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Chapter 1
Introduction

With the ongoing technological advancements in manufacturing, health delivery
systems, information technologies etc., numerous industrial entities become reliant
on sophisticated product delivery systems for provision of revenue generating
operations. For example, fuel-efficient aircraft engines are essential for airlines
to provide affordable transportation services; mining companies operate large
interdependent mining equipment units for extraction of hundreds truck loads of
ores everyday; oil refineries construct groups of fractionating columns to produce
various crude oil products; sophisticated flexible manufacturing systems enable
manufacturing companies to machine different types of parts with high efficiency
at low costs; data server arrays are the backbone of real-time electronic transaction
systems operated by banks and credit card companies; advanced office printing
and scanning equipment is indispensable for efficient information collection and
dissemination in large companies, universities and government agencies.

There are common characteristics shared by the equipment units of sophisticated
product delivery systems. First, the equipment units are mission-critical such that no
revenue is generated when the equipment units fail. Second, these units are assumed
to operate in a reliable mode with short downtimes relatively to their uptimes. Third,
the units are usually of a specialized nature that requires expert maintenance/service
providers. It is known for the owner of such systems to outsource the maintenance
and repair of her equipment units to an independent supplier of specialized repair
services. Therefore the main topic of this paper — the analysis of the contractual
details that have to be addressed in the agreement between the system’s owner and
the supplier of maintenance and repair services.

In this paper we examine the contractual options between the owner (principal,
she) of a revenue generating unit and a service provider (agent, he) in a framework
of principal-agent economic model. Although our initial framing of the principal-
agent problem follows Kim et al. (2010), our analysis is significantly different
from Kim et al. (2010) and is much more extensive than their analysis. First, the
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2 1 Introduction

agent is assumed to be risk-neutral or risk-averse in Kim et al. (2010) while our
analysis includes risk-seeking agent also. Second, our analysis of the principal-
agent contract covers the value of exogenous parameters exhaustively, while Kim
et al.’s (2010) assumptions of a reliable equipment unit and negligible downtimes
(compared to uptimes) require that the values of certain exogenous parameters fall
into a narrow range. Finally and the most important, we derive explicit formulas for
optimal principal-agent contract under any market and industry conditions without
imposing any additional constraint, while Kim et al. (2010) is able to provide only
one explicit formula when Service Time Target Constraint is binding.

In a counter-distinction to Kim et al. (2010) we model the principal-agent system
of a risk-neutral principal with risk-neutral, risk-averse, or risk-seeking agent as a
Markov process with an undetermined time horizon instead of a contract for a finite
horizon normalized to 1. In addition, we replace Kim et al.’s (2010) representation
of agent’s risk as variance of his revenue stream with a piece wise linear function in
a steady state probability of failure as a proxy for a measure of agent’s revenue risk.

Our analysis is restricted to a single risk-neutral principal who owns one unit of
revenue generating entity and a single agent.



Chapter 2
The Basic Principal-Agent

In a basic principal-agent setting, the principal contracts an agent to perform a
service function and the agent chooses the level of his capacity (his ‘effort’) in
response to the contract offer and subsequently its effect on the principal’s revenue
stream. We assume that the principal’s equipment unit generates revenue at an
expected rate of r > 0 $ per unit of uptime. The unit runs for a random period of
time before failing, and remains in the failed state until it is repaired. To address the
recurring maintenance and equipment failures the principal contracts an agent who
subsequently installs a repair capacity and repairs the principal’s equipment when
it fails. The contract structure considered is rather simple: the principal proposes
to pay the agent w > 0 $ per unit of time during the duration of the contract but
the agent pays the principal p > 0 $ per unit of time during the unit’s failure
duration. The agent’s capacity decision is unobservable by the principal. Each party
is presumed to choose the values that maximize his/her utilities. We assume that the
parties are rational and each knows that the other is rational, etc. till infinitum. It
includes their individual computational ability to anticipate (compute) the other’s
best response to any offer. Therefore, with some abuse of timing we presume that
both, the contract offer and the service capacity decision, occur at the same time
with full knowledge of the two parties.

In general, if the agent’s action is observable and contractible, then the principal
would contract directly on agent’s service capacity that maximizes the principal’s
profit leaving zero surplus to the agent — enough to ensure agent’s participation.
Such a scenario is referred to as the first-best solution (Holmstrom 1979). If
the agent’s action is unobservable and therefore uncontractible, then the agent’s
response may deviate from the one prescribed by the principal in the first-best
solution, and the principal risks realizing lower profits. The likelihood and the
degree of agent’s deviation from the desired action is referred to as moral hazard
(Luenberger 1995). When moral hazard is present the principal uses the available

© Springer International Publishing Switzerland 2016 3
S. Zeng, M. Dror, Formulating Principal-Agent Service Contracts

for a Revenue Generating Unit, SpringerBriefs in Operations Management,

DOI 10.1007/978-3-319-18672-6_2



4 2 The Basic Principal-Agent

information about the agent’s action to alleviate the moral hazard (Holmstrom 1979)
and proposes a contract with incentives that aim the agent to maximize her profit.

Principal’s main information about the agent’s capacity is deduced from her
revenue stream. The revenue consequences of agent’s action are referred to as the
service performance characteristics, and quantified service performance metrics are
referred to as performance measures. The contracts that use performance measures
are called performance based contracts. By offering an agent performance based
contract, the principal transfers part of her risk regarding revenue to the agent’s
revenue risk, thus providing incentives for the agent to choose the action desired by
the principal. If the performance measure is positively correlated with principal’s
revenue, a rate of award for each unit of the performance measure, known as the
piece rate b, is specified in the contract. If the performance measure is negatively
correlated with principal’s revenue, a penalty rate for each unit of the performance
measure, denoted by p, is specified in the contract.

Under performance based contracts, the agent maximizes his utility based on
the scheme proposed by the principal, and the principal maximizes her profit
while anticipating the agent’s optimizing decision. This scenario is referred to as
the second-best solution (Holmstrom 1979). Given a compensation scheme, if the
agent’s utility is globally concave, the second-best solution can be derived using
first order condition of the agent’s utility, referred to as the first-order approach.
If the agent’s utility is not globally concave, the first-order approach is generally
invalid and alternative approaches have to be used such as converting the agent’s
utility optimization problem into a convex programming problem (Grossman and
Hart 1983).

In our case short unit’s downtimes (relative to uptimes) imply a higher revenue
for the principal, thus the downtimes and their frequency infer the agent’s service
performance. The service capacity can only be inferred to by the nature of
downtimes, which are unobservable before signing the contract. Therefore moral
hazard is of concern with performance based contracts. The performance measure
adopted here is based on the unit’s downtimes. The downtimes are negatively
correlated with principal’s revenue, and the agent is charged a penalty p $ for each
unit (seconds, minutes, hours or days) of the performance measure.

In Kim et al. (2010) the profit function of the principal and the utility function of
the agent are based on three assumptions. First, the unit is mission-critical and the
principal owns one unit. Second, the unit is highly reliable such that the service
times are relatively short as compared to the uptimes. Third, the service times
are independently and identically distributed, and the distribution has no upper
bound on the realization of the service times. This model has two pitfalls: (i)
Kim et al. (2010) assume the failures as a Poisson arrival process independent of
the service times. It allows for a new failure to occur while the unit is still in a
failed state, contradicting that no new failure can occur when in a failed state. (ii)
The profit/utility functions describe the total profit/utility during a single contract
period assumed finite and normalized to 1. Although the contract period is finite, it
contradicts their assumption about the service time distribution with no upper bound
on duration of the service time.
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Table 2.1 The variables of the model

Variable | Description Type

n Agent’s risk attitude Exogenous

r Unit’s revenue rate Exogenous

A Unit’s failure rate Exogenous

c Marginal rate of capacity cost | Exogenous

w Agent’s compensation rate Determined by the principal
)4 Agent’s penalty rate Determined by the principal
nw Service capacity Determined by the agent

To repeat, the failure rate of the equipment unit is a constant A, the repair time
is exponential with a constant repair rate wu (the service capacity is the repair rate),
yielding a less general model than Kim et al. (2010). Furthermore, we do not restrict
the contract to a period of time, rather, the contract can be dynamic and can be
offered and accepted/rejected continuously in time.

The unit’s failure rate A > 0, the principal’s expected revenue rate r > 0, and the
marginal capacity cost ¢ > 0, are exogenous variables. The payment rate w and the
penalty rate p are determined by the principal, whereas the service capacity u > 0is
determined by the agent. We denote an exogenous scalar parameter 1 as preference
and intensity indicator for agent’s risk attitude: n = 0 for risk-neutral, n > 0 for
risk-averse, and n < 0 for risk-seeking.

The seven variables that appear in our model are listed in Table 2.1.

Two performance measures are considered in Kim et al. (2010). The first one is
cumulative downtime — the sum of downtimes during a finite contract period. The
second one is the average downtime, which uses the sample average of downtimes
during a finite contract period as the performance measure. The two measures
provide different incentives for the agent’s capacity decisions. In essence, the
agent’s optimal service capacity behaves non-monotonically with the failure rate
when using average downtime, while it is monotonically increasing when using
cumulative downtime. This is because average downtime reflects the risk differently
compared to cumulative downtime. When the failure rate is higher, the expected
number of failures is higher during the finite contract period. For a higher number
of failures and the same service capacity, average downtime dilutes the agent’s risk
by a factor proportional to the square of the number of failures as compared to
cumulative downtime, thus provides an incentive for the agent to choose a lower
service capacity, leading to reduced service performance. We adopt the steady
state probability of the failed state as the sole performance measure, which is the
equivalence of cumulative downtime in our undetermined time horizon setting.

The literature on principal-agent setting is extensive in economics since the topic
is fundamental to the economic analysis of firms’ interdependence via contractual
agreements that impact their output. We do not survey here the principal-agent
literature. This has been done very well by numerous authors. A partial list includes
Ross (1973), Holmstrom (1979), Stiglitz (1974, 1979), Myerson (1983), Holmstrom
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and Milgrom (1987), Fudenberg and Tirole (1990), Maskin and Tirole (1990,
1992), and Bolton and Dewatripont (2005). For analytic and numerical solutions to
principal-agent problems see Grossman and Hart (1983) and Guesnerie and Laffont
(1984).

2.1 Contractual Relationship Between a Principal
and an Agent

When an agent contracts a single principal, the agent is always available when the
unit fails, therefore the unit’s downtimes are the same as the service times. To
mitigate the pitfalls in Kim et al. (2010) we recast this system a Markov process.
The state of the Markov process is defined as the state of the principal’s unit: in
state 0 when the unit is operational, and in state 1 when the unit is not operational.
We assume that the uptimes of the unit are independently and identically distributed
following an exponential distribution that is governed by the unit’s failure rate, and
the service times of the unit are independently and identically distributed, following
an exponential distribution governed by the agent’s service capacity. For a risk-
neutral agent we propose an objective function that describes his expected utility
rate for each unit of time in an infinite time contract assuming the Markov process
is in steady state. Similarly we propose an objective function that describes a risk-
neutral principal’s expected profit rate. Both the principal’s and the agent’s objective
functions depend on the compensation rate w > 0 paid by the principal to the agent
and the penalty rate p > 0 charged by the principal for each unit of downtime.
Furthermore, the principal’s expected profit rate also depends on the revenue rate
r > 0, and the agent’s expected utility rate also depends on the marginal cost
¢ > 0 of the service capacity for each unit of time. In our principal-agent contractual
relationship, the principal controls w and p, and the agent controls p, therefore we
call vector ((w,p), 1) a strategy. The c is exogenously determined by the market
and in this paper it is normalized as a monetary unit = ¢ = 1. Observation 3.1
(below) points out that a contract with compensation rate w paid only for each unit
of uptime and penalty rate charged for each unit of downtime is equivalent to our
setting of principal-agent contract.

Notation: Denote the principal’s expected profit rate by I1p(w, p; 1) and the agent’s
expected utility rate by us (u; w, p), omitting the exogenous parameters.

When the agent does not accept the contract offer he commits no service capacity
and receives no compensation. us(i = 0) = 0 is referred to as the agent’s
reservation utility rate. An agent accepts the contract only if his expected utility rate
is greater than or equal to his reservation utility rate, referred to as the individual
rationality (IR) constraints. When the principal does not contract an agent for the
repair service, then since an equipment failure will occur after some finite time with
probability 1, therefore in the long run the principal’s expected profit rate equals
zero, which is referred to as the principal’s reservation profit rate (Ilp = 0).
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Individual rationality principal dictates that the principal offers a contract only if
her expected profit rate is strictly greater than her reservation profit rate.

When a principal-agent contract exists, the agent’s average utility over a finite
period of time converges to his expected utility rate as the period approaches infinity.
However it is still probable that the agent receives negative revenue stream over
some finite period of time, such that his cumulative revenue (utility) drops below
a certain threshold and triggers bankruptcy preference claim against the agent. In
our paper, we presume that the likelihood of such bankruptcy condition to occur is
negligible.

The above principal-agent problem is characterized by expression of the prin-
cipal’s and agent’s expected profit/utility rates and the values of the exogenous
parameters. Denote a principal-agent problem by B (I1p, us, , A, r) or for short 5.

Definition 2.1 (Strategy Set). The strategy set of a principal-agent problem 3 is
defined as a vector S(P) = {((w,p), ) [w > 0,p > 0, u > 0}.

Definition 2.2 (Weak Domination). Consider two strategies ((w,p), i) , (W', p’),
uw) € GCP). (w,p),n) is said to weakly dominates ((W',p'), '), denoted
by (w,p),u) = (W,p), 1), if the two strategies result in Tp(w,p; ) >
HpW,p's 1) and us (s w, p) > us(u';w', p') with at least one strict inequality.

Definition 2.3 (Set of Admissible Solutions). The set of admissible solutions (also

known as the set of Pareto optimal solutions) for the principal-agent problem 3 is
the set s(P) of all strategies ((w, p), n) € S(P) for which:

@ 3 (W,p), 1) € OR) such that (W,p'), u') = ((w,p), u) — there is no other
strategy that weakly dominates ((w, p), [L).
(b) Mp(w,p; ) > lp and us(p; w,p) > ua.

Pareto optimality implies that the principal cannot increase her expected profit rate
without lowering the agent’s expected utility rate and vice versa (Luenberger 1995),
and it has been proven that generally both the principal and the agent achieve Pareto
optimality as a subset of the second-best solutions (Ross 1973). Since the agent’s
IR is always binding, condition (a) in Definition 2.3 guarantees that all admissible
solutions are Pareto optimal. We require that all the solutions proposed in this paper
be Admissible Solutions.

This paper is organized as follows. In Chap. 3, we present the basic model with
a risk-neutral principal and a risk-neutral agent, and we describe the exogenous
conditions that guarantee the existence of a contract and the optimal contract terms.
In Chap. 4 we analyze risk-averse agent. Chapter 5 is dedicated to the analysis of a
risk-seeking agent. In Chap. 6 we summarize our findings and conclusions. Notation
is introduced as needed.



Chapter 3
Risk-Neutral Agent

When a risk-neutral agent accepts a contract offer (w, p), his expected utility rate is
composed of the expected value of the compensation rate from the principal and a
deterministic cost rate of the service capacity which can be expressed as w—pP(1)—
., where P(1) denotes the steady state probability of the unit being in the failed
state. Similarly denote the steady state probability of the unit being operational by
PO) =1-P(@1).

Notation: (x)+ = x when x > 0 and (x)4+ = 0 when x < 0.
A risk-neutral agent’s expected utility rate is:

us(p;w,p) = (w—pP(1) —p), forw>0,p>0,u>0 (3.1

P(0) and P(1) (functions of A and ), represent the proportion of time in the steady
state the Markov process is in state O and state 1 respectively (Ross 2006). They
satisfy the balance equations of the Markov process and sum up to 1, thus P(0) =

/A 4 w). P(1) = A/(A + p):

A
uA(/L;w,p)z(w—p——,u) forw > 0,p > 0, > 0 3.2)
A+ p i

Since the principal determines w and p she can always entice the agent to accept the
contract.

For r > 0 (determined exogenously by the market), the principal’s expected profit
rate is composed of the expected revenue rate generated by her unit, the expected
penalty rate collected from the agent and the compensation rate paid to the agent:
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10 3 Risk-Neutral Agent

ru pA
p(w,pi ) = rP(0) —w + pP(1) = —— —w 4 ———
p(w,p; ) = rP(0) —w + pP(1) A+ VTt

forw>0,p>0,u>0 (3.3)

Observation 3.1. We note that under another type of contract, where the principal
compensates the agent only for each unit of uptime (instead of each unit of time), the
agent’s expected utility rate is equivalent to (3.2), and the principal’s expected profit
rate is equivalent to (3.3): Under the new type of contract, denote the compensation
rate by w and the penalty rate by p, therefore the agent’s expected utility rate
becomes:

- . - - Wi DA
ua(pu;w,p) = WP(0) — pP(1) — =l—--——-
a(p; w,p) = (WP(0) — pP(1) — ) 4 (A+u Py /L)+
forw>0,p>0,u>0 (3.4
and the principal’s expected profit rate becomes:
rp wi n DA

A+ A4+p A4p
forw>0,p>0,u>0 (3.5)

Ip(w. p: ) = rP(0) —wP(0) + pP(1) =

Replacing w by w and p by (p — w) in (3.4) and (3.5) we obtain (3.2) and (3.3)
respectively.

Note that a performance based contract can even take the form such that a
compensation rate is specified for each unit of uptime (instead of each unit of
time) and no penalty rate is charged whatsoever. That is, the principal controls only
one variable (the compensation rate) instead of two (the compensation rate and the
penalty rate). However this form of performance based contract is not discussed in
this work.

Returning to the agent as in (3.2) we define the part inside the brackets by

u(p) = w— p—M — (3.6)

i.e., for u > 0, u(w) is continuous and differentiable everywhere:

duw) __ph o dug 2wk
dp (A + p)? dp? A+ )’
u(0) = w—p, du() =2 Jand lim du() =-1
du |,=g A pu—>+oo dp
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3.1 Optimal Strategies for Risk-Neutral Agent

Note that u(w) in (3.6) increases and ITp(w, p; i) in (3.3) decreases in w, therefore
for any value of penalty rate p, the principal can raise her expected profit rate by
adjusting the rate w low enough while ensuring the agent’s participation by setting
the agent’s expected utility rate equal to his reservation utility rate. Although the
principal cannot contract directly on the agent’s capacity, she presumes the agent
will optimize his expected utility rate. That is, for any compensation rate w and
penalty rate p proposed by the principal, the agent computes the value of w that
maximizes his expected utility rate and decides whether to accept the contract or
not by solving the following optimization problem:

pA
— _ 7 37
r,?é‘é‘ u(p) r;lgz)( {W A+ u M} 3-7)

with agent’s optimal service capacity denoted by p* (w, p) = argmax - u(u).
We describe the agent’s optimal response to any possible contract offer (w, p) €
}Rﬁ_ in Proposition 3.3, but we start with a simple technical lemma — one of many.

Lemma 3.2. Ifp> A >0, thenp > 2,/pA—A > 0.

Proof. If p > A > 0,then2\/pA — A >21 —A =A >0andp —2/pA + A =
2
( N/ ﬁ) > 0, where the latter inequality indicates p > 2./pA — A. O

Proposition 3.3. Consider a risk-neutral agent with us(u; w, p) given in (3.2).

(a) Givenp € (0, A, then the agent accepts the contract only when w > p and does
not commit any service capacity (u*(w,p) = 0) resulting in expected utility

rate us(uW*(w,p);w,p) =w—p > 0.
(b) Given p > A, then the agent accepts the contract only when w > 2,/pA — A and

installs service capacity u*(w,p) = /pA — A > 0 resulting in expected utility
rate up(W*(w,p);w,p) = w—24/pA + A > 0.

Proof. Figure 3.1 illustrates the form of u(u) when the value of p falls in different
ranges. The structure of the proof for Proposition 3.3 is depicted in Fig. 3.2.

Casep € (0,A]: u(w) is decreasing for u > 0, therefore the optimal service
capacity is set at u*(w, p) = 0 and u(u*(w,p)) = w —p.

Subcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the contract.
Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.

Casep > A: The service capacity that maximizes u(u) is positive as seen from
the first order condition du(u)/dpt|=p*wpy = 0 = u*(w,p) = VpA —1 >0

and u(u*(w,p)) = w—2,/pA + A. According to Lemma 3.2 we have to resolve
the following subcases:
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Fig. 3.1 Illustration of the forms of u()
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Fig. 3.2 Structure of the proof for Proposition 3.3

Subcase w € (0, 2. /pA — ).): u(*(w,p)) < 0, therefore the agent rejects
the contract.
Subcase w > 2,/pA — A:  u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.
O

In summary, given exogenous market conditions such that there exists a contract
benefiting both the agent and principal (see Theorem 3.4 later), only one formula is
necessary for the agent to determine his service capacity: u*(w, p) = \/Iﬁ —1>0.

The conditions when the agent accepts the contract are depicted by the shaded
areas in Fig. 3.3. The two shaded areas of different grey scales represent conditions

{(w,p) :p€ (0,A],w > p} and {(w,p) p>A,w>2/pi —)L} under which the
agent accepts the contract but responds differently. The lower bound function of the
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Fig. 3.3 Conditions when a risk-neutral agent accepts the contract

shaded areas (denoted by wy(p)) represents the contract offers that result in agent
zero expected utility rate. wo(p) is defined as follows:

pforp e (0,1]
olp) = 24/ph — Aforp > A
Note that since lim,— - wo(p) = lim,_,,+ wo(p) = A, limyp— dwo(p)/dp =
lim,_,,+ dwo(p)/dp = 1, wo(p) is continuous and differentiable everywhere for
p € R+.

Anticipating (calculating) the agent’s optimal response p*(w,p) the principal
chooses w and p that maximize her expected profit rate by solving the optimization
problem:

rp*(w, p) pA
Op(w, p; w*(w,p)) = = S AR
iy TelvpipZOep)) = max o n T T o)

(3.8)
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Fig. 3.4 Structure of the proof for Theorem 3.4

with the optimal rates (w*,p*) = argmax,. .o [Lp(w,p; u*(w,p)). We only
consider pairs (w,p) € Ri such that us (u; w, p) > 0.

Define: Dry = {(w,p) : p € (0,A],w>p} U {(w,p) p>Aw> ZM—A}
(3.9)

Theorem 3.4. Given a risk-neutral agent as in (3.2) and a principal as in (3.3) and
suppose that (w,p) € Dgy.

(a) If r € (0, A], then the principal does not propose a contract.
(b) If r > A, then the principal’s offer and the agent’s capacity are respectively

(w*.p*) = (2@—)&,}’) and p* (w*,p*) = Vrd — A (3.10)

resulting in principal’s expected profit rate TIp(w*,p*; u*(w*,p*)) = r —

2V 1A + A
Proof. The structure of the proof for Theorem 3.4 is depicted in Fig. 3.4.

Casep € (0,A]and w > p: According to Proposition 3.3 part (a), the agent
would accept the contract without installing any service capacity. Since
dIlp/ow = —1 < 0, the principal chooses w* = p and TTp(W*, p; u* (w*, p)) =
—p + p = 0. Left with zero expected profit rate, the principal does not propose a
contract.

Casep > A and w > ZM — A: According to Proposition 3.3 part (b), the

agent accepts the contract and installs capacity /pA — A. Since d0Ilp/dw =

—1 < 0, therefore w* = 2,/pA — A and the principal’s optimization problem
becomes max,-, IIp(w*, p; u*(w*, p)) where:

Hp(w*,p;,u*(w*,p))=r+k—«/1(\/13+ ﬁ) (3.11)
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Define x = /p.a = V/A. The principal’s expected profit rate, denoted by f(x),
can be restated as f(x) = r + a*> — a (x + r/x) for x > 0 and @ > 0. Maximizing
f(x) with respect to x > 0 is equivalent to maximizing ITp(w*, p; u*(w*, p))
with respect to p > 0 in the sense that

2
argmax TTp (™, pi 1 (6*  p)) = (argn?)aXf(x))
x>

p>0

Denote p* = argmax,,_, [Tp(w*, p; * (w*, p)). Since d°f (x) /dx* = —2ar/x* <
0, therefore f(x) is concave with respect to x > 0 and from the first order
condition df(x)/dx|y—yx = ar/(x*)> —a = 0 = x* = ./r. Therefore
p* = (x*)? = r. However p* = ris not necessarily the optimal solution because
the principal maximizes p for p > A. Thus p* = max{r, A}.

Subcaser € (0, A]: p* = A; the principal does not propose a contract since
her expected profit rate is zero.
Subcaser > A: p* = r; the principal receives ITp(W*, p*; u*(w*, p*)) = r—

2
2VrA+ A = (f - ﬁ) > 0 and proposes a contract (w*, p*) = 2+vrA —
A, r) that induces the agent to install service capacity u*(w*, p*) = v/rA —A.

In summary, if r € (0,A], then the principal does not propose a contract
(Theorem 3.4 (a)). If r > A, then the principal offers (w*, p*) = (2«/ rA— A, r)

and the agent installs capacity u*(w*, p*) = v/rA — A (Theorem 3.4 (b)), which is
an admissible solution according to Definition 2.3. O

Note that in an optimal contract configuration the agent compensates fully the
principal for lost revenue during the unit’s fail duration.

3.1.1 Sensitivity Analysis of the Optimal Strategy

The principal-agent rationality assumption are odds with the agent accepting a
contract offer and responding with u* = 0. Therefore the only viable case is when
the agent accepts the contract and installs w*(w, p) = \/ﬁ — A. In this case the rate
w is bounded below by 2\/p—)k— A = pP(1) + p*(w, p), with pP(1) representing the
expected penalty rate charged by the principal when the optimal capacity is installed.
It implies that the agent should at least be reimbursed for the expected penalty rate
and the cost of the optimal service capacity in exchange for his repair service.

The optimal service capacity itself depends only on p and A. Note that du™* /dp =
VA/4p > 0 and ou*/0A = /p/4A — 1. It indicates that given a A the agent
will increase the p when the p increases. However, given a p the change in u*
with respect to the failure rate is not monotonic. The \/ﬁ — A, as a function of A,
increases when A € (0,p/4) and decreases when A € (p/4,p). If the principal’s
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unit is reliable (A € (0, p/4)), then the agent increases the © when A increases. If
the principal’s unit is less reliable (A € (p/4, p)), then the savings from reducing
the u are greater than the increase in p, therefore the agent will reduce ©* when the
A increases.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
\/ﬂ —Adsuy = ua(W*(w,p);w,p) = w— 2\/15 + A, and it depends on w, p
and A. Note that du’ /dw = —1 < 0, du’/dp = —/A/p < 0, indicating that the
agent’s optimal expected utility rate decreases with the compensation rate and the
penalty rate. Note that du /0A = — \/m + 1, and from Proposition 3.3 p > A =
— \/p/_)t + 1 < 0, therefore the agent’s optimal expected utility rate also decreases
with the failure rate.

According to Theorem 3.4, a principal offers a contract to a risk-neutral agent

only if r > A and her offer is (w*,p*) = (2\/ rA—A, r) with expected profit

2
rate IT; = TIp(wW*,p*;u*W*,p*)) = r—2JrA + 1 = (f— ﬁ) . The
compensation rate and the expected profit rate depend on r and A, and the penalty
rate equals r. Note that aw*/dr = /A/r > 0 and ow*/0A = /r/A —1 > 0
implying that given the A, the principal will increase w when the revenue rate
increases, and given the revenue rate, the principal will increase w when A increases.

Note that 9T1%/dr = (ﬁ— ﬁ) /7> 0and IIT%/0A = — (ﬁ— «/I) IV <
0. These results imply that given A, principal’s expected profit rate will increase

when the revenue rate increases, and given the revenue rate, principal’s expected
profit rate will decrease when her equipment unit becomes less reliable.

