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To the order and beauty of nature,
and its finely crafted control laws.



Preface

This book presents aeroservoelasticity (ASE) as a well-formed discipline with a
systematic framework. While many research articles have appeared on the special
applications of ASE–such as active flutter suppression and gust load alleviation–
there are no textbooks and monographs on the general and systematic procedure to
be followed in the modeling and analysis of aeroservoelastic systems. This book is
a first step in trying to fill this important gap in the aerospace engineering literature.
This book introduces the basic math modeling concepts and highlights important
developments involved in structural dynamics, unsteady aerodynamics, and con-
trol systems. It also attempts to evolve a generic procedure to be applied for ASE
system synthesis. The treatment includes finite-element structural modeling and de-
tailed unsteady aerodynamic modeling at various speeds for deriving the necessary
aeroelastic plants, with sample control applications to active flutter suppression, load
alleviation, and adverse ASE coupling.

A general aeroelastic plant is derived via the finite-element structural dynamic
model, unsteady aerodynamic models for various regimes in the frequency domain,
and the associated state-space model by rational function approximations. For more
advanced models, the full-potential, Euler, and Navier – Stokes methods for treating
transonic and separated flows are also briefly addressed. Essential ASE controller
design and analysis techniques are introduced to the reader. Introduction to robust
control-law design methods of LQG/LTR and H2/H∞ synthesis is followed by a
brief coverage of nonlinear control techniques of describing functions and Lyapunov
functions.

The fundamental concepts are presented in such a way that the most important
features can be easily deduced. The breadth of coverage is sufficient for a thorough
understanding of ASE.

The focus of this book is on aeroservoelastic modeling, including a brief pre-
sentation on robust and optimal control methods that can be applied to important
aeroservoelastic design problems. It is not possible to give a more comprehensive
ASE treatment in a single book, and it is envisaged that a future book can be devoted
to more advanced topics such as adaptive and nonlinear control design techniques.

This book is aimed at graduate students and advanced researchers in aerospace en-
gineering, as well as professional engineers, technicians, and test pilots in the aircraft
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viii Preface

industry and laboratories. The reader is assumed to have taken basic undergraduate
courses in mathematics and physics—particularly calculus, complex variables, lin-
ear algebra, and fundamental dynamics—and is encouraged to review these concepts
at several places in the text.

A book on ASE is difficult to write due to the breadth of topics it must necessarily
address. While this book covers the essentials of modeling aspects of ASE with some
control applications, it gives sufficient motivation to a reader with specific research
interests to further explore the relevant topics. Furthermore, the treatment of topics is
such that a novice can quickly build up his/her understanding of ASE without much
difficulty. References are selected keeping both the types of readers in mind.

This book has been long in writing, with the intention first having occurred to
the author about 15 years ago. Not having access to the industrial codes for finite-
element and unsteady aerodynamics necessary for building such an exposition, and
not finding the time to write one’s own codes, the project continued to be delayed
until about 2 years ago, when courage was finally gathered for this purpose. Testing
and validating the codes for the many examples in the book was itself a formidable
task, which required many hours of patient programming.

I would like to thank Walt Eversman for his course on aeroelasticity, and for
advising me in my graduate studies. The editorial and production staff of Birkhäuser
have offered many constructive inputs during the preparation of the manuscript, for
which I am indebted to them. I am also grateful to The MathWorks, Inc. for providing
the latest MATLAB/Simulink version utilized for the examples throughout the book.

November 2014 Ashish Tewari



Contents

1 Aeroservoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Structural Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Static Load Deflection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Beam-Shaft Idealization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Lumped Parameters Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Rayleigh-Ritz Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Finite-Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Weak Formulation and Galerkin’s Approximation . . . . . . . . . 33
2.7.2 Euler-Bernoulli Beam and Shaft Elements . . . . . . . . . . . . . . . 38
2.7.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.7.4 Plate Bending Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Unsteady Aerodynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Inviscid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Transonic Small-Disturbance Flow . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Linearized Subsonic and Supersonic Flow . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Incompressible Flow Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4.1 Unsteady Vortex-Lattice Method . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.2 Classical Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Integral Equation for Linear Compressible Flow . . . . . . . . . . . . . . . . . 102
3.5.1 Velocity Potential Formulation by Green’s Theorem . . . . . . . 102
3.5.2 Acceleration Potential Formulation . . . . . . . . . . . . . . . . . . . . . 112

ix



x Contents

3.6 Subsonic Kernel Function and the Doublet-Lattice Method . . . . . . . . 116
3.6.1 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.7 Supersonic Lifting Surface Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.7.1 Mach-Box Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.7.2 Doublet-Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.8 Transonic Small-Disturbance Solution by Green’s Function Method 144
3.8.1 Transonic Green’s Integral Equation . . . . . . . . . . . . . . . . . . . . 144
3.8.2 Transonic Doublet-Lattice Method . . . . . . . . . . . . . . . . . . . . . . 149

4 Finite-State Aeroelastic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.1 Finite-State Unsteady Aerodynamics Model . . . . . . . . . . . . . . . . . . . . 155

4.1.1 Traditional Flutter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.1.2 Unsteady Aerodynamics in Time Domain . . . . . . . . . . . . . . . . 157

4.2 Transient Aerodynamics in Two-Dimensions . . . . . . . . . . . . . . . . . . . . 160
4.2.1 Rational Function Approximation . . . . . . . . . . . . . . . . . . . . . . . 161
4.2.2 Indicial Admittance by Duhamel’s Integral . . . . . . . . . . . . . . . 166
4.2.3 Transient Aerodynamics in Three-Dimensions . . . . . . . . . . . . 167
4.2.4 Alternative Methods for 3D Transient Aerodynamics . . . . . . . 179
4.2.5 Direct Integration of Governing Equations . . . . . . . . . . . . . . . 182

4.3 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
4.3.1 Typical Section Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4.3.2 Three-Dimensional Wing Model . . . . . . . . . . . . . . . . . . . . . . . . 190
4.3.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5 Linear Aeroelastic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.2 Linear Feedback Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.2.1 Servo-Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.3 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.3.1 Hamilton-Jacobi-Bellman Equation . . . . . . . . . . . . . . . . . . . . . 215
5.3.2 Linear Systems with Quadratic Performance Index . . . . . . . . 216

5.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
5.5 Infinite-Horizon Linear Optimal Control . . . . . . . . . . . . . . . . . . . . . . . 223
5.6 Adverse Aereoservoelastic Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.6.1 Closed-Loop Stabilization of the ASE System . . . . . . . . . . . . 233
5.6.2 Active Maneuver Load Alleviation . . . . . . . . . . . . . . . . . . . . . . 235

5.7 Robust Control of Linear Time-Invariant Systems . . . . . . . . . . . . . . . . 239
5.7.1 LQG/LTR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.7.2 H2/H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

5.8 Active Flutter Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

6 Nonlinear Aeroservoelastic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.1 Nonlinear Aeroservoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.2 Describing Functions for Nonlinear ASE . . . . . . . . . . . . . . . . . . . . . . . 257
6.3 Flapping-Wing Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

6.3.1 Lift and Thrust for Flapping Flight . . . . . . . . . . . . . . . . . . . . . . 263



Contents xi

6.4 Shock-Induced Buffet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.5 Transonic Flutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

6.5.1 Adaptive Suppression of Transonic LCO: Illustrative Example 273

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Appendix-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Appendix-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Appendix-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311



Chapter 1
Aeroservoelasticity

1.1 Introduction

Aeroservoelasticity (ASE) is the interface of unsteady aerodynamics, structural dy-
namics, and control systems, and is an important interdisciplinary topic in aerospace
engineering. It is a study of dynamic interactions among air loads, structural defor-
mations, and automatic flight control systems commonly experienced by the modern
aircraft. The relevance of ASE to modern airplane design has increased consider-
ably with the advent of flexible, lightweight structures, increased airspeeds, and
closed-loop automatic flight control. Since aeroservoelasticity lies at the interface
of aerodynamics, structures, and control, its impact on aircraft design and operation
requires a thorough understanding of these core areas as far as they contribute to
building an accurate mathematical model (Fig. 1.1).

While aeroelastic interactions have been studied for nearly a century, the impact
of an active control system on dynamic aeroelasticity is a relatively new topic, and
has come into focus with the advent of modern fly-by-wire designs. In such aircraft,
the controller bandwidth can encroach the upon aeroelastic modal spectrum, thereby
leading to resonance-like behavior in certain flight conditions. The most common
example of such an interaction between the control and aeroelastic systems is the
closed-loop flutter—a catastrophic dynamic coupling between the elastic motion,
the unsteady aerodynamic loading, and a controller-actuated surface. Many airplane
accidents (such as Taiwan IDF fighter and Lockheed YF-22 prototypes) have been
blamed on unforeseen and unstable ASE couplings. In order to understand how such
a phenomenon can remain unforeseen in the modern technical era, let us consider
a well-designed car with the best engine, chassis, and electronics, and thoroughly
tested for the most adverse road conditions that can be expected. However, when put
into production, the same car could experience poor performance and even engine
stalling due to a minor feature such as cable routing. In such a case, engine vibration
at a certain speed can interact with the natural frequency of one of the spark plug
cables, thereby leading to its coming loose and causing an even greater engine vi-
bration. The engine controller would detect the poor combustion as a lean or cold
mixture condition, and try to correct it by increasing the fuel volume injection. The

© Springer Science+Business Media, LLC 2015 1
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Fig. 1.1 Block diagram of a typical aeroservoelastic system

result would be an even rougher idle with black smoke, fouled spark plugs and in-
jectors, and possibly an engine failure. Troubleshooting such a condition would be a
nightmare, and the fix is either an expensive redesign of the engine, a reprogramming
of the fuel controller, or an identification and change of the culprit natural frequency
by merely redesigning the cable routings and clamps. If a mathematical model is
constructed of such a dynamic interaction between electromechanical connectors,
fuel control system, and engine dynamics, such a model is likely to be a formidable
interdisciplinary exercise.

ASE is a fledgling discipline when compared to the other traditional aerospace
areas of aerodynamics, structures, propulsion, and flight mechanics. Its formal be-
ginning can be traced to the early 1970s, when ways of addressing the problem
of flutter were being investigated in earnest due to the several new aircraft designs
evolving in that era. Highly maneuverable fighters such as the Lockheed F-16 and
the McDonnell Douglas F/A-18, as well as efficient passenger transports such as the
Boeing-767 and the Airbus A-320 that were being developed, had inbuilt automatic
flight control systems, which could be programmed relatively easily to achieve sec-
ondary tasks, such as active flutter suppression and maneuver/gust load alleviation.
Prior to that era, a passive redesign of the structural components was the only way
to avoid flutter, whose analysis often required thousands of hours of painstaking
and dangerous flight flutter testing, and wind-tunnel tests of aeroelastically scaled
models, thereby increasing the already high costs of prototype development. Conse-
quently, flutter analysis and prevention was a stumbling block in developing novel
aircraft configurations.
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In order to overcome the inadequacy of passive techniques, and to fly at a velocity
greater than the open-loop flutter velocity for greater speed and efficiency, the concept
of active flutter suppression was developed in the 1970s [2, 3, 126, 143, 152]. Herein,
an automatic control system actuates a control surface on the wing, in response to
the structural motion sensed by an accelerometer, which increases the flutter speed
in a closed loop by changing the stability characteristics of the open-loop system.

Active flutter suppression requires accurate knowledge of the aeroelastic modes
that cause flutter, which are then actively changed in such a way that closed-loop
flutter occurs at a higher flight velocity. Although the classical flutter of a high
aspect-ratio wing—such as that of a Boeing 747 or an Airbus A-380—is caused
by an interaction between the primary bending and torsion aeroelastic modes, the
flutter mechanism of a low aspect-ratio wing, such as that of an F/A-18 (or F-
22) fighter airplane is rather more complicated, comprising a coupling of several
higher aeroelastic modes. In order to actively suppress flutter, it is necessary that an
accurate aeroelastic model based on modeling of the unsteady aerodynamic forces
as a transfer matrix be derived. The most common method of obtaining the unsteady
aerodynamic transfer matrix is the use of optimized rational function approximations
[43, 50, 85, 175] for its terms, fitted to the frequency-domain aerodynamic data in
the harmonic limit. After the transfer matrix is derived, a linear, time-invariant, state-
space model for the aeroelastic system, including the control surface actuators, can be
obtained. The multivariable feedback controller for active flutter suppression can then
be designed by standard closed-loop techniques, such as eigenstructure assignment
and linear optimal control [168]. Since it is crucial that the derived control laws must
be robust with respect to modeling uncertainties and measurement noise in a wide
range of operating conditions, robust and adaptive controllers are specially sought
for a practical application.

The first practical demonstration of active flutter suppression was carried out by
the US Air Force in 1973 in their Load Alleviation and Mode Stabilization (LAMS)
program, which resulted in a Boeing B-52 bomber flying 10 knots faster than its
open-loop flutter velocity. This was accompanied by flight flutter testing of aeroelas-
tic drones under NASA-Langley’s Drones for Aeroelastic Testing (DAST) program.
These pioneering developments in active flutter suppression received an impetus
at NASA-Langley and Ames laboratories [4, 5, 118, 122] with novel control laws
developed at Ames being tested and further developed in Langley’s transonic dy-
namics wind tunnel. These developments in the 1970s were greatly enabled by the
optimal control theory advancements [131, 163] of that era. ASE design and anal-
ysis efforts continued in the 1980s and 1990s [116, 117, 191], which were given a
further boost by the newly developed robust multivariable control theory [62, 108].
Buoyed by their early achievements in active flutter suppression, the US Air Force
and Rockwell, initiated the ambitious Active Flexible Wing (AFW) program [113,
127], wherein the objective was to utilize favorable aeroservoelastic interactions to
produce performance, stability, and control improvements on a highly flexible and
overly instrumented wind-tunnel wing model, employing multiple control surfaces
and gain scheduled control laws. The survey paper of Mukhopadhyay [119] gives an
excellent overview of how the seemingly independent technical developments over
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the preceding half century in the otherwise disparate areas of structural dynamics, un-
steady aerodynamics, and control systems, converged and came into a sharp focus in
the field of aeroservoelasticity. An offshoot of aeroservoelastic design is the evolving
area of multidisciplinary optimization for synthesizing lightweight wing structures
[102], an example of which was the first forward-swept wing experimental prototype,
the Grumman X-29A [65].

The main challenge in ASE mathematical analysis and design is in deriving a
suitable unsteady aerodynamic model of aircraft wings and tails (or canards). The
aeroelastic plant for flutter suppression of a thin wing-like surface is derived at sub-
sonic and supersonic speeds using small-disturbance, potential aerodynamic models
[7, 21, 61, 194, 180, 181] with a harmonic (frequency response) theory. Such a
model is linear, and can be directly employed in developing an aerodynamic trans-
fer matrix, and finally a linear, time-invariant state-space model through analytic
continuation in the Laplace domain. However, there are important flow regimes
where such a linearized model is inapplicable. The ASE applications which involve
unsteady separated flows and transonic shock-induced flows, are inherently nonlin-
ear in nature and require advanced computational fluid dynamics (CFD) modeling
techniques [45, 166]. An example of nonlinear aeroelasticity is the post-stall buffet
arising due to a sudden and large increase in the angle of attack, either by an abrupt
maneuver, or a vertical gust. The ASE plant for such a case is further complicated
by the separated wake and/or leading-edge vortex from the wing interacting with the
tail, resulting in an irregular and sometimes catastrophic deformation of the tail—
either on its own or driven by rapid and large deflections of the elevator. Such a
wing-tail-elevator coupling of a post-stall buffet, or a shock-vortex interaction re-
quires a fully viscous flow modeling that is only possible by a Navier–Stokes method.
Another example of nonlinear ASE is the control of unsteady control surface buzz
and shock-induced flow separation encountered by an aircraft maneuvering in the
transonic regime, leading to nonlinear flutter or limit-cycle oscillation (LCO) [18,
99]. An appropriate CFD model in such a case would require a full-potential code
[73, 162], coupled inviscid/boundary-layer method [46], or a Navier–Stokes method
[123, 195], depending upon the geometry, structural stiffness, Mach number, and
Reynolds number. Sometimes, semiempirical models are devised from wind-tunnel
test results for separated and shock-induced flows [47, 156], because they do not
require unsteady CFD computations to be performed in loop with structural dy-
namic and control-law calculations. However, the veracity of such a correlation
must be checked carefully before being deployed in ASE design and analysis. The
use of CFD models (Euler/Navier–Stokes) to derive linearized aerodynamic transfer
functions/matrices has also been suggested in the literature [12, 136, 197]. This is
evidently aimed at using the same linearized model for a range of flight conditions
(Mach number, angle of attack, etc.) rather than having to repeat a CFD computation
for every such condition. The coefficients of the approximation can be adjusted by
an auto-regressive moving average (ARMA) model [137, 197], which brings such
a method quite close to an adaptive control application (albeit in the open loop).
However, approximating a nonlinear system by a linear transfer function can be in-
accurate, even in a narrow range of operating conditions. An alternative method is
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to employ flight-test data for deriving an ASE model, such as the neural-network
identification method proposed by Boely and Botez [26].

Transonic flutter/buffet analysis is fraught with shock-induced oscillations, and is
thus inherently nonlinear. It is also crucial in the aeroelastic stability analysis of most
of the modern transport type aircraft, because their cruising speeds are just under
the sonic speed. Fortunately, the nonlinear effects of transonic flutter are accurately
captured by a transonic small-disturbance (TSD) model, even for a thick supercritical
wing [176, 199] of a modern airliner. This fact offers the promise of coupling the
aeroelastic stability analysis with a TSD code [14, 37, 76]. Alternative methods
proposed for the time-linearized (low-frequency) transonic case involve a field-panel
TSD method [105], or a full-potential method [130] applied in a doublet-lattice
[61] type calculation of aerodynamic influence coefficients relating the pressure and
normal velocity (upwash) in the harmonic limit. However, while such an approach
can be applied to relatively lower natural frequencies of the primary bending and
torsion modes of a high aspect-ratio wing (like that of a modern subsonic airliner), the
concept of time linearization would fail when applied to the much higher frequencies
of a low aspect-ratio, fighter-type wing, which is much stiffer in both bending and
torsion.

Despite the early successes in demonstrating active flutter suppression/load al-
leviation, ASE has remained largely an experimental area [151] and has still not
reached operational status on any aircraft. This remarkable failure is mainly due to
the difficulty of designing a multivariable control system, which is sufficiently ro-
bust to the parametric uncertainties in the underlying unsteady aerodynamic model.
Clearly, the aircraft designers and operators are reluctant to take risks until (what
might be considered) suitably reliable ASE modeling and analysis methods become
prevalent.

Due to the inherent uncertainty of an unsteady aerodynamic model, a closed-loop
controller for ASE application must be quite robust to modeling errors. Furthermore,
such a controller must also adapt to changing flight conditions. Hence, an ASE
control law must not only be robust, but also self-adaptive, which renders it mathe-
matically nonlinear even for a linear aeroelastic plant of the subsonic and supersonic
regimes. Furthermore, designing a control law based upon nonlinear aeroelastic
iterative models can be a very cumbersome and computationally intensive process.
Instead, adaptive control techniques can be used for extending the subsonic and super-
sonic linear feedback designs to predict and suppress the transonic flutter. Adaptive
control has been an area of active research in the past few decades [10, 89], and
many useful design techniques have emerged that can be applied to ASE. However,
these remain “application specific” (rather than general), if not completely ad hoc in
many cases. Thus, ASE control-law derivation for a particular case is as challeng-
ing as the problem of aeroelastic modeling. For this reason, ASE has remained a
formidable technological problem. For a linear aeroelastic plant, a high-gain linear
feedback generally gives robustness with respect to modeling uncertainties in the
control bandwidth, but degrades the response to the high-frequency measurement
noise. Several linear feedback strategies are in vogue for striking a compromise be-
tween robustness to plant uncertainty and noise rejection. These include the linear
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quadratic Gaussian (LQG) compensation with loop-transfer recovery (LTR) [108],
H2/H∞ control [64], and structured singular value synthesis [30, 42].

Separated and shock-dominated flows nonlinearly interact with the aircraft struc-
ture, resulting in unstable oscillations, hysteresis, or limit cycles. While there are
some papers and monographs on nonlinear aeroelastic modeling, such as Dowell
and I’lgamov [41], their emphasis is on structural nonlinearities rather than on aero-
dynamic ones. Furthermore, the control aspects of ASE are seldom covered in such
articles. Thus it is important to include nonlinear aerodynamic effects in a discussion
on ASE, which is one of the tasks of this book. Control of nonlinear aeroelastic plants
requires either describing function approximations [158, 182], Lyapunov-based con-
trollers [60, 132], feedback linearization [78], or a sliding-mode (variable structure)
control [53]. Furthermore, the issue of robustness is important for nonlinear plants
[77]. Adaptation of controller parameters for both linear and nonlinear plants in-
troduces a further complexity in the ASE design and analysis, and can be handled
by gain scheduling, self-tuning regulation, model reference adaptive laws [10], or
recursive backstepping [89], depending upon the specific application. There is little
mathematical treatment of nonlinear ASE effects in the literature, and a future book
is planned to cover this important gap.

The present book is a monograph on the basic concepts relevant to ASE modeling
and analysis. Chapter 2 addresses the problem of basic structural modeling, whereas
Chap. 3 is largely devoted to the techniques employed in deriving frequency-domain
(or harmonic) aerodynamics of low-speed, subsonic, transonic, and supersonic flight
regimes. It also covers the discussion of unsteady vortex-lattice model as an example
of a simple potential flow model that can be applied to large amplitude movements
(flapping) of an airfoil with thickness and camber. Such a treatment is somewhat
a departure from what is considered the traditional aerodynamics of an oscillating
flat-plate wing, which is commonly used in most linearized ASE models. The ob-
jective of such a model is its possible application in flapping-wing flight. Chapter 4
is concerned with the derivation of transient aerodynamic models by rational func-
tion approximations (RFA) that can be readily converted to state-space, linear time
invariant (LTI) aeroelastic models. Chapter 5 is a presentation of linear control law
derivation and analysis techniques, with some typical aeroseroelastic application
examples. Finally, Chap. 6 is a discussion of nonlinear ASE topics. The chapters
are organized in such a way that a reader can directly go to a specific topic without
having read a previous one. However, for comprehensive understanding, it would
be ideal to read the chapters sequentially. A basic knowledge of aerodynamics and
control theory is assumed of the reader. Furthermore, familiarity with numerical
methods [111, 154, 165] will also be helpful. The reader will find the bibliography
arranged alphabatically, and thus easy to refer to. While it is impossible to list all the
relevant references on this active and productive research topic, some thought has
been applied to select useful articles for the benefit of the reader.
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Fig. 1.2 A pitching airfoil with trailing-edge control surface

1.2 An Illustrative Example

While the general aeroelastic motion of an aircraft wing involves many degrees of
freedom (Chap. 2), in order to illustrate the concept of aeroservoelasticity, let us
consider a two-dimensional wing section (airfoil) that can only rotate about a fixed
axis by an angle α (called the angle of attack). The airfoil is equipped with a trailing-
edge control surface that can rotate by an angle β relative to the airfoil’s chord plane,
as shown in Fig. 1.2. The entire setup is mounted on a frictionless torsional spring of
stiffness kα , whereas the control surface hinge is also frictionless and has a rotational
spring of stiffness kβ . The hinge line of the control surface is located at a distance
of xc behind the pitch axis. The mass of the control surface is mc, and the distance
of the control surface’s center of mass behind its own hinge line is xβ (Fig. 1.2).
The moment of inertia of the setup about the pitch axis is Iα , whereas that of the
control surface about its hinge is Iβ . The setup is placed in a uniform, incompressible
flow of speed U and density ρ. The control surface is equipped with a direct current
(DC) motor that can apply a torque u about the control surface hinge line relative to
the airfoil. The linearized equations of motion of the structure can be expressed as
follows, by either Newton’s second law, or the energy approach:

Mq̈ + Kq = Q + (0, 1)T u, (1.1)

where q = (α,β)T is the generalized coordinates vector, Q = (Mα ,Mβ)T is the
generalized air loads vector, and M, K are the following generalized mass and stiffness
matrices, respectively, of the structure:

M =
⎛
⎝ Iα mcxcxβ

mcxcxβ Iβ

⎞
⎠ , (1.2)
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K =
⎛
⎝kα 0

0 kβ

⎞
⎠ . (1.3)

The generalized aerodynamic loads vector consists of the pitching moment Mα , and
the control surface hinge moment Mβ . For simplicity, it is assumed that the aerody-
namic moments can be modeled primarily as first-order lag (or circulatory) effects of
the unsteady wake shed by the airfoil, as well as the noncirculatory contributions of
the aerodynamics to inertia (called the apparent mass effect), damping, and stiffness.
Such a model of unsteady aerodynamics is given by the following relationship in the
Laplace domain:

Q(s) = 1

2
ρU

(
a1 + a2s + a3s

s + b

)⎧⎨
⎩
A1

A2

⎫⎬
⎭w(s), (1.4)

where s represents the Laplace variable, and w(s) is the following upwash (flow
velocity component normal to the wing) at a specific location on the airfoil:

w(s) = (C1, C2, C3, C4)

⎧⎨
⎩

q(s)

sq(s)

⎫⎬
⎭ , (1.5)

and A1,A2, a1, . . . , a3, b,C1, . . . ,C4 are constant aerodynamic parameters (in addi-
tion to ρ and U ). Equations (1.4) and (1.5) result in the following relationship for
the generalized unsteady aerodynamic loads:

Q(s) = G(s)

⎧⎨
⎩

q(s)

sq(s)

⎫⎬
⎭ , (1.6)

where the aerodynamic transfer matrix is given by

G(s) = 1

2
ρU

(
a1 + a2s + a3s

s + b

)⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C1, C2, C3, C4) . (1.7)

The simple aeroelastic model considered here leads to a state-space representation
given as follows:

ẋ = Ax + Bu, (1.8)

y = α = Cx + Du, (1.9)

where x = (qT , q̇T , xa)T is the state vector,

A =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0

−M̄
−1

K̄ M̄
−1

C̄d − 1
2ρUba3M̄

−1

⎧⎨
⎩
A1

A2

⎫⎬
⎭

(C1, C2) (C3, C4) −b

⎤
⎥⎥⎥⎥⎥⎦

, (1.10)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

M̄
−1

(0, 1)T

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.11)

C = (1, 0, 0, 0 0) ; D = 0, (1.12)

M̄ = M − 1

2
ρUa2

⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C3, C4) , (1.13)

C̄d = 1

2
ρU

⎧⎨
⎩
A1

A2

⎫⎬
⎭ [a2(C1, C2) + (a1 + a3)(C3, C4)] , (1.14)

K̄ = K − 1

2
ρU (a1 + a3)

⎧⎨
⎩
A1

A2

⎫⎬
⎭ (C1, C2) . (1.15)

The matrices K̄, C̄d , M̄ are the generalized stiffness, damping, and mass matrices of
the aeroelastic system, which reduce to K, 0, M, respectively, for the in vacuo case
(ρ = 0). It is to be noted that the order of the aeroelastic system is increased by one
due to the aerodynamic state, xa(t), arising out of the lag term, a3s/(s + b), which
augments the (last row and column of the) dynamics matrix A. The given aeroelastic
plant is controllable with the motor torque input, which can be verified from the rank
of the controllability test matrix for the pair (A, B) [168].

