6 involutions not stabilizing a face,
and 8 elements of order three—a total of 24 elements.

3.2.3 Cosets, and Lagrange’s Theorem in Finite Groups

Suppose H is a subgroup of a group G. If x is any element of G, we write H x for
the product set H{x} introduced in the last subsection. Such a set Hx is a right coset
of H in G. If x and y are elements of G and H ≤ G, then y is an element of Hx if
and only if H y = Hx. This is any easy exercise. It follows that all the elements of G
are partitioned into right cosets as

G = ∪x∈T Hx a disjoint union of right cosets, for appropriate T .

Here T is merely a set consisting of one element from each right coset. Such a set
is called a system of right coset representatives of H in G, or sometimes a (right)
transversal of H in G.

The components of this partition—that is the sets {H x |x ∈ T } for any transversal
T—is denoted G/H . It is just the collection of all right cosets themselves. The
cardinality of this set is called the index of H in G and is denoted [G : H ].
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One notes that right multiplication by element x induces a bijection H → H x .
Thus all right cosets have the same cardinality. Since they partition all the elements
of G we have the following:

Lemma 3.2.5 (Lagrange’s Theorem)

1. If H ≤ G, then |G| = [G : H ] · |H |.
2. The order of any subgroup divides the order of the group.
3. The order of any element of G divides the order of G.

We conclude with a useful result.

Lemma 3.2.6 Suppose A and B are subgroups of the finite group G. Then |AB| ·
|A ∩ B| = |A| · |B|.
Proof Consider the mapping f : A × B → AB, which maps every element (a, b)

of the Cartesian product to the group product ab. This map is surjective, and the fibre
f −1(ab) contains all pairs {(ax, x−1b)|x ∈ A∩ B}. (Note that in order for (ax, x−1b)

to be in the designated fibre, one must have ax ∈ A, and x−1b ∈ B, forcing x ∈ A
and x−1 ∈ B–that is, x ∈ A∩ B.) Thus |A× B| ≥ |A∩ B| · |AB|. On the other hand,
if ab = a′b′ for (a, b) and (a′, b′) in A × B, then a−1a′ = b(b′)−1 = x ∈ A ∩ B.
But then ax = a′, x−1b = b′. So the fibers are no larger than |A ∩ B|. This gives the
inequality in the other direction. �

3.3 Homomorphisms of Groups

3.3.1 Definitions and Basic Properties

Let G and H be groups. Amapping f : G → H is called a homomorphism of groups
if and only if

f (xy) = f (x) f (y) for all elements x, y ∈ G. (3.1)

Here, aswas our convention,we have represented the group operation of both abstract
groups G and H by juxtaposition. Of course in actual practice, the operations may
already possess some other notation customary for familiar examples.

For any subset X , we set f (X) := { f (x)|x ∈ X}. In particular, the set f (G) is
called the homomorphic image of G.

We have the usual glossary for special properties of homomorphisms. Suppose
f : G → H is a homomorphism of groups. Then

1. f is an epimorphism if f is onto—that is, f is a surjection of the underlying sets
of group elements. Equivalently, f is an epimorphism if and only if f (G) = H .

2. f is an embedding of groups whenever f is an injection of the underlying set of
group elements. (It need not be surjective).
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3. f is an isomorphism of groups if and only if f is a bijection of the underlying set
of elements—that is, f is both an embedding and an epimorphism.

4. f is an endomorphism of groups if it is a homomorphism of G into itself.
5. f is an automorphism of a group G if it is an isomorphism G → G of G to itself.

The following is an elementary exercise.

Lemma 3.3.1 Suppose f : G → H is a homomorphism of groups. Then

1. If 1G and 1H denote the unique identity elements of G and H, respectively, then
f (1G) = 1H .

2. For any element x of G, f (x−1) = ( f (x))−1.
3. The homomorphic image f (G) is a subgroup of H.

Lemma 3.3.2 Suppose f : G → H and g : H → K are group homomorphisms.
Then the composition g ◦ f : G → K is also a homomorphism of groups. Moreover:

1. If f and g are epimorphisms, then so is g ◦ f .
2. If f and g are both embeddings of groups, then so is g ◦ f ,
3. If f and g are both isomorphisms, then so is g ◦ f , and the inverse mapping

f −1 : H → G.
4. If f and g are both endomorphisms (i.e. G = H = K ), then so is g ◦ f .
5. If f and g are both automorphisms of G then so are g ◦ f and f −1.

Thus the set of automorphisms of a group G form a group under composition of auto-
morphisms. (This is called the automorphism group of G and is denoted Aut(G)).

Finallywe introduce an invariant associatedwith every homomorphism of groups.
The kernel of the group homomorphism f : G → H is the set

ker f := {x ∈ G| f (x) = 1H }.

The beginning reader should use the subgroup criterion to verify that ker f is a
subgroup of G. If f (x) = f (y) for elements x and y in G, then xy−1 ∈ ker f , or
equivalently, (ker f )x = (ker f )y as cosets. Thus we see

Lemma 3.3.3 The group homomorphism f : G → H is an embedding if and only
if ker f = 1, the identity subgroup of G.

We shall have more to say about kernels later.

3.3.2 Automorphisms as Right Operators

As noted just above, homomorphisms of groups may be composed when the arrange-
ment of domains and codomains allows this. In that case we wrote (g ◦ f )(x) for
g( f (x))—that is, f is applied first, then g.

As remarked in Chap.1, that notation is not very convenient if composition of
mappings is to reflect a binary operation on the set of mappings itself. We have

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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finally reached such a case. The automorphisms of a group G themselves form a
group Aut(G). To represent how the group operation is realized by composition of
the induced mappings, it is notationally convenient to represent then in “exponential
notation” and view the composition as a composition of right operators.

(The exponential convention) If σ is an automorphism of a group G, and g ∈ G,
we rewrite σ(g) as gσ . This way, passing from the group operation (in Aut(G))
to composition of the automorphisms does not entail a reversal in the order of the
group arguments.6

Thus for automorphisms σ and τ of G and any x ∈ G we then have,

xστ = (xσ)τ .

3.3.3 Examples of Homomorphisms

Symmetries that are induced by group elements on some object X are a great source
of examples of group homomorphisms. Where possible in these examples we write
these as left operators with ordinary composition “◦”—but we will begin to render
these things in exponential notation here and there, to get used to it. In the next
chapter on group actions, we will be using the exponential notation uniformly when
a group acts on anything.

Example 25 Examples of homomorphisms.

(a) Suppose there is a bijection between sets X and Y . Then there is an isomorphism
Sym(X) → Sym(Y ). This just amounts to changing the names of the objects
being permuted.

(b) Let R∗ be the multiplicative group of all nonzero real numbers, and let R+∗
be the multiplicative group of the positive real numbers. Then the “squaring”
mapping, which sends each element to its square, defines a homomorphism of
groups

σ : R∗ → R
+∗,

and, by restriction, an embedding

σ|R+∗ : R∗ → R
∗.

The kernel of σ is the multiplicative group consisting of the real numbers ±1.

6This is part of a general scheme in which elements of some ‘abstract group’ G (with its own
multiplication) induce a group of symmetries Aut(X) of some object X so that group multiplication
is represented by composition of the automorphisms. These are called “group actions” and are
studied carefully in the next chapter.
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(c) In any intermediate algebra course (cf. books of Dean or Herstein, for exam-
ple), one learns that complex conjugation (which sends any complex number
z = a + bi to z̄ := a − bi , a and b real) is an automorphism of the field of com-
plex numbers. The norm mapping N : C∗ → R

+∗ from the multiplicative group
of non-zero complexnumbers to themultiplicative groupof positive real numbers
is defined by setting N (z) := z · z̄ for each complex number z. Since complex
conjugation is an automorphism of the commutative multiplicative group C∗, it
follows that the norm mapping N satisfies N (z1z2) = N (z1)N (z2) and hence is
a homomorphism of groups. The kernel of the homomorphism is the group C1
of complex numbers of norm 1—the so-called circle group.
(When one considers that N (a + bi) = a2 + b2, a, b ∈ R, it is not mysterious
that the set of integers which are the sum of two perfect squares is closed under
multiplication.)

(d) (Part 1.) Now consider the group of rigid rotations of the (regular) cube. There
are four diagonal axes intersecting the cube from a vertex to its opposite vertex.
These four axes intersect at the center of the cube, which we take to be the origin
of Euclidean 3-space. The angle α formed at the origin by the intersection of any
of these two axes, satisfies cos(α) = ±1/3. Let us label these four axes 1, 2, 3, 4
in any manner. As we rotate the cube to a new congruent position, the four axes
are permuted among themselves. Thus we have a mapping

rotations of the cube → permutations of the labeled axes

which defines a group homomorphism

rigid rotations of the cube → Sym(4),

the symmetric group on the four labels of the axes. The kernelwould be a group of
rigid motions which stabilizes each of the four axes. Of course it is conceivable
that some axes are reversed (sent end-to-end) by such a motion while others
are fixed point-wise by the same motion. In fact if we had used the three face-
centered axes, it would be possible to reverse two of the axes while rigidly fixing
the third. But with these four vertex-centered axes, that is not possible. (Can you
show why? It has to do with the angle and the rigidity of the motion.) So the
kernel here is the identity rotation of the cube. Thus we have an embedding of the
rotations of the cube into Sym(4). But we have seen in the previous subsection
that both of these groups have order 24. Thus by the “pigeon-hole principle”,
the homomorphism we have defined is an isomorphism.

(d) (Part 2.) Again G is the group of rigid rotations of the cube. There are exactly
three face-centered axes which are at right angles to one another. A 90◦ rotation
about one of these three axes fixes it, but transposes the other two. Thus if we
label the three face-centered axes by the letters {1, 2, 3}, and send each rotation
in the group G to the permutation of the labels of the three face-centered axes
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which it induces, we obtain an epimorphism of groups G → Sym(3), or, in view
of part 1 of (d), a homomorphism Sym(4) → Sym(3). The kernel is the group
K which stabilizes each of the three face-centered axes. This group consists of
the identity element, together with three involutions, each being a 180◦ rotation
about one of the three face-centered axes. Multiplication in K is commutative.

(e) Linear groups to matrix groups. Now let V be a vector space over a field F of
finite dimension n. We have seen in the previous subsection that the bijective
linear transformations from V into itself form a group which we called GL(V ),
the general linear group on V . Now fix a basis A = {v1, . . . , vn} of V . Any
linear transformation T : V → V , viewed as a right operator of V can be
represented as a matrix

ATA := (pi j )

where

(vi )T = pi1v1 + pi2v2 + · · · + pinvn

(so that the rows of the matrix depict the fate of the vector vi under T ).7 For
composition of the right operators S and T on V let us write

v(T ∗ S) = ((v)T )S, v ∈ V,

so that T ∗ S is simply S ◦ T in the standard notation for composition. Then we
see that

A(T ∗ S)A = A(T )A · A(S)A

(where chronologically, the notation intends that T is applied first, then S, being
right operators and “·” denotes ordinarymultiplication ofmatrices.) This way the
symbolism does not transpose the order of the arguments, so in fact the mapping

T →A TA

defines a group homomorphism

fA : GL(V ) → GL(n, F)

7Thanks to the analysts’ notation for functions, combined with our habit of reading from left to
right, many linear algebra books make linear transformations left operators of their vector spaces,
so that their matrices are then the transpose of those you see here. That is, the columns of their
matrices record the fates of their basis vectors. However as algebraists are aware, this is actually a
very awkward procedure when one wants to regard the composition of these transformations as a
binary operations on any set of such transformations.
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of the group of linear bijections into the group of n ×n invertible matrices under
ordinary matrix multiplication.
What is the kernel? This would be the group of linear transformations which fix
each basis element, hence every linear combination of them, and hence every
vector of V . Only the identity mapping can do this, so we see that fA is an
isomorphism of groups.

(f) The determinant homomorphism of matrix groups. The determinant associates
with each n × n matrix, a scalar which is non-zero if the matrix is invertible.
That determinants preserve matrix multiplication is not very obvious from the
formulae expressing it as a certain sum over the elements of a symmetric group.8

Taking it on faith, for the moment, this would mean that the mapping

det : GL(n, F) → F∗,

taking each invertible matrix to its determinant is a group homomorphism into
the multiplicative group of non-zero elements of the ground field F . The kernel,
then, is the group of all n × n matrices of determinant 1, which is called the
special linear group and is denoted SL(n, F).

(g) Even and odd permutations and the sgn homomorphism. Now consider the sym-
metric group on n letters. In view of Example (a) above, the symmetric groups
Sym(X) on finite sets X of size n are all isomorphic to one another, and so are
given a neutral uniform description: Sym(n) is the group of all permutations of
the set of “letters” {1, 2, . . . , n}. Subgroups of Sym(n) are called permutation
groups on n letters. Representing an abstract group as such a group of permuta-
tions provides an environment for calculating products. Many properties of finite
groups are in fact proved by such calculations. In general, the way to transport
arguments with symmetric groups to arbitrary groups G is to exploit homomor-
phisms G → Sym(n). These are called “group actions” and are fully described
in the next chapter.
Now we can imagine that the neutral set of letters �n := {1, 2, . . . , n} are
formally a basis A of an n-dimensional vector space over any chosen field F .
Then any permutation becomes a permutation of the basis elements of V , which
extends to a linear transformation T of V , and can then be rendered as a matrix
ATA with respect to the basis A as in Example (f). Thus, by a composition
of several isomorphisms that we understand, together with their restrictions to
subgroups, we have obtained an embedding of groups

Sym(n) → GL(n, F)

8The multiplicative properties follow easily from a much nicer definition of determinate which will
emerge from the exterior algebras studied in Chap. 13.

http://dx.doi.org/10.1007/978-3-319-19734-0_13
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which represents each permutation by a matrix possessing exactly one 1 in each
row and in each column, all other entries being zero. Such a matrix is called
a a permutation matrix.
Now even the usual sum formula for the determinant shows that the determinant
of a permutation matrix is ±1. Now if we accept the thesis of Example (f) just
above, that the determinant function is in fact multiplicative, we obtain a useful
group homomorphism:

sgn : Sym(n) → {±1}

into the multiplicative group Z2 of numbers ±1, which records the determinant
of each permutation matrix representing a permutation. The kernel of sgn is
called the alternating group, denoted Alt(n), and its elements are called even
permutations. All other permutations are called odd permutations. Since sgn is
a group homomorphism, we see that

An even permutation times an even permutation is even.
An odd permutation times an odd permutation is even.
An even permutation times an odd permutation (in any order) is odd.

Since the argument developed for this example assumed the thesis of part (f)
(of this same Example 25)—that the determinant of a product of matrices is the
product of their determinants—and since that thesis may not be known from first
principles by some students, we shall give an elementary proof of the existence
of the sgn homomorphism in Sect. 4.2.2 of the next chapter, without any appeal
to determinants.

(h) The automorphism group of a cyclic group of order n. Finally, perhaps,we should
consider an example of an automorphism group of a group. We consider here,
the group Aut(Zn), the group of automorphisms of the cyclic group of order n,
where n is any natural number. Suppose, then, that C is the additive group of
integers mod n—that is, the additive group of residue classes modulo n. Thus
{[ j] := j + nZ}, j = 1, 2, . . . , n − 1, n. The addition rule becomes

[i] + [ j] = [i + j] or [i + j − n], whichever does not exceed n,

where 1 ≤ i ≤ j ≤ n. Then element [1] generates this group. Indeed so does
[m] if and only if gcd(m, n) = 1. Thus, if f : C → C is an automorphism
of C it follows than f ([1]) = [m] where gcd(m, n) = 1. Moreover, since f
is a homomorphism, f [k] = [mk]. Thus the automorphism f is completely
determined by the natural number m coprime to and less than n. The number of
such numbers is called the Euler φ-function, and it’s value at n is denoted φ(n).
Thus φ(n) = |Aut(Zn)|.

It now follows that Aut(C) is isomorphic to the multiplicative group �(n) of all
residues mod n which consist only of numbers which are relatively prime to n.9

9 We will obtain a more exact structure of this group when we encounter the Sylow theorems.

http://dx.doi.org/10.1007/978-3-319-19734-0_4
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(i) The inner automorphism group. Let G be a general abstract group and let x be
a fixed element of G. We define a mapping

ψx : G → G,

called conjugation by x , by the rule ψx (g) := x−1gx , for all g ∈ G. One can
easily verify that ψx (gh) = ψx (g)ψx (h), and as ψx is a bijection, it is an auto-
morphism of G. Any automorphism of G which is of the form ψx for some x in
G, is called an inner automorphism of G.
Now if {x, y, g} ⊆ G, one always has

y−1(x−1gx)y = (y−1x−1)g(xy) = (xy)−1g(xy) (3.2)

which means

ψy ◦ ψx = ψxy (3.3)

for all x, y. Thus the set of inner automorphisms is closed under composition of
morphisms. Setting y = x−1 in Eq. (3.3) we have

ψx−1 = ψ−1
x , (3.4)

and so the set of inner automorphisms is also closed under taking inverses. It
now follows that the set of inner automorphisms of a group G forms a subgroup
of the full automorphism group Aut(G). We call this subgroup the inner auto-
morphism group of G, denoted by Inn(G).
Now Eq. (3.3) would suggest that there is a homomorphism from G to Aut(G)

except for one thing: the arguments of the ψ-morphisms come out in the wrong
order in the right side of the equation. That is because the operation “◦” is
denoting composition of left operators.
This reveals the efficacy of using the exponential notation for denoting automor-
phisms as right operators. We employ the following:

(Convention of writing conjugates in groups) If a and b are elements of a
group G, we write

a−1ba in the exponential form ba .

In this notation Eq. (3.2) reads as follows:

(gx )y = gxy (3.5)

for all {g, x, y} ⊆ G. What could be simpler?
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Then we understand Eq. (3.3) to read

ψxy = ψxψy, (3.6)

where the juxtaposition on the right hand side of the equation indicates compo-
sition of right operators—that is the chronological order in which the mappings
are performed reads from left to right, ψx first and then ψy .
Now Eq. (3.6) provides us with a group homomorphism:

ψ : G → Aut(G)

taking element x to the inner automorphism ψx , the automorphisms of Aut(G)

being composed as right operators (as in the exponential convention for isomor-
phisms on p. 81).
What is the kernel of the homomorphismψ? This would be the set of all elements
z ∈ G such that ψz = 1G , the identity map on G. Thus this is the set Z(G) of
elements z of G satisfying any one of the following equivalent conditions:

(a) ψz = 1G , the identity map on G,
(b) z−1gz = g for all elements g of G,
(c) zg = gz for all elements g of G.

The subgroup Z(G) is called the center of G. The identity element is always
in the center. If Z(G) = G, then multiplication in G is “commutative”—that is
xy = yx for all (x, y) ∈ G × G. Such a group is said to be commutative, and is
affixed with the adjective abelian. Thus G is abelian if and only if G = Z(G).

A Glossary of Terms Expected to be Understood from the Examples

1. Homomorphism of groups.
2. Epimorphism of groups.
3. Embedding of groups.
4. Isomorphism of groups.
5. Endomorphism of a group.
6. Automorphism of a group.
7. The kernel of a homomorphism, ker f .
8. The automorphism group, Aut(G), of a group G.
9. The inner automorphism group, Inn(G), of a group, G.
10. An inner automorphism.
11. The center of a group, Z(G).
12. Abelian groups.
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3.4 Factor Groups and the Fundamental Theorems
of Homomorphisms

3.4.1 Introduction

A teacher is sometimes obliged to present to a class a Theorem labeled as some
sort of “Fundamental Theorem”. More often than not, such a theorem is not quite as
fundamental as it must have seemed at an earlier time in our history.10

At a minimum it would seem that a proposition should be labelled “a fundamental
theorem” if it has these properties:

1. It should be used so constantly in the daily life of a scholar of the field, that
quoting it becomes repetitive.

2. It’s logical distance from the “first principles” of the field should be short enough
to bear a short explanation to a puzzled student (that is, the alleged “fundamental
theorem” should be “teachable”).

We are lucky today! The fundamental theorems of homomorphisms of groups
actually meets both of these criteria. They tell us that the homomorphic images of
groups, their compositions, and their effects on subgroups, can all be derived from
an internal study of the groups themselves.

The custom has been to name these three theorems as the “First-”, “Second-”, and
“Third Fundamental Theorems of Homomorphisms”. However a perusal of eight
well-known textbooks in algebra shows this nomenclature to be far from uniform.11

Sowe have tried to sidestep the ambiguity by naming these three very basic Theorems
in a way related to what these theorems are telling us.

3.4.2 Normal Subgroups

The set of all subgroups of a group are permuted among themselves by automor-
phisms of a group. Explicitly: if σ ∈ Aut(G), and K is a subgroup of G, then
K σ := {kσ|k ∈ K } is again a subgroup of G.12 Moreover, if H is a subgroup of
Aut(G), then any subgroup of G left invariant by the elements of H is said to be

10 Who on earth decided that the Fundamental Theorem of Algebra should be the fact that the
Complex Numbers form an algebraically closed field? Who on earth decided that the Fundamental
Theorem of Geometry should be the fact that an isomorphism between two Desarguesian Projective
Spaces of sufficient dimension is always induced by a semilinear transformation of the underlying
vector spaces?
11One author’s “First” theorem is another’s “Second”, all three ordinal labels are used by one author
(Hall) for what another calls the “First” Theorem, and some authors (Michael Artin, for example),
seeing the problem, wisely declined to assign ordinal numbers beyond the “First”.
12Note the convention of regarding automorphisms as right operators whose action is denoted
exponentially (see p. 81).
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H-invariant. Naturally we have special cases for special choices of H . A subgroup K
which is invariant under the full group Aut(G) is said to be a characteristic subgroup
of G. We write this as K char G. (The center which we previously encountered is
certainly one of these).

But let us drop down to a larger class of H -invariant subgroups by letting
H descend from the full automorphism group of G to the case that H is sim-
ply the inner automorphism group, Inn(G), encountered in the previous Section,
Example 25, part (i). A subgroup which is invariant under Inn(G) is said to be
normal in G or to be a normal subgroup of G.

Just putting definitions together one has

Lemma 3.4.1 The following are equivalent conditions for a subgroup K of G:

1. ψx (K ) = K , for all x ∈ G,
2. x−1K x = K for every x ∈ G,
3. x K = K x, for each x ∈ G.

(In this Lemma, ψx is the inner automorphism induced by the element x : see
Example 25, part (i) preceding.)

As a notational convenience, the symbol K �G will always stand for the assertion:
“K is a normal subgroup of G” or, equivalently, “K is normal in G”. This is always
a relation between a subgroup K and some subgroup G which contains it. It is not
a transitive relation. It is quite possible for a group G to possess subgroups L and
K , with L � K and K � G, for which L is not normal in G.13 Two immediate
consequences of normality are the following:

Corollary 3.4.2 Suppose N is a normal subgroup of the group G and suppose H is
any subgroup of G. Then the following statements hold:

1. N is normal in any subgroup of G which contains it.
2. N ∩ H is a normal subgroup of H. (As a special case, if H contains N, then N

is normal in H).
3. NH = HN is a subgroup of G.
4. If H is also normal in G, then so is HN.

The proof is left for the beginning student in Exercise (4) in Sect. 3.7.1 at the end
of this chapter.

One should not leave a basic section on normal subgroups without touching on the
relationship between the normal subgroups and characteristic subgroups. As noted
above, a normal subgroup of G is simply a subgroup N of G which is invariant under
all the inner automorphisms of G, while a characteristic subgroup is a subgroup

13 In the group G of rigid rotations of a cube (Example 23, part (g) of Sect. 3.2), the 180◦ rotation
about one of the three face-centered axes, generates a subgroup L which point-wise fixes its axis
of rotation, but inverts the other two face-centered axes. This a normal subgroup of the abelian
subgroup K of all rotations of the cube which leave each of the three face-centered axes invariant.
Then K is normal in G, being the kernel of the homomorphism of Example 25, Part (d) of Sect. 3.3.
But clearly L is not normal in G, since otherwise its unique point-wise fixed face-centered axis,
would also be fixed. But it is not fixed as G/K induces all permutations of Sym(3) on these axes.
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K of G that is invariant under all automorphisms of G. Thus every characteristic
subgroup of G is already normal, but, in general, being characteristic is a much
stronger condition.

Theorem 3.4.3 Assume N is a normal subgroup of G. If K is a characteristic
subgroup of N (i.e. K is invariant under Aut(N )), then K is normal in G.

One more result:

Theorem 3.4.4 For any group G, Inn(G) � Aut(G).

The proofs of these two theorems are left as Exercises 3 and 4 of Sect. 3.7.3 at the
end of this chapter.

Almost any subgroup of G that is unique in some respect is a characteristic
subgroup of G. For example the identity group 1, the whole group G and the center,
Z(G), are all characteristic subgroups of G.

3.4.3 Factor Groups

Let N be a normal subgroup if G. By Part 3. of the above Lemma 3.4.1, one sees
that the subset xN is in fact the set Nx, for each x ∈ G. But it also asserts that
Nx · Ny = N (xN)y = NNxy = Nxy as subsets of G. Thus there is actually a
multiplicative group G/N whose elements are the right cosets of N in G, where
multiplication is unambiguously given by the rule

(Nx) · (Ny) = Nxy. (3.7)

We have a name for this multiplicative group of cosets of a normal subgroup N . It is
called the factor group, G/N . Its identity element is the subgroup N itself (certainly
a right coset N · n, for any n ∈ N ) since Nx · N = NNx = Nx. The inverse in G/N of
the element Nx is the element Nx−1. In fact it is now easy to verify that the mapping
G → G/N that sends element x to coset Nx is a group homomorphism (see Theorem
3.4.5, part (i) below).

Now let f : G → H be a homomorphism of groups. Two special groups asso-
ciated with a group homomorphism f have been introduced earlier in this chapter:
the range or image, f (G), and the kernel, ker f . Now if y ∈ ker f , and x ∈ G, we
see that

f (x−1yx) = ( f (x))−1 f (y) f (x) = ( f (x))−1 · 1 · f (x) = 1 ∈ H,

since f (y) = 1. Thus for all y ∈ ker f , and x ∈ G, x−1yx ∈ ker f so ker f is always
a normal subgroup. What about the corresponding factor group?
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Theorem 3.4.5 (The Fundamental Theorem of Homomorphisms)

(i) If N is a normal subgroup of a group G, the mapping G → G/N which maps
each element x of G to the right coset Nx which contains it, is an epimorphism
of groups. Its kernel is N .

(ii) If f : G → H is a homomorphism of groups, there is an isomorphism η :
f (G) → G/(ker f ) taking each element f (x), x ∈ G, to (ker f )x. Thus every
homomorphic image f (G) is isomorphic to a factor group of G.

(iii) In particular, the kernel of the homomorphism is trivial—i.e. ker f = 1—if and
only if the homomorphism itself is injective.

Proof (i) That the mapping π : G → G/N defined by π(x) := Nx, is a homomor-
phism follows from NxNy = Nxy, for all (x, y) ∈ G × G. By definition of G/N
this map is onto. (The epimorphism π : G → G/N is usually called the projec-
tion homomorphism or sometimes the natural homomorphism onto the factor group
G/N .) Since the coset N = N · 1 is the identity element of G/N , the kernel of ν is
precisely the subset {x ∈ G|N x = N } = {x ∈ G|x ∈ N } = N . Thus ker π = N .

(ii) Now set ker f := N We propose a mapping η : f (G) → G/N which takes
an image element f (x) to the coset Nx. Since this recipe is formulated in terms
of a single element x , we must show that the proposed mapping is well-defined.
Suppose f (x) = f (y). We wish to show Nx = Ny. But the hypothesis shows that
f (x−1y) = f (x−1) f (y) = ( f (x))−1 f (x) = 1 ∈ G, so x−1y ∈ ker f = N ,
whence Nx = Ny, as desired.

Now

η( f (x) f (y)) = η( f (xy)) = Nxy (3.8)

= NxNy = η( f (x)) · η( f (y)). (3.9)

Thus η is a homomorphism. If f (x)were in the kernel of η, then η( f (x)) = Nx = N ,
the identity element of G/N . Thus x ∈ N , so f (x) = f (1), the identity element of
f (G). Finally, η is onto, since, for any g ∈ G, the coset Ng = η( f (g)). Thus η is a
bijective homomorphism and so is an isomorphism.

(iii) This is obvious from first principles since xy−1 ∈ ker f if and only if f (x) =
f (y). It also follows from (ii). The proof is complete. �

Remark (a) The main idea about (i) is that when you spot a homomorphism shooting
off somewhere, you do not have to search all over the Universe to study it. Instead,
you can realize the homomorphic image right inside the structure of the group G
itself, as one of its factor groups.

(b) We have included statement (iii) in the Fundamental Theorem of Homomor-
phisms since it is so often implicitly used without any particular reference. Since it
is an immediate consequence of part (ii) we have given it a home here.

There are two further consequences of Theorem 3.4.5 which are contained in the
following Corollary.
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Corollary 3.4.6 (The classical isomorphism theorems)

(i) (The Composition Theorem for Groups) Suppose K and N are both normal
subgroups of G, with K contained in N. Then N/K is a normal subgroup of
G/K , and G/N is isomorphic to the factor group (G/K )/(N/K ).

(ii) (The Modularity Theorem for Groups) If N is a normal subgroup of G, and H
is any subgroup of G, HN/N is isomorphic to H/(H ∩ N ).

Proof (i) By Corollary 3.4.2, part 1, K is normal in N , so N /K is the multiplicative
group of cosets {K n|n ∈ N }. For any coset K x of G/K , and coset K n of N /K ,
(K x)−1K nK x = K (x−1nx), which is in N /K . Thus N /K � G/K . Thus there is a
natural epimorphism f2 : G/K → (G/K )/(N /K ) onto the factor group as described
in the Fundamental Theorem (Theorem 3.4.5, part (i)). By the same token, there
is a canonical epimorphism f1 : G → G/K . By Lemma 3.3.2 of Sect. 3.2. The
composition of these epimorphisms is again an epimorphism:

f2 ◦ f1 : G → (G/K )/(N/K ).

An element x of G is first mapped to the coset K x and then to the coset (K x){K n|n ∈
N } (which, viewed as a set of elements of G is just N x). Thus x maps to the identity
element (N /K )/(N /K ) of (G/K )/(N /K ) if and only if x ∈ N . Thus the kernel of
epimorphism f2 ◦ f1 is N . The result now follows from the Fundamental Theorem
of Homomorphisms (Theorem 3.4.5 Part (ii)).

(ii) Clearly N � HN and N ∩ H � H by Corollary 3.4.2, part1. We propose
to define a morphism f : H → HN/N by sending element h of H to coset Nh ∈
HN/N . Clearly hh′ is sent to Nhh′ = (Nh)(Nh′), so f is a group homomorphism.
Since every coset of N in HN = NH has the form Nh for some h ∈ H , f is an
epimorphism of groups. Now if h ∈ H , then Nh = N , the identity of HN/N , if and
only if h ∈ H ∩ N . Thus ker f = H ∩ N and now the conclusion follows from the
Fundamental Theorem of Homomorphisms (Theorem 3.4.5 Part (ii)). �

3.4.4 Normalizers and Centralizers

Let X be some non-empty subset of a group G. For each x ∈ G, the set ψx (X) :=
x−1X x is called a conjugate (in G) of the set X . Given X , consider the set

NG(X) := {x ∈ G|x−1X x = X}.

The reader may verify that the set on the right side of the presented equation indeed
satisfies any one of the equivalent conditions listed in the SubgroupCriterion (Lemma
3.2.3). The subgroup described by this equation is called the normalizer (in G) of
the set X and is denoted NG(X). Also, if H is any subgroup of G, we say that H
normalizes the set X if and only if H is a subgroup of the normalizer NG(X).

In practice, X is often itself a subgroup.
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Lemma 3.4.7 The following statements about a group G are true.

1. The subgroup H is a normal subgroup of G, i.e. H � G, if and only if NG(H) = G.
More generally, H is normal in the subgroup K —i.e. H � K —if and only if
H ≤ K ≤ NG(H).

2. If H and K are subgroups of G, then NK (H) = NG(H) ∩ K .
3. If H and K are subgroups of G, and K normalizes H, then HK = KH, and KH

is a subgroup of G.
4. Suppose the subgroup K normalizes the subset X of G. Then K also normalizes

the subgroup 〈X〉G generated by X.

The statements are immediate consequences of the definitions. The beginning
student is urged to warm up some nice fall afternoon by devising formal proofs of
these statements.

There is another kind of subgroup determined by a subset X of a group G, namely
the subgroup

CG(X) := {g ∈ G|g−1xg = x, for all x ∈ X},

called the centralizer (in G) of X . It consists precisely of those elements in G which
commute with every element of X . We say that subgroup H centralizes the set X if
and only if H ⊆ CG(X).

At this point it might be useful to compare the centralizer and the normalizer. The
normalizer NG(X) is the set of elements g ∈ G whose associated inner automorphism
ψg leaves the subset X invariant as a whole. The centralizer CG(X) consists of those
elements g ∈ G whose associated inner automorphism ψg fixes set X element-wise.
Now, as with the normalizer, we possess a number of elementary observations.

Lemma 3.4.8 Suppose G is some fixed group with a designated subset X. The
following statements hold.

1. We have CG(X) � NG(X).
2. If H is a subgroup of G, then CH (X) = CG(X) ∩ H.
3. If subgroup H centralizes X, then it also centralizes the subgroup 〈X〉G generated

by X.

Once again the beginning student is invited to spend a few moments some nice
fall afternoon assembling formal proofs of the statements in Lemma 3.4.8 This time,
in view of part 1, the student is permitted to order a drink.

3.5 Direct Products

A direct product is a formal construction for getting new groups in a rather easy way.
First let G = {Gσ|σ ∈ I } be a family of groups indexed by the index set I . We can
write elements of the Cartesian product of the Gσ as functions
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f : I →
⋃

σ∈I
Gσ such that f (σ) ∈ Gσ.

Of course, when I is countable, we can represent elements f in the usual way, as
sequences ( f (1), f (2), . . .). Define a binary operation on the Cartesian product by
declaring the “product” f1 f2 of f1 and f2 to be the functionwhose value ( f1 f2)(σ) at
σ ∈ I is f1(σ) f2(σ)—that is, the values fi (σ) at the “coordinate” σ are multiplied in
the group Gσ) to yield the σ-coordinate of the “product”. This is termed “coordinate-
wisemultiplication”, since for sequences, the product of (a1, a2, . . .) and (b1, b2, . . .)
is (a1b1, a2b2, . . .), by this definition. The Cartesian product with this coordinate-
wise multiplication clearly forms a group, which we call the direct product over G
and is denoted by ∏

σ∈I
(Gσ) or

∏
GGσ

or, when I = {1, 2, . . . , n}, simply by

G1 × G2 × · · · × Gn .

It contains a subgroup consisting of all maps f in the definition of direct product,
for which f (σ) fails to be the identity element of the group Gσ only finitely many
times. This subgroup is called the weak direct product or direct sum over G and is
denoted ⊕

σ∈I
(Gσ) or

⊕
G(Gσ).

When I is finite, there is no distinction between the direct product and direct sum.
Consider the group G = {±1} under ordinary multiplication of integers. Thus

G is a group of order 2, with involution −1. Then G × G is the group of pairs
(u, v), u, v ∈ {±1}, with coordinate-wisemultiplication. For example, one calculates
that (−1, 1) ·(1,−1) = (−1,−1). In this case G ×G is a group of order four with an
identity element and three involutions. The product of any two distinct involutions
is the third involution. Any group in the isomorphism class of this group is called a
fours group.

For every index τ in I , there is clearly a homomorphism πτ : ⊕
G(Gσ) → Gτ

which takes f to f (τ ), for all f in the direct product. Such an epimorphism is called
a projection onto the coordinate indexed by τ . This epimorphism retains this name
even when it is restricted to the direct sum.

Any permutation of the index set induces an obvious isomorphism of direct prod-
ucts and direct sums. Thus G1 × G2 is isomorphic to G2 × G1 even though they are
not formally the same group.

Similarly, any (legitimate) rearrangement of parentheses involved in constructing
direct products yields isomorphisms; specifically

G1 × G2 × G3 � (G1 × G2) × G3 � G1 × (G2 × G3).
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Now suppose A and B are two subgroups of a group G with A ∩ B = 1, and B
normalizing A (that is, B ≤ NG(A)). Then together they generate a subgroup AB
with order |A| · |B| (Lemma 3.2.6). Now suppose in addition that A normalizes B.
Then for any element a ∈ A and element b ∈ B, the factorizations (aba−1)b−1 =
a(ba−1b−1) show that aba−1b−1 ∈ A ∩ B = {1} and so ab = ba. Thus all elements
of A commute with all elements of B. In that case the mapping A × B → AB
which takes (a, b) ∈ A × B to ab, is a group homomorphism whose kernel is
{(x, x−1)|x ∈ A ∩ B}. Since A ∩ B = {1}, this map is an isomorphism.

These remarks are summarized in the next Lemma.

Lemma 3.5.1

(i) For any permutation π in Sym(n), There is an isomorphism

G1 × G2 × · · · × Gn → Gπ(1) × Gπ(2) × · · · × Gπ(n)

although neither of the groups are necessarily formally the same.
(ii) Any two well-formed groupings of the factors of a direct product into paren-

theses yields groups which are isomorphic to the original direct product and
hence are isomorphic to each other.

(iii) (Internal Direct Products) Suppose A1, A2, . . . is a countable sequence of
subgroups of a group G.

(a) Suppose A j normalizes Ai whenever i �= j , and
(b) A1A2 · · · Ak−1 ∩ Ak = 1, for all k ≥ 2.

Then A1A2 · · · An is isomorphic to the direct product A1 × · · · × An for any
finite initial segment {A1, . . . , An} of the sequence of subgroups.

3.6 Other Variations: Semidirect Products and Subdirect
Products

3.6.1 Semidirect Products

Suppose we are given a homomorphism

f : H → Aut(N ),

for two abstract groups N and H . Then f defines a formal construction of a group
N :H , which is called a semidirect product of N by H .14 The elements of N :H are

14In some older books there is other notation for the semidirect product—some sort of decoration
added to the “�” symbol. The notation N :H is the notation for a “split extension of groups” used
in the Atlas of Finite Groups [12].
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the elements of the Cartesian product N × H . Multiplication proceeds according to
this rule: For any two elements (n1, h1) and (n2, h2) in N × H :

(n1, h1)(n2, h2) := (n1(n2)
f (h−1

1 ), h1h2).

Verification of the associative law for a triple product (n1, h1)(n2, h2)(n3, h3) comes
down to the calculation

n f ((h1h2)−1)
3 = (n

f (h−1
2 )

3 ) f (h−1
1 ).

Example 26 1. If f : H → Aut(N ) is the trivial homomorphism—that is, f maps
every element of H to the identity automorphism of N—then N :H is just the
ordinary direct product N × H of the previous section.

2. If A and B are subgroups of a group G for which A normalizes B and A∩ B = 1,
then the subgroup AB of G, is isomorphic to the semidirect product B:A with
respect to the morphism f : A → Aut(B) which takes each element a of A to
the automorphism of B induced by conjugating the elements of B by a—that is
ψa |B .

3. Let N be the additive group of integers mod n, and let H be any subgroup of
the multiplicative group of residues coprime to n (for example, the quadratic
residues coprime to n). Let G be the group of all permutations of N of the form

μ(m, h) : x → hx + m, for all x ∈ N .

Then G is the semidirect product N :H .
4. Let F be any field, let F∗ be the multiplicative group of all nonzero elements of

F , and let H be any subgroup of F∗. Then the set of all transformations of F of
the form

x → hx + a, a ∈ F, h ∈ H,

forms a group under the composition of such transformations. This group is
isomorphic to the semidirect product (F,+):H , where (F,+) denotes the group
on F whose operation is addition in the field F .

5. (The Frobenius group of order 21.) The group is generated by elements x and y
subject only to the relations

x3 = 1, y7 = 1, x−1yx = y2.

It is a semidirect product Z7 : Z3. (This is an example of a “presented group”,
which we shall meet in Chap.6.) Here, the presentation reveals the homomor-
phism H = 〈x〉 → Aut(〈y〉. This group is isomorphic to a group constructed
by the recipe in part 4, where N is the additive group of the field Z/(7) and H
is the multiplicative group of quadratic residues mod 7.

http://dx.doi.org/10.1007/978-3-319-19734-0_6
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6. Suppose A is an abelian group of order n which is not a direct product of Z2’s.
Then the mapping σ : A → A defined by aσ = a−1 for all a ∈ A, is an
automorphism of order 2. Using the inclusion 〈σ〉 ⊆ Aut(A) for f , one can
form the semidirect product A〈σ〉 as above. Some authors refer to A〈σ〉 as a
generalized dihedral group.

7. A group is said to be a normal extension of a group N by H (written G = H.N )
if and only if

N � G and G/N � H.

The extension is said to be split if and only if there is a subgroup H1 of G such
that

G = NH1, N ∩ H1 = 1.

In this case, H1 � H . One can see that

G is a split extension of G by H if and only if G is a semidirect product of N
by H .

First, if the extension is split, every element of G has the form g = nh, (n, h) ∈
N × H . Because N ∩ H1 = 1, the expression g = nh is unique for a given
element g. We thus have a bijection

σ : G → N × H1

which takes g = nh to (n, τ (h)), where τ is the isomorphism H1 → H = G/N
(from Corollary 3.4.6, part (ii)). Now if we multiply two elements of G, we
typically obtain

(n1h1)(n2h2) = n1(h1n2h−1
1 )h1h2 = n1(n2)

(h−1
1 ) · h1h2,

where, by our convention on inner automorphisms, gx := x−1gx. The σ-value
of this element is the pair

((n1)(n2)
(h−1

1 ), τ (h1)τ (h2)).

Thus σ is an isomorphism of G with the semidirect product of N by H , defined
by composing τ−1 with the homomorphism

H1 → Aut(N )

induced by conjugation. (The latter is just the restriction to H1 of the homomor-
phism ψ of Example 3, part (i).)
Conversely, if G is the semidirect product of N by H defined by some homo-
morphism ρ : H → Aut(N ), then, setting

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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N0 := {(n, 1)|n ∈ M}
H0 := {(1, h)|h ∈ H}

then

N0 � G = N0H0 and N0 ∩ H0 = 1,

so G is the split extension N0 by H0 and conjugation in G by element h0 of H0
induces automorphism ρ(h0) on N0. (Clearly, N0 � N and H0 � H .)

3.6.2 Subdirect Products

Something a little less precise is the notion of a subdirect product. We say that a
group H is a subdirect product of the groups {Gσ|σ ∈ I } if and only if (i) H is a
subgroup of the direct product

∏
I Gσ and (ii) for each index τ , the restriction of

the projection map πτ to H is onto—i.e. πτ (H) = Gτ . There may be many such
subgroups, so the isomorphism type of H is not uniquely determined by (i) and (ii)
above.

Subdirect products naturally arise in the following situation: Suppose M and N
are normal subgroups of a group G. Then G/(M ∩ N ) is a subdirect product of
G/N and G/M . This is because G/(M ∩ N ) can be embedded as a subgroup of
(G/M) × (G/N ) by mapping each coset (N ∩ M)x to the ordered pair (Mx, Nx).

In fact something very general happens:
If {Nσ|σ ∈ I } is a family of normal subgroups of a group G, then

• G/(∩I Nσ) is the subdirect product of the groups {G/Nσ|σ ∈ I }.
• SupposeF is a family of groups “closed under taking subdirect products”—that is,
any subdirect product of members of F is in F . (For example the class of abelian
groups is closed under subdirect products.) Then for any arbitrary group G, there
is a “smallest” normal subgroup GF whose associated factor group G/GF lies in
F . Precisely, G/GF ∈ F and if N is normal in G with G/N ∈ F , then GF ≤ N .

A simple group is a group G whose only proper normal subgroup is the identity
subgroup. (Note that by this definition, the group of order one is not a simple group.)

A maximal normal subgroup of a group G is a maximal element in the partially
ordered set of proper normal subgroups of G (ordered by inclusion, of course).

In Exercise (1) in Sect. 3.7.2 the following is proved:

Lemma 3.6.1 A factor group G/N of G is a simple group if and only if N is a
maximal normal subgroup of G.

We begin with an elementary Lemma.
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Lemma 3.6.2 Suppose {Mi |i ∈ I } is a finite collection of maximal normal sub-
groups of a group G. Then for some subset J of I ,

G/(∩i∈I Mi ) = G/(∩ j∈J M j ) �
∏

j∈J
(G/M j ),

a direct product of simple groups.

Proof The result is true for |I | = 1, as G/M1 is simple. We use induction on
|I |. Renumbering the subscripts if necessary, the induction hypothesis allows us to
assume that for some subset J = {1, . . . , d} ⊆ I ′ = {1, . . . , k − 1},

N : = ∩i∈I ′ Mi = ∩ j∈J M j . (3.10)

G/N � (G/M1) × · · · × (G/Md). (3.11)

We set I := {1, . . . , k} = I ′ + {k} and assume, without any loss of generality,
that Mk is not contained in N . Then since N Mk is a normal subgroup of G properly
containing Mk , we must have G = NMk . Also, since Mk is a simple group, N ∩ M =
1. Then

G/(N ∩ Mk) � (G/N ) × (G/Mk),

and the result for |I | = k follows upon substitution for G/N in the right-hand side.�

One may conclude.

Corollary 3.6.3

(i) Suppose G is a finite group with no non-trivial proper characteristic subgroups.
Then G is a direct product of pairwise isomorphic simple groups.

(ii) If N is a minimal normal subgroup of a finite group G, then N is a direct product
of isomorphic simple groups.

Proof Part (i) Let M be a maximal normal subgroup of the finite group G. Then G
has a finite automorphism group, and so {Mσ|σ ∈ Aut(G)} is a finite collection of
maximal normal subgroups of G whose intersection N is a characteristic subgroup of
G properly contained in G. By hypothesis, N = 1. Then by the above Lemma 3.6.2,
G = G/N is the direct product of simple groups. If G = 1, we have an empty direct
product and there is nothing to prove. Otherwise, the product of those direct factors
isomorphic to the first direct factor clearly form a non-trivial characteristic subgroup,
which, by hypothesis must be the whole group.

Part (ii) Since N is a minimal normal subgroup of the finite group G, N is a
non-trivial finite group with only the identity subgroup as a proper characteristic
subgroup, so the conclusion of Part (i) holds for N . �
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3.7 Exercises

3.7.1 Exercises for Sects. 3.1–3.3

1. Write out formal proofs of Lemmas 3.3.1 and 3.3.2 (all parts).
2. Prove Corollary 3.2.4.
3. Prove that G/Z(G) can never be a cyclic group. [Hint: If false, cosets of the form

Z(G)x±k partition G, and elements on one of these cosets commute with those
in any other such coset. So G can be shown to be abelian.]

4. Prove Corollary 3.4.2. [Hint: Use the subgroup criterion (Lemma 3.2.3) for part
3.]

5. Suppose a group G has exponent 2—-that is, g2 = 1 for every g ∈ G. Show that
G is abelian.

6. Suppose p is a (positive) prime number and k is a positive integer.

(i) If p > 2, show that Aut(Z pk ) � Z p−1 × Z pk−1 .
(ii) If p = 2 show that Aut(Z2k ) � Z2 × Z2k−2 .

3.7.2 Exercises for Sect. 3.4

1. Suppose N is a normal subgroup of the group G.

(a) Show that there is an isomorphism between the poset of all subgroups H
of G which contain N , and the poset of all subgroups of G/N (both posets
partially ordered by the containment relation).
[Hint: The isomorphism takes H in the first poset to H /N in the second.]

(b) Show that H is normal in G if and only if H /N is normal in G/N . Thus the
isomorphism of part (a) and its inverse both preserve the normality relation.
(Note that they need not preserve the property of being characteristic in
either direction. The group H containing N is called the inverse image of
H /N .)

(c) Using the fundamental theorem of homomorphisms conclude that if

f : G → L

is an epimorphism of groups, then there is a 1-1 correspondence of the
subgroups of L with the subgroups of G containing ker f preserving con-
tainment and normality. The correspondence takes a subgroup L1 of L to
the subset {g ∈ G| f (g) ∈ L1}, also called the inverse image of L1.

2. If X is a subset of the group G (that is, the subset X is not necessarily a subgroup
of G), define the centralizer in G of X to be the set of all group elements g of
G such that gx = xg for all x ∈ X . This set is denoted CG(X). Similarly, the
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normalizer in G of X is the set of elements {g ∈ G|g−1Xg = X}. Such elements
may permute the elements of X by conjugation, but they stabilize X as a set. A
subgroup H is said to normalize X if and only if H ≤ NG(X). If NG(X) = G,
then X is called a normal set in G.

(a) Show that CG(X) and NG(X) are subgroups of G.
(b) Show that if X is a normal set in G, then CG(X) is also normal in G.
(c) Show that if N is a normal subgroup of G, then the inner automorphism

ψg : x → g−1xg induces an automorphism of N .

3. (a) Conclude that a characteristic subgroup of a normal subgroup of G is normal
in G, that is, K char N � G implies K � G.

(b) Conclude that a characteristic subgroup of a characteristic subgroup of G is
characteristic in G, that is, L char K char G implies L char G.

(c) Suppose N is a normal subgroup of G. Show that the mapping which sends
element g to ψg|N , the restriction of the inner automorphism conjugation-by-
g to N , defines a group homomorphism

ψN : G → Aut(N )

whose kernel is CG(N ). Conclude that the group of automorphisms induced
on N by the inner automorphisms of G is isomorphic to G/CG(N ).

4. Show that for any group G, Inn(G) � Aut(G). (The factor group Out(G) :=
Aut(G)/Inn(G) is called the outer automorphism group of G.)

5. Prove the assertions of Corollary 3.4.2.
6. Recall from p. 99 that a group is said to be a simple group if and only if its only

proper normal subgroup is the identity subgroup. (Note that the definition forbids
the identity group to be a simple group.)

(a) Prove that any group of prime order is a simple group.
(b) Suppose G is a group. A subgroup M is a maximal subgroup of G if and

only if it is maximal in the poset of all proper subgroups of G. A subgroup
M is a maximal normal subgroup of G if and only if it is maximal in the
poset of all proper normal subgroups of G. (Note that it does not mean that
it is a maximal subgroup which is normal. Amaximal normal subgroup may
very well not be a maximal subgroup.) Prove that a factor group G/N of G
is a simple group if and only if N is a maximal normal subgroup.
[Hint: Use the result of Exercise (1)b in Sect. 3.7.2 just above.]

3.7.3 Exercises for Sects. 3.5–3.7

1. Let V be any vector space, and form the group GL(V ) of all invertible linear
transformations of V . Let G be any group and let f : G → GL(V ) be a homo-
morphism of groups. [Such a homomorphism is said to be a representation of the
group G.] Define multiplication on V × G by the rule
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(v1, g1) · (v2, g2) := (v1 + v
f (g1)
2 , g1g2).

(a) Show that this group is isomorphic to the semidirect product (V,+):G upon
noting that GL(V ) ≤ Aut(V,+).

(b) Show that the center of (V,+):G is the direct product CG(V ) × ker f .

2. A popular textbook in intermediate algebra (after presenting the Sylow theorems
which will appear in the next chapter) offers an exercise requesting that the reader
prove that every group of order 75 is abelian. Using the semidirect product con-
struction, show that there exists a non-abelian group of order 75.
[Hint: Let V := Z5 × Z5. One can regard V as a vector space over the field
Z/(5) of integers mod 5. Let t : V → V be a linear transformation acting with
minimal polynomial x2 + x + 1. This means V has a basis {v1, v2} with vt

1 = v2,
and vt

2 = −v1 − v2. Then t3 induces the identity transformation 1V . Thus 〈t〉,
as a subgroup of GL(V ), has order 3. One can then form the semidirect product
(V,+)〈t〉 as described in the previous exercise.]

3. Suppose K is a characteristic subgroup of N and N is a normal subgroup of G.
Show that K is a normal subgroup of G.
[Hint: Conjugation by any element of G induces an automorphism of N and so
leaves K invariant, since K is characteristic in N .]

4. Show that the group of inner automorphism of G is a normal subgroup of the
group of all automorphisms of G.
[Hint: Let ψ(g) be conjugation by g. show that

σ−1 · ψ(g) · σ

is conjugation by σ−1(g) and so is an inner automorphism.]



Chapter 4
Permutation Groups and Group Actions

Abstract A useful paradigm for discussing a group is to regard it as acting as a group
of permutations of some set. The power of this point of view derives from the flexi-
bility one has in choosing the set being acted on. Odd and even finitary permutations,
the cycle notation, orbits, the basic relation between transitive actions and actions
on cosets of a subgroup are first reviewed. For finite groups, the paradigm produces
Sylow’s theorem, the Burnside transfer and fusion theorems, and the calculations of
the order of any group of automorphisms of a finite object. Of more special interest
are primitive and multiply transitive groups.

4.1 Group Actions and Orbits

As defined earlier, a permutation of a set X is a bijective mapping X → X . Because
we will be dealing with groups of permutations it will be convenient to use the
“exponential” notation which casts permutations in the role of right operators. Thus if
π is a permutation of X , we write xπ for the image of element x under the permutation
π. Recall that composition of bijections and inverses of bijections are bijections, so
that the set of all bijections of set X into itself form a group under composition which
we have called the symmetric group on X and have denoted Sym(X). Recall also
that any bijection ν : X → Y induces a group isomorphism ν̄ : Sym(X) → Sym(Y )

by the rule:
ν(xπ) = (ν(x))ν̄(π) .

In order to emphasize the distinction between the elements of Sym(X) and the
elements of the set X which are being permuted, we often refer to the elements
of X by the neutral name “letters”. In view of the isomorphism just recorded, the
symmetric group on any finite set of n elements can be thought of as permuting the
set of symbols (or ‘letters’) �n := {1, 2, . . . , n}. This group is denoted Sym(n) and
has order n!.

Now suppose H is any subgroup of Sym(X). Say for the moment that two elements
of X are H -related if and only if there exists an element of H which takes one to
the other. It is easy to see that “H -relatedness” is an equivalence relation on the
elements of X . The equivalence classes with respect to this relation are called the
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H-orbits of X . Within an H -orbit, it is possible to move from any one letter to any
other, by means of an element of H . Thus X is partitioned into H -orbits. We say H
is transitive on X if and only if X comprises a single H -orbit.

We now extend these notions in a very useful way. We say that a group G acts on
set X if and only if there is a group homomorphism

f : G → Sym(X).

We refer to both f and the image f (G) as the action of G, and we shall borrow
almost any adjective of a subgroup f (G) of Sym(X), and apply it to G. Thus we
call an f (G)-orbit, a G-orbit, we say “G acts in k orbits on X” if X partitions into
exactly k such f (G)-orbits, and we say “G is transitive on X”, or “acts transitively
on X” if and only if f (G) is transitive on X .

If the action f is understood, we write xg instead of x f (g). Also the unique G-orbit
containing letter x is the set {xg|g ∈ G}, and is denoted xG . Its cardinality is called
the length of the orbit. The group action is said to be faithful if and only if the kernel
of the homomorphism f : G → Sym(X) is the identity subgroup of G—that is,
f is an embedding of G as a subgroup of the symmetric group.

The power of group actions derives from the fact that the same group can have
several actions, each of which can yield new information about a group. We have
already met several examples of group actions, although not in this current language.
We list a few.

4.1.1 Examples of Group Actions

1. Recall that each rigid rotation of a regular cube induces a permutation on the
following sets:

(a) the four vertex-centered axes.
(b) the three face-centered axes.
(c) the six edge-centered axes.
(d) the six faces.
(e) the eight vertices.
(f) the twelve edges.

If Y is any one of the six sets just listed, and G is the full group of rigid rotations
of the cube, then we obtain a transitive action fY : G → Sym(Y ). Except for
the case Y is the three perpendicular face-centered axes (Case (b)), the action is
faithful. The action is an epimorphism onto the symmetric group only in Cases
(a) and (b).
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2. If N is a normal subgroup of G, then G acts on the elements of N by inner
automorphisms of G. Thus ng := g−1ng for each element g of G and each
element n of N , to give the group action: f : G → Sym(N ). Clearly the identity
element of G forms one of the G-orbits and has length one.
If N = G, the G-orbits xG := {g−1xg|g ∈ G}, x ∈ G are called conjugacy
classes of G. Now one may consider the transitive action G → Sym(xG) on a
single conjugacy class xG .

3. The image Hσ of any subgroup H of G under an automorphism σ is again a
subgroup of G, and this is certainly true of inner automorphisms. Thus H g :=
g−1 Hg is a subgroup of G called a G-conjugate of H or just conjugate of H . Thus
there is an action G → Sym(S(G)) where S(G) is the collection of all subgroups
of G. As in the previous case, this restricts to the transitive action G → Sym(H G)

on the set H G := {H g|g ∈ G} of all conjugates of the subgroup H .
4. Finally we can take any fixed subset X of elements of G and watch the action

G → Sym(X G) on the collection X G := {g−1 Xg|g ∈ G} of all G-conjugates of
set X .

5. Let Pk = Pk(V ) be the collection of all k-dimensional subspaces of the vector
space V , where k is a natural number. We assume dim V ≥ k to avoid the pos-
sibility that Pk is empty. Since an invertible linear transformation must preserve
the dimension of any finite dimensional subspace, we obtain an action

f : GL(V ) → Sym(Pk).

It is necessarily transitive.
6. Similarly, if we have an action f : G → Sym(X), where |X | ≥ k, we also inherit

an action fY : G → Sym(Y ) on the following sets Y :

(a) The set X (k) of ordered k-tuples of elements of X .
(b) the set X (k)∗ of ordered k-tuples with pairwise distinct entries.
(c) the set X (k) of all (unordered) subsets of X of size k.

4.2 Permutations

A permutation π ∈ Sym(X) is said to displace letter x ∈ X if and only if xπ �= x .
A permutation is said to be finitary if and only if it displaces only a finite number
of letters. The products among, and inverses and conjugates of finitary permutations
are always finitary, and so the set of all finitary permutations always form a normal
subgroup FinSym(X) of the symmetric group Sym(X). Any finitary permutation
obviously has finite order.

In this subsection we shall study certain arithmetic properties of group actions
which are mostly useful for finite groups.
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4.2.1 Cycle Notation

Now suppose π is a finitary permutation in Sym(X). Letting H be the cyclic subgroup
of Sym(X) generated by π, we may partition X into H -orbits. By our self-imposed
finitary hypothesis, there are only finitely many H -orbits of length greater than one.
Let O be one of these, say of length n. Then for any letter x in O , we see that
O = x H must consist of the set {x, xπ, xπ2

, . . . xπn−1}. Now xπn
must be a letter in

this sequence which, by the injectivity of π, can only be x itself. We represent this
permutation of O by the symbol:

(x xπ xπ2
. . . xπn−1

)

called a cycle. Stated in this generality, the notation is not very impressive. But in
specific instances it is quite useful. For example the notation (1 2 4 7 6 3) denotes a
permutation which takes 1 to 2, takes 2 to 4, takes 4 to 7, takes 7 to 6, takes 6 to 3, and
takes 3 back to 1. Thus everyone is moved forward one position along a circular trail
indicated by the cycle. In particular the cycle notation is not unique since you can
begin anywhere in the cycle: thus (7 6 3 1 2 4) represents the same permutation just
given. Moreover, writing the cycle with the reverse orientation of the circuit yields
the inverse permutation, (4 2 1 3 6 7) in this example.

Now the generator π of the cyclic group H = 〈π〉 acts on each H -orbit as a cycle.
This can be restated as the assertion that any finitary permutation can be represented
as a product of disjoint cycles, that is, cycles which pairwise displace no common
letter. Such cycles commute with one another so it doesn’t matter in which order
the cycles are written. Also, if the set X is known, the permutation is determined
only by its list of disjoint cycles of length greater than one—the cycles of length
one (indicating letters that are fixed) need not be mentioned. Thus in Sym(9), the
following permutations are the same:

(14597)(26) = (62)(14597)(8).

Now to multiply two such permutations we simply compose the two permuta-
tions—and here the order of the factors does matter. (It is absolutely necessary that
the student learn to compute these compositions.) Suppose

π = (7 6 1)(3 4 8)(2 5 9) (4.1)

σ = (7, 10, 11)(9 2 4). (4.2)

Then, applying π first and σ second, the composition σ ◦π of these right operators is

πσ = (1, 10, 11, 7 6)(2 5)(3 9 4 8).
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We simply compute 〈πσ〉-orbits.1 The computation begins with an involved letter–
say “1”—and asks what πσ did to it? 1π = 7 and 7σ = 10, so 1πσ = 10. Then it
asks what πσ did to 10 in turn? One gets 10πσ = 11, 11πσ = 7, and so on, until the
〈πσ〉-orbit is completed upon returning to 1. One then looks for a new letter displaced
by at least one of the two permutations, but which is not involved in the orbit just
calculated—say, “2”—and one then repeats the process.

We make this observation:

Lemma 4.2.1 The order of a finitary permutation expressed as a product of disjoint
cycles is the least common multiple of the lengths of those cycles.

Proof Suppose x and y are disjoint cycles of lengths a and b respectively, Since x
and y commute, we have (xy)k = xk yk for any positive integer k. Thus if m is any
common multiple of a and b, then (xy)m = 1. On the other hand, if (xy)d = 1, the
fact that the cycles are disjoint yields xd = 1 = yd . this forces d to be a multiple of
both a and b. Thus the order of xy is the least common multiple of a and b.�

4.2.2 Even and Odd Permutations

We begin with a technical result:

Lemma 4.2.2 If k and l are non-negative integers, then

(i) (a b)(a x1 . . . xk b y1 . . . yl) = (a y1 . . . yl)(b x1 . . . xk), and
(ii) (a b)(a y1 . . . yl)(b x1 . . . xk) = (a x1 . . . xk b y1 . . . yl).

Proof The permutation on the left side of the first equation sends a to y1, sends yi

to yi+1 for i < l, and yl to a. Similarly it sends b to x1, sends x j to x j+1 for j < k,
and sends xk to b. Thus the left side has been expressed as the product of the two
disjoint cycles on the right side of the first equation.

The second equation follows from the first my multiplying both sides of the first
equation by the 2-cycle (a b).�

Let FinSym(X) denote the group of all finitary permutations of the set of ‘letters’
X . Each element π of FinSym(X) is expressible as a finite product of disjoint cycles
of lengths d1, . . . dk greater than one, together with arbitrarily many cycles of length
one. These numbers {d j } are uniquely determined by π since they are the orbit-lengths
greater than one, of the group 〈π〉. Define the sign of π to be the number

∏ j=k

j=1
(−1)d j −1.

Then the function sgn : FinSym(X) → {±1} is well-defined.

1We will follow Burnside in explaining that commas are introduced into the cycle notation only for
the specific purpose of distinguishing a 2-or-more-digit entry from other entries.
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A permutation of Sym(X) which displaces exactly two letters is called a transpo-
sition. Thus every transposition can be expressed in cycle notation by (a b), for the
two displaced letters, a and b. Clearly, the sign of a transposition is (−1)2−1 = −1.

We now can state

Lemma 4.2.3 If g is a permutation in FinSym(X), and if t is a transposition, then

sgn(tg) = −sgn(g) = sgn(gt).

Proof The permutation g is a product of disjoint cycles c j of length d j . Thus
sgn(g) = ∏

j (−1)d j −1. Suppose t is the transposition (a b). If the letters a and
b are not involved in any of the cycles gi , then the result follows from the formula
for the sign of gt = tg since we have simply tacked on the disjoint cycle (a b) in
forming gt .

Suppose on the other hand, that a and b appear in the same 〈g〉-orbit, say the one
represented by the cycle g j . Then g j has the form (a x1 . . . xk b y1 . . . yl), where k
and l are non-negative. By Lemma 4.2.2,

tg j = (a y1 . . . yl)(b x1 . . . xk).

Thus d j = k + l + 2 so sgn(g j ) = (−1)k+l+1 while sgn(tg j ) = (−1)k(−1)l , so
sgn(tg j ) = −sgn(g j ). Since tg = g1 · · · (tg j ) · · · gi · · · , the result follows from the
formula.

Now suppose a occurs in one cycle, say g1 = (a x1, . . . xk) and b occurs in another
cycle, which we can take to be g2 = (b y1 . . . yl). Then by Lemma 4.2.2,

tg = (tg1g2)g3 · · · gm

= (a y1 . . . yl b x1 . . . xk)g3 · · · gm .

Thus

sgn(tg) = sgn(tg1g2)
∏

i>2
(−1)(di −1)

= (−1)sgn(g1)sgn(g2)
∏

i>2
(−1)(di −1)

= −sgn(g).

So the result follows in this case. The proof is complete.�

Now any cycle (x1 . . . xm) is a product of transpositions

(x1 xk)(xk xk−1) · · · (x3 x2).

Since each element of FinSym(X) is the product of disjoint cycles we see that
FinSym(X) is generated by its transpositions.
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It now follows from Lemma 4.2.3 that no element can be both a product of an even
number of transpositions as well as a product of an odd number of transpositions.
Thus we have a partition

FinSym(X) = A+ + A−

of all the elements of FinSym(X) into the set A+ of all finitary permutations which
are a product of an even number of transpositions, and A−, all finitary permutations
which are a product of an odd number of transpositions. Right multiplication by any
finitary permutation at best permutes the two sets A+ and A−, and multiplication by
a transposition clearly transposes them. Thus we have a transitive permutation action

sgn : FinSym(X) → Sym({A+, A−}).

The right side is Sym(2) 
 Z2, isomorphic to the multiplicative group {±1}.
The kernel of this action is the normal subgroup FinAlt(X) := A+, the finitary

alternating group. Its elements are called the even permutations. The elements in the
other coset A−, are called odd permutations. These terms are used only for finitary
permutations. If X is a finite set, there is no distinction gained by singling out the
finitary permutations, and the prefix “Fin” is dropped throughout. So in that case the
alternating group is denoted Alt(X) or Alt(n) when |X | = n.

The factorization of a cycle of length n given above shows that any cycle of even
length is an odd permutation and any cycle of odd length is an even permutation. It
only “sounds” confusing; by the formula, the sign of an n-cycle is (−1)n−1.

4.2.3 Transpositions and Cycles: The Theorem of Feit, Lyndon
and Scott

Recall that a transposition of a symmetric group Sym(X) is an element which dis-
places exactly two of the letters of the set X . These two letters must clearly exchange
places, otherwise we are dealing with the identity permutation.

Let T be any collection of transpositions of Sym(X). We can then construct a
simple2 graph G(T ) := (X, T ) with vertex set X and edge set consisting of the
transposed 2-subsets determined by each involution in T .

2In the context of graphs (as opposed to groups) “simple” actually means something rather simple.
A simple graph is one which is undirected, without loops or multiple edges. That is, edges connect
only distinct vertices, there is at most one edge connecting two distinct vertices, and no orientation
to any edge. In other words, edges are 2-subsets of the vertex set.
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Lemma 4.2.4 Let T be a set of transpositions of Sym(X). Suppose G(T ), the sub-
group generated by the transpositions of T , acts on X with orbits Xσ of finite length.
Then G(T ) can be expressed as a direct sum:

G(T ) 

⊕

σ∈I
Sym(Xσ)

where Xσ are the G(T )-orbits on X.

Proof First of all, since transpositions displace just two letters, G(T ) is a finitary
permutation group on X . Let Xσ be a connected component of the graph G(T ) and
suppose x and y are two of its vertices.. Since there is a sequence of transpositions
defining the edges of a path in Xσ , connecting x and y, the product of these transpo-
sitions in the order they occur in the path is an element of G(T ) taking x to y. On the
other hand, there is no such path connecting a vertex in one connected component
of G(T ) with a vertex in another connected component, and so no element of the
group G(T ) can move one of these vertices to the other. Thus the connected com-
ponents Xσ are actually the G(T )-orbits. Let Tσ be the set of transpositions which
form an edge of the connected component Xσ of G(T ), and let Gσ be the subgroup
they generate. Then Gσ is transitive on Xσ but fixes each other orbit point-wise. It
follows that any conjugate g−1Gσg in G(T ), displaces only vertices in Xσ , and so is
a subgroup Gσ since it is generated by transpositions in Tσ . Thus each Gσ is normal
in G(T ) and if Xτ and Xσ are distinct orbits, we have Gσ ∩ Gτ = 1. Since G(T )

is finitary, each element of the group is uniquely determined by its action on each
orbit Xσ . Conversely, if Gσ 
 Sym(Xσ), we see that any product of permutations
displacing only finitely many letters, is a product of involutions, and so is an element
of G(T ). It then follows that G(T ) is the direct sum of the groups

Gσ := 〈Tσ〉.

So all that remains is to show that Gσ acts on Xσ as the full symmetric group
on the finite orbit Xσ . Thus, without loss of generality, we assume that G(T ) is
transitive on the finite set X of cardinality n and that the transpositions T define a
connected graph on X . If |T | = 1, then |X | = 2 and there is nothing to prove. We
may now proceed by induction on |T | and conclude that G(T ) is a tree. Now we
are free to choose the transposition t ∈ T so that as an edge of the graph G(T ),
t connects an “end point” a of valence one, and a vertex b. Thus G(T − {t}) is a tree
on the vertices X − {a}, and so by induction the stabilizer in G(T ) of the vertex a
has order (n − 1)!, and so as G(T ) is clearly transitive, it has order n!. Since it is
faithful, (for its elements fix every single letter of every other orbit), we have here
the full symmetric group.�

Theorem 4.2.5 (Feit, Lyndon and Scott) Let T be a minimal set of transpositions
generating Sym(n). Then their product in any order is an n-cycle.
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Proof We have seen from above that the minimality of T implies that the graph
G(T ) is a tree.

Let a = t1t2 · · · tn−1 be the product of these transpositions in any particular order.
Consider t1 and remove the edge t1 from the graph G(T ) to obtain a new graph G′
which is not connected, but has two connected component trees G1 and G2, connected
inG by the “bridging” edge t1. Now by an obvious induction any order of multiplying
the transpositions of

Ti := {s ∈ T |sis an edge inGi },

i = 1, 2, . . ., yields an n -cycle. Thus

a = t (x1, . . . xk)(y1, . . . yl),

where the second cycle b is the product of the transpositions of T1 as they are
encountered in the factorization a = t1 · · · tn , and the third cycle c above is the product
of the transpositions of T2 in the order in which they are encountered in the product
given for a. (Recall that every transposition in T1 commutes with every transposition
in T2.) Now these two cycles involve two separate orbits bridged by the transposition
t1. That the product t1bc is an n-cycle follows directly from Lemma 4.2.2 Part (ii)
above. The proof is complete.�

This strange theorem will bear fruit in the proof of the Brauer-Ree Theorem,
which takes a bow in the chapter on generation of groups (Chap. 6).

4.2.4 Action on Right Cosets

Let H be any subgroup of the group G, and let G/H be the collection{Hg|g ∈ G} of
all right cosets of H in G. Note that we have extended our previous notation. G/H
used to mean a group of right cosets of a normal subgroup H of G. It is still the same
set (of right cosets of H in G) even when H is not normal in G. But it no longer has
the structure of a group. Nonetheless, as we shall see, it still admits a right G-action.

For any element g of G and coset H x in G/H , H xg is also a right coset of H in
G. Moreover, H xg = H yg implies H x = H y, while H x = (H xg−1)g. Thus right
multiplication of all the right cosets of H in G by the element g induces a bijection πg :
G/H → G/H . Moreover for elements g, h ∈ G, the identity H x(gh) = ((H x)g)h,
forced by the associative law, implies πgπh = πgh as right operators on G/H . Thus
we have a group action

πH : G → Sym(G/H)

which takes g to the permutation πg , induced by right multiplication of right cosets
by g. This action is always transitive, for coset H x is mapped to coset H y by πx−1 y .

http://dx.doi.org/10.1007/978-3-319-19734-0_6
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4.2.5 Equivalent Actions

Suppose a group G acts on sets X and Y —that is, there are group homomorphisms
fX : G → Sym(X) and fY : G → Sym(Y ). The two actions are said to be
equivalent actions if and only if there is a bijection e : X → Y such that for each
letter x ∈ X , and element g ∈ G,

e(x fX (g)) = (e(x)) fY (g).

That is, the action is the same except that we have used the bijection e to “change
the names of the elements of X to those of Y ”.

4.2.6 The Fundamental Theorem of Transitive Actions

First we make an observation:

Lemma 4.2.6 Let f : G → Sym(X) be a transitive action of the group G on the set
X. For each letter x ∈ X, let Gx be the subgroup of all elements of G which leave
the letter x fixed—i.e. Gx := {g ∈ G|xg = x}.
(i) If x, y ∈ X, then Gx and G y are conjugate subgroups of G. Precisely, G y =

g−1Gxg whenever xg = y.
(ii) The set {g ∈ G|xg = y} of all elements of G taking x to y, is a right coset of

Gx .

Proof (i) If xg = y, yg−1Gx g = xgg−1Gx g = xGx g = xg = y, so g−1Gxg ⊆ G y ..

But since x = yg−1
, we have G y ⊆ gGxg

−1, by the same token. Thus the first
containment is reversible and g−1Gxg = G y .

(ii) If xg = y then clearly, xh = y for all h ∈ Gxg. Conversely, if xg = xh = y,
then gh−1 ∈ Gx , so Gxg = Gx h.�

Theorem 4.2.7 (The Fundamental Theorem of Transitive Group Actions) Suppose
f : G → Sym(X) is a transitive group action. Then for any letter x in X, f is
equivalent to the action

πGx : G → Sym(G/Gx ),

of G on the right cosets of Gx by right multiplication.

Proof In order to show the equivalence, we must construct the bijection e : X →
G/Gx compatible with both actions. For each letter y ∈ X set e(y) := {g ∈ G|xg =
y}. Lemma 4.2.6 informs us that the latter is a right coset Gx h of Gx . Now for any
element g in G, e(yg) is the set of all elements of G which take x to yg . This clearly
contains Gx hg; yet by Lemma 4.2.6, it must itself be a right coset of Gx . Thus e(yg)

is the right multiple e(y)g, establishing the compatibility of the actions.�
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Corollary 4.2.8

(i) If G acts on the set X, then every G-orbit has length dividing the order of G.
(ii) If G acts transitively on X, then for any subgroup H of G which also acts

transitively on X, one has G = Gx H, for any x ∈ X.

Proof (i) The action of G on any G-orbit O is transitive. Applying the fundamental
Theorem 4.2.7, we see that the action on O is equivalent to the action of G on G/Gx ,
the set of right cosets of Gx , where x is any fixed element of O . Thus |O| = |G/Gx |
for any letter x in O .

(ii) To say that subgroup H is transitive on O , says that right multiplication of one
such coset by the elements of H yields all such cosets. Since these cosets partition
all the elements of G, one obtains Gx H = G.�

4.2.7 Normal Subgroups of Transitive Groups

If G acts transitively on a set X , we say that G acts regularly on X if and only if for
some x ∈ X , Gx = 1.

Lemma 4.2.9 Suppose G acts transitively on X.

(i) If N is a normal subgroup of G, then all N-orbits on X have the same length.
(ii) In particular, if N is a non-identity normal subgroup of G lying in a subgroup

Gx , for some x in X, then N acts trivially on X, and the action is not faithful.
(iii) The faithful transitive action of an abelian group is always a regular action.
(iv) Suppose N is a normal subgroup of G which acts regularly on X. Then for

any x ∈ X, G = Gx N, with Gx ∩ N = 1, and the action of Gx on X − {x}
(by restriction) is equivalent to that action of Gx on N − {1}, the set of all
non-identity elements of N , induced by conjugation by the elements of Gx .

Proof (i) For any g ∈ G and x ∈ X , the mapping

x N → (x N )g = x Ng = xgN = (xg)N

is a bijection of N -orbits. Since G is transitive, all N -orbits can be gotten this way.
(ii) This is immediate from (i), since N has an orbit of length 1.
(iii) If A is an abelian subgroup acting transitively on X , for any x ∈ X , Ax acts

trivially on X by part (ii) Since A acts faithfully, Ax = 1, so A has the regular action.
(iv) That G = Gx N and Gx ∩ N = 1 follows from Lemma 4.2.8, part (ii), and

the fact that N is regular.
Since the normal subgroup N is regular, there is a bijection, ex : N → X = x N

which sends element n ∈ N to xn . For each element h ∈ Gx ,

e(h−1nh) = xh−1nh = xnh = (xn)h = e(n)h .
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So e defines an equivalence of the action of Gx on N by conjugation and the action
of Gx on X obtained by restriction of the action of G. Throwing away the Gx -orbit
{x} of length 1 yields the last statements of (iv).�

4.2.8 Double Cosets

Let H and K be subgroups of a group G. Any subset of the form HgK is called an
(H, K )-double coset. Such a set is, on the one hand, a disjoint union of right cosets
of H , and on the other, a disjoint union of left cosets of K . So it’s cardinality must be
a common multiple of |H | and |K |. The precise cardinality is given in the following:

Lemma 4.2.10 Let H and K be subgroups of G.

(i) |HgK | = |H | · [K : K ∩ g−1 Hg] = |H ||K |/|gKg−1 ∩ H | = [H : H ∩
gKg−1]|K |.

(ii) The (H, K )-double cosets partition the elements of G.

Proof In the actionπH of G on G/H by right multiplication, the K -orbits are precisely
the right cosets of H within an (H, K )-double coset. Since G/K is partitioned by
such orbits, and the right cosets of H partition G, part (ii) follows.

The length of a K -orbit on G/H , is the index of its subgroup fixing one of its
“letters”, say Hg. This subgroup would be {k ∈ K |Hgk = Hg} = K ∩ gHg−1.
Since each, right coset of H has |H | elements of G, the second and third terms of
the equations in Part (i) give |HgK |. The last term appears from the symmetry of H
and K .�

4.3 Applications of Transitive Group Actions

4.3.1 Cardinalities of Conjugacy Classes of Subsets

For any subset X of a group G, the normalizer of X in G is the set of all elements
NG(X) := {g ∈ G|g−1 Xg = X}. Now G acts transitively by conjugation on
X G = {g−1 Xg|g ∈ G}, the set of distinct conjugates of X , and the normalizer
NG(X) is just the subgroup fixing one of the “letters” of X G . Thus

Lemma 4.3.1

(i) Let X be a subset of G. The cardinal number |X G | of distinct conjugates of X
in G is the index [G : NG(X)] of the normalizer of X in G. This holds when X
is a subgroup, as well.

(ii) The cardinality of a conjugacy class xG in G is the index of the centralizer CG(x)

in G.
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4.3.2 Finite p-groups

A finite p-group is a group whose order is a power of a prime number p. The trivial
group of order 1 is always a p-group.

Lemma 4.3.2

(i) If a finite p-group acts on a finite set X of cardinality not divisible by the prime
p, then it fixes a letter.

(ii) A non-trivial finite p-group has a nontrivial center.
(iii) If H is a proper subgroup of a finite p-group P, then H is properly contained

in its normalizer in P, that is H < NP (H).

Proof (i) Let P be a finite p-group, say of order pn . Then any P-orbit on X has
length a power of p. Thus if no orbit had length 1, p would divide |X |, since X
partitions into such orbits. But as p does not divide |X |, some P-orbit must have
length 1, implying the conclusion.

(ii) Let P be as in part (i), but of order pn > 1. Now P acts by conjugation on the
set P − {1} of pn − 1 non-identity elements. Since p does not divide the cardinality
of this set, part (i) implies there is a non-identity element z left fixed by this action.
That is, g−1zg = z, for all g ∈ P . Clearly z is a non-identity element of the center
Z(P), our conclusion.

(iii) Suppose H is a proper subgroup of a p-group P . By way of contradiction
assume that H = NP (H). Then certainly, Z(P) ≤ H . By Part (ii), Z(P) �= 1. If
H = Z(P), then H � P , so P = NP (H) = H , a contradiction to H being a proper
subgroup. Thus, under the homomorphism

f : P → P̄ := P/Z(P),

H maps to a non-trivial proper subgroup f (H) := H̄ of the p-group P̄ . By induc-
tion on |P̄|, NP̄ (H̄) properly contains H̄ . Thus the preimage of NP̄ (H̄), which is
f −1(NP̄ (H̄)), properly contains H = f −1(H̄). But this preimage is

f −1(NP̄ (H̄)) = {x ∈ P|x−1(H/Z(P)x = H/Z(P)} = Np(H) ≤ H,

and this contradicts its proper containment of H . The proof is complete.�

4.3.3 The Sylow Theorems

Theorem 4.3.3 (Sylow’s Theorem) Let G be a group of finite order n and let k be
the highest power of the prime p such that pk divides the group order n. Then the
following three statements hold:

(i) (Existence) G contains a subgroup P of order pk.
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(ii) (Covering and Conjugacy) Every p-subgroup R of G is contained in some
conjugate of P. In particular, any subgroup of order pk is conjugate in G to P.

(iii) (Arithmetic) The number of subgroups of order pk is congruent to 1 mod p.

Proof (i) Let � denote the collection of all subsets of G of cardinality pk . The number

of such subsets is |�| =
(

n
pk

)
. Since, for any natural number r ≤ pk , the numbers

n − r and pk − r are both divisible by the same highest power of p, the number
|�| is not divisible by the prime p. Now G acts on � by right multiplication—
that is, if X ∈ � then Xg ∈ �, for any group element g. Thus � partitions into
G-orbits under this action, and not all of these orbits can have length divisible by
p, since p doesn’t divide |�|. Let �1 be such a G-orbit of length not divisible by
p. By the Fundamental Theorem of Transitive Group Actions (Theorem 4.2.7), the
number of sets in �1 is the index of the subgroup G X fixing the “letter” X in �1.
Since n = |G| = [G : G X ]|G X | = |�1||G X |, we see that pk divides |G X |. But
by definition, XG X = X , so X is a union of left cosets of G X ; so |G X | divides
|X | = pk . It follows that G X has order pk exactly. So G X is the desired subgroup P
of statement (i).

(ii) Let R be any p-subgroup of G. Then R also acts on �1 by right multiplication.
Since p does not divide |�1|, Lemma 4.3.2, part (i), shows that R must fix a letter Y
in �1. Thus R ≤ GY . But as G is transitive on �1, Lemma 4.2.6 shows that GY is
conjugate to P = G X . Thus R lies in a conjugate of P as required.

(iii) Now letS denote the collection of all subgroups of G having order pk exactly.
By parts (i) and (iii), already proved, S is non-empty, and G acts transitively on S
by conjugation. Thus by Lemma 4.3.1 part (i), |S| = [G : N ], where N := NG(P),
the normalizer in G of a subgroup P in S. Now P itself acts on S by conjugation,
fixing itself, and acting on S − {P} in orbits of p-power length. Suppose {R} were
such a P-orbit in S − {P} of length one. Then P normalizes R so P R is a subgroup
of G. Then |P R| = |P| · [R : P ∩ R], (Theorem 3.4.5, part (ii)) a product of pk

and [R : P ∩ R], another power of p. Since |P R| divides n and pk is the largest
p-power dividing n, one must conclude that [R : P ∩ R] = 1, which forces P = R,
contrary to the choice of R in S − {P}. Thus P acts on S − {P} in orbits of lengths
divisible by p. This yields |S| ≡ 1 mod p. Thus all parts of Sylow’s theorem have
been proved.�

The subgroups of G of maximal p-power order are called the p-Sylow subgroups
of G, and the single conjugacy class which they form is denoted Sylp(G).

Corollary 4.3.4 (The Frattini Argument) Suppose N is a normal subgroup of the
finite group G, and select P ∈ Sylp(N ). Then G = NG(P)N.

Proof We know that conjugation by elements of G induces automorphisms of
the normal subgroup N . Since Sylp(N ) is the full collection of subgroups of
N of their order, G acts on Sylp(N ) by conjugation. But by Sylow’s Theorem
(Theorem 4.3.3) the subgroup N is already transitive on Sylp(N ). The result now
follows from Lemma 4.2.8, part 2.�

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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Corollary 4.3.5

(i) Any normal p-Sylow subgroup of a finite group is in fact characteristic in it.
(ii) Any finite abelian group is the direct product of its p-sylow subgroups, that is,

A 
 S1 × S2 · · ·× Sn, where Si is the pi -Sylow subgoup of A, and {p1, . . . , pn}
lists all the distinct prime divisors of |A| exactly once each. Moreover, we have:

Aut(A) 
 Aut(S1) × Aut(S2) × · · · , Aut(Sn).

(iii) The Euler phi-function is multiplicative, that is,

φ(n) = φ(a)φ(b)

whenever n = ab and gcd(a, b) = 1.

Proof (i) Any normal p-sylow subgroup is the unique subgroup of its order, and
hence is characteristic.

(ii) Since, in a finite abelian group, each p-Sylow subgoup is normal, and has
order prime to the direct product of the remaining r -Sylow subgroups (r �= p), A
is the internal direct product (see Lemma 3.5.1, part (iii)) Since by part (i) above,
each Si is characteristic in A, each automorphism σ of A induces an automorphism
σi of Si . But conversely, if we apply all possible automorphisms σi to the direct
factor Si and the identity automorphism to all other p-sylow subgroups S j , j �= i ,
we obtain a subgroup Bi of Aut(A). Now the internal direct product characterization
of Lemma 3.5.1 applies to the Bi to yield the conclusion.

(iii) Applying part (ii) of this Corollary when A is the cyclic group of order n, the
group Zn , one obtains

φ(n) =
∏i=n

i=1
φ(pai

i )

when n has prime factorization n = pa1
1 pa2

2 · · · pan
n , upon equating group orders. �

4.3.4 Fusion and Transfer

Lemma 4.3.6 (The Tail-Wags-the-Dog Lemma) Suppose � = (V, E) is a bipartite
graph with vertices in two parts V1 and V2, and each edge of E involving one vertex
from V1 and one vertex from V2. Suppose G is a group of automorphism of the graph
� acting on the vertex set V with V1 and V2 as its two orbits. Then the following
conditions are equivalent.

(i) G acts transitively on the edges of �.
(ii) For each vertex v1 ∈ V1, the subgroup G1 of G fixing v1 acts transitively on

the edges on v1

http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_3
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(iii) For each vertex v2 in V2, the subgroup G2 of G fixing v2 acts transitively on
the edges of � on vertex v2.

Proof By the symmetry of the Vi , is suffices to prove the equivalence of (i) and
(ii) If G transitively permutes the edges (as in (i)), any edge on v1 must be moved
to any other edge on v1 by some element g. But since v1 is the only vertex of the
G-orbit V1 incident with these edges, such an element g fixes v1. So (ii) holds.
Conversely, suppose (ii), so that the subgroup G1 transitively permutes the edges on
v1. Since G is transitive V1, any edge meeting V1 at a single vertex can be taken to
any other. But by hypothesis, all edges have this property and (i) follows. The proof is
complete. �
Theorem 4.3.7 (The Burnside Fusion Theorem) Let G be a finite group, and let
X1 and X2 be two normal subsets of a p-sylow subgroup P of G. Then X1 and X2
are conjugate in G if and only if they are conjugate in the normalizer in G of P. In
particular, any two elements of the center of P are conjugate if and only if they are
conjugate in NG(P).

Proof Obviously, if the Xi are conjugate in NG(P), they are conjugate in G. So
assume the Xi belong to X := X G

1 . We now form a graph whose vertex set is X ∪ S
whereS := Sylp(G). An edge will be any pair (Y, R) ∈ X ×S for which the subset Y
is a normal subset of the p-sylow group R. Then G acts by conjugation on the vertex
set V with just two orbits, X and S (the first by construction, the second by Sylow’s
Theorem). Moreover the conjugation action preserves the normal-subset relationship
on X ×S, and so G acts as a group of automorphisms of our graph, which is clearly
bipartite. Now by Sylow’s theorem, the subgroup G1 := NG(X1) acts transitively
by conjugation on Sylp(G1). But since X1 is normal in some p-sylow subgroup
(namely P),

Sylp(G1) ⊆ Sylp(G)

Thus Sylp(G1) are theS-vertices of all the edges of our graph which lie on vertex X1.
We now have the hypothesis (ii) of the Tail-Wags-the-Dog Lemma. So the assertion
(iii) of that lemma must hold. In this context, it asserts that the stabilizer G2 of a
vertex of S—for example, NG(P)—is transitive on the members of X which are
normal in P . But that is exactly the desired conclusion.�
Theorem 4.3.8 (The Thompson Transfer Theorem) Suppose N is a subgroup of
index 2 in a 2-sylow subgroup S of a finite group G. Suppose t is an involution in
S − N, which is not conjugate to any element of N . Then G contains a normal
subgoup M of index 2.

Proof Let G act on G/N , the set of right cosets of N in G, by right multiplication.
In this action, the involution t cannot fix a letter, for if N xt = N x , then xtx−1 ∈ N ,
contrary to assumption. Thus t acts as [G : S] 2-cycles on G/N . Since this makes t
the product of an odd number of transpositions in Sym(G/N ), we see that the image
of G in the action f : G → Sym(G/N ) intersects the alternating group Alt(G/N )

at a subgroup of index 2. Its preimage M is the desired normal subgroup of G.�
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4.3.5 Calculations of Group Orders

The Fundamental Theorem of Transitive Group Actions is quite useful in calculating
the orders of the automorphism groups of various objects. We peruse a few examples.

(Petersen’s Graph) The reader is invited to verify that the two graphs which appear
in Fig. 4.1 are indeed isomorphic (vertices with corresponding numerical labels are
matched under the isomorphism). Presenting them in these two ways reveals the
existence of certain automorphisms.

In the left hand figure, vertex 1 is adjacent to vertices 2, 3, and 4. The remaining
vertices form a hexagon, with three antipodal pairs, (5, 8), (6, 9) and (7, 10), which
are connected to 2, 4 and 3, respectively. Any symmetry of the hexagon induces a
permutation of these antipodal pairs, and hence induces a corresponding permutation
of {2, 3, 4}. Thus, if we rotate the hexagon clockwise 60 degrees, we obtain an
automorphism of the graph which permutes the vertices as:

y = (1)(2 3 4)(5 10 9 8 7 6).

But if we reflect the hexagon about its vertical axis we obtain

t = (1)(4)(2 3)(7 5)(8 10)(6)(9).

Now any automorphism of the graph which fixes vertex 1 must induce some sym-
metry of the hexagon on the six vertices not adjacent to vertex 1. The automorphism
inducing the identity, preserves the three antipodal pairs, and so fixes vertices 2,3
and 4, as well as vertex 1—i.e. it is the identity element. Thus if G is the full auto-
morphism group of the Petersen graph, G1 is the dihedral group 〈y, t〉 of order 12,
acting in orbits, {1}, {2, 3, 4}, {5, 6, 7, 8, 9, 10}.

Fig. 4.1 Two views of Petersen’s graph. The positions labeled 1–10 are the vertices, and arcs
connecting two vertices represent the edges. (Note that since the graph is non-planar, it is drawn
with apparent intersections of arcs, which, if unlabeled, do not represent vertices)



122 4 Permutation Groups and Group Actions

On the other hand, the right hand figure in Fig. 4.1 reveals an obvious automor-
phism of order five, namely

u = (1 2 5 6 4)(3 8 10 7 9).

That G is transitive comes from overlaying the three orbits of G1, and the two orbits
of 〈u〉 of length five. Together, one can travel from any vertex to any other, by hopping
a ride on each orbit, and changing orbits where they overlap. This forces [G : G1] =
10, the number of vertices. Since we have already determined |G1| = 12, we see
that the full automorphism group of this graph has order |G| = [G : G1]|G1| =
10 · 12 = 120.
(The Projective Plane of Order 2.) Now consider a system P of seven points, which
we shall name by the integers {0, 1, 2, 3, 4, 5, 6}. We introduce a system L of seven
triplets of points, which we call lines:

L1 : = [1, 2, 4]
L2 : = [2, 3, 5]
L3 : = [3, 4, 6]
L4 : = [4, 5, 0]
L5 : = [5, 6, 1]
L6 : = [6, 0, 2]
L0 : = [0, 1, 3]

Notice that the first line L1 is the set of quadratic residues mod 7, and that the
remaining lines are translates, mod 7, of L1—that is, each Li has the form L1+(i−1),
with entries in the integers mod 7.

This system is also depicted by the six straight lines and the unique circle in
Fig. 4.2. (The reader need only check that the lines in each system are labeled iden-
tically.) Automorphisms of the system (P,L) are those permutations of the seven
points which take lines to lines—i.e. preserve the system L. We shall determine the
order of the group G of all automorphisms. First, from the way lines were defined
above, as translates mod 7 of L1, we have an automorphism

u = (0 1 2 3 4 5 6) : (L1 l2 L3 L4 L5 L6 L0).

Fig. 4.2 The configuration
of the projective plane of
order 2
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Thus G is certainly transitive on points. Thus the subgroup G1 fixing point 1 has
index 7. There are three lines on point 1, namely, L0, L1 and L5. There is an obvious
reflection of the configuration of Fig. 4.2 about the axis formed by line L5 = [1, 6, 5],
giving the automorphism

s = (1)(6)(5)(0 4)(3 2) : (L0 L1)(L3 L6)(L2)(L4)(L5).

But not quite so obvious is the fact that t = (0)(1)(3)(2 6)(4 5) induces the per-
mutation (L0)(L1 L5)(L2 L3)(L4)(L6) and so is an automorphism fixing 1 and L5
and transposing L0 and L1. Thus G1 acts as the full symmetric group on the set
{L0, L1, L5} of three lines on point 1. Consequently the kernel of this action is a
normal subgroup K of G1, at index 6. Now K stabilizes all three lines {L0, L1, L5},
and contains

r = (0 3)(1)(2 4)(5)(6) : (L0)(L1)(L2 L4)(L3 L6)(L5).

So K acts as a transposition on the remaining points of L0 beyond point 1. Thus K
in turn has a subgroup K1 fixing L0 pointwise, and stabilizing L1 and L5. K1, in
turn, contains

v = (0)(1)(2 4)(3)(5 6) : (L0)(L1)(L5)(L2 L3)(L4 L6).

It in turn contains a subgroup of index 2 whose elements now fix 0, 1, 3, 5 and 6.
One can see that any such element stabilizes every line (for every pair of fixed points
determines a fixed line), and hence stabilizes all intersections of such lines, and hence
fixes all points. Thus K1 has order only 2. We now have

|G| = [G : G1][G1 : K ][K : K1]|K1| = 7 · 6 · 2 · 2 = 168.

4.4 Primitive and Multiply Transitive Actions

4.4.1 Primitivity

Suppose G acts on a set X . A system of imprimitivity for the action of G is a non-
trivial partition of X which is stabilized by G. Thus X is a disjoint union of two or
more proper subsets Xi , not all of cardinality one, such that for each g ∈ G, Xg

i = X j

for some—that is, G permutes the components of the partition among themselves.
Of course, if G is transitive in its action on X , the components Xi all have the
same cardinality (evidently one dividing the cardinality of X ), and are transitively
permuted among themselves.

As an example, the symmetric group Sym(n) acts on all of its elements by right
multiplication (the regular representation). But these elements were partitioned as
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Sym(n) = A+ ∪ A−, into those elements which were a product of an even number
of transpositions (A+) and those which were a product of an odd number of trans-
positions (A−). Right multiplication permutes these sets, and they form a system of
imprimitivity when n > 2.

We have seen that when N is a non-trivial normal intransitive subgroup of a
group G acting faithfully on X , then the N -orbits form a system of imprimitivity.
(Lemma 4.2.9 considers the case of N -orbits when G acts transitively on X .)

If a transitive group action preserves no system of imprimitivity, it is said to be a
primitive group action. (Often one renders this by saying that G acts primitively.) We
understand this to mean that primitive groups are always transitive. The immediate
characterization is this:

Theorem 4.4.1 Suppose G acts transitively on X, where |X | > 1. Then G acts
primitively if and only Gx is a maximal subgroup of G for some x in X.

Proof Since G is transitive, all the subgroups Gx , x ∈ X are conjugate in G (see
Lemma 4.2.6, part 1). By the fundamental theorem of group actions (Theorem 4.2.7),
we may regard this action as that of right multiplication of the right cosets of Gx .
Now if Gx < H < G, then each right coset of H is a union of right cosets of Gx .
In this way the rights cosets of H partition G/Gx to form a system of imprimitivity.
Thus in the imprimitive case, no such H exists, so Gx is G or is maximal in G. The
former case is ruled out by |X | > 1.

Conversely, if X = X1 + X2 + · · · is a system of imprimitivity, then all the Xi

have the same cardinality and for x ∈ X1, Gx stabilizes the set X1. But by transitivity
of G, if L = StabG(X1) is the stabilizer in G of the component X1, then L must act
transitively on X1. Since |X1| �= 1, Gx is a proper subgroup of L . Since X1 �= X , L
is a proper subgroup of G. Thus transitive but imprimitive action, forces Gx not to
be maximal. That is, Gx maximal implies primitive action of G on G/Gx and hence
X . The proof is complete.�

We immediately have:

Corollary 4.4.2 If G has primitive action on X, then for any normal subgroup N
of G either (i) N acts trivially on X (so either N = 1 or the action is not faithful),
or (ii) N is transitive on X.

Proof From Lemma 4.2.9, p. 99, the N -orbits either form a system of imprimitivity
or form a trivial partition of X . The former alternative is excluded by our hypothesis.
Therefore the partition into N -orbits is trivial—that is, (i) or (ii) holds.�

4.4.2 The Rank of a Group Action

Suppose G acts transitively on a set X . The rank of the group action is the number of
orbits which the group G induces on the cartesian product X × X . Here an element
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g of G takes the ordered pair (x, y) of X × X to (xg, yg). Since G is transitive, one
such orbit is always the diagonal orbital D = {(x, x)|x ∈ X}. The total number of
such “orbitals” —as the orbits on X × X are called—is the rank of the group action.

Basically, the non-diagonal orbitals mark the possible binary relations on the set
X which could be preserved by G. Such a relation is defined by asserting that letter
x has relation Ri to letter y (which we write as x Ri y) if and only if the ordered pair
(x, y) is a member of the non-diagonal orbital Oi (G-orbit on X × X .) We could
then represent this relation by a directed graph, �i = (X, Ei ), where the ordered
pair (x, y) is a directed edge of Ei if and only if x Ri y holds. In that case G acts as
a group of automorphisms of the graph Gi —that is, G ≤ Aut(�i ).

If Oi is an orbital, there is also an orbital O∗
i consisting of all pairs (y, x) for

which (x, y) belongs to Oi . Clearly O∗
i has the same cardinality as Oi .

The orbital Oi is symmetric if and only if (x, y) ∈ Oi implies (y, x) ∈ Oi , that is
Oi = O∗

i . In this case, the relation Ri is actually a symmetric relation and if Oi �= D,
then the graph �i is a simple undirected graph.3 Thus representing groups as groups
of automorphisms of graphs, has a natural setting in permutation groups of rank 3 or
more.

Now fix a letter x in X . If (u, v) is in the orbital Oi , there exists, by transitivity,
an element g such that ug = x . Thus the orbital Oi possesses a representative
(x, vg), with first coordinate equal to x . Moreover, if (x, v) and (x, w) are two such
elements of Oi with first coordinate x , the fact that Oi is a G-orbit, shows that
there is an element h in Gx taking (x, u) to (x, w). That is, u and w must belong
to the same Gx -orbit on X . Thus there is a one-to-one correspondence between the
orbitals of the action of G on X and Gx -orbits on X . The lengths of these orbits
are called the subdegrees of the permutation action of G on X . By the Fundamental
Theorem of Group Actions (Theorem 4.2.7), these Gx -orbits on X (or equivalently,
G/Gx ) correspond to (Gx , Gx )-double cosets of G, and the length of GxgGx is
[Gx : Gx ∩ g−1Gxg].

We summarize most of this in the following;

Theorem 4.4.3 Suppose G acts transitively on X.

(i) Then the rank of this action is the number of Gx -orbits on X.
(ii) The lengths of these Gx -orbits are called subdegrees and are the numbers

[Gx : Gx ∩ g−1Gxg]

as g ranges over a full system of (Gx , Gx )-double coset representatives.
(iii) The correspondence of an orbital Oi and a (Gx , Gx )-double coset is that

(Gx , Gx h) ∈ Oi if and only coset Gx h is in the corresponding (Gx , Gx )-
double coset, namely Gx hGx . Then

|Oi | = |X |[Gx : Gx ∩ g−1Gxg].

3For graphs, the word “simple” means is has no multiple edges (of the same orientation) or loops.
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Clearly Oi and O∗
i correspond to Gx -orbits of the same size. In particular, if

an orbital is not symmetric, then there must be two subdegrees of the same size.
(iv) If a double coset GxgGx contains an involution t, then the corresponding orbital

must be symmetric.

Remark All but item (iv) was developed in the discussion preceding. If t is an
involution in GxgGx , then t inverts the edge (Gx , Gx t) in the graph �i .

Let’s look at a few simple examples.

Example 27 (i) (Grassmannian Action) Suppose V is a finite-dimensional vector
space of dimension at least 2. As we have done before, let Pk(V ) be the col-
lection of all k-dimensional subspaces, where k ≤ (dim V )/2. Then the group
GL(V ) acts transitively on Pk(V ), as noted earlier. But because of the inequal-
ity on dimensions, a given k-subspace W may intersect other k-subspaces at any
dimension from 0 to k. Moreover, the stabilizer H in GL(V ) of the subspace W
is transitive on all further k-subspaces which meet W at a specific dimension.
Thus we see that GL(V ) acts on Pk(V ) with an action which is rank k + 1.

(ii) (Symmetric Groups) If k ≤ n/2, the group G = Sym(n), transitively permutes
A(k), the k-subsets of A = {1, 2, . . . , n}. Again, the stabilizer H of a fixed
k-subset U , is transitive on the set of all k-subsets which meet U in a subset of
fixed cardinality. Thus G = Sym(n) has rank k +1 in its action on all k-subsets.
For example, G = Sym(7), acts faithfully on the 35 points of A(3), as a rank
four group with subdegrees 1, 12, 18, 4.
G = Sym(6), acts as a rank 4 group on the 20 letters of A(3), with subdegrees
1, 9, 9, 1.
Similarly, G = Sym(5), acts as a rank 3 group on the 10 letters of A(2), with
subdegrees 1, 3, 6. If Oi is the orbital of 30 ordered pairs corresponding to the
subdegree 3, then, as this orbital is symmetric, it contributes 15 undirected edges
on the 10 vertices, yielding a graph �i = (A(2), Ei ) isomorphic to Petersen’s
graph, whose automorphism group of order 120 we met in the last section.

(iii) We have mentioned that G turns out to be a subgroup of the automorphism
group of the graph �i . It need not be the full automorphism group, and whether
it is or not depends on which orbital Oi one uses. For example, we have just
seen above that the group G = Sym(7), has a rank 4 action on the 35 3-subsets
chosen from the set A of 7 letters, with subdegrees 1, 12, 18, 4. Now it happens
that the graph �3 corresponding to the subdegree 18 has diameter 2, and its full
automorphism group is Sym(8).

(iv) This might be a good time to introduce an example of a rank 3 permutation
group with two non-symmetric orbitals. Consider the group G = AQ of all
affine transformations,



4.4 Primitive and Multiply Transitive Actions 127

x → sx + y where x ∈ Zp, s a square,

where Zp denotes the additive group of integer residue classes modulo a prime
p ≡ 3 mod 4. Here A denotes the additive group of translations {ty : x →
x + y, x ∈ Zp}, and Q denotes the multiplications by quadratic residue classes
modulo p. Then G acts faithfully on G/Q, with A as a normal regular abelian
subgroup. Now the group G has order p(p − 1)/2 which is odd. G is rank
three with subdegrees 1, (p − 1)/2, (p − 1)/2, and the non-diagonal orbitals
are not symmetric. By Lemma 4.2.9, the graph � can be described as follows:
The vertices are the residue classes [m] mod p. Two of them are adjacent if
and only if they differ by a quadratic residue class. Since −1 is not a quadratic
residue here, this adjacency relation is not symmetric.

A rank 1 permutation group is so special that it is trivial, for the diagonal orbital
D is the only orbital, forcing |X | = 1.

A rank 2 group action has just two orbitals, the diagonal and one other. These are
the doubly transitive group actions which are considered in the next subsection. In
fact

Corollary 4.4.4 The following are equivalent:

(i) G acts as a rank 2 permutation group.
(ii) G transitively permutes the ordered pairs of distinct letters of X.

(iii) G acts transitively on X and for some letter x ∈ X, Gx acts with two orbits:
{x} and X − {x}.

4.4.3 Multiply Transitive Group Actions

Suppose G acts transitively on a set X . We have remarked in Sect. 3.1 that in that
case, for every positive integer k ≤ |X |, that G also acts on any of the following sets:

1. X (k), the set of ordered k-tuples of elements from X ,
2. X (k)∗, the set of ordered k-tuples of elements of X with entries pairwise distinct.
3. X (k), the set of (unordered) subsets of X of size k.

For k > 1, the first set is of little interest to us; for the group can never act
transitively here, and what orbits that exist tend to be equivalent to orbits on the other
two sets. A group G is said to act k-fold transitively on X if and only if it induces
a transitive action on the set X (k)∗ of k-tuples of distinct letters. It is said to have a
k-homogeneous action if and only if G induces a transitive action of the set of all
k-sets of letters.

Lemma 4.4.5 (i) If G acts k-transitively on X, then it acts k-homogeneously on
X. That is, k-transitivity implies k-homogeneity.

(ii) For 1 < k ≤ |X |, a group which acts k-transitively on X acts (k−1)-transitively
on X.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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(iii) For 1 < k < |X | − 1,a group G which acts transitively on X, acts k-fold tran-
sitively on X if and only if the subgroup fixing any (k − 1)-tuple (x1, . . . , xk−1)

transitively permutes the remaining letters, X − {x1, . . . , xk−1}.
Proof The first two parts are immediate from the definitions. The third part follows
from Corollary 4.4.4 when k = 2. So we assume 2 < k < |X | − 1, and will apply
induction.

Assume X = {1, 2, 3, . . .} (the notation is not intended to suggest that X is
countable; only that a countable few elements have been listed first), and suppose G
acts transitively on X and that for any finite ordered (k −1)-tuple (1, 2, . . . , (k −1)),
the subgroup G1,...(k−1) that fixes the (k − 1)-tuple point-wise, is transitive on the
remaining letters, X − {1, 2, . . . , (k − 1)}. Clearly, the result will follow if we can
first show that G is (k − 1)-fold transitive on X . Now set U = X −{1, . . . , (k − 2)}.
The subgroup H := G1,...,k−2, of all elements of G fixing {1, . . . , k −2} point-wise,
properly contains the group G1,...,k−1 just discussed, and has this property:

(4.43) For every letter u in U , Hu fixes {u} and is transitive on U − {u}.
Since k < |X | − 1 causes |U | ≥ 3, the presented property implies H acts

transitively on U . Thus we have the hypotheses of part (iii) for k − 1, and so we can
conclude by induction, that G has (k − 1)-fold action on X . Then the hypothesis on
G1,...,k−1 implies the k-fold transitive action.

The converse implication in part (iii), that k-fold transitive action causes G1,...,k−1
to be transitive on all remaining letters, is straightforward from the definitions.�

Remark The condition that k < |X | − 1 is necessary. The group Alt(5) acts tran-
sitively on five letters, and any subgroup fixing four of these letters, is certainly
transitive on the remaining letters (or more accurately “letter”, in this case). Yet the
group is not 4-transitive on the five letters: it is only 3-fold transitive.

Lemma 4.4.6 Suppose f : G → Sym(X) is a 2-transitive group action. Then the
following statements hold:

(i) G is primitive in its action on X.
(ii) If x ∈ X, G = Gx + Gx tGx where t is congruent to an involution mod ker f .

(iii) Suppose N is a finite regular normal subgroup of G. Then N has no proper
characteristic subgroups and is a direct product of cyclic groups of prime order
p. (Such a group is called an elementary abelian p-group). It follows that
|N | = |X | = pa is a prime power.

Proof (i) Suppose X1 is a non-trivial component of a system of imprimitivity, so
that 1 �= |X1| and X1 �= X . For any x ∈ X1, the subgroup Gx stabilizes X1. But Gx

acts transitively on X − {x}, forcing X1 = X , a contradiction. So there is no such
system of imprimitivity, as was to be shown.

(ii) Since n(n − 1) = |X (2)∗| divides |G/ker f |, the latter number is even. So
by Sylow’s theorem applied to G/ker f , there must exist an element z of G which
acts as an involution on X . Then z must induce at least one 2-cycle, say (a, b) on X .
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From transitivity, we can choose g ∈ G such that ag = x . Then t := g−1zg is the
involution displacing x and can be taken as the double coset representative.

(iii) By Lemma 4.2.9 part (iv), Gx transitively permutes the non-identity elements
of N by conjugation. Since the conjugation action, induces automorphisms of N , N
does not contain any proper characteristic subgroups. Also, all non-identity elements
are G − conjugate and so have the same finite order, which must be a prime p. This
means Sylr (N ) = {1} if r �= p, so N is a p-group. By Lemma 4.3.2, N has a non-
trivial center, and so is abelian. Since all its elements have order p, it is elementary
abelian. Since it is regular, the statements about |X | follow.�

Let us discuss a few examples.

Example 28 (i) The groups FinSym(X) are k-fold transitive for every natural num-
ber k not exceeding |X |. However, an easy induction proof shows that Alt(X)

is (k − 2)-transitive for each natural number k less than |X |. (Recall that the
alternating group is by definition a subgroup of the finitary symmetric group.)

(ii) The group GL(V ) has a 2-transitive action on the set P1(V ) of all 1-subspaces
of V .
This set is called the set of projective points of V ; the set P2(V ) of all
2-dimensional spaces is called the set of projective lines. Incidence between
P1(V ) and elements of P2(V ) is the relation of containment of a 1-subspace in a
2-subspace of V . Then PG(V ) := (P1(V ), P2(V )) is an incidence system of
points and lines with this axiom:

Linear Space Axiom. Any two points are incident with a unique line.

If dim V = 2, Gl(V ) is doubly transitive on the set P1(V ), the projective
line. If the ground field for the vector space V is a finite field containing q
elements, then there are q + 1 projective points being permuted. The group
of actions induced—that is GL(V )/K where K is the kernel of the action
homomorphism—is the group PGL(2, q), and it is 3-transitive on P1(V ).
If dim V = 3, it is true that any two distinct 2-subspaces of V meet in a
1-subspace. Thus we have the additional property:

Dual linear Axiom Any two distinct lines meet at a point.

Any system of points and lines, satisfying both the Linear Space Axiom and
the Dual Linear Axiom is called a projective plane. Again, if the ground field
of V is a finite field of q elements then we see that

|P1(V )| = 1 + q + q2 = |P2(V )|

and each projective point lies on q + 1 projective lines, and, dually, each pro-
jective line is incident with exactly q + 1 projective points.
In the case q = 2 (which means that the field is Z/(2), integers mod 2), we get
the system of seven points and seven lines which we have met as the second
example in Sect. 4.3.5. We saw there that the full automorphism group of the
projective plane of order 2 had order 168.
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4.4.4 Permutation Characters

The results in this section only make sense for actions on a finite set X .
Suppose f : G → Sym(X) is a group action on a finite set X . Then f (G) is a

finite group of permutations of X . Without loss of generality we assume G itself is
finite. (We do this, so that some sums taken over the elements of G are finite. But
this is no drawback, for the assertions we wish to obtain can in general be applied to
f (G) as a faithfully acting finite permutation group.)

Associated with the finite action of G is the function

π : G → Z

which maps each element g of G to the number π(g) of fixed points of g—that is,
the number of letters that g leaves fixed. This function is called the permutation
character of the (finite) action f , and, of course, is completely determined by f . The
usefulness of this function is displayed in the following:

Theorem 4.4.7 (Burnside’s Lemma)

(i) The number of orbits with which G acts on X is the average number of letters
fixed by the group elements:

(1/|G|)
∑

g∈G
π(g).

In particular, G is transitive, if and only if the average value of π over the group
is 1.

(ii) The number of orbits of G on X (k)∗ is

(1/|G|)
∑

g∈G
π(g)(π(g) − 1) · · · (π(g) − k + 1).

(iii) In particular, if G acts 2-transitively, then

(1/|G|)
∑

π(g)2 = 2.

Also, if G is 3-transitive,

(1/|G|)
∑

g∈G
(π(g))3 = 5.

Proof (i) Count pairs (x, g) ∈ X × G with xg = x . One way is to first choose x ∈ X
and then find g ∈ Gx . This count yields

∑
x∈X

|Gx | =
∑

orbits
|Gx ||Ox | =

∑
orbits

|G| = |G| · no. of orbits.
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On the other hand we can count these pairs by choosing the group element g first,
then x ∈ X in π(g) ways. Thus

|G| · no. of orbits =
∑

g∈G
π(g).

(ii) The number of ordered k-tuples of distinct letters left fixed by element g is
π(g) · (π(g) − 1) · · · (π(g) − k + 1) (since such a k-tuple must be selected from the
fixed point set of g). We then simply apply part (i) with X replaced by X (k)∗.

(iii) If G is 2-transitive then the average value of π(π − 1) is 1. But as such a
group is also transitive, the average value of π is also 1. Thus the average value of
π2 is

the average value of(π(π − 1) + π) = 1 + 1 = 2.

Similarly, if G is 3-transitive,

(1/|G|)
∑

g∈G
(π(g))3 = (1/|G|)

∑
g∈G

(π(g)(π(g) − 1)(π(g) − 2))

+
∑

g∈G
3π(g)2 − 2

∑
g∈G

π(g)

= 1 + 2 · 3 − 2 · 1 = 5.

�

The student interested in pursuing various topics brought up in Sects. 4.3 and 4.4
and the exercises below should consult Permutation Groups by Peter Cameron [9].
This excellent book is not only thoroughly up to date, but is crammed with fascinating
side-topics.

4.5 Exercises

4.5.1 Exercises for Sects. 4.1–4.2

1. Show that in any finite group G of even order, there are an odd number of invo-
lutions. [Hint: Choose t ∈ I , where I = inv(G), the set of all involutions in
G. Then I partitions as {t} + �(t) + �(t), where �(t) := CG(t) ∩ I − {t} and
�(t) := tG − CG(t). Show why the last two sets have even cardinality.]

2. (Herstein) Show that if exactly one-half of the elements of a finite group are
involutions, then G is a generalized dihedral group of order 2n, n odd (recall
the definition in Example 26(6) on p. 98 of a “generalized dihedral group”).
[Hint: By Exercise (1) in this section, the number of involutions is an odd number
equal to one-half the group order, and by Sylow’s theorem all involutions are

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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conjugate, forcing CG(t) = 〈t〉. The result follows from any Transfer Theorem
such as Thompson’s.4]

3. This has several parts:

(a) Show that if p is a prime, then any group of order p2 is abelian. [Hint: It
must have a non-trivial center, and the group mod its center cannot be a
non-trivial cyclic group.]

(b) Let G be a finite group of order divisible by the prime p. Show that the
number of subgroups of G or order p is congruent to one modulo p. [Hint:
Make the same sort of decomposition of the class of groups of order p as
was done for groups of order 2 in Exercise (1) in this section. You need to
know something about the number of subgroups of order p in a group of
order p2.]

(c) If prime number p divides |G| < ∞, show that the number of elements of
order p in G is congruent to −1 modulo p.

(d) (McKay’s proof of parts (b) and (c) of this exercise.) Let G be a finite group
of order divisible by the prime p. LetS be the set of p-tuples (g1, g2, . . . , gp)

of elements of G such that
∏

gi = 1.
i. Show that S is invariant under the action of σ, a cyclic shift which takes

(g1, g2, . . . , gp) to (gp, g1, . . . , gp−1).
ii. As H = 〈σ〉 
 Z p acts on S, suppose there are a H -orbits of length 1

and b H -orbits of length p. Show that |G|p−1 = |S| = a + bp. As p
divides the order of G conclude that p divides a.

iii. Show that a �= 0. Conclude that a is the number of elements of order
one or order p in G, and is a non-zero multiple of p.

iv. Let P1, . . . , Pk be a full listing of the subgroups of order p in G. Show
that | ∪ Pj | = a ≡ 0modp, and deduce that k ≡ 1mod p.

(e) Suppose pk divides the order of G and P is a subgroup of order pk−1. Show
that p divides the index [NG(P) : P]. [Hint: Set N := NG(P) and suppose,
by way of contradiction, that p does not divide [N : P]. Then P is the
unique subgroup of N of order pk−1 and so is characteristic in N . As pk

divides |G|, we see that p divides the index [G : N ]. Now P acts on the
left cosets of N in G by left multiplication, with N comprising a P-orbit
of length one. Show that there are at least p such orbits of length one so
that there is a left coset bN �= N , with PbN = bN . Then b−1 Pb ≤ N
forcing b−1 Pb = P from the uniqueness of its order. But then b ∈ N , a
contradiction.]

(f) Suppose the prime power pk divides the order of the finite group G. Define
a p-chain of length k to be a chain of subgroups of G,

P1 < P2 < · · · < Pk,

4Almost certainly this is the elementary proof that Herstein had in mind rather than the proofs in
several longer papers on this subject which have appeared in the AMA monthly.
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where Pj is a subgroup of G of order p j , j = 1, . . . , k. Show that the
number of p-chains of G of length k is congruent to one modulo p. [Hint:
Proceed by induction on k. The case k = 1 is part 4 (d) of this Exercise. One
can assume the number m of p-chains of length k − 1 is congruent to 1 mod
p. and these chains of length k − 1 partition the chains of length k. If c is a
chain of length k − 1 with terminal member Pk−1, then any extension of c
to a chain of length k is obtained by adjoining a group Pk of order pk in the
normalizer NG(Pk−1). The number of such candidates is thus the number
of subgroups of order p in NG(Pk−1)/Pk−1. Part 5 of this Exercise shows
that p divides this group order, and so by part 4 (d), the number of Z p’s in
the factor N/P is congruent to one mod p. Show that the conclusion is now
forced.]

(g) From the previous result show that if pk divides |G|, for k > 0, then the
number of subgroups of order pk is congruent to 1 mod p.

[Remark: Note that parts 3–7 of this Exercise did not require either the Sylow
theorems of even the weaker Cauchy’s Theorem that asserts that G contains an
element of prime order p if p divides |G|. Indeed, these exercises essentially
reprove them. Exercise (1) in this section and part 2 of this Exercise, on the other
hand, required Cauchy’s theorem in order to have Z p’s to discuss.]

4. Let G be a group of order pnq, where p and q are primes and n > 1. Show
that G is not a simple group. [Hint: We may assume that there are at least two
p-sylow subgroups. Select a pair (P1, P2) of distinct p-Sylow subgroups so that
their intersection N = P1 ∩ P2 is as large as possible. Invoke Lemma 4.3.2, part
(iii), to conclude that NG(N ) contains distinct p-Sylow subgroups, and hence has
order divisible by q. Choose Q1 ∈ Sylp(NG(N )). Then G = P1 Q, and so

〈MG〉 = 〈M P1〉.

The left side of this equation is a normal subgroup of G. But the right side of
the presented equation is properly contained in P1. Thus G is not simple unless
M = 1. In the latter case, the q elements of Sylp(G) pairwise intersect at the
identity. Now count the number of elements of order dividing q.]

4.5.2 Exercises Involving Sects. 4.3 and 4.4

1. Show that any group of order fifteen is cyclic. [Hint: Use Sylow’s Theorem to
show that the group is the direct product of two cyclic p-sylow subgroups.]

2. Show that any group of order 30 has a characteristic cyclic subgroup of order
15.

3. Show that any group N which admits a group of automorphisms which is
2-transitive on its non-identity elements is an elementary abelian 2-group or a
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cyclic group of order 3.
Extend this result by showing that if there is a group of automorphisms of N
which is 3-transitive on the non-identity elements of N , then |N | ≤ 4.

4. Show that if G faithfully acts as a k-fold transitive group on a set X , and Gx

is a simple group, then (as k is at least 1) any proper normal subgroup of G is
regular on X .
Using a basic lemma of this chapter, show that if 1 �= N is a normal subgroup
of G, then G is the semidirect product N Gx (here Gx ∩ N = 1 so Gx is a
complement to N in G). Moreover, Gx acts (k − 1)-fold transitively on the non-
identity elements of N .
Conclude that under these circumstances, G can be at most 4-fold transitive on
X , and then only in the case that |X | = 4 and G = Sym(4).

5. Show that the group Alt(5) acts doubly transitively on its six 5-sylow subgroups.
6. Show that if N is a non-trivial normal subgroup of G = Alt(5), then either (i) N

has order divisible by 30 or (ii) N normalizes and hence centralizes each 5-sylow
subgroup. [Hint: Use the fact that G acts primitively on both 5 and 6 letters.]

7. Conclude that possibility (ii) of the previous exercise is impossible, by showing
that a 5-sylow subgroup of Alt(5) is its own centralizer.

8. Using Exercises (5–7) in this section (the three preceding exercises), show in
just a few steps, that Alt(5) is a simple group.

9. If G is a k-transitive group, and Gx1,...xk−1 is simple, then, provided k ≥ 3, and
|X | > 4 , G must be a simple group. So in this case, the property of simplicity is
conferred from the simplicity of a subgroup. (This often happens for primitive
groups of higher permutation rank, but the situation is not easy to generalize.)
[Hint: Use Exercises (4–8) above.]

10. Provide a proof of the following result:

Lemma 4.5.1 Suppose G is a group acting faithfully and primitively on a set X.
Assume further that:

(i) A is a normal subgroup of Gx , and
(ii) G is generated by the set of conjugates AG = {Ag|g ∈ G}.
Then for any non-trivial normal subgroup N of G, we have G = AN.

[Hint: Use Corollary 4.4.2 and get G = Gx N and then use (i) and (ii)].

11. Organize the last few exercises into a proof that all alternating groups Alt(n) are
simple for n ≥ 5.

12. (Witt’s Trick) Suppose K is a k-transitive group acting faithfully on the set X ,
where k ≥ 2.

(a) Show that if H := Kα, for some letter α in X , then K = H + Ht H for
some involution t in K .

(b) Suppose ∞ is not a letter in X , set X ′ := X ∪ {∞}, and set S := Sym(X ′).
Suppose now that S contains an involution s such that

i. s transposes ∞ and α,
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ii. s normalizes H—i.e. s Hs = H , and
iii. o(st) = 3, that is, (st)3 = 1, while st �= 1.

Then show that the subset Y = K ∪ K sK is a subgroup of S. [Hint: One need only
show that Y is closed under multiplication, and this is equivalent to the assertion
that sK s ⊂ Y . Decompose K ; use the fact that s H = Hs and that sts = tst .]

13. Show that in the previous Exercise Y is triply transitive on X ′.
14. Suppose G is a simple group with an involution t such that the centralizer CG(t)

is a dihedral group of order 8. Show the following:

(a) The involution t is a central involution—that is, t is in the center of at least
one 2-Sylow subgroup of G, or, equivalently, |tG | is an odd number. Thus
any 2-Sylow subgroup of G is just D8.

(b) There are exactly two conjugacy classes of fours groups—say V G
1 and V G

2 ,
where V1 and V2 are the unique two fours subgroups of a 2-Sylow subgroup
D of G.

(c) There is just one conjugacy class of involutions in G.
(d) Each fours group Vi is a TI-group—that is, a subgroup that intersects its

distinct conjugates only at the identity group.

[Hints: This is basically an exercise in the use of Sylow’s Theorem (Theorem
4.3.3), the Burnside Fusion Theorem (Theorem 4.3.7) and the Thompson Transfer
Theorem (Theorem 4.3.8).

Part (a): Take D = CG(t) 
 D8. Then its center is just 〈t〉, so NG(D) ≤
CG(t) = D.

Part (b): Let Vi , i = 1, 2, be the two unique fours subgroups of D ∈ Syl(G). Since
each Vi is normal in D, the Burnside Fusion theorem tells us that they could be
conjugate in G only if they were already conjugate in NG(D) = D, where it is
patently untrue.

Part (c): Let D = V1V2 = Cg(t) where V1 ∩ V2 = 〈t〉. Since D 
 D8, it also
contains a normal cyclic group C of order 4. If no non-central involution of D is
conjugate to the central involution t , then a contradiction to the simplicity of G is
obtained from the Thompson Transfer Theorem, using C as the subgroup of index
2 in D. If tG ∩ D ⊆ V1, the same argument, using V1 in place of C , again yields
a contradiction. Thus all involutions in D are conjugate to t .

Part (d): Clearly two conjugates of Vi could at best meet at a central involution,
of which, by Part (c) there is only one class, tG . In that case they would com-
prise two fours subgroups of the same 2-Sylow subgroup (the centralizer of their
intersection), and hence could not be conjugate by Part (b).]