3.1.2 The Second-Best Solution

According to Theorem 3.4, ((w*,p*) = (2@ -2, r), wrw*, p*) = VrA — 1)
is the second-best solution. When the principal can contract directly on w there is
no moral hazard. Therefore in first-best setting, the agent’s expected utility rate,
denoted by u ®(w, ), is simply u B(w,u) = (w—p), forw > Oandp > 0.
Since the principal determines w and p, her optimization problem is:

ri
e8 — P(0) — w? = —_ 3.12
wi%i);() P (W7 ,bL) wi%ilzio {V ( ) W} wi%ilfio % A+ " W} ( )

Denote w'® and u'® the corresponding solution. Since dT1LE/dw = —1 < 0,
therefore the principal chooses w® = u to ensure the agent’s participation and
her optimization problem becomes:

max H;;B(;L) = max { "o M} (3.13)
n>0 n>0
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Since d*T1EB (1) /dp* = —2rA /(A + p)? < 0, the principal’s expected profit rate is
concave with respect to ¢ > 0 and ™ can be derived from the first order condition
dH,F,B(/L)/dMM=NFB =ri/ ()L + /LFB)Z —1=0= u? = VA — A. However
ufB = NI may not necessarily be the optimal solution because the principal
requires > 0. Note that u/2 = /A (ﬁ - «/I) > 0 only if r > A. Therefore the
first-best solution is:

W = ufB = rd — dforr> A (3.14)

By comparing the second-best solution (3.10) to the first-best solution (3.14), we
conclude:

1. The principal offers a contract only when r > A indicating that the existence
of a beneficial contract for risk-neutral agent is determined exogenously by the
market (the revenue rate r) and the nature of the equipment (the failure rate 1),
which is consistent with Proposition 2 in Harris and Raviv (1978).

2. The proposed w in the second-best solution is higher than that in the first-best
solution (W* = 24/rA — A > +/rk — A = w'P), because the principal has to
compensate for the p when the agent’s p is not observable. Nevertheless, the
second-best contract is efficient (as the first-best contract) because of point 3
below.

3. The optimal capacity in the first-best solution and the second-best solution are the
same (U8 = u*(w*, p*) = k=), indicating that the principal can induce a
risk-neutral agent to install the desired capacity without contracting on it directly.
Furthermore, the principal receives the same expected profit rate no matter if the
agent’s action is observable (thus contractible) or not. This is consistent with
Proposition 3 part (i) in Harris and Raviv (1978).

4. Finally when the agent is risk-neutral, the principal is guaranteed getting the
revenue rate r at all times regardless of the state of the equipment unit (because
p* = r). This comes at the cost of the contract (w* = 2k —A). In other words,
the principal’s profit rate appears as if it is deterministic. However this is not true
for a risk-averse agent, as seen in Chap. 4.

3.1.3 Our Principal-Agent Game

To clarify the interplay of decisions by the principal and the agent, we cast the
principal-agent problem in an extensive form game depicted in Fig. 3.5 below, where
“P” represents the principal and “A” the agent.

There are four possible strategies the principal can choose from:

0O,: Offer a contract with p € (0, A] and w € (0, p).
0O,: Offer a contract with p € (0, A] and w > p.
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X X
1—w+(p7r)/j r—w+ (p—r)y /=
p p

w — 2¢/pX + A w— 2PN + A

Fig. 3.5 Structure of the principal-agent extensive form game

0O5:  Offer a contract withp > A and w € (0, 2,/pA — )L).
O4:  Offer a contract withp > A and w > 2,/pA — A.

For any contract offer by the principal, there are two strategies for the agent to
choose from: “R” when rejecting the contract, and u* for accepting the contract and
installing the service capacity that maximizes the agent’s expected profit rate. If the
principal offers O or O, and the agent accepts the contract, then u* = 0. If the
principal offers O3 and O, and the agent accepts the contract, then u* = \/ﬂ —A.

The principal’s expected profit rate and the agent’s expected utility rate are
presented in the leaves of the tree in Fig.3.5. The element above and below are
the principal’s and the agent’s values respectively.

The agent would accept the contract only if his maximized expected utility rate
is no less than his reservation utility rate u4 = 0, therefore the agent accepts
the contract when the principal offers O, and Oy, and rejects the contract when
the principal offers O and O;. The principal always prefers the agent to accept the
contract and install a positive service capacity. Therefore the principal would choose
Oy to all other options. Thus there is only one (subgame perfect) Nash equilibrium:
the principal offers a contract with p > A and w > 2\/p_k — A and the agent accepts

the contract and installs u* = {/pA — A > 0.



Chapter 4
Risk-Averse Agent

What if the agent is risk-averse. Fluctuations of the agent’s revenue stream occur
because the principal’s equipment unit can be either in state 0 (‘operational’) or in
state 1 (“down’). In the operational state the penalty rate is 0, whereas in the down
state the penalty rate is p. In other words, the penalty rate at any point of time can be
modeled as pB where B is a Bernoulli random variable of value 0 with probability
P(0) = u/(A+p) and value 1 with probability P(1) = A/(A+ ). The dispersion of
B decreases as P(1) moves away from 1/2 in either direction. Denote momentarily
a= P().

The risk of a random variable is often expressed by the dispersion of the
underlying random fluctuation. Standard deviation is commonly used to measure
the dispersion of revenue in risk sharing contracts because it is conveniently additive
with the revenue stream (Stiglitz 1974; Fukunaga and Huffman 2009; Lewis and
Bajari 2014). The standard deviation of pB as a function of a, is denoted by

s(a) = opp = py/a(l —a) fora € [0, 1]

We have modified the above risk measure somewhat. Since s(a) strictly decreases
as a moves away from 1/2 in either direction so any other dispersion measure of pB
that has this property is a monotone increasing function of the standard deviation
s(a). We choose to adopt the dispersion measure:

1 |1
r(a)Ep(E—‘E—a

) fora € [0, 1]

The r(a) above is strictly decreasing as a gets away from 1/2 in either direction and
r(a) has the property that for any a,a’ € [0, 1], we have

r(a) < r(d) & s(a) < s(a)

© Springer International Publishing Switzerland 2016 19
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Fig. 4.1 7(u,w,p) as a function of P(1) when n = 1

Note that r(a) increases (decreases) if and only if the standard deviation s(a)
increases (decreases).

Risk premium of a risk-averse agent is the $ value he is willing to forfeit to
avoid uncertainties (fluctuations) in his revenue stream and as a consequence the

risk premium is defined as follows:
1 1
= - —|=—P1
)= (5[5

_ LR L “.1)
“P\2T 2T A ‘

Figure 4.1 is an example that depicts the shape of 7 (u, w, p) as a function of P(1)
when n = 1. w(u, w, p) reaches its peak when the equipment has equal likelihood of
being operational and being failed. In such case the agent can hardly infer anything
from the state of the equipment in order to predict his revenue stream and therefore it
is considered the most risky. When the likelihood of the equipment being operational
is close to 1, the agent can predict his revenue stream more precisely (less risky).
Similarly when the likelihood of the equipment being failed is close to 1, the agent
can also predict his revenue stream more precisely.

The real parameter 1 indicates the preference and intensity of the agent’s risk
attitude. When n > 0 the agent is risk-averse, when 1 = 0 the agent is risk-neutral
(and the model reduces to the model of Chap. 3), and n < 0 indicates that the agent
is risk-seeking (see Chap. 5). In the analysis below, the value 1 plays the role of an
exogenous variable.

—da

2

1
w(w, w,p) = np (— - ‘
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Modifying (3.2), the risk-averse agent’s expected utility rate in this section is:

i = (=5 = (5= 13- ]
us(psw,p) = [w— —n— z—|z-
AW P At \27 2 a1 ul)),

forw>0,p>0,u>0 4.2)

Note that n > 0 = 7 (u,w,p) > 0, and such a risk premium being subtracted from
a risk-neutral agent’s expected utility rate (as in (4.2)) implies risk-aversion. The
analysis is different for n € (0,4/5) compared to n > 4/5. Thus, for convenience,
when 7 € (0,4/5) we describe the agent as weakly risk-averse, and when n > 4/5
we describe the agent as strongly risk-averse. We assume, say for historical reasons,
that both the agent and the principal know not only the type of the risk-averse agent,
but also the value of 7.

The principal is always risk-neutral and her expression of expected profit rate
I1p(w, p; 1) is the same as (3.3).

Define the part inside the brackets in (4.2) as

u(ye) w—ﬂ—u—np(l—'l—LD

A+pu 2 2 A+4pu
1 —n)pA
w— —(A—n)p—M,ME[O,/\]
= G 43
wo LEDPA o
A4 ’

The behavior of the utility function u(u) for & > 0 is of prime technical interest.
Note that u(u) is differentiable everywhere on y > 0 except at & = A. When
u € f0,1):

duw) _ (A —mpr . du@y) _ l—n( A )
- = p

du— (A+w? ot du PR
i @) =m0 4R du(w) 201 = n)ph
p—i— dp  4A 1- > (A+p)?d

and when pu > A:

du(p) (1 +n)ph . du(p) 1+n( 41 )
= 1 m =

A G+ p? et dp m Py

i ) _ du(p) — 2(1 4 n)pA
im = —1 and =—
p—+oo  du du? A+ n)?

The above derivatives indicate the direction of monotonicity and the concav-
ity/convexity of function u(u) over [0,A) and (A, +o0). Table 4.1 summarizes
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these indicators for various regions of the space Rﬂ_ of the pairs (7, p). In the table
uy (+) = limy () du/dpu, and u, (-1) represents the limit of u,, (1) as y approaches
(+) from above, and similar for u, (-7).

4.1 Optimal Strategies with a Weakly Risk-Averse Agent

Similarly to the risk-neutral agent case, agent’s expected utility rate increases and
principal’s expected profit rate decreases in w, therefore for any value of p the
principal maximizes her expected profit rate by lowering the compensation rate
w yet maintaining the agent’s participation by setting the agent’s expected utility
rate equal to his reservation utility rate. Although the principal cannot contract
directly on the agent’s service capacity, she anticipates the agent to optimize his
expected utility rate when offered a contract. That is, for any w and p proposed by
the principal, the agent computes his value of p that maximizes his expected utility
rate and subsequently decides whether to accept the contract or not, by solving the
following optimization problem:

() pA 1 1 A @.4)
max =max{w— — — - - |- .
u=o TR A4 R=P\2 7|2 A4

The agent’s optimal service capacity is denoted by p*(w, p) = argmax - u(u).
Notation:
A A 8(1—\/1—772)/\

=—— pp=——,and p3 =
p1 117 ) 1=y p3 7

(4.5)

and the following identity is easily verified using the definition of p;:

ws =np3 + 2/ (1 —=npsd — A =2y (1 +n)psd — A (4.6)

P1, P2, p3 and wj are functions of A and . However we suppress the parameters

(A, 7).

Next we state a number of technical lemmas (see proofs in the Appendix).
Lemmad.l. Let1 > n > O0Oand A > 0. If p > A/(1 — 1), thenp > np +
2/(1=n)pr—24 > 0.

Lemma4.2. Let1>n>0and ) > 0.
@ Ifp>8(1- \/1——772)/\/172, then np — 2 (VT+ 17— J/T=1) {/pA > 0.
(b) If8(1 - \/1——172)A/n2 >p>0,then0>np—2(JTF7—JT=7) v/
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© Ifp=8 (1 — /1= ,72) A/, then np =2 (VT F 71— VT=1) V/pA =0.
Lemma4.3. Let1 > n> Oand A > 0, then4A/(1—y) > 8 (1 — /1= ;72) AP >
a2/ + 7).

Lemmad4.4. Letn > 0and A > 0. Ifp > 41/(1 + 1), then2/(1 + n)pr—A > 0.
Lemma 4.5. Letn > 0and A > 0.

(a) If(l +2n+2\/m)x >p> (1+2n—2\/W)/1, then 0 > p —
2/(T+n)pA + A.

(b) If(l +2n—2\/m)x >p>00rp> (1+2n+2\/m)x, then
p—2y/A+npr+21>0.

© Ifp = (1+2n—2\/m)x or (1+2n+2\/m)x, then p —
2/(1+npA + 1 =0.

Lemma 4.6. Let > O and A > 0, then 41 /(1 + 1) > (1 +2n—2m) A

Lemma 4.7. Let A > 0.

(a) If4/5 > 1 > 0, then (1 Fon+ 2m) x> A/(1=n).

®) If1>n > 4/5, then A/(1 —n) > (1 +2n+zm).

(©) Ifn = 4/5, then (1 +2n+2\/m)x = A/(1=1p).

Lemma4.8. Ler A > 0.

(a) If4/5 > 5> 0, then 8 (1 - \/1——;72) A/ > A)(1 =)

®) If1> > 4/5 then \/(1 —n) > 8 (1 - \/1——772) A/

© Ifn=4/5 then8 (1= VT=17) A/ = A/(1 = n).

Lemma 4.8 part (a) implies n € (0,4/5) = p3 > p», which makes condition (4.8)
below consistent.

We identify the optimal response of a weakly risk-averse agent to any contract
offer (w,p) € Ri in Proposition 4.9.

Proposition 4.9. Consider a weakly risk-averse agent (n € (0,4/5)).
(a) Given
w = p € (0,po] 4.7
then the agent accepts the contract and installs w*(w,p) = 0 resulting in

expected utility rate us(u*(w,p);w,p) = w —p > 0. The agent rejects the
contract if p € (0, p;] and w € (0, p).
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(b) Given
p € (p2.p3) andw = np +2+/(1 —n)pA — A (4.8)

then the agent accepts the contract and installs u*(w,p) = /(1 —n)pA —
A > 0 resulting in expected utility rate up(u*(w,p);w,p) = w — np —

2/ (1 =n)pA + A > 0. The agent rejects the contract if p € (pa2,p3) and

we (O,np+2W—A).

(¢) Given
p=p3zandw > wj 4.9)

then the agent accepts the contract and is indifferent about installing either

w*w,p) = A =npsr — A or w*(w,p) = /(1 + n)psA — A. In both cases

the agent receives expected utility rate up(u*(w,p);w,p) = w—wz > 0. If
r € (0, p3), then there exists a w* such that ((w*,pg), m — )L) is the
unique admissible solution (see Definition 2.3). If r = ps, then there exists w*
such that ((w*,p3), VA =n)psk — k) and ((w*,p3), VA +n)psd — )L) are
both admissible solutions (see Definition 2.3). If r > p3, then there exists a w*
such that ((w*, D3), m - /\) is the unique admissible solution (for

proof see Proposition 4.12). He rejects the contract if p = p3 and w € (0, w3).
(d) Given

p>pyandw > 2+/(1 +npAr—A (4.10)

then the agent accepts the contract and installs u*(w,p) = /(1 + n)pA—A1 > 0
resulting in expected utility rate ua (u*(w, p); w,p) =w—2/(1 + n)pA+1 > 0.
The agent rejects the contract if p > p; and w € (O, 2/ (1 4+ n)pAr — )L).

Proof. According to Table 4.1, the optimization of u(x) when n € (0, 3/5] versus
n € (3/5,4/5) is different. Therefore we prove the proposition separately for n €
(0,3/5] and n € (3/5,4/5).

Case 5 € (0,3/5]: Note that 4p, > 4p; > p, and according to Lemma 4.3, 4p, >
p3 > 4p;. Therefore we have 4p, > p3 > 4p| > p,. Figure 4.2 shows the shape of
u(p) when n € (0,3/5] and the value of p falls in different ranges. The structure of
the proof when n € (0, 3/5] is depicted in Fig. 4.3.

Casep € (0,p2]: According to Table 4.1, u(u) is decreasing with respect to y >
0. Thus the agent’s optimal service capacity is u*(w,p) = 0 and from (4.3)

u(p*(w.p)) =w—p.
Subcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the contract.

Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.
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Fig. 4.2 Tllustration of the forms of u(x) when n € (0, 3/5]
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we (0. + 2T~ mP% - 2)
p € (p2,4p1]

w > np+ 2/ (1 —n)pX — A }—{ n* =/ (@ —n)pX— X ‘

we (0.m+2y/T— MR- )

w > np+2¢/(1—n)pA — A }—{u* :\/(1—'7)M—A‘

w € (0, w3)

p € (4p1,p3)

p € (4p1, 4p2]

=/ =mpzX — X

or p* = /(T+n)paX — X

Reject.

w > 2/(T+n)pA =X }—{ wt= \/(1+n)M**‘

we (0,2/TFmpx - A)

p € (p3, 4p2]

w > 2,/(T+n)pX — A }—{ p* =T +npX— X ‘

p > 4pz

Fig. 4.3 Structure of the proof for Proposition 4.9 when 5 € (0,3/5]

Casep € (p2,4p1]: According to Table 4.1, the service capacity that maxi-
mizes u(w) lies in (0,4). u*(w,p) is computed from first order condition

du(i) itz = 0 = p*(w.p) = A —mpk — A > 0 and from
Eq.@.3) u(u*(w,p)) = w—1np —2+/(1 — n)pA + A. According to Lemma 4.1,

p>pr=np+2y/0—npr—A1>0.

Subcase w € (0, np + 2/ (A —=n)pr — ).): u(u*(w,p)) < 0, therefore the
agent rejects the contract.

Subcase w > gp + 2/(1 — p)pA — A:  u(u*(w,p)) > 0, therefore the agent
would accept the contract if offered.

Casep € (4p1,4p2]: According to Table 4.1, there is a service capacity that max-
imizes u(u) for u € (0, A] and a service capacity that maximizes u(u) for u > A.
Denote the optimal service capacity in (0, 1] by ,u?‘a Al (w, p). From the first order

condition the optimal service capacity is ;LE"OM w,p) = VA —n)pA — A and

from (4.3) u (/LZ‘O’A] (w,p)) =w—rnp—2+/(1 —n)pA + A. Denote the optimal
service capacity for ;1 > A by u} (w, p), which is solved from first order condi-
tion du(p)/dpl =5 ovpy = 0 = pui(w,p) = /(1 4+ n)pA — A and from (4.3)

u (u: (w.p)) = w—24/(1 +n)pA + A. The agent has a choice of two service
capacities and he installs the one that generates a higher expected utility rate.
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Note that u (13 (w,p)) — u (,LLE"OM(W,p)) =np—2(VT+n—-VT=1)/pA
According to Lemma 4.3, 4p, > p3 > 4p,, therefore we examine the following
subcases.

Subcase p € (4p1,p3): From Lemma 4.2 part (b), u (M?O,M(W’P)) >
u(,uI(w, p)), thus the agent’s optimal service capacity is p*(w,p) =
\/W — A and u(u*(w,p)) = w—1np — ZW + A. From
Lemmad4.1,p > 4p, > p, = np+2m—k > 0.

Subsubcase w € (0, n + Zm— A): u(u*(w,p)) < 0, there-

fore the agent rejects the contract.

Subsubcase w > gp + 2,/(1 — p)pA — A:  u(u*(w,p)) > 0, thus the
agent would accept the contract if offered.

Subcase p = p3:  According to Lemma 4.2 part (c), u(;LZ‘O,A](w,m)) =
u (,uj(w,p3)), indicating that installing u;“o_ﬂ(w,pg) or puy(w,p3) leads to
the same agent’s expected utility rate. Therefore the agent is indifferent
about installing either u*(w,p) = (1 —n)p3A — A or u*(w,p) =
v (1 4+ n)psA — A. Still, the capacity value has to lead to admissible solutions
(see Proposition 4.12). Recall the definition of w; from (4.6). According to

Lemma 4.1, p3 > 4p; > pr = ws = np; + 2/ (1 —n)psA — A > 0.

Subsubcase w € (0,w3): u(u*(w,p)) < 0, thus the agent rejects the
contract.

Subsubcase w > w3:  u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Subcasep € (p3,4p;]: ByLemmad4.2 part (a), u (1} (w.p)) >u (,U,Z‘OM (w,p)),
therefore the agent’s optimal service capacity is u*(w,p) = \/W —A
and u(u*(w,p)) = w — 2\/m 4+ A. According to Lemma 4.4,
p > p3 > 4p :ZW—A>O.

Subsubcase w € (O, ZW - A): u(*(w,p)) < 0, therefore the

agent rejects the contract.

Subsubcase w > 2,/(1 + p)pA — A:  u(u*(w,p)) > 0, therefore the agent
would accept the contract if offered.

Casep > 4p,:  According to Table 4.1, the service capacity that maximizes u(u)
satisfies 4 > A. From the first order condition the agent’s optimal service

capacity is u*(w,p) = /(1 +n)pA — A and from Eq.(4.3) u(u*(w,p)) =
w — 2,/(1 4+ n)pr + A. According to Lemma 4.4, p > 4p, > 4p; =

2/ (A +npi—2A>0.

Subcase w € (O, 2/ + n)pAr — A): u(i* (w, p)) < 0, thus the agent rejects
the contract.

Subcase w > 2./(1 + n)pA —A:  u(u*(w,p)) = 0, therefore the agent would
accept the contract if offered.

This completes the proof for Proposition 4.9 when 1 € (0, 3/5].
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Case € (3/5,4/5): Note that 4p, > p, > 4p; and according to Lemmas 4.3
and 4.8 part (a), 4p, > p3 > p,. Therefore we have 4p, > p3 > p, > 4p;.
Figure 4.4 shows the shape of u(u) when n € (3/5,4/5) and the value of p falls
in different ranges. The structure of the proof when n € (3/5,4/5) is depicted in
Fig.4.5.

Casep € (0,4p1]: According to Table 4.1, u(u) is decreasing with respect to
i > 0. Thus the agent’s optimal service capacity is u*(w, p) = 0 and from (4.3)

u(p*(w.p)) =w—p.
Subcase w € (0,p):  u(p*(w,p)) < 0, therefore the agent rejects the contract.

Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.

Casep € (4p1,p2]: According to Table 4.1, there is a service capacity that
maximizes u(u) for w € [0,A) and a service capacity that maximizes u(u)
for 4 > A. Denote the optimal service capacity in [0, 1) by ,U“F(‘).A) (w, p). Note
that u(u) is decreasing with respect to w over [0, 1), therefore the agent’s

optimal service capacity is :ufko,x) (w,p) = 0 and from (4.3) u (“Eko.x) (w, p)) =
w — p. Denote the optimal service capacity for 4 > A by uj(w,p). From
the first order condition uy(w,p) = /(1 +n)pA — A and from Eq.(4.3)

u (,u:’{(w,p)) = w—2,/(1 +n)pAr + A. The agent has to choose one of the
two service capacities and installs the one with higher expected utility rate. Note

that u (u}(w,p)) — u (/LEB,A)(W,p)) = p—2/(1 +n)pA + A. According to
Lemma 4.6, 4p; > (1 +2n—=2/n1 + r])) A and according to Lemma 4.7

part (a), (1 +2n + 2m> A > p,. Thus according to Lemma 4.5 part
(@), u (/L[’;M)(w, p)) > u(pi(w,p)), the agent’s optimal service capacity is
pw*(w,p) = 0and u(u*(w,p)) = w—p.

Subcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the contract.

Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.

Casep € (p2,4p2]: According to Table 4.1, there is a service capacity that
maximizes u(u) for p € (0,A] and a service capacity that maximizes u(u)
for 4 > A. Denote the optimal service capacity in (0, A] by /LZ‘OM (w, p). From

the first order condition /JLEKOM(W, p) = /(1 —n)pA — A and from Eq.(4.3)

u (,u;‘m] (w,p)) = w—np —24/(1 —n)pA + A. Denote the optimal service
capacity for u > A by uf(w,p). From the first order condition uy(w,p) =

V(L + n)pA — A and from Eq. (4.3) u (ui(w.p)) = w—2/(1 +npA + A.

The agent has to choose one of the two service capacities and installs the
one that generates a higher expected utility rate. Note that u ([LI (w, p)) —u
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Fig. 4.4 Tllustration of the forms of u(x) when n € (3/5,4/5)
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p € (0,4p1]

w e (u,np+2 / 7n)prx)
P € (p2,p3)
w > np+2y/(1 —n)pA — A |—| n* = \/<17n)prxl

p" =0 =mpzX - A
or

p* =T+ n)pax— A

p € (p2,4p2]

we (0,2¢/TFmpA - A)
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w22\/(1+n)p)\7)\|—|u*:\/(1+n)p)\f)\|

we (0,2 T+ mpr — A)

w > 2/TF A A f——] w* = VT -2 |

Fig. 4.5 Structure of the proof for Proposition 4.9 when n € (3/5,4/5)

(;LZ‘M] (w,p)) =np—2 (4/1 +n—1- r)) \/p_)t According to Lemmas 4.3

and 4.8 part (a), 4p, > p3 > p», therefore we examine the following subcases.

Subcase p € (p2,p3): ByLemma4.2 part (b), u (;LZ‘M] (w,p)) > u (uf(w,p)),

therefore the agent’s optimal service capacity is u*(w, p) = \/W -2

and u(w*(w,p)) = w—1np — 2\/m + A. According to Lemma 4.1,

p>pr=>np+2/(1—npi—21>0.

Subsubcase w € (0, n + ZW - )c): u(n*(w,p)) < 0, there-
fore the agent rejects the contract.

Subsubcasew > qp +2/(A — p)pA —A:  u(u*(w,p)) > 0, thus the
agent would accept the contract if offered.

Subcase p = p3:  According to Lemma 4.2 part (c), "‘(/szo,x](wﬁm)) =

u (u}(w,p3)), indicating that installing (W, p) or p3(w,p) leads to
the same agent’s expected utility rate. Therefore the agent is indifferent about
installing u*(w,p) = V(1 —n)psA — A or u*(w,p) = V(1 + n)pzr — A
Again, the service capacity has to lead to admissible solutions (see
Proposition 4.12). Recall the definition of ws from (4.6). According to
Lemma4.1, p3 > p» = w3 = np3 + 24/(1 — n)psA — A > 0.

Subsubcase w € (0,w3): u(u*(w,p)) < 0, thus the agent rejects the

contract.
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Subsubcase w > w3 u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Subcase p € (p3,4p2]: ByLemma4.2 part(a), u (1} (w,p)) > u (/L(*OM (w,p)),

thus the agent’s optimal service capacity is u*(w,p) = m —A
and u(u*(w,p)) = w — ZW + A. According to Lemma 4.4,
p>ps>pr>dpr =2/ (1+npd—1>0.

Subsubcase w € (0, ZW - A): u(u*(w, p)) < 0, therefore the

agent rejects the contract.

Subsubcase w > 2,/(1 + p)pA — A:  u(u*(w,p)) > 0, therefore the agent
would accept the contract if offered.

Casep > 4p,:  According to Table 4.1, the service capacity that maximizes u(u)
satisfies & > A. From the first order condition the agent’s optimal service
capacity is u*(w,p) = /(1 +n)pA — A and from Eq.(4.3) u(u*(w,p)) =
w — 2,/(1 +n)pr + A. According to Lemma 4.4, p > 4p, > 4p; =

2/ A+ npr—2A>0.

Subcase w € (O, 2/ + p)pAr — A): u(*(w, p)) < 0, thus the agent rejects
the contract.

Subcase w > 2,/(1 + g)pA — A:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.

This completes the proof for Proposition 4.9 when 1 € (3/5,4/5). O

In summary, given exogenous market conditions such that a contract offer
satisfying the reservation value constraints for both the principal and a weakly
risk-averse agent exists (see Theorem 4.19 and Proposition 4.20 later), the agent
determines his optimal capacity using one of two formulas:

wrw,p) = (L =mpr =4 >0o0r u*(w,p) = V(1 +npA—21>0

The conditions when a weakly risk-averse agent accepts the contract can be depicted
by the shaded areas in Fig. 4.6, where n = 0.6. The three shaded areas with different
grey scales represent conditions (4.7), (4.8) and (4.10) under which the agent accepts
the contract but responds differently. The lower bound function of the shaded areas
(denoted by wy(p)) represents the set of offers with agent’s zero expected utility
rate. wy(p) is defined as follows:

p when p € (0, py]
wo(p) = np + 2+/(1 — n)pA — A when p € (p2, p3]
2/ (1 + n)pA — A when p > p;3

Note that since limy,—, )~ wo(p) = hmp—)p;_ wo(p) = p2 and limy—, - wo(p) =

limp_)p; = np3 + 24/ (1 — n)psA — A, wy(p) is continuous everywhere over interval
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Fig. 4.6 Conditions when a weakly risk-averse agent accepts the contract with n = 0.6

p € Ry. Since limy, ;- dwo(p)/dp = limp_)p;r dwo(p)/dp = 1, wo(p) is differ-

entiable at p = p,. However since lim,—,,- dwo(p)/dp = n + /(1 =nA/ps #
VA +nA/ps = limp_>p+ dwo(p)/dp, wo(p) is not differentiable at p = ps.
3

4.1.1 Sensitivity Analysis of a Weakly Risk-Averse Agent’s
Optimal Strategy

The principal would not propose an acceptable contract that results in 4 (u* = 0) >
uy = 0. Therefore the only viable cases to consider are when the agent accepts the
contract and installs positive service capacities: u*(w,p) = /(1 —n)pA — A or

w*(w,p) = /(1 4+ n)pr — A. We examine the two viable contracts with positive
service capacities.
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First the case w*(w, p) = /(1 — n)pA — A. According to (4.8) the compensation
rate w is bounded below by np + 2+/(1 — n)pA — A = npP(0) + pP(1) + u*(w, p),
with the term npP(0) representing the expected risk rate perceived by the agent
and the term pP(1) representing the expected penalty rate charged by the principal
when the optimal capacity is installed. It indicates that the agent should at least be
reimbursed for the expected risk rate, the expected penalty rate and the cost of the
optimal service capacity.