The aeroelastic stability is determined from the eigenvalues of A:

| sI − A |= 0

at a certain flight condition. Let Iα = 10, Iβ = 1 kg m2, kα = 40, kβ = 9 N m/rad,
mc = 0.1 kg, xc = 0.3 m , xβ = 0.1 m, and the aerodynamic parameters be the
following:

ρ = 1.225 kg/m3 ; A1 = 0.5 ; A2 = −0.0268,

C1 = 1.0 ; C2 = 0.7067 ; C3 = 0.5 ; C4 = 0.3387,

a1 = 1.0 ; a2 = 0 ; a3 = −2.0 ; b = 0.05.
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Fig. 1.3 Initial reponse of a pitching airfoil with trailing-edge control surface and a linear feedback
control law

It can be easily shown that the aeroelastic plant is unstable at any speed U due to the
unsteady aerodynamic characteristics associated with the wake (modeled here as a
simple time lag).

In order to stabilize the plant, the following linear feedback control law is tried
for U = 10 m/s:

u = −(8.2703, 0.4301, −3.2839, 0.3131)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α

β

α̇

β̇

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

This feedback control law stabilizes the closed-loop system, which is shown by
the initial response to a unit angle-of-attack perturbation (caused by a vertical gust)
plotted in Fig. 1.3. For a practical implementation of such a control law, there must
be angle and rate sensors mounted on the airfoil pitch axis and the control surface
hinge line, whose combined electrical signals are fed to a multichannel amplifier for
driving the control surface motor. Alternatively, a single output y can be selected,
which results in a linear combination of all the state variables. Such an output could
be the normal acceleration measured by an accelerometer placed at a point on the
control surface (the reader can show such a plant will be observable [168]). However,
the derivation of the control law in that case will require the design of an observer,
which can reconstruct the information about the state variables from the knowledge
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of the input u and the output y. The reader is advised at this point to refresh the
definitions of stability, controllability, and observability of linear systems [84].

The gains of the amplifier—indicated above for U = 10 m/s—can be individu-
ally adjusted with a changing flight speed U (or atmospheric density ρ), until the
desired closed-loop response is obtained. An adjustment of the controller gains with
a changing operating condition is called adaptation. Instead of a human operator, a
separate control system—called adaptation mechanism—can be devised such that
the gains are automatically adjusted to the correct values with changing flight speed
and density. Such a control system which has the capability of self-modification in
order to always achieve the desired closed-loop behavior is called an adaptive control
system. A modern flight control system has an inbuilt adaptive mechanism, which
can sense a change in the flight condition by pressure and temperature sensors, and
applies a correction to the feedback gains.



Chapter 2
Structural Modeling

2.1 Introduction

Aircraft have thin-walled, built-up structures for high strength-to-weight ratio and
stiffness. The transverse and longitudinal members share the external loads with the
outer skin panels in a semimonocoque construction. It would appear that an analysis
of such a structure requires a detailed model of each component, which specifies
the exact manner in which it is connected to the other members. Such a modeling
would be a daunting task, requiring enormous computational resources. Fortunately,
although a detailed analysis of individual structural components is indeed necessary
for structural design, it is not required for aeroelastic purposes where some simplify-
ing approximations can be made. Many aircraft components—such as the wings and
the fuselage—are designed to be slender and streamlined for a high lift-to-drag ratio.
The associated structures thus have small thicknesses and can be often idealized as
either solid beams or plates. Furthermore, the necessity of preserving aerodynamic
shape results in a much higher bending stiffness in the transverse (chordwise or radial)
direction, compared with that in the longitudinal (lengthwise or spanwise) direction,
which is achieved in practice by closely spaced ribs and frames. The resulting as-
sumption of chordwise rigidity is quite valuable in reducing the degrees of freedom
for a structural model. However, such a model would be inaccurate for wings with
very small aspect ratio where chordwise and spanwise bending stiffnesses would be
comparable. Another major simplification is the fact that any inelastic deformation
leading to buckling of skin panels under design loads is unacceptable from aerody-
namic design viewpoint. Therefore, an elastic stress–strain behavior is necessary, and
results in a linear load–displacement relationship—a valuable model from aeroelas-
tic perspective. However, post-buckling behavior of skin panels requires nonlinear
structural modeling, which is excluded from usual aeroelastic design and analysis.

The main emphasis of an aeroelastic model is upon wing-like structures, which
are quite thin in comparison with the chord and span. This offers a valuable modeling
simplicity, which combined with the chordwise rigidity of high aspect-ratio wings,
results in plane cross-sections remaining essentially plane due to a free warping of
the structure under twisting loads. Conversely, a bending load would not produce any
twisting deformation due to the same reason. Hence by Saint-Venant’s theory [68],

© Springer Science+Business Media, LLC 2015 13
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one can decouple bending and torsion, thereby leading to the very useful concepts of
shear center and elastic axis. Of course, such a decoupling is not possible for either
short beams, or plate-like structures where sectional warping invariably causes some
normal (bending) stresses. Furthermore, if shear deformations can be neglected due
to an essentially thin beam, the bending deformations can be treated by a simple
Euler–Bernoulli beam theory.

2.2 Static Load Deflection Model

Consider an elastic wing with an unloaded and undeformed mean surface defined by
z = s(x, y) and generated by smoothly joining the wing’s chord lines, camber lines,
or any other centroidal features of the cross-sections. If a concentrated load, P, is
now applied at a point, (ξ , η), located on the original mean surface, it will cause a
structural deflection, δ(x, y) such that a new equilibrium is achieved in the deformed
configuration given by the deformed surface, z = s ′(x, y). The deflection vector, δ,
can be regarded as a change of location of an original point on the surface, (x, y, z),
to its new position on the deformed surface, (x ′, y ′, z′), and is given by

δ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

x ′ − x

y ′ − y

s ′(x ′, y ′) − s(x, y)

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

The deflection vector is thus based upon a one-to-one mapping of all points in the
closed set constituting the original surface to those on the deformed surface:

{(x, y, z) : x1 ≤ x ≤ x2; y1 ≤ y ≤ y2; z = s(x, y)}
→ {(x ′, y ′, z′) : x ′

1 ≤ x ′ ≤ x ′
2; y ′

1 ≤ y ′ ≤ y ′
2; z′ = s(x ′, y ′)} (2.2)

Such a map can be geometrically represented by the transformation

⎧⎪⎪⎨
⎪⎪⎩

x ′

y ′

s ′(x ′, y ′)

⎫⎪⎪⎬
⎪⎪⎭

= T(x ′, y ′, z′ : x, y, z)

⎧⎪⎪⎨
⎪⎪⎩

x

y

s(x, y)

⎫⎪⎪⎬
⎪⎪⎭

(2.3)

Since the mean surface of most wing-like structures is essentially flat, the deflection
at each point can be approximated by the displacement normal to the original surface,

δ(x, y) = z′ − s(x, y), (2.4)

as shown in Fig. 2.1. In such a case, the deformed mean surface may not turn out to
be flat, but can have a local curvature due to shear, twist, and spanwise and chordwise
bending.
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Fig. 2.1 Deformation of a wing-like structure under a concentrated load

The transformation matrix, T, in Eq.(2.3) produced by a general loading must
obey the material properties called constitutive relationships, and is also subject to
the geometric constraints (also called kinematical relationships, compatibility re-
quirements, or boundary conditions) on the structure. For a linearly elastic structure,
the constitutive relationships take the form of a linear stress–strain behavior, such as

τ = Cε, (2.5)

where τ and ε are the stress and strain vectors, respectively, experienced by an
infinitesimal structural element, and C denotes the matrix comprising the mate-
rial properties. The linear stress–strain behavior of the material produces a linear
relationship between the load and displacement of the structure, given by:

δ(x, y) = R(x, y : ξ , η)P(ξ , η), (2.6)

where R(x, y : ξ , η) is the matrix of flexibility influence-coefficient functions (also
called Green’s functions). By applying linear superposition, Eq. (2.6) can be extended
for the case of a continuously distributed load per unit area, p(ξ , η), as follows:

δ(x, y) =
∫∫

s

R(x, y : ξ , η)p(ξ , η)dξdη. (2.7)

Unfortunately, the flexibility influence-coefficient functions are rarely available in
a closed form for any but the most simple structures. Therefore, numerical ap-
proximations must be made for the integral relationship given by Eq. (2.7). Such
approximations are based upon a discretization of Eq. (2.7), whereby a continuous
structure with infinitely many degrees of freedom is converted into an equivalent
finite dimensional form. For example, the mean surface can be approximated by
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n flat elemental panels of individual dimensions, (Δξi ,Δηi), i = 1 . . . n. The load
distribution on the j th panel is then approximated by an average generalized load,
Pj = p(ξ , η)ΔξjΔηj acting at a given load point (such as the panel centroid) in each
panel. Similarly, the displacement, δ(x, y), averaged over the ith panel is taken as the
average deflection vector, δi , at a given collocation point, (xi , yi), i = 1 . . . n. The
discretized load–displacement relationship is then given for the ith panel as follows:

δi =
n∑

j=1

RijPj ; i = 1 . . . n . (2.8)

Often, the individual elements of the displacement and load vectors are identified as
generalized displacements,

δi =

⎧⎪⎪⎨
⎪⎪⎩

q1i

q2i

q3i

⎫⎪⎪⎬
⎪⎪⎭

, (2.9)

and generalized loads,

Pi =

⎧⎪⎪⎨
⎪⎪⎩

Q1i

Q2i

Q3i

⎫⎪⎪⎬
⎪⎪⎭

, (2.10)

respectively, corresponding to the individual degrees of freedom at each point. Then
Eq. (2.8) collected for all points takes the following vector-matrix form:

q = RQ , (2.11)

where the 3n × 3n influence-coefficient matrix, R, consists of Rij as its elements.
Here, we note that Pi denotes the vector of all generalized loads (Q1i ,Q2i ,Q3i)
acting on the ith panel, while Q is the generalized loads vector for the entire structure
derived by collecting all the generalized loads acting on all the panels. Similarly, the
generalized displacement vector on the ith panel, δi , is to be distinguished from the
overall generalized displacement vector of the structure, q.

By making simplifying assumptions for a typical aircraft, the number of general-
ized coordinates can be significantly reduced. Such idealizations include chordwise
rigidity, plate or beam-shaft approximations, and negligible streamwise loading on
the structure. Due to their smaller dimensions and high stiffnesses, control surfaces
are modeled simply by rotating angles about rigid hinge axes. Various definitions of
the generalized loads and generalized displacements are possible, depending upon
the idealizations and constitutive relationships used in deriving Eq. (2.11). There are
also various alternative techniques for deriving the load–displacement relationship
of Eq. (2.11) from constitutive relations and structural constraints. These include the
lumped parameters approximation, the finite-element method (FEM) (or Galerkin
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method), the assumed modes (or Rayleigh–Ritz ) method, and the boundary-element
method. Of these, the FEM is the most commonly employed due to its ease of im-
plementation and modeling efficiency. We shall have the occasion to consider some
examples of the FEM modeling a little later.

The influence-coefficient matrix,

R =

⎛
⎜⎜⎜⎜⎜⎝

R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

...
...

RN1 RN2 · · · RNN

⎞
⎟⎟⎟⎟⎟⎠

, (2.12)

with N = 3n, consists of influence coefficients, Rij , which are defined as the ith
generalized virtual coordinate, δqij , produced by an isolated generalized load at a
given point, Qj ,

δqij = RijPj . (2.13)

A virtual coordinate is an arbitrary, infinitesimal deflection in any of the three possible
directions at a given point due to an isolated generalized load, and must be compatible
with any kinematical constraints of the structure. The actual generalized coordinate,
qi , is a sum of all the virtual coordinates, δqij , caused by the generalized load, Qj ,
and is given by the ith row of Eq. (2.11),

qi =
N∑
j=1

δqij =
N∑
j=1

RijQj . (2.14)

Therefore, the discrete influence coefficient, Rij , can be understood as the ith virtual
generalized coordinate due to the j th unit generalized load. The reciprocal principle
of a linear structure requires that the ith virtual coordinate due to the j th unit load is
the same as the j th virtual coordinate caused by the ith generalized load, i.e.,

Rij = Rji , (2.15)

which implies that the matrix R is symmetric.
In order to determine the generalized loads from the generalized displacements

they actually produce an inversion of Eq. (2.11) is required as follows:

P = Kq, (2.16)

where K = R−1 is the generalized stiffness matrix of the structure. Both R and K
must be nonsingular and symmetric matrices. The element of [K], kij—called the
stiffness coefficient—is the ith generalized virtual load due to the j th unit generalized
displacement. The work done by a generalized virtual load,

δQi = kij qj , (2.17)
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in producing a generalized displacement, qj , is given by

Uij =
∫

δQidqj =
∫

kij qjdqj = 1

2
kij q

2
j = 1

2
δQiqj . (2.18)

When summed over all points on the structure, the net work done by all the static
forces is the total strain energy stored in the structure, given by

U =
N∑
i=1

N∑
j=1

Uij = 1

2
QT q = 1

2
qT Kq. (2.19)

The strain energy is the potential energy responsible for restoring the structure to its
original shape once the loading is removed, and its quadratic form given by Eq. (2.19)
is an important consequence of the linear elastic behavior. Since the external forces
must be balanced by equal and opposite internal forces for a static equilibrium, one
can regard U as the net work done by the internal, restoring (or conservative) forces.

2.3 Beam-Shaft Idealization

Consider a thin, high aspect-ratio wing with an essentially flat mean surface. Let
(x, y, z) be Cartesian coordinates, such that x is in the chordwise direction measured
from the elastic axis, y in the spanwise direction along the elastic axis on the mean
plane, and z is normal to the mean plane. Saint-Venant’s theory [68] postulates that
a point exists at each cross-section of a slender beam about which a twisting load
will produce a pure twist and a free warping, but no bending deformation. Such a
point is called the shear center. Conversely, if a vertical load P is applied directly
at the shear center, it will only cause pure bending deformation without any twisting
or warping of the beam. The elastic axis is the line joining the shear centers at all
spanwise locations. Assuming there is no bending in the chordwise (x) direction, and
that plane cross-sections remain plane in the deformed configuration, the resulting
structural displacement at any given point from the original (undeformed) shape can
be represented by a combination of the normal deflection of the elastic axis at the
given spanwise station, w(y), the twist angle of the section about the elastic axis,
θ (y), and the in-plane warp angle, φ(y), as depicted in Fig. 2.2. The net vertical
deflection at location (x, y) is thus given by

δ(x, y) = w(y) + x tan θ (y) , (2.20)

whereas the in-plane deformation due to warping is merely x tan φ(y). Since the
angles θ ,φ are small, one can apply the approximation tan θ � θ and tan φ � φ,
leading to the linear relationship

δ(x, y) = w(y) + xθ (y) . (2.21)
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Fig. 2.2 Deformation of a thin wing of large aspect ratio under a concentrated normal load

The warp angle φ is inconsequential for aerodynamic loading, thus we have no
need to model it any further. Since the structure is assumed to be linearly elastic, the
load and displacement are linearly related by

δ(x, y) = R(x, y : ξ , η)P (ξ , η), (2.22)

where R(x, y : ξ , η) is the flexibility influence-coefficient function (Green’s func-
tion). By applying linear superposition, Eq. (2.22) can be extended for the case of a
continuously distributed, normal load per unit area (pressure), p(ξ , η), as follows:

δ(x, y) =
∫∫

s

R(x, y : ξ , η)p(ξ , η)dξdη. (2.23)

The constitutive relations of the bending and twisting deformations are separately
derived by considering a segment of the structure. For this purpose, the spanwise
direction y is taken along the elastic axis, and bending deflection, w(y) measured
normal to the mean surface (called neutral axis ) as shown in Fig. 2.3a. The kinemat-
ics (or compatibility) of the bending and shearing deformations is based upon the
assumption that an originally plane section normal to the neutral axis must remain
plane after deformation. However, this section can undergo a rotation due to shear
deformation (shearing strain), β(y), such that the section is no longer normal to the
neutral axis. The bending slope, w′(y), and the rotation angle due to shear, β(y), thus
collectively produce the net rotation, α(y), according to the following kinematical
relationship:

α = w′ − β. (2.24)
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Fig. 2.3 Beam deflection geometry and static equilibrium of a beam segment

Equilibrium of a beam segment of infinitesimal length, dy, with a static lift load per
unit span, �(y), requires an internal shear force, S(y), and bending moment, M(y),
in order to balance the external load, �(y), as shown in Fig. 2.3b. Neglecting second
and higher order terms of dy results in the following linear equilibrium equations:

−S ′ = �, (2.25)

S +M ′ = 0. (2.26)

The bending and shear constitutive relationships of a material withYoung’s modulus
of elasticity, E, and shear modulus, G, are the following:

α′ = M

EI
, (2.27)

β = S

GK
, (2.28)
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Fig. 2.4 Twisting of a slender
shaft at a spanwise station, y

+ dy

dy

m

where I (y) is the area moment of inertia and K(y) the shearing constant of the beam
cross-section. The quantity EI (y) is called the bending stiffness and GK(y) the
shearing stiffness of the local beam cross-section. Substitution of Eqs. (2.27), (2.28),
and (2.24) into Eqs. (2.25) and (2.26) results in the following differential equations
for the beam:

(
EIα′)′′ = �, (2.29)

(
EIα′)′ +GK

(
α − w′) = 0, (2.30)

which must be solved for α(y) and w(y), subject to the boundary conditions of the
structure. The net strain energy of the wing semispan idealized as a beam of length
b/2 is then given by

U = 1

2

∫ b/2

0
EI

(
α′)2

dy + 1

2

∫ b/2

0
GK

(
α − w′)2

dy. (2.31)

For thin, slender structures, the shear deformation, β(y), can be neglected in
comparison with the bending slope, w′(y), leading to the following Euler–Bernoulli
beam equation:

(
EIw′′)′′ = �, (2.32)

which must be solved for bending deflection, w(y), subject to the boundary
conditions. The net bending strain energy is now simply the following:

U = 1

2

∫ b/2

0
EI

(
w′′)2

dy. (2.33)

Wherever possible to apply, Euler–Bernoulli assumptions are extremely valuable due
to the simplicity of the resulting model.

For a slender, shaft-like structure (Fig. 2.4), the twisting deformation, θ (y), by
shear of an originally straight edged element, is related to the local twisting moment,
τ (y), about the elastic axis by Saint-Venant’s theory [68] as follows:

τ = GJθ ′, (2.34)
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where G is the shear modulus and J (y) the local torsional constant (polar moment
of inertia ) of the cross-section. Due to the linear proportionality of the local torque,
τ (y), with the twisting slope, θ ′(y), the factor GJ (y) is termed torsional stiffness
of the structure. Equilibrium of a segment of infinitesimal length, dy, under a dis-
tributed torque (pitching moment) load per unit length,mθ (y), results in the following
differential equation:

(
GJθ ′)′ +mθ = 0, (2.35)

which must be solved for twist angle, θ (y), subject to the boundary conditions on
the shaft. The net twisting strain energy of the wing semispan is then given by

U = 1

2

∫ b/2

0
GJ

(
θ ′)2

dy. (2.36)

When Euler–Bernoulli assumption of negligible shear deformation is applied along
with that of a slender shaft, the net vertical deflection at a point, δ(x, y), is given by
Eq. (2.21), which implies

∂δ

∂x
= θ (y). (2.37)

2.4 Dynamics

Aerodynamic loads on a vibrating structure are time dependent. Therefore, in order to
construct a dynamic model, it is necessary to consider not only the strain (potential)
energy, U , but also the net kinetic energy, T , and the work done upon the structure
by nonconservative forces, Wn. For a thin wing, the linear load–displacement rela-
tionship can be used to derive the strain energy in terms of the vertical deflection,
δ(x, y, t),

U = 1

2

∫∫
s

δ(x, y, t)
∫∫

s

k(x, y : ξ , η)δ(ξ , η, t)dξdηdxdy, (2.38)

where k(x, y : ξ , η) is the stiffness influence function of the displacement produced
at point (ξ , η) by a load applied at the point (x, y). Similarly, the net kinetic energy
of the structure is given by

T = 1

2

∫∫
s

ρ(x, y)δ̇2(x, y, t)dxdy, (2.39)

where ρ(x, y) is the structural mass per unit area and δ̇(x, y, t), the local vertical
velocity.

An aircraft wing is a thin structure essentially cantilevered at the root, with the
span (b) generally much larger than the average chord (Fig. 2.5). For anASE (aeroser-
voelasticity) model, one is primarily concerned with wings of large aspect ratio that
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Fig. 2.5 Schematic diagram of a wing semispan and a chordwise section for dynamic modeling

are typically more prone to aeroelastic instabilities. Such a wing has a well-defined
elastic axis (e.a.), defined as the line joining the shear centers of all cross-sections.
The line of the centers of mass (c.m.) at each chordwise section affects the natural
frequencies of the structural modes. The net aerodynamic loads at each chordwise
section act at a point called the aerodynamic center (a.c.), which is defined as the
location about which the pitching moment is invariant with the angle of attack. The
net aerodynamic loading per unit span of the wing is thus a concentrated pitching
moment, a lift force, and a drag force, all applied at the a.c. For a thin wing, the
drag is very much smaller than the lift, and therefore has a negligible aeroelastic
contribution. Due to the offset of the line joining the aerodynamic centers from the
elastic axis (see Fig. 2.5), there is a net spanwise bending moment, a vertical shear
load, and a torsional (or twisting) moment at each spanwise location. The bending
and twisting produced at each spanwise location cause a vertical translation, w(y),
of the elastic axis (heave), a rotation, θ (y), (pitch) about the elastic axis (as shown
in Fig. 2.6), and a negligible shear deformation. If a control surface is also present,
it is usually modeled as being rigid due to its small dimensions. In such a case, the
control surface rotation, β(y), relative to the wing is the third degree of freedom
at a given cross-section. A rotational spring mounted on the hinge line models the
torsional stiffness pertaining to the control surface rotation.

For a slender, thin wing of semispanb/2 with negligible shear, the Euler–Bernoulli
beam assumptions are applicable, and the net strain energy is given by

U = 1

2

∫ b/2

0
EI

(
w′′)2

dy + 1

2

∫ b/2

0
GJ

(
θ ′)2

dy + 1

2

∫ y2

y1

kβ
(
β ′)2

dy , (2.40)

where EI (y) is the wing’s bending stiffness, GJ (y) its torsional stiffness, and
kβ(y) the torsional spring stiffness at the control surface hinge line. For modeling
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Fig. 2.6 Degrees of freedom,
forces, and moments at a
given chordwise section
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the kinetic energy of the structure, the wing’s mass of density ρ(x, y) per unit area
is assumed to be distributed along the span such that mass per unit span is m(y)
with the local center of mass located at xm(y) aft of the elastic axis (Fig. 2.6), the
rotary inertia under shear is negligible, and the local moment of inertia about the
elastic axis is Iθ (y). The control surface has a spanwise mass distribution per unit
span, mc(y), with the local center of mass at xmc(y) aft of the hinge line, and the net
moment of inertia about the hinge line, Iβ . If the control surface chord is a fraction,
η(y), of the local wing chord, then the trailing edge is located a distance xc + ηc aft
of the elastic axis. Then the net kinetic energy is given by

T = 1

2

∫ b/2

0

∫ xc

xc+ηc−c

(
ẇ + xθ̇

)2
ρdxdy

+ 1

2

∫ y2

y1

∫ xc+ηc

xc

[
ẇ + xcθ̇ + (x − xc)β̇

]2
ρdxdy, (2.41)

or

T = 1

2

∫ b/2

0

∫ xc+ηc

xc+ηc−c

(
ẇ2 + 2xẇθ̇ + x2θ̇2

)
ρdxdy

+ 1

2

∫ y2

y1

∫ xc+ηc

xc

[
x2β̇2 + 2(x − xc)ẇβ̇ + 2xc(x − xc)θ̇ β̇

]
ρdxdy. (2.42)

Given the definitions of the center of mass and the moment of inertia, we have
∫ b/2

0

∫ xc+ηc

xc+ηc−c
ẇ2ρdxdy =

∫ b/2

0
mẇ2dy, (2.43)

∫ b/2

0

∫ xc+ηc

xc+ηc−c
xẇθ̇ρdxdy =

∫ b/2

0
mxmẇθ̇dy, (2.44)
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∫ b/2

0

∫ xc+ηc

xc+ηc−c
x2θ̇2ρdxdy =

∫ b/2

0
Iθ θ̇

2dy, (2.45)

∫ y2

y1

∫ xc+ηc

xc

x2β̇2ρdxdy =
∫ y2

y1

Iββ̇
2dy, (2.46)

∫ y2

y1

∫ xc+ηc

xc

(x − xc)ẇβ̇ρdxdy =
∫ y2

y1

mcxmcẇβ̇dy, (2.47)

and
∫ y2

y1

∫ xc+ηc

xc

xc(x − xc)θ̇ β̇ρdxdy =
∫ y2

y1

mcxcxmcθ̇ β̇dy. (2.48)

Consequently, the net kinetic energy is the following:

T = 1

2

∫ b/2

0

(
mẇ2 + Iθ θ̇

2 + 2mxmẇθ̇
)

dy

+ 1

2

∫ y2

y1

[
Iββ̇

2 + 2mcxmcβ̇(ẇ + xcθ̇ )
]

dy. (2.49)

The motion at a spanwise location is thus completely described by the generalized
displacement vector, q(y, t) = (w, θ ,β)T , measured in an inertial frame, and its time
derivative, q̇.

The generalized coordinates now represent the degrees of freedom of the dynamic
motion. Before proceeding further, it is necessary to split the generalized force vector
into conservative (elastic) and nonconservative parts, Qc(t) and Qn(t), respectively:

Q = Qc(q) + Qn(q, q̇). (2.50)

By definition, the conservative force is a function only of the generalized coordi-
nates, while the nonconservative force can also depend upon the time derivatives
of the generalized coordinates. Since the elastic stiffness creates a restoring internal
force, it is a conservative force. For a linear structure, the generalized forces created
by viscous (Rayleigh) damping effects are proportional to q̇, and are therefore non-
conservative forces. Finally, the generalized, unsteady aerodynamic forces given by
the vector Qa are nonconservative in nature. Thus we write

Qc = −Kq

Qn = −Cq̇ + Qa, (2.51)

where the negative sign indicates an internal (opposing) force, C is the generalized
damping matrix comprising the viscous damping coefficients, and Qa can have a
nonlinear relationship with the generalized coordinates and their time derivatives.
By Newton’s second law of motion applied to the discretized structure, we have

Mq̈ = Q = −Kq − Cq̇ + Qa, (2.52)



26 2 Structural Modeling

or

Mq̈ + Cq̇ + Kq = Qa, (2.53)

where M is the generalized mass matrix representing the individual masses and
moments of inertia corresponding to the various degrees of freedom.

One can alternatively adopt an energy approach to derive Eq. (2.53). For achieving
an arbitrary, infinitesimal generalized displacement, δqi(t), Hamilton’s principle
requires that of all possible trajectories, the correct one is that which minimizes the
net mechanical energy, (T −U+Wn). This statement is given in the variational form
by the necessary condition,

δ

∫
(T − U +Wn)dt =

∫
δ(T − U )dt +

∫
δWndt = 0, (2.54)

where δ(.) represents the variational operator,

δT =
N∑
i=1

∂T

∂qi
δqi + ∂T

∂q̇i
δq̇i , (2.55)

δU =
N∑
i=1

∂U

∂q̇i
δq̇i , (2.56)

and

δWn =
N∑
i=1

Qniδq̇i . (2.57)

Since the initial virtual displacement must be zero, δqi(0) = 0, integrating the first
term of kinetic energy variation, Eq. (2.55), by parts yields the following expression:

∫
∂T

∂q̇i
δq̇idt = −

∫
d

dt

(
∂T

∂q̇i

)
δqidt , (2.58)

which substituted into Eq. (2.54) produces the well-known Lagrange’s equations :

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= Qni (i = 1, . . .,N ). (2.59)

For a linearly elastic structure, the potential and kinetic energies are expressed as
follows:

U = 1

2
qT Kq

T = 1

2
q̇T Mq̇, (2.60)
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thereby yielding

d

dt

(
∂T

∂q̇

)
= Mq̈

∂T

∂q
= 0 (2.61)

∂U

∂q
= Kq.