Remark A nice little geometry lurks in the above exercise. The pointsP are one class
of fours groups—say V G

1 , and the lines L are the other class V G
2 . A line is declared

to be incident with a point, if and only if the corresponding fours groups normalize
each other—i.e. they lie in a common 2-Sylow subgroup. With the information above,
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the reader can easily prove that NG(Vi ) 
 Sym(4), which tells us that each line is
incident with just three points and each point lies on exactly three lines. Here are two
examples:

(a) |G| = 168, (P,L) is the projective plane of order 2; 7 points, 7 lines.
(b) |G| = 360, (P,L) is the generalized quadrangle of order (2, 2); 15 points, 15

lines.
Are these the only possibilities?

15. This exercise is really an optional student project. First show that if G if a 4-fold
transitive group of permutations of the finite set X , then

(1/|G|)
∑

g∈G
π(g)4 = 15.

The object of the project would be to show that in general, if G is k-fold transitive
on X then

(1/|G|)
∑

g∈G
π(g)k = Bk,

where Bk is the total number of partitions of a k-set (also known as the k-th Bell
number). An analysis of the formulae involves one in expressing the number
of sequences (with possible repetitions) of k elements from a set X in terms
of ordered sequences with pair-wise distinct entries. The latter are expressed in
terms of the so-called “falling factorials” x(x − 1)(x − 2) · · · (x − � + 1) in the
variable x = |X |. The coefficients involve Stirling numbers and the Bell number
can be reached by known identities. But a more direct argument can be made by
sorting the general k-tuples over X into those having various sorts of repetitions;
this is where the partitions of k come in.



Chapter 5
Normal Structure of Groups

Abstract The Jordan-Hölder Theorem for Artinian Groups is a simple application
of the poset-theoretic Jordan-Hölder Theorem expounded in Chap.2. A discussion
of commutator identities is exploited in defining the derived series and solvability
as well as in defining the upper and lower central series and nilpotence. The Schur-
Zassenhaus Theorem for finite groups ends the chapter. In the exercises, one will
encounter the concept of normally-closed families of subgroups of a group G, which
gives rise to several well-known characteristic subgroups, such asOp(G), the torsion
subgroup, and (whenG is finite) theFitting subgroup. Some further challenges appear
in the exercises.

5.1 The Jordan-Hölder Theorem for Artinian Groups

5.1.1 Subnormality

As defined in Chap.4, p. 99, a group is simple if and only if its only proper normal
subgroup is the identity subgroup. (In particular, the identity group is not considered
to be a simple group.)

A subgroup H is said to be subnormal in G if and only if there exists a finite chain
of subgroups

H = N0 � N1 � · · · � Nk = G.

(Recall that this means each group Ni is normal in its successor Ni+1, but is not
necessarily normal in the groups further up the chain.) We express the assertion that
H is subnormal in G by writing

H � �G.

LetSN (G) be the collection of all subnormal subgroups of G. This can be viewed
as a poset in two different ways: (1) First we can say that A is “less than or equal
to B” if and only if A is a subgroup of B, that is, SN has the inherited structure
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of an induced poset of S(G), the poset of all subgroups of G with respect to the
containment relation. (2) We also have the option of saying that A “is less than B”
if and only if A is subnormal in B. The second way of defining a poset on SN
would seem to be more conservative than the former. But actually the two notions
are exactly the same, as can be concluded from the following Lemma.

Lemma 5.1.1 (Basic Lemma on Subnormality) The following hold:

(i) If A � �B and B � �G, then A � �G.
(ii) If A � �G and H is any subgroup of G, then A ∩ H � �H.

(iii) If A is a subnormal subgroup of G, then A is subnormal in any subgroup that
contains it.

(iv) If A and B are subnormal subgroups of G, then so is A ∩ B.

Proof (i) This is immediate from the definition of subnormality: By assumption
there are two finite ascending chains of subgroups, one running from A to B, and
one running from B to G, each member of the chain is normal in its successor in the
chain. Clearly concatenating the two chains produces a chain of subgroups from A
to G, each member of the chain normal in the member immediately above it. So by
definition, A is subnormal in G.

(ii) If A � �G one has a finite subnormal chain A = A0 � A1 � · · · � A j := G.
Suppose H is any subgroup of G. It is then no trouble to see that A ∩ H � A1 ∩ H �
A2 ∩ H � · · · A j ∩ H = G ∩ H = H , is a subnormal series from A ∩ H to H .

(iii) This assertion follows from Part (ii) where H contains A.
(iv)ByPart (ii), A∩B is subnormal in B. Since B is subnormal inG, the conclusion

follows by an application of Part (i). �

At this point the student should be able to provide a proof that the two methods
(1) and (2) of imposing a partial order on the subnormal subgroups lead to the same
poset. We simply denote it (SN (G),≤) (or simply SN if G is understood) since it
is an induced poset of the poset of all subgroups of G. From Lemma 5.1.1, Part (iv),
we see that

SN (G) is a lower semilattice.

Finally it follows from the second or third isomorphism theorem, that if

If A and B are distinct maximal normal subgroups of G = 〈A, B〉 = AB = B A,
then G/A � B/(A ∩ B). Thus SN (G) is a semimodular lower semilattice and
the mapping

μ : Cov(SN ) → simple groups

(which records for every cover X � Y where X a maximal normal subgroup of Y ,
the isomorphism type of the simple group Y/X ) is “semimodular” in the sense of
Theorem2.5.2,Sect. 2.5.3.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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According to the general Jordan-Holder theory (advanced in Sect. 2.5.3, Theorem
2.5.2), μ can be extended to an interval measure

ASN → M.

from all algebraic intervals of SN into the additive monoid M of all multisets
of isomorphism classes of simple groups—that is, the free additive semigroup of
all formal non-negative integer linear combinations of isomorphism classes [G] of
simple groups: ∑

simp
a[G][G], of finite support.

If there is a finite unrefinable ascending chain in SN from 1 to G, then such a
chain of subnormal subgroups is called a composition series of G. The multiset of
the isomorphism classes of the simple groups Ai+1/Ai appearing in such a compo-
sition series 1 � A1 � · · · � An = G is called the multiset of composition factors.
The Theorem2.5.2 states that these are the same multisets for any two composition
series—the “measure” μ([1, G]).

If you have been alert, you will notice that no assumption that the involved groups
are finite has been made. The composition factors may be infinite simple groups.

But of course, in applying the Jordan-Hölder theorem, one is interested in pinning
down a class of algebraic intervals. This is easy in the case of a finite group, for
there, all intervals of SN (G) are algebraic. How does one approach this for infinite
groups? The problem is that one can have an infinitely descending chain of subnormal
subgroups, and also one can have an infinitely ascending chain of proper normal
subgroups (just think of an abelian group with such an ascending chain).

However one can select certain subposets of SN which will provide us with many
of these algebraic intervals: Suppose from any SN (G) we extract the set SN ∗ of all
subnormal subgroups for which any downward chain of subgroups each normally
containing its successor, must terminate in a finite number of steps. There are three
other descriptions of this subcollection SN ∗, of subnormal subgroups: (i) they are
the subnormal subgroups of G which belong to a finite unrefinable subnormal chain
extended downward to the identity. (ii) They are the elements M of SN for which
[1, M] is an algebraic interval of SN—see Chap.2, Sect. 2.3.2. (iii) This is the
special class of subgroups amenable to the Jordan-Holder Theorem—the subnormal
subgroups of G which themselves possess a finite composition series. We call the
elements of SN ∗ the Artinian subgroups. They are closed under the operation of
taking pairwise meets in SN and so SN ∗ is clearly a lower semilattice, all of whose
intervals are algebraic.

As a special case, we have:

Theorem 5.1.2 (The Jordan-Holder Theorem for general groups) Let SN ∗ be the
class of all Artinian subnormal subgroups of a group G. Then for any H in SN ∗, the
list (with multiplicities) of all isomorphism classes of simple groups which appear

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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as a cheif factor in any finite unrefinable subnormal chain of H is independent of
the particular choice of that chain.

Corollary 5.1.3 Any two composition series (unrefinable subnormal series) of a
finite group recreates through its chief factors the same list of isomorphism classes
of finite simple groups, with mutiplicities respected.

5.2 Commutators

Let G be a group. A commutator in G is an element of the form x−1y−1xy (called
a commutator) and is denoted [x, y]. A triple commutator [x, y, z] is an element of
shape [[x, y], z], which the student may happily work out to be

[x, y]−1z−1[x, y]z = y−1x−1yxz−1x−1y−1xyz.

If we write ux := x−1ux , the result of conjugation of u by x , then it is an exercise
to verify the following identities, for elements x, y, and z in any group G:

[x, y] = [y, x]−1. (5.1)

[xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]. (5.2)

[x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]. (5.3)

1 = [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x . (5.4)

[x, y, z][y, z, x][z, x, y] = [y, x][z, x][z, y]x ×
[x, y][x, z]y[y, z]x [x, z][z, x]y . (5.5)

A commutator need not be a very typical element in a group. For example, in an
abelian group, all commutators are equal to the identity.

If A, B and C are subgroups of a group G, then [A, B] is the subgroup of G
generated by all commutators of the form a−1b−1ab = [a, b] as (a, b) ranges over
A × B. Similarly we write [A, B, C] := [[A, B], C].
Theorem 5.2.1 (Basic Identities on Commutators of Subgroups) Suppose A, B and
C are subgroups of a group G.

(i) A centralizes B if and only if [A, B] = 1.
(ii) [A, B] = [B, A].

(iii) B always normalizes [A, B].
(iv) A normalizes B if and only if [A, B] ≤ B. In that case, [A, B] is a normal

subgroup of B.
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(v) If f : G → H is a group homomorphism, then [ f (A), f (B)] = f ([A, B]).
(vi) (The Three Subgroups Lemma of Phillip Hall) If at least two of the three sub-

groups [A, B, C], [B, C, A] and [C, A, B] are trivial, then so is the third.

Proof Part (i) A centralizes B if andonly if every commutator of shape [a, b], (a, b) ∈
A × B, is the identity. The result follows from this.

Part (ii) A subgroup generated by set X is also the subgroup generated by X−1.
Apply (5.1).

Part (iii) If (a, b, b1) ∈ A × B × B, then it follows from (5.3) that

[a, b]b1 = [a, b1]−1[a, bb1] ∈ [A, B].

Part (iv) The following statements are clearly equivalent:

1. A normalizes B
2. [a, b] ∈ B for all (a, b) ∈ A × B
3. [A, B] ≤ B.

The normality assertion follows from part (iii).
Part (v) This is obvious.
Part (vi) Without loss of generality assume that [A, B, C] and [B, C, A] are the

identity subgroup. Then all commutators [a, b, c] and [b, c, a] are the identity, no
matter how the triplet (a, b, c) is chosen in A × B × C . Now by Eq. (5.4), any
commutator [c, a, b] is the identity, for any (a, b, c) ∈ A × B × C . This proves that
[C, A, B] has only the identity element for a generator. �

Corollary 5.2.2 Suppose again that A and B are subgroups of a group G.

(i) If A normalizes B and centralizes [A, B], then A/CA(B) is abelian.
In particular, if A ≤ Aut(B) and A centralizes [A, B] := 〈a−1ab|(a, b) ∈
A × B〉, then A is an abelian group.

(ii) If A is a group of linear transformations of the vector space V , centralizing a
subspace W as well as its factor space V/W , then A is an abelian group.1

Proof All these results are versions of the following: By the Three Subgroups
Lemma, [A, B, A] = 1 implies [A, A, B] = 1. That is the proof. �

Of course anytime someone has some machinery, some mathematician wants to
iterate it. We have defined the commutator of two subgroups in such manner that the
result is also a subgroup. Thus inductively we may define a multiple commutator
of subgroups in this way: Suppose (A1, A2, . . .) is a (possibly infinite) sequence of
subgroups of a group G. Then for any natural number k, we define

[A1, . . . Ak+1] := [[A1, . . . Ak], Ak+1].

1This seems to be a frequently rediscovered result.
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5.3 The Derived Series and Solvability

From the previous section, we see that the subgroup [G, G] is a subgroup which

(i) is mapped into itself by any endomorphism f : G → G (a consequence of The-
orem5.2.1(V)). (This condition is called fully invariant. Since inner automor-
phisms are automorphisms which are in turn endomorphisms, “fully invariant”
implies “characteristic” implies “normal”.)

(ii) yields an abelian factor, G/[G, G] (let f : G → G/[G, G] and apply parts (i)
and (iii) of Theorem 5.2.1). Moreover, if G/N is abelian, then [G, G] ≤ N , so
[G, G] is the smallest normal subgroup of G, which possesses an abelian factor
(see Chap.3).

The group [G, G] is called the commutator subgroup or derived subgroup of G
and is often denoted G ′.

Since we have formed the group G ′ := [G, G], we may iterate this definition to
obtain the second derived group,

G
′′ := [[G, G], [G, G]].

Once on to a good thing, why not set G ′ = G(1) and G ′′ = G(2) and define

G(k+1) := [G(k), G(k)]

for all natural numbers k? The resulting sequence

G ≥ G(1) ≥ G(2) ≥, · · · .

is called the derived series of G. Since each G(k) is characteristic in its successor
which in turn is characteristic in its successor, etc., we see the following:

Every G(k) is characteristic in G.

Note also that

G(k+l) = (G(k))(l). (5.6)

A group G is said to be solvable if and only if the derived series

G ≥ G(1) ≥ G(2), . . . ,

eventually becomes the identity subgroup after a finite number of steps.2 The smallest
positive integer k such that G(k) = 1 is called the derived length of G. Thus a group
is abelian if and only if it has derived length 1.

2In this case, for once, the name “solvable” is not accidental. The reason will be explained in the
Chap.11 on Galois Theory.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_11
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Theorem 5.3.1 (i) If H ≤ G and A ≤ G, then [A, H ] ≤ [A, G]. In particular

[H, H ] ≤ [G, H ] ≤ [G, G].

(ii) If H ≤ G, then H (k) ≤ G(k). Thus, if G is solvable, so is H.
(iii) If f : G → H is a group homomorphism, then

f (G(k)) = ( f (G))(k) ≤ H (k).

(iv) If N � G, then G is solvable if and only if both N and G/N are solvable.
(v) For a direct product,

(A × B)(k) = A(k) × B(k).

(vi) The class of all solvable groups is closed under taking finite direct products and
taking subgroups and hence is closed under taking finite subdirect products. In
particular, if G is a finite group, there is a normal subgroup N of G minimal
among normal subgroups with respect to the property that G/N is solvable.
(Clearly this normal subgroup is characteristic; it is called the solvable resid-
ual.)

Proof Part (i) follows from the containment,

{[a, h]|(a, h) ∈ A × H} ⊆ {[a, g]|(a, g) ∈ A × G}.

Part (ii) By Part (i), H ′ ≤ G ′. If we have H (k−1) ≤ G(k−1), then

H (k) = [H (k−1), H (k−1)] ≤ [G(k−1)), G(k−1)] = G(k),

utilizing H (k−1) and G(k−1) in the roles of H and G in the last sentence of Part (i).
The result now follows by induction.

Part (iii) The equal sign is from Theorem 5.2.1, Part (v); the subgroup relation is
from Part (i) above of this Theorem.

Part (iv) Suppose G is solvable. Then so are N and G/N by Parts (i) and (iii).
Now assume, G/N and N are solvable. Then there exists natural numbers k and l,
such that (G/N )(k) = 1 and N (l) = 1. Then by Part (iii), the former equation yields

G(k)N/N = 1 or G(k) ≤ N .

Then

G(k+l) = (G(k))(l) ≤ N (l) ≤ 1,

by Part (ii), so G is solvable.
Part (v) If the subgroups A and B of G centralize each other, it follows from

Eqs. (5.2) or (5.3) that [ab, a′b′] = [a, a′][b, b′] for all (a, b), (a′, b′) ∈ A× B. This
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shows (A × B)
′ ≤ A

′ × B
′
. The reverse containment follows from Part (i). Thus the

conclusion holds for k = 1. One need only iterate this result sufficiently many times
to get the stated result for all k.

Part (vi) This is a simple application of the other parts. A subgroup of a solvable
group is solvable because of the inequality of Part (ii). A finite direct product of
solvable groups is solvable by Part (v). Thus, from the definition of subdirect product,
a finite subdirect product of solvable groups is solvable. The last part follows from
the remarks in Sect. 3.6.2. �

Remark Suppose G1, G2, . . . is a countably infinite sequence of finite groups for
which Gk has derived length k (It is a fact that a group of derived length k exists
for every positive integer k: perhaps one of those very rare applications of wreathed
products.) Then the direct sum

∑
k∈NGk = G1 ⊕ · · · does not have a finite derived

length and so is not solvable. Thus solvable groups are not closed under infinite direct
products.

Recall that a finite subnormal series for G is a chain

G = N0 � N1 � N − 1 · · · � Nk = 1,

where each N j+1 is a normal subgroup of its predecessor, N j , j = 0, . . . k − 1,
k is a natural number. (Of course what we have written is actually a descending
subnormal series. We could just as well have written it backwards as an ascending
series.) Recall also that a unrefinable subnormal series of finite length is called a
composition series, and when such a thing exists, the factors N j/N j+1 are simple
groups called the composition factors of G. That the list of composition factors that
appears is the same for all composition series, was the substance of the Jordan-Hölder
Theorem for groups.

These notions make their reappearance in the following:

Corollary 5.3.2 (i) A group G is solvable of derived length at most k if and only
if it possesses a subnormal series

G = N0 � N1 � N1 � · · · � Nk = 1.

such that each factor N j/N j+1, j = 0, . . . k − 1, is abelian.
(ii) A finite group is solvable if and only if it possesses a composition series with all

composition factors cyclic of prime order (of course, the prime may depend on
the particular factor taken).

Proof Part (i) If G is solvable, the derived series is a subnormal series for which all
factor groups formed by successive members of the series are abelian. Conversely,
if the subnormal series is as given, then N0/N1 abelian implies [G, G] = G

′ ≤ N1.
Inductively, if G( j) ≤ N j , then N j/N j+1 abelian implies G( j+1) ≤ [N j .N j ] ≤
N j+1. So by induction, G( j+1) ≤ N j+1 for all j = 0, 1, . . . k − 1. Thus G(k) ≤
Nk = 1, and G is solvable.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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Part (ii) If G possesses a composition series with all composition factors cyclic of
prime order, G is solvable by Part (i). On the other hand, if G is finite and solvable
it possesses a subnormal series

G = N0 � N1 � · · · � Nk = 1,

with each factor N j/N j+1 a finite abelian group. But in any finite abelian group
(where all subgroups are normal) we can form a composition series by choosing
a maximal subgroup M1 of A, a maximal subgroup M2 of M1, and so forth. Each
factor will then be cyclic of prime order. Thus each interval N j � N j+1 can be refined
to a chain with successive factors of prime order. The result is a refinement of the
original subnormal series to a composition series with all composition factors cyclic
of prime order. �

There aremany very interesting facts about solvable groups, especially finite ones,
which unfortunately we do not have space to reveal. Two very interesting topics are
these:

• Phillip Hall’s theory of Sylow Systems. In a finite solvable group there is a repre-
sentative Si of Sylpi (G), the pi -Sylow subgroups of G such that G = S1S2 · · · Sm ,
and the Si are permutable in pairs—that is Si S j = S j Si where p1, . . . pm is the list
of all primes dividing the order of G. Thus in any solvable group of order 120, for
example, there must exist a subgroup of order 15. (This is not true, for example, of
the non-solvable subgroup Sym(5) of that order.) A full account of Hall systems
can be found in [22].

• The theory of formations. Basically, a formation is an isomorphism-closed class
of finite solvable groups closed under finite subdirect products. Then each finite
group G contains a characteristic subgroup GF which is unique in being minimal
among all normal subgroups N of G which yield a factor G/N belonging to F .
(GF is called theF-residual of G.) Whenever G is a finite group, let D(G) be the
intersection of all the maximal subgroups of G. This is a characteristic subgroup
which we shall meet shortly, called the Frattini subgroup of G. A formation is said
to be saturated, if for every solvable finite group G, G/D(G) ∈ F implies G ∈ F .
If F is saturated, then there exists a special class of subgroups, the F-subgroups,
subgroups in F described only by their embedding in G, which form a conjugacy
class. Finite abelian groups comprise a formation but are not a saturated formation.
A class of groups considered in the next section are the nilpotent groups and they
do form a saturated formation. As a result one gets a theorem like this: “Suppose
X and Y are two nilpotent subgroups of a finite solvable group G, each of which
is its own normalizer in G. Then X and Y are conjugate subgroups. Moreover,
G must contain such groups.”3 A bit surprising. (The term ‘nilpotent group’ is
defined in the following section.)

3This conjugacy class of subgroups was first announced in a paper by Roger Carter; they are called
the class of “Carter subgroups” of G.
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5.4 Central Series and Nilpotent Groups

5.4.1 The Upper and Lower Central Series

Let G be a fixed group. Set γ0(G) = G, γ1(G) = [G, G], and inductively define

γk+1(G) := [γk(G), G],

for all positive integers k. Then the descending sequence of subgroups

G = γ0(G) ≥ γ1(G) ≥ γ2(G) ≥ · · · ,

is called the lower central series of the group G. Note that

γk(G) = [G, G, . . . G] (with k arguments).

Since any endomorphism f : G → G, maps the arguments of the above multiple
commutator into themselves, the endomorphism f maps each member of the lower
central series into itself. A similar argument for homomorphisms allows us to state
the following elementary result:

Lemma 5.4.1 (i) Each member γk(G) of the lower central series is a fully invariant
subgroup of G.

(ii) If f : G → H is a homomorphism of groups then

f (γk(G)) = γk( f (G)).

(iii) If H is a subgroup of G, then γk(H) ≤ γk(G).

Proof The proof is an easy exercise. �

A group G is said to be nilpotent if and only if its lower central series terminates
at the identity subgroup in a finite number of steps. In this case G is said to belong to
nilpotence class k if and only if k is the smallest positive integer such that γk(G) = 1.
Thus abelian groups are the groups of nilpotence class 1.

The following is immediate from Lemma 5.4.1, and the definition of nilpotence.

Corollary 5.4.2 (i) Every homomorphic image of a group of nilpotence class at
most k is a group of nilpotence class at most k.

(ii) Every subgroup of a group of nilpotence class at most k is also nilpotent of
nilpotence class at most k.

(iii) Every finite direct product of nilpotent groups of nilpotence class at most k is
itself nilpotent of nilpotence class at most k.
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The beginning student should be able to supply immaculate proofs of these asser-
tions by this time. [Follow the lead of the similar result for solvable groups in the
previous section; do not hesitate to utilize the commutator identities in proving part
(iii) of this theorem.]

Clearly, the definitions show that

[γk(G), γk(G)] ≤ [γk(G), G] = γk+1(G),

so the factor groups (γk(G))/(γk+1(G)) are abelian. As a consequence,

Corollary 5.4.3 Any nilpotent group is solvable.

The converse fails drastically: Sym(3) is a solvable group of derived length 2.
But is not nilpotent since its lower central series drops from Sym(3) to its subgroup
N � Z3, and stabilizes at N for the rest of the series.

Now again fix G. Set Z0(G) := 1, the identity subgroup; set Z1(G) = Z(G), the
center of G (the characteristic subgroup of those elements of G which commute with
every element of G); and inductively define Zk(G) to be that subgroup satisfying

Zk(G)/Zk−1(G) = Z(G/Zk−1(G)).

That is, Zk(G) is the inverse image of the center of G/Zk−1(G) under the natural
homomorphism G → G/Zk−1(G). For example:

Z2(G) = {z ∈ G|[z, g] ∈ Z(G), for all g ∈ G}.

By definition Zk(G) ≤ Zk+1(G), so we obtain an ascending series of character-
istic subgroups

1 = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ,

called the upper central series of G. Of course if G has a trivial center, this series
does not even get off the ground. But, as we shall see below, it proceeds all the way
to the top precisely when G is nilpotent.

Suppose now that G has nilpotence class k. This means γk(G) = 1while γk−1(G)

is non-trivial. Then as

[γk−1(G), G] = γk(G) = 1,

G centralizes γk−1(G), that is

γk−1(G) ≤ Z1(G).

Now assume for the purposes of induction, that

γk− j (G) ≤ Z j (G).
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Then

[γk− j−1(G), G] ≤ γk− j (G) ≤ Z j (G),

so

[γk− j−1, G] ≤ {z ∈ G|[z, G] ≤ Z j (G)} := Z j+1(G).

Thus, by the induction principle,

γk− j (G) ≤ Z j (G), for all 0 ≤ j ≤ k. (5.7)

Putting j = k in (5.7), we see that Zk(G) = γ0(G) = G. That is, if the lower
central series has length k, then the upper central series terminates at G in at most
k steps.

Now assume G �= 1 has an upper central series terminating at G in exactly k
steps—that is, Zk(G) = G while Zk−1(G) is a proper subgroup of G (as G �= 1).
Then, of course G/Zk−1 is abelian, and so γ1(G) = [G, G] ≤ Zk−1(G). Now for
the purpose of an induction argument, assume that

γ j (G) ≤ Zk− j (G).

Then

Zk− j (G)/Zk− j−1(G) = Z(G/Zk− j−1)

implies

[Zk− j (G), G] ≤ Zk− j−1(G).

so

γ j+1(G) := [γ j (G), G] ≤ [Zk− j (G), G] ≤ Zk−( j+1)(G).

Thus

γ j (G) ≤ Zk− j (G), for all 0 ≤ j ≤ k. (5.8)

Thus if j = k in (5.8), γk(G) ≤ Z0(G) := 1. Thus if the upper central series
terminates at G in exactly k steps, then the lower central series terminates at the
identity subgroup in at most k steps.
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We can assemble these observations as follows:

Theorem 5.4.4 The following assertions are equivalent:

1. G belongs to nilpotence class k. (By definition, its lower central series terminates
at the identity in exactly k steps.)

2. The upper central series of G terminates at G in exactly k steps.

There is an interesting local property of nilpotent groups:

Theorem 5.4.5 If G is a nilpotent group, then any proper subgroup H of G is
properly contained in its normalizer NG(H).

Proof If G = 1, there is nothing to prove. Suppose H is a proper subgroup of G.
Then there is a minimal positive integer j such that Z j (G) is not contained in H .
Then there is an element z in Z j (G) − H . Then [z, H ] ≤ [z, G] ≤ Z j−1(G) ≤ H .
Thus z normalizes H , but does not lie in it. �

Corollary 5.4.6 Every maximal subgroup of a nilpotent group is normal.

Remark There are many groups with no maximal subgroups at all. Some of these are
not even nilpotent. Thus one should not expect a converse to the aboveCorollary. This
raises the question, though, whether the property of the conclusion of Theorem 5.4.5
characterizes nilpotent groups. Again one might expect that this is false for infinite
groups. However, in the next subsection we shall learn that among finite groups it is
indeed a characterizing property.

Here is a classical example of a nilpotent group: Suppose V is an n-dimensional
vector space over a field F . A chamber is an ascending sequence of subspaces S =
(V1, V2, . . . Vn−1)whereVj has vector spacedimension j . (This chain is unrefinable.)
Now consider the group B(S) of all linear transformations T ∈ GL(V ) such that T
fixes each Vj and induces the identity transformation on each 1-dimensional factor-
space Vj/Vj−1. Rendered as a group of matrices these are upper triangular matrices
with “1’s” on the diagonal. The reader may verify that the k-th member of the lower
central series of this group consists of upper triangular matrices still having 1’s on
the diagonal, but having more and more upper subdiagonals all zero as k increases.
Eventually one sees that B(S)(n−1) contains only the identity matrix.

5.4.2 Finite Nilpotent Groups

Let p be a prime number. As originally defined, a p-group is a group in which
each element has p-power order. Suppose P is a finite p-group. Then by the Sylow
Theorem, the order of G cannot be divisible by a prime distinct from p. Thus we
observe

A finite group is a p-group if and only if the group has p-power order.
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Now we have seen before (Lemma 4.3.2, part (ii)), that a non-trivial finite
p-group must possess a non-trivial center. Thus if P �= 1 is a finite p-group, we
see that Z(P) �= 1. Now if Z(P) = P , then P is abelian. Otherwise, P/Z(P) has a
nontrivial center. Similarly, in general, if P is a finite p-group:

Either Zk(P) = P or Zk(P) properly lies in Zk+1(P).

As a result, a finite p-group possesses an upper central series of finite length,
and hence is a nilpotent group. Obviously, a finite direct product of finite p-groups
(where the prime p is allowed to depend upon the direct factor) is a finite nilpotent
group.

Now consider this

Lemma 5.4.7 If G is a finite group and S is a p-Sylow subgroup of G, then
any subgroup H which contains the normalizer of S is itself self-normalizing—i.e.
NG(H) = H In particular NG(S) is self-normalizing.

Proof Suppose x is an element of NG(H). Since P is a p-Sylow subgroup of G, it
is also a p-Sylow subgroup of NG(H) and H . Since Px ∈ Sylp(H), by Sylow’s
theorem there exists an element h ∈ H such that Px = Ph . Then xh−1 ∈ NG(P) ≤
H whence x ∈ H . (Actually this could be done in one line, by exploiting the “Frattini
Argument” (Chap.4; Corollary4.3.4)). �

Now we have

Theorem 5.4.8 Let G be a finite group. Then the following statements are equiva-
lent.

(i) G is nilpotent.
(ii) G is isomorphic to the direct product of its various Sylow subgroups.

(iii) Every Sylow subgroup of G is a normal subgroup.

Proof ((ii) implies (i)) Finite p-groups are nilpotent, as we have seen, and so too are
their finite direct products. Thus any finite group which is the direct product of its
Sylow subgroups is certainly nilpotent.

((ii) if and only (iii))Now it is easy to see that a group is isomorphic to a direct prod-
uct of its various p-Sylow subgroups, (p ranging over the prime divisors of the order
of G) if and only if each Sylow subgroup of G is normal. Being direct factors Sylow
subgroups of such a direct product are certainly normal. Conversely, if all p-Sylow
subgroups are normal, the direct product criterion of Chap.3 (Lemma3.5.1, Part (iii),
p. 96) is satisfied, upon considering the orders of the intersections S1S2 · · · Sk ∩Sk+1,
where {Si } is the full (one-element) collection of Sylow subgroups of G (one for each
prime).

((i) implies (iii)) So it suffices to show that in a finite nilpotent group, each p-sylow
subgroup P is a normal subgroup of G. If NG(P) = G, there is nothing to prove. But
if NG(P) is a proper subgroup of G, then it is a proper self-normalizing subgroup by
Lemma 5.4.7. This completely contradicts Theorem 5.4.5 which asserts that every
proper subgroup of a nilpotent group is properly contained in its normalizer. �

http://dx.doi.org/10.1007/978-3-319-19734-0_4
http://dx.doi.org/10.1007/978-3-319-19734-0_4
http://dx.doi.org/10.1007/978-3-319-19734-0_3
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Fix a group G. A non-generator of G is an element x of G such that whenever x is
a member of a generating set X—that is, when x ∈ X , and 〈X〉 = G, then X −{x} is
also a generating set: 〈X −{x}〉 = G. Thus x is just one of those superfluous elements
that you never need. Now it is not easy to see from “first principles”—that is, from
the defining property alone—that in a finite group, the product of a non-generator
and a non-generator is again a non-generator. But we have this characterization of a
non-generator:

Lemma 5.4.9 Suppose G is a finite group. Let D(G) be the intersection of all
maximal subgroups of G. Then D(G) is the set of all nongenerators of G.

Proof Two statements are to be proven: (i) every non-generator lies in D(G), and
(ii) every element of D(G) is a non-generator.

(i) Suppose x is a non-generator, and let M be any maximal subgroup of G. Then
if x is not in M wemust have 〈{x}∪ M〉 = G, while 〈M〉 = M , against the definition
of “non-generator”. Thus x lies in every maximal subgroup M and so x ∈ D(G).

(ii) On the other hand assume that x is an arbitrary element of D(G), and that X
is a set of generators of G which counts x among its active participants. If X − {x}
does not generate G, then, as G is finite, there is a maximal subgroup M containing
H := 〈X − {x}〉. But by assumption x ∈ D(G) ≤ M , whence 〈X〉 ≤ M , a
contradiction. Thus always it is the case that if x ∈ X , where X generates G, then
also X − {x} generates G. Thus x is a non-generator. �

Remark This theorem really belongs to posets. Clearly finiteness can be replaced by
the only distinctive property used in the proof: that for every subset X of this poset,
there is an upper bound—that is, an element of the filter P X , which is either the
1-element of the poset or lies in a maximal member of the poset with the 1-element
removed. Its natural habitat is therefore lattices with the ascending chain condition.
(We need upper semi-lattices so that we can take suprema; we need something like
a lower-semilattice in order to define the Frattini element of the poset as the meet
of all maximal elements. Finally the ascending chain condition makes sure that the
maximal elements fully cover all subsets whose supremum is not “1”. So at least
lattices with the ascending chain condition (ACC) are more than sufficient for this
result.)

Theorem 5.4.10 (Global non-generators) If X ∪ D(G) generates a finite group G,
then X generates G.

Proof The argument is the same and has a similar poset-generalization. Suppose 〈X〉
is not G. Then it lies below a maximal subgroup M . By definition D(G) must lie
in M , and so X ∪ D(G) lies in M , which contradicts the hypothesis that X ∪ D(G)

generates G. Thus we must abandon the foregoing supposition and conclude that
〈X〉 = G. �
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The subgroup D(G) is called the Frattini subgroup of G.4 It is clearly a charac-
teristic subgroup of G. In the case of finite groups, something special occurs which
could be imitated only artificially in the context of posets:

Theorem 5.4.11 In a finite group, the Frattini subgroup D(G) is a characteristic
nilpotent subgroup of G.

Proof The “characteristic” part is clear, and has been remarked on earlier. Suppose
P ∈ Sylp(D(G)). By the Frattini Argument, G = NG(P)D(G). It now follows
from Theorem 5.4.10 that NG(P) = G and so in particular P is normal in D(G).
Thus every p-sylow subgroup of D(G) is normal in it. Since it is finite, it is a direct
product of its Sylow subgroups and so is nilpotent. �
Corollary 5.4.12 (Wielandt) For a finite group G the following are equivalent:

(i) G is nilpotent.
(ii) Every maximal subgroup of G is normal.

(iii) G ′ ≤ D(G).

Proof If M is a maximal subgroup of the finite group G which also happens to be
normal, then G/M is a simple group with no proper subgroups, and so must be a
cyclic group of order p, for some prime p. Thus if all maximal subgroups are normal,
the commutator subgroup lies in each maximal subgroup and so lies in the Frattini
subgroup D(G). On the other hand, if G/D(G) is abelian, every subgroup above
D(G) is normal; so in particular, all maximal subgroups are normal. Thus Parts (ii)
and (iii) are equivalent.

But if M is a maximal subgroup of a nilpotent group, M properly lies in its
normalizer in G, and so NG(M) = G. Thus the assertion of Part (i) implies Parts (ii)
and (iii).

So it remains only to show that if every maximal subgroup is normal, then G is
nilpotent. Since G is finite, we need only show that every Sylow subgroup is normal,
under these hypotheses. Suppose P is a p-Sylow subgroup of G. Suppose NG(P) �=
G. Then NG(P) lies in some maximal subgroup M of G. By Lemma 5.4.7, M is
self-normalizing. But that contradicts our assumption that every maximal subgroup
is normal. Thus NG(P) = G for every Sylow subgroup P . Now G is nilpotent by
Theorem 5.4.8. �

5.5 Coprime Action

Suppose G is a finite group possessing a normal abelian subgroup A, and let F =
G/A be the associated factor group. Any transversal of A—that is, a system of coset
representatives of A in G can be indexed by the elements of the factor group F . Any
transversal T := {t f | f ∈ F} determines a function

4 In some of the earlier literature one finds D(G) written as “�(G)”. We do not understand fully
the reason for the change.
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αT : F × F → A

(called a factor system) by the rule that for all ( f, g) ∈ F ,

t f · tg = t f gαT ( f, g).

In some sense, the factor system measures how far off the transversal is from being
a group. Because of the associative law, one has

αT ( f g, h)αT ( f, g)h = αT ( f, gh)αT (g, h), (5.9)

for all f, g, h ∈ F . (Notice that since A is abelian, conjugation by any element h of
the coset Ax gives the same result ax = x−1ax = h−1ah which we have denoted
by ah .)

Now, given a transversal T = {t f | f ∈ F}, any other transversal S = {s f | f ∈ F}
is uniquely determined by a function β : F → A, by the rule that

s f = t f β( f ), f ∈ F.

Then the new factor system αS for transversal S can be determined from the old one
αT by the equations

αS( f, g) = αT ( f, g)[(β( f g))−1β( f )gβ(g)] for all f, g ∈ F. (5.10)

The group G is said to split over A if and only if there is a subgroup H of G
such that G = H A, H ∩ A = 1—that is, if and only if some transversal H forms
a subgroup. Such a subgroup H is called a complement of A in G. In that case, the
factor system αH for H is just the constant function at the identity element of A.
Then, given G, A and transversal T = {t f | f ∈ F}, we can conclude from Eq. (5.10)
that G splits over A if and only if there exists a function β : F → A such that

αT ( f, g) = β( f g)β( f )−gβ(g)−1, for all f, g ∈ F. (5.11)

Now suppose A is a normal abelian p-subgroup of the finite group G and suppose
P is a Sylow p-subgroup of G with the property that “P splits over A”. That means
that P (which necessarily contains A) contains a subgroup B such that P = AB and
B ∩ A = 1. Let X be a transversal of P in G. Then T := B X := {bx |b ∈ B, x ∈ X}
is a transversal of A in G whose factor system αT satisfies

αT (b, t) = 1 for all (b, t) ∈ B × T .

Now let m be the p-Sylow index [G : P] = |X | in G. Since m is prime to |A|,
there exists an integer k such that mk ≡ 1 mod |A|. Since A is abelian, the factors of
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any finite product of elements of A can be written in any order. So there is a function
γ : F → A defined by

γ( f ) :=
∏

x∈X
αT (x, f ).

Now, multiplying each side of Eq. (5.9) as f ranges over F , one obtains

γ(h)γ(g)h = γ(gh)αT (gh)m .

Then, setting β(g) := γ(g)−k for all g ∈ F , we obtain Eq. (5.11). Thus G splits over
A.

Noting that conversely, if G splits over A, so does P , we have in fact proved,

Theorem 5.5.1 (Gaschütz) Suppose G is a finite group with a normal abelian
p-subgroup A. Then G splits over A if and only if some p-Sylow subgroup of G
splits over A.

Next suppose A is a normal abelian subgroup of the finite group G and that
H is a complement of A in G, so G = H A and H ∩ A = 1. Now suppose some
second subgroup K was also a complement to A. Then there is a natural isomorphism
μ : H → K factoring through G/A, and a function β : H → A so that

μ(h) = hβ(h) for all h ∈ H.

Expressed slightly differently, K is a transversal {kh |h ∈ H} whose elements can be
indexed by H , and kh = hβ(h) for all h ∈ H . Since K is a group, it is easy to see
that for h, g ∈ H ,

kg · kh = hgh = (gh)β(gh)

= gβ(g) · hβ(h)

= ghβ(g)hβ(h).

So

β(gh) = β(g)hβ(h), for all g, h ∈ H. (5.12)

Now assume m = [G : A] is relatively prime to |A|, and select an integer n such
that mn ≡ 1 mod |A|. Then as A is abelian, the product

∏
H β(g), taken as g ranges

over H , is a well-defined constant b, an element of A. Forming a similar product of
the terms on both sides of Eq. (5.12) as g ranges over H , one now has

b = bh · β(h)m,
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so

β(h) = a · a−h, where a = bn, h ∈ H.

Then for every h ∈ H ,

kh = hβ(h) = h · a−h · a = a−1ha.

Thus K = a−1Ha is a conjugate of H . So we have shown the following:

Lemma 5.5.2 If A is a normal abelian subgroup of a group G of finite order, and
the order of A is relatively prime to its index [G : A], then any two complements of
A in G are conjugate.

The reader should be able to use Gaschütz’ Theorem and the preceeding Lemma
to devise an induction proof of the following

Theorem 5.5.3 (The lower Schur-Zassenhaus Theorem) Suppose N is a solvable
normal subgroup of the finite group G whose order is relatively prime to its index
[G : N ]. Then the following statements are true:

1. There exists a complement H of N in G.
2. Any two complements of N in G are conjugate by an element of N .

On the other hand, using little more than Sylow’s theorem, a Frattini argument,
and induction on group orders one can easily prove the following:

Theorem 5.5.4 (The upper Schur-Zassenhaus Theorem) Suppose N is a normal
subgroup of the finite group G, such that |N | and its index [G : N ] are coprime. If
G/N is solvable, then the following holds:

1. There exists a complement H of N in G.
2. Any two complements of N in G are conjugate by an element of N .

Remark Both the lower and upper Schur-Zassenhaus theorems contain an assump-
tion of solvability, either on N or G/N . However this condition can be dropped
altogether, because of the famous Feit-Thompson theorem [18] which says that any
finite group of odd order must be solvable. The hypothesis that |N | and [G : N ] are
coprime forces one of N or G/N to have odd order and so at least one is solvable. Of
course the Feit-Thompson theorem is far beyond the sophistication of this relatively
elementary course.

A somewhat over-looked application of the Schur-Zassenhaus theorem is the
following:

Theorem 5.5.5 (Glauberman) Let A be a group of automorphisms acting on a group
G leaving invariant some coset H x of a subgroup H. Then the following hold:
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1. H is itself A-invariant.
2. If A and H have coprime orders (so that at least one is solvable), then A fixes an

element of the coset H x.

Proof This is Exercise (10) in Sect. 5.6.1.

5.6 Exercises

5.6.1 Elementary Exercises

1. We say that a subgroup A of G is subnormal in G if and only if there is a finite
ascending chain of subgroups:

A = N0 < N1 · · · < Nm = G

from A to G, with each member of the chain normal in its successor—i. e.
Ni � Ni+1, i = 0, . . . , m − 1.

(a) Using the Corollary to the Fundamental Theorem of Homomorphisms
(Corollary 3.4.6), show that SN (G) is a semi-modular lower semi-lattice.

(b) Use Theorem 2.4.2, part (ii), to conclude that in a group for which SN (G)

has the descending condition—for example a finite group—the join of any
collection of subnormal subgroups of a group is subnormal.

2. SupposeN is a family of normal subgroups of G. Let �N be defined to be the
set of elements of G which are expressible as a finite product of elements each
of which belongs to a subgroup in N .

(a) Show that �N is the subgroup of G generated by the subgroups inN—i.e.
�N = 〈N 〉 := 〈{N |N ∈ N }〉.

(b) We say thatN is a normally closed family, if and only if for any non-empty
subset M ⊆ N , 〈M〉 ∈ N . A group is said to be a torsion group if and
only if every element of G has finite order. (This does not mean that the
group is finite: far from it: there are many infinite torsion groups.) Show
that the family T (G) of all normal torsion subgroups of G, is a normally
closed family. [hint: When any element x is expressed as a finite product
x = a1 · · · ak with ai ∈ Ni ∈ N , only a finite number of groups Ni are
involved. So the proof comes down to the case k = 2.] Then the group

Tor(G) := 〈T (G)〉 ∈ T (G)

is a characteristic subgroup of G.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
http://dx.doi.org/10.1007/978-3-319-19734-0_2


5.6 Exercises 157

3. Fix a prime number p. A group H is said to be a p-group if and only if evey
element of H has order a power of the prime p. Show that the collection of all
normal p-subgroups of a (not necessarily finite) group G is normally closed. (In
this case the unique maximal member of the collection of all normally closed
p-subgroups of G is denoted Op(G).)

4. Let G be any group, finite or infinite.

(a) Show that any subnormal torsion subgroup of G lies in T (G).
(b) Show that any subnormal p-subgroup of G lies in Op(G).

5. Let Q denote the additive group of the rational numbers. The group Zp∞ is
defined to be the subgroup of Q/Z generated by the infinite set {1/p, 1/p2, . . .}.
Show that this is an infinite p-group. Also show that it is indecomposable—that
is, it is not the direct product of two of its proper subgroups.

6. Let F be a family of abstract groups which is closed under taking unrestricted
subdirect products—that is, if H is a subgroup of the direct product

∏
σ∈I Xσ ,

with each Xσ ∈ F , and the restriction of each canonical projection

πτ :
∏

σ∈I
Xσ → Xτ

to H is an epimorphism, then H ∈ F .

(a) Show that there exists a uniquenormal subgroup NF such that NF isminimal
with respect to being a normal subgroup which yields a factor G/NF ∈ F5

(b) Show that there is always a subgroup G ′ of G minimal with respect to these
properties:
(i) G ′ � G,
(ii) G/G ′ is abelian.

(c) Explain why there is not always a subgroup N of G minimal with respect to
being normal and having G/N a torsion group (or even a p-group). [Hint:
Although torsion groups are closed under taking direct sums, they are not
closed under taking direct products. This contrasts with Exercise (6) in this
section where the family of groups was closed under unrestricted subdirect
products.]

(d) If G is finite, and F is closed under finite subdirect products—that is, the
set of possibilities for F is enlarged because of the weaker requirement that
it is enough that any subgroup H of a finite direct product of members of F
which remains surjectve under the restrictions of the canonical projections,
is still in F—then there does exist a subgroup NF which is minimal with
respect to the two requirements: (i) NF � G, and (ii) G/NF ∈ F . (If π is
any set of (non-negative) prime numbers, a group G is said to be a π-group

5Note that as a class of abstract groups F can either be viewed as either (i) a collection of groups
closed under isomorphisms, or (ii) a disjoint union of isomorphism classes of groups. Under the
former interpretation, the “membership sign”, ∈, as in “G/NF ∈ F” is appropriate. But in the
second case, “∈” need only be replaced by “an isomorphism with a member of F”. One must get
used to this.
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if and only every element of G has finite order divisible only by the primes
in π. In particular, a π-group is a species of torsion group, and a p-group is
a species of π-group.
Show that all π-groups are closed under finite subdirect products. [In this
case we write

NF = Oπ(G), Op(G), or Op′
(G)

where π = {p} or all primes except p, in the last two cases.]

7. Suppose F is a family of groups closed under normal products. Suppose G
possesses a subgroup N that is maximal with respect to being both normal and
being a member ofF (this occurs when G is finite). Is it true that any subnormal
subgroup of G which belongs to the family F lies in N? Prove it, or give a
counterexample.

8. Suppose A and B are normal subgroups of a group G. Prove the following:

(a) If A and B normalize subgroup C , then

[AB, C] = [A, C][B, C].

[Hint: Use the commutator identity (5.2) and the fact that B normalizes
[A, C] to show the containment of the left side in the right side.]

(b) Show that the k-fold commutator [AB, . . . , AB] is a normal product

∏
[X1, X2, . . . , Xk],

where the Xi = A or B, and the product extends over all 2k possibilities for
the k-tuples (X1, . . . , Xk). (Of course each factor in the normal product is
a normal subgroup of G. But some of them occur more than once since the
cases with X1 = A and X2 = B, are duplicated in the cases with X1 = B
and X2 = A.)

(c) Show that if A and B are nilpotent of class k and �, respectively, then AB
is nilpotent of class at most k + �. [Hint: Consider γk+�+1(AB) and use the
previous step.]

(d) Prove that in a finite group, there exists a normal nilpotent subgroup which
contains all other normal nilpotent subgroups of G. (This characteristic
subgroup is called the Fitting subgroup of G and is denoted F(G).)

9. Let G be a finite group. Show that if A and B are solvable normal subgroups
of a group G, then their normal product AB is also solvable. [Hint: Use the
commutator identities.] Conclude from this that if G is finite, then there exists a
unique subgroup that is maximal with respect to being both normal and solvable.
Clearly, it contains all other solvable normal subgroups of G.6

6This group is sometimes called the “solvable radical”, but this usage, which intrudes on similar
terminology from non-associative algebras, is far from uniform.
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10. Prove Theorem 5.5.5. The finite group G contains a subgroup H , and A is a
group of automorphisms of G which leaves the coset H x invariant.

(a) (i) Show that A leaves H invariant.
(b) (ii) If A and H have coprime orders show that some element of H x is fixed

by the automorphism group A.

[Hint: For the first part, note that for every a ∈ A xa = ha x for some element
ha ∈ H . Compute (hx)a for arbitrary h ∈ H .
For the second part, note that in the semidirect product G A, A normalizes H by
part (i) so H A = AH is a subgroup of G A. Show that one can define a transitive
action of H A on the elements of the coset H x in which the elements of A act
as they do as automorphisms, but the elements of H act by left multiplication.
(One must show that the left-multiplication action of ha is the composition of the
actions of a−1, of h and of a, in that order.) Let X be the subgroup of H A fixing
a “letter”—say x—in H x . Since H is transitive, H A = H X . Now X and A are
two complements of H in the group. Apply the Schur Zassenhaus theorem.]

11. Here is an interesting simplicity criterion. Let G be a group acting faithfully
and primitively on the set X , and let H be the stabilizer of some element of X .
Assume

(a) G = G ′,
(b) H contains a non-identity normal solvable subgroup A whose conjugates

generate G.

Prove that G is simple.
[Hint: First note that G = 1 is not possible since A �= 1 . The imprimitive
faithful action of G on X makes G and any non-trivial normal subgroup N of
G transitive on X so G = H N . Then show AN is normal, and so contains all
conjugates of A. The final contradiction that is around the corner must exploit
the solvability of A.]

5.6.2 The Baer-Suzuki Theorem

The next few exercises spell out a subtle but well-known theorem known as the
Baer-Suzuki theorem.7 The proof considered here is actually due to Alperin and
Lyons [2].

In the following, G is a finite group. There is some new but totally natural notation
due to Aschbacher. Suppose� is a collection of subgroups of G and H is a subgroup
of G. Then the symbol � ∩ H denotes the collection of all subgroups in � which
happened to be contained in the subgroup H . (Of course this collection could very
well be empty.) If γ is any collection of subgroups of G, the symbol NG(γ) denotes

7Not to be confused with “Brauer-Suzuki Theorem”.
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the subgroup of G of all elements which under conjugation of subgroups leaves the
collection γ invariant.

1. Suppose � is a G-invariant collection of p-subgroups of G. Let Q be any
p-subgroup of G and let γ be any subset of � ∩ Q for which γ ⊆ NG(γ).
Show that either

(a) γ = � ∩ Q or
(b) Then there is an element X ∈ � ∩ Q which also lies in NG(γ).

[Hint: Without loss of generality, one may assume that γ = �∩ Q ∩ NG(γ). Then
every element of NQ(NQ(γ)) leaves γ = � ∩ NQ(γ) invariant, so NQ(NQ(γ) =
NQ(γ). Since Q is a nilpotent group, γ is a Q-invariant collection of subgroups
of Q and the conclusion follows easily.]

2. Prove the following:

Theorem 5.6.1 (The Baer-Suzuki Theorem) Suppose X is some p-subgroup of the
finite group G. Either X ≤ Op(G) or 〈X, Xg〉 is not a p-subgroup for some conjugate
Xg ∈ X G.

[Hint: Set � = X G , choose P a p-sylow subgroup of G which contains X , and
set � := � ∩ P . Since � = � implies 〈�〉 is a normal p-group, forcing the
conclusion X ∈ Op(G), we may assume � − � �= ∅.
Now show that for any subgroup Y ∈ � − �, 〈Y,�〉 cannot be a p-group. [ If R
is a p-Sylow subgroup containing 〈R,�〉, compare |� ∩ R| and |� ∩ P|.]
Next consider the set S of all pairs (Y, γ) where Y ∈ X G − �, γ ⊆ � and 〈Y, γ〉
is a p-group. (We have just seen that this collection is non-empty.) Among these
pairs, choose one, say (Y, γ) ∈ S, so that |γ| is maximal. Now if γ = ∅, 〈X〉 is
not a p-group and we are done. Thus we may assume γ is non-empty.
Now set Q := 〈Y, γ〉, a p-group. Then, noting that 〈Y,� ∩ Q〉 is a p-group, the
maximality of γ forces γ = �∩ Q. Now γ̄ := ∪X∈γ X ⊆ P ⊆ NG(�) and γ̄ ⊆ Q
together imply

γ̄ ⊆ NC (Q) ∩ NG(�) ⊆ NG(Q ∩ �) = NG(γ).

By the previous exercise, either γ = �∩ Q or there is a subgroup Y ′ ∈ �∩ Q −γ
with Y ′ ⊆ NG(γ). The former alternative is dead from the outset because of the
existence of Y . Now Y ′ belongs to X G − �, and 〈Y ′, γ〉 is a p-subgroup, as it is
a subgroup of Q. Thus (Y ′, γ) is also one of the extreme pairs in S.
Similarly, since 〈Y ′,�〉 is not a p-group, γ �= � and so, applying the previous
exercise once more with P in place of Q, there must exist a subgroup Z ∈ � − γ,
with Z ∈ NP (γ). Thus

{Y ′, Z} ∪ γ ⊆ � ∩ NG(γ).
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Now NG(γ) is a proper subgroup of G (otherwise some element of X G lies in the
normal p-subgroup 〈γ〉). Now for the first time, we exploit induction on the group
order to conclude that

〈Y ′, γ ∪ {Z}〉

is a p-group. Clearly this contradicts the maximality of |γ|, completing the proof.]

3. The proof just sketched is very suggestive of other generalizations, but there are
limits. We say that a finite group is p-nilpotent if and only if G/Op′(G) is a
p-group.
Show that the collection of finite p-nilpotent subgroups is closed under finite
normal products. (In a finite group, there is then a unique maximal normal
p-nilpotent subgroup, usually denoted Op′ p(G).)

4. Is the following statement true? Suppose X is a p-subgroup of the finite group
G. Then either X ∈ Op′ p(G) or else there exists a conjugate Xg ∈ X G such
that 〈X, Xg〉 is not p -nilpotent. [Hint: Think about the fact that in any group, the
group generated by two involutions is a dihedral group, and so is 2-nilpotent.]



Chapter 6
Generation in Groups

Abstract Here, the free group on set X is defined to be the automorphism group of
a certain tree with labeled edge-directions. This approach evades some awkwardness
in dealing with reduced words. The universal property that any group generated by
a set of elements X is a homomorphic image of the free group on X , as well as
the fact that a subgroup of a free group is free (possibly on many more generators)
are easy consequences of this definition. The chapter concludes with a discussion of
(k, l, m)-groups and the Brauer-Ree theorem.

6.1 Introduction

One may recall that for any subset X of a given group G, the subgroup generated by
X , denoted 〈X〉, always has two descriptions:

1. It is the intersection of all subgroups of G which contain X ;
2. It is the subset of all elements of G with are expressible as a finite product of

elements which are either in X or are the inverse (in G) of an element of X .

The two notions are certainly equivalent, for the set of elements described in item
2, is closed under group multiplication and taking inverses and so, by the Subgroup
Criterion (Lemma 3.2.3) is a subgroup of G containing X . On the other hand it must
be a subset of every subgroup containing X . So this set is the same subgroup which
was denoted 〈X〉.

But there is certainly a difference in the way the two notions feel. Our point of
view in this chapter will certainly be in the spirit of the second of these two notions.
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6.2 The Cayley Graph

6.2.1 Definition

Suppose we are given a group G and a subset X of G. X is said to be a set of
generators of G if and only if 〈X〉 = G. For any such set of generators X , we can
obtain a directed graph C(G, X) without multiple edges as follows:

1. The vertex set of C := C(G, X) is the set of elements of G.
2. The directed edges are the ordered pairs of vertices: (g, gx), where g ∈ G and

x ∈ X . (It is our option to label such an edge by the symbol “x”. Note that if x
and y are distinct elements of X , then gx �= gy so each directed edge receives a
unique label by this rule.)

The directed edge-labelled graph C(G, X) is called the Cayley graph of the gen-
erating set X of the group G. Note that if the identity element 1 is a member of X ,
loops are possible. But of course 1, being a non-generator, can always be removed
from X without disturbing any of our assumptions about X and G. If we do this, no
loops will appear.

One now notices that left multiplication of all the vertices of C (that is, the elements
of G) by a given element h of G induces an automorphism πh of C (in fact one
preserving the labels) since (hg, hgx) is also an edge labelled by “x”.

Let us look at a very simple example. The set X = {a = (12), b = (23)} is a set
of generators of the group G = Sym(3), the symmetric group on the set of letters
{1, 2, 3}. The Cayley graph then has six vertices, and each vertex has two out-going
edges labeled “a” and “b”, respectively, and two in-going edges labeled “a” and “b”
as well. Indeed, we could coalesce an outgoing and ingoing edge with the same label,
as one undirected edge of that label. This only happens when the label indicates an
involution of the group. In this case we get a hexagon with sides labelled “a” and “b”
alternately.

6.2.2 Morphisms of Various Sorts of Graphs

Since we are talking about graphs, this may be a good time to discuss homomorphisms
of graphs. But there are various sorts of graphs to discuss. The broad categories are

1. Simple graphs � = (V, E) where V is the vertex set, and edges are just cer-
tain subsets of V of size two. (These graphs record all non-reflexive symmetric
relations on a set V , for example the acquaintanceship relation among persons
attending a large party.)

2. Undirected graphs with multiple edges. (This occurs when the edges themselves
live an important life of their own—for example when they are the bridges con-
necting islands, airplane flights connecting cities, or doors connecting rooms.)
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3. Simple graphs with directed edges. Here the edge set is a collection of ordered
pairs of vertices. (This occurs when one is recording asymmetric relations, for
example, which football team beat which in a football league, assuming each
pair of teams plays each other at most once. Or the the comparison relation of
elements in a poset. We even allow two relations between points, for example
(a, b) and (b, a) may both be directed edges. This occurs in some cities where
sites are connected by a network of both one-way and two-way streets.)

4. We could have any of the above, with labels attached to the edges. Cayley graphs,
for example, can be viewed as directed labeled graphs.

A graph homomorphism f : (V1, E1) → (V2, E2) is a mapping, f : V1 → V2
such that if (a, b) ∈ E1 then either f (a) = f (b) or ( f (a), f (b)) ∈ E2. If the two
graphs are labeled, there are labelling mappings λi : Ei → Li assigning to each
(directed) edge, a label from a set of labels Li , i = 1, 2. Then we require an auxilliary
mapping f ′ : L1 → L2, so that if (a, b) ∈ E1 carries label x and if ( f (a), f (b)) is
an edge, then it too carries label f ′(x).

6.2.3 Group Morphisms Induce Morphisms of Cayley Graphs

Now suppose f : G → H is a surjective homomorphism of groups. Then it is easy
to see that if X is a set of generators of G, then also f (X) is a set of generators
of f (G) = H . Now f is a fortiori a map from the vertex set of the Cayley graph
C(G, X) to the vertex set of the Cayley graph C(H, f (X)). For (g, x) ∈ G × X ,
(g, gx) is a directed edge labelled x . Then clearly either f (g) = f (gx) or else,
( f (g), f (gx)) = ( f (g), f (g) f (x)) is a directed edge of C(H, f (X)), labelled f (x).
Thus

Lemma 6.2.1 If X is a set of generators of a group G and f : G → H is a
surjective morphism of groups, then f (X) is a set of generators of H and f induces
a homomorphism of the Cayley graphs, f : C(G, X) → C(H, f (X)) as labeled
directed graphs.1

6.3 Free Groups

6.3.1 Construction of Free Groups

The Cayley graphs of the previous section were defined by the existence of a group
G (among other things). Now we would like to reverse this; we should like to start
with a set X and obtain out of it a certain group which we shall denote F(X).

1Note that the graph morphism has also denoted by the symbol f . This slight abuse of notation is
motivated by the fact that f is indeed the mapping being applied to both vertices and labels of the
domain Cayley graph.



166 6 Generation in Groups

We do this in stages.
First we give ourselves a fixed abstract set X . The free monoid on X is the collection

M(X), of “words” xi x2 · · · xk spelled with “letters” xi chosen from the alphabet X .2

The number k is allowed to be zero—that is, there is a unique “word” spelled with
no letters at all—which we denote by the symbol φ and call the empty word. The
number k is called the length of the word which, as we have just seen, can be zero.

The concatenation of two words u = x1 · · · xk and w = y1 y2 · · · y� , xi , y j ∈ X ,
is the word,

u ∗ w := x1 · · · xk y1 · · · y�.

The word “bookkeeper” is the concatenation of “book” and “keeper”; 12345 is the
concatenation 123∗45 or 12∗345, and so forth. Clearly the concatenation operation
“∗” is a binary operation on the set W (X) of all words over the alphabet X , and it
is associative (though very non-commutative). Moreover, for any word w ∈ W (X),
φ ∗ w = w ∗ φ = w. So the empty word φ is a two-sided identity with respect
to the operation “∗”. Thus M(X) = (W (X), ∗) is an associative semigroup with
identity—that is, a monoid. Indeed, since it is completely determined by the abstract
set X alone, it is called the free monoid on (alphabet) X .3

Now let σ : X → X be an involutory fixed-point-free permutation of X . This
means σ is a bijection from X to itself such that

1. σ2 = 1X , the identity mapping on X , and
2. σ(x) �= x for all elements x in X .

We are going to construct a directed labelled graph � = F(X,σ), called a frame
which is completely determined by X and the involution σ.

Let W ∗(X) be the subset of W (X) of those words y1 y2 · · · yr , r any non-negative
integer, for which yi �= σ(yi+1), for any i = 1, . . . , r − 1. These are the words
which never have a “factor” of the form yσ(y). (Notice that these words contain no
factors of the form σ(y)y as well since, σ(y)y = uσ(u) where u = σ(y).) We call
such words reduced words.

We now construct a labelled directed graph � whose vertices are these reduced
words in W ∗(X). The set E of oriented labelled edges are of two types:

1. Ordered pairs (w,wy) ∈ W ∗(X)× W ∗(X) are to be directed edges labelled “y”.
(Note that the nature of the domain forces the reduced word w not to end in the
letter σ(y)—otherwise wy would not be reduced.)

2. Similarly those ordered pairs of the form (wy, w) (under the same hypothesis
that w not end in σ(y)) are directed edges labeled by “σ(y)”.

The two types of directed edges are distinguished this way: for an edge of the first
kind, the “head” of the directed edge is a word of length one more than it’s “tail”,
while the reverse is the case for an edge of the second kind.

2Of course, to be formal about it, one can regard these as finite sequences (x1, . . . , xk), but the
analogy with linguistic devices is helpful because the binary operation we use here is not natural
for sequences.
3Monoids were introduced in Chap. 1.

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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Then the directed graph � = (W ∗(X), E) which we have defined and have called
a frame, has these properties:

1. Let Vk be the set of words of W ∗(X) of length k. Then V0 = {φ}, and the vertex
set partitions as W ∗(X) = V0 + V1 + V2 + . . ..

2. Each vertex has all its outgoing edges labeled by X ; it also has all its ingoing
edges labeled by X . Each directed edge (a, b) that is labeled by y ∈ X , has its
“transpose” (b, a) labelled by σ(y).

3. For k > 0, each vertex in Vk receives just one ingoing edge from Vk−1 and gives
one outgoing edge to the same vertex in Vk−1. All further edges leaving or arriving
at this vertex, are to or from vertices of Vk+1.

4. Given any ordered pair of vertices (w1, w2) (recall the wi are reduced words)
there is a unique directed path in � from vertex w1 to vertex w2. It follows that
there are no circuits other than “backtracks”—that is circular directed walks of
the form

(v1, v2, . . . vm, . . . v2m+1)

where v j = v2m+1− j , (v j , v j+1) and (v j+1, v j ) are all directed edges, j =
1, . . . m.

As usual, the symbol Aut(�) denotes the automorphism group of the directed
labeled graph �. At this point we define a monoid homomorphism

μ : M(X) → Aut(�).

For each y ∈ X , and vertex w in W ∗(X) define

μ(y)(w) :=
{

yw if w does not begin with letter σ(y)

w′ if w has the form σ(y)w′.

It is then quite clear that μ(y) is a label-preserving automorphism of � (this needs
only be checked at vertices w of very short length where “cancellation” affects the
terminal vertices).

Notice that by definition

μ(σ(y)) = (μ(y))−1,

the inverse of the automorphism induced by σ(y).
Next, for any word m = y1 y2 · · · yk in the monoid M(X) we set

wμ(m) := μ(m)(w) := μ(yk)(μ(yk−1)(· · · (μ(y1)(w)) · · · ) = wμ(y1)···μ(yk );
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that is, μ(m) is the composition

μ(yk) ◦ · · · ◦ μ(y1)

of automorphisms of �. Of course, since the automorphism group Aut(�) is assumed
to act as right operators, we can express this composition as μ(y1) · · · μ(yk) where
juxtaposition in this expression denotes multiplication in the group Aut(�).

Then, μ(m1m2) = μ(m1)μ(m2) for all (m1, m2) ∈ M(X) × M(X) and μ(φ) =
1W ∗(X). So μ is a monoid homomorphism

μ : W (X) → Aut(�).

Note that μ is far from being 1-to-1. For each y ∈ X , μ(yσ(y)) = 1� ,
the identity automorphism on �. Thus all compound expressions derived from
the empty word by successively inserting factors of the form yσ(y)—such as
abσ(c)deσ(e)σ(d)c f gσ(g)σ( f )σ(b)σ(a)–also induce the identity automorphism
of �.

We now have

Lemma 6.3.1 Let G = Aut (�), the group of all label preserving automorphisms
of the directed graph �.

(i) The monoid homomorphism μ : M(X) → G is onto.
(ii) G acts regularly on the vertices of �.

(iii) The group G is generated by the set μ(Y ), where Y is any system of represen-
tatives of the σ-orbits on X.

(iv) Identities of the form μ(m) = 1� occur if and only if the word m ∈ M(X) is
formed by a sequence of insertions of factors yiσ(yi ) starting with the empty
word.

(v) � is the Cayley graph of G with respect to the set of generators X.

Proof Suppose g is an element of G fixing a vertex w in �. Then, as each (in- or
out-) edge on w bears a unique label, every vertex next to w is fixed. Since every
vertex u is connected to the vertex φ, the empty word in W ∗(X), by an “undirected
path” of length equal to the length �(u), the undirected version of � is connected.
This forces the elements g in the first sentence of this paragraph to fix all vertices
W ∗(X) of �.

But now it is clear that for any word w ∈ W ∗(X), regarded as a monoid element,
μ(w) is an element of G taking vertex φ to w. Thus μ(M(X)) = G, and 1. and 2.
are proved. So is the statement that μ(X) is a set of generators of G in part (iii).

Suppose now, that w = y1 y2 · · · yk ∈ M(X), satisfies μ(w) = 1� . Then succes-
sive premultiplications by yk , then yk−1, and so on, take the vertex φ on a journey
along a directed path with successive arrows labelled yk, yk−1, . . .; eventually return-
ing to φ via a directed edge (y1,φ). At each stage of this journey, the current image
of φ is either taken to a vertex that is one length further or else one length closer to
its original “home”, vertex φ. So there is a position
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v = μ(y j y j+1 · · · yk)(φ)

in which a local maximum occurs in the distance from “home”. This means that both
v− = μ(y j+1 · · · yk)(φ) and v+ = μ(y j−1 y j · · · yk)(φ) are one unit closer to the
starting vertex φ than was v. But as pointed out in the construction of �, each vertex
z at distance d from φ has only one out-edge and one in-edge to a vertex at distance
d − 1 from φ, and the two closer vertices are the same vertex—say z1—so that the
two edges in and out of the vertex z are two orientations of an edge on the same pair
of vertices {z, z1}. It follows therefore that v− = v+ and that y j , the label of directed
edge (v−, v), is the σ-image of the label y j−1 of the reverse directed edge (v, v+).
Thus

μ(w) = μ(y1 y2 · · · y j−2 y j−1 y j y j+1 · · · yk)

= μ(y1 · · · y j−1 y j+1 · · · yk)

= 1� (6.1)

Now one applies induction on the length of w′ := y1 · · · y j−2 y j+1 · · · yk , to
complete the proof of (iii).

Part (iv) is obvious. �

Now let Y be a system of representatives of the σ-orbits on X . Then we have

X = Y ∪ σ(Y ), and Y ∩ σ(Y ) = ∅.

The group G above is canonically defined (one sees) by the set Y alone. To recover
X one need only formally define X to be two disjoint copies of Y , and invoke any
bijection Y → Y to define the involutory permutation σ : X → X .

Moreover, we see from Part 3 of Lemma 6.3.1 that the only relations that can exist
among the elements of G, are consequences of the relations μ(y)◦μ(σ(y)) = 1, y ∈
X . Accordingly the group G is called the free group on the set of generators Y and
is denoted F(Y ).4

Remark

1. (Uniqueness.) As remarked F(Y ) is uniquely defined by Y , so if there is a bijection
f : Y → Z , then there is an induced group isomorphism F(Y ) 
 F(Z)

2. For any frame � = F(Z , ζ), Aut(�) is a free group F(Z0), for any system Z0
of representatives of the ζ-orbits on Z .

3. (The inverse mapping on �.) Among the reduced words comprising the vertices
of �, there is a well-defined involutory “inverse mapping”

superscript -1 : W ∗(X) → W ∗(X)

4Although this is the customary notation, unfortunately, it is not all that distinctive in mathematics.
For example F(X) can mean the field of rational functions in the indeterminates X over the field
“F”, as well as a myriad of meanings in Analysis and Topology.
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which fixes only the empty word φ and takes the reduced word w = y1 y2 · · · yk

to the reduced word w−1 := σ(yk)σ(yk−1) · · · σ(y1).
Thus the group-theoretic inverse mapping μw → (μw)−1 is extended to the
vertices of � by the rule that (μw)−1 := μw−1 : that is, the inverse mapping of
group elements induces a similar mapping on W ∗(X) via the bijection μ from the
regular action of G = Aut(�) on the vertices of �.
Thus without ambiguity, we may write y−1 for σ(y) and Y −1 for σ(Y ), so Y ∩
Y −1 = ∅.
(It is this mapping on X which defines the graph �; there is no mention of a
special system of representatives of σ-orbits. Thus if Y ′ is any other such system,
then F(Y ) = F(Y ′) with “equals”, rather than the weaker isomorphism sign.)

Corollary 6.3.2 Any subgroup of a free group is also a free group.

Proof Let F(Y ) be the free group on the set Y , let X = Y ∪ Y −1, and let � be the
Cayley graph of F(Y ) with respect to the set of generators X . We used � to define
F(Y ), for by the preceding lemma F(Y ) is the group of all label-and-direction-
preserving automorphisms of �.

Let H be a non-trivial subgroup of F(Y ) and let �H be the H -orbit on vertices
of � which contains the vertex φ, the empty word. Now each vertex in �H is a
reduced word w and there is a unique directed path from φ to that vertex; moreover
the sequence of labels from Y encountered along this directed path, are in fact the
letters which in their order “spell” the reduced word w comprising this vertex. An
H -neighbor of φ, is a vertex w of �H such that along the unique directed path in
� from φ to w, no intermediate vertex of �H is encountered. Let Y H denote the
collection of all H -neighbors of φ. Note from the remarks above, and the fact that
H is a subgroup of F(X), that if the reduced word w is an H -neighbor of φ, then so
is w−1.

Now we construct a new labelled graph on the vertex set �H . There is a directed
edge (x, y) ∈ �H × �H if and only if x = yw where yw is reduced and w ∈ Y H .
(This means x = μ(y)(w).) In a sense this graph can be extracted from the original
graph � in the following way: If we think of �H as embedded in the graph �, we
are drawing a directed edge from x to y labelled w if an only if the reduced word
formed by juxtaposing the labels of the successive edges along the unique directed
path in � from x to y is w and w is in Y H .

Now the graph �H has as its vertices elements of W ∗(Y H ). There is a unique
directed path in �H connecting any two vertices. Also for every two vertices there
are no directed edges or exactly two directed edges, (x, y) and (y, x) respectively
labelled w and w−1 for a unique w ∈ Y H . Thus the graph �H has all of the properties
that � had except that X has been replaced by Y H . Thus as H is a regularly acting
orientation- and label-preserving group of automorphisms of �H , H 
 F(Y H+ )

where Y H = Y H− + Y H+ is any partition of Y H such that for each w ∈ Y H , exactly
one representative of {w,w−1} lies in Y H+ . (Notice that we have used the inverse map
on vertices of � in describing �H .) Thus the graph �H is a frame F = F(Y H , E),
and H , being transitive, is by Lemma 6.3.1 the free group on Y H+ . �
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Remark If X is finite with at least two elements, it is possible that the subgroup H
is a free group on infinitely many generators (see Exercise (1) in Sect. 6.5.1).

6.3.2 The Universal Property

We begin with a fundamental theorem.

Theorem 6.3.3 Suppose G is any group, and suppose X is a set of generators of G.
Then there is a group epimorphism F(X) → G, from the free group on the set X
onto our given group G, taking X to X identically.

Proof Here X is simply a set of generators of the group G, and so a subset of G. But
a free group F(X) can be constructed on any set, despite whatever previous roles the
set X had in the context of G. One constructs the formal set Y = X + X−1 = two
disjoint copies of X , with the notational convention that the exponential operator −1
denotes both a bijection X → X−1 and its inverse X−1 → X so that (x−1)−1 = x .
Recall that any arbitrary element of the free group F(X) was a reduced word in the
alphabet Y—that is, an element of W ∗(Y ), consisting of those words which do not
have the form w1 yy−1w2 for any y ∈ Y . (Recall that these were the vertices of the
Cayley graph � = �(Y ) which we constructed in the previous subsection.)

Now there is a mapping f which we may think of as our “amnesia-recovering
morphism”. For each word w = u1 · · · yk ∈ W ∗(Y ), f (w) is the element of G we
obtain when we “remember” that each yi is one of the generators of G or the inverse
of one. Clearly f (w1w2) = f (w1) f (w2), since this is how elements multiply when
we remember that they are group elements. Then f is onto because every element
of G can be expressed as a finite product of elements of X and their inverses. There
is really nothing more to prove. �

One should bear in mind that the epimorphism of the theorem completely depends
on the pair (G, X). If we replace X by another set of generators, Y —possibly of
smaller cardinality—one gets an entirely different epimorphism: F(Y ) → G.

6.3.3 Generators and Relations

Now consider the same situation as in the previous subsection: A group G contains
a set of generators X , and there is an epimorphism f := fG,X : F(X) → G, taking
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X to X “identically”. But there was on the one hand, a directed labelled graph �

(the “frame”) that came from the construction in Lemma 6.3.1. This was seen to
be the Cayley graph C(F(X), X). Since X ∪ X−1 is also a set of generators of G,
one may form the Cayley graph C(G, X ∪ X−1). Then by Lemma 6.2.1, there is a
label-preserving vertex-surjective homomorphism of directed labelled graphs

f : � → C(G, X ∪ X−1),

from the frame � = F(X ∪ X−1,−1) to the Cayley graph.
Where � had no circuitous directed walks other than backtracks, the Cayley graph

C(G, X ∪ X−1) may now have directed circuits. In fact it must have them if f is not
an isomorphism. For suppose f (w1) = f (w2). If w1 �= w2, there is in � a unique
directed walk from w1 to w2. Its image is then a directed circuit in C(G, X ∪ X−1).

Since G acts regularly on its Cayley graph by left multiplication, every directed
circular walk in C(G, XU X−1) can be translated to one that begins and ends at the
identity element 1 of G. Ignoring the peripheral attached backtracks, we can take
such a walk to be a circuit

(1, x1, x1x2, x1x2x3, ..., x1x2 · · · xk = 1), xi ∈ X ∪ X−1,

where x1x2 · · · xk is reduced in the sense that for i = 1, . . . , k − 1, xi �= x−1
i+1. The

equation
x1 · · · xk = 1

where a reduced word in the generators is asserted to be 1, is called a relation. In
a set of relations, the words that are being asserted to be the identity are called
relators. Obviously, the distinction is only of grammatical significance since the
relators determine the relations and vice versa.

Let R be a set of relators in the set of generators X ; precisely, this means that R
is a set of reduced words in W ∗(X ∪ X−1). Then the normal closure of R in the free
group F(X), is the subgroup 〈RF(X)〉F(X), generated by the set of all conjugates in
F(X) of all relators in R. Clearly, this is the intersection of all normal subgroups of
F(X) which contain R. A group G is said to be presented by the generators X and
relations R, if and only if

G 
 F(X)/〈RF(X)〉F(X).

This is expressed by writing
G = 〈X |R〉.

This is the “free-est” group which is generated by a set X and satisfying the
relations R in the very real sense that any other group which satisfies these relations
is a homomorphic image of the presented group. Stated more precisely we have
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Theorem 6.3.4 Let 〈X |R〉 be a presented group, and let φ : X → H be a function,
where H is a group with identity element e. Then φ extends uniquely to a homomor-
phism 〈X |R〉 → H if and only if

φ(x1)φ(x1) · · · φ(xr ) = e

whenever x1x2 · · · xr ∈ R.

In writing out a presentation, the collection R of words declared to be equal
to the identity element can be replaced by equations that are equivalent to such
declarations. For example, if R = {xyx, x2 yx} one can replace R by equations
{yx2 = 1, x2 y = x−1}, or {xy = x−1, x3 y = x−1}. Let us look at some examples:

Example 29 (The infinite dihedral group D∞) G = 〈x, y|x2 = y2 = 1〉. As you can
see we allow some latitude in the notation. The set of generators here is X = {x, y};
but we ignore the extra wavy brackets in displaying the presentation. The set of
relators is R = {x2, y2}, but we have actually written out the explicit relations.

This is a group generated by two involutions x and y. Nothing is hypothesized
at all about the order of the product xy, so it generates an infinite cyclic subgroup
N = 〈xy〉. Now setting u := xy, the generator of N , we see that yx = u−1 and
that x(xy)x = yx so xux = u−1. Similarly yuy = u−1. Moreover, uy = x shows
N y = N x . Thus

x N = N x = N y = yN

and so N is a normal cyclic subgroup of index 2 in G. One of the standard models
of this group is given by its action on the integers.

Example 30 (The dihedral group of order 2n, denoted D2n) Here G = 〈x, y|x2 =
y2 = (xy)n = 1〉. Everything is just as above except that the element u = xy now
has order n. This means the subgroup N = 〈u〉 (which is still normal) is cyclic of
order n, so G = N + x N has order 2n. Note that this group is a homomorphic image
of the group of Example 29. When n = 2, the group is an elementary abelian group
of order 4—the so-called Klein fours group.

Example 31 Consider the following fairly simple presentation: G = 〈x, y|xy =
y2x, yx = x2 y〉. It follows that

y−1xy = y−1 y2x = yx = x2 y = xxy,

so that y−1 = x (after right multiplying the extreme members of the above equation
by (xy)−1). But then

e = xy = y2x = y(yx) = y,

so y = e, implying x = e. In other words, the relations imposed on the generating
elements of G are so destructive that the group defined is actually the trivial group.
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The general question of calculating the order of a group presented by generators
and relations, is not only difficult, but in certain instances can be shown to be an
impossible task. (This is a consequence of Boone’s theorem on the the so-called
word problem in group theory.)

Example 32 (Polyhedral or (k, l, m)-groups) Here k, l, and m are integers greater
than one. The presentation is

G := 〈x, y|xk = yl = (xy)m = 1〉.

The case that k = l = 2 is the dihedral group of order 2m of Example 30, above. We
consider a few more cases:

(1) the case (k = 2, m = 2): Here u = xy has order 2. But then x and u are
involutions, and the product xu = y has order l. So G is a homomorphic image
of the dihedral group of order 2l, namely:

〈x, u|x2 = u2 = (xu)l〉 
 D2l .

It is not difficult to see that this homomorphism is an isomorphism.
(2) the case (k = 2, l = 3, m = 3): Here the relations are

x2 = y3 = (xy)3 = 1.

There is a group satisfying the relations. The alternating group on four letters
contains a permutation x = (12)(34) of order 2, an element y = (123) of
order 3 for which the product u = (12)(34)(123) = (134) has order three, and
these elements generate Alt(4). Thus there is an epimorphism of the presented
(2, 3, 3)-group onto Alt(4). But the reader can check that the relations imply

x(yxy2) = y2xy.

The left side is the product of two involutions, while the right side is an involution.
It follows that the involutions x and x1 = yxy2 commute. But now the equations
just presented show that

x y2 = x1, and x y = xx1.

Thus the abelian fours group K := 〈x, x1〉 is normalized by y, so the presented
(2, 3, 3)-group G has coset decomposition

G = K + yK + y2 K ,

and so has order 12.
It follows that G is isomorphic to Alt(4).
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(3) the case (k = 2, l = 3, m = 4): Here x2 = y3 = (xy)4 = 1, so xyxy =
y−1xy−1x and yxyx = xy−1xy−1. Now conjugation by x inverts y−1 yx since

(y−1 yx ) = (y−1)x · y = [y−1 · ((y−1)x )−1]−1 = (y−1 yx )−1.

But

y−1 yx = y2 · xyx = y(yxyx) = y(xy−1xy−1) = (xy−1)−1 · y−1 · (xy−1)

and is a conjugate of y−1 and so has order 3. But yx is conjugate to xy, so yx
has order four. Summarizing,

(i) y has order 3,
(ii) yxyx has order 2, and

(iii) y · yxyx = y2xyx has order 3.

Thus,
H := 〈y, yxyx〉

is a (2, 3, 3)-group, and so by the previous case, has order at most 12. But
obviously

G = 〈x, y〉 = 〈x, H〉 = H + H x,

so |G| = 24. But in the case of Sym(4), setting x = (12) and y := (134), we
see that there is an epimorphism

G → Sym(4).

The orders force5 this to be an isomorphism, whence

any (2, 3, 4)-group is Sym(4). (6.2)

(4) the case (k, l, m) = (2, 3, 5) : So here goes. We certainly have

G = 〈x, y|x2 = y3 = (xy)5 = 1〉.

Again set z := xy. Then y = xz has order three.
Then for x and z, we have the relations

x2 = z5 = 1. (6.3)

(xz)3 = 1. (6.4)

5Of course this could also be worked out by showing that the Cayley graph must complete itself in
a finite number of vertices. But the reasons seem equally ad hoc when done this way.
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But the latter implies

xzx = z−1xz−1 (6.5)

xz−1x = zxz. (6.6)

Now set t = zxz−1, an involution. Then

(t y)3 = (zxz−1 · xz)3 = (z(zxz)z)3 = (z2xz2)3 (6.7)

= z2xz4xz4xz2 = z2x(xzx)xz2 = z5 = 1. (6.8)

Thus H = 〈t, y〉 is a (2, 3, 3)-subgroup of order divisible by 6, and so is Alt(4).
It contains a normal subgroup K with involutions t , r := t y and t y2

, and setting
Y = 〈y〉, one has H = Y + YrY .
Next let s be the involution z−1(t y)z, which, upon writing t and y in terms of x
and z becomes

s = z−1xz3xz.

Now

sy = z−1xz3xz · xz = (xz)−1(z3xz2)(xz)

= (xz)−1z−1(z−1xz)z · xz

is a conjugate of x and so has order 2. Thus s inverts y.
Also

sr = st y = (z−1xz3xz)(xz3xz)

= (xz)−1z3xzxz3(xz)

= (xz)−1z3(z−1xz−1)z3(xz)

= (xz)−1(z2xz2)(xz)

is conjugate to z2xz2 which has order 3 by Eq. 6.7. Consider now the collection

M = K H K = H + Hs H = H + Hs + Hst + Hst y + Hst y2
,

a set of 60 elements closed under taking inverses. We show that M is closed
under multiplication. Using the three results

M = H + Hs H

H = Y + YrY

sY = Y s
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we have M M ⊆ M if and only if

srs ∈ M.

But this is true since (sr)3 = 1 implies

srs = rsr ∈ Hs H ⊆ M.

Finally, to get G = M we must show that at least two of the three generators
x, y or z lies in M . Now M already contains y, and

s = z−1xz3xz = (xz)−1z3(xz) = y−1z3 y,

and so M contains z3 and z = (z3)2. Now, as |G| = 60 and G contains a
subgroup of index 5, there is a homomorphism ρ : G → Sym(5) whose image
has order at least 30 = lcm{2, 3, 5}. Because of the known normal strucure
of Sym(5) obtained in the previous chapter, the only possibility is that ρ is a
monomorphism and that G 
 Alt(5).
Again, this could have been proved using the Cayley graph. Neither proof is
particularly enlightening.6

Example 33 (Coxeter Groups) This class covers all groups generated by involutions
whose only further relations are the declared orders of the pairwise products of these
involutions. First we fix abstract set X . A Coxeter Matrix M over X is a function
M : X × X → N ∪ {∞} which associates with each ordered pair (x, y) ∈ X × X ,
a natural number m(x, y) or the symbol “∞” so that (1) m(x, x) = 1 and (2) that
m(x, y) = m(y, x)—that is, the matrix is “symmetric”.7

The coxeter group W (M) is then defined to be the presented group

W (M) := 〈X |R〉.

where R = {(xy)m(x,y)|(x, y) ∈ X × X}. Thus W (M) is generated by involutions
(because of the 1’s on the ‘diagonal’ of M). If X is non-empty, the group is always
non-trivial. In 1934, H M. S. Coxeter [6] classified the M for which W (M) is a finite
group. These finite Coxeter groups have an uncanny way of appearing all over a
large part of important mathematics: Lie Groups, Algebraic Groups, and Buildings,
to name a few areas.

6 The real situation is basically topological. It is a fact that a (k, l, m)-group is finite if and only if

1/k + 1/ l + 1/ l > 1.

The natural proof of this is in terms of manifolds and curvature. Far from discouraging anyone,
such a connection shows the great and mysterious “interconnectedness” of mathematics!
7 Of course if X is finite, it can be totally ordered so that the data provided by M can be encoded
in an ordinary matrix. We just continue to say “matrix” in the infinite case—perhaps out of love of
analogy.
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Remark As remarked on p. 174, there are many instances in which the choice of
relations, R may very well imply that the presented group has order only 1. For
example if G := 〈x |x3 = x232 = 1〉 then G has order 1. In fact, if we were to select
at random an arbitrary set of relations on a set X of generators, the odds are that
the presented group has order 1. From this point of view, it seems improbable that
a presented group is not the trivial group. But this is illusory, since any non-trivial
group bears some set of relations, and so the presented group with these relations is
also non-trivial in these cases. So most of the time, the non-trivial-ness of a presented
group is proved by finding an object on which the presented group can act in a non-
trivial way.8 Thus a Coxeter group W (M) is known not to be trivial for the reason that
it can be faithfully represented as an orthogonal group over the real field, preserving
a bilinear form B := BM : V × V → R defined by M . Thus Coxeter Groups are
non-trivially acting groups, in which each generating involution acts as a reflection
on some real vector space with some sort of inner product. That is the trivial part of
the result. The real result is that the group acts faithfully in this way. This means that
there is no product of these reflections equal to the identity transformation unless
it is already a consequence of the relations given in M itself. This is a remarkable
theorem.

6.4 The Brauer-Ree Theorem

If G acts on a finite set �, and X is any subset of G, we let ν(X) be defined by the
equation

ν(X) :=
∑

�i =〈X〉-orbit
(|�i | − 1),

where the sum ranges over the 〈X〉-orbits �i induced on �. Thus if 1 is the identity
element, ν(1) = 0, and if t is an involution with exactly k orbits of length 2, then
ν(t) = k.

Theorem 6.4.1 (Brauer-Ree) Suppose G = 〈x1, . . . , xm〉 acts on � and x1 · · · xm =
1. Then ∑m

i=1
ν(xi ) ≥ 2ν(G).

Proof Let � = �1 + · · · + �k be a decomposition of � into G-orbits, and for any
subset X of G, set

νi (X) =
∑

�i j =〈X〉-orbits in �i
(|�i j | − 1),

8It is the perfect analogue of Locke’s notion of “substance”: something on which to hang properties.
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so ν(X) = ∑
νi (X). By induction, if k > 1,

∑
νi (x j ) ≥ 2(|�i | − 1), so

∑
j
ν(x j ) =

∑
i, j

νi (x j ) ≥
∑

i
2(|�i | − 1) = 2ν(G).

Thus we may assume k = 1, so G is transitive.
Now each xi induces a collection of disjoint cycles on �. We propose to replace

each such cycle of length d, by the product of d − 1 transpositions t1 · · · td−1. Then
the contribution of that particular cycle of xi to ν(xi ) is

∑
ν(ti ) = d − 1 and xi

itself is the product of the transpositions which were used to make up each of its
constituent cycles. We denote this collection of transpositions T (xi ) so

ν(xi ) =
∑

t∈T (xi )
ν(t) and xi =

∏
t∈T (xi )

t,

in an appropriate order. Since x1 · · · xm = 1, we have

∏
i

∏
t∈T (xi )

t = 1,

or, letting T be the union of the T (xi ), we may say
∏

t∈T t = 1, with the transpositions
in an appropriate order. But as i ranges over 1, . . . m, the cycles cover all points
of �, since G is transitive. It follows that the graph G(T );= (�, T ), where the
transpositions are regarded as edges, is connected. It follows that

〈T 〉 = Sym(�).

But Sym(�) is transitive and so ν(Sym(�)) = ν(G). Since
∏

T t = 1, 〈T 〉 =
Sym(�), and

∑
T ν(t) = ∑

iν(xi ), it suffices to prove the asserted inequality for the
case that G = Sym(�) and the xi are transpositions.

So now, G = Sym(�), x1 · · · xm = 1, where the xi are a generating set of
transpositions. Among the xi we can select a minimal generating set {s1, . . . , sk}
taken in the order in which they are encountered in the product x1 · · · xm . We can
move these si to the left in the product

∏
xi at the expense of conjugating the elements

they pass over, to obtain

s1s2 · · · sk y1 y2 · · · yl = 1, k + l = m,

where the y j ’s are conjugates of the xi ’s. Now by the Feit-Lyndon-Scott Theorem
(Theorem 4.2.5, p. 112), the product s1 · · · sk is an n-cycle (where n = |�|). Thus
k ≥ n − 1. But then y1 · · · yl is the inverse n-cycle, and so l ≥ n − 1, also. But
k + l = m = ∑

ν(xi ) and n − 1 = ν(G), so the theorem is proved. �

http://dx.doi.org/10.1007/978-3-319-19734-0_4
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6.5 Exercises

6.5.1 Exercises for Sect. 6.3

1. Show that if |X | > 1, then it is possible to have |X | finite, while |Y H | is infinite.
That is, a free group on a finite number of generators can have a subgroup which
is a free group on an infinite number of generators. [Hint: Show that one may
select members of Y H first, and choose them with unbounded length.

2. This is a project. Is it possible for a group to be a free group on more than one
cardinality of generator? The question comes down to asking whether F(X) 

F(Z) implies there is a bijection X → Z . Clearly the graph-automorphism
definition of a free group is the way to go.

3. Another project: What can one say about the automorphism group of the free
group F(X)? Use the remarks above to show that it is larger than Sym(X). [Hint:
Consider the free group on one generator].

4. Suppose G = 〈x, y|R〉. Show that G = {e}, the identity group, if R implies
either of the following relations:

(a) yx = y2x, xy3 = y2x ,
(b) xy2 = y3x, x2 y = yx3.

5. Prove that

〈x, y|x4 = e, y2 = x2, yxy−1 = yx3〉 
 〈r, s, t |r2 = s2 = t2 = rst〉.

6. Prove that the group

G = 〈x, y|x2 = y3 = (xy)3 = e〉

has order at most 12. Conclude that G 
 Alt (4).
7. Prove that

(a) |〈x, y|x2 = y3 = (xy)4 = e〉| = 24
(b) |〈x, y|x2 = y3 = (xy)5 = e〉| = 60

8. Let Q2a+1 := 〈x, y|x2a = e, y2 = x2a−1
, yxy−1 = x−1〉. Show that |Q2a+1 | =

2a+1. When a > 1, the group Q2a+1 is called the generalized quaternion group.
It contains a unique involution. Can you prove this?

9. Suppose G is a (k, l, m)-group. Using only the directed Cayley graph C(G, X)

where X is the set of two elements {x, y} of orders 2 and 4, Show that

(a) any (2, 4, 4)-group has order 24 and so is Sym(4).
(b) any (2, 3, 5)-group has order 60.

10. The following chain of exercises was inspired by a problem in a recent book
on Group Theory. That book asks the student to show that any simple group of
order 360 is the alternating group on six letters. As a “Hint”, it asks the reader
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to consider the index of a 5-Sylow normalizer. This would be a useful hint if
there were just six 5-Sylow subgroups. Unfortunately, there are 36 of them, and
the proof does not appear to be a simple consequence of group actions and the
Sylow theorems. However the statement can be proved as a useful application
of (k, l, m)-groups.

In the following G is a simple group of order 360. The reader is asked to prove
that G is isomorphic to the alternating group on six letters. It will suffice to prove
that it has a subgroup of index 6. In this series of exercises, the student is asked
to assume

(H) There is no subgroup of index 6 in G.

and show that this leads to a contradiction.

(1) Show that G contains 36 5-Sylow subgroups, and so contains 144 elements
of order 5. [Hint: Use Sylow’s theorem, the simplicity of G, and (H).]

(2) The 3-Sylow subgroups are abelian, and each intersects its other conjugates
only at the identity element. [Hint: If x were an element of order three
contained in two distinct 3-Sylow subgroups, then the number d of 3-Sylow
subgroups contained in CG(x) is 4 or 40 and the latter choice makes |CG(x)|
large enough to conflict with (H). So T = Syl3(CG(x)) has 4 elements acted
on transitively by conjugation, with one of the 3-Sylows inducing a 3-cycle.
If F is the kernel of the action of CG(x) on T , then CG(x)/F is isomorphic
to Alt (4) or Sym(4). The latter choice forces CG(x) to have index 5. Show
that CG(x) now contains a normal fours group K . Since K is normalized by
a 2-Sylow subgroup containing it, NG(K ) now has index at most 5 against
(H) and simplicity.]

(3) The collection � = Syl3(G) has 10 members, G acts doubly transitively
on � and G contains 80 elements of order 3 or 9. [Hint: If |�| = 40, there
are 320 non-identity elements of 3-power order and this conflicts with (1).]

(4) Prove the following:
i. Every involution t fixes exactly two letters of �.

ii. If t normalizes 3-Sylow subgroup P , then t centralizes only the identity
element of P .

iii. The 2-Sylow subgroup of NG(P) is cyclic of order 4.
iv. P is elementary abelian.

[Hint: Since t must act on the elements of � − {P} exactly as it does
on the elements of P , t must fix 2 or 4 letters of �. But it must also fix
an odd number of letters (why?). Now that t−1at = a−1 for all a ∈ P ,
t is the unique involution in a 2-Sylow subgroup of NG(P) (explain).
The other parts follow.]

(5) There are no elements of orders 6, 10 or 15.
(6) Fix an involution t and let A be the full collection of 40 subgroups of order 3

in G. (Of course these are partitioned in 10 sets of four each, by the 3-Sylow
subgroups.) By Step (5), we know that if y is an element of order 3, then the
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product t y has order 2, 3, 4 or 5. From our results on (k, l, m)-groups, we
have a corresponding partition of A with these components:

A2 := {A ∈ A|〈t, A〉 = Sym(3)} (6.9)

A3 := {A ∈ A|〈t, A〉 = Alt(4)} (6.10)

A4 := {A ∈ A|〈t, A〉 = Sym(4)} (6.11)

A5 := {A ∈ A|〈t, A〉 = Alt(5)}, (6.12)

Prove the following:
(i) |A2| = 8

(ii) |A3| = 8 :
(iii) |A4| = 8

[Hint: For (i), count Z3’s inverted by t . For (ii), let K(t) be the set of
Klein fours groups K which contain t . (There are just two.) Each such
member is normalized by four members ofA, and, of course, these four
belong to A3. Similarly for (iii), let K′(t) be the fours groups which are
normalized by t but do not contain t . There is a bijection between K′(t)
and the set of involutions of CG(t)−{t}. If K ∈ K′(t), then t normalizes
two of the elements of A in NG(K ) 
 Sym(4), but generates the whole
NG(K ) with the other two.]

(7) Conclude that A5 is not empty.

6.5.2 Exercises for Sect. 6.4

1. Use the Brauer-Ree Theorem to show that Alt(7) is not a (2, 3, 7)-group. [Hint:
Use the action of G = Alt(7) on the 35 3-subsets of the seven letters. (We will call
these 3-subsets “triplets”.) With respect to this action show that an involution fixes
exactly seven triplets, and so has ν-value 14. Any element of order 3 contributes
ν = 22, and that an element of order 7 fixes no triplet, acts in five 7-cycles and
contributes ν = 30.]

6.6 A Word to the Student

6.6.1 The Classification of Finite Simple Groups

The Jordan-Holder theorem associates with each finite group, a multiset of finite
simple groups—the so-called chief factors. What are these groups? Many many the-
orems are known which, under the induction hypothesis reduce to the case that a
minimal counter-example to the theorem, say G, is a finite simple group. If one had
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a list of these groups, then one need only run through the list, verifying that each
of these groups either satisfies the conjectured conclusion or belongs to some other
class of groups forbidden by the hypothesis.This is how the classification of maximal
subgroups of the finite classical groups and the classification of flag-transitive linear
spaces proceeded [13].

After decades of intensive effort, the classification of finite simple groups was
finally realized in 2004 when the last steps, classifying the so-called “quasi-thin
groups” was published (M. Aschbacher and S. Smith) [2–4].

Here is the over-all conclusion:

Theorem 6.6.1 Suppose G is a finite simple group. Then G belongs to one of the
following categories:

1. G is cyclic of prime order.
2. G is an alternating group on at leas five letters
3. G belongs to one of 16 families of groups defined as automorphism groups of

objects defined by buildings.
4. G is one of a strange list of 26 so-called “sporadic groups”.

The sporadic groups have no apparent algebraic reason for existing, yet they do
exist. If anything should spur the sense of mystery about our logical universe it is
this! (The student may consult a complete listing of these groups in the books of
Aschbacher [1], Gorenstein [9] or Greiss [10].)

There have been many estimates of the number of pages that a convincing proof
of this grand theorem would require. For some authors it is 10,000 for others 30,000.

Like similar endeavors in other branches of mathematics, a great deal of the
difficulty is encountered when the degrees of freedom are small. For finite groups,
this occurs for groups with “small” 2-rank; that is, groups of odd order and groups
whose 2-Sylow subgroup has a cyclic subgroup of index 2. Here, the theory of group
characters, both ordinary, exceptional and modular, plays a central role.

Group characters are certain complex-valued functions on a finite group which
are indicators of ways to represent a finite group as a multiplicative group of matrices
(a “representation” of the group). This beautiful subject involves a vast interplay of
ring theory, linear algebra and algebraic number theory. No book on general algebra
could begin to do justice to this topic. Accordingly, the interested student is advised
to seek out books that are entirely devoted to representation theory and/or character
theory. The classic text for representation theory is Representation Theory of Finite
Groups and Associative Algebras by Curtis and I. Reiner [7]. Excellent books on the
theory of group characters are by M. Isaacs [12], W. Feit [8], M. J. Collins [5] and
L. C. Grove [11], but there are many others.
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Chapter 7
Elementary Properties of Rings

Abstract Among the most basic concepts concerning rings are the poset of ideals
(left, right and 2-sided), possible ring homomorphisms, and the group of units of the
ring. Many examples of rings are presented—for example the monoid rings (which
include group rings and polynomial rings of various kinds), matrix rings, quaternions,
algebraic integers etc. This menagerie of rings provides a playground in which the
student can explore the basic concepts (ideals, units, etc.) in vivo.

7.1 Elementary Facts About Rings

7.1.1 Introduction

In the next several parts of this course we shall take up the following topics and their
applications:

1. The Galois Theory.
2. The Arithmetic of Integral Domains.
3. Semisimple Rings.
4. Multilinear Algebra.

All of these topics require some basic facility in the language of rings and modules.
For the purposes of this survey course, all rings possess a multiplicative identity.

This is not true of all treatments of the theory of rings. But virtually every major
application of rings is one which uses the presence of the identity element (for
example, this is always part of the axiomatics of Integral Domains, and Field Theory).
So in order to even have a language to discuss these topics, we must touch base on
a few elementary definitions and constructions.

7.1.2 Definitions

Recall from Sect. 1.2 that a monoid is a set M with an associative binary operation
which admits a two-sided identity element. Thus if (M, ·) is a monoid, there exists
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an element “1” with the property, that 1 · m = m · 1 = m for all m ∈ M . Notice that
Proposition 1.2.1 tells us that such a two-sided identity is unique in a monoid. Indeed
the “1” is also the unique left identity element as well as the unique right identity
element.

A ring is a set R endowed with two distinct binary operations, called (ring)
addition and (ring) multiplication—which we denote by “+” and by juxtaposition
or “·”, respectively—such that

Addition laws: (R,+) is an abelian group.
Multiplicative Rules: (R, ·) is a monoid.
Distributive Laws: For all a, b, c ∈ R,

a(b + c) = ab + ac (7.1)

(a + b)c = ac + bc (7.2)

Just to make sure we know what is being asserted here, for any elements a, b and
c of R:

1. a + (b + c) = (a + b) + c
2. a + b = b + a
3. There exists a “zero element” (which we denote by 0R , or when the context is

clear, simply by 0) with the property that 0R + a = a for all ring elements a.
4. Given a ∈ R, there exists a unique element (−a) in R such that a + (−a) = 0R .
5. a(bc) = (ab)c.
6. There exists a multiplicative “identity element” (which we denote by 1R or just

by 1 when no confusion is likely to arise) with the property that 1Ra = a1R = a,
for all ring elements a ∈ R.

7. Then there are the distributive laws which we have just stated—that is, if a, b, c ∈
R, then a(b + c) = ab + ac and (a + b)c = ac + bc.

As we know from the group theory, the zero element 0R is unique in R. Also
given element x in R, there is exactly one additive inverse −x , and that −(−x) = x .
The reader should be warned that in the axioms for a ring, the zero element may not
be distinct from the multiplicative identity 1R (although this is required for integral
domains as seen below). If they are the same, it is easy to see that the ring contains
just one element, the zero element.

Lemma 7.1.1 For any elements a, b in R:

1. (−a)b = −(ab) = a(−b), and
2. 0 · b = b · 0 = 0.

Some notation: Suppose X and Y are subsets of the set R of elements of a ring.
We write

X + Y := {x + y|x ∈ X, y ∈ Y } (7.3)

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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XY := {xy|x ∈ X, y ∈ Y }, (7.4)

−X := {−x |x ∈ X} (7.5)

Species of Rings

• A ring is said to be commutative if and only multiplication of ring elements is
commutative. A consequence of the distributive laws in a commutative ring is the
famous “binomial theorem” familiar to every student of algebra:

Theorem 7.1.2 (The Binomial Theorem) If a and b are elements of a commutative
ring R, then for every positive integer n,

(a + b)n =
n∑

k=0

[n!/(n − k)!k!]akbn−k .

• A division ring is a ring in which (R∗ := R − {0}, ·) is a group.
• A commutative division ring is called a field.
• A commutative ring in which (R∗, ·) is a monoid—i.e. the non-zero elements

are closed under multiplication and possesses an identity—is called an integral
domain.

There are many other species of rings—Artinian, Noetherian, Semiprime, Primi-
tive, etc. which we shall meet later, but there is no immediate need for them at this
point.

There are many examples of rings that should be familiar to the reader from
previous courses. The most common examples are the following:

Z, the integers, an integral domain,
Q, the field of rational numbers,
R, the field of real numbers,
C, the field of complex numbers,
Z/(n), the ring of integral residue classes mod n,
K [x], the ring of polynomials with coefficients from the field K .
Mn(R), the ring of n-by-n matrices with entries in a commutative ring R, under
ordinary matrix addition and matrix multiplication.

More examples are developed in Sects. 7.3 and 7.4. In particular the reader will
revisit polynomial rings as part of a general construction.

Finally, if R is a ring with multiplicative identity element 1, then a subring of R
is a subset S of R such that is itself is a ring under the addition and multiplication
operations of R. Thus
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1. S is a subgroup of (R,+)—i.e. S = −S and S + S = S. In particular 0R ∈ S.
2. SS ⊆ S—i.e. S is closed under multiplication.
3. S contains a multplicative identity element eS (which may or may not be the

identity element of R).

Thus the ring of integers, Z, is a subring of any of the three fields Q,R and C, of
rational, real and complex numbers, respectively. But the set of even numbers is not
a subring of the ring of integers.

If R is an arbitrary ring and B is any subset of R, the centralizer of B in R will
denote the set

CR(B) := {r ∈ R|rb = br for all b ∈ B}.

We leave the reader to verify that the centralizer CR(B) is a subring of R (Exercise
(6) in Sect. 7.5.1). In the case that B = R, the centralizer of B is called the center
of R.1

7.1.3 Units in Rings

Suppose R is a ring with multiplicative identity element 1R . We say that an element
x in R has a right inverse if and only if there exists an element x ′ in R such that
xx ′ = 1R . Similarly, x has a left inverse if and only if there exists an element x ′′ in
R such that x ′′x = 1R . (If R is not an integral domain these right and left inverses
might not be unique.) An element x in R is called a unit if and only if it possesses a
two-sided inverse, that is, an element that is both a right and a left inverse in R. The
element 1R , of course, is a unit, so we always have at least one of these. We observe

Lemma 7.1.3 1. An element x has a right inverse if and only if x R = R. Similarly,
x has a left inverse if and only if Rx = R.

2. If both a right inverse and a left inverse of an element x exist, then these inverses
are equal, and represent the unique (two-sided) inverse of x.

3. The set of units of any ring form a group under multiplication.

Proof Part 1. If x has a right inverse x R contains xx ′ = 1R , so x R contains R.
The converse, that x R = R implies that xx ′ = 1R , for some element x ′ in R, is
transparent. The left inverse story follows upon looking at this argument through a
mirror.

Part 2. Suppose xl and xr are respectively left and right inverses of an element x .
Then

xr = (1R)xr = (xl x)xr = xl(xxr ) = xl(1R) = xl .

Thus x−1 := xl is a two sided inverse of x and is unique, since it is equal to any right
inverse of x .

1Sometimes the literature calls this the centrum of R.
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Part 3. Suppose x and y are units of the ring R with inverses equal to x−1 and
y−1, respectively. Then xy has y−1x−1 as both a left and a right inverse. Thus xy is a
unit. Thus the set U (R) of all units of R is closed under an associative multiplication,
has an identity element with respect to which every one of its elements has a 2-sided
inverse. Thus it is a group. �

A ring in which every non-zero element is a unit must be a division ring and
conversely.

Example 34 Some examples of groups of units:

1. In the ring of integers, the group of units is {±1}, forming a cyclic group of order
2.

2. The integral domain Z ⊕ Zi of all complex numbers of the form a + bi with a, b
integers and i = √−1, is called the ring of Gaussian integers. The units of this
ring are {±1,±i} forming the cyclic group of order four under multiplication.

3. The complex numbers of the form a+b(e2iπ/3), a and b integers, form an integral
domain called the Eisenstein numbers. The units of this ring are {1, z, z2, z3 =
−1, z4, z5}, where z = −e2iπ/3, forming a cyclic group of order 6.

4. The number λ := 2 +√
5 is a unit in the domain D := {a + b

√
5|a, b ∈ Z} since

(2 + √
5)(−2 + √

5) = 1. Now λ is a real number, and since 1 < λ, we see that
the successive powers of λ form a monotone increasing sequence, and so we may
conclude that the group U (D) of units for this domain is an infinite group.

5. In the ring R := Z/Zn of residue classes of integers mod n, under addition and
multiplication of these residue classes, the units are the residue classes of the
form w+Zn where w is relatively prime to n (of course, if we wish, we may take
0 ≤ w ≤ n−1.) They thus form a group of order φ(n), where φ denotes the Euler
phi-function. Thus the units of R = Z/8Z are {1 + 8Z, 3 + 8Z, 5 + 8Z, 7 + 8Z},
and form a group isomorphic to the Klein fours group rather than the cyclic group
of order four.2

6. In the ring of n-by-n matrices with entries from a field F , the units are the invertible
matrices and they form the general linear group, GL(n, F), under multiplication.

7.2 Homomorphisms

Let R and S be rings. A mapping f : R → S is called a ring homomorphism if and
only if

1. For all elements a and b of R, f (a + b) = f (a) + f (b).
2. For all elements a and b of R, f (ab) = f (a) f (b).

2See p. 75 for the general definition of “fours group”.
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A basic consequence of Part 1 of this definition is that f induces a homomorphism
of the underlying additive group, so, from our group theory, we know that f (−a) =
− f (a), and f (0R) = 0S . In fact any polynomial expression formed from a finite
set of elements using only the operations of addition, multiplication and additive
inverses gets mapped by f to a similar expression with all the original elements
replaced by their f -images. Thus:

f ([(a + b)c2 + (−c)bc]a) = [( f (a) + f (b))( f (c))2 + (− f (c))( f (b) f (c))] f (a).

As was the case with groups, the composition g ◦ f : R → T of two ring
homomorphisms f : R → S and g : S → T , must also be a ring homomorphism.
The homomorphism is onto or is an epimorphism or a surjection, is injective, or
is an isomorphism, if and only if these descriptions apply to the induced group
homomorphism of the underlying additive groups.

An automorphism of a ring R is an isomorphism α : R → R. The composi-
tion β ◦ α of automorphisms is itself an automorphism, and the collection of all
automorphisms of R form a group Aut(R) under the operation of composition of
automorphisms.

An antiautomorphism of a ring R is an automorphism α of the additive group
(R,+) such that for any elements a and b of R,

α(ab) = α(b)α(a).

Note that since the multiplicative identity element of a ring R is unique (see the
first paragraph of Sect. 7.1.2, p. 186), both automorphisms and antiautomorphisms
must leave the identity element fixed. If α is an automorphism, the set CR(α) of
elements left fixed by α form a subring of R containing its multiplicative identity
element. However, if α is an antiautomorphism, the fixed point set, while closed under
addition, need not be closed under multiplication. But, if by chance a subring S of R is
fixed elementwise by the antiautomorphism α then S must be a commutative ring. In
fact, for any commutative ring R, the identity mapping on R is an antiautomorphism
(as well as an automorphism).

Antiautomorphisms and automorphisms of a ring R can be composed with these
results:

antiautomorphism ◦ antiautomorphism = automorphism

antiautomorphism ◦ automorphism = antiautomorphism

automorphism ◦ antiautomorphism = antiautomorphism

Example 35 The complex conjugation mapping that sends α = a + bi to ᾱ =
a − bi , where a and b are real numbers, is certainly a familiar example of a field
automorphism. Now let F be any field, let n be a positive integer, and let σ be any
automorphism of the field F , and let Mn(F) be the ring of all n × n matrices having
entries in the field F . The operations are entry-wise addition of matrices, and ordinary
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matrix multiplication. IF X ∈ Mn(F), the expression X = (xi j ) means that xi j is
the entry in the i th row and j th column of X .

(a) The mapping m(σ) : S : Mn(F) → Mn(F) which replaces each matrix entry
by its σ-image, is transparently an automorphism of the ring Mn(F).

(b) The transpose mapping, T : Mn(F) → Mn(F) replaces each entry ai j by a ji

for any matrix A = (ai j ) ∈ Mn(F). Suppose A = (ai j ) and B = (bi j ) are
elements of Mn(F). Then the (i, j)-entry of the matrix AB is the “dot” product
of the i th row of A with the j th column of B—that is,

∑
k aikbk, j . On the other

hand, the ( j i)th entry of BT AT is the dot product of the j th row of BT (which
is j-column of B) and the i th column of AT (which is the i th row of A—the
(i, j)th entry of AB. Thus this product is the transpose of the matrix AB, and
we may write

BT AT = (AB)T .

Since T respects addition, we see that the transpose mapping is an antiautomor-
phism of the ring Mn(F).

(c) One can then compose the two mappings to obtain the antiautomorphism

S ◦ T = T ◦ S : Mn(F) → Mn(F),

which we call the σ-transpose mapping.

7.2.1 Ideals and Factor Rings

Again let R be a ring. A left ideal is a subgroup (I,+) of the additive group (R,+),
such that RI ⊆ I . Similarly, a subgroup J ≤ (R,+) is a right ideal if J R ⊆ J .
Finally, a (two-sided) ideal is a left ideal which is also a right ideal. The parentheses
are to indicate that if we use the word “ideal” without adornment, a two-sided ideal
is intended. A subset X of R is a two sided ideal if and only if

X + X = X (7.6)

−X = X (7.7)

R X + X R ⊆ X. (7.8)

Note that while a 2-sided ideal I ⊆ R is closed under both addition and multiplica-
tion, it cannot be regarded as a subring of R unless it possesses its own multiplicative
identity element.

If I is a two sided ideal in R, then, under addition, it is a (normal) subgroup
of the commutative additive group (R,+). Thus we may form the factor group
R/I := (R,+)/(I,+) whose elements are the additive cosets x + I in R.
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Not only is R/I an additive group, but there is a natural multiplication on this set,
induced from that fact that all products formed from two such additive cosets, x + I
and y + I , lie in a unique further additive coset. This is evident from

(x + I )(y + I ) ⊆ xy + x I + I y + I I ⊆ xy + I + I + I = xy + I. (7.9)

With respect to addition and multiplication, R/I forms a ring which we call the factor
ring. Moreover, by Eq. (7.9), the homomorphism of additive groups R → R/I is a
ring epimorphism.

7.2.2 The Fundamental Theorems of Ring Homomorphisms

Suppose f : R → S is a homomorphism of rings. Then the kernel of the homomor-
phism f is the set

ker f := {x ∈ R| f (x) = 0S}.

We have

Theorem 7.2.1 (The Fundamental Theorem of Ring Homomorphisms)

1. The kernel of any ring homomorphism is a two-sided ideal.
2. If f : R → S is a homomorphism of rings, then there is a natural isomorphism

between the factor ring R/ ker f and the image ring f (R), which takes each coset
x + ker f to f (x).

Proof Part 1. Suppose f : R → S is a ring homomorphism and that x is an element
of ker f . Then as ker f is the kernel of the group homomorphism of the underlying
additive groups of the two rings, ker f is a subgroup of the additive group of R.
Moreover, for any element r in R, f (r x) = f (r) f (x) = f (r))0S = 0S . Thus
R(ker f ) + (ker f )R ⊆ ker f , and so ker f is a two-sided ideal.

Part 2. The image ring f (R) is a subring of S formed from all elements of S which
are of the form f (x) for at least one element x in R. We wish to define a mapping
φ : R/(ker f ) → f (R) which will take the additive coset x + ker f to the image
element f (x). We must show that this mapping is well-defined. Now if x + ker f =
y +ker f , then x +(−y) ∈ ker f , so 0S = f (x +(−y)) = f (x)+(− f (y)), whence
f (x) = f (y). So changing the coset representative does not change the image, and
so the mapping is well-defined. (In fact the φ-image of x + ker f is found simply by
applying f to the entire coset, that is, f (x + ker f ) = f (x).)

The mapping φ is easily seen to be a ring homomorphism since

φ((x + ker f ) + (y + ker f )) = φ(x + y + ker f ) = f (x + y)

= f (x) + f (y) = φ(x + ker f ) + φ(y + ker f )
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and

φ((x + ker f )(y + ker f )) = φ(xy + ker f ) = f (xy)

= f (x) f (y) = φ(x + ker f ) · φ(y + ker f ).

Clearly φ is onto since by definition, f (x) = φ(x +ker f ) for any image element
f (x). If φ(x + ker f ) = φ(y + ker f ) then f (x) = f (y) so f (x + (−y)) = 0S , and
this gives x + ker f = y + ker f . Thus φ is an injective mapping.

We have assembled all the requirements for φ to be an isomorphism. �
Before leaving this subsection, there is an important class of ring homomorphisms

which play a role in the theory of R-algebras.3

Let A and B be two rings that contain a common subring R lying in the center of
both A and B. A ring homomorphism f : A → B for which f (ra) = r f (a) = f (a)r
for all ring elements a ∈ A and r ∈ R is called an R-homomorphism. (We shall
generalize this notion to R-modules in the next chapter.)

7.2.3 The Poset of Ideals

We wish to make certain statements that hold for the set of all left ideals of R as
well as for the set of all right ideals and all (two-sided) ideals of R. We do this by
asserting “X holds for (left, right) ideals with property Y”. This means the statement
is asserted three times: once about ideals with property Y, again about left ideals
with property Y, and again about right ideals with property Y. It does save a little
space, and helps point out a uniformity among the theorems. But on the other hand it
makes statements difficult to scan, and sometimes renders the statement a little less
indelible in the student’s memory. So we will keep this practice at a minimum.

Lemma 7.2.2 Suppose A and B are (left, right) ideals in the ring R. Then

1. A + B := {a + b|(a, b) ∈ a × B} is itself a (left, right) ideal and is the unique
such ideal minimal with respect to containing both A and B.

2. A ∩ B is a (left, right) ideal which is the maximal such ideal contained in both A
and B.

3. The set of all (left, right) ideals of R form a partially ordered set—that is a poset—
with respect to the containment relation. In view of the preceding two conclusions,
this poset is a lattice.

Theorem 7.2.3 (The Correspondence Theorem for Rings) Suppose f : R → S is an
epimorphism of rings—that is, S = f (R). Then there is a one-to-one correspondence

3 R-algebras are certain rings that are also R-modules in a way that is compatible with ring multi-
plication. Since we have not yet defined R-modules, we cannot introduce R-algebras at this point.
Nor do we need to do so. R-homomorphisms between rings can still be defined at this point and we
do require this concept for describing a universal property of polynomial rings on p. 207.
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between the left (right) ideals of S and the left (right) ideals of R which contain ker f .4

Under this correspondence, 2-sided ideals are matched only with 2-sided ideals.

Proof The statement of the theorem is to be read as two statements, one about
isomorphic posets of left ideals and one about isomorphic posets of right ideals. We
prove the theorem only for left ideals. The proof for right ideals is virtually a mirror
reflection of the proof we give here.

If J is a left ideal of the ring S, set f −1(J ) := {r ∈ R| f (r) ∈ J }. Clearly if a
and b are elements of f −1(J ), and r is an arbitrary element of R, then

f (ra) = f (r) f (a) ∈ J

f (−a) = − f (a) ∈ J

f (a + b) = f (a) + f (b) ∈ J

So ra,−a, and a + b all belong to f −1(J ). Thus f −1(J ) is a left ideal of R
containing f −1(0S) = ker f . If also J is a right ideal of S, we have J S ⊆ J . Then
f ( f −1(J )R) ⊆ J f (R) = J R ⊆ J , whence f −1(J )R ⊆ f −1(J ). Thus f −1(J ) is
a right ideal if and only if J is.

Now if I is a left ideal of R, then so is f (I ) a left ideal of f (R) = S. But if
I contains ker f , then f −1( f (I )) = I , because, for any element x ∈ f −1( f (I )),
there is an element i ∈ I such that f (x) = f (i). But then x + (−i) ∈ ker f ⊆ I ,
whence x ∈ I .

We thus see that the operator f −1 induces a mapping of the poset of left ideals of
S onto the set of left ideals of R containing ker f . It remains only to show that this
(containment-preserving) operator is one-to-one. Suppose I = f −1(J1) = f −1(J2).
We claim J1 ⊆ J2. If not, there is an element y ∈ J1− J2. Since f is an epimorphism,
y has the form y = f (x), for some element x in R. Then x is in f −1(J1) but not
f −1(J2), a contradiction. Thus we have J1 ⊆ J2. By symmetry, J2 ⊆ J1 and so
J1 = J2. This completes the proof. �
a second proof We can take advantage of the fact that the kernel of the surjective
ring homomorphism f : R → S is also the kernel of the homomorphism f + :
(R,+) → (S,+) of the underlying additive groups and exploit the fact that the
Correspondence Theorem for Groups already presents us with a poset isomorphism

A(R : ker f ) → A(S : 0),

whereA(M : N ) denotes the poset of all subgroups of M which contain the subgroup
N . The isomorphism is given by sending subgroup A ofA(R : ker f ) to the subgroup
f (A) of S.

We need only show that if X is a subgroup of A(R : S). then

1. R X ⊆ X if and only if S f (X) ⊆ f (X).
2. X R ⊆ X if and only if f (X)S ⊆ f (X).

4The latter poset is the principle filter generated by ker f in the poset of left (right) ideals of R.
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Both of these are immediate consequences of the fact that f is a ring homomorphism,
and S = f (R). �

As in the case of groups, when we say maximal (left, right) ideal, we mean a
maximal member in the poset of all proper (left, right) ideals. Thus the ring R itself,
though an ideal, is not a maximal ideal.

Lemma 7.2.4 Every (left, right) ideal lies in a maximal (left, right) ideal.

Proof Let P be the full poset of all proper ideals, all proper left ideals or all proper
right ideals of the ring R. The proof is essentially the same for these three cases. Let

C := Jσ|σ ∈ I }

be an a totally ordered subset (that is, an ascending chain) in the poset P . Let U be
the set-theoretic union of the Jσ . Then, from the total ordering, any ring element in
U belongs to some Jσ . Thus any (left, right) multiple of that element by an element
of R belongs to U . Thus it is easy to see that RU R, RU , or U R is a subset of U
in the three respective cases of P . Similarly, −U = U and using the total ordering
of the chain, U + U ⊆ U . Thus U is an (left, right) ideal in R. If U = R, then 1R

would belong to some Jσ , whence R Jσ , Jσ R and R Jσ R would all coincide with R,
against Jσ ∈ P . Thus U , being a proper ideal, is a member of P and so is an upper
bound in P to the ascending chain C .

Since any ascending chain in P has an upper bound in P , it follows from Zorn’s
Lemma (see p. 26) that any element of P is contained in a maximal member
of P . �

A simple ring is a ring with exactly two (two-sided) ideals: 0 := {0R} and R. (Note
that the “zero-ring” in which 1R = 0R is not considered a simple ring here. Simple
rings are non-trivial). Since every non-zero element of a division ring D is a unit, 0
is a maximal ideal of D. Thus any division ring is a simple ring. The really classical
example of a simple ring, however, is the full matrix ring over a division ring, which
(when the division ring is a field) appears among the examples in Sect. 7.4.

Lemma 7.2.5 1. An ideal A of R is maximal in the poset of two-sided ideals if and
only if R/A is a simple ring.

2. An ideal A of a commutative ring R is maximal if and only if R/A is a field.

Proof Part 1, is a direct consequence of the Correspondence Theorem 7.2.3 of the
previous subsection.

Part 2. Set R̄ := R/A. If R̄ is a field, it is a simple ring, and A is maximal by
Part 1. If A is a maximal ideal, the commutative ring R̄ has only 0 for a proper ideal.
Thus for any non-zero element x̄ of R̄, x̄ R̄ = R̄x̄ = R̄. Thus any non-zero element
of R̄ is a unit. Thus R̄ is a commutative division ring, and hence is a field. The proof
is complete. �

Suppose now that A and B are ideals in a ring R. In a once-only departure
from our standard notational convention—special for (two-sided) ideals—we let the
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symbol AB denote the additive subgroup of (R,+) generated by the set of elements
{ab | (a, b) ∈ A × B} (the latter would ordinarily have been written as “AB” in our
standard notation). That is, for ideals A and B, AB is the set of all finite sums of the
form ∑

a j b j , a j ∈ A, b j ∈ B.

If we multiply such an expression on the left by a ring element r , then by the left
distributive laws, each a j is replaced by ra j which is in A since A is a left ideal,
yielding thus another such expression. Similarly, right multiplication of such an
element by any element of R yields another such element. Thus AB is an ideal.5

Such an ideal AB clearly lies in A ∩ B, but it might be even smaller. Indeed, if B
lies in the right annihilator of A, that is the set of elements x of R such that Ax = 0,
then AB = 0, while possibly A ∩ B is a non-zero ideal (with multiplication table all
zeroes, of course).

This leads us to still another construction of new ideals from old: Suppose A and
B are right ideals in the ring R with B ≤ A. The right residual quotient is the set

(B : A) := {r ∈ R|Ar ⊆ B}.

Similarly, if B and A are left ideals of R, with B ≤ A, the same symbol (B : A)
will denote the left residual quotient, the set of ring elements r such that r A ⊆ B.6

Lemma 7.2.6 If B ≤ A is a chain of right (left) ideals of the ring R, then the right
(left) residual quotient (B : A) is a two-sided ideal of R.