The optimal service capacity /(1 —n)pA — A depends on p, A, and 5. Its
derivatives are:

8 * _ * _ *
wr _/d n)k>0’8u _/d n)p_landau _ pA <0
p 4p A 42 an 4(1—1n)

These derivatives indicate that given a A and 7, the agent will increase his service
capacity when the penalty rate increases. Note that /(1 — n)pA — A, as a function
of A, decreases when A > (1 — n)p/4. From conditions (4.8) and (4.9) the agent
installs service capacity /(1 —n)pA — A when p € (p,, p3] and from Lemma 4.3
we have 4p, > p;. Therefore we have 41 /(1—n) =4p, >p = A > (1—n)p/4 =
ou*/dA < 0. Thus, given a p and 7, the savings from reducing the service capacity
are greater than the increase in the penalty charge and in the risk rate, and the agent
will reduce p when A increases. Given a p and A, the agent will reduce the i when
he is more risk-averse.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
VA =mpA — Ais uy = ua(u*(w,p)iw,p) = w—1np —2/(1—npl + A,
and it depends on w, p, n and A. Note that du}/dw = —1 < 0, duj/dp =
—n — /(1 =n)A/p < 0, indicating that the agent’s optimal expected utility rate
decreases with the compensation rate and the penalty rate. Note that du}/dn =
-JP (ﬁ — \/p_z) and duy /OA = — (ﬁ - J[Tz) / /P2, and from Proposition 4.9
p > p2 = /P — /P2 > 0, therefore the agent’s optimal expected utility rate also
decreases with his risk intensity and the failure rate.

Next we examine the case u*(w, p) = /(1 + n)pA — A. According to (4.10) the
compensation rate w is bounded below by 2./(1 + n)pA — A = npP(1) + pP(1) +
w*(w, p), with the term npP(1) representing the expected risk rate perceived by
the agent and pP(1) representing the expected penalty rate charged by the principal
when the optimal capacity is installed. It indicates that the agent should at least be
reimbursed for the expected risk rate, the expected penalty rate and the cost of the
optimal service capacity.

The optimal service capacity /(1 4+ n)pA — A depends on p, A, and 5. Its
derivatives are:

8 * * *
I M>o’aﬂ = /(I_F—n)l)_landap‘ = L>0
ap 4p A 47 an 41 +n)
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The derivatives indicate that given A and 7, the agent will increase the y when the
penalty rate increases. Note that /(1 + n)pA — A, as a function of A, increases
when (1 + n)p/4 > A. From (4.9) and (4.10) the agent installs service capacity
v (1 +n)pA — A when p > p3, and from Lemma 4.3 we have p; > 4p;. Therefore
we have p > 4p; = 4A/(1 +n) = (1 + n)p/4 > A = du*/dA > 0. Thus, given
p and 7, the agent will increase & when A increases. Given p and A, the agent will
increase his p when he is more risk-averse.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
VA +mpr—=Lisu; = us(n*(w,p);w,p) = w—2+/(1 + n)pA+A, and it depends
on w, p, n and A. Note that dus /0w = —1 < 0, du/dp = —/(L +n)A/p < 0O
and du}/dn = —+/pA/(1 +n) < 0, indicating that the agent’s optimal expected
utility rate decreases with the compensation rate, the penalty rate and his risk
intensity. Note that du/0A = — (ﬁ v/} ) / /Pt and from Proposition 4.9
P = p3 > p1 = /P — /P1 > 0, therefore the agent’s optimal expected utility
rate also decreases with the failure rate.

Summary: Recall that given the set of offers {(w,p):p e (0,A],w > p}
a risk-neutral agent would accept the contract, install u*(w,p) = 0 and
receive expected utility rate u(u*(w,p);w,p) = w — p. Given the set of offers

{(w,p) p>A,w>2/pk— /\} he would accept the contract, install u*(w, p) =

v/ PA — A and receive expected utility rate u(u*(w,p);w,p) = w — 2/pA + A.
By comparing the optimal capacities of a weakly risk-averse agent to that of a
risk-neutral agent, three conclusions are drawn:

1. Given a A, the principal has to set a higher p in order to induce a weakly risk-
averse agent to install a positive service capacity versus a risk-neutral agent (p >
A for risk-neutral agent, p > A/(1 — n) for weakly risk-averse agent).

2. Given a A, when p is relatively low, the p value plays a more prominent role in
the utility of a weakly risk-averse agent who therefore installs a service capacity
lower than a risk-neutral agent (\/p_)t —A > /(1 = n)pA—A). As the p increases,
the penalty charge and the risk become of greater concern, therefore the weakly
risk-averse agent installs a «* higher than a risk-neutral agent (,/(1 + n)pA —
A > pA— ).

3. In essence, weakly risk-averse attitude makes an agent worse off. We state this
conclusion formally in Proposition 4.10.

Proposition 4.10. Given w and p, an agent who accepts the contract and installs
a positive service capacity has a decreasing expected utility rate in n € [0,4/5).

Proof. Recall that when w and p satisfy conditions (4.8) and (4.9), the agent
installs capacity u*(w,p) = /(1 —n)pA — A > 0, and the agent’s expected
utility rate is u (u*(w,p)) = w —np — 2,/(1 — n)pA + A. Note that du/dn =
—p + pA/VA=ph = =(p= VA/A=0B) = —Jp(Jp— VP2).
Since p > p,, therefore du/dn < 0. When the compensation rate w and
the penalty rate p satisfy conditions (4.9) and (4.10), the agent installs
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capacity u*(w,p) = /(1 + n)pA—A > 0, and the agent’s expected utility rate is

u(p*(w,p)) =w—2/(1+ n)pA + A, therefore du/dn = —/pA/(1 + 1) < 0.

O
The following Corollary follows from Proposition 4.10.

Corollary 4.11. Given w and p, an agent who accepts the contract and subse-
quently installs a positive service capacity is always worse off when he is weakly
risk-averse (n € (0,4/5)) than risk-neutral (n = 0).

We discuss the case for n > 4/5 in Sect. 4.2.1.

4.1.2 Principal’s Optimal Strategy

Anticipating the agent’s optimal w*(w, p) the principal chooses the w and p that
maximize her expected profit rate by solving the optimization problem (4.11).

max  TIp(w,p; u*(w,p)) = max ween) L, ph
w>0,p>0 w>0p>0 | A + ,LL*(W,p) A+ M*(W,p)

.11

Denote (W*vp*) = argmaxw>0,p>0 HP(W’ p; M*(va))

Before deriving the principal’s optimal strategy, we examine the case when the
principal’s contract offer satisfies p = p3; and w > wj, in which case the agent is
indifferent with respect to installing two different service capacities. Nevertheless,
the corresponding solutions ((w, p), i) have to be admissible solutions (see Defini-
tion 2.3). We state this case formally in Proposition 4.12.

Proposition 4.12. Suppose a weakly risk-averse agent. Assume that the principal’s
potential offers are in the set {(w,p) : p = p3,w > w3 }.

(a) If r € (0, p3), the agent installs ©* = /(1 — n)psA — A if offered a contract.

(b) If r = p3, both u* = /(1 —n)psA — A and u* = /(1 4+ n)psA — A lead
to admissible solutions. Therefore the agent installs either /(1 — n)psA — A or
V(1 + n)psr — A if offered a contract.

(¢) Ifr > p3, the agent installs u* = /(1 + n)psA — A if offered a contract.

Proof. Note that for w > w3 we have dT1p(w,pa: u)/0p = (r — p3)A/(A + w)%
Define up = /(1 — n)psA — A and ug = /(1 + n)psA — A. Note that uyg > pr.
If r € (0,p3), then dT1p/0pu < O, therefore ((w, p3), ur) > ((w,p3), ug). If the
principal offers a contract (the conditions are discussed in Proposition 4.18 that
follows), then by Definition 2.3 only p; leads to admissible solutions. Thus we
obtain (a). If r > ps3, then dl1p/dp > 0, therefore ((w, p3), ) > (W, p3), L)
If the principal offers a contract (see Proposition 4.18), then only gy leads to
admissible solutions. Therefore we obtain (c). If r = ps3, then dllp/du = 0,
indicating that the principal receives the same expected profit rate when the agent
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installs capacity py or py. If the principal offers a contract (see Proposition 4.18),

then both w; and wy lead to admissible solutions and we obtain (b). O
Notation:
P3 — /D2
ri=nps+ (1 =n)/pwp3,rn = (1 + 2 (Q))Ps
NG
and r; = (1 + 2n)ps (4.12)

Note that ry, r, and r3 are functions of A and 7. However we suppress the parameters

(A, m).
Define p., as follows':

1 —\2
P = 53 (b+C+0) (4.13)

where a = 2n, b = (1 — 2n) \/p>, and d = —r /p; and

3 A1+,/A%—4A3_ 3 Al—‘/A%—4Ag
C= ,C=

2 2 ’
where Ag = b%, Ay = 2b° + 274°%d

Replacing Ay and A; by the expressions of a, b and d we have

c 31 2(1 — 277)3\/;%— 108n%r /P2 + \/—432n2r(1 —21)3p3 + 11664n*r2p,
= 3
and

- 3| 2(1 —2np)3 \/]7% — 108n°r /p2 — \/—432772r(1 — 2n)3p§ + 11664n*r2p,
=\ 5

We introduce several technical lemmas with proofs in the Appendix.

Lemma 4.13. Let4/5>n>0and A > 0.

(a) np3 + (1 —n)/pP2p3 > p2 > 0.

(b) p3 > np3 + (1 —n)./Paps.

© (1420 (yps — P2) / /P2) P3 > P5.

(d) (14 2nps > (1420 (P35 — VP2) / V/P2) P>

Lemma 4.13 implies that for n € (0,4/5) we have r3 > r, > p3 > r| > ps.

'The subscript “cu” stands for “cubic” because (4.13) is the square of the solution to Eq. (A.1),
which is a cubic equation that is introduced later in the proof for Lemma 4.16.
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Lemma 4.14. Letn > 0 and A > 0.

(a) If(1+3r]+2\/M)A/(l Y>> (1+3n—2\/m)x/
(14 n) then0 > r—2/(1 +2n)rA/(1 +n) + A.

M) If (1+3n—2\/M)/\/(1 ) > > 0orr > (1 + 3
—I—ZM)A/(I—FU) then r —2/(1 +2n)rA/(1 +n) + A > 0.

© Ifr = (1+3n—2\/M)A/(1 Forr= (1 +3n+2m)

AJ(1+n) then r—2/(1 +2n)rA/(1 + 1) + A = 0.
Lemma4.15. Given 1 > n > 0 and A > 0, then (1 + 2n)ps >

(14 30+ 2y/n(+20)) 2/(1 + ).

Lemma 4.16. Consider max,e[ > /p] f(x) where f(x) = r + A — nx* —

P2 (1 =2n)x + r/x) and denote x* = AGMAX [ /oo oo f(x). The solutions
to this optimization problem are

(a) x* = \/Elfr € (O,pz]
() x* = /Pau € (P2, /P3) if T € (P2, 12).
(©) x* = /p3ifr=r.

Lemma 4.17. Consider max ,> /5 f(x) where f(x) = r + A — /p1 ((1 + 2n)x
+r/x) and denote x* = argmax . N f(x). The solutions to this optimization
problem are

(@) x* = /p3ifre(0,r].
(b) x* = /r/(1 +2n) ifr > rs.

Now we state Proposition 4.18, which serves as a stepping stone towards the
main results Theorem 4.19 and Proposition 4.20 that follow later. Proposition 4.18
provides the optimal w* and optimal p* under some restrictions. These restrictions
are later removed in the main results Theorem 4.19 and Proposition 4.20.

Recall that Proposition 4.9 describes the agent’s optimal response to each
contract offer (w, p). Since the principal will not propose a contract that is going
to be rejected by a weakly risk-averse (WRA) agent, therefore Proposition 4.18
only considers pairs (w, p) that result in agent’s non-negative expected utility rate.
Define:

D7) = {(w,p) that satisfies (4.7) when 7 € (0,4/5)}

Dus) = {(w,p) that satisfies (4.8) when 7 € (0,4/5)}

D9y = {(w,p) that satisfies (4.9) when 5 € (0,4/5)} (4.14)
D10y = {(w, p) that satisfies (4.10) when n € (0,4/5)}

Dwra = D7) UDwus) UDug UDu.io)
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Proposition 4.18. Given a weakly risk-averse agent;

(@) If (w,p) € D7), then the principal does not propose a contract.
(b) Consider offers (w,p) € Dusg) U D).

(bl) If r € (0, p2], then the principal does not propose a contract.
(b2) If r € (pa, p3), then the principal offers (w*, p*) = (npcu + 2/ = n)peur

—)L,Pcu) and the agent installs service capacity pu*(w*,p*) =

\% (1 - n)pcuk — A

(b3) If r € (p3,12), then the principal either offers (w*,p*) = (ws,p3) and
the agent installs *(w,p) = /(1 +n)psA — A, or offers (w*,p*) =
(npcu + 2/ (1 = n)peur — A, pw) and the agent installs service capacity

/L*(W*»p*) = v (1 - 77)17014A - A

(b4) If r > 1y, then the principal’s offer is (W*,p*) = (w3, p3) and the agent
installs service capacity w*(w*,p*) = /(1 + n)psA — A.
(c) Consider offers (w,p) € D9y U D4.10).

(cl) If r € (0, ], then the principal does not propose a contract.
(c2) If r € (r1,p3), the principal offers a contract with (w*,p*) = (w3, p3) and

the agent installs service capacity W*(w*,p*) = /(1 — n)psA — A
(c3) If r € (ps3, r3), the principal offers a contract with (w*,p*) = (w3, p3) and

the agent installs service capacity W*(w*,p*) = /(1 + n)psA — A.
(c4) If r > r3, the principal offers (W*,p*) = (2\/(1 +mri/(14+2n) — A,

r/(1 + 277)) and the agent installs service capacity p*(w*,p*) =

VA 4+ A/ +2n) — A
Proof. The structure of the proof for Proposition 4.18 is depicted in Fig. 4.7.

Case (w,p) € ®u7: According to Proposition 4.9 part (a), in case the principal
makes an offer, the agent accepts the contract but does not install any service
capacity. Since dIlp/dow = —1 < 0, thus w* = p and from Eq.(3.3)
Op(w*,p; u*(w*,p)) = —w* + p = —p + p = 0. Therefore the principal
does not propose a contract.

Case (w,p) € Dus) UDug: According to Proposition 4.9 part (b), if (w,p) €
sy, then in case the principal makes an offer, the agent accepts the contract
and installs /(1 —n)pA — A. Since dIlp/dw = —1 < 0, therefore w* =
np + 24/ (1 —n)pA — A. According to Propositions 4.9 part (c) and 4.12, if
(W, p) € Do) (Which implies p = p3), then in case the principal makes an offer,
the agent accepts the contract and installs /(1 — n)psA —A if r € (0, p3), installs

either /(1 — n)psA—A or /(1 + n)psA—A if r = p3, orinstalls /(1 + n)psA—A

if » > p3. Since dT1p/dw = —1 < 0, therefore w* = wj;. Denote the principal’s
expected profit rate when (w,p) = (w3,p3) and u = /(1 —n)psA — A by
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o) 2 ) | comrat o |
[0 comrae o

w* = npeu 4+ 2v/ @ — Mpeu — A
and p* = pey and p* = /(1 = n)peuX — A

Risk-Neutral
Principal
Risk-Averse

Agent

w* = npeu + 2/ (1 = mpeur — X
and p* = pey and p* = /(1T = N)peuX — A
or w* = w3 and p* = p3 and p* = /(1 + M)par — A

w* = w3 and p* = p3 and p* = /(T F M)p3Ar — A

Ton] (o comrac oern |

r € (r1,p3]

w* = wg and p* = pg and p* = /(1T — Mpar — A |

(w,p) €D (4.9) YD (4.10) |

w* = wg and p* = pg and p* = /(1T + n)pgx — A |

| r € (p3, 73]

1 X
we = [ AFEDA pr—
1'>T’2|7 1+2n 1+2n
and pr = JAEDTA
1429

Fig. 4.7 Structure of the proof for Proposition 4.18

M5 (p3), and denote the principal’s expected profit rate when(w,p) = (w3, p3)

and £ = /(1 4+ n)psA — A by T4 (p3). By plugging the value of w, p and y into
Eq. (3.3):

Hé(p3)=r+x—np3—m(<1—2nwp—3+ ﬁ)
z(iéﬁgﬁ)o_m) (4.15)

Hg(p3)=r+l—@((l+2n)\/173+ (4.16)

r
)
and the principal’s optimization problem is maxye[, »5) IIp(W*, p; u* (W*, p))
where:

r+A—np—«/p_z((1 —2n)yp +
p(w*, p; w*W*,p)) = for p € [pa.p3)

max {I1}(p3). T1E (p3)} . for p = p3

@)
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Define x = /p, the expression r + A — np — /p2 (1 —2n) /P + r/ /p) can
be restated as f(x) = r + A — nx* — /p2 ((1 — 2n)x + r/x). Maximizing f(x)
with respect to x over [ /P2, /P3| is equivalent to maximizing r + A — np —

VP2 ((1=2n)/p + r//p) with respect to p over the interval [p,,ps] in the
sense that

argmax s r+ A —np — /p2 ((1 —2n)/p + L)} = | argmax f(x)
PElp2.p3] N/ x€[ /p2./p3]

According to Lemma 4.13, r, > p3 > p», therefore we examine the following
subcases.

Subcase r € (0,p;]:  According to Lemma 4.16 part (a), p* = p,; this case
is taken care of in the case when (w,p) € ®u7) and the principal does not
propose a contract.

Subcase r € (p2,p3]:  According to Lemma 4.16 part (b) and Proposition 4.12
part (a) and (b), p* = p. and the principal’s expected profit rate is
p(w*, p*; u*(w*, p*)) > Mp(p2,p2;0) = 0. Thus the principal proposes
w* = npey + 24/ (1 — N)peyr — A and p* = p,, that induces the agent to
install w*(w*,p*) = V(1 — N)paur — A.

Subcase r € (p3,r2): According to Lemma 4.16 part (b) and Proposition 4.12

part (c), the principal chooses either p* = p. with expected profit rate
Op(w*, p*; w*W*. p*)) = r + A — npe — /P2 (1 = 20) /Pew + 1/ /Peu) >
Mp(p2,p2;0) = 0, or chooses p* = p; with expected profit rate

W, p*sp*w*.p*)) = MEps) > Mpps) = (Y3 — p2) (r =
r)//P3 > 0. However due to the difficulty of computing p., we do not
explicitly identify the principal’s optimal offer.

Subcase r > r;:  According to Lemma 4.16 part (c), p* = p3. According to

Proposition 4.12 part (c) the agent installs capacity /(1 + n)psA — A and
the principal’s expected profit rate is TTp(w*, p*; u*(w*, p*)) = M (p3) >
N5(p3) = (VP3 — /P2) (r — 1)/ /P53 > 0. Therefore the principal proposes
w* = 2,/(1 4+ n)psA — A and p* = p; that induces the agent to install
pwrw*,p*) = vy + mpsr — A
Case (w,p) € D9 U Dui0: According to Proposition 4.9 part (d), if (w,p) €
.10y, then in case the principal makes an offer, the agent accepts the contract
and installs /(1 + n)pA — A. Since dIlp/ow = —1 < 0, therefore w* =
2,/(1 + n)pA — A. According to Propositions 4.9 part (c) and 4.12, if (w,p) €
D 4.9y (Wwhich implies p = p3), then in case the principal makes an offer, the agent
accepts the contract and installs /(1 — n)psA — A if r € (0, p3), installs either

VA =npsr —Aor /(1 4+ n)psA — Aif r = p3, or installs /(1 + n)psA — A

if r > p3. Since dI1p/0w = —1 < 0, therefore w* = ws. Recall the definition
of T1&(p3) and T (p3) (see Egs. (4.15) and (4.16)). The principal’s optimization
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problem is max,>,, ITp(w*, p; u*(w*, p)) where:
p=p3

max {T15(p3). 14 (p3)} , for p = p3

Define x = ,/p, the expression r + A — /p1 ((1 +2n)/p + r//p) can be
restated as f(x) = r+A— /p1 ((1 + 2n)x + r/x). Maximizing f (x) for x > /p3
is equivalent to maximizing r + A — /p1 ((1 +2n)p+r/ \/]_)) for p > p3 in
the sense that

2
argmax { r+A—.p ((l +2n)/p + L)} = (argmaxf(x))
p=p3 N/ x=/P3

According to Lemma 4.13, r3 > p3 > ry, therefore we examine the following
subcases.

Subcaser € (0,r;]: According to Lemma 4.17 part (a), p* = p3;. By Propo-
sition 4.12 part (a), ITp(w*, p*; u*(w*, p*)) = Mk (p3) = (/P3 — /P2) (r —
r1)//P3 and note that ITp(w*, p*; u*(w*, p*)) < 0, therefore the principal
does not propose a contract.

Subcase r € (r1,p3]:  According to Lemma 4.17 part (a), p* = p;. According
to Proposition 4.12 part (a) and (b), the principal’s expected profit rate is
Tpw*.p* " ", p") = Ts(ps) = (5 — /p2) (r — 1)/ J5 > 0.
therefore the principal proposes a contract with w* = w3 and p* = pj3 that
induces the agent to install u*(w*,p*) = /(1 — n)psA — A.

Subcase r € (p3,r3]:  According to Lemma 4.17 part (a), p* = p;. Accord-
ing to Proposition 4.12 part (c), the principal’s expected profit rate is
p(w*, p* s w*w*,p*)) = TFps) > Hpps) = (Vo3 — p2) (r —
r)/ J/P3 > 0, therefore the principal proposes a contract with w* = w3 and
p* = ps that induces the agent to install u*(w*,p*) = /(1 + n)psA — A.

Subcase r > r3:  According to Lemma 4.17 part (b), p* = r/(1 + 27n)
and the principal’s expected profit rate is Ilp(w*,p*; u*(w*,p*)) =
r— 2y +2nrA/(1+n) + A. According to Lemmas 4.14 and 4.15,
p(w*, p*; u*(w*, p*)) > 0, therefore the principal proposes a contract with
w* = 2/(1 + nra/(1 +2n) — A and p* = r/(1 + 2n) that induces the
agent to install service capacity u*(w*,p*) = /(1 + n)rd/(1 + 2n) — A.

O

We describe the principal’s optimal strategy in Theorem 4.19 and Proposi-
tion 4.20. We identify the principal’s optimal offer only when r € (0, p3] or r > ry,
(see Theorem 4.19). The cases when r € (p3, ;) are discussed in Proposition 4.20.
We prove Theorem 4.19 and Proposition 4.20 together.

Theorem 4.19. Consider a weakly risk-averse agent and (w, p) € Dwga.
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(a) If r € (0, py], then the principal does not propose a contract.
(b) Ifr € (pa2, p3], then the principal’s offer and the capacity installed by the agent
are

w*.p*) = (npcu + 2y (1 = n)peah — AvPcu) and
wrw*,p*) = V(1 = npar — A (4.17)

and the principal’s expected profit rate is

HP(W*,P*;M*(W*’p*)) =r+AiA- MPeu — @((1 _ZU)M+ «/;7)
(4.18)

(¢) If r € [ra, r3), then the principal’s offer and the capacity installed by the agent
are

(W*.p*) = (w3.p3) and W*(w*,p*) = V(1 +n)psA — 4 4.19)
and the principal’s expected profit rate is

Opw*, p* s W, p*) =r+A—p1 ((1 +2n)/p3 + %) (4.20)

(d) If r > rs, then the principal’s offer and the capacity installed by the agent are

(W*,P*) — 2 (1 + 17)"A _A, r and
1+2n 1+ 2n
. o % 1+ n)rA
W pt) = ,/%—A @.21)

and the principal’s expected profit rate is

Opw*, p*;s " (w*, p™)) =r—2,/% + A (4.22)

Proposition 4.20. Given a weakly risk-averse agent and (w,p) € Dwra. If 1 €
(p3, r2), then either

(W*,p*) = (npcu + 2y (1 = n)peur — Avpcu) and
wrw*p*) = v = npar — A
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resulting in principal’s expected profit rate

Tp(wW*, p*: ,* W*, p*)) = r+ A — mpeu — /P2 (1 = 20) /Peu + 1/ \/Pen)

or the principal offers and the agent installs

wW*,p*) = (w3,p3) and pu*(w*,p*) = /(1 + n)psA — A

resulting in principal’s expected utility rate

p(w*, p*; w*W*.p*) = r + A — /p1 ((1 + 20)/p3 + 1//P3)

Proof. In part (b) of Proposition 4.18, we solved for (w*, p*) by restricting r to be
in (0, p3], orin (p2, p3], or in (p3, r2), or in [ry, +00). In part (c) of Proposition 4.18,
we solved for (w*, p*) by restricting r to be in (0, 7], or in (r, p3], or in (p3, r3], or
in (3, +00). The principal maximizes her expected profit rate by offering contract
that lead to admissible solutions (Definition 2.3) for any given value of r, n and
A. The structure of the proof for Theorem 4.19 and Proposition 4.20 is depicted in
Fig.4.8.

Caser € (0,p2]: According to Proposition 4.18 part (a), (bl) and (cl), the
principal does not propose a contract. This case corresponds to Theorem 4.19 (a).
Caser € (p2,p3]: If r € (pa,r1], then according to Proposition 4.18 part (a),

(b2) and (c1), the principal offers (w*, p*) = (ﬂpcu + 2/ =n)par — A,pw>

r € (0, p2] | No contract.

. w* = npeu + 2/ (1 — N)peur — A
r € (p2, p3] and p* = pey and p* = /(1 — N)Peur — A

|

Risk-Neutral
Principal Either w™ = npcy + 21/ (1 — 7)PeuX — A
with Weakly r € (p3,r2) and p* = pey and p* = /(1 — n)peu X — A

Risk-Averse or w* = wg and p* = p3 and p* = /(1 + n)p3\ — A
Agent

r € [ra,r3) w* = w3 and p* = p3 and p* = /(1 + n)psX — A

|

1 A T
w* =2 a+n) — X and p* = !
>3 1+ 27 14 2n
" (1 +m)rx
and p* = - A
14 2n

Fig. 4.8 Structure of the proof for Theorem 4.19 and Proposition 4.20
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and the agent installs u*(w*,p*) = V(1 —n)par — A. If r € (r1, p3], then
according to Proposition 4.18 part (a), (b2) and (c2) and Lemma 4.16 part

(b) the principal offers (w*,p*) = (rlpcu + 2y (1 = n)paur — l,pcu) and the
agent installs u*(w*,p*) = /(1 —n)par — A. This case is addressed in
Theorem 4.19 (b).

Caser € (p3,rz): According to Proposition 4.18 part (a), (b3) and (c3), the

principal either offers a contract (w*, p*) = (npm + 20 =n)peur — A, pm>

and the agent installs u*(w*,p*) = /(1 —n)pA — A, or offers (w*,p*) =
(w3, p3) and the agent installs u*(w*,p*) = /(1 4+ n)psA — A. This case
corresponds to Proposition 4.20.

Caser € [r,r3]: According to Proposition 4.18 part (a), (b4) and (c3), the
principal offers a contract with (w*,p*) = (w3, p;) and the agent installs

w*w*, p*) = /(1 + n)psA — A. This case corresponds to Theorem 4.19 (c).
Caser > r3: According to Proposition 4.18 part (a), (b4) and (c4) and

Lemma 4.17 part (b), the principal offers a contract with (w*,p*) =
(2\/(1+n)rk/(1+2n)—k,r/(1+2n)> and the agent installs service

capacity u*(w*,p*) = /(1 + n)rA/(1 + 2n) — A. This case corresponds to
Theorem 4.19 (d).

a

Theorem 4.19 and Proposition 4.20 indicate that the existence of a beneficial
contract with a weakly risk-averse agent is determined exogenously by the revenue
rate r, the failure rate A, and the risk coefficient 7.