Thus, substituting Eq. (2.61) along with the second of Eq. (2.51) into Eq. (2.59)
yields the equation of motion, Eq. (2.53).

For a simple harmonic vibration in vacuum, we have Qa(t) = 0, and

q(t) = q̄eiωt , (2.62)

where ω is the in-vacuo natural frequency and q̄ the mode shape of the structure. In
this case, Eq. (2.53) results into the following linear eigenvalue problem:

(Mω2 + Ciω + K)q̄ = 0 (2.63)

Much of the effort in structural modeling involves the derivation of the general-
ized mass, stiffness, and viscous damping matrices by an appropriate discretiza-
tion scheme, and the separation of the generalized coordinates into spatial and
time-dependent parts.

2.5 Lumped Parameters Method

The simplest way to discretize the structural dynamics equations of motion is to
assume that the structure consists of several piecewise rigid elements, connected
together by discrete springs. Each rigid element has well-defined degrees of freedom
with corresponding inertial, stiffness, and damping parameters that are considered
concentrated (or lumped) at a point in each element. For example, a plate-like struc-
ture is approximated by n rigid elements capable of only vertical displacement, δi ,
measured at the centroid under an external load distribution discretized as a verti-
cal load, Pi , acting at each elemental centroid. The discretized load–displacement
relationship at each elemental point is then given by

Pi =
n∑

j=1

kij δj , (i = 1, . . ., n) (2.64)

where kij is the discrete stiffness associated with the j th load and ith displacement.
Similarly, the dynamic equation of each element can be derived to be the following:

miδ̈i +
n∑

j=1

kij δj = Qi , (i = 1, . . ., n) (2.65)
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with mi being the elemental mass and Qi the concentrated load at the centroid. The
assembled form of Eq. (2.65) for the whole structure is thus the following:

Mδ̈ + Kδ = Q , (2.66)

where δ = (δ1, δ2, . . ., δn)T is the displacement vector, Q = (Q1,Q2, . . .,Qn)T , the
external load vector, and M and K are the mass and stiffness matrices. It is to be noted
that due to the absence of dynamic coupling between the elements, M is a diagonal
matrix.

Another important example of the lumped parameters method is a slender wing,
which can be approximated as having rigid chordwise sections attached to one another
by linear (bending) and rotational (torsion) springs, and free to deflect vertically as
well as to rotate relative to one another. Each section has a discrete center of mass
and moment of inertia about the torsion axis. The strain energy and kinetic energy, as
well as the work done by nonconservative forces of all elements are merely summed
up in order to yield the mass, stiffness, and damping matrices, and the generalized
force vector by Lagrange’s equations.

Consider a chordwise rigid section at spanwise stationy = yi , as shown in Fig. 2.7.
The three degrees of freedom (DOFs) of a rigid elemental section are denoted by the
generalized coordinates, hi (plunge ), θi (pitch), andβi (control surface angle). While
hi is the vertically downward displacement of the elastic axis (e.a.) from its static
equilibrium position, θi gives the rotation of the section about elastic axis (considered
positive nose-up as shown in Fig. 2.7), whereas βi is the angle between the chord
lines of the wing and the control surface (positive with the trailing edge down). The
chordwise locations of the elastic axis, the aerodynamic center, the center of mass
(c.m.), and the control surface hinge line are x = xhi , x = xai , x = xmi , and x = xci ,
respectively, measured from the leading edge.

The elastic motion is assumed to have linear stiffnesses corresponding to each
degree of freedom. Thus khi is the stiffness in plunge, kθi , stiffness in pitch, and
kβi that of the control rotation. The structural damping is considered negligible in
comparison with aerodynamic damping. The generalized forces corresponding to
the degrees of freedom must be calculated from the aerodynamic loads shown in
Fig. 2.7 for the individual rigid sections. These are Li (lift), M0i (zero-lift pitching
moment) concentrated at the a.c., andHi (hinge moment) acting at the hinge line. The
equations of motion are derived by the Lagrange’s equations as follows, using the
generalized coordinates per section, qi = (hi , θi ,βi)T . The potential (strain) energy
and kinetic energy are given for the ith discrete element as follows:

Ui = 1

2

(
khih

2
i + kθiθ

2
i + kβiβ

2
i

)

Ti = 1

2

∫ ci

0
ḣ2
i dm+ 1

2

∫ xci

0

[
ḣi + (x − xhi)θ̇i

]2
dm

+ 1

2

∫ ci

xci

[
ḣi + (xci − xhi)θ̇i + (x − xci)β̇i

]2
dm

= 1

2

[
miḣ

2
i + Iθi θ̇

2
i + Iβi β̇

2
i
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by springs

+ 2Sθi θ̇i ḣi + 2Sβiβ̇i ḣi + 2(xci − xhi)Sβi θ̇i β̇i
]

, (2.67)

where

Iθi =
∫ ci

0
(x − xhi)

2 dm (2.68)

is the moment of inertia of the ith rigid element about the elastic axis,

Iβi =
∫ ci

xci

(x − xci)
2 dm (2.69)

is the moment of inertia of the control surface section about its hinge line,

Sθi =
∫ ci

0
(x − xhi) dm = mi (xmi − xhi)

Sβi =
∫ xci

0
(x − xci) dm = mci

(
xmci

− xci
)

(2.70)

with mci being the mass of the control surface and xmci
its center of mass. By

substituting Eq. (2.67) into Eq. (2.26), we have

d

dt

(
∂Ti

∂q̇i

)
= Mi q̈i =

⎛
⎜⎜⎝
mi Sθi Sβi

Sθi Iθi (xci − xhi)Sβi

Sβi (xci − xhi)Sβi Iβi

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

ḧi

θ̈i

β̈i

⎫⎪⎪⎬
⎪⎪⎭
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∂Ti

∂qi

= 0 (2.71)

∂U

∂qi

= Kiqi =

⎛
⎜⎜⎝
khi 0 0

0 kθi 0

0 0 kβi

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩

hi

θi

βi

⎫⎪⎪⎬
⎪⎪⎭
.

The generalized loads vector of each section is due to unsteady aerodynamics,
and can be expressed as follows:

Qai(t) =

⎧⎪⎪⎨
⎪⎪⎩

−Li(t)

M0i(t) + (xhi − xai)Li(t)

Hi(t)

⎫⎪⎪⎬
⎪⎪⎭
. (2.72)

Since structural damping has been neglected, Qa i is the only nonconservative force
acting on the structure. The aerodynamic loading (Li ,M0i ,Hi) is a function of the
flow speed and density, as well as the control surface deflection, βi . In addition,
the lift, Li , and hinge moment, Hi , also depend upon the flow incidence (called
geometric angle of attack ), which is defined as the angle made by the chord with
the air flow far upstream of the wing (freestream). The geometric angle of attack at a
given point is related to the freestream flow component seen normal to the wing, wi

(called upwash), which, in turn, is a function of the generalized coordinates, hi , θi ,βi .
For example, the local angle of attack at the aerodynamic center is given by1

αi � wi

U∞
= θi + ḣi + (xai − xhi)θ̇i

U∞
, (2.73)

where U∞ is the speed of the uniform, relative air flow far upstream of the wing
(called freestream speed). Furthermore, the location of the aerodynamic center can
be a function of freestream flow properties. For a thin airfoil, the wing’s aerodynamic
center in subsonic freestream is near the quarter-chord location (xai = ci/4), and
moves to the mid-chord point (xai = ci/2) for a supersonic free stream. It may
thus be appreciated that there is a complicated relationship between the generalized
coordinates and the generalized loads on the structure. The next chapter is concerned
with how such a relationship can be modeled by the use of aerodynamic concepts.

The mass and stiffness matrices of each section are symmetric, and the structural
dynamical system is linear. The sectional degrees of freedom are also the degrees of
freedom of the entire structure, therefore the mass and stiffness matrices, as well as
the generalized loads, can be readily assembled into those of the structure. The ease
of assembly of elemental vectors and matrices into global ones is the main benefit of

1 In a steady flow, we have αi � θi , which is why most textbooks on aeroelasticity use the two
angles interchangeably. However, we will distinguish the angles αi and θi here, because we are
mainly concerned with unsteady flow.
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using the lumped parameters method, as opposed to more sophisticated discretization
schemes given below. However, for any reasonable modeling accuracy, the lumped
parameter approach requires a large number of discrete elements, thus a much larger
modeling dimension.

2.6 Rayleigh–Ritz Method

The Rayleigh–Ritz (or assumed modes method) uses the Lagrange’s equations to
formulate a series expression for the wing’s vertical deformation, δ(x, y, t), in terms
of a finite number of continuous mode shapes, γi(x, y), and the associated generalized
coordinates, qi(t), where i = 1, . . ., n:

δ(x, y, t) =
n∑
i=1

γi(x, y)qi(t). (2.74)

Here the assumed modes, γi(x, y), must satisfy the geometric boundary conditions,
such as those at the cantilevered root,

γi(x, 0) = 0,
∂γi

∂y
(x, 0) = 0, (2.75)

and possibly also the natural boundary conditions at the free tip (although this is not
required by the principle of virtual work) :

∂2γi

∂y2
(x, b/2) = 0,

∂3γi

∂y3
(x, b/2) = 0. (2.76)

The generalized coordinates, qi(t), i = 1, . . ., n, represent the contribution of each
mode to the overall displacement, and satisfy the Lagrange’s equations, Eq. (2.26),
with total kinetic energy given by

T = 1

2

∫∫
s

ρδ̇2dxdy = 1

2

n∑
i=1

n∑
j=1

Mij q̇i q̇j , (2.77)

where ρ(x, y) is the density per unit area, and the modal masses, Mij , are given by

Mij =
∫∫

s

ργiγjdxdy. (2.78)

The derivation of strain energy is in terms of modal stiffness parameters (generalized
stiffness influence coefficients), Kij :

U = 1

2

∫∫
s

δ(x, y, t)
∫∫

s

k(x, y : ξ , η)δ(ξ , η, t)dξdηdxdy

(2.79)
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= 1

2

n∑
i=1

n∑
j=1

Kijqiqj , (2.80)

where

Kij =
∫∫

s

γi(x, y)
∫∫

s

k(x, y : ξ , η)γj (ξ , η)dξdηdxdy, (2.81)

and k(x, y : ξ , η) is the stiffness influence function per unit area. The substitution of
kinetic and strain energy expressions into Lagrange’s equations results in the usual
dynamic equations of motion:

1

2

n∑
j=1

(
Mij q̇j +Kijqj

) = Qi , (i = 1, . . ., n), (2.82)

where

Qi =
∫∫

s

F (x, y, t)γi(x, y)dxdy (2.83)

is the generalized air force with F (x, y, t) being the normal aerodynamic force (lift)
acting on the wing. Equation (2.82) is expressed in the following matrix form:

Mq̈ + Kq = Q, (2.84)

where M, K are the generalized mass and stiffness matrices, respectively, and q, Q
are the generalized coordinates and forces vectors, respectively.

The primary modeling effort requires the determination of the generalized stiffness
matrix. For an arbitrary-shaped wing planform where the stiffness influence function,
k(x, y : ξ , η), is defined atN discrete points, kpq , it is common to apply the following
numerical approximation to Eq. (2.81):

K = �T�

⎛
⎜⎜⎜⎜⎜⎝

k11 k12 . . . k1N

k21 k22 . . . k2N

...
...

...
...

kN1 kN2 . . . kNN

⎞
⎟⎟⎟⎟⎟⎠
��, (2.85)

where

� =

⎛
⎜⎜⎜⎜⎜⎝

γ11 γ21 . . . γn1

γ12 γ22 . . . γn2
...

...
...

...

γ1N γ2N . . . γnN

⎞
⎟⎟⎟⎟⎟⎠
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is the modal matrix consisting of the assumed mode shapes evaluated at theN discrete
points as its columns, and� is an (N×N ) diagonal matrix of integration parameters,
called the weighting matrix. Depending upon the choice of the numerical integration
(quadrature) scheme, the weighting matrix can be suitably selected.

The high aspect-ratio wing, which is of main interest to us, is relatively easily
modeled by Rayleigh–Ritz method. Herein, the assumption of chordwise rigidity of
the sections gives rise to the following expression of strain energy [21]:

U = 1

2

∫ b/2

0

[
EI (y)

(
∂2δ

∂y2

)2

+GJ (y)

(
∂θ

∂y

)2
]
dy, (2.86)

where θ (y) = ∂δ/∂x is the local twist angle at a given spanwise location. By
substituting Eq. (2.74) into Eq. (2.86), the stiffness coefficients are obtained as
follows:

Kij =
∫ b/2

0

[
EI (y)

(
∂2γi

∂y2

∂2γj

∂y2

)
+GJ (y)

(
∂2γi

∂y∂x

∂2γj

∂y∂x

)]
dy. (2.87)

2.7 Finite-Element Method

The FEM is based upon the approximation that a continuous structure can be repre-
sented by a finite number of discrete elements, over each of which the displacement
due to a given loading is given by smooth interpolation (or shape) functions. The
shape functions are simple polynomials whose coefficients are determined by satis-
fying the load or displacement conditions at certain specific points, called the nodes
of each element. The mass and stiffness matrices are derived for each element from
energy considerations, and are then assembled into global mass and stiffness matri-
ces, respectively, while taking into account the geometric continuity (compatibility)
and natural boundary conditions (force and moment balance) of the structure by a
process called global assemblage. The utility of the FEM lies in modeling a complex
structure by a large number of simple structural elements, while working out the
global assemblage and connectivity through automated computational procedures.
In fact, FEM is the most commonly used structural modeling and analysis tool in
most engineering applications.

2.7.1 Weak Formulation and Galerkin’s Approximation

The FEM is based upon the approximate solution of a boundary-value problem
formulated in a weak form [75]. While the FEM is applicable to any engineering
problem governed by partial differential equations, we will confine our discussion
here to structural problems only. Consider for example a structure governed by the
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following spatio-temporal partial differential equation,

f (u) + � = 0, (x, y, z) ∈ Ω , 0 ≤ t < ∞, (2.88)

where u(x, y, z, t) : R4 → R is the unknown deformation, f (.) is a partial differential
operator, and �(x, y, z, t) : R4 → R is a smooth functional called the Lagrangian,
specified over a closed spatial domain, (x, y, z) ∈ Ω , and for the time interval,
0 ≤ t < ∞. The problem is closed by specifying a set of m boundary conditions to
be satisfied by the solution, u(x, y, z), expressed as follows:

gk(u) = hk , (x, y, z) ∈ �, 0 ≤ t < ∞, k = 1, 2, . . .,m, (2.89)

where gk(.), k = 1, 2, . . . ,m are partial differential operators, and

hk(x, y, z, t) : R4 → R, k = 1, 2, . . .,m

are smooth functionals specified on the boundary � of the domain Ω for all times 2

0 ≤ t < ∞. For aeroelastic problems of interest to us, the boundary-value problem
posed by Eqs. (2.88) and (2.89) are linearized in both space and time, such that the
operators f (.), gk(.) are linear. The functional f (u) then represents linear constitutive
behavior, and the dynamic boundary-value problem can be expressed as follows:

μ
∂2u

∂t2
+ κS(u) + � = 0, (2.90)

where μ(x, y, z) and κ(x, y, z) denote the inertial and stiffness properties of the ma-
terial, respectively, S(.) is a spatial partial differential operator, and �(x, y, z, t) is a
loading function. The m spatial boundary conditions specified on the boundary � of
the domain Ω are given by

Dk(u) = hk , (x, y, z) ∈ �, 0 ≤ t < ∞, k = 1, 2, . . .,m, (2.91)

whereDk(.) denotes a linear partial differential operator. Often we are only interested
in the undamped, free structural vibration models, where the deformation vector has
a simple harmonic behavior given by,

u(x, y, z, t) = ū(x, y, z)eiωt , (2.92)

where ū is the vibration amplitude. Then the dynamic boundary-value problem can
be expressed as the following linear eigenvalue problem,

μω2ū + κS(ū) = 0 (x, y, z) ∈ Ω. (2.93)

2 A more general boundary-value problem has time-varying governing equations and boundary
conditions specified at discrete times, which implies explicit dependence of the partial differential
operators on time, f (u, t), gk(u, t). While such a problem can be posed for the general aeroservoe-
lastic case in which the control inputs produce a certain desired behavior in time, it is not relevant
in structural modeling applications.



2.7 Finite-Element Method 35

Obtaining the solution u(x, y, z, t), given the material properties μ(x, y, z),
κ(x, y, z), and loading �(x, y, z, t), over a closed spatial domain, (x, y, z) ∈ Ω , as
well as the boundary condition functions, hk(x, y, z, t), k = 1, 2, . . .,m specified on
the boundary � of the domain Ω is called the strong form of the boundary-value
problem posed by Eqs. (2.90) and (2.91). Only rarely can the strong form lead to
a closed-form solution. Therefore, an approximation called the weak form (or the
variational form) is almost always necessary for the boundary-value problem. This
requires a series approximation for the solution, such as

u(x, y, z, t) �
n∑
i=1

ui(t)Ni(x, y, z), (2.94)

where ui(t), i = 1, . . .,N are the unknown deflections atndiscrete points interpolated
by smooth, prescribed functions Ni(x, y, z). These interpolation (or shape) functions
are selected such that they automatically satisfy the following natural boundary
conditions associated with the physical domain, Ω:

D
(p)
k (u) = h

(p)
k , (x, y, z) ∈ �, 0 ≤ t < ∞, k = 1, 2, . . .,m1 (2.95)

The remaining m − m1 boundary conditions, called the geometric boundary
conditions, are enforced on �,

D
(g)
k (u) = h

(g)
k , (x, y, z) ∈ �, 0 ≤ t < ∞, k = m1 + 1,m1 + 2, . . .,m, (2.96)

in order to provide constraint equations for determining the discrete deflections.
The weak formulation requires the difference between the correct solution and

its approximation must be minimized. This requires the residual of the approximate
governing equation, given by

ε = f

(
n∑
i=1

uiNi

)
+ � = f (NU)+ �, (2.97)

should be as close to zero as possible over the entire domain Ω . Here,

U =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

u2

...

un

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, N = (N1,N2, . . .,Nn)

For the linear structure, the residual is given by

ε =
(
μ
∂2

∂t2
+ κS(.)

)(
n∑
i=1

uiNi

)
+ �, (2.98)
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or

ε = μNÜ + κS (N)U + �, (2.99)

where overdot represents the time derivative.
The solution of the weak formulation requires a discretization of the domain Ω .

In a computational approach called the collocation method, the domain is discretized
into a set of n points at each of which the residual is made to vanish:

ε(xj , yj , zj , t) = 0, j = 1, . . .,N (2.100)

The collocation procedure is a simple approach, but results in a large number of
linear algebraic equations to be solved for a given computational accuracy.

An alternative procedure is the weighted-residual method in which the residual,
ε(x, y, z), weighted by elements of a desired functional, �(x, y, z),

� = (φ1,φ2, . . .,φn) ,

is brought to zero when integrated over the discretized domain Ω:
∫
Ω

εφj dΩ = 0, j = 1, . . ., n. (2.101)

Substituting Eq. (2.95) into Eq. (2.101), we have
∫
Ω

[f (NU)+ �]φj dΩ = 0, j = 1, . . ., n, (2.102)

which, for the linear structure, becomes
∫
Ω

[
μNÜ + κS (N)U + �

]
φj dΩ = 0, j = 1, . . ., n. (2.103)

By taking variation of Eq. (2.101) with respect to the unknown deflections, we have

δ

∫
Ω

εφj dΩ =
∫
Ω

φjδε dΩ

=
∫
Ω

φj (∂f/∂U) δU dΩ

= 0, j = 1, . . ., n, (2.104)

or
∫
Ω

NT (∂f/∂u)�δu dΩ = 0. (2.105)

For the linear structure, the weighted-residual method results in the following:
∫
Ω

NT μ�δü + S (N)T κS (�) δu dΩ = 0. (2.106)
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Since the weighting functions, φi , i = 1, . . ., n multiplied with the variation δu
represent the virtual displacement vector in the weighted-residual integral, they are
also known as variations, or virtual coordinates.A practical and efficient procedure in
which the weighted-residual method can be implemented is Galerkin’s method [75],
wherein the computational domain is discretized into a finite number ne of elements,
over each of which the weights are taken to be the same as the interpolation functions,
φi = Ni , i = 1, . . ., k. This discretization procedure, called FEM, is schematically
depicted in Fig. 2.8. The weighting functions Ni(x, y, z), i = 1, . . ., k satisfying the
natural boundary conditions are called the shape functions, and the points at which the
integrated weighted residual is made to vanish are called the nodes. The subdivision
of the domain into ne finite elements interconnected at the nodes is represented as
follows:

Ω =
ne⋃
i=1

Ωi , (2.107)

where Ωi is the subdomain comprising the ith element. An integration performed
over the domain is then the summation of integrations carried out over the individual
elements,

∫
Ω

F (x, y, z) dΩ =
ne∑
i=1

∫
Ωi

F (x, y, z) dΩi (2.108)

For a linear structure, the FEM yields:
∫
Ω

NT μNδü + S (N)T κS (N) δu dΩ = 0, (2.109)

which immediately lets us identify the mass and stiffness matrices of the structure
as follows:

M =
∫
Ω

NT μN dΩ

K =
∫
Ω

S (N)T κS (N) dΩ. (2.110)

It is to be noted however that the FEM carries out the integration for the mass and
stiffness matrices in a piecewise manner, wherein integrations are first performed
over each element, and then assembled into global matrices using the kinematical
compatibility of the elemental and global degrees of freedom, while enforcing the
geometric boundary conditions, Eq. (2.96). The finite-element approach offers a
choice of a large range of possible shape functions for a given domain, and is thus
quite flexible. A higher order of interpolation function is expected to produce a
better numerical accuracy with a given number of elements. A variation of the FEM
is the Rayleigh–Ritz (or assumed modes) method of the previous section, where
the interpolation functions are applied to the global structure as mode shapes, each
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of which is made to satisfy the geometric boundary conditions. Both the methods
use the interpolation functions as the weighting functions in the weighted-residual
formulation, and are thus essentially Galerkin’s methods. For this purpose, the
equivalence between the energy (or Lagrange’s equations) formulation given by

δ

∫
(T − U +Wn)dt = 0, (2.111)

and the weighted-residual formulation by Galerkin’s variational approach (Eq. 2.106)
must be carefully noted. Here T ,U ,Wn are the total kinetic energy, strain energy,
and external work, respectively, of the structure.

The least-squares method is another weighted-residual procedure alternative to
the FEM, and uses the minimization of the square of the residual at the given discrete
points,

∂

∂ui

∫
Ω

ε2 dΩ = 0, i = 1, . . ., n.

This results in n linear algebraic equations for the unknown deflections, ui(t).

2.7.2 Euler–Bernoulli Beam and Shaft Elements

As discussed earlier in this chapter, the wings of high-aspect ratio are of main inter-
est in aeroelastic models, because their structural modes are capable of significant
interaction with unsteady air loads. Consider a high-aspect ratio wing idealized as
Euler–Bernoulli beam in bending deformation, and a slender shaft in torsion Fig. 2.9.
For simplicity, the structure is approximated as consisting of n beam elements with
a node at the either end, and an equal number of two-noded shaft elements. At a
given spanwise station, y, the bending displacement is given by w(y, t), and the tor-
sional displacement (twist angle) by θ (y, t). If nc control surfaces are present, they
are approximated to be rigid in both chordwise and spanwise directions, and their
deflections, βi(t), i = 1, . . ., nc, are considered to be invariant with y. The control
surface degrees of freedom are then added to the mass and stiffness matrices in the
same manner as carried out by the lumped parameters method. At a given spanwise
station, y, the equations of motion of the wing are expressed as follows:

∂2

∂y2

(
EI

∂2w

∂y2

)
+m

∂2w

∂t2
−mxθ

∂2θ

∂t2
= �

− ∂

∂y

(
GJ

∂θ

∂y

)
−mxθ

∂2w

∂t2
+ Iθ

∂2θ

∂t2
= τ , (2.112)

where EI (y) and GJ (y) are the bending and torsional stiffnesses, respectively, at
the local spanwise station, xθ (y) is the aft displacement of the local center of mass
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Fig. 2.9 Schematic diagram of a high-aspect ratio wing approximated by a finite number of beam
and shaft elements
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from the elastic axis (Fig. 2.9), m(y) is the mass per unit span, Iθ (y) is the local
mass moment of inertia per unit span about the elastic axis, �(y, t) is the lift loading
per unit span, and τ (y, t) is the twisting moment per unit span about the elastic axis.
These partial differential equations must satisfy the boundary conditions at the either
end of the wing span. The constraint arising out of a rigid attachment of the wing to
the fuselage requires that the following geometric boundary conditions must hold at
the root (y = 0):

w(0) = ∂w

∂y

∣∣∣
y=0

= 0

θ (0) = 0. (2.113)

At the free end (the wing tip, y = b/2), the shear force, (EIw′′)′, (where prime
denotes ∂/∂y), the bending moment, EIw′′, and the twisting moment, GJθ ′, must
all vanish due to force and moment equilibrium. This results in the following natural
boundary conditions:

∂2w

∂y2

∣∣∣∣
y=b/2

= ∂3w

∂y3

∣∣∣∣
y=b/2

= 0

∂θ

∂y

∣∣∣∣
y=b/2

= 0. (2.114)

The solution of the strong form given by Eq. (2.112) subject to the boundary condi-
tions of Eqs. (2.113)–(2.114) cannot be carried out in a closed form, but requires weak
formulation by Galerkin’s method. Here, the deformation is a two-dimensional vec-
tor, u = (w, θ )T governed by a vector differential equation equivalent of Eq. (2.90),
given by

μü + S(u) + � = 0, (2.115)

where overdot denotes ∂/∂t ,

ü =
⎧⎨
⎩

ẅ

θ̈

⎫⎬
⎭ , μ =

⎛
⎝ m −mxθ

−mxθ Iθ

⎞
⎠

S(u) =
⎧⎨
⎩

∂2

∂y2

(
EI ∂2w

∂y2

)

− ∂
∂y

(
GJ ∂θ

∂y

)
⎫⎬
⎭ , � =

⎧⎨
⎩
�

τ

⎫⎬
⎭

The finite-element discretization is carried out by unidimensional n elements of
length L each arranged in the spanwise direction (Fig. 2.9). Lagrange’s equations
formulation of the variational approach is derived in the form of Eq. (2.111) for the
dynamically coupled case. Since bending and torsion deformations are decoupled
for the static case (ẅ = θ̈ = 0) by Saint-Venant’s principle, the stiffness matrix for
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each element can be computed either from the weighted-residual integral of S(u), or
from the strain energy,

Ue = 1

2

∫ L

0
EI (w′′)2dy + 1

2

∫ L

0
GJ (θ ′)2dy. (2.116)

This offers a major simplification wherein the static deflections are treated separately
for bending and torsion by using beam and shaft elements, respectively, each with
different shape functions. The governing equation and natural boundary conditions
can be satisfied by taking cubic shape functions, Ni , i = 1, 2, . . ., 4, for the two-node
beam elements shown in Fig. 2.9:

w(y, t) �
4∑

i=1

ui(t)Ni(y), (2.117)

and linear shape functions, Ni , i = 5, 6, for shaft elements,

θ (y, t) �
6∑

i=5

ui(t)Ni(y). (2.118)

Since the two motions are coupled dynamically, the elemental mass matrix is
derived from the kinetic energy,

Te = 1

2

∫ L

0
mẇ2dy + 1

2

∫ L

0
Iθ θ̇

2dy +
∫ L

0
mxθ ẇθ̇dy, (2.119)

and does not have a diagonal structure.