Proof We prove here only the right-hand version. Set W := (B : A). Clearly W +
W ⊆ W , W = −W , and W R ⊆ W , since B is a right ideal. It remains to show
RW ⊆ W . Since A is also a right ideal,

A(RW ) = (AR)W ⊆ AW ⊆ B,

so by definition, RW ⊆ W . �

A prime ideal of the ring R is an ideal—say P–such that whenever two ideals
A and B have the property that AB ⊆ P , then either A ⊆ P , or B ⊆ P . (Note:
here AB is the product of two ideals as defined above. But of course, since P is an
additive group, AB (as a product of two ideals) lies in P if and only if AB (the old
set product) lies in P—so the multiple notation is not critical here.)

5Indeed, one can see that it would be a two-sided ideal even if A were only a left ideal and B
were a right ideal. It is unfortunate to risk this duplication of notation: AB as ideal product, or
set product, but one feels bound to hold to the standard notation of the literature—when there is a
standard—even if there are small overlaps in that standard.
6The common notation (B : A) should not cause confusion. One knows which concept is intended,
from the fact that one is either talking about right ideals A and B or left ideals, or, in the case that the
ideals are two-sided, by the explicit use of the word “right” or “left” in front of “residual quotient”.
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A rather familiar example of a prime ideal would be the set of all multiples of a
prime number—say 137, to be specific—in the ring of integers. This set is both a
prime ideal and a maximal ideal. The ideal {0} in the ring of integers would be an
example of a prime ideal which is not a maximal ideal.

We have the following analog of Lemma 7.2.5 for prime ideals in a commutative
ring:

Lemma 7.2.7 Let R be a commutative ring, and let P be an ideal of R. Then the
following conditions are equivalent:

(i) P is a prime ideal;
(ii) R/P is an integral domain—a commutative ring whose non-zero elements are

closed under multiplication.

Proof (i) implies (ii). Suppose P is a prime ideal. Suppose x + P and y + P are
two cosets of P (that is, elements of R/P) for which (x + P)(y + P) ⊆ P . Then
xy ∈ P and so (x R)(y R) ⊆ P . But since R is commutative, x R and y R are ideals
of R whose product lies in the prime ideal P . It follows that one of these ideals is
already in P forcing one of the cosets x + P or y + P to be the zero coset 0+ P = P ,
contrary to assumption. Thus the non-zero elements of the factor ring (the non-zero
additive cosets of P) are closed under multiplication. That makes R/P and integral
domain.

(ii) implies (i). Now suppose P is an ideal of the commutative ring R for which
R/P is an integral domain. We must show that P is a prime ideal. Suppose A and B
are ideals of R with the property that AB ⊆ P . Then (A + P)/P and (B + P)/P
are two ideals of A/P whose product ideal (A + P)(B + P)/P = (AB + P)/P
is the zero element of R/P . Since R/P is an integral domain, it is not possible that
both ideals, (A + P)/P and (B + P)/P contain non-zero cosets. Thus, one of these
ideals of R/P is already the zero coset. That forces A ⊆ P or B ⊆ P . Since, for
any two ideals, A and B, AB ⊆ P implies A ⊆ P or B ⊆ P , P must be a prime
ideal. �

Theorem 7.2.8 In any ring, a maximal ideal is a prime ideal.

Proof Suppose M is a maximal ideal in R and A and B are ideals such that AB ⊆ M .
Assume A is not contained in M . Then A + M = R, by the maximality of M , but
RB = AB + M B ⊆ M , so B belongs to the two-sided ideal (M : R). Since M is a
left ideal, M also belongs to this right residual quotient. Thus we see that M + B lies
in this right residual quotient (M : R). But the latter cannot be R since 1R does not
belong to this residual quotient. Thus M + B is a proper ideal of R and maximality
of M as a two-sided ideal forces B ⊆ M .

Thus either A ⊆ M or (as just argued) or B ⊆ M . Thus M is a prime ideal.
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7.3 Monoid Rings and Polynomial Rings

7.3.1 Some Classic Monoids

Recall that a monoid is a set with an associative operation (say, multiplication) and
an identity element with respect to that operation.

Example 36 (Frequently Encountered Monoids)

1. Of course any group is a monoid.
2. The positive integers Z

+ under multiplication. The integer 1 is the multiplicative
identity.

3. The set N of natural numbers (non-negative integers) under addition. Of course,
0 is the identity relative to this operation.

4. M(X), the multisets over a set X . The elements of this monoid consist of all
mappings f : X → N which achieve a non-zero value at only finitely many
elements of X . The addition of functions f and g yields the function f +g whose
value at x is defined to be f (x) + g(x), the sum of two natural numbers (see p.
xiii).
When X = {x1, . . . , xn} is finite, there are three common ways to represent the
monoid of multisets.

(a) We can think of a multiset as a sequence of n natural numbers. In this way,
the mapping f : X → N is represented by the sequence

( f (x1), f (x2), . . . , f (xn)).

Addition is performed entry-wise, that is, if {ai } and {b1} are two sequences
of natural numbers of length n, then

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

(b) We can regard a multiset f as an inventory of the number of objects of
each type from a list of types, X . We can then represent this inventory for
f as a linear combination

∑
i f (xi )xi , where two such linear combinations

are regarded as distinct if they differ at any coefficient. Addition is then
performed by simply merging the two inventories—in effect adding together
the linear combinations coefficient-wise. For example if X = {a, b, o},
where a = apples, b = bananas, and o = oranges, then (a+2b)+(b+2o) =
a + 3b + 2o—that is, an apple and two bananas added to a banana and two
oranges is one apple, three bananas and two oranges. Thus one can add
apples and oranges in this system!7

7See p. 51 to realize that the positive-integer linear combinations simply encode the mappings
of finite support that are elements of the monoid of multisets defined there. We used just such a
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(c) Finally one can represent a multiset over X = {x1, . . . , xn} as a monomial in
commuting indeterminates. Thus the mutiset f is represented as a product∏

x f (xi )
i , a monomial in the commuting indeterminates {xi }. (Terms with a

zero exponent are represented by 1 or are omitted.) For example, if n = 4,
then x2

1 x2
3 x3

4 = x3
4 x2

3 x0
2 x2

1 . Multiplication here, is the usual multiplication
of monoids one learns in freshman algebra, where exponents of a common
“variable” can be added. We denote this monoid by the symbol M∗(X), to
emphasize that the operation is multiplication. Of course we have a monoid
isomorphism M(X) → M∗(X) in this case.8 This isomorphism takes a
sequence (a1, . . . , an) of natural numbers to the monomial xa1

1 · · · xan
n .

5. The Free Monoid over X . This was the monoid whose elements are the words
of finite length over the alphabet X . These are sequences (possibly empty) of
juxtaposed elements of X , x1x2 · · · xm where m ∈ N and the “letters” xi are
elements of X , as well as the empty word which we denote by φ. The associative
operation is concatenation of words, the act of writing one word right after another.
The empty word is an identity element. We utilized this monoid in constructing
free groups in Chap. 6, p. 166.
In particular, the free monoid over the single letter alphabet X = {x}, consists of
φ, x, xx, xxx, . . . which we denote as 1, x, x2, x3, . . ., etc. Clearly this monoid is
isomorphic to the monoid N of non-negative integers under addition (the second
item in this list).

6. Let L be a lower semillatice with a “one” element 1. Thus, L is a partially ordered
set (P,≤) with the property that the poset ideal generated by any finite subset of
P possesses a unique maximal element. Thus if X = {x1, . . . , xn} ⊆ P , then the
poset ideal I := {y ∈ P|y ≤ xi , for i = 1, . . . , n} contains a unique maximal
element called the “meet” of X and denoted

∧
X = x1 ∧ · · · ∧ xn . When applied

to pairs of elements, “∧” becomes an associative binary operation on P . In this
way (P,∧) forms a monoid M(L), whose multiplicative identity is the element 1.
Similarly one derives a monoid M(P,∨) from an upper semilattice P with a
zero element, using the “join” operation. One just applies the construction of the
previous paragraph to its dual semilattice.

7.3.2 General Monoid Rings

Let R be any ring, and let M be a monoid. The monoid ring RM is the set of all
functions f : M → R such that f (m) �= 0 for only finitely many elements m ∈ M .

(Footnote 7 continued)
multiset monoid over the set of isomorphism classes of simple groups in proving the Jordan-Hölder
Theorem for groups.
8The need for a multiplicative representation (like M∗(X)) rather than an additive one (like M(X))
occurs when a monoid is to be embedded into the multiplicative semigroup of elements of a ring.
Without it there would be a confusion of the two additive operations.

http://dx.doi.org/10.1007/978-3-319-19734-0_6
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We make RM into a ring as follows. First of all, addition is defined by “pointwise
addition” of functions, i.e., if f, g ∈ RM , then we define

( f + g)(m) = f (m) + g(m) ∈ R, m ∈ M.

Clearly, this operation gives RM the structure of an additive abelian group. Next,
multiplication is defined by what is called convolution of functions. That is, if f, g ∈
RM , then we define

( f ∗ g)(m) =
∑

m′m′′=m

f (m′)g(m′′) ∈ R, m ∈ M. (7.10)

The summation on the right hand side of Eq. (7.10) is taken over all pairs (m′,m′′) ∈
M × M such that m′m′′ = m. Note that since f and g are non-zero at only finitely
many elements of the domain M , the sum on the right side is a sum of finitely many
non-zero terms, and so is a well-defined element of R.

If 1M is the identity of the monoid M and if 1 is the identity of R, then the function
e : M → R defined by setting

e(m) =
{

1 if m = 1M ,

0 if m �= 1M

is the multiplicative identity in RM . Indeed, if f ∈ RM , and if m ∈ M , then

(e ∗ f )(m) =
∑

m′m′′=m

e(m′) f (m′′)

= f (m)

and so e ∗ f = f . Similarly, f ∗ e = f , proving that e is the multiplicative identity
of RM .

Next, we establish the associative law for multiplication. Thus, let f, g, h ∈ RM ,
and let m ∈ M . Then, through repeated use of the distributive law among elements
of R, we have:

( f ∗ (g ∗ h))(m) =
∑

m′m′′=m

f (m′)(g ∗ h)(m′′)

=
∑

m′m′′=m

f (m′)
( ∑

n′n′′=m′′
g(n′)h(n′′)

)

=
∑

m′m′′=m

( ∑
n′n′′=m′′

f (m′)g(n′)h(n′′)
)

=
∑

m′n′n′′=m

f (m′)g(n′)h(n′′)
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=
∑

k′m′′=m

( ∑
m′n′=k′

f (m′)g(n′)
)

h(n′′)

=
∑

k′m′′=m

( f ∗ g)(k′)h(m′′)

= (( f ∗ g) ∗ h)(m).

The distributive laws in RM are much easier to verify, and so we conclude that
(RM,+, ∗) is indeed a ring.

One might ask: “Why all this business about mappings M → R? Why not just
say the elements of RM are just R-linear combinations of elements of M such as

∑
m∈M

amm

with only finitely many of the am non-zero?” The answer is that we can—but only
with the following:

Proviso: linear combinations of elements of M which display different coefficients
are to be regarded as distinct elements of RM.9

The correspondence between R-valued functions on the monoid M and finite
R-linear sums as above is given by the mapping

f →
∑

m∈M

f (m)m ∈ RM.

Since the “Proviso” given above is in force, this correspondence is bijective and is
easily seen to be a ring isomorphism.

Writing the elements of RM as R-linear combinations of elements of M some-
times makes calculation easier. Thus if α = ∑

amm, and β = ∑
bnn are elements

of RM (so only finitely many of the am and bm are non-zero), then

αβ =
∑

m∈M

( ∑
kn=m

akbn

)
m.

9In mathematics the phrase “linear combinations of a set of objects X” is used, even when those
objects themselves satisfy linear relations among themselves. So we can’t just say a monoid ring
RM is the collection of R-linear combinations of the elements of M until there is some insurance
that the elements of M do not already satisfy some R-linear dependence relation. That is why one
uses the formalism of mappings M → R. Two mappings differ if and only if they differ in value at
some argument in M .
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Note that since R may not be a commutative ring, the ak’s must always appear to the
left in the products akbn in the formula presented above.

7.3.3 Group Rings

A first example is the so-called group ring. Namely, let G be a multiplicative group
(regarded, of course, as a monoid), let R be a ring, and call the resulting monoid ring
RG the R-group ring of G. Thus, elements of RG are the finite sums

∑
g∈G

agg where

each ag ∈ R. (The sums are finite because only finitely many of the coefficients ag are
non-zero.) Note that the group ring is commutative if and only if R is a commutative
ring and G is an abelian group.10

7.3.4 Möbius Algebras

Let M be the monoid M(P,∨) of part 6 of Example 36. Here (P,≤) is an upper
semilatice, with a “zero” element. Thus for any two elements a and b of P , there is an
element a∨b which is the unique minimal element in the filter {y ∈ P|y ≥ a, y ≥ b}
generated by a and b. Then for any ring R, we may form the monoid ring RM . Since
M is commutative in this case, the monoid ring is commutative if the ring R is
commutative.

In the case that P is finite, Theorem 2.4.2 forces the semilattice P to be a lattice.
In that particular case, if R is a field F , then the monoid ring F M is called a Möbius
Algebra of P over F and is denoted AV (P). There are many interesting features of
this algebra, that can be used to give short proofs for the many identities involving
the Möbius function of a poset. The reader is referred to the classic paper of Curtis
Greene [1].

7.3.5 Polynomial Rings

The Ring R[x]

If M is the free monoid on the singleton set {x}, then we write R[x] := RM and
call this the polynomial ring over R in the indeterminate x . At this point the reader,
who almost certainly has had previous experience with abstract algebra, will have

10Modules over group rings are the source of the vast and important subject known as “Represen-
tation Theory”. Unfortunately it is beyond the capacity of a book such as this one on basic higher
algebra to do justice to this beautiful subject.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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encountered polynomials, but might not recognize them in the present guise. Indeed,
polynomials are most typically represented as elements (sometimes referred to as
“formal sums”) of the form

a0 + a1x + a2x2 + · · · + an xn,

where the “coefficients” a0, a1, . . . , an come from the ring R, and polynomials with
different coefficients are regarded as different polynomials (the Proviso). If f is
written as above, and if an �= 0, then we say that f has degree n.

We mention in passing that polynomials are frequently written in “functional
form:”

f (x) =
n∑

i=0

ai xi .

This is arguably misleading, as such a notation suggests that x is a “variable,” ranging
over some set. This is not the case, of course, as x is the fixed generator of the free
monoid on a singleton set and therefore does not vary at all. Yet, we shall retain
this traditional notation as we shall show below—through the so-called “evaluation
homomorphism”—that the functional notation above is not unreasonable.

Note that if R is a ring, and if we regard R ⊆ R[x] as above, then we see that R
and the element x commute. Suppose now that R and S are rings, that R ⊆ S and
that s ∈ S is an element of S that commutes with every element of R. The subring of
S generated by R and s is denoted by R[s]. A moment’s thought reveals that every
element of R[s] can be written as a polynomial in s with coefficients in R; that is, if
α ∈ R[s], then we can write α as

α =
n∑

i=0

ai s
i ,

for some nonnegative integer n, and where the coefficients ai ∈ R. In this situation,
we can define the evaluation homomorphism Es : R[x] → R[s] ⊆ S by setting

Es( f (x)) = f (s) :=
n∑

i=0

ai s
i ,

where f (x) =
n∑

i=0
ai xi . That is to say, the evaluation homomorphism (at s) simply

“plugs in” the ring element s for the indeterminate x .
The evaluation homomorphism is, as asserted, a homomorphism of rings. To

prove this we need only show that Es preserves addition and multiplication. Let
f (x), g(x) ∈ R[x], let f (x) have degree k and let g(x) have degree m. Setting

n = max{k,m} we may write f (x) =
n∑

i=0
ai xi , g(x) =

n∑
i=0

bi xi ∈ R[x]. Then
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Es( f (x) + g(x)) =
n∑

i=0

(ai + bi )s
i

=
n∑

i=0

ai s
i +

n∑
i=0

bi s
i

= f (s) + g(s) = Es( f (x)) + Es(g(x)).

Next, since

f (x)g(x) =
k+m∑
l=0

l∑
i=0

ai bl−i xl ,

we conclude that

Es( f (x)g(x)) =
k+m∑
l=0

l∑
i=0

ai bl−i s
l

=
(

k∑
i=0

ai s
i

) ⎛
⎝ m∑

j=0

b j s
j

⎞
⎠

= f (s)g(s) = Es( f (x))Es(g(x)).

Therefore, Es : R[x] → S is a ring homomorphism whose image is obviously the
subring R[s] ⊆ S.

The Polynomial Ring R{X} in Non-commuting Indeterminates

Let X be a set and let R be a fixed ring. The free monoid on X was defined on p.
166 and denoted M(X). It consists of sequences (x1, . . . , xn), n ∈ N, of elements xi

of X which are symbolically codified as “words” x1x2 · · · xn . (When n is the natural
number zero, then we obtain the empty word which is denoted φ.) The monoid
operation is concatenation (the act of writing one word w2 right after another w1 to
obtain the word w1w2).

The resulting monoid ring RM(X) consists of all mappings f : M(X) → R
which assume a value different from 0 ∈ R at only finitely many words of M(X).
Addition is pointwise and multiplication is the convolution defined on p. 200. Then,
as described there, RM(X) is a ring with respect to addition and multiplication. This
ring is called the polynomial ring in non-commuting indeterminates X and is denoted
R{X}.11

Suppose S is a ring containing the ring R as a subring, and let B be a subset
of the centralizer in S of R—i.e. B ⊆ CS(R). Suppose α : X → B is some
mapping of sets. We can then extend α to a function α : M(X) → CS(R), by setting

11This notation is not completely standard.
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α(w) = α(x1)α(x2) · · · α(xn) exactly when w is the word x1x2 · · · xn , and setting
α(φ) = 1R , the multiplicative identity element of the ring R as well as CS(R).

For each function f : M(X) → R which is an element of the monoid ring
RM(X), define

E∗
α( f ) :=

∑
w∈M(X)

f (w)α(w). (7.11)

Since f (w) can be non-zero for only finitely many words w of the free monoid
M(X), the quantity on the right side of Eq. (7.11) is a well-defined element of S.
[Of course we can rewrite all this in a way that more closely resembles conventional
polynomial notation. Following the discussion on p. 202 we can represent the function
f ∈ RM(X) in polynomial notation as

p f :=
∑

w∈ Supp f
f (w) · w

where Supp f is the “support” of f —the finite set of words w for which f (w) �=
0 ∈ R. Then

E∗
α( f ) = E∗

α(p f ) :=
∑

w∈ Supp f
f (w)α(w),

a finite sum of elements of RCS(R) ⊆ S. ]
In Exercise (6) in Sect. 7.5.3 the student is asked to verify that E∗

α : RM(X) =
R{X} → S is a ring homomorphism, and is the unique ring homomorphism from
RM(X) to S that extends the mapping α : X → B.

The Polynomial Ring R[X] over a Set of Commuting Indeterminates

We have defined a multiplicative version of the monoid of multisets over X , namely
M∗(X) (see Example 36, part 4(c)). The elements of this monoid are the mul-
tiplicative identity element 1 and all finite monomials products

∏n
i=1 xai

i , where
{x1, . . . , xn} may range over any finite subset of X . There is a natural monoid homo-
morphism

deg : M∗(X) → (N,+)

which is defined by
n∏

i=1

xai
i �→

n∑
i=1

ai .

The image deg m is called the degree of m, for m ∈ M∗(X).
The monoid ring RM∗(X)), is denoted R[X ] in this case. As remarked, its ele-

ments can be uniquely described as formal sums
∑

amm where m ∈ M∗(X),
am ∈ R, and only finitely many of the coefficients am are non-zero. The adjec-
tive “formal” is understood to mean that two such sums are distinct if and only they
exhibit some difference in their coefficients (our Proviso from p. 201). These sums
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are called polynomials. Since M∗(X) is a commutative monoid, the polynomial ring
R[X ] is a commutative ring if and only if R is commutative.

A polynomial is said to be homogeneous if and only if all of its non-zero monomial
summands possess the same degree, or if it is the zero polynomial. This common
degree of non-zero summands of a homogeneous polynomial h is called the degree
of that polynomial, and is again denoted deg h.

Any polynomial p = ∑
amm can be expressed as a sum of homogeneous poly-

nomials p = ∑
i hi where hi has degree i ∈ N, simply by grouping the mono-

mial summands according to their degree. Clearly, the uniqueness of the coeffi-
cients am which define p tells us that decomposition of an arbitrary polynomial as
a sum of homogeneous polynomials is unique. The degree of a non-zero polyno-
mial p = ∑d

i=0 hi ∈ R[X ] is defined to be the highest value d = deg hi achieved
for a non-zero homogeneous summand in p. By a further extension of notation, it
is denoted deg p. The convention is that the zero polynomial (where all am = 0)
possesses every possible degree in N.

Recall from p. 187 that an integral domain is a commutative ring in which the
non-zero elements are closed under multiplication.

Lemma 7.3.1 If D is an integral domain, then so is the polynomial ring D[X ].
Proof The proof proceeds in three steps.

(Step 1) If D is an integral domain and X = {x}, then D[x] is an integral domain.

For any non-zero polynomial p = ∑
ai xi (a finite sum), the lead coefficient is

the coefficient of the highest power of x appearing among the non-zero terms of
the sum. The distributive law alone informs us that the lead coefficient of a product
of two non-zero polynomials is in fact the product of the lead coefficients of each
polynomial, and this is non-zero since D is an integral domain. Thus the product of
two non-zero polynomials cannot be zero, and so D[x] is an integral domain.

(Step 2) If X is a finite set, and D is an integral domain, then D[X ] is also an
integral domain.

We may suppose X = {x1, . . . , xn} and proceed by induction on n. The case
n = 1 is Step 1. Suppose the assertion of Step 2 were true for n − 1. Then D′ :=
D[x1, . . . , xn−1] is an integral domain. Then D[X ] = D′[xn] is an integral domain
by applying Step 1 with D′ in the role of D.

(Step 3) If X is an infinite set and D is an integral domain, then D[X ] is an integral
domain.

Consider any two non-zero polynomials p and q in D[X ]. Each is a finite D-linear
combination of monomials and so both p and q lie in a subring D[X ′] where X ′ is
a finite subset of X . But D[X ′] is itself an integral domain by Step 2, and so the
product pq cannot be zero.

The proof is complete. �
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Theorem 7.3.2 (Degrees in polynomial domains) If D is an integral domain, then
D[X ] possesses the following properties:

1. Let Di denote the set of homogeneous polynomials of degree i . (Note that this
set includes the zero polynomial and is closed under addition) The degree of the
product of two non-zero homogeneous polynomials is the sum of their degrees. In
general, the domain D[X ] possesses a direct decomposition as additive groups
(actually D-modules)

D[X ] = D0 ⊕ D1 ⊕ D2 ⊕ · · · ⊕ Dn ⊕ · · ·

where Di D j ⊆ Di+ j .
2. For arbitrary non-zero polynomials p and q (whether homogeneous or not) the

degree of their product is the sum of their degrees. The group of units consists of
the units of D (embedded as polynomials of degree zero in D[X ]).

3. An element of D[X ] is said to be irreducible if and only if it cannot be expressed
as a product of two non-units. (Notice that this definition does not permit an
irreducible element to be a unit.) If D = F is a field, then every non-zero non-
unit of F[X ] is a product of finitely many irreducible polynomials.12

Proof Part 1. Let h1 and h2 be non-zero homogeneous polynomials of degrees d1 and
d2, respectively. Then all formal monomial terms delivered to the product h1h2 by
use of the distributive law, possess the same degree d1+d2. But can all the coefficients
of these monomials be zero? Such an event is impossible since, by Lemma 7.3.1,
D[X ] is an integral domain. The decomposition of D[X ] as a direct sum of the Di

follows from the uniqueness of writing any polynomial as a sum of homogeneous
polynomials.

Part 2. The degree of any polynomial is the highest degree of one of its homoge-
neous summands. That the degrees add for products of homogeneous polynomials,
now implies the same for arbitrary polynomials. It follows that no polynomial of
positive degree can be a unit of D[X ], and so all units are found in D � D0, and are
thus units of D itself.

Part 3. Let D = F be a field. Suppose p ∈ D[X ] were not a finite product of
irreducible elements. Then p is itself not irreducible, and so can be written as a
product p1 p2 of two non-units. Suppose one of these factors—say p1, had degree
zero. Then p1 would be a non-zero element of F . But in that case, p1 would be a
unit of F[X ] contrary to its being irreducible. Thus p1 and p2 have positive degrees,
and by Part 2, these degrees must be less than the degree of p. An easy induction on
degrees reveals that both of the pi are finite products of irreducible elements, and
therefore p = p1 p2 is also such a product. �

Clearly the polynomial ring R[x] studied in an earlier part of this section is just
the special case of R[X ] where X = {x}. For R[X ] there is also a version of the
evaluation homomorphism Es of R[x]. The reader is asked to recall the definition of
R-homomorphism which was introduced on p. 193.

12A much stronger statement about factorization in D[X ] is investigated in Chap. 10.

http://dx.doi.org/10.1007/978-3-319-19734-0_10
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Theorem 7.3.3 (The Universal Property of Polynomial Rings) Suppose B is a com-
mutative ring containing R as a subring. Let X = {x1, . . . , xn}, and let φ : X → B
be any function. Then there exists an R-homomorphism

φ̂ : R[X ] → B

which extends φ.

Proof For each monomial m = ∏n
i=1 xai

i set φ̂(m) = ∏n
i=1 φ(xi )

ai , which is a
unique element of B. For each polynomial p = ∑

amm, where m is a monomial in
M∗(X), we set

φ̂(p);=
∑

m

am φ̂(m). (7.12)

In other words, to effect φ̂, one merely substitutes φ(xi ) for xi , leaving all coefficients
the same. Note that when m is the unique monomial in the xi of degree zero (i.e. all
the exponents ai are zero) them m = 1, the multiplicative identity element of R[X ].
Then by definition

φ̂(1) = φ̂(x0
1 x0

2 · · · x0
n ) =

n∏
i=1

φ(xi )
0 = 1B,

the multiplicative identity element of the ring B.
For all polynomials p, p1, p2 ∈ R[X ], and ring elements r ∈ R, one has

φ̂(r p) = r φ̂(p)

φ̂(p1 + p2) = φ̂(p1) + φ̂(p2)

φ̂(p1 p2) = φ̂(p1)φ̂(p2).

The first equation follows from the definition of φ̂ given in Eq. (7.12). The next two
equations are natural consequences of φ̂ being a substitution transformation.

Since B is commutative, it follows that φ̂ : R → B is an R-homomorphism as
defined on p. 193. �

7.3.6 Algebraic Varieties: An Application of the Polynomial
Rings F[X]

This brief section is a side issue. Its purpose is to illustrate the interplay between
polynomials in many commuting indeterminates and other parts of Algebra. The
evaluation homomorphism plays a key role in this interplay.



7.3 Monoid Rings and Polynomial Rings 209

Let n be a positive integer and let V be the familiar n-dimensional vector space
F (n) of all n-tuples over a field F . Since the field F is commutative, the ring F[X ] :=
F[x1, x2, . . . , xn] of all polynomials in n (commuting) indeterminates {x1, . . . , xn}
having coefficients in the field F , is a commutative ring.

Recall from Theorem 7.3.3 that if f is a mapping taking xi to ai ∈ F , i = 1, . . . , n,
we obtain an F-homomorphism

f̂ : F[X ] → F.

Since f̂ is defined by substituting ai for xi , it makes sense to denote the image of
polynomial p under this mapping by the symbol p(a1, . . . , an).

Notice that for every vector v = (a1, . . . , an) ∈ V , there exists a unique map-
ping α(v) : X → F taking xi to ai and so, by Theorem 7.3.3, there exists an
F-homomorphism of rings: α̂(v) : F[X ] → F . Thus each polynomial p defines
a polynomial function e(p) : V → F taking v to α̂(v)(p)—that is, it maps vector
v = (ai , . . . , an) to the field element p(a1, . . . , an). (Harking back to our discussion
in one variable, p is a polynomial, not a function, but with the aid of the evaluation
mappings, it now determines a polynomial function e(p) : V → F .)

The vectors v such that e(p)(v) = 0 ∈ F are called the zeroes of polynomial p.
Collections of vectors in V that are the common zeroes of some set of polynomials
is called an affine variety.

Suppose we begin with an ideal J in F[X ]. Then the variety of zeroes of J is
defined to be the subset

V(J ) := {(a1, . . . , an) ∈ V | p(a1, . . . , an) = 0 for all p ∈ J }.

In other words, V(J ) is the set of vectors which are zeroes of each polynomial
p(x1, . . . , xn) in J . Clearly, if we have ideals I ⊆ J ⊆ F[X ], then V(I ) ⊇ V(J ),
and so we have an order-reversing mapping

V : the poset of ideals of F[X ] → the poset of subsets of V .

Conversely, for every subset X ⊆ V , we may consider the collection

I(X) := {p(x1, . . . , xn) ∈ F[X ] | p(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ X}.

Clearly I(X) is an ideal of F[X ] for any subset X ⊆ V and that if Y ⊆ X ⊆ V ,
then I(Y ) ⊇ I(X). Therefore we have an order-reversing mapping of these posets
in the opposite direction:

I : poset of subsets of V → poset of ideals of F[X ].
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Moreover, one has the monotone relations

J̄ := I(V(J )) ≥ J

X̄ := V(I(X)) ≤ X

for every ideal J ⊆ F[X ] and every subset X ⊆ V . Thus the pair of mappings forms a
Galois connection in the sense of Chap. 2, and the two “bar” operations, ideal J → J̄ ,
and subset X → X̄ , are closure operators (idempotent order preserving maps on a
poset). Their images—the “closed” objects—are a special subposet which defines
a topology on the respective ambient sets. If we start with an ideal J , its closure J̄
turns out to be the ideal

√
J := {x ∈ F[X ]|xn ∈ J, for some natural number n}.

This is the content of the famous “zeroes Theorem” of David Hilbert.13 An analogue
for varieties would be a description of the closure X̄ of X in terms of the original
subset X . These image sets X̄ are called (affine) algebraic varieties. That there is
not a uniform description of affine varieties in terms of V alone should be expected.
The world of “V ” allows only such a primitive language to describe things that we
cannot say words like “nilpotent”, “ideal”, etc. That is why the Galois connection is
useful. The mystery of these “topology-inducing” closed sets can be pulled back to
a better understood algebraic world, the poset of ideals.

Is the new topology on V really new? Of course, it is not ordained in heaven that
any vector space actually has a topology which is more interesting than the discrete
one. In the case of finite vectors spaces, one cannot expect anything better, and indeed
every subset of a finite vector space is an affine algebraic variety. Also, if F is the field
of complex numbers, the two topologies coincide, although that takes a non-trivial
argument. But there are cases where this topology on algebraic varieties differs from
other standard topologies on V .

Every time this happens, one has a new opportunity to do analysis another way,
and to deduce new theorems.

7.4 Other Examples and Constructions of Rings

7.4.1 Examples

Example 37 Constructions of Fields Perhaps the three most familiar fields are
the rational numbers Q, the real numbers R, and the complex numbers C. In addition

13Note that
√

J , as defined, is not necessarily an ideal when F is replaced by a non-commutative
division ring.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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we have the field of integers modulo a prime. Later, when we begin the Galois theory
and the theory of fields, we shall meet the following ways to construct a field:

1. Forming the factor ring D/M where M is a maximal ideal in an integral domain
D.

2. Forming the ring of quotients of an integral domain.
3. Forming the topological completion of a field.

The first of these methods is already validated in Theorem 7.2.5. However, making
use of this theorem requires that we have sufficient machinery to determine that
a given ideal is maximal. Using the Division Algorithm and the Euclidean Trick
(Lemmas 1.1.1 and 1.1.2, respectively), we can flesh this out in the ring Z of integers,
as follows.

First of all, let I be an ideal in Z. We shall show that I is a principal ideal, that
is, I = Zn := {mn | m ∈ Z} for some integer n. If I = 0, then it is already clear that
I = Z0. Thus, we assume that I �= 0. Since x ∈ I implies that −x ∈ I , we may
conclude that I ∩ Z

+ �= ∅..
Thus, we let n be the least positive integer in I ; we claim that I = Zn. Suppose

x ∈ I . By the Division Algorithm there are integers q and r with x = qn + r, 0 ≤
r < n. Since r = x − qn ∈ I , we infer that r = 0, by our minimal choice of n. Thus
x = qn is a multiple of n. Since x was an arbitrary member of I , one has I = Zn.

Next, we shall show that the ideal I = Zp is a maximal ideal if and only if p
is prime. To this end, let p be prime and let I be an ideal of Z containing Zp. If
Zp � I , then there exists an element x in the set I − Zp. Thus, we see that p � |x .
We can then apply the Euclidean Trick to obtain integers s and t with sp + t x = 1.
But as p, x ∈ I , we find that 1 ∈ I , forcing I = Z. Therefore, when p is prime, the
ideal Zp is maximal. The converse is even easier; we leave the details to the reader.

The complex numbers C is also an example of this sort. The integral domain
R[x] also possesses an analogue of the Euclidean algorithm utilizing the degree of a
polynomial to compare the remainder r with a in the standard equation a = qb + r
produced by the algorithm. As a result, an argument similar to that of the previous
paragraph employing the Euclidean trick shows that the principal ideal R[x]p(x)
of all multiples of the polynomial p(x), is a maximal ideal whenever p(x) is a
polynomial that is prime in the sense that it cannot be factored into two non-units
in R[x]—that is, p(x) is an irreducible polynomial in R[x]. Now the polynomial
x2 + 1 cannot factor into two polynomials of R[x] of degree one, so it is irreducible
and the ideal ((x2 + 1)) := R[x](x2 + 1) is therefore maximal. The factor ring
F = R[x]/((x2 + 1)) is therefore a field. Each element of the field is a coset with
the unique form a + bx + ((x2 + 1)), a, b ∈ R . Setting i := x + ((x2 + 1)) and
1 = 1 + ((x2 + 1)) we see that

(i) 1 is the multiplicative identity of F ,
(ii) i2 = −1, and that

(iii) every element of the field F has a unique expression as a1+bi for real numbers
a and b.

http://dx.doi.org/10.1007/978-3-319-19734-0_1
http://dx.doi.org/10.1007/978-3-319-19734-0_1
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One now sees that F conforms to the usual presentation of the field C of complex
numbers.

The field Q on the other hand is the ring of quotients of the ring of integers
Z, while R is the topological completion of the order topology on Q (its elements
are the familiar Dedekind cuts). Thus each of the most commonly used fields of
mathematics, Q,R, and C, exemplify one of the three methods of forming a field
listed at the beginning of this example.

Example 38 Rings of Functions. Let X be a set and let R be a ring. Set RX :=
{functions X → R}. For f, g ∈ RX , we define their point-wise sum and product by
setting

( f + g)(x) := f (x) + g(x), ( f g)(x) := f (x)g(x),

where the sum and product on the right-hand sides of the equations above are com-
puted in the ring R. The additive identity is the function mapping X identically to
0 ∈ R; the multiplicative identity maps X identically to 1 ∈ R. One easily checks
the remaining ring properties in RX .

Example 39 Direct Product of Rings. Suppose {Rσ}σ∈I is a family of rings
indexed by I . Let 1σ be the multiplicative identity element of Rσ . Now we can can
form the direct product of the additive groups (Rσ,+), σ ∈ I :

P :=
∏
σ∈I

(Rσ,+).

Recall that the elements of the product are functions f : I → ⋃
σ∈I Mσ (disjoint

union), with the property that f (σ) ∈ Rσ for each σ ∈ I . We can then convert this
additive group into a ring by defining the multiplication of two elements f and g of
P by the rule that f g is the function I → ⋃

σ∈I Rσ defined by

( f g)(σ) := f (σ)g(σ), σ ∈ I,

where the juxtaposition on the right indicates multiplication in the ring Rσ . (This
sort of multiplication is often called “coordinate-wise multiplication.” Note also that
this example generalizes Example 38 above.) It is an easy exercise to show that this
multiplication is associative and is both left and right distributive with respect to
addition in P . Finally, one notes that the function 1P whose value at σ is 1σ , the
multiplicative identity of the ring Rσ, σ ∈ I , is the multiplicative identity in P; so
P is indeed a ring.

Now that we understand a direct product of rings, is there a corresponding direct
sum of rings? The additive group (S,+) of such a ring should be a direct sum
⊕I (Rσ,+) of additive groups of ring. But in that case, the multiplicative identity
element 1S of the ring S must be uniquely expressible as a function which vanishes
on all but a finite subset F of indices in I . But if multiplication is the “coordinate-
wise multiplication” of its ambient direct product, we have a problem when I is
infinite. For in that case, there is an indexing element σ ∈ I − F , and there exists
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a function pσ which vanishes at all indices distinct from σ, but assumes the value
1σ at σ. Then we should have 1S · pσ = 0 �= pσ contradicting the assumption that
1S was the identity element. Since our definition of ring requires the existence of a
multiplicative identity we see that any infinite direct sum of rings,

⊕I Rσ = ⊕F Rσ,

although possessing most of the properties of a ring, is not actually a ring itself. This
is an expense one pays in maintaining a multiplicative identity.

Example 40 Opposite rings. Suppose we have a ring R with a given multiplication
table. We can define a new multiplication (let’s call it “◦”) by transposing this mul-
tiplication table. That is, a ◦ b := ba for all a and b in R. The new operation is still
distributive with respect to addition with both distributive laws simply transposed,
and it is easy for the student to verify that (R,+, ◦) is a ring. (Remember, we need a
multiplicative identity, and the associative law should at least be checked.) We call
this ring the opposite ring of R and denote it by the symbol Opp(R).

One may now observe that any antiautomorhism of R is essentially an isormor-
phism R → Opp(R).

Example 41 Endomorphism rings. Let (A,+) be an additive abelian group and
let End(A) := Hom(A, A) denote the set of all group homomorphisms A → A.
We give End(A) the structure of a ring as follows. First of all, addition is defined
point-wise, i.e., ( f + g)(a) := f (a) + g(a), f, g ∈ End(A), a ∈ A. The reader
should have no difficulty in showing that End(A) is an abelian group relative to the
above addition, with identity being the mapping that sends every element of A to the
additive identity 0 ∈ A.

The multiplication in End(A) is just function composition f g := f ◦g : A → A,
which is always associative. The identity function 1A which takes every element a ∈
A to itself is clearly the multiplicative identity. Next, note that if f, g, h ∈ End(A),
and if a ∈ A, then

f (g + h)(a) = f (g(a) + h(a)) = f g(a) + f h(a) = ( f g + f h)(a),

Similarly, one has the right distributive law, and so it follows that End(A) is a ring
relative to the above-defined addition and multiplication.

In case A is a right vector space over the field F , we may not only consider End(A)
as above (emphasizing only the structure of A as an additive abelian group), but we
may also consider the set

EndF (A) := {F-linear transformations f : A → A}.

Since the point-wise sum of F-linear transformations is again a F-linear transfor-
mation, as is the composition of two F-linear transformations, we conclude that
EndF (A) is, in fact, a subring of End(A).
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When the F-vector space A has finite dimension n, then by choosing a basis, every
linear transformation of A into itself can be rendered uniquely as an n × n matrix
with coefficients in F . Then addition and composition of linear transformations is
duplicated as matrix addition and multiplication. In this guise, EndF (A) is seen to
be isomorphic to the full matrix ring over F—the ring Mn(F) of all n × n matrices
over F , with respect to matrix addition and multiplication.

Now suppose σ ∈ Aut(F), the groups of automorphisms of F . Then σ determines
a bijection m(σ) : Mn(F) → Mn(F)which takes each matrix A = (ai j ) to Am(σ) :=
((ai j )

σ). Recall that for matrices A = (ai j ) and B = (bi j ), the (i, j)-entry of AB is
the sum

∑
kaikbk j . Observing that applying the field automorphism σ to this sum is

the same as applying it to each aik and bkj one sees that

(AB)m(σ) = Am(σ)Bm(σ).

Similarly m(σ) preserves sums of matrices and so m(σ) is an automorphism of the
matrix ring Mn(F).

Next define the transpose mapping T : Mn(F) → Mn(F) which takes each
matrix A = (ai j ) to its transpose AT := (a ji )—in other words, the entries of the
matrix are reflected across its main diagonal. Now if A = (ai j ) and B = (bi j ) are
matrices of Mn(F) it is straightforward to check that both (AB)T and BT AT possess
the same (i, j)th entry, namely

∑
ka jkbki (see Example 35, p. 190). Since it is clear

from the definition of T that it preserves addition, one now sees that the transpose
mapping is an antiautomorphism of the ring Mn(F).

We finally ask the reader to observe that the antiautomorphism T and the auto-
morphism m(σ) are commuting mappings on Mn(F). Thus (from the data given at
the beginning of Sect. 7.2) the composition of these two mappings in any order is
one and the same antiautomorphism of the ring Mn(F).

The ring Mn(F) is a simple ring for every positive integer n and field F . We will
not prove this until much later; it is only offered here as a “sociological” statement
about the population of mathematical objects which are known to exist. It would be
sadistic to propose definitions to students which turn out to be inhabited by nothing—
providing yet one more description of the empty set. So there is some value in pointing
out (without proof) that certain things exist.

Example 42 Quaternions. As in the previous Example 37, we consider the field
C of complex numbers with each complex number uniquely represented in the form
a + bi , a, b ∈ R, where i2 = −1 ∈ R. Complex conjugation is the bijection C → C

which maps each complex number α = a + bi , a, b ∈ R to its complex conjugate
α = a − bi . One can easily check that for any complex numbers α and β

α + β = α + β (7.13)

αβ = αβ (7.14)

so that complex conjugation is an automorphism of the field C.
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It is useful to define the “norm” N (α) of a complex number as the real number
αα. Thus, if α = a + bi , then N (α) = a2 + b2, which is always a non-negative real
number, and is zero only if a = b = 0 = α. Moreover, since complex conjugation
is an automorphism of the complex number field, we have

N (αβ) = N (α)N (β) for all α,β ∈ R.

Next let H be the collection of all 2-by-2 matrices of the form

h(α,β) :=
(

α β

−β α

)
.

where α and β are complex numbers. Clearly by Eq. (7.13), H is an additive subgroup
of the full group M2(C) of all 2-by-2 matrices with entries in C under matrix addition.
But H is actually a subring of the matrix ring M2(C), since

(
α β

−β α

) (
γ δ

−δ γ

)
=

(
αγ − βδ αδ + βγ

−βγ − αδ −βδ + αγ

)

by ordinary matrix mutiplication. Thus, using Eq. (7.14), we have

h(α,β)h(γ, δ) = h(αγ − βδ,αδ + βγ). (7.15)

Clearly the 2-by-2 identity matrix I2 is the multiplicative identity of the ring H.
Notice that the complex-transpose mapping defined by

(
α β

−β α

)τ

=
(

α −β

−β α

)

induces an antiautomorphism τ : H → H (see Example 35, p. 190). Thus h(α,β)τ =
h(α,−β).

Next one may notice that

D(h(α,β)) := h(α,β)h(α,β)τ = (N (α) + N (β))I2, (7.16)

the sums of the norms of two complex numbers times the 2×2 identity matrix. Since
such norms are non-negative real numbers, the sum can be zero only if each summand
norm is zero, and this forces α = β = 0 ∈ C so that h(α,β) is the 2-by-2 zero
matrix, the zero element of the ring H. Thus if h(α,β) �= 0 ∈ H, it is an invertible
matrix of M2(C), whose inverse is given by

h(α,β)−1 = h(d−1α, d−1(−β)), where d = (N (α) + N (β)),
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and this inverse clearly belongs to H. Thus we see that every non-zero element of
H is a unit in H. Thus H is a division ring. The reader may check that it is not a
commutative ring, and so the ring H—called “the division ring of real quaternions”—
is our first example of a division ring which is not a field. (The student is encouraged
to peruse Exercise (7) in Sect. 7.5.4.)

Example 43 The Dirichlet Algebra and Möbius Inversion. This example
comes from Number Theory. Let P = (Z+, |) denote the divisor poset on the set of
positive integers. Thus one writes a|b if integer a divides integer b, a, b,∈ Z

+.
Let A := Hom(Z+,C) denote the set of all functions from the positive integers

into the complex numbers, viewed as a vector space over C. A binary operation “∗”
is defined on A in the following way: if f and g are functions, then f ∗ g is defined
by the formula

( f ∗ g)(n) :=
∑

d1,d2;d1d2=n

f (d1)g(d2).

It is easily seen that “∗” is distributive with respect to vector addition and that

[( f ∗ g) ∗ h](n) =
∑

d1,d2,d3;d1d2d3=n

f (d1g(d2)h(d3)

= [ f ∗ (g ∗ h)]

so the associative law holds. Define the function ε by

ε(1) = 1 and ε(n) = 0, if n > 1.

Then ε ∗ f = f ∗ ε = f for all f ∈ A. Thus A = (A,+.∗) is a commutative ring
(actually a C-algebra) whose multiplication ∗ is called “Dirichlet multiplication”
(see [23], p. 23).

The zeta function is the constant function ζ such that

ζ(n) = 1, for all n ∈ Z
+.

The zeta function is a unit in the ring A, and its inverse, μ is called the Möbius
function. The definition of the Möbius function depends on the fact that every positive
integer n is uniquely expressible (up to the order of the factors) as a product of positive
prime numbers, n = pa1

1 · · · par
r .14 (In the case n = 1 all exponents ai are zero and

the product is empty.) Then μ(n) is given by:

μ(n) = 1, if n = 1

μ(n) = 0 if some ai ≥ 2,

μ(n) = (−1)r ( when each ai = 1).

14A consequence of the Jordan-Hölder Theorem.
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Lemma 7.4.1 If n > 1 ∑
d|n

μ(d) = 0,

where the sum is over all positive integer divisors of n.

Proof Suppose n = pa1
1 · · · par

r , where the pi are positive primes. Then

∑
d|n

μ(d) =
∑

(e1,...,er )

μ(pe1
1 · · · per

r ) where the ei are 0 or 1

= 1 − r +
(

r
2

)
+ · · · + (−1)r

= (1 − 1)r = 0.

�
Lemma 7.4.2 μ ∗ ζ = ζ ∗ μ = ε.

Proof By the definition of Dirichlet multiplication, (μ ∗ ζ)(1) = ζ(1) · μ(1) = 1. If
n > 1,

(μ ∗ ζ)(n) =
∑
d|n

μ(d) = 0

by Lemma 7.4.1. �
Theorem 7.4.3 (Möbius Inversion) If the functlons f and g are related by the
equation

g(n) =
∑
d|n

f (d) for all n, (7.17)

then
f (n) =

∑
d|n

g(d)μ(n/d) =
∑
d|n

μ(d)g(n/d) (7.18)

for all positive integers n.

Proof Equation (7.17) asserts the g = ζ ∗ f . Since ζ is a unit, f = ζ−1 ∗g = μ∗g. �
Remark In the 1930s the group-theorist Phillip Hall recognized that the theory of
the Dirichlet Algebra and its Mobius function could be generalized to more general
partially ordered sets. This idea was fully expounded by Gian-Carlo Rota using an
arbitrary locally finite poset to replace the integer divisor poset P = (Z+, |) (see
[2]). Here the analogue of the Dirichlet Algebra is defined over an arbitrary commu-
tative ring and is call the Incidence Algebra in this context.15 The zeta function and

15The incidence algebra in general is not commutative. The commutativity of the Dirichlet algebra
was a consequence of the fact that the poset of divisors of any integer n is self-dual.
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its inverse, the Mobius function, are still defined for the incidence algebras. Beyond
this, Rota’s theory exposed a labyrinth of unexpected identities involving the Möbius
function. More on this interesting subject can be harvested from [1] and [2].

7.4.2 Integral Domains

Let D be any integral domain. Recall from p. 187 that this term asserts that D is a
commutative non-zero ring such that if a, b ∈ D are both nonzero elements, then
ab �= 0. In other words, D∗ := D\{0} is closed under multiplication (and hence,
from the other ring axioms, D∗ is a multiplicative monoid).

The Cancellation Law

A very useful consequence of the definition of integral domain is the following:

Lemma 7.4.4 (The cancellation law) Let D be an integral domain. Suppose for
elements a, b, c in D, one has ab = ac. If a is non-zero, then b = c.

Proof Indeed, ab = ac implies that a(b − c) = 0. Since a is non-zero, and non-zero
elements are closed under multiplication, one must conclude that b − c = 0, forcing
b = c. �

Domains Which Are Not Like the Integers

Obviously, the example par excellence of an integral domain is the ring of integers.
But perhaps that is also why it may be the least representative example.

The integers certainly enjoy every property that defines an integral domain.
But there are many further properties of the integers which are not shared by many

integral domains. For example, we already showed in Example 37 above that every
ideal I of the ring of integers is a principal ideal. Such an integral domain is called
a principal ideal domain. Other elementary examples of principal ideal domains
include

Z[i] = {a + bi ∈ C | a, b ∈ Z} (the Gaussian integers);
Z[ω] := {a + bω ∈ C | a, b ∈ Z} (the Eisenstein numbers)
(Here, ω = (−1 + √−3)/2, a root of x2 + x = 1.)
Z[√−2] := {a + b

√−2 ∈ C | a, b ∈ Z}.
F[x], where F is any field.

We shall postpone till Chap. 9 the proofs that the above integral domains are actually
principal ideal domains.

One the other hand, we shall give an example of a perfectly respectable integral
domain which is not a principal ideal domain. This is the domain

http://dx.doi.org/10.1007/978-3-319-19734-0_9
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D := {a + b
√−5 | a, b ∈ Z}.

Now consider the ideal I = 3D + (2 + √−5)D. We shall show that D is not a
principal ideal. We start by showing that I �= D. Were I equal to D, then we would
have 1 ∈ I , forcing the existence of elements x = a + b

√−5, y = c + d
√−5 ∈ D,

a, b, c, d ∈ Z with

1 = 3x + (2 +√−5)y = (3a + 2c − 5d) + (3b + 2d + c)
√−5. (7.19)

Thus

3b + c + 2d = 0 (7.20)

3a + 2c − 5d = 1. (7.21)

Then c = −3b − 2d, and substitution for c in Eq. (7.21) yields

3a − 6b − 9d = 1.

But this is impossible, as 1 is not an integer multiple of 3. Therefore, I is a proper
ideal in D.

Now, by way if contradiction, assume I is a principle ideal, so that I = ζ D, for
some element ζ ∈ D. Notice that complex conjugation induces an automorphism of
D taking any element z = a + b

√−5D with a, b ∈ Z to z̄ := a − b
√−5. Then the

norm of z, which is defined by N (z) := zz̄ = a + 5b2 is a mapping N : D → Z

which preserves multiplication. Precisely,

N (yz) = yz ȳz = yz ȳz̄ = (y ȳ)(zz̄) = N (y)N (z).

Thus if I = ζ D, then the norm of every element of the ideal I must be a multiple of
N (ζ). Now I = 3D + (2 +√−5)D contains these two elements:

3 − (2 +√−5) = 1 −√−5

3 − 2(2 +√−5) = −1 − 2
√−5

of norms 6 and 21, respectively. It follows that ζ = e + f
√−5 (e, f ∈ Z), must

have norm 1, or 3. If N (ζ) = e2 + 5 f 2 = 1, then ζ = ±1. But that would force
I = D which we have already shown is impossible. Thus, N (ζ) = 3, which is also
impossible, since 3 is not of the form n2 +5m2 for any integers m and n. We conclude
that I cannot be a principle ideal.
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As a matter of fact we have 9 = 3.3 = (2 +√−5)(2 −√−5), a factorization into
irreducible elements (elements that are not a product of two or more non-units) in
two distinct ways. So the ring D does not have the property of unique factorization
into primes that is enjoyed by the integers.

The Characteristic of an Integral Domain

Suppose now that D is an integral domain. We define the characteristic of D as the
smallest natural number n such that

nx = x + x + · · · x︸ ︷︷ ︸
n terms

= 0

for every element x in D. This already says that o(x) divides n for every x ∈ D,
where o(x) denotes the order of x in the additive abelian group (D,+). Note that if
x �= 0 then

x + x + · · · + x︸ ︷︷ ︸
o(1) terms

= x(1 + 1 + · · · + 1︸ ︷︷ ︸
o(1) terms

) = 0,

from which we conclude that o(x) divides o(1). Conversely, from

x(1 + 1 + · · · + 1︸ ︷︷ ︸
o(x) terms

) = x + x + · · · + x︸ ︷︷ ︸
o(x) terms

= 0,

together with the fact that D is an integral domain, we see that (since x �= 0)
1 + 1 + · · · + 1 = 0 (o(x) terms), and so it follows also that o(1)|o(x). Thus
o(x) = o(1) for every x ∈ D.

Note finally that if o(1) is not a prime and is written as o(1) = km for natural
numbers m and n, then 0 = km1 = (k1)(m1) forcing k1 = 0 or m1 = 0, contradict-
ing that all nonzero elements of D possess a constant additive order, as established
in the previous paragraph.

Therefore, o(1) must, in fact, be prime.
We have therefore shown that

Lemma 7.4.5 For any integral domain D, one of the following two alternatives
hold:

(i) No nonzero element of D has finite additive order, or
(ii) There exists a prime number p such that px = 0 for every element x of D.

Moreover, for every integer n, such that 0 < n < p, and every nonzero element
x ∈ D, nx �= 0.

In the former case (i) we say that D has characteristic zero, while in the latter
case (ii) we say that D has characteristic p.
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It should be clear that all subrings of an integral domain of characteristic c (c = 0
or c = p, for some prime p) are integral domains of the same characteristic c. In
particular, if D is any subring of the complex numbers C, then it is an integral domain
of characteristic 0. Thus, the Gaussian Integers, the Eisenstein numbers, or any other
subring of the reals or complex numbers, must be an integral domain of characteristic
0. The field Z/pZ, where p is a prime number, clearly has positive characteristic p.

The following lemma shows that integral domains of non-zero characteristic p
may possess certain endomorphisms. It will be crucial for our analysis of finite fields
and inseparable extensions in Chap. 11.

Lemma 7.4.6 Suppose D is an integral domain of positive characteristic p, a prime
number. The pth power mapping D → D, which maps each element r ∈ D to its
pth power r p, is an endomorphism of D.

Proof Since any integral domain D is commutative, one has (xy)p = x p y p for any
x, y ∈ D—that is the pth power mapping preserves multiplication. It remains to
show that for any x, y ∈ D,

(x + y)p = x p + y p. (7.22)

Since we are in a commutative ring, the “binomial theorem” (Theorem 7.1.2) holds:
thus:

(x + y)p =
∑k=p

k=0
xk y p−k

(
p
k

)
.

Using the fact that p is a prime number, one can show that each combinatorial
number (

p
k

)
= p!/(k!(p − k)!

is a multiple of p whenever 0 < k < p.16 The result then follows. �

Finite Integral Domains

We shall conclude this subsection with a result that is not only interesting in its own
right, but whose proof involves one of the most important “counting arguments” in
all of mathematics. This is the so-called “Pigeon Hole Principle,” which says simply
that any injective mapping of a finite set into itself must also be surjective.

Theorem 7.4.7 Let D be a finite integral domain. Then D is a field.

Proof Let d be a nonzero element of D; we shall show that d has a multiplicative
inverse. Note that right multiplication by d defines an injective mapping D → D.

16In fact this argument is a special case of the same argument used in Wielandt’s proof of the Sylow
Theorems (Theorem 4.3.3, p. 117).

http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_4
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For if ad = bd then a = b by the Cancellation Law (see Lemma 7.4.4). By the
Pigeon Hole Principle, this mapping must be surjective and so there must exist an
element c ∈ D such that cd = 1. This says that c is the multiplicative inverse of d
and the proof is complete. �

7.5 Exercises

7.5.1 Warmup Exercises for Sect. 7.1

1. Give a formal proof of Lemma 7.1.1 using only the axioms of a ring and known
consequences (e.g. relevant Lemmata in Chap. 3) of the fact that (R,+) is a
commutative group.

2. Do the even integers form a ring? Explain your answer.
3. Let K be one of the familiar fields, Q,R, or C, or let K be the ring of integers

Z. Let M2(K ) be the collection of all 2-by-2 matrices with entries in K . Define
addition and multiplication by the standard formulae

(
a1 b1
c1 d1

)
+

(
a2 b2
c2 d2

)
=

(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)

(
a1 b1
c1 d1

)
·
(

a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)
.

(a) Show that M2(K ) is a ring with respect to matrix addition and multiplication.
(b) Explicitly demonstrate that M2(K ) is not a commutative ring.
(c) Show that the subset

T2(K ) =
{(

a b
0 d

)
|a, b, d ∈ K

}

is a subring.
(d) Is the set

T2(K ) =
{(

0 b
0 0

)
|d ∈ K

}

a subring of M2(K )?
(e) In the three cases where K is a field, is M2(K ) a division ring?
(f) Now suppose K = Z, the ring of integers.

(i) Let

A =
{(

a b
c d

)
|a, b, c, d ∈ Z, c is even

}
.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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Is A a subring of M2(Z)?
(ii) Let

A =
{(

a b
−b a

)
|a, b ∈ Z,

}
.

Is B a subring of M2(Z)?

4. Consider the subset S of the field Q of rational numbers consisting of all fractions
a/b, where the non-zero integer b is not divisible by 5. Is S a subring of Q?
Explain your answer.

5. Let R be the ring Z/(12) of integer residues classes modulo 12. List the units of
R and write out a multiplication table for the multiplicative group that they form.
Can you identify this multiplicative group as one that you have met before?

6. Let B be any non-empty subset of a ring R. Show explicitly that the centralizer
CR(B) is a subring of R. [Hint: Use the three-point criterion of p. 193.]

7. (The Binomial Theorem for Commutative Rings) Let R be any commutative ring,
let x and y be two elements of R, and let n be a positive integer. Show that

(x + y)n =
∑k=p

k=0
xk yn−k

(
n
k

)
,

where as usual (
n
k

)
:= n!/(k!(n − k)!),

denotes the combinatorial number. [Hint: Use induction on n and the usual recur-
sion identities for the combinatorial numbers.]

7.5.2 Exercises for Sect. 7.2

1. Suppose α : R → S is a surjective homomorphism of rings. Suppose T is a
subring of S. Is the set

α−1(T ) := {r ∈ R|α(r) ∈ T }

a subring of R? (Be aware that subrings must contain their own multiplicative
identity element.)

2. Let R be a commutative ring and let P be an ideal of R. Prove that P is a prime
ideal if and only if whenever a, b ∈ R with ab ∈ P then a ∈ P or b ∈ P .

3. Prove Lemma 7.2.7.
4. In a commutative ring, a non-zero element a is said to be a zero divisor if and

only if there exists a non-zero element b such that ab = 0. Thus an integral
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domain could be characterized as a non-zero commutative ring with no zero
divisors.
Show that if R is a commutative non-zero ring with only finitely many zero
divisors, then R is either an integral domain or is a finite ring. [Hint: For any
zero divisor a, consider the surjective homomorphism φ : (R,+) → (a R,+)

of additive abelian groups, defined by r �→ ar , for all r ∈ R. Then note that
every non-zero element of a R and every non-zero element of ker φ is a zero
divisor. Apply the group isomorphism R/kerφ � (a R,+) to deduce that ker φ
has finite index as a subgroup of (R,+). (Explain why the homomorphism φ
need not be a ring homomorphism. )]

5. Let R be a ring and let I, J be ideals of R. We say that I, J are relatively prime
(or are comaximal) if I + J = R. Prove that if I, J are relatively prime ideals
of R, then I J + J I = I ∩ J .

6. (a) Prove the Chinese Remainder Theorem: Let R be a ring and let I, J be
relatively prime ideals of R. Then the ring homomorphism R → R/I ×R/J
given by r �→ (r + I, r + J ) determines an isomorphism

R/(I ∩ J ) ∼= R/I × R/J.

(b) More generally, if I1, I2, . . . , Ik ⊆ R are pairwise relatively prime, then the
ring homomorphism R → R/I1 × R/I2 × · · · × R/Ir , r �→ (r + I1, r +
I2, . . . , r + Ir ) determines an isomorphism

R/(I1 ∩ I2 ∩ · · · ∩ Ik) ∼= R/I1 × R/I2 × · · · × R/Ik .

[Hint: For the homomorphism in part (a), the kernel is easy to identify. The
issue is showing its surjectivity. For this use I+J = R to show that 0×(R/J )
and (R/I ) × 0 are both contained in the image of the homomorphism. Part
(b), cries out for an induction proof.]

7. Let R be a ring and let I ⊆ R be an ideal. Show that if I ⊆ P1 ∪ P2 ∪ · · · ∪ Pr ,
where P1, P2, . . . Pr are prime ideals, then I ⊆ Pj for some index j . [Hint: for
each i = 1, 2, . . . , r , let xi ∈ I − (P1 ∪ P2 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Pr ).
Show that x1 + x2x3 · · · xr �∈ P1 ∪ · · · ∪ Pr .]

8. Recall the definition of residual quotient, (B : A) := {r ∈ R|Ar ⊆ B}. Let R
be a ring and let I, J and K be right ideals of R. Prove that ((I : J ) : K ) = (I :
J K ). (Here, following the custom of the ring-theorists, the symbol J K denotes
the additive group generated by the set product J K . Of course it is a right ideal
of R.)

9. Let R be a commutative ring and let I be an ideal of R. Define the radical of I
to be the set

√
I = {r ∈ R| rm ∈ I for some positive integer m}.

Show that
√

I is an ideal of R containing I .
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10. Let R be a commutative ring, and let Q ⊆ R be an ideal. We say that Q is
primary if ab ∈ Q and a �∈ Q implies that bn ∈ Q for some positive integer n.
Prove the following for the primary ideal Q ⊆ R:

(a) P := √
Q is a prime ideal containing Q. In fact P is the smallest prime

ideal containing Q. (In this case we call Q a P-primary ideal.)
(b) If Q is a P-primary ideal, ab ∈ Q, and a �∈ P , then b ∈ Q.
(c) If Q is a P-primary ideal and I, J are ideals of R with I J ⊆ Q, I �⊆ P ,

then J ⊆ Q.
(d) If Q is a P-primary ideal and if I is an ideal I �⊆ P , then (Q : I ) = Q.

11. Suppose that P and Q are ideals of the commutative ring R satisfying the fol-
lowing:

(a) P ⊇ Q.
(b) If x ∈ P then for some positive integer n, xn ∈ Q.
(c) If ab ∈ Q and a �∈ P , then b ∈ Q.

Prove that Q is a P-primary ideal.
12. Assume that Q1, Q2, . . . , Qr are all P-primary ideals of the commutative ring

R. Show that Q1 ∩ Q2 ∩ . . . ∩ Qr is a P-primary ideal.
13. Let R be a commutative ring and let Q ⊆ R be an ideal. Prove that Q is a primary

ideal if and only if the only zero divisors of R/Q are nilpotent elements. (An
element r of a ring is called nilpotent if rn = 0 for some positive integer n.)

14. Consider the ideal I = nZ[x] + xZ[x] ⊆ Z[x], where n ∈ Z is a fixed integer.
Prove that I is a maximal ideal of Z[x] if and only if n is a prime.

15. If R is a commutative ring and x ∈ ⋂{M | M is a maximal ideal}, show that
1 + x ∈ U(R), the group of units of R.

7.5.3 Exercises for Sect. 7.3

1. Let R be a ring and let M be a monoid with the following property:

(F) Each element m possesses only finitely many distinct factorizations m1m2
in M .

Define the completion, (RM)∗ of the monoid ring RM to be the set of all
functions f : M → R with point-wise addition and convolution multiplication.
(The point is that we are no longer limited to functions of finite support.) Show
that one still obtains a ring and that the usual monoid ring RM occurs as a subring
of (RM)∗.

2. The completion of the polynomial ring R[x] is usually denoted R[[x]]. Note that
R[[x]] can be viewed as the ring of “power series” in the indeterminate x . Show
that while the only units of R[x] are in fact the units of R, R[[x]] has far more
units. In particular, note that
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(1 − x)−1 = 1 + x + x2 + · · · =
∞∑

i=0

xi .

Show that, in fact, f (x) =
∞∑

i=0
ai xi is a unit of R[[x]] if and only if a0 is a unit of

R. [Hint: Show that if f (x) · g(x) = 1, where f (x) = ∑
ai xi , g(x) = ∑

bi xi ,
ai , bi ∈ R, then a0b0 = 1 so a0 is a unit.
On the other hand if a0 is a unit in R, one can set b0 = a−1

0 , and show inductively
that there exist solutions bi to

∑n

i=0
an−i bi = 0

in which each bi is a Z-linear combination of monomial words in a−1
0 and

{a1, a2, . . . , an}.]
3. Let R be a ring, and let M be the free commutative monoid on the two-element set

{x, y}. Thus M = {xi y j | i, j ∈ N}, where, as usual, we employ the convention
that when the natural number zero appears as an exponent, one reads this as the
monoid identity element. (Note that M can also be identified with the monoid of
multisets over {x, y}) The monoid algebra RM is usually denoted by R[x, y] :=
RM and is called a polynomial ring in two commuting indeterminates. Elements
can be written as finite sums of the form

f (x, y) =
∑

i, j≥0

ai j xi y j , ai j ∈ R.

On the other hand, the polynomial ring construction can clearly be iterated,
giving the polynomial ring R[x][y] := (R[x]) [y]. Show that these rings are
isomorphic.

4. (a) Suppose M and N are monoids with identity elements 1M and 1N (the
monoid operation in both cases is multiplication and is denoted by juxta-
position of its arguments). A monoid homomorphism from M to N is a
mapping φ : M → N with the property that φ(1M ) = 1N and φ(m1m2) =
φ(m1)φ(m2) for all elements m1,m2 ∈ M . Fix a ring R and form the
monoid rings RM and RN . Consider the mapping ρ(φ) : RM → RN
which is defined by

∑
m∈M

rm · m �→
∑

m∈M
rmφ(m),

where rm ∈ R and as usual, the elements rm are non-zero for only finitely
many m’s. Show that ρ(φ) is a ring homomorphism. Show that ρ(φ) is one-
to-one (onto) if and only if φ is one-to-one (onto). In particular, if φ is an
automorphism of M , then ρ(φ) is an automorphism of RM .
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(b) Similarly we may define an antiautomorphism of the monoid M to be a
bijection τ : M → M such that τ (m1m2) = τ (m2)τ (m1). Prove that τ
must fix the identity element 1M . In addition, let α be an antiautomorphism
of the ring R. Let the mapping ρ(α, τ ) : RM → RM be defined by

∑
m∈Supp f

f (m)m �→
∑

m∈Supp f
f (m)σmτ .

Show that ρ(σ, τ ) is an antiautomorphism of the monoid ring RM .
(c) Let rev : M(X) → M(X) be the antiautomorphism of the free monoid on

X which rewrites each word with the letters appearing in reverse order. Thus
rev(x1x2 · · · xn) = xn xn−1 · · · x2x1. Show that if R is a commutative ring,

then the mapping β : R{X} → R{X} defined by

∑
w∈M(X)

rww →
∑

w∈W
rw rev(w),

is an antiautomorphism of the ring R{X}. (Here as usual, the rw are ring
elements which are non-zero for only finitely many words w.)

(d) Let β be the antiautomorphism of the preceding part of this exercise. Show
that the subset CR{X}(β) of polynomials left fixed by β are the R-linear
combinations of the palindromic words, and, if |X | > 1, that this set is not
closed under multiplication.

5. Suppose X is a finite set, and R[X ] is the ring of polynomials whose commuting
indeterminates are the elements of X . We suppose B is a ring which is either
the zero ring or contains R in its center. Suppose φ : X → B is any mapping
into the commutative ring B. As in Theorem 7.3.3, we define the mapping φ̂ :
R[X ] → B which maps every polynomial

∑
m∈M amm (with only finitely many

of the coefficients am in R nonzero) to the element
∑

m amφ(m). This mapping
simply substitutes φ(xi ) for xi in each polynomial in R[X ] and xi ∈ X Show
that φ̂ possesses the following properties:

φ̂(b1 + b2) = φ̂(b1) + φ̂(b2)

φ̂(b1b2) = φ̂(b1)φ̂(b2)

φ̂(rb) = r φ̂(b)

for any b.b1, b2 in B and any r in R.
6. Let α : X → B ⊆ CS(R) be a mapping from a set X into a set B which is

contained in the centralizer, in ring S, of a subring R.

(a) Show that the corresponding evaluation mapping

E∗
α : R{X} → S

is a ring homomorphism. (See p. 204 for definitions.)
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(b) (Uniqueness) If we regard X as the set of words of length one in the free
monoid on X , show that E∗

α is the unique ring homomorphism h : R{X} →
S which extends the given mapping α : X → B. [Show that h(p) = E∗

α(p)
for each polynomial p.]

7. Let X = {x1, . . . , xn} be any non-empty finite set. Recall that M(X) denotes the
free monoid on the set X—that is, the set of all “words” of finite length in the
alphabet X with the concatenation operation. Also one may recall that M(X) is
the additive monoid of multisets of X—that is, sequences (a1, . . . , an) of non-
negative integers. Define the “letter inventory mapping” κ : M(X) → M(X)

where, for a word w,
κ(w) = (a1, . . . , an)

if and only if, for each i , the letter xi occurs exactly ai times in the word w. Show
that κ is a monoid homomorphism (as defined in the first part of Exercise 4).
From the same exercise, conclude that for any commutative ring R, the mapping
κ extends to an R-homomorphism of rings R{X} → R[X ].

8. Let R be a subring of ring S and let B be a set of pairwise commuting elements
of CS(R). Suppose α : X → B is a mapping of set X into B.

(a) Show that the mapping Eα : R[X ] → S defined on p. 204 is a homomor-
phism of rings.

(b) (Uniqueness) Show that if X is regarded as a subset of R[X ] (namely as the
set of those monomials which are words of length one), then for any ring
homomorphism ν : R[X ] → S which extends α : X → B, one must have
ν = Eα.

9. Again let α : X → B be a mapping of set X into B, a collection of pairwise
commuting elements of the centralizer in ring S of its subring R. Let κ be the
monoid homomorphism of Exercise 7 and let

ρ(κ) : R{X} = RM(X) → RM(X) = R[X ]

be its extension to the monoid rings as in Exercise 4. Show that

E∗
α = Eα ◦ ρ(κ).

[Hint: Use the uniqueness of E∗
α.]

10. Let n be a positive integer. Suppose A = (ai j ) is an n × n matrix with entries
drawn from the ring R. For j ∈ {1, . . . , n}, let e j be the n-tuple of R(n) whose
j th entry is 1 ∈ R, the multiplicative identity of R, and all of whose remaining
entries are equal to 0 ∈ R. The matrix A is said to be R-invertible if and only if
each e j is an R-linear combination of the rows of A. Let X = {x1, . . . , xn}, and
let

σ(A) : R[X ] → R[X ]
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which replaces each polynomial p(x1, . . . , xn) by the polynomial

p
(∑

a1i xi ,
∑

a2i xi , . . . ,
∑

ani xi

)
,

the parameter i in each sum ranging from 1 to n. Show that if A is R-invertible,
then σ(A) is an automorphism of R[X ]. [Hint: Use the evaluation homomor-
phism Eα for an appropriate triplet (α, B, S). Then show that it is onto.]

11. Let G be a finite group, let F be a field, and let χ : G → F× be a homomorphism
of G into the multiplicative group F× := F\{0}. Define the element εχ =∑
g∈G

χ(g−1)g ∈ FG and show that ε2
χ = |G|εχ.

12. Same assumptions as the above exercise. Show that the element εχ, commutes
with every element of FG by showing that for all g ∈ G, gεχ = χ(g)εχ.

7.5.4 Exercises for Sect. 7.4

1. Let {Rσ}σ∈I be a family of rings and let P = ∏
σ∈I Rσ be the direct product of

these rings. If K is any subset of the index set I , set PK := { f ∈ P | f (σ) =
0 for all σ �∈ K }. Show that PK forms a (two-sided) ideal of P .

2. Let X be a set and let R be a ring. In Example 38 we defined the ring of functions
RX . Prove that

RX ∼=
∏
x∈X

Rx ,

where Rx � R for each x ∈ X .
3. Prove that any non-zero subring of an integral domain contains the multiplicative

identity element of the domain. [Hint: use Lemma 7.4.4.]
4. Prove that the polynomial ring Z[x] is not a principal ideal domain by showing

that the ideal I := 2Z[x] + xZ[x] is not a principal ideal.
5. Let d be a positive integer congruent to −1 modulo 4 and consider the integral

domain
D := {a + b

√−d| a, b ∈ Z}

whose operations are inherited as a subring of the complex number field C. Show
that the ideal I := 2D + (1 +√−d)D is not a principal ideal.

6. Suppose ω = e2iπ/3 = (−1 − √−3)/2, so ω is a complex number satisfying
the identity: ω2 = −ω − 1. On p. 189 and again on p. 218 we introduced the
Eisenstein numbers, the integral domain Z[ω]. Show that the mapping Z[ω] →
Z[ω] defined by

a + bω �→ a + bω2, a, b ∈ Z

is an automorphism of this ring.
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7. Let τ : M2(C) → M2(C)be the composition of the transpose antiautomorphism,
T , and the automorphism m(c) induced by complex conjugation (c : C → C)
of the matrix entries. (See Example 41 for notation and the fact that τ = c ◦ T =
T ◦c.) Let H = {h(α,β)|(α,β) ∈ C×C} be the ring of real quaternions viewed
as a subring of M2). (See p. 215.)

(a) Show that as an antiautomorphism of M2(C), that τ2 is the identity
automorphism—that is, τ is an involution.

(b) Show that H is invariant under this antiautomorphism.
(c) Establish that h(α,β)τ = h(αc,−β) and conclude that the centralizer in H

of the antiautomorphism τ (that is, its fixed points) is the center of H, the
set RI2 = {h(r, 0)|r ∈ R}, the real multiples of the 2-by-2 identity matrix.

(d) Show that for any h ∈ H, D(h) := hhτ is a “real” element—that is an
element of the center Z(H). [Hint: Show that hhτ is fixed by τ .]

(e) Compute that D(h(α,β)) = N (α) + N (β) = det (h(α,β)).
(f) Show that D(h1h2) = D(h1)Dh2), for all h1, h2 ∈ H. [Hint: Use the fact

that τ is an antiautomorphism of H and that D(H) is in the center of H.]
(g) Let

H|Z := {h(α,β)|α,β Gaussian integers}.

Show that H|Z is a subring of H which is also invariant under the antiauto-
morphism τ . [Hint: Just check the rules for multiplying and applying τ for
the quaternionic numbers h(α,β).]

(h) Using the previous two steps, prove that the set of integers which are the
sum of four perfect squares, is closed under multiplication. (This set turns
out to include all natural numbers.)
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Chapter 8
Elementary Properties of Modules

Abstract One way to study rings is through R-modules, which (in some possi-
bly non-faithful way) serve to “represent” the ring. But such a view is restrictive.
With R-modules one enjoys an increased generality. Any property possessed by an
R-module can conceivably apply to the ring R itself, as a module over itself. Also,
any universal property gains a greater strength, when one enlarges the ambient realm
in which the property is stated—in this case from rings R, to their R-modules. This
chapter still sticks to basics: homomorphisms, submodules, direct sums and products
and free R-modules. Beyond that, chain conditions on the poset of submodules can
be seen to have important consequences in two areas: endomorphisms of modules,
and their generation. The former yields the Krull-Remak-Schmidt Theorem con-
cerning the uniqueness of direct decompositions into indecomposable submodules,
while, for the latter, the ascending chain condition is connected with finite generation
via Noether’s Theorem. (The existence of rings of integral elements is derived from
this theorem.) The last sections of the chapter introduce exact sequences, projec-
tive and injective modules, and mapping properties of Hom(M, N )—a hint of the
category-theoretic point of view to be unfolded at the beginning of Chap.13.

8.1 Basic Theory

8.1.1 Modules over Rings

Fix a ring R. A left module over R or left R-module is an additive group M = (M,+),
which admits a composition (or scalar multiplication)

R × M → M

(which we denote as a juxtaposition of arguments, as we do for multiplication in R)
such that for all elements a, b ∈ R, m, n ∈ M ,

a(m + n) = am + an (8.1)

(a + b)m = am + bm (8.2)
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(ab)m = a(bm) (8.3)

1 · m = m, (8.4)

where 1 denotes the multiplicative identity element of R. It follows from 0R + 0R =
0R that for any element m of M , 0Rm + 0Rm = 0Rm. Thus 0Rm = 0M for any
m ∈ M . Here, of course, 0R denotes the additive identity of the additive group (R,+)

while 0M denotes the additive identity of the additive group (M,+).
A right R-module is an additive group M = (M,+) admitting a right composition

M×R → M , such that, subject to the same conventions of denoting this composition
by juxtaposition, we have for all a, b ∈ R, m, n ∈ M ,

(m + n)a = ma + na (8.5)

m(a + b) = ma + mb (8.6)

m(ab) = (ma)b (8.7)

m1 = m. (8.8)

Again we can easily deduce the identities

m0R = 0M (8.9)

m(−a) = −(ma) (8.10)

where 0R and 0M are the additive identity elements of the groups (R,+) and (M,+),
and where m is an arbitrary element of M .

Notice that for a left R-module, M , the set {r ∈ R|r M = 0} is a 2-sided ideal
of R. It is called the left annihilator of M . Similarly, for a right R-module M the
set {r ∈ R|Mr = 0} is also a 2-sided ideal, called the right annihilator of M. In
either case (left module or right), the module is said to be faithful if and only if the
corresponding annihilating ideal is the 0-ideal. (See Exercise (3) in Sect. 8.5.1.)

8.1.2 The Connection Between R-Modules and
Endomorphism Rings of Additive Groups

Consider first a left R-module M . For each element r ∈ R, the mapping ρ(r) :
(M,+) → (M,+) defined by m �→ rm, is an endomorphism of the additive group
(M,+). (This is a consequence of Eq. (8.1).) As remarked in Example 41 of Chap.7,
the set End(M) of all endomorphisms of the additive group (M,+) forms a ring
under point-wise addition of endomorphisms and composition of endomorphisms.
Now for any elements r, s in the ring R and m ∈ M , Eq. (8.3) yields

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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ρ(rs)m = (rs)m = r(sm) = ρ(r)[ρ(s)(m)] = (ρ(r) ◦ ρ(s))(m).

Thus
ρ(rs) = ρ(r) ◦ ρ(s). (8.11)

Similarly, Eq. (8.2) yields
ρ(r + s) = ρ(r) + ρ(s). (8.12)

These equations tell us that ρ : R → End(M) is a homomorphism of rings.
Notice that ker ρ = {r ∈ R|r M = 0}, is the left annihilator of M as defined in

the previous subsection.
Conversely, if we are given such a ring homomorphism ρ : R → End(M), where

M is an additive group, then M acquires the structure of a left R-module by setting
rm := ρ(r)(m), for all r ∈ R, m ∈ M .

In the same vein, a right R-module structure on the abelian group (M,+) is equiv-
alent to specifying a ring homomorphism R → Opp(R)(End(M)) Here Opp(R) is
the additive group of all endomorphisms of M endowed with a multiplication ◦o

where, for any endomorphisms α and β,

α ◦o β = β ◦ α,

the endomorphism obtained by first applying α and then applying β in that chrono-
logical order. (See Example 40.)

Remark At times one might wish to convert a left R-module to a right S-module, or
the reverse. We have the following constructions:

Suppose R and S are rings whose multiplicative identity elements are denoted eR

and eS , respectively.

1. Let M be a left R-module. Suppose ψ : S → Opp(R) is a ring homomorphism
for which ψ(eS) = eR . For each m ∈ M , and s ∈ S define

ms := ψ(s)m.

Sinceψ(s) ∈ R, and M is a left R-module, the right side is a well-defined element
of M . With multiplication M × S → M in this way, it is easy to show that M
becomes a right S module.

2. Similarly if M is a right S module, then, from a ring homomorphism φ : R →
Opp(S) for which φ(eR) = eS , one may convert M into a left R-module.

Proof of the appropriate module axioms is requested in Exercises in Sect. 8.5.2.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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8.1.3 Bimodules

Finally, there is a third type of module, an (R,S)-bimodule. Here M is a left
R-module and at the same time a right S-module, and the left and right
compositions are connected by the law

r(ms) = (rm)s, for all (r, m, s) ∈ R × M × S. (8.13)

Although this resembles a sort of “associative law”, what it really says is that every
endomorphism of M induced by right multiplication by an element of ring S com-
mutes with every endomorphism induced by left multiplication by an element of ring
R. We shall consider bimodules in more detail later, especially in our discussions of
tensor products (see Sect. 13.3).

Here are some examples of bimodules.

Example 1 Let T be a ring and let R and S be subrings of T , each containing the
multiplicative identity element eT of T . Then (T,+) is an additive group, which
admits a composition T × S → T . It follows directly from the ring axioms, that with
respect to this composition, T becomes a right S module. We denote this module by
the symbol TS when we wish to view T in this way.

Also, (T,+) admits a composition R × T → T with respect to which T becomes
a left R-module which we denote by R T .

Finally (T,+) admits a composition

S × T × R → T

inherited directly from ring multiplication. With respect to this composition T
becomes an (R, S)-bimodule, which we denote by the symbol R TS . Notice that
here, the special law for a bimodule (Eq.8.13) really is the associative law of T
(restricted to certain triples, of course). (Note that in this example, T can be replaced
by any 2-sided ideal I , to form a (R, S)-bimodule R IS .)

Example 2 If R is a commutative ring, and if M is a right R-module, we may define
a left R-module structure on M by defining r · m := mr, r ∈ R, m ∈ M . Note that
the commutativity of R guarantees the validity of condition (8.3) since

r(ms) = r(sm) = (rs)m = m(rs)(mr)s = (rm)s. (8.14)

Thus we see that M is also an (R, R)-bimodule. Bimodules constructed in this way
have a role to play in defining multiple tensor products and the tensor algebra (pp.
481–493), and for this reason we give them a special name: symmetric bimodules.

http://dx.doi.org/10.1007/978-3-319-19734-0_13
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Example 3 Here is a simple variation on the preceding example. Let σ be an auto-
morphism of the commutative ring R. Then a right R-module M can be converted
into an (R, R)-bimodule by declaring that mr = rσm for all (m, r) ∈ M × R.
(One simply emulates the sequence of Eq. (8.14) applying σ or its inverse when ring
elements pass to the left or right over module elements.)

Remark In these two examples, the commutativity of R is more or less forced. For
suppose M is an arbitrary right R-module andσ is automorphismof the additive group
(R,+). If we attempt to convert M into an (R, R)-bimodule by the rule mr = rσm
for all (m, r) ∈ M × R, three conclusions are immediate: (i) σ is easily seen to be
an antiautomorphism of R (that is, (rs)σ = sσrσ), (ii) σ takes the right annihilator
of MR , that is, the two-sided ideal I = AnnR(MR) := {r ∈ R|Mr = 0}, to the left
annihilator I σ = AnnR(RM), and (iii) that the factor ring R/I is commutative. Thus
if I = I σ , we have recovered Example 3 above with R replaced by R′ := R/I .

8.1.4 Submodules

Fix a (right) R-module M . A submodule is an additive subgroup of (M,+) that is
closed under all scalar multiplications by elements of R.

It is easy to see that a subset N is a submodule of the right R-module M , if and
only if

(i) N + N = N
(ii) −N = N , and
(iii) NR ⊆ N .

It should be remarked that the last containment is actually the equalityNR = N , since
right multiplication by the identity element 1R induces the identity endomorphism
of N .

Suppose now N = {Nσ|σ ∈ I } is a family of submodules of the right R-module
M . The intersection ⋂

σ∈I

Nσ

of all these submodules is clearly a submodule of M . This is the unique supremum
of the poset of all submodules contained in all of the submodules in N .

Now let X be an arbitrary subset of the right R-module M . The submodule
generated by X is defined to be the intersection of all submodules of M which contain
the subset X and is denoted 〈X〉R . From the previous paragraph, this intersection is
the unique smallest submodule in the poset of all submodules of M which contain X .

This object has another description. Let X̄ be the set of all elements of M which
are finite (right) R-linear combinations of elements from X—that is elements of the
form x1r1 + · · · + xnrn where n is any natural number, the xi belong to X and the r j

belong to the ring R. Then X̄ is a subgroup (recall that x(−1R) = −x) and X̄ R = X̄ ,
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so X̄ is a submodule. On the other hand, it must lie in any submodule which contains
X and so must coincide with 〈X〉R .

In the case that X = {x1, . . . , xn} is a finite set,

X̄ = x1R + · · · + xn R.

A right R-module is said to be finitely generated if and only if it is generated by a
finite set. Thus right R-module N is finitely generated if and only if

N = x1R + · · · + xn R

for some finite subset {x1, . . . xn} of its elements.
Now once again let N = {Nσ|σ ∈ I } be a family of submodules of the right

R-module M . The sum over N is the submodule of M generated by the set-theoretic
union ∪{N |N ∈ N } of all the submodules in the familyN and is denoted

∑
σ∈I Nσ .

It is therefore the set of all finite R-linear combinations of elements which lie in
at least one of the submodules in N . But of course, as each submodule is invariant
under right multiplication by elements of R, this simply consists of all finite sums of
elements lying in at least one module of the family. In any event, this is the unique
member of the set of all submodules of M which contain every member of N .

We summarize this information in

Lemma 8.1.1 Let R be a ring, and let M be a left R-module. The poset of all submod-
ules of M (with containment as the partial order) is a lattice with unrestricted meets
and joins, given respectively by the intersection and sum operations on arbitrary
families of submodules.

Obviously, a corresponding lemma holds for the poset of submodules of a given
left module over some ring R.

8.1.5 Factor Modules

Now suppose N is a submodule of the right R-module M . Since N is a subgroup
of the additive group (M,+), we may form the factor group M /N whose elements
are the additive cosets x + N , x ∈ M of N . Next, define an R-scalar multiplication
M /N × R → M /N by setting (x + N )r := xr + N . That this is well defined is
an immediate consequence of the fact that Nr ⊆ N for each r ∈ R. Showing the
remaining requisite properties (8.5)–(8.8) is equally routine, completing the defini-
tion of the quotient right R-module M /N . Again, this construction can be duplicated
for left R-modules: For each submodule N of a left R-module M , we obtain a left
R-module M /N .
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8.1.6 The Fundamental Homomorphism Theorems
for R-Modules

Suppose M and N are right R-modules (for the same ring R). An R-module homo-
morphism M → N is a homomorphism f : (M,+) → (N ,+) between the under-
lying additive groups, such that

f (m)r = f (mr), (8.15)

for all m ∈ M and all r ∈ R. In other words, these are group homomorphisms which
commute with the right multiplications by each of the elements of the ring R.

It follows from the definition that the composition β ◦ α of two module homo-
morphisms α : A → B and β : B → C , is an R-homomorphism A → C .

Before going further, we will find it convenient to adopt a common visual-
linguistic device for discussing compositions of homomorphisms. Suppose α : A →
B, β : B → C and γ : A → C are homomorphisms. This data is assembled in the
following diagram:

B

A C

�

�

�
�

�
�

���

βα

γ

We say that the “diagram commutes” if and only if γ = β ◦ α, the composition
of α and β.

We use similar language for square diagrams:

A
γ−−−−→ C

α
⏐⏐� ⏐⏐�δ

C
β−−−−→ D

Again, such a diagram “commutes” if and only if δ ◦ γ = β ◦ α.
The adjectives which accrue to an R-homomorphism are exactly those which are

applicable to it as a homomorphism of additive groups: Thus the R-homomorphism
f is

• an R-epimorphism
• an R-monomorphism
• an R-isomorphism



238 8 Elementary Properties of Modules

if and only if f is an epimorphism, monomorphism, or isomorphism, respectively,
of the underlying additive groups.

We define the kernel of an R-homomorphism f : M → N among right
R-modules, simply to be the kernel of f as a homomorphism of additive groups.
Explicitly, ker f is the set of all elements of M which are mapped to the addi-
tive identity 0N of the additive group N . But the equation 0N R = 0N shows
that if x lies in ker f , then the entire set x R must be contained in ker f since
f (x R) = f (x)R = 0N R = 0N . Thus the kernel of an R-homomorphism must
be an R-submodule. At the same time, the image, f (M) ⊆ N of the homomorphism
is easily checked to be a submodule of N . Note finally that if K ⊆ M is a submodule
of M , then there exists a surjective homomorphism π : M → M /K , defined by set-
ting π(m) := m + K ∈ M /K , m ∈ M . This is called the projection homomorphism
of M onto M /K .

The student should be able to restate the obvious analogues of the above definitions
for left R-modules as well.

Now we can state

Theorem 8.1.2 (The Fundamental Theorem of Module Homomorphisms) Suppose
f : M → N is a homomorphism of right (left) R-modules.

(i) If K ⊆ ker f is a submodule of M, then the mapping f̄ : M/K → N defined
by setting f̄ (m + K ) := f (m) is a well-defined module homomorphism making
the diagram below commute:

M/K

M N

�

�

�
�

��
π f̄

f

(ii) If K = ker f , then the homomorphism f̄ : M/K → f (M) is an isomorphism.

Proof We have already seen that the mapping f̄ : M /K → N is a well-defined
homomorphism of abelian groups. However, as

f̄ ((x + K )r) = f (xr) = f (x)r = ( f̄ (x + K ))r,

we infer that f̄ is also an homomorphism of R-modules, proving part (i). Note that if
K = ker f , thenwe again recall that the induced homomorphism f̄ : M /K → f (M)

is an isomorphism of abelian groups. Frompart (i) f̄ is an R-module homomorphism,
proving part (ii). �

Theorem 8.1.3 (i) (The Correspondence Theorem for R-modules.) If f : M →
N is an R-epimorphism of right (left) R-modules, then there is a poset isomor-
phism between S(M, ker f ), the poset of all submodules of M which contain
ker f and the poset S(N , 0N ) of all submodules of N .
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(ii) (The Composition Theorem for R-modules.) Suppose A ≤ B ≤ M is a chain
in the poset of submodules of a right (left) R-module M. Then there is an
R-isomorphism

M/A → (M/B)/(B/A)

Proof If N ′ ∈ S(N , 0N ), then f −1(N ′) ∈ S(M, ker f ) and f f −1(N ′) = N ′. On the
other hand, if M ′ ∈ S(M, ker f ) and if M ′′ = f −1 f (M ′′), then f −1 f (M ′′) ⊇ M ′′.
However, if there exists an element m ∈ f −1 f (M ′′)\M ′′, then f (m) = f (m′′)
for some m′′ ∈ M ′′. But then, m − m′′ ∈ ker f , forcing m − m′′ ∈ M ′′ and so
m ∈ M ′′, a contradiction. Therefore the homomorphism f establishes a bijection
S(M, ker f ) → S(N , 0N ), proving part (i).

For part (ii), note that the projection homomorphism p : M → M /A contains

the submodule B in its kernel. Therefore, the induced mapping M /B
p̄−→ M /A is

a well-defined surjective R-module homomorphism. However, since it is clear that
ker p̄ = A/B, we may apply Theorem 8.1.2 to infer that (M /B)/(A/B) ∼= M /A,
proving part (ii). �

Theorem 8.1.4 (The Modularity Theorem for R-modules.) Suppose A and B are
submodules of the right (left) R-module M. Then there is an R-isomorphism

(A + B)/A → B/(B ∩ A).

Proof We have the composite homomorphism

B ↪→ A + B
π−→ (A + B)/A,

whose kernel is obviously B ∩ A. Since every element of (A + B)/A is of the form
(a + b) + A = b + A, a ∈ A, b ∈ B, we infer that the above homomorphism is
also surjective. Now apply Theorem 8.1.3, part (ii). �

8.1.7 The Jordan-Hölder Theorem for R-Modules

An R-module is said to be irreducible if and only if its only submodules are itself
and the zero submodule—that is, it has no proper submodules.

Let Irr(R) denote the collection of all isomorphism classes of non-zero irreducible
R modules. Suppose M is a given R-module, and let P(M) be the lattice of all its
submodules. Recall that an interval [A,B] in P(M) is the set {C ∈ P(M)|A ≤ C ≤
B} (this is considered to be undefined if A is not a submodule of B). Therefore, in
this context, a cover is an interval [A, B] such that A is a maximal proper submodule
of B. Finally, recall that a non-empty interval [A, B] is said to be algebraic if and
only if there exists a finite unrefinable chain of submodules from A to B.
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Because of the Correspondence Theorem for R-modules (Theorem 8.1.3), we see
that (A, B) is a cover if and only if B/A is a non-trivial irreducible R-module. Thus
we have a well-defined mapping

μ : Cov(P(M)) → Irr(R),

from the set of all covers in the lattice P(M) to the collection of all non-zero irre-
ducible R-modules. If A1 and A2 are distinct proper submodules of a submodule B,
with each Ai maximal in B, then A1 + A2 = B, and by the Modularity Theorem
for R-modules (Theorem 8.1.4), A2/(A1 ∩ A2) (being isomorphic to B/A1) is an
irreducible R-module. Thus if {[A1, B], [A2, B]} ∈ Cov(P(M)) and A1 �= A2, then
[A1 ∩ A2, Ai ], i = 1, 2 are also covers. This is the statement that

• The poset P(M) of all submodules of the R-module M , is a semi-modular lattice.

At this point the Jordan-Hölder Theorem (Theorem 2.5.2 of Chap.2) for semi-
modular lower semilattices, implies the following:

Theorem 8.1.5 (Jordan-Hölder Theorem for R-modules.) Let M be an arbitrary
R-module, and let P(M) be its poset of submodules.

(i) Then the mapping
μ : Cov(P(M)) → Irr(R),

extends to an interval measure

μ : Alg(P(M)) → M(Irr(R)),

from the set of all algebraic intervals of P(M) to the monoid of multisets over
the collection of all isomorphism classes of non-trivial irreducible R-modules.
Specifically, the value of this measure μ at any algebraic interval [A, B], is
the multiset which inventories the collection of irreducible modules Ai+1/Ai

which appear for any finite unrefinable chain A = A0 < A1 < · · · < Ak = B
according to their isomorphism classes. The multiset of isomorphism classes of
irreducible modules is the same for any such chain.

(ii) Suppose M itself possesses a composition series—that is, there exists a finite
unrefinable properly ascending chain of submodules beginning at the zero sub-
module and terminating at M. The composition factors are the finitely many
non-trivial irreducible submodules formed from the factors between successive
members of the chain. Then the collection of irreducible modules so obtained
is the same (up to isomorphism) with the same multiplicities, no matter what
composition series is used. In particular all composition series of M have the
same length.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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8.1.8 Direct Sums and Products of Modules

Let I be any index set, and let {Mσ|σ ∈ I } be a family of right R-modules indexed
by I . Recall that the direct product of the additive groups (Mσ,+) is the collection
of all functions

f : I →
⋃
σ∈I

Mσ (disjoint union)

subject to the condition that f (σ) ∈ Mσ for each σ ∈ I . This had the structure of an
additive group

∏
σ∈I

Mσ with addition defined “coordinatewise,” i.e., ( f + g)(σ′) =
f (σ′) + g(σ′), f, g ∈ ∏

Mσ, σ′ ∈ I . Here, since each Mσ is an R-module,
∏

Mσ

can be endowed with the structure of a right R-module, as follows. If f ∈ ∏
Mσ, and

r ∈ R, we define f r ∈ ∏
Mσ to be the function defined by f r(σ) := f (σ)r. The

right R-module so defined is called the direct product over the family {Mσ | σ ∈ I }
of R-modules.

The direct sum of the family {Mσ | σ ∈ I } of R-modules is the submodule of∏
Mσ consisting of all functions f ∈ ∏

Mσ such that f (σ) �= 0Mσ for only finitely
many σ ∈ I . (This is easily verified to be a submodule of

∏
Mσ .)

The direct product
∏

Mσ comes equipped with a family of projection homomor-
phisms πσ′ : ∏

Mσ → Mσ′ , σ′ ∈ I , defined by setting πσ′( f ) = f (σ′) ∈ Mσ′ .
Likewise the direct sum comes equipped with a family of coordinate injections
μσ′ : Mσ′ → ∏

Mσ , defined by the rule μσ′(mσ′) := fσ′ ∈ ∏
Mσ , where

fσ′(σ) =
{

mσ′ if σ = σ′

0 if σ �= σ′.

The direct sum of the R-modules Mσ, σ ∈ I is denoted
⊕
σ∈I

Mσ; again, note that this

is a submodule of the direct product
∏
σ∈I

Mσ . These projection and injection homo-

morphisms satisfy certain “universal conditions;”which are expounded in Sect. 8.4.1.
We note that each μσ′(Mσ′) ∼= Mσ′ ; furthermore it is routine to verify that⊕
Mσ = ∑

μσ(Mσ) ⊆ ∏
Mσ .

As was the case for abelian groups, when I is a finite set, say, I = {1, . . . , n}, the
notions of direct product and direct sum coincide, and we write

n∏
i=1

Mi =
n⊕

i=1

Mi = M1 ⊕ M2 ⊕ · · · ⊕ Mn .

Let M be a right R-module and assume that {Mσ |σ ∈ I } is a family of submodules
with M = ∑

σ∈I Mσ . We have a natural surjective homomorphism p : ⊕
Mσ →∑

Mσ via
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p( f ) :=
∑
σ∈I

f (σ) ∈
∑
σ∈I

Mσ. (8.16)

Since f ∈ ⊕
Mσ implies that f (σ) �= 0 for only finitely many σ ∈ I , we see that

the sum in Eq. (8.16) makes sense (being a finite sum). Again, the verification that
p is a surjective R-module homomorphism is entirely routine. When p is injective
(and hence is an isomorphism), we say that M = ∑

Mσ is an internal direct sum
of the submodules Mσ, σ ∈ I ; when there is no danger of confusion, we shall write∑

Mσ = ⊕
Mσ .

Theorem 8.1.6 (How To Recognize Direct Sums Internally) Let M be a right
R-module and let {Mσ | σ ∈ I } be a family of submodules. Then M = ⊕

Mσ if and
only if

(i) M =
∑
σ∈I

Mσ , and

(ii) for each σ ∈ I, Mσ ∩
∑
ν �=σ

Mν = 0.

Proof Assuming conditions (i) and (ii) above, it suffices to show that the homomor-
phism p : ⊕

Mσ → M = ∑
Mσ defined above is injective. Thus, let f ∈ ⊕

Mσ ,
and assume that p( f ) = ∑

f (σ) = 0. But then, for any σ ∈ I ,

f (σ) = −
∑
ν �=σ

f (ν) ∈ Mσ ∩
∑
ν �=σ

Mν = 0;

since σ ∈ I was arbitrary, we conclude that f = 0, proving that p : ⊕
Mσ → M is

injective.
Conversely, assume that p : ⊕

Mσ → M is an isomorphism. Then, as
p(

⊕
Mσ) = ∑

Mσ , we conclude already that M = ∑
Mσ . Next, if m ∈

Mσ ∩
∑
ν �=σ

Mν , we have elements mσ′ ∈ Mσ′ , σ′ ∈ I satisfying mσ = −
∑
ν �=σ

mν . But

then, if we define f ∈ ⊕
Mσ by f (σ′) := mσ′ , σ′ ∈ I , we conclude that f ∈ ker p,

a contradiction. �

Hypothesis (ii) of the preceding Theorem 8.1.6 can be relaxed when the collection
of potential summands is finite.

Corollary 8.1.7 (Recognizing finite internal direct sums) Suppose {M1, . . . , Mn}
is a collection of submodules of the right R-module M and suppose they “span”
M—that is, M = ∑n

i=1Mi . Then M � M1 ⊕ · · · ⊕ Mn if and only if, for each i ,
1 ≤ i ≤ n − 1, one has

Mi+1 ∩
∑i

j=1
M j = 0.

The proof is left as Exercise (4) in Sect. 8.5.1.
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8.1.9 Free Modules

Let M be a right R-module, and let B be a subset of M . An R- linear combination
of elements of B is any expression of the form

∑
b∈B

brb ∈ M , where each rb ∈ R and

where only finitely many terms brb �= 0. We say that B spans M if each element of
M can be expressed as an R-linearly combination of elements in B. In this case, it is
clear that M =

∑
b∈B

bR.

The subset B ⊆ M is said to be R- linearly independent if the linear combination∑
brb = 0 if and only if each “scalar” rb = 0. Finally, we say that B is a basis of

M if and only if B is R-linearly independent and spans M .

Lemma 8.1.8 The following statements about a right R-module are equivalent:

(i) M has a basis.
(ii) There exists a subsetB of M such that each element of M is uniquely expressible

as an R-linear combination of elements of B.
(iii) M is a direct sum of submodules isomorphic to RR.

Proof (i) implies (ii). By (i) M contains a basis B, an R-linearly independent span-
ning set. If

∑
Bbiri and

∑
Bbi si were two R-linear combinations for the same ele-

ment m ∈ M , then their difference
∑

Bbi (ri − si )would be an R-linear combination
representing the module element 0. By the R-linear independence of B, one has
ri = si for all i , so the R-linear combinations for m are the same. Thus (ii) holds.

(ii) implies (i) Since we can always write 0 = ∑
Bbi · 0 the uniqueness of the

R-linear combinations of elements of B representing 0, establishes that B is an
R-linearly independent. Since B is presented as a spanning set, it is in fact a basis.

(iii) implies (ii). Suppose M is a direct sumofmodules isomorphic to RR . Then for
some set B, we can regard M as themodule of all functions f : B → R where f (b) �=
0 for only finitely many b ∈ B, under point-wise addition and right multiplications
by elements of R. For each such f let supp( f ) = {b ∈ B| f (b) �= 0}, a finite set.
Let B be the collection of functions {εb|b ∈ B} where εb(y) = 1R if y = b and is
0R otherwise (here 0R and 1R are the additive and multiplicative identity elements
of the ring R). Then for any function f we may write f = ∑

b∈supp( f )ε(b) f (b).

In case f = 0 ∈ M , each f (b) = 0. It follows that every element of the direct sum
has a unique expression as an R-linear combination of the functions in B. Thus (ii)
holds.

(i) Implies (iii) Now suppose the R-module M has a basis B. Suppose b ∈ B. Then
the uniqueness of expression means that for any r, s ∈ R, br = bs implies r = s.
Thus the map which sends br to r is a well-defined isomorphism bR → RR of right
R-modules. The directness of the sum M = ⊕b∈BbR follows from the uniqueness
of expression. Thus (iii) holds.

The proof is complete. �
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We hasten to warn the reader that a given R-module need not have a basis (or
even a nontrivial linearly independent set). One need only consider the case that M is
not a faithful module. At the other extreme, if R is any ring, the corresponding right
R-module M = RR has the basis {1}, where 1 is the multiplicative identity element
of R. (Note that, in fact, if u ∈ R is any unit (=invertible element) of R, then {u} is
a basis of R.)

A free (left) right R-module is simply an R-module having a basis—or equiva-
lently the other two properties of Lemma 8.1.8.

The fundamental universal property of free modules is the following.

Theorem 8.1.9 (TheUniversal Property of FreeModules) Let F be a free R-module
with basis B ⊆ F. Let M be an arbitrary R-module, and let mb, b ∈ B be arbitrary
elements of M. Then there exists a unique R-module homomorphism φ : F → M
such that φ(b) = mb, b ∈ B.

Proof The desired homomorphism φ : F → M will be defined in stages. First set
φ(b) = mb, for all b ∈ B. Next we set

φ

(∑
b∈B

brb

)
=

∑
b∈B

mbrb ∈ M. (8.17)

Note that Eq.8.17 produces a well-defined mapping F → M , since any element of
F has a unique representation as an R-linear combination of the basis elements in B.

Next, it must be shown that this mapping obeys the fundamental properties of an
R-homomorphism. Consider elements x, x ′ ∈ F , and if r, r ′ ∈ R. Since B is a basis
of F , there are unique representations

x =
∑
b∈B

brb, x ′ =
∑
b∈B

br ′
b

for suitable scalars rb, r ′
b ∈ R. Therefore,

φ(xr + x ′r ′) = φ

(∑
b∈B

brbr +
∑
b∈B

br ′
br ′

)

= φ

(∑
b∈B

b(rbr + r ′
br ′)

)

=
∑
b∈B

mb(rbr + r ′
br ′)

=
∑
b∈B

mbrbr +
∑
b∈B

mbr ′
br ′

= φ(x)r + φ(x ′)r ′,
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proving that φ is, indeed, a homomorphism of right R-modules. This proves the
result. �

The following result is very nearly obvious, but important nonetheless.

Theorem 8.1.10 Let M be an R-module. Then there exists a free R-module F and
a surjective homomorphism ε : F → M.

Proof Form the direct sum F =
⊕
m∈M

Rm , where each Rm � RR . From the above,

F is a free R-module having basis {em | m ∈ M} where the elements em are defined,
as usual, by requiring that

em′(m) =
{
1 if m′ = m

0 if m′ �= m.

Also, using Theorem 8.1.9, we see that there is a (unique) R-module homomorphism
ε : F → M with ε(em) = m, m ∈ M . Obviously, ε is surjective, completing the
proof. �

8.1.10 Vector Spaces

Let D be a division ring. A right D-module M is called a right vector space over
D. Similarly, a left D-module is a left vector space over D.

The student should be able to convert everything that we define for a right vector
space to the analogous notion for a left vector space. There is thus no need to go
through the discussion twice, once for left vector spaces and once again for right
vector spaces—so we will stick to right vector spaces for this discussion.

The elements of the vector space are called vectors.We say that a vector v linearly
depends on a set {x1, . . . , xn} of vectors if there exist elements α1, . . . ,αn ∈ D,
such that

v = x1α1 + · · · + xnαn .

Equivalently, v linearly depends on {x1, . . . , xn} if and only if v is contained in the
(right) submodule generated by x1, . . . , xn . Clearly from this definition, the following
properties hold:

Reflexive Property. x1 linearly depends on {x1, . . . , xn}.
Transitivity. If v linearly depends on {x1, . . . , xn} and each xi linearly depends

on {y1, . . . , ym}, then v linearly depends on {y1, . . . , ym}.
The Exchange Condition. If vector v linearly depends on {x1, . . . , xn} but not on

{x1, . . . , xn−1}, then xn linearly depends on {x1, . . . , xn−1, v}.
Thus linear dependence is a dependence relation as defined in Sect. 2.6.2. It fol-

lows from Theorems 2.6.2 and 2.6.3 that maximal linearly independent sets exist and

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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span V . Such a set is then a basis of V , and so it follows immediately that a vector
space over a division ring D is a free D-module. Next, by Theorem 2.6.4, any two
maximal linearly independent sets in the vector space V have the same cardinality.
Therefore this cardinality is an invariant of V and is called the dimension of V over
D and is denoted dimD(V ). Thus in particular, if V is a finitely generated D-module,
then it is finite dimensional.

The above discussion motivates the following general question. If M is a free
R-module over the arbitrary ring R, must it be true that any two bases of M have the
same cardinality? The answer is no, in general, but is known to be true, for example, if
the right R-module RR is Noetherian. (See Sect. 8.2 for the definition of Noetherian.
For the proof of a basis in this case, see [1], An Introduction to Homological Algebra,
Academic Press, 1979, Theorem 4.9, p. 111 [33].) If the ring R is commutative, then
we have the following affirmative result:

Theorem 8.1.11 If M is a free module over the commutative ring R, then any two
bases of M have the same cardinality.

Proof Wemay, using Zorn’s lemma, extract a maximal ideal J ⊆ R; thus F := R/J
is a field. Furthermore, one has that M /M J is an R/J -module, i.e., is an F-vector
space. Let B ⊆ M be an R-basis of M ; as we have just seen that the dimension of a
vector space is well defined, it suffices to show that the set B := {b + M J | b ∈ B}
is an F-basis of M /MJ. First, it is obvious that B spans M /MJ. Next, an F-linear
dependence relation

∑
bi ∈B(bi + M J )(ri + J ) = 0 translates into a relation of the

form
∑

biri ∈ M J . Therefore, there exist elements si ∈ J such that
∑

biri =∑
bi si ; but as the elements bi are R-linearly independent, we infer that each ri = si ,

i.e., that each ri ∈ J . Therefore, each ri + J = 0 ∈ F , proving that B is F-linearly
independent.

This shows that the cardinality of any basis of the free-module M is equal to the
dimension of the F-vector space M /MJ. �

As a result of Theorem 8.1.11, we see that we may unambiguously define the
rank of a free module over a commutative ring to be the cardinality of any basis.

8.2 Consequences of Chain Conditions on Modules

8.2.1 Noetherian and Artinian Modules

Let M be a right R-module. We are interested in the poset P(M) := (P,≤), of all
submodules of M , partially ordered by inclusion.We alreadymentioned in Sect. 8.1.7
that P(M) is a semimodular lower semi-lattice for the express purpose of activating
the general Jordan-Hölder theory. Actually, the fundamental homomorphism theo-
rems of Sect. 8.1.6 imply a much stronger property:

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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Theorem 8.2.1 The poset P(M) = (P,≤) of all submodules of a right R-module is
a modular lattice with a minimal element 0 (the lattice “zero”) and a unique maximal
element, M (the lattice “one”).

Recall from Sect. 2.5.4 that a lattice L is modular if and only if

(M) a ≥ b implies a ∧ (b ∨ c) = b ∨ (a ∧ c) for all a, b, c in L .

This condition is manifestly equivalent to its dual:

(M∗) a ≤ b implies a ∨ (b ∧ c) = b ∧ (a ∨ c) for all a, b, c in L .

In the poset P(M) the condition (M) reads:

If A, B, and C are submodules with B contained in A, then

A ∩ (B + C) = B + (A ∩ C).

This is an easy argument, achieved by showing that an arbitrary element of one side
is an element of the set described by the other side.

We say that the right R-module M is right Noetherian if and only if the poset
P(M) satisfies the ascending chain condition (ACC) (See Sect. 2.3.3). Recall from
Lemma 2.3.4 that this is equivalent to saying that any nonempty collection C of
submodules of M has a maximal member—that is, a module not properly contained
in any other module in C. This formulation will be extremely useful in the sequel.
Similarly, we say that a right R-module M is Artinian if and only if the poset P(M)

satisfies the descending chain condition (DCC). By Lemma 2.3.5 this is equivalent
to the assertion that any nonempty collection of submodules of M must contain a
minimal member.

Of course, there are left-module versions of these concepts: leading to “left-
Noetherian”, and “left-Artinian” modules. When it is clear that one is speaking in the
context of (left) right-R-modules, to say that a module is Noetherian is understood
to mean that it is (left) right Noetherian. Similarly, “Artinian” means “(left) right
Artinian” when speaking of (left) right R-modules.

Finally, the chain conditions enjoy certain hereditary properties:

Lemma 8.2.2 (i) Suppose N is a submodule of the right R-module M. Then M
is Noetherian (or Artinian), if and only if both M/N and N are Noetherian
(Artinian).

(ii) Suppose M = ∑n
i=1Ni , a finite sum of its submodules. Then M is Noetherian

(Artinian) if and only if each Ni is Noetherian (Artinian).
(iii) Let {Ai |i = 1, . . . , n} be a finite family of submodules of M. Then M/(A1 ∩

. . . ∩ An) is Noetherian (Artinian) if and only if each factor module M/Ai is
Noetherian (Artinian).

Proof These results are consequences of three facts:

1. The poset P(M) = (P,≤) of all submodules of a right R-module M is a modular
latticewith aminimal element 0 (the lattice “zero”) and auniquemaximal element,
M (the lattice “one”) (Theorem 8.2.1).

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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2. Purely lattice-theoretic results concerning chain conditions in a modular lattice
given in Sect. 2.5.4—in particular, Lemmas 2.5.6 and 2.5.7.

3. The Correspondence Theorem for Modules (Theorem 8.1.3, part (i)) which pro-
duces a isomorphism between the principle filter P(M)N and the poset P(M /N )

of submodules of the factor module M /N .

In Exercises (2–4) in Sect. 8.5.2, respectively, the reader is asked to supply formal
proofs of the three parts of the Lemma using the facts listed above. �

We say that the module M has a finite composition series if and only if there is a
finite unrefinable chain of submodules in P(M) proceeding from 0 to M . Now since
P(M) is a modular lattice, so are each of the intervals [A, B] := {X ∈ P(M)| A ≤
X ≤ B}. Moreover, from the modular property, we have that any interval [A, A+ B]
is poset isomorphic to [A ∩ B, B]. We then have:

Lemma 8.2.3 The following three conditions for an R-module M are equivalent:

(i) M has a finite composition series.
(ii) M is both Noetherian and Artinian.

(iii) Every unrefinable chain of submodules if finite.

Proof Note first that (i) implies (iii) by Theorem 2.5.5. Next, as any chain of submod-
ules is contained in an unrefinable chain by Theorem 2.3.1, we see immediately that
(iii) implies (ii). Finally, assume condition (ii). Then as M is Artinian, M contains a
minimal submodule, say M1. Again, as M is Artinian, the set of submodules of M
properly containing M1 has a minimal member, say M2. We continue in this fashion
to obtain an unrefinable chain 0 � M1 � M2 � . . . . Finally, since M is Noetherian,
this unrefinable chain must stabilize, necessarily at M , which therefore produces a
finite composition series for M . �

8.2.2 Effects of the Chain Conditions on Endomorphisms

The Basic Results

Let f : M → M be an endomorphism of the right R-module M . As usual, we regard
f as operating from the left. Set f 0 to be the identity mapping on M , f 1 := f and
inductively define f n := f ◦ f n−1, for all positive integers n. Then f n is always
an R-endomorphism, and so its image Mn := f n(M) and its kernel Kn := ker( f n)

are submodules. We then have two series of submodules, one ascending and one
descending:

0 = K0 ≤ K1 ≤ K2 ≤ . . .

M = M0 ≥ M1 ≥ M2 ≥ . . .

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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Lemma 8.2.4 Let f be an endomorphism of the right R-module M and let Kn :=
ker( f n) and Mn := f n(M) as above. The following statements hold:

(i) Mn = Mn+1 implies M = Mn + Kn.
(ii) Kn = Kn+1 implies Mn ∩ Kn = 0.

(iii) If M is Noetherian, then for all sufficiently large n, Mn ∩ Kn = 0.
(iv) If M is Artinian, then M = Mn + Kn for all sufficiently large n.
(v) If M is Noetherian and f is surjective, then f is an automorphism of M.

(vi) If M is Artinian and f is injective, then again f is an automorphism of M.

Proof (i) Since Mn = f (Mn) we have Mn = M2n . Suppose x is an arbitrary
element of M . Then f n(x) = f 2n(y), for some element y. But we can write x =
f n(y)+ (x − f n(y)). Now the latter summand is an element of Kn while the former
summand belongs to Mn . Thus x ∈ Mn + Kn , proving (i).

For (ii), suppose Kn = Kn+1, so that Kn = K2n . Choose x ∈ Kn ∩ Mn . Then
x = f n(y) for some element y, and so

0 = f n(x) = f 2n(y).

But as K2n = Kn , f 2n(y) = 0 implies f n(y) = 0 = x . Thus Kn ∩ Mn = 0.
(iii) If M is Noetherian, the ascending series K0 ≤ K1 ≤ . . . must stabilize at

some point, so there exists a natural number n such that Kn = Kn+1. By part (ii),
Mn ∩ Kn = 0, and so (iii) holds.

(iv) If M is Artinian, the descending series M0 ≥ M1 ≥ M2 . . . eventually
stabilizes and so we have Mn = Mn+1 for sufficiently large n. Now apply part (i).

(v) Note that if f is surjective, M = M0 = Mn for all n. But M is Noetherian, so
by part (iii), Mn ∩ Kn = 0 for some n. Thus Kn = 0. But since the Ki are ascending,
K1 ≤ Kn = 0, which makes f injective. Hence f is a bijective endomorphism, that
is, an automorphism, whence (v).

(vi) Finally, if f is injective, 0 = Kn for all n; since M is Artinian, Mn = Mn+1
for sufficiently large n. Apply part (iv) to conclude that M = Mn + Kn , i.e., that
M = Mn . Since M1 ≥ Mn we have, a fortiori, that M = M1 proving that f is
surjective. Hence f is a bijection once more, proving (vi). �

Corollary 8.2.5 Suppose M is both Artinian and Noetherian and f : M → M is
an endomorphism. Then for some natural number n,

M = Mn ⊕ Kn .

Schur’s and Fitting’s Lemmas

Schur’s Lemma and Fitting’s lemma both address the structure of the endomor-
phism ring EndR(M) of an R-module M . First of all, recall from Sect. 8.1.7 that an
R-module M �= 0 is said to be irreducible if M has no nontrivial proper
R-submodules.



250 8 Elementary Properties of Modules

Lemma 8.2.6 (Schur’s Lemma.) If M is an irreducible R-module, then EndR(M)

is a division ring.

Proof If 0 �= φ ∈ EndR(M), then as ker φ and im φ are both submodules of M , we
conclude that φ : M → M must be bijective, and hence possesses an inverse, i.e.,
EndR(M) is a division ring. �

Next, a module M is said to be indecomposable if and only if it is not the direct
sum of two non-trivial submodules. Fitting’s Lemma generalizes Schur’s lemma, as
below:

Theorem 8.2.7 (Fitting’s Lemma.) Suppose M �= 0 is an indecomposable right
R-module having a finite composition series. Then the following hold:

(i) For any R-endomorphism f : M → M, f is either invertible (that is, f is a
unit in the endomorphism ring S := EndR(M)) or f is nilpotent (which means
that f n = 0, the trivial endomorphism, for some natural number n).

(ii) The endomorphism ring S = EndR(M) possesses a unique maximal right ideal
which is also the unique maximal left ideal, and which consists of all nilpotent
elements of S.

Proof (i) First of all, by Lemma 8.2.3, M has a finite composition series if and only if
it is both Artinian andNoetherian. It follows fromCorollary 8.2.5 that for sufficiently
large n, M = Mn ⊕ Kn . Since M is indecomposable, either Mn = 0 or Kn = 0. In
the former case f is nilpotent. In the latter case f is injective, and it is also surjective
since M = Mn . Thus f is an automorphism of M and so possesses a two-sided
inverse in S.

(ii) It remains to show that the nilpotent elements of S form a two-sided ideal,
and to prove the uniqueness assertions about this ideal.

Suppose f is nilpotent. Since M �= 0, K1 = ker f �= 0, and so for any endomor-
phism s ∈ S, neither s f nor f s is injective. So, by the dichotomy imposed by Part
(i), both s f and f s must be nilpotent.

Next, assume that f and g are nilpotent endomorphisms while h := f + g is not.
Then by the dichotomy, h possesses a 2-sided inverse h−1. Then

idM = hh−1 = fh−1 + gh−1,

where idM denotes the identity mapping M → M . Since s = idM − t , it follows that
the two endomorphisms, s := f h−1 and t := gh−1, commute and, by the previous
paragraph, are nilpotent. Then there is a natural number m large enough to force
sm = tm = 0. Then

idM = (idM )2m = (s + t)2m =
2m∑
j=0

(
2m
j

)
s2m− j t j .

Each monomial s2m− j t j = 0 since at least one of the two exponents exceeds m − 1.
Therefore, idM = 0, an absurdity as M �= 0. Thus h must also be nilpotent, and
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so the set nil(S) of all nilpotent elements of S is closed under addition. From the
conclusion of the previous paragraph this set of nilpotent elements nil(S) forms a
two-sided ideal.

That this ideal is the unique maximal member of the poset of right ideals of S
follows from the fact that S − nil(S) consists entirely of units. A similar statement
holds for the poset of left ideals of S. The proof is complete. �

The Krull-Remak-Schmidt Theorem

The Krull-Remak-Schmidt Theorem asserts that any Artinian right R-module can be
expressed as a direct sum of indecomposable submodules, and that this
decomposition is unique up to the isomorphism type and order of the summands. We
begin with a lemma that will be used in the uniqueness aspect.

Lemma 8.2.8 Let f : A = A1 ⊕ A2 → B = B1 ⊕ B2 be an isomorphism of
Artinian modules, and define homomorphisms α : A1 → B1 and β : A1 → B2 by
the equation

f (a1, 0) = (α(a1),β(a1))

for all a1 ∈ A1. If α is an isomorphism, then there exists an isomorphism

g : A2 → B2.

Proof Clearly α = π1 ◦ f ◦ μ1 and β = π2 ◦ f ◦ μ1, where π j is the canonical
coordinate projection B → B j , j = 1, 2, and μ1 is the canonical embedding
A1 → A1 ⊕ A2 sending a1 to (a1, 0).

Suppose first that β = 0. In this case, the composition π2 ◦ f : A → B2 is
surjective and has kernel precisely A1 ⊕ 0 ≤ A and hence induces an isomorphism

π2 ◦ f : A2 ∼= A/(A1 ⊕ 0)
∼=→ B2.

So our proof will be complete if we can construct from f another isomorphism
h : A → B such that h(a1, 0) = (α(a1), 0) for all a1 ∈ A1. We define h in the
following way: if f (a1, a2) = (b1, b2), set

h(a1, a2) := (b1, b2 − βα−1(b1)).

Clearly h is an R-homomorphism, and is easily checked to be injective. Now h◦ f −1 :
B → B is an endomorphism of anArtinianmodule. Since h is injective, so is h◦ f −1.
Then by Lemma 8.2.4, part (vi), h ◦ f −1 is surjective which clearly implies that h is
surjective. Since h(a1, 0) = (α(a1), 0), the proof is complete. �

The next lemma addresses the existence aspect of the Remak-Krull-Schmidt
Theorem:

Lemma 8.2.9 Suppose A is an Artinian right R-module. Then A is a direct sum of
finitely many indecomposable modules.
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Proof Let C be the family of submodules C ⊆ A for which the statement of the
lemma is false. We shall assume, by way of contradiction, that C �= ∅. Since A is
Artinian,C has aminimalmember, sayC ∈ C. Clearly,C is not itself indecomposable,
and so must itself decompose: C = C ′ ⊕ C ′′, for proper nontrivial submodules 0 <

C ′, C ′′ < C . By minimality of C ∈ C, we infer that both C ′ and C ′′ must decompose
into direct sums of indecomposable submodules. But then so does C = C ′ ⊕ C ′′, a
contradiction. Thus, C = ∅ and the proof is complete. �

The above preparations now lead to:

Theorem 8.2.10 (The Krull-Remak-Schmidt Theorem) If A is an Artinian and
Noetherian right R-module, then A decomposes into a direct sum of finitely many
indecomposable right R-modules. This decomposition is unique up to the isomor-
phism type and order of the summands.1

Proof By Lemma 8.2.9 we know that A admits such a decomposition. As for
the uniqueness, assume that A, A′ are isomorphic right R-modules admitting
decompositions

A = A1 ⊕ A2 ⊕ · · · ⊕ Am, A′ = A′
1 ⊕ A′

2 ⊕ · · · ⊕ A′
n,

where the submodules Ai ⊆ A, A′
j ⊆ A′ are indecomposable submodules. We may

assume that m ≤ n and shall argue by induction on m that m = n and that (possibly
after rearrangement) Ai ∼=R A′

i , i = 1, 2, . . . , n.
Assume that f : A → A′ is the hypothesized isomorphism, and denote by

πi : A → Ai , π′
j : A′ → A′

j ,μi : Ai → A, μ′
j : A′

j → A′ the canonical
projection and coordinate injection homomorphisms. We now define the R-module
homomorphisms

αi : = π′
1 ◦ f ◦ μi : Ai → A′

1,

α′
i : = πi ◦ f −1 ◦ μ′

1 : A′
1 → Ai ,

i = 1, 2, . . . , m. One then checks that

m∑
i=1

αi ◦ α′
i

is the identity mapping on the indecomposable module B1. By Fitting’s Lemma
(Theorem 8.2.7) not all the αi ◦ α′

i can be nilpotent. Reindexing if necessary, we
may assume α1 ◦ α′

1 is not nilpotent. Then it is in fact an automorphism of A′
1, and

so α1 : A1 → A′
1 is an isomorphism. Furthermore, we have

1Here is a precise rendering of the uniqueness statement: Let A = A1 ⊕ · · · ⊕ Am be isomorphic
to B = B1 ⊕ · · · ⊕ Bn where the Ai and B j are indecomposable. Then m = n and there is a
permutation ρ of the index set I = {1, . . . , n} such that Ai is isomorphic to Bρ(i) for all i ∈ I .
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f (a1, 0, . . . , 0) = (α1(a1), . . .) ∈ A′.

Applying Lemma 8.2.8, there is an isomorphism

A2 ⊕ · · · ⊕ Am ∼= A′
2 ⊕ · · · ⊕ A′

n .