Since it is difficult to identify the principal’s optimal offer when r € (p3, r,) due
to the difficulty of computing p., we resort to numerical results to better understand
the principal’s choices.

Remark 4.21. Figure 4.9 demonstrates that when n = 0.1 and n = 0.5 there
exists an ry € (ps, r2) such that when r € (ps, o), the principal offers (w*, p*) =

(1P + 2T peik = A peu ) when r € (1o, ), sheoffers (w7, p*) = (w3, ps)
and when r = ry, the principal is indifferent about the two alternative offers.
However due to the difficulty of computing p., (Eq. (4.13)), it is not clear how to
determine the general existence of such an ry for all n € (0,4/5) and identify an
explicit expression of ry as a function of A and 7.

4.2 Optimal Strategies Given a Strongly Risk-Averse Agent

For the strongly risk-averse (SRA) agent we first derive the agent’s optimal strategy.
The agent’s optimization problem is stated in (4.4).
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a Tlp =Tl (W', p"=pey; 1) = Tlp (W', p"=pg; 1) b Tip = Tlp (W', p" = pey i 17) = Tlp (W', p"=p3;p”)

~ n=0.1 and A=0.01 ~ n=0.5 and 1=0.01

r f ™r
Ps fo(k,m) r2(k.m) Ps fo(h,m) r2(k.m)

n=0.1 n=0.5

Fig. 4.9 The value of ITp = [p(w*, p* = pe; u*) — Mp(w*, p* = ps; u*) for r € (p3,12)

Notation:
Wy = pa = (1 +on+ 200 1 n)) ) (4.23)

Note that w4 and py4 are functions of A and 1 which are suppressed in our notation.
A technical lemma used later is introduced next (see proof in the Appendix).

Lemma4.22. Let n > 1/3 and A > 0, then (1 +2n+2/00 +n))x > 41/
1+ n).

We describe a strongly risk-averse agent’s optimal response to any possible
offered contract (w, p) € Ri in Proposition 4.23.

Proposition 4.23. Consider a strongly risk-averse agent (n > 4/5).
(a) Given
w>p € (0,ps) (4.24)
then the agent would accept the contract if offered and install u*(w,p) = 0
with resulting expected utility rate us(u* (w,p);w,p) = w —p > 0. The agent
rejects the contract if p € (0, py) and w € (0, p).
(b) Given

p=psandw > wy (4.25)
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then the agent would accept the contract if offered and is indifferent about
installing either u*(w,p) = 0 or uW*(w,p) = V(1 + n)psA — A. In both
cases the agent’s expected utility rate is us(u*(w,p);w,p) = w—pg > 0.
If r € (0,py], then neither u* = 0 nor u* = /(1 + n)psA — A leads to
admissible solutions (see Definition 2.3). If r > pa, then there exists w* such

that ((w*,p4), w* = /(1 4+ n)psr — )L) is the unique admissible solution (for
proof see Proposition 4.24). The agent rejects the contract if p = p4 and
w € (0, wy).

(¢) Given

p>pyandw > 2+/(1 +n)pr — A (4.26)

then the agent would accept the contract if offered and install u*(w,p) =
V(A +npr — A with resulting expected utility rate us(u*(w,p);w,p) =
w =2+ +npA + A > 0. The agent rejects the contract if p > p4 and

c (o,z 1+ nph — x).

Proof. According to Table 4.1, the optimization of u(u) when 1 € [4/5,1) versus
n > 1 is different. Therefore we prove the proposition separately for n € [4/5,1)
andn > 1.

Case 5 € [4/5,1): Recall the definition of p; and p, in (4.5). Note that 4p, >
p> > 4p; and according to Lemmas 4.7 part (b) and (c) and 4.22, p, > ps > 4p;.
Therefore we have 4p, > p, > ps > 4p,. Figure 4.10 depicts the shape of u(u)
when 1 € [4/5,1) and the value of p falls in different ranges. The structure of the
proof when 1 € [4/5, 1) is depicted in Fig. 4.11.

Casep € (0,4p1]: According to Table 4.1, u(u) is decreasing for u© > 0.
Thus the agent’s optimal service capacity is u*(w,p) = 0 and from (4.3)

u(p*(w.p)) =w—p.
Subcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the contract.

Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.

Casep € (4p1,p2]: According to Table 4.1, there is a service capacity that
maximizes u(u) for u € [0, 1) and a service capacity that maximizes u(u) for
i > A. Denote the optimal service capacity in [0, 1) by ;LEEM)(W, p). Note that
u(p) is decreasing with respect to p over [0, A), therefore the agent’s optimal

service capacity is /LFE)’A)(W,p) = 0 and from (4.3) u (/LEEM)(W,p)) =w-—p.
Denote the optimal service capacity for ;1 > A by uj(w,p). From the first
order condition u}(w,p) = /(14 n)pA — A and from (4.3) u (u(w.p)) =
w — 2\/W + A. The agent has a choice of two service capacities
and he installs the one that generates a higher expected utility rate. Note

that u (uf(w,p)) — u (/JLFE)YM(W,p)) = p—2/(1+npr + A. According to
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Fig. 4.10 Illustration of the forms of u(x) when n € [4/5,1)
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p € (0,4p1]

w > wy |—| p* =0or p* = V0 Fmpar— A |

w22\/(1+n)p%7)\|—|u‘ = \/(1+n)p%7)\|

we (0,2\/(1+r))p/\—)\

w>2 (1+n)p>\—/\|_|/1*:\/(1+17)p/\—)\|

w22v(1+n)p>\*>\|—|u*:\/(1+n)v%7)\|

we (0,2/TFmpr - 2)

p € (pa,p2]

| p € (p2,4p2]

w e (0,2«/(1 TP — )\)

p > 4p2

Fig. 4.11 Structure of the proof for Proposition 4.23 when n € [4/5,1)

Lemmas 4.7 part (b) and (c) and 4.22, p, > p4 > 4p;, therefore we examine the
following subcases.

Subcase p € (4p1,p4): According to Lemma 4.6, 4p; > (1 + 27

—2/n(1 + n))k and according to Lemma 4.5 part (a), u (;L?E).A)(W,p)) >
u (,uj (w, p)), thus the agent’s optimal service capacity is u*(w,p) = 0 and
u(p*(w,p)) =w—p.
Subsubcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the
contract.
Subsubcase w > p:  u(u*(w,p)) > 0, therefore the agent would accept the
contract if offered.
Subcase p = p4:  According to Lemma 4.5 part (c), u (“E),A) (w, p)) =

u (3 (w,p)), indicating that installing Koy W.p) or pu3(w,p) results in
the same agent’s expected utility rate. Therefore the agent is indifferent about
installing w*(w, p) = 0 or u*(w,p) = /(1 4+ n)psr —A with expected utility
rate u (LW*(w, p); w,p) = w — wy. However the principal would not propose
a contract in this case because none of these capacities leads to admissible
solutions (see Definition 2.3). For proof see Proposition 4.24. According to
Lemma 4.4, py > 4p; = wy =2/ (1 + n)psd — A > 0.

Subsubcase w € (0, w4):  u(*(w,p)) < 0, therefore the agent rejects the

contract.
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Subsubcase w > wy:  u(u*(w,p)) > 0, therefore the agent would accept

the contract if offered.
Subcasep € (ps,pz]:  From Lemma 4.5 part (b), u (uf(w.p)) > u(uf,

(w, p)), thus the agent’s optimal service capacity is u*(w, p) = /(1 + n)pA—

A and u(pn*(w,p)) = w—24/(1 +n)pr + A. According to Lemma 4.4,

p > ps > 4p > ZW — A > 0, therefore we further examine

the following subcases.

Subsubcase w € (0, ZW - A): u(p*(w,p)) < 0, therefore the
agent rejects the contract.

Subsubcase w > 2,/(1 + n)pA — A:  u(u*(w,p)) > 0, therefore the agent
would accept the contract if offered.

Casep € (p2,4p2]: According to Table 4.1, there is a service capacity that
maximizes u(u) for w € (0,A] and a service capacity that maximizes u(ju)
for 4 > A. Denote the optimal service capacity in (0, ] by M?O’A](W, D).

From the first order condition “?O.A] w,p) = /(1 —n)pA — A and from (4.3)

u (;,LE“O.M (w,p)) = w—1np —2y(1—=n)pi + A. Denote the optimal service
capacity for u > A by u3(w,p). From the first order condition uy(w,p) =

v (1 + n)pA—A and from (4.3) u (,uj{(w,p)) = w—2+/(1 + n)pA+A. The agent

has to decide which of the two service capacities he installs and he chooses the

one with higher expected utility rate. Note that u (/L;’: (w, p)) —u (//,2"0’ Al (w, p)) =

np —2(v/T+n—+/T—=1n) y/pA. According to Lemma 4.8 part (b) and (c), p >
p2 = p3, and according to Lemma 4.2 part (a) u (1} (w,p)) > u (/L?‘O’M (w,p)),
therefore the agent’s optimal service capacity is u*(w,p) = (1 + n)pA — A

and u(u*(w,p)) = w—2(1 + n)pA + A. According to Lemma 4.4, p > p, >
4py = 24/(1 + n)pA — A > 0, therefore we examine the following subcases.

Subcase w € (0, 2/ + n)pAr — l): u(u*(w, p)) < 0, thus the agent rejects
the contract.
Subcase w > 2,/(1 + g)pA — A:  u(u*(w,p)) > 0, therefore the agent would

accept the contract if offered.
Casep > 4p;:  According to Table 4.1, the service capacity that maximizes u(u)
must satisfy g > A. From the first order condition u*(w,p) = /(1 + n)pA — A

and u(u* (w,p)) = w—2+/(1 + n)pA + A. According to Lemma 4.4, p > 4p, >
4p; = 24/(1 + n)pA — A > 0, therefore we examine the following subcases.

Subcase w € (0, 2/ + p)pAr — A): u(*(w, p)) < 0, thus the agent rejects
the contract.

Subcase w > 2,/(1 + g)pA — A:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.
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Fig. 4.12 Illustration of the forms of u(yt) when n > 1

This completes the proof for Proposition 4.23 when 1 € [4/5, 1).

Case 5 > 1: According to Lemma 4.22, p, > 4p,. Figure 4.12 depicts the shape of
u(p) when n > 1 and the value of p falls in different ranges. The proof when 1 > 1
is depicted in Fig. 4.13.

Casep € (0,4p1]: According to Table 4.1, u(p) is decreasing with respect to y >
0. Thus the agent’s optimal service capacity is w*(w,p) = 0 and from (4.3)

u(pn*(w,p)) =w—p.

Subcase w € (0,p): u(u*(w,p)) < 0, therefore the agent rejects the contract.
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p € (0,4p1]
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P> pa

Fig. 4.13 Structure of the proof for Proposition 4.23 when n > 1

Subcase w > p:  u(u*(w,p)) > 0, thus the agent would accept the contract if
offered.

Casep > 4p;:  According to Table 4.1, there is a service capacity that maximizes
u(p) for w € [0,4) and a service capacity that maximizes u(p) for u > A.

Denote the optimal service capacity in [0, A1) by MEB_ A)(W’ p). Note that u(u) is
decreasing with respect to p over [0, ), therefore the agent’s optimal service
capacity is /,LEEM) (w,p) = 0 and from (4.3) u (,ufa‘k)(w,p)) = w — p. Denote the
optimal service capacity for ;1 > A by u}(w, p). From the first order condition
wiw.p) = /(1 + n)pA—A and from (4.3) u (3 (w.p)) = w—2/(1 + npA+
A. The agent has to decide which of the two service capacities he is going to
install and he chooses the one that generates a higher expected utility rate. Note
that u (uf(w,p)) — u (uﬁm(w,p)> = p—2/(1+npAr + A. According to
Lemma 4.22, py > 4p; and we need to examine the following subcases.

Subcase p € (4p1,p4): According to Lemma 4.6, 4p;> (1 +2n—2+/n(1 +r)))k

and according to Lemma 4.5 part (a), u(uﬁ)yl)(w,p» > u(ui(w.p)),

therefore the agent’s optimal service capacity is u*(w,p) = 0 and

u(p*(w,p)) =w—p.

Subsubcase w € (0,p):  u(u*(w,p)) < 0, therefore the agent rejects the
contract.

Subsubcase w > p:  u(u*(w,p)) > 0, therefore the agent would accept the
contract if offered.
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Subcase p = p4:  According to Lemma 4.5 part (c), “(ﬂ[*o.x)(va)) =

u (,uI (w,p)), indicating that installing /LEM) (w,p) or py(w,p) leads to the

same agent’s expected utility rate. Therefore the agent is indifferent about

installing u*(w,p) = 0 or w*(w,p) = /(1 + n)psA — A and in such case

u(uw*(w,p);w,p) = w — wy. However the principal would not propose a

contract in this case, because none of these capacities leads to admissible

solutions (see Definition 2.3). For proof see Proposition 4.24. According to

Lemma 4.4, pys > 4p; = wy = 2+/(1 + n)psd — A > 0.

Subsubcase w € (0,wyq):  u(u*(w,p)) < 0, therefore the agent rejects the
contract.

Subsubcase w > wy:  u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

Subcase p > p4:  From Lemma 4.5 part (b), u (,uI (w.p)) > u (“[TJ,A) (w,p)),

thus the agent’s optimal capacity is u*(w,p) = /(1 +n)pA — A and
u(w*w,p)) = w—2/(1 +n)pAr + A. According to Lemma 4.4, p > py >
4p; = 2,/(1 + n)pA — A > 0, therefore we further examine the following
subcases.
Subsubcase w € (0, 2/ + p)pr — A): u(*(w, p)) < 0, thus the agent
rejects the contract.
Subsubcase w > 2,/(1 + n)pA —A:  u(u*(w,p)) > 0, therefore the agent
would accept the contract if offered.
O

In summary, given exogenous market conditions such that a mutually beneficial
contract with a strongly risk-averse agent exists (see Theorem 4.27 later), only one
formula is needed for the agent to compute his optimal service capacity: u*(w, p) =
VI +npr—21>0.

The conditions when a strongly risk-averse agent accepts the contract can be
depicted by the shaded areas in Fig.4.14, where n = 2. The two shaded areas
with different grey scales represent conditions (4.24) and (4.26) under which the
agent accepts the contract but responds differently. The lower bound function of the
shaded areas (denoted by wy(p)) represents the set of offers that give the agent zero
expected utility rate. wy(p) is defined as follows:

wo(p) = p when p € (0, p4]

2/(1 + n)pA — A when p > py

Since lim,—,- wo(p) = limp_w:r wo(p) = ps, wo(p) is continuous every-
where over interval p € Ri. However since lim,—,-dwo(p)/dp = 1 #

I+ (VT+n+yn) = lim,_, + dwo(p)/dp. wo(p) is not differentiable at
P = Ds.
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Fig. 4.14 Conditions when a strongly risk-averse agent accepts the contract with n = 2

4.2.1 Sensitivity Analysis of a Strongly Risk-Averse Agent’s
Optimal Strategy

Since the principal does not propose a contract that will be responded to with zero
service capacity, therefore the only viable case is when the agent in response installs
positive service capacity: u*(w,p) = /(1 + n)pA — A. The w is bounded below
by 24/ (1 + n)pA — A = npP(1) + pP(1) + u*(w,p) (see (4.26)), with npP(1)
representing the expected risk rate perceived by the agent and pP(1) representing
the expected penalty rate charged by the principal. It indicates that the agent has to
be reimbursed for the expected risk rate, the expected penalty rate, and the cost of
the optimal service capacity.
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The optimal service capacity u*(w, p) = /(1 + n)pA—A depends on the penalty
rate p, the failure rate A and the risk coefficient 7. Its derivatives are:

au* (1+ni o™ (1+np ™ pA
w VNV m My W17

The derivatives indicate that given A and 71 the agent will increase the service
capacity when the penalty rate increases. Note that /(1 4+ n)pA — A, as a function
of A, increases when (1 + n)p/4 > A. From conditions (4.25) and (4.26) the agent
installs service capacity /(1 + n)pA — A when p > p,4 and from Lemma 4.22 we
have ps > 4p;. Therefore we have p > 4p; = 4A/(1 +n) = (1 + n)p/4 > 1 =
au*/dA > 0. Thus, given p and 7, the agent will increase the service capacity when
the failure rate increases. Given the penalty rate and the failure rate, the agent will
increase the service capacity as his risk-aversion increases.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =

VA +npr=Aisuy = ua(u*(w,p);w,p) = w—2+/(1 4+ n)pA+2, and it depends
onw, p, n and A. Note that du; /0w = —1 < 0, du; /dp = —+/(1 + n)A/p < 0 and

duy/on = —y/pA/(1 + n) < 0, indicating that the agent’s optimal expected utility
rate decreases with the compensation rate, the penalty rate and his risk intensity.

Note that du} /A = — (ﬁ— ‘/pl) /</P1, and from Proposition 4.23 p > p, >
dp1 = /p — /P1 > 0, therefore the agent’s optimal expected utility rate also
decreases with the failure rate.

Summary: Recall that a risk-neutral agent would accept a contract, install
w*(w,p) = 0 and receive u(u*(w,p);w,p) = w — p given the set of offers

{(w,p) : p € (0, A], w > p}. Given the set of offers {(w,p) p>Aw>24ph— )L}

he would accept the contract, install u*(w,p) = /pA — A and receive expected
utility rate u(u* (w, p); w,p) = w—2,/pA + A. By comparing the optimal solutions
of a strongly risk-averse agent with that of a risk-neutral agent, two conclusions are
drawn:

1. Given a A, the principal must set a higher p in order to induce a strongly risk-
averse agent to install a positive service capacity versus a risk-neutral agent (p >
A for risk-neutral agent, p > (1 +2n 4+ ZM) A for strongly risk-averse
agent).

2. With the same w and p, given that the agent accepts the contract and installs a

positive service capacity, the expected utility rate of a strongly risk-averse agent
decreases with respect to 7 since

u(u*(w,p) =1+ r))p)t—)t) =w—=2v(0+npr+A

=>au— pA <0
an 1+
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Therefore a strongly risk-averse agent is always strictly worse off than a risk-
neutral agent.

Compared to a weakly risk-averse agent, a strongly risk-averse agent has fewer
options of positive optimal service capacities (he will never install w*(w,p) =
V(1 —npA — A when n € [4/5,1)) because the perceived risk rate is high
enough such that the only reasonable choice is to invest more in service capacity
to compensate for the risk.

4.2.2 Principal’s Optimal Strategy

We now derive the principal’s optimal strategy while anticipating the agent’s optimal
response u* (w, p). For that the principal solves the optimization problem:

max Hp(w,p; /,L*(va)) = max M — L
w>0,p>0 w>0p>0 | A + /L*(W,p) A+ /,L*(W,p)
(4.27)

and recovers the optimizing values: (w*, p*) = argmax,,_ ,.o [1p(w, p; £* (w,p)).

Before deriving the principal’s optimal strategy, we reexamine the case when the
principal offers p = ps and w > wy, under which the agent is indifferent regarding
two different service capacities which however effect the principal differently. Since
any selected solution ((w, p), i) has to be an admissible solution (see Definition 2.3)
we test the solutions’ membership in Proposition 4.24.

Proposition 4.24. Suppose a strongly risk-averse agent. Assume that the princi-
pal’s possible offers are constrained to set {(w,p) : p = pg, w > wy}.

(@) Ifr € (0, p4), then the principal does not propose a contract.
(b) If r > py, the agent installs /(1 + n)psA — A if offered a contract.

Proof. For w > w4 we have dITp(w, ps; 0)/00 = (r — ps)A/ (A + w)?. Define
ur = 0and uy = /(1 4+ n)psA — A and note that uy > . If r € (0, p4), then
dllp/dp < 0, therefore ((w,ps), ) > ((w, ps), by) and the agent would install
wuy if offered a contract since ((w, p4), y) is not an admissible solution. However
in such case the principal’s expected profit rate is ITp(w, ps; 1) = —w + py < 0,
therefore the principal would not propose a contract. If r = py, then 0l1p/0u =
0, therefore the agent installs either p; or uy if offered a contract. However in
such case the principal’s expected profit rate is [1p(w, ps; ) = Hp(w, ps; uy) =
—w 4+ ps < 0, therefore the principal would not propose a contract. If r > py, then
ollp/du > 0 and ((w, pg), uy) > ((w,ps), ur). If the principal offers a contract
(where the conditions will be discussed in detail in Theorem 4.27 that follows), then
by Definition 2.3 only .y leads to admissible solutions. a



4.2 Optimal Strategies Given a Strongly Risk-Averse Agent 57

Notation:
ry = (1 +2n4+2y/n(l + 7})) (14+2mA =1+ 2n)p, (4.28)

r4 is a function of A and n however we suppress the parameters (4, 7).
Next we state several technical lemmas (see proofs in the Appendix).

Lemma 4.25. Consider max,> /p, f(x) where f(x) = r+A—/p1 ((1 + 2n)x + r/x)
and denote x* = argmax P f(x). The solutions to this optimization problem
are

(@) x* = /psifre (0,ry).
(b) x* = /r/(1 +2n) ifr > ry.

Lemma 4.26. Let > 0 and A > 0, then (1 4+ 2n)ps > (1 34200 F 2n))
A1+ 7).

The principal’s optimal strategy is derived in Theorem 4.27. Recall that Proposi-
tion 4.23 describes the agent’s optimal response to each pair of compensation rate
and penalty rate (w,p) € Rﬁ_. Since the principal will not propose a contract that is
going to be rejected by a strongly risk-averse (SRA) agent, therefore Theorem 4.27
only considers pairs (w,p) € Rﬁ_ such that the agent receives a non-negative
expected utility rate. Define

D24y = {(w, p) that satisfies (4.24) when n > 4/5}
D235 = {(w,p) that satisfies (4.25) when n > 4/5}
D26 = {(w, p) that satisfies (4.26) when n > 4/5}
Dsra = D24y U Daosy U Dae)

(4.29)

Theorem 4.27. Given a strongly risk-averse agent and (w,p) € Dgra.

(@) If r € (0, py], then the principal does not propose a contract.
(b) If r € (p4, 14, then the principal’s offer and the capacity installed by the agent
are

(W*.p%) = (W4, ps) and ™ (w*,p*) = (1 + psr — 4 (4.30)

and the principal’s expected profit rate is

T v*,p™s 1 ™. p™)) = r 4+ A — Jpr ((1 20 Jpi + ﬁ) 431)
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(c) Ifr > ry, then the principal’s offer and the capacity installed by the agent are

w*,p") (‘/ T+ 21 Tr oy and w* (w*,p*) 521

4.32)

and the principal’s expected profit rate is

Op(w*, p*; " (w*, p™)) =r—2‘/% + A (4.33)

Proof. The structure of the proof is depicted in Fig. 4.15.

Case (w,p) € D24y U Du2s):  According to Proposition 4.23 part (a), if
(w,p) € Dwuna4), then in case the principal makes an offer, the agent accepts
the contract but does not install any service capacity. Since dl1p/dw = —1 < 0,
therefore w* = p and from Eq.(3.3) IIp(w*, p; u*(w*,p)) = —w* +p =
—p + p = 0. According to Propositions 4.23 part (b) and 4.24, if (w, p) € D.s)
(which implies p = p4), then the principal does not propose a contract if
r € (0, p4], orinstalls /(1 + 1)psA—A in case the principal makes an offer when
r > py. Since dI1p/0w = —1 < 0, therefore w* = wy. From Proposition 4.23
part (b), if the principal offers a contract with (w, p) = (w4, p4), then the agent
installs either w*(wg, pg) = 0 or w*(wg, ps) = /(1 + n)psA — A. Denote the
principal’s expected profit rate when (w,p) = (wg, ps) and u*(w,p) = 0 by
T15(p4), and denote the principal’s expected profit rate when (w,p) = (wa, ps)
and p*(w,p) = /(1 + n)par — A by I14 (p4). By plugging the value of w, p and
u into Eq. (3.3):

(w,p) €D (4.24) UD (4.25)

o
w* = wy and p* = py
and 1wt = VR A
Principal
with Strongly

Agent
(w,p) €D (4.25) UD re( r]}i w* = wy and p* = ps
, (4.25) (4.26) pa, T4 and 4 = O FPah - A

Risk-Neutral

(14 n)rx

w* =2

">y 1+2n 1429
1 A
and p* = A+ mr -
1+ 2n

— X and p* =

Fig. 4.15 Structure of the proof for Theorem 4.27
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5(ps) = —wi +ps =0 (4.34)

VPi— /P1

= )(r—m)

(4.35)

ng(p4)=r+/\—m((1+2n)\/ﬁ+\%) =(

In such case the principal’s optimization problem is max,e(p,) I1p(W*, p; u*
(w*, p)) where:

0 for p € (0, p4)

kLKoo ok _

Op(w™, ps u* (W, p)) = { max {Hf‘:(lh), Hg(p4)} for p = py

Subcase r € (0,p4]: By Proposition 4.24 part (a), the principal does not offer
a contract.

Subcase r > p4:  According to Lemma 4.25 part (b), p* = ps; and
according to Proposition 4.24 part (b) the principal’s expected profit rate
Opw*, p*; u*(w*,p*)) = N¥(ps) > TMk(ps) = 0. Thus the principal
proposes a contract with w* = wy and p* = p4 that induces the agent to

install u*(w*, p*) = /(1 + n)psr — A.

Case (w,p) € Da2s5) U Duss: According to Proposition 4.23 part (c), if
(w,p) € Dwuae), then in case the principal makes an offer, the agent accepts
the contract and installs /(1 + n)pA — A. Since dI1p/dw = —1 < 0, therefore
w* = 2,/(1 + n)pA — A. According to Propositions 4.23 part (b) and 4.24, if
(w,p) € Duos) (which implies p = py), then the principal does not propose a
contract if r € (0, p4], or installs /(1 + n)psA — A in case the principal makes
an offer when r > py. Since dI1p/dw = —1 < 0, therefore w* = wy. From
Proposition 4.23 part (b), if the principal offers a contract with (w, p) = (wy, ps),
then the agent installs either u* (w4, pg) = 0 or £* (wyg, ps) = /(1 + N)psA — A.
The principal’s optimization problem is maxp>,, I1p(w*, p; u*(w*, p)) where:

. . max {15 (ps), T14 (p4)} , for p = p4
Op(w*, p; ™ (w*,p)) = r+l—«/p_1((1+27})\/1_7+%

Define x = ,/p, the expression r + A — @((1 +2n)./p + r/ﬁ) can be
restated as f(x) = r+ A — /p1 ((1 + 2n)x + r/x). Maximizing f (x) with respect

for x > ,/ps is equivalent to maximizing r + A — /pi ((1 +2n)./p + r/ﬁ)
for p > p4 in the sense that

),forp > P4

2
argmax { r+A— ./ ((l +2n)/p + L)} = (argmaxf(x))
pP=pa \/ﬁ xzﬁ

Since r4 = (1 4 2n)p4 > p4, we examine the following subcases.
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Subcaser € (0,p4]: By Proposition 4.24 part (a), the principal does not
propose a contract.

Subcase r € (pg,rq]:  According to Lemma 4.25 part (a), p* = p,. According
to Proposition 4.24 part (b), [Tp(w*, p*; u*(w*, p*)) = T (ps) > Mk(ps) =
0. Therefore the principal proposes a contract with w* = wy and p* = p, that
induces the agent to install u*(w*, p*) = /(1 + n)psA — A.

Subcase r > r4:  According to Lemma 4.25 part (b), p* = r/(1 + 2n)
and the principal’s expected profit rate is Ip(w*,p*; u*(w*,p*)) =
r— 2\/(1 +2n)rA/(1 +1n) + A. According to Lemmas 4.14 and 4.26
Op(w*, p*; u*(w*,p*)) > 0, therefore the principal proposes a contract
with w* = 2,/(1 +n)rA/(1 + 2n) — A and p* = r/(1 + 2n) that induces the
agent to install service capacity u*(w*,p*) = /(1 + n)rA/(1 + 2n) — A.

To summarize, if r € (0, p4], then the principal does not propose a contract. This case
corresponds to Theorem 4.27 (a). If r € (p4, r4], then the principal offers (w*, p*) =

(wy, p4) and the agent installs capacity u*(w*, p*) = /(1 4+ n)psA — A. This case
corresponds to Theorem 4.27 (b). Finally if » > r4, then according to Lemma 4.25

part (b), the principal offers (w*, p*) = (2\/(1 +mrA/(+2n) — A, r/(1 + 277))

and the agent installs capacity u*(w*, p*) = /(1 + n)rA/(1 + 2n) — A. This case
corresponds to Theorem 4.27 (c). O

Theorem 4.27 indicates that the existence of a beneficial contract for strongly
risk-averse agent is determined exogenously by the market (the revenue rate r), the
nature of the equipment (the failure rate A) and the nature of the agent (the risk
coefficient n).