Elemental Matrices
Consider a two-node beam element shown in Fig. 2.9. In order to satisfy the natural
boundary conditions, the bending deflection at a point y on the element is assumed
to be given by the following Hermite cubic polynomial:

w(y, t) = a0 + a1y + a2y
2 + a3y

3, (2.120)

where the coefficients (a0, a1, a2, a3) are to be expressed in terms of the elemental
degrees of freedom, (u1, u2, u3, u4), and the following kinematical constraints at the
nodes:

w(0) = a0 = u1

w′(0) = a1 = u2

w(L) = a0 + a1L+ a2L
2 + a3L

3 = u3 (2.121)

w′(L) = a1 + 2a2L+ 3a3L
2 = u4.
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This results in the following expression for the interpolation coefficients:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0

a1

a2

a3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= A

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (2.122)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

−3/L2 −2/L 3/L2 −1/L

2/L3 1/L2 −2/L3 1/L2

⎞
⎟⎟⎟⎟⎟⎠
. (2.123)

As mentioned above, the FEM consists of interpolating the nodal deflections by
smooth shape functions, N1(y),N2(y),N3(y),N4(y), in order to find the deflection
at a particular point:

w(y, t) = N1(y)u1(t) +N2(y)u2(t) +N3(y)u3(t) +N4(y)u4(t) (2.124)

Since the shape functions must satisfy the kinematical constraints, they can be
determined as follows from Eqs. (2.120)–(2.124):

[N1(y), N2(y), N3(y), N4(y)] = (1, y, y2, y3)A , (2.125)

resulting in

N1(y) = 1 − 3(y/L)2 + 2(y/L)3

N2(y) = y − 2y2/L+ y3/L2

N3(y) = 3(y/L)2 − 2(y/L)3 (2.126)

N4(y) = −y2/L+ y3/L2.

For a two-node shaft element (Fig. 2.9), the twisting deformation at a point y is
approximated by

θ (y, t) = b0 + b1y = N5(y)u5(t) +N6(y)u6(t), (2.127)

where

⎧⎨
⎩
b0

b1

⎫⎬
⎭ =

⎛
⎝ 1 0

−1/L 1/L

⎞
⎠
⎧⎨
⎩

u5

u6

⎫⎬
⎭ , (2.128)
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which results in the following shape functions :

N5(y) = 1 − y/L

N6(y) = y/L. (2.129)

When the interpolated bending and twisting deformations, w(y) and θ (y),
respectively, are substituted in the strain–energy of each element, we have

Ue = 1

2

∫ L

0
EIuT

b N′′
b

(
N′′
b

)T
ubdy

+ 1

2

∫ L

0
GJ (uT

t N′
t

(
N′
t

)T
ut dy (2.130)

= 1

2
uT
e Keue, (2.131)

where

ue =
⎧⎨
⎩

ub

ut

⎫⎬
⎭ , ub =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

u2

u3

u4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, ut =
⎧⎨
⎩

u5

u6

⎫⎬
⎭ , (2.132)

Nb =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1(y)

N2(y)

N3(y)

N4(y)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, Nt =
⎧⎨
⎩
N5(y)

N6(y)

⎫⎬
⎭ , (2.133)

and the elemental stiffness matrix is given by

Ke =
⎛
⎝Keb 0

0 Ket

⎞
⎠ , (2.134)

with the following bending stiffness matrix:

Keb =
∫ L

0
EIN′′

b

(
N′′
b

)T
dy

=
∫ L

0
EI

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N ′′
1 (y)

N ′′
2 (y)

N ′′
3 (y)

N ′′
4 (y)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(
N ′′

1 (y),N ′′
2 (y),N ′′

3 (y),N ′′
4 (y)

)
dy , (2.135)
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and the following torsional stiffness matrix:

Ket =
∫ L

0
GJN′

t

(
N′
t

)T
dy =

∫ L

0
GJ

⎧⎨
⎩
N ′

5(y)

N ′
6(y)

⎫⎬
⎭
(
N ′

5(y),N ′
6(y)

)
dy. (2.136)

If the material properties EI and GJ are assumed to be constants over each
element for simplicity 3 and when the spanwise integrals are carried out, they result
in the following matrices:

Keb = EI

L3

⎛
⎜⎜⎜⎜⎜⎝

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎞
⎟⎟⎟⎟⎟⎠

, (2.137)

Ket = GJ

L

⎛
⎝ 1 −1

−1 1

⎞
⎠ . (2.138)

For determining the elemental mass matrix, the shape functions are substituted
into the expression for kinetic energy as follows:

Te = 1

2

∫ L

0
mu̇T

b NbNT
b u̇bdy + 1

2

∫ L

0
Iθ u̇T

t NtNT
t u̇t dy

+
∫ L

0
mxθ u̇T

b NbNT
t u̇t dy

= 1

2
u̇T
e Meu̇e, (2.139)

where the elemental mass matrix is given by

Me =
⎛
⎝Meb Mes

MT
es Met

⎞
⎠ , (2.140)

with

Meb =
∫ L

0
mNbNT

b dy =
∫ L

0
m

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1(y)

N2(y)

N3(y)

N4(y)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(N1(y),N2(y),N3(y),N4(y)) dy,

(2.141)

3 One can alternatively specify a variation of the material properties by smooth functions, EI (y)
and GJ (y), which are then included in the integration over each element.
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Mes = 2
∫ L

0
mxθNbNT

t dy = 2
∫ L

0
mxθ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N1(y)

N2(y)

N3(y)

N4(y)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(N5(y),N6(y)) dy, (2.142)

and

Met =
∫ L

0
IθNtNT

t dy =
∫ L

0
Iθ

⎧⎨
⎩
N5(y)

N6(y)

⎫⎬
⎭ (N5(y), N6(y)) dy. (2.143)

If the material properties m, Iθ , and xθ are assumed to be constants over each
element, the following matrices are derived by integration:

Meb = m

⎛
⎜⎜⎜⎜⎜⎝

13L/35 11L2/210 9L/70 −13L2/420

11L2/210 L3/105 13L2/420 −L3/140

9L/70 −13L2/420 13L/35 −11L2/210

−13L2/420 −L3/140 −11L2/210 L3/105

⎞
⎟⎟⎟⎟⎟⎠

, (2.144)

Mes = 2mxθ

⎛
⎜⎜⎜⎜⎜⎝

7L/20 3L/20

L2/20 L2/30

−3L/20 7L/20

−L2/30 −L2/20

⎞
⎟⎟⎟⎟⎟⎠

, (2.145)

Met = Iθ

⎛
⎝L/3 L/6

L/6 L/3

⎞
⎠ . (2.146)

Global Assembly
For assembling the elemental matrices into global stiffness and mass matrices, a
mapping is necessary from the elemental onto global degrees of freedom. Consider
the global degrees of freedom numbered in the way shown in Fig. 2.10 for a wing
discretized into n finite elements.

The connectivity array, �, showing the contribution of each elemental degree of
freedom to that of the complete structure is given as follows:

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 (2n+ 3) (2n+ 4)

3 4 5 6 (2n+ 4) (2n+ 5)

5 6 7 8 (2n+ 5) (2n+ 6)

· · · · · · · · · · · · · · · · · ·
(2n− 1) (2n) (2n+ 1) (2n+ 2) (3n+ 2) (3n+ 3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.147)
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Fig. 2.10 Elemental and global degrees of freedom (DOFs) for a high-aspect ratio wing discretized
by n, two-noded, beam-shaft finite elements

whose element �ij identifies the location of the global degree of freedom to which
the j th degree of freedom of the ith finite element contributes. In order to assemble
the global matrices, the elemental stiffness and mass matrices are first expressed as
follows:

Ke =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12EI

L3 6EI

L2 −12EI

L3 6EI

L2 0 0

6EI

L2 4EI
L

−6EI

L2 2EI
L

0 0

−12EI

L3 −6EI

L2 12EI

L3 −6EI

L2 0 0

6EI

L2 2EI
L

−6EI

L2 4EI
L

0 0

0 0 0 0 GJ
L

−GJ
L

0 0 0 0 −GJ
L

GJ
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Me =
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13mL/35 11mL2/210 9mL/70 −13mL2/420 7mxθL/10 3mxθL/10

11mL2/210 mL3/105 13mL2/420 −mL3/140 mxθL
2/10 mxθL

2/15

9mL/70 −13mL2/420 13mL/35 −11mL2/210−3mxθL/10 7mxθL/10

−13mL2/420 −mL3/140 −11mL2/210 mL3/105 −mxθL2/15−mxθL2/10

7mxθL/10 mxθL
2/10 −3mxθL/10 −mxθL2/15 IθL/3 IθL/6

3mxθL/10 mxθL
2/15 7mxθL/10 −mxθL2/10 IθL/6 IθL/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next, the elements of the elemental matrices are added in order to yield the
corresponding elements of the respective global matrices at the locations specified
by the connectivity array:

u�ij = u(i)
j (2.148)

K(�ij ,�ik) =
�+1∑
i=�

K(i)
e (j , k)

M(�ij ,�ik) =
�+1∑
i=�

M(i)
e (j , k), � = 1, . . ., n (2.149)

The indices (j , k) locate an element of the elemental matrix with a shared degree
of freedom between two adjacent elements 4, for which the summation over the corre-
sponding elements of the elemental matrices is carried out as indicated in Eq. (2.149).
Of course, if there is no shared degree of freedom, the summation is not carried out.
The location of each elemental term in the assembled matrix is determined by the
connectivity matrix. For the high aspect-ratio wing with Euler–Bernoulli beam-shaft
approximation considered above, the assembly procedure is schematically depicted
in Figs. 2.11 and 2.12 for the bending and torsional degrees of freedom, respectively.
The nonzero elements are seen to fall in a diagonal band structure. Finally, the geo-
metric boundary conditions at the root (y = 0) are applied to the assembled matrices
by imposing the following restriction on the global degrees of freedom:

u1 = u2 = u2n+3 = 0. (2.150)

This is carried out by removing the corresponding rows and columns from the assem-
bled stiffness and mass matrices. An example of the FEM for deriving the stiffness
and mass matrices is given in the following section.

2.7.3 Illustrative Example

Consider a wing planform shown in Fig. 2.13 discretized by taking 20 finite ele-
ments per semispan of equal width in the spanwise direction. The stiffness and mass
parameters of the wing are the following:

EI = 106[−5(y/b) + 6.7] kg.m2

GJ = 106[−6.25(y/b) + 9.38] kg.m2

4 Since the elements are arranged sequentially in a spanwise direction, only the adjacent elements
can have a shared degree of freedom.
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Fig. 2.11 Assembly procedure for the bending degrees of freedom for a high-aspect ratio wing
discretized by n, two-noded, beam-shaft finite elements

m = −23(y/b) + 68 kg/m

Iθ = −51(y/b) + 160 kg.s2

xθ = −0.25(y/b) + 0.38 m

The global stiffness and mass matrices derived by the FEM with 20, two-noded,
beam-shaft finite elements are each of dimension 60×60, and are listed in Appendix
A. Table 2.1 shows the in-vacuo natural frequencies of the first 12 structural vibration
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Fig. 2.12 Assembly procedure for the torsional degrees of freedom for a high-aspect ratio wing
discretized by n, two-noded, beam-shaft finite elements

modes ranging from 9.7845 to 457.76 rad/s, which are computed by solving the linear
eigenvalue problem (Eq. (2.63)) of the assembled structure. The bending deflection
mode shapes for the first six structural modes (also computed from the eigenvalue
problem) are plotted in in Fig. 2.14, while the bending slopes of the same modes are
shown in Fig. 2.15. The twist angle modes shapes or the first six structural modes
are plotted in Fig. 2.16. The relative magnitudes of the bending displacement and
twist angle in each mode shape allow one to label it as either a bending, torsion, or
mixed (bending/torsion) mode (Table 2.1).
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Fig. 2.13 Planform geometry of a high-aspect ratio wing discretized by 20, two-noded, beam-shaft
finite elements

Table 2.1 Structural
vibration modes No. Type Natural frequency (rad/s)

1 Bending 9.7845

2 Torsion 35.036

3 Bending 52.371

4 Torsion 93.797

5 Bending/torsion 134.23

6 Bending/torsion 161.78

7 Torsion 210.02

8 Bending/torsion 266.09

9 Bending/torsion 291.19

10 Bending/torsion 337.59

11 Torsion 405.05

12 Bending 457.76
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Fig. 2.14 Bending deflection mode shapes for the first six structural modes for the high-aspect ratio
wing of Fig. 2.13

2.7.4 Plate Bending Elements

The Euler–Bernoulli beam-shaft model given above cannot be applied to wings, tails,
and fins of small aspect ratio where chordwise and spanwise bendings are of similar
magnitudes. This means that approximating the deformation by a linear combination
of spanwise bending and chordwise rigid sections twisting about an elastic axis is
no longer valid. In such a case, resort has to be made to a more rigorous approach of
a plate theory. Thus while the Euler–Bernoulli model involves unidimensional finite
elements, a plate model is essentially two-dimensional in nature, and, therefore,
requires a more sophisticated set of shape functions.

Plates are thin, solid structures bounded by nearly parallel planes, and are
mathematically represented as follows:

Ω = {(x, y, z) ∈ R3|z ∈ [−d/2, d/2], (x, y) ∈ A ⊂ R2, (2.151)

where d(x, y) denotes the plate’s local thickness and A its area. For convenience
of notation, the deflections in the Cartesian directions are denoted by the individ-
ual component’s subscript, i.e., (δx , δy , δz). The angular rotations of fibers, initially
normal to the plate’s mid surface about the −y and x axes, are denoted by α and β,
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Fig. 2.15 Bending slope mode shapes for the first six structural modes for the high-aspect ratio
wing of Fig. 2.13

respectively, and shear strains in the corresponding directions are denoted by γα and
γβ , respectively (as indicated in Fig. 2.17a for −y rotation).

There are two types of plate theories in vogue [138]: (a) Poisson–Kirchhoff (or
classical) plate theory (CPT), and (b) Reissner–Mindlin plate theory. While (a) is
an extension of the Euler–Bernoulli model from two to three dimensions, and does
not allow for any shear deformations, (b) is a more elaborate model that includes
transverse shear deformations. Since most wing planforms of small aspect ratio have
significant shearing stresses, the Reissner–Mindlin model is expected to produce a
greater accuracy in such cases.

The relevant assumptions of the Reissner–Mindlin [75] plate theory are the
following:

1. The stress normal to the plate mid surface is zero (σzz = 0), which implies a plain
stress hypothesis.

2. The bending deflection is given by the deflection normal to the plate, which is
taken to be constant across the thickness, w(x, y, t) = δz(x, y, z, t).

3. Plane sections remain plane after deformation. This implies that the fibers initially
normal to the plate’s mid surface remain straight, but are rotated about the −y
and x axes by angles α and β, respectively (Fig. 2.17a).
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Fig. 2.16 Twist angle mode shapes for the first six structural modes for the high-aspect ratio wing
of Fig. 2.13

While the first assumption contradicts the second, it offers a major simplification
which is accurate for thin plates. It is to be noted that plate theories cannot be
entirely consistent with the exact three-dimensional models, but are only useful
approximations. Of course, there is no allowance for any shear deformation in the
CPT theory, and thus there is no difference between α and w′

α (or between β and w′
β)

shown in Fig. 2.17a. Consequently, the CPT approach is easier to model, and the
discussion here will be confined to it as a logical extension of the Euler–Bernoulli
beam theory. For the Reissner–Mindlin plate theory, the reader is referred to Chap. 5
of Hughes [75], or to Reddy [138].

The bending displacements for CPT are given by

δx(x, y, z, t) = ux(x, y, t) − z
∂w

∂x

δy(x, y, z, t) = uy(x, y, t) − z
∂w

∂y
(2.152)

δz(x, y, z, t) = uz(x, y, t) = w(x, y, t),

and result in the following strain field:

εzz = εxz = εyz = 0.
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Fig. 2.17 Schematic diagram showing a plate bending and shear deformation geometry, and b plate
bending elements for the CPT theory

The solution of the plate problem is to find the displacements, ux , uy , w, which are
defined for the mid plane (z = 0). However, since we are primarily interested in
solving for the bending deformation w(x, y, t), we only consider the following strain
field produced by the bending displacement:

⎧⎪⎪⎨
⎪⎪⎩

εxx

εyy

εxy

⎫⎪⎪⎬
⎪⎪⎭

= −z

⎧⎪⎪⎨
⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭

(2.153)
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The principle of virtual work results in the weak form of the bending problem, and
the following FEM [138]:

Meq̈e + Keqe = Fe + Qe, (2.154)

where qe(t) = (w, ∂w/∂x, ∂w/∂y)T denotes the generalized displacement vector
evaluated at elemental nodes,

w(x, y, t) �
n∑
i=1

qi(t)Ni(x, y), (2.155)

Ni(x, y) are shape interpolation functions for the plate bending element, and the
corresponding elemental matrices and force vectors are given by their following
respective elements:
Mass matrix:

Me
ij =

∫
Ωe

[
J0NiNj + J2

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)]
dx dy (2.156)

Stiffness matrix:

Ke
ij =

∫
Ωe

[
D11

∂2Ni

∂x2

∂2Nj

∂x2
+D12

(
∂2Ni

∂x2

∂2Nj

∂y2
+ ∂2Ni

∂y2

∂2Nj

∂x2

)

+ D22
∂2Ni

∂y2

∂2Nj

∂y2
+ 4D66

∂2Ni

∂x∂y

∂2Nj

∂x∂y

]
dx dy (2.157)

Transverse force due to distributed load �(x, y, t):

Fe
i =

∫
Ωe

Ni�dx dy (2.158)

Transverse force due to boundary loads (shear force Vn, and bending moment Mn

applied normal to the elemental edge boundary �e with local normal n):

Qe
i =

∫
�e

(
−Mn

∂Ni

∂n
+ VnNi

)
ds (2.159)

Here, the constitutive (material) constants of the plate are the following:

J0 =
∫ d/2

d/2
ρdz ; J2 =

∫ d/2

d/2
ρz2dz (2.160)

D11 = E1d
3

12(1 − ν12ν21)

D22 = E2d
3

12(1 − ν12ν21)
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D12 = ν12E2d
3

12(1 − ν12ν21)
(2.161)

D66 = G12d
3

12
,

where ρ(x, y) is the mass per unit area, Ei , i = 1, 2 are the Young’s moduli in the
respective directions (x, y) indicated by the subscript i, G12 is the shear modulus
in the xy plane, and νij is the Poisson ratio representing the negative ratio of the
transverse strain in the j direction to the strain in the i direction, caused by a stress
in the j direction. The elasticity coefficients are related as follows:

ν21 = ν12
E2

E1

The plate bending elements commonly used in CPT theory are the three-noded
triangular and four-noded rectangular elements, as depicted in Fig. 2.17b. These
elements have 3 degrees of freedom at each node, (w, −∂w/∂y, ∂w/∂x), and therefore
the triangular element has a total of 9 degrees of freedom while the rectangular
element has 12. For example, the interpolation for the triangular element is given by

w = a1 + a2x + a3y + a4xy + a5x
2 + a6y

2

+ a7(x2y + y2x) + a8x
3 + a9y

3, (2.162)

which is regarded as an incomplete polynomial, because of the shared coefficient
of the terms x2y and y2x. Due to the cubic variation, the slope ∂w/∂x can be
discontinuous across the boundaries of two consecutive elements. Furthermore, the
derivative ∂2w/(∂x∂y) can be multivalued at the corner points. Such an interpolation,
which does not strictly satisfy the geometric compatibility conditions, is said to be
nonconformal. This is also the case with the rectangular, four-noded elements with
3 degrees of freedom per node. However, if sufficiently large number of elements
are employed, nonconformal elements produce accurate results. An example of the
shape interpolation functions for the triangular CPT element is the following:

N1 = L1 + L2
1L2 + L2

1L3 − L1L
2
2 − L1L

2
3

N2 = x31(L3L
2
1 − L1L2L3/2) − x12(L2L

2
1 + L1L2L3/2)

N3 = y31(L3L
2
1 + L1L2L3/2) − y12(L2L

2
1 + L1L2L3/2)

N4 = L2 + L2
2L3 + L2

2L1 − L2L
2
3 − L2L

2
1 (2.163)

N5 = x12(L1L
2
2 − L1L2L3/2) − x23(L3L

2
2 + L1L2L3/2)

N6 = y12(L1L
2
2 + L1L2L3/2) − y23(L3L

2
2 + L1L2L3/2)

N7 = L3 + L2
3L1 + L2

3L2 − L3L
2
1 − L3L

2
2

N8 = x23(L2L
2
3 − L1L2L3/2) − x31(L1L

2
3 + L1L2L3/2)

N9 = y23(L2L
2
3 + L1L2L3/2) − y31(L1L

2
3 + L1L2L3/2)
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Here Li , i = 1, 2, 3 are the respective lengths of the three sides, (xi , yi), i = 1, 2, 3
are the nodal (corner) coordinates, xij = xi − xj , and yij = yi − yj .

The use of triangular CPT elements can give accurate results for most prob-
lems [138], except for a highly curved planform shape, for which convergence issues
could arise. A combination of triangular and rectangular elements (with appropriate
shape functions) can also be employed for complicated geometries. A better accu-
racy can be achieved by employing the conforming rectangular CPT elements, which
have the following 4 degrees of freedom per node (total 16 degrees of freedom):

w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x∂y

The shape functions of the conforming rectangular element are given by

Ni = gi1 (i = 1, 5, 9, 13)

Ni = gi2 (i = 2, 6, 10, 14)

Ni = gi3 (i = 3, 7, 11, 15) (2.164)

Ni = gi4 (i = 4, 8, 12, 16),

where

gi1 = 1

16
(ξ + ξi)

2(ξ0 − 2)(η + ηi)
2(η0 − 2)

gi2 = 1

16
ξi(ξ + ξi)

2(1 − ξ0)(η + ηi)
2(η0 − 2)

gi3 = 1

16
ηi(ξ + ξi)

2(ξ0 − 2)(η + ηi)
2(1 − η0) (2.165)

gi4 = 1

16
ξiηi(ξ + ξi)

2(1 − ξ0)(η + ηi)
2(1 − η0).

The coordinates are rendered nondimensional by dividing by half side of the rectangle
in each direction (Fig. 2.17b), ξ = (x − xc)/a, η = (y − yc)/b, where (xc, yc) is the
centroid, the subscript i refers to the corner (node) points, ξ0 = ξξi , and η0 = ηηi .

However, it is not expected that anything beyond triangular elements will be nec-
essary for modeling low-aspect ratio wing planforms. Assemblage of the elemental
matrices and nodal vectors into corresponding global ones must account for the
boundary conditions, as in the case of a beam-shaft idealization. A further discus-
sion of plate elements is beyond our present scope, and the reader is referred to a
specialized textbook on this topic [138].



Chapter 3
Unsteady Aerodynamic Modeling

3.1 Introduction

An aeroservoelastic (ASE) model requires the representation of the generalized
unsteady aerodynamic forces, Q(t), as functions of the generalized structural dis-
placements, q(t), which describe the structural dynamics. For an arbitrary structural
motion, derivation of unsteady aerodynamic forces and moments often requires a
computational fluid dynamics (CFD) model. However, when dealing with small
displacements of a thin lifting surface (which is the objective of ASE modeling),
one would like to employ a linear operational relationship between the approximate
unsteady airloads and the motion variables, such as

Q = D (q), (3.1)

where D(.) is an aerodynamic differential operator matrix, which depends upon the
geometry and flow properties. A linear aerodynamic representation exemplified by
Eq. (3.1) not only enables a systematic ASE analysis, but also breaks down much
more complex geometries and flow patterns into a set of much simpler problems
by linear superposition. The present chapter is concerned with devising appropriate
aerodynamic models for typical flow conditions that are representative of modern
airplane flight, namely subsonic, transonic, and supersonic flight regimes.

The most useful form of Eq. (3.1) is derived for a wing-like surface from a linear
superposition of elementary flat-plate (or flat-panel) solutions to the governing partial
differential equation of unsteady aerodynamics, resulting in an integral equation of
the following form:

w(x, y, t) =
∫
S

K[(x, y : ξ , η), t]Δp(ξ , η, t)dξdη, (3.2)

where Δp is the pressure difference between the upper and lower faces of the wing’s
mean surface, S(x, y) = 0, at a given point, (ξ , η), and w is the flow component
normal to the mean surface (z-component) called the upwash (Fig. 3.1). The kernel
function (or Green’s function), K[(x, y : ξ , η), t], represents the discrete influence
coefficient of upwash induced at collocation point (x, y) due to a unit concentrated
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w(x,y,t)

p( , ,t)

x y

U

Fig. 3.1 A thin wing placed in a uniform flow of freestream speed U∞

pressure load, Δpdξdη, applied at the load point (ξ , η). The pressure-upwash inte-
gral equation, Eq. (3.2), representing the linear aerodynamic model is analogous to
the linear load-deflection model of the structure derived in Chap. 2, and taken to-
gether, the two approximations produce a linear aeroelastic model. The aerodynamic
integral equation must be solved for the unsteady pressure distribution, yielding the
net loads, Q(t), on the structure, due to a prescribed upwash distribution resulting
from the structural motion, q(t). If the structural deflections are measured from a
steady state (or static equilibrium) condition, the linear aerodynamic model allows a
superimposition of the unsteady solution on that for the steady flow condition. Con-
sequently, the unsteady flow past a wing with camber and thickness can be modeled
as the unsteady flow due to time-dependent displacements of the mean surface, super-
imposed steady positions. This is the main advantage of having a linear aerodynamic
model.

Solution to the integral equation, Eq. (3.2), is unavailable in a closed form, and
thus requires a numerical approximation based upon the discretization of the surface
integral into a number of panels. The pressure and upwash in each panel is represented
by elementary solutions to the governing flowfield equation. For example, in an
inviscid subsonic or supersonic flow past an oscillating surface, elementary solutions
take the form of either velocity or acceleration potential sources, sinks, and doublets,
which can be distributed in each panel in a variety of ways. Such a discretization of
the flowfield is quite valuable in ASE modeling and is called a panel method. Many
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panel methods have been devised for determining the unsteady aerodynamic loads
on oscillating lifting surfaces.

3.2 Governing Equations

It is necessary to begin from first principles while trying to understand the aero-
dynamic modeling procedure. The reader is advised to consult textbooks on fluid
mechanics [153] and gas dynamics [155] for fundamental concepts. Fluid mechan-
ics models derive the governing equations in two possible ways: (a) Lagrangian
model, which considers the change in the properties of fluid elements as they pass
through fixed points in space, and (b) Eulerian model, in which fluid elements are
continuously tracked as they move through the space. While there is no basic differ-
ence in the two models, they follow different terminologies, and hence the resulting
equations are in different forms.

3.2.1 Viscous Flow

Navier–Stokes (N–S) equations govern the flow of a viscous fluid [153], and are
derived using the principles of conservation of mass (continuity), momentum, and
energy, given in a body-fixed coordinate frame, (x, y, z). These are respectively the
following:

• Continuity

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (3.3)

• x-Momentum

∂(ρu)

∂t
+ ∂(ρu2)

∂x
+ ∂(ρuv)

∂y
+ ∂(ρuw)

∂z
= −∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(3.4)

• y-Momentum

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2)

∂y
+ ∂(ρvw)

∂z
= −∂p

∂y
+ ∂τyy

∂y
+ ∂τxy

∂x
+ ∂τyz

∂z
(3.5)

• z-Momentum

∂(ρw)

∂t
+ ∂(ρuw)

∂x
+ ∂(ρvw)

∂y
+ ∂(ρw2)

∂z
= −∂p

∂z
+ ∂τyz

∂y
+ ∂τxz

∂x
+ ∂τzz

∂z
(3.6)

• Energy

∂(ρh)

∂t
+ ∂(ρuh)

∂x
+ ∂(ρvh)

∂y
+ ∂(ρwh)

∂z
= ∂p

∂t
+ u

∂p

∂x
+ v

∂p

∂y
+ w

∂p

∂z
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+ τxx
∂u

∂x
+ τyy

v

y
+ τxy

(
∂u

∂y
+ ∂v

∂x

)

+ τxz

(
∂u

∂z
+ ∂w

∂x

)

+ τyz

(
∂v

∂z
+ ∂w

∂y

)

+ τzz
∂w

∂z
(3.7)

− ∂qx

∂y
− ∂qx

∂z
− ∂qy

∂x
− ∂qy

∂z

− ∂qz

∂x
− ∂qz

∂y
.