Now we apply the induction hypothesis to deduce that m = n, and that for some
permutation σ of J = {2, . . . , n}, Ai is isomorphic to A′

σ(i), i ∈ J . The result
follows. �

8.2.3 Noetherian Modules and Finite Generation

We can come to the point at once:

Theorem 8.2.11 Suppose M is a right R-module, for some ring R. Then M is right
Noetherian if and only if every right submodule of M is finitely generated.

Proof Assume that M is a Noetherian right R-module, and let N ⊆ M be a sub-
module. Let N be the family of finitely-generated submodules of N ; since M is
Noetherian we know that N must have a maximal member N0. If N0 � N , then
there exists an element n ∈ N0\N . But then N0 + n R is clearly finitely generated;
since N0 � N0 + n R ⊆ N , we have an immediate contradiction. Therefore, N must
be finitely generated.

Conversely, assume that every submodule of M is finitely generated, and let

M1 ⊆ M2 ⊆ · · · be a chain of submodules of M . Then it is clear that M∞ :=
∞⋃

i=1
Mi

is a submodule of M , hence must itself be finitely generated, say M∞ = x1R +
x2R · · · + xn R. But since x1, . . . , xn ∈ ⋃

Mi , we infer that there must exist some
integer m with x1, . . . , xn ∈ Mm , which guarantees that Mm = Mm+1 = . . .. Since
the ascending chain M1 ⊆ M2 ⊆ · · · was arbitrary, M is by definitionNoetherian. �

8.2.4 E. Noether’s Theorem

The reader shall soon discover that many properties of a ring are properties which
are lifted (in name) from the R-modules RR or R R. We say that a ring R is a
right Noetherian ring if and only if RR is a Noetherian right R-module. In view of
Theorem 8.2.11 we are saying that a ring R is right Noetherian if and only every
right ideal is finitely generated. In an entirely analogous fashion, we may define the
concept of a left Noetherian ring.

Note that there is a huge difference between saying, on the one hand, that amodule
is finitely generated, and on the other hand, that every submodule is finitely generated.
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Indeed if R is a ring, then the right R-module RR is certainly finitely generated (viz.,
by the identity 1 ∈ R). However, if RR is not right Noetherian, then there will exist
right ideals of R that are not finitely generated.

However, if the ring R is right Noetherian, then this difference evaporates: this is
the content of Noether’s Theorem.

Theorem 8.2.12 (E. Noether’s Theorem) Let R be a right Noetherian ring, and
let M be a right R-module. Then M is finitely generated if and only if M is right
Noetherian.

Proof Obviously, if M is Noetherian, it is finitely generated. Conversely, we may
write M = x1R + x2R +· · ·+ xn R and each submodule xi R, being a homomorphic
image of RR , is a Noetherian module. Therefore, M is Noetherian by virtue of
Exercise (2) in Sect. 8.5.2. �

Although the above theorem reveals a nice consequence of Noetherian rings,
the applicability of the theorem appears limited until we know that such rings are
rather abundant. One very important class of Noetherian rings are the principal ideal
domains. These are the integral domains such that every ideal is generated by a single
element, and in Chap.10, we shall have quite a bit more to say about modules over
such rings. The basic prototype here is the ring Z of integers. That this is a principal
ideal domain can be shown very easily, as follows. Let 0 �= I ⊆ Z be an ideal and
let d be the least positive integer contained in I . If x ∈ I , then by the “division
algorithm” (Lemma 1.1.1) there exist integers q and r with x = qd + r and where
0 ≤ r < d. Since r = x − qd ∈ I , we conclude that by the minimality of d, r = 0,
i.e., x must be a multiple of d. Therefore,

Lemma 8.2.13 The ring of integers Z is a principal ideal domain.

Note that since an integral domain is by definition commutative, it does not matter
whether we are speaking of right ideals or left ideals here.

This argument used only certain properties shared by all Euclidean Domains
(see Sect. 9.3). All of them are principal ideal domains by a proof almost identical
to the above. But principal ideal domains are a larger class of rings, and most of
the important theorems (about their modules and the unique factorization of their
elements into primes) encompass basically the analysis of finite-dimensional linear
transformations and the elementary arithmetic of the integers. So this subject shall
be taken up in much greater detail in a separate chapter (see Chap.10). Nonetheless,
as we shall see in the next subsection, just knowing thatZ is a Noetherian ring, yields
the important fact that “algebraic integers” form a ring.

8.2.5 Algebraic Integers and Integral Elements

Let D be a Noetherian integral domain and let K be a field containing D. An element
α ∈ K is said to be integral over D if and only if α is the zero of a polynomial in

http://dx.doi.org/10.1007/978-3-319-19734-0_10
http://dx.doi.org/10.1007/978-3-319-19734-0_1
http://dx.doi.org/10.1007/978-3-319-19734-0_9
http://dx.doi.org/10.1007/978-3-319-19734-0_10
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D[x] having lead coefficient 1. In this case, of course, some power of α is a D-linear
combination of lower powers, say

αn = an−1α
n−1 + · · · + a2α

2 + a1α + a0,

where n is a positive integer and the coefficients ai lie in D.
In the particular case that D = Z and K is a subfield of the complex numbers,

then any element α ∈ K that is integral over Z is called an algebraic integer. Thus√
3 is an algebraic integer (as it is a zero of the polynomial x2 − 3 ∈ Z[x]), but one

can show, however, that 1
2

√
3 is not. The complex number ω = (1 − √−3)/2 is an

algebraic integer because w2 + w + 1 = 0.
Their is a simple criterion for an element of K to be integral over D.

Lemma 8.2.14 Let K be a field containing the Noetherian integral domain D. Then
an element α of K is integral over D if and only if the subring D[α] is a finitely
generated D-module.

Proof First suppose α is integral over D. We must show that D[α] is a finitely
generated D-module. By definition, there exists a positive integer n such that αn is a
D-linear combination of the elements of X := {1,α,α2, . . . ,αn−1}. Let M = 〈X〉D

be the submodule of D[α] generated by X . Now αX contains αn together with lower
powers of α all of which are D-linear combinations of elements of X . Put more
succinctly, Mα ⊆ M . It now follows that all positive integer powers of α lie in M ,
and so M = D[α]. Since M is generated by the finite set X , D[α] is indeed finitely
generated.

Now suppose D[α] is a finitely generated D-module. We must show that α is
integral over D—that is, α is a zero of a monic polynomial in D[x]. We now apply
Noether’s Theorem (Theorem 8.2.12) to infer that, in fact, D[α] is a Noetherian
D-module. But it contains the following chain of submodules:

D ≤ D + αD ≤ D + αD + α2D ≤ . . .

and the Noetherian condition forces this chain to terminate, say at

D + αD + · · · + αn−1D. (8.18)

Then αn D must lie in the module presented in (8.18) and so the element αn is
a D-linear combination of lower powers of α. Of course that makes α integral
over D. �

The main thrust of this subsection is the following:

Theorem 8.2.15 Let K be a field containing the Noetherian integral domain D and
let O denote the collection of all elements of K that are integral over D. Then O is
a subring of K .
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Proof Using the identity (−α) j = (−1) jα j , it is easy to see that if α is the zero of
a monic polynomial in D[x], then so is −α. Thus −O = O.

It remains to show that the set O is closed under the addition and multiplication
operations of K . Let α and β be any elements ofO. Then there exist positive integers
n andm such that the subring D[α] is generated (as a D-module) by powersαi , i < n
and similarly the D-module D[β] is generated by powers β j , j < m. Thus every
monomial expression αkβ� in the subring D[α,β] is a D-linear combination of the
finite set of monomial elements {αiβ j |i < n, j < m}. It follows that the D-module
D[α,β] is finitely generated. Now since D is a Noetherian ring, Theorem 8.2.12
implies that D[α,β] is Noetherian.

Now D[α+β] and D[αβ] are submodules of the Noetherian moduleD[α,β] and
so are themselves Noetherian by Theorem 8.2.11. But then, invoking once again the
fact that D is a Noetherian ring, we see that D[α + β] and D[αβ] are both finitely
generated D-modules, and so are inO by Lemma 8.2.14. ThusO is indeed a subset
of the field K which is closed under addition and multiplication in K . �

Since the algebraic integers are simply the elements of the complex number fieldC

which are integral over the subringZ of integers, we immediately have the following:

Corollary 8.2.16 The algebraic integers form a ring.

In the opinion of the authors, the spirit of abstract algebra is immortalized in this
maxim:

• a good definition is better than many lines of proof.

Perhaps nothing illustrates this principle better than the proof of Theorem 8.2.15 just
given. In the straightforward way of proving this theorem one is obligated to produce
monic polynomials with coefficients in D for which α + β and αβ are roots; not an
easy task. Yet the above proof was not hard. That was because we had exactly the
right definitions!

8.3 The Hilbert Basis Theorem

This section gives us a second important application of Theorem 8.2.12.
In this section we consider polynomial rings of the form R[x1, x2, . . . , xn], where

x1, x2, . . . , xn are commuting indeterminates. In the language of Sect. 7.3, these
are the monoid rings RM where M is the free commutative monoid on the set
{x1, x2, . . . , xn}. However, and in contrast tomost textbooks, we shall not require that
the coefficient ring R be commutative. We recall that by Exercise (3) in Sect. 7.5.3,
the iterated polynomial ring R[x][y] can be identified with R[x, y]. Since R is not
assumed to be commutative, we see a fortiori that the polynomial ring R[x] may not
be commutative. However, we hasten to remind the reader that the indeterminate x
commutes with every element of R. As a result of this, we infer immediately that
R[x] inherits a natural right R-module structure.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7
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Theorem 8.3.1 (The Hilbert Basis Theorem) If R is right Noetherian, then R[x] is
also right Noetherian.

Proof It suffices to show that if A is a right ideal of R[x], then A is finitely generated
as a right R[x]-module. Let A+ be the collection of all leading coefficients of all
polynomials lying in A; that is

A+ :=
⎧⎨
⎩cm | there exists f (x) =

m∑
j=0

c j x j ∈ A, deg f (x) = m

⎫⎬
⎭ ⊆ R.

Since A is a right ideal in the polynomial ring R[x], A+ is a right ideal in R. Since R
is right Noetherian, we know that A+ must be finitely generated as a right R-module,
so we may write

A+ = a1R + a2R + · · · + an R

for suitable elements a1, a2 . . . , an ∈ A+. From the definition of A+, there exist
polynomials pi (x) in A having lead coefficients ai , i = 1, 2, . . . , n. Let ni :=
deg pi (x) and set m := max{ni }. Now let Rm[x] be the polynomials of degree at
most m in R[x] and set

Am = A ∩ Rm[x].

We claim that

A = Am + p1(x)R[x] + p2(x)R[x] + · · · + pn(x)R[x]. (8.19)

Let f (x) be a polynomial in A of degree N > m and write

f (x) = αx N + terms involving lower powers of x .

Then, as α is the leading coefficient of f (x) we have α ∈ A+, and so

α = a1r1 + a2r2 + · · · anrn

for suitable r1, r2, . . . , rn ∈ R. Then

f1(x) := f (x) − x N−n1 p1(x)r1 − x N−n2 p2(x)r2 − · · · − x N−nn pn(x)rn

is a polynomial in A which has degree less than N . In turn, if the degree of f1(x)

exceeds m this procedure can be repeated. By so doing, we eventually obtain a
polynomial h(x) in A of degree at most m, which is equal to the original f (x) minus
an R[x]-linear combination of {p1(x), p2(x), . . . , pn(x)}. But since each pi (x) and
f (x) all lie in A, we see that h(x) ∈ Am . Thus

f (x) ∈ Am + p1(x)R[x] + · · · pn(x)R[x].
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Since f (x) was an arbitrary member of A, Eq. (8.19) holds.
In view of Eq. (8.19), it remains only to show that Am R[x] is a finitely generated

R[x]-module, and this is true if Am is a finitely generated R-module. But Am is
an R-submodule of Rm[x] which is certainly a finitely generated R-module (for
{1, x, . . . xm} is a set of generators). By Noether’s Theorem (Theorem 8.2.12) Rm[x]
is Noetherian and hence so is Am . Thus, Am is a finitely-generated right R-module,
and the proof is complete. �

Corollary 8.3.2 If R is right Noetherian, then so is R[x1, . . . , xn].
Remark As expected, there is an obvious left version of the above result. Thus, if R
is left Noetherian, than R[x] is also a left Noetherian ring.

8.4 Mapping Properties of Modules

In this section we shall consider the “calculus of homomorphisms” of modules—
the idea that constructions can be characterized by mapping properties. Such an
approach, leads to the important notions of exact sequences, projective and injective
modules, and other notions which feed the rich lore of homological algebra.

8.4.1 The Universal Mapping Properties of the Direct Sum
and Direct Product

Characterizing the Direct Sum by a Universal Mapping Property

Recall that the formal direct sum over a family {Mσ|σ ∈ I } of right R-modules is the
set of all mappings f : I → ∪σ Mσ, with f (σ) ∈ Mσ , and f (σ) non-zero for only
finitely many indices σ. We think of the indices as indicators of coordinates, and the
value f (σ) as the σ-coordinate of the element f . This is an R-module ⊕σ Mσ under
the usual coordinate-wise addition and application of right operators from R.

There is at hand a canonical collection of injective R-homomorphisms: κσ :
Mσ → ⊕σ Mσ defined by setting

(κσ(aσ))(τ ) =
{

aσ if σ = τ
0 if σ �= τ

where aσ is an arbitrary element of Mσ . That is, κσ takes an element a of Mσ to
the unique element of the direct sum whose coordinate at σ is a, and whose other
coordinates are all zero.

Theorem 8.4.1 Suppose M = ⊕σ∈I Mσ is the direct sum of modules {Mσ|σ ∈ I }
with canonical homomorphisms κσ : Mσ → M. Then, for every module B, and
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family of homomorphisms φσ : Mσ → B, there exists a unique homomorphism
φ : M → B such that φ ◦ κσ = φσ for all σ ∈ I . In fact, this property characterizes
the direct sum up to isomorphism.

Proof We define φ : M → B by the equation

φ(a) :=
∑

σ
φσ(a(σ)).

Since a(σ) ∈ Mσ , by definition, and only finitely many of these summands are non-
zero, the sum describes a unique element of B. It is elementary to verify that φ, as
we have defined it, is an R-homomorphism. Moreover, if aτ is an arbitrary element
of Mτ , then

φ ◦ κτ (aτ ) = φ(κτ (aτ )) =
∑

σ∈I
φσ(κτ (aτ (σ))) = φτ aτ .

Thus we have φ ◦ κτ = φτ , for all τ .
Now suppose there were a second homomorphism λ : M → B, with the property

that λ ◦ κτ = φτ , for all τ ∈ I . Then

λ(a) =
∑

σ∈I
λ(κσ(a(σ))) =

∑
σ∈I

φσ(a(σ)) = φ(a).

Thus λ = φ. So the homomorphism φ which we have produced is unique.
Nowassume that the R-module N , and the collection ofmorphismsλσ : Mσ → N

satisfy the universal mapping conditions of the last part of the theorem.
First apply this property to M when B = N and φσ = λσ . Then there is a

homomorphism λ : M → N with λ ◦ κσ = λσ .
Similarly, there is a homomorphism κ : N → M for which κ ◦ λσ = κσ . It

follows that
κ ◦ κσ = κ ◦ λσ = κσ = 1M ◦ κσ,

where 1M is the identity morphism on M . So by the uniqueness of the homomor-
phism, one may conclude that κ◦λ = 1M . Similarly, reversing the roles, λ◦κ = 1N .
Therefore κ is an isomorphism. The proof is complete. �

We have seen from our earlier definition of the direct sum M = ⊕σ∈I Mσ that
there are projection mappings πσ : M → Mσ which, for any element m ∈ M , reads
off its σ-coordinate, m(σ). One can see that these projection mappings are related to
the canonical mappings κσ by the equations

πi ◦ κi = 1 (the identity mapping on Mi ) (8.20)

πi ◦ κ j = 0 if i �= j. (8.21)

We remark that the existence of the projection mappings πi with the compositions
just listed could have been deduced directly from the universal mapping property
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which characterizes the direct sum. Let δi j be the morphism M j → Mi which is
the zero map if i �= j , but is the identity mapping on Mi if i = j . If we apply the
universal property with Mi and δi j in the respective roles of B and φi , we obtain the
desired morphism φ = πi : M → Mi with πi ◦ κ j = δi j .

Characterizing the Direct Product by a Universal Mapping Property

We can now characterize the direct product of modules by a universal property which
is the complete dual of that for the direct sum.

Theorem 8.4.2 Suppose M = ∏
σ∈I Mσ is the direct product of the modules

{Mσ|σ ∈ I } with canonical projections πσ : M → Mσ . Then, for every module
B, and family of homomorphisms φi : B → Mi there exists a unique homomor-
phism φ : B → M such that πi ◦φ = φi , for each i ∈ I . This property characterizes
the direct product up to isomorphism.

Proof The canonical projection mapping πi , recall, reads off the i-th coordinate of
each element of M . Thus, if m ∈ M , m is a mapping I → ∪Mσ with m(i) ∈ Mi ,
and πi (m) := m(i).

Now define the mapping φ : B → M by the rule:

φ(b)(i) := φi (b),

for all (i, b) ∈ I × B. Then certainly φ is an R-homomorphism. Moreover, one
checks that

(πi ◦ φ)(b) = πi (φ(b)) = (φ(b))(i) = φi (b).

Thus πi ◦ φ = φi .
Now if ψ : B → M were an R-homomorphism which also satisfied πi ◦ ψ = φi ,

for all i ∈ I , then we should have

(ψ(b))(i) = πi (ψ(b)) = (πi ◦ ψ)(b) = φi (b) = (φ(b))(i),

at each i , so ψ(b) = φ(b) at each b ∈ B—i.e. ψ = φ as mappings.
Now suppose N were some R-module equipped with morphisms π′

i : N → Mi ,
i ∈ I satisfying thismapping property:whenever there is amodule B withmorphisms
φi : B → Mi , then there is a morphism φB : B → N such that π′

i ◦ φB = φi .
First we use the property for M . Setting B = N and φi = π′

i , we obtain (in the
role of φ) a morphism π′ : N → M such that πi ◦ π′ = π′

i .
Similarly, using the same property for N (with M and πi in the roles of B and the

φi ), we obtain a homomorphism π : M → N such that π′
i ◦ π′ = πi . It follows that

πi ◦ π′ ◦ π = π′
i ◦ π = πi = πi ◦ 1M .
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By the uniqueness, one has π′ ◦ π = 1M . Similarly π ◦ π′ = 1N . Therefore π is an
isomorphism.

As afinal remark, the universalmappingproperty canbeused to show the existence
of mappings κi : Mi → ∏

i∈I Mi such that πi ◦κ j is the identity map on Mi if i = j ,
and is the zero mapping Mi → M j if i �= j . �

8.4.2 HomR(M, N)

The Basic Definition

We shall continue to assume that R is an arbitrary ring with identity element 1R . If
M, N are right R-modules, then we may form the abelian group HomR(M, N ) con-
sisting of R-module homomorphisms M → N . Indeed, the abelian group structure
on HomR(M, N ) is simply given by pointwise addition: if φ, θ ∈ HomR(M, N ),
then (φ + θ)(m) := φ(m) + θ(m) ∈ N .

HomR(M, N) Is a Left R-Module

We remark here that HomR(M, N ) possesses a natural structure of a left R-module:
For each ring element r ∈ R and homomorphism φ ∈ HomR(M, N ), the mapping
r · φ is defined by

(r · φ)(m) := φ(mr) = φ(m)r

Notice, by this definition, that for r, s ∈ R, and m ∈ M ,

(r · (s · φ))(m) = (s · φ)(mr) = (φ(mr))s (8.22)

= (φ(m)r)s = φ(m)(rs) = ((rs) · φ)(m). (8.23)

In the preceding equations left multiplication of maps by ring elements was indi-
cated by a “dot”. The sole purpose of this device was to clearly distinguish the
newly-defined left ring multiplications of maps from right ring multiplication of
the module elements in the equations. However, from this point onward, the “dot”
operation will be denoted by juxtaposition as we have been doing for left modules
generally.

Clearly rφ ∈ HomR(M, N ), and the reader can easily check that the required
equations of mappings hold:

r(φ1 + φ2) = rφ1 + rφ2,

(r + s)φ1 = rφ1 + sφ1, and

(rs)φ1 = r(sφ1),
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where r, s ∈ R and φi ∈ HomR(M, N ), i = 1, 2. In particular, when R is a
commutative ring, one may regard HomR(M, N ) as a right R-module simply by
passing scalars from one side to another. (For more about making HomR(M, N ) into
a module, see the Exercise Sect. 8.5.3.)

In the special case that N = RR , and M is any right R-module, we obtain a left
R-module M∗ := HomR(M, RR) called the dual module of M. We shall have use
for this latter, especially when R is a field.

Basic Mapping Properties of HomR(M, N)

We note that HomR has the following mapping properties. If α : M1 → M2 and
β : N1 → N2 are homomorphisms of right R-modules, then we have an induced
homomorphism of abelian groups,

Hom(α,β) : HomR(M2, N1) → HomR(M1, N2), φ �→ β ◦ φ ◦ α. (8.24)

Let idM denote the identity mapping M → M .2

The reader should have no difficulty in verifying that Hom(idM ,α) really is a
homomorphism of abelian groups. In particular, if we fix a right R-module M , then
the induced homomorphism of abelian groups are:

Hom(idM ,β) : HomR(M, N1) → HomR(M, N2), φ �→ β ◦ φ. (8.25)

In a language that will be developed later in this book, this says that the assignment
HomR(M, •) is a “functor” from the “category” of right R-modules to the “category”
of abelian groups. (See Sect. 13.2 for a full exposition.) Likewise, if N is a fixed right
R-module, and if α : M2 → M1 is an R-module homomorphism, then we have an
induced homomorphism of abelian groups

Hom(α, idN ) : HomR(M1, N ) → HomR(M2, N ), φ �→ φ ◦ α.

This gives rise to another “functor,” HomR(•, N ), from the category of right
R-modules to the category of abelian groups, but is “contravariant” in the sense
that the directions of the homomorphisms get reversed:

M1
φ← M2 gets mapped to HomR(M1, N )

β→ HomR(M2, N ).

2The notation “idM” serves to distinguish the identity mapping on the set M from the multiplicative
identity element 1M of any ring or monoid which unfortunately happens to be named “M”.

http://dx.doi.org/10.1007/978-3-319-19734-0_13
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8.4.3 Exact Sequences

Definition

Let φ : M → N be a homomorphism of right R-modules, and set M ′′ :=
φ(M), M ′ = ker φ. Then we may build a sequence of homomorphisms

M ′ μ−→ M
ε−→ M ′′,

where μ : M ′ ↪→ M is just the inclusion homomorphism and where ε(m) = φ(m) ∈
M" for all m ∈ M . Furthermore, by definition, we notice the seemingly innocuous
fact that ker ε = im μ.

More generally, suppose that we have a sequence of right R-modules and
R-module homomorphisms:

· · · → Mi−1
φi−1−→ Mi

φi−→ Mi+1 → · · · .

We say that the above sequence exact at Mi if im φi−1 = ker φi . The sequence
above is said to be exact if it is exact at every Mi . Note that the homomorphism

μ : M → N is injective if and only if the sequence 0 → M
μ→ N is exact. Likewise

ε : M → N is surjective if and only if the sequence M
ε→ N → 0 is exact.

Of particular interest are the short exact sequences. These are exact sequences of
the form

0 → M ′ μ→ M
ε→ M ′′ → 0.

Note that in this case Theorem 8.1.2 simply says that M ′′ ∼= M /μ(M ′).

The Left-Exactness of Hom

The “hom functors” come very close to preserving short exact sequences, as follows.

Theorem 8.4.3 Let 0 → N ′ μ−→ N
ε−→ N ′′ be an exact sequence of right

R-modules, and let M be a fixed R-module. Then the following sequence of abelian
groups is also exact:

0 → HomR(M, N ′) Hom(1M ,μ)−→ HomR(M, N )
Hom(1M ,ε)−→ HomR(M, N ′′).

Likewise, if M ′ μ−→ M
ε−→ M ′′ → 0 is an exact sequence of right R-modules, and

if N is a fixed R-module, then the following sequence of abelian groups is exact:

0 → HomR(M ′′, N )
Hom(μ,1N )−→ HomR(M, N )

Hom(ε,1N )−→ HomR(M ′, N ).
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Proof Assume that 0 → N ′ μ−→ N
ε−→ N ′′ is exact and that M is a fixed

R-module. First of all, note that if φ′ ∈ HomR(M, N ′), then since μ is injec-
tive, we see that 0 = Hom(M,μ)(φ′) = μ ◦ φ′ clearly implies that φ′ = 0,
and so Hom(M,μ) : HomR(M, N ′) → HomR(M, N ) is injective. Next, since
Hom(M, ε) ◦ Hom(M,μ) = Hom(M,μ ◦ ε) = Hom(M, 0) = 0, we have
imHom(M,μ) ⊆ ker Hom(M, ε). Finally, suppose that φ ∈ ker Hom(M, ε). Then
ε ◦ φ = 0 : N → M ′′ which says that for each n ∈ N , φ(n) ∈ ker ε = im μ,
i.e. φ(n) ∈ im μ for each n ∈ N . But since μ : M ′ → M is injective, we may
write φ(n) = μ ◦ φ′(n) for some uniquely defined element φ′(n) ∈ M ′. Finally,
since φ′ : N → M ′ is clearly a homomorphism, we are finished as we have proved
that Hom(M,μ)(φ′) = φ. The second statement in the above theorem is proved
similarly. �

If the sequences in Theorem 8.4.3 were completed to short exact sequences, it
would be natural to wonder whether the resulting sequences would be exact. This is
not the case as the following simple counterexample shows. Consider the short exact
sequence of Z-modules (i.e., abelian groups):

0 → Z
μ2−→ Z

ε−→ Z/Z2 → 0,

where μ2 : Z → Z is multiplication by 2: μ2(m) = 2m, and where ε is the canonical
quotient mapping. The sequence below

0 → HomZ(Z/Z2,Z)
Hom(1,μ2)−→ HomZ(Z/Z2,Z)

Hom(1,ε)−→ HomZ(Z/Z2,Z/Z2) → 0

is not exact as HomZ(Z/Z2, Z) = 0, whereas HomZ(Z/Z2, Z/Z2) ∼= Z/Z2, and
so Hom(Z/Z2, ε) : HomZ(Z/Z2, Z) → HomZ(Z/Z2, Z/Z2) certainly cannot be
surjective.

Thus, we see that the “hom functors” do not quite preserve exactness. The extent
to which short exact sequences fail to map to short exact sequences—and the remedy
for this deficiency is the subject of homological algebra. (In a subsequent chapter,
we shall encounter another “functor” (namely that derived from the tensor product)
from right R-modules to abelian groups which also fails to preserve short exact
sequences).

Split Exact Sequences

Note that given any right R-modules M ′, M ′′, we can always build the following
rather trivial short exact sequence:

0 → M ′ μ1−→ M ′ ⊕ M ′′ π2−→ M ′′ → 0,

where μ1 is inclusion into the first summand and π2 is projection onto the second
summand. Such a short exact sequence is called a split short exact sequence. More
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generally, we say that the short exact sequence 0 → M ′ μ−→ M
ε−→ M ′′ → 0 splits

if and only if there is an isomorphism α : M → M ′ ⊕ M ′′ making the following
ladder diagram commute3:

0 −−−−→ M ′ μ−−−−→ M
ε−−−−→ M ′′ −−−−→ 0⏐⏐�1M ′

⏐⏐�α

⏐⏐�1M ′′

0 −−−−→ M ′ μ1−−−−→ M ′ ⊕ M ′′ π2−−−−→ M ′′ −−−−→ 0

In turn, the following lemma provides simple conditions for a short exact sequence
to split:

Lemma 8.4.4 Let
0 → M ′ μ−→ M

ε−→ M ′′ → 0 (∗)

be a short exact sequence of right R-modules. Then the following conditions are
equivalent:

(i) There exists an R-module homomorphism σ : M ′′ → M such that ε ◦ σ = 1M ′′ .
(ii) There exists an R-module homomorphism ρ : M → M ′ such that ρ ◦ μ = 1M ′ .

The short exact sequence (*) splits.

Proof Clearly condition (iii) implies both (i) and (ii); we shall be content to prove
that (i) implies (iii), leaving the remaining implication to the reader. Note first that
since ε ◦ σ = 1M ′′ , it follows immediately that σ : M ′′ → M is injective. In
particular, σ : M ′′ → σ(M ′′) is an isomorphism. Clearly it suffices to show that
M = μ(M ′) ⊕ σ(M ′′) (internal direct sum). If m ∈ M then ε(m − σ(ε(m))) =
ε(m) − (ε ◦ σ)(ε(m)) = ε(m) − ε(m) = 0, which says that m − σ(ε(m)) ∈ ker ε =
im μ. Therefore, there exists m′ ∈ M ′ with m − σ(ε(m)) = μ(m′), forcing m =
μ(m′) + σ(ε(m)) ∈ μ(M ′) + σ(M ′′). Finally, if for some m′ ∈ M ′, m′′ ∈ M ′′, so
that μ(m′) = σ(m′′), then m′′ = ε(σ(m′′)) = ε(μ(m′)) = 0, which implies that
μ(M ′) ∩ σ(M ′′) = 0, proving that M = μ(M ′) ⊕ σ(M ′′), as required. �

8.4.4 Projective and Injective Modules

Let R be a ring and let P be an R-module. We say that P is projective if every
diagram of the form

P⏐⏐�φ′′

M
ε−−−−→ M ′′ −−−−→ 0 (exact row)

3Recall the definition of “commutative diagram” on p. 237.
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can be embedded in a commutative diagram of the form

P

M”M 0 (exact row)

�

�
�

��
� �

ε

φ φ′′′

Note first that any free right R-module is projective. Indeed, assume that F is a
free right R-module with basis { fα | α ∈ A} and that we have a diagram of the form

F⏐⏐�φ′′

M
ε−−−−→ M ′′ −−−−→ 0 (exact row)

For each m′′
α := φ′′( fα) ∈ M ′′, α ∈ A, select an element mα ∈ M with

ε(mα) = m′′
α, α ∈ A. As F is free with basis { fα | α ∈ A}, there exists a (unique)

homomorphism φ : F → M with φ( fα) = mα, α ∈ A. This gives the desired
“lifting” of the homomorphism φ′′ :

F

M”M 0 (exact row)

�

�
�

��
� �

ε

φ φ′′

We have the following simple characterization of projective modules.

Theorem 8.4.5 The following conditions are equivalent for the R-module P.

(i) P is projective.
(ii) Every short exact sequence 0 → M ′ → M → P → 0 splits.

(iii) P is a direct summand of a free R-module.

Proof That (i) implies (ii) follows immediately from Lemma 8.4.4. Now assume
condition (ii) and let ε : F → P be a surjective R-module homomorphism, where
F is a free right R-module. Let K = ker ε and consider the commutative diagram

P

0 K PF 0
�

�
�

��
� � � �

μ ε

σ 1P
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where μ : K ↪→ F , and where the homomorphism σ : P → F exists by the projec-
tivity of P. Apply Lemma 8.4.4 to infer that F ∼= μ(K ) ⊕ σ(P); since σ(P) ∼= P .
Thus (iii) holds.

Finally, we prove that (iii) implies (i). Thus, let F be a free right R-module which
admits a direct sum decomposition F = N ⊕ P , where N ⊆ F is a submodule.
From the diagram

P⏐⏐�φ′

M −−−−→
ε

M ′′ −−−−→ 0

we obtain the following diagram.

F = N ⊕ P P

M M ′′ 0�
ε

�
� �

��
μ

π

θ φ

Here π : N ⊕ P → P is the projection of the sum onto the right coordinate, and
μ : P → N ⊕ P is the injection onto 0⊕ P so that π ◦μ = 1P . The homomorphism
θ : F → M satisfying ε ◦ θ = φ ◦ π2 exists since, as already observed above, free
modules are projective. However, setting φ̄ := θ ◦ μ gives the desired lifting of φ,
and so it follows that P is projective. �

Dual to the notion of a projective module is that of an injective module. A right
R-module I is said to be injective if every diagram of the form

I

θ′
�⏐⏐

0 −−−−→ M ′ μ−−−−→ M (exact row)

can be embedded in a commutative diagram of the form

0 M’

I

M

�
�

��	

� �




μ

θ′ θ

In order to obtain a characterization of injective modules we need a concept dual
to that of a free module. In preparation for this, however, we first need the concept of
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a divisible abelian group. Such a group D satisfies the property that for every d ∈ D
and for every 0 �= n ∈ Z, there is some c ∈ D such that nc = d.

Example 44 1. The most obvious example of a divisible group is probably the
additive group (Q,+) of rational numbers.

2. A moment’s thought should reveal that if F is any field of characteristic 0, then
(F,+) is a divisible group.

3. Note that any homomorphic image of a divisible group is divisible. Of paramount
importance is the divisible group Q/Z.

4. Let p be a prime, and let Z(p∞) be the subgroup of Q/Z consisting of elements
of p-power order. ThenZ(p∞) is a divisible group. (You should check this. Note
that there is a direct sum decomposition Q/Z = ⊕

Z(p∞), where the direct
sum is over all primes p).

5. Note that the direct product of any number of divisible groups is also divisible.

The importance of divisible groups is displayed by the following.

Theorem 8.4.6 Let D be an abelian group. Then D is divisible if and only if D is
injective.

Proof Assume first that D is injective. Let d ∈ D, and let 0 �= n ∈ Z. We form the
diagram

0 Z

D

Z

�
�

��	

� �




μn

θ′ θ

where μn : Z → Z is multiplication by n, θ′(m) = md, m ∈ Z, and where θ is the
extension of θ′ guaranteed by the injectivity of D. If θ(1) = c then nc = nθ(1) =
θ(n) = θ(μn(1)) = θ′(1) = d, proving that D is divisible.

Conversely, assume that D is divisible and that we are given a diagram of the
form

D

θ′
�⏐⏐

0 −−−−→ A′ μ−−−−→ A

where μ : A′ → A is an injective homomorphism of abelian groups. We shall, for
the sake of convenience, assume that A′ ≤ A via the injective homomorphism μ. Let
P = {(A′′, θ′′)} where A′ ≤ A′′ ≤ A and where θ′′ : A′′ → D is a homomorphism
with θ′′|A′ = θ′. We make P into a poset via the relation (A′′

1, θ
′′
1) � (A′′

2, θ
′′
2) if

and only if A′′
1 ≤ A′′

2 and θ′′
2 |A′′

1
= θ′′

1 . Since (A′, θ′) ∈ P , it follows that P �= ∅. If
{(A′′

α, θ′′
α)}α∈A is a chain inP , wemay set A′′ = ⋃

α∈A A′′
α, and define θ′′ : A′′ → D

by setting θ′′(a′′) = θ′′
α(a′′) where a′′ ∈ A′′

α. Since {(A′′
α, θ′′

α)}α∈A is a chain, it
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follows that θ′′(a′′) doesn’t depend upon the particular choice of index α ∈ A with
a′′ ∈ A′′

α. Therefore, we see that the chain {(A′′
α, θ′′

α)}α∈A has (A′′, θ′′) as an upper
bound. This allows us to apply Zorn’s lemma and infer the existence of a maximal
element (A′′

0, θ
′′
0) ∈ P . Clearly the proof is complete once we show that A′′

0 = A.
Assume, by way of contradiction, that there exists an element a ∈ A\A′′

0, and let
m be the order of the element a + A′′

0 in the additive group A/A′′
0. We divide the

argument into the two cases according to m = ∞ and m < ∞.

m = ∞. In this case it follows easily that Z〈a〉 is an infinite cyclic group and that
Z〈a〉 ∩ A′′

0 = 0. As a result, A′′ := Z〈a〉 + A′′
0 = Z〈a〉 ⊕ A′′

0 and an extension of
θ′′
0 can be obtained simply by setting θ′′(ka + a′′

0 ) = θ′′
0 , k ∈ Z, a′′

0 ∈ A′′
0. This

is a well-defined homomorphism A′′ → D extending θ′′
0 . But that contradicts the

maximality of (A′′
0, θ

′′
0) in the poset P .

m < ∞. Here, we have that ma ∈ A′′
0 and so θ′′

0(ma) ∈ D. Since D is divisible,
there exists an element c ∈ D with mc = θ′′

0(ma). Now define θ′′ : A′′ :=
Z〈a〉 + A′′

0 → D by setting θ′′(ka + a′′
0 ) = kc + θ′′

0(a
′′
0 ) ∈ D. We need to show

that θ′′ is well defined. Thus, assume that k, l are integers and that a′′
0 , b′′

0 ∈ A′′
0

are such that ka +a′′
0 = la +b′′

0 . Then (k −l)a = b′′
0 −a′′

0 ∈ A′′
0 and so k −l = rm

for some integer r . Therefore

kc − lc = rmc

= rθ′′
0(ma)

= θ′′
0(rma)

= θ′′
0(b

′′
0 − a′′

0 )

= θ′′
0(b

′′
0) − θ′′

0(a
′′
0 ),

which says that
kc + θ′′

0(a
′′
0 ) = lc + θ′′

0(b
′′
0)

and so θ′′ : A′′ → D is well defined. As clearly θ′′ is a homomorphism extending
θ′′
0 , we have once again violated the maximality of (A′′

0, θ
′′
0) ∈ P , and the proof

is complete. �

Let R be a ring, and let A be an abelian group. Define M := HomZ(R, A); thus
M is certainly an abelian group under point-wise operations. Give M the structure
of a right R-module via

( f · r)(s) = f (rs), r, s ∈ R, f ∈ M.

It is easy to check that the above recipe gives HomZ(R, A) the structure of a right
R-module. (See Exercise (1) in Sect. 8.5.3.)

The importance of the above construction is found in the following.

Proposition 8.4.7 Let R be a ring and let D be a divisible abelian group. Then the
right R-module HomZ(R, D) is an injective R-module.
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Proof Suppose that we are given the usual diagram

HomZ(R, D)

θ′
�⏐⏐

0 −−−−→ M ′ μ−−−−→ M (exact row)

The homomorphism θ′ : M ′ → HomZ(R, D) induces the homomorphism φ′ :
M ′ → D by setting φ′(m′) = θ′(m′)(1), for all m′ ∈ M ′. Since D is divisible, it is
injective and so we may form the commutative diagram:

0 M’

D

M

�
�

��	

� �




μ

φ′ φ

In turn, we now define θ : M → HomZ(R, D) by setting θ(m)(r) := φ(mr) ∈ D.
It is routine to check that θ is a homomorphism of right R-modules and that the
following diagram commutes:

0 M’

HomZ(R, D)

M (exact row)

�
�

�	

� �




μ

θ′
θ

Thus HomZ is an injective R-module. �

Recall that any free right R-module is the direct sum of a number of copies of RR ,
and that any R-module is a homomorphic image of a free module. We now define a
cofree R-module to be the direct product (not sum!) of any number of copies of the
injective module HomZ(R, Q/Z). Note that by Exercise (12) in Sect. 8.5.3, a cofree
module is injective. We now have

Proposition 8.4.8 Let M be an R-module. Then M can be embedded in a cofree
R-module.

Proof Let 0 �= m ∈ M and pick a nonzero element α(m) ∈ Q/Z whose order
o(m) in the additive group Q/Z is equal to that of m in the additive group M . (For,
example, one could choose α(M) = (1/o(m)) + Z.) This gives an additive group
homomorphism α : Z〈m〉 → Q/Z given by α(km) = kα(m), for each integer k.
As Q/Z is a divisible abelian group, there exists a homomorphism of abelian groups
αm : M → Q/Z extending α : Z〈m〉 → Q/Z. In turn, this homomorphism gives
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a homomorphism βm : M → HomZ(R, Q/Z) defined by setting βm(m′)(r) =
αm(m′r) ∈ Q/Z. It is routine to verify that βm is indeed, a homomorphism of right
R-modules.

Next, we form the cofree module C := ∏
0 �=m∈M HomZ(R, Q/Z)m , where each

HomZ(R, Q/Z)m = HomZ(R, Q/Z). Collectively, the homomorphisms βm, 0 �=
m ∈ M , give a homomorphism μ : M → C via

μ(m′)(m) = βm(m′) ∈ HomZ(R, Q/Z).

It remains only to show that μ is injective. Suppose m were a non-zero element in
ker μ. Then μ(m)(m′) = 0 for all 0 �= m′ ∈ M . But this says in particular that
0 = βm(m) ∈ HomZ(R, Q/Z), forcing αm(m) = βm(m)(1) = 0. That assertion,
however, produces a contradiction since αm(m) = α(m) was always chosen to have
the same additive order o(m) of the non-zero element m in (M,+). �

Finally we have the analogue of Theorem 8.4.5, above; the proof is entirely dual
to that of Theorem 8.4.5.

Theorem 8.4.9 The following conditions are equivalent for the R-module I .

(i) I is injective.
(ii) Every short exact sequence 0 → I → M → M ′′ → 0 splits.

(iii) I is a direct summand of a cofree R-module.

8.5 Exercises

8.5.1 Exercises for Sect. 8.1

1. Show that any abelian group is a Z-module. [Hint: Write the group operation as
addition, and define the multiplication by integers.]

2. (Right modules from left modules). In the remark on p. 233, a recipe is given for
converting a left R module into a right S-module, by the formula ms := ψ(s)m,
where m ∈ M , a left R-module, s ∈ S and where ψ : S → Opp(R) is a ring
homomorphism mapping the multiplicative identity element of S to that of R.
Show that all the axioms of a right S-module are satisfied by this rule.

3. (Annihilators of modules as two-sided ideals.) Suppose that M is a right
R-module.

(a) Show that Ann(M) := {r ∈ R|Mr = 0M } is a two-sided ideal in R. (It is
called the annihilator of M.)

(b) Suppose A ≤ B ≤ M is a chain of submodules of the right R-module M .
Show that

(A : B) := {r ∈ R|Br ⊆ A}
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is a 2-sided ideal of R. [Hint: (A : B) is the annihilator of the submodule
B/A. Use the previous step. Note that if A and B are right ideals of R (that
is, submodules of RR), then Ann(B/A) is just the residual quotient (A : B)

defined on p. 196.]

4. Prove Corollary 8.1.7. [Hint: Establish the criterion of Lemma 8.1.6.]
5. (Finite generation)

(a) Let (Q,+) be the additive group of the field of rational numbers. Being an
abelian group, this group is a Z-module by Exercise (1) in Sect. 8.5.1. Show
that (Q,+) is not finitely generated as a Z-module. [Hint: Pay attention to
denominators.]

(b) Suppose M is a finitely generated right R-module. Show that for any gen-
erating set X for M , there is a finite subset X0 of X which also generates
M . [Hint: By assumption there exists a finite generating set F . Write each
member of F as a finite R-linear combination of elements of X .]

6. Let Mα, M ′
α, α ∈ A be right R-modules, and let φα : Mα → M ′

α, α ∈ A be
R-module homomorphisms. Prove that there is a unique homomorphism

∏
φα :∏

Mα → ∏
M ′

α making each diagram below commute:

∏
α∈A Mα

∏
φα−−−−→ ∏

α∈A M ′
α

πβ

⏐⏐� π′
β

⏐⏐�
Mβ

φβ−−−−→ M ′
β

7. Let Mα, M ′
α, α ∈ A be right R-modules, and let φα : Mα → M ′

α, α ∈ A be
R-module homomorphisms. Prove that there is a unique homomorphism ⊕φα :⊕

Mα → ⊕
M ′

α making each diagram below commute:

Mβ
πβ−−−−→ M ′

β

μβ

⏐⏐� μ′
β

⏐⏐�⊕
α∈A Mα

⊕φα−−−−→ ⊕
α∈A M ′

α

8. Prove, or provide a counterexample to the following statement. Any submodule
of a free module must be free.

9. Prove that the direct sum of free R-modules is also free.
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8.5.2 Exercises for Sects. 8.2 and 8.3

1. Show that any submodule or factor module of a Noetheriean (Artinian) module
is Noetherian (Artinian). [Hint: This is Sect. 2.3, Corollary 2.3.7.]

2. Suppose M = N1 + · · · + Nk , a sum of finitely many submodules Ni . Show that
if each submodule Ni is Noetherian (Artinian) then M is Noetherian (Artinian).
[Hint: This is Sect. 2.5.4, Lemma 2.5.7, part (i).]

3. Show that if N is a submodule of M then M is Noetherian (Artinian) if and only
if both N and M /N are Noetherian (Artinian). [Hint: Isn’t this just the content of
Lemma 2.5.6 of Sect. 2.5.4?]

4. Show that if M /Ai is a Noetherian (Artinian) right module for a finite collection of
submodules A1, . . . An , then so is M /(A1 ∩ · · · ∩ An). [Hint: Refer to Sect. 2.5.4,
Lemma 2.5.7, part (ii).]

5. Let R be a ring. Suppose the R-module RR is Noetherian (Artinian)—that is,
the ring R is right Noetherian (right Artinian). Show that any finitely generated
right R-module is Noetherian (Artinian). [Hint: Such a right module M is a
homomorphic image of a free module F = x1R ⊕· · ·⊕ xk R over a finite number
of generators. Then apply other parts of this exercise.]

6. Suppose the right R-module M satisfies the ascending chain condition on
submodules. Then every generating set X of M contains a finite subset that
generates M .

7. Let F be a field and let V = F (n), the vector space of n-tuples of elements
of F , where n is a positive integer. Recall that an n-tuple α := (a1, . . . , an) is
a zero of the polynomial p(x1, . . . , xn) if and only p(a1, . . . , an) = 0 (more
precisely, the polynomial p is in the kernel of the evaluation homomorphism
eα : F[x1, . . . , xn] → F (see p. 209)).

(a) Show that if {p1, p2, . . .} is an infinite set of polynomials in the polynomial
ring F[x1, . . . , xn], and Vi is the full set of zeros of the polynomial pi , then
the set of common zeros of the pi—that is the intersection ∩Vi—is actually
the intersection of finitely many of the Vi .

(b) Show that for any subset X of V there exists a finite set SX := {p1, . . . pk}
polynomials such that any polynomial which vanishes on X is an F-linear
combination of those in the finite set F .

(c) Recall that a variety is the set of common zeros in V of some collection
of polynomials in F[x1, . . . , xn]. The varieties in V form a poset under the
inclusion relation (see p. 209). Show that the poset of varieties of V possesses
the descending chain condition. [Hint: All three parts exploit theHilbert Basis
Theorem.]
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8.5.3 Exercises for Sect. 8.4

1. Let M be a left R-module and let A be an abelian group. Show that the
right R-scalar multiplication on HomZ(M, A) defined by setting ( f r)(m) =
f (rm) ∈ A, gives HomZ(M, A) the structure of a right R-module. If A
is also a left R-module is the subgroup HomR(M, A) an R-submodule of
HomZ(M, A)?

2. Let R, S be rings. Recall from p. 234 that an (R, S)-bimodule is an abelian
group M having the structure of a left R-module and the structure of a right
S-module such that these scalar multiplications commute, i.e., r(ms) = (rm)s
for all m ∈ M, r ∈ R and s ∈ S.4 Now assume that M is an (R, S)-bimodule
and that N is a right S-module. Show that one may give HomS(M, N ) the
structure of a right R-module by setting ( f r)(m) = f (rm), r ∈ R, m ∈
M, f ∈ HomS(M, N ).

3. Let M be a right R-module. Interpret and prove:

HomR(R, M) ∼=R M.

4. Show that the “functorially induced mapping” of Eq. (8.24) is a homomorphism
as left R-modules. [Hint: the only real point is to verify the equation

β ◦ (rφ) ◦ α = r(β ◦ φ ◦ α)

using the left R-action defined for these modules on p. 261 preceding the
equation.]

5. Let R be a ring, let M be a right R-module, and let A be an abelian group.
Interpret and prove:

HomR(M,HomZ(R, A)) ∼=Z HomZ(M, A).

6. Let R be an integral domain in which every ideal is a free R-module. Prove that
R is a principal ideal domain.

7. (a) Let M, N1 and N2 be right R-modules. Show that

Hom(M, N1 ⊕ N2) ∼=Z Hom(M, N1) ⊕ Hom(M, N2).

More generally, show that if {Nα, α ∈ A} is a family of right R-modules,
then

Hom

(
M,

⊕
α∈A

Nα

)
∼=Z

⊕
α∈A

Hom(M, Nα).

4Perhaps the most important example of bimodules occur as follows: if R is a ring and if S ⊆ R is
a subring, then R is an (R, S)-bimodule.
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(b) Let N , M1 and M2 be right R-modules and show that

Hom(M1 × M2, N ) ∼=Z Hom(M1, N ) × Hom(M2, N ).

More generally, show that if {Mα, α ∈ A} is a family of R-modules, then

Hom

( ∏
α∈A

Mα, N

)
∼=Z

∏
α∈A

Hom(Mα, N ).

(c) Show that if
0 → N ′ μ→ N

ε→ N ′′ → 0

is a split short exact sequence of R-modules, and if M is a fixed right
R-module, then the sequences

0 → Hom(M, N ′) Hom(1M ,μ)−→ Hom(M, N )
Hom(1M ,ε)−→ Hom(M, N ′′) → 0,

and

0 → Hom(N ′′, M)
Hom(μ,1M )−→ Hom(N , M)

Hom(ε,1M )−→ Hom(N ′, M) → 0,

are both exact (and also split).
8. Show that the sequences which appear in Theorem 8.4.3 exhibiting the left or

right exactness of the “hom’ functors” are morphisms as left R-modules, not
just abelian groups.

9. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of right R-modules.
Prove that M is Noetherian (resp. Artinian) if and only if both M ′, M ′′ are. [Of
course, this is just a restatement of Exercise (3) in Sect. 8.5.2]

10. Prove that if Aα, α ∈ A, is a family of abelian groups, then

HomZ

(
R,

∏
α∈A

Aα

)
∼=R

∏
α∈A

HomZ(R, Aα).

11. Let Pα ,α ∈ A be a family of right R-modules. Show that
⊕

α∈A
Pα is projective

if and only if each Pα is projective.
12. Let Iα ,α ∈ A be a family of right R-modules. Show that

∏
α∈A

Iα is injective if

and only if each Iα is injective.
13. Let P be an R-module. Prove that P is projective if and only if given any exact

sequence 0 → M ′ μ→ M
ε→ M ′′ → 0, the induced sequence
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0 → HomR(P, M ′) Hom(1P ,μ)−→ HomR(P, M)
Hom(1P ,ε)−→ HomR(P, M ′′) → 0

is exact.
14. Suppose we have a sequence 0 → M ′ μ→ M

ε→ M ′′ → 0 of R-modules. Prove
that this sequence is exact if and only if the sequence

0 → HomR(P, M ′) Hom(1P ,μ)−→ HomR(P, M)
Hom(1P ,ε)−→ HomR(P, M ′′) → 0

is exact for every projective R-module P .
15. Let I be an R-module. Prove that I is injective if and only if given any exact

sequence 0 → M ′ μ−→ M
ε−→ M ′′ → 0, the induced sequence

0 −→ HomR(M ′′, I )
Hom(ε,1I )−→ HomR(M, I )

Hom(μ,1I )−→ HomR(M ′, I ) → 0

is exact.
16. Suppose we have a sequence 0 → M ′ μ→ M

ε→ M ′′ → 0 of R-modules. Prove
that this sequence is exact if and only if the sequence

0 → HomR(M ′′, I )
Hom(ε,1I )−→ HomR(M, I )

Hom(μ,1I )−→ HomR(M ′, I ) → 0

is exact for every injective R-module I .
17. Give an example of a non-split short exact sequence of the form

0 → P → M → I → 0

where P is a projective R-module and where I is an injective R-module.
18. Let F be a field and let R = be the ring of n × n lower-triangular matrices over

F . For each m ≤ n the F-vector space

Lm = {[α1 α2 · · · αm 0 · · · 0] | α1 α2, . . . ,αm ∈ F}

is a right R-module. Prove that each Lm, 1 ≤ m ≤ n is a projective R-module,
but that none of the quotients Lk /L j , 1 ≤ j < k ≤ n is projective.

19. A ring for which every ideal is projective is called a hereditary ring.
Prove that if F is a field, then the ring Mn(F) of n × n matrices over F is
hereditary. The same is true for the ring of lower triangular n × n matrices
over F .

20. Let A be an abelian group and let B ≤ A be such that A/B is infinite cyclic.
Prove that A ∼= A/B × B.

21. Let A be an abelian group and assume that A = H × C1 = K × C2 where C1
and C2 are infinite cyclic groups. Prove that H ∼= K . [Hint: First H /(H ∩ K ) ∼=
HK/K ≤ A/K ∼= C2 so H /(H ∩ K ) is either trivial or infinite cyclic. Similarly
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for K /(H ∩ K ). Next A/(H ∩ K ) ∼= H /(H ∩ K ) × C1 and A/(H ∩ K ) ∼=
K /(H ∩ K )×C2 so H /(H ∩ K ) and K /(H ∩ K ) are either both trivial (in which
case H = K ) or both infinite cyclic. Thus, from the preceding Exercise (20) in
Sect. 8.5.3 obtain H ∼= H /(H ∩ K ) × H ∩ K ∼= K /(H ∩ K ) × H ∩ K ∼= K ,
done.]

22. Prove Baer’s Criterion: Let I be a left R-module and assume that for any left
ideal J ⊆ R and any R-module homomorphismαJ : J → I ,α extends to an R-
module homomorphism α : R → I . Show that I is an injective module. [Hint:
Let M ′ ⊆ M be R-modules and assume that there is an R-module homomor-
phism α : M ′ → I . Consider the poset of pairs (N ,αN ), where M ′ ⊆ N ⊆ M
and where αN extends α. Apply Zorn’s Lemma to obtain a maximal element
(N0,α0). If N0 �= M , let m ∈ M − N0 and let J = {r ∈ R| rm ∈ N0}; note
that J is a left ideal of R. Now what?]

Reference

1. Rotman J (1979) An introduction to homological algebra. Academic Press, Boston



Chapter 9
The Arithmetic of Integral Domains

Abstract Integral domains are commutative rings whose non-zero elements are
closed under multiplication. If each nonzero element is a unit, the domain is called
a field and is shipped off to Chap.11. For the domains D which remain, divisibility
is a central question. A prime ideal has the property that elements outside the ideal
are closed under multiplication. A non-zero element a ∈ D is said to be prime if the
principle ideal Da which it generates is a prime ideal. D is a unique factorization
domain (or UFD) if any expression of an element as a product of prime elements
is unique up to the order of the factors and the replacement of any prime factor by
a unit multiple. If D is a UFD, so is the polynomial ring D[X ] where X is a finite
set of commuting indeterminates. In some cases, the unique factorization property
can be determined by the localizations of a domain. Euclidean domains (like the
integers, Gaussian and Eisenstein numbers) are UFD’s, but many domains are not.
One enormous class of domains (which includes the algebraic integers) is obtained
the following way: Suppose K a field which is finite-dimensional over a subfield F
which, in turn, is the field of fractions of an integral domain D. One can then define
the ringOD(K ) of elements of K which are integral with respect to D. Under modest
conditions, the integral domainOD(K ), will become a Noetherian domain in which
every prime ideal is maximal—a so-called Dedekind domain. Although not UFD’s,
Dedekind domains offer a door prize: every ideal can be uniquely expressed as a
product of prime ideals (up to the order of the factors, of course).

9.1 Introduction

Let us recall that an integral domain is a species of commutative ring with the
following simple property:

(ID) If D is an integral domain then there are no zero divisors—that is, there is no
pair of non-zero elements whose product is the zero element of D.

Of course this is equivalent (in the realm of commutative rings) to the proposition

(ID’) The set D∗ of non-zero elements of D, is closed under multiplication, and
thus (D∗, ·) is a commutative monoid under ring multiplication.
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As an immediate consequence one has the following:

Lemma 9.1.1 The collection of all non-zero ideals of an integral domain are closed
under intersection, and so form a lattice under either the containment relation or its
dual. Under the containment relation, the ‘meets’ are intersections and the ‘joins’
are sums of two ideals.

Proof The submodules of DD form a lattice under the containment relation with
‘sum’ and ‘intersection’ playing the roles of and “join” and “meet”. Since such
submodules are precisely the ideals of D, it remains only to show that two nonzero
ideals cannot intersect at the zero ideal in an integral domain. But if A and B are
ideals carrying non-zero elements a and b, respectively, then ab is a non-zero element
of A ∩ B. �

We had earlier introduced integral domains as a class of examples in Chap.6 on
basic properties of rings. One of the unique and identifying properties of integral
domains presented there was:

(The Cancellation Law) If (a, b, c) ∈ D∗ × D × D, then ab = ac implies b = c.

It is this law alonewhich defines themost interesting aspects of integral domains—
their arithmetic—which concerns who divides who among the elements of D. (It
does not seem to be an interesting question in general rings with zero divisors—such
as full matrix algebras.)

9.2 Divisibility and Factorization

9.2.1 Divisibility

Onemay recall from Sect. 7.1.3 that the units of a ring R form amultiplicative group,
denoted U (R). Two elements a and b of a ring are called associates if a = bu for
some unit u ∈ U (R). Since U (R) is a group, the relation of being an associate, is an
equivalence relation. This can be seen in the followingway: the group of units acts by
right multiplication on the elements of the ring R. Two elements are associates if and
only if they belong to the same U (R)-orbit under this action. Since the U (R)-orbits
partition the elements of R, the property of belonging to a common orbit is clearly
an equivalence relation on the set of ordered pairs R × R. We call these equivalence
classes association classes.

Equivalence relations arefine, but howcanweconnect these upwith “divisibility”?
To make the notion precise, we shall say that element a divides element b if and only
if b = ca for some element c in R. Notice that this concept is very sensitive to the
ambient ring R which contains elements a and b, for that is the “well” from which
a potential element c is to be drawn. By this definition,

http://dx.doi.org/10.1007/978-3-319-19734-0_6
http://dx.doi.org/10.1007/978-3-319-19734-0_7
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• Every element divides itself.
• Zero divides only zero, while every element divides zero.
• If element a divides b and element b divides c, then a divides c.

Thus the divisibility relationship is transitive and so we automatically inherit a
pre-order which is trying to tell us as much as possible about the question of who
divides whom.

As one may recall from the very first exercise for Chap.2 (Sect. 2.7.1), for every
pre-order, there is an equivalence relation (that of being less-than-or-equal in both
directions) whose equivalence classes become the elements of a partially ordered
set. Under the divisibility pre-order for an integral domain, D, equivalent elements
a and b should satisfy

a = sb, and b = ta.

for certain elements s and t in D. If either one of a or b is zero, then so is the other,
so zero can only be equivalent to zero. Otherwise, a and b are both non-zero and so,
by the Cancellation Law,

a = s(ta) = (st)a and st = 1.

In this case, both s and t are units. That means a and b are associates.
Conversely, if a and b are associates, they divide one another.
Thus in an integral domain D, the equivalence classes defined by the divisibility

preorder, are precisely the association classes of D—that is, the multiplicative cosets
xU(D) of the group of units in the multiplicative monoid D∗ := (D − {0}, ·).

The resulting poset of association classes of the integral domain D is called the
divisibility poset and is denoted Div(D). Moreover:

Lemma 9.2.1 (Properties of the divisibility poset)

1. The additive identity element 0D, is an association class that is a global maximum
of the poset Div(D).

2. The group of units U (D) is an associate-class comprising the global minimum
of the poset Div(D).

One can also render this poset in another way. We have met above the lattice of
all ideals of D under inclusion—which we will denote here by the symbol L(D). Its
dual lattice (ideals under reverse containment) is denoted L(D)∗. We are interested
in a certain induced sub-poset of L(D)∗. Ideals of the form xD which are generated
by a single element x are called principal ideals. Let P(D) be the subposet of
L(D) induced on the collection of all principal ideals of D, including the zero ideal,
0 = 0D. We call this the principal ideal poset. To obtain a comparison with the
poset Div(D), we must pass to the dual. Thus P(D)∗ is defined to be the subposet
of L∗ induced on all principal ideals—that is, the poset of principal ideals ordered
by reverse inclusion.

We know the following:

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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Lemma 9.2.2 (Divisibility and principal ideal posets) In an integral domain D, the
following holds:

1. Element a divides element b if and only if bD ⊆ aD.
2. Elements a and b are associates if and only if aD = bD.
3. So there is a bijection between the poset P(D)∗ of all principal ideals under

reverse containment, and the poset Div(D) of all multiplicative cosets of the
group of units (the association classes of D) under the divisibility relation, given
by the map f : xD → xU(D).

4. Moreover, the mapping
f : P(D)∗ → Div(D),

is an isomorphism of posets.

One should be aware that the class of principal ideals of a domain D need not be
closed under taking intersections and taking sums. This has a lot to do—as we shall
soon see—with the questions of the existence of “greatest” common divisors, “least”
common multiples and ultimately the success or failure of unique factorization.
Notice that here, the “meet” of two cosets xU(D) and yU(D) would be a coset
dU(D) such that dU(D) divides both xU(D) and yU(D) and is the unique coset
maximal in Div(D) having this property. We pull this definition back to the realm of
elements of D in the following way:

The element d is a greatest common divisor of two non-zero elements a and b of an
integral domain D if and only

1. d divides both a and b.
2. If e divides both a and b, then e divides d.

Clearly, then, if a greatest common divisor of two elements of a domain exists,
it is unique up to taking associates—i.e. up to a specified coset of U (D)—and this
association class is unchanged upon replacing any of the two original elements by
any of their associates.

In fact it is easy to see that if d is the greatest common divisor of a and b, then
d D is the smallest principal ideal containing both aD and bD. Note that this might
not be the ideal aD + bD, the join in the lattice of all ideals of D.

Similarly, lifting back the meaning of a “join” in the poset Div(D), we say that
the element m is a least common multiple of two elements a and b in an integral
domain D if and only if:

1. Both a and b divide m (i.e. m is a multiple of both a and b).
2. If n is also a common multiple of a and b, then n is a multiple of m

Again, we note that if m is the least common multiple of a and b, then mD is the
largest principal ideal contained in both aD and bD. Again, this does not mean that
the ideal mD is aD ∩ bD, the meet of aD and bD in the full lattice L of all ideals
of D.

The above discussion calls attention to the special case in which the principal
ideal poset P(D) actually coincides with the full lattice of ideals L(D). An integral
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domain D for which P(D) = L(D) is called a principle ideal domain, or PID for
short. From our discussion in the preceding paragraphs we have:

Lemma 9.2.3 For any two elements a and b of a principal ideal domain D, a greatest
common divisor d = gcd(a, b) and a least common multiple m = lcm(a, b) exist.
For the least common multiple m, one has Dm = Da ∩ Db, the meet of Da and Db
in the lattice L(D). Similarly the greatest common divisor d generates the join of
the ideals spanned by a and b. That is,

Da + Db = Dd.

Thus there exist elements s and t in D, such that d = sa + tb.

9.2.2 Factorization and Irreducible Elements

The next two lemmas display further instances in which a question on divisibility in
an integral domain, refers back to properties of the poset of principal ideals.

A factorization of an element of the integral domain D is simply a way of repre-
senting it as a product of other elements of D. Of course one can write an element
as a product of a unit and another associate in as many ways as there are elements
in U (D). The more interesting factorizations are those in which none of the factors
are units. These are called proper factorizations.

Suppose we begin with an element x of D. If it is a unit, it has no proper factor-
ization. Suppose element x is not a unit, and has a proper factorization x = x1y1 into
two non-zero non-units. We attempt, then, to factor each of these factors into two
further factors. If such a proper factorization is not possible for one factor, one pro-
ceeds with the other proper factor. In this way one may imagine an infinite schedule
of such factorizations. This schedule would correspond to a downwardly growing
binary tree in the graph of the divisibility poset Div(D), An end-node to this tree
(that is, a vertex of degree one) results if and only if one obtains a factor y which
possesses no proper factorization. We call such an element “irreducible”.

Precisely, an element y of D∗ is irreducible if and only if it is a non-zero non-unit
with the property that if y = ab is a factorization, one of the factors a or b, is a
unit. Applying the poset isomorphism f : Div(D) → P(D)∗ given in Lemma 9.2.2
above, these comments force the following:

Lemma 9.2.4 If D is an integral domain, an element y of D is an irreducible
element if and only if the principal ideal yD is non-zero and does not properly lie in
any other principal ideal except D itelf (that is, it is maximal in the induced poset
P(D) − {D, 0} of proper principal ideals of D under containment).

Here is another important central result of this type which holds for a large class
of integral domains.
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Lemma 9.2.5 Let D be an integral domain possessing the ascending chain condition
on its poset P(D) of principal ideals. Then every non-zero non-unit is the product
of a unit and a finite number of irreducible elements.

Proof Suppose there were a non-zero element x ∈ D − U (D) which was not the
product of a finite number of irreducible elements. Then the collection T of principal
ideals xD where x is not a product of finitely many irreducible elements is non-
empty. We can thus choose an ideal y D which is maximal in T because T inherits
the ascending chain condition from the poset of principal ideals. Since y itself is not
irreducible, there is a factorization y = ab where neither a nor b is a unit. Then aD
properly contains yD, since otherwise aD = yD and y is an associate ua of a where
u is a unit. Instantly, the cancellation law yields b = u contrary to hypothesis. Thus
certainly the principal ideal aD does not belong to T . Then a is a product of finitely
many irreducible elements of D. Similarly, b is a product of finitely many irreducible
elements of D. Hence their product y must also be so, contrary to the choice of y.
The proof is complete. �

9.2.3 Prime Elements

So far, we have been discussing irreducible elements. A similar, but distinct notion
is that of a prime element. A non-zero non-unit r in D is said to be a prime, if and
only if, whenever r divides a product ab, then either r divides a or r divides b.

One of the very first observations to be made from this definition is that the notion
of being prime is stronger than the notion of being irreducible, Thus:

Lemma 9.2.6 In any integral domain, any prime element is irreducible.

Proof Let r be a prime element of the integral domain D. Suppose, by way of
contradiction that r is not irreducible, so that r = ab, where a and b are non-units.
Then r divides ab, and so, as r is prime, r divides one of the two factors a or b—say
a. Then r = rvb for some v ∈ D. But then, by the Cancellation laws, 1 = vb,
whence b is a unit, contrary to our assumption.

Thus r is irreducible. �

In general, among integral domains, an irreducible element may not be prime.1

However it is true for principle ideal domains.

Lemma 9.2.7 In a principle ideal domain, every irreducible element is a prime
element.

Proof Let x be an irreducible element in the principle ideal domain D. By definition
x is a non-unit. Assume, by way of contradiction that x is not a prime. Then there
exists elements a and b in D, such that x divides ab, but x does not divide either

1An example is given under the title “a special case” on p. 290.
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a of b. Notice that if a were a unit, then x would divide b, against our hypothesis.
Thus it follows that neither a nor b are units. Thus Da is a proper ideal that does not
lie in Dx . Since x is irreducible, Dx is a maximal ideal in D (Lemma 9.2.4), and is
properly contained in the ideal Dx + Da. Thus Dx + Da = D, and so 1 = d1a + d2x
for some elements d1, d2 of D. But since x divides ab, we may write ab = d3x for
d3 ∈ D. Now

b = b · 1 = b(d1a + d2x) = d1ab + d2xb

= d1(d3x) + d2xb = (d1d3 + d2b)x .

Thus b is amultiple of x , which is impossible, since x does not divide b by hypothesis.
This contradiction tells us that x is indeed a prime element. �

Thus, in a principal ideal domain, the set of irreducible elements and the set of
prime elements coincide.

The reader will observe, the following:

Corollary 9.2.8 In a principle ideal domain D, the element a is prime, if and only
if the factor ring D/Da is an integral domain.

9.3 Euclidean Domains

An integral domain D is said to be a Euclidean Domain if and only if there is a
function g : D∗ → N into the natural numbers (non-negative integers)2 satisfying
the following:

(ED1) For a, b ∈ D∗ := D − {0}, g(ab) ≥ g(a).
(ED2) If (a, b) ∈ D × D∗, then there exist elements q and r such that a = bq + r ,

where either r = 0 or else g(r) < g(b).

The notation in (ED2) is intentionally suggestive: q stands for “quotient” and r
stands for “remainder”. The function g is sometimes called the “grading function”
of the domain D.

Recall that in a ring R, an ideal I of the form x R is called a principal ideal. An
integral domain in which every left ideal is a principal ideal is called a principal ideal
domain or PID. We have

Theorem 9.3.1 Every Euclidean domain is a principal ideal domain.

Proof Let D be a Euclidean domain with grading function g : D∗ → N. Let J be
any ideal in D. Among the non-zero elements of J we can find an element x with
g(x) minimal. Let a be any other element of J . Then a = qx + r as in (ED2) where
r = 0 or g(r) < g(x). Since r = a − qx ∈ J , minimality of g(x) shows that the

2As remarked several times, in this book, the term “natural numbers” includes zero.



286 9 The Arithmetic of Integral Domains

second alternative cannot occur, so r = 0 and a = qx. Thus J ⊆ xD. But x ∈ J ,
an ideal, already implies xD ⊆ J so J = xD is a principal ideal. Since J was an
arbitrary ideal, D is a PID. �

There are, however, principle ideal domains which are not Euclidean domains.
Clearly any Euclidean domain D possesses the algebraic property that it is a PID,

so that greatest common divisors d = gcd(a, b) always exist along with elements s
and t such that d = sa + bt (Lemmas 9.2.3 and 9.3.1). What is really new here is
the computional-logical property that the greatest common divisor d = gcd(a, b) as
well as the elements s and t can actually be computed! Behold!

euclidean algorithm. Given a and b in D and D∗, respectively, by (ED2) we
have

a = bq1 + r1,

and if r1 �= 0,
b = r1q2 + r2,

and if r2 �= 0,
r1 = r2q3 + r3,

etc., until we finally obtain a remainder rk = 0 in

rk−2 = rk−1qk + rk .

Such a termination of this process is inevitable for g(r1), g(r2), . . . is a strictly
decreasing sequence of non-negative integers which can only terminate at g(rk−1)

when rk = 0.
We claim the number rk−1 (the last non-zero remainder) is a greatest common

divisor of a and b. First rk−2 = rk−1qk and also rr−3 = rk−2qk−1+rk−1 aremultiples
of rk−1. Inductively, if rk−2 divides both r j and r j+1, it divides r j−1. Thus all of the
right hand sides of the equations above are multiples of rk−1; in particular, a and b
are multiples of rk−1. On the other hand if d ′ is a common divisor of a and b, d ′
divides r1 = a − bq1 and in general divides r j = r j−2 − r j−1q j and so d ′ divides
rk−1, eventually. Thus d := rk−1 is a greatest common divisor of a and b.

Also an explicit expression of d = rk−1 as a D-linear combination sa + tb can be
obtained from the same sequence of equations. For

d = rk−1 = rk−3 − rk2qk−1,

and each r j similarly is a D-linear combination of r j−2 and r j−1, j = 1, 2, . . .
Successive substitutions for the r j ultimately produces an expression d = sa + tb.
All quite computable.
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9.3.1 Examples of Euclidean Domains

Example 45 The Gaussian integers and the Eisenstein integers.
These are respectively the domains D1 := Z ⊕ Zi (where i2 = −1 �= −i)

and D2 = Z ⊕ Zω (where ω = e2iπ/3). The complex number ω is a zero of the
irreducible polynomial x2 + x + 1, and so is a cube root of unity distinct from 1.

Both of these domains are subrings of C, the complex number field, and each is
invariant under complex conjugation. Thus both of them admit a multiplicative norm
function N : C → Rwhere N (z) := z · z̄ records the square of the Euclidean distance
of z from zero in the complex plane. (As usual, z̄ denotes the complex conjugate of
the complex number z.)

We shall demonstrate that these rings are Euclidean domains with the norm func-
tion in the role of g. That its values are taken in the non-negative integers follows
from the formulae

N (a + bi) = a2 + b2

N (a + bω) = a2 − ab + b2.

As already remarked, the norm function is multiplicative so (ED1) holds. To demon-
strate (ED2) we choose elements a and b of D = D1 or D2 with b �= 0. Now the
elements of D1 form a square tessellation of the complex plane with {0, 1, i, i + 1}
as a fundamental square. Similarly, the elements of D2 form the equilateral triangle
tessellation of the complex plane with {0, 1,−ω2} or {0, 1,−ω} at the corners of the
fundamental triangles. We call the points where three or more tiles of the tessellation
meet lattice points.

When we superimpose the ideal bD on either one of these tessellations of the
plane, we are depicting a tessellation of the same type on a subset of the lattice
points with a possibly larger fundamental tile. Thus for the Gaussian integers, bD
is a tessellation whose fundamental square is defined by the four “corner” points
{0, b, ib, (1+ i)b}. The resulting lattice points are a subset of the Gaussian integers
closed under addition (vector addition in the geometric picture). Similarly for the
Eisenstein numbers, a fundamental triangle of the tessellation defined by the ideal
bD is the one whose “corners” are in {0, b,−bω2} or {(0, b,−bω)}. In either case
the tiles of the tessellation bD cover the plane, and so the element a must fall in some
tile T—either a square or an equilateral triangle—of the superimposed tessellation
bD. Now let qb be a corner point of T which is nearest a. Since T is a square or an
equilateral quadrangle, we have

(Nearest Corner Principle) The distance from a point of T to its nearest corner is
less than the length of a side of T

Thus the distance |a − qb| = √
N (a − qb) is less than |b| = √

N (b). Using the
fact that the square function is monotone increasing on non-negative real numbers,
we have

g(a − bq) = N (a − bq) < N (b) = g(b).
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Thus setting r = a − qb, we have r = 0 or g(r) < g(b). Thus (with respect to the
function g), r serves to realize the condition (ED2).3

Before passing to the next example, this may be a good place to illustrate how
embedding one domain into another sometimes may provide new results for the
original domain: in this case we are embedding the integers Z into the Gaussian
integers Z[i]. When we select a prime integer (called a rational prime), the question
is raisedwhether it is still a prime element in the ring ofGaussian integers (aGaussian
prime). The Theorem 9.3.3 below gives a complete answer.

Lemma 9.3.2 Let p be any rational prime. If p is not a Gaussian prime then p is
the sum of two integer squares.

Proof Suppose that rational prime p is the product of two non-units in Z[i], say
p = ζη. Taking norms, we have p2 = N (ζ)N (η). Since a Gaussian integer is a
unit if and only if its norm is ±1, it follows that the last two norms of the previous
equation are both positive integers dividing p2. Since p is a rational prime, each of
these norms is equal to p. Thus, writing ζ = a+bi one has p = N (ζ) = a2+b2. �
Theorem 9.3.3 Let p be a rational prime. Then p is a Gaussian prime if and only
if it leaves a remainder of 3, when divided by 4.

Proof First, the prime integer 2 is not a Gaussian prime since 2 = (1 + i)(1 − i),
so we may assume that the rational prime p is odd. Since the square of every odd
integer leaves a remainder of 1, when divided by 4, the sum of two integer squares
can only be congruent to 0, 1, or 2 modulo 4. Thus if p ≡ 3 mod 4, it is not the
sum of two integer squares and so must be a Gaussian prime, by the previous Lemma
9.3.2.

That leaves the case that p ≡ 1 mod 4. In this case Z/(p) is a field whose
multiplicative group of non-zero elements contains a unique cyclic subgroup of order
4 whose generator has a square equal to −1, that is, there exists an integer b such
that b2 ≡ −1 mod p. Let P be the principle ideal generated by p in the domain
of Gaussian integers. Since Z[i] is Euclidean, it is a principle ideal domain, and so,
by Corollary 9.2.8, the factor ring Z[i]/P is an integral domain if and only if p is a
prime in Z[i]. But since b �≡ 0 mod p, the numbers 1 ± bi cannot be multiples of
p in Z[i]. Thus the equation

(1 + bi + P)(1 − bi + P) = (1 + bi)(1 − bi) + P = (1 + b2) + P = P,

reveals that the factor ring Z[i]/P possesses zero divisors, and so cannot be an
integral domain. Accordingly p is not a prime element of Z[i]. �

3Usually boxing matches are held (oxymoronically) in square “boxing rings”. Even if (as well)
they were held in equilateral triangles, it is a fact that when the referee commands a boxer to “go
to a neutral corner”, the fighter really does not have far to go (even subject to the requirement of
“neutrality” of the corner). But woe the fighter who achieves a knock-down near the center, of a
more ring-like N -gon for large N . After the mandatory hike to a neutral corner, the fighter can only
return to the boxing match totally exhausted from the long trip. No Euclidean algorithm for these
boxers.
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Corollary 9.3.4 If p is a rational prime of the form 4n + 1, then p is a sum of two
integer squares.

Proof By Theorem 9.3.3 p is not a Gaussian prime. Now apply Lemma 9.3.2. �

This result does not seem easy to prove within the realm of integers alone.

Example 46 Polynomial domains over a field. Let F be a field and let F[x] be the
ring of polynomials in indeterminate x and with coefficients from F . We let deg be
the degree function, F[x] → N.4 Then if f (x) and g(x) are non-zero polynomials,

deg( f g) = deg f + deg g,

so (ED1) holds. The condition (ED2) is the familiar long division algorithm of
College Algebra and grade school.

9.4 Unique Factorization

9.4.1 Factorization into Prime Elements

Let D be any integral domain. Recall that a non-zero non-unit of D is said to be
irreducible if it cannot be written as the product of two other non-units. This means
that if r = ab is irreducible, then either a or b is a unit.

Recall also that a non-zero non-unit r in D is said to be a prime element, if and
only if, whenever r divides a product ab, then either r divides a or r divides b.

In the case of the familiar ring of integers (indeed for all PID’s), the two notions
coincide, and indeed they are forced to coincide in an even larger collection of
domains.

An integral domain D is said to be a unique factorization domain (or UFD) if and
only if

(UFD1) Every non-zero non-unit is a product of a unit and a finite number of
irreducible elements.

(UFD2) Every irreducible element is prime.

We shall eventually show that a large class of domains—the principal ideal
domains—are UFD’s. (See Theorem 9.4.3.) One of the very first observations to
be made from these definitions is that the notion of being prime is stronger than the
notion of being irreducible. Thus:

4The student will recall the familiar degree function, that records the highest exponent of x that
appears when a polynomial is expressed as a linear combination of powers of x with non-zero
coefficients.
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Lemma 9.4.1 The following are equivalent:

(i) D is a UFD.
(ii) In D every non-zero non-unit is a product of a unit and a finite number of primes.

Proof (i) ⇒ (ii) is obvious since (i) implies each irreducible element is a prime.
(ii) ⇒ (i). First we show that every irreducible element is prime. Let r be irre-

ducible. Then by (ii), r is a product of a unit and a finite number of primes. But since
r is irreducible, r = up where u is a unit and p is a prime.

Now every non-zero non-unit is a product of a unit and finitely many irreducible
elements, since each prime is irreducible by Lemma 9.2.6. Thus the two defining
properties of a UFD follow from (ii) and the proof is complete. �

Theorem 9.4.2 (The Basic Unique Factorization Theorem) Let D be an integral
domain which is a UFD. Then every non-zero non-unit can be written as a product
of finitely many primes. Such an expression is unique up to the order in which of the
prime factors appear, and the replacement of any prime by an associate—that is, a
multiple of that prime by a unit.

Proof Let r be a non-zero non-unit of the UFD D. Then by Lemma 9.4.1, r can be
written as a unit times a product of finitely many primes. Suppose this could be done
in more than one way, say,

r = up1 p2 · · · ps = vq1q2 · · · qt

where u and v are units and the pi and qi are primes. If s = 0 or t = 0, then r
is a unit, contrary to the choice of r . So without loss of generality we may assume
0 < s ≤ t . Now as p1 is a prime, it divides one of the right hand factors, and this
factor cannot be v. Rearranging the indexing if necessary, we may assume p1 divides
q1. Since q1 is irreducible, p1 and q1 are associates, so q1 = u1 p1. Then

r = up1 · · · ps = (vu1)p1q2 · · · qt

so, by the cancellation law

up2 · · · ps = (vu1)q2 · · · qt ,

with t − 1 factors on the right side. By induction on t , we have s = t and qi =
ui pπ(i) for some unit ui , i = 2, . . . t and permutation π of these indices. Thus the
two factorizations involve the same number of primes with the primes in one of the
factorizations being associates of the primes in the other, written in some possibly
different order. �
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A Special Case

Of course we are accustomed to the domain of the integers, which is a UFD. So it
might be instructive to look at a more pathological case.

Consider the ring D = {a + b
√−5|a, b ∈ Z}. Being a subring of the field of

complex numbers C, it is an integral domain.
The mapping z → z̄, where z̄ is the complex conjugate of z, is an automorphism

of C which leaves D invariant (as a set) and so induces an automorphism of D. We
define the norm of a complex number ζ to be N (ζ) := ζζ̄. Then N : C → R

+,
the positive real numbers, and N (ζψ) = N (ζ)N (ψ) for all ζ,ψ ∈ C. Clearly,
N (a + b

√−5) = a2 + 5b2 so the restriction of N to D has non-negative integer
values. (Moreover, we obtain for free the fact that the integers of the form a2 + 5b2

are closed under multiplication.)
Let us determine the units of D. Clearly if ν ∈ D is a unit, then there is a μ in D

so that νμ = 1 = 1 + 0
√−5, the identity of D. Then

N (ν)N (μ) = N (νμ) = N (1) = 12 + 5 · 02 = 1.

But how can the integer 1 be expressed as the product of two non-negative integers?
Obviously, only if N (ν) = 1 = N (μ). But if a2 + 5b2 = 1, it is clear that b = 0 and
a = ±1. Thus

U (D) = {±1} = {d ∈ D|N (d) = 1}.

We can also use norms to locate irreducible elements of D. For example, if ζ is an
element of D of norm 9, then ζ is irreducible. For otherwise, one would have ζ = ψη
where ψ and η are non-units. But that means N (ψ) and N (η) are both integers larger
than one. Yet 9 = N (ψ)N (η) so N (ψ) = N (η) = 3, which is impossible since 3 is
not of the form a2 + 5b2.

But now note that

9 = 3 · 3 = (2 + √−5)(2 − √−5)

are two factorizations of 9 into irreducible factors (irreducible, because they have
norm 9) and, as U (D) = {±1}, 3 is not an associate of either factor on the right
hand side.

Thus unique factorization fails in the domain D = Z ⊕ Z
√−5. The reason is

that 3 is an irreducible element which is not a prime. It is not a prime because 3
divides (2 + √−5)(2 − √−5), but does not divide either factor.
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9.4.2 Principal Ideal Domains Are Unique Factorization
Domains

The following theorem utilizes the fact that if an integral domain possesses the
ascending chain condition on principal ideals, then every element is a product of
finitely many irreducible elements (Lemma 9.2.5).

Theorem 9.4.3 Any PID is a UFD.

Proof Assume D is a PID. Then by Theorem 8.2.11 of Chap.8, D has the ascending
chain condition on all ideals, and so by Lemma 9.2.5, the condition (UFD1) holds.

It remains to show (UFD2), that every irreducible element is prime. Let x be
irreducible. Then Dx is a maximal ideal (Lemma 9.2.4).

Now if x were not a prime, there would exist elements a and b such that x divides
ab but x does not divide either a or b. Thus a /∈ xD, b /∈ xD, yet ab ∈ xD. Thus xD
is not a prime ideal, contrary to the conclusion of the previous paragraph that xD is
a maximal ideal, and hence a prime ideal. �

Corollary 9.4.4 If F is a field, the ring of polynomials F[x] is a UFD.

Proof We have observed in Example 46 that F[x] is a Euclidean ring with respect
to the degree function. Thus by Theorem 9.3.1, F[x] is a PID, and so is a UFD by
Theorem 9.4.3 above. �

9.5 If D Is a UFD, Then so Is D[x]

We begin with three elementary results for arbitrary integral domains D, regarded
as subrings of the polynomial rings D[x].
Lemma 9.5.1 U (D[x]) = U (D).

Proof Since D is an integral domain, degrees add in taking the products of non-zero
polynomials. Thus the units of D[x] must have degree zero and so must lie in D.
That a unit of D is a unit of D[x] depends only upon the fact that D is a subring of
D[x]. �

Lemma 9.5.2 Let p be an element of D, regarded as a subring of D[x]. If p divides
the polynomial q(x) in D[x], then every coefficient of q(x) is divisible by p.

Proof If p divides q(x) in D[x], then q(x) = p f (x) for some f (x) ∈ D[x]. Then
the coefficients of q(x) are those of f (x) multiplied by p. �

Lemma 9.5.3 (Prime elements of D are prime elements of D[x].) Let p be a prime
element of D. If p divides a product p(x)q(x) of two elements of D[x], then either
p divides p(x) or p divides q(x).

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Proof Suppose the irreducible element p divides p(x)q(x) as hypothesized. Write

p(x) =
∑n

i=0
ai xi , and q(x) =

∑m

j=0
b j x j ,

where ai , b j ∈ D. Suppose byway of contradiction that p does not divide either p(x)

or q(x). Then by the previous Lemma 9.5.2, p divides each coefficient of p(x)q(x)

while there is a first coefficient ar of p(x) not divisible by p, and a first coefficient
bs of q(x) not divisible by p. Then the coefficient of xr+s in p(x)q(x) is

cr+s =
∑

i+ j=r+s
ai b j , subject to 0 ≤ i ≤ n and 0 ≤ j ≤ m (9.1)

Now if (i, j) �= (r, s), and i + j = r + s, then either i < r or j < s, and in either
case ai b j is divisible by p. Thus all summands ai b j in the right side of Eq. (9.1)
except possibly ar bs are divisible by p. But p is a prime element in D that does not
divide either ar or bs . It follows that p does not divide ar bs which would mean that
p does not divide cr+s , against Lemma 9.5.2 and the fact that p divides p(x)q(x).

Thus p must divide one of p(x) or q(x), completing the proof. �

We are all familiar with the way that the rational number field Q is obtained as a
systemof fractions of integers. In an identicalmanner, one can formafield of fractions
F of any integral domain D. Its elements are “fractions”—that is, equivalence classes
of pairs in D× D∗ with the equivalence class [n, d] containing the pair (n, d) defined
to be the set of pairs (bn, bd) as b ranges over all nonzero elements b ∈ D∗. Addition
and multiplication of classes are as they are for rational numbers:

[a, b] + [c, d] = [ad + bc, bd] and [a, b] · [c, d] = [ac, bd].

(This an example of a localization F = DS , of the sort studied in the next section,
with S = D∗ = D − {0}.) Since D is a subdomain of the field F , D[x], the domain
of polynomials with coefficients from D, can be regarded as a subring of F[x] by
the device of regarding coefficients d of D as fractions d/1. We wish to compare the
factorization of elements in D[x] with those in F[x].

We say that a polynomial p(x) ∈ D[x] is primitive if and only if, whenever d ∈ D
divides p(x), then d is a unit.

From this point onward, we assume that D is a UFD, so all irreducible elements
are prime and every non-zero element is a unit or a product of prime elements.

We now approach two lemmas that involve F[x] where F is the field of fractions
of D.

Lemma 9.5.4 If p(x) = αq(x), where p(x) and q(x) are primitive polynomials in
D[x], and α ∈ F, then α is a unit in D.

Proof Since D is a UFD, greatest common divisors and least common multiples
exist, and so there is a “lowest terms” representation of α as a fraction t/s where any
greatest common divisor of s and t is a unit. If s is itself a unit, then t divides each
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coefficient of p(x), and since p(x) is primitive, t must also be a unit. In that case
α = s/t − st−1 is a unit of D, as claimed. Otherwise, there is a prime divisor p of s.
Then p does not divide t , and so from sp(x) = tq(x), we see that every coefficient
of q(x) is divisible by p, against q(x) being primitive. �

Lemma 9.5.5 If f (x) ∈ F[x], then f (x) has a factorization

f (x) = rp(x)

where r ∈ F and p(x) is a primitive polynomial in D[x]. This factorization is unique
up to replacement of each factor by an associate.

Proof We prove this in two steps. First we establish

Step 1. There exists a scalar γ such that f (x) = γ p(x) , where p(x) is primitive
in D[x].

Each non-zero coefficient of xi in f (x) has the form ai/bi with bi ∈ D − {0}.
Multiplying through by a least common multiple m of the bi (recall that lcm’s exist
in UFD’s), we obtain a factorization

f (x) = (
1

m
)
∑

ai (m/bi )xi ,

whose second factor is clearly primitive in D[x].
Step 2. The factorization in Step 1 is unique up to associates.

Suppose f (x) = γ1 p1(x) = γ2 p2(x) with γi ∈ F , and pi (x) primitive in D[x].
Then p1(x) and p2(x) are associates in F[x] so

p1(x) = γ p2(x), for γ ∈ F.

Then by Lemma 9.5.4, γ is a unit in D. But as γ = γ2γ
−1
1 , the result follows. �

A non-zero element of an integral domain D′ is said to be reducible simply if it
is not irreducible—i.e. it has a factorization into two non-units of D′.

Lemma 9.5.6 (Gauss’ Lemma) Suppose p(x) ∈ D[x] is reducible in the ring F[x].
Then p(x) is reducible in D[x].
Proof By hypothesis p(x) = f (x)g(x), where f (x) and g(x) are polynomials of
positive degree in F[x]. Then by Step 1 of the proof of Lemma 9.5.5 above, we may
write

f (x) = μ f1(x)

g(x) = γg1(x).
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where μ, γ ∈ F and f1(x) and g1(x) are primitive polynomials in D[x]. Now by
Lemma 9.5.3, f1(x)g1(x) is a primitive polynomial in D[x] so

p(x) = (μγ)( f1(x)g1(x)),

and Lemma 9.5.4 shows that μγ is a unit in D. Then

p(x) = ((μγ) f1(x)) · g1(x)

is a factorization of p(x) in D[x], with factors of positive degree. The conclusion
thus follows. �

Theorem 9.5.7 If D is a UFD, then so is D[x].
Proof Let p(x) be any element of D[x]. We must show that p(x) has a factorization
into irreducible elements which is unique up to the replacement of factors by asso-
ciates. Since D is a unique factorization domain, a consideration of degrees shows
that it is sufficient to do this for the case that p(x) is primitive of positive degree.

Let S = D − {0} and form the field of fractions F = DS , regarding D[x]
as a subring of F[x] in the usual way. Now by Corollary 9.4.4, F[x] is a unique
factorization domain. Thus we have a factorization

p(x) = p1(x)p2(x) · · · pn(x)

where each pi (x) is irreducible in F[x]. Then by Lemma 9.5.5, there exist scalars
γi , i = 1, . . . , n, such that pi (x) = γi qi (x), where qi (x) is a primitive polynomial
in D[x]. Then

p(x) = (γ1γ2 · · · γn)q1(x) · · · qn(x).

Since theqi (x) are primitive, so is their product (Lemma9.5.3). Then byLemma9.5.4
the product of the γi is a unit u of D. Thus

p(x) = uq1(x) · · · qn(x)

is a factorization in D[x] into irreducible elements.
If

p(x) = vr1(x) · · · rm(x)

were another such factorization, the fact that F[x] is a PID and hence a UFD shows
that m = n and the indexing can be chosen so that ri (x) is an associate of qi (x) in
F[x]—i.e. there exist scalars ρi in F such that ri (x) = ρi qi (x), for all i . Then as
ri (x) and qi (x) are irreducible in D[x], they are primitive, and so by Lemma 9.5.4,
each γi is a unit in D. Thus the two factorizations of p(x) are alike up to replacement
of the factors by associates in D[x]. The proof is complete. �
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Corollary 9.5.8 If D is a UFD, then so is the ring

D[x1, . . . , xn].

Proof Repeated application of Theorem 9.5.7 to

D[x1, . . . , x j+1] � (D[x1, . . . , x j ])[x j+1]. �

9.6 Localization in Commutative Rings

9.6.1 Localization by a Multiplicative Set

Section9.2 revealed that the divisibility structure of D, as displayed by the divisibility
poset Div(D), is in part controlled by the group of units. It is then interesting to know
that the group of units can be enlarged by a process described in this section.5

We say that a subset S of a ring ismultiplicatively closed if and only if SS ⊆ S and
S does not contain the zero element of the ring. If S is a non-empty multiplicatively
closed subset of the ring R, we can define an equivalence relation “∼” on R × S by
the rule that (a, s) = (b, t) if and only if, for some element u in S, u(at − bs) = 0.

Let us first show that the relation “∼” is truly an equivalence relation. Obviously
the relation “∼” is symmetric and reflexive. Suppose now

(a, s) ∼ (b, t) ∼ (c, r) for {r, s, t} ⊆ S.

Then there exists elements u and v in S such that

u(at − bs) = 0 and v(br − tc) = 0.

Multiplying the first equation by vr we get vr(uat) = vr(ubs). But vr(ubs) =
us(vbr) = us(vtc), by the second equation. Hence

vut (ar) = vut (sc),

so (a, s) ∼ (c, r), since vut ∈ S. Thus ∼ is a transitive relation.
For any element s ∈ S, we now let the symbol a/s (sometimes written a

s ) denote
the∼—equivalence class containing theorderedpair (a, s).Wecall these equivalence
classes fractions.

Next we show that these equivalence classes enjoy a ring structure. First observe
that if there is an element u in S such that u(as′ −sa′) = 0 (i.e. (a, s) ∼ (a′, s′)) then

5When this happens, the student may wish to verify that the new divisibility poset so obtained is a
homomorphic image of the former poset.
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u(abs′t −sta′b) = 0, so (ab, st) ∼ (a′b, s′t). Thus we can unambiguously define the
product of two equivalence classes—or ‘fractions’—by setting (a/s)·(b/t) = ab/st .

Similarly, if (a, s) ∼ (a′, s′), so that for some u ∈ S, u(as′ − sa′) = 0 , we see
that

u(at + sb)s′t − u(a′t + s′b)st = 0,

so
(at + bs)/s = (a′t + s′b)/s′t.

Thus ‘addition’, defined by setting

a

s
+ b

t
:= at + bs

st
,

is well defined, since this is also (a′t + s′b)/s′t .
The set of all ∼—classes on R × S is denoted RS . Now that multiplication and

addition are defined on RS , we need only verify that

1. (RS,+) is an abelian group with identity element 0/s—that is, the ∼—class
containing (0, s) for any s ∈ S.

2. (RS, ·) is a commutative monoid with multiplicative identity s/s, for any s ∈ S.
3. Multiplication is distributive with respect to addition in RS .

All of these are left as Exercises in Sects. 9.13.1–9.13.2. The conclusion, then, is
that

(Rs,+, ·) is a ring.

This ring Rs is called the localization of R by S.

9.6.2 Special Features of Localization in Domains

For each element s in the multiplicatively closed set S, there is a homomorphism of
additive groups

ψs : (R,+) → (RS,+)

given byψs(r) = r/s. This need not be an injectivemorphism. If a/s = b/s, it means
that there is an element u ∈ S such that us(a − b) = 0. Now if the right annihilator
of us is nontrivial, such an a − b exists with a �= b, and ψs is not one-to-one.

Conversely, we can say, however,

Lemma 9.6.1 If s is an element of S such that no element of sS is a “zero divisor”—
an element with a non-trivial annihilator—then ψs : R → RS is an embedding of
additive groups. The converse is also true. In particular, we see that in an integral
domain, where every non-zero element has only a trivial annihilator, the map ψs is
injective for each s ∈ S.
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Lemma 9.6.2 Suppose S is a multiplicatively closed subset of non-zero elements of
the commutative ring R and suppose no element of S is a zero divisor in R.

(i) Suppose ac �= 0 and b, d are elements of S. Then in the localized ring RS

(
a

b
)(

c

d
) is non-zero in RS.

(ii) If a is not a zero divisor in R, then for any b ∈ S, a/b is not a zero divisor in
RS.

(iii) If R is an integral domain, then so is RS.
(iv) If R is an integral domain, the mapping ψ1 : R → RS is an injective homo-

morphism of rings (that is an embedding of rings).

Proof Part (i). Suppose ac �= 0, but that for some {b, d, s} ⊆ S,

(
a

b
)(

c

d
) = 0

s
. (9.2)

Then
(ac, bD) ∼ (0, s).

Then by the definition of the relation “∼”, there is an element u ∈ S such that
u(acs − ab · 0) = 0 which implies uacs = 0. But since u and s are elements of
S, they are not zero divisors, and so we obtain ac = 0, a contradiction. Thus the
assumption ac �= 0 forces Eq. (9.2) to be false. This proves Part (i).

Parts (ii) and (iii) follow immediately from Part (i).
Part (iv). Assume R is an integral domain. From the second statement of Lemma

9.6.1, the mapping ψs : R → RS which takes element r to element r/s is an injec-
tive homomorphism of additive groups for each s ∈ S. Now put s = 1. We see
that ψ1(ab) = ψ1(a)ψ1(b) for all a, b ∈ R. Thus ψ1 is an injective ring homomor-
phism. �

9.6.3 A Local Characterization of UFD’s

Theorem 9.6.3 (Local Characterization of UFD’s) Let D be an integral domain.
Let S be the collection of all elements of D which can be written as a product of
a unit and a finite number of prime elements. Then S is multiplicatively closed and
does not contain zero; so the localization DS can be formed.

The domain D is a UFD if and only if DS is a field.

Proof (⇒) If D is a UFD, then, by Lemma 9.4.1, S comprises all non-zero non-units
of D. One also notes that DS = DS′ where S′ is S with the setU (D) of all units of D
adjoined. (By Exercise (2) in Sect. 9.13.1 of this chapter, this holds for all domains.)
Thus S′ = S − {0}. Then DS′ is the field of fractions of D.
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(⇐) Let D∗ := D − {0}, the non-zero elements of D. It suffices to prove that S
is all non-zero non-units of D (Lemma 9.4.1). In fact, as S ⊆ D − U (D), it suffices
to show that D∗ − U (D) ⊆ S. Let r be any non-zero non-unit—i.e. an element of
D∗ − U (D), and suppose by way of contradiction that r /∈ S.

Since r is a non-unit, Dr is a proper ideal of D. Then

(Dr)S;= {a/s|a ∈ Dr, s ∈ S}

is clearly a non-zero ideal of DS . Since DS is a field, it must be all of DS . But this
means that 1/1 is an element of (Dr)S—i.e. one can find (b, s) ∈ D × S, such that

br/s = 1/1.

This means br = s so
Dr ∩ S �= ∅.

Now from the definition of S, we see that there must be multiples of r which can be
expressed as a unit times a non-zero number s of primes. Let us choose the multiple
so that the number of primes that can appear in such a factorization attains aminimum
m. Thus there exists an element r ′ of D such that

rr ′ = up1 · · · pm

where u is a unit and the pi are primes. We may suppose the indexing of the primes
to be such that p1, . . . , pd do not divide r ′, while pd+1, . . . , do divide r ′. Then if
d < m, pd+1 divides r ′ so r ′ = bpd+1. Then we have

rbpd+1 = up1 · · · pd pd+1 · · · pm

so
rb = up1 · · · pd pd+2 · · · pm (m − 1 prime factors)

against the minimal choice of m. Thus d = m, and each pi does not divide r ′. Then
each pi divides r . Thus r = a1 p1 so a1r ′ = up2 · · · pd , upon canceling p1. But
again, as p2 does not divide r ′, p2 divides a1. Thus a1 = a2 p2 so a2r ′ = up3 · · · pd .
As each pi does not divide r ′, this argument can be repeated, until finally one obtains
adr ′ = u when the primes run out. But then r ′ is a unit. Then

r = ((r ′)−1u)p1 · · · pm ∈ S.

Thus as r was arbitrarily chosen in D∗ − U (D) ⊆ S, we are done. �
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9.6.4 Localization at a Prime Ideal

Now let P be a prime ideal of the commutative ring R—that means P has this
property: If, for two ideals A and B of R, one has AB ⊆ P , then at least one of A
and B lie in P . For commutative rings, this is equivalent to asserting either of the
following (see the Exercise (2) in Sect. 7.5.2 at the end of Chap.7):

(1) For elements a and b in R, ab ∈ P implies a ∈ P or b ∈ P .
(2) The set R − P is a multiplicatively closed set.

It should be clear that a prime ideal contains the annihilator of every element outside it.
Now let P be a prime ideal of the integral domain D, and set S := D − P , which,

as noted, is multiplicatively closed. Then the localization of D by S is called the
localization of D at the prime ideal P . In the literature the prepositions are important:
The localization by S = D − P is the localization of D at the prime ideal P .

Now we may form the ideal M := {p/s|(p, s) ∈ P × S} in DS for which each
element of DS − M , being of the form s′/s, (s, s′) ∈ S × S, is a unit of DS . This
forces M to be a maximal ideal of DS , and in fact, every proper ideal B of DS must
lie in it. Thus we see

DS has a unique maximal ideal M. (9.3)

Any ring having a unique maximal ideal is called a local ring.
This discussion together with Part (iv) of Lemma 9.6.2 yields

Theorem 9.6.4 Suppose P is a prime ideal of the integral domain D. Then the
localization at P (that is, the ring DS where S = D − P) is a local ring that is also
an integral domain.

Example 47 The zero ideal {0} of any integral domain is a prime ideal. Forming
the localization at the zero ideal of an integral domain D thus produces an integral
domain with the zero ideal as the unique maximal ideal and every non-zero element
a unit. This localized domain is called the field of fractions of the domain D.6 (This
standard construction was used in Sect. 9.5 in studying D[x] as a subring of DS[x].)

9.7 Integral Elements in a Domain

9.7.1 Introduction

In Sect. 8.2.5 the notion of an algebraic integer was introduced as a special instance of
sets of field elements that are integral over a subdomain. Using elementary properties

6One finds “field of quotients” or even “quotient field” used in place of “field of fractions” here and
there. Such usage is discouraged because the literature also abounds with instances in which the
term “quotient ring” is used to mean “factor ring”.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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of finitely-generated modules and Noetherian rings, it was a fairly simple matter
to demonstrate that sums and products of algebraic integers were again algebraic
integers. At the beginning of the Appendix to this chapter (which the student should
now be able to read without further preparation) these discussions are carried a
bit further, wherein the algebraic integers contained in any quadratic extension of
the rational field are determined. Furthermore, the factorization properties of these
quadratic domains are addressed, with the result that these rings enjoyed varying
degrees of good factorization properties, ranging from being Euclidean (as with the
Gaussian integers Z[i]) through not even satisfying unique factorization (as with
Z[√−5]).

A little historical perspective is in order. The subject of Arithmetic is probably
one of the first subjects that a student of Mathematics encounters. Its fundamentals
can be taught to anyone. But its mysteries are soon apparent to even the youngest
student. Why is any positive prime number that is one more than a multiple of four,
the sum of the squares of two integers? Why is every positive integer expressible as
the sum of four squares of integers? These problems have been solved. But there are
many more unsolved problems. In fact, there is no other field of Mathematics which
presents so many unsolved problems that could be easily stated to the man on the
street. For example, the famous Goldbach Conjecture that asserts that

Every even integer greater than two is the sum of two prime numbers.

One of these questions concerns an assertion known as “Fermat’s Last Theorem”.
According to tradition, Fermat had jotted in the margin of a book that he had a proof
of the following theorem7

Suppose x, y, z is a triplet of (not-necessarily distinct) integers. If n is a positive
integer greater than 2 , then there exists no such triplet such that

xn + yn = zn . (9.4)

That is, in the realm of integers, no nth power can be the sum of two other nth
powers for n > 2. Perhaps the problem became more intriguing because there are
solutions when n = 2. At any rate this problem attracted the attention of many
great mathematicians of the 19th century. Here is a case where the solution was far
less important than the theory that was developed to solve the problem. Our earliest
mathematical ancestors might not have approached the problem with a full-fledged
Galois Theory of field extensions at hand, for they knew that they were dealing with

7The book in which he wrote this marginal note has never been found. All that we actually have is
a third party who initiated the anecdote. So there are two schools of thought: (1) Fermat thought
that he had a proof but must have made a mistake. Skeptics believe his proof could not only not fit
in a margin, but that his proof (in order to be less than a thousand pages) must have been in error.
Then there is the other view: (2) He really did prove the theorem in a relatively simple way—we
just haven’t discovered how he did it. The authors are personally acquainted with at least one great
living research mathematician who does not rule out the second view. That man is not willing to
dismiss a mind (like Fermat’s) of such proven brilliance. That respect says something.
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some “subring” of “integers”in these fields. (Complex numbers had been explicitly
developed by Gauss and the idea of Gaussian integers may be seen as an anticipation
of the general idea guiding others to this point.) So this was the foil that produced
the concept of Algebraic Integers.

It came as quite a revelation to early nineteenth century mathematicians that even
in the algebraic integer domains, unique factorization of elements into prime elements
could fail. Perhaps our intellectual history (as opposed to the political one) is simply
the gradual divestment of unanalyzed assumptions.

Themain objects of study for the rest of this chapterwill be the ringsOE consisting
of the elements in the field E which are integral with respect to a subdomain D where
E is a finite extension of F := F(D), the field of fractions of D. (The phrase “finite
extension” means that the field E contains F and is finite dimensional as a vector
space over its subfield F .) In the special case that D = Z, the ring of integers (so
that F = Q, the field of the rational numbers), the ringsOE are the algebraic integer
domains of the previous paragraph.

Such algebraic integer domains OE include the above-mentioned quadratic
domains (such as Z + Z

√−5). Thus, while microscopically (i.e., element-wise),
these rings may not enjoy unique factorization, they all satisfy a macroscopic ver-
sion of unique factorization inasmuch as their ideals will always factor uniquely as
a product of prime ideals. This can be thought of as a partial remedy to the fact that
the rings OK tend not to be UFDs.

9.8 Rings of Integral Elements

Suppose K is a field, and D is a subring of F . Then, of course, D is an integral
domain. Recall from Sect. 8.2.5. that an element α of K is integral over D if an only
if α is a zero of a polynomial in D[x] whose lead coefficient is 1 (the multiplicative
identity of D and K ). Say that an integral domain D is integrally closed if, whenever
α ∈ F(D) and α is integral over D, then α ∈ D. Here F(D) is the field of fractions
of the integral domain D.

The following is a sufficient, but not a necessary condition, for an integral
domain to be integrally closed.

Lemma 9.8.1 If D is a UFD, then D is integrally closed.

Proof Graduate students who have taught basic-level courses such as “college alge-
bra” will recognize the following argument. Indeed, given that D is a UFD, with field
of fractions F , then elements of F may be expressed in the form α = a/b, where
a and b have no common prime factors in D. If such an element α were integral

over D, then we would have a monic polynomial f (x) =
r∑

i=0
ai xi ∈ D[x] with

f (α) = 0: thus

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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(a

b

)r + ar−1

(a

b

)r−1 + · · · + a1
(a

b

)
+ a0 = 0.

Upon multiplying both sides of the above equation by br one obtains

ar + ar−1bar−1 + · · · + a1br−1a + a0br = 0.

Therefore, any prime divisor p of b will divide
r−1∑
i=0

ai br−i ai and so would divide ar .

Since D is a UFD, that would imply that this prime divisor p divides a, as well.8

This is a contradiction since a and b possess no common prime factors. We are left
with the case that b is not divisible by any prime whatsoever. In that case b is a unit,
in which case α = a/b ∈ D. �

Remark The above lemma provides us with a very large class of integral domains
that are not UFDs. Indeed, Appendixwill show that the quadratic domainsO = A(d)

consisting of algebraic integers in the quadratic extension Q(
√

d) ⊇ Q, where d is
a square-free integer, d ≡ 1mod 4, have the description

A(d) =
{

a + b
√

d

2
| a, b ∈ Z, a, b are both even or are both odd

}
.

This implies immediately that the proper subring Z[√d] � A(d) is not integrally
closed and therefore cannot enjoy unique factorization. A more direct way of seeing
this is that in the domain D = Z[√d], where d is square-free and congruent to 1
modulo 4, the element 2 is irreducible in D (easy to show directly) but not prime, as
2|(1 +√

d)(1 −√
d) but 2 doesn’t divide either 1 +√

d or 1 −√
d .

The following lemmas essentially recapitulate much of the discussion of
Sect. 8.2.5.

Lemma 9.8.2 Let R ⊆ S be integral domains.

1. If R is Noetherian and S is a finitely-generated R-module, then every element of
S is integral over R.

2. If R ⊆ S ⊆ T are integral domains with T a finitely-generated S-module and S
a finitely-generated R-module, then T is a finitely-generated R-module.

Proof The first statement is immediate from Theorem 8.2.12 and Lemma 8.2.14.
From the hypothesis of the second statement, T = ∑

ti S and S = ∑
s j R,

where the summing parameters i and j have finite domains. Thus T = ∑
i, j ti s j R

is generated as an R module by the finite set {ti s j }. �

Note that R need not be Noetherian in part 2 of the above Lemma.

8A word of caution is in order here. If D is not a UFD, it’s quite possible for an element—even
an irreducible element—to divide a power of an element without dividing the element itself. See
Exercise (5) in Sect. 9.12, below.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Lemma 9.8.3 Suppose K is a field containing the Noetherian integral domain D.
Then we have the following:

1. An element α ∈ K is integral over D if and only if D[α] is a finitely generated
D-module (Theorem 8.2.14).

2. If O is the collection of all elements of K which are integral over D, then O is a
subring of K (Theorem 8.2.15).

Let K be a field containing the integral domain D and letO be the ring of integral
elements (with respect to D) as in the above Lemma.

Theorem 9.8.4 LetO be the ring of integral elements with respect to the Noetherian
subdomain D of field K . Then O, contains all elements of K that are integral with
respect to O. Since the field of fractions F(O) lies in K , we see that O is integrally
closed.

Proof Assume that α ∈ K is integral over O. Thus there exist coefficients
a0, a1, . . . , an−1 ∈ O with αn + an−1α

n−1 + · · · + a0 = 0. Therefore, we see
that α is integral over the domain D[a0, a1, . . . , an−1]. In turn each ai is integral
over D, so by repeated application of Lemma 9.8.2 (using both parts), we conclude
that D[a0, a1, . . . , an−1,α] is a finitely generated D-module. Since D is Noetherian,
the submodule D[α] is also finitely generated. This means α is integral over D, i.e.,
α ∈ O. That O is integrally closed follows immediately. �

The field K is said to be algebraic over a subfield L if and only if every element
of K is a zero of a polynomial in L[x]—equivalently, the set of all powers of any
single element of K are L-linearly dependent. Clearly if K has finite dimension as
a vector space over L , then K is algebraic over L .

Corollary 9.8.5 Suppose K is algebraic over the field of fractions F = F(D) of
its subdomain D and let O denote the ring of elements of K that are integral with
respect to D. Then for each element α ∈ K , there exists an element dα ∈ D, such
that dαα ∈ O. It follows that K = FO = F(O).

Proof Supposeα ∈ K . Then thepowers of K are linearly dependent over F . Thus, for
some positive integer m, there are fractions f0, f1, . . . fm−1 inF(D) = F , such that

αm = fm−1α
m−1 + · · · + f1α + f0. (9.5)

Let d be the product of all the denominators of the fi . Then d and each d fi lies in
O. Multiplying both sides of Eq. (9.5) by dm we obtain

(dα)m = d fm−1(dα)m−1 + · · · + dm−1 f1(dα) + dm f0.

Since all coefficients di fm−i lie in O, we see from the statement of Theorem 9.8.4
that dα must lie in O. Since d ∈ D ⊆ O, and d �= 0, by its definition, we see that
α ∈ FO ⊆ F(O). Since α was arbitrarily chosen in K , the equations K = FO =
F(O) follow. �

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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There is an interesting property that O inherits from D.

Theorem 9.8.6 If every prime ideal in D is maximal, then the same is true of O.

Remark Recall that when we speak of an ideal being maximal, we are referring to
the poset of all proper ideals of a ring.

Proof of Theorem 9.8.6 Suppose P is a prime ideal of the ring O. By way of con-
tradiction, we assume that P is not a maximal ideal in O. Then P properly lies in a
larger ideal J of D, producing the proper containment P ⊂ J ⊂ O. Since both P and
J are properly contained inO, neither contains the multiplicative identity element 1,
which lies in D. Thus P and J intersect D at proper ideals of D. But P0 := P ∩ D
is clearly a prime ideal of D and so by hypothesis is a maximal ideal of D. Since
J ∩ D is a proper ideal of D containing P0, we must conclude that P0 = J ∩ P .

Now choose β ∈ J\P . Since β is an algebraic integer, it is the zero of some
monic polynomial of D[x]. Therefore, there is a non-empty collection of monic
polynomials p(x) in D[x], such that p(β) lies in P . Among these, we choose p(x)

of minimal degree. Thus we have

p(β) = βm + bm−1β
m−1 + · · · + b1β + b0 ∈ P (9.6)

with all bi ∈ D and the degree m minimal. Since β lies in the ideal J , so does

β(βm−1 + bm−1β
m−2 + · · · + b2β + b1) = p(β) − b0. (9.7)

Since p(β) ∈ P ⊂ J , the above Eq. (9.7) shows that b0, being the difference of two
elements of J , must also lie in J . But then b0 ∈ D ∩ J = P0 ⊆ P . So it now follows
the left side of Eq. (9.7) is a product inO that lies in the prime ideal P . Since β does
not lie in P by our choice of β, the second factor

βm−1 + bm−1β
m−2 + · · · + b2β + b1

is an element of P . But that defies the minimality of m, and so we have been forced
into a contradiction.

It follows that P is a maximal ideal of O. �

9.9 Factorization Theory in Dedekind Domains
and the Fundamental Theorem of Algebraic
Number Theory

Let D be an integral domain. We say that D is a Dedekind domain if and only if

(a) D is Noetherian,
(b) Every non-zero prime ideal of D is maximal, and
(c) D is integrally closed.
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The reader will notice that if the integral domain D is a field, then D possesses
only one proper ideal {0}, which is both prime and maximal. Such a D is its own field
of fractions, and any element α ∈ D is a zero of the monic polynomial x − α and so
is integral over D. Thus, in a trivial way, fields are Dedekind domains. However, the
interesting features of a Dedekind domain involve its nonzero ideals. For the rest of
this section, we begin our examination of the ideal structure of an arbitrary Dedekind
domain, D.

The reader is reminded of the following notation that is customary in ring theory: If
A and B are ideals in a commutative ring R, one writes AB for the set {∑n

1 ai bi |ai ∈
A, bi ∈ B, n ∈ N}, the ideal generated by all products of an element of A with an
element of B. The ideal AB is called a product of ideals A and B.

Lemma 9.9.1 Assume that P1, P2, . . . , Pr are maximal ideals of the integral domain
D, and that P is a prime ideal satisfying

P1P2 · · · Pr ⊆ P.

Then P = Pi for some i.

Proof If P �= Pi , i = 1, 2, . . . , r , then, since each Pi is a maximal ideal distinct
from P we may find elements ai ∈ Pi\P, i = 1, 2, . . . , r . Thus, a1a2 · · · ar ∈
P1P2 · · · Pr ⊆ P . Since P is a prime ideal, we must have ai ∈ P for some i , which
is a contradiction. �

Lemma 9.9.2 Any non-zero ideal of D contains a finite product of non-zero prime
ideals.

Proof We let A be the family of all non-zero ideals of D for which the desired
conclusion is false. Assume A is non-empty. As D is Noetherian, A must contain a
maximal member I0. Clearly, I0 cannot be a prime ideal, since it is a member of A.
Accordingly, there must exist a pair of elements α, β ∈ D\I0 with αβ ∈ I0. Next,
form the ideals I ′

0 = I0 + αD and I ′′
0 = I0 + βD. By maximality of I0, neither

of the ideals I ′
0 and, I ′′

0 can lie in A. Therefore, both I ′
0 and I ′′

0 respectively contain
products P1 · · · Pm and Pm+1 · · · Pn of non-zero prime ideals. Since I ′

0 I ′′
0 ⊆ I0, and

I ′
0 I ′′

0 contains P1 · · · Pn , we have arrived at a contradiction. Thus A = ∅ and the
conclusion follows. �

At this point it is convenient to introduce some notation. Let D be a Dedekind
domain with field of fractions E . If I ⊆ D is an ideal, set

I −1 = {α ∈ E | α · I ⊆ D}.

Note that D−1 = D, for if α · D ⊆ D, then α = α · 1 ∈ D. Next note that I ⊆ J
implies that I −1 ⊇ J−1.
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Lemma 9.9.3 If I is a proper ideal of D, then I −1 properly contains D.

Proof Clearly D ⊆ I −1. Let 0 �= α ∈ I ; by Lemma 9.9.2, we have prime ideals
P1, P2, . . . , Pr with P1P2 · · · Pr ⊆ αD ⊆ I . We may assume, furthermore, that
the index r above is minimal. Since D is Noetherian, there is a maximal ideal M
containing I ; thus we have P1P2 · · · Pr ⊆ M . Applying Lemma 9.9.1 we conclude
that P1 = M for some index i . Re-index if necessary so that P1 = M . This says that

(i) M P2P3 · · · Pr ⊆ αD ⊆ M , and
(ii) P2P3 · · · Pr �⊆ αD,

by the minimality of r . Let β ∈ P2P3 · · · Pr\αD and set λ = β/α. Then λ ∈ E\D;
yet, by (i) and (ii),

λI = βα−1 I ⊆ βα−1M ⊆ α−1MP2 · · · Pr ⊆ α−1(αD) ⊆ D,

which puts λ ∈ I −1\D. �

Lemma 9.9.4 If I ⊆ D is an ideal then I −1 is a finitely generated D-module.

Proof If 0 �= α ∈ I , then I −1 ⊆ (αD)−1 = D[α−1], which is a finitely-generated
D-module. Since D is Noetherian, D[α−1] is Noetherian (Theorem 8.2.12), and so
I −1 is finitely generated (Theorem 8.2.11). �

Theorem 9.9.5 If I ⊆ D is an ideal, then I −1 I = D.

Proof Set B = I −1 I ⊆ D, so B is an ideal of D. Thus, I −1IB−1 = BB−1 ⊆ D;
which says that I −1B−1 ⊆ I −1. But then for any β ∈ B−1, I −1β ⊆ I −1, forcing
I −1[β] ⊆ I −1. Since, by Lemma 9.9.4, I −1 is a Noetherian D-module, so is its
D-submodule I −1D[β]I −1[β], From D[β] ⊆ I −1[β] ⊆ I −1 we infer that D[β] is
a finitely-generated D module and so β ∈ E is integral over D. As D is integrally
closed, it follows that β ∈ D. Therefore, B−1 ⊆ D ⊆ B−1 and so D = B−1. An
application of Lemma 9.9.3 completes the proof. �

Corollary 9.9.6 If I, J ⊆ D are ideals, then (I J )−1 = I −1 J−1.

Proof D = D2 = I −1 I · J−1 J = I −1 J−1 I J . Therefore, (I J )−1 = D(I J )−1 =
I −1 J−1(I J )(I J )−1 = I −1 J−1D = I −1 J−1. �

The following theorem gives us basic factorization theory in a Dedekind domain.

Theorem 9.9.7 Let D be a Dedekind domain and let I ⊆ D be an ideal. Then there
exist prime ideals P1, P2, · · · , Pr ⊆ D such that

I = P1P2 · · · Pr .

The above factorization is unique in that if also

I = Q1Q2 · · · Qs,

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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where the Qi ’s are prime ideals, then r = s and Qi = Pπ(i), for some permutation
π of 1, 2, · · · , r .

Proof By Lemma 9.9.2 we know that the ideal I ⊆ D contains a product of prime
ideals: P1P2 · · · Pr ⊆ I . We shall argue by induction that if P1P2 · · · Pr ⊆ I , and
if r is minimal in this respect, then, in fact, P1P2 · · · Pr = I . Since prime ideals are
maximal, the result is certainly true when r = 1. Next, as D is Noetherian, we may
select a maximal ideal M containing I ; thus we have

P1P2 · · · Pr ⊆ I ⊆ M.

Applying Lemma 9.9.1 we conclude that (say) M = P1. But then

M−1MP2 · · · Pr ⊆ M−1 I ⊆ M−1M = D.

That is to say, M−1 I is an ideal of D and that

P2P3 · · · Pr = M−1M1P2 · · · Pr ⊆ M−1 I.

We apply induction to infer that P2P3 · · · Pr = M−1 I . If one multiplies both sides
by M , then, noting again that MM−1 = D, one obtains P1P2 · · · Pr = I . This proves
the existence of a factorization of I into a product of prime ideals.

Next we prove uniqueness. Thus, assume that there exist prime ideals P1, P2, . . . ,

Pr , Q1, Q2, . . . , Qs with

P1P2 · · · Pr = Q1Q2 · · · Qs . (9.8)

We argue by induction on the minimum of r and s. If, say, r = 1, then we set
P = P1 and we have a factorization of the form P = Q1Q2 · · · Qs . By Lemma
9.9.1 we may assume that P = Q1 and so P = P Q2 · · · Qs . Multiply both sides
by P−1 and infer that D = Q2 · · · Qs . If s > 2 this is an easy contradiction as then
D = Q2 · · · Qs ⊆ Q2.

Thus we may assume that both s and r are at least 2. Since D is Noetherian, we
may find a maximal ideal M containing the common ideal in (9.8) above, so

P1P2 · · · Pr = Q1Q2 · · · Qs ⊆ M.

AnapplicationofLemma9.9.1 allowsus to infer that (again possibly after reindexing)
that M = P1 = Q1. Upon multiplying both sides by M−1 one obtains P2 · · · Pr =
Q2 · · · Qs . Induction takes care of the rest. �

We close by mentioning the following result; a proof is outlined in Exercise (8) in
Sect. 9.9. It can be viewed as saying that Dedekind domains are “almost” principal
ideal domains.
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Theorem 9.9.8 Let E ⊇ Q be a finite field extension and let D = OE . Then any
ideal I ⊆ D can be expressed as I = Dα + Dβ for suitable elements α,β ∈ I .

9.10 The Ideal Class Group of a Dedekind Domain

We continue to assume that D is a Dedekind domain, with fraction field E . A D-
submodule B ⊆ E is called a fractional ideal if it is a finitely generated D-module.

Lemma 9.10.1 Let B be a fractional ideal. Then there exist prime ideals
P1, P2, . . . , Pr , Q1, Q2, . . . , Qs such that B = P1P2 · · · Pr Q−1

1 Q−1
2 · · · Q−1

s . (It
is possible that either r = 0 or s = 0.)

Proof Since B is finitely generated, there exist elements α1,α2, . . . ,αk ∈ E with
B = D[α1, . . . ,αk]. Since E is the fraction field of D, we may choose an element
β ∈ D with βαi ∈ D, i = 1, 2, . . . , k. Therefore, it follows immediately that βB ⊆
D, i.e.,βB is an ideal of D. Therefore, applyTheorem9.9.7 to obtain the factorization
βB = P1P2 · · · Pr into prime ideals of D. Next, factor βD as βD = Q1Q2 · · · Qs ,
prime ideals, and so (βD)−1 = Q−1

1 Q−1
2 · · · Q−1

s . Thus, B = β−1P1P2 · · · Pr =
D[β−1]P1P2 · · · Pr = (βD)−1P1P2 · · · Pr = P1P2 · · · Pr Q−1

1 Q−1
2 · · · Q−1

s . �
Corollary 9.10.2 The set of fractional ideals in E forms an abelian group under
multiplication.

Proof It suffices to prove that for any collection P1, · · · , Pr , Q1, . . . , Qs of prime
ideals of D, the D-module P1 · · · Pr Q−1

1 · · · Q−1
s is finitely generatedover D. Letα ∈

Q1Q2 · · · Qs , and so αD ⊆ Q1Q2 . . . Qs . In turn, it follows that Q−1
1 · · · Q−1

s ⊆
(αD)−1 = α−1D = D[α−1]. But then

P1 · · · Pr Q−1
1 · · · Q−1

s ⊆ Q−1
1 · · · Q−1

s ⊆ D[α−1].

That is to say, P1 · · · Pr Q−1
1 · · · Q−1

s is contained in a finitely-generated module over
the Noetherian domain D and hence must be finitely generated. �

A fractional ideal B ⊆ E is called a principal fractional ideal if it is of the form
αD, for some α ∈ E . Note that in this case, B−1 = α−1D. It is easy to show that if
D is a principal ideal domain, then every fractional ideal is principal (Exercise (1)
in Sect. 9.10).

If F is the set of fractional ideals in E we have seen that F is an abelian group
undermultiplication, with identity D. If we denote byP the set of principal fractional
ideals, then it is easy to see that P is a subgroup of F ; the quotient group C = F/P
is called the ideal class group of D; it is trivial precisely when D is a principal
ideal domain. If D = OE for a finite extension E ⊇ Q, then it is known that C is a
finite group. The order h = |C| is called the class number of D (or of E) and is a
fundamental (though somewhat subtle) invariant of E .
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9.11 A Characterization of Dedekind Domains

In this section we’ll prove the converse of Theorem 9.9.7, thereby giving a charac-
terization of Dedekind domains.