4.3 Risk-Averse Agent: A Summary

Recall the definition of p,, p3, ps, 12, r3 and r4 from (4.5), (4.12), (4.23) and (4.28).
The conditions that a principal makes offers to a risk-averse agent is depicted by the
shaded areas in Fig. 4.16. The horizontal axis represents the agent’s risk coefficient,
and the vertical axis represents the revenue rate generated by the principal’s unit,
which is exogenously determined by the market. The principal makes different
offers to the agent when (r, ) is in the five shaded areas with different gray scales.
We define

p3 forn € (0,4/5) r3 forn € (0,4/5)
P = and r3g =

psforn>4/5 rq forn>4/5
Note that limn_>(4/5)— ry = 131 = limn_>(4/5)+ r34, and note that limn_,(4/5)— Br34/
dn = 1254/6 = lim,_, 4 s+ 0r3a/dn, therefore ri4 is continuous and differ-
entiable everywhere over R. Since lim, u4/5—p3¢ = 54 = limn_>(4 /5)+ P34
and limy—@/s5- Op3a/dn = 25A4/6 = lim,_, 4 5+ Op3a/0n, therefore pss is
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Fig. 4.16 Conditions when a risk-neutral principal makes offers to a risk-averse agent

continuous and differentiable everywhere over R4 as well. Furthermore, note
that limn—>0+ Py = limn—>0+ rn = limn_>0+ r3 = 4\ and lim,,_>(4/5)— rn =
hm,,_,(4/5)— P2 = S)L

4.3.1 Sensitivity Analysis of Optimal Strategies in High
Revenue Industry

The revenue rate r is determined exogenously by the market, and consider r > r34
(high revenue rate). Equations (4.21) and (4.32) are the second-best solutions when
the agent is weakly and strongly risk-averse respectively, and they have the same
functional form.

The risk-averse agent’s optimal strategy is examined first. Note that the optimal
service capacity of a risk-averse agent (u* = /(1+nrA/(1+2n) — A)
is a function of r, A, and 7. The derivatives of u* with respect to the




62 4 Risk-Averse Agent

parameters are du*/dr = /(1 +n)A/ (2\/(1 + 2r])r) > 0, du*/or =
Ve (2\/(1 n 2;7),1)_1 and dp*/n = —/1A/ (2 T+ + 2n)3) <

0. The derivatives indicate that given A and 7, the optimal capacity increases when
the revenue rate increases, and therefore the average downtime of the principal’s
unit decreases. Given the revenue rate and the failure rate, the average downtime
of the principal’s equipment will increase as the agent becomes more risk-averse.
Note that u* = /(1 + n)rA/(1 +2n) — A, as a function of A, increases when
(1+n)r/4(1+2n) > A. According to Lemma 4.3 we have p; > 4p, and according
to Lemma 4.22 we have p4 > 4p,. Furthermore, since we assume that r > rs4, then
r>r3=04+2nps =r/(1+2n) >p3s=>r/(1+2n) >4p =41/(1 +1n) =
(1 +n)r/4(0 +2n) > Aifn € (0,4/5) and r > r4 = (1 4+ 2n)ps = r/(1 + 21) >
ps = r/(1+2n) > 4p; = 41/(1+n) = (1+n)r/4(1+2n) > Aifn > 4/5. Thus,
given the revenue rate and the risk coefficient, the failure rate is low compared to the
revenue rate, and the average downtime of the principal’s equipment will decrease
when the failure rate increases.

Next we examine the principal’s optimal strategy. Note that the optimal compen-
sation rate of a principal with a risk-averse agent (w* = 2/(1 + n)rA /(1 + 2n7)—2)
is a function of r, A, and 7. The derivatives of w* with respect to the parameters are
aw*/or = /(1 + nA/(1+2n)r > 0, w* /oA = /(1 +n)r/(1 +2n)A — 1 and
finally dw*/dn = —+/rA/(1 + n)(1 + 2n)3 < 0. The derivatives indicate that given
the A and 7, the optimal compensation rate increases with respect to r. Given the r
and the A, the optimal compensation rate decreases as the agent becomes more risk-
averse. Note that w* = 2,/(1 + n)rA/(1 + 2n) — A, as a function of A, increases
when (1 + n)r/(1 + 217) > A. According to Lemma 4.3 we have p; > 4p; > p;
and according to Lemma 4.22 we have ps > 4p; > p,. Furthermore, since we
assume that r > ry, then r > r3 = (1 + 2n)ps = r/(1 +2n) > p; =
r/(14+2n) >pr =A/1+n = A+nr/(1 +2n) > Aifn € (0,4/5) and
r>ry=1+2nps = r/(1L+2n) >ps=r/(1+2n) >p =A/(1+1n) =
(1 4+ n)r/(1 + 2n) > Aif n > 4/5. Therefore the failure rate is low compared to
the revenue rate ((1 + n)r/(1 + 2n7) > A = Iw*/dA > 0), indicating that the w*
increases with respect to the failure rate.

The principal’s optimal p* given a risk-averse agent (p* = r/(1 + 2n)) is a
function of r and 7. Note that p* is independent of the failure rate A under the
assumption that the revenue rate is sufficiently high compared to the failure rate.
The derivatives of p* with respect to the parameters are dp* /or = 1/(1 + 21) > 0
and dp*/0n = —2r/(1 + 21)?> < 0. The derivatives indicate that given the risk 7,
the optimal penalty p* increases with respect to r, and given r, the p* decreases with
respect to 7.

The principal’s optimal expected profit rate given a risk-averse agent

M7 = e, p*s )" (W, p*)) = r = 23/(1 + 2m)rA/(1 + ) + A
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is a function of r, A, and 7. The derivatives of IT} with respect to these parameters
are T3 /0r = 1 — /(1 + 2nA/(1 + p)r, 0T15/9A = 1 — /(1 + 2n)r/(1 + n)A,
aT15/0n = —/rA/(1 + 2n)(1 + n)? < 0. The derivatives indicate that given r and
A, the principal’s optimal expected profit rate decreases as the agent becomes more
risk-averse. Note that [T = r — 2/(1 +2n)rA/(1 + n) + A, as a function of A,
decreases when (1 4 2n)r/(1 + 1) > A, and as a function of r, increases when r >
(1+2n)A/(1 + n). According to Lemma 4.3 we have p3 > 4p; > p; and according
to Lemma 4.22 we have p4 > 4p; > p;. Furthermore, since we assume that r > ra4,
thenr >r; = (1 +2n)ps = r/(1 +2n) >p3 = r/(1 +2n) >p1 = A/(1 + 1)
ifn € (0,4/5)and r > rg = (1 4+ 2nps = r/(1 +2n) > ps = r/(1 +2n) >
p1 = A/(1 4+ n)if n > 4/5. Therefore given a A and an 7, the revenue rate is high
compared to the failure rate (r > (1 + 2n)A/(1 + n) = 0II}/dr > 0), thus the
principal’s optimal expected profit rate increases with respect to the revenue rate.
Note that since n > 0, therefore r > (1 4+ 2n)A/(1 + 1) > (1 + A/(1 +2n) =
(1 +2n)r/(1 + n) > A, which implies that given an r and 7, the failure rate is low
compared to the revenue rate ((1 + 2n)r/(1 + n) > A = 0II}/dA < 0), therefore
the principal’s optimal expected profit rate decreases with respect to A.

4.3.2 The Second-Best Solution in High Revenue Industry

By comparing the second-best solution given a risk-averse agent ((4.21) and (4.32))
with the second-best given a risk-neutral agent when r > rs4, four conclusions are
drawn.

1. The optimal w* and the optimal p* decrease when the agent is risk-averse versus
risk-neutral agent (w* : 24/rA — A > 2/(1 +n)ra/(1 +2n) — A and p* : r >
r/(1 + 2n)). It indicates that the risk adds an incentive for the agent to install
a higher service capacity by coupling it to the penalty charge collected by the
principal.

2. The principal is worse off with a risk-averse agent than a risk-neutral agent
r—2VriA+ A >r— 2/(1 +2n)rA/(1 +n) + A), as well as with an agent
whose action is contractible (recall that the principal receives the same expected
profit rate with a risk-neutral agent in first-best and second-best setting). This
conclusion is consistent with Proposition 3 part (ii) in Harris and Raviv (1978).
The principal’s loss can be explained as follows: On one hand, the decrease in
the agent’s optimal capacity when risk-averse reduces the revenue performance
of the principal’s unit. At the same time, the monetary equivalency of the risk
perceived by the agent is not channeled to the principal, although from the agent’s
perspective it serves as part of the penalty charge.

3. The u* of a risk-averse agent is strictly less than that of a risk-neutral agent
Wrh — A > V(L +nrA/(1 4 2n) — ). Recall that when the agent is risk-
neutral, the p* in the second-best solution is the same as that in the first-best
solution, indicating that the unobservability of the agent’s service capacity does
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not contribute to the decrease of the optimal service capacity. When the agent is
risk-averse, he compensates for the risk he bears by reducing u.

4. Given the compensation rate and penalty rate, both weakly and strongly risk-
averse agents are worse off compared to a risk-neutral agent.

To summarize, for a principal with high revenue generating unit, agent’s risk-
aversion reduces the efficiency of the contract (compared to the first-best contract),
and therefore it reduces the social welfare.



Chapter 5
Risk-Seeking Agent

In previous section we represented agent’s perceived risk by a measure that reflects
the dispersion of his revenue stream. Although the dispersion of possible outcomes
has been widely used as the measure of risk (Pratt 1964; Rothschild and Stiglitz
1970; Stiglitz 1974; Levy 1992; Fukunaga and Huffman 2009; Lewis and Bajari
2014) it fails to capture observable behavior in risky settings. In this section we
extend our principal-agent analysis to risk-seeking agent. We note that there is
an ongoing evaluation of risk attitudes in an attempt to explain peoples’ behavior
when faced with risky choices. For instance Prospect Theory claims to offer a
better model that covers discrepancies observed elsewhere (Kahneman and Tversky
1979; Tversky and Kahneman 1992). Prospect Theory claims that people are less
sensitive to the variation of the probability of outcomes compared to the expectation,
and losses loom larger than gains. Furthermore, empirical evidences indicates that
decision makers prefer expressions of risk in terms of the expected value at stake,
and they appear to be risk-averse when dealing with a risky alternative whose
possible outcomes are generally good and tend to be risk-seeking when dealing with
a risky alternative whose possible outcomes are generally poor (March and Shapira
1987, Filiz-Ozbay et al. 2013).

In our principal-agent setting with a risk-seeking agent we propose that an agent
perceives a greater loss when he is charged a larger penalty rate for each unit of
downtime and also when the probability of being in the failed state goes up. The
agent’s penalty rate at any point of time can be modeled as pB where B is a Bernoulli
random variable that takes value O with probability P(0) = w/(A + ) and value 1
with probability P(1) = A/(A + p). For simplicity denote momentarily a = P(1).
In this section we adopt the following risk measure:

r(a) Ep(a— l) fora € [0, 1]
2) 4
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(W, p)

1
1
2

Fig. 5.1 m(u,w,p) as a function of P(1) when n = —1

We note that R(pB) = r(a) satisfies the properties of monotonicity, sub-additivity
and positive homogeneity of a coherent risk measure but fails to satisfy the property
of translation invariance, since R(pB) is independent of the expectation of pB
(Artzner et al. 1999).

Risk premium of a risk-seeking agent is the $ value considered by the agent as
extra gains to his revenue stream. As a consequence, just for the risk-seeking agent
we modify the risk premium defined earlier in (4.1), in a manner that reflects the
expected amount at stake instead of the dispersion of the revenue stream:

1 A 1
w(p,w,p) = — Pl)—=) =- —_— = 5.1
(1, w,p) np(() 2)+ np(AﬂL 2)+ (5.1)
Note that for risk-seeking agent n < 0 = m(u,w,p) > 0, and adding such a
risk premium to a risk-neutral agent’s expected utility rate (as in (5.2)) implies risk-
seeking. Figure 5.1 depicts 7 (i, w, p) as a function of P(1) for n = —1.

The representation of the risk premium in (5.1) is consistent with the properties of
risk in the Prospect Theory (Kahneman and Tversky 1979; Tversky and Kahneman
1992) and the empirical findings in (March and Shapira 1987): The risk premium
is zero when P(1) is lower than 1/2. The risk premium increases with P(1) linearly
when P(1) exceeds one half, and reaches its peak when P(1) = 1.

Denote 7 = —n > 0. Modifying (3.2), the risk-seeking agent’s expected utility
rate is:

pA _ A 1
w,p)=[w— —— —_— == f 0, 0O,u=>0
us(p; w, p) (w gy u+np(k+“ 2)+)+ orw>0,p>0,u
(5.2)

Since the analysis is different for 7 € (0,8/9), 7 € [8/9,2) and 7 > 2, therefore,
when 77 € (0, 8/9) we consider the agent as weakly risk-seeking, when 7 € [8/9, 2)
we consider the agent as moderately risk-seeking, and when 7 > 2 we consider the
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agent as strongly risk-seeking. We assume, say for historic reasons, that both the
agent and the principal know not only the agent’s type as risk-seeking but also the
value of 7.

The expression for the principal’s expected revenue rate I[1p(w, p; i0) remains the
same as (3.3).

Before examining the details of the optimal contracts we discuss a potential
case of the agent compensating the principal at times during the contract. Such
occurrence of utility transfer from an risk-seeking agent to the principal can have
one of two forms: either the compensation rate is non-positive (w < 0), or the
principal is guaranteed a positive expected revenue rate even with her unit in the
failed state forever (—w + p > 0 if u = 0). Under our setting of undetermined
contract horizon it is unrealistic to accept that the agent might compensate the
principal when the unit is forever in the failed state. Therefore the occurrence of
a non-positive compensation rate (w < 0) has be ruled out in the definition of the
Strategy Set (Definition 2.1). Nevertheless, the possibility of the principal receiving
a positive expected revenue rate with a failed unit has to be considered. Therefore we
extend the definition of the Ser of Admissible Solutions (Definition 2.3) as follows.

Definition 5.1 (Set of Admissible Solutions). The set of admissible solutions for
the principal-agent problem B is the set s(°B) of all strategies (w,p), L) € S(P)
for which:

@ 3 (W,p), 1) € OR) such that (W',p'), u') = ((w,p), ) — there is no other
strategy that weakly dominates ((w, p), [L).

(b) Hp(w,p; ) > p and us(pw; w, p) > ua.

() If u =0, thenw > p.

We denote the part inside the brackets in Eq. (5.2) as

-
u(p) = K (5.3)
- S > A
i R

Note that u(u) is differentiable everywhere for u© > 0 except at © = A. When
u € f0,1):

du(p) _(A=mpA du(u)zl—ﬁ(p_ A )
dp A+w? 7 uset du A 1-7
du(p) 1—ﬁ( 4 ) du(p) _ 2(1=n)pA

1-7)" au* (A +w?

li =
;1,—1>r£1_ d//L 4
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and when o > A:

du(p) _ _ pA m du(p) _ p—4r
du  (A+p? T ueat dp 44
2
fim Y ) gang MW A
p—>+oo  du du? A+ p)?

The positivity or negativity of the above derivatives indicate the direction of
monotonicity and the concavity/convexity of the function u(p) over [0,A) and
(A, 4+00). Table 5.1 summarizes these indicators for various regions of the space
R for pairs of (77, p). In the table u, (-) = lim, . du/du, and u, (-*) represents
the limit of u, (1) as p approaches () from above, and similarly u, (™) represents
the limit of u,, (1) as  approaches (-) from below.

5.1 Optimal Strategies for the Weakly Risk-Seeking Agent

Note that agent’s expected utility rate (see (5.2)) increases and principal’s expected
profit rate (see (3.3)) decreases in w, therefore for any value of p the principal
can maximize her expected profit rate by lowering w yet safeguarding agent’s
participation by setting the agent’s expected utility rate equal to his reservation
utility rate. Although the principal cannot contract directly on the agent’s service
capacity, she anticipates the agent optimizing his expected utility rate when offered
a contract. That is, for any w and p values proposed by the principal, the agent
computes the p that maximizes his expected utility rate and subsequently decides
whether to accept the contract or not, by solving the following optimization
problem:

max u =max{w-— — — — — = .
P ) A4 P Atup 2/,

The agent’s optimal service capacity is denoted by p*(w, p) = argmax - u(u).
Before proceeding to derive the agent’s optimal strategy we introduce some
notation:

A
-1

16(2—ﬁ—2ﬂ)x
2

s P = - (5.5)
n

el

1

—_

and the following identity is verified using the definition of p,:

Wy = % +2y (1 =MpA =2 =24/pA — A (5.6)

Note that p,, p, and w, are functions of A and 77. However we suppress (A, 7).
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Next we introduce a number of technical lemmas (see proofs in the Appendix).

Lemma 5.2. Let1>7%>0and ) > 0.

4(\/1—ﬁ/2—\/1—ﬁ)zk

() If >p>0, then0>%+2,/(l—ﬁ)pk—)t.
]
L (V=T V) 2
(b) Ifp > — then—+2,/(1—r))p —A>0.
N
4(\/1—ﬁ/2—\/1—ﬁ)2)t 7
() Ifp = — ,then7+2,/(l—ﬁ)p)k—)L:O.
1
2
Lemma5.3. Let1> 7 > Oand A > 0, then A/(1—7)) > 4 (\/1 52— /1 —ﬁ)
s
Lemma 5.4. Let2>7%>0and ) > 0.
22 21 ]
@ If ————=>p> then0>(1——)p—2,/p)t+k.
247—227 24+7+2y21 2
21
b) If ——————=>p>0o0rp> then(l——)p 2\/pA +
24+ 74227 2+n 2\/_
A>0.

21

24 ( 77)
———orp Jthen (1 — = | p—2+/pA+A=0.
2142y L 24 -2y 2

Lemma5.5. Let7 > Oand A > 0, then 41 > 21/ (2 i 2,/2ﬁ).

© Ifp=

Lemma 5.6. Let A > 0.

8
(a) If§ >ﬁ>0,then2

8
(b)If1>ﬁ>§,then — >

() Ifn = 8 then

A
247-2y2 1-7

Lemma 5.7. Let1>7%>0and ) > 0.

16(2—-7—-2,/1-7)A _
@ If ( _ ) >p>0,then0>%—2(1—,/1—ﬁ)\/p_k,
1
16(2—-7-2/1-7) A =
M) Ifp > ( - >,men%p—2(1—m)\/ﬁ>o.
N

6(2_ﬁ_ﬁf l_ﬁ)A,thenﬁ?p—ZO— \/Tﬁ> Vpi=o.

© Ifp=0orp=

Lemma 5.8. Let A > 0.
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16(2-7-2yT=7)2
— >

8
(a) If§ >7 >0, then

N -7
8 Ao 16(2=7-2/T=7)A
®) If1 >1n > —, then — > — .
9 1-7 2
s 16(2-7-2/T=7)2
(c) If 1 = —, then — = —.
9 /N 1-7

Lemma5.9. Let 1 > 7 > Oand & > 0, then 41 /(1 —7) > 16 (2—5—2,/1 —ﬁ)
)P > 4.
Lemmas 5.8 and 5.9 imply 7 € (0,3/4) = 4p, > p, > 4A > p, > 0 and
ne(3/4,8/9) = 4p, > p, > p, > 41> 0.

We present weakly risk-seeking agent’s optimal response to any contract offers
(w,p) € R? in Proposition 5.10.

Proposition 5.10. Consider a weakly risk-seeking agent (1 € (0, 8/9)).
(a) Given

pe(0,p,] andw > (1 — g)p (5.7)

then the agent accepts the contract and installs w*(w,p) = 0 with resulting
expected utility rate us(u*(w,p);w,p) = w— (1 —75/2)p > 0. The agent
rejects the contract if both p € (0,p,] and w € (0, (1 —77/2)p).

(b) Given

pe@ipy) andw = 2 +2/T—7pk - A (58)

then the agent accepts the contract and installs u*(w,p) = /(1 —=)pr — A
with resulting expected utility rate us(u*(w,p);w,p) =w—"1p/2—2

VA =mpA + A = 0. The agent rejects the contract if both p € (p,,p5)

andw € (O,ﬁp/Z + 2/ (1 —=7n)pA — /\).

(¢) Given
p =pyandw > w, (5.9)

then the agent accepts the contract and is indifferent about installing either

ww,p) = (A =mp,A — A or u*(w,p) = +/p,A — A. In both cases

the agent receives us(W*(w,p);w,p) = w—w, > 0. If r € (0,p,), then

there exists w* such that ((w*,ﬁz),u* = /(1 =7n)pyA —l) is the unique
admissible solution (see Definition 5.1). If r = p,, there exists w* such
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thar (W, Pp)oi* = Bk =2) and (0" ).n* = T = sk — 4)

are both admissible solutions. If r > p,, then there exists w* such that

((w*,ﬁz), w* = \/[72_/1— X) is the unique admissible solution (for proof see

Proposition 5.13). The agent rejects the contract if bothp = p, andw € (0, w>).
(d) Given

p>pyandw > 24/pA— A (5.10)

then the agent accepts the contract and installs u*(w,p) = +/pA — A with
resulting expected utility rate ua(u*(w,p);w,p) = w—2/pA + A > 0. The
agent rejects the contract if both p > p, and w € (0, 2pA — A).

Proof. According to Table 5.1, the behavior of u() when 7 € (0,3/4] versus
n € (3/4,8/9) is different. Therefore we prove the proposition separately for
n € (0,3/4]and 7 € (3/4,8/9).

Casen € (0,3/4]: According to Lemmas 5.8 part (a) and 5.9, 4p, > p, > 41 >
P, > 0. Figure 5.2 depicts the shape of u(i) when 77 € (0, 3/4] and the value of p
falls in different ranges. The structure of the proof when 77 € (0, 3/4] is depicted
in Fig. 5.3.

Casep € (0,1_71]: According to Table 5.1, u(w) is decreasing with respect to

1>0. Thus the agent’s optimal service capacity is u*(w, p) = 0 and from (5.3)
u(u*(w,p)) = w— (1 —7/2)p. Note that 1 —7/2 > 0.

Subcase w € (0, (1 —7/2)p): u(u*(w,p)) < 0, therefore the agent rejects
the contract.

Subcasew > (1 —7/2)p:  u(p*(w.p)) > 0, thus the agent would accept the
contract if offered.

Casep € (51,41]: According to Table 5.1, the service capacity that max-

imizes u(u) lies in (0,4). p* is computed from first order condition
du() /dptlymyr oy = 0 = @ w.p) = A —Mpk — A > 0 and from
B3 u(pw*(w,p)) = w—1p/2 —24/(1 —=n)pA + A. According to Lemmas 5.2

part (b) and 5.3, 7p/2 + 2+/(1 = )pA — A > 0, therefore we examine the
following subcases.

Subcase w € (0, w/2+ 21 =q)pA — A): u(p*(w, p)) < 0, therefore the
agent rejects the contract.

Subcasew > 3p/2 + 2/ (A =)pA —A:  u(u*(w,p)) > 0, thus the agent
would accept the contract if offered.

Casep € (41,4171]: According to Table 5.1, there is a service capacity that

maximizes u(u) for u € (0, A] and a service capacity that maximizes u(u) for
@ > A. Denote the optimal service capacity in (0, A] by /LZ‘O’A] (w, p). From the

first order condition the optimal service capacity is :“Zko, Al (w, p)=+/(1=1)pA—A
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I B]
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n
> (11— = *—0
u*( 2)p “
P — .
o (o2 T )
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np
w2z o+ 2/ -mpA = A =/ =mpX =X
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v (02 v )
3
RS (0, Z] p € (4X,P2)

p
'w2?+2\/(1717)p - p =@ =mpA = A

p € (4X,4pq] }—{ P = D2

wo= /(T =mpaX — A

or p* = /PaX — A

w > Wy

w € (0,2vpX — \)

p € (P2, 4P1]

w € (0,2vpX — A)

Fig. 5.3 Structure of the proof for Proposition 5.10 when 77 € (0, 3/4]

and from Eq.(5.3) u (MZM] (W,p)) =w—T1p/2 —2/(1 —=7)pA + A. Denote
the optimal service capacity for ;1 > A by u} (w, p), which is obtained from first
order condition du(u)/dMqur(wyp) =0 = pufw,p) = /pA — A and from
Eq.(53)u (;,Lj{ (w,p)) = w — 24/pA + A. The agent has a choice of two service
capacities and he installs the one that generates a higher expected utility rate.
Note that u(,u:{(w,p)) — u(ufo’ﬂ(w,p)> = 7p/2 =2 (1 — 1—ﬁ> vV PA.
According to Lemma 5.9, 4p, > p, > 42, therefore we examine the following
subcases.

Subcasep € (4A,p,): By Lemma 57 part (a), u (MTO,A](W’P» >
u (,uj (w,p)), therefore the agent’s optimal service capacity is u*(w,p) =
VA =mpr—Aandu(u*(w,p)) = w—1p/2—2+/(1 —7)pA + A. According

to Lemmas 5.2 part (a) and 5.3, 5p/2 + 2+/(1 —)pA — A > 0, therefore we
examine the following subcases.
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Subsubcase w € (o,ﬁp/z +2/d=qpr — A): u(i*(w, p)) < 0, thus
the agent rejects the contract.

Subsubcase w > 9p/2 + 2/ (1 —p)pA —A:  u(u*(w,p)) > 0, therefore
the agent would accept the contract if offered.

Subcase p = p,:  According to Lemma 5.7 part (c), u (/LZ‘O')L] (w,p)) = M(/LI

(w, p)), indicating that installing either “?0. Al (w,p,) or w3 (w,p,) leads to the
same agent’s expected utility rate. Therefore the agent is indifferent about
installing u*(w,p) = V(A —npA — A or u*(w,p) = \/ﬂ — A. Still, the
capacity value leads to admissible solutions (see Proposition 5.13). Recall
the definition of w, from (5.6). By Lemma 5.2, p, > 41 > p;, = w, =
npy/24+24/(1 —)p,A—A > 0, therefore we examine the following subcases.
Subsubcase w € (O,Wz): u(i* (w,p)) < 0, therefore the agent rejects the
contract.
Subsubcase w > wy:  u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

Subcase p € (py,4p;]:  From Lemma 5.7 part (b), u (u5(w.p)) > u(ufy
(w, p)), therefore the agent’s optimal service capacity is u*(w, p) = \/p_)k - A
and u(i*(w,p)) = w—2/pA+A.Since p > p, > 41 = 2,/pA—1 > 31 >
0, therefore we examine the following subcases.

Subsubcase w € (0, 2\/1)_}» - A): u(*(w, p)) < 0, thus the agent rejects
the contract.

Subsubcase w > 2\/1)_1 — A u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.

Casep > 4p;: According to Table 5.1, the service capacity that maximizes u(u)
satisfies 4 > A. From the first order condition the agent’s optimal service
capacity is ,u*(w,p)z\/p—)t—/\ and from Eq. (5.3) u(u*(w, p)) = w—2\/ﬂ+)t.
Since p > 4p; > 4A, therefore 2\/;5 — A > 31 > 0 and we examine the
following subcases.

Subcase w € (O, ZM— A): u(*(w,p)) < 0, thus the agent rejects the
contract.

Subcase w > ZJIJ_A —A: u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

This completes the proof for Proposition 5.10 when 77 € (0, 3/4].

Casen € (3/4,8/9): According to Lemmas 5.8 and 5.9, 4p, > p,>p,>4A1>0.
Figure 5.4 depicts the shape of u(i) when 7 € (3/4,8/9) and the value of p falls
in different ranges. The structure of the proof when 7 € (3/4,8/9) is depicted in

Fig.5.5.
Casep € (0,4A]: According to Table 5.1, u(u) is decreasing with respect to
@ > 0. Therefore the agent’s optimal service capacity is u*(w,p) = 0 and

from Eq. (5.3) u(u*(w,p)) = w— (1 —7/2)p. Note that 1 —7/2 > 0.
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Fig. 5.5 Structure of the proof for Proposition 5.10 when 77 € (3/4,8/9)

Subcase w € (0, (1 —7%/2)p): u(u*(w.p)) < 0, therefore the agent rejects
the contract.