Here (u, v, w) denote the flow velocity components in the (x, y, z) directions,
respectively, ρ is the density, p the static pressure, h the specific enthalpy,
(τxx , τxy , τxz, τyy , τyz, τzz) the elements of symmetric stress tensor,

τxx = (λ+ 2μ)
∂u

∂x

τxy = μ

(
∂u

∂y
+ ∂v

∂x

)

τxz = μ

(
∂u

∂z
+ ∂w

∂x

)
(3.8)

τyy = (λ+ 2μ)
∂v

∂y

τyz = μ

(
∂v

∂z
+ ∂w

∂y

)

τzz = (λ+ 2μ)
∂w

∂z
,

and (qx , qy , qz) the heat-flux components depending upon variation of static temper-
ature T ,

qx = −k ∂T
∂x

qy = −k ∂T
∂y

(3.9)

qz = −k ∂T
∂z

.

The basic variables governing the flow are thus (u, v, w, ρ,p,h, T ), and are called
flow variables. The fluid properties are defined by the coefficient of dynamic vis-
cosity, μ, the coefficient of bulk viscosity, λ = − 2

3μ, and the thermal conductivity
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coefficient, k. These could depend upon temperature, T , if the temperature is high.
If the flow is turbulent, there is a variation of the viscosity and thermal conductivity
coefficients with the flow variables, which can be described by statistical equations
called turbulence models.

Since there are seven flow variables and only five conservation equations, other
relationships are necessary before a solution of the fluid flow can be derived. These
additional relationships are obtained by assuming the flowing gas to be thermo-
dynamically perfect (which is a reasonable assumption for air under normal flight
applications), and expressed as follows:

p = ρRT (3.10)

h = cpT , (3.11)

whereR is the specific gas constant (287 J/(kg.K) for air) and cp the constant-pressure
specific heat.

N–S equations must be solved for the unsteady flowfield defined by the flow vari-
ables, whenever an accurate model of the viscous flow effects is necessary, such as
in large amplitude oscillations involving unsteady flow separation, turbulence, and
shock-wave/boundary-layer interaction. However, N–S solutions are computation-
ally expensive, requiring memory-intensive, iterative numerical techniques, even for
simple geometries. Their application to ASE applications involving a rapidly chang-
ing flowfield due to a dynamically deforming boundary is currently infeasible, but is
an area of active research. Hence, in a practical situation, a reasonable approximation
to N–S equations is quite desirable.

With regard to obtaining a simplified flow model, the following categorization of
viscous flows is useful:

1. Separated flow, which is governed by essentially nonlinear aerodynamic relation-
ships, thereby requiring N–S solutions.

2. Partially separated flow, which can be handled by a boundary-layer approxima-
tion consisting of an outer inviscid region and an inner viscous (or shear) layer.
The inner viscous region, although nonlinear, is governed by ordinary (rather than
partial) differential equations, which are simpler to solve than N-S equations. The
outer inviscid region for a thin, slender body is governed by linear aerodynamic
relationships. Flows of this type are inherently unsteady, and thus capable of
causing nonlinear aeroelastic effects, such as buffet and aileron buzz.

3. Attached flow, where the effects of viscosity can be neglected while calculating
the pressure distributions required for aeroelastic analyses. In such flows, the
relationships between generalized aerodynamic forces and small deflections of a
thin, slender body due to rigid and structural deformations are essentialy linear.
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3.2.2 Inviscid Flow

The most common approximation for aeroelastic applications is that of attached
flow (Type 3 above) with small perturbations. Since viscous effects are of secondary
importance in such cases, one can often drop viscosity and thermal conductivity from
the N–S equations, leading to the following Euler equations, which govern inviscid
flows:

∂

∂t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

ρu

ρv

ρw

e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ∂

∂x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρu

ρu2 + p

ρuv

ρuw

u(e + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ∂

∂y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρv

ρuv

ρv2 + p

ρvw

v(e + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ ∂

∂z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρw

ρuw

ρvw

ρw2 + p

w(e + p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.12)

Here e = h− p/ρ is the specific internal energy for which the perfect gas relations,
Eqs. (3.10) and (3.11), yield the following thermodynamic relationship:

p = (γ − 1)

[
e − 1

2
(u2 + v2 + w2)

]
, (3.13)

where

γ = cp

cv
= cp

cp − R
(3.14)

is the ratio of specific heats.
Euler equations are much simpler in form than the N–S equations, but they retain

the nonlinear character of the latter. Therefore, Euler equations can capture the essen-
tial unsteady aerodynamic phenomena that are necessary for deriving workable ASE
models. These include pressure distributions due to moving boundaries and shock
waves. The isentropic and shock wave relations are solutions of Euler equations.
Thus it is not necessary to model shock waves separately since they arise naturally
out of Euler solutions. However, Euler solvers do require certain degree of care
and complexity. The typical unsteady Euler solver is based upon a time-marching,
finite-difference (or finite-volume) procedure, such as explicit (MacCormack, Lax-
Wendroff) or implicit (ADI) methods [166]. The primitive flow variables, u, w, ρ, e,
must be solved in an iterative manner over a computational domain discretized into
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a large number of grid points for a realistic problem. Furthermore, the convergence
and stability of an Euler solution algorithm are problematic due to the nondissipative
nature of the inviscid momentum flux terms, particularly so, if strong shock waves
are present in the flowfield. This typically requires the introduction of artificial vis-
cosity (or entropy condition) into a solution procedure. Even more importantly, Euler
equations have nonunique solutions, which must be resolved by a proper application
of tangential boundary condition on the solid surface. This is termed closure and
typically takes the form of Kutta condition at the trailing edge which determines
circulation around an airfoil. Another problem is the generation of body conforming
grids for Euler solver when the solid boundaries and shock waves are moving, as in
an unsteady application. Therefore, much of the advantage of simplified governing
equations is lost in having to devise a sophisticated numerical scheme. The unsteady
Euler equations are thus of limited utility in ASE modeling, and must be simplified
further.

3.2.3 Potential Flow

In order to gain further insight into the physical characteristics of inviscid flow, we
define specific entropy, S, as an additional thermodynamic variable by the following
Gibbs relation [155]:

T dS = dh− 1

ρ
dp. (3.15)

Entropy is a measure of disorder in the flowfield, which by Gibbs relation is seen
to increase with heat transfer (enthalpy gradient) and the presence of strong shock
waves (large pressure gradient). When substituted into the momentum equations,
the Gibbs relation and the continuity equation yield the following important result,
called unsteady Crocco’s equation :

T∇S + U × � = ∇h0+ ∂U
∂t

, (3.16)

where U = (u, v, w)T is the velocity vector,

� = −∇ × U (3.17)

is the vorticity vector, which is a measure of rotation at a given point in the flowfield,

∇(.) =

⎧⎪⎪⎨
⎪⎪⎩

∂(.)/∂x

∂(.)/∂y

∂(.)/∂z

⎫⎪⎪⎬
⎪⎪⎭

(3.18)

is the gradient operator, and

h0 = h+ 1

2
(u2 + v2 + w2) = h+ 1

2
U · U (3.19)
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is the stagnation enthalpy. If the flow is steady, adiabatic (h0 =const.), and ir-
rotational (� = 0) at all points, then Crocco’s equation implies a constant entropy
flowfield (isentropic flow). The condition of irrotational flow requires that the velocity
vector must be the gradient of a scalar function, Φ, called the velocity potential:

U = ∇Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Φ/∂x

∂Φ/∂y

∂Φ/∂z

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φx

Φy

Φz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.20)

However, even if the flow is unsteady, it can still be isentropic as long as it is
irrotational and the following condition is satisfied by the velocity potential:

h0 = −∂Φ

∂t
= −Φt. (3.21)

This can be verified by substituting Eqs. (3.19)–(3.21) into Eq. (3.16). For an
isentropic flow of a perfect gas, Eqs. (3.12)–(3.15) imply that

p

ργ
= const. (3.22)

Isentropic flow is a special case of barotropic flow in which the pressure is a function
of only the density. The momentum equation of such a potential flow can be directly
integrated in order to yield the following unsteady Bernoulli equation:

Φt + U 2

2
+
∫

dp

ρ
= 0. (3.23)

The speed at which infinitesimal pressure disturbances move in an otherwise undis-
turbed medium is called the speed of sound, which for a perfect gas is given by the
following isentropic relation :

a =
[
∂p

∂ρ

]

isentropic

= √
γRT . (3.24)

The nondimensional flow parameter governing the compressible flow is Mach
number, M , defined as the ratio of flow speed, U , and the speed of sound,

M =
√

u2 + v2 + w2

a
= U

a
. (3.25)

Aeroelastic problems are concerned with an essentially steady flow far upstream of
a dynamically flexing wing. Let the subscript ∞ denote the steady flow conditions
far upstream that are unaffected by the unsteady flow in the wing’s vicinity. Then
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the freestream Mach number is given by M∞ = U∞/a∞, and the isentropic flow
conditions produce the following interesting relationship for density variation:

ρ

ρ∞
=
(
T

T∞

)1/(γ−1)

=
[

(γ − 1)

2a2∞

(−2Φt − U 2
)]1/(γ−1)

=
{

1 + (γ − 1)

2
M2

∞

[
1 − Φt

U 2∞
−
(
U

U∞

)2
]}1/(γ−1)

. (3.26)

Of course, Eq. (3.26) requires that the flow far upstream should be steady, that is
(Φt )∞ = 0. By substituting Eq. (3.20) into Eq. (3.26) we have the following form of
unsteady Bernoulli equation :

ρ

ρ∞
=
{

1 + (γ − 1)

2
M2

∞

[
1 − 1

U 2∞

(
Φt +Φ2

x +Φ2
y +Φ2

z

)]}1/(γ−1)

. (3.27)

Substitution of Eq. (3.20) into the continuity equation, Eq. (3.3), yields

ρt + ρxΦx + ρΦxx + ρyΦy + ρΦyy + ρzΦz + ρΦzz = 0. (3.28)

Then by substituting Eq. (3.27) into Eq. (3.28) and carrying out the partial differ-
entiations of ρ, the following full-potential equation (FPE) governing the inviscid,
isentropic flow can be derived:
(
a2 −Φ2

x

)
Φxx + (

a2 −Φ2
y

)
Φyy + (

a2 −Φ2
z

)
Φzz =Φtt + 2

(
ΦxΦxt +ΦyΦyt

+ ΦzΦzt )+ 2
(
ΦxΦyΦxy

+ ΦxΦzΦxz), (3.29)

where a is the local speed of sound. It is interesting to note that the FPE, Eq. (3.29),
can be alternatively expressed as follows [58]:

∇2Φ = 1

a2

D2Φ

Dt2
, (3.30)

where

∇2(.) = ∇ · ∇(.) = ∂2

∂x2
(.) + ∂2

∂y2
(.) + ∂2

∂z2
(.) (3.31)

is the Laplacian operator and

D

Dt
(.) = ∂

∂t
(.) + U · ∇(.) (3.32)

is the Eulerian (or material) derivative representing the time derivative seen by a
fluid particle convecting with the flow at the local velocity U. Equation (3.30) is the
governing wave equation of acoustics, with the rate of wave propagation a. Hence,
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merely by transforming the spatial coordinates1 from a body-fixed frame to a frame
convecting with the flow, we have established an equivalence between potential
unsteady aerodynamics and acoustics. This is an important result, which is quite
useful in analyzing and solving the FPE.

Another interesting aspect of potential flow is the acceleration potential (also
called pressure potential), ψ , related to the velocity potential as follows:

ψ = DΦ

Dt
= ∂Φ

∂t
+ U · ∇Φ, (3.33)

which, by the integrated form of Euler momentum equation (unsteady Bernoulli
equation) can also be expressed as

ψ = −
∫

dp

ρ
. (3.34)

Clearly, the acceleration potential is directly related to pressure difference, and pro-
vides an alternative model of potential flowfield. We shall return to acceleration
potential later in the chapter.

The full-potential formulation is a practical alternative to Euler equations because,
in order to completely determine the flowfield, one has to solve only for the velocity
potential, Φ(x, y, z, t), rather than each of the primitive variables, u, v, w, ρ, e, of
Euler equations. However, whereas Euler equations can be applied to nonisentropic
flow caused by strong shock waves, the FPE is valid only for isentropic flow. The
nonlinear nature of the FPE makes it almost as formidable to solve as Euler equa-
tions, although the number of dependent variables is reduced to one. The absence
of viscous dissipation calls for artificial viscosity and tangential flow conditions for
closure, as in the case of Euler formulation. The main utility of the FPE formulation
is for nearly isentropic, transonic flows where weak, normal shock waves are present,
and for which Euler equations are unnecessary. As discussed below, a major sim-
plification of the FPE is possible for transonic small-disturbance (TSD) problems,
where the boundary conditions can be applied on a mean surface rather than the
actual moving boundary. Furthermore, in subsonic and supersonic regimes, the FPE
can be effectively linearized for thin wings undergoing small amplitude motions.

1 It can be verified that Eq. (3.30) is alternatively expressed as follows:

Φξξ +Φηη +Φζζ = 1

a2
Φtt ,

where the fluid-fixed coordinates (ξ , η, ζ ) are obtained from the body-fixed coordinates (x, y, z) by
the following Galilean cum Lorentz transformation:

⎧⎪⎪⎨
⎪⎪⎩

ξ

η

ζ

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

x

y

z

⎫⎪⎪⎬
⎪⎪⎭

− Ut.
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In order to check the applicability of the FPE to transonic speeds, consider the
following normal shock relation for entropy gradient at upstream Mach number close
to unity, M∞ ≈ 1:

∂S

∂n
� 2γ

3(γ + 1)2
(M2

∞ − 1)3. (3.35)

In the limit M∞ → 1, the entropy variation becomes negligible across the shock
wave, and isentropic condition prevails, thereby enabling the application of FPE. But
the momentum is not exactly conserved in the presence of a normal shock, however
weak it may be. Thus, the validity of FPE for transonic flows with weak shock waves
is only approximate, but can give a reasonable model for ASE purposes.

Solution procedures for the FPE are essentially based upon the finite-difference
approach. In the unsteady case, the FPE is hyperbolic in nature for all speed regimes,
hence a time-marching scheme can be adopted (as in a typical unsteady Euler solver).
However, for the steady-state problem, the FPE and Euler equations change their
character from being elliptic in the local subsonic region to hyperbolic in the super-
sonic region. Therefore, in a transonic steady-state application a special treatment
of the mixed elliptic/hyperbolic behavior is required when locally supersonic re-
gions (normal shock waves) are present in the flowfield. This is either carried out
by a switching (or type-dependent) procedure when the coefficient of the Φxx term
changes sign [120], or by spatial upwinding techniques [66, 73] for density com-
putation in a conservative form. As in the case of Euler computations, there is also
the need for the introduction of artificial viscosity/entropy for avoiding physically
unrealistic solutions [124]. Furthermore, special treatment of circulation at the trail-
ing edge and the wake is also necessary [162] for closure, as in the case of Euler
equations. Fortunately, a typical ASE application involves small amplitude motion
of thin lifting surfaces, which quite significantly simplifies the full-potential model.

3.2.4 Transonic Small-Disturbance Flow

Aircraft geometries are streamlined for drag minimization such that the cross-flow
(lateral) variations in the flow variables caused by the body thickness are small com-
pared to those along the freestream (longitudinal) direction. The velocity potential
is thus only slightly changed from its freestream value. This fact offers a major
simplification in the governing equations called the small disturbance (or small per-
turbation) approximation. Consider a thin wing placed in a uniform freestream of
speed U∞, with the x-axis along the freestream direction, and the z-axis normal to
the flow direction such that the perpendicular to the essentially flat mean surface lies
in the (x, z) plane. The y-axis is in the spanwise direction normal to (x, z) axes, and
completes the right-handed triad (x, y, z) as shown in Fig. 3.1. There is no sideslip
due to (x, z) plane being parallel to the freestream direction. However, there could
be a small, nonzero angle of attack, α, defined as the angle made by the wing’s mean
surface with the freestream direction. The net velocity potential is then regarded
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as a linear superposition of the perturbation velocity potential, φ, over that of the
freestream:

Φ = U∞x + φ, (3.36)

which results in the velocity components

u = ∂Φ

∂x
= U∞ + φx ; v = ∂Φ

∂y
= φy ; w = ∂Φ

∂z
= φz. (3.37)

When Eq. (3.36) is substituted into the FPE, Eq. (3.29), with the small-perturbation
assumptions,

φx << U∞; φy << U∞; φz << U∞, (3.38)

and

φx << a; φy << a; φz << a, (3.39)

one can safely neglect second- (and higher) order terms involving φy , φz, and φt , and
third-order terms involving φx . However, the second-order term involving φx must
be retained for accuracy in the transonic limit, U∞ + φx � a, at which weak normal
shock waves may be present [95]. With these approximations, the full-potential
equation is approximated by the following TSD equation:

[
1 −M2

∞ − (γ + 1)M2∞
U∞

φx

]
φxx + φyy + φzz = 2M2∞

U∞
φxt + M2∞

U 2∞
φtt . (3.40)

The main utility of the TSD equation is its applicability in the unsteady, transonic
limit, M∞ � 1, for which its essentially nonlinear character cannot be neglected.
However, it is much simpler to solve than the FPE, because the unsteady boundary
conditions can be applied on the mean surface (rather than the actual boundary) of
the thin wing.

A practical simplification of the TSD equation is called the low-frequency
limit [95], for which the term involving φtt can be neglected, leading to

[
1 −M2

∞ − (γ + 1)M2∞
U∞

φx

]
φxx + φyy + φzz = 2M2∞

U∞
φxt . (3.41)

The applicability of the low-frequency TSD approximation, Eq. (3.41), requires
that the largest characteristic frequency, ω, governing the unsteady motion must be
sufficiently small such that

ω <<
U∞
b

, (3.42)

where b is a characteristic length. Typically, b is taken to be the mean semichord of the
wing and ω the largest elastic modal frequency (bending, torsion, or control surface
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rotation) that can influence the flowfield. In terms of these parameters, Eq. (3.41)
can be rendered nondimensional as follows:

[
1 −M2

∞ − (γ + 1)M2
∞φ̄ξ

]
φ̄ξξ + φ̄ηη + φ̄ζ ζ = 2kM2

∞φ̄ξτ , (3.43)

where the nondimensional variables are given by

ξ = x/b, η = y/b, ζ = z/b, τ = tω, φ̄ = φ

U∞b
, k = ωb

U∞
. (3.44)

The reduced-frequency, k, is a similarity parameter of the unsteady flow in addition
to the Mach number, M∞. In the low-frequency limit, we have k << 1. Solution
of the low-frequency TSD equation is carried out by finite-difference techniques
that are quite like (but much simpler than) those required for the FPE. Being based
upon an iterative solution of the following linearized equation by an approximate
factorization approach [13]:

(
1 −M2

∞
)
φ̄ξξ + φ̄ηη + φ̄ζ ζ = 2kM2

∞φ̄ξτ . (3.45)

It can be said that the simplest transonic unsteady aerodynamic model (that is, low-
frequency TSD) is based upon repeated solution of a linear governing equation.

3.3 Linearized Subsonic and Supersonic Flow

A linear, unsteady aerodynamic model is necessary for designing basic ASE control
laws. The governing equation of such a model in terms of the disturbance velocity
potential is derived from the TSD equation by neglecting the nonlinear term in
Eq. (3.40), resulting in the following linearized equation:

(
1 −M2

∞
)
φxx + φyy + φzz = 2M2∞

U∞
φxt + M2∞

U 2∞
φtt , (3.46)

which can also be expressed as the following wave equation:

∇2φ = 1

a2∞

(
D2φ

Dt2

)

∞
, (3.47)

where

(
D

Dt

)

∞
(.) = ∂

∂t
(.) +

⎧⎪⎪⎨
⎪⎪⎩

U∞
0

0

⎫⎪⎪⎬
⎪⎪⎭

· ∇(.) = ∂

∂t
(.) + U∞

∂

∂x
(.) (3.48)

is the Eulerian derivative representing the time derivative seen by an observer moving
with the freestream velocity (U∞, 0, 0)T . It is to be noted that the wave propagation
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speed in Eq. (3.47) is a∞, the freestream speed of sound, rather than a, the local
speed of sound in the FPE, Eq. (3.30). Evidently, the effect of linearization on the
FPE is to make small disturbances due to the body spread out at a constant speed
in all directions relative to the moving body. Thus, the Mach number is assumed
constant, M � M∞, at all points in the flowfield.

Derivation of Eq. (3.47) from Eq. (3.46) is equivalent to the following Galilean
cum Lorentz transformation of the space-time coordinates in the subsonic case
(M < 1):

x√
1 −M2

⇒ x; y ⇒ y; z ⇒ z, t
√

1 −M2 + xM

a∞
√

1 −M2
⇒ t

which changes to the following in the supersonic case (M > 1)

x

1 −M2
⇒ x;

y√
1 −M2

⇒ y;
z√

1 −M2
⇒ z, t + xM

a∞(1 −M2)
⇒ t.

Equations (3.46) and (3.47) are accurate at subsonic and supersonic speeds, but
cannot be applied to the transonic regime, where even for a thin wing and a slender
body, the nonlinear TSD equation must be solved. Being a linear equation, Eq. (3.46)
possesses the important property that its solution to arbitrary boundary conditions
is a linear superposition of elementary solutions corresponding to simpler boundary
conditions. Such elementary solutions can be velocity potential sources or doublets
distributed over a solid boundary, on which the flow tangency and Kutta condition
at the trailing edge are to be satisfied [58].

The boundary conditions in terms of the disturbance velocity potential can be
posed as follows:

(a) The flow is uniform (undisturbed) far upstream of the body,

φ(−∞, y, z, t) = 0, (3.49)

and perturbations remain bounded at infinity.
(b) Pressure is continuous across the wake. The small perturbation causes a planar

wake which always lies in the mean wing plane. The vorticity of the wake satisfies
the Helmholtz theorem [86] along with the bound circulation around the wing.

(c) Viscous effects, though unmodeled, are assumed to be just large enough to cause
a smooth flow tangential to the mean wing surface at the trailing-edge. This as-
sumption is called the Kutta condition, and allows inviscid flow modeling without
the attendant problem of nonunique solutions. Its physical validity, however, is
questionable when the reduced frequency, bω/U∞ becomes large. In a typical
aeroelastic application with small amplitude, low-frequency oscillations, Kutta
condition is widely held to be valid.

(d) The flow is tangential to the impervious, solid boundary. This implies that a flow
particle contacting the body must follow the instantaneous surface contour of
the dynamic body, which can be defined for the two-dimensional case by the
functional,

F (x, y, z, t) = z − zb(x, y, t) = 0.
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Hence, the solid boundary condition is given by

DF

Dt
= ∂F

∂t
+ U · ∇F = 0. (3.50)

For a thin wing, this boundary condition is effectively linearized by assuming that
the local normal on the body surface is along the z-axis, and the product w∂zb/∂x
is negligible. Furthermore, the thickness of the body can be considered to be either
negligible, or its effect included in the steady flowfield. Thus the unsteady effect of
the body can be represented by the mean surface (i.e., median plane between upper
and lower surfaces), z = 0, as follows:

w(x, y, 0, t) =
(
∂φ

∂z

)

z=0

= ∂zb
∂t

+ U∞
∂zb
∂x

. (3.51)

Since the upwash, w, cannot be physically discontinuous across the mean surface,
it must be the same at the upper and lower surfaces, denoted by z = 0+ and
z = 0−, respectively. However, φ must change sign across the wing, that is, be
an antisymmetric (odd) function of z, because its z-derivative, w, is a symmetric
(even) function. Conventionally, φ is taken to be positive on the upper surface and
negative on the lower surface. Implementation of the tangential flow condition is
useful in determining the unknown strength of a distribution of elementary solution
(source, vortex, doublet, etc.) on the solid boundary.

A solid boundary can have a different pressure distribution on the upper surface,
pu, from that on the lower surface, p�. However, the approximation of the body
by a mean surface of zero thickness, z = 0, only allows the pressure distribution
to change sign, but not the magnitude, across the surface. The linearization of the
unsteady Bernoulli equation, Eq. (3.23), written as

p(x, y, z, t) − p∞ = −ρ∞
(
∂φ

∂t
+ U∞

∂φ

∂x

)
, (3.52)

results in the following relationship between the pressure difference across the wing,
Δp = pu − p�, the disturbance velocity potential, φ:

Δp(x, y, t) = p(x, y, 0+, t) − p(x, y, 0−, t) = 2p(x, y, 0, t)

= −2ρ∞
[(

∂φ

∂t
+ U∞

∂φ

∂x

)]

z=0

. (3.53)

The solution to the unsteady Bernoulli equation (Eq. 3.52) can be expressed as the
following integral relationship between the pressure and velocity potential:

φ(x, y, z, t) = − 1

ρ∞U∞

∫ x

−∞

[
p

(
ξ , y, z, t − x − ξ

U∞

)
− p∞

]
dξ , (3.54)

where the velocity potential far upstream of the wing (x → −∞) is assumed to
be zero. This is the far-field boundary condition (a), discussed above. Hence the
condition of uniform flow far upstream, Eq. (3.49), is implicit in Eq. (3.54).
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The integral equation, Eq. (3.54), must be solved for the unknown pressure differ-
ence across the wing, while taking into account how the velocity potential evolves in
selected regions of the flowfield with both space and time. Needless to say, a closed-
form solution does not exist for any realistic problem of this kind, and numerical
solutions must be resorted to. One such numerical solution can be derived by Green’s
divergence theorem [88] applied to the boundary-value problem where either the ve-
locity potential, or its normal gradient, are prescribed on selected boundaries of the
flowfield. The boundary regions over which the velocity potential (or its gradient)
must be specified in order to solve for the unsteady pressure distribution on the wing
must necessarily include the wing and the wake. A solution alternative to the velocity
potential is possible in terms of the perturbation acceleration potential, ψ , defined
by

ψ = −p − p∞
ρ∞

= ∂φ

∂t
+ U∞

∂φ

∂x
, (3.55)

for which the wake surface (or any region off the solid body) need not be modeled,
since ψ cannot physically change across such a surface. This results in a simpler
numerical scheme, as will be discussed later.