To begin with, let D be an arbitrary integral domain, with fraction field E . In
analogy with the preceding section, if I ⊆ D is an ideal, we set

I −1 = {α ∈ E | αI ⊆ D},

and say that I is invertible if I −1 I = D.

Lemma 9.11.1 Assume that an ideal I of D admits factorizations into invertible
prime ideals:

P1P2 · · · Pr = I = Q1Q2 · · · Qs .

Then r = s, and (possibly after re-indexing) Pi = Qi , i = 1, 2, . . . , r .

Proof We shall apply induction on the total number of ideals r + s. Among the
finitely many ideals in {Pi } ∪ {Q j } chose one that is minimal with respect to the
subset relationship. By reindexing the ideals and transposing the symbols “P” and
“Q”, if necessary, we may assume this minimal prime ideal is P1. Since P1 is prime
and contains

∏
Q j , we must have Q j ⊆ P1 for some index j . After a further

reindexing, we may assume j = 1. Now, since P1 was chosen minimal in the finite
poset ({Pi } ∪ {Q j },⊆), one has P1 = Q1. Then by invertibility of the ideals, we see
that

P−1
1 I = Q−1

1 I = P2 · · · Pr = Q2 · · · Qs . (9.9)

Applying induction to Eq. (9.9) forces r = s and (with further reindexing) Pi = Qi ,
i = 2, . . . , s. This completes the proof. �
Lemma 9.11.2 Let D be an integral domain.

(i) Any non-zero principal ideal is invertible.
(ii) If 0 �= x ∈ D, and if the principal ideal xD factors into prime ideals as

xD = P1P2 · · · Pr , then each Pi is invertible.

Proof Clearly if x ∈ D, then (xD)−1 = x−1D and (xD)(x−1D) = D, so xD is
invertible, proving (i). For (ii), simply note that for any i = 1, 2, . . . , r , that

D = P1P2 · · · Pr · (x−1D) = Pi (P1 · · · Pi−1Pi+1 · · · Pr )(x−1D),

forcing Pi to be invertible. �
Now assume that D is an integral domain satisfying the following condition:

(*) If I ⊆ D is an ideal of D, then there exist prime ideals P1, P2, . . . , Pr ⊆ D
such that

I = P1P2 · · · Pr .
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Note that no assumption is made regarding the uniqueness of the above factoriza-
tion. We shall show not only that uniqueness automatically follows (See Corol-
lary 9.11.6, below), but that D is actually a Dedekind domain, giving us the desired
characterization.

Theorem 9.11.3 Any invertible prime ideal of D is maximal.

Proof Let P be an invertible prime ideal and let a ∈ D\P . Define the ideals I =
P + aD, J = P + a2D, and factor into prime ideals:

I = P1P2 · · · Pr , J = Q1Q2 · · · Qs .

Note that each Pi , Q j ⊇ P . We now pass to the quotient ring D = D/P and set
Pi = Pi/P, i = 1, 2, . . . , r, Q j = Q j/P, j = 1, 2, . . . , s. Clearly the ideals
Pi , Q j , i = 1, 2, . . . , r, j = 1, 2, . . . , s are prime ideals of D. Note that where
a = a + P , we have I = aD, J = a2D, principal ideals of D.

Note that
aD = I = P1 · · · Pr , a2D = J = Q1 · · · Qs,

which, by Lemma 9.11.2 part (ii), imply that the prime ideals P1, · · · , Pr and

Q1, · · · Qs , are invertible ideals of D. However, as J = I
2
, then

Q1 · · · Qs = P
2
1 · · · P

2
r ,

by Lemma 9.11.1 we conclude that s = 2r and (possibly after reindexing) Pi =
Q2 j−1 = Q2 j , j = 1, 2, . . . , r . This implies that Pi = Q2 j−1 = Q2 j , j =
1, 2, . . . , r , and so J = I 2. Therefore, P ⊆ J = I 2 = (P + aD)2 ⊆ P2 + aD.
If x ∈ P we can write x = y + az, where y ∈ P2, z ∈ D. Thus, az = x − y ∈
P . As a �∈ P , and P is prime, we infer that z ∈ P . Therefore, in fact, we have
P ⊆ P2 + a P ⊆ P , and so it follows that P = P2 + a P . As P is invertible by
hypothesis, we may multiply through by P−1 and get D = P + aD = I , and so P
is maximal. �

Theorem 9.11.4 Any prime ideal is invertible, hence maximal.

Proof Let P be a prime ideal of D and let x ∈ P .Wemay factor the principal ideal xD
as xD = P1P2 · · · Pr . By Lemma 9.11.2 (ii) the prime ideals Pi , i = 1, 2, . . . , r are
invertible, and hence, by Theorem 9.11.3, they aremaximal. Now apply Lemma 9.9.1
to infer that P = Pi , for some i and hence is invertible. Theorem 9.11.3 now forces
P to be maximal. �

The following two corollaries are now immediate:

Corollary 9.11.5 Any ideal of D is invertible.

Corollary 9.11.6 Any ideal of D factors uniquely into prime ideals.
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Theorem 9.11.7 D is Noetherian.

Proof Let I ⊆ D be an ideal. Being invertible by Corollary 9.11.5, there exist
elements a1, a2, . . . , ar ∈ I, b1, b2, . . . , br ∈ I −1 such that

∑
ai bi = 1. If x ∈ I,

then bi x ∈ D, i = 1, 2, . . . , r and x = ∑
(xbi )ai , i.e., I = D[a1, a2, . . . , ar ],

proving that I is finitely generated, and hence D is Noetherian. �

Our task of showing that D is a Dedekind domain will be complete as soon as we
can show that D is integrally closed. To do this it is convenient to introduce certain
“overrings” of D, described below.

Let D be an arbitrary integral domain and let E = F(D), the field of fractions of
D. If P ⊆ D is a prime ideal of D, we set

DP = {α/β ∈ E | α,β ∈ D, β �∈ P}.

It should be clear (using the fact that P is a prime ideal) that DP is a subring of
E containing D. (The reader will recall from Sect. 9.6.4 that DP is the localization
of D at the prime ideal P .) It should also be clear that the same field of fractions
emerges: F(DP) = E .

Lemma 9.11.8 Let I be an ideal of D, and let P be a prime ideal of D.

(i) If I �⊆ P then DP I = DP .
(ii) DP P−1 properly contains DP .

Proof Note that DP I is an ideal of DP . Since I �⊆ P , any element α ∈ I\P is a unit
in DP . It follows that DP I = DP , proving (i). If DP P−1 = DP , then multiplying
through by P , and using the fact that P−1P = D, we obtain DP = DP P . Therefore,
there is an equation of the form

1 =
k∑

i=1

ri

si
xi , where each ri ∈ D, si ∈ D\P, xi ∈ P.

Multiply the above through by s1s2 · · · sk , and set s′
i = s1 · · · si−1si+1 · · · sk, i =

1, 2, . . . , k. Then

s1 · · · sk =
k∑

i=1

ri s
′
i xi ∈ P,

which is an obvious contradiction as each si �∈ P and P is prime. �

Lemma 9.11.9 If α ∈ E then either α ∈ DP or α−1 ∈ DP .

Proof Write α = ab−1, a, b ∈ D, and factor the principal ideals aD and bD as
aD = Pe I, bD = P f J , where I, J �⊆ P . Thus, DPa = DP Pe, DP b = DP P f .
Assuming that e ≥ f , we have ab−1 ∈ DP Pe P− f = DP Pe− f ∈ DP . Similarly, if
e ≤ f one obtains that ba−1 ∈ DP . �
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Lemma 9.11.10 DP is integrally closed.

Proof Let α ∈ E\DP be integral over DP . Then there is an equation of the form

αm + am−1α
m−1 + · · · + a1α + a0 = 0,

where a0, a1, . . . , am−1 ∈ DP . Since α �∈ DP , we have, by Lemma 9.11.9 that
α−1 ∈ DP ; therefore,

α = 1

αm−1αm = − 1

αm−1

(
am−1α

m−1 + · · · + a0
)

= am−1 + am−2
1

α
· · · a0

1

αm−1 ∈ DP ,

a contradiction. �

Theorem 9.11.11 D = ∩DP , the intersection taken over all prime ideals P ⊆ D.

Proof Let ab−1 ∈ ∩DP , where a, b ∈ D. Factor the principal ideals aD and bD as
aD = Pe1

1 Pe2
2 · · · Per

r , bD = P f1
1 P f2

2 · · · P fr
r ; here all exponents are ≥ 0. It suffices

to show that ei ≥ fi , i = 1, 2, . . . , r . Fix an index i and set P = Pi , e = ei , f = fi .
Therefore, aDP = DP Pe, bDP = DP P f , which gives ab−1DP = DP Pe− f .
Since ab−1 ∈ DP , and since DP P−1 properly contains DP by Lemma 9.11.8, we
have ab−1DP ⊆ DP � P−c for all integers c > 0. Thus, it follows that e− f ≥ 0. �

As an immediate result, we get

Corollary 9.11.12 D is integrally closed.

Proof Indeed, if α ∈ E and is integral over D, then it is, a fortiori, integral over DP .
Since DP is integrally closed by Lemma 9.11.10 we have that α ∈ DP . Now apply
Theorem 9.11.11. �

Combining all of the above we get the desired characterization of Dedekind
domains:

Corollary 9.11.13 D is a Dedekind domain if and only if every ideal of D can be
factored into prime ideals.

We conclude this section with a final remark.

Corollary 9.11.14 Any Dedekind domain (in particular, any algebraic integer
domain) is a PID if and only if it is a UFD.

Proof ByTheorem9.4.3 any principle ideal domain is a unique factorization domain.
So it only remains to show that any Dedekind domain that is a UFD, is also a PID.

Assume that the Dedekind domain D is a UFD. We begin by showing that all
prime ideals of D are principal. Thus, let 0 �= P ⊂ D be a prime ideal and let
0 �= x ∈ P . As D is a UFD, we may factor x into primes: x = p1 p2 · · · pk ∈ P;
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this easily implies that pi ∈ P for some index i . Set p = pi . The principal ideal pD
generated by p is a prime ideal and hence is maximal (as D is Dedekind), forcing
P = pD.

Next let I ⊆ D be an arbitrary ideal of D. Since D is aUFD, each nonzero non-unit
of D can be factored into a unique number of primes in D; we shall denote this number
by l(x) (the “length” of x). Now select an element x ∈ I such that l(x) is a minimum.
If also y ∈ I , and x does not divide y, we take z to be the greatest common divisor of
x and y; clearly l(z) < l(x). We set x = za, y = zb, where a, b are relatively prime.
If the ideal D(a, b) of D generated by both a and b is not all of D, then since D is
Noetherian, the non-empty collection {proper ideals J | J ⊇ D(a, b)} must contain
a maximal ideal M . Since maximal ideals are prime, the assumption guarantees that
there is a prime p with M = pD ⊇ D(a, b). But this says that p divides both a
and b, which is impossible. Therefore, the ideal D(a, b) must be all of D and so
1 ∈ D(a, b). Therefore, there exist elements x0, y0 ∈ D with 1 = x0a + y0b, which
leads to z = x0az + y0bz = x0x + y0y ∈ I . Since l(z) < l(x), this contradiction
implies that the ideal I was principal in the first place. �

9.12 When Are Rings of Integers Dedekind?

The tour de force of the theory of Dedekind Domains given in the preceding section
would lead one to suspect that this theory should apply as well to the rings of integral
elements of Sect. 9.8—that is, rings OK where K is a field and integrality is with
respect to an integrally closed sub-domain D in which every prime ideal is maximal.9

In order to make such a dream a reality, the definition of Dedekind domain would
also demand that OK be Noetherian, and that seems to ask that the dimension of K
over the subfield F(D) be finite. Even given that, is it really Noetherian? So, let us
say that a ring O is a classical ring of integral elements if and only O = OK is the
ring of elements of K that are integral with respect to a subdomain D, having the
following properties:

(CRI1) The domain D is integrally closed in its field of fractions F = F(D). (F is
regarded as a subfield of K .)

(CRI2) Every prime ideal of the domain D is a maximal ideal of D.
(CRI3) K has finite dimension as an F-vector space.

Lemma 9.12.1 If OK is a classical ring of integral elements, then

1. It is integrally closed.
2. Every prime ideal of OK is maximal.

Proof Conclusion 1 is immediate from Theorem 9.8.4. Theorem 9.8.6 implies con-
clusion 2. �

9Somehow this historical notationOK seems to glorify K at the expense of the subdomain D, which
is hardly mentioned.
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Remark Notice that the proof did not utilize (CRI3).

The goal of this section is to present a condition sufficient to force a classical ring
of integers to be Dedekind. By Lemma 9.12.1 all that is needed is a proof that OK

is Noetherian.
Since the proof involves bilinear forms and dual bases, it might be useful to review

these concepts from linear algebra in the next two paragraphs enclosed in brackets.
[Let V be a finite-dimensional vector space over a field F . In general, a mapping

B : V × V → F is a symmetric bilinear form if and only if:

(i) B(x, ay + bz) = aB(x, y) + bB(x, z)
(ii) B(ax + by, z) = aB(x, z) + bB(y, z)
(iii) B(x, y) = B(y, x)

for each (x, y, z, a, b) ∈ V ×V × K × F × F . Thus for each vector x ∈ V , statement
(i) asserts that the mapping λx : K → F defined by y �→ B(x, y) is a functional,
that is, a vector of the dual space V ∗ := HomF (V, F). The bilinear form B is said to
be non-degenerate if and only if the linear transformation λ : V → V ∗ defined by

x �→ λx , for all x ∈ K

is an injection, and so, as V is finite-dimensional over F , a bijection. Thus the bilinear
form B is non-degenerate if and only if ker λ = 0—that is, the only element x , such
that B(x, y) = 0 for every element y ∈ K , is x = 0.

For any finite F-basis {xi } of K , there exists a functional fi , such that fi (xi ) = 1,
while fi (x j ) = 0 for j �= i . If the bilinear form B is non-degenerate, the previous
paragraph tells us that the associated mapping λ : V → V ∗ := HomF (K , F) is
surjective. Thus for each functional fi described just above, there exists a vector yi

such that λ(yi ) = fi . Thus, for each index i , one has

B(yi , x j ) = δi j , where δi j = 1 if i = j and is zero otherwise.

Wecall {yi } adual basis of {xi } with respect to the form B. Note that a dual basis exists
only if the vector space V is finite dimensional, and the form B is non-degenerate.]

Now, as above, consider D, F = F(D), K a field containing F as a subfield so
that dim(KF ) is finite, and considerOK , the subring of elements of K that are integral
with respect to D. Let T be the collection of F-linear transformations K → F . This
collection contains the “zero” mapping K → {0}, and of course many others. We
say that a transformation T ∈ T is tracelike if and only if

T (OK ) ⊆ D.

We now offer the following:

Theorem 9.12.2 Let OK be a classical ring of integral elements of a field K , with
respect to the subdomain D so that conditions (CID1) (CID2) and (CID3) hold for
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D. Suppose a non-zero tracelike transformation T : K → F exists. Then OK is a
Noetherian domain, and so (by Lemma 9.12.1) is a Dedekind domain.

Proof Let T : K → F be the tracelike transformationwhose existencewas assumed.
From T we define a symmetric bilinear form BT : K × K → F , by the following
recipe:

BT (x, y) := T (xy), for all x, y ∈ K .

Next we show that the form BT is non-degenerate. If this form were degenerate
there would exist a non-zero element x in the field K such that T (xy) = 0 for all
elements y ∈ K . Since xy wanders over all of K as y wanders over K , we see that
this means T (K ) = 0. But that is impossible as T was assumed to be non-zero.

Now by (CID3) K has finite dimension over F and so we may choose an F-basis
of K , say X := {x1, . . . , xn}. By Corollary 9.8.5, we may assume that each basis
element xi lies in OK . Since K is finite-dimensional, and BT is a non-degenerate
form, there exists a so-called dual basis {yi } of K , such that BT (yi , x j ) is 0 if i �= j ,
and is 1, if i = j .

Now consider an arbitrary integral element β ∈ OK . We may write β = ∑
ai yi ,

since {yi } is a basis for K . Then for any fixed index j , we see that T (β · x j ) = a j ,
where a j ∈ F . Since both x j and β belong toOK , so does the product βx j . Since T
is tracelike, we must conclude that T (β · x j ) = a j belongs to D. Thus β is a D-linear
combination of the yi . Since β was an arbitrary element of OK , we must conclude
that

OK ⊆ Dy1 ⊕ Dy2 ⊕ · · · ⊕ Dyn := M

a finitely generated D-module. Now D is Noetherian, and so, by Noether’s Theorem
(Theorem8.2.12), M is alsoNoetherian.ByLemma8.2.2, part (i), each D-submodule
of M is also Noetherian. Thus OK is also Noetherian, and the proof is complete. �

Where does this leave us? Chap.11 provides a detailed study of fields and field
extensions. Among field extensions, F ⊆ K , there is a class called separable exten-
sions. Itwill emerge that for any separable extension F ⊆ K with dimF K finite, there
does exist a non-zero tracelike linear transformation K → F (see Corollary11.7.6
in Sect. 11.7.4). Moreover, the extension F ⊆ K is always separable if the field F
(and hence K ) has characteristic zero (Lemma 11.5.4).

Of course, historically, the prize integral domain motivating all of this, is the ring
of algebraic integers. That would be the ring of integral elementsOK where D = Z,
the ring of integers, and the extension field K has finite-dimension as a vector space
over thefield of rational numbersQ. The result of the previous paragraph (anticipating
results from Chap.11, to be sure) together with Theorem 9.12.2 yields the following.

Corollary 9.12.3 Any ring of algebraic integers is a Dedekind domain.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
http://dx.doi.org/10.1007/978-3-319-19734-0_11
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9.13 Exercises

9.13.1 Exercises for Sects. 9.2, 9.3, 9.4 and 9.5

1. Earlier, in Theorem 7.4.7, we learned that every finite integral domain is a field.
Prove the following theorem which replaces finiteness by finite dimension.

Theorem 9.13.1 Suppose an integral domain D is finite-dimensional over a subfield
F. Then D is a field.

[Hint: If F = D their is nothing to prove, so wemay assume dimF D = n > 1 and
proceed by induction on n. Choose an element α ∈ D − F , consider a minimal
submodule M for the subring F[α] (Why does it exist?) Prove that it has the
form m F[α] (i.e. it is cyclic,) and that there is a right F[α]-module isomorphism
φ : M → F[x]/I , where φ(α) = x + I , and I is the ideal in F[x] consisting all
polynomials r(x) ∈ F[x] such that mr(α) = 0. Cite the theorems that force I to
be a maximal principal ideal F[x]p(x), and explain why p(x) is an irreducible
polynomial. Noting that D is a domain, conclude that p(α) is the zero element of
D and so K := F[α] � F[x]/F[x]p(x) as rings, and so K is a field. Finish the
induction proof.]

2. Let D be a fixed unique-factorization-domain (UFD), and let p be a prime element
in D. Then the principal ideal (p) := pD is a maximal ideal and D/(p) is a
field. The next few exercises concern the following surjection between integral
domains:

m p : D[x] → (D/(p))[x],

which reduces mod p the coefficients of any polynomial of D[x].
Show that m p is a ring homomorphism. Conclude that the principal ideal in D[x]
generated by p is a prime ideal and from this, that p is a prime element in the
ring D[x].

3. This exercise has two parts. In each of them D is a UFD and is embedded in the
polynomial ring D[x] as the polynomials of degree zero together with the zero
polynomial. For every prime element p in D we let Fp := D/(p), a field, and let
F := F(D) be the field of fractions of D. We fix a maximal ideal M in D[x] and
set K = D[x]/M , another field. Our over-riding assumption in this exercise is
that M ∩ D = (0)—that is, M contains no non-zero polynomials of degree zero.
Prove the following statements:

(a) For any prime p ∈ D, show that m p(M) = Fp[x].
[Hint: If m p(M) �= Fp[x], then ker(m p)+ M is a proper ideal of D[x]. Since
M ∩ D = (0), we see that p ∈ ker(m p) − M , contradicting the maximality
of M .]

(b) Let n be the minimal degree of a non-zero polynomial in M . (Since M ∩ D =
(0), n is positive.) Then there exists a prime element b(x) in D[x] of degree
n such that M = D[x]b(x), a principle ideal of D[x].

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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[Hint: Choose a polynomial b′(x) ∈ M such that deg b′(x) = n. Since D[x]
is a UFD, b′(x) is a product of prime elements of D[x], and so one of these
prime factors b(x), must belong to the prime ideal M . Since M ∩ D = (0),
deg b(x) = n.
Now consider any non-zero polynomial a(x) ∈ M . Using the fact that F[x]
is a Euclidean domain as well as the minimality of n, show that there exists
an element d ∈ D such that da(x) is divisible by b(x). Since b(x) is a prime
element of D[x]which does not divide a (because of its degree), b(x) divides
a(x), because it is a prime element.]

4. Prove the following result:

Theorem 9.13.2 Assume D is a UFD with infinitely many association classes of
primes. Then, if M is a maximal ideal of D[x], M ∩ D �= 0—that is, M contains a
non-zero polynomial of degree zero.

[Hint: By way of contradiction assume M ∩ D = (0). Let p be any prime ele-
ment in D. By Exercise 3, part (a), there exists a polynomial a(x) ∈ M , such
that m p((a(x)) = 1̄, the multiplicative identity element of Fp[x]. By part (ii) of
Exercise 3, a(x) = b(x) · e(x), for some e(x) ∈ D[x]. Apply the morphism m p

to this factorization to conclude that m p(b(x) has degree zero in the polynomial
ring Fp[x]. Thus, writing b(x) = ∑

i bi xi , bi ∈ D, we see that if i > 0, then bi is
divisible by p. But this is true for any prime, and since there are infinitely many
association classes of primes, this can be true only if bi = 0, for i > 0. But then
b(x) ∈ D ∩ M , a contradiction. Why?]

5. Let D be a UFD with infinitely many association classes of primes. Show that
any maximal ideal of D[x] is generated by a prime p ∈ D and a polynomial
p(x) such that m p(p(x)) is irreducible in Fp[x].

6. Let D be a UFDwith finitely many association classes of primes with representa-
tives {p1, . . . , pn}. Setπ = ∏

pi and form theprinciple ideal M = D[x](1+πx).
Then M ∩ D = (0). Show that M is a maximal ideal. [Hint: Show that each non-
zero element of D[x]/M is a unit of that factor ring, using the unique factorization
in D and the identity xπ = −1 mod M .]

7. (Another proof of Gauss’ Lemma.) Let D be a UFD. A polynomial h(x) in D[x]
is said to be primitive if and only there is no prime element p of D dividing each
of the D-coefficients of h(x). Using the morphism m p of the first exercise, show
that if f and g are primitive polynomials in D[x], then the product f g is also
primitive. [Hint: by assumption, there is no prime in D dividing f or g in D[x].
If a prime p of D divides f g in D[x] then m p( f g) = 0 = m p( f ) · m p(g). Then
use the fact that (D/(p))[x] is an integral domain.]

8. (Eisenstein’s Criterion) Let D be a UFD. Suppose p is a prime in D and

f (x) = an xn + · · · a1x + a0

is a polynomial in D[x] with n > 1 and an �= 0. Further, assume that
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(E1) p does not divide the lead coefficient an ;
(E2) p divides each remaining coefficient ai for i = 0, . . . , n − 1; and
(E3) p2 does not divide a0.

Show that f cannot factor in D[x] into polynomial factors of positive degree. In
particular f is irreducible in F[x], where F is the field of fractions of D. [Hint:
Suppose by way of contradiction that there was a factorization f = gh in D[x]
with f and g of degree at least one. Then apply the ring morphism m p to get

m p( f ) = m p(g) · m p(h) = m p(an)xn �= 0.

Now by hypothesis (E1) the polynomials f and m p( f ) have the same degree,
while the degrees of g and h are at least as large as the respective degrees of
their m p images. Since f = gh, and degm p( f ) = degm p(g) + degm p(h), we
must have the last two summands of positive degree. Since (D/(p)[x] is a UFD,
x must divide both m p(g) and m p(h). This means the constant coefficients of g
and h are both divisible p. This contradicts hypothesis (E3).]

9 Show that under the hypotheses of the previous Exercise 8, one cannot conclude
that f is an irreducible element of D[x]. [Hint: In Z[x], the polynomial 2x + 6
satisfies the Eisenstein hypotheses with respect to the prime 3. Yet it has a proper
factorization in Z[x].]

10 Let p be a prime element of D. Using the morphism m p show that the subset

B := {p(x) = a0 + a1x + · · · + an xn|ai ≡ 0 mod p, for i > 0}

of D[x] is a subdomain.
11 Let E be an arbitrary integral domain. For each non-zero polynomial p(x) ∈ E[x]

let �(p) be its leading coefficient—that is the coefficient of the highest power
of x possessing a non-zero coefficient. Thus p(x) is a monic polynomial if and
only if �(p(x)) = 1, and for non-zero polynomials p(x) and q(x), one has
�(p(x)q(x)) = �(p(x)) · �(q(x)). Prove the following theorem:

Theorem 9.13.3 Let D1 is an integral domain and suppose D is a subring of D1.
Then, of course, D is also an integral domain and we have a containment of polyno-
mial rings: D[x] ⊆ D1[x]. Suppose a(x), b(x), and c(x) are polynomials in D1[x]
such that c(x) = a(x)b(x). Assume the following:

(i) a(x) and c(x) lie in D[x].
(ii) a(x) is monic.

(iii) �(b(x)) ∈ D.

Then b(x) ∈ D[x].
In particular, if a(x), b(x), and c(x) are monic polynomials in D1[x] such that
c(x) = a(x)b(x), then two of the polynomials lie in D[x] if and only if the third
does.
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[Hint: By hypothesis �(a(x))�(b(x)) = �(c(x)) ∈ D. Write out the three polyno-
mials a(x), b(x), and c(x) as linear combinations of powers of x with coefficients
ai , bi and ci , with �(a(x)), �(b(x)), and �(c(x)) represented as as, bt and cn ,
respectively (of course n = s + t , as = 1 and bt = cn ∈ D). By induction on k,
show that bt−k ∈ D for all k for which 0 ≤ k ≤ t .]

12 Let F be a subfield of the field K . Consider the set

L F (K [x]) = {p(x) ∈ K [x]|�(p(x) ∈ F} ∪ {0}

consisting of the zero polynomial and all non-zero polynomials whose lead
coefficient lies in the subfield F .

(a) Show that L F (K [x]) is a subring of K [x].
(b) Show that L F (K [x]) is a Euclidean Domain. [Hint: Use the Euclidean algo-

rithm for F[x] and the properties of the lead-coefficient function described
in the preamble of the preceding exercise.]

9.13.2 Exercises on Localization

1. Using the definitions of multiplication and addition for fractions, fill in all the
steps in the proof of the following assertions:

(a) (DS,+) is an abelian group,
(b) Multiplication of fractions DS is a monoid.
(c) In DS multiplication is distributive with respect to addition.

2. Let D be an integral domain with group of units U (D). Show that if S is a
multiplicatively closed subset and S′ is either U (D)S or U (D) ∪ U (D)S, then
the localizations DS and DS′ are isomorphic.

3. Below are given examples of a domain D and a multiplicatively closed subset of
non-zero elements of D. Describe as best you can the local ring DS .

(a) D = Z; S is all powers of 3. Is DS a local ring?
(b) D = Z; S consists of all numbers of the form 3a5b where a and b are natural

numbers and a + b > 0. Is the condition a + b > 0 necessary?
(c) D = Z; S is all positive integers which are the sum of two squares.
(d) D = Z; S is all integers of the form a2 + 5b2.
(e) D = Z; S is all integers which are congruent to one modulo five.
(f) D = Z[x]; S is all primitive polynomials of D.

4. A valuation ring is an integral domain D such that if I and J are ideals of D,
then either I ⊆ J or J ⊆ I . Prove that for an integral domain D, the following
three conditions are equivalent:

(i) D is a valuation ring.
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(ii) if a, b ∈ R, then either Da ⊆ Db or Db ⊆ Da.
(iii) If α ∈ E := F(D), then either α ∈ D or α−1 ∈ D.

Thus, we see that the localizations DP defined at the prime ideal P (which were
defined on p. 312) are valuation rings.

5. Let D be a Noetherian valuation ring.

(i) Prove that D is a PID.
(ii) Prove that D contains a unique maximal ideal. (This is true even if D isn’t

Noetherian.)
(iii) Conclude that, up to associates, D contains a unique prime element.

(A ring satisfying the above is often called a discrete valuation ring.)
6. Let D be a discrete valuation ring, as in Exercise 5, above, and let π be the prime,

unique up to associates. Define ν(a) = r , where a = πr b, π � | b.
Prove that ν is an algorithm for D, giving D the structure of a Euclidean domain.

7. Let D be a Noetherian domain and let P be a prime ideal. Show that the local-
ization DP is Noetherian.

9.13.3 Exercises for Sect. 9.9

1. Let D be a Dedekind domain and let I ⊆ D be an ideal. Show that I ⊆ P for
the prime ideal P if and only if P is a factor in the prime factorization of I . More
generally, show that I ⊆ Pe if and only if Pe is a factor in the prime factorization
of I . Conclude that I = Pe1

1 Pe2
2 · · · Per

r is the prime factorization of the ideal I

if and only if for each i = 1, 2, . . . , r , I ⊆ Pei
i , but that I �⊆ Pei +1

i .
2. Let P and Q be distinct prime ideals of the Dedekind domain D. Show that

P Q = P ∩ Q. (Note that P Q ⊆ P ∩ Q in any ring.)
3. Assume that D is a Dedekind domain and that I = Pe1

1 Pe2
2 · · · Per

r ,

J = P f1
1 P f2

2 · · · P fr
r . Show that

I + J = Pmin{e1, f1}
1 · · · Pmin{er , fr }

r , I ∩ J = Pmax{e1, f1}
1 · · · Pmax{er , fr }

r .

Conclude that AB = (A+B)(A∩B). (Use Exercise 1. Note that this generalizes
Exercise 2.)

4. (Chinese Remainder Theorem) Let R be an arbitrary ring and let I, J ⊆ R be
ideals. Say that I and J are coprime if I + J = R. Prove that if I, J are coprime
ideals in R, then R/(I ∩ J ) ∼= R/I × R/J . [Hint: map R/(I ∩ J ) → R/I × R/J
by r + (I ∩ J ) �→ (r + I, r + J ). Map R/I × R/J → R(I ∩ J ), as follows. Fix
x ∈ I, y ∈ J with x + y = 1, and let (a + I, b + J ) �→ (xb + ya) + (I ∩ J ).]

5. Let R be a commutative ring and let I ⊆ R be an ideal. Assume that for some
prime ideals P1, P2, . . . , Pr one has I ⊆ P1 ∪ P2 ∪ · · · ∪ Pr . Show that I ⊆ Pi

for some i
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6. Let D be a Dedekind domain and let I, J ⊆ D be ideals. Show that I and J are
coprime (see Exercise 4) if and only if they do not have a common prime ideal
in their factorizations into prime ideals.

7. Let D be a Dedekind domain and let I ⊆ D be an ideal. If I = Pe1
1 Pe2

2 · · · Per
r

is the factorization of I into a product of prime ideals (where Pi �= Pj if i �= j)
in the Dedekind domain D, show that

D/I ∼= D/Pe1
1 × D/Pe2

2 × · · · × D/Per
r .

8. Let D be a Dedekind domain with ideal I ⊆ D. Factor I as I = Pe1
1 Pe2

2 · · · Per
r

into distinct prime-power factors.

(i) For each i = 1, 2, . . . , r select αi ∈ Pei
i \Pei +1

i+1 , i = 1, 2 . . . , r . Use Exer-

cise 7 to infer that there exists an element α ∈ D with α ≡ αi mod Pei +1
i+1 ,

i = 1, 2, . . . , r .
(ii) Show that α ∈ I , and so the principal ideal αD ⊆ I .
(iii) Assuming r > 1 if necessary, show that the principal ideal αD factors as

αD = I J , where I and J are coprime.
(iv) Factor J = Q f1

1 Q f2
2 · · · Q fs

s , a product of distinct prime powers. Show that
there exists an element β ∈ I\(Q1 ∪ Q2 ∪ · · · ∪ Qs). (See Exercise 5.)

(v) Show that the ideal (α,β)D = I .

The above shows that every ideal in a Dedekind domain is “almost principal”
inasmuch as no ideal requiresmore than two elements in a generating set, proving
Theorem 9.9.8.

9. In the Dedekind domain D = Z[√−5] show that (3) = (3, 4 +√−5)(3, 4 −√−5) is the factorization of the principal ideal (3) into a product of prime ideals.
10. Let E be a finite extension of the rational field Q, and set R = OE . Let P be

a prime ideal of R. Then P ∩ Z is a prime ideal of Z so that P ∩ Z = pZ, for
some prime number p. Show that we may regard Z/pZ as a subfield of R/P ,
and that dimensions satisfy the inequality

dim(Z/pZ)(R/P) ≤ dimQ E,

with equality if and only if p remains prime in OE . [Hint: Don’t forget to first
consider why R/P is a field.]

9.13.4 Exercises for Sect. 9.10

1. If D is a PID prove that every fractional ideal of E is principal.
2. Let D be a Dedekind domain with fraction field E . Prove that E itself is not a

fractional ideal (except in the trivial case in which D is a field to be begin with).
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[Hint: If E properly contains D, one must prove that E is not a finitely generated
D-module.]

3. Let D be aDedekind domainwith ideal class group C. Let P ⊆ D be a prime ideal
and assume that the order of the element [P] ∈ C is k > 1. If Pk = (π) := Dπ,
for some π ∈ D, show that π is irreducible but not prime.

4. An integral domain D such that every non-unit a ∈ D can be factored into
finitely many irreducible non-units is called an atomic domain. Prove that every
Noetherian domain is atomic. (Note that uniqueness of factorizationwill typically
fail.)

5. Let D be a Dedekind domain with ideal class group of order at most 2. Prove
that the number of irreducible factors in a factorization of an element a ∈ D
depends only on a.10 [Hint: Note first that by Exercise 4, any non-unit of D can
be factored into finitely many irreducible elements. By induction on the minimal
length of a factorization of a ∈ D into irreducible elements, we may assume
that a has no prime factors. Next assume that π ∈ D is a non-prime irreducible
element. If we factor the principal ideal into prime ideals: (π) = Q1Q2 · · · Qr

then the assumption guarantees that Q1Q2 = (α), for some α ∈ D. If r > 2,
then (π) is properly contained in Q1Q2 = (α) and so α is a proper divisor of π, a
contradiction. Therefore, it follows that a principal ideal generated by a non-prime
irreducible element factors into the product of two prime ideals. Nowwhat?]2593

6. Let D be as above, i.e., a Dedekind domain with ideal class group of order at
most 2. Let π1,π2 ∈ D be irreducible elements. As seen in Exercise 5 above,
any factorization of π1π2 will involve exactly two irreducible elements. Show
that, up to associates, there can be at most three distinct factorizations of π1π2
into irreducible elements. (As a simple illustration, it turns out that the Dedekind
domain Z[√−5] has class group of order 2; correspondingly we have distinct
factorizations: 21 = 3 · 7 = (1+ 2

√−5)(1− 2
√−5) = (4+√−5)(4−√−5).)

9.13.5 Exercises for Sect. 9.11

1. Let D be a ring in which every ideal I ⊆ D is invertible. Prove that D is a
Dedekind domain. [Hint: First, as in the Proof of Theorem 9.11.7, show that D is
Noetherian. Now let C be the set of all ideals that are not products of prime ideals.
Since D is Noetherian,C �= ∅ implies that C has amaximalmember J . Let J ⊆ P ,
where P is a maximal ideal. Clearly J �= P . Then JP−1 ⊆ PP−1 = D and so
JP−1 is an ideal of D; clearly J ⊆ JP−1. If J = JP−1, then JP−1 = P1P2 · · · Pr

so J = PP1P2 · · · Pr . Thus J = JP−1 so JP = J . This is a contradiction. Why?]
2. Here is an example of a non-invertible ideal in an integral domain D. Let

10See L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer.
Math. Soc. 11 (1960), 391–392. In case R is the ring of integers in a finite extension of the rational
field, Carlitz also proves the converse.



324 9 The Arithmetic of Integral Domains

D = {a + 3b
√−5| a, b ∈ Z},

and let I = (3, 3
√−5), i.e., I is the ideal generated by 3 and 3

√−5. Show that
I is not invertible. (An easy way to do this is to let J = (3), the principal ideal
generated by 3, and observe that despite the fact that I �= J , we have I 2 = IJ.)

3. This exercise gives a very important class of projective R-modules; see Sect. 8.4.4.
Let R be an integral domain with field of fractions F and let I be an ideal of
R. Prove that if I is invertible, then I is a projective R-module. Conversely,
prove that if the ideal I is finitely generated and projective as an R-module,
then I is an invertible ideal. [Hint: Assuming that I is invertible, there must
exist elements α1,α2, . . . ,αn ∈ I, β1,β2, . . . ,βn ∈ I −1 with

∑
αiβi = 1.

Let F be the free R-module with basis { f1, f2, . . . , fn} and define σ : I → F
by σ(α) = ∑

αβi fi ∈ F . Show that σ(I ) ∼=R I and that σ(I ) is a direct
summand of F . ApplyTheorem8.4.5 to infer that I is projective. For the converse,
assume that I = R[α1,α2, . . . ,αn] and let F be the free R-module with basis
{ f1, f2, . . . , fn}. Let ε : F → I be the homomorphism given by ε( fi ) = αi , i =
1, 2, . . . , n. Show that since I is projective, there is a homomorphism σ : I → F
such that ε ◦ σ = 1I . For each α ∈ I , write σ(α) = ∑

ai (α) fi and show that
for each i = 1, 2, . . . , n the elements βi := ai (α)/α ∈ F are independent of
0 �= α ∈ I . Next, show that each βi ∈ I −1 and finally that

∑
αβi = 1, proving

that I is invertible. Note, incidentally, that this exercise shows that Dedekind rings
are hereditary in the sense of Exercise (19) in Sect. 8.5.3. Also, by Exercise 1 of
this subsection we see that a Noetherian domain is a Dedekind domain if and only
if every ideal is projective.]

4. Let R be a Dedekind domain with field of fractions E . If I, J ⊆ E are fractional
ideals, and if 0 �= φ ∈ HomR(I, J ), prove that φ is injective. [Hint: Argue that
if J0 = im φ, then J0 is a projective R-module. Therefore one obtains I =
ker φ ⊕ J ′, where J ∼=R J0. Why is such a decomposition a contradiction?]

5. Let R be a Dedekind domain with field of fractions E , and let I, J ⊆ E be
fractional ideals representing classes [I ], [J ] ∈ CR , the ideal class group of R.
If [I ] = [J ], prove that I ∼=R J . (The converse is also true; see Exercise (9) in
Sect. 13.13.4 of Chap.13.)

9.13.6 Exercises for Sect. 9.12

1. Let F be a field and let x be an indeterminate. Prove that the ring R = F[x2, x3]
is not integrally closed, hence is not a UFD.

2. Prove the assertion that if a is an algebraic integer, so is
√

a.
3. Let E be a finite field extension of the rational numbers. Suppose τ is an auto-

morphism of E . Show that τ leaves the algebraic integer ringOE invariant. [Hint:
Since themultiplicative identity element 1 is unique, show that any automorphism
of E fixes Z and Q element-wise. The rest of the argument examines the effect
of such an automorphism on the definition of an algebraic integer.]

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_13
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4. Show that A(−6) := Z[√−6] is not a UFD.
5. As we have seen, the ring A(−5) = Z[√−5] is not a UFD. Many odd things

happen in this ring. For instance, find an example of an irreducible element π ∈
Z[√−5] and an element a ∈ Z[√−5] such that π doesn’t divide a, but π divides
a2. [Hint: look at factorizations of 9 = 32.]

6. The following result is well-known to virtually every college student. Let f (x) ∈
Z[x], and let a

b be a rational root of f (x). If the fraction a
b is in lowest terms, then

a divides the constant term of f (x) and b divides the leading coefficient of f (x).
If we ask the same question in the context of the ring Z[√−5], then the answer
is negative. Indeed, if we consider the polynomial f (x) = 3x2 − 2

√−5 x − 3 ∈
Z[√−5][x], then the zeroes are 2+√−5

3 and −2+√−5
3 . Since both 3 and±2+√−5

are non-associated irreducible elements, then the fractions can be considered to
be in lowest terms. Yet neither of the numerators divide the constant term of f (x).

7. We continue on the theme set in Exercise 6, above. Let D be an integral domain
with field of fractions F(D). Assume the following condition on the domain D:

For every polynomial f (x) = an xn + · · · + a0 ∈ D[x], with a0, an �= 0, and a
zero a

b ∈ F(D)which is a fraction in lowest terms—i.e., a and b have no common
non-unit factors and f (a/b) = 0— then a divides a0 and b divides an .

Now prove that for such a ring every irreducible element is actually prime. [Hint:
Let π ∈ D be an irreducible element and assume that π|uv, but that π doesn’t
divide either u or v. Let uv = rπ, r ∈ D, and consider the polynomial ux2 −
(π + r)x + v ∈ R[x].]

8. Let K be a field such that K is the field of fractions of both subrings R1, R2 ⊆ K .
Must it be true that K is the field of fractions of R1∩R2? [Hint: A counter-example
can be found in the rational function field K = F(x).]

9. Let Q ⊆ K be a finite-degree extension of fields. Prove that if K is the field of
fractions of subrings R1, R2 ⊆ K , then K is also the field of fractions of R1∩ R2.

10. Again, letQ ⊆ K be a finite-degree extension of fields. This time, let {Rα|α ∈ A}
consist of all the subrings of K having K as field of fractions. Show that K is not
the field of fractions of ∩α∈ARα. (In fact, ∩α∈ARα = Z.)

Appendix: The Arithmetic of Quadratic Domains

Introduction

We understand the term quadratic domain to indicate the ring of algebraic integers
of a field K of degree two over the rational number fieldQ. The arithmetic properties
of interest are those which tend to isolate Euclidean domains: Are these principal
ideal domains (or PID’s)? Are they unique factorization domains (or UFD’s, also
called “factorial domains” in the literature)?



326 9 The Arithmetic of Integral Domains

Quadratic Fields

Throughout Q will denote the field of rational numbers. Suppose K is a subfield of
the complex numbers. Then it must contain 1, 2 = 1+1, all integers and all fractions
of such integers. Thus K contains Q as a subfield and so is a vector space over Q.
Then K is a quadratic field if and only of dimQ(K ) = 2.

Suppose now that K is a quadratic field, so as a Q-space,

K = Q ⊕ ωQ, for any chosen ω ∈ K − Q.

Then ω2 = −bω − c for rational numbers b and c, so ω is a root of the monic
polynomial

p(x) = x2 + bx + c

in Q[x]. Evidently, p(x) is irreducible, for otherwise, it would factor into two linear
factors, one of which would have ω for a rational root, against our choice of ω. Thus
p(x) has two roots ω and ω̄ given by

(−1 ±
√

b2 − 4c)/2.

We see that K is a field generated by Q and either ω or ω̄—a fact which can be
expressed by writing

K = Q(ω) = Q(ω̄).

Evidently

K = Q(
√

d), where d = b2 − 4c.

Observe that substitution of ω for the indeterminate x in each polynomial of Q[x]
produces an onto ring homomorphism,

vω : Q[x] → K ,

whose kernel is the principal ideal p(x)Q[x].11 But as vω̄ : Q[x] → K has the same
kernel, we see that the Q-linear transformation

σ : Q ⊕ ωQ → Q ⊕ ω̄Q,

which takes each vector a + bω to a + bω̄, a, b ∈ Q, is an automorphism of the field
K . Thus σ(ω) = ω̄, and σ2 = 1K (why?).

Associated with the group 〈σ〉 = {1K ,σ} of automorphisms of K are two further
mappings.

11This was the “evaluation homomorphism” of Theorem 7.3.3, p. 207.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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First is the trace mapping,
Tr : K → Q,

which takes each element ζ of K to ζ + ζσ . Clearly this mapping is Q-linear.
The second mapping is the norm mapping,

N : K → Q,

which takes each element ζ of K to ζζσ . This mapping is not Q-linear, but it follows
from its definition (and the fact that multiplication in K is commutative) that it is
multiplicative—that is

N (ζψ) = N (ζ)N (ψ),

for all ζ, ψ in K .
Just to make sure everything is in place, consider the roots ω and ω̄ of the irre-

ducible polynomial p(x) = x2 + bx + c. Since p(x) factors as (x − ω)(x − ω̄) in
K [x], we see that the trace is

T (ω) = T (ω̄) = −b ∈ Q,

and that the norm is

N (ω) = N (ω̄) = c, also in Q.

Quadratic Domains

We wish to identify the ring A of algebraic integers of K . These are the elements
ω ∈ K which are roots of at least one monic irreducible polynomial in Z [x]. At this
stage the reader should be able to prove:

Lemma 9.A.1 An element ζ ∈ K − Q is an algebraic integer if and only if its trace
T (ζ) and its norm N (ζ) are both rational integers.

Now putting ζ = √
d , where d is square-free and K = Q(

√
d), the lemma

implies:

Lemma 9.A.2 If d is a square-free integer, then the ring of algebraic integers of
K = Q(

√
d) is the Z-module spanned by

{1,√d} if d ≡ 2, 3 mod 4,

{1, (1 + √
d)/2} if d ≡ 1 mod 4.

Thus the ring of integers for Q(
√
7) is the set {a +b

√
7|a, b ∈ Z}. But if d = −3,

then (1+√−3)/2 is a cube root of unity, and the ring of integers for Q(
√−3) is the

domain of Eisenstein numbers.
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Which Quadratic Domains Are Euclidean, Principal Ideal
or Factorial Domains?

Fix a square free integer d and let A(d) denote the full ring of algebraic integers of
K = Q(

√
d). A great deal of effort has been devoted to the following questions:

1. When is A(d) a Euclidean domain?
2. More generally, when is A(d) a principal ideal domain?

In this chapter we showed that the Gaussian integers, A(−1) and the Eisenstein
numbers, A(−3) were Euclidean by showing that the norm function could act as the
function g : A(d) → Z with respect to which the Euclidean algorithm is defined. In
the case that the norm can act in this role, we say that the norm is algorithmic.

The two questions have been completely answered when d is negative.

Proposition 9.A.1 The norm is algorithmic for A(d) when d = −1,−2,−3,−7
and −11. For all remaining negative values of d, the ring A(d) is not even Euclidean.
However, A(d) is a principal ideal domain for

d = −1,−2,−3,−7,−11,−19,−43,−67,−163,

and for no further negative values of d.

There are ways of showing that A(d) is a principal ideal domain, even when the
norm function is not algorithmic. For example:

Lemma 9.A.3 Suppose d is a negative square-free integer and the (positively val-
ued) norm function of A(d) has this property:

• If N (x) ≥ N (y) then either y divides x or else there exist elements u and v

(depending on x and y) such that

0 < N (ux − yv) < N (y).

Then A(d) is a principal ideal domain.

This lemma is used, for example, to show that A(−19) is a PID.12

For positive d (where Q(
√

d) is a real field) the status of these questions is not so
clear. We can only report the following:

Proposition 9.A.2 Suppose d is a positive square-free integer. Then the norm func-
tion is algorithmic precisely for

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.

12See an account of this in Pollard’s The Theory of Algebraic Numbers, Carus Monograph no. 9,
Math. Assoc. America, p. 100, and in Wilson, J.C., A principal ideal domain that is not Euclidean,
Mathematics Magazine, vol. 46 (1973), pp. 34–48.
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The domain A(d) is known to be a principal ideal domain for many further values
of d. But we dont even know if this can occur for infinitely many values of d!
Moreover, among these PID’s, how many are actually Euclidean by some function
g other than the norm function? Are there infinitely many?

Non-Factorial Subdomains of Euclidean Domains

Here it is shown that standard Euclidean domains such as the Gaussian integers
contain subdomains for which unique factorization fails. These nice examples are
due to P. J. Arpaia (“A note on quadratic Euclidean Domains”, Amer.Math.Monthly,
vol. 75(1968), pp 864–865).

Let A0(d) be the subdomain of A(d) consisting of all integral linear combinations
of 1 and

√
d , where d is a square-free integer. Thus A0(d) = A(d) if d ≡ 2, 3 mod 4,

and is a proper subdomain of A(d) only if d ≡ 1 mod 4.
Let p be a rational prime. Let A0/(p) be the ring whose elements belong to the

vector space
(Z/(p))1 ⊕ (Z/(p))

√
d,

where multiplication is defined by setting (
√

d)2 to be the residue class modulo p
containing d. Precisely, A0/(p) is the ring Z[x]/I where I is the ideal generated by
the prime p and the polynomial x2−d. It should be clear that A0/(p) is a field if d is
not zero or is not a quadratic residue mod p, and is the direct (ring) sum of two fields
if d is a quadratic residue mod p. If p divides d, it has a 1-dimensional nilpotent
ideal. But in all cases, it contains Z/(p) as a subfield containing the multiplicative
identity element.

There is a straightforward ring homomorphism

n p : A0 → A0/(p),

which takes a + b
√

d to ā + b̄
√

d where “bar” denotes the taking of residue classes
of integers mod p. Now set

B(d, p) := n−1
p (Z/(p)).

Then B(d, p) is a ring, since it is the preimage under n p of a subfield of the image
A0/(p). In fact, as a set,

B(d, p) := {a + b
√

d ∈ A0|b ≡ 0 mod p}.

Clearly it contains the ring of integers and so is a subdomain of A(p). Note that the
domains A0 and B(d, p) are both σ-invariant.



330 9 The Arithmetic of Integral Domains

In the subdomain B(d, p), we will show that under a mild condition, there are
elements which can be factored both as a product of two irreducible elements and
as a product of three irreducible elements. Since d and p are fixed, we write B for
B(d, p) henceforward.

Lemma 9.A.4 An element of B of norm one is a unit in B.

Proof Since B = Bσ , N (ζ) = ζζσ = 1 for ζ ∈ B implies ζσ is an inverse in B for
ζ.

Lemma 9.A.5 Suppose ζ is an element A0 whose norm N (ζ) is the rational prime
p. The ζ does not belong to B.

Proof By hypothesis, N (ζ) = a2 − b2d = p. If p divided integer b, it would divide
integer a, so p2 would in fact divide N (ζ), an absurdity. Thus p does not divide b
and so ζ is not an element of B.

Corollary 9.A.1 If an element of B has norm p2, then it is irreducible in B.

Proof By Lemma 9.A.4, elements of norm one in B are units in B. So if an element
of norm p2 in B were to have a proper factorization, it must factor into two elements
of norm p. But the preceding lemma shows that B contains no such factors.

Theorem 9.A.1 Suppose there exist integers a and b such that a2 − db2 = p
(that is, A0 contains an element of norm p). Then the number p3 admits these two
factorizations into irreducible elements of B:

p3 = p · p · p

p3 = (pa + pb
√

d) · (pa − pb
√

d).

Proof The factors are clearly irreducible by Corollary 9.A.1.

We reproduce Arpaia’s table displaying p = a2 − db2 for all d for which the
norm function on A(d) is algorithmic.

d p = a2 − db2 d p = a2 − db2 d p = a2 − db2

−11 47 = 62 − (−11)12 5 11 = 42 − 5 · 12 21 −17 = 22 − 21 · 12
−7 11 = 22 − (−3)12 6 −5 = 12 − (6)12 29 −13 = 42 − (26)12

−3 7 = 22 − (−3)12 7 −3 = 22 − 3 · 12 33 −29 = 22 − 33 · 12
−2 3 = 12 − (−2)12 11 −7 = 22 − 11 · 12 37 107 = 122 − 37 · 12
−1 2 = 1 − (−1)12 13 3 = 42 − 13 · 12 41 −37 = 22 − 41 · 12
2 −7 = 12 − 2 · 22 17 −13 = 22 − 17 · 12 57 −53 = 22 − 57 · 12
3 −2 = 12 − 3 · 12 19 −3 = 42 − 19 · 12 73 −37 = 62 − 73 · 12
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A Student Project

In the preceding subsection, a non-factorial subdomain B was produced for each
case that the domain A(d) = alg. int.(Q(

√
d)) was Euclidean. But there are only

finitely many of these domains A(d). This raises the question whether one can find
such a subdomain B in more standard generic Euclidean domains? We know that
no such subdomain can exist in the domain of integers Z due to the paucity of it
subdomains. But are there non-factorial subdomains B of the classical Euclidean
domain of polynomials over a field?

This might be done by duplicating the development of the previous section replac-
ing the ring of integers Z , by an arbitrary unique factorization domain D which is
distinct from its field of fractions k. Suppose further that K is a field of degree two
over k generated by a root ω of an irreducible quadratic polynomial x2 − bx − c in
D[x] which has distinct roots {ω, ω̄}. (One must assume that the characteristic of D
is not 2.) Then the student can show that, as before, K = k ⊕ ωk as a vector space
over k and that the mapping σ defined by

σ(u + ωv) = u + ω̄v, for all u, v ∈ k,

is a field automorphism of K of order two so that the trace and norm mappings T
and N can be defined as before.

Now let A be the set of elements in K whose norm and trace are in D. The
student should be able to prove that if D is Noetherian, A is a ring. In any event,
A0 := {a + ωb|a, b ∈ D} is a subring.

Now since D is a UFD not equal to its quotient field, there is certainly a prime p
in D. It is easy to see that

Bp = {a + ωb|a, b ∈ D, b ∈ pD} = D ⊕ ω pD

is a σ-invariant integral domain. Then the proofs of Lemmas 9.A.4 and 9.A.5 and
Corollary 9.A.1 go through as before (note that the fact that D is a UFD is used here).
The analogue of the Theorem will follow:

If A0 contains an element of norm p, B is not factorial.

Can we do this so that between A and B lies the Euclidean ring F[x]? The answer
is “yes”, if the characteristic of the field F is not 2.

In fact we can pass directly from F[x] to the subdomain B and fill in the roles of
D, k, K , A, and A0 later.

Let p(x) be an irreducible polynomial in F[x] where the characteristic of F is
not 2. Then (using an obvious ring isomorphism) p(x2) is an irreducible element of
the subdomain F[x2]. Now the student may show that the set

Bp : F[x2] ⊕ xp(x2)F[x2]

is a subdomain of F[x].
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Now D = F[x2] is a UFD with quotient field k = F(x2)—the so called “field
of rational functions” over F . The quotient field K = F(x) of F[x], is degree two
over k, with the indeterminate x playing the role of ω. Thus

F(x) = F(x2) ⊕ xF(x2)

since ω = x is a zero of the polynomial y2 − x2 which is irreducible in F[x2][y] =
D[y]. Since the characteristic is not 2, the roots x and−x are distinct. Thus we obtain
our field automorphism σ which takes any element ζ = r(x2) + xs(x2) of F(x), to
r(x2)− xs(x2) (r and s are quotients of polynomials in F[x2]). (Note that this is just
the substitution of −x for x in F(x).) Now the student can write out the norm and
trace of such a generic ζ. For example

N (ζ) = r2 − x2s2. (9.10)

At this point the ring Bp given above is not factorial if there exists a polynomial
ζ = a(x2) + xb(x2) in F[x] of norm p(x2). That is,

a(x2)2 − x2b(x2)2 = p(x2)

is irreducible in F[x2].
Here is an example: Take a(x2) = 1 = b(x2), so ζ = x + 1. Then N (1 + x) =

x2 − 1 is irreducible in F[x2]. Then in Bp = F[x2] ⊕ x(x2 − 1)F[x2], we have the
factorizations

(1 − x2)3 = (1 + x − x2 − x3)(1 − x − x2 + x3)

into irreducible elements.



Chapter 10
Principal Ideal Domains and Their Modules

Abstract An integral domain in which every ideal is generated by a single element
is called a principle ideal domain or PID. Finitely generated modules over a PID are
completely classified in this chapter. They are uniquely determined by a collection
of ring elements called the elementary divisors. This theory is applied to two of the
most prominent PIDs in mathematics: the ring of integers, Z, and the polynomial
rings F[x], where F is a field. In the case of the integers, the theory yields a complete
classification of finitely generated abelian groups. In the case of the polynomial ring
one obtains a complete analysis of a linear transformation of a finite-dimensional
vector space. The rational canonical form, and, by enlarging the field, the Jordan
form, emerge from these invariants.

10.1 Introduction

Throughout this chapter, the integral domain D (and sometimes R) will be a principal
ideal domain (PID). Thus it is a commutative ring forwhich a product of two elements
is zero only if one of the factors is already zero—that is, the set of non-zero elements is
closed under multiplication.Moreover every ideal is generated by a single element—
and so has the form Dg for some element g in the ideal.

Of course, as rings go, principal ideal domains are hardly typical. But two of their
examples, the ring of integers Z, and the ring F[x], of all polynomials in a single
indeterminate x over a field F , are so pervasive throughout mathematics that their
atypical properties deserve special attention.

In the previous chapter we observed that principal ideal domains were in fact
unique factorization domains. In this chapter, the focus is no longer on the internal
arithmetic of such rings, but rather on the structure of all finitely-generated submod-
ules over these domains. As one will soon see, the structure is rather precise.

© Springer International Publishing Switzerland 2015
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10.2 Quick Review of PID’s

Principal Ideal Domains (PID’s) are integral domains D for which each ideal I has
the form I = aD for some element a of D. One may then employ Theorem 8.2.11
to infer from the fact that every ideal is finitely generated, that the Ascending Chain
Condition (ACC) holds for the poset of all ideals.

Recall that a non-zero element a divides element b if and only if

aD ⊇ bD.

It follows—as we have seen in the arguments that a principal ideal domain (PID)
is a unique factorization domain (UFD)—that a is irreducible if and only if aD is a
maximal ideal, and that this happens if and only if a is a prime element (see Lemma
9.2.4).

We also recall that for ideals,
xD = yD

if and only if x and y are associates. For this means x = yr and y = xs for some
r and s in D, so x = xrs, so sr = 1 by the cancellation law. Thus r and s, being
elements of D, are both units.

The least common multiple of two elements a, b ∈ D is a generator m of the
ideal

aD ∩ bD = mD

where m is unique up to associates.
The greatest common divisor of two non-zero elements a and b is a generator d of

aD + bD = dD,

again up to the replacement of d by an associate. Two elements a and b are relatively
prime if and only if

aD + bD = D.

Our aim in this chapter will be to find the structure of finitely-generated modules
over a PID. Basically, our main theorem will say that if M is a finitely-generated
module over a principal ideal domain D, then

M � (D/De1) ⊕ (D/De2) ⊕ · · · ⊕ (D/Dek)

as right D-modules, where k is a natural number and for 1 ≤ i ≤ k − 1, ei divides
ei+1.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_9
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This is a very useful theorem. Its applications are (1) the classification of finite
abelian groups, and (2) the complete analysis of a single linear transformation T :
V → V of a finite-dimensional vector space into itself. It will turn out that the set
of elements ei which are not units is uniquely determined up to associates. But all of
that still lies ahead of us.

10.3 Free Modules over a PID

We say that an R-module M has a basis if and only if there is a subset B of M (called
an R-basis or simply a basis, if R is understood) such that every element m of M
has a unique expression ∑

biri , bi ∈ B, ri ∈ R,

as a finite R-linear combination of elements of B. The uniqueness is the key item
here.

Recall that in Chap.8, p. 243, we have defined a free (right) module over the
ring R to be a (right) R module M satisfying any of the following three equivalent
conditions:

• M possesses an R-basis, as defined just above.
• M is generated by an R-linearly independent set B. (In this case, B is indeed a
basis).

• M is a direct sum of submodules Mσ each of which is isomorphic to RR as right
R-modules.

The equivalence of these conditions was the content of Lemma 8.1.8.
In general, there is no result asserting that two bases of a free R-module have the

same cardinality. However, the result is true when R is commutative (see Theorem
8.1.11), and so it is true for an integral domain D. We call the unique cardinality of
a basis for a free D-module F , the D-rank of F and denote it rkD(F) or just rk(F)

if D is understood.

10.4 A Technical Result

Theorem 10.4.1 Let n and m be natural numbers and let A be an n ×m matrix with
coefficients from a principal ideal domain D. Then there exists an n × n matrix P
invertible in (D)n×n, and an m × m matrix Q, invertible in (D)m×m, such that

P AQ =

⎛
⎜⎜⎝

d1 0 . . . 0
0 d2 . . . 0
. . . . . .

. . . . . .

⎞
⎟⎟⎠ where di divides di+1.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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The elements {d1, d2, . . . , dk}, where k = min(n, m), are uniquely determined up to
associates by the matrix A.

Proof For each non-zero element d of D let ρ(d) be the number of prime divisors
occurring in a factorization of d into primes. (Recalling that a PID is always a UFD,
the function ρ is seen to be well-defined.) We call ρ(d), the factorization length of
the element d.

Our goal is to convert A into a diagonalmatrixwith successively dividing diagonal
elements by a series of right and left multiplications by invertible matrices. These
will allow us to perform several so-called elementary row and column operations
namely:

(I) Add b times the i th row (column) to the j th row (column), i 	= j . This is
left (right) multiplication by a suitably sized matrix having b in the (i, j)th
(or ( j, i)th) position while having all diagonal elements equal to 1D , and all
further entries equal to zero.

(II) Multiply a row (or column) throughout by a unit u of D. This is left (right)
multiplication by a diagonal matrix diag(1, . . . , 1u, 1, . . . , 1) of suitable size.

(III) Permute rows (columns). This is left (right) multiplication by a suitable per-
mutation matrix.

First observe that there is nothing to do if A is the n × m matrix with all entries
zero. In this case each di = 0D , and they are unique.

Thus for A 	= 0, we consider the entire collection of matrices

S = {PAQ|P, Q units in D(n×n) and D(m×m), respectively}.

Among the non-zero entries of the matrices in S, there can be found a matrix element
bij (in some B ∈ S) with factorization length ρ(bij) minimal. Then by rearranging
the rows and columns of B if necessary, we may assume that this bij is in the (1, 1)-
position of B—that is, (i, j) = (1, 1).

We now claim

b11 divides b1k for k = 2, . . . , m. (10.1)

To prove the claim, assume b11 does not divide b1k . Permuting a few columns if
necessary, we may assume k = 2. Since D is a principal ideal domain, we may write

b11D + b12D = Dd.

Then as d divides b11 and b12, we see that

b12 = ds and − b11 = dt, with s, t ∈ D.

Then, as d = b11x + b12y, for some x, y ∈ D, we see that

d = (−dt)x + (ds)y so 1 = sy − tx,
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by the cancellation law. Thus

(−t s
y −x

)(
x s
y t

)
=

(
1 0
0 1

)
.

So, after multiplying B on the right by the invertible

Q1 =

⎛
⎜⎜⎜⎜⎝

x s 0 . . . 0
y t 0 . . . 0
0 0 1 0 . . .

. . . . . . .

0 0 . . . 0 1

,

⎞
⎟⎟⎟⎟⎠

the first row of BQ1 is (d, 0, b13, . . . , b1m). Thus, as d now occurs as a non-zero
element of D in a matrix in S, we see that ρ(b11) ≤ ρ(d) ≤ ρ(b11) so that b11 is an
associate of d. Thus b11 divides b12 as claimed.

Similarly, we see that b11 divides each entry bk1 in the first column of B. Thus,
subtracting suitable multiples of the first row from the remaining rows of B, we
obtain a matrix in S with first column, (b11, 0, . . . , 0)T . Then subtracting suitable
multiples of the first column from the remaining columns of this matrix, we arrive
at a matrix

B0 :=

⎛
⎜⎜⎜⎜⎝

b11 0 0 . . . 0
0
·
· B1
0

,

⎞
⎟⎟⎟⎟⎠ ,

where B0 ∈ S. We set B1 = (cij), where 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ m − 1.
We now expand on this: we even claim that

b11 divides each entry cij of matrix B1.

This is simply because addition of the j th row to the first row of the matrix B0 just
listed above, yields a matrix B ′ in S whose first row is (b11, c j2, c j3, . . . cjm). But we
have just seen that in any matrix B0 in S containing an element of minimal possible
factorization length in the (1, 1)-position, that this element divides every element of
the first row and column. Since B ′ is such a matrix, b11 divides cij.

Now by induction on n + m, there exist invertible matrices P1 and Q1 such that
P1B1Q1 = diag(d2, d3, . . . , ) with d2 dividing d3 dividing . . . dk .1 Augmenting
P1 and Q1 by adding a row of zeros above, and then a column to the left whose

1We apologize for the notation here: diag(d2, d3, . . . ,) should not be presumed to be a squarematrix.
Of course it is still an (n − 1) × (m − 1)-matrix, with all entries zero except possibly those that
bear a di at the (i, i)-position. If n < m the main diagonal hits the “floor” before it hits the “east
wall”, and the other way round if n > m.
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top entry is 1, the remaining entries 0, one obtains matrices P ′
1 and Q′

1 such that
P ′
1B0Q′

1 = diag(d1, d2, . . .) where we have written d1 for b11.
Let us address the uniqueness. Now the element d1 = b11 with minimal prime

length among the entries in B was completely determined by B. Moreover, the pair
(b11, B) determined B0 and as well as its submatrix B1. Finally, by induction, on
n +m, the numbers d2, . . . dk , are uniquely determined up to associates by the matrix
B1. Thus all of the di are uniquely determined by the initial matrix B. �

10.5 Finitely Generated Modules over a PID

Theorem 10.5.1 (The Invariant Factor Theorem) Let D be a principal ideal domain
and let M be a finitely generated D-module. Then as right D-modules, we have

M � (D/Dd1) ⊕ (D/Dd2) ⊕ · · · ⊕ (D/Ddn),

where di divides di+1, i = 1, . . . , n − 1.

Proof Let M be a finitely generated D-module. Then by Theorem 8.1.9, there is a
finitely generated free module F and a D-epimorphism

f : F → M.

Then F has a D-basis {x1, . . . , xn}, and, as D is Noetherian, its submodule ker f is
finitely generated. Thus we have

M = x1D ⊕ x2D ⊕ · · · ⊕ xn D (10.2)

ker f = y1D + y2D + · · · + ym D. (10.3)

We then have m unique expressions

yi = x1ai1 + x2ai2 + · · · + xnain, i = 1, . . . , m,

and an m × n matrix A = (aij) with entries in D. By the technical result of the
previous subsection, there exist matrices P = (pij) and Q = (qij) invertible in
Dm×m and Dn×n , respectively, such that

PAQ =
⎛
⎝ d1 0 . . . 0
0 d2 . . . 0

..

⎞
⎠ (where di |di+1),

an m × n matrix whose only non-zero entries are on the principal diagonal and pro-
ceed until they cant go any further (that is, they are defined up to subscriptmin(m, n)).

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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If we set

Q−1 = (q∗
ij), and

y′
i =

∑
y j pij and

x ′
i =

∑
x j q

∗
ij

then PAQ expresses the y′
i in terms of the x ′

i , which now comprise a new D-basis for
F . Thus we have

y′
1 = x ′

1d1, y′
2 = x ′

2d2, . . . etc.,

(where, by convention the expression dk is taken to be zero for min(m, n) < k ≤ m).
Also, since P and Q−1 are invertible, the y′

i also span ker f . So, bearing in mind
that some of the y′

i = x ′
i di may be zero, and extending the definition of the dk by

setting dk := 0 if m < k ≤ n, we may write

F = x ′
1D ⊕ x ′

2D ⊕ · · · ⊕ x ′
n D

ker f = x ′
1d1D ⊕ x ′

2d2D ⊕ · · · ⊕ x ′
ndn D.

Then

M = f (F) � F/ ker f � (D/d1D) ⊕ (D/d2D) ⊕ · · · ⊕ (D/dm D)

and the proof of the theorem is complete. �

Remark The essential uniqueness of the elements {di } appearing in the above the-
orem will soon emerge in Sect. 9.6 below. These elements are called the invariant
factors (or sometimes the elementary divisors) of the finitely generated D-module M .

At this stage their uniqueness does not immediately follow from the fact that they
are uniquely determined by the matrix A since this matrix itself depended on the
choice of a finite spanning set for ker f and it is not clear that all such finite spanning
sets can be moved to one another by the action of an invertible transformation Q in
homD{ker f, ker f }.

An element m of a D-module M is called a torsion element if and only if there
exists a non-zero element d ∈ D such that md = 0. Recall from Exercise (3) in
Sect. 8.5.1 that the annihilator Ann(m) = {d ∈ D|md = 0} is an ideal and that we
have just said that m is a torsion element if and only if Ann(m) 	= 0. In an integral
domain, the intersection of two non-zero ideals is a non-zero ideal; it follows from
this that the sum of two torsion elements of an R-module is a torsion element. In
fact the set of all torsion elements of M forms a submodule of M called the torsion
submodule and denoted torM .

Corollary 10.5.2 A finitely generated D-module over a principal ideal domain D,
is a direct sum of its torsion submodule torM and a free module.

http://dx.doi.org/10.1007/978-3-319-19734-0_9
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Proof By the Invariant Factor Theorem (Theorem 10.5.1),

M = (D/d1D) ⊕ · · · ⊕ (D/dn D)

where di divides di+1. Choose index t so that i ≤ t implies di 	= 0, and, for i > t
we have di = 0. Then

torM = (D/d1D) ⊕ · · · ⊕ (D/dt D)

and so

M = torM ⊕ DD ⊕ DD ⊕ · · · ⊕ DD,

with n − t copies of DD . �

If M = torM , we say that M is a torsion module.
Let M be a module over a principal ideal domain, D. Let p be a prime element

in D. We define the p-primary part of M as the set of elements of M annihilated by
some power of p, that is

Mp = {m ∈ M |mpk = 0 for some natural number k = k(m)}.

It is easy to check that Mp is a submodule of M . We now have

Theorem 10.5.3 (Primary Decomposition Theorem) If M is a finitely generated
torsion D-module, where D is a principal ideal domain, then there exists a finite
number of primes p1, p2, . . . , pN such that

M � Mp1 ⊕ · · · ⊕ MpN .

Proof Since M is finitely generated, we have M = x1D + · · · xm D for some finite
generating set {xi }. Since M is a torsion module, each of the xi is a torsion element,
and so all of the ideals Ai := Ann(xi ) are non-zero; and since D is a principal ideal
domain,

Ai = Ann(xi ) = di D, where di 	= 0, i = 1, . . . , m.

Also, as D is a unique factorization domain aswell, each di is expressible as a product
of primes:

di = pai1
i1 pai2

i2 · · · p
aif(i)

if(i) ,

for some function f of the index i . We let {p1, . . . , pN } be a complete re-listing of
all the primes pij which appear in these factorizations. If f (i) = 1, then di is a prime
power and so xi D ⊆ Mp j for some j . If, on the other hand, f (i) 	= 1, then, forming
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the elements vij = di/p
aij
ij , we see that the greatest common divisor of the elements

{vi1, . . . , vif(i)} is 1, and this means

vi1D + vi2D + · · · + vif(i)D = D.

Thus there exist elements b1, . . . , b f (i) such that

vi1b1 + vi2b2 + · · · + vif(i)b f (i) = 1.

Note that

b jvijxi ∈ Mpij since p
aij
ij vijb j xi = 0,

so

xi = xi · 1 =
∑

b jvijxi ∈ Mpi1 + · · · + Mpif(i) .

Thus in all cases

xi D ⊆ Mp1 + · · · + MpN

for i = 1, . . . , m, and the sum on right side is M . Now it remains only to show that
this sum is direct and we do this by the criterion for direct sums of D-modules (see
Theorem 8.1.6). Consider an element

a ∈ (Mp1 + · · · + Mpk ) ∩ Mpk+1 .

Then the ideal Ann(a) contains an element m which on the one hand is a product of
primes in {p1, . . . , pk}, and on the other hand is a power of the prime pk+1. Since
gcd(m, pk+1) = 1, we have

Ann(a) ⊇ m D + pρ
k+1D = D,

so 1 · a = a = 0. Thus we have shown that

(Mp1 + · · · + Mpk ) ∩ Mpk+1 = (0).

This proves that

M = Mp1 ⊕ Mp2 ⊕ · · · ⊕ MpN ,

and the proof is complete. �

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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10.6 The Uniqueness of the Invariant Factors

We have seen that a finitely generated module M over a principal ideal domain has
a direct decomposition as a torsion module and a finitely generated free module
(corresponding to the number of invariant factors which are zero). This free module
is isomorphic to M/torM and so its rank is the unique rank of M/torM (Theorem
8.1.11), and consequently is an invariant of M . The torsion submodule, in turn,
has a unique decomposition into primary parts whose invariant factors determine
those of tor(M). Thus, in order to show that the so-called invariant factors earn their
name as genuine invariants of M , we need only show this for a module M which is
primary—i.e. M = Mp for some prime p in D.

In this case, applying the invariant factor theorem, we have

M � D/ps1 D ⊕ · · · ⊕ D/pst D (10.4)

where s1 ≤ s2 ≤ · · · ≤ st , and we must show that the sequence S = (s1, . . . , st ) is
uniquely determined by M . We shall accomplish this by producing another sequence
� = {ωi }, whose terms are manifestly invariants determined by the isomorphism
type of M , and then show that S is determined by �.

For any p-primary D-module A, set

�1(A) := {a ∈ A|ap = 0}.

Then �1(A) is a D-submodule of A which can be regarded as a vector space over
the field F := D/pD. We denote the dimension of this vector space by the symbol
rk(�1(A)). Clearly,�1(A) and its rank are uniquely determined by the isomorphism
type of A.

Now let us apply these notions to the module M with invariants S = (s1, . . . , st )

as in Eq. (10.4). First we set ω1 := rk(�1(M)), and K1 := �1(M). In general we
set

Ki+1/Ki := �1(M/Ki ), and ωi+1 := rk(Ki+1/Ki ).

The Ki form an ascending chain of submodules of M which ascends properly until
it stabilizes at i = st , the maximal element of S (Note that Ann(M) = Dpst , so that
pst can be thought of as the “exponent” of M). Moreover, each of the D-modules Ki ,
is completely determined by the isomorphism type of M/Ki−1, which is determined
by Ki−1, and ultimately by M alone. Thus we obtain a sequence of numbers

� = (ω1,ω2, . . . ,ωst ),

which are completely determined by the isomorphism type of M . One can easily see

(*) ω j is the number of elements in the sequence S which are at least as large as j .

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Now the sequence S can be recovered from � as follows:

(**) For j = 0, 1, . . . , t − 1, st− j is the number of elements ωr of � of cardinality
at least j + 1.

Example 48 Suppose p is a prime in the principal ideal domain D and A is a primary
D-module with invariant factors:

p, p, p2, p3, p3, p4, p7, p7, p10,

so S = (1, 1, 2, 3, 3, 4, 7, 7, 10). Then, setting F = D/pD, K1 is an F-module of
rank 9, K2/K1 is an F-module of rank 7, and in general� = (9, 7, 6, 4, 3, 3, 3, 1, 1,
1). Then S = (1, 1, 2, 3, 3, 4, 7, 7, 10) is recovered by the recipe in (**).

We conclude:

Theorem 10.6.1 The non-unit invariant factors of a finitely-generated module over
a principal ideal domain are completely determined by the isomorphism type of the
module—i.e., they are really invariants.

10.7 Applications of the Theorem on PID Modules

10.7.1 Classification of Finite Abelian Groups

As remarked before, an abelian group is simply a Z-module. Since Z is a PID, any
finitely generated Z-module A has the form

A � Zd1 × Zd2 × · · · × Zdm

—that is, A is uniquely expressible as the direct product of cyclic groups, the order
of each dividing the next. The numbers (d1, . . . dn) are thus invariants of A and the
decomposition just presented is called the Jordan decomposition of A. The number
of distinct isomorphism types of abelian groups of order n is thus the number of
ordered sets (d1, . . . , dm) such that di divides di+1 and d1d2 · · · dm = n.

Example 49 The number of abelian groups of order 36 is 4. The four possible ordered
sets are: (36), (2, 18), (3, 12), (6, 6).

This number is usually much easier to compute if we first perform the primary
decomposition. If we assume A is a finite abelian group of order n, and if p is a
prime dividing n, then Ap = {a ∈ A|apk = 0, k ≥ 0} is just the set of elements of A
of p-power order. Thus Ap is the unique p-Sylow subgroup of A. Then the primary
decomposition

A = Ap1 ⊕ · · · ⊕ Apt
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is simply the additive version of writing A as a direct product of its Sylow subgroups.
Since the Api are unique, the isomorphism type of A is uniquely determined by the
isomorphism types of the Api . Thus if Api is an abelian group of order ps , we can
ask for its Jordan decomposition:

Z ps1 × Z ps2 × · · · × Z psm

where psi divides psi+1 and ps1 ps2 · · · psm = ps . But we can write this condition as:
si ≤ si+1 and s1 + s2 + · · · + sm = s. Thus each unordered set renders s as a sum of
natural numbers without regard to the order of the summands—called an unordered
partition of the integer s. The number of these is usually denoted p(s), and p(s) is
called the partition function. For example p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7,
etc. Here, we see that the number of abelian groups of order ps is just p(s), and that:

Corollary 10.7.1 The number of isomorphism classes of abelian groups of order
n = pt1

1 · · · ptr
r is

p(t1)p(t2) · · · p(tr ).

Again, we can compute the number of abelian groups of order 36 = 2232 as
p(2)p(2) = 22 = 4.

10.7.2 The Rational Canonical Form of a Linear
Transformation

Let F be any field and let V be an n-dimensional vector space over F so V = F ⊕
· · · ⊕ F (n copies) as an F-module. Suppose T : V → V is a linear transformation
on V , which we regard as a right operator on V . Now in homF (V, V ), the ring of
linear transformations of V into V , multiplication is composition of transformations.
Thus for any such transformation T , the transformations T , T 2 := T ◦ T and in fact
any polynomial in T are well-defined linear transformations of V .

As is customary, F[x] will denote the ordinary ring of polynomials in an indeter-
minate x . We wish to convert V into an F[x]-module by defining

v · p(x) := vp(T ) for any v ∈ V and p(x) ∈ F[x].

This module is finitely generated since an F-basis of V will certainly serve as a set
of generators of V as an F[x]-module.

It now follows fromourmain theorem (Theorem10.5.1) that there are polynomials
p1(x), p2(x), . . . , pm(x) with pi (x) dividing pi+1(x) in F[x] such that

VF[x] � F[x]/(p1(x)) ⊕ · · · ⊕ F[x]/(pm(x)),
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where as usual (pi (x)) denotes the principal ideal pi (x)F[x]. Note that none of the
pi (x) is zero since otherwise VF[x] would have a (free) direct summand F[x]F[x]
which is infinite dimensional over F . Also, as usual, those pi (x) which are units—
that is, of degree zero—contribute nothing to the direct decomposition of V . In fact
we may assume that the polynomials pi (x) are monic polynomials of degree at least
one. Since they are now uniquely determined polynomials, they have a special name:
the invariant factors of the transformation T .

Now since each pi (x) divides pm(x), we must have that V pm(x) = 0 and so

pm(x)F[x] = AnnF[x](V ).

For this reason, pm(x), being a polynomial of smallest degree such that pm(T ) : V →
0, is called the minimal polynomial of T and denoted mT (x). Such a polynomial is
determined up to associates, but bearing in mind that we are taking pm(x) to be
monic, the word “the” preceeding “minimal polynomial” is justified.

The product p1(x)p2(x) · · · pm(x) is called the characteristic polynomial of T
(denoted χT (x)) and we shall soon see that the product of the constant terms of
these polynomials is, up to sign, the determinant detT , familiar from linear algebra
courses.

How do we compute the polynomials pi (x)? To begin with, we must imagine
the transformation T : V → V given to us in such a way that it can be explicitly
determined, that is, by a matrix A describing the action of T on V with respect to a
basis B = (v1, . . . , vn). Specifically, as T is regarded as a right operator,2

[T ]B = A = (aij) so T (vi ) =
∑n

j=1
v j aij.

Then in forming the F[x]-module VF[x], we see that application of the transformation
T to V corresponds to rightmultiplication of every element of V by the indeterminate
x . Thus, for any fixed row index i :

vi x =
∑

v j aij

so

0 = v1ai1 + · · · + vi−1ai,i−1 + vi (aii − x) + vi+1ai,i+1 · · · vnain.

Now as in the proof of the Invariant Factor Theorem, we form the free module

Fr = x1F[x] ⊕ · · · ⊕ xn F[x]

2Note that the rows of A record the fate of each basis vector under T . Similarly, if T had been a left
operator rather than a right one, the columns of A would have been recording the fate of each basis
vector. The difference is needed only for the purpose of making matrix multiplication represent
composition of transformations. It has no real effect upon the invariant factors.
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and the epimorphism f : Fr → V defined by f (xi ) = vi . Then the elements

ri := x1ai1 + · · · + xi−1ai,i−1 + xi (aii − x) + xi+1ai,i+1 · · · xnain.

all lie in ker f .
Now for any subscript i , x times the element xi of Fr is

xi x = ri +
∑

x j aij, i = 1, . . . , n.

Thus for any polynomial p(x) ∈ F[x], we can write

xi p(x) =
∑

k
rkhik(x) +

∑
x j b j

for some polynomials hik(x) ∈ F[x] and coefficients b j ∈ F .
Now if

w = x1g1(x) + x2g2(x) + · · · + xngn(x)

were an arbitrary element of ker f , then it would have the formgiven in the following:

w =
∑n

i=1
xigi (x) (10.5)

=
(∑n

i=1
ri hi (x)

)
+

∑n

i=1
xi ci (10.6)

for appropriate hi (x) ∈ F[x] and ci ∈ F . Then since f (w) = 0 = f (ri ) and
f (xi ) = vi we see that

f (w) = 0 = f
(∑

ri hi (x)
)

+
∑n

i=1
vi ci (10.7)

= 0 +
∑

vi ci . (10.8)

So each ci = 0. This means

w ∈ r1F[x] + · · · + rn F[x].

Thus the elements r1, . . . , rn are a set of generators for ker f .
Thus we have:

Corollary 10.7.2 To find the invariant factors of the linear transformation repre-
sented by the square matrix A = (aij), it suffices to diagonalize the following matrix
of F[x](n×n),
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A − I x =

⎛
⎜⎜⎜⎜⎝

a11 − x a12 a13 . . . a1n

a21 a22 − x a23 . . . a2n

a31 a32 a33 − x . . . a3n

.. .. .. .. ..

an1 . . . . . . . . . ann − x

⎞
⎟⎟⎟⎟⎠

by the elementary row and column operations to obtain the matrix

diag(p1(x), p2(x), . . . , pn(x))

with each pi (x) monic, and with pi (x) dividing pi+1(x). Then the pi (x) which are
not units are the invariant factors of A.

Now, re-listing the non-unit invariant factors of T as p1(x), . . . , pr (x), r ≤ n,
the invariant factor theorem says that T acts on V exactly as right multiplication by
x acts on

V ′ := F[x]/(p1(x)) ⊕ · · · ⊕ F[x]/(pr (x)).

The space V ′ has a very nice basis. Each pi (x) is a monic polynomial of degree
di > 0, say

pi (x) = b0i + b1i x + b2i x2 + · · · + bdi −1,i xdi −1 + xdi .

Then the summand F[x]/(p1(x)) of V ′ is non-trivial, and has the F-basis

1 + (pi (x)), x + ((pi (x)), x2 + (pi (x)), . . . , xdi −1 + (pi (x)),

and right multiplication by x effects the action:

x j + (pi (x)) → x j+1 + (pi (x)), 1 ≤ j < di − 1 (10.9)

xdi −1 + (pi (x)) → −b0i (1 + (pi (x))) − b1i (x + (pi (x))) − · · · . (10.10)

Thus, with respect to this basis, right multiplication of F[x]/(pi (x)) by x is
represented by the matrix

C pi (x) :=

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 0 . . . 0
.. .. .. . . . ..

0 0 . . . 0 1
−b0i −b1i −b2i . . . −b(di −1)i

⎞
⎟⎟⎟⎟⎠ (10.11)

called the companion matrix of pi (x). If pi (x) is a unit in F[x]—that is, it is just
a nonzero scalar—then our convention is to regard the companion matrix as the
“empty” (0 × 0) matrix. That convention is incorporated in the following
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Corollary 10.7.3 If p1(x), . . . , pn(x) are the invariant factors of the square matrix
A, then A is conjugate to the matrix

P−1AP =

⎛
⎜⎜⎝

C p1(x) 0 . . . 0
0 C p2(x) 0 . . . 0
.. .. . . . ..

0 . . . 0 C pn(x)

⎞
⎟⎟⎠ .

This is called the rational canonical form of A.

Remark Note that each companion matrix C pi (x) is square with di := deg(pi (x))

rows. Using decomposition along the first column, one calculates that C pi (x) in
Eq. (10.11) has determinant (−1)di −1(−b0i ) = (−1)di b0i . Thus the determinant of
A is completely determined by the invariant factors. The determinant is just the
product

detA =
∏r

i=1
(−1)d

i b0i = (−1)n
∏r

i=1
b0i ,

which is the product of the constant terms of the invariant factors times the parity of
n = ∑

di , the dimension of the original vector space V .
It may be of interest to know that the calculation of the determinant of matrix A

by ordinary means (that is, iterated column expansions) uses on the order of n! steps.
Calculating the determinant by finding the invariant factors (diagonalizing A − xI)
uses on the order of n3 steps. The “abstract” way is ultimately faster.

10.7.3 The Jordan Form

This section involves a special form that is available when the ground field of the
vector space V contains all the roots of the minimal polynomial of transformation T .

Suppose now F is a field containing all roots of the minimal polynomial of a
linear transformation T : V → V . Then the minimal polynomial, as well as all of
the invariant factors, completely factors into prime powers (x − λi )

ai . Applying the
primary decomposition to the right F[x]-module V , we see that a “primary part”
V(x−λ) of V is a direct sum of modules, each isomorphic to F[x] modulo a principal
ideal I generated by a power of x − λ. This means that any matrix representing
the linear transformation T is equivalent to a matrix which is a diagonal matrix of
submatrices which are companion matrices of powers of linear factors. So one is
reduced to considering F[x]-modules of the form F[x]/I = F[x]/((x − λ)m), for
some root λ. Now F[x]/I has this F-basis:

1 + I, (x − λ) + I, (x − λ)2 I, . . . (x − λ)m−1 + I.
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Now right multiplying F[x]/I by x = λ + (x − λ) takes each basis element to
λ times itself plus its successor basis element—except for the last basis element,
which is merely multiplied by λ. That basis element, (x − λ)m−1 + I , and its scalar
multiples comprise a 1-space of all “eigenvectors” of F[x]/I—that is, vectors v such
that vT = λv. The resulting matrix, with respect to this basis has the form:

⎛
⎜⎜⎜⎜⎝

λ 1 0 . . . 0 0
0 λ 1 0 . . . 0
.. .. .. . . . .. ..

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎠ .

It is called a Jordan block and is denoted Jm(λ).
The matrix which results from assembling blocks according to the primary de-

composition, and rewriting the resulting companion matrices in the above form, is
called the Jordan form of the transformation T .

Example 50 Suppose the invariant factors of a matrix A were given as follows:

x, x(x − 1), x(x − 1)3(x − 2)2.

Here, F is any field in which the numbers 0, 1 and 2 are distinct. What is the Jordan
form?

First we separate the invariant factors into their elementary divisors:

prime x : {x , x , x}.
prime x − 2: {(x − 2)2}.
prime x − 1: {x − 1, (x − 1)3}.
Next we write out each Jordan block as above: the result being⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
2 1
2
1
1 1
1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(All unmarked entries in the above matrix are zero).
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10.7.4 Information Carried by the Invariant Factors

What are some things one would like to know about a linear transformation T : V →
V , and how can the invariant factors provide this information?

1. We have already seen that the last invariant factor pr (x) is theminimal polynomial
of T , that is—the smallest degree monic polynomial p(x) such that p(T ) is the
zero transformation V → 0V . (We recall that the ideal generated by p(x) is
Ann(VF[x]) when V is converted to an F[x]-module via T .)

2. Sometimes it is of interest to know the characteristic polynomial of T , which is
defined to be the product p1(x) · · · pr (x) of the invariant factors of T . One must
bear in mind that by definition the invariant factors of T are monic polynomials
of positive degree. The characteristic polynomial must have degree n, the F-
dimension of V . This is because the latter is the sum of the dimensions of the
F[x]/(pi (x)), that is, the sum of the numbers deg pi (x) = di .

3. Since V has finite dimension, T is onto if and only if it is one-to-one.3 The
dimension of ker T is called the nullity of T , and is given by the number of
invariant factors pi (x) which are divisible by x .

4. The rank of T is the F-dimension of T (V ). It is just n minus the nullity of T (see
the footnote just above).

5. V is said to be a cyclic F[x]-module if and only if there exists a module element
v such that the set vF[x] spans V—i.e. v generates V as an F[x]-module. This
is true if and only if the only non-unit invariant factor is pr (x) the minimal
polynomial (equivalently: the minimal polynomial is equal to the characteristic
polynomial).

6. Recall that an R-module is said to be irreducible if and only if there are no proper
submodules. (We met these in the Jordan-Hölder theorem for R-modules.) Here,
we say that T acts irreducibly on V if and only if the associated F[x]-module is
irreducible. This means there exists no proper sub-vector space W of V which
is T -invariant in the sense that T (W ) ⊆ W . One can then easily see that T acts
irreducibly on V if and only the characteristic polynomial is irreducible in F[x].4

7. An eigenvector of T associated with the root λ or λ-eigenvector is a vector v

of V such that vT = λv. A scalar is called an eigen-root of T if and only if
there exists a non-zero eigenvector associated with this scalar. Now one can see
that the eigenvectors associated with λ for right multiplication of VF[x] by x , are
precisely the module elements killed by the ideal (x −λ)F[x]. Clearly they form
a T -invariant subspace of V whose dimension is the number of invariant factors
of T which are divisible by (x − λ).

3This is a well-known consequence of the so-called “nullity-rank” theorem for transformations but
follows easily from the fundamental theorems of homomorphisms for R-modules applied when
R = F is a field. Specifically, there is an isomorphism between the poset of subspaces of T (V ) and
the poset of subspaces of V which contain ker T . Since dimension is the length of an unrefinable
chain in such a poset one obtains codimV (ker T ) = dim(T (V )).
4This condition forces the minimal polynomial to equal the characteristic polynomial (so that the
module is cyclic) and both are irreducible polynomials.
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8. A matrix is said to be nilpotent if and only some power of it is the zero matrix.
Similarly a linear transformation T : V → V is called a nilpotent transforma-
tion if and only if some power (number of iterations) of T annihilates V . Quite
obviously the following are equivalent:

• T is a nilpotent transformation.
• T can be represented by a nilpotent matrix with respect to some basis of V .
• The characteristic polynomial of T is a power of x .
• The minimal polynomial of T is a power of x .

10.8 Exercises

10.8.1 Miscellaneous Exercises

Bezout Domains

1. An integral domain is said to be a Bezout domain if and only if all of its finitely-
generated ideals are principal ideals. Give a proof that an integral domain is a
Bezout domain if and only if every ideal generated by two elements is a principal
ideal.

2. Of course the class of Bezout domains includes all principal ideal domains, so
it would be interesting to have an example of a Bezout domain which was not a
principal ideal domain. This and the subsequent four exercises are designed to
produce examples of Bezout domains which are not principal ideal domains. Our
candidate will be the integral domain D described in the next paragraph.
Let E be a PID and let F be the field of fractions of E . Let D be the set of
all polynomials of F[x] whose constant coefficient belongs to the domain E .
The first elementary result is to verify that D is a subdomain of F[x]. [The
warmup result is elementary. But the reader might in general like to prove it using
Exercise (1) in Sect. 7.5.2 on p. 223, as applied to the evaluation homomorphism
e0 : F[x] → F .]

3. Let g(x) and h(x) be two non-zero polynomials lying in D. The greatest common
divisors of these two polynomials are unique up to scalar multiplication.

(i) Show that if x divides both g(x) and h(x) then

g(x)D + h(x)D = Dd(x)

where d(x) is any greatest common divisor of g(x) and h(x).
(ii) Suppose at least one of the two polynomials is not divisible by x . Then

any greatest common divisor of g(x) and h(x) has a non-zero constant
coefficient. We let d(x) be the appropriate scalar multiple of a greatest
common divisor such that the constant term d(0) is a greatest common

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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divisor of g(0) and h(0) in the PID E . (The latter exists since not both of g(0)
and h(0) are zero). Thus d(x) ∈ D. Moreover, we have g(x) = d(x)p(x)

and h(x) = d(x)q(x). Then p(0) = (g(0)/d(0)) is an element of E by
our choice of d(0) so p(x) ∈ D. Similarly q(x) ∈ D. Moreover these
polynomials p(x) and q(x) are relatively prime in F[x]. Show that

Dg(x) + Dh(x) = Dd(x)

if and only if
Dp(x) + Dq(x) = Dd(0).

4. From now on we assume p(x) and q(x) elements of D which are relatively prime
polynomials in F[x]. As above, d will denote a greatest common divisor of p(0)
and q(0) in the PID E . We set I = Dp(x) + Dq(x). Show that there exists
a non-zero element e ∈ E such that ed ∈ I [Hint: Since p(x) and q(x) are
relatively prime in F[x], there exists polynomials A(x) and B(x) in F[x] such
that d = A(x)p(x) + B(x)q(x). Then, since F is the field of fractions of the
domain E , there exists a non-zero element e ∈ E such that eA(0) and eB(0) are
both elements of E . Then, observe that eA(x) and eB(x) are elements of D and
the result follows].

5. Show that d ∈ I [Hint: Since d is a greatest common divisor of elements p(0)
and q(0) in the domain E , there exist elements A and B of E such that d =
Ap(0) + Bq(0). Write p(x) = p(0) + p′(x) where p′(x) is a multiple of x .
Noting that p′(x)/ed lies in D and ed lies in I we see that

p′(x) = ed · (p′(x)/ed)

lies in I , and so p(0) is the difference of two elements of I . Similarly argue that
q(0) lies in I so that d = Ap(0) + Bq(0) is also in I ].

6. Show that I ⊆ Dd [Hint: We have p′(x)/d ∈ D (since its constant term is zero)
and p0/d ∈ E ⊆ D (since d is a divisor of p0 in E by its definition). It follows
that

p(x) = d · ((p(0)/d) + p′(x)/d) ∈ I.

Similarly argue that q(x) ∈ I . Thus I ⊆ Dd].
7. Assemble the preceding problems into steps that show that D is a Bezout domain.
8. Suppose the domain E is not equal to its field of fractions F . Then it contains a

prime element p. Show that the ideal J of D generated by the set

X := {x, x/p, x/p2, x/p3, . . .}

is not a principle ideal [Hint: Let Jk be the ideal of D generated by the first k
elements listed in the set X . Show that J1 ⊂ J2 ⊂ · · · is an infinite properly
ascending chain of ideals of D].
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9. Consider the following two integral domains:

(a) The domain D1 of all polynomials inQ[x]whose constant term is an integer.
(b) Let K be a field and let S be the set of non-zero polynomials in K [x], the

latter being regarded as a subring of K [x, y]. Let K [x, y]S be the localization
of K [x, y] relative to the multiplicative set S. Observe that K [x, y]S =
K (x)[y] where K (x) is the so-called “field of rational functions” in the
indeterminate x . Let D2 be the subdomain of those polynomials p(x, y) ∈
K [x, y]S for which p(x, 0) is a polynomial.

Show that both domains D1 and D2 are Bezout domains which are not principal
ideal domains.

10.8.2 Structure Theory of Modules over Z and Polynomial
Rings

1. Suppose A is an additive abelian group generated by three elements a, b, and c.
Find the order of A when A is presented by the following relations

2a + b + c = 0

a + b + c = 0

a + b + 2c = 0

2. Answer the same question when

2a + 2b + c = 0

2a + 3b + c = 0

2a + 4b + c = 0

3. Suppose A is presented by the following relations

2a + 2b + 2c = 0

3b + 2c = 0

2a + c = 0.

Write A as a direct product of cyclic groups.
4. Find the invariant factors of the linear transformation which is represented by the

following matrix over the field of rational numbers:

⎛
⎜⎜⎝
2 1 1 1
1 1 1 1
0 0 0 0
1 0 1 0

⎞
⎟⎟⎠
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5. Let V be a vector space over the rational field Q and suppose T : V → V is a
linear transformation. We are presented with three possibilities for the non-trivial
invariant factors of T :

(i) x, x4, x4(x + 1).
(ii) x + 1, x3 + 1.
(iii) 1 + x + x2 + x3 = (1 + x)(1 + x2),

(a) What is the dimension of V in each of the three cases (i)–(iii)?
(b) In which cases is the module V a cyclic module?
(c) In which cases is the module V irreducible?
(d) In case (ii) write the rational canonical form of the matrix representing T .
(e) Write out the full Jordan form of a matrix representing T is case (i).

6. Suppose t : V → V is a linear transformation of a vector space over the field
Z/(3) represented by the matrix:

⎛
⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

Find the order of t as an element of the group GL(4, 3).



Chapter 11
Theory of Fields

Abstract If F is a subfield of a field K , then K is said to be an extension of the
field F . For α ∈ K , F(α) denotes the subfield generated by F ∪ {α}, and the
extension F ⊆ F(α) is called a simple extension of F . The element α is algebraic
over F if dimF F(α) is finite. Field theory is largely a study of field extensions. A
central theme of this chapter is the exposition of Galois theory, which concerns a
correspondence between the poset of intermediate fields of a finite normal separable
extension F ⊆ K and the poset of subgroups of GalF (K ), the group of automorphis
ms of K which leave the subfield F fixed element-wise. A pinnacle of this theory is
the famous Galois criterion for the solvability of a polynomial equation by radicals.
Important side issues include the existence of normal and separable closures, the
fact that trace maps for separable extensions are non-zero (needed to show that rings
of integral elements are Noetherian in Chap. 9), the structure of finite fields, the
Chevalley-Warning theorem, as well as Luroth’s theorem and transcendence degree.
Attached are two appendices that may be of interest. One gives an account of fields
with valuations, while the other gives several proofs that finite division rings are
fields. There are abundant exercises.

11.1 Introduction

In this chapter we are about to enter one of the most fascinating and historically
interesting regions of abstract algebra. There are at least three reasons why this is so:

1. Fields underlie nearly every part of mathematics. Of course we could not have
vector spaces without fields (if only as the center of the coefficient division ring).
In addition to vector spaces, fields figure in the theory of sesquilinear and mul-
tilinear forms, algebraic varieties, projective spaces and the theory of buildings,
Lie algebras and Lie incidence geometry, representation theory, number theory,
algebraic coding theory as well as many other aspects of combinatorial theory
and finite geometry, just to name a few areas.

2. There are presently many open problems involving fields—some motivated by
some application of fields to another part of mathematics, and some entirely
intrinsic.
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3. Third, there is the strange drama that so many field-theoretic questions bear on
old historic questions, and indeed, its own history has a dramatic story of its
own. These questions for fields involve some of the oldest and longest-standing
problems inmathematics—they all involve the existence or non-existence of roots
of polynomial equations in one indeterminate.

11.2 Elementary Properties of Field Extensions

Recall that a field is an integral domain in which every non-zero element is a unit.
Examples are:

1. The field of rational numbers—in fact, the “field of fractions” of an arbitrary
integral domain D (that is, the localization DS where S = D − {0}). A special
case is the field of fractions of the polynomial domain F[x]. This field is called
the field of rational functions over F in the indeterminate x (even though they are
not functions at all).

2. The familiar fields R and C of real and complex numbers, respectively.
3. The field of integers modulo a prime—more generally, the field D/M where M

is a maximal ideal of an integral domain D.

Of course there are many further examples.
Let K be a field. A subfield is a subset F of K which contains a non-zero element,

and is closed under addition, multiplication, and the taking of multiplicative inverses
of the non-zero elements. It follows at once that F is a field with respect to these
operations inherited from K , and that F contains the multiplicative identity of K
as its own multiplicative identity. Obviously, the intersection of any collection of
subfields of K is a subfield, and so one may speak of the subfield generated by a
subset X of K as the intersection of all subfields of K containing set X . The subfield
of K generated by a subfield F and a subset X is denoted F(X).1

The subfield generated by themultiplicative identity element, 1, is called the prime
subfield of K . (By definition, it contains the multiplicative identity as well as zero.)
Since a field is a species of integral domain, it has a characteristic. If themultiplicative
identity element 1, as an element of the additive group (K ,+), has finite order, then its
order is a prime number p which we designate as the characteristic of F . Otherwise
1 has infinite order as an element of (K ,+) and we say that K has characteristic
zero. We write char(F) = p or 0 in the respective cases. In the former case, it is
clear that the prime subfield of F is just Z/pZ; in the latter case the prime subfield is
isomorphic to the field Q of rational numbers. One last observation is the following:

Any subfield F of K contains the prime subfield and possesses the same charac-
teristic as K .

1Of course this notation suffers the defect of leaving K out of the picture. Accordingly we shall
typically be using it when the ambient overfield K of F is clearly understood from the context.
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Since we shall often be dealing in this chapter with cases in which the subfield is
known but the over-field is not, it is handy to reverse the point of view of the previous
paragraph. We say that K is an extension of F if and only if F is a subfield of K . A
chain of fields F1 ≤ F2 ≤ · · · ≤ Fn , where each Fi+1 is a field extension of Fi , is
called a tower of fields.

If the field K is an extension of the field F , then K is a right module over F ,
that is, a vector space over F . As such, it possesses a dimension (which might be an
infinite cardinal) as an F-vector space. We call this dimension the degree (or index)
of the extension F ≤ K , and denote it by the symbol [K : F].

11.2.1 Algebraic and Transcendental Extensions

Let K be a field extension of the field F , and let p(x) be a polynomial in F[x]. We
say that an element α of K is a zero of p(x) (or a root of the equation p(x) = 0)
if and only it p(x) �= 0 and yet p(α) = 0.2 If α is a zero in K of a polynomial in
F[x], then α is said to be algebraic over F . Otherwise α is said to be transcendental
over F .

If K is an extension of F , and if α is an element of K , then the symbol F[α]
denotes the subring of K generated by F ∪{α}. This would be the set of all elements
of K which are F-linear combinations of powers of α. Note that as this subring
contains the field F , it is a vector space over F whose dimension is again denoted
[F[α] : F].

There is then a ring homomorphism

ψ : F[x] → F[α] ⊆ K

which takes the polynomial p(x) to the field element p(α) in K . Clearly ψ(F[x]) =
F[α].

Suppose now ker ψ = 0. Then F[x] � F[α] and α is transcendental since any
non-trivial polynomial of which it is a zero would be a polynomial of positive degree
in ker ψ.

2Two remarks are appropriate at this point. First note that the definition makes it “un-grammatic”
to speak of a zero of the zero polynomial. Had the non-zero-ness of p(x) not been inserted in the
definition of root, we should be saying that every element of the field is a zero of the zero polynomial.
That is such a bizarre difference from the situation with non-zero polynomials over infinite fields
that we should otherwise always be apologizing for that exceptional case in the statements of many
theorems. It thus seems better to utilize the definition to weed out this awkwardness in advance.

Second, there are natural objections to speaking of a “root” of a polynomial. Some have asked
whether it might not be better to follow the German example and write “zero” (Nullstelle) for “root”
(Wurzel), despite usage of the latter term in some English versions of Galois Theory. However we
shall follow tradition by speaking of a “root” of an equation, p(x) = 0, while we speak of a “zero”
of a polynomial, p(x).
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On the other hand, if ker ψ �= 0, then, as F[x] is a principal ideal domain, we
have ker ψ = F[x]p(x) = (p(x)), for some polynomial p(x). Then

F[α] = ψ(F[x]) � F[x]/ker ψ = F[x]/(p(x)).

Now, as F[α] is an integral domain, the principal ideal (p(x)) is a prime ideal,
and so p(x) is a prime element of F[x]. Therefore, since F[x] is a PID, we infer
immediately that the ideal (p(x)) = ker ψ is actually a maximal ideal of F[x], and
so the subring F[α] is a field, which is to say, F[α] = F(α).

The irreducible polynomial p(x)determined byα is unique up tomultiplication by
a non-zero scalar. The unique associate of p(x)which is monic is denoted IrrF (α). It
is the the uniquemonic polynomial of smallest possible degreewhich hasα for a zero.

Note that in this case, the F-dimensionof F[α] is the F-dimensionof F[x]/(p(x)),
which, by the previous chapter can be recognized to be the degree of the polyno-
mial p(x).

Now conversely, assume that [F[α] : F] is finite. Then there exists a non-trivial
finite F-linear combination of elements in the infinite list

{1,α,α2,α3, . . .}

which is zero. It follows that α is algebraic in this case.
Summarizing, we have the following:

Theorem 11.2.1 Let K be an extension of the field F and let α be an element of K .

1. If α is transcendental over F, then the subring F[α] which it generates is isomor-
phic to the integral domain F[x]. Moreover, the subfield F(α) which it generates
is isomorphic to the field of fractions F(x) of F[x].

2. If α is algebraic over F, then the subring F[α] is a subfield intermediate between
K and F. As an extension of F its degree is

[F(α) : F] = [F[α] : F] = deg IrrF (α).

3. Thus dimF F[α] is finite or infinite according as α is algebraic or transcendental
over F.

11.2.2 Indices Multiply: Ruler and Compass Problems

Lemma 11.2.2 If F ≤ K ≤ L is a tower of fields, then the indices “multiply” in
the sense that

[L : F] = [L : K ][K : F].
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Proof Let A be basis of L as a vector space over K , and let B be a basis of K as a
vector space over F . Let AB be the set of all products {ab|a ∈ A, b ∈ B}. We shall
show that AB is an F-basis of L .

If α ∈ L , then α is a finite K -linear combination of elements of A, say

α = a1α1 + · · · + amαm .

Now each coefficient αi , being an element of K , is a finite linear combination

α j = b j1β j1 + · · · + b jm j β jm j

of elements b ji of B (with the β j i in F). Substituting these expressions for α j in
the L-linear combination for α, we have expressed α as an F-linear combination of
elements of AB. Thus AB is an F-spanning set for L .

It remains to show that AB is an F-linearly independent set. So suppose for some
finite subset S of A × B, that ∑

(a,b)∈S
abβa,b = 0.

Then as each βa,b is in F , and each b is in K , the left side of the presented formula
may be regarded as a K -linear combination of a’s equal to zero, and so, by the
K -linear independence of A, each coefficient

∑
b
bβa,b

of each a is equal to zero. Hence each βa,b = 0, since B is F-linearly independent.
Thus AB is F-linearly independent and hence is an F-basis for L . Since this entails
that all the products in AB are pairwise distinct elements, we see that

|AB| = |A||B|,

which proves the lemma. �

Corollary 11.2.3 If F1 ≤ F2 ≤ · · · ≤ Fn is a finite tower of fields, then

[Fn : F1] = [Fn : Fn−1] · [Fn−1 : Fn−2] · · · [F2 : F1].

We can use this observation to sketch a proof of the impossibility of certain ruler
and compass constructions. Given a unit length 1, using only a ruler and compass we
can replicate it m times, or divide it into n equal parts, and so can form all lengths
which are rational numbers. We can also form right-angled triangles inscribed in a
circle and so with ruler and compass, we can extract the square root of the differences
of squares, and hence any square root because of the formula
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c =
(

c + 1

2

)2

−
(

c − 1

2

)2

.

If α is such a square root, where c is a rational length, then by ruler and compass
we can form all the lengths in the ring Q[α], which (since α is a zero of x2 − c) is
a field extension of Q of degree 1 or 2. Iterating these constructions a finite number
of times, the possible lengths that we could encounter all lie in the uppermost field
of a tower of fields

Q = F1 < F2 < · · · < Fn = K

with each Fi+1 an extension of degree two over Fi . By the Corollary above, the index
[K : Q] is a power of 2.

Now we come to the arm-waving part of the proof: One needs to know that once
a field L of constructible distances has been achieved, the only new number not
in K constructed entirely from old numbers already in K is in fact obtained by
producing a missing side of a right triangle, two of whose sides have lengths in K .
(A really severe proof of that fact would require a formalization of exactly what
“ruler and compass” constructions are—a logical problem beyond the field-theoretic
applications whose interests are being advanced here.) In this sketch, we assume that
that has been worked out.

This means, for example, that we cannot find by ruler and compass alone, a length
α which is a zero of an irreducible polynomial of degree n where n contains an odd
prime factor. For if so, Q[α] would be a subfield of a field K of degree 2m over Q.
On the other hand, the index n = [F[α] : F] must divide [K : Q] = 2m , by the
Theorem11.2.1. But the odd prime in n cannot divide 2m . That’s it! That’s the whole
amazingly simple argument!

Thus one cannot solve the problem posed by the oracle of Delos, to “duplicate”
(in volume) a cubic altar—i.e., find a length α such that α3 − 2 = 0—at least not
with ruler and compass.

Similarly, given angle α, trisect it with ruler and compass. If one could, then one
could construct the length cosβ where 3β = α. But cos(3β) = 4cos3β − 3 cosβ =
λ = cosα. This means we could always find a zero of 4x3 − 3x − λ and when
α = 60o, so λ = 1/2, setting y = 2x yields a constructed zero of y3−3y −1, which
is irreducible over Q. As observed above, this is impossible.

11.2.3 The Number of Zeros of a Polynomial

Lemma 11.2.4 Let K be an extension of the field F and suppose the element α of
K is a zero of the polynomial p(x) in F[x]. Then in the polynomial ring F[α][x],
x − α divides p(x).
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Proof Since p(α) = 0 we may write

p(x) = a0 + a1x + · · · + an xn

= p(x) − p(α)

= a1(x − α) + a2(x2 − α2) + · · · + an(xn − αn)

= (x − α)[a1 + a2(x + α) + a3(x2 + αx + α2) + · · ·
· · · + an(xn−1 + · · · αn−1)].

�
Theorem 11.2.5 Let K be an extension of the field F and let p(x) be a polynomial
in F[x]. Then p(x) possesses at most deg p(x) zeros in K .

Proof We may assume p(x) is a monic polynomial. If p(x) has no zeroes in K ,
we are done. So assume α is a zero of p(x). Then by Lemma11.2.4 we obtain a
factorization p(x) = (x − α)p1(x) in K [x], where deg p1(x) is one less than the
degree of p(x). Suppose β is any zero of p(x) in K which is distinct from α. Then

0 = p(β) = (β − α)p1(α).

Since the first factor on the right is not zero, and F is a domain, β is forced to be a
zero of the polynomial p1(x). By induction on the degree of p(x), we may conclude
that the number of distinct possibilities for β does not exceed the degree of p1(x).
Thus, as any zero of p(x) is either α or one of the zeroes β of p1(x), we see that the
total number of zeroes of p(x) cannot exceed 1 + deg p1(x), that is, the degree of
p(x). �

Of course, when we write p(x) = (x − α)p1(x), it may happen that α is also
a zero of p1(x), as well. In that case, we can again write p1(x) = (x − α)p2(x),
and ask whether α is a zero of p2(x). Pushing this procedure as far as we can, we
eventually obtain a factorization p(x) = (x − α)k pk(x) where pk(x) does not have
α for a zero. Repeating this for the finitely many zeroes αi of p(x), one obtains a
factorization

p(x) = (x − α1)
n1(x − α2)

n2 · · · (x − αm)nm r(x) (11.1)

in K[x] where r(x) possesses no “linear factors”—that is, factors of degree one.
The number ni is called themultiplicity of the zeroαi , and clearly fromEq. (11.1),∑
ni ≤ deg p(x). Thus the following slight improvement of Theorem11.2.5

emerges:

Corollary 11.2.6 If K is an extension of the field F and p(x) is a non-zero poly-
nomial in F[x], then the number of zeroes—counting multiplicities—is at most the
degree of p(x).3

3The student should notice that when we count zeroes with their multiplicities we are not doing
anything mysterious. We are simply forming a multiset of zeroes. The Corollary just says that the
degree of the polynomial bounds the weight of this multiset.
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There are a number of other elementary but important corollaries of Theorem
11.2.5.

Corollary 11.2.7 (Polynomial Identities) Suppose a(x), b(x), are polynomials in
F[x]. Suppose a(α) = b(α) for all α ∈ F. If F contains infinitely many elements,
then

a(x) = b(x)

is a polynomial identity—that is, both sides are the same element of F[x].
Proof We need only show that the polynomial J (x) := a(x) − b(x) has degree
zero. If it has positive degree, then by Theorem11.2.5 it possesses only finitely many
zeros. But then by hypothesis, the infinitely many elements of F would all be zeros
of J (x), a contradiction. �

Corollary 11.2.8 (Invertibility of the Vandermonde matrix) Let n be a positive inte-
ger. Suppose z1, z2, . . . , zn are pairwise distinct elements of a field F. Then the n ×n
matrix

M =

⎡
⎢⎢⎢⎢⎣
1 z1 z21 · · · zn−1

1

1 z2 z22 · · · zn−1
2

...
...

... · · · ...

1 zn z2n · · · zn−1
n

⎤
⎥⎥⎥⎥⎦

is invertible.

Proof Thematrix M is invertible if and only if its columnsC1, . . . , Cn are F-linearly
independent. So, if M were not invertible, therewould exist coefficients a0, . . . , an−1
in F such that

n−1∑
i=0

ai Ci+1 = [0], the n × 1 zero column vector. (11.2)

But each entry on the left side of Eq. (11.2) is p(zi ) where p(x) is the polynomial
a0 + a1x + · · · , an−1xn−1 ∈ F[x]. This conflicts with Theorem11.2.5, since the
polynomial p(x) has degree at most n−1, but yet possesses n distinct zeroes—the zi .

Thus the columns of M are F-linearly independent and so M is invertible. �

Remark Notice that the proof of Corollary11.2.8 was determinant-free. Matrices of
the form displayed in Corollary11.2.8 are called Vandermonde matrices.

For the next result, we require the following definition: a group G is said to be
locally cyclic if and only if every finitely-generated subgroup of G is cyclic. Clearly
such a group is abelian. Recall from Exercise (2) in Sect. 5.6.1 that a group is a
torsion group if and only each of its elements has finite order. In any abelian group
A, the set of elements of finite order are closed under multiplication and the taking
of inverses, and so form a subgroup which we call the torsion subgroup of A.

http://dx.doi.org/10.1007/978-3-319-19734-0_5
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Corollary 11.2.9 Let F be any field and let F∗ be its multiplicative group of non-
zero elements. Then the torsion subgroup of F∗ is locally cyclic.

Proof Any finitely-generated subgroup of the torsion subgroup of F∗ is a finite
abelian group A. If A were not cyclic, it would contain a subgroup isomorphic to
Z p × Z p, for some prime p. In that case, the polynomial x p − 1 would have at least
p2 zeros in F , contrary to Theorem11.2.5. �

11.3 Splitting Fields and Their Automorphisms

11.3.1 Extending Isomorphisms Between Fields

Suppose E is a field extension of F and that α is an element of E which is algebraic
over F . Then the development in the previous section (p. 395) showed that there is
a unique irreducible monic polynomial,

g(x) = IrrF (α) ∈ F[x],

having α as a zero. The subfield F(α) of E generated by F ∪ {α}, is the subring
F[α], which we have seen is isomorphic to the factor ring F[x]/(g(x)).

We remind the reader of a second principle. Suppose f : F1 → F2 is an isomor-
phism of fields. Then f can be extended to a ring isomorphism

f ∗ : F1[x] → F2[x],

which takes the polynomial

p := a0 + a1x + · · · + an xn

to
f ∗(p) := f (a0) + f (a1)x + · · · + f (an)xn .

It is obvious that f ∗ takes irreducible polynomials of F1[x] to irreducible poly-
nomials of F2[x].

With these two principles in mind we record the following:

Lemma 11.3.1 (Fundamental Lemma on Extending Isomorphisms) Let E be a field
extension of F, and suppose f : F → Ē is an embedding of F as a subfield F̄ of the
field Ē. Let f1 be the induced isomorphism f1 : F → F̄ obtained by resetting the
codomain of f . Next let f ∗

1 be the extension of this field isomorphism f1 to a ring
isomorphism F[x] → F̄[x], as described above.

Finally, let α be an element of E which is algebraic over F, and let g be its monic
irreducible polynomial in F[x].
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Then the following assertions hold:

(i) The embedding (injective morphism) f : F → Ē can be extended to an embed-
ding

f̂ : F(α) → Ē,

if and only if the polynomial f ∗
1 (g) := ḡ has a zero in Ē.

(ii) Moreover, for each zero ᾱ of ḡ in Ē , there is a unique embedding f̂ :
F(α) → Ē , taking α to ᾱ and extending f .

(iii) The number of extensions f̂ : F(α) → Ē of the embedding f is equal to the
number of distinct zeros of ḡ to be found in Ē.

Proof (i) If there is an embedding f̂ : F(α) → Ē extending the embedding f , then
f̂ (α) is a zero of ḡ in Ē .
Conversely, if ᾱ in E , then F̄(ᾱ) is a subfield of E isomorphic to F̄[x]/(ḡ(x)).

Similarly, F(α) is isomorphic to F[x]/(g(x)). But the ring isomorphism f ∗
1 :

F[x] → F̄[x] takes the maximal ideal (g(x)) of F[x] to the maximal ideal (ḡ(x))

of F̄[x], and so induces an isomorphism of the corresponding factor rings:

f ′ : F[x]/(g(x)) → F̄[x]/(ḡ(x)).

Linking up these three isomorphisms

F(α) → F[x]/(g(x))
f ′

→ F̄[x]/(ḡ(x)) → F̄(ᾱ) ⊆ Ē,

yields the desired embedding.
(ii) If therewere two embeddings h1, h2 : F(α) → Ē , takingα to ᾱ and extending

f , then the composition of the inverse of one with the other would fix ᾱ, would fix
F̄ element-wise, and so would be the identity mapping on F̄(ᾱ). Thus, for any
β ∈ F(α),

h1(β) = (h2 ◦ h−1
1 )(h1(β) = h2(β).

Thus h1 and h2 would be identical mappings.
(iii) This part follows from parts (i) and (ii). �

11.3.2 Splitting Fields

Suppose E is an extension field of F . Then, of course, any polynomial in F[x] can be
regarded as a polynomial in E[x], and any factorization of it in F[x] is a factorization
in E[x]. Put another way, F[x] is a subdomain of E[x].

A non-zero polynomial p(x) in F[x] of positive degree is said to split over E if
and only if p(x) factors completely into linear factors (that is, factors of degree 1)
in E[x]. Such a factorization has the form
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p(x) = a(x − a1)
n1(x − a2)

n2 · · · (x − ar )
nr (11.3)

where a is a nonzero element of F , the exponents ni are positive integers and the
collection {a1, . . . , ar } of zeros of p(x) in E is contained in E .

Obviously, if E ′ is a field containing E and the polynomial p(x) splits over E ,
then it splits over E ′. Also, if E0 were a subfield of E containing F together with all
of the zeros {a1, . . . , ar }, then p(x) would split over over E0, since the factorization
in Eq. (11.3) can take place in E0[x]. In particular, this is true if E0 = F(a1, . . . , ar ),
the subfield of E generated by F and the zeros ai , i = 1, . . . , r .

An extension field E of F is called a splitting field of the polynomial p(x) ∈ F[x]
over F if and only if

(S1) F ⊆ E .
(S2) f (x) factors completely into linear factors in E[x] as

f (x) = a(x − a1)(x − a2) · · · (x − an).

(S3) E = F(a1, . . . , an), that is, E is generated by F and the zeros ai .

The following observations follow directly from the definition just given and the
proofs are left as an exercise.

Lemma 11.3.2 The following hold:

(i) If E is a splitting field for p(x) ∈ F[x] over F, and L is a subfield of E
containing F, then E is a splitting field for p(x) over L.

(ii) Suppose p(x) and q(x) are polynomials in F[x]. Suppose E is a splitting field
for p(x) over F and K is a splitting field for q(x) over E. Then K is a splitting
field for p(x)q(x) over F.

Our immediate goals are to show that splitting fields for a fixed polynomial exist,
to show that they are unique up to isomorphism, and to show that between any two
such splitting fields, the number of isomorphisms is bounded by a function of the
number of distinct zeros of f (x).

Theorem 11.3.3 (Existence of Splitting Fields) If f (x) ∈ F[x], then a splitting
field for f (x) over F exists. Its degree over F is at most the factorial number d!,
where d is the sum of the degrees of the non-linear irreducible polynomial factors of
f (x) in F[x].
Proof Let f (x) = f1(x) f2(x) · · · fm(x) be a factorization of f (x) into irreducible
factors in F[x]. (This is possible by Theorem7.3.2, Part 3.) Set n = deg f (x), and
proceed by induction on k = n − m. If k = 0, then n = m, so each factor fi (x)

is linear and clearly E = F satisfies all the conclusions of the theorem. So assume
k > 0. Then some factor, say f1(x), has degree greater than 1. Form the field

L = F[x]/( f1(x)),

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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(this is a field since f1(x) is irreducible and it is an extension of F since it is a
vector-space over F). Observe that the coset a := x + F[x] f1(x) is a zero of f1(x)

(and hence f (x)) in the field L . Thus in L[x], we have the factorizations:

f1(x) = (x − a)h1(x),

and
f (x) = (x − a)h1(x) f2(x) · · · fm(x),

with � > m irreducible factors. Thus n − � < n − m and so by induction, there is a
splitting field E of f (x) over L . Moreover, this degree is at most (d − 1)! since the
sum of the degrees of the non-linear irreducible factors of f (x) over L[x] has been
reduced by at least one because of the appearance of the new linear factor x − a.

Now we claim that E is a splitting field of f (x) over F . We must verify the
three defining properties of a splitting field given at the beginning of this subsec-
tion (p. 365).

Property (S1) holds since L ⊆ E implies F ⊆ E . We already have (S2) from the
definition of E . It remains to see that E is generated by the zeros of f . Since (x − a)

is one of the factors of f (x) in the factorization

f (x) = (x − a1)(x − a2) · · · (x − an)

in E[x], we may assume without loss of generality that a = a1. We have E =
L(a2, . . . , an) from the definition of E . But L = F(a1), so

E = L(a2, . . . , am) = F(a1)(a2, . . . , an) = F(a1, . . . , an),

and so (S3) holds. Thus E is indeed a splitting field for f (x) over F .
Finally, since [L : F] = deg f1(x) ≤ d, and [E : L] ≤ (d − 1)! we obtain

[E : F] = [E : L][L : F] ≤ (d − 1)! · d = d! as required. �

Theorem 11.3.4 Let η : F → F̄ be an isomorphism of fields, which we extend to a
ring isomorphism η∗ : F[x] → F̄[x], and let us write f̄ (x) for η∗( f (x)) for each
f (x) ∈ F[x]. Suppose E and Ē are splitting fields of f (x) over F, and f̄ (x) over
F̄, respectively. Then η can be extended to an isomorphism η̂ of E onto Ē, and the
number of ways of doing this is at most the index [E : F]. If the irreducible factors of
f (x) have no multiple zeros in E, then there are exactly [E : F] such isomorphisms.

Proof We use induction on [E : F]. If [E : F] = 1, f (x) factors into linear factors,
and there is precisely one isomorphism extending η, namely η itself.

Assume [E : F] > 1. Then f (x) contains an irreducible factor g(x) of degree
greater than 1. Since η∗ is an isomorphism of polynomial rings, ḡ(x) is an irreducible
factor of f̄ (x) with the same degree as g(x). Let α ∈ E be a zero of g(x), and
set K = F(α). Since the irreducible polynomial ḡ(x) splits completely in Ē , we
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may apply the Fundamental Lemma on Extensions (Lemma11.3.1), to infer that the
isomorphism η has k extensions ζ1, . . . , ζk : F(α) → Ē , where k is the number of
distinct zeros of ḡ(x) in Ē .

Note that if m = deg g(x), then [K : F] = m and k ≤ m. If the zeros of ḡ(x) are
distinct, k = m.

Now clearly E is a splitting field of f (x) over K , and Ē is a splitting field of
f̄ (x) over each ζi (K ). Since [E : K ] < [E : F], induction implies that each ζi can
be extended to an isomorphism E → Ē in at most [E : K ] ways, and in exactly
[E : K ] ways if the irreducible factors of f (x) ∈ K [x] have distinct zeros in E .
However if the irreducible factors of f (x) ∈ F[x] have distinct zeros in E , the same
is obviously true for the irreducible factors of g(x) ∈ K [x]. This yields at most
k[E : K ] = [K : F][E : K ] = [E : F] isomorphisms in general, and exactly
[E : F] isomorphisms if the irreducible factors of f (x) have distinct zeros in E .