Subcasew > (1 =7%/2)p: u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Casep € (4A,171]: According to Table 5.1, there is a service capacity that

maximizes u(p) for w € [0,4) and a service capacity that maximizes u(u)
for 4 > A. Denote the optimal service capacity in [0, 1) by /LE‘Z),A) (w, p). Since
u(p) is decreasing with respect to p over [0, ), therefore /L?E),A)(W, p) =0

and from (5.3) u (,uif)‘l)(w,p)) = w — (1 —77/2)p. Denote the optimal service

capacity for 4 > A by u} (w, p). From first order condition p} (w, p) = /pA — A
and from (5.3) u(uj(w,p)) = w — 24/pA + A. The agent has to choose
one of the two service capacities and he installs the one with higher expected

utility rate. Note that u (1} (w,p)) — u (,u[*zu) (w,p)) ={1-7/2p—-2pr+
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A. According to Lemma 5.5, 41 > 21/ (2 +7+ 2,/2ﬁ> and according to
Lemma 5.6, 21/ (2 +7— 2\/25) > p,. Therefore according to Lemma 5.4

part (a), u (uﬁ) N2 p)) > u (3 (w.p)), the agent’s optimal service capacity is
w*(w,p) = 0and u(u*(w,p)) = w—(1—7/2)p. Note that 1 —7/2 > 0, therefore
we examine the following subcases.

Subcase w € (0, a- ﬁ/Z)p): u(u*(w,p)) < 0, therefore the agent rejects
the contract.

Subcasew > (1 —=7%/2)p: u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Casep € (1_71,4171]: According to Table 5.1, there is a service capacity that

maximizes u(u) for u € (0, A] and a service capacity that maximizes u(u) for
@ > A. Denote the optimal service capacity in (0, 1] by /szo’ A (w, p). From first

order condition the optimal service capacity is /,LFO‘ A w,p) = VA —=7)pA — A

and from (5.3) u (M?O,)L] (w,p)) =w—"7p/2 —2,/(1 =7)pA + A. Denote the
optimal service capacity for 4 > A by uj(w,p). From first order condition

wiw,p) = y/pA — A and from (5.3) u(uf(w,p)) = w—24/pA + A. The
agent has a choice of two service capacities and he installs the one that generates

a higher expected utility rate. Note that u(u: (w, p)) —u (MZ"O_A](W, p)) =

np/2-2 (1 —1= ﬁ) v/PA. According to Lemmas 5.8 and 5.9, 4p, > p, > Py,
therefore we examine the following subcases.

Subcase p € (p;,p,): ByLemma5.7 part (a), u (/L?OM (w,p)) > u(us(w,p)),

therefore the agent’s optimal service capacity is u*(w,p) = /(1 —=)pA — A

and u(u*(w,p)) = w—1p/2—2/(1 —)pA + A. According to Lemmas 5.2

and 5.3, p > p, = np/2 + 2/(1 —=)pA — A > 0, therefore we examine the

following subcases.

Subsubcase w € (o,ﬁp/z +2/d=qpr — A): u(i*(w,p)) < 0, thus
the agent rejects the contract.

Subsubcase w > gp/2 + 2/ (1 —p)pA —A:  u(u*(w,p)) > 0, therefore
the agent would accept the contract if offered.

Subcase p = p,: According to Lemma 5.7 part (c), ”(szko,/\](w’p)) =
u (13(w,p)), indicating that installing o (w.P2) or py(w,py) leads to
the same agent’s expected utility rate. Therefore the agent is indifferent about

installing u*(w,p) = V(1 =npA — A or u*(w,p) = /pA — A. Still, the

capacity value has to lead to admissible solutions (see Proposition 5.13).
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Recall the definition of w; in (5.6). According to Lemma 5.2, p, > p; =

Wy = 1Mp,/2 + 2/ (1 —=9)p,A — A > 0, therefore we examine the following

subcases.

Subsubcase w € (O,Wz): u(u*(w, p)) < 0, therefore the agent rejects the
contract.

Subsubcase w > wy:  u(u*(w,p)) > 0, so the agent would accept the
contract if offered.

Subcase p € (p,,4p;]: ByLemma5.7 part (b), u (u} (w.p)) >u<u2‘0)‘] (w,p)),
therefore the agent’s optimal service capacity is u*(w, p) = \/p_/\ — A and

u(w*w,p)) =w—24/pr+ A.Sincep >p, > 4L = 2,/pA — 1 > 31 > 0,
therefore we examine the following subcases.

Subsubcase w € (0, 2,/pA — ).): u(*(w, p)) < 0, thus the agent rejects
the contract.

Subsubcase w > 2,/pA — A:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.

Casep > 4p,;: According to Table 5.1, the service capacity that maximizes u(u)
satisfies & > A. From the first order condition the agent’s optimal service
capacity is u*(w,p) = \/_ A and from (5.3) u(u*(w,p)) = w— 2\/— + A.
Since p > 4p, > 4A, therefore 2\/_ A > 31 > 0 and we examine the
following subcases.

Subcase w € (0, ZM— )L): u(u*(w,p)) < 0, thus the agent rejects the
contract.

Subcase w > ZJI)—A —A: u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

This complete the proof for Proposition 5.10 when 77 € (3/4,8/9). |

To summarize: Given exogenous market conditions that enable a mutually bene-
ficial contract between a principal and weakly risk-seeking agent (see Theorem 5.17
later), the agent determines his service capacity by using one of only two formulas:

=/A=TprA—A>0o0ru*(w,p) = \/_ A>0

The conditions when a weakly risk-seeking agent accepts the contract can be
depicted by the shaded areas in Fig.5.6, where 7 = 0.5. The three shaded areas
with different grey scales represent conditions (5.7), (5.8) and (5.10) under which
the agent accepts the contract but responds differently. The lower bound function
of the shaded area (denoted by wy(p)) represents the set of offers of zero expected
utility rate for the agent. The wy(p) line is defined as follows:
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Fig. 5.6 Conditions when a weakly risk-seeking agent accepts the contract with 7 = 0.5

(1 - g)pwhenp € (0.5,]

wo(p) = ’77” +2/(T=7pA — A when p € (5, P>

24/pA — A when p > p,

Since lim,—5- wo(p) = limp_>ﬁ1+ wo(p) = (1 —71/2)p; and limy—5- wo(p) =
limp_%k wo(p) = 1p,/2 + 24/ (1 =71)p,A — A, therefore wy(p) is con-

tinuous everywhere over interval p € Ry. Since lim,—5- dwo(p)/dp =

limp_>l,)1+ dwo(p)/dp = 1 — 7/2, therefore wy(p) is differentiable at p = p;.

However since lim, - dwo(p)/dp = 7 (2 —J1 —ﬁ> /4 (1 — m> £

n/4 (1 -1 —ﬁ) = limp_)ﬁ;r dwo(p)/dp, therefore wo(p) is not differentiable
at pP = ﬁz.
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5.1.1 Sensitivity Analysis of a Weakly Risk-Seeking Agent’s
Optimal Strategy

A principal does not propose a contract that will be accepted by the agent but results
in zero service capacity. Therefore the only viable cases when the agent accepts the
contract and installs positive service capacities are: u*(w,p) = /(1 = 7)pA — A or
W (w.p) = /pA —A.

First the case when a weakly risk-seeking agent installs w*(w,p) =
v (1 =1m)pA — A. According to (5.8) the compensation rate w is bounded below by
np/2 + 2 (A =n)pr — A = pP(1) —7p (P(1) — 1/2) + u*(w, p), with the term
pP(1) representing the expected penalty rate charged by the principal and the term
np (P(1) — 1/2) representing the expected risk rate perceived by the agent when
the optimal capacity is installed. It dictates that the agent be reimbursed for the
expected penalty rate and the cost of the optimal service capacity discounted by his
perceived risk rate in exchange.

The optimal service capacity /(1 —7)pA — A depends on p, A, and 7. Its
derivatives are:

ap* (1-m)A au* (1-7mp au* pA
w V4 VT m and o a1—7)

The above derivatives indicate that given a A and 7 the agent will increase the service
capacity when the penalty rate increases. Note that /(1 — )pA —A, as a function of
A, decreases when A > (1—7)p/4. From conditions (5.8) and (5.9) the agent installs
service capacity /(1 —7)pA — A when p € (p,,p,], and according to Lemma 5.9
we have 4p, > p,. Therefore we have 4A/(1—=71) = 4p, > p = A > (1-7)p/4 =
0 > du*/0A. Thus, given the penalty rate and the risk coefficient, the agent will
decrease the service capacity when the failure rate increases. Given a penalty rate
and a failure rate, the agent will reduce the service capacity when he is more risk-
seeking.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
VA =mpA — Xis uf = ua(u*w,p)iw,p) = w—1p/2 = 2,/(1 =7)pA + A,
and it depends on w, p, 7 and A. Note that du}/dw = —1 < 0, du}/dp =
—1/2 — /(1 =)A/p < 0, indicating that the agent’s optimal expected utility rate
decreases with the compensation rate and the penalty rate. Note that du}/dn =
—ﬁ(ﬁ— \/ﬁ) /2. From Proposition 5.10 p < p, < 4p; = /p < \/ﬁ,
therefore the agent’s optimal expected utility rate increases with his risk intensity.
Note that du}/0A = — (/p — v/P1) / /P> and from Proposition 4.23 p > p, =
P = \/1_7_1 > 0, therefore the agent’s optimal expected utility rate decreases with
the failure rate.

Then the case when a weakly risk-seeking agent installs u*(w, p) = \/ﬂ —A.In
this case the agent’s optimal strategy is identical to the optimal strategy when he is
risk-neutral. According to (5.10) the w is bounded below by 2\/[7_)L —A=pP(1) +
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w*(w, p), with the term pP(1) representing the expected penalty rate charged by
the principal. It indicates that the agent will have to be reimbursed for the expected
penalty rate and the cost of the optimal service capacity.

The optimal service capacity \/ﬂ — A depends on the penalty rate p and the
failure rate A. Its derivatives are du*/dp = /A/4p > Oand du* /oA = /p/4r—1.
These derivatives imply that given A, the agent will increase the service capacity
when the penalty rate increases. Note that \/p_k — A, as a function of A, increases
when p/4 > A. From conditions (5.9) and (5.10) the agent installs service capacity
\/p—)t — A when p > p,, and according to Lemma 5.9 we have p, > 4A. Therefore
we have p > 44 = p/4 > A = du™/9dA > 0. Thus, given p, an agent will increase
1 when A increases.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
\/p—)t —Adsuy = ua(W*(w,p);w,p) = w— 2\/p_)t + A, and it depends on w, p
and A only. Note that du’/dw = —1 < 0, du’/dp = —\/A/p < 0, indicating
that the agent’s optimal expected utility rate decreases with the compensation rate
and the penalty rate. Note that du}; /01 = —\/p/_)k + 1, and from Proposition 5.10
p>py > 4L = —\/m + 1 < 0, therefore the agent’s optimal expected utility
rate also decreases with the failure rate.

Summary: Recall that given the set of contract offers {(w,p) : p € (0, A],w > p}
a risk-neutral agent would accept the contract, install u*(w,p) = 0 and
receive expected utility rate u(u*(w,p);w,p) = w — p. Given the set of offers

{(w,p) p>Aw>24pA— /\} he would accept the contract, install u*(w, p) =

VPA — A and receive expected utility rate u(u*(w,p);w,p) = w —2/pA + A.
By comparing the optimal capacities of a weakly risk-seeking agent to that of a
risk-neutral agent, three conclusions are drawn.

1. The principal has to set a higher penalty rate p in order to induce a weakly risk-
seeking agent to install a positive service capacity versus a risk-neutral agent
(p > A for risk-neutral agent, p > A /(1 —7) for weakly risk-seeking agent).

2. When p is relatively low, u plays a more prominent role in the utility of a weakly
risk-seeking agent who therefore installs a p lower than that when he is risk-
neutral (\/ﬂ — A > /(1 =7)pA — ). As p increases, the weakly risk-seeking
agent installs p that is identical to the one for risk-neutral agent (\/ﬁ —A).

3. Weakly risk-seeking agent is not worse off.

This conclusion is restated in Proposition 5.11.

Proposition 5.11. Given w and p, an agent who accepts the contract and installs
a positive service capacity has a non-decreasing expected utility rate with 1 for

7 € [0,8/9).

Proof. Recall that when the compensation rate w and the penalty rate p
satisfy conditions (5.8) and (5.9), the agent installs service capacity u*(w,p)

VI =mpr — A > 0, and the agent’s expected utility rate is u (u*(w, p))

w—T1p/2 —2,/(1 —7)pA + A. Note that du/07 = —p/2 + /pA/(1—7) =
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—ﬁ(ﬁ— \/ﬁ) /2. According to Lemma 5.9, 4p, > p, > p, therefore
du/d7n > 0. When the compensation rate w and the penalty rate p satisfy conditions
(5.9) and (5.10), the agent installs service capacity u*(w,p) = \/p_)t -1 >0,
and the agent’s expected utility rate is u (u*(w,p)) = w — 2\/p_k + A, therefore
ou/on = 0. |

Corollary 5.12. Given w and p, an agent who accepts the contract and subse-
quently installs a positive service capacity will not be worse off when he is weakly
risk-seeking (1 € (0, 8/9)) than risk-neutral ( = 0).

We return to the case of 7 > 8/9 in Sects. 5.2.1 and 5.3.

5.1.2 Principal’s Optimal Strategy

We now proceed to derive the principal’s optimal strategy. Anticipating the agent’s
optimal selection of u*(w,p) the principal chooses w and p that maximize her
expected profit rate by solving the optimization problem

w

ri* (w.p) pA
I ut = -
max p(w,pi ™ (w,p)) N T o) W+)L+,u*(w,p)
(5.11)

Denote (W*vp*) = argmaxw>0,p>0 HP(W’ p; M*(va))

Before deriving the principal’s optimal strategy, we examine the case when the
principal offers p = p, and w > w,, under which the agent is indifferent about
installing two different service capacities. In such a case, the solution ((w, p), )
has to be an admissible solution (see Definition 5.1). We state this case formally in
Proposition 5.13.

Proposition 5.13. Suppose a weakly risk-seeking agent. Assume that the princi-
pal’s possible offers are constrained to set {(w,p) : p = Dy, w = Wp}.

(@) If r € (0,p,), then the agent installs p* = /(1 =n)p,A — A if offered a
contract.

(b) If r = D, then both u* = /(1 =Pk — A and pu* = \/pyA — A lead to
admissible solutions and the agent installs either /(1 — )p,A—A or \/172_1 -
if offered a contract.

(¢) Ifr > p,, then the agent installs u* = \/1_72_1 — A if offered a contract.

Proof. Note that for w > W, we have aT1p(w, py: 1)/ = (r — py)A/ (A + p)>.
Define u;, = /(1 =mp,A — A and puy = \/1_72_1 — A. Note that uy > pp. If
r € (0,p,), then dllp/dp < O, therefore ((w,p,), ur) > ((w,p,), un). If the
principal offers a contract (the conditions are discussed in detail in Theorem 5.17
that follows), then by Definition 5.1 only p; leads to admissible solutions and we
obtain (a). If r > p,, then d[1p/dp > 0, therefore ((w,p,), uu) > ((W,p,), Lr)-
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If the principal offers a contract (the conditions are discussed in Theorem 5.17 that
follows), then by Definition 5.1 only 1ty leads to admissible solutions and we obtain
(c). If r = p,, then dT1p/dp = 0, indicating that the principal receives the same
expected profit rate when the agent installs capacity p; or wg. If the principal offers
a contract (the conditions are discussed in Theorem 5.17 that follows), then both .
and gy lead to admissible solutions. Therefore we obtain (b). O

Notation:
1 =7p, +(1—ﬁ)\/17’172_% (\/17\/172\/17)7"2 = (1-7p, +7p2 (\/172\/—[7\/171)
-/ )

(5.12)

Note that 7, and 7, are functions of A and 77. However we suppress the parameters
(A7)
We define p,, as follows':

_ 1 —\2
Peu = 53 (b+C+0C) (5.13)

wherea =7,b = (1 —2ﬁ)\/ﬁ_, andd = —r\/ﬁ_land

jAI—,/Af—4A3

2

, where Ag = b2, A, = 2b° + 274%d

Replacing Ay and A by the expressions of a, b and d we have

w

21— 20 B} — 270 By + /108 r(1 — 0B + 729712,
C = and

\ 2

w

21— 20 B} — 270 /By — |/~ 1087r(1 — 20)F + T2971%p,

C=\ 5

Next we state a number of technical lemmas (see proofs in the Appendix).

Lemma 5.14. Let8/9 > 7 > 0and A > 0, then

I'The subscript “cu” stands for “cubic” because (5.13) is the square of the solution to Eq. (A.2),
which is a cubic equation that is introduced later in the proof for Lemma 5.15.
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VP = VP
N

(@ p, > (l_ﬁ)ﬁz‘i‘Wz( ) > 7pp + (1 — 0)ypiPy —

%( 2 )

2 \Ve -V
(b) (1 =P, + 7P, (%) > A
1

Lemma 5.15. Consider maxo[ s 1f(x) where f(x) = r + R

\/]71 ((1 =2n)x + r/x) and denote x* = argmax [ s /7] f(x). The solutions to
this optimization problem are:

(@) x* = \/p, ifr € (0,A].
) x* = /Pew € (VP1, VDo) if T € (A, T).
©) x* = /p,ifr>".

Lemma 5.16. Consider max ... s f(x) where f(x) = r+ A — VA (x+ r/x) and
denote x* = argmax, . NS f(x). Solutions to this optimization problem are

(@) x* = /p, if r € (0,p,].
(b) x* = /rifr>p,.
Lemma 5.14 implies p, > 7, > 7 and 7, > A.

Recall that Proposition 5.10 describes the agent’s optimal response to each pair
(w,p) € Ri. Since the principal will not propose a contract that ex ante is going
to be rejected by a weakly risk-seeking (WRS) agent, therefore Theorem 5.17 only

considers pairs (w, p) € Ri that result in agent’s non-negative expected utility rate.
Define

D57y = {(w, p) that satisfies (5.7) when 77 € (0,8/9)}

D 5.8y = {(w, p) that satisfies (5.8) when 77 € (0,8/9)}

Ds.9) = {(w, p) that satisfies (5.9) when 77 € (0,8/9)} (5.14)
Ds5.10) = {(w, p) that satisfies (5.10) when 77 € (0, 8/9)}

Dwrs = D57) UDs.8) U D509 U D510

Theorem 5.17. Given a weakly risk-seeking agent and (w,p) € Dwgs.
(a) Ifr € (0, A], then the principal does not propose a contract.

(b) If r € (A, 7,), then the principal’s offer and the capacity installed by the agent
are:

0% .%) = (T 4 2 TP = 3Dy ) and i 5*.5%) = VT = =
(5.15)

and the principal’s expected profit rate is:
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* W(ﬁu — =\ /=
Tp(w™, p™; " W™, p)) = r A = =% = \/17_1((1 — 20 \/Peu +

)

(5.16)

(c) Ifr € [F2,p,), then the principal’s offer and the capacity installed by the agent
are:

(W*.p") = (#2.5) and p*(W*.p") = /(1 =0)prA — A (5.17)

and the principal’s expected profit rate is:

* * * * * W — — —
Op(w*, p* ™ (w*.p ))=r+/\—72—\/171<(1—277)\/l7_2+

7

(5.18)

(d) Ifr > p,, then the principal’s offer and the capacity installed by the agent are
(w*.p*) = (2\/3—)&,;’) and w*(w*,p*) = Vrk — A (5.19)
and the principal’s expected profit rate is:
Op(w*, p*: w* (W, p*)) = r—2Vrdk + A (5.20)

Proof. The structure of the proof for Theorem 5.17 is depicted in Fig. 5.7.

Case (w,p) € Ds7:  According to Proposition 5.10 part (a), in case the principal
makes an offer, the agent accepts the contract but does not install any service
capacity. Since dI1p/dw = —1 < 0, thus we have w* = (1 — 7/2)p and from
(3.3) Hp(w*, p; u*(w*,p)) = —w* + p = 7p/2 > 0. However in such case
p > w* = (1 —71/2)p, which violates condition (c) in Definition 5.1, therefore
(w* = (1 =7/2)p,p), u* = 0) is not an admissible solution and the principal
does not propose a contract.

Case (w,p) € D58 U D9 According to Proposition 5.10 part (b), if (w, p) €
D53, then in case the principal makes an offer, the agent accepts the contract
and installs /(1 — 7)pA — A. Since 0I1p/dw = —1 < 0, therefore w* = 7p/2 +
2,/(1 =n)pA — A. According to Propositions 5.10 part (c) and 5.13, if (w, p) €
D 5.9y (which implies p = p,), then in case the principal makes an offer, the agent
accepts the contract and installs /(1 —7)p,A — A if r € (0, p,), installs either

VA =npA —Aor /pyA — A if r = p,, orinstalls \/p,A — A if r > p,. Since

dllp/dw = —1 < 0, therefore w* = w,. For convenience denote the principal’s
expected profit rate when (w, p) = (W, p,) and w*(w,p) = /(1 —7)p,A—A by
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(w,p) €D (5.7 No contract offered.

No contract offered.

«_ TPeq —
w :#4»2\/(1—11)@_“ -2

Risk-Neutral and p* =P, and p* = /(1 =P, A — X
Principal

with Weakly (w,p) €D (5.8) UD (5.9)

Risk-Seeking

Agent
r € [F2,Pa] |—| w* =Wy and p* = Py and p* = /(1 — MPar — A |

| T > Do |—| w* =Wy and p* =Py and p* = /PoX — A |

]

(w,p) €D (5.9) UD(5.10) |—| r € (0,max {0,71},Ps] H w* =Wy and p* =Py and p* = /(1T — 7)par — A

— w* = 2VrX — A and p* =1
and p* = VX — A

Fig. 5.7 Structure of the proof for Theorem 5.17

M5(p,), and denote the principal’s expected profit rate when (w,p) = (W2, P,)

and pu*(w,p) = /pA — A by 114 (p,). By plugging the value of w, p and
into (3.3):

M@y =r+4— 2 _ [ = om) /5 r):(\/p:_‘/p»l) r—7
P2 =r+ A== JE(( Ny~ N A

(5.21)

N} (py) =r +4— 2 (\/172 + r) (5.22)
NG

In such case the principal’s optimization problem is mMax,f 5] IIp

(w*, p; w*(w*, p)) where:

r.,.)t_ﬁ?p_\/ﬁil((l—zmx/ﬁ-i- ),fOTPE[ﬁlvﬁz)

max {T15(p,), 114 (p,)} , for p = p,

.
p(w*, p: u* (W™, p)) = N/

Define x = /p, the expression r + A —7jp/2 — \/1_)_1 ((1 -2n).p + r/ﬁ) can
be restated as f(x) = r + A — 7x?/2 — /p; ((1 — 27)x + r/x). Maximizing f (x)
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with respect to x over [ /p;, /P, ] is equivalent to maximizing r + A —7p/2 —
Vo1 ((1=27) /p + r/ /p) with respect to p over [p,, p,] in the sense that

2
argmax {r + A — . _ \/E ((1 —20)/p + L)} = | argmax f(x)
relpi7] 2 VP e[ Vrrvri]

From Lemma 5.14, p, > 7, > A and we examine the following subcases:

Subcaser € (0,A]: According to Lemma 5.15 part (a), p* = p,, which is
covered in (w, p) € ®(s57) and the principal does not propose a contract.

Subcaser € (A,72):  According to Lemma 5.15 part (b), p* = p, and
the principal’s expected profit rate is TTp(w*, p*; u*(w*,p*)) > Tp((1 —
1/2)p,,p1;0) = 7p,/2 > 0. Therefore the principal proposes a contract with
w* =7p./2 + 2/ —-7np,A— A and p* = p,, that induces the agent to
install u*(w*, p*) = /(1 —=9))p., A — A.

Subcase r € [F2,p,]:  According to Lemma 5.15 part (c), p* = p, and
according to Proposition 5.13 part (a) and (b) the principal’s expected profit
rate is TIp(w*, p*; w*(w*,p*)) = Tp(@,) > Tp((1 —7/2)p;,p1;0) =
np;/2 > 0. Therefore the principal proposes a contract with w* = w, and
p* = p, that induces the agent to install u*(w*, p*) = /(1 = ))p,A — A.

Subcase r > p,:  According to Lemma 5.15 part (c), p* = p, and according to
Proposition 5.13 part (c) her expected profit rate is ITp(w™*, p*; u*(w*, p*)) =
4@, > k@, > Op((1 —7/2)p;,p1;0) = 7p,/2 > 0. Therefore the
principal proposes a contract with w* = w, and p* = p, that induces the
agent to install u*(w*, p*) = \/1_72_)& - A

Case (w,p) € Dis9) U D100 According to Proposition 5.10 part (d), if (w, p) €

©(s.10), then in case the principal makes an offer, the agent accepts the contract
and installs /pA — A. Since dT1p/dw = —1 < 0, therefore w* = 2/pA — A.
According to Propositions 5.10 part (c) and 5.13, if (w,p) € D59, (Which
implies p = p,), then in case the principal makes an offer, the agent accepts
the contract and installs /(1 —=79)p,A — A if r € (0,p,), installs either

V(A =mpA —Aor \/1_72_1— A if r = p,, or installs \/ﬁz_/\ — A if r > p,. Since
dp/dw = —1 < 0, therefore w* = W,. Recall the definition of I15(p,) and
14 (p,) (see Egs. (5.21) and (5.22)). Thus the principal’s optimization problem
is max,>p, [1p(W*, p; u*(w*, p)) where:

max {Hﬁ(ﬁz), Hg(ﬁz)} ,forp =p,

HP(W P (W ,p))z r+k—ﬁ(\/ﬁ+%),forp>ﬁ2
p

Define x = ,/p, the expression r + A — Vi (ﬁ + r/ﬁ) can be restated as
f(x) = r+ A — VA (x4 r/x). Maximizing f(x) with respect to x > \/1_7—2 is



5.2 Optimal Strategies for the Moderately Risk-Seeking Agent 89

equivalent to maximizing r + A — v/A (\/p + r//p) with respect to p > p, in
the sense that

2
argmax { r+A—+vA (ﬁ + L)} = (argmaxf(x))

P N/ =P
According to Lemma 5.14, p, > 7. Also note that limﬁ_,oJr 71 = 2A and
according to Lemma 5.8 limy; ,g/9- 7 = —o0. Therefore we examine the

following subcases:

Subcase r € (0, max {0, 7‘1}]: According to Lemma 5.16 part (a), p* = p,.
According to Proposition 5.13 part (a), I1p(w*, p*; u*(w*, p*)) = I5(p,) <
0, therefore the principal does not propose a contract.

Subcase r € (max {0, 7‘1} ,172]: According to Lemma 5.16 part (a), p* = p,.
According to Proposition 5.13 part (a) and (b), ITp(w*, p*; u*(w*,p*)) =
M5(p,) > 0, therefore the principal proposes a contract with w* = W, and
p* = p, that induces the agent to install u*(w*, p*) = /(1 = 7)pA — A

Subcaser > p,: According to Proposition 5.16 part (b), p* = r and the
principal’s expected profit rate is TTp(w*, p*; u*(w*, p*)) = r—2/rA + A >
0. Thus the principal proposes a contract with w* = 2Vrk —Aand p* = r
that induces the agent to install u*(w*, p*) = V/rA — A.

To summarize, if r € (0, A], then the principal does not propose a contract. If r €
(A, 72), then the principal offers (w*,p*) = (@w /2420 =1mp A — /\,1_7(-,4)

and the agent installs capacity u*(w*,p*) = (1 =p,A — A If r € [F2,P5],
then the principal offers (w*,p*) = (w,,p,) and the agent installs capacity

w*w*, p*) = /(1 =np,A — A. If r > p,, then the principal offers (w*, p*) =
(2v rA—A, r) and the agent installs capacity u*(w*,p*) = VrA — A. |

Theorem 5.17 indicates that the existence of a beneficial contract for weakly
risk-seeking agent is determined exogenously by r, A, and 7.

5.2 Optimal Strategies for the Moderately Risk-Seeking
Agent

For the moderately risk-seeking agent we first derive the agent’s optimal strategy.
The agent’s optimization problem is defined in (5.3).