3.4 Incompressible Flow Solution

A simple but effective method for modeling low-speed, unsteady flows over lifting
surfaces is by utilizing elementary solutions to the incompressible, irrotational (ideal)
flow problem. In the incompressible limit, a → ∞, the FPE, Eq. (3.29), reduces to
the Laplace equation for the perturbation velocity potential, given by

∇2Φ = 0 (3.56)

This equation is the same as that governing the steady incompressible and irrotational
flow, for which elementary solutions are readily available [86]. The simplest solutions
are first- and second-order polynomials in Cartesian coordinates, x, y, z, such as a
uniform flow,

Φ = Ux + Vy +W z, (3.57)

and the flow around a corner in the (x, y) plane given by

Φ = C(x2 − y2). (3.58)

A practical solution is the velocity potential source described by

Φs = − σ

4πr
, (3.59)

where r denotes the distance of the test point, (x, y, z), from the source point, (ξ , η, ζ ),
and σ is the source strength. The source is a point of singularity in the flowfield where
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the radial velocity becomes infinite. A sink has the velocity potential of opposite sign
to that of a source. By taking a pair of source and sink of equal strengths and letting
the distance between them vanish, while increasing the strength to infinity, the second
elementary solution called the point doublet is obtained, given by

Φd = − μ

4π
n · ∇(1/r), (3.60)

where μ is the doublet strength, and n is the unit vector called doublet axis repre-
senting the direction from the source to the sink. The source and doublet solutions
are related by

Φd = − ∂

∂n
Φs (3.61)

for which μ = σ cos θ , where θ is the angle made by the doublet axis and the line
joining the doublet to the test point. The third important elementary solution of the
Laplace equation is the line vortex, for which the induced flow velocity at a point
located by r from the infinitesimal vortex segment d� of constant strength Γ is given
by the Biot–Savart law as follows:

dU = Γ

4πr3
d� × r. (3.62)

For a two-dimensional flow, the source, doublet, and vortex velocity potential so-
lutions, Φs ,Φd ,Φv, respectively, at test point (x, z) for the singularities located at
(ξ , ζ ) are expressed as follows:

Φs = σ

2π
log r

Φd = − ∂

∂n
Φs (3.63)

Φv = − γ

2π
tan−1

(
z − ζ

x − ξ

)
,

where r = √
(x − ξ )2 + (z − ζ )2.

The linearity of the Laplace equation allows a linear superposition of its n

elementary solutions in order to model a complicated flowfield, such as

Φ =
n∑

k=1

ckΦk , (3.64)

where the unknown coefficients ck can be determined from n boundary conditions
specified at discrete points in the flowfield. For example, steady flow past a circular
cylinder can be modeled by superimposing the velocity potential of a uniform flow
along the x axis, Φ = U∞x over that of a point doublet with its axis pointing in
the negative x direction. Another useful example is the steady flow past a rotating
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cylinder, with axis e modeled by the superposition of uniform flow of velocity U∞
with that of a line vortex of strength Γ in e direction, which yields the lift force per
unit span of the cylinder by Kutta Joukowski theorem to be the following:

L = ρU∞ × Γ e. (3.65)

Clearly, linear superposition of solutions is a very useful concept and allows breaking-
up of a complex flowfield into several simpler ones.

A practical application of linear superposition of solutions to the Laplace equation
is the model of the flow past a wing by a distribution of sources, doublets, and/or
vortices on the wing surface, and calculating their strengths based upon specific
boundary conditions. In this way, one can derive the unknown pressure distribution
on the wing. Such an approach was the basis of the early analytical, incompressible
flow solutions on oscillating two-dimensional airfoils [63, 173], and is also used
by the three-dimensional panel methods based upon Green’s integral theorem [86,
114]. The steady-state solutions by Prandtl’s lifting-line and the quasi-steady, three-
dimensional vortex-lattice methods [72] also fall in this category. We will begin with
the steady flow integral formulation for the Laplace equation as the basis of the
unsteady panel methods, and consider its extension to the unsteady case by a proper
treatment of the unsteady boundary conditions on the wing and the wake.

In the steady flow formulation by Green’s integral theorem [88], the velocity
potential at a given point in the ideal flowfield can be expressed as follows [86] 2:

Φ(x, y, z) =
∫∫

S

[
1

4πr

∂Φ

∂n
−Φ

∂

∂n

(
1

4πr

)]
dS , (3.66)

where the closed double integral is carried out over the boundary of the flowfield, S,
comprising the solid boundary, Sb, the wake surface, Sw, and the far-field boundary,
S∞, and n is the outward normal to S, as shown in Fig. 3.2. The contribution of the
far-field boundary can be separately derived by

Φ∞ =
∫∫

S∞

[
1

4πr

∂Φ

∂n
−Φ

∂

∂n

(
1

4πr

)]
dS∞, (3.67)

whereΦ∞ is the freestream velocity potential. For a point located interior to the solid
body, the interior velocity potential distribution, Φi(x, y, z), is given by

0 =
∫∫

Sb

[
1

r

∂Φ

∂n
−Φ

∂

∂n

(
1

r

)]
dS∞. (3.68)

Finally, as the wake is a free (unloaded) surface, the gradient of velocity potential,
∂Φ/∂n, is continuous across the wake by Bernoulli’s equation. When these condi-
tions are substituted into Eq. (3.66), the following solution is obtained for the Laplace
equation :

2 Green’s integral formulation for unsteady, potential, compressible flow is discussed later in this
chapter.
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Fig. 3.2 Schematic diagram of potential flowfield for Green’s integral formulation

Φ(x, y, z) = Φ∞(x, y, z) + 1

4π

∫∫
Sb

[
1

r

(
∂Φ

∂n
− ∂Φi

∂n

)
− (Φ −Φi)

∂

∂n

(
1

r

)]
dSb

− 1

4π

∫∫
Sw

Φ
∂

∂n

(
1

r

)
dSw. (3.69)

The integral evaluation requires a distribution of elementary solutions, Φ(ξ , η, ζ ),
over the wing and wake boundaries. For example, if one considers an elemental point
doublet of strength μ(ξ , η, ζ ) at a point on the external wing surface with the axis
pointed along n–the outward normal to S, but pointing inward to the wing–then we
can select

−(Φ −Φi) = μ. (3.70)

In addition, by choosing an elemental source of strength σ (ξ , η, ζ ) on the external
wing surface given by

−
(
∂Φ

∂n
− ∂Φi

∂n

)
= σ , (3.71)

with the source and doublet strengths related by Eq. (3.61), the integral equa-
tion is identically satisfied. Furthermore, since both the solutions decay to zero
at the far-field boundary, r → ∞, the far-field boundary condition is also satis-
fied. However, the unknown source and doublet strength distributions on the wing,
σ (ξ , η, ζ ),μ(ξ , η, ζ ), must be determined by additional boundary conditions to be
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specified on the wing and the wake, based upon physical considerations. For example,
if we define the interior potential by the boundary condition,

Φ = Φi ,

then the doublet strength μ vanishes at all points, and only the exterior source dis-
tribution, σ , has to be computed from the boundary conditions on the external wing
and wake surfaces. On the other hand by selecting,

∂Φ

∂n
= ∂Φi

∂n
,

we make the source strength vanish, and only require the solution of the unknown
doublet strength distribution. If the boundary conditions are only specified for the
velocity potential, Φ, the boundary value problem is known as the Dirichlet problem.
If the boundary conditions are only specified for the gradient of velocity potential,
∂Φ/∂n, we have a Neumann problem. Usually, there is a combination of boundary
conditions of either type, resulting in a mixed formulation. For example, determining
a solution for the unknown source distribution from a specified normal velocity
boundary condition at the solid wall is an internal Dirichlet and external Neumann
problem.

For example of an application of Green’s theorem, consider a two-dimensional,
thin airfoil (flat plate) with singularity distributions along the chord plane taken to be
the x-axis (z = 0). A uniform source distribution, σ (x), yields the velocity potential
to be the following:

Φ(x, z) = 1

2π

∫ x

0
σ (ξ ) log

√
(x − ξ )2 + z2dξ . (3.72)

with the normal velocity (upwash) at a point on the wing’s upper surface, z = 0+,
and lower surface, z = 0−, given by

w(x, 0±) = ∂Φ

∂z
(x, 0±) = lim

z→0±
1

2π

∫ x

0
σ (ξ )

z

(x − ξ )2 + z2
dξ

= lim
z→0±

σ (x)

2π

∫ x

0

z

(x − ξ )2 + z2
dξ

= ±σ (x)

2
. (3.73)

This suggests that the source strength can be directly computed from the upwash
distribution on the wing.

Similarly, if a uniform, two-dimensional doublet distribution, μ(x), with doublet
axis pointing in the z direction, is used on the wing chord plane, the velocity potential
is the following:

Φ(x, z) = − 1

2π

∫ x

0
μ(ξ )

z

(x − ξ )2 + z2
dξ , (3.74)
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and the jump in the velocity potential across the wing is used to calculate the doublet
strength distribution:

Φ(x, 0+) −Φ(x, 0−) = − lim
z→0+

μ(x)

2π

∫ x

0

z

(x − ξ )2 + z2
dξ

+ lim
z→0−

μ(x)

2π

∫ x

0

z

(x − ξ )2 + z2
dξ

= −μ(x). (3.75)

The tangential velocity component is, therefore, discontinuous across the wing
surface,

u(x, 0±) = ∂Φ

∂x
(x, 0±) = ∓1

2

dμ

dx
, (3.76)

and causes a nonzero circulation about the wing segment (0, x), given by

Γ (x) = Φ(x, 0+) −Φ(x, 0−) = −μ(x). (3.77)

Hence, the circulation, Γ (x), at a given point on the wing is the same as the jump in
the velocity potential across the wing, and equals the negative of the doublet strength
at that point. A two-dimensional vortex distribution of strength γ (x) on the chord
plane can be replaced by an equivalent doublet distribution by taking the x derivative.
This is easily verified by the result

Φ(x, z) = 1

2π

∫ x

0
γ (ξ ) tan−1 z

x − ξ
dξ , (3.78)

or

u(x, 0±) = ∂Φ

∂x
(x, 0±) = lim

z→0±
γ (x)

2π

∫ x

0

z

(x − ξ )2 + z2
dξ

= ±γ (x)

2
, (3.79)

thereby implying from Eq. (3.76),

γ (x) = −dμ

dx
, (3.80)

or

μ(x) = −
∫ x

0
γ (ξ )dξ .

Such an equivalence between the vortex and doublet solutions means that either
one can be alternatively employed in a numerical solution procedure. The normal
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velocity component at a point on the airfoil must satisfy the boundary condition of
solid wall,

w(x, 0) = ∂Φ

∂z
(x, 0) = − 1

2π

∫ c

0

γ (ξ )

x − ξ
dξ

= U∞α

(
dF

dx
− α

)
, (3.81)

where z = F (x) represents the camber line of the airfoil and α the angle of attack.
However, the vorticity distribution γ (x) is not uniquely determined solely by the
normal flow condition, and requires an additional physical consideration to fix it.
This is the Kutta condition, which requires the flow should leave smoothly at the
trailing-edge x = c of the airfoil, and must have a finite velocity at that point. In
order to satisfy the Kutta condition, there should be no discontinuity in the (zero)
normal velocity at the trailing-edge as the chord-plane is crossed from the lower to
the upper surface,

γ (c) = 0. (3.82)

The elementary singularity solutions (source, doublet, vortex) are readily extended
to the unsteady case, because the governing equation for the unsteady ideal flow is
also the Laplace equation. However, since the boundary conditions on the wing are
now time dependent, the strengths of the singularity distributions also fluctuate with
time, which requires carrying out an additional integration in time over the wing
and the wake for a complete solution. In order to illustrate such a strategy, we next
consider the unsteady case based upon vortex as the singularity solution.

3.4.1 Unsteady Vortex-Lattice Method

The extension of the steady-flow integral formulation presented above for the un-
steady case requires the consideration of Kelvin’s theorem, which states that the
circulation around a closed curve consisting of a given set of fluid particles is con-
stant with time, as the given particles convect in an irrotational flowfield. This is
represented by the equation

DΓc

Dt
= ∂Γ

∂t
+ U · ∇(Γ ) (3.83)

where Γc(x, y, z, t) is the circulation around the closed curve, and D/Dt denotes the
Eulerian derivative representing the time derivative seen by a fluid particle convecting
with the flow at the local velocity U.

There are various ways in which Kelvin’s theorem of vorticity conservation around
a convecting closed curve can be included in the flow model. However, a lattice
method based upon the vortex (or a doublet) as the elementary solution is the most
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direct way to handle circulation, and hence Kelvin’s theorem. In order to appreci-
ate this fact, consider a simple model wherein the circulation around the wing is
represented by a single vortex concentrated at a point fixed relative to the wing,

Γ (x) =
∫ x

0
γ (ξ )dξ .

Initially for t < 0, the wing is at rest and circulation everywhere is zero. Suddenly,
at t = 0, the wing is started forward at a constant speed U∞, with its chord making
an angle of attack α. The circulation around the wing, Γ , given by the lumped vortex
located at quarter-chord point, is the following line integral around a closed curve,
s, surrounding the wing:

Γ =
∫
s

U · ds. (3.84)

Now, since the integral in Eq. (3.84) is carried out around particles attached to a
moving wing, its value is not a constant. To obtain the curve required for Kelvin’s
theorem, one must consider a coordinate frame attached to the flow rather than the
wing, with the closed curve sc of the same set of fluid particles. Then the circulation
around such a curve is given by

Γc =
∫
sc

U · dsc

=
∫
s

U · ds +
∫
sw

U · dsw

= Γ + Γw, (3.85)

where the second integral on the right-hand side of Eq. (3.85) (denoted Γw) is around
another closed curve sw encloses the wake, which is always expanding with time
as the wing moves forward. The application of Kelvin’s theorem then gives the
following:

DΓc

Dt
= DΓ

Dt
+ DΓw

Dt
= 0, (3.86)

or

DΓ

Dt
= −DΓw

Dt
(3.87)

This implies that the circulation around the wing is cancelled by an equal and opposite
wake circulation at any given time t . Furthermore, Kelvin’s theorem is consistent
with the principle of conservation of vorticity in an irrotational flow (Helmholtz
theorem), which implies that a vortex tube, line, or surface consisting of the same
fluid elements, always has a constant strength.
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Fig. 3.3 Unsteady circulation, Γ (t), of a flat plate at a constant geometric angle of attack, α,
suddenly started from rest at t = 0, with an evolving wake vorticity, Γw(t), modeled by the lumped
vortex method

The lumped-vortex model for the flat plate suddenly started from rest at t = 0,
is depicted in Fig. 3.3. Equation (3.87) can be discretized in time by taking finite
steps of Δt , and the value of circulation can be easily evolved on the wing and wake
accordingly. In order to determine the unknown circulation of the wing, Γ (t), and
the wake, Γw(t), boundary condition of zero velocity normal to the wing surface is
applied at the three-quarters chord collocation point. The choice of ξ = c/4 point for
the bound vortex, and ξ = 3c/4 for collocation point results in the Kutta condition
being instantaneously satisfied at the trailing-edge of the flat plate. This fact can be
demonstrated for the steady case by applying Biot–Savart law (Eq. (3.62)) at a point
x = a on the wing to determine the net normal velocity due to the bound vortex at
x = c/4 [86]:

w(a, 0) = ∂Φ

∂ζ
(a, 0) = − Γ

2π (a − c/4)
+ U∞α = 0 (3.88)

Substituting the correct value of circulation required for satisfying Kutta condition
at the trailing edge (Eq. (3.82)), given by the Kutta–Joukowski theorem [86] as

Γ = 2π
c

2
U∞α, (3.89)

we have

− c

2(a − c/4)
+ 1 = 0, (3.90)

or a = 3c/4.
For the unsteady case, there is an additional contribution of the wake vortices to

the induced velocity on the wing’s 3/4-chord location. For example, at the first time
step, a wake segment of length U∞Δt , with a concentrated vortex in the middle,
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has been shed off the trailing edge. Thus the first wake vortex reaches a downstream
distance U∞Δt/2 behind the wing, thereby (along with the bound vortex) inducing
a net upwash at the collocation point,

−Γ (Δt)

πc
+ Γw(Δt)x1

2π
(
x2

1 + z2
1

) = −U∞α, (3.91)

where

x1 = c/4 + U∞Δt/2 (3.92)

and the vertical location of the first wake vortex, z1, is determined from the wake roll-
up caused by the normal velocity induced by wing vortex on the wake, approximated
as follows:

z1 = −Δt Γ (Δt)

2π (x1 + c/2)
(3.93)

At t = Δt (as at all times), the wing and wake vortices must satisfy Kelvin’s theorem:

Γ (Δt) + Γw(Δt) = 0. (3.94)

While simultaneous solution of Eqs. (3.91)–(3.94), a nonlinear set, requires an itera-
tive approach, an approximate solution can be obtained by utilizing the fact z1 << x1,
which yields z1 � 0 in Eq. (3.91). This allows a linear algebraic solution of the
equations for Γ (Δt),Γw(Δt).

At every fresh instant Δt , a new vortex must be shed into the wake, because by
Kelvin’s theorem, that is the only way in which the wing’s circulation can evolve
with time. Thus the following equations must hold at a time t = nΔt :

−Γ (nΔt)

πc
+ Γw(nΔt)

2πx1
+ Γw[(n− 1)Δt]x2

2π
(
x2

2 + z2
2

)

+ Γw[(n− 2)Δt]x3

π
(
x2

3 + z2
3

) + · · · + Γw(Δt)xn
π
(
x2
n + z2

n

)

= −U∞α. (3.95)

Γ (nΔt) + Γw(nΔt) + Γw[(n− 1)Δt] + Γw[(n− 2)Δt] + · · · + Γw(Δt) = 0.
(3.96)

The wake roll-up procedure accounts for the evolving wake geometry caused by the
upwash due to the wing and wake vortices. This is carried out by applying Biot–Savart
law to every new wake segment as follows:

wn = − Γ (nΔt)

2π (x1 + c/2)
+ + Γw[(n− 1)Δt](x2 − x1)

2π
[
(x2 − x1)2 + (z2 − z1)2

]

+ Γw[(n− 2)Δt](x3 − x1)

2π
[
(x3 − x1)2 + (z3 − z1)2

] + · · ·
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+ Γw(Δt)(xn − x1)

2π
[
(xn − x1)2 + (zn − z1)2

] , n = 2, 3, . . ., (3.97)

and updating the wake vortex coordinates by
⎧⎨
⎩

xn

zn

⎫⎬
⎭ =

⎧⎨
⎩

xn−1

zn−1

⎫⎬
⎭ +

⎧⎨
⎩

U∞
wn

⎫⎬
⎭Δt , n = 2, 3, . . . (3.98)

Hence the linear algebraic equations, Eqs. (3.95) and (3.96), must be solved at
each instant to determine the unknowns, Γ (nΔt),Γw(nΔt), n = 1, 2, . . . , using the
updated wake coordinates supplied by the wake roll-up procedure.

Once the wing circulation is calculated, lift can be computed by the unsteady
Bernoulli equation as follows:

L(t) =
∫ c

0
Δp(t)dξ = ρ

[
U∞Γ (t) + c

∂Γ

∂t
(t)

]
(3.99)

The lumped-vortex procedure applied to the impulsively started flat plate with c = 1
m, U∞ = 30 m/s, ρ = 1.225 kg/m3, 5 ◦ angle of attack, and Δt = 0.25c/U∞ is
coded in MATLAB, and results are plotted in Figs. 3.4–3.6 for 10 time steps. As
expected, the wing’s lift and circulation reach positive, steady-state values, while the
wake circulation diminishes to zero in about 1.5 chord lengths of travel. The wake
roll-up is evident in the snapshot (Fig. 3.5) taken after 10 time steps (or 2.5 chord
lengths). The comparison of computed lift with that provided by the analytical result
of Wagner’s indicial lift function [189], k1(t), is shown in Fig. 3.7 for a longer time
(120 steps). It is observed that the circulatory (wake-induced) lift predicted byWagner
function 3 reaches the steady-state value, L(∞), in about 30 chord lengths, whereas
the lumped-vortex model—which includes both circulatory and noncirculatory lift—
predicts a much faster decay of the transient response. The vortex model also correctly
indicates infinite lift at t = 0 consistent with the impulsively started airfoil, which
corresponds to infinite initial acceleration.

Let us now consider a more sophisticated vortex-lattice model [86] that can be
applied to a three-dimensional wing with camber and thickness. The elementary
solution used in this case is the vortex-ring consisting of four linear vortices each
producing a constant circulation, Γ , linked together in a ring (Fig. 3.8). Each ring
is placed on a wing panel such that the leading vortex coincides with the 1/4-chord
location of the panel and the trailing vortex is at the 1/4-chord location of the next
panel in the downstream direction. The panel edges are parallel to the freestream,

3 Wagner function k1(s) models the indicial lift of a flat plate airfoil impulsively started from
rest by

L(t)/L(∞) = k1(s) + b

2
δ(s),

where s = tU∞/b and δ(s) is the Dirac delta function.
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Fig. 3.4 Unsteady circulation, Γ (t), of a flat plate suddenly started from rest at 5 ◦ angle of attack,
modeled by the lumped-vortex method with 10 time steps

and the other two vortices are aligned with them. The last row of vortex rings on the
panels next to the wing’s trailing edge is placed such that the trailing vortex gives rise
to the first wake vortex of equal strength, in order to satisfy the Kutta condition. The
upwash boundary condition is specified on the 3/4-chord, mid-span location of each
panel. Let the upwash produced by a wing panel–identified by the index j–on the
3/4-chord collocation point (xi , yi , zi) of the ith panel be given by the aerodynamic
influence coefficient Aij , while that produced by a wake panel identified by index
jw on the same collocation point be denoted Bij . If there are N wing panels and
Nw wake panels, then the upwash induced by all the panels on the ith wing panel is
given by

wi =
N∑

j=1,�=i
AijΓj +

Nw∑
j=1

BijΓwj , (i = 1, . . .,N ) (3.100)

which is represented in the following matrix form:

w = A	 + B	w, (3.101)

with A, B being aerodynamic influence coefficient (AIC) matrices, used to compute
the unknown circulation vectors 	, 	w from the boundary condition normal to the
wing surface,
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Fig. 3.5 Unsteady wake circulation, Γw(t), for a flat plate suddenly started from rest at 5 ◦ angle of
attack, modeled by the lumped-vortex method with 10 time steps

wi(t) = −v · n(xi , yi , zi , t)

satisfied at the collocation points on the wing surface. Here v denotes the net velocity
of the point (xi , yi , zi) due to all kinematic effects (rotation, translation, deformation)
of the wing. The net velocity of a wake panel is given by

vw = U∞ + C	 + D	w, (3.102)

where U∞ is the freestream velocity, and C, D are AIC matrices denoting the effects
of wing and wake panels, respectively. The effect of the unsteady wake on the wing
requires an iteration with time until a steady state is reached. This procedure includes
calculation of the upwash induced by the wake panels on the wing, as well as the
velocity induced by the wing and wake on each wake panel, thereby causing the
wake to deform. The wake deformation changes the coordinates of the wake panels,
and therefore affects B, C, D. Wake circulation is fixed by Helmholtz theorem, which
dictates that wake circulation 	w is the same for all wake panels coming from the
same location on the wing trailing edge (Fig. 3.8), and the Kutta condition, which
requires the wing circulation at the trailing edge is the same as that of the first wake
panel. The solution procedure is schematically depicted by a flowchart in Fig. 3.9.
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Fig. 3.6 Unsteady wake roll-up for a flat plate suddenly started from rest at 5 ◦ angle of attack, after
10 time steps

From earlier discussion of the equivalence between the circulation produced by
a vorticity distribution and the constant doublet strength, it is expected that each
vortex ring should give rise to exactly the same upwash distribution as that caused by
a quadrilateral doublet element of constant strength. Katz and Plotkin [86] provide
the closed-form aerodynamic influence coefficients between upwash and doublet
(or circulation) strengths (Appendix B) for constant strength doublet elements of
quadrilateral shape. However, it is much easier to program the equivalent influ-
ence coefficients calculation by the vortex-ring elements using Biot–Savart law. The
pressure distribution on the wing is computed by the unsteady Bernoulli equation,
expressed as follows:

Δp = p� − pu = ρ

(
v2
Γ

2
|u − v2

Γ

2
|� + ∂Φ

∂t
|u − ∂Φ

∂t
|�
)

, (3.103)

where vΓ is the tangential velocity component on the upper (subscript u) and lower
(subscript �) surface responsible for circulatory flow, calculated by

vΓ = (v + vw) · τ
∂Φ

∂τ
, (3.104)
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Fig. 3.7 Unsteady lift,L(t), of a flat plate suddenly started from rest at 5 ◦ angle of attack, compared
with Wagner’s indicial lift function for 120 time steps

where τ denotes the local unit vector tangential to the wing surface, which can be
resolved in two mutually perpendicular–such as chordwise (i) and spanwise (j)–
directions:

vΓ = (v + vw) · i
∂Φ

∂x

+ (v + vw) · j
∂Φ

∂y
. (3.105)

In order to carry out the tangential and time derivatives of the velocity potential,
Φ, finite-difference approximations as well as the relationship between local vortex-
ring circulation and velocity potential difference between upper and lower surfaces,
Γ = ΔΦ, are employed 4. This ring-vortex lattice procedure is coded in a MATLAB
code, which is applied to the examples considered here.

For an example application of the ring-vortex lattice method, consider a straight
wing of aspect ratio 13.71 and mean aerodynamic chord, c̄ = 0.5833 m shown in

4 Unfortunately, there is a mistake in Eq. (13.134) of Katz and Plotkin [86], which has been corrected
here.
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Fig. 3.8 Schematic representation of the vortex-ring model of an aircraft wing

Fig. 3.10, with a NACA 240 series [1] camber line as its thin airfoil section. The
steady-state pressure distribution achieved after 0.1 semichord lengths (b = c̄/2) of
travel for speed U∞ = 30 m/s, ρ = 1.225 kg/m3, 5 ◦ angle of attack, is plotted in
Fig. 3.11 for 20 chordwise and 10 spanwise divisions. The wing is now set into a
pitching oscillation of amplitude 5 ◦ with frequency 200 rad/s, with angle of attack
given by

α(t) = 5 cos(200Δt) deg.,

and the lift and induced drag coefficients are plotted in Fig. 3.12 for 5 semichord
lengths of travel. The oscillation in the circulation about the wake for 20 time steps is
evident in Fig. 3.13 at the various spanwise stations, and the corresponding unsteady
pressure distribution is compared for three selected time instants in Fig. 3.14.

Now consider the wing plan form given above with a NLR-7301 supercritical
airfoil shape, which has 17 % maximum thickness (Fig. 3.15). Figures 3.16–3.18
are the results of a combined pitching and heaving oscillation with different forcing
frequencies of 100 and 50 rad/s, respectively, plotted for 50 time steps. The variation
of lift and induced drag coefficients, as well as the wake circulation is seen to be
nonharmonic, and the pressure distribution shows a similar unsteady behavior. Next,
a spanwise bending mode of frequency 100 rad/s is considered with the following
angle of attack variation:

α(y) = 0.5

U∞
(y/s)2
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Fig. 3.9 Flowchart for unsteady Vortex-Lattice method

where s denotes the semispan. The resulting pressure distribution on the upper and
lower surfaces is plotted in Figs. 3.19 and 3.20, respectively, with the unsteady
wake circulation shown in Fig. 3.21. For illustration, only 15 chordwise and 10
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Fig. 3.10 Trapezoidal, straight wing of aspect ratio 13.71 shown with 15 chordwise and 5 spanwise
divisions on each side of the semispan, and with equal number of panels on the upper and lower
surfaces

spanwise divisions are taken here, but it is expected that a larger number of divisions
is required for capturing the initial indicial response (not plotted) in the first 2–3
time steps. The supercritical airfoil section expectedly has a flat pressure distribution
in the mid-chord range, with sharper gradients near the leading edge (acceleration)
and the trailing edge (deceleration). The smaller extent of adverse (positive) pressure
gradient on the upper surface of the supercritical airfoil is mainly responsible for its
larger region of laminar flow (thus smaller viscous drag), as well as an increase in the
critical Mach number in the high subsonic regime, when compared to a conventional
airfoil in which the largest camber falls in the forward- to mid-chord region.