This proves the theorem. �

Corollary 11.3.5 If E1 and E2 are two splitting fields for f (x) ∈ F[x] over F,
there exists an F-linear field isomorphism:

σ : E1 → E2.

Proof This follows immediately from Theorem11.3.4 for the case σ = 1F , the
identity mapping on F = F1 = F2. �

Example 51 Suppose F = Q, the rational field, and p(x) = x4 − 5, irre-
ducible by Eisenstein’s criterion. One easily has that the complex zeros of p(x)

are ± 4
√
5,±i 4

√
5 ∈ C, where, of course, i is the imaginary complex unit (i2 = −1),

and 4
√
5 is the real fourth root of 5. This easily implies that the splitting field E ⊆ C

can be described by setting E = Q(i, 4
√
5). Since p(x) ∈ Q[x] is irreducible by

Eisenstein, we conclude that [Q(
4
√
5) : Q] = 4. Since E is the complex splitting

field over Q(
4
√
5) of the polynomial x2 + 1 ∈ Q(

4
√
5)[x], and since Q(

4
√
5) � E , we

infer that [E : Q(
4
√
5)] = 2, giving the splitting field extension degree:

[E : Q] = [E : Q(
4
√
5)] · [Q(

4
√
5) : Q] = 2 · 4 = 8.

This shows that the bound [E : F] ≤ d! need not be obtained. Note, finally, by
Theorem11.3.4, that there are exactly 8 = [E : Q] distinct Q-automorphisms of E .

We close this subsection with a useful observation:

Lemma 11.3.6 Suppose K is an extension of a field F, and that K contains a
subfield E which is a splitting field for a polynomial p(x) ∈ F[x] over F. Then any
automorphism of K fixing F point-wise must stabilize E.

Remark The Lemma just says that the splitting field E is “characteristic” among
fields in K which contain F—that is, E is invariant under all F-linear automorphisms
of K .
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Proof It suffices to note that if σ is an F-linear automorphism of K , then for any
zero α of p(x) in K , σ(α) is also a zero of p(x) in K . Since E is generated by F
and the zeroes of f (x) in K , we have E = Eσ , for all F-automorphisms σ of K . �

11.3.3 Normal Extensions

So far the notion of splitting field is geared to a particular polynomial. The purpose
of this section is to show that the polynomial-splitting property can be seen as a
property of a field extension itself, independent of any particular polynomial.

Before proceeding further, let us streamline our language concerning field auto-
morphisms.

Definition Let K and L be fields containing a common subfield F . An isomorphism
K → L of K onto L is called an F-isomorphism if and only if it fixes the subfield
F element-wise. (Heretofore, we have been calling these F-linear isomorphisms.)
Of course, if K = L , an F-isomorphism, K → L , is called an F-automorphism.
Finally, an F-isomorphism of K onto a subfield of L is called an F-embedding.

We say that a finite extension E of F is normal over F if and only if E is the
splitting field over F of some polynomial of F[x]. Just as a reminder, recall that this
means that there is a polynomial p(x) which splits completely into linear factors in
E[x] and that E is generated by F and all the zeros of p(x) that lie in E .

Note that if E is a normal extension and K is an intermediate field,—that is,
F ≤ K ≤ E—then E is a normal extension of K .

We have a criterion for normality.

Theorem 11.3.7 (A characterization of normal field extensions4) The following are
equivalent for the finite extension F ⊆ E:

(i) E is normal over F;
(ii) every irreducible polynomial g(x) ∈ F[x] having a zero in E must split com-

pletely into linear factors in E[x].
Proof Suppose E is normal over F , so that E is the splitting field of a polynomial
f (x) ∈ F[x]. Let g(x) be an irreducible polynomial in F[x] with a zero a in E . Let
K ⊇ E be a splitting field over E for g(x) and let b be an arbitrary zero of g(x) in K .
Since g(x) is irreducible in F[x], there is an isomorphism σ : F(a) → F(b)which is
the identity mapping when restricted to F . Furthermore, E is clearly a splitting field
for f (x) over F(a); likewise E(b) is a splitting field for f (x) over F(b). Therefore,
we may apply Theorem11.3.4, to obtain an isomorphism τ : E → E(b) extending
σ : F(a) → F(b). In particular, this implies that [E : F(a)] = [E(b) : F(b)].

4In many books, the characterizing property (ii) given in this theorem is taken to be the definition
of “normal extension”. This does not alter the fact that the equivalence of the two distinct notions
must be proved.
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Since [F(a) : F] = [F(b) : F], it follows that [E : F] = [E(b) : F], and so b ∈ E ,
forcing E to be a normal extension of F .

Next, suppose that the extension F ⊆ E satisfies condition (ii). Since E is a finite
extension of F , it has an F-basis, say {u1, . . . , un}. Set gi (x) = IrrF (ui ), and let
p(x) be the product of g1(x), g2(x), . . . , gn(x). Then by hypothesis, every zero of
p(x) is in E and p(x) splits into linear factors in E[x]. Since the {ui } are among these
zeros and generate E over F , we see a fortiori that the zeros of p(x) will generate
E over F . That is, E is a splitting field for p(x) over F . �

Corollary 11.3.8 If E is a (finite) normal extension of F and K is any intermediate
field, then any F-embedding

σ : K → E .

can be extended to an automorphism of E fixing F element-wise.

Proof E is a splitting field over F for a polynomial f (x) ∈ F[x]. Thus E is a
splitting field for f (x) over K as well as over σ(K ). The result then follows from
Theorem11.3.4. �

Suppose K/F is a finite extension. Then K = F(a1, . . . , an) for some finite set of
elements {ai } of K (for example, an F-basis of K ). As in the proof of Theorem11.3.7
we let p(x) be the product of the polynomials gi (x) := IrrF (ai ), i = 1, 2, . . . , n.
Now any normal extension E ⊇ F capturing K as an intermediate field must contain
every zero of gi (x) and hence every zero of p(x). Thus, between E and K there exists
a splitting field L of p(x) over F . The splitting field L is the “smallest” normal
extension of F containing K in the sense that any other finite normal extension
E ′ ⊇ F which contains K also contains an isomorphic copy of L—that is, there is
an embedding L → E ′ whose image contains K . Since this global description of
the field L is independent of the polynomial p(x), we have the following:

Corollary 11.3.9 (Normal Closure) If K is a finite extension of F, then there is a
normal extension L of F, unique up to F-isomorphism, containing K and having
the property that for every normal extension E ⊇ F containing K , there is an
F-isomorphism of L onto a subfield of E which is normal over F and contains K .

The extension L of F so defined is called the normal closure of K over F . The
reader should bear in mind that this notion depends critically on F . For example it
may happen that K is not normal over F , but is normal over some intermediate field
N . Then the normal closure of K over N is just K itself while the normal closure of
K over F could be larger than K .

Another consequence of Corollary11.3.8 is this:

Corollary 11.3.10 (Normality of invariant subfields) Let K be a normal extension
of the field F of finite degree, and let G be the full group of F-automorphisms of
K . If L is a subfield of K containing F, then L is normal over F if and only if it is
G-invariant.
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Proof If L is normal over F , then L is the splitting field for some polynomial
f (x) ∈ F[x]. But the zeroes of f (x) in K are permuted among themselves by
G, and so the subfield over F that they generate, namely L , is G-invariant.

On the other hand, assume L is G-invariant. Suppose p(x) is an irreducible poly-
nomial in F[x] with at least one zero, α in L . Suppose β were another zero of p(x)

in K . Then there is an F-isomorphism F[α] → F[β] of subfields of K , which, by
Corollary11.3.8, can be extended to an element of G. Since L is G invariant, β ∈ L .
Thus p(x) has all its zeros in L and so splits completely over L . By Theorem11.3.7,
L is normal over F . �

11.4 Some Applications to Finite Fields

Suppose now that F is a finite field—that is, one which contains finitely many
elements. Then, of course, its prime subfield P is the fieldZ/pZ, where p is a prime.
Furthermore, F is a finite-dimensional vector space over P—say, of dimension n.
This forces |F | = pn = q, a prime power.

It now follows from Corollary11.2.9 that the finite multiplicative group F∗ of
non-zero elements of F is a cyclic group of order q − 1. This means that F contains
all the q − 1 zeroes of the polynomial xq−1 − 1 in P[x]. Since 0 is also a root of the
equation xq − x = 0, the following is immediate:

Lemma 11.4.1 F is a splitting field of the polynomial xq − x ∈ P[x].
It follows immediately, that F is uniquely determined up to P-isomorphism by

the prime-power q alone.

Corollary 11.4.2 For any given prime-power q, there is, up to isomorphism, exactly
one field with q elements.

One denotes any member of this isomorphism class by the symbol GF(q).

11.4.1 Automorphisms of Finite Fields

Suppose F is a finite field with exactly q elements, that is, F � GF(q). We have seen
that char (F) = p, a prime number, where, for some positive integer n, q = pn .
We know from Lemma7.4.6 of Sect. 7.4.2, p. 221 that the “pth power mapping”
σ : F → F is a ring endomorphism. Its kernel is trivial since F contains no non-
zero nilpotent elements. Thus σ is injective, and so, by the pigeon-hole principle,
is bijective—that is, it is an automorphism of F . Finally, since the multiplicative

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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subgroup P∗ of the prime subfield P ∼= Z/pZ has order p−1, it follows immediately
that a p−1 = 1 for all 0 �= a ∈ P . This implies that a p = a for all a ∈ P , and hence
the above p-power automorphism of F is a P-automorphism.5

Now suppose pth power mapping, σ, had order k. Then, αpk = α for all elements
α of F . But as there are at most pk roots of x pk − x = 0, we see that k ≥ n. On the
other hand, we have already seen above that σn is the identity on F , forcing k ≤ n.
Thus k = n and σ generates a cyclic subgroup of Aut(F) of order n.

We proceed now to show that, in fact, 〈σ〉 = Aut(F). Let τ be an arbitrary
automorphism of F , and fix a generator θ of the multiplicative group F∗. Then there
exists an integer t , 0 < t < q−1, such that τ (θ) = θt . Then, as τ is an automorphism,
τ (θi ) = (θi )t . Since also 0t = 0 = τ (0), it follows that the automorphism τ is a
powermappingα → αt on F . Next, since τ must fix 1 and preserve addition, one has

αt + 1 = (α + 1)t = αt + tαt−1 +
(

t
2

)
tk−2 + · · · + 1t .

Thus, if t > 1, all of the q − 1 elements α in C are roots of the equation

∑t−1

k=1

(
t
k

)
xk = 0. (11.4)

If the polynomial on the left were not identically zero, its degree t − 1 would be at
least as large as the number of its distinct zeros which is at least q −1. That is outside
the range of t . Thus each of the binomial coefficients in the equation is zero. Thus
either p divides t or t = 1.

Now if t = pk · s, where s is not divisible by p, we could apply the argument of
the previous paragraph to ρ := τ pk

, to conclude that s = 1. Thus t is a prime power
and so τ is a power σ.

We have shown the following:

Corollary 11.4.3 If F is the finite field GF(q), q = pn, then the full automorphism
group of F is cyclic of order n and is generated by the pth power mapping.

Remark The argument above, that Aut(F) = 〈σ〉, could be achieved in one stroke
by the “Dedekind Independence Lemma;” see Sect. 11.6.2. However, the above argu-
ment uses only the most elementary properties introduced so far.

We see at this point that [F : P] = |Aut(F)|. In the language of a later section, we
would say that F is a “Galois extension” of P . It will have very strong consequences
for us. For one thing, itwill eventuallymean that no irreducible polynomial of positive
degree in GF(q)[x] can have repeated zeros in some extension field.

5Actually, it’s pretty easy to see directly that if E is any field and P is its prime subfield, then any
automorphism of E is a P-automorphism.
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11.4.2 Polynomial Equations Over Finite Fields:
The Chevalley-Warning Theorem

The main result of this subsection is a side-issue in so far as it doesnt really play a
role in the development of the Galois theory. However, it represents a property of
finite fields which is too important not to mention before leaving a section devoted
to these fields. The student wishing to race on to the theory of Galois extensions and
solvability of equations by radicals may safely skip this section, hopefully for a later
revisitation.

For this subsection, fix a finite field K = GF(q) of characteristic p and cardinality
q = p�. Now for any natural number k, let

S(k, q) :=
∑

a∈K
ak .

the sum of the kth powers of the elements of the finite field K of q elements. Clearly,
if k = 0, the sum is S(0, q) = q = 0, since the field has characteristic p dividing q.
If k is a multiple of q −1 distinct from 0, then as K ∗ is a cyclic group of order q −1,

S(k, q) =
∑

K−{0}1 = q − 1 = −1.

Now suppose k is not a multiple of q − 1. Then there exists an element b in K ∗
with bk �= 1. Since multiplying on the left by b simply permutes the elements of K ,
we see that

S(k, q) =
∑

a∈K
ak =

∑
a∈K

(ba)k = bk S(k, q).

So (bk − 1)S(k, q) = 0. Since the first factor is not zero, we have S(k, q) = 0 in
this case.

We summarize this in the following

Lemma 11.4.4

S(k, q) =
⎧⎨
⎩
0 if k = 0
−1 if q − 1 divides k
0 otherwise

Now fix a positive integer n. Let V = K (n), the vector space of n-tuples with
entries in K . For any vector v = (a1, . . . , an) ∈ V and polynomial

p = p(x1, . . . xn) ∈ K [x1, . . . , xn],

the ring of polynomials in the indeterminates x1, . . . xn , we let the symbol p(v)

denote the result of substituting ai for xi in the polynomial, that is,

p(v) := p(a1, . . . , an).
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If p(v) = 0 for a vector v ∈ V , we say that v is a zero of the polynomial p.
Now suppose p = xk1

1 xk2
2 · · · xkn

n is a monomial of degree
∑

ki < n(q −1). Then

∑
v∈V

p(v) =
∏n

i=1
S(ki , q) = 0,

since at least one of the exponents ki is less than q − 1 and so by Lemma11.4.4
introduces a factor of zero in the product. Since every polynomial p in K [x1, . . . , xn]
is a sum of such monomials of degree less than n(q − 1), we have

Lemma 11.4.5 If p ∈ K [x1, . . . , xn] has degree less than n(q − 1), then

S(p) :=
∑

v∈V
p(v) = 0.

Now we can prove the following:

Theorem 11.4.6 (Chevalley-Warning) Let K be a finite field of characteristic p with
exactly q elements. Suppose p1, . . . , pm is a family of polynomials of K [x1, . . . , xn],
the sum of whose degrees is less than n, the number of variables. Let X be the
collection

{v ∈ K (n)|pi (v) = 0, i = 1, . . . , m}

of common zeroes of these polynomials. Then

|X | ≡ 0 mod p.

Proof Let R := ∏m
i=1(1 − pq−1

i ). Then R is a polynomial whose degree (q − 1)∑
deg pi is less than n(q − 1). Now if v ∈ X , then v is a common zero of the

polynomials pi , so R(v) = 1. But if v /∈ X , then for some i , pi (v) �= 0, so
pi (v)q−1 = 1, introducing a zero factor in the definition of R(v). Thus we see that
the polynomial R induces the characteristic function of X—that is, it has value 1 on
elements of X and value 0 outside of X . It follows that

S(R) :=
∑

v∈V
R(v) ≡ |X | mod p. (11.5)

But since deg R < n(q − 1), Lemma11.4.5 forces S(R) = 0, which converts
(11.5) into the conclusion. �

Corollary 11.4.7 Suppose p1, . . . pm is a collection of polynomials over K =
GF(q) in the indeterminates x1, . . . , xn, each with a zero constant term. Then there
exists a common non-trivial zero for these polynomials. (Non-trivial means one that
is not the zero vector of V .)

In particular, if p is a homogeneous polynomial over K in more indeterminates
than its degree, then it must have a non-trivial zero.
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11.5 Separable Elements and Field Extensions

11.5.1 Separability

Apolynomial p(x) ∈ F[x] is said to be separable if and only if its irreducible factors
in F[x] each have no repeated zeros in any splitting field.

Our discussion on separability of polynomials will be greatly facilitated by the
following concept. Let F be a field and define the formal derivative

∂ : F[x] → F[x], f (x) �→ f ′(x)

by setting

f ′(x) =
n∑

k=0

kak xk−1, whenever f (x) =
n∑

k=0

ak xk .

The formal derivative satisfies the familiar “product rule:” ∂( f (x)g(x)) =
(∂ f (x))g(x) + f (x)∂g(x), and hence, its generalization, the “Leibniz rule”:

∂( f1(x) f2(x) · · · fr (x)) =
r∑

i=1

f1(x) · · · fi−1(x)(∂ fi (x)) fi+1(x) · · · fr (x).

Furthermore, the formal derivative is “independent of its domain” inasmuch as if
F ⊆ E is an extension of fields, then the following diagram commutes:

E[x] ∂−−−−→ E[x]�⏐⏐ �⏐⏐
F[x] ∂−−−−→ F[x]

where the vertical arrows are obvious inclusions.
The following simple result will be useful in the sequel.

Lemma 11.5.1 Let f (x), g(x) ∈ F[x], and let F ⊆ E be a field extension. Then
f (x) and g(x) are relatively prime in F[x] if and only if they are relatively prime in
E[x].
Proof If f (x), g(x) are relatively prime in F[x], then there exist polynomials
s(x), t (x) ∈ F[x] with s(x) f (x) + t (x)g(x) = 1. Since this equation is obviously
valid in E[x] we infer that f (x), g(x) are relatively prime in E[x], as well.

If f (x) and and g(x) are not relatively prime in F[x], their greatest common
divisor in F[x] has positive degree, and so this is also true in E[x]. Thus not being
relatively prime in F[x] implies not being relatively prime in E[x]. �

There is a simple way to tell whether a polynomial f (x) in F[x] is separable.
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Lemma 11.5.2 The polynomial f (x) has no repeated zeros in its splitting field if
and only if f (x) and f ′(x) are relatively prime.

Proof Let E ⊇ F be a splitting field for f (x) over F , so that f (x) splits into distinct
linear factors in E[x]:

f (x) = (x − α1)(x − α2) · · · (x − αr ) ∈ E[x],

where α1,α2, . . . ,αr ∈ E .
First we assume that f (x) has no repeated zeroes so that αi �= α j whenever

i �= j . Using the above-mentioned Leibniz rule, we have

f ′(x) =
r∑

i=1

(x − α1) · · · (x − αi−1∂(x − αi )(x − αi+1) · · · (x − αr )

=
r∑

i=1

(x − α1) · · · (x − αi−1) ̂(x − αi )(x − αi+1) · · · (x − αr ),

where the notation ̂(x − αi ) simplymeans that the indicated factor has been removed
from the product. From the above, it is obvious that f ′(αi ) �= 0, i = 1, 2, . . . , r ,—
that is to say, f (x) and f ′(x) share no common factors in E[x]. From Lemma11.5.1,
it follows that f (x) and f ′(x) are relatively prime in F[x], as required.

Conversely, assume that f (x) and f ′(x) are relatively prime in F[x]. Write

f (x) = (x − α1)
e1(x − α2)

e2 · · · (x − αr )
er ,

for positive integral exponents e1, e2, . . . , er . Again applying the Leibniz rule, we
obtain

f ′(x) =
r∑

i=1

(x −α1)
e1 · · · (x −αi−1)

ei−1ei (x −αi )
ei −1(x −αi+1)

ei+1 · · · (x −αr )
er .

If some exponent e j is greater than 1, then the above shows clearly that f ′(α j ) = 0,
i.e., f (x) and f ′(x) share a common zero, and hence cannot be relatively prime in
E[x]. In view of Lemma11.5.1, this is a contradiction. �

The preceding lemma has a very nice application when f (x) is irreducible.

Lemma 11.5.3 If f (x) ∈ F[x] is irreducible, then f (x) has no repeated zeros in
its splitting field if and only if f ′(x) �= 0.

As an immediate corollary to the above, we see that if F is a field of characteristic
0, then F[x] contains no irreducible inseparable polynomials. On the other hand if
F has positive characteristic p, then by Lemma11.5.2, an irreducible polynomial
f (x) ∈ F[x] has a repeated root only when f ′(x) = 0, forcing f (x) = g(x p),
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for some polynomial g(x) ∈ F[x]. In fact, a moment’s thought reveals that, in fact,
if f (x) ∈ F[x] is irreducible and inseparable, then we may write f (x) = g(x pe

),
where e is a positive integral exponent and where g(x) ∈ F[x] is an irreducible
separable polynomial.

Let F ⊆ E be an extension and let α ∈ E . We say that α is separable over F if
it is algebraic over F and if IrrF (α) is a separable polynomial. The extension E of
F is said to be separable if and only if every element of E which is algebraic over
F is separable. We may already infer the following:

Lemma 11.5.4 The algebraic extension F ⊆ E is separable whenever F has char-
acteristic 0 or is a finite field.

Proof If F has characteristic 0, the result is obvious by the above remarks. If F is
a finite field, the p-power mapping σ : F → F is an automorphism, and hence is
surjective. Now let f (x) ∈ F[x] be irreducible and assume that f (x) is inseparable.

Write f (x) = g(x p), where g(x) =
m∑

i=0
ai xi . For each i = 0, 1, . . . , m, let bi ∈ F

satisfy bp
i = ai ; thus,

f (x) = g(x p) =
m∑

i=0

bp
i xip =

(
m∑

i=0

bi xi

)p

,

contrary to the irreducibility of f (x). Thus, any finite extension of a finite field is
also separable. �

We see, therefore, that if F ⊆ E is an inseparable algebraic extension, then F
must be an infinite field of positive characteristic p. We shall take up this situation
in the section to follow. Before doing this, it shall be helpful to consider two rather
typical examples.

Example 52 Let P = GF(2) be the field of two elements, let x be an indeterminate
over P , and set F = P(x), the field of “rational functions” over P . Obviously, F is
an infinite field of characteristic 2. Note also that F is the field of fractions of the PID
P[x]. Now set f (y) = y2 + x ∈ F[y]; note that since x is prime in P[x], we may
apply Eisenstein’s criterion (see Exercise (8) in Sect. 9.13.1, p. 318) to infer that f (y)

is irreducible in F[y]. Thus, if α is a zero of f (y) in a splitting field over F for f (y),
then [F(α) : F] = 2. Furthermore, since f ′(y) = 2y +0 = 0 ∈ F[x], we see that α
is inseparable over F . Therefore F(α) ⊇ F is an inseparable extension (that is to say,
not a separable extension). However, we can argue that every element of F(α)\F is
inseparable over F , as follows. Since {1,α} is an F-basis of F(α), we see that every
element of F(α)\F can be written in the form β = a +bα, a, b ∈ F, b �= 0. We set

g(y) = (y − (a + bα))2 = y2 + (a + bα)2 = y2 + a2 + b2x ∈ F[y];

http://dx.doi.org/10.1007/978-3-319-19734-0_9
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since a+bα is a zero of g(y), and since a+bα �∈ F , we see that g(y) = IrrF (a+bα).
But as g′(y) = 0 we see that β is an inseparable element over F . Thus proves that
every element of F(α)\F is inseparable over F ;we shall come to call such extensions
purely inseparable.

Example 53 As a hybrid example, we take P = GF(3), the 3-element field, and
define F = P(x). Set f (y) = y6 + x2y3 + x ∈ F[y]. Again, an application of
Eisenstein reveals that f (y) is irreducible in F[y]. Since f ′(y) = 0 we infer that
f (y) is inseparable over F . We take α to be a zero (in a splitting field) of f (y),
from which we infer that [F(α) : F] = 6. Furthermore, we know that this is not
a separable extension since α is not separable over F . We note that f (y) = g(y3),
where g(y) is the irreducible separable polynomial g(y) = y2 + x2y + x ∈ F[y].
This says that α3, being a root of g(y), is separable over F (note that α3 �∈ F).
Therefore, we see that F(α)\F contains both separable and inseparable elements
over F . In fact, we have a tower F ⊆ F(α3) ⊆ F(α), where [F(α3) : F] = 2
and so [F(α) : F(α3)] = 3. Our work in the next section will show that, in fact,
F(α3) contains all of the separable elements of F(α) over F , and that the extension
F(α3) ⊆ F(α) is purely inseparable.

11.5.2 Separable and Inseparable Extensions

The primary objective of this subsection is to show that a finite-degree extension
F ⊆ E can be factored as F ⊆ Esep ⊆ E , where Esep consists precisely of those
elements of E separable over F , and where Esep ⊆ E is a purely inseparable
extension (i.e., no elements of E − Esep are separable).

Suppose that F is a field of positive characteristic p, and that K ⊇ F is an
extension of finite degree. We have the pth power mapping K → K , a �→ a p, a ∈
K . Note that if F is not finite, K is not finite, and we cannot infer that this mapping
is an automorphism of K—we can only infer that it gives an embedding of K into
itself (as explained in Lemma7.4.6 of Sect. 7.4.2, p. 221). We denote the image by
K p, and denote by F K p the subfield of K generated by the subfields F and K p.

We shall have need of the following technical result:

Theorem 11.5.5 Let F be a field of positive characteristic p, and let K ⊇ F be an
extension of finite degree. If K = F K p, then the pth power mapping on K preserves
F-linear independence of subsets.

Proof Since any F-linearly independent subset of K can be completed to an F-
basis for K , it suffices to prove that the pth power mapping preserves the linear
independence of any F-basis for K . Suppose, then, that {a1, . . . , an} is a F-basis of
K , and that c is an element of K . Then c can be written as an F-linear combination
of the basis elements:

c = α1a1 + · · · + αnan, all αi ∈ F,

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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from which we conclude that

cp = α
p
1 a p

1 + · · · + α
p
n a p

n .

Therefore,
K p = F pa p

1 + · · · + F pa p
n ,

and so, by hypothesis,

K = F K p = Fa p
1 + · · · + Fa p

n .

Thus the pth powers of the basis elements ai form a F-spanning set of K of size n.
Since n = dimF K , these n spanning elements must be F-linearly independent. �
Theorem 11.5.6 (Separability criterion for fields of prime characteristic) Let K be
any algebraic field extension of the field F, where F (and hence K ) have prime
characteristic p.

(i) If K is a separable extension of F, then K = FKp. (Note that the degree [K : F]
need not be finite here.)

(ii) If K is a finite extension of F such that K = FKp, then K is separable over F.

Proof Assume, as in Part (i), that K ⊇ F is a separable extension. Then it is clear
that every element of K is also separable over the intermediate subfield L := FKp. If
a ∈ K , then b = a p ∈ L and so a is a zero of the polynomial x p − b ∈ L[x]. Thus,
if p(x) = IrrL(a) ∈ L[x], we have that p(x) divides x p − b in L[x]. However, in
K [x], x p − b = x p − a p = (x − a)p and so p(x) cannot be separable unless it has
degree 1. This forces p(x) = x − a ∈ L[x], i.e., that a ∈ L , proving that K = FKp.

For Part (ii), assume that [K : F] is finite, and that K = FKp. Suppose, by way
of contradiction that a is an element of K which is not separable over F . Then if
f (x) := IrrF (a), we have that f (x) = g(x p), where g(x) ∈ F[x] is irreducible.
Write g(x) =

m∑
j=0

a j x j and conclude that

0 = f (a) = g(a p) = a0 + a1a p + · · · + ama pm,

which says that {1, a p, a2p, . . . , amp} is an F-linearly dependent subset of K On the
other hand, if {1, a, a2. . . . , am}were F-linearly dependent, then there would exist a
polynomial p(x) in F[x] of degree at mostm having element a for a zero, contrary to
the fact that f (x) = IrrF (a) has degree pm > m, which is a contradiction. Therefore,
the pth power mapping has taken the F-linearly independent set {1, a, a2, . . . , am}
to the F-linearly dependent set {1, a p, a2p, . . . , amp}, a violation of Theorem11.5.5.
Therefore, a ∈ K must have been separable over F in the first place. �
Corollary 11.5.7 (Separability of simple extensions) Fix a field F of prime charac-
teristic p, let F ⊆ K be a field extension, and let a ∈ K be algebraic over F. The
following are equivalent:
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(i) F(a) ⊇ F is a separable extension;
(ii) a is separable over F;

(iii) F(a) = F(a p).

Proof (i)⇒(ii) is, of course, obvious.
Assume (ii). Since a is a zero of the polynomial x p − a p ∈ F(a p)[x], we see

that IrrF(a p)(a) divides x p − a p. But x p − a p = (x − a)p ∈ F(a)[x]. Since a is
separable over F , it is separable over F(a p) and so it follows that a ∈ F(a p), forcing
F(a) = F(a p), which proves (ii)⇒(iii).

Finally, if F(a) = F(a p), then F · F(a)p = F · F p(a p) = F(a p) = F(a), by
hypothesis. Apply Theorem11.5.6 part (ii) to infer that F(a) is separable over F ,
which proves that (iii)⇒(i). �

Corollary 11.5.8 (Transitivity of separability among finite extensions) Suppose K
is a finite separable extension of L and that L is a finite separable extension of F.
Then K is a finite separable extension of F.

Proof That [K : F] is finite is known by Lemma11.2.2, so we only need to prove the
separability of K over F .Wemay assume that F has prime characteristic p, otherwise
K is separable by Lemma11.5.4. By Part (ii) of Theorem11.5.6, it suffices to prove
that K = FKp. But, since K is separable over L , and since L is separable over F ,
we have

K = LKp = (FLp)K p = F(LK)p = FKp.

That K is separable over F now follows from Theorem11.5.6, part (ii). �

Corollary 11.5.9 Let K be an arbitrary extension of F. Then

Ksep = {a ∈ K |a is separable over F}

is a subfield of K containing F.

Proof It clearly suffices to show that Ksep is a subfield of K . However, if a, b ∈ Ksep,
then by Corollary11.5.7 we have that F(a) is separable over F and that F(a, b) is
separable over F(a). Apply Corollary11.5.8. �

The field Ksep is called the separable closure of F in K .
Finally, recall that we have called an algebraic extension F ⊆ K purely insepa-

rable if every element of K\F is inseparable over F . Therefore, we see already that
if F ⊆ K is an algebraic extension, then Ksep is a separable extension of F , and, by
Corollary11.5.8, K is a purely inseparable extension of Ksep.

We conclude this section with a characterization of purely inseparable extensions.

Theorem 11.5.10 Let F ⊆ K be an algebraic extension. The following propositions
are equivalent:
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(1) K is a purely inseparable extension of F;
(2) For all a ∈ K\F, a pe ∈ F, for some positive exponent e of the positive charac-

teristic p;
(3) For all a ∈ K\F, IrrF (a) = x pe − b, for some b ∈ F and some positive

exponent e.

As a corollary to Theorem11.5.10 we extract the following useful corollary for
simple extensions.

Corollary 11.5.11 Let F be a field of characteristic p, contained in some field K .
Assume that a ∈ K satisfies a pe ∈ F. Then the subfield F(a) ⊆ K is a purely
inseparable extension of F.

Proof If [F(a) : F] = r , then any element b ∈ F(a) can be expressed as a polyno-

mial in a: b =
r−1∑
j=0

a j a j , where the coefficients a0, a1, . . . , ar−1 ∈ F . But then

bpe =
⎛
⎝r−1∑

j=0

a j a
j

⎞
⎠

pe

=
r−1∑
j=0

a pe

j a jpe ∈ F.

Now apply Theorem11.5.10. �

11.6 Galois Theory

11.6.1 Galois Field Extensions

Let K be any field, and let k be a subfield of K . The k-isomorphisms of K with itself
are called k-automorphisms of K . Under composition they form a group which we
denote by Gal(K/k). The group of all automorphisms of K is denoted Aut(K ), as
usual. It is obvious that Gal(K/k) is a subgroup of Aut(K ).

Suppose now that G is any group of automorphisms of the field K . The elements
fixed by every automorphism of G form a subfield called the fixed subfield of G
(and sometimes the field of invariants of G), accordingly denoted invG(K ). If G ≤
Gal(G/k) then clearly k is a subfield of invG(K ).

Now let �G be the poset of all subgroups of G, and let �K/k be the poset of
all subfields of K which contain k; in both cases we take the partial order to be
containment. To each subfield L with k ≤ L ≤ K , there corresponds a subroup
Gal(K/L). Similarly, for each subgroup H of Gal(K/k), there corresponds the
subfield invH (K ) containing k. These correspondences are realized as twomappings:

Gal(K/•) : �K/k −→ �G, inv•(K ) : �G −→ �K/k,
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which are obviously inclusion reversing. Furthermore, for all E ∈ �K/k and for all
H ∈ �G , one has that

inv•(K ) ◦ Gal(K/•)(E) = invGal(K/E)(K ) ⊇ E, and

Gal(K/•) ◦ inv•(E)(H) = Gal(E/invH (E)) ≥ H.

In plain language, the composition of the two poset morphisms in either order, is
monotone on its defined poset. Therefore, we see that the quadruple (�K/k,�G ,

Gal(K/•), inv•(K )) is a Galois connection in the sense of Sect. 2.2.15.
Next, if we assume, as we typically shall, that [K : k] < ∞, then every interval

in �K/k is algebraic in the sense of Sect. 2.3.2.6 In fact, the mapping which takes
the algebraic interval [E1, E2] of �K/k to the index [E2 : E1] is a Z-valued interval
measure in the sense of Sect. 2.5.2. We shall show presently that when [K : k] ≤ ∞,
|Gal(K/k)| ≤ ∞, and so similar comments apply to the poset�G ,where, if H2 ≤ H1
are subgroups of G = Gal(K/k), then themappingwhich takes the interval [H2, H1]
to the index [H1 : H2] is the appropriate Z-valued interval measure.

11.6.2 The Dedekind Independence Lemma

We begin with the following observation. Let K be a field; let S be a set; and let K S

be the set of mappings S → K .Wemay give K S a K -vector space structure by point-
wise operations. Thus, if f1, f2 ∈ K S , and if α ∈ K , then we set α( f1 + f2)(s) :=
α f1(s) + α f2(s).

In terms of the above, we state the following important result.

Lemma 11.6.1 (Dedekind Independence Lemma)

1. Let E, K be fields, and let σ1,σ2, . . . ,σr be distinct monomorphisms E → K .
Then σ1,σ2, . . . ,σr are K -linearly independent in K E , the K -vector space of
all functions from E to K .

2. Let E be a field, and let G be a group of automorphisms of E. We may regard each
α ∈ E as an element of EG via σ �→ σ(α) ∈ E, σ ∈ G. Now set K = invG(E)

and assume that we are given K -linearly independent elements α1,α2, . . . ,αr ∈
E. Then α1,α2, . . . ,αr are E-linearly independent elements of EG.

Proof For Part 1, suppose, byway of contradiction, that there exists a nontrivial linear
dependence relation of the form a1σ1 + · · · + arσr = 0 ∈ K E , a1, . . . , ar ∈ K .
Among all such relations we may assume that we have chosen one in which the
number of summands r is as small as possible.

We have, for all α ∈ E , that

a1σ1(α) + a2σ2(α) + · · · + arσr (α) = 0, (11.6)

6Recall that a poset is algebraic if its “zero” and “one” are connected by a finite unrefinable chain.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
http://dx.doi.org/10.1007/978-3-319-19734-0_2
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where each coefficient ai is non-zero by the minimality of r . Since σ1 �= σ2, we may
choose α′ ∈ E such that σ1(α

′) �= σ2(α
′). If we replace the argument α in Eq. (11.6)

by α′α and use the fact that each σi , i = 1, 2, . . . , r is a homomorphism, we obtain
the following:

a1σ1(α
′)σ1(α) + a2σ2(α

′)σ2(α) + · · · + arσr (α
′)σr (α) = 0. (11.7)

Next, multiply both sides of Eq. (11.6) by the scalar σ1(α
′):

a1σ1(α
′)σ1(α) + a2σ1(α

′)σ2(α) + · · · + arσ1(α
′)σr (α) = 0. (11.8)

Subtracting Eq. (11.8) from Eq. (11.7) yields

a2(σ2(α
′) − σ1(α

′))σ2(α) + · · · + ar (σr (α
′) − σ1(α

′))σr (α) = 0.

Since a2(σ2(α
′)−σ1(α

′)) �= 0, and α was arbitrary, we have produced a non-trivial
dependence relation among the σi , i �= 1, against the minimal choice of r . Thus no
such dependence relation among the maps {σi } exists and Part 1 is proved.

For part 2, we again argue by considering an E-linear dependence relation among
the functions αi : G → E with a minimal number of terms r . Thus one obtains a
relation

a1σ(α1) + a2σ(α2) + · · · + arσ(αr ) = 0, (11.9)

valid for all σ ∈ G, and where we may assume that the elements a1, a2, . . . , ar ∈ E
are all nonzero. We may as well assume that a1 = 1. Then setting σ = 1 ∈ G in
Eq. (11.9) yields

α1 + a2α2 + · · · arαr = 0.

Sinceα1,α2, . . . ,αr are linearly independent over K , the preceding equation implies
that at least one of the elements a2, . . . , ar is not in K . Re-indexing the ai if necessary
we may assume that a2 �∈ K . Therefore, there exists an element σ′ ∈ G such that
σ′(a2) �= a2. Equation (11.9) with σ replaced by σ′σ then reads as:

σ′σ(α1) + a2σ
′σ(α2) + · · · + arσ

′σ(αr ) = 0, (11.10)

still valid for all σ ∈ G. Applying σ′ to both sides of Eq. (11.9) yields

σ′σ(α1) + σ′(a2)σ′σ(α2) + · · · + σ′(ar )σ
′σ(αr ) = 0, (11.11)

and subtracting Eq. (11.11) from Eq. (11.10) yields

(a2 − σ′(a2))σ′σ(α2) + · · · + (ar − σ′(ar ))σ
′σ(ar ) = 0.
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Since this is true for all σ ∈ G, and since a2 − σ′(a2) �= 0, we have produced
a dependence relation on a smaller set of functions {σ �→ σ(αi )|i > 1}, which
contradicts the minimality of r . Thus no dependence relation as described can exist
and Part 2 must hold. �

From theDedekind IndependenceLemma,we extract the following lemma,which
summarizes the relationships between field extension degrees and group indices.

Theorem 11.6.2 Let k ⊆ K be a field extension, with Galois group G = Gal(K/k).

1. Assume that k ⊆ E1 ⊆ E2 ⊆ K is a tower of fields, and set Hi = Gal(K/Ei ), i =
1, 2. If [E2 : E1] < ∞, then [H1 : H2] ≤ [E2 : E1].

2. Assume that H2 ≤ H1 ≤ G are subgroups, and set Ei = invHi (K ), i = 1, 2. If
[H1 : H2] < ∞, then [E2 : E1] ≤ [H1 : H2].

Proof For part 1, we shall assume, by way of contradiction, that [H1 : H2] > [E2 :
E1]. Set r = [E2 : E1], and let {α1, . . . ,αr } be an E1-basis of E2. Assume that
{σ1,σ2, . . . ,σs}, s > r , is a set of distinct left H2-coset representatives in H1. Since
s > r , we may find elements a1, a2, . . . , as ∈ K , not all zero, such that

s∑
i=1

aiσi (α j ) = 0, j = 1, 2, . . . , r.

Since any element of E2 can be written as an E1-linear combination of α1, . . . ,αr ,

we conclude that
s∑

i=1
aiσi : E2 → K is the 0-mapping. Since σ1, . . . ,σs are distinct

coset representatives, they are distinct mappings E2 → K . This contradicts part 1
of the Dedekind Independence Lemma.

For part 2 of the Theorem, we shall assume, by way of contradiction, that [E2 :
E1] > [H1 : H2]. Let {σ1, . . . ,σr } be a complete set of H2-coset representatives in
H1, and assume that {α1, . . . ,αs} is an E1-linearly independent subset of E2, where,
by assumption, s > r . Again, we may find elements a1, a2, . . . , as ∈ K , not all zero,
such that

s∑
i=1

aiσ j (αi ) = 0, j = 1, 2, . . . , r.

If σ ∈ H1, then σ = σ jτ , for some index j, 1 ≤ j ≤ r and for some τ ∈ H2.
Therefore, as E2 is fixed point-wise by H2, we have

s∑
i=1

aiσ(αi ) =
s∑

i=1

aiσ jτ (αi ) =
s∑

i=1

aiσ j (αi ) = 0.

Since not all ai are zero in the first term of the equation just presented, the mappings
σ �→ σ(αi ) ∈ K are not K -linearly independent, against part (ii) of the Dedekind
Independence Lemma. �
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Corollary 11.6.3 Let k ⊆ K be a finite degree extension, and set G = Gal(K/k).
If k0 = invG(K ), then

|G| = [K : k0].

Proof Note first that G = Gal(K/k0). We have

[K : k0] ≥ |G| ≥ [K : k0],

where the first inequality is Theorem11.6.2, part (1), and the second inequality is
Theorem11.6.2, part (2). The result follows. �

11.6.3 Galois Extensions and the Fundamental Theorem
of Galois Theory

Onemay recall fromSect. 2.2.15 thatwith anyGalois connection between two posets,
there is a closure operator for each poset. That notion of closure holds for the two
posets that we have been considering here: the poset of subgroups of Gal(K/k) and
the poset of subfields of K that contain k. Accordingly, we say that a subfield k of
K is Galois closed in K if and only if

k = invGal(K/k)(K ).

We define an algebraic extension k ⊆ K to be a Galois extension if k is Galois
closed in K . Note that from the property that K/k is a Galois extension, we can
infer immediately that every subfield E ∈ �K/k of finite degree over k is also Galois
closed in K . Indeed, we can set G = Gal(K/k), E = invGal(K/E)(K ) (the Galois
closure of E in K ), and use Theorem11.6.2 to infer that

[E : k] ≥ [G : Gal(K/E)] ≥ [E : k].

Since we already have E ⊆ E , the result that E = E follows immediately.
We characterize the Galois extensions as follows.

Theorem 11.6.4 Let k ⊆ K be a finite extension. The following are equivalent:

(i) k ⊆ K is a Galois extension;
(ii) k ⊆ K is a separable, normal extension.

Proof Assume that k ⊆ K is a Galois extension. Assume that f (x) ∈ k[x] is an
irreducible polynomial having a zero α ∈ K . Let {α1 = α,α2, . . . ,αr } be the
G-orbit of α in K , where G = Gal(K/k). Set

g(x) =
r∏

i=1

(x − αr ) ∈ K [x].

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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Note that since each σ ∈ G simply permutes the elements α1, . . . ,αr , we infer
immediately that for each σ ∈ G, σ∗g(x) = g(x). (Here σ∗ is the ring automorphism
of K [x] that applies σ to the coefficients of the polynomials. See Sect. 11.3.1, p. 363.)
Therefore the coefficients of g(x) are all in invG(K ) = k, as k is closed in K .
Therefore g(x) ∈ k[x]; since g(α) = 0, f (x) must divide g(x), which implies
that f (x) splits completely in K [x]. Since f (x) was arbitrarily chosen in k[x], we
conclude that K is a normal extension of k.

Note that the above also proves that the arbitrarily-chosen irreducible polynomial
f (x) ∈ k[x] is separable. Applying this to f (x) = Irrk(α), α ∈ K , we see that K
is a separable extension of k, as well.

Conversely, assume that the finite extension k ⊆ K is a separable normal exten-
sion. Let α ∈ K\k and set f (x) = Irrk(x). Then f (x) is of degree at least two
and splits into distinct linear factors in K [x]. Thus, if β ∈ K is another zero of
f (x), then by Lemma11.3.1 there exists a k-isomorphism k(α) → k(β) taking α
to β. Next, by Theorem11.3.4 this isomorphism can be extended to one defined on
all of K . Therefore, we have shown that for all α ∈ K\k, there is an element of
σ ∈ G = Gal(K/k) such that σ(α) �= α. It follows that k = invG(K ), proving the
result. �

Theorem 11.6.5 (The Fundamental Theorem of Galois Theory) Suppose K is a
finite separable normal extension of the the field k. Let G := Gal(K/k), let S(G) be
the dual of the poset of subgroups of G, and let �K/k be the poset of subfields of K
which contain k. Then the following hold:

(i) (the Galois Connection) The mappings of the Galois correspondence

S(G)
Gal(K/•)

�
inv•(K )

�K/k

are inverse to each other, and hence are bijections.
(ii) (The connection between upper field indices and group orders) For each inter-

mediate field L ∈ �K/k

[K : L] = |Gal(K/L)|.

(iii) (The connection between group indices and lower field indices) If H ≤ G, then
[invH (K ) : k] = [G : H ].

(iv) (The correspondence of normal fields and normal subgroups).

1. L ∈ �K/k is normal over k if and only if Gal(K/L) is a normal subgroup
of G = Gal(K/k).

2. N � G if and only if invN (K ) is a normal extension of k.

(v) (Induced groups and normal factors) Suppose L is a normal extension of k
contained in K . Then Gal(L/k) is isomorphic to the factor group Gal(K/k)/

Gal(K/L).
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Proof Thanks to our preparation, the statement of this Theorem is almost longer
than its proof. Part (i) follows by the discussion at the beginning of this subsection.
By part (i) together with Theorem11.6.2, one has, for any subfield L ∈ �K/k , that

[K : L] ≥ [Gal(K/L) : 1] = |Gal(K/L)| ≥ [K : invGal(K/L)(K )] = [K : L].

Likewise, for any subgroup H ≤ G, one has

[G : H ] ≥ [invH (K ) : k] ≥ [G : Gal(K/invH (K ))] = [G : H ],

proving both parts (ii) and (iii).
We prove part (iv) part 1: If L ∈ �K/k is normal over k, then by Corollary11.3.8

K is G-invariant. This gives a homomorphism G → Gal(L/k), σ �→ σ|L ; and the
kernel of this homomorphism is obviously Gal(K/L) � G.

For (iv), part 2, suppose N � G, and choose α ∈ invN (K ). Then for any σ ∈ G
and n ∈ N we have nσ(α) = σ(σ−1nσ)(α) = σ(α), where we have used the fact
that σ−1nσ ∈ N and N fixes point-wise the elements of invN (K ). This proves that
σ(α) ∈ invN (K ). Now apply Corollary11.3.8 to conclude that invN (K ) is a normal
extension of k.

Finally, we prove part (v): Now we have observed above that when L ∈ �K/k

is a normal extension of k, there a homomorphism G → Gal(L/k) having kernel
Gal(K/L).

This homomorphism can be seen to be surjective by two distinct arguments.
(1) First a direct application of Corollary11.3.8 (with (K , L , k) playing the role
of (E, K , F) of that Corollary) shows that any automorphism in Gal(L/k) lifts to
an automorphism of Gal(K/k). (2) A second argument achieves the surjectivity by
showing that the order of the image of the homomorphism is at least as large as the
codomain Gal(L/k). First, by the fundamental theorem of group homomorphisms,
the order of the image is [G : Gal(K/L)]. By (iii),

[G : Gal(K/L)] = [invGal(K/L)(K ) : k].

But by definition, invGal(K/L)(K ) contains L , and so the field index on the right side
is at least [L : k]. But since L/k is also a Galois extension, one has [L : k] =
|Gal(L/k)|, by (ii) applied to L/k. Putting these equations and inequalities together
one obtains

|G/Gal(K/L)| ≥ |Gal(L/k)|

and so the homomorphism G → Gal(L/k) is again onto.
Now, since the homomorphism is onto, the fundamental theorem of group homo-

morphisms shows that the factor group G/Gal(K/L) is isomorphic to the homomor-
phic image Gal(L/k). �



11.7 Traces and Norms and Their Applications 387

11.7 Traces and Norms and Their Applications

11.7.1 Introduction

Throughout this section, F is a separable extension of a field k, of finite degree
dimk(F) = [F : k].

Let E be the normal closure of F over k. Then E is a finite normal separable
extension of k—that is, it is aGalois extension.Accordingly, ifG = Gal(E/k) and H
is the subgroup of G fixing the subfield F element-wise, we have [G : H ] = [F : k].
Let σ1 = 1,σ2, . . . ,σn be any right transversal of H in G.7 We regard each σi as an
isomorphism F → E .

The trace and norm are two functions TF/k and NF/k from F into k, which are
defined as follows: for each α ∈ F ,

TF/k(α) =
n∑

i=1

ασi , (11.12)

NF/k(α) =
n∏

i=1

ασi . (11.13)

The elements {ασi } list the full orbit αG of α under the (right) action of G, and
so does not depend on the particular choice of coset representatives {σi }. Since the
orbit sum TF/k(α) and orbit product NF/k(α) are both fixed by G, and E/K is a
Galois extension, these elements must lie in k = invG(E).

When the extension k ⊆ F is understood, one often writes T (α) for TF/k(α) and
N (α) for NF/k(α).

The formulae (11.12) and (11.13) imply the following:

T (α + β) = T (α) + T (β),α,β ∈ F (11.14)

T (αc) = T (α)c,α ∈ F, c ∈ k, (11.15)

so that T is a k-linear transformation F → k.
Similarly, for the norm (11.12) and (11.13) yield

N (αβ) = N (α)N (β),α,β ∈ F (11.16)

N (αc) = N (α)cn,α ∈ F, c ∈ k. (11.17)

7Recall from Chap.3 that a right transversal of a subgroup is simply a complete system of right
coset representatives of the subgroup in its parent group. In this case {Hσi } lists all right cosets of
H in G.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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11.7.2 Elementary Properties of the Trace and Norm

Theorem 11.7.1 (The Transitivity Formulae) Suppose k ⊆ F ⊆ L is a tower of
fields with both extension L/F and F/k finite separable extensions. Then for any
element α ∈ L,

TL/k(α) = TF/k(TL/F (α)) (11.18)

NL/k(α) = NF/k(NL/F (α)). (11.19)

Proof Let E be the normal closure of L so that E/k is a Galois extension. Set
G = Gal(E/k), H = Gal(E/F) and U = Gal(E/L). Then U ≤ H ≤ G, and

n = [G : H ] = [K : k]
m = [H : U ] = [L : F] and

nm = [G : U ] = [L : k].

If X is a right transversal of H in G, and Y is right transversal of U in H , then

TL/k(α) =
∑

σ∈XY

ασ =
∑
σ∈X

(∑
τ∈Y

ατ

)σ

(11.20)

=
∑
σ∈X

(TL/F (α))σ = TF/k(TL/F (α)). (11.21)

The anagolous formula for norms is obtained upon replacing sums by products
in the preceding Eq. (11.21). �

Corollary 11.7.2 If k ⊂ F is a separable extension of degree n = [F : k], and if
α ∈ F has monic irreducible polynomial

irr(α) = xd + ad−1xd−1 + · · · + a1x + a0 ∈ k[x],

then
TF/k(α) = −(n/d)ad−1. (11.22)

Similarly,
NF/k(α) = ((−1)da0)

n/d . (11.23)

Proof Let E be the normal closure of F , so that we have the factorization

irr(α) = (x − θ1) · · · (x − θd)
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in E[x]. Then −ad−1 = ∑
θi and

∏
θi = (−1)da0. But

∑
θi = Tk(α)/k(α) and∏

θi = Nk(α)/k(α). Now applying the transitivity formulae (11.18) and (11.19) for
the extension tower k ⊆ k(α) ⊆ F one obtains

TE/k(α)(α) = Tk(α)/k(TF/k(α)(α) = Tk(α)/k(α) · [F : k(α)]

since α ∈ k(α). Similarly

NF/k(α) = Nk(α/k(α))[F :k(α)].

�

11.7.3 The Trace Map for a Separable Extension Is Not Zero

Theorem 11.7.3 Suppose k ⊆ F is a finite separable extension. Then the trace
function TF/k : F → k is not the zero function.

Proof Let E be the normal closure of F ; it then follows that k ⊆ E is a Galois
extension. Let G = Gal(E/k), and let {σ1, . . . ,σn} be a complete listing of its ele-
ments. By the Dedekind Independence Lemma (Lemma11.6.1), part 1, the functions
σi : E → E are k-linearly independent. In, particular, the mapping

∑
σi defined by

α �→ ∑n
i=1 ασi cannot be the zero function. So there is an element β ∈ E such that

0 �=
∑

i

βσi = TE/k(β). (11.24)

Set β′ = TE/F (β). Then β′ lies in F since F ⊆ E is also a Galois extension. Now
if TF/k(β

′) = 0, then

TE/k(β) = TF/k(TE/F (β) = TF/k(β
′) = 0,

against Eq. (11.24). Thus we have found β′ ∈ F such that TF/k(β
′) �= 0 showing

that the trace mapping TF/k is not the zero mapping. �

Associated with the trace function TF/k : F → k is a symmetric bilinear form
BT : F × F → k called the trace form defined by

BT (α,β) = TF/k(αβ),α,β ∈ F.

This form is said to be non-degenerate if BT (α,β) = 0 for all β ∈ F impliesα = 0.8

8The reader is referred to Sect. 9.12 where these concepts were applied to all k-linear maps T :
F → k.

http://dx.doi.org/10.1007/978-3-319-19734-0_9
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Corollary 11.7.4 Let F be a finite separable extension of the field k. Then the trace
form is non-degenerate.

Proof If BT (α,β) = 0 for all β ∈ F , then TF/k(αβ) = 0 for all β ∈ F . If
α �= 0, this would imply TF/k(F) = 0, contrary to the conclusion of the preceding
Theorem11.7.3. �

11.7.4 An Application to Rings of Integral Elements

Suppose D is an integral domain, which is integrally closed in its field of fractions
k. (Recall that this means that any fraction formed from elements of D that is also
a zero of a monic polynomial in D[x], is already an element of D.) Suppose F is
a finite separable extension of k, and let OF be the ring of integral elements of F
with respect to D—that is, the elements of D which are a zero of at least one monic
polynomial in D[x].

In Sect. 9.12 of Chap.9, a k-linear transformation t : F → k was said to be
tracelike if and only t (OF ) ⊆ D. Theorem9.12.2 then asserted the following:

If there exists a non-zero tracelike transformation t : F → k, then the ring OF is
a Noetherian D-module.

But now we have

Lemma 11.7.5 Let F be a finite separable extension of k, the field of fractions of
the integrally closed domain D, and let OF be the ring of integral elements as in the
introductory paragraph of this subsection. Then the trace function TF/k : F → k is
a tracelike k-linear transformation.

Proof It is sufficient to show that if α ∈ OF , then TF/k(α) ∈ OF , for in that case
TF/k(α) ∈ OF ∩k = D, since D is integrally closed. Let E be the normal closure of
F and setG := Gal(E/k). For eachσ ∈ G, andα ∈ OF ,ασ is also a zero of the same
monic polynomial in D[x] that α is; so it follows that σ(Ok) ⊆ OE . Now TF/k(α)

is the sum of the elements in the orbit αG and so, being a finite sum of elements of
OE , must lie in OE as well as k. Thus TF/k(α) ∈ OE ∩ k ⊆ OE ∩ F = OF . �

Corollary 11.7.6 Let D be an integral domain that is integrally closed in its field
of fractions k. Let k ⊆ F be a finite separable extension, and let OF be the ring
of integral elements (with respect to D) in the field F. Then OF is a Noetherian
D-module.

Proof By Theorem9.12.2 it is sufficient to observe that the trace function TF/k is
a non-zero tracelike transformation F → k. But as F is a separable extension of
k, these two features of the trace function are established in Theorem11.7.3 and
Lemma11.7.5. �

http://dx.doi.org/10.1007/978-3-319-19734-0_9
http://dx.doi.org/10.1007/978-3-319-19734-0_9
http://dx.doi.org/10.1007/978-3-319-19734-0_9
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11.8 The Galois Group of a Polynomial

11.8.1 The Cyclotomic Polynomials

Let n be a positive integer, and let ζ be the complex number ζ = e2πi/n . Set

�n(x) =
∏

d

(x − ζd),

where 1 ≤ d ≤ n, and gcd(d, n) = 1. We call�n(x) the nth cyclotomic polynomial.
Thus, we see that the zeros of�n(x) are precisely the generators of the unique cyclic
subgroup of order n in the multiplicative group C

∗ of the complex numbers, also
called the primitive nth roots of unity. It follows that the degree of �n(x) is the
number φ(n) of residue classes mod n which are relatively prime to n.9 Note in
particular that

xn − 1 =
∏
d|n

�d(x). (11.25)

Since each nth root of unity is a power of the primitive root ζ we see that the field
K = Q(ζ) is the splitting field over Q for xn − 1. If we set G = Gal(K/Q), then
G clearly acts on the zeros of �n(x) (though we don’t know yet that this action is
transitive!), and so the coefficients of �n(s) are in invG(K ) = Q. In fact, however,

Lemma 11.8.1 For each positive integer n, �n(x) ∈ Z[x].
Proof We shall argue by induction on n. First one has �1(x) = x −1 ∈ Z[x], so the
assertion holds for n = 1. Assume n > 1. In Eq. (11.25), c(x) := xn − 1 is written
as a product of cyclotomic polynomials,�d(x), all of which are monic by definition.
By induction

a(x) :=
∏
d|m

1 ≤ d < m

�d(x) ∈ Z[x],

(where d ranges over proper divisors of n) is a product of monic polynomials inZ[x],
and so itself is such a polynomial. Setting b(x) := �n(x), we see that a(x), b(x) and
c(x) are monic polynomials with c(x) = a(x)b(x), with a(x) and c(x) in Z[x] and
with b(x) monic in Q[x]. Now we apply Theorem9.13.3 (with Z and Q in the roles
of the domains D and D1, respectively—see Exercise (11) in Sect. 9.13.1, Chap. 9),
to conclude that b(x) = �n(x) is also in Z[x]. The induction proof is complete. �

Theorem 11.8.2 For each positive integer n, the nth cyclotomic polynomial �n(x)

is irreducible in Q[x].

9The function: φ : Z → Z is called Euler’s totient function or simply the Euler phi-function.

http://dx.doi.org/10.1007/978-3-319-19734-0_9
http://dx.doi.org/10.1007/978-3-319-19734-0_9
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Proof Since �n(x) ∈ Z[x], we may invoke Gauss’s lemma and be satisfied with
proving that �n[x] is irreducible in Z[x]. Thus, assume that �n(x) = h(x)k(x),
where h(x), k(x) ∈ Z[x] and h(x) is monic and irreducible. Let p be a prime not
dividing n, and let ζ be a zero of h(x) in a splitting field F for �n(x) over Q. We
shall show that ζ p is also a zero of h(x). Note that since p and n are relatively prime,
ζ p is another zero of�n(x). Assuming that ζ p is not a zero of h(x), it must be a zero
of k(x), forcing ζ to be a zero of the polynomial of k(x p). This implies that h(x)

divides k(x p), and so we may now write

k(x p) = h(x)l(x) (11.26)

for some monic polynomial l(x) ∈ Z[x].
At this point, we may invoke the ring homomorphism

m p : Z[x] → (Z/(p))[x],

which preserves degrees but reads the integral coefficients of all polynomials modulo
p. For each polynomial p(x) ∈ Z[x], we write p̄(x) for m p(p(x)).

Since n is relatively prime to p, there exists an integer b such that bn ≡ 1
mod p. Since (bx̄)∂(x̄n − 1) − (x̄n − 1) = 1 in Z/(p))[x], by Lemma11.5.3,
the polynomial x̄n − 1 must have distinct zeroes in its splitting field K over Z/p.
So this also must be true of any factor of the polynomial x̄n − 1. We now have
x̄n − 1 = �̄n(x) f̄ (x) = h̄(x)k̄(x) f̄ (x), so �̄n(x) is such a factor.

Now, applying m p to each side of Eq. (11.26), one obtains

h̄(x)l̄(x) = k̄(x p) = k̄(x)p ∈ (Z/p)[x].

Thus the zeroes of h̄ in K can be found among those of k̄(x). Since �̄n(x) =
h̄(x) ¯k(x), we see that �̄n(x) has repeated zeroes in K , contrary to the observation
in the previous paragraph.

What the above has shown is that if ζ is a zero of h(x) in the splitting field F ,
then so is ζ p, for every prime p not dividing n. Finally, let η be any primitive n-root
of unity (i.e., a zero of �n(x) in F). Therefore, η = ζr for some integer r relatively
prime to n. We factor r as r = pe1

1 pe2
2 · · · pes

s ; then as each pi is relatively prime to
n, and since the pi th power of a zero of h(x) is another zero of h(x), we conclude
that η = ζr is also a zero of h(x). It follows that all zeros of �n(x) are zeroes of its
irreducible monic factor h(x), whence h(x) = �(x), completing the proof. �

11.8.2 The Galois Group as a Permutation Group

Let F be a field and let f (x) ∈ F[x] be a polynomial. If K ⊆ F is a splitting
field over F for f (x), and if G = Gal(K/F), we call G the Galois group of the
polynomial f (x). If α1,α2, . . . ,αk are the distinct zeros of f (x) in K , then, since
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K = F(α1,α2, . . . ,αk), we see that the automorphisms in G are determined by
their effects on the elements α1, . . . ,αk . Furthermore, as the elements of G clearly
permute these zeros, we have an injective homomorphism G → Sk (where Sk is
identified with the symmetric group on the k zeros of f (x)) thereby embedding G as
a subgroup of Sk . Note finally that if f (x) is irreducible, then the above embedding
represents the Galois group G as a transitive subgroup of Sk .

For example, in the previous subsectionwe saw that thenth cyclotomic polynomial
�n(x) ∈ Z[x] is irreducible and of degreeφ(n), whereφ is Euler’s “totient” function.
Setting k = φ(n), ζ = e2πi/n , and G = Gal(Q(ζ)/Q), we have an embedding of G
into Sk . However, as G must act as a group of automorphisms of K = Q(ı), we see
in particular that it must restrict to a group of automorphisms of the cyclic group 〈ζ〉
of order n. Therefore, we have a (faithful) homomorphism G → Aut(〈ζ〉), the latter
being abelian of order φ(n) (see p. 392). Since |G| = φ(n) = deg�n(x), and since
the splitting field of �n(x) is the same as that of xn − 1, we conclude that:

Theorem 11.8.3 The Galois group of the polynomial xn − 1 is isomorphic with the
automorphism group of a cyclic group of order n and is therefore abelian of order
φ(n), where φ is Euler’s totient function.

The following is a useful summary of what has been obtained thus far.

Theorem 11.8.4 Let f (x) ∈ F[x] and let G be the corresponding Galois group.
Assume that f (x) factors into irreducibles as

f (x) =
∏

fi (x)ei ∈ F[x].

Let E be a splitting field over E of f (x), and let �i be the set of zeros of fi (x) in E.
Then G acts transitively on each �i .

Proof Ifα,α′ are distinct zeros of fi (x) in E the byLemma11.3.1 there is an isomor-
phism F(α) → F(α′); by Theorem11.3.4, this can be extended to an automorphism
of E . �

From the above, we see that if � is the set of zeros of a polynomial f (x) in a
splitting field E , we have an embedding G → Sym(�) of the Galois group into
the symmetric group on �. Identifying G with its image in Sym(�), an interesting
question that naturally occurs is whether G ≤ Alt(�), the alternating group on�. To
answer this, we introduce the discriminant of the separable polynomial f (x). Thus
let f (x) ∈ F[x], where char F �= 2, and let E be a splitting field over F for f (x).
Let {α1,α1, . . . ,αk} be the set of distinct roots of f (x) in E . Set

δ =
∏

1≤ j<i≤k

(αi − α j ) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α1 α2
1 · · αk−1

1

1 α2 α2
2 · · αk−1

2

· · · · · ·
· · · · · ·
· · · · · ·
1 αk α2

k · · αk−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and let D f = δ2. We call D f the discriminant of the polynomial f (x), sometimes
denoted disc f (x). Note that D f ∈ invG(E); when f (x) is separable, this implies
that D f ∈ F .

Example 54 (Discriminant of a quadratic) Suppose that f (x) ∈ F[x] is a monic
separable quadratic; thus f (x) = x2 + bx + c = (x − α1)(x − α2) in a splitting
field over F for f (x). Therefore, we have

(i) α1 + α2 = −b, and
(ii) α1α2 = c.

It follows that

disc f (x) = (α2 − α1)
2

= α2
1 + α2

2 − 2α1α2

= (α1 + α2)
2 − 4α1α2

= b2 − 4c ∈ F[x],

a formula for the discriminant familiar to every high school student.

Before tackling the n = 3 case, we make a few observations of general interest.
Relative to α1,α2, . . . ,αk , we define the i th power sum, i = 0, 1, 2, . . .:

si = αi
1 + αi

2 · · · + αi
k .

Since the determinant of a matrix is the same as the determinant of its transpose, we
may express the discriminant of the polynomial f (x) thus:

disc f (x) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

α1 α2 α3 · · · αk

α2
1 α2

2 α2
3 · · · α2

k
...

...
... · · · ...

αk−1
1 αk−1

2 αk−1
3 · · · αk−1

k

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 α1 α2
1 · · · αk−1

1

1 α2 α2
2 · · · αk−1

2

1 α3 α2
3 · · · αk−1

3
...

...
... · · · ...

1 αk α2
k · · · αk−1

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

from which one concludes that

disc f (x) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 s1 s2 · · · sk−1

s1 s2 s3 · · · sk

s2 s3 s4 · · · sk+1

...
...

... · · · ...

sk−1 sk sk+1 · · · s2k−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11.27)
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Example 55 (Discriminant of a cubic) Suppose that f (x) = x3+a2x2+a1x +a0 ∈
F[x] is a monic separable cubic, with zeros α1,α2,α3 in a splitting field. In this
case, using Eq.11.27 one obtains

disc f (x) = det

⎡
⎣ 1 s1 s2

s1 s2 s3
s2 s3 s4

⎤
⎦ .

Next, note that the coefficients of f (x) are given by

−σ1 : = −(α1 + α2 + α3) = a2,

σ2 : = α1α2 + α1α3 + α2α3 = a1,

−σ3 : = −α1α2α3 = a0.

Furthermore, one has s1 = σ1 = −a2; furthermore,

s2 = α2
1 + α2

2 + α2
3

= (α1 + α2 + α3)
2 − 2(α1α2 + α1α3 + α2α3)

= σ2
1 − 2σ2

= a2
2 − 2a1.

s3 = α3
1 + α3

2 + α3
3

= (α1 + α2 + α3)(α
2
1 + α2

2 + α2
3)

−(α1 + α2 + α3)(α1α2 + α1α3 + α2α3) + 3α1α2α3

= σ1(σ
2
1 − 2σ2) − σ1σ2 − 3σ3

= σ3
1 − 3σ1σ2 + 3σ3

= −a3
2 + 3a1a2 − 3a0.

s4 = = α4
1 + α4

2 + α4
3

= (α1 + α2 + α3)(α
3
1 + α3

2 + α3
3)

−(α1α2 + α1α3 + α2α3)(α
2
1 + α2

2 + α2
3)

+α1α2α3(α1 + α2 + α3)

= −σ1(σ
3
1 − 3σ1σ2 + 3σ3)

−σ2(σ
2
1 − 2σ2) + σ1σ3

= a4
2 − 4a1a2

2 + 4a0a2 + 2a2
1 .
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From all of the above, one obtains, therefore, that

disc f (x) = det

⎡
⎢⎣

3 −a2 a2
2 − 2a1

−a2 a2
2 − 2a1 −a3

2 + 3a1a2 − 3a0

a2
2 − 2a1 −a3

2 + 3a1a2 − 3a0 a4
2 − 4a1a2

2 + 4a0a2 + 2a2
1

⎤
⎥⎦

= a2
1a2

2 − 4a3
1 − 4a0a3

2 − 27a3
0 + 18a0a1a2,

after admittedly odious calculations!

The above examples reveal a general trend, viz., that the discriminant of a poly-
nomial can always be expressed in terms of the coefficients of the polynomial. To see
why this is the case, we assume, for the moment that x1, x2, . . . , xn are commuting
indeterminates, and define the elementary symmetric polynomials σ1,σ2, . . . ,σn ,
and the power sum polynomials s1, s2, . . . , sn by setting

σk =
∑

i1<i2<···<ik

xi1xi2 · · · xik , sl =
n∑

i=1

xl , k = 1, 2, . . . , n, l = 1, 2, . . .

Therefore,

σ1 = s1 = x1 + x2 + . . . xn,

σ2 = ∑
i< j

xi x j = x1x2 + x1x3 + · · · xn−1xn ,

s2 = x21 + x22 + . . . + x2n ,

and so on.
Next, note that

n∏
i=1

(x − xi ) = xn − σ1xn−1 + σ2xn−2 + · · · + (−1)nσn .

From this, it follows immediately that if the power sum polynomials s1, s2, . . . can
be written as polynomials in the elementary symmetric polynomials σ1,σ2, . . . ,σn ,
then from Eq. (11.27) we infer immediately that the discriminant of a polynomial
can be expressed as a polynomial in its coefficients. Our detailed calculations of the
discriminant of quadratics and cubics hint that this might be possible. We turn now
to a demonstration that this can always be done.

First, suppose that g(x) = g(x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn]. We say that
g(x) is a symmetric polynomial if it remains unchanged upon any permutation of the
indices 1, 2, . . . , n. Therefore, we see immediately that the elementary symmetric
polynomials as well as the power sum polynomials are symmetric polynomials.

Theorem 11.8.5 (Fundamental Theorem on Symmetric Polynomials) Any symmet-
ric polynomial g(x) ∈ F[x1, x2, . . . , xn] can be expressed as a polynomial in the
elementary symmetric polynomials.
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Proof We clearly may assume that g = g(x) is homogeneous, i.e., that it is com-
posed of monomials each of the same degree, say k. Next, we introduce into the set
of monomials of the form xi1

1 xi2
2 · · · xin

n , where i1 + i2 + · · · + in = k, the so-called

lexicographic ordering. Thus we say that xi1
1 · · · xin

n < x j1
1 · · · x jn

n if i1 = j1, i2 =
j2, . . . , il = jl , il+1 < jl+1. Thus, if n = 3 we have x21 x2x33 < x21 x22 x23 < x31 x2x23 .
Next, let xm1

1 xm2
2 · · · xmn

n be the highest monomial occurring in g with nonzero coef-
ficient. Since g is symmetric, it must also contain all monomials obtained from
xm1
1 xm2

2 · · · xmn
n by permuting the indices. It follows, therefore, that we must have

m1 ≥ m2 ≥ · · · ≥ mn .
Next, let d1, d2, . . . , dn be exponents; wewish to identify the highest monomial in

the symmetric polynomial σd1
1 σd2

2 · · · σdn
n . Here it is useful to observe that if M1, M2

are monomials of the same degree with M1 < M2, and if M is any monomial, then
M1M < M2M . Having observed this, we note next that the highest monomial in
σi is clearly x1x2 · · · xi . Therefore, the highest monomial in σdi

i is xdi
1 xdi

2 · · · xdi
n . In

turn, the highest monomial in σd1
1 σd2

2 · · · σdn
n is therefore

xd1+d2+···dn
1 xd2+d3+···+dn

2 · · · xdn
n .

From this, we see that the highest degree monomial in both g and and the polynomial
σm1−m2
1 σm2−m3

2 · · · σmn
n is xm1

1 xm2
2 · · · xmn

n . This implies that if

g = axm1
1 xm2

2 · · · xmn
n + lower monomials ,

then the symmetric polynomial g−aσm1−m2
1 σm2−m3

2 · · · σmn
n will only involvemono-

mials lower than xm1
1 xm2

2 · · · xmn
n . A simple induction finishes the proof. �

Corollary 11.8.6 The discriminant of the separable polynomial f (x) ∈ F[x] can
be expressed as a polynomial (with coefficients in F) in the coefficients of f (x).

The permutation-group theoretic importance of the discriminant is the following.

Theorem 11.8.7 Let f (x) ∈ F[x], where char F �= 2 be a polynomial with discrim-
inant D f = δ2 = disc f (x) defined as above. Let G be the Galois group of f (x),
regarded as a subgroup of Sym(n), acting on the zeros {α1, · · · ,αn} in a splitting
field E over F for f (x). If A := G ∩ Alt(n), then invA(E) = F(δ).

Proof Note that any odd permutation of the zeros α1, . . . ,αk will transform δ into
−δ and even permutations will fix δ. �

The following is immediate.

Corollary 11.8.8 Let G be the Galois group of f (x) ∈ F[x], where char F �= 2. If
the discriminant D f is the square of an element in F, then G ≤ Alt(n).

The following is occasionally useful in establishing that the Galois group of a
polynomial is the full symmetric group.
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Theorem 11.8.9 Let f (x) ∈ Q[x] be irreducible, of prime degree p, and assume
that f (x) has exactly 2 non-real roots. Then G f = Sym(p).

We close by mentioning that for a general “trinomial,” there is a formula for the
discriminant, due to R.G. Swan,10 given as follows.

Theorem 11.8.10 Let f (x) = xn +axk +b, and let d = g.c.d.(n, k), N = n
d , K =

k
d . Then

D f = (−1)
1
2 n(n−1)bk−1[nN bN−k − (−1)N (n − k)N−K kK aN ]d .

11.9 Solvability of Equations by Radicals

11.9.1 Introduction

Certainly one remembers that point in one’s education that one first encountered the
quadratic equation. If we are given the polynomial equation

ax2 + bx + c = 0,

where a �= 0 (to ensure that the polynomial is indeed “quadratic”), then the roots of
this equation are given by the formula

(−b ±
√

b2 − 4ac)/2a.

Later, perhaps, the formula is justified by the procedure known as “completing the
square”. One adds some constant to both sides of the equation so that the left side is
the square of a linear polynomial, and then one takes square roots. It is fascinating to
realize that this idea of completing the square goes back at least two thousand years
to the Near East and India. It means that at this early stage, there is the suggestion that
there could be a realm where square roots could always be taken, and the subtlety
that there are cases in which square roots can never be taken because the radican is
negative.

A second method of solving the equation involves renaming the variable x in
a suitable way. One first divides the equation through by a so that it has the form
x2 + b′x + c′ = 0. Then setting y := x − b′/2, the equation becomes

y2 + c′ − (b′)2/4 = 0,

10R.G. Swan, Factorization of polynomials over finite fields, Pacific Journal, vol 12, pp. 1099–
1106, MR 26 #2432. (1962); see also Gary Greenfield and Daniel Drucker, On the discriminant of
a trinomial, Linear Algebra Appl. 62 (1984), 105-112.
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from which extraction of the square root (if that can be done) yields
y = √

(4c′ − (b′)2)/2. The original zero named by x , is obtained by x = y + b′/2,
and the equations b′ = b/a and c′ = c/a.

Certainly the polynomials in these equations were seen as generic expressions
representing relations between some sort of possible numbers. But these numbers
were known not to be rational numbers in many cases. One could say that solutions
don’t exist in those cases, or that there is a larger realm of numbers (for example
fields like Q(

√
2) or the reals), and the latter view only began to emerge in the last

three centuries.
Of course the quadratic formula is not valid over fields of characteristic 2 since

dividing by 2 was used in deriving and expressing the formula. The same occurs for
the solutions of the cubic and quartic equations: fields of characteristic 2 and 3 must
be excluded.

Dividing through by the coefficient of u3, the general cubic equation has the form
u3 +bu2 + cu +d = 0, where u is the generic unkown root. Replacing u by x −b/3
yields the simpler equation,

x3 + qx + r = 0.

Next, one puts x = y + z to obtain

y3 + z3 + (3yz + q)x + r = 0. (11.28)

There is still a degree of freedom allowing one to demand that yz = −q/3, thus
eliminating the coefficient of x in (11.28). Then z3 and y3 are connected by what
amounts to the norm and trace of a quadratic equation:

z3 + y3 = −r,

and
z3y3 = −q3/27.

One can then solve for z3 and y3 by the quadratic formula. Taking cube roots (assum-
ing that is possible) one gets a value for z and y. The possible zeroes of x3 + qx + r
are:

y + z, ωy + ω2z, ω2y + ωz,

where ω is a complex primitive cube root of unity. The formula seems to have been
discovered in 1515 by Scipio del Ferro and independently by Tartaglia.

Just thirty years later, when a manuscript of Cardan published the cubic formula,
Ferrari discovered the formula for solving the general quartic equation. Here one
seeks the roots of a monic fourth-degree polynomial, whose cubic term can be elim-
inated by a linear substitution to yield an equation

x4 + qbx2 + r x + s = 0.
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We would like to re-express the left side as

(x2 − kx + u)(x2 + kx + v),

for suitable numbers k, u and v. From the three equations arising from equating coef-
ficients, the first two allow u and v to be expressed in terms of rk, and a substitution
of these expressions for u and v into the third equation produces a cubic in k2, which
can be solved by the cubic formula. Then u and v are determined and so the roots
can be obtained from two applications of the quadratic formula.

It is hardly surprising, with all of this success concentrated in the early sixteenth
century, that the race would be on to solve the general quintic equation. But this
effort met with complete frustration for the next 270 years.

Looking back we can make a little better sense of this. First of all, where are we
finding these square roots and cube roots that appear in these formulae? That can be
answered easily from the concepts of this chapter. If we wish to find the nth root of
a number w in a field F , we are seeking a root of the polynomial xn − w ∈ F[x].
And of course we need only form the field F[α] � F[x]/p(x)F[x] where p(x) is
any irreducible factor of xn − w. But in that explanation, why should we start with
a general field F? Why not the rational numbers? The answer is that in the formula
for the general quartic equation, one has to take square roots of numbers which
themselves are roots of a cubic equation. So in general, if one wishes to consider the
possibility of having a formula for an nth degree equation, he or shemust be prepared
to extract pth roots of numbers which are already in an uncontrollably large class of
field extensions of the rational numbers, or whatever field we wish to begin with.

Then there is this question of actually having an explicit formula that is good
for every nth degree equation. To be sure, the sort of formula one has in mind
would involve only the operations of root extraction, multiplication and addition and
taking multiplicative inverses. But is it not possible that although there is not one
formula good for all equations, it might still be possible that roots of a polynomial
f (x) ∈ F[x] can be found in a splitting field K which is obtained by a series of
root extractions—put more precisely, K lies in some field Fr which is the terminal
member of a tower of fields

F = F0 < F1 < · · · < Fr ,

where Fi+1 = Fi (αi ) andαni
i ∈ Fi , for positive integers ni , i = 0, . . . , r −1? In this

case we call Fr a radical extension of F . Certainly, if there is a formula for the roots
of the general nth degree equation, there must be a radical extension Fr/F which
contains a copy of the the splitting field K f (x) for every polynomial f (x) of degree
n. Yet something more general might happen: Conceivably, for each polynomial
f (x), there is a radical extension F f /F , containing a copy of the splitting field of
f (x), which is special for that polynomial, without there being one universal radical
extension which does the job for everybody. Thus we say that f (x) is solvable by
radicals if and only if its splitting field lies in some radical extension. Then, if there
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is a polynomial not solvable by radicals, there can be no universal formula. Indeed
that turned out to be the case for polynomials of degree at least five.

This field-theoretic view-point was basically the invention of a French teenager,
Evariste Galois. His account of it appears in a final letter frantically written the night
before he died in a duel, just before his twenty first birthday, we are told.11 The
discovery of his theory might have been delayed for many decades had this letter not
come to light some years after his death.12 For further reading on Galois, the authors
recommend the following references:

Livio, Mario, The Equation That Couldn’t Be Solved: How Mathematical Genius
Discovered the Language of Symmetry, Simon and Schuster, New York, 2005

Rothman T., “The short life of Evariste Galois”, Scientific American, 246, no.4,
(1982), p. 136.

Rothman, Tony, “Genius and biographers: the fictionalization of Evariste Galois,”
Amercan Math. Monthly, 84 (1982), p. 89

The next sections will attempt to describe this theory.

11.9.2 Roots of Unity

Any zero of xn − 1 ∈ F[x] lying in some extension field of F is called an nth root
of unity. If F has characteristic p, a prime, we may write n = m · pa where p does
not divide m and observe that

xn − 1 = (xm − 1)pa
. (11.29)

Thus all nth roots of unity are in fact mth roots of unity in this case.
Of course if α and β are nth roots of unity lying in some extension field of K

of F , then (αβ)n = αnβn = 1 so αβ is also an nth root of unity. Thus the nth
roots of unity lying in K always form a finite multiplicative subgroup of K ∗, which,
by Corollary11.2.9, is necessarily cyclic (of order m, if n = mpe as above). Any
generator of this cyclic group is called a primitive nthroot of unity.

Suppose now that n is relatively prime to the characteristic p of F , or that F has
characteristic zero. Let K be the splitting field of xn − 1 over F . Then xn − 1 is
relative prime to its formal derivative, as nxn−1 �= 0. Therefore, in this case xn − 1
splits completely in K [x]. But even if F had positive characteristic p and if n = mpe

where p does not divide m, the nth roots of unity are, by Eq. (11.29), just the mth
roots of unity, and so the splitting field of xn − 1 is just the splitting field of the

11There is some doubt about this, but his birthday nonetheless seems to be near this date.
12What appears to be an early hand-written copyof this letter (in French) nowexists as a photocopy in
someAmerican University libraries, for example, theMorris Library at Southern Illinois University.



402 11 Theory of Fields

separable polynomial xm −1. Thus in either case, the splitting field K of xn −1 over
the field F is separable (and, of course normal), and hence is Galois over F .

We denote the splitting field over F of xn − 1 by K , and set G = Gal(K/F).
Since K is generated over F by the nth roots of unity, and since G clearly acts on
these roots of unity, this action is necessarily faithful. Finally, it is clear that G acts
as a group of automorphisms of the (cyclic) group of nth roots of unity; since the
full automorphism group of a cyclic group is abelian, G is abelian, as well.

We summarize these observations in the following way:

Lemma 11.9.1 Let n be any positive integer and let F be any field. Let K be the
splitting field of xn − 1 over F. Then the following hold:

(i) K is separable over F and is a simple extension K = F[ζ], where ζ is a
primitive nth root of unity.

(ii) Gal(K/F) is an abelian group.

11.9.3 Radical Extensions

Suppose n is a positive integer. We say that a field F contains all nth roots of unity
if and only if the polynomial xn − 1 splits completely into linear factors in F[x].
Lemma 11.9.2 Let F be a field, let n be a positive integer, and suppose F contains
all nth roots of unity. Suppose α is an element of some extension field of F, where
αn ∈ F. Then

(i) the simple extension F[α] is normal over F, and
(ii) the Galois group Gal(F[α]/F) is cyclic of order equal to a divisor of n.

Proof Note that if K is a splitting field over F for f (x) = xn − αn ∈ F[x],
then for any zero α′ ∈ K of f (x), we have (α′/α)n = 1, and so, by hypothesis,
η = α′/α ∈ F , and so α′ = ηα ∈ F(α), proving that K = F(α), and so F(α) is a
splitting field over F for xn − αn , hence is normal.

Next, the multiplicative group of the nth roots of unity in F is a cyclic group;
let ζ be a generator of this group. Where G = Gal(F(α)/F) is the Galois group
of F(α) over F , we define a mapping φ : G → 〈ζ〉 as follows. We know that
if σ ∈ G, then σ(α) = ζ iσα, for some index iσ; we set φ(σ) = ζ iσ . Next, if
σ,σ′ ∈ G, then σσ′(α) = σ(ζ iσ′ α) = ζ iσ′ σ(α) = ζ iσ′ ζ iσα, and so it follows that
φ(σσ′) = ζ iσ′ ζ iσ = ζ iσ ζ iσ′ = φ(σ)φ(σ′), i.e., φ is a homomorphism of groups. If
σ ∈ ker φ, then σ(α) = α. But then, σ(ζ jα) = ζ jσ(α) = ζ jα, forcing σ = 1.
Therefore, φ embeds G as a subgroup of the cyclic group 〈ζ〉, proving the result. �

Recall from p. 401 that a polynomial p(x) ∈ F[x] is said to be solvable by
radicals if and only its splitting field lies in a radical extension of F .

Theorem 11.9.3 Suppose p(x) is a polynomial in F[x] which is solvable by radi-
cals. Then if E is a splitting field for p(x) over F, Gal(E/F) is a solvable group.
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Proof By hypothesis, there is a radical extension F = F0 ⊆ F1 ⊆ · · · ⊆ Fr such
that E ⊆ Fr . Assume that Fs = Fs−1(αs), s = 1, 2, . . . , r , where each α

js
s ∈ Fs−1.

Let m be the least common multiple of j1, j2, . . . , jr , and let K be a splitting field
over Fr of xm − 1. It suffices to show that Gal(K/F) is solvable, for then Gal(E/F)

would be a quotient of Gal(K/F), and hence would also be solvable.
We argue by induction that Gal(K/F) is solvable. Let η be a generator for the

cyclic group of mth roots of unity in K . We have the tower

F ⊆ F(η) ⊆ F1(η) ⊆ · · · ⊆ Fr−1(η) ⊆ Fr (η) = K ⊇ E .

By Lemma11.9.2 part (i) each of the intermediate subfields Fl(η) is normal over F .
We get a short exact sequence

1 → Gal(Fr (η)/Fr−1(η)) → Gal(K/F) → Gal(Fr−1(η)/F) → 1.

By Lemma11.9.2 part (ii) Gal(Fr (η)/Fr−1(η)) is solvable, and by induction
Gal(Fr−1(η)/F) is solvable. It follows that Gal(K/F), is solvable. The proof is
complete. �

11.9.4 Galois’ Criterion for Solvability by Radicals

In this subsection we will prove a converse to Theorem11.9.3 for polynomials over a
ground field in characteristic zero. (In characteristic p the converse statement is not
even true.) In order to do this, we first require a partial converse to Lemma11.9.2.

Lemma 11.9.4 Let F ⊆ K be a Galois extension of prime degree q, and assume
that the characteristic of F is distinct from q. Assume further that xq − 1 splits
completely in F[x]. Then K is a simple radical extension of F—that is K = F[ζ]
where ζq ∈ F.

Proof Our assumption about the characteristic guarantees that the polynomial xq −1
splits completely into q distinct linear factors in F[x]. Let z1, z2, . . . , zq be the
distinct qth roots of unity in F . We know that the Galois group G = Gal(K/F)

has order dividing the prime q, and so it is cyclic. Fix a generator σ ∈ G, so that
G = 〈σ〉 where σq = 1 ∈ G. (Note that σ may be the identity automorphism.) Now,
for each element θ ∈ K\F we set θi = σi−1(θ), i = 1, 2, . . . , q and define the
corresponding Lagrange resolvents:

(zi , θ) = θ1 + θ2zi + θ3z2i + · · · + θq zq−1
i (11.30)

=
q∑

j=1

σ j−1(θ)z j−1
i (11.31)
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=
q−1∑
j=0

σ j (θ)z j
i . (11.32)

Note that σ(zi , θ) = θ2 + θ3zi + · · · + θ1zq−1
i = z−1

i (zi , θ), and so it follows that
σ(zi , θ)

q = (zi , θ)
q , which says, of course, that (zi , θ)

q ∈ F . Thus, we’ll be finished
as soon as we can show that one of the resolvents (zi , θ) �∈ F . We display Eq. (11.30)
in matrix form: ⎡

⎢⎢⎢⎢⎣
1 z1 z21 · · · zq−1

1

1 z2 z22 · · · zq−1
2

...
...

... · · · ...

1 zq z2q · · · zq−1
q

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

θ1
θ2
...

θq

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(z1, θ)
(z2, θ)

...

(zq , θ)

⎤
⎥⎥⎥⎦

As we have already observed, the qth roots of unity are all distinct (by our assump-
tion that the characteristic of F does not divide q), and so by Corollary11.2.8, this
Vandermonde matrix on the left can be inverted to solve for each of the coefficients
θ1, θ2, . . . , θq as F-linear combinations of the resolvents (z1, θ), i = 1, 2, . . . , q.
Since θ1 = θ �∈ F , we conclude immediately that at least one of the resolvents
(zi , θ) �∈ F , and we are finished. �

We are now ready for the main result of this section.

Theorem 11.9.5 Suppose F is a field of characteristic zero and that f (x) is a
polynomial in F[x]. Let K be the splitting field of f (x) over F. If G = Gal(K/F)

is a solvable group then the equation f (x) = 0 is solvable in radicals.

Proof Let E be a splitting field over K for the polynomial xn − 1, where n = |G|,
and let ζ be a primitive nth root of unity so that E = K (ζ). Now both K and and
F(ζ) are splitting fields and so E is a normal extension of each of the subfields.
These extensions are Galois extensions since they are also separable for the reason
that all fields in sight have characteristic zero.

Since K is invariant under Gal(E/F), there is a restriction homomorphism
φ : Gal(E/F) → G, σ �→ σ|K , with kernel Gal(E/K ), mapping each F-
automorphism of E to the automorphism it induces on K . Let H = Gal(E/F(ζ)), a
normal subgroup of Gal(E/F). The restriction of the homomorphismφ to H is injec-
tive since any element τ ∈ H fixing K point-wise fixes ζ and hence fixes E = K (ζ)

point-wise. Thus φ embeds H into the solvable group G = Gal(K/F), and so H
itself is solvable.

Next, form the subnormal series

H = H0 � H1 � · · · � Hm = 1,

where each quotient Hi/Hi+1, i = 0, 1, . . . , m − 1, is cyclic of prime order. Next
set Ei = invHi (E); then Ei+1 is Galois over Ei and Gal(Ei+1/Ei ) ∼= Hi/Hi+1,
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which is cyclic of prime order. Apply Lemma11.9.4 to infer that Ei+1 is a radical
extension of Ei , i = 0, 1, . . . , m − 1. Since the field at the bottom of this chain,
E0 = invH (E) = F(ζ) is patently a radical extension of F , we see that E is a radical
extension of F . The result now follows. �

Corollary 11.9.6 (Galois’ solvability criterion) Assume f (x) ∈ F[x] where F has
characteristic zero. Then the polynomial f (x) is solvable by radicals if and only if
the Galois group Gal(K/F) of the splitting field K for f (x) is a solvable group.

Proof This is just a combination of Theorems11.9.3 and 11.9.5. �

Example 56 Let E = GF(2) and let F = E(x) be the field of rational functions
in the indeterminate x . Let f (y) = y2 + xy + x ∈ F[y], irreducible by Eisenstein
(see Exercise (8) in Sect. 9.13.1, p. 318) and separable as ∂ f (y) = x �= 0. Thus, the
splitting field K over F for f (y) is a Galois extension of degree 2, and therefore has
Galois group G = Gal(K/F) cyclic of order 2. We shall argue, however, that f (y)

is not solvable by radicals. Thus, assume that F = F0 ⊆ F1 ⊆ · · · ⊆ Fr ⊇ K is a
root tower over F , say Fi = Fi−1(ai ), where an1

i ∈ Fi−1. Next let m be the least
common multiples of the exponents n1, n2, . . . , nr , and let L ⊇ Fr be the splitting
field over Fr for the polynomial xn − 1. Let ζ be a generator of the cyclic group of
zeros of xn − 1 in L .

Note that F(ζ) = E(ζ)(x) and—again using Eisenstein— f (y) continues to be
separable and irreducible over F(ζ). ThereforeGal(F(ζ)(α)/F(ζ)) is cyclic of order
2. We set E ′ = E(ζ), a finite field of characteristic 2 over which the polynomial
xn − 1 splits completely. At the same time, we set F ′

i = Fi (ζ), i = 0, 1, . . . , r , so
that F ′

0 = F(ζ) = E ′(ζ).
Next, note that if nr = m2e, where m is odd, then set br = a2e

r and obtain the
subextension:

F ′
r−1 ⊆ F ′

r−1(br ) ⊆ F ′
r−1(ar ) = F ′

r .

By Corollaries11.5.7 and 11.5.11 we may conclude that F ′
r−1(br ) is precisely the

subfield (F ′
r )sep of Fr . If α ∈ K is a zero of f (y), then α is separable over F ′, and

hence is separable over every subfield of F ′
r . This puts α ∈ (F ′

r )sep = F ′
r−1(br ).

Next, as F ′
r−1 contains all nth roots of unity, we may apply Lemma11.9.2 to infer

that Gal(F ′
r−1(br )/F ′

r−1) is not only cyclic but is of order a divisor of m, which is
odd. But, since α is separable over F ′, it is separable over F ′

r−1. As α satisfies a
polynomial of degree 2, and since

F ′
r−1 ⊆ F ′

r−1(α) ⊆ F ′
r−1(br ),

we conclude immediately that α ∈ F ′
r−1. Continuing this argument, we eventually

reach the conclusion that α ∈ F ′
0 = F ′, which is false. Therefore the polynomial

f (y) = y2 + xy + x ∈ F[x] is not solvable by radicals despite having a Galois
group which is cyclic of order 2.

http://dx.doi.org/10.1007/978-3-319-19734-0_9
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11.10 The Primitive Element Theorem

It seems to be a tradition that a course in higher algebra must include the “primitive
element theorem” (Theorem11.10.2 below). Of course it is of interest, but its use-
fulness seems vastly over-rated. It is not used to prove any further theorem in this
book and the reader who has better things to do is invited to skip this subsection.

Inmany of our concrete discussions of splitting fields of polynomials, we obtained
such fields over the base field by adjoining several field elements. For example, an
oft-quoted example is that of the splitting field K over the rational field Q of the
irreducible polynomial x4 −2 ∈ Q[x]. Since the (complex) zeros of this polynomial
are ±ω,±iω, where ω = 4

√
2, the definition of splitting field might compel us to

describe K by listing all of the zeros, adjoined to Q: K = Q(ω,−ω, iω,−iω).
However, it’s obvious that the second and fourth roots listed above are superfluous,
and so we can write K more simply as K = Q(ω, iω). Of course, there are variants
of this representation, as a moment’s thought reveals that also K = Q(i,ω). At this
stage, onemight inquire as towhether one canwrite K as a simple extension ofQ, that
is, as K = Q(α), for some judiciously chosen element α ∈ K . In this case, we shall
take a somewhat random stab at this question and ask whether K = Q(i +ω). In this
situation,we can argue in the affirmative, as follows. IfG = Gal(K/Q), and ifσ ∈ G,
then clearly σ(i + ω) = ±i ± ω, or σ(i + ω) = ±i ± iω. However, one concludes
very easily that the elements i,ω and iω are Q-linearly independent. Therefore,
σ(i +ω) = i +ω if and only if σ = 1. That is to say, Gal(K/Q(i + ω)) = 1, forcing
Q(i +ω) = K , and we have succeeded in representing K as a simple extension ofQ.

Henceforth, if F ⊆ K is a simple field extension, then any element α ∈ K with
K = F(α) is called a primitive element of K over F .

The theorem below gives a somewhat surprising litmus test for a finite extension
to be a simple field extension.

Theorem 11.10.1 Let F ⊆ K be a field extension of finite degree. Then K has a
primitive element over F if and only if there are only a finite number of subfields
between F and K .

Proof Assume first that K = F(α) for some α ∈ K . Set f (x) = IrrF (α), and
assume that E is an intermediate subfield: F ⊆ E ⊆ K . Let g(x) = IrrE (α);
clearly g(x)| f (x). Furthermore, if E ′ ⊆ K is the subfield generated over F by the
coefficients of g(x), then it is clear that E ′ ⊆ E . Furthermore, we also have that
g(x) = IrrE ′(α), and so

[K : E] = deg g(x) = [K : E ′],

forcing E = E ′. Therefore, we see that subfields of K containing F are generated by
coefficients of factors of f (x) in K [x]. There are clearly finitely many such factors,
so we are finished with this case.

Conversely, assume that there are only finitely many subfields of K containing
F . As [K : F] < ∞, we clearly have K = F(α1,α2, . . . ,αr ) for suitable elements
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α1,α2, . . . ,αr ∈ K . By induction, we shall be finished provided that we can show
that for any pair of elements α,β ∈ K , F(α,β) has a primitive element over F .
Clearly, we may assume that the field F is infinite. Our hypothesis therefore implies
that there must exist elements a �= b ∈ F with F(α + aβ) = F(α + bβ). But then,

β = (a − b)−1(α + aβ − α − bβ) ∈ F(α + aβ).

Thus α = α + aβ − aβ ∈ F(α + aβ). Thus F(α,β) = F(α + bβ), proving the
desired result. �

Remark The assumption above that F ⊆ K be a finite-degree extension is crucial.
Indeed, if F is any field, if x is indeterminate over F , then K = F(x) has infinitely
many subfields, including F(xn), n = 1, 2, . . . .

From Theorem11.10.1 we extract the following main result.

Theorem 11.10.2 (Primitive Element Theorem) Let F ⊆ K be a finite-degree,
separable field extension. Then K contains a primitive element over F.

Proof Given that the extension F ⊆ K has finite degree and is separable, we
may write K = F(α1,α2, . . . ,αr ) where fi (x) = IrrF (αi ), i = 1, 2, . . . , r are
separable polynomials. Therefore, if E is a splitting field over F for the product
f1(x) f2(x) · · · fr (x), then E is Galois over F , is of finite degree over F , and hence
its Galois group G = Gal(E/F) is a finite group. Since the subfields of E containing
F are in bijective correspondence with the subgroups of G, we see, a fortiori, that
there can only be finitely many subfields between F and K . Now apply Theorem
11.10.1. �

11.11 Transcendental Extensions

11.11.1 Simple Transcendental Extensions

Suppose K is some extension field of F . Recall that an element α of K is said to
be algebraic over F if and only if there exists a polynomial p(x) ∈ F[x] such that
p(α) = 0. Otherwise, if there is no such polynomial, we say that α is transcendental
over F and that F(α) is a simple transcendental extension of F .

Recall further that a rational function over F is any element in the field of quotients
F(x) of the integral domain F[x].13 Thus every rational function r(x) is a quotient
f (x)/g(x) of two polynomials in F[x], where g(x) is not the zero polynomial, and
f (x) and g(x) are relatively prime. For each element α ∈ K , we understand r(α) to
be the element

13Note that round parentheses distinguish the field F(x) from the polynomial ring F[x].
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r(α) := f (α) · (g(α))−1,

provided α is not a zero of g(x). If α is transcendental over F , then r(α) is always
defined.

Lemma 11.11.1 If F(α) is a transcendental extension of F, then there is an iso-
morphism F(α) → F(x) taking α to x.

Proof Define the mapping ε : F(x) → F(α) by setting ε(r(x)) := r(α), for every
r(x) ∈ F(x). Clearly ε is a ring homomorphism. Suppose

r1(x) = a(x)

b(x)
, r2(x) = c(x)

d(x)
,

are rational functions with r1(α) = r2(α). Wemay assume a(x), b(x), c(x) and d(x)

are all polynomials with b(x)d(x) �= 0. Then

a(α)d(α) − b(α)c(α) = 0.

Sinceα is transcendental, a(x)d(x) = b(x)c(x) so r1(x) = r2(x). Thus ε is injective.
But its image is a subfield of F(α) containing F and the element ε(x) = α and so it
is also surjective. Thus ε is bijective, and so ε−1 is the desired isomorphism. �

Now suppose F(α) is a simple transcendental extension of F , and let β be any
element of F(α). By Lemma11.11.1, there exist a coprime pair of polynomials
( f (x), g(x)), with g(x) �= 0 ∈ F[x], such that

β = f (α)(g(α))−1.

Suppose

f (x) = a0 + a1x + · · · + an xn

g(x) = bo + b1x + · · · + bn xn

where n is the maximum of the degrees of f (x) and g(x), so at least one of an or bn

is non-zero. Then f (α) − βg(α) = 0, so

(a0 − βb0) + (a1 − βb1)α + · · · + (an − βbn)αn = 0.

Thus α is a zero of the polynomial

hβ(x) := (a0 − βb0) + (a1 − βb1)x + · · · + (an − βbn)xn

in F(β)[x].
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Claim The polynomial hβ(x) is the zero polynomial if and only if β ∈ F.

First, if β ∈ F , then hβ(x) = f (x) − βg(x) is in F[x]. If hβ(x) were a non-zero
polynomial, then its zero, α, would be algebraic over F , which it is not. Thus hβ(x)

is the zero polynomial.
On the other hand, if hβ(x) is the zero polynomial, each coefficient ai − βbi is

zero. Now, since g(x) is not the zero polynomial, for some index j , b j �= 0. Then
β = a j · b−1

j , an element of F .
The claim is proved.

Now suppose β is not in F . Then the coefficient (ai − βbi ) is zero if and only
if ai = 0 = bi , and this cannot happen for i = n as n was chosen. Thus hβ(x)

has degree n. So certainly α is algebraic over the intermediate field F(β). Since
[F(α) : F] is infinite, and [F(α) : F(β)] is finite, [F(β) : F] is infinite, and so β is
transcendental over F .

We shall now show that hβ(x) is irreducible in F(β)[x].
Let D := F[y] be the domain of polynomials in the indeterminate y, with coef-

ficients from F . (This statement is here only to explain the appearance of the new
symbol y.) Then F(y) is the quotient field of D. Since β is transcendental over F ,
Lemma11.11.1 yields an F-isomorphism

ε : F(β) → F(y)

of fields which can be extended to a ring isomorphism

ε∗ : F(β)[x] → F(y)[x].

Then h(x) := ε∗(hβ(x)) = f (x) − yg(x) is a polynomial in D[x] = F[x, y].
Moreover,hβ(x) is irreducible in F(β)[x] if andonly ifh(x) is irreducible in F(y)[x].
Now since D = F[y] is a UFD, by Gauss’ Lemma, h(x) ∈ D[x] is irreducible in
F(y)[x] if and only if it is irreducible in D[x]. Now, D[x] = F[y, x] is a UFD and
h(x) is degree one in y. So, if h(x) had a non-trivial factorization in D[x], one of the
factors k(x) would be of degree zero in y and hence a polynomial of positive degree
in F[x]. The factorization is then

h(x) = f (x) − yg(x) = k(x)(a(x) + yb(x)),

where k(x), a(x) and b(x) all lie in F[x]. Then f (x) and g(x) possess the common
factor k(x) of positive degree, against the fact that f (x) and g(x) were coprime in
F[x]. We conclude that h(x) is irreducible in F(y)[x], and so hβ(x) is irreducible
of degree n in F(β)[x] as promised.

We now have the following

Theorem 11.11.2 (Lüroth’s Theorem) Suppose F(α) is a transcendental extension
of F. Let β be an element of F(α) − F. Then we can write β = f (α)/g(α) where
f (x) and g(x) are a pair of coprime polynomials in F[x], unique up to multiplying
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the pair through by a scalar from F. Let n be the maximum of the degrees of f (x)

and g(x). Then [F(α) : F(β)] = n. In particular, α is algebraic over F(β).

Remark Ageneral consequence is that if E is an intermediate field distinct from F—
that is, F < E ≤ F(α)—then [E : F] is infinite. In particular, F(α)—F contains
no elements which are algebraic over F (a fact that has an obvious direct proof from
first principles).

Lüroth’s theorem gives us a handle on the Galois group Gal(F(α)/F) of a tran-
scendental extension. Suppose now that σ is an F-automorphism F(α) → F(α).
Then σ is determined by what it does to the generator α. Thus, setting β = σ(α),
for any rational function t (x) of F , we have σ(t (α)) = t (β). Now in particular
β = r(α) for a particular rational function r(x) = f (x)/g(x) where ( f (x), g(x)) is
a coprime pair of polynomials in F[x]. Since σ is onto, F(α) = F(β). On the other
hand, by Lüroth’s Theorem, [F(α) : F(β)] is the maximum of the degrees of f (x)

and g(x). Thus we can write

β = aα + b

cα + d
, (11.33)

where a, b, c and d are in F , a and c are not both zero, and ad − bd �= 0 to keep the
polynomials ax + b and cx + d coprime. Actually the latter condition implies the
former, that a and c are not both zero.

Now let G = Gal(F(α)/F) and set O := αG , the orbit of α under G. Our
observations so far are that there exists a bijection between any two of the following
three sets:

1. the elements of the group Gal(F(α)/F),
2. the orbit O , and
3. the set LF(F) of so-called “linear fractional” transformations,

ω → aω + b

cω + d
, a, b, c, d ∈ F, ad − cb non-zero,

viewed as a set of permutations of the elements of O .

A perusal of how these linear factional transformations compose shows thatLF(F)

is a group, and that in fact, there is a surjective group homomorphism

GL(2, F) → LF(2, F),

defined by

(
a b
c d

)
→

[
the transformation z → az + b

cz + d
on set O

]
,

where the matrix has non-zero determinant—i.e. is invertible. The kernel of this
homomorphism is the subgroup of two-by-two scalar matrices γ I , comprising the



11.11 Transcendental Extensions 411

center ofGL(2, F).As the readerwill recall, the factor group,GL(2, F)/Z(GL(2, F))

is called the “one-dimensional projective group over F” and is denoted PGL(2, F).
Our observation, then, is that

Gal(F(α)/F) � LF(F) � PGL(2, F).

Notice how the fundamental theorem of Galois Theory falls to pieces in the case
of transcendental extensions. Suppose F is the field Z/pZ, the ring of integers
mod p, a prime number. If α is transcendental over F , then [F(α) : F] is infinite,
while Gal(F(α)/F) is PGL(2, p), a group of order p(p2 − 1) which, when p ≥ 5,
contains at index two, a simple subgroup.

Let K be an extension of the field F . We define a notion of algebraic dependence
over F on the elements of K as follows:We say that elementα algebraically depends
(over F) on the finite subset {β1, . . . ,βn} if and only if

• α is algebraic over the subfield F(β1, . . . ,βn).

Theorem 11.11.3 Algebraic dependence over F is an abstract dependence relation
on K in the sense of Chap.2, Sect. 2.6.

Proof We must show that the relation of algebraic dependence over F satisfies the
three required properties of a dependence relation: reflexivity, transitivity and the
exchange condition.

Clearly if β ∈ {β1, . . . ,βn}, then β lies in F(β1, . . . ,βn) and so is algebraic over
it. So the relation is reflexive.

Now suppose γ is algebraic over F(α1, . . . ,αm), and each αi is algebraic over
F(β1, . . . ,βn). Then certainly, αi is algebraic over the field

F(β1, . . . ,βn,α1, . . . ,αi−1).

So, setting B := {β1, . . . ,βn}, we obtain a tower of fields,

F(B) ≤ F(B,α1) ≤ F(B,α1,α2) ≤ · · ·
≤ F(B,α1, . . . ,αn) ≤ F(β1, . . . ,βm,α1, . . . ,αn, γ)

with each field in the tower of finite degree over its predecessor. Thus the top field in
the tower is a finite extension of the bottom field, and so γ is algebraic over F(B).

We now address the exchange condition: we are to show that if γ is algebraic over
F(β1, . . . ,βn} but is not algebraic over F(β1, . . . ,βn−1}, then βn is algebraic over
the field F(β1, . . . ,βn−1, γ}.14

14It is interesting to observe that in this context the Exchange Condition is essentially an “implicit
function theorem”. The hypothesis of the condition, transferred to the context of algebraic geom-
etry, says that the “function” γ is expressible locally in terms of {β1, . . . ,βn} but not in terms of
{β1, . . . ,βn−1}. Intuitively, this means ∂γ

∂βn
�= 0 , from which we anticipate the desired conclusion.

http://dx.doi.org/10.1007/978-3-319-19734-0_2
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By hypothesis, there is a polynomial relation

0 = akγ
k + ak−1γ

k−1 + · · · + a1γ + a0 (11.34)

where ak is non-zero, and each a j is in F(β1, . . . ,βn), and so, at the very least, can be
expressed as a rational function, n j/d j , where the numerators n j and denominators
d j are polynomials in F[β1, . . . ,βn]. We can then multiply Eq. (11.34) through by
the product of the di , from which we see that without loss of generality, we may
assume the coefficients ai are polynomials—explicitly:

ai =
∑

j
bi jβ

j
n , bi j ∈ F[β1, . . . ,βn−1], ak �= 0. (11.35)

Then substituting the formulae of Eq. (11.35) into Eq. (11.34), and collecting the
powers of βn , we obtain the polynomial relation

0 = pmβm
n + pm−1β

m−1
n + · · · p1βn + p0, (11.36)

with each coefficient
pt =

∑k

s=0
bstγ

s, (11.37)

a polynomial in the ring F[β1, . . . ,βn−1, γ].
Now we get the required algebraic dependence of βn on {β1, . . . ,βn−1, γ} from

Eq. (11.36), provided not all of the coefficients pt are zero. Suppose, by way of
contradiction, that they were all zero. Then as γ does not depend on {β1, . . . ,βn−1},
having each of the expressions in Eq. (11.37) equal to zero forces each coefficient bst

to be zero, so by Eq. (11.35), each ai is zero. But that is impossible since certainly
ak is non-zero.

Thus the Exchange Condition holds and the proof is complete. �

So, as we have just seen, if K is an extension of the field F , then the relation of
being algebraically dependent over F is an abstract dependence relation, and we call
any subset X of K which is independent with respect to this relation algebraically
independent (over F). By the basic development of Chap.1, Sect. 1.3, maximal alge-
braically independent sets exist, they “span” K , and any two such sets have the same
cardinality. We call such subsets of K transcendence bases of K over F , and their
common cardinality is called the transcendence degree of K over F , and is denoted

tr.deg(K/F).

If X is a transcendence basis for K over F , then the “spanning” property means
that every element of K is algebraic over the subfield F(X) generated by X . One
calls K (X) a “purely transcendental” extension of F , although this notion conveys
little since it is completely relative to X . For example, if x is a real number that is

http://dx.doi.org/10.1007/978-3-319-19734-0_1
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transcendental over Q, the field of rational numbers, then both Q(x) and Q(x2) are
purely transcendental extensions ofQ, while the former is algebraic over the latter.15

Nextwe observe that transcendence degrees add (in the sense of cardinal numbers)
under iterated field extension just as ordinary degrees multiply. Specifically:

Corollary 11.11.4 Suppose we have a tower of fields

F ≤ K ≤ L .

Then
tr.deg[K : F] + tr.deg[L : K ] = tr.deq[L : F].

Proof Let X be a transcendence basis of K over F and let Y similarly be a transcen-
dence basis of L over K . Clearly then, X ∩ Y = ∅, every element of K is algebraic
over F(X), and every element of L is algebraic over K (Y ).

The corollary will be proved if we can show that X ∪ Y is a transcendence basis
of L over F .

First, we claim that X ∪ Y spans L—that is, every element of L is algebraic over
F(X ∪ Y ). Let λ be an arbitrary element of L . Then there is an algebraic relation

λm + amλm−1 + · · · + a1λ + a0 = 0,

where m ≥ 1, and the coefficients ai are elements of K (Y ). This means that each of
them can be expressed as a quotient of two polynomials in K [Y ]. Let B be the set of
all coefficients of the monomials in Y appearing in the numerators and denominators
of these quotients representing ai , as i ranges over 0, 1, . . . , m. Then B is a finite
subset of K , and λ is now algebraic over F(X ∪ Y ∪ B). Since each element of B is
algebraic over F(X), F(X ∪ B) is a finite extension of F(X), and so F(X ∪ Y ∪ B)

is a finite extension of F(X ∪ Y ). It then follows that F(X ∪ Y ∪ B,λ) is a finite
extension of F(X ∪ Y ), and so λ is algebraic over F(X ∪ Y ) as desired.

It remains to show that X ∪ Y is algebraically independent over Y . But if not,
there is a polynomial p ∈ F[z1, . . . , zn+m] and finite subsets {x1, . . . , xm} and
{y1, . . . , yn} of X and Y , respectively, such that upon substitution of the m xi for the
first m zi ’s, and the yi for the remaining n zi ’s, one obtains

0 = p(x1, . . . , xm, y1, . . . ym).

Now this can be rewritten as a polynomial whose monomial terms are monomials
in the yi , with coefficients which are polynomials ck in F[z1, . . . , zn] evaluated
at x1, . . . , xn . Since the yi are algebraically independent over K , the coefficient
polynomials ck are each equal to zero when evaluated at x1, . . . , xn . But again,

15In this connection, there is a notion that is very useful in looking at the subject of Riemann
Surfaces from an algebraic point of view: A field extension K of F of finite transcendence degree
over F is called an algebraic function field if and only if, for any transcendence basis X , K is a
finite extension of F(X).
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since the x j are algebraically independent over F , we see that each polynomial ck

is identically 0. This means that the original polynomial p was the zero polynomial
of F[z1, . . . , zm+n], establishing the algebraic independence of X ∪ Y . The proof is
complete. �.

Corollary 11.11.5 An algebraic extension of an algebraic extension is algebraic.
Precisely, if F ≤ K ≤ L is a tower of fields with K an algebraic extension of F and
L an algebraic extension of K , then L is an algebraic extension of F.

Proof This follows from the previous theorem and the fact that zero plus zero is
zero.

Remark Before, we knew this corollary anyway, but with the word “finite degree”
replacing the word “algebraic” in the statement.

11.12 Exercises

11.12.1 Exercises for Sect. 11.2

1. Compute the minimal polynomials in Q[x] of each of the following complex
numbers. (Recall that if a is a positive real number and n is a positive integer,
the symbol n

√
a refers to the positive nth root of a.)

(a)
√
2 +√

3.
(b)

√
2 + ζ, where ζ = e2πi/3.

(c)
√
2 +√

2
(d) ζ + ζ−1, where ζ = e2πi/16

(e) ζ + ζ−1, where ζ = e2πi/7

2. Let F ⊆ K be a field extension with [K : F] odd. If α ∈ K , prove that
F(α2) = F(α).

3. Assume that α = a + bi ∈ C is algebraic over Q, where a is rational and b is
real. Prove that IrrQ(α) has even degree.

4. Let K = Q(
3
√
2,

√
2) ⊆ C. Compute [K : Q].

5. Let f (x) = x5 − 9x3 + 3x + 3 ∈ Q[x].
(i) Show that f (x) is irreducible over Q.
(ii) Show that f (x) is irreducible over Q(i).

6. Let K = Q(
4
√
2, i) ⊆ C. Show that

(a) K contains all roots of x4 − 2 ∈ Q[x].
(b) Compute [K : Q].
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7. Compute ⎡
⎣Q

⎛
⎝
√
2 +

√
2 +√

2

⎞
⎠ : Q

⎤
⎦

8. Let F ⊆ E ⊆ K be fields, let α ∈ K , and let f (x) = IrrF (α). Assume that
[E : F] and deg f (x) are relatively prime. Prove that f (x) = IrrE (α).

9. Let F be any field, and prove that there are infinitely many irreducible polyno-
mials in F[x]. [Hint: Euclid’s proof of the corresponding result for the ring Z

works here, too.]
10. Let F = C(x), where C is the complex number field and x is an indeterminate.

Assume that F ⊆ K and that K contains an element y such that y2 = x(x − 1).
Prove that there exists an element z ∈ F(y) such that F(y) = C(z), i.e., F(y)

is a “simple transcendental extension” of C.
11. Let F ⊆ K be a field extension. If the subfields of K containing F are totally

ordered by inclusion, prove that K is a simple extension of F . (Is the converse
true?)

12. Let Q ⊆ K be a field extension. Assume that K is closed under taking square
roots, i.e., if α ∈ K , then

√
α ∈ K . Prove that [K : Q] = ∞.

13. Suppose the field F is a subring of the integral domain R. If every element of R
is algebraic over F , show that R is actually a field. Give an example of a non-
integral domain R containing a field F such that every element of R is algebraic
over F . Obviously, R cannot be a field.

14. Let F ⊆ K be fields and let f (x), g(x) ∈ F[x] with f (x)|g(x) in K [x]. Prove
that f (x)|g(x) in F[x].

15. Let F ⊆ K be fields and let f (x), g(x) ∈ F[x]. If d(x) is the greatest common
denominator of f (x) and g(x) in F[x], prove that d(x) is the greatest common
denominator of f (x) and g(x) in K [x].

16. Let F ⊆ E1, E2 ⊆ E be fields. Define E1E2 ⊆ E to be the smallest field
containing both E1 and E2. E1E2 is called the composite (or compositum) of
the fields E1 and E2. Prove that if [E : F] < ∞, then [E1E2 : F] ≤ [E1 :
F] · [E2 : F].

17. Given a complex number α it can be quite difficult to determine whether α is
algebraic or transcendental. It was known already in the nineteenth century that
π and e are transcendental, but the fact that such numbers as eπ and 2

√
2 are

transcendental is more recent, and follows from the following deep theorem of
Gelfond and Schneider: Let α and β be algebraic numbers. If

η = logα

logβ

is irrational, then η is transcendental. (See E. Hille, American Mathematical
Monthly, vol. 49 (1942), pp. 654–661.) Using this result, prove that 2

√
2 and eπ

are both transcendental. [Hint: For 2
√
2, set α = 2

√
2, β = 2.]
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11.12.2 Exercises for Sect. 11.3

1. Let f (x) = xn − 1 ∈ Q[x]. In each case below, construct a splitting field K
over Q for f (x), and compute [K : Q].
(i) n = p, a prime.
(ii) n = 2p, where p is prime.
(iii) n = 6.
(iv) n = 12.

2. Let f (x) = xn − 2 ∈ Q[x]. Construct a splitting field for f (x) over Q.
3. Let f (x) = x3 + x2 − 2x − 1 ∈ Q[x].

(a) Prove that f (x) is irreducible.
(b) Prove that if α ∈ C is a root of f (x), so is α2 − 2.
(c) Let K ⊇ Q be a splitting field over Q for f (x). Using part (b), compute

[K : Q].
4. Let ζ = e2πi/7 ∈ C, and let α = ζ +ζ−1. Show that IrrQ(α) = x3+ x2−2x −1

(as in Exercise 3 above), and that α2 − 2 = ζ2 + ζ−2.
5. Write the complex splitting field for x3 − 2 ∈ Q[x] in the form Q(α), for some

α ∈ C.

6. Let ζ = e2πi/n ∈ C and set ω = ζ + ζ−1. Show that Q(ω) is a normal extension
of Q.

7. Give an example of a normal extension Q ⊆ K such that [K : Q] = 3.
8. Let F = C(x) be the field of rational functions over the complex field C and let

f (y) = y3 − x ∈ F[y]. Let α be a zero of f (y) in some splitting field over F
and show that F(α) is a normal extension of F .

9. Let E = Q(
5
√
2), and let K be a normal closure of E over Q. Compute [K : Q].

10. Which of the following simple extensions of the rational field are normal?

(a) Q(
√
2 +√

3),

(b) Q

(√
2 +√

2
)
,

(c) Q

(√
2 +

√
2 +√

2

)
,

(d) Q(ζ 4
√
2), where ζ = e2πi/8.

11.12.3 Exercises for Sect. 11.4

1. Let q be a prime power, set F = GF(q) and let E ⊇ F be a field extension
of degree n. Let σ be the qth power automorphism of E (sometimes called the
Frobenius map of E), given by F(α) = αq . Define the norm map

N = NE/F : E −→ F
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by setting
N (α) = α · σ(α) · σ2(α) · · · σn−1(α).

Note that N restricts to a mapping

N : E∗ −→ F∗,

where E∗ and F∗ are the multiplicative groups of no-zero elements of E and F .

(a) Show that N : E∗ → F∗ is a group homomorphism.
(b) Show that |ker N | = qn−1

q−1 .

2. Let p be a prime and let r be a positive integer. Prove that there exists an irreducible
polynomial of degree r over F = GF(p). [Hint: Isn’t this equivalent to the
existence of an extension field K ⊇ F of degree r?]

3. Let p be prime, n a positive integer and set q = pn . Let F = GF(p) and show
that if f (x) ∈ F[x] is irreducible of degree n, then f (x)|xq − x . More generally,
show that if f (x) is irreducible of degree m, where m|n, then again, f (x)|xq − x .

4. Show that if F = GF(q), then the polynomial x2 + x + 1 ∈ F[x] is irreducible
if and only if 3 � | q − 1.

5. For any integer n, let Dn be the number of irreducible polynomials of degree n
in F[x], where F = GF(q). Prove that

Dn = 1

n

∑
k|n

μ
(n

k

)
qk .

[Hint: Note that, by Exercise 3, qn = ∑
k|n k · Dk ; now use theMöbuis Inversion

Theorem (see Example43, Theorem7.4.3, p. 217).]
6. Here’s another application of Möbius inversion. Let F be a field and let C be a

finitemultiplicative subgroup of themultiplicative group F∗ of non-zero elements
of F . We know C to be cyclic. Assume that |C | = n, and d|n, and let Nd be the
sum in F of the elements of order d in C . Thus Nn is the sum in F of the φ(n)

generators of C . Prove that, in fact,

Nn = μ(n).

[Hint: Study f (n) = ∑
d|n

Nd ; how does this relate to the polynomial xn − 1 ∈
F[x]?)]

7. Let F = GF(q), where q = pn and p is an odd prime.

(i) Show that for any α ∈ F , and any prime power r = pk , one has

(x − α)r−1 = xr−1 + αxr−2 + · · · + αr−2x + αr−1.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7
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(ii) Suppose m is an integer between 1 and p − 1, inclusive. Prove that if α is
a zero of a polynomial f (x) ∈ F[x] with multiplicity exactly m, then α is
a zero of the formal derivative f ′(x) of multiplicity exactly m − 1. [Hint:
Write f (x) = (x − α)mg(x) where g(α) �= 0, then apply the product rule
for the formal derivative.]

(iii) Suppose m is as it is in part (ii) of this problem. For fixed non-zero α ∈ F ,
define the polynomial

fm,α(x) :=
∑p−1

i=1
im xiαp−i .

(Whenα = 1andm = (p−1)/2 these are knownas theFekete polynomials.)
Show that α is a root of fm,α(x) with multiplicity exactly m. [Hint: Use (i)
to observe that

f0,α(x) + αp−1 = (xα)p−1.

Then observe that for m ≥ 1, fm+1,α(x) = x f ′
m,α(x) and apply part (ii) of

this problem.]

11.12.4 Exercises for Sect. 11.5

1. Let k = GF(3), and set F = k(x), the field of rational functions over k in x . Let
f (y) = y6 + x2y3 + x ∈ F[y].
(a) Show that f (y) is irreducible over F .
(b) Let α be a root of f (y) in some splitting field over F . Is F(α) separable

over F?
(c) If K = F(α) as above, determine [K : F] and [Ksep : F].

2. Let F be a field of characteristic p. Determine the number of roots of the polyno-
mial xn − 1 ∈ F[x] in some splitting field. [Hint: write n = mpe, where p does
not divide m.]

11.12.5 Exercises for Sect. 11.6

1. Let F ⊆ K be a finite extension of fields, and let E1, E2 be two intermediate
subfields. Assume that F ⊆ E1 is a Galois extension and that K is generated over
F by E1 and E2. Prove that

(a) E2 ⊆ K is a Galois extension, and that
(b) Gal(K/E2) ∼= Gal(E1/E1 ∩ E2).
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2. Assume that F ⊆ K is a field extension of finite degree, and let E1, E2 be
intermediate subfields, both Galois over over F , and generating K . Prove that K
is Galois over E2 and that Gal(K/E2) is isomorphic to a subgroup of Gal(E1/F).
(This is the so-called Lemma on Accessory Irrationalities.)

11.12.6 Exercises for Sect. 11.8

1. Using Möbius inversion, prove that

�n(x) =
∏
d|n

(xd − 1)μ(n/d).

2. Consider the polynomial x4 + 3 ∈ Q[x], and let K ⊆ C be its splitting field.

(a) Show that K = Q(i,ω), where ω = ζ 4
√
3, and where ζ = e2πi/8.

(b) Compute [K : Q].
(c) If we write the zeros of f (x) as a1 = ω, a2 = −ω, a3 = iω, a4 = −iω,

calculate the stabilizer in G of a1, with its elements written in cycle notation.
(So for instance, an element σ = (2 3 4) would fix a1 and do this:

a2
σ�→ a3

σ�→ a4
σ�→ a2.

Incidentally, does such an element exist in G? Why or why not?)
(d) Is G abelian? Why or why not?
(e) Assuming that you determined that G is, in fact, non-abelian, give a non-

normal subfield E , with Q ⊆ E ⊆ K .
(f) List all the elements of G, using cycle notation.

3. Let α =√
2+√

3, and set p(x) = IrrQ(α). Compute the Galois group of p(x).

4. Let α =
√
2 +

√
2 +√

2, let q(x) = IrrQ(), and compute the Galois group of
q(x).

5. Are the Galois groups of the polynomials x8 − 2, x8 − 3, and x8 − 5 in Q[x] all
isomorphic? Investigate.

6. Let ζ = e2πi/32, and set K = Q(ζ).

(a) Show that K is a separable normal extension of Q.
(b) Let α be as in Problem 4, above. Show that Q(α) ⊆ K and compute [K :

Q(α)]. [Hint: Look at ζ + ζ−1.]
(c) Compute IrrQ(ζ) ∈ Q[x].