Notation:

B 2%
(5.23)

P -2y
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and the following identity is verified using the definition of p;:

w3z(1—g)ﬁ3=zJ@A—A (5.24)

Note that p; and w; are functions of A and 77. However we suppress the parameters
(A ’ ﬁ) *
Lemma 5.18. Let2 > 7 > 8/9and A > 0, then 21/ (2 +7 - 2‘/2ﬁ) > 4 (see
proof in the Appendix).

We describe a moderately risk-seeking agent’s optimal response to any (w, p) €
R in Proposition 5.19.
Proposition 5.19. Consider a moderately risk-seeking agent (1 € [8/9,2)).

(a) Given
p € (0,p;) andw > (1 — g)p (5.25)

then the agent accepts the contract and installs *(w,p) = 0 with resulting
expected utility rate us(UW*(w,p);w,p) = w— (1 —7/2)p = 0. The agent
rejects the contract if p € (0,p;] and w € (0, (1 —77/2)p).

(b) Given

p=psandw > Ww; (5.26)

then the agent accepts the contract and is indifferent installing either
w*w,p) = 0 or u*(w,p) = /p3A — A. In both cases the agent’s expected

utility rate is ua(W* (w,p);w,p) =w—(1=7/2)p; =w—24/p3A + A > 0. If
r € (0,p;], then neither u* = 0 nor u* = /p3A — A leads to admissible
solutions (see Definition 5.1). If r > ps, then there exists w* such that
((w*,1_73),;/,* = /P3A — )L) is the only admissible solution (for proof see
Proposition 5.20). He rejects the contract if p = p; and w € (0, w3).

(c) Given

p>pyandw > 24/pA—A 5.27)

then the agent accepts the contract and installs u*(w,p) = +/pA — A with
resulting expected utility rate us(n* (w,p);w,p) = w —24/pA + A > 0. The
agent rejects the contract if p > py and w € (O, 24/pA — )L).
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Proof. According to Table 5.1, the optimization of u() when 77 € [8/9, 1) versus
7 € [1,2) is different. Therefore we prove the proposition separately for 77 € [8/9, 1)
and 7 € [1,2).

Casen € [8/9,1): According to Lemmas 5.6 and 5.18, 4p, > p; = p; > 4A.
Figure 5.8 shows the shape of u(w) when 77 € [8/9, 1) and the value of p falls
in different ranges. The structure of the proof when 77 € [8/9, 1) is depicted in

Fig.5.9.
Casep € (0,4A]: According to Table 5.1, u(u) is decreasing with respect to
i > 0. Therefore the agent’s optimal service capacity is u*(w,p) = 0 and

from Eq. (5.3) u(u*(w, p)) = w— (1 —7/2)p. Note that 1 —7/2 > 0.

Casew € (0, a- ﬁ/Z)p) : u(u*(w,p)) < 0, therefore the agent rejects the
contract.

Casew > (1—=7/2)p: u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Casep € (41,171]: According to Table 5.1, there is a service capacity that

maximizes u(u) for u € [0, 1) and a service capacity that maximizes u(u) for
@ > A. Denote the optimal service capacity in [0, 1) by '“E), » (w, p). Since u(p)
is decreasing with respect to p over [0, A), therefore /,LEE)' 2 (w,p) = 0 and from

53)u (uf‘o P p)) = w— (1 —17/2)p. Denote the optimal service capacity for

i > A by pu(w,p). From first order condition u}(w,p) = y/pA — A and from

S3)u (,uj{ (w,p)) = w — 24/pA + A. The agent has to choose one of the two
service capacities and he installs the one with higher expected utility rate. Note

that u (/,L:(W,p)) —u (/L?E).A)(W,p)) = (1 —=7/2)p — 24/pA + A. According to
Lemma 5.5, 44 > 21/ (2 +7+ 2,/2ﬁ). According to Lemmas 5.6 and 5.18,
D1 > D3 > 4A, therefore we examine the following subcases.

Subcasep € (4A,p;): By Lemma 54 part (a), u(uﬁu)(w,p)) >

u (,uj (w, p)), therefore the agent’s optimal service capacity is u*(w,p) = 0

and u(u*(w,p)) = w— (1 —7/2)p. Note that 1 —7/2 > 0.

Subsubcase w € (0, 1 —ﬁ/Z)p): u(*(w,p)) < 0, therefore the agent
rejects the contract.

Subsubcase w > (1 —/2)p:  u(u*(w,p)) > 0, thus the agent would
accept the contract if offered.

Subcase p = p;:  According to Lemma 5.4 part (c), u(uﬁ)’x)(w,p)) =

u(py (w,p)), indicating that installing M[T)_A)(w,m) or uy(w,p;) leads to
the same agent’s expected utility rate. Therefore the agent is indifferent about
installing u*(w,p) = 0or u*(w,p) = \/p_)k — A. Still, the capacity value has
to lead to admissible solutions (see Proposition 5.20). Recall that by definition
w3 = (1 —7/2)p5 (see (5.24)). Note that 1 —77/2 > 0.



92 5 Risk-Seeking Agent

a b
3
& 4 2]
o
B
& 3
o
—_ — 8
3~ = 8
Z 5 2z 38
5 2 5 o
2
& 3
o
o
— < _
'8 a n=09,1=001,w=1,p=121 (20 n=09,1=001,w=1,p=7%
p=s o
T T
0 " 0 2
u n
p € (0,4A] p € (4X,P3)
[ d
< —
@ 7 o
=] o
©
<
3
© o
[
3 S
3
o
N
S - 8 -
—~ o —~ ©
2z o =
=] < =]
g
e 8
2 3
g |
o
©
o o
< 7=09,1=001,w=1,p=9.72 7=0.9,1=0.01,w=1,p=25%
& '
i T T
0 " 0 2
u u
p € (P3, 1] p € (Py, 471
e
©
@
o
<
<
o
N
&
2 o
1
o
o
o
[
l\_ =
o
o
~ / §=09,4=0.01, w=1,p=451
o
T
0 iy
n
p>4p;

Fig. 5.8 Illustration of the forms of () when 7 € [8/9, 1)



5.2 Optimal Strategies for the Moderately Risk-Seeking Agent 93

D] —
7

w>(1——)p *=0

> (1-2)s "

p € (0,4X]

p € (P1,4p1]

Fig. 5.9 Structure of the proof for Proposition 5.19 when 77 € [8/9, 1)

Subsubcase w € (0, (1 —7/2)p3):  u(u*(w,p)) < 0, therefore the agent
rejects the contract.
Subsubcase w > (1 —/2)p3:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.
Subcase p € (p3,p;]:  According to Lemma 5.4 part (b), u(u}(w,p)) >

u (,u[’g_ M(w, p)), therefore the agent’s optimal service capacity is u*(w,p) =
VA — A and u(u*(w,p)) = w—2/pA + A. Since p > p; > 41 =
24/pA — A > 31 > 0, therefore we examine the following subcases.

Subsubcase w € (0, 2./pA — ).): u(w*(w, p)) < 0, thus the agent rejects

the contract.
Subsubcase w > 2,/pA — A:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.
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Casep € (]71,4171]: According to Table 5.1, there is a service capacity that

maximizes u(u) for u € (0, A] and a service capacity that maximizes u(u) for
@ > A. Denote the optimal service capacity in (0, 1] by /LZ‘O’ (W, p). From first

order condition the optimal service capacity is :“Eko. A (w,p) = (A —=7)pr—2A

and from (5.3) u (“TM] (w,p)) =w-—7p/2 —2,/(1 —7)pA + A. Denote the
optimal service capacity for 1 > A by uj(w,p). From first order condition

wi(w,p) = y/pA — A and from (5.3) u (13 (w.p)) = w —24/pA + A. The agent
has a choice of two service capacities and he installs the one that generates a

higher expected utility rate. Note that u (1 (w,p)) — u (/L(*O, s p)) =7p/2 —
2 (1 — 11— ﬁ) /PA. According to Lemma 5.8, p; > p,, therefore according to

Lemma 5.7 part (b), u (1} (w,p)) > u (Mfo.x] (w,p)), the agent’s optimal service

capacity is u*(w,p) = /pA — A and u(u*(w,p)) = w — 2/pA + A. Since
p >p, > 4L = 2\/pA — A > 31 > 0, therefore we examine the following
subcases.

Subcase w € <0, 2./pA — ).): u(u*(w,p)) < 0, therefore the agent rejects

the contract.
Subcase w > 2,/pA — A:  u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

Casep > 4p,;: According to Table 5.1, the service capacity that maximizes u(u)
satisfies & > A. From the first order condition the agent’s optimal service
capacity is u*(w,p) = \/ﬁ — X and u(u*(w,p)) = w— 2\/[7_)t + A. Since
p > 4p, > 41 = 2\/p_/\ — A > 34 > 0, therefore we examine the following
subcases.

Subcase w € <0, 2\/1)_).—).): u(u*(w,p)) < 0, thus the agent rejects the
contract.

Subcase w > 2\/17 — A u(u*(w,p)) > 0, therefore the agent would accept
the contract if offered.

This complete the proof for Proposition 5.19 when 77 € [8/9, 1).

Case 5 € [1,2): Note that 44 > 0 > p; > 4p,; and according to Lemma 5.18,
D3 > 4A. Therefore p; > 41 > 0 > p, > 4p,. Figure 5.10 depicts the shape of
u(p) when 7 € [1,2) and the value of p falls in different ranges. The structure of
the proof when 7 € [1, 2) is depicted in Fig.5.11.

Casep € (0,4A1]: According to Table 5.1, u(u) is decreasing with respect to
i > 0. Therefore the agent’s optimal service capacity is u*(w,p) = 0 and
from Eq. (5.3) u(u*(w,p)) = w— (1 —7/2)p. Note that 1 —77/2 > 0.

Subcase w € (0, (1 —7%/2)p): u(u*(w.p)) < 0, therefore the agent rejects
the contract.
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Fig. 5.10 Illustration of the forms of u(x) when 7 € [1,2)

Subcasew > (1 —%/2)p: u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.

Casep > 4A: According to Table 5.1, there is a service capacity that maximizes
u(p) for u € [0,4) and a service capacity that maximizes u(u) for u > A.
Denote the optimal service capacity in [0,A) by /,LEE),A)(W, p). Since u(u) is
decreasing with respect to u over [0, A), therefore ,uif)’ » (w,p) = 0 and from

53 u (;LEEM) (w,p)) = w — (1 — 717/2)p. Denote the optimal service capacity

for 1 > A by pu}(w,p). From first order condition u}(w,p) = /pA — A and
from (5.3) u (/Lj{ (w,p)) = w — 24/pA + A. The agent has to choose one of the
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Fig. 5.11 Structure of the proof for Proposition 5.19 when 77 € [1, 2)

two service capacities and he installs the one with higher expected utility rate.
Note that u (/,LI (w,p)) —u (/L[’;M) (W,p)) = (1-7/2)p—2+/pt+ A. According

to Lemma 5.5, 44 > 21/ (2 +7+ 2,/2ﬁ) and according to Lemma 5.18,
D3 > 44, therefore we examine the following subcases.

Subcase p € (4A,p3): ByLemma 5.4 part (a), u (/JLFE)YM(W,p)) >u (us(w.p)),
therefore the agent’s optimal service capacity is pu*(w,p) = 0 and
u(u*(w,p)) =w—(1—-7/2)p. Note that 1 —7/2 > 0.

Subsubcase w € (0, (1 —%/2)p): u(u*(w.p)) < 0, therefore the agent
rejects the contract.

Subsubcase w > (1 —7/2)p:  u(u*(w,p)) > 0, thus the agent would
accept the contract if offered.

Subcase p = p3:  According to Lemma 5.4 part (c), “(ﬂro.x)(va)) =

u (13(w,p)), indicating that installing o2y (W, P3) or 15 (w,p3) leads to

the same agent’s expected utility rate. Therefore the agent is indifferent about

installing u*(w,p) = 0 or u*(w,p) = \/p_)t — A. Still, the capacity value has

to lead to admissible solutions (see Proposition 5.20). Recall that by definition

of ws = (1 —7/2)p; (see (5.24)) and 1 —77/2 > 0 = w3 > 0.

Subsubcase w € (0,W3): u(u*(w, p)) < 0, therefore the agent rejects the
contract.

Subsubcase w > w3:  u(u*(w,p)) > 0, thus the agent would accept the
contract if offered.
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Subcase p > p;:  From Lemma 5.4 part (b), u (1 (w,p)) > u (;LE’EM) (w,p)),

therefore the agent’s optimal service capacity is u*(w,p) = /pA — A and

u(u*(w,p)) =w—24/pA+ A.Sincep > p; > 41 = 2,/pA— 1 > 31 >0,
therefore we examine the following subcases.

Subsubcase w € (0, 2,/pA — A): u(*(w, p)) < 0, thus the agent rejects

the contract.
Subsubcase w > 2,/pA — A:  u(u*(w,p)) > 0, therefore the agent would
accept the contract if offered.

This completes the proof for Proposition 5.19 when 7 € [1, 2). O

In summary, under the exogenous market conditions such that a contract between
the principal and a moderately risk-seeking agent is feasible (see Theorem 5.22
later), only one formula is needed for the agent to compute his optimal service
capacity: *(w,p) = /pA — A > 0.

The conditions when a moderately risk-seeking agent accepts the contract can
be depicted by the shaded areas in Fig.5.12, where 7 = 1. The two shaded areas
with different grey scales represent conditions (5.25) and (5.27) under which the
agent accepts the contract but responds differently. The lower bound function of the
shaded area (denoted by wy(p)) represents the set of offers that give the agent zero
expected utility rate. wy(p) is defined as follows:

n _
Wwo(p) = (1 E)pwhenp € (0,ps]
2./pA — A when p > p;,

Since lim,—pr wo(p) = lim 1 wo(p) = (ﬁ + ﬁ) A/ (ﬁ - ﬁ), there-

P—>D3
fore wo(p) is continuous everywhere over interval p € R,. However since

lim,5- dwo(p)/dp = 1 —=7/2 # 1 - {/7/2 = limp_)ﬁJr dwy(p)/dp, therefore
N 3
wo(p) is not differentiable at p = p;.

5.2.1 Sensitivity Analysis of a Moderately Risk-Seeking
Agent’s Optimal Strategy

Since the principal does not propose a contract that even if accepted will result in
zero service capacity, therefore the only viable case is when the agent accepts the
contract and installs positive service capacity: u*(w,p) = \/p_/\ — A. In such a
case the agent’s optimal strategy is identical to the optimal strategy for risk-neutral
agent. According to (5.10) the compensation rate w is bounded below by 2\/p_ —
A = pP(1) + u*(w, p), with the term pP(1) representing the expected penalty rate
charged by the principal when the optimal capacity is installed. It indicates that the
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Fig. 5.12 Conditions when a moderately risk-seeking agent accepts the contract with 77 = 1

agent has to be reimbursed for the expected penalty rate and the cost of service
capacity.

The optimal service capacity \/p_)k — A depends on the penalty rate p and the
failure rate A. Its derivatives are du™*/dp = /A/4p > O and du* /oA = /p/4A —
1. These derivatives suggest that given the failure rate, the agent will increase the
service capacity when the penalty rate increases. Note that \/ﬂ — A, as a function
of A, increases when p/4 > A. From conditions (5.26) and (5.27) the agent installs
service capacity \/p_)& — A when p > p;, and according to Lemma 5.18 we have
D3 > 4A. Therefore we have p > 44 = p/4 > A = du*/dA > 0. Thus, given
the penalty rate, the agent will increase the service capacity when the failure rate
increases.

The agent’s optimal expected utility rate when installing capacity u*(w,p) =
\/ﬂ —Adsuy = ua(W*(w,p);w,p) = w— 2\/15 + A, and it depends on w, p
and A only. Note that du’/dw = —1 < 0, du’/dp = —/A/p < 0, indicating
that the agent’s optimal expected utility rate decreases with the compensation rate
and the penalty rate. Note that du; /01 = —\/p/_)t + 1, and from Proposition 5.10
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p > Dy > 4L = —/p/A + 1 < 0, therefore the agent’s optimal expected utility
rate also decreases with the failure rate.

Summary: Recall that given the set of offers {(w,p):p e (0,A],w>p} a
risk-neutral agent would accept the contract, install u*(w,p) = 0. When

{(w,p) p>Aw>24pA— /\} he would accept the contract, install u*(w, p) =

v/ pA — A and realize an expected utility rate u(u*(w, p);w,p) = w — 2/pA + A.
By comparing the optimal capacities of a moderately risk-seeking agent to that of a
risk-neutral agent, three conclusions are drawn.

1. The principal has to set a higher p in order to induce a moderately risk-seeking
agent to install a positive service capacity versus a risk-neutral agent (p > A for

2
risk-neutral agent, p > p; = 21/ (\/5 — ﬁ) > A for moderately risk-seeking
agent).

2. A moderately risk-seeking agent would install the same positive service capacity
as a risk-neutral agent (\/ﬁ —A).

3. Given w and p, an agent who accepts the contract and subsequently installs a
positive service capacity will receive the same expected utility rate when he is
moderately risk-seeking (77 € [8/9, 2)) as risk-neutral (7 = 0).

5.2.2 Principal’s Optimal Strategy

We now proceed to derive the principal’s optimal strategy. Anticipating the agent’s
optimal selection of p*(w,p) the principal chooses w and p to maximize her
expected profit rate by solving the optimization problem

max Ilp(w,p; u*(w,p)) = m T (v, p) —w pA
w>0,p>0 w>0p>0 | A + p*(w, p) A+ u*(w,p)
(5.28)
where the principal’s optimal solution values are (w*,p*) = argmax,.g,.g

Op(w. p; u*(w. p)).

Before we describe the principal’s optimal strategy, we reexamine the case when
the principal offers p = p; and w > w3, under which the agent is indifferent
about installing two different service capacities. The selected solutions ((w, p), )
have to be admissible solutions (see Definition 5.1). We state this case formally in
Proposition 5.20.

Proposition 5.20. Suppose a moderately risk-seeking agent and principal. Assume
that the principal’s offers are constrained to {(w,p) : p = p3, w > Ws}.

(a) Ifr € (0,p3), then the principal does not propose a contract.
(b) If r > p,, then the agent installs u* = /p3A — A if offered a contract.
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Proof. Note that for w > w3 we have dT1p(w,p5; )/ = (r — p3)A/(A + )%
Define u;, = 0 and uy = \/ﬁ3_)t — A and note that uy > pup. If r € (0,p;), then
dllp/dp < 0, therefore ((w, p3), 1r) > ((w,p3), iy) and the agent would install py
if offered a contract. However condition (c) in Definition 5.1 requires that w > p;,
therefore I1p(w,p;3; ) = —w + p3 < 0 and the principal would not propose a
contract. If r = p;, then dI1p/du = 0, therefore the agent installs either w; or
upy if offered a contract. However in such case the principal’s expected profit rate is
p(w, ps; ur) = p(w, ps; uy) = —w+ p3, which is non-positive due to condition
(c) in Definition 5.1, thus the principal would not propose a contract. If r > p;, then
dallp/opn > 0 and ((w,p3), uu) = ((w,p3), ir)- If the principal offers a contract
(where the conditions will be discussed in detail in Theorem 5.22 that follows), then
by Definition 5.1 only py leads to admissible solutions. O

Lemma 5.21. Consider max . s f(x) where f(x) = r + A — VA (x + r/x) and
denote x* = argmax . N (x). The solutions to this optimization problem are (see
proof in the Appendix):

@ x* = /py if r € (0,73].
(b) x* = Jrifr>p,.

The principal’s optimal strategy is described in Theorem 5.22. Recall that
Proposition 5.19 describes the agent’s optimal response to each pair (w,p) € Ri.
Since the principal will not propose a contract that is going to be rejected by a
moderately risk-seeking (MRS) agent, therefore Theorem 5.22 only considers pairs
(w,p) € Rﬁ_ that result in agent’s non-negative expected utility rate. Define

D525 = {(w, p) that satisfies (5.25) when 77 € [8/9,2)}
D526 = {(w, p) that satisfies (5.26) when 77 € [8/9,2)}
D527y = {(w, p) that satisfies (5.27) when 77 € [8/9,2)}
DMrs = D525 U D526 U D527

(5.29)

Theorem 5.22. Given a moderately risk-seeking agent and (w, p) € Durs-

(a) If r € (0,ps], then the principal does not propose a contract.
(b) Ifr > p;, then the principal’s offer and the capacity installed by the agent are

w*,p*) = (2M—A,r) and p*(wW*,p*) = Vrk — A (5.30)
and the principal’s expected profit rate is
HOp(w*, p* i W*W*, p*)) = r—2vrA + A (5.31)

Proof. The structure of the proof for Theorem 5.22 is depicted in Fig. 5.13.



5.2 Optimal Strategies for the Moderately Risk-Seeking Agent 101

Risk-Neutral
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with Moderately
Risk-Seeking

(w,p) €D (5.26) UD (5.27)

w* = 2v7rX — X and p* =1
and p* = VrXx — A

Fig. 5.13 Structure of the proof for Theorem 5.22

Case (w,p) € D550 According to Proposition 5.19 part (a), in case the princi-
pal makes an offer, the agent accepts the contract but does not install any service
capacity. Since dI1p/dw = —1 < 0, thus we have w* = (1 —77/2)p and from
(3.3) Ip(w*, p; u*(w*,p)) = —w* + p = 7p/2 > 0. However in such case
p > w* = (1 —7/2)p, which violates condition (c) in Definition 5.1, therefore
(w* =0 -=7/2)p,p), u* = 0) is not an admissible solution and the principal
does not propose a contract.

Case (w,p) € Ds26) U D270 According to Proposition 5.19 part (c), if
(w,p) € Ds527), then in case the principal makes an offer, the agent accepts
the contract and installs \/ﬁ — A. Since dl1p/dw = —1 < 0, therefore
w* = 2,/pA — A. According to Propositions 5.19 part (b) and 5.20, if
(w,p) € D(s526) (Which implies p = p;), then the principal does not propose
a contract if r € (0, ps], or installs \/[_73_)t — A in case the principal makes an
offer when r > p;. Since dIlp/0w = —1 < 0, therefore w* = wj. Denote the
principal’s expected profit rate when (w,p) = (ws,p;) and u*(w,p) = 0 by
I15(p;), and denote the principal’s expected profit rate when (w,p) = (W3, p3)
and u*(w,p) = \/;_73_)L — A by I1%(p;). By plugging the value of w, p and u
into (3.3):

_ N\~ ,- _np
H%’(Ps) = - (1 - E) p3+p3 = 73 (5.32)

Hg(ﬁ3)=r+k—ﬁ</17_3+ \/r,—,_) (5.33)
3

In such case the principal’s optimization problem is max,>p, ITp(W*, p; u*(w*, p))
where:

max {H%(I_%)’ H;I(l_%)} ,forp = p;

p(w™, p; u™(W*, p)) = r—I—A—\/X(\/ﬁ‘i‘% ,forp > p;
p
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Define x = /p, the expression r + A — Vi (ﬁ +r/ ﬁ) can be restated as
f(x) = r+ A — vA (x + r/x). Maximizing f(x) with respect to x > \/13_3 is
equivalent to maximizing r + A — v/A (VP +r/ \/13) with respect to p > p; in
the sense that

2
s fr+4= B (1 )} = (smnavro)

Therefore we examine the following subcases.

Subcase r € (0,173]: According to Lemma 5.21 part (a), p* = p; and accord-
ing to Proposition 5.20 part (a) the principal does not propose a contract.

Subcase r > p;:  According to Lemma 5.21 part (b), p* = r and the principal’s
expected profit rate is ITp(w*, p*; w*(w*, p*)) = r—2VrA + A > 4@, >
5(p;) = 7ps/2 > 0. Thus the principal proposes a contract with w* =
24/rk—X and p* = r that induces the agent to install 1*(w*, p*) = v/rA —A.

To summarize, if r € (0,p;], then the principal does not propose a contract. If
r > ps, then the principal offers (w*, p*) = (2\/ rA—A, r) and the agent installs

capacity u*(w*, p*) = ~/rA — A. |

Theorem 5.22 indicates that the existence of a contract for moderately risk-
seeking agent is determined exogenously by the r, A, and 7.

5.3 Optimal Strategies for the Strongly Risk-Seeking Agent

We start by deriving the strongly risk-seeking agent’s optimal strategy. The agent’s
optimization problem is defined in (5.3).
First a technical lemma (see proof in the Appendix).

Lemma 5.23. Let7 > 2and A > 0.
21 7
(a) Ifm>p>0,then 1—5 p—Z\/p)L+A>0
21 7
b) [ ——— =, then 0 1—=)p—2ypr+A.
® fp>2+ﬁ+2\/2_ﬁ’ - >( 2)p .
2 7
Ifp=——""—"=th l—=|p—-2ypr+Ar=0.
© bp 247 +227 en( 2)p P

We describe a strongly risk-seeking agent’s optimal response to any possible
offered contract (w, p) € R? in Proposition 5.24.



5.3 Optimal Strategies for the Strongly Risk-Seeking Agent 103

a b
N i
o 1
- <
Q_
e
8 S
< <
o
—_ —_— Q_
= B
. =
=] o >
o
«©
o 4
o
& 8
o O :
N=4,1=001,w=1,p=2% P M=4,4=001,w=1,p=5%x
3 H
T T o T T
0 A 0 s
u u

Fig. 5.14 Illustration of the forms of u(y) when 7 > 2

Fig. 5.15 Structure of the
proof for Proposition 5.24
when7 > 2

Proposition 5.24. Consider a strongly risk-seeking agent (1 > 2). ¥V w > 0 and
p > 0, the agent accepts the contract and installs w*(w,p) = 0 with resulting
expected utility rate ua(uW*(w,p);w,p) =w— (1 —=7/2)p > 0.

Proof. Figure 5.14 shows the shape of u(x) when 77 > 2 and the value of p falls in
different ranges. The structure of the proof when 77 > 2 is depicted in Fig. 5.15.

Casep € (0,4A]: According to Table 5.1, u(u) is decreasing with respect to u >
0. Therefore the agent’s optimal service capacity is u*(w, p) = 0 and from (5.3)
u(u*(w,p)) = w— (1 —7/2)p. Note that 1 —77/2 < 0, therefore V w > 0,
u(iu*(w, p)) > 0 and the agent would accept the contract if offered.

Casep > 4A: According to Table 5.1, there is a service capacity that maximizes
u(p) for w € [0,4) and a service capacity that maximizes u(u) for © > A.
Denote the optimal service capacity in [0,A) by /,LEE),A)(W, p). Since u(u) is
decreasing with respect to p over [0, 1), therefore ,uif)’ » (w,p) = 0 and from

53 u (/LE‘EM) (w,p)) = w — (1 — 737/2)p. Denote the optimal service capacity

for 4 > A by u}(w,p). From first order condition u}(w,p) = /pA — A and

from (5.3) u (uj{(w,p)) = w — 2,/pA + A. The agent has to choose one of
the two service capacities and he installs the one with higher expected utility
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rate. Note that u (u}(w,p)) — u (;LFEW(W,p)) = (1 =7/2)p — 2/pr + A.
If 7 = 2, then u(uf(w,p)) — u (MEB,A)(W’P)) = —2/pA + A, and since

p>4r & 2\/pA > 4L & 0> =31 > —2/pA+ A, wehave u (ufa’l)(w,p)) >
u (u}‘ (w.p)).If7] > 2, then according to Lemmas 5.5 and 5.23 part (b), p > 41 >

21/ <2 +7+ 2\/2_ﬁ) = u (/LEB.A)(W,p)> > u(uf(w,p)). Thus the agent’s
optimal service capacity is w*(w,p) = 0 and u(u*(w,p)) = w — (1 —7/2)p.
Note that 1 —7/2 < 0, therefore V w > 0, u(u* (w, p)) > 0 and the agent would
accept the contract if offered. O

Proposition 5.24 indicates that a strongly risk-seeking agent does not commit
any capacity, therefore the principal does not propose any contract, which we state
formally in Theorem 5.25.

Theorem 5.25. A principal never offers a contract to a strongly risk-seeking agent.