3.4.2 Classical Analytical Solution

Unsteady aerodynamic modeling as practiced today, would not be possible without
the seminal contributions of early workers in the closed-form analysis of unsteady,
two-dimensional, potential flows past thin airfoils. Birnbaum’s [20] pioneering
solution based on vortex distribution was further developed by Küssner [90], while
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Fig. 3.11 Steady-state pressure distribution for a thin, high aspect-ratio wing with NACA 240 series
camberline at 5 ◦ angle of attack, after 20 time steps
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Fig. 3.12 Unsteady lift and induced drag coefficients for a thin, high aspect-ratio wing with NACA
240 series camberline, pitching with 5 ◦ angle-of-attack amplitude
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Fig. 3.13 Development of wake circulation for a thin, high aspect-ratio wing with NACA 240 series
camberline, pitching with 5 ◦ angle-of-attack amplitude

the alternative (but equivalent) conformal mapping approach of Wagner [189] was
followed by Glauert [63], Theodorsen [173], and von Karman and Sears [187]. The
terminology and methods devised by these researchers have been widely practiced
in almost all areas of aeroelastic analysis, and have also inspired developments in
compressible flows. Here we will briefly review the early analytical work [58].

Theodorsen [173] considered conformal mapping of a pair of source and sink
located at diametrically opposite ends of a circle to simulate the noncirculatory (n.c.) 5

flow pattern on a two-dimensional, flat-plate airfoil of chord 2b caused by normal
velocity disturbance, w(ξ , t), applied on an element Δξ located at point x = ξ .
Here, x is a nondimensional coordinate measured along the airfoil in the streamwise
direction from the mid-chord point, such that the leading edge is at x = −1, and
the trailing edge corresponds to x = 1. When the conformal mapping is applied, the
circle is transformed into the chord line, while preserving the velocity potential at
the mapped points. The change in the n.c. velocity potential at a point x on the upper
surface is derived to be the following:

Δφnc(x, t) = 1

2π
w(ξ , t)bΔξL(x, ξ ), (3.106)

where

L(x, ξ ) = 2 log |1 − xξ − √
1 − x2

√
1 − ξ 2

x − ξ
|. (3.107)

5 Not associated with the circulation due to wake.
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Fig. 3.14 Unsteady pressure distribution for a thin, high aspect-ratio wing with NACA 240 series
camberline, pitching with 5 ◦ angle-of-attack amplitude

This result can be alternatively derived by Green’s integral theorem with doublet
(or vortex) distribution. The resulting n.c. pressure distribution is then given by the
unsteady Bernoulli equation to be the following:

Δpnc(x, t) = −2ρ

(
∂

∂t
+ U∞

b

∂

∂x

)
Δφnc

= − 2

π
ρ

(
U∞
b

√
1 − ξ 2

(x − ξ )
√

1 − x2

)
bwΔξ

− ρ

π
bΔξL(x, ξ )

∂w

∂t
(3.108)

Theodorsen then derived the circulatory potential, Δφc, to cancel the noncirculatory
upwash, w(ξ , t), by an equal and opposite induced upwash, such that there is no
pressure singularity, either at an arbitrary point, x = ξ , or at the trailing edge,
x = 1. The circulation on the airfoilΔΓ required for inducing the necessary upwash
is provided by an element Δxw of the force-free wake (Kelvin’s theorem) behind
the trailing edge, located at x = xw > 1, with a vorticity distribution, γw(xw, t).
By either conformal mapping, or Green’s integral solution with doublet (or vortex)
distribution, the circulatory perturbation potential integrated over all wake elements
is obtained to be the following:

Δφc(x, t) = b

2π

∫ s

1
γw(xw, t) tan−1

√
1 − x2

√
x2

w − 1

1 − xxw
dxw, (3.109)
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Fig. 3.15 NLR-7301 supercritical airfoil geometry

where the integration limits are for the wake extending from xw = 1 to xw = s, and
conforms to the flow started at a time t = (s − 1)b/U∞ previously. The vorticity
generated at the trailing edge convects downstream with the flow, and reaches a
position x = xw after a time t = (xw − 1)b/U∞ without any change in its strength.
This implies that

γw(xw, t) = γw [1, (xw − 1)b/U∞] ,

which simplifies the solution of the integral in Eq. (3.109).
The circulation around the airfoil (and thus the wake) should be such that the

flow leaves smoothly at x = 1 (Kutta condition). This condition translates into the
requirement of the tangential velocity component at the trailing edge,

∂

∂x
(Δφnc +Δφc) |x=1. (3.110)

being finite, and results in the following integral equation to be soved for γw(xw, t),
subject to the upwash boundary condition w(ξ , t) on the body surface:

1

π
w(ξ , t)Δξ

√
1 + ξ

1 − ξ
= − 1

2π

∫ s

1
γw(xw, t)

√
xw + 1

xw − 1
dxw, (3.111)
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Fig. 3.16 Unsteady lift and induced drag coefficients for a high aspect-ratio wing with thick
NLR7301 supercritical airfoil section, in a combined heaving and pitching oscillations of different
forcing frequencies

Equation (3.111) parallels the development by Wagner [189] for a step change
in w(ξ , t) (such as due to an airfoil impulsively started from rest), as well as of
Theodorsen [173] for the oscillatory (harmonic) upwash.

The circulatory pressure difference on the airfoil is derived by accounting for the
fact that the unsteadiness in the velocity potential is caused only by the motion of
wake (∂/∂t(.) = (U∞/b)∂/∂xw(.)), resulting in the following:

Δpc(x, t) = −2ρ
U∞
b

(
∂

∂x
+ ∂

∂xw

)
Δφc

= − ρU∞
π

√
1 − x2

∫ s

1
γw(xw, t)

x + xw√
x2

w − 1
dxw, (3.112)

or

Δpc(x, t) = 2ρU∞√
1 − x2

∫ s

1 γw(xw, t) x+xw√
x2

w−1
dxw

∫ s

1 γw(xw, t)
√

1+xw√
xw−1

dxw

ΔQ(ξ , t), (3.113)

where

ΔQ(ξ , t) = 1

π
w(ξ , t)Δξ

√
1 + ξ

1 − ξ
, (3.114)
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is the term on the left-hand side of the integral equation due to the noncirculatory
upwash prescribed at a point x = ξ on the wing.
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Fig. 3.20 Unsteady pressure distribution on the lower surface of a high aspect-ratio wing with thick
NLR7301 supercritical airfoil section in a spanwise bending oscillation mode

While Wagner’s [189] analysis of indicial airfoil motion–mentioned in the previ-
ous section–will find coverage in Chap. 4 for transient aerodynamics modeling, the
remainder of the discussion here is confined to the simple harmonic motion, which
is necessary for deriving the unsteady aerodynamic transfer function (Chap. 4). In
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the harmonic limit, we have

w(x, t) = w̄(x)eiωt , (3.115)

whereω is the frequency of oscillation and w̄(x) the (complex) upwash amplitude at a
given point (prescribed by rigid and elastic motion). Furthermore, the wake response
is also harmonic, and is given by the vorticity at a point x = xw:

γw(xw, t) = γ̄ eiω[t−(xw−1)b/U∞] = γ̄ ei[ωt−k(xw−1)], (3.116)

where γ̄ is the complex wake vorticity amplitude and

k = ωb/U∞ (3.117)

is the reduced frequency representing number of waves in a wake length of 2π
semichords, b. Clearly, k is the governing parameter of circulatory incompressible,
irrotational flow. In the harmonic case, the wake is assumed to have developed to
its full extent (s → ∞) before small amplitude perturbation, γ̄ , is applied. This is
analogous to an infinite sheet of vortices fixed to the wing, and oscillating at the
excitation frequency. A change in the vorticity of the wake element at x = xw affects
the circulation around the wing only after time t = (xw −1)b/U∞, therefore a phase-
lag is inherent in the circulatory pressure distribution. However, in the limit s → ∞
the exponential term on the right-hand side of Eq. (3.116) vanishes, and Δpc can be
expressed as follows:

Δpc(x, t) = ¯Δpc(x)eiωt , (3.118)

where

¯Δpc(x) = 2ρU∞√
1 − x2

∫ s

1
x+xw√
x2

w−1
e−ikxw dxw

∫ s

1
1+xw√
x2

w−1
e−ikxw dxw

Δ̄Q(ξ ), (3.119)
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where

Δ̄Q(ξ ) = 1

π
w̄(ξ )Δξ

√
1 + ξ

1 − ξ
, (3.120)

The chief problem with the formulation, Eq. (3.119), is the evaluation of the improper
integrals in the limit s → ∞ due to the oscillatory integrands. The difficulty is partly
resolved by writing

∫ s

1
xw√
x2

w−1
e−ikxw dxw

∫ s

1
1+xw√
x2

w−1
e−ikxw dxw

= 1 −
∫ s

1
e−ikxw√
x2

w−1
dxw

∫ s

1
e−ikxw√
x2

w−1
dxw + ∫ s

1
xwe−ikxw√

x2
w−1

dxw

, (3.121)

which leaves the only problematic integral as the following one:

I (k) =
∫ s

1

xe−ikx
√
x2 − 1

dx (3.122)

In the limit s → ∞, this improper integral can be evaluated in two ways:

1. Consider the reduced frequency to be a complex number, such that ik= a + ib,
a > 0, for which the integrand

xe−ikx
√
x2 − 1

= xebxe−iax
√
x2 − 1

vanishes identically in the limit x → ∞. Thus we write

I (k) = d

dk

∫ ∞

1

ie−ikx
√
x2 − 1

dx = d

dk

π

2
H

(2)
0 (k) = −π

2
H

(2)
1 (k) (3.123)

whereH (2)
n (.) is the Hankel function of second kind and ordern [6]. Such a method

of evaluating an improper, harmonic integral by converting the frequency to a
complex number is called analytic continuation, and is equivalent to extending
the simple harmonic motion to a more general one of either a growing (ik =
a+ib, a > 0), or decaying oscillation (ik = a+ib, a < 0) at the given frequency
k. Analytic continuation is a useful device, and will be further explored in Chap. 4.

2. Karman and Sears [187] proposed adding and subtracting a quasi-steady term
from the integrand, which corresponds to the unsteady upwash assumed as being
equal to its steady-state value. The additional quasi-steady term vanishes in the
limit s → ∞.
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The integral I (k) substituted into Eqs. (3.121) results in the following:

C(k) =
∫ s

1
xw√
x2

w−1
e−ikxw dxw

∫ s

1
1+xw√
x2

w−1
e−ikxw dxw

= 1 − H
(2)
0 (k)

H
(2)
0 (k) − iH

(2)
1 (k)

= H
(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (3.124)

where C(k) is called the Theodorsen function. This completes the derivation of
analytical lifting pressure distribution, now expressed in a closed form as follows:

¯Δpc(x) = 2ρU∞√
1 − x2

{C(k) + x [1 − C(k)]} Δ̄Q(ξ )

= 2ρU∞
π

w̄(ξ )Δξ

√
1 + ξ

1 − ξ

√
1 − x

1 + x

[
C(k) − 1 + 1

1 − x

]
. (3.125)

The main utility of the Theodorsen function lies in its closed-form expression, which
does not require iteration for the wake vorticity. This allows a direct use of C(k) in
a flutter analysis of low-speed aircraft. The work of Theodorsen was built upon
the integral formulation for bound vorticity by Birnbaum [20] approximated by
power series in reduced frequency, which was further improved by Küssner [90],
and Glauert’s [63] application of conformal mapping to the problem and deriving a
Fourier series representation for circulation, followed by von Karman and Sears [187]
demonstration that the infinite integrals occurring in Glauert’s series coefficients can
be approximated by Bessel functions. In an alternative approach to Theodorsen’s,
Schwarz [150] presented a solution to the two-dimensional, incompressible, oscil-
latory problem by applying Söhngen’s [160] inversion to the integral equation of a
vortex sheet representing the airfoil and wake, with Kutta condition applied at the
trailing edge. This approach was further developed by Söhngen [161] and Küss-
ner and Schwarz [92] using Cauchy principal value and Fourier series, respectively.
Garrick [58] later demonstrated a solution to the velocity potential integral equation
using a separation of variables. Smilg and Wasserman [159] tabulated the values of
the Theodorsen function for prescribed cases, and proposed a strip-wise application
for flutter calculation of unswept, finite-span wings.

Analytical model of the Theodorsen function is a valuable mathematical tool,
and has also served as an example for similar models for the compressible flow
regimes. However, Theodorsen’s model is only a first-order approximation of wake
development, and hence cannot account for the wake shape (roll-up) as a vortex-
lattice method can (see above). Furthermore, it does not include thickness and camber
effects. Thus, low-speed flutter stability analysis of aircraft wings and helicopter
blade dynamics are its only practical applications.
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3.5 Integral Equation for Linear Compressible Flow

The integral equation governing lift distribution and upwash for compressible flows
can be derived in two alternative ways: (a) Green’s integral solution with velocity
potential sources (or doublets), and (b) small-perturbation acceleration potential
formulation by unsteady Bernoulli equation. While the acceleration potential method
has been covered above, the Green’s integral formulation of the previous section was
confined to incompressible flows. We therefore begin with the extension of the latter
for the linearized compressible flow.

3.5.1 Velocity Potential Formulation by Green’s Theorem

Green’s divergence theorem [88] leads to the following integral relationship between
any two continuously differentiable functions f and φ, which along with their first
order spatial derivatives are finite and single valued in a domain V bounded by a
surface S with outward normal n:

∫
V

(
f∇2φ − φ∇2G

)
dV =

∫
S

(
G
∂φ

∂n
− φ

∂G

∂n

)
dS (3.126)

We have seen above the special case in which φ was the solution to the Laplace
equation, and G was a singularity (Green’s) function that also satisfied the Laplace
equation. For the following linearized, compressible wave equation expressed in
terms of the small perturbation velocity potential, φ, in a frame moving with the
freestream:

∇2φ = 1

a2∞

∂2φ

∂t2
, (3.127)

the field potential analogous to Eq. (3.69) is given by the following Kirchoff’s
formula, which is also a result of classical acoustics (Huygens’ principle):

φ(x, y, z, t) = 1

4π

∫
S

[
1

r

(
∂φ

∂n

)
|t−r/a∞ − ∂

∂n

(t − r/a∞)φ

r

]
dS , (3.128)

where r = √
(x − ξ )2 + (y − η)2 + (z − ζ )2 is the distance between an infinitesimal

disturbance produced at (ξ , η, ζ ) and the field point (x, y, z).An elegant representation
of Eq. (3.128) is the following:

φ(x, y, z, t) = 1

4π

∫
S
f

(
t − r

a∞

)
dS , (3.129)

where

f (t) = 1

r

∂φ

∂n
+ 1

a∞r

∂φ

∂t

∂r

∂n
(3.130)
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Clearly, an infinitesimal disturbance produced at (ξ , η, ζ ) is felt only after a delay
(or time lag) at field point (x, y, z) by r/a∞. Thus time appears everywhere in the
compressible flow case as the term t− r/a∞, and the resulting perturbation potential
φ is called the retarded potential. Furthermore, the time lag limits a disturbance from
a point source to remain within a sphere which continuously expands with time, and
hence the unsteady behavior (coupling of space and time variables) is inherent in
the compressible case. In the incompressible flow limit (a∞ → ∞), the dependence
on time vanishes from the governing equation, which is transformed from the wave
equation to the Laplace equation.

The fundamental solutions of the wave equation appearing in Green’s integral are
the disturbance due to a stationary point source of unit strength, given by

φs(r , t) = − 1

4πr
f

(
t − r

a∞

)
, (3.131)

and that due to a stationary point doublet of unit strength,

φd (r , t) = − 1

4π

∂

∂n

[
1

r
f

(
t − r

a∞

)]
, (3.132)

where the function f (t) represents the fluctuation of strength with time at a distance
r from the source. In the harmonic limit, the source and doublet strengths pulsate
with frequency ω, resulting in

φs(r , t) = − 1

4πr
e
i
(
t− r

a∞
)

= − 1

4πr
e−iκreiωt (3.133)

φd (r , t) = − 1

4π

∂

∂n

(
1

r
e−iκr

)
eiωt , (3.134)

where κ = ω/a∞ is an important flow parameter called the wave number. These
forms of unit source and doublet solutions automatically satisfy the far-field Sommer-
feld condition, φ(∞, t) = 0, and thus a distribution of pulsating sources or doublets
of varying strength on the wing surface can be used to model its net perturbation
to the flowfield. However, since the wing is a moving object, the effect of moving
sources (or doublets) in an otherwise undisturbed medium must be analyzed.

A further discussion of the Green’s solution can be carried out alternatively by
(a) the classical acoustic principles (Helmholtz formulation and Doppler effect),
(b) the invariance principle of the wave equation by Galilean and Lorentz coordinate
transformation [93], or (c) linear superposition of sources of a strength that is constant
with time [135]. Since the last method promises to offer a better insight into the
physics of unsteady compressible flows, we shall briefly consider it here along the
lines of Garrick [58].

Consider a moving point source of unit strength creating an isolated impulsive
disturbance in the flowfield at time t = τ , given by

f (t) = f (τ )δ(t − τ ), (3.135)
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where δ(.) is the Dirac delta function. The cumulative effect of the moving source,
ξ (τ ), η(τ ), ζ (τ ), is given by the linear superposition (convolution) integral

φs(r , t) = − 1

4π

∫ t−r/a∞

−∞
f (τ )

r
δ

(
t − τ − r

a∞

)
dτ , (3.136)

When we model a uniform wing motion with speed U∞ in the negative x direction
by a distribution of sources arranged along the ξ axis, we have

r =
√

(x + U∞τ )2 + y2 + z2

and the sampling property of the convolution integral results in

φs(r , t) = − 1

4π

[
f (τ )

r

dτ

dθ

]

τ=t−r/a∞
, t > τ (3.137)

where

θ = τ −
(
t − r

a∞

)

Solving the quadratic equation for τ , we have

τ = 1

β2

(
t + U∞x

a2∞
− R

a∞

)

where

R =
√

(x + U∞τ )2 + β2(y2 + z2)

β2 = 1 −M2

and M = U∞/a∞ is the freestream Mach number.
The velocity potential due to the moving unit source can be now expressed as

follows:

φs(r , t) = − 1

4πR
f

[
1

β2

(
t + Mx

a∞
− R

a∞

)]
(3.138)

The following Galilean transformation to the flowfield coordinates moving with the
freestream:

x + U∞t ⇒ x − ξ ; y ⇒ y − η; z ⇒ z − ζ,

where the source coordinates are (ξ , η, ζ ), results in the separate subsonic and
supersonic formulations.
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Subsonic Flow

φs(r , t) = − 1

4πR
f (t − τ1) (3.139)

where

R =
√

(x − ξ )2 + β2
[
(y − η)2 + (z − ζ )2

]

τ1 = −M(x − ξ ) + R

a∞β2

β2 = 1 −M2

This result implies that the solution for a moving source of unit strength can be derived
from that of the stationary source merely by replacing r by R in the amplitude, and
by a∞τ1 in the phase (or time lag). For a moving doublet, the velocity potential is
derived by taking a derivative of Eq. (3.139) in the spatial coordinate n along the
doublet axis.

For a harmonically pulsating, moving source, the result is the following:

φs(r , t) = − 1

4πR
e−iκ[R+M(x−ξ )]eiωt (3.140)

where

κ = ω

a∞β2

is the wave number.
Now we consider the mean surface (midplane) of the wing as a flat surface S, on

the upper part (z = 0+) of which a distribution of velocity potential sources of strength
per unit area, A(ξ , η), is placed. On the lower surface of the midplane (z = 0−), we
have a distribution of sinks of the same strength. The wing is moving in an initially
undisturbed medium in the negative x direction. The cumulative perturbation velocity
potential produced by the wing at a field point (x, y, z) is thus given by the sum of
individual perturbations (Eq. (3.139)) of all the sources and sinks as the following
integral:

φ(x, y, z, t) = − 1

4π

∫∫
S

A(ξ , η)

R
f (t − τ1) dηdξ , (3.141)

The integral equation is to be solved for the unsteady source-sink strength,
A(ξ , η)f (t − τ1), given a distribution of the velocity potential φ(x, y, z, t). As re-
marked earlier, such a solution requires numerical inversion of the integral equation
by specifying φ at a large number of grid points in the entire flowfield. This is always
a cumbersome process, and can be avoided in the following manner.
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If one takes the derivative in the z direction of Eq. (3.141), the result is a distribution
of sources and sinks of equal strengths separated by an infinitesimal distance, thereby
implying a distribution of velocity potential doublets pointing in the negative z-
direction into the wing’s midplane. The cumulative effect of such doublets results in
the following subsonic integral equation :

w(x, y, z, t) = − 1

4π

∫∫
S

A(ξ , η)
∂

∂z

(
1

R

)
f (t − τ1) dηdξ , (3.142)

where w(x, y, z, t) = ∂φ/∂z denotes the unsteady upwash at a field point (x, y, z).
This integral equation must be solved for the time-dependent doublet strength
distribution on the wing midplane,

A(ξ , η)f (t − τ1),

given an upwash distribution w(x, y, z, t) on the wing. This requires taking the limit
z → 0, for the wing’s midplane:

w(x, y, 0, t) = − lim
z→0

1

4π

∫∫
S

A(ξ , η)
∂

∂z

(
1

R

)
f (t − τ1) dηdξ

Since the upwash is continuous across the wing midplane, z = 0, the integral equation
is uniquely solved if one prescribes the unsteady upwash distribution on the wing
due to its vertical deformation, h(x, y, t):

w(x, y, 0, t) = dh

dt
= ∂h

∂t
+ U∞

∂h

∂x

By substituting the velocity potential solution for the harmonic case,

w(x, y, 0, t) = w̄eiωt =
(
iωh̄+ U∞

∂h̄

∂x

)
eiωt ,

we have the following relationship between the complex amplitudes of the upwash
and the source strength on the wing:

w̄(x, y) = −e−iκMx lim
z→0

∂

∂z

1

4π

∫∫
S

Ā(ξ , η)
1

R
e−iκ(R−Mξ )dηdξ . (3.143)

Supersonic Flow

The velocity potential due to a source of unit strength moving in the negative direction
with supersonic speed is given as follows:

φs(r , t) = − 1

4πR
[f (t − τ1)+ f (t − τ2)] (3.144)

where

R =
√

(x − ξ )2 − β2
[
(y − η)2 + (z − ζ )2

]
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τ1 = M(x − ξ ) − R

a∞β2

τ2 = M(x − ξ ) + R

a∞β2

and

β2 = M2 − 1

A physical interpretation of this result is obtained by considering the fact that a super-
sonic source moving in the negative x direction creates a Mach cone of disturbance
described by

(x − ξ )2 = β2
[
(y − η)2 + (z − ζ )2

]

Hence,R = 0 at a point (x, y, z) on the Mach cone, andR is a real (positive) number at
a point inside it. Outside the Mach cone, R is imaginary, and thus undefined, thereby
implying that a point located outside the cone is unaffected by the pressure distur-
bance created by the moving source. Clearly, the Mach cone presents a discontinuity
in the velocity potential flowfield. Now, consider a field point (x, y, z) located inside
the Mach cone at a time instant t . Such a point experiences the perturbation of an ad-
vancing (moving in positive x direction) spherical wave front represented byf (t−τ1)
(as in the subsonic case), and also that due to a retreating spherical wave front f (t −
τ2). The sum of the two perturbations is the total velocity potential at the given point
in space and time. The distances a∞τ1 and a∞τ2 are the respective radii of the advanc-
ing and retreating wave fronts at the given instant, and give the respective locations
of the source at the past time instants τ1 and τ2 from the concerned field point.

For a harmonically pulsating, moving source, the result is the following:

φs(r , t) = − 1

4πR

(
e−iωτ1 + e−iωτ2

)
eiωt (3.145)

or

φs(r , t) = − 1

2πR
e−iκM(x−ξ ) cos (κR)eiωt (3.146)

where

κ = ω

a∞(M2 − 1)
= ω

a∞β2

is the wave number.
For a superposition of sources of strength per unit area A(ξ , η) on the upper

surface of the thin wing, z = 0+, and an equal strength sink distribution on the
lower surface, z = 0−, the following integral relationship can be derived between
the velocity potential at a field point (x, y, z) and the unknown strength of the source-
sink distribution, A(ξ , η)f (t − τ1) + f (t − τ2), in a manner similar to that given
above for the subsonic case:
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φ(x, y, z, t) = − 1

4π

∫∫
SR

A(ξ , η)

R
[f (t − τ1)+ f (t − τ2)] dηdξ , (3.147)

where the area of integration SR is now only that part of the wing which lies inside
the forward-facing Mach cone emanating from the field point (point O in Fig. 3.22).
This is due to the fact (noted above) that at any given time t , only the sources lying
inside the forward-facing Mach cone can affect the field point. Consequently, the
integration limits can be defined as follows:

φ(x, y, z, t) = − 1

4π

∫ xm

0

∫ y2(ξ )

y1(ξ )

A(ξ , η)

R
[f (t − τ1)+ f (t − τ2)] dηdξ , (3.148)

where

xm = x ± zβ (3.149)

and

y1(ξ ) = y −
√

1

β2
(x − ξ )2 − z2

y2(ξ ) = y +
√

1

β2
(x − ξ )2 − z2. (3.150)

When the field point is located on the midplane, we have z = 0, thus x = xm. In
other cases, the region of integration is bounded by the Mach hyperbola (shown in
Fig. 3.22), which is the intersection of the Mach cone and the midplane. The correct
sign for the maximum upstream extent (or apex) of the Mach hyperbola, xm, in
Eq. (3.149) depends upon whether the field point lies above or below the midplane
of the wing. If z > 0, the negative sign is taken, while the positive sign is used for
z < 0. The values of spanwise extent of the Mach cone is given by Eq. (3.150). If
the wing lies completely inside the Mach cone, we have SR = S. Here we note the
important fact that unlike the subsonic case, a source located on the upper surface
of the wing cannot affect the flow below the wing (and vice versa) due to the zone
of influence being confined to the Mach cone. Thus the two flow regions lying on
the either side of the midplane are mutually independent in the supersonic flow. In
summary, the physical characteristics unique to the supersonic case are the following:

1. Flow perturbations caused by a given point are confined to the Mach cone
emanating in the downstream direction from that point.

2. The flow at a point in the supersonic flowfield can be affected only by the points
lying inside the upstream facing Mach cone emanating from the given point.

3. The points above the wing do not affect the flow below the wing, and vice versa.

An important consequence of the last feature is whereas the subsonic flow requires
that both upper and lower surface source and sink pairs (doublets) contribute to the
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net velocity potential at a field point, the supersonic flow at a given point is only
affected by the sources (or sinks) on the relevant side of the midplane. Therefore,
while a velocity potential doublet is the natural singularity solution of the subsonic
flow, the velocity potential source is the characteristic solution for the supersonic
case.

For a distribution of sources and sinks on the upper and lower surfaces of the
midplane of a moving, thin wing, the following integral relationship can be derived
between the upwash at a field point (x, y, z) and the unknown strength of the source-
sink distribution, A(ξ , η), by taking a derivative in the z direction on the wing:

w(x, y, 0, t) = − lim
z→0

1

4π

∂

∂z

∫ xm

0

∫ y2(ξ )

y1(ξ )

A(ξ , η)

R
[f (t − τ1)+ f (t − τ2)] dηdξ ,

(3.151)

However, taking the derivative is more difficult in the supersonic case due to the
dependence of the integration limits on z. The matter is resolved by using the fol-
lowing transformation of the spanwise integration variable’s variation on the Mach
hyperbola:

η(ξ ) = 1

2
[(y2 − y1) cos θ + (y2 + y1)] , (3.152)

or

dη = −1

2
(y2 − y1) sin θdθ , (3.153)

a substitution of which into Eq. (3.151) produces

w(x, y, 0, t) = −
√
M2 − 1 lim

z→0

1

4π

∂

∂z

∫ xm

0

∫ π

0
A(ξ , θ ) (f1 + f2) dθdξ , (3.154)

where

f1 = f

[
t − M(x − ξ )

a∞β2
+ y0 sin θ

a∞β

]

f2 = f

[
t − M(x − ξ )

a∞β2
− y0 sin θ

a∞β

]
, (3.155)

and

y0 = 1

2
(y2 − y1). (3.156)

After expanding the integral in Eq. (3.154), and using integration by parts, the
following result is finally derived [57]:

w(x, y, 0, t) = −
√
M2 − 1 lim

z→0

1

2

∂xm

∂z
A(xm, y)f

(
t − Mz

a∞β

)
, (3.157)
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or,

w(x, y, 0+, t) = 1

2
β2A(x, y)f (t)

w(x, y, 0−, t) = −1

2
β2A(x, y)f (t) (3.158)

which directly relates the upwash to the source and sink strengths, respectively, on
the upper and lower surfaces.