7. Let f (x) = x6 − 4x3 + 1 ∈ Q[x].
(a) Show that if ω = 3

√
2 + √

3 is real and ζ = e2πi/3 ∈ C, then the complex
splitting field K of f (x) is Q(ζ,ω).
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(b) Show that f (x) is irreducible. [Hint: If it’s not, it has a linear, quadratic, or
cubic factor. Use the factorization of f (x) ∈ K [x] into linear factors and
show that the product of at most three of these factors cannot be in Q[x].]

(c) Label the zeros of f (x) as a1 = ω, a2 = ζω, a3 = ζ2ω, a4 =
ω−1, a5ζω−1, a6 = ζ2ω−1. Show
i. With the above correspondence, show that the following elements are

in G:
γ = (2 3)(5 6) (complex conjugation),

σ = (1 2 3)(4 6 5), τ = (1 4)(2 5)(3 6).

ii. Show that

Gal(K/Q(ζ)) = 〈τ ,σ〉, Gal(K/Q(ω + ω−1)) = 〈γ, τ 〉,

G = 〈γ, σ, τ 〉 ∼= D12, Z(G) = 〈γτ 〉,

where D12 is the dihedral group of order 12.
iii. Show that Q ⊆ Q(

√
3) ⊆ K and that Gal(K/Q(

√
3)) = 〈γ,σ〉.

iv. Show that Q ⊆ Q(i) ⊆ K and that Gal(K/Q(i)) = 〈σγτ 〉.
8. Let f (x) = x6 − 2x3 − 2 ∈ Q[x].

(a) Let α = 3
√
1 + √

3, β = 3
√
1 − √

3 ∈ R, and let ζ = e2πi/3 ∈ C. Show that
the zeros of f (x) are ζ jα, ζ jβ, j = 0, 1, 2.

(b) Show that the complex splitting field K of f (x) over Q contains the field
L = Q(i, 3

√
2,

√
3).

(c) Show that [L : Q] = 12.
(d) Show that [K : Q] = 12 or 36.
(e) Let ω = 3

√
2 +√

3, exactly as in Exercise 7. Show that ω +ω−1 ∈ K . (Take
the quotient of the two real zeros of f (x).)

(f) Show that L ⊇ Q is a Galois extension and that Gal(L/Q) ∼= D12, the
dihedral group of order 12. (Arguments similar to those given for Exercise
7 will do.) Note that D12 has three 2-Sylow subgroups.

(g) Show that if K = L , then there are exactly three intermediate subfields of
extension degree 3 over Q, viz., Q(

3
√
2), Q(ζ 3

√
2), and Q(ζ2 3

√
2).

(h) Show that Q(ω + ω−1) �= Q(
3
√
2), Q(ζ 3

√
2), Q(ζ2 3

√
2).

(i) Conclude that [K : Q] = 36 and that Gal(K/Q) ∼= S3 × S3.

9. Let K = Q(
√
2,

√
3, u), where u =

√
(9 − 5

√
3)(2 − 2

√
2).

(a) Show that K ⊇ Q is a Galois extension.
(b) Find an irreducible polynomial f (x) ∈ Q[x] for which K is the splitting

field over Q.
(c) Show that Gal(K/Q) is nonabelian but is not dihedral.
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(d) Conclude that Gal(K/Q)must be isomorphic with Q8, the quaternion group
of order 8.

10. Let F be a field of characteristic �= 2, and let x1, x2, . . . , xn be commut-
ing indeterminates over F . Let K = F(x1, x2, . . . , xn), the field of fractions
of the polynomial ring F[x1, x2, . . . , xn] (or the field of rational functions in
x1, x2, . . . , xn).

(a) Let σ1,σ2, . . . ,σn be the elementary symmetric polynomials in x1, x2, . . . ,
xn , and set E = F(σ1,σ2, . . . ,σn). Show that K is a splitting field over E
for the polynomial xn − σ1xn−1 + · · · + (−1)nσn ∈ E[x].

(b) Show that [K : E] ≤ n!.
(c) Noting that G = Sn acts as a group of automorphisms of K in the obvious

way, show that E = invG(K ) and thereby conclude that [K : E] = n!.
(d) Show that K is a Galois extension of E .
(e) Set δ = ∏

i< j (x j − xi ) ∈ K and show that E(δ) = invAn (K ).

11. Let f (x) ∈ Q[x] be an irreducible polynomial and assume that the discriminant
of f (x) is a perfect square in Q.

(a) Show that if deg f (x) = 3, then f (x) must have three real zeros in the
complex field C.

(b) Show that if deg f (x) = 3, and if α ∈ R is a fixed zero of f (x), show that
the other two zeros of f (x) are polynomials in α with rational coefficients.

(c) If deg f (x) = 4, how many real zeros can f (x) have?
(d) If deg f (x) = 4, can the Galois group have an element that acts as a 4-cycle

on the four zeros of f (x)?

12. Suppose that F is a field and that f (x) ∈ F[x]. Suppose, moreover, that in some
splitting field, f (x) factors as

f (x) = (x − α1)
2(x − α2) · · · (x − αn−1),

where α1,α2, . . . ,αn−1 are distinct. Show that α1 ∈ F .
13. Let f (x) = x3−9x−9 ∈ Q[x] and compute theGalois group of this polynomial.
14. Using Swan’s formula, compute the discriminants of x7 − 7x + 3, x5 − 14x2 −

42 ∈ Q[x].

11.12.7 Exercises for Sects. 11.9 and 11.10

1. (Euler) Show that if F is a field possessing a primitive eight root of unity, then
2 = 1 + 1 is a square in F . [Hint: Let ζ be a primitive eighth root. Consider the
square of ζ + ζ−1.]
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2. Let F be a field with a primitive twelfth root of unity. Show that the number 3 is
a square in this field. [Hint: Consider the cube of ζ + ζ−1 where ζ is a primitive
12th root.]16

3. Suppose K is the splitting field for an irreducible polynomial p(x) ∈ F[x].
Suppose L is an intermediate field—that is F ⊆ L ⊆ K . Show that if p(x)

is solvable by radicals relative to the field F , then p(x) is solvable by radicals
relative to the intermediate field L . (Remark: At first sight it seems a triviality. If
solvability by radicals over F is seen as the ability to express the roots of p(x)

in terms of some compound formula involving successive field operations and
(multiple) root-extractions whose input variables belong to F , then the result is a
triviality, for any such formula with input variables from F is a formula with input
variables from the intermediate field L . But that is not exactly howwe defined the
property that “p(x) is solvable by radicals”. Our criterion was that the splitting
field K was a radical extension of F , that is, there is a tower of fields

F0 ⊆ F1 ⊆ · · · ⊆ Fk = K ,

such that Fi+1 was obtained for Fi by adjoining the ri th root of an element in
the latter field. Since L may not be one of the Fi , some work is needed to show
that K is a radical extension of L . The point of this remark is to motivate the
following hint.) [Hint: Quoting the correct Theorems and Lemmas, observe that
p(x) is solvable by radicals if and only the Galois group G(K/F) is solvable.
Note that G(K/L) is a subgroup of the former, and apply Galois’ criterion.]

4. Suppose p(x) and r(x) are two irreducible polynomials in F[x], and let K be the
splitting field of p(x) over F . Suppose the field K contains a root of r(x).

(a) Show that K contains a copy of the splitting field L of r(x).
(b) By the “Primitive Element Theorem” (Theorem11.10.2, p. 407), L = F(θ)

for some element θ whose irreducible polynomial is s(x) := Irr(θ) ∈ F[x].
Using the theorems of the sections cited above for this exercise set, show
the following:

p(x) is solvable by radicals over F if and only if (i) p(x) is solvable by
radicals over L and (ii) s(x) is solvable by radicals over F .

[Hint: Use the fact that L is a normal extension of F , Galois’ criterion, and an
elementary fact about solvable groups.]

5. The final exercise of this section is due to Prof. Michael Artin, and uses such a
combination of facts that it cannot easily be assigned to any one subsection of
this chapter. On the other hand, it is not difficult if one uses the full symphony of
facts available. A perfect test question!

16In the case that F is Z/(p), where p is a rational prime, the conclusions of these two exercises
follow from the more extensive theory of quadratic reciprocity. A beautiful account of this, using
Gauss sums, can be found in the book Elements of Number Theory by Ireland, K. and Rosen, M.I.
Bogden & Quigley, New York, 1972.
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Suppose F is a finite field of characteristic 2 and suppose K is an extension of F
of degree 2.

(a) Show K = F(α) for some element α whose irreducible monic polynomial
p(x) ∈ F[x] has the specific form

x2 + x + a, where, of course a belongs to the subfield F .

(b) Show that necessarily α + 1 is also a root of the irreducible quadratic poly-
nomial p(x) ∈ F[x].

(c) Find an explicit formula for an automorphism of K that takes α to α + 1.

11.12.8 Exercises for Sect. 11.11

1. Let G be a finite subgroup of the general linear group GL(n, F). We suppose
each element g ∈ G to be an invertible matrix (α

(g)
i j ). Let K be the field of quo-

tients of the polynomial ring F[x1, . . . xn]. (In other words, K = F(x1, . . . , xn)

is a transcendental extension of F by algebraically independent transcendental
elements xi .)

(a) For each (transcendental) element xi , and g ∈ G, let

xg
i := α

(g)
i1 x1 + · · · + α

(g)
in xn .

For each rational function f (x1, . . . , xn), define

f g(x1, . . . xn) := f (xg
1 , . . . , xg

n ).

i. Show that the permutation f �→ f g , for all f ∈ K is a field automor-
phism φ(g) of K .

ii. Show that φ : G → Aut(K ) is an embedding of groups.
(b) Assume G to be embedded (that is, with a little abuse of notation we write

G for φ(G)). Let KG be the subfield of elements of K which are fixed by
all elements of G. (In this particular context, the elements of KG are called
invariants of G.) Show that G = Gal(K/KG).

(c) Show that any n+1 rational functions f1, . . . , fn+1 ∈ K are connected by an
algebraic equation—precisely, there is a polynomial p ∈ F[y1, . . . , yn+1]
such that

p( f1, . . . , fn+1) = 0 ∈ K .

[Hint: Consider the transcendence degree of the subfield generated by
f1, . . . fn+1.]
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(d) Is it true that there exists a set X of n algebraically independent invariants
in the subfield KG such that every element of KG is a rational function in
the elements of X?

11.12.9 Exercises Associated with Appendix 1 of Chap. 10

1. Prove Lemma11.A.1.
2. Prove the uniqueness of the limit of a a convergent sequence with respect to a

valuation φ of a field F . (See the paragraph following Eq.11.38.).
3. Prove that every convergent sequence is a Cauchy sequence.

Appendix 1: Fields with a Valuation

Introduction

Let R denote the field of real numbers and let F be any field. A mapping φ : F → R

from F into the field of real numbers is a valuation on F if and only if, for each α
and β in F :

1. φ(α) ≥ 0, and φ(α) = 0 if and only if α = 0.
2. φ(αβ) = φ(α)φ(β), and
3. φ(α + β) ≤ φ(α) + φ(β).

This concept is a generalization of certain “distance” notions which are familiar
to us in the case that F is the real or complex field. For example, in the case of the
real field R, the absolute value function

|r | =
{

r if r ≥ 0
−r if r < 0

is easily seen to be a valuation. Similarly, for the complex numbers, the function
“‖ ‖”, defined by

‖a + bi‖ =
√

a2 + b2,

where a, b ∈ R and the square root is non-negative, is also a valuation. In this case,
upon representing complex numbers by points in the complex plane, ‖z‖ measures
the distance of z from 0. The “subadditive property” (3.) then becomes the triangle
inequality.

A valuation φ : F → R is said to be archimedean if and only if there is a natural
number n such that if

http://dx.doi.org/10.1007/978-3-319-19734-0_10
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s(n) := 1 + 1 + · · · + 1 { with exactly n summands},

in F , then φ(s(n)) > 1.
These valuations of the real and complex numbers are clearly archimedean.
An example of a non-archimedian valuation is the trivial valuation for which

φ(0) = 0, and φ(α) = 1 for all non-zero elements α in F .
Here is another important example. Let F be the field of quotients of some unique

factorization domain D which contains a prime element p. Evidently, F �= D. Then
any nonzero element α of F can be written in the form

α = a

b
· pk,

where a, b ∈ D, p does not divide either a or b, and k is an integer. The integer k
and the element a/b ∈ F are uniquely determined by the element α. Then, if α �= 0,
set

φ(α) = e−k,

where e is anyfixednumber larger than1, such as 2.71 . . ..Otherwisewe setφ(0) = 0.
The student may verify that φ is a genuine valuation of F . (Only the subadditive
property really needs to be verified.) From this construction, it is clear that φ is
non-archimedean—that is, it is not archimedean.

Lemma 11.A.1 If φ is a valuation of F, then the following statements hold:

1. φ(1) = 1.
2. If ζ is a root of unity in F, then φ(ζ) = 1. In particular, φ(−1) = 1 and so

φ(−α) = φ(α), for all α in F.
3. The only valuation possible on a finite field is the trivial valuation
4. For any α,β ∈ F,

|φ(α) − φ(β)| ≤ φ(α − β).

The proof of this lemma is left as an exercise for the student on p. 424.

Lemma 11.A.2 If φ is a non-archimedean valuation of F, then for any α,β ∈ F,

φ(α + β) ≤ max(φ(α),φ(β)).

Proof From the subadditivity, and that fact that for any number of summands, φ(1+
1 + · · · + 1) ≤ 1, we have

φ((α + β)n) = φ

(∑n

j=0

(
n
j

)
αn− jβ j

)

≤
∑n

j=0
φ(α)n− jφ(β) j

≤ (n + 1)max (φ(α)n,φ(β)n).
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Since the taking of positive nth roots in the reals is monotone, we have

φ(α + β) ≤ (n + 1)1/nmax (φ(α),φ(β)).

Now since n is an arbitrary positive integer, and (n + 1)1/n can be made arbitrarily
close to 1, the result follows. �

The Language of Convergence

We require a few definitions. Throughout them, φ is a valuation of the field F .
First of all, a sequence is a mapping N → F , from the natural numbers to the

field F , but as usual it can be denoted by a displayed indexed set, for example

{α0,α1, . . .} = {αk} or {β0,β1, . . .} = {βk}, etc..

A sequence {αk} is said to be a Cauchy sequence if and only if, for every positive
real number ε, there exists a natural number N (ε), such that

φ(αm − αn) < ε,

for all natural numbers n and m larger than N (ε).
A sequence {αk} is said to converge relative to φ if and only if there exists an

element α ∈ F such that for any real ε > 0, there exists a natural number N (ε), such
that

φ(α − αk) < ε, (11.38)

for all natural numbers k exceeding N (ε).
It is an easy exercise to show that an element α satisfying (11.38) for each ε > 0

is unique. [Note that in proving uniqueness, the choice function N : R
+ → N taking

ε to N (ε) is posited for the assertion that α is a limit. To assert that β is a limit, an
entirely different choice function M : ε → M(ε) may be posited. That α = β is the
thrust of Exercise 2 in Sect. 11.12.9.] In that case we say that α is the limit of the
convergent sequence {αk} or that the sequence {αk} converges to α.

A third easy exercise is to prove that every convergent sequence is a Cauchy
sequence. (See Exercise 3 in Sect. 11.12.9.)

A sequence which converges to 0 is called a null sequence. Thus {αk} is a null
sequence if and only if, for every real ε > 0, however small, there exists a natural
number N (ε), such that φ(αk) < ε, for all k > N (ε).

A field F with a valuation φ is said to be complete with respect to φ if and only
if every Cauchy sequence converges (with respect to φ) to an element of F .

Now, finally, a completion of F (with respect to φ) is a field F̄ with a valuation
φ̄ having these three properties:
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1. The field F̄ is an extension of the field F .
2. F̄ is complete with respect to φ̄.
3. Every element of F̄ is the limit of a φ-convergent sequence of elements of F .

(We capture this condition with the phrase “F is dense in F̄”.

So far our glossary entails

• Convergent sequence
• Limit
• Null sequence
• Cauchy sequence
• Completeness with respect to a valuation φ
• A completion of a field with a valuation

Completions Exist

The stage is set. In this subsection our goal is to prove that a completion (F̄, φ̄) of a
field with a valuation (F,φ) always exists.

In retrospect, onemaynow realize that thefield of real numbersR is the completion
of the field of rational numbers Q with respect to the “absolute” valuation, | |. The
construction of such a completion should not be construed as a “construction” of the
real numbers. That would be entirely circular since we used the existence of the real
numbers just to define a valuation and to deduce some of the elementary properties
of it.

One may observe that the set of all sequences over F possesses the structure of a
ring, namely the direct product of countably many copies of the field F . Thus

S := FN =
∏

k∈NFk where each Fk = F .

Using our conventional sequence notation, addition and multiplication in S are
defined by the equations

{αk} + {βk} = {αk + βk}
{αk} · {βk} = {αkβk}.

For each element α ∈ F , the sequence {αk} for which αk = α, for every natural
number k is called a constant sequence and is denoted ᾱ. The zero element of the
ring S is clearly the constant sequence 0̄. The multiplicative identity of the ring S is
the constant sequence 1̄ (where “1” denotes the multiplicative identity of F).

Obviously, the constant sequences form a subring of S which is isomorphic to
the field F . It should also be clear that every constant sequence is also a Cauchy
sequence. We shall show that the collection Ch of all Cauchy sequences also forms
a subring of S.
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In order to do this, we first make a simple observation. A sequence {αk} is said
to be bounded if and only if there exists a real number b such that φ(αk) < b for all
natural numbers k. Such a real number b is called an upper bound of the sequence
{αk}. The observation is

Lemma 11.A.3 Every Cauchy sequence is bounded.

Proof Suppose {αk} is a Cauchy sequence. Then there is a natural number N = N (1)
such that φ(αN − αm) < 1, for all natural numbers m exceeding N . Now set

b := 1 + max {φ(α0),φ(α1), . . . ,φ(αN }).

If k ≤ N , φ(αk) < b, by the definition of b. If k > N then φ(αk) < b by the
definition of N and the fact that φ(αN ) ≤ b − 1. So b is an upper bound. �

Lemma 11.A.4 The collection Ch of all Cauchy sequences of S is closed under
addition and multiplication of sequences. Thus Ch is a subring of S, the ring of all
sequences over F.

Proof Recall that if {αk} is a Cauchy sequence, there must exist an auxiliary function
N : R

+ → N such that if ε ∈ R
+, then φ(αn − αm) < ε for all numbers n and

m larger than N (ε). This auxiliary function N is not unique; it is just that at least
one such function is available for each Cauchy sequence. If we wish to indicate an
available auxiliary function N , we simply write ({αk}, N ) instead of {αk}.

Now suppose ({αk}, N ) and ({βk}, M) are two Cauchy sequences. For each posi-
tive real number ε set K (ε) := max(N (ε/2), M(ε/2)). Then for any natural numbers
n and m exceeding K (ε), we have

φ(αn + βn − αm − βm) ≤ φ(αn − αm) + φ(βn − βm) ≤ ε/2 + ε/2 = ε.

Thus ({αk + βk}, K ) is a Cauchy sequence.
Again suppose ({αk}, N ) and ({βk}, M) are two Cauchy sequences. By the pre-

ceding Lemma11.A.3, we may assume that these sequences possess positive upper
bounds b and c, respectively. For each positive real number ε set

K (ε) := max (N (ε/2c), M(ε/2b)).

Now suppose n and m are natural numbers exceeding K (ε). Then

φ(αmβm − αnβn) = φ(αmβm − αmβn + αmβn − αnβn)

≤ φ(αm)(φ(βm − βn) + φ(βn)φ(αn − αm)

< b(ε/2b) + c(ε/2c) = ε.

Thus ({αkβk}, K ) is a Cauchy sequence.
Finally, it should be obvious that {−αk} is the additive inverse in S of {αk} and,

from an elementary property of φ, that the former is Cauchy if and only if the latter
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is. Finally one notices that the constant sequence 1̄ is a Cauchy sequence that is the
multiplicative identity element of Ch.

It follows that the Cauchy sequences form a subring of S. �
The null sequences of S are simply the sequences that converge to zero. We have

already remarked that every convergent sequence is a Cauchy sequence. Thus the
set Z of all null sequences lies in Ch. Note that any sequence whose coordinates are
nonzero at only finitely many places (that is, the direct sum

⊕
N F) form a subset

Z0 of Z .
Clearly the sum or difference of two null sequences is null. Suppose {αk} is a

null sequence so that for every positive real ε, there is a natural number N (ε) such
that φ(αm) ≤ ε for all m > N (ε) Next let {γk} be any Cauchy sequence with upper
bound b. Then, for every real ε > 0, and n > N (ε/b), we see that

φ(αnγn) ≤ b · (ε/2) = ε.

Thus the product {αk}{γk} is a null sequence. So we have shown the following:

Lemma 11.A.5 Z is an ideal of the ring Ch.

A sequence {αk} is said to possess a lower bound � if and only if for some real
� > 0, one has φ(αn) > � for every natural number n. The next lemma, though
mildly technical, is important.

Lemma 11.A.6 The following assertions hold:

(i) Suppose a sequence {γk} in S has the property that for every real ε > 0,
φ(γk) > ε for only finitely many natural numbers k. Then {γk} is a null sequence.

(ii) Suppose {βk} is a Cauchy sequence which is not a null sequence. Then there
exists a real number λ > 0, and a natural number N such that φ(βk) > λ for
all k > N.

(iii) If {αk} is a Cauchy sequence having a non-zero lower bound �, then it is a unit
in the ring Ch.

Proof (i). The reader may want to do this as an exercise. The hint is that the hypothe-
ses allow us to define a mapping K : R

+ → N where

K (ε) := max {k ∈ N|φ(γk) > ε}.

Then K serves the desired role in the definition of a null sequence.
(ii). Using the contrapositive of the statement in part (i), we see that if {βk} is a

Cauchy sequence which is not null, there must exist some ε > 0 such that φ(βk) > ε
infinitely often. Also, since the sequence is Cauchy, there exists a natural number
N (ε/2) such that

φ(βn − βm) ≤ ε/2,

for all natural numbers n and m exceeding N (ε/2). So there is an natural number N
exceeding N (ε/2) such that φ(βM ) > ε. Then for m > N ,
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φ(βm) = φ(βM − (βM − βm)

≥ φ(βM ) − φ(βM − βn)

> ε − (ε/2) = ε/2.

Thus λ := ε/2 and N satisfy the conclusion of part (ii).
(iii). For each ε > 0, let K (ε) := N (ε · �2). Then for any natural numbers n and

m exceeding K (ε), we have

φ

(
1

αn
− 1

αm

)
= φ

(
1

αnαm

)
φ(αm − αn)

≤ �−2 · (ε�2) = ε.

Thus the sequence of reciprocals {αk
−1} is a Cauchy sequence and is a multiplicative

inverse to {αk} in Ch. The proof is complete. �

Corollary 11.A.1 The factor ring F̄ := Ch/Z is a field.

Proof It suffices to show that every element of Ch\Z is congruent to a unit modulo
the ideal Z . Suppose {βk} is a non-null Cauchy sequence. Then by Lemma11.A.6,
there is a positive real number λ and a natural number N such that φ(βn) > λ for all
natural numbers n greater than N . Now let {ζk} be a sequence for which

ζk =
{
1 if k ≤ N
0 if k > N .

Then {ζk + βk} is bounded below by � := min (1,λ) and so by Lemma11.A.6,
part 3., is a unit. Since {ζk} belongs to Z , we have shown the sufficient condition
announced at the beginning of this proof. �

Note that we have a natural embedding F → F̄ taking each element α to the
constant sequence ᾱ, all of whose terms are equal to α.

Nowwe need to extend the valuationφ on (the embedded copy of) F to a valuation
φ̄ of F̄ . The key observation is that whenever we consider a Cauchy sequence {αk},
then {φ(αk)} is itself a Cauchy sequence of real numbers with respect to the absolute
value. For, given real ε > 0, there is a number N (ε) such that φ(αn − αm) < ε for
all n and m exceeding N (ε). But

|φ(αm) − φ(αm)| ≤ φ(αn − αm) < ε

with the same conditions on n and m.
Now Cauchy sequences {rn} of real numbers tend to a real limit which we denote

by the symbol
lim

k→∞ rk .
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Thus, for any Cauchy sequence {αk} in Ch, we may define

φ̄({αk}) := lim
k→∞ φ(αk).

Now note that if {αk} happens to be a sequence that already converges to α
in F , then, by the definition of convergence, limk→∞ φ(αk) = φ(α). In short, on
convergent sequences, φ̄ can be evaluated simply by taking φ of the existing limit.
In particular this works for constant sequences, whereby we we have arrived at the
fact that φ̄ extends the mapping φ defined on the embedded subfield F .

Now observe

Lemma 11.A.7 If {αk} and {βk} are two Cauchy sequences with the property that

φ(αk) ≤ φ(βk),

for all natural numbers k larger than some number N, then

φ̄({αk}) ≤ φ̄({βk}).

Proof The student should be able to prove this, either by assuming the result for real
Cauchy sequences, or from first principles by examining what it would mean for the
conclusion to be false. �

Corollary 11.A.2 If {αk} and {βk} are two Cauchy sequences,

φ̄({αk + βk}) ≤ φ̄({αk}) + φ̄({βk}).

Proof Immediate from Lemma11.A.7. �

Corollary 11.A.3 The following statements are true.

(i) {αk} is a null sequence if and only if φ̄({αk}) = 0 ∈ R.
(ii) φ̄ assumes a constant value on each coset of Z in Ch.

Proof Another exercise in the meaning of the definitions. �

Now for any coset γ := {βk}+ Z of Z in Ch we can let φ̄(γ) be the constant value
of φ̄ on all Cauchy sequences in this coset. In effect φ̄ is now defined on the factor
ring F̄ = Ch/Z , which, as we have noted, is a field. Moreover, from the preceding
Corollary φ̄ assumes the value 0 only on the zero element 0̄ = 0 + Z = Z of F̄ .

At this stage—and with a certain abuse of notation—φ̄ is a non-negative-real-
valued function defined on two distinct domains, Ch and F̄ . However the ring epi-
morphism f : Ch → F̄ preserves the φ̄-values. That is important for three reasons.

First it means that if φ̄ is multiplicative on Ch, then it is on F̄ . But it is indeed the
case that φ̄ is multiplicative on Ch, since, for {αk} and {βk} in Ch,
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lim
k→∞ φ(αkβk) = lim

k→∞ φ(αk)φ(βk)

= ( lim
k→∞ φ(αk)) · ( lim

k→∞ φ(βk)).

Second, the fact that the homomorphism f preserves φ̄, means that if φ̄ is subad-
ditive on Ch, then it is also subadditive on F̄ . But the subadditivity on Ch is asserted
in Corollary11.A.2.

Third, since F ∩ Z = 0 ∈ Ch (that is, the only constant sequence which is null
is the zero constant sequence), the homomorphism f embedds F (in its transparent
guise as the field of constant sequences) into F̄ without any change in the valuation.

These observations, taken together, yield

Corollary 11.A.4 The function φ̄ : F̄ → R
+ is a valuation of F̄ , which extends the

valuation φ on its subfield F.

It remains to show that F̄ is complete with respect to the valuation φ̄ and that F
dense in F̄ .

Recall that the symbol ᾱ denotes the constant sequence {α,α, . . .}. Its image
in F̄ is then f (ᾱ) = ᾱ + Z . Now suppose {αk} is any Cauchy sequence, and let
γ = {αk} + Z be its image in F̄ . We claim that the sequence

{ f (ᾱ1), f (ᾱ2), . . .}

(of constant sequencesmod Z ) is a sequence of elements in F̄ converging to γ relative
to φ̄. Choose a positive real number ε. Then there exists a natural number N (ε) such
that

φ(αN (ε) − αm) < ε for all m > N (ε).

Then as f preserves φ̄,

φ̄
(

f (ᾱN (ε)) − γ̄
) = φ̄

(
ᾱN (ε) − {αk}

)
= lim

n→∞ φ
(
αN (ε) − αn

)
< ε.

So our claim is true. F is indeed dense in F̄ .
Now suppose {γ�} is a Cauchy sequence of elements of F̄ with respect to φ̄. For

each index �, we can write
γ� = {β�k},

a Cauchy sequence over F indexed by k. So there exists a natural number N (�)

such that
φ(β�N (�) − β�m) < 2−� (11.39)

for all m exceeding N (�). This allows us to define the following set of elements of F :

δ� := β�N (�), for � = 0, 1, . . . .
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Then taking limits in Eq. (11.39), we have

φ̄( f (δ̄�) − γ�) < 2−�,

where, as usual, f (δ̄k) is the image of a constant sequence, namely the coset

{δk, δk, δk, . . .} + Z .

Now for any natural numbers n and m, we have

φ(δn − δm) = φ̄
(

f (δ̄m) − f (δ̄n)
)

= φ̄
(

f (δ̄n) − γm + γm − γn + γn − f (δ̄m)
)

≤ φ̄( f (δ̄n − γm) + φ̄(γn − γm) + φ̄(γm − f (δ̄m))

≤ φ̄(γn − γm) + 2−m + 2−n

But since {γ�} is a Cauchy sequence, the above equations tell us that δ := {δk} is a
Cauchy sequence in Ch. It is now clear that

φ̄(δ − γ�) = lim
k→∞(δk − β�k) < 2−�.

Thus {γ�} converges to δ with respect to φ̄. It follows that F̄ is a complete field.
Summarizing all of the results of this subsection, one has the following

Theorem 11.A.1 The field F̄ = Ch/Z with valuation φ̄ is a completion of (F,φ).

The Non-archimedean p-Adic Valuations

Our classical example of a non-archimedean valuation was derived from the choice
of a prime p in a unique factorization domain D. The valuation φ is defined on the
field F of quotients of D by the rule that φ(r) = e−k , whenever we write r ∈ F\{0}
in the canonical form r = (a/b)pk where a and b are elements of D which are not
divisible by p, and k is an integer. Of course to make this function subadditive, we
must take e to be a fixed real number greater than 1. (Many authors choose p itself.
That way, the values never overlap from one prime to another.)

Now notice that from Lemma11.A.2, the collection of all elements α of F for
which φ(α) ≤ 1 is closed under addition as well as multiplication, and so form a
subring O of F called the valuation ring of (F,φ). From the multiplicative prop-
erties of φ, it is clear that every non-zero element of F either lies in O , or has its
multiplicative inverse in O .

A somewhat smaller set is P := {α ∈ F |φ(α) < 1}. It is easy to see that this is
an ideal in O . In fact the set O − P = {u ∈ F |φ(u) = 1} is closed under taking
multiplicative inverses in F and so consists entirely of units of O . Conversely, since
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φ(1) = 1, every unit of O must have φ-value 1, so in fact

O\P = U (O), (11.40)

the (multiplicative) group of units of O . Thus P is the unique maximal ideal of O
and so O is a local ring.

Note that O and P have been completely determined by F and φ. The factor
ring O/P is a field called the residue field of F with respect to φ. The same sort
of argument used to show (11.40) can be used to show that there exists an element
π ∈ P , such that for any natural number k,

Pk\Pk+1 = πkU (O).

Taking the disjoint union of these set differences, one concludes that P is the principal
ideal P = Oπ.

Suppose p is a prime integer, D = Z, so F = Q, the field of rational numbers.
Then O is the ring of all fractions a

b where a and b are integers and p does not divide
b. Terribly odd things happen! For example {1, p, p2, . . .} is a null sequence (since
φ(pk) = e−k , for all positive integers k), and

1 + p + p2 + · · ·

is a “convergent series”—that is its sequence of partial sums is a Cauchy sequence.
Let us return to our classic example. There F is the field of fractions of a unique

factorization domain D, p is a prime element of D and φ(r) = e−k when r ∈ F is
written in the form (a/b)pk , a, b ∈ D, k an integer. Let O be the valuation ring and
let P be its unique prime ideal. Similarly, let F̄ , φ̄, Ō and P̄ be the completion of F ,
its extended valuation, valuation ring and uniqe maximal ideal, respectively.

Theorem 11.A.2 The following statements hold:

(i) D ⊆ O, and D ∩ P = pD.
(ii) D + P = O.

(iii) F ∩ Ō = O, O ∩ P̄ = P.
(iv) O + P̄ = Ō.
(v) The residue class fields of F and F̄ are both D/pD.

Proof (i) Clearly every element of D has valuation at most 1 so the first statement
holds. Those elements of D of value less than 1 are divisible by p, and vice versa.
So the second statement holds.

(ii) Suppose r ∈ O\P . Then r has the form a/b where a and b are elements of
D which are not divisible by p. Since p is a prime and D is a UFD, this means there
are elements c and d of D such that cp + db = a.

Then

r = a

b
=
( c

b

)
· p + d. (11.41)



Appendix 1: Fields with a Valuation 435

Now p does not divide d, otherwise it would divide a = cp + db, against our
assumption about r . Thus d is an element of D also in O − P , and by Eq. (11.41),
r ≡ (a/b) modulo P . This proves (ii).

(iii) Both statements here just follow from that fact the φ̄ extends φ.
(iv) Now let ᾱ be any element in Ō − P̄ so φ̄(ᾱ) = 1. Since F is dense in F̄ ,

there is an element r ∈ F such that φ̄(ᾱ − r) < 1. This means r − ᾱ is an element
of P . Since O is an additive subgroup of F containing P , r belongs to Ō ∩ F = O ,
and we can say r ≡ ᾱ mod P̄ . This proves (iv).

(v) First using (iii) and (iv), and then (i) and (ii),

Ō/P̄ = (O + P̄)/P̄

� O/(O ∩ P̄) = O/P, while

O/P = (D + P)/P

� D/(D ∩ P) = D/pD.

The proof is complete. �

Now fix a system Y of coset representatives of pD in the additive group (D,+)

and suppose 0 ∈ Y . For example, if D = Z, then p is a rational prime, the residue
class field is Z/pZ, and we may take Y to be the set of integers,

{0, 1, 2, . . . , p − 1}.

For another example, suppose D = K [x] where K is some field, and p = x + a is a
monic polynomial of degree one. Then the residue class field is K [x]/(x + a) � K .
But as K is a subring of D, it makes perfect sense to take Y = K (the polynomials
of degree zero).

Now in the notation of Theorem11.A.2, D + P̄ = (D + P) + P̄ = O + P̄ = Ō .
So, for a fixed ᾱ ∈ Ō , there is a unique element a0 ∈ Y such that ᾱ − a0 ∈ P̄ . (If ᾱ
is already in P̄ , this element is 0.) Now P̄ = pŌ , so

ᾱ1 = 1

p
(ᾱ − a0) ∈ Ō.

Then we repeat this procedure to obtain a unique element a1 ∈ Y such that ᾱ1−a1 ∈
pŌ . Then

ᾱ ≡ a0 + pa1 mod p2 Ō.

Again, one can find a2 ∈ Y such that if ᾱ2 := (1/p)(ᾱ1−a1), then ᾱ2−a2 ∈ pŌ . So,
after k repetitions of this procedure, we obtain a sequence of k + 1 unique elements
of Y , (a0, a1, . . . , ak) such that

ᾱ ≡ a0 + a1 p + a2 p2 + · · · + ak pk mod P̄k+1.
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Thus we can write any ᾱ ∈ F̄ in the “power series” form,

ᾱ = pk[a0 + a1 p + a2 p2 + · · · ],

where the ai are uniquely determined elements of Y , and a0 �= 0, so that k is
determined by e−k = φ̄(ᾱ).

For example, if p = x ∈ K [x] = D, then, taking Y = K , we see that F̄ is the
field of Laurent series over K—that is, the ring of power series of the form

b−k x−k + · · · + b−1x−1 + b0 + b1x + b2x2 + · · · , k ∈ N

where the bi are in K and one follows the usual rules of adding and multiplying
power series.

The ring of Laurent series is very important in the study of power series generating
functions. Be aware that the field K here is still arbitrary. It can even be a finite field.

Note that if D = Z and p is a rational prime, the system of coset representatives
Y is not closed under either addition or multiplication and so, in order to restore the
coefficients of the powers of p to their proper location in Y , some local adjustments
are needed after addition or multiplication. For example if p = 5, then we must
rewrite

(1 + 3(5))(1 + 4(5)) = 1 + 7(5) + 12(52)

as
1 + 2(5) + 3(52) + 2(53).

Appendix 2: Finite Division Rings

In 1905 J.H.M. Wedderburn proved that every finite division ring is in fact a field.
On pp. 104–105 of van Der Waerden’s classic book (1930–31), (cited at at the

end of this appendix) one finds a seemingly short proof that depends only on the
easy exercise which proves that no finite group can be the union of the conjugates of
a proper subgroup. But the proof is short only in the sense that the number of words
required to render it is not large. Measured from actual elementary first principles,
the proof spans a considerable “logical distance”. It uses the notion of a splitting
field for a division ring, and a certain structure theorem involving a tensor product
of algebras. Both of these notions are beyond what has been developed in this and
the preceding chapters.

Several other more elementary proofs are available. The first proof given below
is due to T.J. Kaczynski (cited at the end of this appendix) and has several points of
interest.

We begin with a small lemma.
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Lemma 11.A.8 Every element in a finite field GF(q) is the sum of two squares. As
a consequence, when p is a prime number, there exist numbers t and r such that
t2 + r2 ≡ −1, mod p, with t �≡ 0.

Proof If q is even, all elements are squares and hence is the sum of 02 and a square.
So suppose q is odd and let S be the set of non-zero squares. Then, for any non-
square g ∈ GF(q), we have a partition GF(q)∗ = S + Sg. Now using 0 as one of the
summand squares, we see that every element of {0}∪S is the sum of two squares, and
if (S + S)∩gS �= ∅ (where now “S + S” indicates all possible sums of two squares),
then this is true of gS as well and the result is proved. Otherwise S + S ⊆ {0} ∪ S
and so {0}∪ S is a subfield of GF(q). That is impossible since |{0}∪ S| = (q + 1)/2
is not a prime power dividing q.

In particular, −1 can be represented as the sum of two squares in Z/(p), and one
of them at least (say t) is non-zero. �

Theorem 11.A.3 (Wedderburn) Every finite division ring is a field.

Proof ([1]) Let D be a finite division ring and let P be the prime subfield in its
center. Also let D∗ be the multiplicative group of non-zero elements of D. For some
prime r let S be an r -Sylow subgroup of D∗, of order ra , say. Now S cannot contain
an abelian subgroup A of type Zr × Zr otherwise the subfield generated by P ∪ A
would have too many roots of xr − 1 = 0. Thus S is either cyclic or else r = 2
and S is a generalized quaternion group. We shall show that the latter case is also
forbidden.

Suppose S is generalized quaternion. Then the characteristic p is not 2 and S
contains a subgroup S0 which is quaternion of order 8, generated by two elements
a and b or order 4 for which bab = a−1 and z = a2 = b2 is its central involution.
Then the extension P(z) is a subfield containing the two roots of x2−1 = 0, namely
1 and −1. It follows that

a2 = −1 = z = b2

so a3 = −a. Thus
ba = a−1b = −ab.

Now let p = |P|, the characteristic of D. Then by the lemmawe can find elements
t and r in P (and hence central in D) such that t2 + r2 = z = −1. Then

((ta + b) + r) ((ta + b) − r) = (ta + b)2 − r2

= t2a2 + r(ab + ba) + b2 − r2

= −t2 + b2 − r2 = 0.

So one of the factors on the left is zero. But then b = −ta ± r and so as t �= 0, b
commutes with a, a contradiction.

Thus, regardless of the parity of p, every r -Sylow subgroup of D∗ must be cyclic.
If follows that D∗ must be solvable. Now let Z∗ = Z(D∗) be the center of the group
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D∗ and suppose Z∗ �= D∗. Then we can find a normal subgroup A of D∗ containing
Z∗ such that A/Z∗ is a minimal normal subgroup of D∗/Z∗. Since the latter is
solvable with all Sylow subgroups cyclic, A/Z∗ is cyclic. Now Z∗ is in the center
of A, and since no group has a non-trivial cyclic factor over its center, A is abelian.

Now we shall show that in general, D∗ cannot contain a normal abelian subgroup
A which is not in the center Z∗. Without loss of generality we can take (as above)
Z∗ < A � D∗. Choose y ∈ A − Z∗. Then there exists an element x in D∗ which
fails to commute with y. Then also x + 1 is not in A as it fails to commute with y as
well. Then, as A is normal,

(1 + x)y = a(1 + x),

for some element a ∈ A. Then

y − a = ax − xy = (a − xyx−1)x . (11.42)

Now if y − a = 0, then a = y and a = xyx−1 by (11.42), so y = xyx−1 against
the fact that x and y do not commute. Thus (a − xyx−1) is invertible, and from
(11.42),

x = (a − xyx−1)−1(y − a). (11.43)

But a, y and xyx−1 all belong to A and so commute with y. Thus every factor
on the right side of (11.43) commutes with y, and so x commutes with y, the same
contradiction as before. �

Remark As noted, the last part of Kaczynski’s proof did not use finiteness at all. As
a result, one can infer

Corollary 11.A.5 (Kaczynski) Suppose D is any division ring with center Z. Then
any abelian normal subgroup of D∗ lies in Z.

One might prefer a proof that did not use the fact that a finite group with all Sylow
subgroups cyclic is solvable. This is fairly elementary to a finite group theorist (one
uses a transfer argument on the smallest prime and applies induction) but it would
not be as transparent to the average man or woman on the street.

Another line of argument due to I.N. Herstein (cited below) develops some truly
beautiful arguments from first principles. Consider:

Lemma 11.A.9 Suppose D is a division ring of characteristic p, a prime, and let
P be its prime subfield, which, of course, is contained in the center Z. Suppose a is
any element of D − Z which is algebraic over P. Then there exists an element y ∈ D
such that

yay−1 = ai �= a

for some integer i .



Appendix 2: Finite Division Rings 439

Proof Fix element a as described. The commutator mapping δ : D → D, which
takes an arbitrary element x to xa − ax , is clearly an endomorphism of the additive
group (D,+). Also, for any element λ of the finite subfield P(a) obtained by adjoin-
ing a to P , the fact that λ commutes with a yields

δ(λx) = λxa − aλx = λ(xa − ax) = λδ(x).

Thus, regarding D as a left vector space over the field P(a), we see that δ is a linear
transformation of V .

Now, for any x ∈ D, and positive integer k, an easy computation reveals

δk(x) =
∑k

j=0
(−1) j

(
k
j

)
a j xak− j . (11.44)

Now P(a) is a finite field of order pm , say. Then a pm = a. Since D has characteristic
p, putting k = pm in (11.44) gives

δ pm
(x) = xa pm − a pm

x = xa − ax = δ(x).

Thus the linear transformation δ of V satisfies

δ pm = δ.

Thus, in the commutative subalgebra of Hom (V, V ) generated by δ, we have

0 = δ pm − δ =
∏

λ∈P(a)
(δ − λI ),

where the λI are the scalar transformations V → V , λ ∈ P(a).
Now ker δ is the subalgebra CD(a) of all elements of D which commute with

a. (This is a proper subspace of V since a is not in the center Z .) Thus δ acts as a
non-singular transformation of W := V/CD(a)while

∏
(δ −λI ) (the product taken

over all non-zero λ ∈ P(a)) vanishes on it. It follows that for some λ ∈ P(a) − {0},
δ −λI is singular on W . This means there is a coset b0 + CD(a) �= CD(a) such that

δ(b0) = λb0 + c, c ∈ CD(a).

Setting y = b0 + λ−1c, we have δ(y) = λy �= 0. This means

yay−1 = a + λ ∈ P(a).

Now if m is the order of a in the multiplicative group P(a)∗, then yay−1 is one of
the roots of Xm − 1 = 0 lying in P(a). But since these roots are just the powers of
a, we have yay−1 = ai �= a, for some i , 1 < m ≤ m − 1, as desired. �
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Now we proceed with a proof of Wedderburn’s theorem. We may assume that D
is a non-commutative finite division ring in which all proper subalgebras are fields.
In particular, for any element v ∈ D − Z , the centralizing subalgebra CD(v) is a
field. It follows that the commuting relation on D − Z is an equivalence relation. For
each commuting equivalence class Ai , and element ai ∈ Ai , we have

Fi := Z ∪ Ai = CD(ai ). (11.45)

Let D∗ be the multiplicative group of non-zero elements of D, so Z∗ := Z − {0}
is its center. Choose a coset aZ∗ so that its order in D∗/Z∗ is the smallest prime s
dividing the order of D∗/Z∗. The actual representative element a can then be chosen
to have s-power order.

Now by Herstein’s lemma, there is an element y ∈ D such that

yay−1 = at �= a.

From (11.45) it follows that conjugation by y leaves the subfield F := CD(a)

invariant, and induces on it an automorphism whose fixed subfield is

CD(y) ∩ CD(a) = Z .

But the same conclusion must hold when y is replaced by a power yk which is not in
Z . It follows that Gal(F/Z) is cyclic of prime order r and conjugation by y induces
an automorphism of order r . Thus yr ∈ CD(a) ∩ CD(a) = Z , so r is the order
of y Z∗ in the group D∗/Z∗. We can then choose the representative y to be in the
r -Sylow subgroup of Z(y)∗, so that it has r -power order.

Now, by the “(very) little Fermat Theorem” i s−1 ≡ 1 mod s. Thus

y(s−1)ay−(s−1) = ais−1

≡ a mod Z∗.

So, setting b := ys−1, we have
bab−1 = az,

for some element z in Z which is also a power of a. Now from this equation, z = 1
if and only if b ∈ CD(y) ∩ CD(a) = Z .

Case 1: z = 1 and b is in the center. Then ys−1 ∈ Z , so r , the order of y Z∗ in
D∗/Z∗, divides s −1. That is impossible since s was chosen to be the smallest prime
divisor of |D∗/Z∗|.

Case 2: z �= 1 and b has order r mod Z∗. Then br a−r = a = azr . But since z
is an element of s-power order, we now have that r = s and is the order of z. Now
at this stage, the multiplicative subgroup H := 〈a, b〉 of D∗ generated by a and
b is a nilpotent group generated by two elements of r -power order, and so is an r
group. Since it is non-abelian without a subgroup of type Zr × Zr , it is generalized
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quaternion and so contains the quaternion subgroup of order 8. Herstein goes on to
eliminate the presence of Q8 by an argument that essentially anticipates by three
years the argument given in the first part of Kaczynski’s proof above.17 �

There is another fairly standard proof which comes closer to being a proof from
elementary principles. It uses an argument due to Witt (cited below) concerning
cyclotomic polynomials and the partition of the group D∗ into conjugacy classes.
One may consult Jacobson’s book (cited below), pp. 431–2, for a presentation of this
proof.

Reference

1. Kaczynski TJ (1964) Another proof of Wedderburn’s theorem. Am Math Mon 71:652–653

17ActuallyHerstein inadvertently omittedCase 1 by taking s = r from amisreading of the definition
of s. As we see, this presents no real problem since his lemma applies when s is the smallest possible
prime.



Chapter 12
Semiprime Rings

Abstract As was the case with groups, a ring is said to be simple if it has no proper
homomorphic images (equivalently, it has no proper 2-sided ideals). On the other
hand, a right (or left) R-module without proper homomorphic images is said to be
irreducible. A right (or left) module is said to be completely reducible is it is a direct
sum of irreducible modules. Similarly, a ring R is said to be completely reducible if
and only if the rightmodule RR is completely reducible. A ring is semiprimitive if and
only if the intersection of its maximal ideals is zero, and is semiprime if and only if
the intersection of all its prime ideals is the zero ideal. Written in the presented order,
each of these three properties of rings implies its successor—that is, the properties
become weaker. The goal here is to prove the Artin-Wedderburn theorem, basically
the following two statements: (1) A ring is completely reducible if and only if it is
a direct sum of finitely many full matrix algebras, each summand defined over its
own division ring. (2) If R is semiprimitive and Artinian (i.e. it has the descending
chain condition on right ideals) then the same conclusion holds. A corollary is that
any completely reducible simple ring is a full matrix algebra.

12.1 Introduction

In this chapter we develop the material necessary to reach the famous Artin-
Wedderburn theorem which—in the version given here—classifies the Socle of a
prime ring. The reader should probably be reminded here that all rings in this chapter
have a multiplicative identity element.

We begin with the important concept of complete reducibility of modules. When
transferred to rings, this notion and its equivalent incarnations give us quick access
to the Socle of a ring and its homogeneous components. Most of the remaining
development takes place in a general class of rings called the semiprime rings. It has
several important subspecies, the prime, primitive, and completely reducible rings,
where the important role of idempotents unfolds.

We remind the reader that R-module homomorphisms are applied on the left.
Thus if M and M ′ are right R-modules and if φ : M → M ′ is an R-module
homomorphism, then one has

© Springer International Publishing Switzerland 2015
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φ(mr) = (φm)r, for all m ∈ M and all r ∈ R. (12.1)

Next, if we set E = EndR(M) = HomR(M, M), the endomorphism ring of M , then
(12.1) shows that M has the structure of an (E, R)-bimodule, a formalism that will
be useful in the sequel.

12.2 Complete Reducibility

Given a right R-module M , the concept of minimal or submodule refers to minimal
or maximal elements in the poset of all proper submodules of M . Thus 0 is not a
minimal submodule and M itself is not a maximal submodule of M .

One defines the radical rad(M) of a right R-module M as the intersection of all
maximal submodules of M . If there are nomaximal submodules—as in theZ-module

Z(p∞) = 〈1/p, 1/p2, . . .〉

—then rad(M) = M , by definition.
There is a dual notion: One defines the socle Soc(M) as the submodule generated

by all minimal submodules (that is, all irreducible submodules) of M . Similarly, if
there are no irreducible submodules—as in the case of the free Z-module ZZ—then
by convention one sets Soc(M) = 0, the zero submodule.

Examples If D is any principle ideal domain (PID), and if p is a prime element in D,
then the D module D/p2D has radical rad(M) = Soc(M) = pD/p2D � D/pD.
(See Exercise (1) in Sect. 12.6.1.) In a similar vein, if F is a field, and if R is the
matrix ring

R =
{[

x 0
y z

]
| x, y, z ∈ F

}
,

consisting of lower-triangular matrices over F , and if V is the right R-module con-
sisting of 1 × 2 row vectors with entries in F :

V = {[
x y

] | x, y ∈ F
}
,

it also follows that
rad V = Soc(V ) = {[

x 0
] | x ∈ F

}
.

(See Exercise (4) in Sect. 12.6.1.)

Theorem 12.2.1 Let M be a right R-module having at least one irreducible sub-
module, so that Soc(M) 	= 0. Then
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(i) Soc(M) = ⊕i∈J Mi , where {Mi }i∈J is a family of irreducible submodules of M,
and the sum is direct.

(ii) In addition, Soc(M) is invariant under the endomorphism ring, E = HomR

(M, M).

Proof Note that the second statement (ii) is obvious, for if L ⊆ M is any irreducible
R-module and φ is an R-module endomorphism, then the restriction of φ to L will
have as kernel either 0 or all of L (as L is irreducible). Therefore, either φ(L) = 0
or φ(L) ∼=R L . In either case, φ(L) ⊆ Soc(M).

We now prove (i). Let the set I index the family of all irreducible modules of M .
Trivially, we may assume I is non-empty. We shall call a subset J of I a direct set
if and only if

∑
j∈J M j = ⊕ j∈J M j is a direct sum. (Recall that this means that if a

finite sum
∑

k∈K ak = 0 where ak ∈ Mk and K ⊆ J , then each ak = 0. We note also
that singleton subsets of I are direct, and so, as irreducible modules are assumed to
exist, direct subsets of I really exist.)

Suppose
I0 ⊂ I1 ⊂ · · · ⊂ · · ·

is a properly ascending tower of direct sets, and let J be the union of the sets in this
tower. If J were not direct, there would be a finite subset K ⊆ J together with a sum∑

k∈K ak = 0 with not all ak equal to zero. But since K is a finite subset, it clearly
must be contained in In for some index n, which then says that In cannot have been
direct, a contradiction. This says that in the poset of all direct subsets of I , partially
ordered by inclusion, all simply ordered chains possess an upper bound. Thus by
Zorn’s Lemma, this poset contains a maximal member, say H .

We now claim that MH := ⊕ j∈H M j = Soc(M). Clearly, MH ≤ Soc(M). Sup-
pose MH were properly contained in Soc(M). Then there would exist an irreducible
submodule M0 not in MH . This forces MH ∩ M0 = 0 from which we conclude that
MH + M0 = MH ⊕ M0, and so H ∪ {0} is a direct subset if I , properly containing
H , contrary to the maximality of H . Thus Soc(M) = ⊕ j∈H M j , and the proof is
complete. �

Corollary 12.2.2 The following conditions on an R-module M are equivalent:

(i) M = Soc(M).
(ii) M is a sum of minimal submodules.

(iii) M is isomorphic to a direct sum of irreducible submodules.

An R-module M satisfying any of the above three conditions is said to be com-
pletely reducible.

Next, call a submodule L of a right R-module M large (some authors use the
term essential) if it has a non-zero intersection with every non-zero submodule.
(Note that if M 	= 0, M is a large submodule of itself.) We can produce (but not
actually construct) many large submodules using the following Lemma.

Lemma 12.2.3 If B is a submodule of M and C is maximal among submodules of
M meeting B at zero, then B + C is large.
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Proof Assume B andC chosen as above and let D 	= 0 be any non-trivial submodule
of M . Suppose (B + C) ∩ D = 0. If b, c, and d are elements of B, C and D,
respectively, and b = c +d, then d = b − c and this is zero by our supposition. Thus
b = c ∈ B ∩ C = 0, so b = c = 0. Thus B ∩ (C + D) = 0. By maximality of C ,
D ⊆ C . Then D = (B + C) ∩ D = 0, a contradiction. Thus always (B + C) ∩ D is
non-zero, and so B + C is large. �

That such a submodule C exists which is maximal with respect to meeting B
trivially, as in Lemma12.2.3, is an easy application of Zorn’s Lemma.

If M is a right R-module, let L(M) be the lattice of all submodules of M (sum is
the lattice “join”, intersection is the lattice “meet”). We say L(M) is complemented
(or that M is semisimple) if every submodule B of M has a complement in L(M)—
i.e. there exists a submodule B ′ such that B ∩ B ′ = 0 and B + B ′ = M (this means
M = B ⊕ B ′).

Lemma 12.2.4 If L(M) is complemented, then so is L(N ) for any submodule
N of M.

Proof Let C be a submodule of N . By hypothesis there is a complement C ′ to C in
L(M). Then setting C ′′ := C ′ ∩ N , we see

C ∩ C ′′ ⊆ C ∩ C ′ = 0, and

C + C ′′ = C + (C ′ ∩ N ) = (C + C ′) ∩ N , (the modular law)

= M ∩ N = N .

Thus C ′′ is a complement of C in N . �

Remark Of course the above is actually a lemma about any modular lattice: if it is
complemented, then so are any of its intervals above zero.

Lemma 12.2.5 If M is a right R-module for which L(M) is complemented, then
rad(M) = 0.

Proof Letm be a non-zero element of M and let A bemaximal among the submodules
which do not contain m. (A exists by Zorn’s Lemma.) Suppose now A < B < M
so A is not maximal in L(M). Let B ′ be a complement to B in L(M). Then by the
modular law (Dedekind’s Lemma)

A = (B ∩ B ′) + A = B ∩ (B ′ + A).

Now as B < M implies B ′ 	= 0 and A < B implies B ′ ∩ A = 0, we see that A is
properly contained in B ′ + A. Then the maximality of A implies m ∈ B ′ + A and
also m ∈ B. Thus m lies in B ∩ (B ′ + A) = A, contrary to the choice of A.

Thus no such B exists and A is in fact a maximal submodule of M . Then we see
that every non-zero module element is avoided by some maximal submodule of M ,
and hence is outside rad(M). It follows that rad(M) = 0. �
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Theorem 12.2.6 The following conditions on an R-module M are equivalent:

(i) M is completely reducible.
(ii) M contains no proper large submodule.

(iii) M is semisimple.

Proof Assume condition (i), i.e., that M = Soc(M) and that A � M is a proper sub-
module of M . If A contained every irreducible submodule of M , then it would clearly
contain Soc(M) = M . But then A couldn’t be proper, contrary to our assumption on
A. Thus there is an irreducible submodule U not in A, and so A ∩ U = 0, since U
is minimal. Thus A is not large, proving condition (ii).

Next, assume that (ii) holds, i.e., M contains no proper large submodules, and let
A ⊆ M be a submodule. Using Zorn’s lemma, there exists a submodule B ⊆ M
which is maximal with respect to the condition A ∩ B = 0. But then Lemma12.2.3
asserts that A+B is large and so by part (ii), A+B = M . Thismeans that M = A⊕B,
i.e., that B is a complement to A in M , proving that M is semisimple.

Finally, assume condition (iii). Since M is semisimple, Soc(M) has a comple-
ment C in L(M). Next, by Lemma12.2.5, we know that rad(C) = 0 and so the
set of maximal submodules of C must be nonempty (else C = rad(C) would be
the intersection of the empty collection of maximal submodules). Letting L ⊆ C
be a maximal submodule, we now apply Lemma12.2.4 to infer the existence of a
submodule A ⊆ C with C = A ⊕ L . But then, A ∼= C/L and so A is an irreducible
R-module with A ∩ Soc(M) = 0. This is clearly impossible unless C = 0, in which
case Soc(M) = M , proving (i). �

12.3 Homogeneous Components

12.3.1 The Action of the R-Endomorphism Ring

Let M be a right R-module and let E = HomR(M, M) be its R-endomorphism ring.
As remarked earlier, we may regard M as a left E-module, giving M the structure
of an (E, R)-bimodule.

Let M be any right R-module, and let F be a family of irreducible R-modules.
We set M[F] = ∑

A, where the sum is taken over all irreducible submodules
A ⊆ M such that A is R-isomorphic to at least one module in F . Note that if M
contains no submodules isomorphic with any member of F , then M[F] = 0. If
F = {N }, the set consisting of a single irreducible right R-module N , then we write
M[N ] := M[{N }], and call it the N-homogeneous component of M ; again, it is
entirely possible that M[N ] = 0. Note that by Corollary12.2.2, M[F] is completely
reducible for any family F of irreducible submodules of M that we may choose.
Next, suppose that F is a family of irreducible submodules of M , and that B ⊆ M
is a submodule of M isomorphic with some irreducible submodule A ∈ F . Then for
any e ∈ E = HomR(M, M) we have that eB = 0 or eB ∼=R∼=R A, proving that also
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eB ⊆ M[A] ⊆ M[F]. This proves already that M[A] (as well as M[F]) is invariant
under the left action of every element of E .

We can internalize this discussion to the ring R itself. In particular, if M = RR , the
regular right R-module R, and if A ⊆ R is a minimal right ideal, then R[A] = M[A]
is obviously also a right ideal of R. But it’s also a left ideal since left multiplication
by an element r ∈ R gives, by the associative multiplication in R, an R-module
endomorphism R → R. By what was noted above, this proves that r R[A] ⊆ R[A],
and so R[A] is a left ideal, as well. We shall capitalize on this simple observation
shortly.

Lemma 12.3.1 Assume that M is a completely reducible R-module and set E =
HomR(M, M). If A ⊆ M is any irreducible submodule of M, then EA = M[A].
Proof Wehave already observed above that M[A] is invariant under every R-module
endomorphism of M , so EA ⊆ EM[A] ⊆ M[A]. Conversely, assume that A′ ⊆ M
is a submodule with A ∼=R A′. Since rad(M) = 0 we may find an irreducible R-
submodule L ⊆ M with A ∩ L = 0. Therefore it follows that M = A ⊕ L . If

π : M = A ⊕ L → A is the projection onto the first coordinate, and if φ : A
∼=→ A′

is an R-module isomorphism, then the composite

M
π−→ A

φ−→ A′ ↪→ M

defines an R-module endomorphism carrying A to A′. �

12.3.2 The Socle of a Module Is a Direct Sum
of the Homogeneous Components

Our first lemma below informs us that inside the modules M[F]we won’t encounter
any unexpected submodules.

Lemma 12.3.2 If M is an R-module and if F is a family of irreducible R-modules,
then any irreducible submodule of M[F] is isomorphic with some member of F .

Proof Set N = M[F] ⊆ M , and let A ⊆ N be an irreducible submodule. By
Lemma12.2.5 we have rad(N ) = 0 from which we infer the existence of a maximal
submodule L ⊆ N with A ∩ L = 0. Since N is generated by submodules each
of which is isomorphic with a member of F , we may choose one, call it B, where
B ∩ L = 0. Since L is maximal, we have N = A ⊕ L = B ⊕ L . Therefore,

A ∼= (A ⊕ L)/L = N/L = (B ⊕ L)/L ∼= B,

proving the result. �
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As a consequence of the above, we may exhibit the socle of a module as the direct
sum of its homogeneous components, that is, the direct sum of its A-homogeneous
components M[A] as A ranges over a set of representatives of the R-isomorphisms
classes of irreducible submodules of M .

Corollary 12.3.3 Soc(M) is the direct sum of the homogeneous components of M.

Proof Let F be a family of pairwise non-isomorphic irreducible R-submodules
of M such that each irreducible submodule of M is isomorphic with a member
of F . Obviously Soc(M) = M[F] = ∑

A∈F
M[A]. By Lemma12.3.2 we see that

for all A ∈ F , one has M[A] ∩ ∑
B∈FA

M[B] = 0, where FA = F\{A}. Now by

Theorem8.1.6 on internal direct sums, it follows immediately that

Soc(M) =
∑
A∈F

M[A] =
⊕
A∈F

M[A]

as claimed. �

The next several sections concern rings rather than modules. But we can already
apply a few of the results of this section to the module RR . Of course, the first
statement below has already been observed above.

Corollary 12.3.4 Every homogeneous component of Soc(RR) is a 2-sided ideal of
R. Also Soc(RR) is itself a 2-sided ideal of R (which we write as Soc(R)).

12.4 Semiprime Rings

12.4.1 Introduction

Wenowpass to rings. The basic class of rings thatwe shall dealwith are the semiprime
rings and certain subspecies of these. In order to state the defining properties, a few
reminders about 2-sided ideals are in order.

If A and B are 2-sided ideals of the ring R, the product AB of ideals is the additive
group generated by the set of all products {ab |(a, b) ∈ A × B}. This additive group
is itself already a 2-sided ideal which the ring-theorists denote by the symbol AB. Of
course it lies in the ideal A ∩ B. (From this definition, taking products among ideals
is associative.)

We say that a (2-sided) ideal A is nilpotent if and only if there exists some positive
integer n such that

An := A · A · · · A (n factors) = 0 := {0R},

the zero ideal.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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An ideal P is said to be a prime ideal if and only if, whenever A and B are ideals
such that AB ⊆ P , then either A ⊆ P or B ⊆ P . The intersection of all prime ideals
of the ring R is called the prime radical of R and is denoted Prad(R). We say that the
ring R is semiprime if the intersection of its prime ideals is 0, i.e., if Prad(R) = 0.
Clearly Prad(R) is an ideal of R. A moment’s thought should be enough to reveal
that R/Prad(R) is semiprime. If the 0-ideal of R is itself a prime ideal, the ring R is
called a prime ring.

12.4.2 The Semiprime Condition

Theorem 12.4.1 The following conditions on a ring R are equivalent:

(i) R is semiprime.
(ii) For any ideals A and B of R, AB = 0 implies A ∩ B = 0.

(iii) 0 is the only nilpotent ideal.
(iv) For each non-zero x ∈ R, x Rx 	= 0.

Proof (i)=⇒(ii) Assume A and B are ideals for which AB = 0. Then AB ⊆ P for
any prime ideal P so either A lies in P or B lies in P . In any event A ∩ B ⊆ P for
each prime ideal P . Thus A ∩ B is contained in the intersection of all prime ideals,
and so, since R is semiprime, is zero.

(ii)=⇒(iii) Suppose, by way of contradiction, that A is a non-zero nilpotent ideal
of R. Let k be the least positive integer for which Ak = 0. Then Ak−1 · A = 0,
which implies by condition (ii) that Ak−1 ⊆ Ak−1 ∩ A = 0, contrary to the choice
of exponent k.

(iii)=⇒(iv) If, for some 0 	= x ∈ R we had x Rx = 0, then as x ∈ Rx R, we
conclude that Rx R is a non-zero ideal of R. But then

Rx R · Rx R = Rx Rx R = R · 0 · R = 0,

forcing Rx R to be a non-zero nilpotent ideal, against (iii).
(iv)=⇒(i) Let a 	= 0; we shall prove that there exists a prime ideal P ⊆ R with

a 	∈ P , proving that R is semiprime. Seta0 := a; by (iv),a0Ra0 	= 0. Therefore, there
exists a non-zero element a1 ∈ a0Ra0. We may continue this process to generate a
sequence of non-zero elements a0, a1, . . ., such that ai+1 ∈ ai Rai . Set T = {an|n ∈
N. Before proceeding further, we note an important property of this sequence:

(S) If the element ai is in some ideal J ⊆ R, then so are all of its successors in T .

Let P be an ideal maximal with respect to not containing any element of T . (It
exists by Zorn’s Lemma.) Now suppose A and B are ideals of R neither of which is
contained in P but withAB ⊆ P . By themaximality of P the ideals A+ P and B + P
both meet T non-trivially. So there are subscripts i and j such that ai ∈ A + P , and
a j ∈ B + P . Set m = max(i, j). Then by the property (S), am lies in both P + A
and P + B, so
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am+1 ∈ am Ram ⊆ (A + P)(B + P) ⊆ AB + P ⊆ P

against P ∩ T = ∅. Thus no such ideals A and B exist, so P is a prime ideal. Since
P doesn’t contain a = a0, the proof that R is semiprime is complete. �

12.4.3 Completely Reducible and Semiprimitive Rings
Are Species of Semiprime Rings

At the beginning of this chapter we defined the radical of a right R-module M to
be the intersection of all maximal submodules of M , or, if there are no maximal
submodules, to be M itself. Similarly, we define the radical, rad(R), of the ring
R to be rad(RR)—the radical of the right module RR . Accordingly, rad(R) is the
intersection of all maximal right ideals of R and is called the Jacobson radical of R.

While rad(R) is, a priori, a right ideal of R, the reader may be surprised to learn
that it is also a left ideal. As this is relatively easy to show, we shall pause long enough
to address this issue. Assume first that M is a non-zero irreducible right R-module.
Then for each 0 	= m ∈ M , we have that (by irreducibility) M = m R. Furthermore,
the mapping R → M, r �→ mr is easily verified to be a surjective R-module
homomorphism. This implies immediately that if J = AnnR(m) := {r ∈ R | mr =
0}, then J is the kernel of the above R-module homomorphism: M ∼=R R/J . Clearly
J is a maximal right ideal of R. Next, recall that any R-module M determines a ring
homomorphism R → EndZ(M), the ring of abelian group homomorphisms of M .
Furthermore, it is clear that AnnR(M) := {r ∈ R | Mr = 0} is the kernel of the
above ring homomorphism, and hence AnnR(M) is a 2-sided ideal of M . Finally,
note that

AnnR(M) =
⋂

0 	=m∈M

AnnR(m), (12.2)

i.e., AnnR(M) is the intersection of the maximal right ideals AnnR(m), m ∈ M . Our
proof will be complete as soon as we can show that

rad(R) =
⋂

J∈M(R)

AnnR(R/J ),

whereM(R) denotes the collection of all maximal right ideals of R. By Eq. (12.2) we
see that each AnnR(R/J ) is an intersection of maximal right ideals of R; therefore if
x ∈ rad(R) then x is contained in AnnR(R/J ) for every maximal right ideal J ⊆ R.
This proves that

rad(R) ⊆
⋂

J∈M(R)

AnnR(R/J ).
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Conversely, if x ∈ AnnR(R/J ), then Eq. (12.2) implies that x ∈ J = AnnR(1+ J ),
and so it is now clear that

rad(R) ⊇
⋂

J∈M(R)

AnnR(R/J ),

proving that, as claimed rad(R) is a 2-sided ideal of R.
We note in passing that the Jacobson radical annihilates every irreducible right

R-module.
A ring is said to be semiprimitive if and only its Jacobson radical is trivial. A

ring is primitive if and only if there exists an irreducible right R-module M with
Ann(M) = 0, i.e., if and only if R has a faithful irreducible module. It follows, of
course, that every primitive ring is semiprimitive as is R/rad(M) for any ring R.
Finally we say that a ring R is completely reducible if and only if the right module
RR is a completely reducible module. A hierarchy of these concepts is displayed in
the following Theorem:

Theorem 12.4.2 The following implications hold among properties of a ring:

completely reducible ⇒ semiprimitive ⇒ semiprime

Proof The first implication is just Lemma12.2.5, together with Theorem12.2.6
applied to the module M = RR .

For the second implication, suppose R is a ring which is semiprimitive but not
semiprime. Then rad(R) = 0 and there exists a non-zero nilpotent ideal N . By
replacing N by an appropriate power if necessary, we may assume N 2 = 0 	= N .
Since rad(R) = 0, there exists a maximal right ideal M not containing N . Then
R = N + M by maximality of M . Thus we may write 1 = n + m, where n ∈ N and
m ∈ M . Then

n = 1 · n = n2 + mn = 0 + mn ∈ M.

Thus 1 = n + m ∈ M , which is impossible. Thus we see that N must lie in every
maximal right ideal, so N ⊆ Rad(R) = 0. This contradicts N 	= 0. Thus no such
ring R exists, and so the implication holds. �

12.4.4 Idempotents and Minimal Right Ideals
of Semiprime Rings

The importance of semiprimness for us is that it affects the structure of the minimal
right ideals of R.

We pause, however, to define an idempotent in a ring R to be a non-zero element e
satisfying e2 = e. Such elements play a central role in this and the following subsec-
tion. Furthermore, the role that they play is analogous to that played by projections
in linear algebra.
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Lemma 12.4.3 (Brauer’s lemma) Let K be a minimal right ideal of a ring R. Then
either

(i) K 2 = 0, or
(ii) K = eR, for some idempotent e ∈ R.

Proof If K 2 	= 0, then by the minimality of K , K = K 2 = kK for some element
k ∈ K . From this we infer the existence of an element e such that ke = k. Next,
since the right annihilator, AnnK (k) = {x ∈ K | kx = 0}, is a right ideal of R lying
properly in K , we have AnnK (k) = 0. But as ke = k,

k(e2 − e) = (ke)e − ke = ke − ke = 0,

so e2 − e ∈ AnnK (k) = 0, forcing e2 = e. Finally, 0 	= eR ⊆ K , so eR = K as K
was minimal. �

Corollary 12.4.4 If R is semiprime, then every minimal right ideal of R has the
form eR for some idempotent e ∈ R.

Proof Let K be a minimal right ideal of R. Then by Brauer’s Lemma, the conclusion
holds or else K 2 = 0. But in the latter case, RK is a nilpotent 2-sided ideal containing
K , as

(RK)2 = R(KR)K ⊆ RK2 = 0.

This contradicts the fact that R is semiprime. �

Lemma 12.4.5 Suppose e and f are non-zero idempotent elements of a ring R.
Then there is an additive group isomorphism HomR(eR, f R) � f Re. Moreover, if
f = e, then this isomorphism can be chosen to be a ring isomorphism.

Proof Consider the mapping ψ : f Re → HomR(eR, f R) defined by

ψ( f re) : es �→ ( f re)es = f res,where r, s ∈ R

In other words, for each r ∈ R, ψ(fre) is left multiplication of eR by fre. This is
clearly a homomorphism of right R-modules e R → f R. Note that ψ(f re)(e) = f re,
so the image of ψ(fre) can be the zero homomorphism if and only if fre = 0. So the
mapping ψ is injective.

The mapping is also surjective, for if λ is a right module homomorphism e R →
f R, then λ(e) = fs, for some s ∈ R. Then, for any r ∈ R,

λ(er) = λ(e2r) = λ(e) · er = ( f se)er = ψ( f se)(er),

so the R-homomorphism λ is an image of the mapping ψ.
Of course for elements r1, r2 in R, f (r1 + r2)e = f (r1 + r2)e has a ψ-image that

is the sum of the R-morphisms ψ( f r1e) + ψ( f r2e), so ψ preserves addition. Thus
ψ is an isomorphism f Re → HomR(eR, f R) of additive groups.
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Now suppose e = f . Then eRe inherits a ring multiplication from R that is
distributive with respect to addition. We must show that ψ preserves multiplication
in this case. For two arbitrary elements er1e, er2e of eRe, the ψ-image of their
product is left multiplication of eR by er1eer2, which by the associative law, is the
composition ψ(er1e) ◦ ψ(er2e) in HomR(eR, f R) = EndR(eR). �

Lemma 12.4.6 If R is a semiprime ring, and e2 = e ∈ R, then eR is a minimal
right ideal if and only if eRe is a division ring.

Proof (=⇒) If eR is a minimal ideal, then EndR(eR) is a division ring by Schur’s
Lemma (Lemma8.2.6). By the preceding Lemma12.4.5, eRe is isomorphic to this
division ring.

(⇐=) Assume eRe is a division ring. Let us assume, by way of contradiction, that
eR is not a minimal ideal. Then there is a right ideal N , such that 0 < N < eR. Then
Ne ⊆ eRe ∩ N . Since a division ring has no proper right ideals, eRe ∩ N is either 0
or eRe.

Suppose Ne 	= 0. Then there exists an element n ∈ N such that ne 	= 0. Then
ne, being a non-zero element of a division ring, possesses a multiplicative inverse in
eRe, say ese. Then

ne(ese) = nese = e.

Since N is a right ideal in R, it follows that e lies in N . Thus eR ⊆ N , contrary to
our choice of N . Thus we must have Ne = 0.

Now eN is a right ideal of R such that (eN)2 = e(Ne)N = 0. Since R is semiprime,
it possesses no non-trivial nilpotent right ideals (Theorem12.4.1). Thus eN = 0. But
left multiplication by e is the identity endomorphism eR → eR, yet it annihilates the
submodule N of eR. It follows that N = 0, also against our choice of N .

Thus no such N , as hypothesized exists, and so eR is an irreducible R-module—
i.e. a minimal right ideal. �

Corollary 12.4.7 Let e be an idempotent element of the semiprime ring R. Then eR
is a minimal right ideal if and only if Re is a minimal left ideal.

Proof In Lemma12.4.6 a fact about a right ideal is equivalent with a fact about a ring
eRe which possesses a complete left-right symmetry. Thus, applying this symmetry,
eRe is a division ring if and only if the principal left ideal Re is minimal—that is, an
irreducible R-module. �

Lemma 12.4.8 Let e and f be idempotent elements of the ring R. Then the right
ideals eR and f R are isomorphic as R-modules if and only if there exist elements u
and v in R such that vu = e and uv = f .

Proof (=⇒) Assume there exists an isomorphism α : eR → f R. Here we exploit
the isomorphism ψ−1 : HomR(eR, f R) → eRf of Lemma12.4.5, to see that α is
achieved by left multiplication by an element u = fae ∈ f Re. Note that u = fue,
since e and f are idempotent elements. Similarly, α−1 is achieved by left multipli-
cation by v = ebf ∈ eRf. Clearly v = evf, since e and f are idempotents. The left
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multiplications compose asα◦α−1 = 1eR, which is represented as left-multiplication
by e. Thus vu = e. Similarly, α−1 ◦ α = 1 f R is left multiplication of f R by uv and
by f . Thus uv = f .

(⇐=) Now assume that there exist elements u and v in R such that vu = e
and uv = mf. Then ue = uvu = fu, so left multiplication by u effects an
R-homomorphism eR → f R as right R modules. Similarly, left multiplication by v

effects another R-homomorphism of right R-modules f R → eR. Now since vu = e
and vu = f , these morphisms are inverses of each other, and so are R-isomorphisms
of R-modules. Hence eR � f R. �

Now consider a homogeneous component A of the semiprime ring R. We have
already observed that left multiplication of a minimal right ideal eR by an element
r ∈ R produces a module reR which, being a homomorphic image of an irreducible
module, is either 0 or is an irreducible right module isomorphic to eR. It follows that
RA ⊆ A, so A is a 2-sided ideal. But there is more.

First, A, being the sum of irreducible right R-modules, is a completely reducible
module. By Lemma12.3.2 every irreducible right submodule in A is of the same
isomorphism type. Because of this, Lemma12.4.8 tells us that we can pass from
one irreducible right submodule of A to any other by multiplying on the left by an
appropriate element of R. Thus A is a completely reducible left R-module spanned
by irreducible left R-modules of the same isomorphism type. These observations
imply the following:

Corollary 12.4.9 Let R be a semiprime ring, and let A be any homogeneous com-
ponent of RR. Then A is an irreducible left R-module, and so is a minimal 2-sided
ideal of R. We also see from Lemma12.4.6, that A is also a homogeneous component
of R R.

12.5 Completely Reducible Rings

The left-right symmetry that has emerged in the previous section can be applied to
the characterization of completely reducible rings.

Theorem 12.5.1 The following four statements are equivalent for any ring R.

(i) Every right R-module is completely reducible.
(ii) RR is completely reducible.

(iii) Every left R-module is completely reducible.
(iv) R R is completely reducible.

Proof That (i) implies (ii) is true a fortiori. Now assume (ii), and let M be a right
R-module. We may write R = ∑

i∈I Ai where the Ai are minimal right ideals in R.
We clearly have
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M =
∑

m∈M

m R =
∑

m∈M

∑
i∈I

m Ai .

Note that the mapping Ai → m Ai , a �→ ma is a surjective R-module homomor-
phism; therefore, it follows that either m Ai = 0 or m Ai is an irreducible submodule
of M . By Corollary12.2.2, we see that M is completely reducible. This proves that
(i) and (ii) are equivalent. In an entirely similar fashion (iii) and (iv) are equivalent.
Finally, by Corollary12.4.7, (ii)⇐⇒(iv), which clearly finishes the proof. �

There is an immediate application:

Corollary 12.5.2 Let D be a division ring. Then any right vector space V over D
is completely reducible. In particular V is a direct sum of copies of DD.

Proof Since D is a division ring, DD is an irreduciblemodule, so any right D module
V (for that is what a right vector space is!) is completely reducible. �

Before stating the following, recall that R is a prime ring if and only if 0 is a
prime ideal.

Lemma 12.5.3 Let R be a prime ring, and assume that S = Soc(RR) 	= 0. If eR is
a minimal right ideal of R (where e is an idempotent element), then EndR(S) :=
HomR(S, S) is isomorphic to the ring of all linear transformations EndeRe(Re) :=
HomeRe(Re, Re). (Note that Re is a right eRe-vector space.)

Proof Since S = Soc(RR) is a 2-sided ideal and is the direct sum of its homogeneous
components, each of which is a 2-sided ideal, the prime hypothesis implies that S is
itself a homogeneous component. Let S be written as a direct sum

∑
ei R of minimal

right ideals with e2i = ei , and fix one of these, say e = e1. Then each eiR � eR so,
by Lemma12.4.8, there exist elements ui and vi such that vi ui = e and uivi = ei .

Then
ui evi = uivi uivi = e2i = ei .

Now let φ ∈ HomR(S, S). We define

τ (φ) : Re → Re

by the rule
τ (φ)(re) = φ(re) = φ(re)e, for all r ∈ R.

Note that τ (φ) is right eRe-linear, for if r1e, r2e ∈ Re, and if es1e, es2e ∈ eRe, then,

τ (φ)(r1e · es1e + r2e · es2e) = φ(r1e · es1e + r2e · es2e)

= φ(r1e · es1e) + φ(r2e · es2e)

= φ(r1e)es1e + φ(r2e)es2e

= τ (φ)(r1e)es1e + τ (φ)(r2e)es2e.
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Also, if φ1,φ2 ∈ HomR(S, S), it is clear that

τ (φ1 + φ2) = τ (φ1) + τ (φ2)

and that τ (φ1 ◦ φ2) = (τ (φ1)) ◦ (τ (φ2)), proving that τ is a ring homomorphism.
Clearly, τ (φ) = 0 if and only if φ(re) = 0 for all r ∈ R. So

φ(ei ) = φ(ui evi ) = φ(ui e)vi = 0 · vi = 0.

for all indices i . Thus φ(S) = 0, and hence is the zero mapping. It follows that τ is
injective.

We shall now show that τ : HomR(S, S) → HomeRe(Re, Re)) is surjective. Let
ψ ∈ HomeRe(Re, Re), and define φ ∈ HomR(S, S) as follows. If s ∈ S, then since
S = ∑

ei R is a direct sum, we may write s as s = ∑
eiri , with unique summands

eiri , for suitable elements ri ∈ R. Here we warn the reader that the elements ri are
not necessarily unique, as the idempotents ei do not necessarily comprise a basis of
S (that is, S need not be a free R-module). We set

φ(s) =
∑

ψ(ui e)vi ri .

To show thatφ is well defined,we need only show that if eiri =0, thenψ(ui e)vi ri =0.
However, as ψ ∈ HomeRe(Re, Re), and since e ∈ eRe, we have that

ψ(ui e)vi ri = ψ(ui e · e)vi ri = ψ(ui e)evi ri

= ψ(ui e)vi uivi ri

= ψ(ui e)vi ei ri

= ψ(ui e) · 0 = 0,

and so φ is well defined. Checking that φ is R-linear is entirely routine.
The proof will be complete as soon as we show that τ (φ) = ψ. Thus, let re ∈ Re

and write re = ∑
eiri ∈ S. Then

τ (φ)(re) = φ(re) = φ(re)e

=
∑

ψ(ui e)vi ri e

=
∑

ψ(ui e
2)vi ri e

=
∑

ψ(ui e)evi ri e

=
∑

ψ(ui e · evi ri e)

=
∑

ψ(ui evi ri e)

=
∑

ψ(uivi uivi ri e)
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=
∑

ψ(e2i ri e)

=
∑

ψ(eiri e)

= ψ
(∑

eiri e
)

= ψ(re · e) = ψ(re),

Where all sums on the right are over the parameter i . Comparing first and last terms,
we see that τ (φ) = ψ, proving that τ is a surjective mapping. �

Before passing to our main result, we pause long enough to observe that for any
ring R, we have R ∼= EndR(RR). This isomorphism is given via r �→ λr , where, as
usual, λr (s) = rs, for all r, s ∈ R. Furthermore, the associative and distributive laws
in R guarantee not only that each λr is a homomorphism of the right R-module R but
also that the mapping r �→ λr defines a ring homomorphism R → EndR(RR). This
homomorphism is injective since λr = 0 implies 0 = λr (1) = r · 1 = r . Finally, if
φ ∈ EndR(R), set r = φ(1); then for all s ∈ R,

λr (s) = rs = φ(1)s = φ(1 · s) = φ(s).

Theorem 12.5.4 (Wedderburn-Artin)

(i) A ring R is completely reducible if and only if it is isomorphic to a finite direct
product of completely reducible simple rings.

(ii) A ring R is completely reducible and simple if and only if it is the ring of all
linear transformations of a finite dimensional vector space.

Proof First we prove part (i). Let R be completely reducible, so R is a direct sum
R = ⊕

i∈I Ai , where the Ai are minimal right ideals. Now write 1 = ∑
ei , where

each ei ∈ Ai . Note that for each j ∈ I , we have

e j = 1 · e j =
(∑

i∈I

ei

)
· e j =

∑
i∈I

ei e j .

Since ei e j ∈ Ai e j ⊆ Ai , we conclude that e2j = e j and that when i 	= j , ei e j = 0.
Next, since 1 = ∑

ei is necessarily a finite sum, we may as well write this as

1 =
n∑

i=1

ei ,

for some n. Therefore, it follows that

R = 1 · R =
n∑

i=1

ei R. (12.3)
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Since ei R ⊆ Ai , we infer that the sum in Eq. (12.3) is necessarily finite. Furthermore,
since each Ai is a minimal right ideal, we must have ei R = Ai , and so conclude that
R is a finite direct sum of minimal right ideals:

R = e1R ⊕ e2R ⊕ · · · ⊕ en R. (12.4)

Next, we gather the above minimal right ideals into their constitutent homoge-
neous components, giving rise to the direct sum

R = C1 ⊕ C2 ⊕ · · · ⊕ Cm,

where the C1, . . . , Cm are the distinct homogeneous components of R. If we write
the identity element of R according to the above sum:

1 =
m∑

j=1

c j ,

we easily infer that c2j = c j , and that c j ck = 0 whenever j 	= k. Furthermore, if
x j ∈ C j , and if k ∈ {1, 2, . . . , m}, we see that x j ck and ck x j are both elements of
C j ∩ Ck . If j 	= k, then C j ∩ Ck = 0 so x j ck = ck x j = 0. From this it follows that

x j = x j · 1 = x j c j = 1 · x j = c j x j .

This proves that each of the 2-sided ideals C j has a multiplicative identity, viz.,
c j . That C j is a simple ring is already contained in Corollary12.4.9. That C j is
completely reducible follows from the definition of homogeneous component.

Conversely, if R is a finite direct product of completely reducible rings, this finite
direct product can be regarded as a finite direct sum, which already implies that RR

is completely reducible.
We turn now to part (ii). Let R be a completely reducible and simple ring. Let eR

be a minimal right ideal of R. By Lemma12.5.3 together with the discussion above,
we have

R � EndR(R) � EndeRe(Re).

Our proof will be complete as soon as we show that Re is a finite-dimensional
vector space over the division ring eRe. Note first of all that the right R-module RR ,
being a direct sum of finitely many irreducible modules as in Eq. (12.4) is certainly a
Noetherian module. Therefore, any collection of right ideals has a maximal member.
To show that Re is finite dimensional over eRe, it suffices to show that any collection
of subspaces of Re has amaximal member (i.e., thatRe is a Noetherian eRe-module).
Thus, let {Lμ} be a collection of eRe-subspaces ofRe, and note that {Lμ R} is a family
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of right ideals of R. Since RR is Noetherian, it has a maximal member, say Lσ R.
Suppose Lν is a subspace with Lν ⊇ Lσ . Then we have Lν R = Lσ R. Furthermore,
as LeRe = L for any subspace L ⊆ Re, we have

Lν = LνeRe = Lν Re = Lσ Re = LσeRe = Lσ,

and so Lσ is a maximal subspace.
Finally, we must prove that the ring of endomorphisms of a finite-dimensional

vector space forms a simple ring. Assume that R ∼= EndD(V ) the ring of linear
transformations of a finite-dimensional vector spaceV over a division ring D. In order
tomake the argumentsmore transparent,we shall showfirst that EndD(V ) ∼= Mn(D),
the ring of n × n matrices over D, where n is the dimension of V over D. Fix an
ordered basis (v1, v2, . . . , vn) and let φ ∈ EndD(V ). Write

φ(v j ) =
n∑

i=1

vi aij, j = 1, 2, . . . , n,

where aij ∈ D. It is entirely routine to check that the mapping φ �→ A = [aij] ∈
Mn(D) is a ring isomorphism. Next, one argues that for i = 1, 2, . . . , n, the sets

Li =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

... · · · ...

ai1 ai2 · · · ain
...

... · · · ...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

| ai1, ai2, . . . , ain ∈ D

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⊆ Mn(D)

are isomorphic minimal right ideals in Mn(D). This makes all of Mn(D) a homoge-
neous component and so is a simple ring. �

We turn, finally, to an alternative formulation of the Wedderburn-Artin theorem.
In this version, we assume the ring R to be semiprimitive (so rad(R) = 0), as well as
being (right) Artinian. The object shall be to prove that RR is completely reducible.

Theorem 12.5.5 Let R be a semiprimitive Artinian ring. Then R can be represented
as a finite direct product of matrix rings over division rings.

Proof It clearly suffices to prove that RR is completely reducible. Since R is right
Artinian, we may find a minimal right ideal I1 ⊆ R. Also, since rad(R) = 0 we may
find a maximal right ideal, say, M1 with I1 	⊆ M1. Clearly

R = I1 + M1.
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Next, using again the fact that R is right Artinian, we may extract a minimal right
ideal I2 ⊆ M1. Since rad(R) = 0 there is a maximal right ideal, say M2 such that
I2 	⊆ M2. Since M1 = R ∩ M1, and since R = I2 + M2, we may use the modular
law to obtain

M1 = R ∩ M1

= (I2 + M2) ∩ M1

= I2 + (M2 ∩ M1),

from which we conclude that

R = I1 + M1 = I1 + I2 + (M1 ∩ M2).

Wemay continue in this fashion to produce a sequence M1, M2, . . . of maximal right
ideals and a sequence I1, I2, . . . of minimal right ideals such that

R = I1 + I2 + · · · Ik + (M1 ∩ M2 ∩ · · · ∩ Mk).

Since R is right Artinian, the strictly decreasing sequence

M1 � M1 ∩ M2 � · · · �

t⋂
i=1

Mi � · · ·

must terminate. Since R is semiprime, it must terminate at 0. This means that for
a suitable positive integer s, we will have found finitely many minimal right ideals
I1, I2, . . . , Is such that

R = I1 + I2 + · · · + Is .

The proof is complete. �

12.6 Exercises

12.6.1 General Exercises

1. Let D be a PID and let 0 	= a ∈ D be a non-unit. Compute the radical and the
socle of the cyclic D-module D/aD.

2. Let D be a PID.

(a) Show that every nonzero submodule of the free right D-module DD is large.
(b) Let p ∈ D be a prime. Show that for every integer n ≥ 1, every nonzero

submodule of the cyclic D-module D/pn D is large.
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3. Show that every nonzero Z-submodule of Z(p∞) is large.
4. Let F be a field and let A ⊆ Mn(F) be the ring of lower triangular n×n matrices

over F . Let V be the A-module of 1 × n matrices

V = {[
x1 x2 . . . xn

] | x1, x2, . . . , xn ∈ F
}
.

Compute Soc(V ) and rad(V ) and show that they are both large submodules.
5. Let M be a right R-module. Show that the socle of M is the intersection of the

large submodules of M .
6. Let R = M2(F), where F is a field. Show that

L =
{[

x y
0 0

]
| x, y ∈ F

}
,

is a minimal right ideal in R and hence is an irreducible R-module. Show that
any other minimal right ideal of R is isomorphic to L as a right R-module. [Hint:
If

L ′ =
{[

0 0
x y

]
| x, y ∈ F

}
,

then L ′ ∼=R L .) Conclude that RR = R[L].]
7. Let F be a field and let x be indeterminate over F . Let A be the 2 × 2 matrix

A =
[
1 0
1 1

]
.

Make V = F2 = {[a b] | a, b ∈ F} into an F[x]-module in the usual way and
compute Soc(V ) and rad(V ).

8. Let F be a field, and let A ∈ Mn(F). Let M be the set of 1 × n matrices over
F regarded as a right F[x]-module in the usual way. If A is diagonalizable over
F , show that M is a completely reducible F[x]-module. (This strong hypothesis
isn’t necessary. In fact all one really requires is that the minimal polynomial of
A factor into distinct irreducible factors in F[x].)

9. A right R-module M is called a prime module if for any submodule N ⊆ M ,
and any ideal I ⊆ R we have that NI = 0 implies that either N = 0 or that
MI = 0. Show that the annihilator in R of a prime module is a prime ideal.

10. Define a primitive ideal in the ring R to be the annihilator of an irreducible
right R-module. Now show that we have the following hierarchy for ideals in
the ring R:

maximal ideal =⇒ primitive ideal =⇒ prime ideal.

11. Let R and S be rings, and let ρ and σ be antiautomorphisms of R and S, respec-
tively. Given an (R, S)-bimodule M , define new multiplications

S × M × R → M
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by the rules that
sm = m(sσ) and mr = (rρ)m,

for all (s, m, r) ∈ S × M × R.

(a) Show that with respect to these new multiplications, the additive group
(M,+) is endowed with the structure of an (S, R)-bimodule, which we
denote as σ Mρ.

(b) Show that if Z is the ring of integers, any abelian additive group (M,+) is
a (Z, Z)-bimodule where the action of an integer n on module element m
(from the right or left) is to add m or−m to itself |n| times, according as n is
positive or negative, and to set 0m = m0 = 0. With this interpretation, any
left R-module is an (R, Z)-bimodule, and any right S-module is already a
(Z, S)-bimodule.

(c) By applying part 1 with one of (R, ρ) or (S,σ) set equal (Z, 1Z), the ring of
integers with the identity antiautomorphism, show that any left R-module M
can be converted into a right R-module Mρ. Similarly, any right S-module
N can be converted into a left S-module, σ N , by the recipe of part 1.

(d) Suppose N is a monoid with anti-automorphism μ. Let K be a field and let
KN denote the monoid ring—that is, a K -vector space with the elements
of N as a basis, and all multiplications of K -linear combinations of these
bases elements determined (via the distributive laws) by the multiplication
table of N . Define μ̂ : KN → KN by applying μ to each basis element of N
in each K -linear combination, while leaving the scalars from K unaffected.
Show that μ̂ is an anti-automorphism of KN.

(e) Suppose now N = G, a group. Show that every anti-automorphism σ of G
has the form g → (g−1)α, where α is a fixed automorphism of G.

12.6.2 Warm Up Exercises for Sects. 12.1 and 12.2

1. An element x of a ring R is nilpotent if and only if, for some positive integer n,
xn = 0. Show that no nilpotent element is right or left invertible.

2. Show that if x is a nilpotent element, then 1 − x is a unit of R.
3. A right ideal A of R is said to be nilpotent if and only if, for some positive integer

n (depending on A) An = 0. Show that if A and B are nilpotent right ideals of
R, then so is A + B.

4. (An interesting example) Let F be any field. Let F〈x, y〉 denote the ring of all
polynomials in two “non-commuting” variables x and y. Precisely F〈x, y〉 is the
monoid-ringFMwhere M is the freemonoid generated by the two-letter alphabet
{x, y}. (We shall see later on that this ring is the tensor algebra T (V ) where V is
a two-dimensional vector space over F .) Let I be the 2-sided ideal generated by
{x2, y2}, and form the factor ring R := F〈x, y〉/I .
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(a) For each positive integer k, let

(x)k := xyx · · · (k factors ) + I,

(y)k := yxy · · · (k factors ) + I.

Show that the set {1, (x)k, (y)k |0 < k ∈ Z} is a basis for R as a vector space
over F . Thus each element of R is a finite sum

r = α0 · 1 +
∑

i∈J
αi (x)i + βi (y)i ,

where J is a finite set of positive integers.
(b) Show that the sum (x + I )R + (y + I )R of two right ideals is direct, and is

a maximal two-sided ideal of R.
(c) An element (x)k is said to be x-palindromic if it begins and ends in x—i.e.,

if k is odd. Similarly (y)k is y-palindromic if and only if k is odd: Show that
any linear combination of x-palindromic elements is nilpotent.

(d) Let Px ( Py) denote the vector subspace spanned by all x-palindromic (y-
palindromic) elements. Then the group of units of R contains (1 + Px ) ∪
(1 + Py) and hence all possible products of these elements.

(e) Show that for any positive integer k, (x + y)k = (x)k + (y)k . (Here is a sum
of two nilpotent elements which is certainly not nilpotent.)

5. A right ideal is said to be a nil right ideal if and only all of its elements are
nilpotent. (If the nil right ideal is 2-sided, we simply call it a nil ideal.)

(a) For any family F of nilpotent right ideals, show that the sum
∑

F of all
ideals in F is a nil ideal.

(b) Show that if A is a nilpotent right ideal, then so is r A.
(c) Define N (R) to be the sum of all nilpotent right ideals of R. (This invariant

of R can be thought of as a certain kind of “radical” of R.) Show that N (R)

is a 2-sided nil ideal.

12.6.3 Exercises Concerning the Jacobson Radical

Recall that Jacobson radical of a ring R (with identity) was defined to be the inter-
section of all the maximal right ideals of R, and was denoted by the symbol rad(R).

1. Show that an element r of the ring R is right invertible if and only if it belongs
to no maximal right ideal.

2. Let “1” denote the multiplicative identity element of R. Show that the following
four conditions on an element r ∈ R are equivalent:

(a) r belongs to the Jacobson radical of R.
(b) For each maximal right ideal M , 1 does not belong to M + r R.
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(c) For every element s in R, 1 − rs belongs to no maximal right ideal of M .
(d) For every element s in R, 1 − rs is right invertible.

3. Show that if an element 1 − rt is right invertible in R, then so is 1 − tr. [Hint:
By hypothesis there exists an element u such that (1 − rt)u = 1. So we have :
u = 1 + rtu. Use this to show that the product

(1 − tr)(1 + tur) = 1 + tur − t (1 + rtu)r,

is just 1.] Prove that Rad(R) is a 2-sided ideal. [Hint: Show that if t ∈ rad(R),
then so is rt.]

4. Show that Rad(R) contains every nilpotent 2-sided ideal. [Hint: If false, there
is a nilpotent 2-sided ideal A and a maximal ideal M such that A2 ⊆ M while
R = A + M . Then 1 = a + m where a ∈ A and m ∈ M . Thus 1 − a is on the
one hand an element of M , and on the other hand it is a unit by Exercise (2) in
Sect. 12.6.2.]

12.6.4 The Jacobson Radical of Artinian Rings

A ring whose poset of right ideals satisfies the descending chain condition is called
an Artinian ring. The next group of exercises will lead the student to a proof that for
any Artinian ring, the Jacobson radical is a nilpotent ideal.

1. We begin with something very elementary. Suppose b is a non-zero element of
the ring R. If b = ba, then there is a maximal right ideal not containing a—in
particular a is not in the Jacobson radical. [Hint: Just show that 1−a has no right
inverse.]

2. Suppose R is an Artinian ring, and A is a non-zero ideal for which A2 = A. Show
that there exists a non-zero element b and an element a ∈ A such that ba = b.
[Hint: ConsiderF , the collection of all non-zero right ideals C such that CA 	= 0.
A ∈ F , so this family is non-empty. By the DCC there is a minimal element B in
F . Then for some b ∈ B, bA 	= 0. Then as bA = bA2, bA ∈ F . But minimality
of B shows bA = B, and the result follows.]

3. Show that if R isArtinian, then rad(R) is a nilpotent ideal. [Hint: J := rad(R) is an
ideal (Exercise (3) in Sect. 12.6.3). Suppose by way of contradiction that J is not
nilpotent. Use theDCC to show that for some positive integer k, A := J k = J k+1,
so A2 = A 	= 0. Use Exercise (2) in Sect. 12.6.3 to obtain a non-zero element b
with ba = b for some a ∈ A. Use Exercise (1) in Sect. 12.6.3 to argue that a is
not in J . It is apparent that the last assertion is a contradiction.]

4. Show that an Artinian ring with no zero divisors is a division ring. [No hints this
time. Instead a challenge.]
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12.6.5 Quasiregularity and the Radical

Given a ring R, we define a new binary operation “◦” on R, by declaring

a ◦ b := a + b − ab, for all a, b ∈ R.

The next few exercises investigate invertibility properties of elements with respect to
this operation, and use these facts to describe a new poset of right ideals for which the
Jacobson radical is a supremum. One reward for this will be a dramatic improvement
of the elementary result in Exercise (4) in Sect. 12.6.3: the Jacobson radical actually
contains every nil right ideal.

1. Show that (R, ◦) is amonoidwithmonoid identity element being the zero element,
0, of the ring R.

2. An element x of R is said to be right quasiregular if it has a right inverse in
(R, ◦)—that is, there exists an element r such that x ◦ r = 0. Similarly, x is
left quasiregular if � ◦ x = 0 for some � ∈ R. The elements r and � are called
right and left quasi-inverses of x , respectively. (They need not be unique.) If x is
both left and right quasiregular, then x is simply said to be quasiregular. You are
asked here to verify again a fundamental property of all monoids: Show that if x
is quasiregular, then any left quasi-inverse is equal to any right quasi-inverse, so
there is a unique element x◦ such that

x◦ ◦ x = x ◦ x◦ = 0.

Show also that (x◦)◦ = x , for any x ∈ R.
3. This exercise has four parts, all elementary.

(a) Show that for any elements a, b ∈ R,

a ◦ b = 1 − (1 − a)(1 − b).

(b) Show that x is right (left) quasiregular if and only if 1 − x is right (left)
invertible in R. From this, show that if x is quasiregular, then 1 − x has
1 − x◦ for a two-sided multiplicative inverse.

(c) Conclude that x is quasiregular if and only if 1 − x is a unit.
(d) Prove that any nilpotent element a of R is quasiregular. [Hint: Think about

the geometric series in powers of a.]

4. Now we apply these notions to right ideals. Say that a right ideal is quasiregular
if and only if each of its elements is quasiregular. Prove the following

Lemma 12.6.1 If every element of a right ideal K is right quasiregular, then each
of its elements is also quasiregular—that is, K is a quasiregular right ideal.
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[Hint: First observe that if x ∈ K and y is a right quasi-inverse of x , then y ∈ K
as well. So now y has both left and right quasi-inverses which must be x (why?).
Why does this make x quasiregular?]

5. Next prove the following:

Lemma 12.6.2 Suppose K is a quasiregular right ideal and M is a maximal right
ideal. Then K ⊆ M. (Thus every quasiregular right ideal lies in the Jacobson
radical.)

[Hint: If K does not lie in M , R = M + K so 1 = m + k where m ∈ M and
k ∈ K , Now k has a right quasi-inverse z. As above, z ∈ K . Then

0 = 1 · z − z = (m + k)z − z = mz + (kz − z) = mz − k,

to force k ∈ M , an absurdity.]

6. Show that the Jacobson radical is itself a right quasiregular ideal. [Hint: Show
each element y ∈ rad(R) is right quasiregular. If not, (1 − y)R lies in some
maximal right ideal M.] We have now reached the following result:

Lemma 12.6.3 The radical rad(R) is the unique supremum in the poset of right
quasiregular ideals of R.

7. Prove that every nil right ideal lies in the Jacobson radical Rad(R). [Hint: It
suffices to show that every nil right ideal is quasiregular. There are previous
exercises that imply this.]

8. Are there rings R (with identity) in which some nilpotent elements do not lie in
the Jacobson radical? Try to find a real example.)

12.6.6 Exercises Involving Nil One-Sided Ideals in Noetherian
Rings

1. Show that if B is a nil right ideal, then for any element b ∈ B, Rb is a nil left
ideal.

2. For any subset X of ring R, let X⊥ := {r ∈ R|Xr = 0}, the right annihilator of
X .

(a) Show that always X⊥ R ⊆ X⊥.
(b) Show that X⊥ ⊆ (R X)⊥.
(c) Show that X⊥ is a right ideal.
(d) Show that if X is a left ideal of R, then X⊥ is a 2-sided ideal.

3. Now suppose L is a left ideal, and P is the poset of right ideals of the form y⊥ as
y ranges over the non-zero elements of L (partially ordered by the containment
relation).
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(a) Show that R cannot be a member of P .
(b) Show that if y⊥ is a maximal member of P , then (ry)⊥ = y⊥ for all r ∈ R.

4. Suppose R is Noetherian—that is, it has the ascending chain condition on right
ideals.

(a) Show that if L is a left ideal, then there exists an element u ∈ L − {0} such
that u⊥ = (ru)⊥, for all r ∈ L .

(b) Suppose L is a nil left ideal and that u is chosen as in Part (a) of this exercise.
Show that uRu = 0. Conclude from this that (RuR)2 = 0, so u generates a
nilpotent 2-sided ideal. [Hint: Note that if k is the least positive integer such
that uk = 0, then u ∈ (uk−1)⊥ = u⊥, so Ru ⊆ u⊥.]

(c) Because R is Noetherian, there exists an ideal M which is maximal among
all nilpotent 2-sided ideals. Show that M contains every nil left ideal. [Hint:
If L is a nil left ideal, so is L + M , and so (L + M)/M is a nil left ideal of
the Noetherian ring R/M . Now if L + M is not contained in M , Part (b) of
this exercise applied to R/M will yield a non-zero nilpotent 2-sided ideal
in R/M . Why is this absurd?]

(d) Show that every nil right ideal lies in a nilpotent 2-sided ideal. [Hint: Let
N be a nil right ideal and let M be the maximal nilpotent 2-sided ideal of
part (c) of this exercise. (M exists by the Noetherian condition.) By way
of contradiction assume n ∈ N − M . Select an element r ∈ R. Since N
is a right nil ideal there exists an integer k ≥ 2 such that (nr)k = 0. Then
(rn)k+1 = r · (nr)k · n = 0. Thus Rn is a left nil ideal, and so, by part (c) of
this exercise, lies in M against our choice of n,]

(e) In a Noetherian ring, the sum of all nilpotent right ideals, N (R),is a nil
2-sided ideal (Exercise (5) in Sect. 12.6.2). Prove the following:

Theorem 12.6.4 (Levitsky) In a Noetherian ring, N (R) is a nilpotent ideal and it
contains all left and right nil ideals.

Remarks The reader is advised thatmost of the theory exposed in these exercises also
exist in “general ring theory” where (unlike this limited text) rings are not required
to possess a multiplicative identity element. The proofs of the results without the
assumption of an identity element—especially the results about radicals—require a
bit of ingenuity. There are three basic ways to handle this theory without a multi-
plicative identity. (1) Embed the general ring in a ring with identity (there is a rather
‘minimal’ way to do this) and apply the theory for these rings.. Only certain sorts
of statements about general rings can extracted in this way. For example, quasireg-
ularity can be defined in any general ring. But to establish the relation connecting
quasiregularity of x with 1− x being a unit, the embedding is necessary. (2) Another
practice is to exploit the plentitude of right ideals by paying attention only to right
ideals possessing properties they would have had if R had an identity element. Thus
a regular right ideal in a general ring, is an ideal I for which there is an element
e, such that e − er ∈ I for all R in the ring. The Jacobson radical is then defined
to be the intersection of all such regular right ideals. With this modified definition,
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nearly all of the previous exercises regarding the Jacobson radical can be emulated in
this more general context. But even this is just “scratching the surface”. There is an
extensive literature on all kinds of radicals of general rings. (3) In Artinian general
rings, one can often find sub-(general)-rings containing an idempotent serving as a
multiplicative identity for that subring. Then one can apply any relevant theorem
about rings with identity to such subrings.

Two particularly good sources extending the material in this chapter are the clas-
sic Rings and Modules by J. Lambeck [2] and the excellent and thorough book of
J. Dauns, Modules and Rings [1].1

References

1. Dauns J (1994) Modules and rings. Cambridge University Press, Cambridge
2. Lambek J (1966) Rings and modules. Blaisdell Publishing Co., Toronto

1As indicated by the titles of these two books, they have this subject covered “coming and going”.



Chapter 13
Tensor Products

Abstract No algebra course would be complete without introducing the student to
the language of category theory. Some properties of the objects of algebra are defined
by their internal structure, while other properties describe how the object sits in a
morphism-closed environment. Universal mapping properties are of the latter sort.
Their relation to initial and terminal objects of another suitably-chosen category is
emphasized. The tensor product in the category of right R-modules is defined in
two ways: as a constructed object, and as a unique solution to a universal mapping
problem. From the tensor product one derives functorswhich are adjoint to the “Hom”
functors. Another feature is that tensor products can also be defined for F-algebras.
The key facts that tensor products “distribute” over direct sums and that there is
a uniform way to define multiple tensor products, allows one to define the tensor
algebra. In the category of F-algebras generated by n elements, this algebra becomes
an initial object. This graded algebra, T (V ), is uniquely determined by an F-vector
space V and has two important homomorphic offspring: the symmetric algebra,
S(V ) (modeled by polynomial rings), and the exterior algebra, E(V ), (modeled
by an algebra on poset chains). In the category of vector spaces, T, S and E , and
their restrictions to the homogenous summands, are all functors—that is, morphisms
among vector spaces induce morphisms among the algebras and their components
of fixed degree. Herein lie the basic theorems concerning multilinear forms.

13.1 Introduction

In this chapter we shall present the notion of tensor product. The exposition will
emphasize many of its “categorical” properties (including its definition), as well as
its ubiquity in multilinear algebra (and algebra in general!). In so doing, we shall
find it convenient to weave some rather general discussions of “category theory”
into this chapter, which will also help to explain the universal nature of many of the
constructions that we’ve given thus far.

© Springer International Publishing Switzerland 2015
E. Shult and D. Surowski, Algebra, DOI 10.1007/978-3-319-19734-0_13
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13.2 Categories and Universal Constructions

13.2.1 Examples of Universal Constructions

In past chapters, we have encountered “universal mapping properties”. They always
seem to say that given a certain situation, there exists a special collection ofmaps such
that for every similar collection of maps, there is a unique collection of morphisms
to or from that special collection. So, far we have discussed such “universal mapping
properties” for special realms such as rings, or R-modules. But it is time to give
this notion a concrete setting. The natural home for describing “universal mapping
properties” in a general way is a “category”. In this section, we shall define the notion
of a category, which will not only unify some of the concepts that we’ve considered
thus far, but also give meaning to the concept of a “universal construction”—that is,
the construction of an object satisfying a “universal mapping property”. Examples
of universal constructions given so far include

1. the kernel of a group (or ring or module) homomorphism;
2. the commutator subgroup [G, G] of a group G;
3. the direct product of groups (rings, modules, . . .);
4. the direct sum of modules;
5. the free group on a set;
6. the free module on a set.

We shall encounter more examples. The reader is likely to wonder what the above
examples have in common. The objective of this discussion is to make that clear.

Before turning to the formal definitions, let us indicate here the “universality”
of kernels. Indeed, let φ : G → H be a homomorphism of groups, with kernel
μ : K ↪→ G where μ is the inclusion mapping.1 From this, it is a trivial fact that the
composition φ ◦ μ : K → H is the trivial homomorphism. With φ : G → H fixed,
the “universal” property of the pair (K ,μ) is as follows: Suppose that (K ′,μ′) is
another pair consisting of a group K ′ and a homomorphism μ′ : K ′ → G such that
φ◦μ′ : K ′ → H is also the trivial homomorphism. It follows fromTheorem3.4.5 that
there exists a unique homomorphism θ : K ′ → K such that μ ◦ θ = μ′ : K ′ → G.
In other words, the homomorphism μ′ : K ′ → G satisfying the given property (viz.,
that φ ◦ μ′ is the trivial homomorphism) must occur through the “courtesy” of the
homomorphism μ : K → G. Perhaps a commutative diagram depicting the above
would be helpful:

1The student may be more accustomed to saying that K = {g ∈ G|φ(g) = 1H } is a subgroup of
G. But these “category people” like to think in terms of morphisms and their compositions.

http://dx.doi.org/10.1007/978-3-319-19734-0_3
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GK H

K ′

μ φ

θ μ′

�
�

�
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�
�
�
��
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As another example, we consider the direct sum D := ⊕
α∈A

Mα of a family

{Mα | α ∈ A} of right R-modules (where R is a fixed ring). Thus D is a right R-
module having, for each α ∈ A, an injective homomorphism μα : Mα → D. The
universal property of the direct sum is as follows: if {(D′,μ′

α) | α ∈ A} is another
family consisting of an R-module D′ and R-module homomorphisms μ′

α : Mα →
D′, then there must exist a unique homomorphism θ : D → D′ making all of the
relevant triangles commute, i.e., for each α ∈ A, we have θ ◦ μα = μ′

α Thus, in
analogy with our first example (that of the kernel), all homomorphisms must factor
through the “universal object.” The relevant picture is depicted below:

DMα

D′

μα

μ′
α θ

�
�
�
��

�
�

�
��
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13.2.2 Definition of a Category

In order to unify the above examples as well as to clarify the “universality” of the
given constructions, we start with a few key definitions. First of all, a category is a
triple C = (O,Hom, ◦) where

1. O is a class (of objects of C),
2. Hom assigns to each pair (A, B) of objects a class Hom(A, B) (which we some-

times write as HomC(A, B) when we wish to emphasize the category C), whose
elements are called morphisms from A to B, and

3. There is a law of composition,

◦ : Hom(B, C) × Hom(A, B) → Hom(A, C),

defined for all objects A, B, andC forwhichHom(A, B) andHom(B, C) are non-
empty. (The standard convention is to write composition as a binary operation—
thus if ( f, g) ∈ Hom(B, C) × Hom(A, B), one writes f ◦ g for ◦( f, g).) Com-
position is subject to the following rules:

(a) Where defined, the (binary) composition on morphisms is associative.
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(b) For each object A, Hom(A, A) contains a special morphism, 1A, called
the identity morphism at A, such that for all objects B, and for all f ∈
Hom(A,B), g ∈ Hom(B, A),

f ◦ 1A = f, 1B ◦ g = g.

NOTE:When object A is a set, we often write idA for 1A, since the identity mapping
idA : A → A, taking each element of A to itself, is the categorical morphism 1A in
that case.

Occasionally one must speak of subcategories. If C = (O,Hom, ◦) is a category,
then any subcollection of objects, O0 ⊆ O, determines an induced subcategory
C0 := (O0,Hom0, ◦), where Hom0 denotes those morphisms in Homwhich connect
two objects inO0. There is also another kind of subcategory in which the collection
of morphisms is restricted. Let C = (O,Hom, ◦), as before, and let Hom1 be a
subcollection of Hom containing 1A, for all A ∈ O, with the property that if a
composition of two morphisms in Hom1 exists in Hom, then that composition lies
in Hom1. Then (O,Hom1, ◦) is a morphism restricted subcategory. In general a
subcategory of C is any category obtained from C by a sequence of these processes:
forming induced subcategories and restricting morphisms.

There are some rather obvious categories, as follows.

1. The category Set, whose objects are all sets and whose morphisms are just
mappings of sets.

2. The categories Group, Ab, Ring, Field, ModR of groups, abelian groups,
rings, fields, and (right) R-modules and their relevant homomorphisms. Note that
Ab is an induced subcategory of Group.

3. The category Top of all topological spaces and continuous mappings.
Here are a few slightly less obvious examples.

4. Fix a group G and define the category (O,Hom, ◦) where O = G, and where,
for x, y ∈ G, Hom(x, y) = {g ∈ G | gx = y}. (Thus Hom(x, y) is a singleton
set, viz., {yx−1}). Here, ◦ is defined in the obvious way and is associative by the
associativity of multiplication in G.

5. Let M be a fixed monoid. We form a category with {M} as its sole object. Hom
will be the set of monoid elements of M , and composition of any two of these is
defined to be their product under the binary monoid operation. (Conversely, note
that in any category with object A, Hom(A, A) is always a monoid with respect
to morphism composition.)

6. Let G be a simple graph (V, E). Thus, V is a set (of vertices) and E (the set of
edges) is a subset of the set of all 2-element subsets of V . If x and y are vertices of
G,wedefine a walk from x to y to be afinite sequencew = (x = x0, x1, . . . , xn =
y) where each successive pair {xi , xi+1} ∈ E for i = 0, . . . , n − 1. The graph is
said to be connected if, for any two vertices, there is a walk beginning at one of
the vertices and terminating at the other. For a connected graph (V, E), we define
a category as follows:

(a) The objects are the vertices of V .



13.2 Categories and Universal Constructions 475

(b) If x and y are vertices, then Hom(x, y) is the collection of all walks that
begin at x and end at y. (This is often an infinite set.)

Suppose now u = (x = x0, x1, . . . , xn = y) is a walk in Hom(x, y), and
v = (y = y0, y1, . . . , ym = z) is a walk in Hom(y, z). Then the composition
of the two morphisms is defined to be their concatenation, that is, the walk
v ◦ u := (x = x0, . . . , xn = y0, . . . , ym = z) from x to z in Hom(x, z).

7. If G1 := (V1, E1) and G2 = (V2, E2) are two simple graphs, a graph homo-
morphism φ : G1 → G2 is a set-mapping f : V1 → V2 such that if {x, y} is an
edge in E1, then either f (x) = f (y) ∈ V2, or else { f (x), f (y)} is an edge in E2.
The category of simple graphs, denoted Graphs, has all simple graphs and their
graph homomorphisms as objects and morphisms. [By restricting morphisms or
objects, this category has all sorts of subcategories for which each object pos-
sesses a unique “universal cover”. ]
We conclude with two examples of categories that are especially relevant to the
constructions of kernel and direct sum given above.

8. Letφ : G → H be a homomorphismof groups.Define the categorywhose objects
are the pairs (L , η), where L is a group andwhere η : L → G is a homomorphism
such that φ ◦ η : L → H is the trivial homomorphism. If (L , η), (L ′, η′) are two
such pairs, a morphism from (L , η) to (L ′, η′) is simply a group homomorphism
θ : L → L ′ such that the diagram below commutes:

L

L ′

G

θ η′

η�
	








�

It should be clear that the axioms of a category are satisfied for this example.
9. Let {Mα | α ∈ A} be a family of right R-modules and form the category whose

objects are of the form (M, {φα | α ∈ A}), where M is a right R-module and
where each φα is an R-module homomorphism from Mα to M . In this case a
morphism from (M, {φα | α ∈ A}) to (M ′, {φ′

α | α ∈ A}) is simply an R-module
homomorphism θ : M → M ′ such that for all α ∈ A, the following triangle
commutes:

M M ′

Mα

φα
φ′

α

θ �
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�

��
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13.2.3 Initial and Terminal Objects, and Universal Mapping
Properties

We continue with a few more definitions. Let C = (O,Hom, ◦) be a category and
let A and B be objects of C. As usual, let 1A and 1B be the identity morphisms of
Hom(A, A) andHom(B, B).Amorphism f ∈ Hom(A, B) is called an isomorphism
if there exists a morphism g ∈ Hom(B, A) such that g ◦ f = 1A and f ◦ g = 1B . In
this case, we write f = g−1 and g = f −1. An initial object in C is an object I of C
such that for all objects A, Hom(I, A) is a singleton set. That is to say, I is an initial
object of C if and only if, for each object A of C, there exists a unique morphism
from I to A. Likewise, a terminal object is an object T such that for all objects A,
Hom(A, T ) is a singleton set.

The following should be clear, but we’ll pause to give a proof anyway.

Lemma 13.2.1 (“Abstract Nonsense”) If the category C contains an initial object,
then it is unique up to isomorphism in C. Similarly, if C contains a terminal object,
it is unique up to isomorphism in C.

Proof Let I and I ′ be initial objects of C. Let f ∈ Hom(I, I ′), f ′ ∈ Hom(I ′, I ) be
the unique morphisms. Then

f ′ ◦ f ∈ Hom(I, I ) = {1I }, f ◦ f ′ ∈ Hom(I ′, I ′) = {1I ′ }.

Thus, if C has a terminal object, then it is unique. Essentially the same proof shows
that if C has a terminal object, it is unique. �

At first blush, it might seem that the notion of an initial object in a category
cannot be very interesting. Indeed, the category Group of groups and group homo-
morphisms contains an initial object, viz., the trivial group {e}, which is arguably not
very interesting. At the same time the trivial group is also a terminal object in Group.
Similarly, {0} is both an initial and a terminal object in ModR . As a less trivial exam-
ple, note that if K is the kernel of the group homomorphism φ : G → H , then by our
discussions above, (K ,μ) is a terminal object in the category of example 8 above.
Likewise, (

⊕
α∈A

Mα, {μα | α ∈ A}) is an initial object in the category of example

9, above. In light of these examples, we shall say that an object has a universal
mapping property if it is an initial (or terminal) object (in a suitable category).

In general, we cannot expect a given category to have either initial or terminal
objects. When they do, we typically shall demonstrate this via a direct construction.
This is certainly the case with the kernel and direct sum; once the constructions were
given, one then proves that they satisfy the appropriate universal mapping properties,
i.e., that they are terminal (resp. initial) objects in an appropriate category.
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13.2.4 Opposite Categories

For each category C = (O,HomC, ◦), there is an opposite category Copp =
(O,Homopp, ◦′), having the same set of objects O; but we now turn the arrows
that depict morphisms around. More precisely, f ∈ Hom(A, B), if and only if
f opp ∈ Homopp(B, A). In category C, if f ∈ Hom(A, B), g ∈ Hom(B, C), so that
h := g ◦ f ∈ Hom(A, C), then in category Copp we have hopp = f opp ◦′ gopp ∈
Homopp(C, A). One notices that an identity mapping 1A in C becomes an identity
mapping in Copp and that an initial (terminal) object in C becomes a terminal (initial)
object in Copp.

A universal mapping property in one category corresponds to an “opposite” map-
ping property in its opposite category. Let us illustrate this principle with the notion
of the kernel. Earlier we discussed the universalmapping property of the kernel in the
category of right R-modules. Let us do it again in a much more general categorical
context.

Suppose C = (O,Hom, ◦) is a category in which a terminal object T exists and
that T is also the initial object I—that is T = I . Now for any two objects A and
B in O, consider the class Hom(A, B), in category C . This class always contains
a unique morphism which factors through I = T . Thus there is a unique mapping
τA : A → T , since T is a terminal object, and a unique mapping ιB : T = I → B,
since T is also the initial object. Then 0AB := ιB ◦ τA is the unique mapping in
Hom(A, B) which factors though I = T . This notation, 0AB is exploited in the next
paragraphs.

Now, suppose φ : A → B is a fixed given morphism. Then the kernel of φ, is a
morphism κ : (ker φ) → A such that φ ◦ κ = 0(ker φ)B , with this universal property:

If γ : X → A is a morphism of C such that φ ◦γ = 0X B , then there is a morphism
θX : X → ker φ such that κ ◦ θX = γ.

Now in the opposite category this property becomes the defining property of the
cokernel. Again suppose C = (O,Hom, ◦) is a category in which a terminal object
T exists and that T is also the initial object I . Fix a morphism φ : A → B. Then the
cokernel (if it exists) is a morphism ε : B → C := cokerφ such that ε ◦ φ = 0AC,
with the following universal property:

If ε′ : B → X is a morphism of C such that γ ◦φ = 0AX, then there exists a unique
morphism θX : C → X such that θx ◦ ε = ε′. That is, the following diagram
commutes:

A B C

X

φ ε

ε′ θX

� �

	








�
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Again, it is easy to describe the cokernel as an initial object in a suitable category
of diagrams that depend on the morphism φ.

13.2.5 Functors

Let C1 = (O1,Hom1, ◦1) and C2 = (O2,Hom2, ◦2) be two categories. We may
write Homi = ∪{Homi (A, B), |A, B ∈ Oi }, the full collection of morphisms of
category Ci , i = 1, 2.

A covariant functor F : C1 → C2 is a pair of mappings,

FO : O1 → O2,
FH : Hom1 → Hom2,

such that

(*) If f ∈ Hom1(A, B) and g ∈ Hom1(B, C), then

1. FH( f ) ∈ Hom2(F(A), F(B)), FH(g) ∈ Hom2(F(B), F(C)), and
2. FH(g ◦1 f ) = FH(g) ◦2 FH( f ) ∈ Hom2(F(A), F(C)).

In other words: (1) FH is compatible with FO in the sense that if f : A → B is
a morphism of C1, then FH ( f ) is a morphism in Hom2(F(A), F(B)), and (2) FH

preserves composition of mappings.
Here is an example : Let C be the category of example 4 of p. 597, whose objects

were the elements of a group G and whose morphisms were the maps induced by left
multiplication by elements of G. Then any endomorphism G → G is a a covariant
functor of this category into itself. The reader can easily devise a similar functor
using a monoid endomorphism for example 5 of p. 597.

Here is a classic example we have met before (see p. 494). Let M be a fixed
right R-module. Now for any right R-module A, the set HomR(M, A) is an abelian
group. If f : A → B is a morphism, composing all the elements of Hom(M, A)

with f yields amapping F( f ) : Hom(M, A) → Hom(M, B) preserving the additive
structure. Thus (Hom,−) : ModR → Ab is a covariant functor from the category
of right R-modules to the category of abelian groups.

Similarly, HomR(M,−) is a covariant functor ModR →R Mod, from the cate-
gory of right R-modules to the category of left R-modules (again see p. 494).

Now suppose F is a covariant functor from category C1 = (O1,Hom1, ◦1) to
C2 = (O2,Hom2, ◦2) such that FO : O1 → O2 and FH : Hom1 → Hom2 are
bijections. Let F−1

O and F−1
H be the corresponding inverse mappings. Then F−1 =

(F−1
O , F−1

H ) preserves composition and so is a functor F−1 : C2 → C1. In this case
the covariant functor F is called an isomorphism of categories.

There is another kind of functor—a contravariant functor—which reverses the
direction and order of compositions. Again it consists of two maps: FO : O1 →
O2, FH : Hom1 → Hom2, except now we have:

(1*) If f : A → B is in Hom1, then FH ( f ) ∈ Hom2(B, A).
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(2*) If f : A → B and g : B → C are inHom1, then FH (g◦ f ) = FH ( f )◦FH (g) ∈
Hom2(C, A).

Now, fixing the right R-module M , the functor Hom(−, M) : MR → Ab is a
contravariant functor from the category of right R-modules to the category of abelian
groups.