Proof. According to Proposition 5.24, the agent accepts the contract but does not
install any service capacity for all (w, p) € Ri. In such case the principal’s expected
profit rate is ITp(w, p; u*(w,p)) = —w + p. Since condition (c) of Definition 5.1
requires that w > p, therefore ITp(w, p; u*(w,p)) < 0 and the principal does not
propose a contract to a strongly risk-seeking agent! O

5.4 Risk-Seeking Agent: A Summary

Recall the definition of p,, 7, and p; from (5.5), (5.12) and (5.23). The conditions
when a principal makes contract offers to a risk-seeking agent is depicted by the
shaded areas in Fig. 5.16. The horizontal axis represents the agent’s risk coefficient
7, and the vertical axis represents the revenue rate generated by the principal’s
equipment unit, which is exogenously determined by the market. The principal
makes different offers to the agent when (r,7) is in the three shaded areas with
different gray scales. We define

_ _ | pyforne(0,8/9)
P13 =5, for 7 € [8/9,2)

Since lil’nﬁ_ﬂg/c))— }_723 = limﬁﬁ(g/gﬁ ﬁ23 = 91 and lil’nﬁ_ﬂg/g)— 8ﬁ23/8ﬁ =
lim;_, (5/9)+ 0Po3/97 = 814/4, and note that limy—y— pp; = limj—r—-p3 = +o00,
therefore p,, is continuous and differentiable everywhere over (0, 2). In Fig.5.16
we only describe the conditions of a risk-neutral principal making offers to a weakly
and moderately risk-seeking agent (77 € (0, 2)), because the principal never makes a
contract offer to a strongly risk-seeking agent (7 > 2).

The revenue rate parameter r is determined exogenously by the market, and we
assume that the principal is only interested in operating the equipment when the
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Fig. 5.16 Conditions when a principal makes contract offers to a risk-seeking agent

revenue rate is sufficiently high, specifically r > p,;. In such case weakly and
moderately risk-seeking agents would behave exactly the same as a risk-neutral
agent, and a strongly risk-seeking agent will never be offered a contract.



Chapter 6
Summary

In this paper we examine a basic principal-agent arrangement for contracting an
exclusive equipment repair service supplier. The system setting consists of one
principal, one agent, and one revenue generating unit that breaks down from time
to time and needs to be repaired when a failure occurs. Our assumptions are that
the risk-neutral principal maximizes her expected profit rate given market driven
revenue rate r collected during the unit’s uptime, the unit’s failure rate A, and the
agent’s risk attitude . We consider different agent types — risk neutral, weakly
risk-averse, strongly risk-averse, weakly risk-seeking, moderate risk-seeking, and
strongly risk-seeking. As is common in a principal-agent context the principal
cannot contract directly for the agent’s service capacity . The nature of the
principal-agent contract is that the principal supports the agent at a compensation
rate w > 0 but imposes on the agent a penalty rate p > 0 during the time the unit is
down. We note that the nature of the contract does not change if the w is paid to the
agent only during the unit’s uptime. In fact, the two contract versions are equivalent
(see Observation 3.1).

The main contribution of this paper is in the complete analysis of the contractual
details that have to be addressed in the agreement between the unit’s owner and
the supplier of repair services. Our pedestrian assumptions are that the failure rate
of the equipment unit is a constant A, the repair time duration has an exponential
distribution with a constant repair rate . Furthermore, we do not restrict the
contract to a specific period of time, rather the contract can be for undetermined
time. With the assumption that both the principal and the agent are infinitely rational
the surprising outcome is that calculating the optimal strategies for the two parties
in all circumstances can be accomplished with an aid of small number of formulas
— 7 sets in total. That is, given exogenously determined values of market driven
revenue rate, equipment’s failure rate, repair capacity marginal cost, and the type of
a repair agent, it is straight forward to calculate principal’s optimal contract offer
if one exists, together with agent’s optimal service capacity decision. An optimal
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contract consists of compensation rate w and penalty rate p, both determined by the
principal, and the capacity value of i determined by the agent.

Our analysis of the above principal-agent cooperation is divided into three
main parts based on agent’s type starting with risk-neutral agent. The second part
examines the case of a contracting a risk-averse agent followed by the analysis of
a contract given a risk-seeking agent. To our knowledge analysis of principal-agent
with risk-seeking agent has not received much coverage in the literature.

As for the analysis of principal-agent construct given a risk-neutral agent, for the
entire range of exogenous parameters’ values, it can be summarized for the principal
by one set of formulas calculating optimal compensation rate w* = 24k — A
and optimal penalty rate p* = r. The agent’s optimal capacity rate formula is
w*(w*, p*) = /rA—A. We note that this case has the property that without checking
if the given market conditions guarantee the existence of a contract, by calculating
principal’s optimal contract terms w* and p* and agent’s optimal capacity value
w*(w*, p*), we simultaneously verify contract existence if the resulting pu* (w*, p*)
is positive. If the optimal capacity value is zero or negative, then it means that the
given market conditions do not support a service contract. It also important to note
that, for our principal-agent given a risk-neutral agent, if an optimal contract is
feasible then it is also efficient.

When considering a risk-averse agent the first task is to decide on the appropriate
mathematical expression that captures the agent’s disutility with regard to his
revenue dispersion. After examining risk premium expressions in the literature we
opted for a new risk expression not yet seen in the literature. We express agent’s
disutility as np(1/2—[1/2—A /(A4 w)|). This measure of agent’s utility value due to
his revenue fluctuation is introduced and discussed in Chap. 4. The main points are
that the risk expression acts like standard deviation and is unit-wise compatible with
other terms of agent’s utility. In high revenue industry, if the principal contracts with
a risk-averse agent with the risk disutility measured by the dispersion of the agent’s
revenue stream, then agent’s risk-aversion reduces the principal’s optimal penalty
rate and leads to deterioration of the equipment unit’s performance. Furthermore,
with risk-averse agent the principal is strictly worse off in relation to risk-neutral
agent and the social welfare is reduced as the agent’s risk-aversion increases.

We divided risk-averse agents into two types based on risk intensity parameter 7.
That is, for n € (0,4/5) we refer to the agent as weakly risk-averse (Sect.4.1) and
for n > 4/5 we refer to the agent as strongly risk-averse (Sect.4.2). A weakly risk-
averse agent has only two formulas to consider: (i) w*(w, p) = /(1 — n)pA — A or
(i) u*(w,p) = /(1 + n)pA — A. Only one formula, the same as (ii), is sufficient
given a strongly risk-averse agent. Formula (i) exists only for WRA agent because
when the penalty rate is low, the savings from reducing the service capacity is more
prominent than the increase in the penalty charge, providing an incentive for the
agent to reduce the optimal service capacity, which deteriorates the performance
of the principal’s equipment unit. When the penalty rate becomes high, WRA
agent increases his service capacity to reduce the penalty charge, which results in
formula (ii).
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For a risk-seeking agent we adopt a risk premium expression that reflects the
expected amount at stake instead of the dispersion of his revenue stream. Our
new risk premium expression is consistent with the theoretical developments and
empirical evidences regarding the properties of risk in recent literature. We express
agent’s risk premium as —np (A/(A + @) — 1/2), which is unit-wise compatible
with other terms of agent’s utility (see Chap.5). If the principal contracts with a
risk-seeking agent with low penalty rate, then the agent’s risk-seeking deteriorates
the performance of the principal’s equipment unit. If the principal contract with a
risk-seeking agent with high penalty rate, then she can achieve the same equipment
performance and contract efficiency as with a risk-neutral agent. However a
principal never contracts with a strongly risk-seeking agent.

We categorize risk-seeking agents into three types based on 7 — risk intensity
parameter. That is, for 7 € (0,8/9) we refer to the agent as weakly risk-seeking
(Sect.5.1), for 7 € [8/9,2) we refer to the agent as moderately risk-seeking
(Sect. 5.2) and the agent as strongly risk-seeking (Sect.5.3). A weakly risk-seeking
agent has only two formulas to consider: (i) u*(w,p) = /(1 —=7n)pA — A or (ii)
w*w,p) = \/p_A — A. Only one formula, the same as (ii), is sufficient given a
moderately risk-seeking agent. A strongly risk-seeking agent never commits any
service capacity. Formula (i) exists only for WRS agent because when the penalty
rate is low, the risk premium covers the penalty charge thus provides an incentive
for the agent to reduce the optimal service capacity compared to risk-neutral. When
the penalty rate increases, WRS agent increases his service capacity to reduce the
penalty charge that cannot be covered by risk premium, which results in formula (ii).

6.1 Interpreting Table 6.1

Table 6.1 summarizes the formulas for calculating the principal’s optimal contract
terms and the agent’s optimal service capacity when a contract is supported by
exogenous market and industry conditions. Mutually exclusive exogenous condi-
tions that support a contract are listed in the column labeled “Exogenous Condition”,
and the formulas of the principal’s optimal contract terms and the agent’s optimal
capacities are listed in the column labeled “Principal’s Formula” and “Agent’s
Formula” respectively.

If a set of specific market and industry values are observed, namely the value of
the agent’s risk coefficient 7 (or 7), the revenue rate r, and the failure rate A, then
these values can be validated against the exogenous conditions listed in the table.
If the set of values satisfies a certain condition, then the principal’s formula and the
agent’s formula corresponding to that condition can be used to calculate the optimal
contract terms and the optimal capacity. No contract is supported if the set of values
does not satisfy any condition listed in the table.

To verify that whether the observed values of 7, r, and A satisfy a certain
condition, one has to calculate the values that separate the range of r into different
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intervals, including p», p3, r2, 3, pa, ra, 72, Py, and ps. Recall that p, and p; are
defined in (4.5), r, and r3 are defined in (4.12), p4 and wy are defined in (4.23), ry4
is defined in (4.28), p, is defined in (5.5), 7, is defined in (5.12), and p; is defined
in (5.23). Furthermore, to calculate the principal’s optimal contract terms and the
agent’s optimal capacity, one may need to calculate the values of p.,, w3, p,,, and
ws. Recall that p., can be calculated using (4.13), ws is defined in (4.6), p., can be
calculated using (5.13), and w; is defined in (5.6).

Specifically, note that when the revenue rate r € (ps, r;), there are two sets of
formulas listed in the table to calculate the principal’s optimal contract terms and
the agent’s optimal capacity:

(W*’p*) = (npcu + 2V (1 - U)PcM - )chu) s M*(W*vp*) =V (1 - 77)pcuA -2
W*.p*) = (wa,p3) , w*W*.p*) = V(1 + n)psA — A

According to Proposition 4.20 it is difficult to identify the principal’s optimal offer
when r € (p3, r,) due to the difficulty of computing p., (see Eq. (4.13)). However,
given the value of 7, r, and A, the principal’s expected profit rate of both offers can
be calculated (see the formulas for calculating the principal’s expected profit rate in
Proposition 4.20), and the offer with higher expected profit rate should be selected
by the principal.

In summary, this paper provides a small set of formulas that exhaustively covers
the computing of Pareto optimal principal-agent contract offer and corresponding
service capacity for any values of market and industry parameters.
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Appendix

Proof of Lemma4.1. Let 1 > n > 0 and A > 0, then np + 2./(1 — n)pA —
A increases with respect to p > 0. Further more, if p = A/(1 — n), then

np + ZW — A = A/(1 = n). Therefore if p > A/(1 — n), then
mp + 2/ (I=npr —A = A/(1 —n) > 0. On the other hand if p > 1/(1 — 1),
then p — (np—l—Zm—/\) = (m- ﬁ)z > 0, therefore p >
np + 24/ (1 —mpA — A O
Proof of Lemma4.2. Let 1 > n > 0 and A > 0. Define x = ,/p and

a = +/A and restate the expression np — 2(«/1—{— —«/l—r)) VpA o as
nx? — 2(«/1—{— —«/1—n)ax with x > 0 and a > 0. The solutions to

the quadratic equation nx*> — 2(./1 +n—41- r)) ax = 0 for x are 0 and
2(«/1—}— —./l—n)a/n. Therefore if x > 2(«/1—}— —«/l—n)a/n, or

equivalently, x> > 8 (1 — 1= 172) a*/n?, then nx? =2 (VT+n— V/T—1)ax >

0. Replacing x by ,/p and a by VA we obtain (a). The proofs for (b) and (c) are
similar. O

Proof of Lemma 4.3. Let1 > n > 0and A > 0, then we have

(ViFn-vin) >0 1-VITa/T—g>0
S l+n—yI+n/1—n>n
@(1+n)(/r—m>2>n2
& (VIFn-VI=n) /= 1/0+0)
<:>8(1—\/1——r;2)/\/772>4/1/(1+n)
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Also we have

(VIFn-vi—n) >060> yTiny/T-p-1
&n>VI+n/T-n-(0-n)
s> (- (ViTa-yT-n)
& 1/(1-n > (ﬁ—ﬂ)z/nz
©4A/(1—n)>8(1—\/1——;72)/x/n2

a

Proof of Lemma 4.4. Letn > 0and A > 0.Ifp > 41 /(1+ 1), then 2,/(1 + n)pA —
A>4L -1 =31>0. |

Proof of Lemma 4.5. Let n > 0 and A > 0. Define x = /p and a = VA and

restate expression p — 2./(1 + n)pA + A as x> — 2ax/T + n + a®> where x > 0
and a > 0. The solutions to the quadratic equation x> — 2ax/T + n + a*> = 0 for

xare (T+n— /) aand (VT+ 7+ /1) a. Therefore if (T+ 1+ /7)a >
x > («/1 + 71— /1) a, or equivalently, (1 +2n4+24/n(1 + n)) a > x* >

(1 +2n—=2/n(1 + n)) a?, then 0 > x* — 2ax/T + n + a*. Replacing x by ./p

and a by VA we obtain (a). The proofs for (b) and (c) are similar. O
Proof of Lemma 4.6. Letn > 0 and A > 0. Note that

I+ 0> VT =2/yTHn> YT+ > 1/ (VT+0+ Vi)
&2/(+n)>Vi+n—-n
s 4/ > (Vitn-va)
@41/(1+n)>(1+2n—2\/m)x

Proof of Lemma 4.7. Let4/5 > n > 0and A > 0, then we have

dn—5° >0 2/n(1—n)>1n
S 14+2yn(l—n)>14n

o (Vima+va) > (Vi)
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S J1-n+n>+1+7
o JI=n>J1+n1-n
Ty (VT+0+ i) > 1
& (14 2042/ +m) 2> 2/(1=n)

and we obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.8. Let4/5 > n > 0and A > 0, then we have
M= >1+n&3/1—yp> 1+
S4/T—n>J1+n+/1-7
©2\/1—n(\/1+n—\/1—n) >
s 40— (VITn-vizn) >
& 8(1=vT=n2) 2/ > 2/(1 =)

and we obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.13. Let 4/5 > n > 0 and A > 0. First we prove (a)
and (b) together. According to Lemma 4.8 part (a), p3 > p», therefore

py = nps+ (L—mps > nps + (1 —n)/paps > np2 + (1 — n)p2 = pa.
Next we prove (c). According to Lemma 4.8 part (a), p3 > p», therefore

2 (V3= /p2) /P2 > 0 = (1+21(yp5— yP2) //P2)p3 > ps. Finally

we prove (d). According to Lemma 4.3, we have 4p, > ps, therefore
2P > D3 & P2 > 3 — P2 & 1 > (p3— P2) //P2. Therefore
(1+2nps > (1421 (P35 — /P2) / /P2) P5- O
Proof of Lemma 4.14. Let n > 0 and A > 0. Define x = . /r and a =
VA and the expression r — 2/(1 +2n)rA/(1+n) + A can be restated as

x> — 2ax/(1 +2n)/(1 +1n) + a*> with x > 0 and a > 0. The solutions
to the quadratic equation x> — 2ax /(1 +2n)/(1+n) + o> = 0 for x

are («/1 +2n— ﬁ)a/«l +1n and («/1 +2n+ \/ﬁ)a/«/l +n. Thus if
(WT+2n+ yn)a/JT+n > x> (VT+2n— n)a//T+ 1, or equivalently,
if (1 v 342000+ 2n)) a/(1+1)>2> (1 rap—2/n0 + 277)) a/(1 +
1), then 0 > x> —2ax+/(1 + 21)/(1 + n) + a*. Replacing x by /7 and a by ~/A we

obtain (a). The proofs for (b) and (c) are similar. O

Proof of Lemma 4.15. Let 1 > n > 0 and A > 0, and we have /1+1n >
J1—nand /1+2n > /5, therefore we have 2/1+n > JI+n +
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VT—nand 2/T+2n > /1+2n + /7. By multiplying these inequalities
AVT+2pyT+n > (VT+2n+ /1) (VT+n++/T=n). By multiply-
ing (VT+7n—+/T—=7n) and dividing 2n/T+7 on both sides we have
2VT+2n (VT+0—T=1n)/n > (VT+2n+ /7). By squaring both sides

(U4 2mps > (14 37+ 2/ +2) A/(1 + ). 0
Proof of Lemma 4.16. Note that f(x) is continuous and differentiable over interval
(VP2 /P3]:
df(x) r dzf(x) 2rf
T —2nx — /P2 ((1 —2n) — —2) and =-2n—
df (x)
=Pt ——==——(r—p)
dx = /m J_ J_
df (x) P2 _ P2
g - = (r—nr)
X =yps p3 p3

If r € (0.p], then f(x) is decreasing over [,/p2. \/p3], therefore x* = /p;. If
r > ry, then f(x) is increasing over [\/p_, \/p_;], therefore x* = JP3-1fr € (p2, 1),
then f(x) is increasing in the neighborhood above x = ,/p; and decreasing in the
neighborhood below x = /p3. Also note that d’f(x)/dx* < 0, therefore x* €
(\/P2. /P3) that satisfies the first order condition

&)

- =0=2(*) + (=20 yp () —rypr =0 (A1)

*

X=X

which is a cubic equation. According to the general formula for roots of cubic
equation, x* = /pes € (/P2 /P3)- O

Proof of Lemma 4.17. Note that f(x) is continuous and differentiable for x > ,/p3:

T Py g B 2
__\/_(1+277_—2) and e = _ 3 ! <0

o, m T

I (r=rs) and lim == = (1 +2i)/pi <0

If r € (0, 73], then f(x) is decreasing for x > ,/p3, therefore x* = /p3. If r > r3,
then f (x) is increasing in the neighborhood above x = ,/p3 and decreasing when x
approaches +oc. Also note that d°f(x)/dx* < 0, therefore x* > ,/p3 that satisfies

first order condition df (x)/dx|,=x = 0 = x* = /r/(1 4+ 27). |
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Proof of Lemma 4.22. Letn > 1/3 and A > 0. Note that
>1e2y7>/1+1
& VJ1+n>2 (/ﬁ— ﬁ)
ot (ViTnt i) >4
& (14204 2/ + M)A > 44/(1+7)

a

Proof of Lemma 4.25. Note that f(x) is continuous and differentiable for x > /ps:

df(x) r d*f(x) _2rypr

T ——@(l+2n—;) and I <0

df (x) VP . df(x)

A = VP d lim =2 = —(1+2 0
dx | = pe T i g = A amp <

If r € (0, r4], then f(x) is decreasing for x > ,/pa, therefore x* = /py. If r > 1y,
then f'(x) is increasing in the neighborhood above x = ,/p4 and decreasing when x
approaches +oo. Note that d%f(x) /dx* < 0, therefore x* > /ps satisfies first order

condition df (x) /dx|,=» = 0 = x* = /r/(1 + 27n). |
Proof of Lemma 4.26. Letn > 0 and A > 0, then we have

I(VTF20=VTH0) 41> 0 0> —/iyT+ 20+ /iyT+n-1
& VT+myT+n> (Vi+2n+ i) (VI+1- Vi)
& (Vitn+yn) Vi+om> (Vi+2m+ i) /V/T+0

by squaring both sides we have (1+2n)ps > (1 +3n+2/nl + 277)) A/(1+4n).0

Proof of Lemma 5.2. Let 1 > 7 > 0 and A > 0. Define x = \/p anda = VA and
restate the expression 7p/2 + 21/(1 —J)pA — A as 7x?/2 + 2ax+/(1 —7) — a®

with x > 0 and @ > 0. The solutions to the quadratic equation 7x*>/2 +

2ax /(I —7) —a® = 0 for x are 0 > —2<\/1—ﬁ/2+ \/l—ﬁ) a/7 and

2(\/1 /2 — /1 —ﬁ) a/f > 0. Therefore ifz(\/l —/2— /1 —ﬁ) a/i >
2

x > 0, or equivalently, 4(\/l—ﬁ/2— \/1—ﬁ> /7 > x> > 0, then 0 >
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7x2/2 + 2axy/(1 —7) — a®. Replacing x by ,/p and a by /A we obtain (a). The
proofs for (b) and (c) are similar. O

Proof of Lemma 5.3. Let1 > 7% > 0and A > 0, then we have
0>7 -2 &7 —47+4>27 —67+4
& Q2-7)7>4(01-7/2(1-7)
& 2-7>2/1-7/2/1-7
& 7>2/1-7/2/T-7-2(1-7)
S 1/VT=7>2(VI=7/2= V1=7) /7

&2/ >4 (VT2 VT-7) /7

a

Proof of Lemma 5.4. Let2 > 7 > 0 and A > 0. Define x = ,/p and a = A
and restate the expression (1 — 77/2)p — 24/pA + A as (1 — 7j/2)x*> — 2ax + a?
with x > 0 and @ > 0. The solutions to the quadratic equation (1 — 7j/2)x> —

2ax + a* = 0 for x are +/2a/ (ﬁ—i— ﬁ) > 0 and ﬁa/(ﬁ— ﬁ) > 0.
Therefore if +/2a/ (ﬁ— ﬁ) > x > 2a/ (\/5 + ﬁ), or equivalently,
242/ (2 +h— 2\/ﬁ) > 2 > 242/ (2 . 2\/ﬁ), then 0 > (1 — 7/2)x* —
2ax + a>. Replacing x by ,/p and a by /A we obtain (a). The proofs for (b) and (c)

are similar. O
Proof of Lemma 5.5. Let7] >0and A > 0,then 1+ /27 >0 2+ /21> 1 &
x/§>l/<\/§+ﬁ>©4A>2/1/(2+ﬁ+2,/2ﬁ). o

Proof of Lemma 5.6. Let 8/9 > 7 > 0 and A > 0, then we have
87— 9% > 0 & 2/27 > 37
S2-21>2+7-2V21
e V217> V2- 7
& V2/ (V2= VA) > VT
s 21/ (2+ﬁ—2\/2_ﬁ) > /(1 =7)

and we obtain (a). The proofs for (b) and (c) are similar. O
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Proof of Lemma 5.7. Let 1 > 77 > 0 and A > 0. Define x = ,/pand a = Vi

and restate expression 7jp/2 — 2 (1 - /1 —ﬁ) \/ﬂas /2 -2 (l — \/1Tﬁ) ax

with x > 0 and @ > 0. The solution to the quadratic equation 7x*>/2 —
2 (1 V1 —ﬁ) ax = 0 for x are 0 and 4(1 /I —ﬁ) a/fi > 0. Therefore if
4(1—,/1—ﬁ)a/ﬁ > x > 0, or equivalently, 16(2—ﬁ—2 1—ﬁ)a2/ﬁ2 >

x> > 0,then 0 > 7x?/2 —2 (1 -1 —ﬁ) ax. Replacing x by ./p and a by VA we
obtain (a). The proofs for (b) and (c) are similar. |

Proof of Lemma 5.8. Let8/9 > 7 > 0 and A > 0, then we have
0> 97" — 87 < 16(1—7) > 97" — 247 + 16
S 4/1-71>4-37
<:>4(1—\/1—ﬁ)/ﬁ>1/\/1—ﬁ
2

& 16(2—ﬁ—2\/1—ﬁ) AT > AJ(1—7)
and we obtain (a). The proofs for (b) and (c) are similar. O
Proof of Lemma 5.9. Let 1 > 77 > 0Oand A > O, then 1 > /1—-7 & 7 >
2/T-F—24+27 & 4/)(1 -7) > 16(2—ﬁ—2,/1—ﬁ)x/ﬁ2. Also note
that 1 > JT-5 & 2-7-2/1-7 > 0 & 2(1—,/1—ﬁ) > 7 &
16(2—ﬁ—2,/1—ﬁ)k/ﬁ2 > 41 O

Proof of Lemma 5.14. Let 8/9 > 7 > 0 and A > 0. According to Lemma 5.8
and 5.9, 4p, > p, > p,, therefore:

2P > VP2 & VP > VP2 — VP > 0
1> (Vh—vh) /v
7> (Vh— Vi) /i
e 1>0-m+7 (Ve - V) /i
& B> (=05 + 0, (VB — VP1) / Vi
Since 7p, + (1= MVPiP> = WV/P2/2 (VP2 = VP1) = (1= DVpip, +

0, (VP2 — v491) /2 (D, — /P1)- Since 4p, > p, > py, therefore we
have (1 —mp, > (I = Mypip, and WP, (VP2 = VP1) /VP1 > 0 >
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P2 (VP2 = VA1) /2 (VP2 = V/P1)- Thus (L =1)p, + 72 (P2 = VP1) / V/P1 >
Py +(1=1)/D1P,— P> \/_/2 (\/1_7_2 — \/[?1) Therefore we obtain (a). According
to Lemma 5.8, p, > p,, therefore (1 —7) (5, — Py) + 7P, (VP2 — VP1) /D1 >
0 < (1—mp, + 70, (VP—P1)/P1 > (1 —p, = A. Therefore we

obtain (b). O

Proof of Lemma 5.15. Note that f(x) is continuous and differentiable over interval

(V1. VPa:
¥O _ 5 \/;3_1((1—2@—%) andde(zx)z __2r):§;?1<0

dx =R
df (x)
dx

df (x)
dx

-MVP+—=
x=f \/ \/
e V\/l_71=vl_’1
A P P

X=4/P2

If r € (0,A], then f(x) is decreasing over [/p,. v/D,]. therefore x* = /p. If
r > 7,, then f(x) is increasing over [\/]7 , \/ﬂ, therefore x* = \/E Ifre (A, r),
then f(x) is increasing in the neighborhood above x = \/1_7_1 and is decreasing in
the neighborhood below x = \/1_7_2 Also note that d?f(x)/dx* < 0, therefore x* €
(\/ﬁ_ , \/]72) that satisfies the first order condition

(r—72)

)
dx

—0=7(¢)’ + (=205, (x*) = ryp, =0 (A.2)

*

X=X

which is a cubic equation. According to the general formula for roots of cubic
equation, x* = \/p, € (y/D1. v/P2)- O

Proof of Lemma 5.16. Note that f(x) is continuous and differentiable for x > |/p,:

ACY = —\/X(l - )%) and &f () = _Zrﬁ <0

dx dx? X3
&) _ YA 5 ana 4O = VA <0
dx x=p> P> x—>+o0

If r € (0, p,], then f(x) is decreasing for r > \/1_7_ therefore x* = \/1?2 Ifr> \/ﬁ_,
then f(x) is increasing in the neighborhood above x = \/;7_2 . Since f(x) is decreasing
as x — +oo and since f(x) is concave (d*f(x)/dx*> < 0), therefore x* > /p, is
solved from first order condition df (x)/dx|,=xx = 0 = x* = /7. O
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Proof of Lemma 5.18. Let2 > 7 > 8/9and A > 0, then we have
2> 16/9 < 21> 4/3 > 1
<1 >2—\/ﬁ
& V2/ (ﬁ— ﬁ) >2
@2/1/(2+ﬁ—2\/ﬁ)>4k

O
Proof of Lemma 5.21. Note that f(x) is continuous and differentiable for x > \/1_7_3 :

¥ _ ~VA(1-5) and de(zx) __n
X X X

dx d x3
&) =£(r—173) and L = —VA<0
dx x=./P3 P3 x—+o0o

If » € (0, ps], then f(x) is decreasing for x > \/f, therefore x* = \/E Ifr> \/1_7_,
then f(x) is increasing in the neighborhood above x = \/E . Since f(x) is decreasing
as x — +oo and since f(x) is concave (d*f(x)/dx*> < 0), therefore x* > /p; is
solved from first order condition df (x)/dx|,=xx = 0 = x* = /r. |
Proof of Lemma 5.23. Let7 > 2 and A > 0. Define x = ,/p and a = VA and
restate the expression (1 —77/2)p — 2\/p_)t + A as (1 —7/2)x* — 2ax + a* with
x > 0 and @ > 0. The solutions to the quadratic equation (1 — 77/2)x> — 2ax +

a® = 0 for x are v/2a/ («/E+ ﬁ) > 0and 0 > +/2a/ («/5— ﬁ) Therefore
if v2a/ (\/5 + ﬁ) > x > 0, or equivalently, 2a*/ (2 +7+ 2\/ﬁ) > x2 >0,

then (1 —7/2)x> — 2ax + a* > 0. Replacing x by ,/p and a by v/A we obtain (a).
The proofs for (b) and (c) are similar. |
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