There are further versions of functors of this sort, where M is a bimodule. A
classical example is the functor which, in the category of vector spaces, takes a vector
space to it’s dual space. Specifically, let F be a field and let Vect be the category
whose objects are the (F, F)-bimodules—that is, F-vector spaces where αv = vα
for any vector v and scalar α. The morphisms are the linear transformations between
vector spaces. The dual space functor HomF (−, F) : Vect → Vect takes a linear
transformation T : V → W , to the mapping HomF (W, F) → HomF (V, F) which
takes the functional f ∈ HomF (W, F) to the functional f ◦ T ∈ HomF (V, F).

One final issue is that functors between categories can be composed: If F : C1 →
C2 and G : C2 → C3 are functors, then, by composing the maps on objects and on the
morphism classes: GO ◦ FO and G H ◦ FH , one obtains a functor G ◦ F : C1 → C3.
Obviously

If F : C1 → C2 and G : C2 → C3 are functors, then the composite functor G ◦ F is
covariant if and only if F and G are either both covariant or both contravariant.

Of course you know where this is leading: to a “category of all categories”. Let’s
call it Cat . It’s objects would be all categories (if this is even conceivable), and its
morphisms would be the covariant functors between categories. This is a dangerous
neighborhood, for as you see, Cat is also one of the objects of Cat . Clearly, we have
left the realm of sets far behind. The point of this meditation is that actually we have
left sets behind long ago: the collection of objects in many of our favorite categories
Ab, Ring, ModR, etc. are not sets. Of course this does not preclude them from being
collections that possessmorphisms. These things are still amazingly useful since they
provide us with a language in which we can describe universal mapping properties.
We just have to be very careful not to inadvertently insert inappropriate axioms of
set-theory to the collections of objects of these categories.2

13.3 The Tensor Product as an Abelian Group

13.3.1 The Defining Mapping Property

Let M be a right R-module, let N be a left R-module, and let A be an abelian group.
By a balanced mapping (or R-balanced mapping if we wish to specify R), we mean

2For a lucid superbly-written account of the difference between sets and classes, the authors rec-
ommend the early chapters of Set Theory and the Continuum Hypothesis by Raymond Smullyan
and Melvin Fitting [3].
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a function
f : M × N −→ A,

such that

(i) f (m1 + m2, n) = f (m1, n) + f (m2, n),
(ii) f (m, n1 + n2) = f (m, n1) + f (m, n2),
(iii) f (mr, n) = f (m, rn)

where m, m1, m2 ∈ M, n, n1, n2 ∈ N , r ∈ R.
Define a tensor product of M and N to mean an abelian group T , together with

a balanced map t : M × N → T such that given any abelian group A, and any
balanced map f : M × N → A there exists a unique abelian group homomorphism
φ : T → A, making the diagram below commute.

M × N A

T

�












� �
�

�
�

�
f

φt

Notice that a tensor product has been defined in terms of a universal mapping
property. Thus, by our discussions in the previous section, we should be able to
express a tensor product of M and N as an initial object of some category. Indeed,
define the category having as objects ordered pairs (A, f ) where A is an abelian
group and f : M × N → A is a balanced mapping. A morphism from (A, f ) to
(A′, f ′) is an abelian group homomorphism θ : A → A′ such that the following
diagram commutes:

M × N

A A′

f f ′

θ
	

�
�

�
�

�

Then the preceding diagram defining the tensor product T displays its role as an
initial object in this category. The following corollary is an immediate consequence
of “abstract nonsense” (see Lemma13.2.1).

Corollary 13.3.1 The tensor product of the right R-module M and the left R-module
N (if it exists) is unique up to abelian group isomorphism.
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13.3.2 Existence of the Tensor Product

Thus, there remains only the question of existence of the tensor product of the respec-
tive right and left R-modules M and N . To this end, let F be the free Z-module with
basis M × N (often called “the free abelian group on the set M × N”). Let B be the
subgroup of F generated by the set of elements of the form

(m1 + m2, n) − (m1, n) − (m2, n),

(m, n1 + n2) − (m, n1) − (m, n2),

(mr, n) − (m, rn),

where m, m1, m2 ∈ M, n, n1, n2 ∈ N , r ∈ R. Write M ⊗R N := F/B and set
m ⊗ n := (m, n) + B ∈ M ⊗R N . Therefore, the defining relations in M ⊗R N are
precisely

(m1 + m2) ⊗ n = m1 ⊗ n + m2 ⊗ n,

m ⊗ (n1 + n2) = m ⊗ n1 + m ⊗ n2,

mr ⊗ n = m ⊗ rn.

for all m, m1, m2 ∈ M, n, n1, n2 ∈ N , r ∈ R.
The elements of the form m ⊗ n where m ∈ M and n ∈ N are called pure

tensors (or sometimes “ simple tensors”). Furthermore, from its definition, M ⊗R N
is generated by all of its pure tensors m ⊗ n, m ∈ M, n ∈ N .

Finally, define the mapping t : M × N → M ⊗R N by setting t (m, n) =
m ⊗ n, m ∈ M, n ∈ N . Then, by construction, t is a balanced map. In fact:

Theorem 13.3.2 The abelian group M ⊗R N, together with the balanced map t :
M × N → M ⊗R N, is a tensor product of M and N.

Proof Let A be an abelian group and let f : M × N → A be a balanced mapping. If
the abelian group homomorphism θ : M ⊗R N → A is to exist, then it must satisfy
the condition that for allm ∈ M and for all n ∈ N , θ(m⊗n) = θ◦t (m, n) = f (m, n).
Since M ⊗R N is generated by the simple tensors m ⊗ n, m ∈ M, n ∈ N , it follows
that θ : M ⊗R N → A is already uniquely determined. It remains, therefore, to show
that θ is an abelian group homomorphism. To do this, we need only verify that the
defining relations are satisfied. We have, since t and f are balanced,

θ((m1 + m2) ⊗ n) = f ((m1 + m2), n)

= f (m1, n) + f (m2, n)

= θ(m1 ⊗ n) + θ(m2 ⊗ n),

for all m1, m2 ∈ M, n ∈ N . The remaining relations are similarly verified, proving
that θ is, indeed, a group homomorphism M ⊗R M → A, satisfying θ ◦ t = f . We
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have already noted that θ is uniquely determined by this condition, and so the proof
is complete. �

A few very simple applications are in order here. The first is cast as a Lemma.

Lemma 13.3.3 If M is a right R-module, then M ⊗R R ∼= M as abelian groups.

To show this, one first easily verifies that the mapping t : M × R → M defined by
setting t (m, r) = mr, m ∈ M, r ∈ R is balanced. Next, let A be an arbitrary abelian
group and let f : M × R → A be a balanced mapping. Define θ : M → A by
setting θ(m) := f (m, 1R), m ∈ M . (Here 1R is the multiplicative identity element
of the ring R.) Using the fact that f is balanced, we have that θ(m1 + m2) =
f (m1 + m2, 1R) = f (m1, 1R) + f (m2, 1R) = θ(m1) + θ(m2), m1, m2 ∈ M , and
so θ is a homomorphism. Finally, let m ∈ M, r ∈ R; then θ ◦ t (m, r) = θ(mr) =
f (mr, 1R) = f (m, r), and so θ ◦ t = f , proving that (M, t) satisfies the defining
universal mapping property for tensor products. By Corollary13.3.1, the proof is
complete. �
Remark Of course in the preceding proof one could define e : M → M ⊗ R by
setting e(m) := m ⊗1R and then observe that the mappings t ◦e and e◦ t are identity
mappings of M and M ⊗ R respectively—but that proof would not illustrate the use
of the uniqueness of of the tensor product. Later in this chapter we shall encounter
other proofs of an isomorphism relation which also exploit the uniqueness of an
object defined by a universal mapping property.

As a second application of our definitions the consider the following:
If A is any torsion abelian group and if D is any divisible abelian group, then

D ⊗Z A = 0. If a ∈ A, let 0 
= n ∈ Z be such that na = 0. Then for any d ∈ D there
exists d ′ ∈ D such that d ′n = d. Therefore d ⊗a = d ′n⊗a = d ′⊗na = d ′⊗0 = 0.
Therefore every simple tensor in D⊗Z A is zero; since D⊗Z A is generated by simple
tensors, we conclude that D ⊗Z A = 0.

Using the simple observation in the preceding paragraph, the reader should have
no difficulty in proving that if m and n are positive integers with greatest common
divisor d, then

Z/mZ ⊗Z Z/nZ ∼= Z/dZ

(see Exercise (2) in Sect. 13.13.2).

13.3.3 Mapping Properties of the Tensor Product

The following is an important mapping property of the tensor product.

Theorem 13.3.4 Let R be a ring, let φ : M → M ′ be a right R-module homomor-
phism and let ψ : N → N ′ be a left R-module homomorphism. Then there exists a
unique abelian group homomorphism φ ⊗ ψ : M ⊗R N → M ′ ⊗R N ′ such that for
all m ∈ M, n ∈ N , (φ ⊗ ψ)(m ⊗ n) = φ(m) ⊗ ψ(n).
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Proof We start by defining the mapping φ × ψ : M × N → M ′ ⊗R N ’, by the rule

(φ × ψ)(m, n) := φ(m) ⊗ ψ(n) for all m ∈ M, n ∈ N .

Using the fact that φ, ψ are both module homomorphisms, φ×ψ is easily checked to
be balanced. By the universality of M ⊗R N , there exists a unique mapping—which
we shall denote φ ⊗ ψ—from M ⊗R N to M ′ ⊗R N ′ such that (φ ⊗ ψ) ◦ t = φ × φ,
where, as usual t : M×N → M⊗R N is the balancedmapping t (m, n) = m⊗n, m ∈
M, n ∈ N . Therefore, (φ ⊗ ψ)(m ⊗ n) = (φ ⊗ ψ) ◦ t (m, n) = (φ × ψ)(m, n) =
φ(m) ⊗ ψ(n), and we are done. �

The following is immediate from Theorem13.3.4:

Corollary 13.3.5 (Composition of tensored maps) Let R be a ring, let M
φ→ M ′ φ′

→
M ′′ be a sequence of right R-module homomorphisms, and let N

ψ→ N ′ ψ′
→ N ′′ be

a sequence of left R-module homomorphisms. Then

(φ′ ⊗ ψ′) ◦ (φ ⊗ ψ) = (φ′ ◦ φ) ⊗ (ψ′ ◦ ψ) : M ⊗R N → M ′′ ⊗R N ′′.

Corollary 13.3.6 (The Distributive Law of Tensor Products) Let
∑

σ∈I Aσ be a
direct sum of right R-modules {Aσ|σ ∈ I }, and let N be a fixed left R-module. Then
(
∑

σ∈I Aσ) ⊗ N is a direct sum of its submodules {Aσ ⊗ N }.
Proof ByTheorem8.1.6 on identifying internal direct sums, it is sufficient to demon-
strate two things: (i) that (

∑
σ∈I Aσ)⊗ N is spanned by its submodules Aσ ⊗ N and

(ii) that for any index τ ∈ I , that

(Aτ ⊗ N ) ∩
∑
σ 
=τ

Aσ ⊗ N = 0. (13.1)

We begin with (i). Any element a ∈ ∑
Aσ , has the form a = ∑

τ∈S aτ where S is
a finite subset of I , and aτ ∈ Aτ . From the elementary properties of “⊗” presented
at the beginning of Sect. 13.3.2, for any n ∈ N , we have a ⊗ n = ∑

S aτ ⊗ n, the
summands of which lie in submodules Aτ ⊗ N . Since (

∑
σ∈I Aσ) ⊗ N is spanned

by such elements a ⊗n, it is also spanned by its submodules Aσ ⊗ N . Thus (i) holds.
Since the sum

∑
σ∈I Aσ is direct, there exists a family of projection mappings

{πτ : ∑
σ∈I Aσ → Aτ } with the property that the restriction of πτ to the submodule

Aσ is the identity mapping if σ = τ , while it is the zero mapping Aσ → 0, whenever
σ 
= τ (see Sect. 8.1.8).

Now, letting 1N denote the identitymapping on the submodule N , Theorem13.3.4
gives us mappings πτ ⊗1N : (

∑
Aσ)⊗ N → Aτ ⊗ N whose value at a pure element

a⊗n isπτ (a)⊗n, for (a, n) ∈ (
∑

Aσ)×N . Thusπτ ⊗1N restricted to the submodule
Aτ ⊗ N is the identity mapping 1Aτ ⊗ 1N on that submodule. In contrast, for σ 
= τ ,
the mapping πτ ⊗ 1N restricted to Aσ ⊗ N has image 0 ⊗ N = 0.

http://dx.doi.org/10.1007/978-3-319-19734-0_8
http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Nowconsider an elementb ∈ (Aτ ⊗N )∩∑
σ 
=τ (Aσ⊗N ). Then (πτ ⊗1N )(b) = b,

as b ∈ Aτ ⊗ N , while on the other hand this value is 0, since, b ∈ ∑
σ 
=τ (Aσ ⊗ N ).

Thus b = 0 and so Eq. (13.1) holds. Thus (ii) has been established. �

Of course, a “mirror image” of this proof will produce the following:

Corollary 13.3.7 If N is a right R-module and
∑

σ∈I Aσ is a direct sum of a family
of left R-modules {Aσ|σ ∈ I }, then N ⊗(

∑
σ∈I Aσ) is a direct sum of its submodules

{N ⊗ Aσ|σ ∈ I }. Thus one can write

N ⊗ (
⊕
σ∈I

Aσ) �
⊕
σ∈I

(N ⊗ Aσ).

From Corollary13.3.5, we see that for any ring R and for each left R-module N ,
F : ModR → Ab given by

F(M) := M ⊗R N , F(φ) := φ ⊗ idN : M ⊗R N → M′ ⊗R N

(where φ′ : M → M ′ is a right R-module homomorphism and as usual idN is the
identity mapping on N ) defines a functor.

Similarly,Theorem13.3.4 andCorollary13.3.5 tell us that for each right R-module
M the assignment G : ModR → Ab given by

G(N ) := M ⊗R N , F(φ) := idM⊗ φ : M ⊗R N → M ⊗R N ′

(where φ : N → N ′ is a left R-module homomorphism) also defines a functor.
These two functors are often denoted − ⊗R N and M ⊗R −, respectively.

We shall continue our discussion of mapping properties of the tensor product,
with the existence of these functors in mind.

The next theorem shows how the tensor product behaves with respect to exact
sequences. (In the language just introduced, this result describes the right exactness
of the tensor functors just introduced.)

Theorem 13.3.8 (i) Let M ′ μ→ M
ε→ M ′′ → 0 be an exact sequence of right

R-modules, and let N be a left R-module. Then the sequence

M ′ ⊗R N
μ⊗idN−→ M ⊗R N

ε⊗idN−→ M ′′ ⊗R N → 0

is exact.
(ii) Let N ′ μ→ N

ε→ N ′′ → 0 be an exact sequence of left R-modules, and let M be
a right R-module. Then

M ⊗R N ′ idM⊗μ−→ M ⊗R N
idM⊗ε−→ M ⊗R N ′′ → 0

is exact.
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Proof We shall be content to prove (i) as (ii) is entirely similar. First of all, if
m′′ ∈ M ′′, then there exists an element m ∈ M with ε(m) = m′′. Therefore, it
follows that for any n ∈ N , (ε ⊗ idN)(m ⊗ n) = (m) ⊗ idN(n) = m′′ ⊗ n. Since
M ′′ ⊗R N is generated by the simple tensors of the form m′′ ⊗ n, we infer that
ε ⊗ idN : M ⊗R N → M′′ ⊗R N is surjective.

Next, since (ε⊗ idN)(¯ ⊗ idN) = ¯ ⊗ idN = 0 : M′ ⊗R N → M′′ ⊗R N, we infer
that im (μ⊗ idN) ⊆ ker (ε⊗ idN). Next, let A be the subgroup of M ⊗R N generated
by simple tensors of the form m ⊗ n, where m ∈ ker ε. Note that it is clear that
A ⊆ ker (ε ⊗ idN). As a result, ε ⊗ idN factors through a homomorphism

ε ⊗ idN : (M ⊗R N )/A → M ′′ ⊗R N

satisfying

ε ⊗ idN(m ⊗ n + A) = ε(m) ⊗ n ∈ M ′′ ⊗R N , m ∈ M, n ∈ N .

If we can show that ε ⊗ idN is an isomorphism, we will have succeeded in showing
that A = ker ε ⊗ idN. To do this we show that ε ⊗ idN has an inverse. Indeed. define
the mapping

f : M ′′ × N → (M ⊗R N )/A, f (m′′, n) := m ⊗ n + A,

where m ∈ M is any element satisfying ε(m) = m′′. Note that if m1 ∈ M is any
other element satisfying ε(m1) = m′′, then m ⊗ n − m1 ⊗ n = (m − m1) ⊗ n ∈ A,
which proves that f : M ′′ × N → (M ⊗R N )/A is well defined. As it is clearly
balanced, we obtain an abelian group homomorphism θ : M ′′⊗R N → (M ⊗R N )/A
satisfying θ(m′′ ⊗ n) = (m ⊗ n) + A, where ε(m) = m′′. As it is clear that θ is
inverse to ε ⊗ idN, we conclude that A = ker (ε ⊗ idN).

Finally, note that since ker ε = im μ we have that A ⊆ im (μ ⊗ idN). Since
we have already shown that im (μ ⊗ idN) ⊆ ker (ε ⊗ idN) = A, it follows that
im (μ ⊗ idN) = ker (ε ⊗ idN), and the proof is complete. �

We hasten to warn the reader that in Theorem13.3.8 (i) above, even if M ′ μ→ M

is injective, it need not follow that M ′ ⊗R N
μ⊗idN−→ M ⊗R N is injective. (A similar

comment holds for part (ii).) Put succinctly, the tensor product does not take short
exact sequences to short exact sequences. In fact a large portion of “homological
algebra” is devoted to the study of functors that do not preserve exactness. As an
easy example, consider the short exact sequence of abelian groups (i.e. Z-modules):

Z
μ2→ Z → Z/2Z → 0,
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where μ2(a) = 2a. If we tensor the above short exact sequence on the right byZ/2Z,
we get the sequence

Z/2Z
0→ Z/2Z

∼=→ Z/2Z.

Thus the exactness breaks down.
Motivated by Theorem13.3.8 and the above example, we call a left R-module N

flat if for any short exact sequence of the form

0 → M ′ μ→ M
ε→ M ′′ → 0,

the following sequence is also exact:

0 → M ′ ⊗R N
μ⊗idN−→ M ⊗R N

ε⊗idN−→ M ′′ ⊗R N → 0.

Note that by Theorem13.3.8, one has that the left R-module is flat if and only if
for every injective right R-module homomorphism μ : M ′ → M , the induced
homomorphism μ ⊗ idN : M′ ⊗R N → M ⊗R N is also injective.

The following lemma will prove useful in the discussion of flatness.

Lemma 13.3.9 Let R be a ring, and let F be a free left R-module with basis { fβ |β ∈
B}. Let M be a right R-module. Then every element of M ⊗R F can be uniquely
expressed as

∑
β∈B

mβ ⊗ fβ , where only finitely many of the elements mβ, β ∈ B are

nonzero.

Proof First of all, it is obvious that each element of M ⊗R F admits such an expres-
sion. Now assume that the element

∑
β∈B

mβ ⊗ fβ = 0. We need to show that each of

the elements mβ, β ∈ B are 0. Since F is free with basis { fβ | β ∈ B}, there exist,
for each β ∈ B, a so-called projection homomorphism πβ : F →R R such that

πβ( fγ) =
{
0 if γ 
= β

1 if γ = β.

Next, we recall that M ⊗R R ∼= M via the isomorphism σ : M ⊗R R → M, m⊗r 
→
mr ∈ M (see Lemma13.3.3). Combining all of this, we have the following

0 = σ(1M ⊗ πβ)
∑

mβ ⊗ fβ

= σ(mβ ⊗ 1)

= mβ .

The result follows. �
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Remark Of course one could easily devise a proof of Lemma13.3.9 based on right
distributive properties (see Corollary13.3.6). However here we are interested in
retrieving a “flatness” result.

Theorem 13.3.10 Let R be a ring. If F is a free left R-module, then it is flat.

Proof Let { fβ | β ∈ B} be a basis of F and let μ : M ′ → M be an injective
homomorphism of right R-modules. We shall show that the induced homomorphism
μ ⊗ 1F : M ′ ⊗R F → M ⊗R F is also injective. Using Lemma13.3.9 we may
express a typical element of M ′ ⊗R F as

∑
m′

β ⊗ fβ , where only finitely many of
the elements m′

β, β ∈ B are nonzero. Thus, if (μ ⊗ 1F )(
∑

m′
β ⊗ fβ) = 0, then∑

μ(m′
β)⊗ fβ = 0 ∈ M ⊗R F . But then the uniqueness statement of Lemma13.3.9

guarantees that each μ(m′
β) = 0. Since μ : M ′ → M is injective, we infer that each

m′
β = 0, and so the original element

∑
m′

β ⊗ fβ = 0, proving the result. �

13.3.4 The Adjointness Relationship of the Hom and Tensor
Functors

In this section, we use some of the elementary language of category theory intro-
duced in Sect. 13.2. Let R be a ring and let RMod, Ab denote the categories of left
R-modules and abelian groups, respectively. Thus, if M is a fixed right R-module,
then we have a functor

M ⊗R − :R Mod −→ Ab.

In an entirely similar way, for any fixed left R-module N , there is a functor

− ⊗R N : ModR → Ab,

where ModR is the category of right R-modules. Next we consider a functor Ab →R

Mod, alluded to in Sect. 8.4.2, Chap. 8. Indeed, if M is a fixed right R-module, we
may define

HomZ(M,−) : Ab →R Mod.

Indeed, note that if A is an abelian group, then HomZ(M, A) is a left R-module via
(r · f )(m) = f (mr). For the fixed right R-module M , the functors M ⊗R − and
HomZ(M,−) satisfy the following important adjointness relationship:

Theorem 13.3.11 (Adjointness Relationship) If M is a right R-module, N is a left
R-module, and if A is an abelian group, there is a natural equivalence of sets:

HomZ(M ⊗R N , A) ∼=Set HomR(N , HomZ(M, A)). (13.2)

http://dx.doi.org/10.1007/978-3-319-19734-0_8
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Proof One defines a mapping θ from the left side of (13.2) to the right side in the
following way. For each f ∈ HomZ(M ⊗R N , A) let

θ( f ) : N → HomZ(M, A)

be defined by

θ( f )(n) : M → A, where [θ(n)](m) = f (m ⊗ n)

for all n ∈ N and m ∈ M .
For the inverse consider an arbitrary abelian group morphism ψ : N →

HomZ(M, A). Observe that θ∗(ψ) : M × N → A defined by θ∗(ψ)(m, n) =
[ψ(m)](n) is a balancedmapping, and so factors through M ⊗R N to yield a mapping
θ−1(ψ) : MR ⊗ N → A. The fact that θ−1 really is an inverse (that is, θ−1 ◦ θ and
θ ◦ θ−1 are respectively the identity mappings on the left and right sides of (13.2)) is
easily verified. �

In general if C,D are categories, and if F : C → D, G : D → C are functors, we
say that F is left adjoint to G (and that G is right adjoint to F) if there is a natural
equivalence of sets

HomD(F(X), Y ) ∼=Set HomC(X, G(Y )),

where X is an object of C and Y is an object of D. Thus, we see that the functor
M ⊗R − is left adjoint to the functor HomZ(M,−).

13.4 The Tensor Product as a Right S-Module

In the last section we started with a right R-module M and a left R-module N and
constructed the abelian group M ⊗R N satisfying the universal mapping properties
relative to balanced mappings. In this section, we shall discuss conditions that will
enable M ⊗R N to carry a module structure.

To this end let S, R be rings, assume that M is a right R-module, and assume that
N is an (R, S)-bimodule. In order to give M ⊗R N the structure of a right S-module,
it suffices to construct a ring homomorphism

φ : S → EndZ(M ⊗R N )∗;

where the “*” is there to indicate that the endomorphisms are to act on the right, in
this abselian group. This will allow for the definition of an S-scalar multiplication:
a · s := aφ(s), a ∈ M ⊗R N . For each s ∈ S define fs : M × N → M ⊗R N by
setting fs(m, n) := m ⊗ ns, s ∈ S, m ∈ M, n ∈ N . Then fs is easily checked to
be a balanced map. By the universal mapping property of the tensor product, there
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exists a uniqsue abelian group homomorphism φs : M ⊗R N → M ⊗R N satisfying
φs(m ⊗ n) = m ⊗ ns. Note that if m ∈ M and n ∈ N , then

φs1+s2(m ⊗ n) = m ⊗ n(s1 + s2)

= m ⊗ (ns1 + ns2)

= m ⊗ ns1 + m ⊗ ns2
= φs1(m ⊗ n) + φs2(m ⊗ n)

= (φs1 + φs2)(m ⊗ n).

It follows, therefore, that φs1+s2 = φs1 + φs2 . Similarly, one verifies that φs1s2 =
(φs1) · (φs2), where, for composition of right operators, the “dot” indicates that s1
is applied first and s2 second. In turn, this immediately implies that the mapping
φ : S → EndZ(M ⊗R N ), φ(s) := φs is the desired ring homomorphism. In other
words, we have succeeded in giving M ⊗R N the structure of a right S-module.

The relevant universal property giving rise to a module homomorphism is the
following:

Theorem 13.4.1 Let R and S be rings, let M be a right R-module, and let N be an
(R, S)-bimodule. If K is a right S-module and if f : M × N → K is a balanced
mapping which also satisfies

f (m, ns) = f (m, n)s, s ∈ S, m ∈ M, n ∈ N ,

then the uniquely induced abelian group homomorphism θ : M ⊗R N → K is also
a right S-module homomorphism.

Proof Let m ∈ M, n ∈ N , and let s ∈ S. Then

θ((m ⊗ n)s) = θ(m ⊗ (ns))

= θ ◦ t (m, ns)

= f (m, ns)

= f (m, n)s

= (θ ◦ t (m, n))s

= θ(m ⊗ n)s.

Since M⊗R N is generated by the simple tensorsm⊗n, m ∈ M, n ∈ N , we conclude
that θ preserves S-scalar multiplication, and hence is an S-module homomorphism
M ⊗R N → K . �

Corollary 13.4.2 (Exchange of Rings) Let R be a subring of S. If M is a right
R-module, then M ⊗R S is a right S-module.

Proof Since S is an (R, S)-bimodule, it can replace the module N in Theo-
rem13.4.1. �
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A frequent example of such an exchange is the enlargement of the ground field of
a vector space: here an F-vector space V becomes V ⊗F E , where E is an extension
field of F .3 In fact one has the following:

Corollary 13.4.3 Suppose E is a field containing F as a subfield. Let 1E denote the
multiplicative identity element of E. If V is an F-vector space, then V ⊗F E is a
right vector space over E. If X = {xσ} is a basis for V then X ⊗ 1E := {xσ ⊗ 1E }
is an E-basis for V ⊗ E. Hence

dimF V = dimE (V ⊗ E).

The proof is left as Exercise (1) in Sect. 13.13.4.
Of particular importance is the following special case. Assume that R is a com-

mutative ring. In this case, any right R-module M can also be regarded as a left
R-module by declaring that rm := mr, m ∈ M, r ∈ R. Furthermore, this specifi-
cation also gives M the structure of an (R, R)-bimodule. On p. 234 we called such
a module M a symmetric bimodule. For example, vector spaces over a field are
normally treated as symmetric bimodules.

suppose M and N are such symmetric (R, R)-bimodules. Then for allm ∈ M, n ∈
N , and r ∈ R, we can define left and right scalar multiplication of pure tensors by
the first and last entries in the following equations:

(m ⊗ n)r = m ⊗ (nr) = m ⊗ (rn) = (mr) ⊗ n = (rm) ⊗ n = r(m ⊗ n).

Of course, this endows M ⊗R N with the structure of a symmetric (R, R)-bimodule.
Note that Theorem13.4.1 says in particular that if F is a field and if V and W are

vector spaces over F , then V ⊗F W is automatically a vector space over F . In fact,
we can say more:

Theorem 13.4.4 Let F be a field, and let V and W be F-vector spaces with bases
{vσ|σ ∈ I }, and {wτ |τ ∈ J }, respectively. Then V ⊗F W has basis {vσ⊗wτ | (σ, τ ) ∈
I × J }. In particular,

dim F (V ⊗F W ) = dimF V · dimF W,

as a product of cardinal numbers.

Proof Since F-vector spaces are free (F, F)-bimodules, wemaywrite them as direct
sums of their 1-dimension subspaces. Thus

V =
⊕
σ∈I

vσ F , W =
⊕
τ∈J

Fwτ .

3Of course for over a century mathematicians (perhaps in pursuit of eigenvalues of transformations)
have been replacing F-linear combinations of a basis with E-linear combinations without feeling
the need of a tensor product.
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Now by the “distributive laws” (Corollaries13.3.6 and 13.3.7) we have

V ⊗F W =
⊕

(σ,τ )∈I×J

vσ F ⊗ Fwτ .

Since each summand is an (F, F)-bimodule, we may write vσ ⊗ wτ F in place of
vσ F ⊗ Fwτ , and the direct sum of these summands is also an (F, F)-bimodule. Thus
V ⊗F W is an F-vector space with basis {vσ ⊗ wτ |(σ, τ ) ∈ I × J }. �

13.5 Multiple Tensor Products and R-Multilinear Maps

Everything that we did in defining a tensor product can also be done in defining
multiple tensor products. This important topic is the basis ofwhat is calledmultilinear
algebra. There are two reasons that it should be introduced at this stage: (1) it is
needed in Sect. 13.7 to define the tensor product of algebras, and (2) it is needed
again in a construction of the tensor algebra in Sect. 13.9, and in our discussions of
the symmetric and exterior algebras. The main idea here is to avoid having to justify
any kind of associative law of the tensor product.

Throughout this section, R is a commutative ring and all modules considered are
(not neccessarily symmetric) (R, R)-bimodules.

Let {Mi |i = 1, . . . , n} be a sequence of (R, R)-bimodules, and let A be any
abelian group (with its operation denoted by addition). A homomorphism of additive
groups

α : M1 ⊕ . . . ⊕ Mn → A

is said to be balanced if, for each index i = 1, . . . , n, for each n-tuple (a1, . . . , an) ∈⊕
Mi , and for any r ∈ R, one has

α((a1, . . . , air, ai+1, . . . , an)) = α(a1, . . . , ai , rai+1, ai+2, . . . , an). (13.3)

This simply extends our previous definition of balancedmappingwhere the parameter
n was 2.

Generalizing the recipe for the usual tensor product, we form the free Z-module
F with basis consisting of the set of all n-tuples in M1 × . . . Mn ,4 and let B be the
subgroup of F generated by all elements of the form:

(a1, . . . , ai + a′
i , . . . , an) − (a1, . . . , an) − (a1, . . . , a′

i , . . . , an)

(a1, . . . , air, ai+1, . . . , an) − (a1, . . . , ai , rai+1, . . . , an),

where i = 1, 2, . . . , n, ai , a′
i ∈ Mi and r ∈ R.

4Again, the reader is warned that addition in F is not addition in
⊕

Mi when the elements being
added lie in the latter sum.
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Let a1 ⊗ · · · ⊗ an := (a1, . . . , an) + B, the image of (a1, . . . , an) under the
canonical projection π : F → F/B (such an element is called a pure multitensor)
and we write

F/B := M1 ⊗ M2 ⊗ · · · ⊗ Mn .

Then for each i ,

a1 ⊗ · · · ⊗ (ai + a′
i ) ⊗ · · · ⊗ an = (a1 ⊗ · · · ⊗ an) + (a1 ⊗ · · · ⊗ a′

i ⊗ · · · ⊗ an)

a1 ⊗ · · · ⊗ air ⊗ ai+1 ⊗ · · · ⊗ an = a1 ⊗ · · · ⊗ ai ⊗ rai+1 ⊗ · · · ⊗ an

for all a j ∈ M j , a′
i ∈ Mi and r ∈ R. Thus the mapping

θ : M1 × · · · × Mn → F/B

(a restriction of π) is balanced.
Conversely, suppose β is a balanced mapping

M1 × · · · × Mn → A

for some abelian group A. Using the universal property of free Z -modules, β deter-
mines a unique group homomorphism β̂ : F → A, and, since β is balanced, ker β̂
contains B. Thus by the Composition Theorem of homomorphisms and the two
applications of the Fundamental Theorems of homomorphisms we have the follow-
ing sequence of homomorphisms:

π : F → F/B = M1 ⊗ · · · ⊗ Mn, (13.4)

πβ : F/B → (F/B)/(ker β̂/B), (13.5)

iso1 : (F/B)/(ker β̂/B) → F/(ker β̂), (13.6)

iso2 : F/(ker β̂) → β̂(F), (13.7)

inc : β̂(F) → A (13.8)

Here, (13.4) is the afore-mentioned projection, (13.5) is a projection using B ⊆ ker β̂,
(13.6) is a classical isomorphism, (13.7) is another classical isomorphism, and (13.8)
is the inclusion mapping.

Then
β̂ = inc ◦ iso2 ◦ iso1 ◦ πβ ◦ π,

which is a detailed way of saying that β̂ factors through the tensor product:

F → M1 ⊗ · · · ⊗ Mn → A.

Recalling that β is a restriction of β̂ one concludes the following:
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Theorem 13.5.1 Suppose M1, . . . , Mn, A are (R, R)-bimodules Then there is a
unique balanced map t : M1 × · · · × Mn → M1 ⊗ · · · ⊗ Mn such that for any
balanced mapping

β : M1 × · · · × Mn → A,

There exists a balanced mapping

θ(β) : M1 ⊗ · · · ⊗ Mn → A

such that β = θ(β) ◦ t—that is, “β factors through the tensor product”.

The theorem is only about R-balanced mappings—certain morphisms of additive
groups. If the component Mi ’s are symmetric (R, R) bimodules, one naturally real-
izes that such a theorem can hold so that the mappings involved, t , β and θ(β) are
all morphisms of symmetric (R, R)-bimodules.

Theorem 13.5.2 Suppose M1, . . . , Mn, A are (R, R)-bimodules where R is a com-
mutative ring and rmi = mirand ra = ar for all (r, , mi ) ∈ R × Mi × A, i ∈
{1, 2, . . . , n}. Then there is a unique balanced map t : M1 × · · · × Mn →
M1 ⊗ · · · ⊗ Mn such that for any balanced mapping

β : M1 × · · · × Mn → A,

There exists an (R, R)-bimodule homomorphism

θ(β) : M1 ⊗ · · · ⊗ Mn → A

such that β = θ(β) ◦ t—that is, “β factors through the tensor product”.

Remark It is important for the student to realize that in this development, themultiple
tensor product is not approached by a series of iterations of the binary tensor product.
Rather, it is directly defined as a factor group F/B—a definition completely free of
parentheses.

13.6 Interlude: Algebras

Let A be a right R-module, where, for the moment, R is an arbitrary ring (with
identity 1R). We say that A is an R- algebra if and only if A is both a ring and that
the R-scalar multiplication satisfies the condition

(ab)r = a(br) = (ar)b, for all a, b ∈ A, r ∈ R. (13.9)
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Note that as a consequence of the above requirement, we have, for all a, b ∈ A, r, s ∈
R, that

(ab)(rs) = (a(br))s = ((as(br) = ((as)rb = ((a(sr))b.

Moreover if we set b = 1A, the multiplicative identity of A, in the above equation,
then we obtain the fact that a(rs) = a(sr) for all a ∈ A and all r, s R. Therefore the
annihilator I := AnnR(A) contains all commutators rs − sr ∈ R, from which we
conclude that A is an R/I -module. Noting that R/I is a commutative ring, we see
that in our definition of R-algebra, we may as well assume—and we shall—that R is
commutative from the outset. Note that with this convention in force, the R-algebra
A is a symmetric (R, R)-bimodule via the definition ra := ar, a ∈ A, r ∈ R.

We consider some familiar examples:

Example 57 Let F be a field and let Mn(F) be the ring of n × n matrices over F .
Then the usual F-scalar multiplication with matrices is easily checked to provide
Mn(F) the structure of an F-algebra.

Example 58 Let F-be a field, let V be an F-vector space and let EndF (V ) be the
set of linear transformations V → V . This is already an F-vector space by the
definitions

(T + S)(v) := T (v) + S(v), (T α)(v) := T (vα),

T, S ∈ EndF (V ), v ∈ V, α ∈ F. Multiplication of linear transformations is just
composition: (TS)(v) := T (S(v)), T, S ∈ EndF (V ), v ∈ V , which is again a linear
transformation. This gives EndF (V ) a ring structure. Finally, one checks that for
all T, S ∈ EndF (V ) and for all α ∈ F, (TS)α = T (Sα) = (T α)S by showing
that these three linear transformations have the same effect at all v ∈ V . Therefore,
EndF (V ) is an F-algebra.

Example 59 Let R be a commutative ring, let X be a set and let RX be the set of
functions X → R with ring structure given by point-wise multiplication:

( f + g)(x) := f (x) + g(x), (fg)(x) := f (x)g(x), for all f, g ∈ RX , x ∈ X.

An R-scalar multiplication can again be given point-wise:

( f · α)(x) := f (x)α, f ∈ RX , x ∈ X, α ∈ R.

The reader should have no difficulty in verifying that the above definition endows
RX with the structure of an R-algebra.

Example 60 The Dirichlet Algebra was defined as a certain collection of
complex-valued functions on the set of positive integers. Multiplication was a sort
of convolution (see Example43 on p. 216 for details). Of course one can replace the
complex numbers by any commutative ring R in the definition of “Dirichlet multi-
plication” on the R-valued functions on the positive integers, to obtain an R-algebra.

http://dx.doi.org/10.1007/978-3-319-19734-0_7


13.6 Interlude: Algebras 495

Example 61 Let F be afield, and M be amonoid.Then the F-monoid ringFM admits
an F-scalar multiplication via pointwise scalar multiplication: if f ∈ FM, α ∈ F,

and m ∈ M , set ( f α)(m) := f (m)α. Perhaps this is made more transparent by
writing elements of M in the form f : ∑

m∈M
αmm, where the usual convention that

αm 
= 0 for only finitely many m ∈ M , and defining

f α :=
∑

m∈M

ααmm.

This givesFM the structure of an F-algebra.We hasten to emphasize two very impor-
tant special cases of this construction: the polynomial rings and group rings (over a
finite group). Thus, we can—and often shall—refer to such objects as polynomial
algebras and group algebras. Note that the F-group algebra FG over the finite
group G is finite dimensional over F .

Note that if R is a commutative ring and A is an R-algebra, then any ideal I ⊆ A
of the ring A must also be an R-submodule of A. Indeed, we realize that if 1A is
the identity of A, and if α ∈ R, then we have, for all x ∈ I , that xα = (x1A)α =
x(1Aα) ∈ I , as I is an ideal. From this it follows immediately that quotients of A
by right ideals are also R-modules. Furthermore, a trivial verification reveals that
quotients of A by two-sided ideals of A are also R-algebras.

We shall conclude this short section with a tensor product formulation of R-
algebras. Thus, we continue to assume that R is a commutative ring and that A is
an R-module. First of all, notice that if A is an R-algebra, then by Eq. (13.9) the
multiplication A × A → A in A is R-balanced, and hence factors through the tensor
product, giving an R-module homomorphism μ : A⊗R A → A. The associativity of
the multiplication in A translates into the commutativity of the diagram of Fig. 13.1.

At the same time, the identity element 1 ∈ A determines an R-linear homomor-
phism η : R → A, defined by η(α) := 1A · α ∈ A. The fact that 1 is the identity of
A translates into the commutativity of the diagrams of the following figure, where
ε : R ⊗ A → A and ε′ : A ⊗ R → A are the isomorphisms given by

ε(α ⊗ a) = αa, ε′(a ⊗ α) = aα,

a ∈ A, α ∈ R.

Fig. 13.1 Diagram for
associativity
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Fig. 13.2 Diagrams for a
two-sided identity

Note that the distributive laws are already contained in the above. Indeed, if
a, b, c ∈ A, then using the fact that μ : A ⊗R A → A is an abelian group homomor-
phism, we have

a(b + c) = μ(a ⊗ (b + c)) = μ(a ⊗ b + a ⊗ c) = μ(a ⊗ b) + μ(a ⊗ c) = ab + ac.

Conversely, if A is an algebra over the commutative ring R, and if a multiplication
μ : A⊗R A → A is givenwhichmakes the diagrams of Figs. 13.1 and 13.2 commute,
then μ gives A the structure of an R-algebra (Exercise (1) in Sect. 13.13.5).

13.7 The Tensor Product of R-Algebras

Throughout this section, we continue to assume that R is a commutative ring. If
A, B are both R-algebras, we shall give a natural R-algebra structure on the tensor
product A ⊗R B. Recall from Sect. 13.4 that A ⊗R B is already an R-module with
scalar multiplication satisfying

(a ⊗ b)α = a ⊗ bα = aα ⊗ b,

a ∈ A, b ∈ B, α ∈ R.
To obtain an R-algebra structure on A ⊗R B, we map

f : A × B × A × B −→ A ⊗R B,

by setting f (a1, b1, a2, b2) = a1a2 ⊗ b1b2, a1, a2 ∈ A, b1, b2 ∈ B. Then, as f is
clearly multilinear, Theorem13.5.2 gives a mapping

μ : (A ⊗R B) ⊗R (A ⊗R B) −→ A ⊗R B

such that f = μ ◦ t , where t is the standard mapping

t : A × B × A × B → A ⊗ B ⊗ A ⊗ B.
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Thus, we define the multiplication on A ⊗R B by setting xy := μ(x ⊗ y), x, y ∈
A ⊗R B. Note that on simple tensors, this multiplication satisfies (a ⊗ b)(a′ ⊗ b′) =
aa′ ⊗ bb′, a, a′ ∈ A, b, b′ ∈ B. One now has the desired result:

Theorem 13.7.1 Let A, B be R-algebras over the commutative ring R. Then there
is an R-algebra structure on A⊗R B such that (a⊗b) ·(a′⊗b′) = aa′⊗bb′, a, a′ ∈
A, b, b′ ∈ B.

Proof It suffices to prove that the Figs. 13.1 and 13.2 are commutative. In turn, to
prove that the given diagrams are commutative, it suffices to verify the commutativity
when applied to simple tensors. Thus, let a, a′, a′′ ∈ A, b, b′, b′′ ∈ B. We have

μ(μ ⊗ idA⊗R B)(a ⊗ b ⊗ a′ ⊗ b′ ⊗ a′′ ⊗ b′′) = μ(aa′ ⊗ bb′ ⊗ a′′ ⊗ b′′)
= (aa′)a′′ ⊗ (bb′)b′′

= a(a′a′′) ⊗ b(b′b′′)
= μ(a ⊗ b ⊗ a′a′′ ⊗ b′b′′)
= μ(idA⊗R B ⊗ μ)(a ⊗ b ⊗ a′ ⊗ b′ ⊗ a′′ ⊗ b′′),

proving that Fig. 13.1 commutes. Proving that the Fig. 13.2 also commute is even
easier, so the result follows. �

13.8 Graded Algebras

Let (M, ·) be a (not necessarily commutative) monoid, let R be a commutative ring,
and let A be an R-algebra, as described in the previous sections. The algebra A is
said to possess an M-grading if and only if

(i) A = ⊕
σ∈M Aσ . a direct sum of R-modules, Aσ , indexed by M .

(ii) For any σ, τ ∈ M ,

Aσ Aτ = {aσaτ |(aσ, aτ ) ∈ Aσ × Aτ } ⊆ Aσ·τ .

Any R-algebra A that possesses a grading with respect to some monoid M is
called a graded algebra.

The elements of Aσ are said to be homogeneous of degree σ with respect to
the M-grading, and the submodules Aσ themselves will be called homogeneous
summands.5 Note that by this definition, the additive identity element 0 ∈ A is
homogeneous of every possible degree chosen from M .

Example 62 We have already met such algebras in Sect. 7.3.2. The monoid alge-
bras FM, where F is a field, for example, have homogeneous summands that are

5Although “homogenous summand” is not a universally used term, it is far better than “homogeneous
component” which has already been assigned a specific meaning in the context of completely
reducible modules.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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1-dimensional over the field F . (The converse is not true. There are M-graded
F-algebras with 1-dimensional summands, which are not monoid rings.)

We also should include in this generic example the polynomial rings D[x] and
D[X ] where D is an integral domain and the respective multiplicative monoids
are respectively the powers of x , or all monomials xa1

1 xa2
2 · · · xan

n , ai , n ∈ N, in
commuting indeterminates xi ∈ X6 Note that we must use an integral domain in
order to maintain property (i), that Aσ Aτ ⊆ Aσ·τ .

But this genus of examples also includes examples where the monoid (M, ·) is
not commutative:

1. The polynomial ring D{X} in non-commuting indeterminates, where the relevant
grading is provided by the free monoid on X (consisting of two or more symbols)
whose elements are words in the alphabet X .

2. The group ring DG where G is a non-commutative group.

In these examples, which were discussed in Sects. 7.3.2 and 7.3.5, the homoge-
neous summands are of the form Dm (one-dimensional if D is a field).

The following observation provides examples of graded D-algebras whose homo-
geneous summands are not of this form.

Lemma 13.8.1 Let A be an D-algebra graded with respect to a monoid (M, ·).
Suppose φ : (M, ·) → (M ′, ·) is a surjective homomorphism of monoids. For each
element m′ of the image monoid M ′, define

Am′ :=
∑

φ(σ)=m′
Aσ.

Then the direct decomposition A = ⊕
m′∈M ′ Am′ , defines a grading of A with respect

to the image monoid M ′.

Proof We need only show that if m′
1 and m′

2 are elements of M ′, then Am′
1
Am′

1
⊆

Am′
1·m′

2
. But if φ(mi ) = m′

i , i = 1, 2, then φ(m1 · m2) = m′
1m′

2, since φ is a monoid
morphism. Thus Am1 Am2 ⊆ Am′

1·m′
2
for all mi such that φ(mi ) = m′

i , i = 1, 2. Since
Am′

i
= ∑

φ(m)=m′
i

Am , the result follows. �

In effect, the monoid homomorphism φ produces a grading that is more “course”
than the original M-grading.

Example 63 The (commutative) polynomial ring R[X ], where R is any commutative
ring, is graded by themultiplicativemonoidM∗(X) of finitemonomials chosen from
X . As noted in Sect. 7.3.5, p. 205, there is a monoid morphism

deg : M∗(X) → (N,+)

6Recall that these monoids are respectively isomorphic to (N,+) and the additive monoid of all
finite multisets chosen from X . (Once again, we remind the beginning reader that the set of natural
numbers, N, includes 0.).

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7


13.8 Graded Algebras 499

which is defined by

deg :
n∏

i=1

xai
i 
→

n∑
i=1

ai

for any finite subset {x1, . . . , xn} of X . The image degm is called the degree of m,
for monomial m ∈ M∗(X).

Assume that A, A′ are both M-graded algebras over the commutative ring R. An
algebra homomorphism φ : A → A′ is said to be a graded algebra homomorphism
if for each m ∈ M, φ(Am) ⊆ A′

m . When A is an M-graded algebra over R, we shall
be interested in ideals I ⊆ A for which R/I is also M-graded and such that the
projection homomorphism A → A/I is a homomorphism of M-graded algebras.

For example, suppose A = D[x], the usual polynomial ring, and the ideal I is
Axn , n > 1. Then is one writes Ai := xi D, 0 ≤ i ≤ n − 1, then

A/I = (A0 + I )/I ⊕ (A1 + I )/I ⊕ · · · ⊕ (An−1 + I )/I

is a grading on A/I by the monoid Z/nZ.
On the other hand assume that D = F is a field, and let I be the ideal of A = F[x]

generated by the inhomogeneous polynomial x + x2. By the division algorithm, we
see that the quotient algebra A/I has dimension 2 over the field F .

Assume, however, that A/I is graded by the nonnegative integers, and that A →
A/I is a homomorphism of graded algebras. This would yield

A/I =
∞∑

m=0

(Am + I )/I.

Since, for each nonnegative integer m, Am = F · xm , we would have (Am + I )/I =
F(xm + I ) 
= 0, since xm cannot be a multiple of x + x2. In turn, this would clearly
imply that A/I is infinite dimensional, contradicting our prior inference that A/I
has F-dimension 2. Thus A/I is not a graded algebra in this case.

Motivated by the above, we call the ideal I of the M-graded R-algebra A homo-
geneous if

A/I =
⊕
m∈M

(Am + I )/I.

Note that this implies both that A/I is M-graded via (A/I )m = (Am + I )/I and
that the projection homomorphism A → A/I is a homomorphism of M-graded
R-algebras.

Theorem 13.8.2 Let A be an M-graded R-algebra, and let I be an ideal of A. Then,
the following are equivalent:

(i) I is homogeneous,
(ii) I = ⊕

m∈M
(Am ∩ I ),



500 13 Tensor Products

(iii) I is generated by homogeneous elements.

Proof Assume (i), i.e., that I is homogeneous; thus

A/I =
⊕
m∈M

(Am + I )/I.

Let x ∈ I and write x as x = ∑
m∈M

xm , where each xm ∈ Am . We shall show that, in

fact, each xm ∈ I . For otherwise, we would have

0 + I = x + I =
∑

m∈M

xm + I =
∑

m∈M

(xm + I ).

Since the last sum is direct, we conclude that each xm + I = 0 + I , i.e., that each
xm ∈ I . This implies that I = ∑

m∈M
(Am ∩ I ). Since this sum is obviously direct, we

infer (ii).
If we assume (ii), and if elements am ∈ Am are given with

∑
m∈M

(am + I ) = 0 + I ∈ A/I,

then ∑
m∈M

am ∈ I =
∑

m∈M

(Am ∩ I ).

This clearly forces each am ∈ (Am ∩ I ) ⊆ I , and so the sum
∑

m∈M
(Am + I )/I is

direct. As it clearly equals A/I , we infer condition (i). Thus, conditions (i) and (ii)
are equivalent.

If we assume condition (ii), then it is clear that I is generated by homogeneous
elements, as each Am ∩ I, m ∈ M consists wholly of homogeneous elements, so
(iii) holds.

Finally, assume condition (iii). The homogeneous elements that lie in the ideal I
form a set S = ∪σ∈M (I ∩ Aσ), which, by hypothesis, generates I as a 2-sided ideal.
Let

H :=
⊕
σ∈M

Hσ where Hσ = I ∩ Aσ, (13.10)

so that H is the additive group generated by S. Clearly H ⊆ I . Since part (ii) of
the definition of an M-grading requires that homogeneous elements be closed under
multiplication, we see that if h is an arbitrary homogeneous element of A, then

hS ∪ Sh ⊆ S,
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since the products to the left of the containment symbol are homogeneous elements
of A lying in the ideal I . It follows that hH andHh both lie in H for any homogeneous
element h chosen from A. Since the additive span of these homogeneous elements is
A itself, the distributive law of the ring yields AHA ⊆ H , so H is itself a two-sided
ideal of A. Since H contains S the ideal-generators of I , we have I ⊆ H . Since
H ⊆ I we also have H = I and now Eq. (13.10) produces

I =
⊕
σ∈M

(I ∩ Aσ),

proving (ii).
Thus all three conditions (i), (ii), and (iii) are equivalent. �

13.9 The Tensor Algebras

13.9.1 Introduction

In this section and the nextwe hope to introduce several basic algebraswith important
universal properties. There are two ways to do this: (1) first define the object by a
construction, and then show it possesses the desired universal property, or (2) first
base the definition upon a universalmapping property, and then utilize our categorical
arguments for uniqueness to show that it is something we know or can construct.
We think that the second strategy is particularly illustrative in the case of the tensor
algebra.

13.9.2 The Tensor Algebra: As a Universal Mapping Property

Fix a vector space V over a field F . The tensor algebra of V is defined to be
a pair (ι, T (V )) where ι : V → T (V ) is an injection of V into an F-algebra,
T (V ) such that every F-linear transformation t : V → A into an F-algebra A
uniquely factors through ι—that is, there exists a unique F-algebra homomorphism
θ(t) : T (V ) → A, such that θ(t) extends t . In other words t = θ(T ) ◦ ι and we have
the commutative triangle below:

V T (V )

A

�

�
�

�








�

ι

t θ
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Theorem 13.9.1 Define the category whose objects are the pairs ( f, A), where A
is an F-algebra, and f : V → A is an F-linear transformation, for a fixed vector
space V . In this category, a morphism from object ( f, A) to object ( f ′, A′) is an
F-algebra homomorphism φ : A → A′ such that φ ◦ f = f ′. Then (ι, T (V )) (if it
exists) is an initial object in this category.

Proof This is just a restatement of the universal property described above.
But now the “abstract nonsense”, has a wonderful consequence!

The tensor algebra (ι, T (V )) (if it exists) is unique up to isomorphism.

But it does exist and we have met it before. Let X be any basis of the vector
space V . We may regard V as a vector subspace of the polynomial ring F{X} in non-
commutting indeterminates X—namely as the subspace spanned by the monomials
of total degree one. We let ιX : V ↪→ F{X} denote this containment. Let A be
any F-algebra, and let t : V → A be any linear transformation. Now we note
that if 1A is the multiplicative identity element of A, then the subfield 1A F lies in
the center of A. Now we apply Exercise (6) in Sect. 7.5.3, with (t, t (X), F1A, A)

in the roles of (α, B, R, S) to conclude that the restricted mapping t : X → A
extends to a ring homomorphism (actually an algebra homomorphism in this case)
E∗

t : F{X} → A, which we called the “evaluation homomorphism”. It follows that
it induces t : V → A when restricted to its degree-one subspace V (see p. 205). We
also note that the evaluation mapping E∗

t : F{X} → A was uniquely determined
by t .

Thus the pair (ιX , F{X}) satisfies the definition of a tensor algebra given above.
We record this as

Corollary 13.9.2 Let V be a vector space with basis X. Then the tensor algebra is
isomorphic to the polynomial algebra F{X} in non-commuting indeterminates X.

13.9.3 The Tensor Algebra: The Standard Construction

In this construction we utilize the (parenthesis free) construction of the multiple
tensor product defined in Sect. 13.5.

Let F be a field and let V be an F-vector space. We define a sequence T r (V ) of
F-vector spaces by setting T 0(V ) = F , T 1(V ) = V , and in general,

T r (V ) =
r⊗

i=1

V = V ⊗F ⊗ · · · ⊗F V (r factors ).

Set T ∗(V ) := ⊕∞
r=0 T r (V ) and define an F-bilinear mapping

μ : T ∗(V ) × T ∗(V ) → T ∗(V )

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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by setting

μ

( ∞∑
r=0

τr ,

∞∑
s=0

τ ′
s

)
:=

∞∑
k=0

∑
r+s=k

τr ⊗ τ ′
s ∈ T r+s(V ) ⊆ T ∗(V ).

This is easily verified to endow T ∗(V ) with the structure of an F-algebra, called the
tensor algebra over F . When V has a basis X , then T ∗(V ) has an F-basis consisting
all pure tensors of the form x1 ⊗· · ·⊗ xd , where d ∈ N, the xi are in X and an empty
product is taken to be the identity element e of T ∗(V ). In terms of this basis of pure
tensors the multiplication follows this rule:

μ(v1 ⊗ · · · ⊕ vn, vn+1 ⊗ · · · ⊗ vn+m) = v1 ⊗ · · · ⊗ vn+m . (13.11)

Since this is simply a concatenation of pure multitensors, the operation is asso-
ciative.

Let ι : V = T 1(V ) → T ∗(V ), be the (injective) containment mapping. We shall
show that the pair (ι, T ∗(V )) satisfies the universal mapping property of our previous
definition of a tensor algebra T (V ).

Theorem 13.9.3 Fix an F-vector space V . Define the category whose objects are
the pairs (A, f ), where A is any F-algebra, and f : V → A is any F-linear
transformation. A morphism from (A, f ) to (A′, f ′) in this category is an F-algebra
homomorphism φ : A → A′ such that φ ◦ f = f ′. Then (ι, T ∗(V )) (the embedding
of V into it’s tensor algebra) is an initial object in this category.

Proof Let (A, f ) be an object in this category. Note that if φ : T (V ) → A is an
F-algebra homomorphism such that φ ◦ ι = f , then for all nonnegative integers r ,
we must have φ(v1 ⊗ v2 ⊗ · · · ⊗ vr ) = f (v1) f (v2) · · · f (vr ). Since any element
of T (V ) is a sum of such simple tensors, we must have that φ : T (V ) → A must
be unique. It remains to prove the existence of such a mapping φ. First define, φ0 :
T 0(V ) = Fe → F1A, to be the F-linear mapping which takes the identity element
e of T ∗(V ) to 1A, the identity element of the algebra A. Now, by Theorem13.5.2,
for each positive integer r > 0, the F-balanced mapping

fr : V × V × · · · × V → A, where fr (v1, v2, . . . , vr ) = f (v1) f (v2) · · · f (vr ).

induces a unique F-linear mapping

φr : T r (V ) = V ⊗F V ⊗F ⊗F · · · ⊗F V → A,
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where φr (v1 ⊗ v2 ⊗ · · · ⊗ vr ) = f (v1) f (v2) · · · f (vr ). In turn, by the universality

of the direct sum T ∗(V ) =
∞⊕

r=0
T r (V ), we then get a unique F-linear mapping

φ : T ∗(V ) =
∞⊕

r=0

T r (V ) → A

which is an F-algebra homomorphism. This proves the existence of φ, and the result
follows. �

At this point, we know from the uniqueness of initial objects that the three objects
T (V ), F{X} (where X is a basis of V ) and T ∗(V ) are all three the same object.7

In fact, the isomorphism T ∗(V ) → F{X} is induced by the following mapping
connecting their basis elements:

e 
→ 1, the monic polynomial of degree zero

x1 ⊗ · · · ⊗ xn 
→ x1x2 · · · xn , a monomial of degree n

(Here n is any positive integer and the xi lie in X , a basis for V .)
From now on we will write T (V ) for T ∗(V ).

13.10 The Symmetric and Exterior Algebras

13.10.1 Definitions of the Algebras

Inside the tensor algebra T (V ) over the field F , we define the following homogeneous
ideals (cf. Theorem13.8.2):

(i) I ⊆ T (V ), generated by all elements of the form v ⊗ w − w ⊗ v, v,w ∈ V ;
(ii) J ⊆ T (V ), generated by all simple tensors of the form v ⊗ v, v ∈ V .

In terms of the above ideals, we now define the symmetric algebra over V to
be S(V ) := T (V )/I . Likewise, we define the exterior algebra by setting E(V ) :=
T (V )/J . By Theorem13.8.2, these are both graded algebras. Thus,

S(V ) =
∞⊕

r=0

Sr (V ), where each Sr (V ) = (T r (V ) + I )/I,

7Up to isomorphism, of course.
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and

E(V ) =
∞⊕

r=0

Er (V ), where each Er (V ) = (T r (V ) + J )/J.

(Many authors write
∧

V for E(V ) and then write
∧r V for Er (V ).)

We denote by ιS : V → S(V ) and by ιE : V → E(V ) the F-linear mappings

ιS(v) := v + I ∈ S(V ), ιE (v) := v + J ∈ E(V ), v ∈ V .

Since it is clear that V ∩ I = V ∩ J = 0, we see that ιS and ιE are both injec-
tive F-linear transformations. We shall often identify V with their respective image
subspaces ιS(V ) ⊆ S(V ) and ιE (V ) ⊆ E(V ) and write V ⊆ S(V ) and V ⊆ E(V ).

Multiplication in S(V ) is typicallywritten simply as juxtaposition: if a, b ∈ S(V ),
then the product of a and b is denoted ab ∈ S(V ).We note that S(V ) is a commutative
algebra. Indeed, any element of S(V ) is an F-linear combination of elements of the
form v1v2 · · · vr (that is, the product v1⊗v2⊗· · ·⊗vr + I ), where v1, v2, . . . , vr ∈ V .
Now write

a := v1v2 · · · vr , b := w1w2 · · · ws,

where v1, . . . , vr , w1, . . . , ws ∈ V . Since for any vectors v,w ∈ V we have
vw = wv, it follows immediately that ab = ba and so it follows easily that S(V ) is
commutative, as claimed.

In the exterior algebra, products are written as “wedge products”: if c, d ∈ E(V ),
their product is denoted c ∧ d. It follows immediately that for all vectors v,w ∈ V ,
one has v ∧ v = 0, and from (v + w) ∧ (v + w) = 0 one obtains v ∧ w = −w ∧ v.

Like the tensor algebra, the universal properties satisfied by the symmetric and
exterior algebras involve an F-linear mapping V → A into an F-algebra A. Such an
F-linear mapping is said to be commuting if and only if f (u) f (v) = f (v) f (u) for
all u, v ∈ V—that is, the image f (V ) generates a commutative subring. Similarly
such a mapping is said to be alternating if and only if f (v)2 = 0, for all v ∈ V .

Theorem 13.10.1 Let F be a field, let V be a vector space over F, and let
S(V ), E(V ) be the symmetric and exterior algebras over V , respectively.

(i) Consider the category of pairs (A, f ) of F-algebras and commuting F-linear
mappings f : V → A. A morphism from the pair (A, f ) to the pair (A′, f ′) is an
F-algebra homomorphism φ : A → A′ such that φ ◦ f = f ′. Then (S(V ), ιS)

is an initial object in this category.
(ii) Consider the category of pairs (A, f ) of F-algebras and alternating F-linear

mappings f : V → A. A morphism from the pair (A, f ) to the pair (A′, f ′) is an
F-algebra homomorphism φ : A → A′ such that φ ◦ f = f ′. Then (E(V ), ιE )

is an initial object in this category.

We shall leave the proof to the motivated reader in Exercise (2) in Sect. 13.13.7.
The uniqueness of these algebras follows. Whenever one hears the word “unique-

ness” in a categorical setting, one knows that isomorphisms are being implied, and so



506 13 Tensor Products

a number of corollaries can be expected to result from the precedingTheorem13.10.1.
We produce some of them in the next subsection.

13.10.2 Applications of Theorem 13.10.1

A Model for S(V )

We begin with this example: From the uniqueness assertion in Theorem13.10.1,
one can easily exploit the evaluation morphism of polynomial rings (in commuting
indeterminates) to prove the following:

Corollary 13.10.2 Let X be an F-basis for the vector space V . Then S(V ) ∼= F[X ]
as F-algebras.

The proof is simply that the universal property of the evaluation mapping Eα

for polynomial rings in commuting indeterminates proves that the pair (ιX , F[X ])
satisfies the universal mapping property of the tensor algebra. (See Sect. 7.3 for
background and Exercise (8) in Sect. 7.5.3 for the universal property. A formal proof
is requested in Exercise (3) in Sect. 13.13.7.)

A Model for E(V )

Let (X,≤) denote a totally ordered poset bijective with a basis X of the vector space
V . Let C be the collection of all finite ascending subchains (including the empty
chain, φ) of (X,≤). (Clearly this collection is in one-to-one-correspondence with
the finite subsets of X . It forms a boolean lattice (C,≤) under the refinement relation
among chains. Thus the “join” c1 ∨ c2, is the smallest chain refining both c1 and c2.)
For every non-empty ascending chain c = {x1 < · · · < xr } ∈ C , let wc be the
word x1x2 · · · xr (viewed either as a word in the free monoid over X or simply as a
sequence of elements of X ). For the empty chain φ we denote wφ by the symbol e.
(For convenience, we shall refer to these wc as “chain-words”.)

Let A be the F-vector space defined as the formal direct sum

E =
⊕
c∈C

Fwc.

Weconvert A into an F-algebra by definingmultiplication between basis elements
and extending this to a definition ofmultiplication ( “∗”) on A by the usual distributive
laws. In order to accomplish this we consider two chains a = {x1 < · · · < xr } and
b = {y1 < · · · < ys}.We letm(a, b)be the number of pairs (xk, yl) such that xk > yl .
Then if the two chains a and b possess a common element, we set a∗b := 0. But if the
chains a and b possess no common element, their disjoint union can be reassembled

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_7
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into a properly ascending chain c = a ∨ b, the smallest common refinement of the
chains a and b. In that case we set

a ∗ b := (−1)m(a,b)wc.

(Note that (−1)m(a,b) is simply the sign of the permutation π(a, b) of indices that
permutes the concatenated sequence wa · wb to wa∨b.)

Two make sure that the student gets the sense of this, note that when (X,≤) =
{1 < 2 < · · · < 9}, we have

(1 < 2 < 4 < 7) ∗ (3 < 6 < 7) = 0 while

(1 < 2 < 4 < 7) ∗ (3 < 6 < 8) = −(1 < 2 < 3 < 4 < 6 < 7 < 8).

To show that “∗” is an associative binary operation for A it is enough to check
it on the basis elements—the chains. Thus we wish to compare two products (a ∗
b) ∗ c and a ∗ (b ∗ c) where wa, wb, wc are the respective ascending sequences
(a1, . . . , ar ), (b1 . . . , bs), (c1, . . . , ct ).Wemay assume r, s, t are all positive integers
and that a, b and c pairwise share no common element (otherwise (a ∗ b) ∗ c = 0 =
a ∗ (b ∗ c)). Form the concatenation of sequences

wa · wb · wc = (a1, . . . , ar , b1, . . . , bs, c1, . . . , ct ) = (y1, . . . , yr+s+t ) := y,

and let π be the permutation of indices so that {yπ(i)}r+s+t
i=1 is in ascending order,

thus realizing the chain a ∨ b ∨ c. (We view the group of permutations of sequences
as acting on sequences from the right, so that a factorization of permutations π1π2
means π1 is applied first.) Now the permutation π has two factorizations: (i) π =
π(a, b) · π(a ∨ b, c) and (ii) π = π(b, c)π(a, b ∨ c). Here π(a, b) fixes the last t
indices to effectwa ·wb ·wc → wa∨b ·wc, while π(a ∨b, c) rearranges the entries of
the latter sequence to produce wa∨b∨c. So (i) holds. Similarly, we could also apply
π(b, c) to the last s + t entries in y = wa · wb · wc while fixing the first r entries to
get wa ∗ wb∨c and then apply π(a, b ∨ c) to obtain the ascending sequence wa∨b∨c.
Thus the factorization (ii) holds.

Now (a ∗ b) ∗ c = a ∗ (b ∗ c) = sgn(π)(a ∨ b ∨ c) follows from the associativity
of the “join” operation in (C,≤), the definition of “∗”, and

sgn(π) = sgn(π(a, b))sgn(π(a ∨ b, c)) = sgn(π(b, c))sgn(π(a, b ∨ c)),

given to us by the factorizations (i) and (ii).
Now, extending the binary operation ∗ to all of A by linearity from its definition

on the basis C , we obtain an F-vector space A with an associative binary operation
“∗” which distributes with respect to addition and respects scalar multiplication from
F on either side. One easily checks that e ∗ a = a ∗ e = a for each a ∈ A, so e is a
multiplicative identity. Thus (A, ∗) is an algebra.



508 13 Tensor Products

Notice that the lengths of the chains produce a grading A = ⊕
Ad where, for

every natural number d, Ad is the subspace spanned by all wc as c ranges over the
chains of length d. Thus A0 = Fe and Ar ∗ As ⊆ Ar+s .

At this stage we see that (A, ∗) is a genuine graded F-algebra which we call the
algebra of ascending chains. Its dimension is clearly the number of finite subchains
of (X,≤), and if V has finite dimension n then A has dimension 2n .

There is a natural injection ιA : V → A mapping linear combinations of basis
elements xi of V to the corresponding linear combination of chain-wordswi := w{xi }
of length one.

If xσ < xτ is a chain, and wσ = ιA(xσ) and wτ = ιA(xτ ) are the length-one
chain words {xσ} and {xτ }, we have

w2
σ = w2

τ = 0 (writing a2 for a ∗ a ) and

wσ ∗ xτ = −wτ ∗ xσ.

This gives usw2
v = 0 for every vector v ∈ V , and so ιA : V → A is an alternating

mapping as defined above. Thus the universal property of E(V ) requires that there is a
unique algebra epimorphism ε : E(V ) → A extending ιA. If V had finite dimension,
we would know at once that ε is an isomorphism. Instead we obtain the isomorphism
by showing that (A, ιA) possesses the desired universal mapping property.

Suppose f : V → (B, ◦) is an alternating mapping into an F-algebra B having
identity element 1B . Then of course

f (v)2 = 0, and (13.12)

f (u) ◦ f (v) = − f (v) ◦ f (u) (13.13)

for all vectors u, v ∈ V .
We then define an F-linear mapping α f : A → B by describing its values on a

basis for A. Firstwe setα f (e) = 1B . For eachfinite ascending chain c = (x1, . . . , xn)

in (X,≤) we set
α f (wc) = f (x1) · · · f (xn).

This can be extended to linear combinations of the xi to yield

α f (ιA(v)) = f (v), for all v ∈ V .

We also note that for any two finite ascending chains a and b in (X,≤), we have

α f (wa ∗ wb) = f (wa) ◦ f (wb).

So once again extending by linearity, we see that

α f : A → B
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is an algebra homomorphism and that α f ◦ ιA = f . Thus A possesses the uni-
versal property which defines the exterior algebra. By the uniqueness asserted in
Theorem13.10.1, we have a companion to Corollary13.10.2:

Corollary 13.10.3 Suppose V is any F-vector space. Then the exterior algebra
E(V ) is isomorphic to the algebra (A, ∗) of finite ascending chains of a total ordering
of a basis X of V .

In particular, if V is an F-vector space of finite dimension n, then the exterior
algebra E(V ) is isomorphic to the algebra of ascending chains, (A, ∗) based on the
chain N = {1 < · · · < n}. It is a graded algebra of dimension 2n.

Morphisms Induced on S(V ) and E(V )

Suppose t : V → V is any F-linear transformation of V . Then, ιS ◦ t is a commuting
mapping V → S(V ) and so, by the universal mapping property of S(V ) (placing
(ιS ◦ t, S(V )) in the role of (t, A)), we obtain an algebra homomorphism

S(t) : S(V ) → S(V )

which forces the commutativity of the following diagram:

S(V )
S(t)−−−−→ S(V )

ιS

�⏐⏐ �⏐⏐ιS

V
t−−−−→ V

The algebra homomorphism S(t) : S(V ) → S(V ) preserves the grading and so
induces morphisms

Sr (t) : Sr (V ) → Sr (V )

taking any product of elements of V , v1v2 · · · vn , to vt
1 · · · vt

n where vt denotes the
image of the vector v ∈ V under the linear transformation t .

It is apparent that if s, t ∈ homF (V, V ), then

Sr (s ◦ t) = Sr (s) ◦ Sr (t).

The same journey can be emulated for the exterior algebra E(V ) using its par-
ticular universal mapping property. Given F-linear t : V → V one obtains the
alternating mapping ιE ◦ t → E(V ) and so by the universal mapping property, a
commutative diagram
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E(V )
E(t)−−−−→ E(V )

ιE

�⏐⏐ �⏐⏐ιE

V
t−−−−→ V

where the algebra homomorphism E(t) at the top of the diagram preserves degrees
and so induces mappings

Er (t) : Sr (V ) → Er (V )

taking a product of vectors in V , v1 ∧ v2 ∧ · · · ∧ vn to vt
1 ∧ · · · ∧ vt

n where vt denotes
the image of an arbitrary vector v under the linear transformation t . Again

Er (s ◦ t) = Er (s) ◦ Er (t).

We collect these observations in this way:

Corollary 13.10.4 Suppose t ∈ homF (V, V ). Let

ιS : V → S(V ), and

ιE : V → E(V )

be the canonical embeddings of V into the symmetric and exterior algebras, respec-
tively.

Then there exist F-algebra homomorphisms

S(t) : S(V ) → S(V ) and

E(t) : E(V ) → E(V )

such that one has

S(t) ◦ ιS = ιS ◦ t, and

E(t) ◦ ιE = ιE ◦ t,

respectively. Both S(t) and E(t) preserve the algebra grading and so induce map-
pings

Sr (t) : Sr (V ) → Sr (V ) and

Er (t) : Er (V ) → Er (V ).

For any r-tuple (v1, . . . , vr ) ∈ V (r) one has

Sr (t)(v1 · · · vn) = vt
1v

t
2 · · · vt

r , and

Er (t)((v1 ∧ · · · ∧ vr ) = at
1 ∧ · · · ∧ vt

r .
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Finally if the symbol � denotes either T, T r , S, Sr , E, or Er , one has

�(s ◦ t) = �(s) ◦ �(t). (13.14)

Remark Of course by now even the beginning student has noticed that T, T r ,
S, Sr , E, and Er—all of them—are functors V → V where V is an appropriate
sub-category of Vect, the category of all F-vector spaces.

There are other consequences of Corollary13.10.4. For example, if t : V → V is
an invertible linear transformation, then so are S(t), Sr (t), E(t) and Er (t). Thus

Corollary 13.10.5 If t : V → V is invertible, then S(t)and E(t)are automorphisms
of the F-algebras S(V ) and E(V ), respectively.

In particular, there are injective homomorphisms

ρS : GL(V ) → Aut(S(V ))

ρE : GL(V ) → Aut(E(V ))

whose images elements preserve the grading.
As a result, for any subgroup G of GL(V ) one obtains group representations

ρr
S : G → GL(Sr (V ))

ρr
E : G → GL(Er (V ))

Remark All of the results above were consequences of just one result: Theo-
rem13.10.1. There is a lesson here for the student.8 It is that universal mapping
properties—as abstract as they may seem—possess a real punch! Suppose you are in
a situation where something is defined in the heavenly sunlight of a universal map-
ping property. Of course that does not mean it exists. But it does mean, that any two
constructions performed in the shade which satisfy this universal property (whether
known or new) are isomorphic (a consequence of the “nonsense” about initial and
terminal objects in a category). So we prove existence. What more is there to do,
one might ask? The answer is that one does not so easily depart from a gold mine
they are standing on. Here are three ways the universal characterizations produce
results: (1) It is a technique by which one can prove that two constructed algebraic
objects are isomorphic—simply show that they satisfy the same universal mapping
property within the same category. (2) One can prove that an object defined in one
context has a specific property by recasting it in the context of another “solution”
of the same universal mapping property. (3) One can prove the existence of derived
endomorphisms and automorphisms of the universal object.

8Of course such a phrase should be a signal that the teacher is about to become engulfed by the
urge to present a sermon and that perhaps the listener should surreptitiously head for an exit! But
how else can a teacher portray a horizon beyond a mere list of specific theorems?.
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13.11 Basic Multilinear Algebra

In Sect. 13.5 we proved that R-multibalanced mappings from a finite direct sum of
symmetric (R, R)-bimodules to a target (R, R)-bimodule factored through the mul-
tiple tensor product (see Theorem13.5.2). In this brief subsection we wish to extend
this theorem to alternating and symmetric forms (the key theorems of multilinear
algebra), but we shall do this in the case that R is a field so that we can exploit
universal properties of the symmetric and exterior algebras developed in the pre-
vious section. As the student shall observe, the device for transferring statements
about algebras to statements about multilinear mappings depends critically upon our
discussion of graded algebras and homogeneous ideals.

First the context: Let V and W be vector spaces over a field F . We regard both V
and W as symmetric (F, F)-bimodules—that is αv = vα for all (α, v) ∈ F × V or
F × W .

A mapping
f : V × · · · × V (n factors) → W

is F-multilinear if and only if (1) it is an F-linear mapping of the n-fold direct
product (and so preserves addition in the direct product) and (2) that for any n-tuple
of vectors of V , (v1, . . . , vn), for any field element α ∈ F , and for any index j < n,
one has

f (v1, . . . , v jα, v j+1, . . . , vn) = f (v1, . . . , v j ,αv j+1, . . . , vn) (13.15)

= ( f (v1, . . . , vn))α. (13.16)

Such an F-multilinear mapping is said to be alternating if and only if
f (v1, . . . , vn) = 0 if at least two distinct entries among the vi are equal. By consid-
ering a sequence whose i th and (i + 1)st entries are both vi + vi+1, one sees that for
an alternating F-multilinear mapping f , the sign of f (v1, . . . , vn) is changed by the
transposition of entries in the i th and (i + 1)st positions. It follows that the sign is in
fact changed by any odd permutation of the entries, but the value of f is preserved
by any even permutation of the entries.

An F-multilinear mapping f : V × · · · × V (n factors) → W is said to be sym-
metric if f (v1, . . . , . . . , vn) is unchanged under the transposition (vi , vi+1) inter-
changing the two entries in the i th and i +1st positions. It then follows that the value
of f is unchanged by any permutation of its arguments.

Theorem 13.11.1 (Fundamental Theorem of Multilinear Mappings) Let V be a
vector space over a field F, viewed as an (F, F)-bimodule so that αv = vα for all
(α, v) ∈ F × V . Throughout, we assume that f is an F-multilinear mapping

f : V × · · · × V (n factors) → W

into another (F, F)-bimodule W . The following three statements hold:
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1. f = f̄ ◦ ι where f̄ is a homomorphism

f̄ : T n(V ) = V ⊗ . . . ⊗ V → W,

uniquely determined by f . Specifically, the mapping f “factors through f̄ ” so
that

f (v1, . . . , . . . , vn) = f̄ (v1 ⊗ · · · ⊗ vn).,

for all n-tuples of vectors vi ∈ V .
2. Now suppose the mapping f is alternating. Then the mapping f factors through

a unique mapping

fE : En(V ) = V
∧

· · ·
∧

V (n factors) → W

so that
f (v1, . . . , . . . , vn) = fE (v1 ∧ v2 ∧ · · · ∧ vn),

for all n-tuples of vectors vi ∈ V .
3. Finally suppose the multilinear mapping f is symmetric. Then f factors

through a unique fS : Sn(V ) → W where Sn(V ) is the space of all homo-
geneous elements of degree n in the graded symmetric algebra S(V ). Thus
f (v1, . . . , vn) = fS(v1 · · · vn).

Proof Part 1 is just Theorem13.5.2 with the commutative ring R replaced by a field.
Part 2. By definition E(V ) = T (V )/J where J is the homogeneous ideal given

at the beginning of Sect. 13.10. We have these direct decompositions:

T (V ) = F ⊕ V ⊕ T 2(V ) ⊕ · · · ⊕ T r (V ) ⊕ · · · (13.17)

J (V ) = F ∩ J ⊕ (V ∩ J ) ⊕ · · · ⊕ (T r (V ) ∩ J ) ⊕ · · · (13.18)

E(V ) = F ⊕ V ⊕
⊕∞

r=2
(T r (V )/(T r (V ) ∩ J )) (13.19)

= F ⊕ V ⊕ V ∧ V ⊕ · · ·
r∧

(V ) ⊕ · · · (13.20)

The first two summands in Eq. (13.18) are of course zero. Comparing degree
components in the last two equations yields

n∧
(V ) ∼= T n(V )/(T n(V ) ∩ J ). (13.21)

Now, since f is multilinear, it factors through f̄ : T n(V ) → W as in part 1. But
since f is alternating, we see that ker f̄ contains (T n(V ) ∩ J ). Thus it follows that
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f̄ factors through this chain:

T n(V ) → T n(V )/(T n(V ) ∩ J ) → [T n(V )/(T n(V ) ∩ J )]/(ker f̄ /(T n(V ) ∩ J ))

∼= T n(V )/ ker f̄ ∼= f̄ (T n(V ) ↪→ W.

(The first two morphisms are natural projections, the next two isomorphisms are
from the classical homomorphisms theorems, and the last mapping is the inclusion
relation into W .) Folding in the isomorphism of Eq. (13.21) at the second term and
composing with the remaining mappings we obtain the desired morphism

f n
E :

n∧
(V ) → W

through which f̄ (and hence f ) factors. That

f (v1, . . . , vn) = f̄ (v1 ⊗ · · · ⊗ vn) = f n
E (v1 ∧ · · · ∧ vn)

follows upon applying the mappings.
Part 3 follows the samepattern except thatweuse the ideal I , given at the beginning

of Sect. 13.10, in place of J . Again one exploits the fact that I is a homogeneous
ideal to deduce that Sn(V ) ∼= T n(V )/(T n(V ) ∩ I ). We leave the student to fill in
the details in Exercise (1) in Sect. 13.13.8. �

13.12 Last Words

From here the subject of multilinear algebra begins to blend with another subject
called Geometric Algebra. Although space does not allow us to pursue the latter
subject, a hint of its flavor may be suggested by the following.

Suppose V is both a left vector space, as well as a right vector space over a division
ring D. Do not assume that V is an (D, D)-bimodule. (This would virtually make
D a field.) A 2-form is a bi-additive mapping f : V × V → D such that

f (αu, vβ) = α f (u, v)β for all α,β ∈ D,u, v,∈ V .

If g = α f for a fixed scalar α in D, then g is said to be proportional to f . Such a
2-form f is said to be reflexive if and only if f (u, v) = 0 implies f (v,u) = 0, and
is non-degenerate if and only if f (v, V ) = 0, implies v = 0, u, v ∈ V .

Theorem 13.12.1 Suppose dim V ≥ 2 and f : V × V → F is a reflexive non-
degenerate 2-form, where F is a field. Then f is proportional to a 2-form g such that
for all u, v ∈ V exactly one of the following holds:

(i) g(u, v) = g(v,u), (symmetric form)
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(ii) g(u,u) = 0, (alternating of symplectic form)
(iii) g(u, v) = g(v,u)σ , where σ is a field automorphism of order 2 (Hermitian

form).

The first case can be derived from quadratic forms (see Exercise (9) in
Sect. 13.13.7). All three cases are the children of a description of 2-forms over divi-
sion rings—the so-called (σ, ε)-Hermitian forms (see [2], pp. 199–200 for versions
of J. Tits’ proof that reflexive forms must take this shape).

There are many beautiful results intertwining 2-forms and multilinear forms as
well as widespread geometric applications of such forms. The interested student is
referred to the classic book Geometric Algebra by E. Artin [1], which, after more
than fifty years, now begs for an update.

13.13 Exercises

13.13.1 Exercises for Sect. 13.2

1. Letφ : M → N be a homomorphismof right R-modules. Recall that the cokernel
of φ was defined by a universal mapping property on p. 477, in any category for
which an initial object exists and is also a terminal object. (i) In the category
of right R-modules, show that the projection π : N → N/im φ satisfies this
mapping property. (ii) In the category of groups and their homomorphisms, do
cokernels of homomorphisms exist? If so define it. [Hint: Examine the universal
mapping property of a cokernel in this category.]

2. Given the morphism M
φ→ N in the category of right R-modules, define a

category within which the cokernel of φ appears as an initial object.
3. Let {Mα | α ∈ A} be a family of right R-modules. Recall from p. 260 that if

P := ∏
α∈A

Mα, then P satisfies the following universal mapping property: First of

all, there are projection homomorphisms πα : P → Mα, α ∈ A; if P ′ is another
right R-module with homomorphisms π′

α : P ′ → Mα, α ∈ A, then there exists
a unique R-module homomorphism θ : P ′ → P , making the following diagram
commute for every α ∈ A.

P ′

P Mα

θ πα

π′
α







�

�
�

�

�

Now define a category within which the direct product P appears as a terminal
object.
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4. Let X be a fixed set and define the following category. The objects are the pairs
(G,μ), where G is a group and μ : X → G is a mapping of the set X into
G. A morphism from the (G,μ) to the pair (G ′,μ′) is a group homomorphism
φ : G → G ′ such that μ′ = φ ◦ μ. Show how the free group F(X) on the set X
affords an initial object in this category.

5. Rephrase and repeat the above exercise with “groups” replaced with “right R-
modules”. [Hint: The free module with basis X replaces the free group F(X).]

6. Suppose F : C1 → C2 is a contravariant functor. Show that there are also covariant
functors F ′ : Copp

1 → C2 and F ′′ : C1 → Copp
2 .

7. Show that there exists an isomorphism C → (Copp)opp which induces the identity
mapping on objects. (It may move maps, however.)

13.13.2 Exercises for Sect. 13.3

1. Let A be an abelian group. If n is a positive integer, prove that

Z/nZ ⊗Z A ∼= A/n A.

2. Let m, n be positive integers and let d = g.c.d(m, n). Prove that

Z/mZ ⊗Z Z/nZ ∼= Z/dZ.

3. Let
0 → M ′ μ→ M

ε→ M ′′ → 0

be a split exact sequence of right R-modules, and let N be a left R-module. Show
that the induced sequence

0 → M ′ ⊗R N
μ⊗1N−→ M ⊗R N

ε⊗1N−→ M ′′ ⊗R N → 0

is also split exact. Prove the corresponding statement if the split exact sequence
occurs as the right hand factor of the tensor product sequence.

4. Prove that if P is a projective left R-module, then P is flat. [Hint: Letμ : M ′ → M
be an injective homomorphism of right R-modules. We know that P is the direct
summand of a free left R-module F , and so there must be a split exact sequence
of the form

0 → P
i→ F

j→ N → 0,

for some left R-module N . ByExercise 3we know that both 1M ′ ⊗i : M ′⊗R P →
M ′⊗R F and 1M ⊗i : M⊗R P → M⊗R F are injective.Wehave the commutative
square
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M ′ ⊗R P
μ⊗1P−−−−→ M ⊗R P

1M ′⊗l

⏐⏐� ⏐⏐�iM ⊗l

M ′ ⊗R F
μ⊗1F−−−−→ M ⊗R F

Now what?]
5. Generalize the proof of Theorem13.3.8 so as to prove the following. Let R be a

ring, let M, M ′ be right R-modules, and let N , N ′ be left R-modules. Let φ :
M → M ′ and letψ : N → N ′ bemodule homomorphisms. Define K ⊆ M ⊗R N
to be the subgroup generated by simple tensors m ⊗ n where either m ∈ ker φ or
n ∈ ker ψ. Show that, in fact, K = ker (φ ⊗ ψ : M ⊗R N → M ′ ⊗R N ′).

13.13.3 Exercises for Sect. 13.3.4

1. Let C be a category and let μ : A → B be a morphism. We say that μ is a
monomorphism if whenever A′ is an object with morphisms f : A′ → A, g :
A′ → A such that μ ◦ f = μ ◦ g : A′ → B, then f = g : A′ → A. In other
words, monomorphisms are those morphisms that have “left inverses.” Similarly,
epimorphisms are those morphisms that have right inverses. Now assume that
C,D are categories, and that F : C → D, G : D → C are functors, with F
left adjoint to G. Prove that F preserves epimorphisms and that G preserves
monomorphisms.

2. Let i : Z ↪→ Q be the inclusion homomorphism. Prove that in the category of
rings, i is an epimorphism. Thus an epimorphism need not be surjective.

3. Let V, W be F-vector spaces and let V ∗ be the F-dual of V . Prove that there is a
vector space isomorphism V ∗ ⊗F W ∼= HomF(V, W ).

4. Let G be a group. Exactly as in Sect. 7.3.2, we may define the integral group ring
ZG. (These are formal Z-linear combinations of group elements in G.) In this
way a group gives rise to a ring. Correspondingly, given a ring R we may form its
group of units U (R). This time, a ring is giving rise to a group. Show that these
correspondences define functors

Z : Groups −→ Rings, U : Rings −→ Groups.

Prove that Z is left adjoint to U .
5. Below are some further examples of adjoint functors. In each case you are to

prove that F is left adjoint to G.

(a)

Groups
F−→ Abelian Groups

G
↪→ Groups;

F is the commutator quotient map.

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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(b)

Sets
F−→ Groups

G−→ Sets,

where F(X) = free group on X and G(H) is the underlying set of the group
H .

(c)

Integral Domains
F−→ Fields

G
↪→ Integral Domains;

F(D) is the field of fractions of D. (Note: for this example we consider
the morphisms of the category Integral Domains to be restricted only to
injective homomorphisms.)

(d) Fix a field K .

K − Vector Spaces
F−→ K − Algebras

G−→ K − Vector Spaces;

F(V ) = T (V ), the tensor algebra of V and G(A) is simply the underlying
vector space structure of algebra A.

(e)

Abelian Groups
F−→Torsion Free Abelian Groups

G
↪→ Abelian Groups;

F(A) = A/T (A), where T (A) is the torsion subgroup of A.
(f)

Left R-modules
F−→ Abelian Groups

G−→ Left R-modules.

F is the forgetful functor, G = HomZ(R,−).

(g) If G is a group, denote by G Set the category of all sets X acted on by G.
If X1, X2 are objects in G Set then the morphisms from X1 to X2 are the
mappings in HomG(X1, X2). Let H be a subgroup of G. Then an adjoint
functor pair is given by

G Set
F→ H Set

I G→ G Set

where, for G-set X , and H -set Y , F(X) = ResG
H (X), I G(Y ) = IndG

H (Y ).
[The induced action of G on Y × G/H , denoted by the symbol IndG

H (Y ), is
defined in Exercise 7 of the following Sect. 13.13.4 on p. 519.]

13.13.4 Exercises for Sect. 13.4

1. Give a formal proof of Corollary13.4.3, which asserts that if F ⊆ E is an exten-
sion of fields, and V is an F-vector space with basis {xi }, then as an E-vector
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space, V ⊗F E has basis {xi ⊗ 1E }. [Hint: Write V = ∑
xi F and use Corol-

lary13.3.6.]
2. Let T : V → V be a linear transformation of the finite-dimensional F-vector

space V . Let mT,F (x) denote the minimal polynomial of T with respect to the
field F . If F ⊆ E is a field extension, prove that mT,F (x) = mT ⊗1V ,E (x). [Hint:
Apply the previous Exercise 1, above.]

3. LetW be an F-vector space and let T : V1 → V2 be an injective linear transforma-
tion of F-vector spaces. Prove that the sequence T ⊗1W : V1⊗F W → V2⊗F W is
injective. (Note that by Theorem13.3.8, we’re really just saying that every object
in the category of F-vector spaces is flat.)

4. Let F be a field and let A ∈ Mn, B ∈ Mm be square matrices. Define the
Kronecker (or tensor) product A ⊗ B as follows. If A = [aij], B = [bkl ], then
A ⊗ B is the block matrix [Dpq], where each entry Dpq (in row p and column q
of D) is the m × m matrix Dpq = apq B. Thus, for instance, if

A =
[

a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
.

then

A ⊗ B =

⎡
⎢⎢⎣

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

⎤
⎥⎥⎦ .

Now Let V, W be F-vector spaces with ordered bases A = (v1, v2, . . . , vn),

B = (w1, w2, . . . , wm), respectively. Let T : V → V, S : W → W be linear
transformations with matrix representations TA = A, SB = B. Assume that
A ⊗ B is the ordered basis of V ⊗F W given by A ⊗ B = (v1 ⊗ w1, v1 ⊗
w2, . . . , v1 ⊗ wm; v2 ⊗ w1, . . . , v2 ⊗ wm; . . . , vn ⊗ wm). Show that the matrix
representation of T ⊗ S relative toA⊗ B is given by (T ⊗ S)A⊗TB = TA ⊗ TB
(the Kronecker product of matrices given earlier in this exercise) .

5. Let V be a two-dimensional vector space over the field F , and let T, S : V → V
be linear transformations. Assume the minimal polynomials of S and T are given
by:mT (x) = (x −a)2, mS(x) = (x −b)2. (Therefore T and S can be represented
by 2×2 Jordan blocks, J2(a), J2(b), respectively.) Compute the invariant factors
of T ⊗ S : V ⊗V → V ⊗V . (See Sect. 10.7.2, p. 349, for notation and definitions
concerning minimal polynomials and Jordan blocks.)

6. Let M be a right R-module, and let I ⊆ R be a 2-sided ideal in R. Prove that, as
right R-modules,

M ⊗R (R/I ) ∼= M/MI.

7. (Induced representations) Here is an important application of the tensor prod-
uct. Let G be a finite group, let F be a field, and let FG be the F-group ring

http://dx.doi.org/10.1007/978-3-319-19734-0_10
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(see Sect. 7.3). Note that FG is clearly an F-vector space via scalar multiplication

α
∑
g∈G

αgg :=
∑
g∈G

(ααg)g, α ∈ F.

Likewise, if M is any right FG-module, then M naturally carries the structure of
an F-vector space by setting α · m := m(αe), α ∈ F, m ∈ M , where e is the
identity of the group G. Now let H be a subgroup of G and regard FH as a subring
of FG in the obvious way. Let V be a right FH-module, finite dimensional over
F , and form the induced module

IndG
H (V ) := V ⊗FH FG.

Since FG is an (FH, FG)-bimodule, we infer that, in fact, IndG
H (V ) is actually a

right FG-module. Now show that

dimF IndG
H (V ) = [G : H ] · dim V .

8. Let A be an abelian group. Prove that a ring structure on A is equivalent to an
abelian group homomorphism μ : A ⊗Z A → A, together with an element e ∈ A
such that μ(e ⊗ a) = μ(a ⊗ e) = a, for all a ∈ A, and such that

A ⊗Z A ⊗Z A

A ⊗Z A

A ⊗Z A

A�

�

	 	
μ

1 ⊗ μ

μ ⊗ 1 μ

commutes. (The above diagram, of course, stipulates that multiplication is asso-
ciative.)

9. The following theorem is an application of the tensor product to ideal classes in
the field of fractions of a Dedekind Domain.

Theorem 13.13.1 Let I and J be fractional ideals in the field of fractions E of a
Dedekind domain R. If [I ] = [J ] (that is, I and J belong to the same ideal class in
E) then I and J are isomorphic as right R-modules.

Provide a proof of this theorem. (The converse is easy: see Exercise (5) in
Sect. 9.13.5.) [Hint: First, since I has the form αI ′ for some α ∈ E and ideal
I ′ in R, we have [I ] = [I ′]. Thus, without loss of generality, we may assume that
I is an ideal of R. Note that since R is an integral domain, themultiplicative identity
of R is the multiplicative identity 1E of E . Define the injections i I : I → I ⊗R E
and i J : J → J ⊗R E by

http://dx.doi.org/10.1007/978-3-319-19734-0_7
http://dx.doi.org/10.1007/978-3-319-19734-0_9
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i I (r) → r ⊗ 1E , and

i J (s) → s ⊗ 1E

for all (r, s) ∈ I × J .
Now consider the commutative diagram below:

I J

I ⊗R E J ⊗R E E

�

�

� �

�
�

�
���

�

φ

φ ⊗ 1E

iI i J

ε

i

where i I , i J are the injections, given above, ε : J ⊗R E → E is given by
ε(b ⊗ λ) = bλ, and where i : J ↪→ E is the containment mapping. Note also that
φ ⊗ 1E : I ⊗R E → J ⊗R E is an E-linear transformation.
Next, note that if 0 
= a0 ∈ I , then (a0 ⊗ a−1

0 )a = (a0 ⊗ 1)a−1
0 a = (a0 ⊗

a)a−1
0 = (aa0 ⊗ 1)a−1

0 = (a ⊗ a0)a
−1
0 = (a ⊗ 1)a−1

0 a0 = a ⊗ 1. Therefore,
set α0 := ε(φ ⊗ 1)(a0 ⊗ a−1

0 ) ∈ E and obtain φ(a) = ε(φ ⊗ 1)(a ⊗ 1) =
ε(φ ⊗ 1)((a0 ⊗ a−1

0 )a) = ε(φ ⊗ 1)(a0 ⊗ a−1
0 )a = α0a ∈ J . Since φ : I → J is

an isomorphism, the result follows.]

13.13.5 Exercises for Sects. 13.6 and 13.7

1. Show that if R is a commutative ring, and if A is an R-module, then a multipli-
cation μ : A ⊗R A → A gives A the structure of an R-algebra if and only if the
diagrams in Figs. 13.1 and 13.2 (see p. 495) are commutative.

2. Let A1, A2 be commutative R-algebras. Prove that A1 ⊗R A2 satisfies a univer-
sal condition reminiscent of that for direct sums of R-modules. Namely, there
exist R-algebra homomorphisms μi : Ai → A1 ⊗R A2, i = 1, 2 satisfying the
following. If B is any commutative R-algebra such that there exist R-algebra
homomorphisms φi : Ai → B, then there exists a unique R-algebra homomor-
phism θ : A1 ⊗R A2 → B such that for i = 1, 2, the diagram

Ai B

A1 ⊗R A2

�










� �

�
�

��
φi

θμi

commutes.
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3. Prove that R[x] ⊗R R[y] ∼= R[x, y] as R-algebras.
4. Let F be a field and form F-group algebras for the finite groups G1, G2 as in

Sect. 7.3. Prove that F[G1 × G2] ∼= FG1 ⊗F FG2 as F-algebras.

13.13.6 Exercises for Sect. 13.8

1. Let A be an R-algebra graded over the nonnegative integers. We say that A is
graded-commutative if whenever ar ∈ Ar , as ∈ As we have ar as = (−1)rsasar .

Now let A =
∞⊕

r=0
Ar , B =

∞⊕
s=0

Bs be graded-commutative R-algebras. Prove that

there is a graded-commutative algebra structure on A ⊗R B satisfying

(ar ⊗ bs) · (ap ⊗ bq) = (−1)sp(ar ap ⊗ bsbq),

ar ∈ Ar , ap ∈ Ap, bs ∈ Bs, bq ∈ Bq . (This is usually the intended meaning of
“tensor product” in the category of graded-commutative R-algebras.)

13.13.7 Exercises for Sect. 13.10

1. Assume that the F-vector space V has dimension n. For each r ≥ 0, compute
the F-dimension of Sr (V ).

2. Prove Theorem13.10.1.
3. Prove Corollary13.10.2.
4. (Determinants) Let T : V → V be a linear transformation, and assume that

dim V = n. Show that there exists a scalar det(T ), such that

En(T ) = det T · idEn(V ) : En(V ) → En(V ).

Cite the results in Sect. 13.9 that show, for S, T ∈ Hom(V, V ), that

det(S) · det(T ) = det(S ◦ T ) = det(T ◦ S).

5. Let G → GLF (V ) be a group representation on the F-vector space V . Show
that the mapping G → GLF (Er (V )) given by g 
→ Er (g) defines a group
representation on Er (V ), r ≥ 0.

6. Let V be a vector space and let v ∈ V . Define the linear map · ∧ v : Er (V ) →
Er+1(V ) by ω 
→ ω ∧ v. If dim V = n, compute the dimension of the kernel of
· ∧ v.

7. (Boundary operators) Let V be n-dimensional over the field F , and having basis
{v1, v2, . . . , vn}. For each integer r, 1 ≤ r ≤ n, define the linear transformation
∂r : Er (V ) → Er−1(V ), from its value on basis elements by setting

http://dx.doi.org/10.1007/978-3-319-19734-0_7
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∂r (vi1 ∧ vi2 ∧ · · · ∧ vir ) =
r∑

j=1

(−1) j−1vi1 ∧ vi2 ∧ · · · ∧ v̂i j ∧ · · · ∧ vir ,

where (̂·) means delete the factor (·). The mapping ∂0 : E1(V ) = V →
E0(V ) = F is the mapping determined by ∂0(vi ) = 1, i = 1, 2, . . . , n.

(a) Show that if r ≥ 1, then ∂r−1∂r = 0 : Er (V ) → Er−2(V ).
(b) Define a mapping hr : Er (V ) → Er+1(V ), 0 ≤ r ≤ n − 1 by setting

hr (η) = v1 ∧ η, where η ∈ Er (V ).
Show that if 1 ≤ r ≤ n − 1, then ∂r+1hr + hr−1∂r = idEr (V ), and that
hn−1∂n = idEn(V ), ∂1h0 = idE0(V ).

(c) Conclude that the sequence

0 → En(V )
∂n→ En−1 ∂n−1→ En−2 → · · · ∂2→ E1(V )

∂1→ E0(V ) → 0

is exact.

8. Let V be an F-vector space. An F-linear mapping δ : E(V ) → E(V ) is called
an antiderivation if for all ω ∈ Er (V ), η ∈ Es(V ) we have

δ(ω ∧ η) = δ(ω) ∧ η + (−1)rω ∧ δ(η).

Now let f : V → F be a linear functional, and show that f can be extended
uniquely to an antiderivation δ : E(V ) → E(V ) satisfying δ(v) = f (v) ·1E(V ),
for all v ∈ V . In addition, show that δ satisfies

(a) δ : Er (V ) → Er−1(V ), r ≥ 1, δ : E0(V ) → {0}.
(b) δ2 = 0 : E(V ) → E(V ).

9. (The Clifford Algebra) Let V be an F-vector space and let Q : V → F be a
function. We call Q a quadratic form if Q satisfies

(a) Q(αv) = α2Q(v), for all α ∈ F, v ∈ V , and
(b) the mapping B : V × V → F given by

(v,w) 
→ Q(v + w) − Q(v) − Q(w)

defines a (clearly symmetric) bilinear form on V .

Given the quadratic form Q on V , we define a new algebra, C(Q), the Clifford
algebra, as follows. Inside the tensor algebra T (V ) define the ideal I to be
generated by elements of the form v ⊗ v − Q(v) · 1F , v ∈ V . (Note that I is
not a homogeneous ideal of T (V ).) The Clifford algebra is the quotient algebra
C(Q) = T (V )/I .
Show that C(Q) satisfies the following universal criterion. Assume that C ′ is
an F-algebra and that there exists a linear mapping f : V → C ′ such that for
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all v ∈ V , ( f (v))2 = Q(v) · 1C ′ . Prove that there exists a unique F-algebra
homomorphism γ : C(Q) → C ′ making the following triangle commute:

V C ′

C(Q)

�












� �
�

�
�

�
f

γι

(In the above diagram, ι : V → C(Q) is just the natural homomorphism v 
→
v + I .)

10. Let V be an n-dimensional F-vector space. If d ≤ n, define the (n, d)-
Grassmann space, Gd(V ) as the set of all d-dimensional subspaces of V . In
particular, if d = 1, the set G1(V ) is more frequently called the projective space
on V , and is denoted by P(V ).9 We define a mapping

φ : Gd(V ) −→ P(Ed(V )),

as follows. IfU ∈ Gd(V ), let {u1, . . . ,ud} be a basis ofU , and let φ(U ) be the 1-
space in P(Ed(V )) spanned by u1∧· · ·∧ud . Prove thatφ : Gd(V ) → P(Ed(V ))

is a well-defined injection of Gd(V ) into P(Ed(V )). (This mapping is called the
Plücker embedding.)

11. Let V be an n-dimensional vector space over the field F .

(a) Show that if 1 < d < n − 1, then the Plücker embedding φ : Gn−1(V ) −→
P(En−1(V )) is never surjective. [Hint: Why is it sufficient to consider only
(d, n) = (2, 4)?]

(b) If F is a finite field Fq , show that the Plücker embedding φ : Gn−1(V ) −→
P(En−1(V )) is surjective. This implies that every element of z ∈ En−1(V )

can be written as a “decomposable element” of the form z = v1 ∧ v2 ∧
· · · ∧ vn−1 for suitable vectors v1, v2, . . . , vn−1 ∈ V . [An obvious counting
argument.] .

12. Let V, W be F-vector spaces. Prove that there is an isomorphism

⊕
i+ j=r

Ei (V ) ⊕ E j (W ) −→ Er (V ⊕ W ).

9 In geometry, the terms “Grassmann space”, and “Projective space” not only include the “points”,
Gd (V ) and G1(V ), respectively, but also include collections of “lines” as well. In the case of the
projective space, the lines are G2(V ), while, for the Grassmann space Gd (V ), 1 < d < n, the lines
are all pairs (X, Y ) ∈ Gd−1(V ) × Gd+1(V ) such that X ⊂ Y . The “points” belonging to (X, Y ) are
those Z ∈ Gd (V ) such that X ⊂ Z ⊂ Y . These lines correspond to 2-dimensional subspaces of
Ed (V ).
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13. Let V be an F-vector space, where char F 
= 2. Define the linear transformation
S : V ⊗ V → V ⊗ V by setting S(v ⊗ w) = w ⊗ v.

(a) Prove that S has minimal polynomial mS(x) = (x − 1)(x + 1).
(b) If V1 = ker(S − I ), V−1 = ker(S + I ), conclude that V ⊗ V = V1 ⊕ V−1.
(c) Prove that V1 ∼= S2(V ), V−1 ∼= E2(V ).

(d) If T : V → V is any linear transformation, prove that V1 and V−1 are
T ⊗ T -invariant subspaces of V ⊗ V .

14. Let V be an n-dimensional F-vector space.

(a) Prove that E(V ) is graded-commutative in the sense of Exercise (1) in
Sect. 13.13.6.

(b) If {Li }, i = 1, . . . , n, is a collection of one-dimensional subspaces of V
which span V , prove that as graded-commutative algebras,

E(V ) ∼= E(L1) ⊗ E(L2) ⊗ · · · ⊗ E(Ln)

15. Let G = GL(V ) act naturally on the n-dimensional F-vector space V so that V
becomes a right FG-module..

(a) Show that the recipe g( f ) = det g · f ◦g−1, g ∈ G, f ∈ V ∗ = Hom(V, F),
defines a representation of G on V ∗, the dual space of V .

(b) Show that in the above action, G acts transitively on the non-zero vectors of
V ∗.

(c) Fix any isomorphism En V ∼= F ; show that the map En−1(V ) → V ∗ given
by ω 
→ ω ∧ · is a morphism of right FG-modules, i.e., the map commutes
with the action of G.

(d) A vector z ∈ Ed(V ) is said to be decomposable or pure if and only if it
has the form z = v1 ∧ · · · ∧ vd for suitable vectors vi ∈ V . Since G clearly
acts on the set of decomposable vectors in En−1(V ), conclude from (b) that
every vector in En−1 is decomposable.

16. (Veronesean action)Againfixavector spaceV withfinite basis X = {x1, . . . , xn}
with respect to the field F .

(a) Lef f : V → F be a functional (that is, a vector of the dual space V ∗).
Show that Sd( f ) is a linear mapping Sd(V ) → F , and so is a functional of
Sd(V ), 1 ≤ d ≤ n.

(b) Set G = GL(V ). First let us view V as a left G-module. Thus for all
S, T ∈ G and v ∈ V , we have (ST )v = S(T (v)). If f ∈ Hom(V, F) and
T ∈ G, then f ◦ T is also a functional. Show that for all ( f, T ) ∈ V ∗ × G,
the mapping

f → f ◦ T

defines a right action of G on V ∗ ( i.e. V ∗ becomes a right FG-module).
[Hint: One must show that f ◦ (ST ) = f ◦ S ◦ T . One can check these maps
at arbitrary v ∈ V recalling that the operators T, S and f operate on V from
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the left.] (By way of comparison with part (a) of the previous exercise, note
that we have defined a representation of G on the dual space V ∗, without
employing the determinant.)

(c) For each f ∈ Hom(V, F), and integer d ≥ 1, Sd( f ) : Sd(V ) → F is a
functional of Sd(V ) called a Veronesean vector. With respect to the basis
X = {xi }, we may regard Sd(V ) as the space of homogeneous polynomi-
als of degree d in F[x1, . . . , xn]. If f (xi ) = εi ∈ F , show that at each
homogeneous polynomial p ∈ Sd(V ),

f (p(x1, . . . , xn)) = p(ε1, . . . , εn) ∈ F.

conclude from this, that if (α, f ) ∈ F × V ∗, then

Sd(α f ) = αd Sd( f ). (13.22)

Describe how this produces a bijection between the 1-dimensional sub-
spaces of V ∗ (the points of the projective space P(V ∗)) and the 1-spaces of
Sd(V )∗ spanned by the individual Veronesean vectors. (The latter collection
of 1-dimensional subspaces is called the (projective) Veronesean variety of
degree d.) [Hint: Use Eq. (13.22).]

(d) Prove that the (right) action of G = GL(V ) on V ∗ described in part (b) of
this exercise transfers to an action on G on Sd(V )∗ which is transitive on
the non-zero Veronesean vectors it contains. It also induces a permutation
isomorphism between the action of G on the projective points of P(V ∗)
and the action of G on the projective Veronesean variety of degree d. [Hint:
Citing relevant theorems, show that if ( f, T ) ∈ V ∗ × G then Sd( f ◦ T ) =
Sd( f ) ◦ Sd(T ), so that

ρd(T ) : Sd( f ) → Sd( f ) ◦ Sd(T )

defines a mapping
ρd : G → EndF (Sd(V )∗)

which describes this action.]

17. Attempt to emulate the development of the previous exercise with E(V ) replac-
ing S(V ) everywhere. Thus for 1 ≤ d ≤ n, one desires an injective mapping

φ : P(V ∗) → P(Ed(V ∗))

by transferring functional f of V ∗ to Ed( f ) : Ed(V ) → F . Explain in detail
what goes wrong.
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13.13.8 Exercise for Sect. 13.11

1. Write out a proof of part 3 of Theorem13.11.1
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A
Abelian group, 88

divisible, 268
torsion subgroup, 362

Absolute value, 424
ACC, see ascending chain condition
Adjoint

left, 488
right, 488

Algebra, 493
Clifford, 523
exterior, 504
graded commutative, 522
monoid ring, 199
of ascending chains, 508
symmetric, 504
tensor, 503

Algebraic independence, 412
Algebraic integer, 255, 316
Algebraic interval, 239
Alternating group, 111
Annihilator

of a module, 271
right, 196

Antiautomorphism
of a ring, 190

Antichain, 32
Antiderivation, 523
Ascending chain condition, 42
Association class, 281
Associative law, 74
Atom

in a poset, 47, 69
Automorphism

of a group G, 81

of a graph, 76
of a ring, 190

Automorphism group, of a group, 81

B
Baer’s criterion, 277
Balanced map

multiple arguments, 491
Balanced mapping, 479
Basis

of a free module, 335
of a module, 243

Bell numbers, 36, 136
Bilinear form

symmetric, 315
Bimodule, 234

symmetric, 234

C
Canonical form, rational, 348
Cardinal number, 16, 18
Cartesian product

of n sets, 5
of two sets, 5

Category, 473
initial object, 476
isomorphism, 476, 478
morphism, 473
object, 473
opposite, 477
subcategory, 474
terminal object, 476

Cauchy sequence, 426
convergence of, 426

Cayley graph, 164

© Springer International Publishing Switzerland 2015
E. Shult and D. Surowski, Algebra, DOI 10.1007/978-3-319-19734-0

531



532 Index

Center
of a ring, 188

Centralizer
in rings, 188

Centralizer in a group, 101
Centrum, see center
Characteristic, 220

positive, 220
Characteristic polynomial, 345, 350
Characteristic subgroup, 90
Characteristic zero, 220
Chinese Remainder theorem, 224
Clifford algebra, 523
Closure operator, 38
Cofree R-module, 270
Cokernel, 515
Comaximal ideals, 224
Commutator

in a group, 140
in groups, 140
triple, 140

Commutator subgroup, 142
Companion matrix, 347
Complement

of a subgroup, 153
Completion, 225, 426
Complex numbers, 211
Composition factors, 139
Composition series, 58, 139

finite, 248
Compositum, 415
Concatenation, 199, 475
Conjugacy class, 107
Conjugate

of a group element, 107
of a group subset, 107
of a subgroup, 107

Conjugation
by a group element, 87

Convolution, 200
Countably infinite, 18
Cover, 239
Cycle

in a graph, 64
Cyclic group, 75

D
Dedekind

Independence Lemma, 381
Dedekind domain, 305
Degree

of a polynomial, 206

Dependence, 60
algebraic, 411

Dependence relation, 59, 60
dimension, 63
flat, 61
independent set, 61
spanning set, 61

Derivative, formal, 374
Derived length, 142
Derived series, 142
Descending chain condition, 44
Dihedral group, 75
Dimension

in a dependence relation, 63
of a vector space, 246

Direct product
of groups, 95

Direct sum
of groups, 95

Dirichlet algebra, 216, 494
Discrete valuation ring, 321
Discriminant, 393, 394
Divides, 3
Divisibility, 280

associates, 280
Divisibility poset, 281
Divisible abelian group, 268
Division ring, 187
Domain

Bezout, 351
principal ideal, 351

Dual basis, 315

E
Eigenroot

of a linear transformation, 350
Eigenvector, 350
Eisenstein integers, 287
Eisenstein irreducibility criterion, 318
Eisenstein numbers, 189, 218, 327
Elementary column operations, 336
Elementary divisors, 339
Elementary row operations, 336
Embedding of groups, 80
Endomorphism

of an additive group, 232
of groups, 81

Endomorphism ring, 213, 444
Epimorphism

of modules, 237
Equation

root of, 357
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Equivalence relation, 6
Euclidean domain, 285
Euler phi-function, 189
Euler totient function, 391
Evaluation homomorphism, 203
Exterior algebra, 504

pure vectors of, 525

F
Factor module, 236
Factor ring, 192
Factor system, 153
Factorization, 283

proper, 283
Factorization length, 336
Farey series, 35
Field

characteristic of, 356
composite of, 415
definition, 356
generated subfield, 356
of fractions, 300
of Laurent series, 436
prime subfield of, 356
quadratic, 326
splitting, 365
subfield, 356

Field extension, 357
algebraic element of, 357
algebraic independence in, 412
degree of, 357
Galois, 384
normal, 368
purely inseparable, 377
radical, 400
separable, 376
separable closure, 379
transcendental, 357, 407

Filter, 31
principal, 31

Flat, 486
generated by a set, 61
in a matroid, 61

Forest
in a graph, 64

Formal derivative, 374
Formation of groups, 145
Fours group, 75
Fractional ideal, 309

principal fractional ideal, 309
Frame, 167
Frattini element, 48

Frattini subgroup, 145
Free group, 169
Free R-module, 274
Free module, 244

rank, 246, 335
Free monoid, 166
Function

rational, 407
Functor

covariant, 478
isomorphism, 478

G
Galois connection, 38, 210
Galois E., 401
Galois group

of a polynomial, 392
Gaussian integers, 189, 218, 287
Generators and relations, 172
Graded algebra

homomorphism of, 499
Graded commutative, 522
Graded-commutative algebra, 522
Grading of an algebra, 497
Graph

automorphism of, 76
Cayley, 164
connected, 474
edges, 474
homomorphism, 165
simple, 164, 474
vertices, 474
walk, 474

Grassmann space, 524
Greatest common divisor, 4, 282, 334
Group

abelian, 88
alternating, 111
automorphism of, 81
commutator subgroup, 140
cyclic, 75
definition of, 74
dihedral, 75
embedding of, 80
endomorphism of, 81
epimorphism, 80
fours group, 75, 95
generalized dihedral, 98
generators of, 164
homomorphism, 80

kernel of, 81
inner automorphism of, 87
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isomorphism of, 81
locally cyclic, 362
nilpotent, 146
order of, 77
p-nilpotent, 161
presentation of, 172
simple, 137
solvable, 142
symmetric, 75, 105

Group action, 106
equivalence of, 114
faithful, 106
k-fold transitivity, 127
k-homogeneous, 127
multiply transitive, 127
primitive, 124
rank of, 124
regular, 115
subdegrees, 125
transitive, 106

Group algebra, 495
Group extension, 98

split, 98
Group of units, 517
Group representation, 102
Group ring, 202
Groups

direct product of, 95
direct sums of, 95

H
Hereditary, 276
Hom

as a functor, 262
definition for modules, 261

Homogeneous
element, 497
summand, 497

Homogeneous component, 447, 449
Homogeneous ideal, 499
Homomorphism

of graphs, 165
of rings, 189
of R-modules, 237

I
Ideal

two-sided, 191
homogeneous, 499
left, 191
nilpotent, 449

P-primary, 225
primary, 225
prime, 196, 450
primitive, 462
principal, 211, 285
products of, 306
radical, 224
right, 191

Ideal class group, 309
Ideals

comaximal, 224
product of, 449

Idempotent, 452
Identity morphism, 474
Image

of module homomorphism, 238
Image poset, 33
Imprimitivity

system of, 123
Independent set

in dependence theory, 61
Indeterminate, 202
Induced matroid, 64
Induced module, 520
Initial object, 476
Injective module, 267
Inner automorphism

of a group, 87
Integral domain, 187, 218

characteristic of, 220
Euclidean, 285
field of fractions, 300
PID, 289
principal ideal, 283, 285, 334
quadratic, 325
UFD, 289
unique factorization, 289

Integral elements
ring of, 314

Integral group ring, 517
Integral over a domain, 255
Integrally closed, 302
Interval

algebraic, 41
height of, 42

Invariant factors, 339
of a linear transformation, 345

Invariant subgroups, 90
Inverse image, 101
Invertible ideal, 310
Involution, 77
Irreducible

element in a domain, 283
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Irreducible action
of a linear transformation, 350

Irreducible element, 289
Isomorphism, 476

of groups, 81
of modules, 237

J
Join

in a poset, 45
Jordan block, 349
Jordan canonical form, of a matrix, 349
Jordan decomposition, 343

K
Kernel, 477

of a group homomorphism, 81
of a module homomorphism, 238

Kronecker product, 519
Krull-Remak-Schmidt theorem, 252

L
Lattice, 46

complete, 46
modular, 54, 247

Laurent series, 436
Least common divisor, 3
Least common multiple, 282, 334
Left adjoint, 488
Leibniz rule, 374
Limit

of a convergent sequence, 426
Linear combination, 243
Linear dependence

right, 245
Linear independence, 243
Linear transformation

characteristic polynomial of, 345
invariant factors of, 345
minimal polynomial of, 345
nullity of, 350
rank of, 350

Local ring, 300, 434
residue field of, 434

Localization
at a prime ideal, 300, 312
by S, 297

Lower central series, 146
Lower semilattice, 46

semimodular, 50

M
Mappings

bijection, 9
codomain of, 8
containment mapping, 8
domain of, 8
equality of, 8
extension of, 8
identity mapping, 8
injective, 9
inverse of a bijection, 9
one-to-one, 9
onto, 9
restriction of, 8
surjective, 9

Matrix
nilpotent, 351
R-invertible, 228

Matroid, 63
induced, 64

Maximum condition, 43
Measure

of a poset interval, 51
Meet

in a poset, 45
Minimal polynomial, 345
Minimum condition, 44
Möbius function, 216
Möbius inversion, 216
Modular lattice, 54
Modular law, 54
Module

Artinian, 247
basis, 243
bimodule, 234
cofree, 270
completely reducible, 445
cyclic, 350
direct product, 241
direct sum, 241

internal, 242
dual of, 262
factor module of, 236
faithful, 232
finitely generated submodule, 236
flat, 486
free, 244, 274
homomorphism, 237

epimorphism, 237
isomorphism, 237
kernel of, 238
monomorphism, 237

indecomposable, 250
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injective, 267
internal direct sum, 242
irreducible, 239, 350
left, 231
Noetherian, 247
p-primary part of, 340
prime, 462
projective, 265
right, 232
submodule, 235
submodule generated by, 235
sum of submodules in, 236
torsion, 340
torsion submodule, 339

Module homomorphism
cokernel, 515

Monoid, 13, 198
commutative, 51
free, 166
free commutative, 199
monoid ring, 199

Monomorphism, 517
of modules, 237

Morphism, 473
Multilinear mapping, 512

alternating, 512
symmetric, 512

Multiplicity
of zeros, 361

Multiset, 36
as a monoid, 51
finite, 37

poset of, 37
poset of, 37

Multitensor
pure, 492

N
Natural numbers, 18
Nilpotent

matrix, 351
Nilpotent element, 225
Non-generator, 151
Norm

of a complex number, 215, 291
Norm map, 416
Norm mapping

in quadratic field, 327
Normal set, 102
Normal subgroup, 90
Normalizer

of a group subset, 116

Normalizer in a group, 102
Nullity

of a linear transformation, 350
Number

cardinal, 18
natural, 18

O
Object, 473
Opposite rings, 213
Orbit, 106

length, 106
Orbital, 125

diagonal, 125
symmetric, 125

Order
of a group element, 77

Order ideal, 30
principal, 31

Order of a group, 77
Overring, 312

P
Partial transversal, 64
Partition, 5, 67

component of, 36, 67
finitary, 67
refinement of, 36

Partition function, 344
Partition of a number, 344
Permutation, 105

cycle, 108
even and odd, 111
finitary, 107
transposition, 110

Phi-function, 189
PID, 283, 285
Plücker embedding, 524
p-nilpotent, 161
Polynomial

cyclotomic, 391
degree, 203
leading coefficient of, 319
multiplicity of zero, 361
separable over a field, 374
symmetric, 396
zero of, 209, 357

Polynomial algebra, 495
Polynomial ring, 202, 226

over a field, 289
Polynomials
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elementary symmetric, 396
power sum, 396

Poset, 22
antichain, 32
chain, 26, 41
direct sum, 33
dual, 24
filter, 31
image, 33
interval, 24
isomorphism classes, 33
lattice, 46
order ideal, 30
product, 32
totally ordered, 25
well-ordered, 26, 34

Poset mappings
closure operator, 38
embedding, 33
Galois connection, 38
isomorphism, 33
monotone non-decreasing, 37
order-reversing, 38

Power set, 7
P-primary ideal, 225
Primary ideal, 225
Prime element, 284, 289
Prime ideal, 300
Prime ring, 450
Primitive

group action, 124
Primitive ideal, 462
Primitive polynomial, 293
Primitive roots of unity, 391
Principal fractional ideal, 309
Principal ideal, 211
Principal ideal domain, 218, 283, 285
Product

point-wise, 212
Projection homomorphism, 238
Projection morphism

in a direct sum, 95
Projective module, 265
Projective space, 524
p-Sylow subgroups, 118
Pure tensors, 481

Q
Quadratic domain, 325
Quadratic field, 326
Quadratic form, 523
Quasi-inverse, 466

Quasiregular element, 466
Quasiregular ideal, 466
Quaternions, 214

R
Radical, 48

of a module, 444
prime, 450

Rank, 246
of a free module, 335

Rational canonical form, of a matrix, 348
Reduced word

in a free group, 166, 172
Refines

a chain, 41
a partition, 36

Relatively prime, 4, 334
Relatively prime ideals, 224
Residual quotient

left , 196
right, 196

Right adjoint, 488
Ring

commutative, 187
completely reducible, 452
definition, 186
division, 187
factor ring of, 192
field, 187
group ring, 202
hereditary, 276
homomorphism of, 189
ideal of, 191
integral domain, 187
left Noetherian, 253
local, 300, 434

residue field of, 434
monoid ring, 199
of integral elements

classical, 314
of matrices, 214
opposite of, 213
polynomial ring, 202
prime, 450
primitive, 452
right Artinian, 273
right ideal of, 191
right Noetherian, 253, 273
semiprime, 450
semiprimitive, 452
simple, 195
subring of, 187
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Ring homomorphism
kernel of, 192

Ring left ideal of, 191

S
Scalar multiplication, 231
Schröder-Bernstein theorem, 62
Semidirect product, 96
Semigroup, 13
Semilattice

Frattini element, 48
lower, 46
radical, 48
socle, 49
upper, 46

Semimodular, 50
Semiprime ring, 450
Separable

closure of a set, 379
field element, 376
field extension, 376
polynomial, 374

Sequence
bounded, 428
convergent, 426
exact, 263
lower bound of, 429
null, 426
short exact, 263
upperbound of, 428

Sets
cardinality of, 16
intersection of, 5
power sets of, 7
union of, 5

Short exact sequence, 263
split, 264

Simple group, 99, 102
Socle, 49
Solvable group, 142
Spanning set, 61
Spans in modules, 243
Split extension

of groups, 153
Split extension of groups, 98
Subgroup

centralizer, 101
commutator, 142
definition of, 77
derived, 142
Frattini, 152
maximal, 102

maximal normal, 99, 102
normal, 90
normalizer, 102
p-Sylow, 118
second derived, 142
subnormal, 137

Subgroup criterion, 78
Submodule

finitely generated, 236
Subposet

induced, 23
Subring, 187
Sum

point-wise, 212
Sylow subgroup, 118
Symmetric algebra, 504
Symmetric groups, 75

T
Tensor algebra, 503
Tensor product, 480
Terminal object, 476
Three subgroups lemma, 141
Torsion element, 339
Torsion submodule, 339
Tower of fields, 357
Trace mapping

in a quadratic field, 327
Tracelike linear forms, 315
Transcendence basis, 412
Transcendence degree, 412
Transcendental element, 407
Transitive, 106
Transpose, 191

σ -transpose, 191
Transposition, 110
Transversal

in groups, 152
Trees

in a graph, 64

U
UFD, 289
Unit of a ring, 188
Universal mapping property, 476
Upper central series, 147
Upper semilattice, 46

V
Valuation, 424

archimedean, 424
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non-archimedean, 425
trivial, 425

Valuation ring, 320, 433
Vandermonde matrices, 362
Vector, 245
Vector space

dimension, 246
right, left, 245

Veronesean
as projective variety, 526
vector, 526

W
Walk, 474
Well-ordered property, 26, 34

Z
Zeroes

of a polynomial, 209
Zeta function, 216
Zorn’s Lemma, 26
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