In the case of harmonically pulsating sources (i.e., the wing undergoing simple
harmonic motion), the velocity potential is expressed as

φ(x, y, z, t) = φ̄(x, y, z)eiωt ,

and its complex amplitude is related to that of the upwash in the midplane by 6

φ̄(x, y, 0±) = ∓ 1

2πβ

∫ x

0

∫ y2(ξ )

y1(ξ )
w̄(ξ , η, 0)

(
e−iωτ1 + e−iωτ2

)
√

(η − y1)(y2 − η)
dηdξ , (3.159)

which is simplified to the following:

φ̄(x, y, 0±) = ∓ 1

π
e−iκMx

∫ x

0

∫ y2(ξ )

y1(ξ )
w̄(ξ , η, 0)

eiκMξ

R̂
cos (κR̂)dηdξ , (3.160)

where

R̂ =
√

(x − ξ )2 − β2(y − η)2

and

κ = ω

a∞β2

is the wave number.
After the velocity potential is computed from the time-dependent upwash

prescribed on the wing, the differential pressure distribution on the wing,

Δp(x, y, t) = Δ̄p(x, y)eiωt ,

is calculated by the unsteady Bernoulli equation, Eq. (3.53):

Δp(x, y, t) = p(x, y, 0+, t) − p(x, y, 0−, t) = 2p(x, y, 0, t)

= −2ρ∞
[(

∂φ

∂t
+ U∞

∂φ

∂x

)]

z=0

. (3.161)

6 Note the upper limit of the streamwise integral is xm = x in the limit z → 0.



112 3 Unsteady Aerodynamic Modeling

Hence, the pressure-upwash integral equation is the following:

Δ̄p(x, y)

ρ∞
= 2

π

(
iω + U∞

∂

∂x

)∫ x

0

∫ y2(ξ )

y1(ξ )
w̄(ξ , η, 0)

e−iκM(x−ξ )

R̂
cos (κR̂)dηdξ

(3.162)

When numerical solution based upon the velocity potential integral equation is
attempted, the problem of subsonic wing edges is inevitably encountered. If the
freestream Mach number M is such that a wing edge makes a smaller angle from the
freestream direction (x-axis) than the angle of the downstream facing Mach cone,
sin−1 (1/M), then the integration region includes a part of the (x, y) plane which is
not on the wing, but lies between the Mach cone and the wing edge. Since the upwash
w(x, y, 0, t) cannot be geometrically prescribed at an off-wing point, this ambiguity
must be resolved by other considerations (which, unfortunately, have little physical
basis). Such a problem is avoided entirely by basing the solution procedure on the
acceleration potential, rather than the velocity potential.

3.5.2 Acceleration Potential Formulation

The basic integral relationship between upwash at a field point due to a pressure
distribution on the wing for the unsteady linearized (subsonic or supersonic) flow
can be derived from Eq. (3.54) by taking the z-derivative of both the sides and
substituting the expression for upwash,

w = ∂φ

∂z
, (3.163)

resulting in

w(x, y, z, t) = − 1

ρ∞U∞
∂

∂z

∫ x

−∞
p

(
ξ , y, z, t − x − ξ

U∞

)
dξ. (3.164)

Since pressure disturbance is related to perturbation acceleration potential by
Eq. (3.55), the integral equation Eq. (3.164) is referred to as the acceleration po-
tential formulation. This integral equation must be solved for the pressure difference
across the mean surface, z = 0, given a prescribed upwash distribution, Eq. (3.51),
on it:

w(x, y, 0, t) = − lim
z→0

1

ρ∞U∞
∂

∂z

∫ x

−∞
p

(
ξ , y, z, t − x − ξ

U∞

)
dξ. (3.165)

The upper limit of integration, x, is handled differently for subsonic and supersonic
cases. In the supersonic case, the pressure disturbance cannot travel upstream of the
Mach cone, therefore the upper limit of integration is defined by the upstream extent
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of the Mach cone, xm (Fig. 3.22), whereas no such restriction exists for the subsonic
case. For the harmonically oscillating wing, we have

w(x, y, 0, t) = w̄(x, y)eiωt ; (x, y) ∈ S, (3.166)

which results in the following integral expression for the complex upwash amplitude
(magnitude and phase) in the frequency domain :

w̄(x, y) = − lim
z→0

1

ρ∞U∞
e−iωx/U∞ ∂

∂z

∫ x

−∞

[
p̄ (ξ , y, z) eiωξ/U∞] dξ , (3.167)

where

p(x, y, z, t) − p∞ = p̄(x, y, z)eiωt , (3.168)

is the harmonic pressure difference with a complex amplitude, p̄.
It is interesting to note the equivalence of the integral equation, Eq. (3.167),

with the Green’s identity resulting from the superposition of harmonically pulsating,
acceleration potential doublets. Such a formulation is employed in the subsonic
doublet-lattice method [7], and the subsonic/supersonic doublet-point method [180,
181], all of which are discussed below. The disturbation acceleration potential ψ is
directly related to the pressure difference (hence the disturbance velocity potential)
in the flowfield by

ψ = −p − p∞
ρ∞

= ∂φ

∂t
+ U∞

∂φ

∂x
,

and satisfies the following wave equation (identical to that for φ) in a frame moving
with the freestream:

∇2ψ = 1

a2∞

∂2ψ

∂t2
(3.169)

Now, since both ψ and φ satisfy the same governing equation, they can be used
to fulfill the Green’s integral equation, Eq. (3.126), wherein a velocity potential
source solution, φs , is equivalent to the acceleration potential doublet solution, ψd ,
in creating the same pressure disturbance at a given field point. Since we have already
derived the velocity potential solution for source, it is now straightforward to obtain
the equivalent acceleration doublet solution.

In the further discussion, we will confine our attention to the harmonic case, for
which the complex amplitude ψ̄ satisfies the Helmholtz equation,

∇2ψ̄ = 1

a2∞

(
U∞

∂

∂x
+ iω

)2

ψ̄. (3.170)

The upwash boundary condition on the vibrating wing planform S, with complex
vertical deflection amplitude, h̄(x, y), is given by

w̄(x, y) =
(
U∞

∂

∂x
+ iω

)
h̄(x, y), (x, y) ∈ S (3.171)
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Subsonic Flow

Noting the equivalence betweenψ and φ in Green’s integral, and utilizing the source
velocity potential solution for the subsonic case (Eq. (3.140)), we have the following
for a moving acceleration potential doublet of unit harmonic strength:

ψ(ξ , η, ζ , t) = −p − p∞
ρ∞

= − 1

4π

∂

∂z

(
1

R
e−iκ[R+M(x−ξ )]

)
eiωt , (3.172)

where

r =
√

(x − ξ )2 + (y − η)2 + (z − ζ )2

R =
√

(x − ξ )2 + β2(y − η)2 + (z − ζ )2

κ = ω

a∞β2

and β2 = 1 −M2. Here, the field point is at (x, y, z), whereas the doublet is located
at (ξ , η, ζ ) (which is also the convention in the velocity potential formulation).

By substituting Eq. (3.172) into Eq. (3.167), the upwash amplitude induced by a
jump in the strength, Δψ̄ = −4π , of a harmonically pulsating acceleration potential
doublet at (ξ , η), when crossing from lower to upper surface (i.e., in positive z
direction) of the mean wing plane S, where

Δψ̄ = − p̄� − p̄u

ρ∞
, (3.173)

is given by the following kernel function7:

K(x0, y0,ω,M) = − lim
z→0

e−iωx0/U∞ ∂2

∂z2

∫ x0

−∞
e
i ω

U∞β2

[
λ−M

√
λ2+β2(y2

0 +z2)
]

√
λ2 + β2(y2

0 + z2)
dλ,

(3.174)

where x0 = x − ξ , y0 = y − η. Therefore, the upwash amplitude w̄ induced by the
pressure difference (or lift per unit area) distribution,

Δ̄p = p̄� − p̄u = −Δψ̄ρ∞,

7 The strength 4π of the doublet for defining the kernel is the convention adopted by the workers
in this area, and relates to a sphere of unit radius centered at the doublet as the elemental control
volume in Green’s integral.
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on the wing is given by the following integral:

w̄(x, y) = 1

4πρ∞U∞

∫∫
S

K(x0, y0,ω,M)Δ̄p(ξ , η)dηdξ (3.175)

The simple form of this integral equation is to be contrasted with the velocity poten-
tial formulation (Eq. (3.143)). The numerical scheme for inversion of this integral
requires an evaluation of the improper kernel function (to be discussed later).

Supersonic Flow

The moving acceleration potential doublet of unit strength in supersonic flow yields
the following result by virtue of Eq. (3.146):

p(ξ , η, ζ ) − p∞
ρ∞

= 1

4π

∂

∂z

(
e−iωτ1 + e−iωτ2

R

)
eiωt

= 1

2π

∂

∂z

(
e−iκM(x−ξ ) cos (κR)

R

)
eiωt (3.176)

where

R =
√
x2

0 − β2r2
0 ; r0 =

√
y2

0 + z2
0

τ1 = Mx0− R

a∞β2

τ2 = Mx0+ R

a∞β2

β2 = M2 − 1

κ = ω

a∞β2

and x0 = x − ξ , y0 = y − η. Since the influence of the doublet is confined within
the Mach cone, the perturbation exists only if x0 > βr0. This fact can be indicated
in the following manner, by using the unit step function, us(.):

p − p∞
ρ

= 1

2π

∂

∂z

(
e−iκMx0 cos (κR)

R

)
us(x0− βr0)eiωt

By substituting Eq. (3.176) into Eq. (3.167), the upwash amplitude caused by a unit
harmonic strength acceleration potential doublet is the following supersonic kernel
function :

K(x0, y0,M ,ω) = − lim
z→0

e−iωx0/U∞ ∂2

∂z2

∫ x0

βr0
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⎧⎪⎨
⎪⎩
e
−i ω

U∞β2

[
λ−M

√
λ2−β2r2

0

]
+ e

−i ω

U∞β2

[
λ+M

√
λ2−β2r2

0

]

√
λ2 − β2r2

0

⎫⎪⎬
⎪⎭
dλ, (3.177)

or

K(x0, y0,M ,ω) = − lim
z→0

2e−iωx0/U∞ ∂2

∂z2

∫ x0

βr0

e
−i ωλ

U∞β2 cos

(
ωM

U∞β2

√
λ2 − β2r2

0

)

√
λ2 − β2r2

0

dλ.

(3.178)

The supersonic kernel has singularities on the Mach cone (λ = βr0), which is the
lower limit of the integral. These are to be treated carefully, as will be discussed
below.

3.6 Subsonic Kernel Function and the Doublet-Lattice Method

The subsonic integral equation is expressed differently for planar and nonplanar
cases. This is necessary due to singularities in the kernel function of the integral
equation. The planar case solely considers the effect of pressure distribution on an
essentially flat mean surface (z = 0), whereas in a nonplanar case the mean lifting
surface configuration could consist of several flat panels, which need not be all
in the same plane. In such cases, the vertical separation, z, between the surface
creating a pressure disturbance, and the point on which the upwash is calculated
must be accounted for. Our discussion here will be confined to the planar case for
simplicity, but the reader can refer to publications [7, 96] where the nonplanar kernel
is addressed.

We recapitulate that the upwash induced by an oscillatory subsonic flow past
a planar lifting surface S (Fig. 3.1)—regarded as a sheet of harmonically pul-
sating acceleration potential doublets—is expressed in a nondimensional form as
follows [192]:

w̄

U∞
(x, y) = − 1

4πU 2∞

∫∫
S

K (x0, y0, k,M)Δψ̄(ξ , η)dξdη, (3.179)

where (x, y) is the nondimensional location of the point on the wing at which the
upwash amplitude, w̄, is prescribed, and K(x0, y0, k,M∞) is the subsonic kernel
function (derived above) relating the upwash to the unknown amplitude, Δψ̄ , of
jump in the strength of a harmonically pulsating acceleration potential doublet at
(ξ , η), when crossing from the lower to the upper surface of the mean wing plane
denoted by S, x0 = x − ξ , y0 = y − η, and

k = ωb

U∞
, (3.180)
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is the reduced frequency of harmonic motion with b as the characteristic length. The
doublet strength can be expressed as the nondimensional pressure difference,

Δp̄

q∞
= p̄� − p̄u

q∞
= −2

Δψ̄

U 2∞
(3.181)

Thus the following alternative nondimensional expression is found in the literature [7,
22]:

w̄

U∞
(x, y) = 1

8π

∫∫
S

K (x0, y0, k,M∞)
Δp̄

q∞
(ξ , η)dξdη, (3.182)

and will be utilized here.
The integral equation, Eq. (3.182), is to be solved for the unknown pressure ampli-

tude distribution, Δp̄, given a prescription of the upwash amplitude, w̄, at selected
points on the wing. Since the kernel function, K(x0, y0, k,M), which physically
relates the influence of the pressure distribution on the upwash, is crucial to the so-
lution of the integral equation, the former should be in a suitable form for numerical
evaluation.

For a planar lifting surface, the subsonic kernel function can be expressed as
follows:

K (x0, y0, k,M) = −limz→0
∂2

∂z2
e−ikx0

∫ x0

−∞
1

R
eik(λ−MR)/β2

dλ, (3.183)

with β = √
1 −M2, and R =

√
λ2 + β2y2

0 + β2z2.
The integral of Eq. (3.183) for the kernel function is both improper and singular,

therefore its evaluation requires special treatment, especially at the lower limit of the
integral and for the singularity in the limit y0 → 0. Such an evaluation offers the
main computational difficulty in estimating the harmonic subsonic air loads. Watkins
et al. [192] have shown that the kernel can be expanded as follows:

−K (x0, y0, k,M) = k2e−ikx0

{
1

k | y0 |K1 (k | y0 |)+ iπ

2k | y0 | [I1 (k | y0 |)

− L1 (k | y0 |)] − ikM | y0 | +β
Mβ(ky0)2

e−(ikM|y0|)/β

+
∫ M/β

0

√
1 + χ2e−ik|y0|χdχ

− i

M(ky0)2

∫ kx0

0
e
i
[
λ−M

√
λ2+β2(ky0)2

]
/β2

dλ

+
[
Mkx0+

√
(kx0)2 + β2(ky0)2

M(ky0)2
√

(kx0)2 + β2(ky0)2

]

e
i
[
kx0−M

√
(kx0)2+β2(ky0)2

]
/β2

}
, (3.184)
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where I1(.) is the modified Bessel function of first kind and first order, L1(.) the
modified Struve function of first order, and K1(.) the modified Bessel function of
second kind and second order, all of which can be found in a handbook on mathemat-
ics [6]. For treating the kernel function’s singularities for the planar case, Watkins et
al. [192], following the earlier method of Schwarz [150], separate the kernel function
into a singular part, K ′, and a nonsingular part, (K −K ′):

K = K ′ + (K −K ′),

and suggest Mangler’s [109] approach to derive the finite part (or principal value) of
the following singular kernel:

K ′ (x0, y0, k,M) = −e−ikx0

[
−x0+ R̄

y2
0 R̄

+ ik
1

R̄

− k2

2β2

x0−MR̄

R̄
− k2

2
log

k(R̄ − x0)

2(1 −M)

]
, (3.185)

where

R̄ =
√
x2

0 + β2y2
0 .

The nonsingular kernel is continuous for all values of x0, y0, k,M in the subsonic
range, and is expressed in the limit y0 → 0 as follows [192]:

lim
y0→0

(K −K ′) = −e−ikx0

{(
β2

2x2
0

+ ik
1 +M

2x0

)
eikx0/(1+M)

− β2

2x2
0

− ik

x0
+ k2

2

[
M + 2

M + 1
− 2γ − log

(
kx0

M + 1

)

+ Ci

(
kx0

M + 1

)
+ i Si

(
kx0

M + 1

)
− i

π

2

]}
, (3.186)

where γ = 0.577216 is Euler’s constant, and Si(x), Ci(x) are sine-integral and
cosine-integral functions of x, respectively:

Si(x) = π

2
−
∫ ∞

x

sin t

t
dt

Ci(x) = −
∫ ∞

x

cos t

t
dt ,

which are numerically evaluated [6].
The formulation of subsonic integral equation as a solution to the boundary value

problem for unsteady pressure distribution on harmonically oscillating lifting surface
was first introduced for the two-dimensional case by Possio [134] and followed by
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Küssner [93]. The form of the kernel given in Eq. (3.184) was derived by Watkins,
Runyan, and Woolston [192] by extending the two-dimensional airfoil formulation
of Possio to the three-dimensional lifting surface. Landahl [96] offered an alternative
formulation of the kernel, which could also be applied to nonplanar surfaces, and
is even simpler than Eq. (3.184) for the planar case. This form of the kernel lends
itself to practical numerical computation, without the recourse to Bessel and Struve
functions.

The solution of the integral equation for pressure distribution—given a prescribed
upwash distribution generated by structural vibration—can be carried out by two al-
ternative methods. The first of these, called the kernel function collocation method
assumes a form of pressure distribution by a finite series whose coefficients are de-
termined algebraically from the upwash prescribed at discrete points on the surface
(generally the wing edges and control surface hinge lines). The kernel function’s
singularities directly downstream of the pressure (acceleration potential) doublet
(y0 → 0) are accommodated by using high-order quadrature in the spanwise direc-
tion. The kernel function collocation methods of Watkins et al. [194], Laschka [98],
Landahl [97], Rowe [145], and Lottati and Nissim [103] are noteworthy.

The second solution approach, called the doublet-lattice method (DLM), approx-
imately solves the integral equation by discretizing the pressure-upwash relationship
into a matrix of aerodynamic influence coefficients (AIC). Here, the integral equation
is discretized by assuming that the lifting surface can be approximated by a finite
number trapezoidal panels, each of which is treated as a separate wing. The panels
are arranged in columns parallel to the freestream, and the quarter-chord line of
each panel is taken as a line doublet of acceleration potential (pressure) of unknown
strength. The doublet strengths (therefore AICs) are evaluated by satisfying the up-
wash boundary condition at the three-quarter chord location (called control point ) at
the mid-span of each panel.8 Since the control points are not located on the line dou-
blets, the kernel function singularities are avoided by using interpolating functions
approximation of the kernel while integrating within each panel. The AIC matrix can
then be directly employed for the computation of unsteady generalized aerodynamic
loads vector by the principle of virtual work. The doublet-lattice method is therefore
of practical utility in aeroelastic computations where chordwise rigid sections can
be also treated as panels for aerodynamic computation, thereby employing the same
indexing for the structural degrees of freedom as well as panel control points. The
upwash distribution is then directly derived from the vibration modes shapes. For this
reason, doublet-lattice method has found wide application in the aircraft industry for
flutter analysis, although it is not very well founded in aerodynamic theory. Due to
its direct applicability to ASE modeling, the doublet-lattice method is detailed here
(rather than the competing kernel function collocation method).

8 Such a choice of line doublet and control point is borrowed from the vortex-lattice method [86],
where a quarter-chord line vortex and a three-quarter chord control point for enforcing the upwash
boundary condition automatically satisfy the Kutta condition for steady incompressible flow past a
flat plate.
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Doublet line

Upwash point 

Fig. 3.23 Paneling of a wing for the doublet-lattice method

The doublet-lattice method is a systematic procedure evolved by Albano and
Rodden [7] for solving the subsonic integral equation. It is motivated by the incom-
pressible vortex-lattice, quasi-steady model of Hedman [72] for carrying out pressure
calculations on lifting surfaces, but utilizes the acceleration potential doublet, rather
than the velocity potential vortex, as the elementary solution of the Helmholtz
(or wave) equation. The resulting integral equation associated with the linearized,
unsteady subsonic flow (see above) represents the solution of the boundary-value
problem by Green’s identity [114] driven by unsteady motion of well-defined ge-
ometries. The alternative solution procedure [97, 98, 146, 192] of prescribing upwash
for kernel function collocation is less than systematic, because of a discontinuous
upwash distribution at control surface hinge lines and wing edges. In contrast, Al-
bano and Rodden [7] use the aerodynamic influence matrix, A, to approximate the
integral equation by a discrete relationship between upwash distribution vector, w̄,
and pressure difference distribution, Δp̄, evaluated over a number, N , of elemen-
tal boxes on the lifting surface. The discretized integral equation is expressed in a
nondimensional form as follows:

w̄

U∞
(xi , yi) =

N∑
j=1,�=i

Aij

Δp̄
q∞

(ξj , ηj ), (i = 1, . . .,N ) (3.187)

which is collected in the following matrix form:

w̄
U∞

= A
Δp̄
q∞

. (3.188)

Such a discretization procedure by trapezoidal boxes is depicted in Fig. 3.23, and is
borrowed from the preexisting Mach-box method [129] for the supersonic case. The
boxes are arranged in strips parallel to the freestream such that the boxes’ sides, fold
lines (dihedrals) and hinge lines fall on the box boundaries. The unknown doublet
strength, Δp̄/q∞, in each box is assumed to be smeared along the quarter-chord
line. Once the upwash distribution is specified at the three-quarters chord, mid-span
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collocation point of the box by a normalized structural mode shape, h(x, y), for a
reduced frequency, k = ωb/U∞,

w̄

U∞
= ∂h

∂x
+ ikh, (3.189)

it is substituted into Eq. (3.188), and the unknown pressure distribution is computed
by inverting the aerodynamic influence matrix :

Δp̄
q∞

= A−1w̄U∞, (3.190)

The doublet-lattice method primarily involves the calculation of the aerodynamic
influence matrix, A, by integrating the kernel function relating the pressure (or send-
ing) box with an upwash (or receiving) box. Such an integration, however, must be
carried out in the spanwise direction in Mangler’s sense [109], due to the singularities
of the kernel function as z0 → 0 and y0 → 0. Before such an integration is carried
out numerically, the kernel function of the subsonic integral equation, Eq. (3.182),
is separated into two parts as follows [7]:

K = −e−ikx0 (K1T1 +K2T2) /r
2
1 , (3.191)

where

T1 = cos (γ (s) − γ (σ )), (3.192)

T2 =
{

z0

r1
cos γ (s) − y0

r1
sin γ (s)

}{
z0

r1
cos γ (σ ) − y0

r1
sin γ (σ )

}
, (3.193)

K1 = I1 + Mr1

R
e−ik1u1

1√
1 + u2

1

, (3.194)

K2 = −3I2 − ik1
M2r2

1

R2
e−ik1u1

1√
1 + u2

1

− Mr1

R

[
2 + (1 + u2

1)
β2r2

1

R2
+ Mr1u1

R

]
e−ik1u1

1(
1 + u2

1

)3/2 , (3.195)

I1 =
∫ ∞

u1

e−ik1u 1(
1 + u2

)3/2 du, (3.196)

I2 =
∫ ∞

u1

e−ik1u 1(
1 + u2

)5/2 du, (3.197)

u1 = MR − x0

β2r1
, (3.198)
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k1 = kr1, (3.199)

β =
√

1 −M2, (3.200)

R =
√
x2

0 + β2r2
1 , (3.201)

r1 =
√
y2

0 + z2
0, (3.202)

and the differences between the nondimensional Cartesian coordinates of the upwash
point, (x, y, z), and load point, (ξ , η, ζ ), are

x0 = x − ξ , y0 = y − η, z0 = z − ζ ,

while the dihedral angle, γ (.), of the nonplanar surface is evaluated at the upwash
point and load points, respectively, by the curvilinear coordinates, s and σ , as shown
in Fig. 3.24. In the planar case, we have γ (s) = γ (σ ) = 0, which implies

T1 = 1 (3.203)

T2 = z2
0

r2
1

(3.204)

It is to be noted that in the planar case, z0 = 0, implying T2 = 0, except for the
singular case of

lim
y0→0

T2 = 1.

However, while K1 is singular for the limit as y0 → 0, K2 is nonsingular and hence
its contribution, T2K2, identically vanishes for the planar case z0 = 0, even in the
limit, y0 → 0. Thus, for simplicity our discussion will be confined to the planar case,

K = − lim
z0→0

e−ikx0K1/r
2
1 . (3.205)

The influence of a line doublet of the sending box on the upwash collocation point
is evaluated for a swept doublet line at the 1/4-chord location in the sending box.
This is depicted in Fig. 3.25, using the notation of Blair [23]. The nondimensional
integral equation for the planar case is expressed as follows:

w̄

U∞
(x, y) = 1

8π

∫∫
S

K (x − ξ , y − η, k,M)
Δp̄

q∞
(ξ , η)dξdη, (3.206)

where

K (x0, y0) = − lim
z0→0

K1

y2
0 + z2

0

e−ikx0 , (3.207)
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Fig. 3.24 Load point, (ξ , η, ζ ), upwash point, (x, y, z), and the respective curvilinear coordinates,
σ , and s, for the dihedral angle of associated panels

K1 = I1 + M | y0 |√
x2

0 + β2y2
0

e−ik1u1
1√

1 + u2
1

, (3.208)

the integral I1 is given by Eq. (3.196) with

k1 = k | y0 |, (3.209)

and

u1 =
M

√
x2

0 + β2y2
0 − x0

β2 | y0 | . (3.210)

In order to treat the kernel function’s second-order singularity as y0 → 0, Man-
gler’s [109] principal value is taken by evaluating the limit z0 → 0 in Eq. (3.207) as
the final step. This requires approximating the factor,

K̄(x0, y0) = K1(x0, y0)e−ikx0 , (3.211)

by the following parabolic function for the swept doublet line (Fig. 3.25) in the
sending box :

K̄(x0, y0) = A0+ A1�+ A2�
2, (3.212)

where � is the nondimensional coordinate running along the doublet line, and
A0,A1,A2 are the unknown complex coefficients to be determined from evalua-
tions of K̄(x0, y0) at the mid-point, (xc, yc), and the left and right ends of the doublet
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Fig. 3.25 Geometry of swept doublet line in the sending box of the doublet-lattice method

line, (xL, yL), and (xR , yR), respectively. These points correspond to � = 0, � = −L,
and � = L, respectively, which identifies the coefficients to be the following:

A0 = K̄(xc, yc) (3.213)

A1 = K̄(xR , yR) − K̄(xL, yL)

2L
(3.214)

A2 = K̄(xR , yR) − 2K̄(xc, yc) + K̄(xL, yL)

2L2
(3.215)

Upon substituting Eqs. (3.213)–(3.215) into the integral equation, Eq. (3.206),
putting η = � sinΛ, and assuming the doublet strength to be uniformly spread
over the average box chord Δξ , we have the following approximation:

w̄

U∞
(x, y) = Δξ

8π

Δp̄

q∞
lim
ε→0

∫ L

−L
A0+ A1�+ A2�

2

(y − � sinΛ)2 + ε2
d�, (3.216)

which is abbreviated as follows [23]:

w̄

U∞
(x, y) = Δξ

8π

Δp̄

q∞
(B0+ B1 + B2) (3.217)

The coefficients B0,B1,B2 are computed by taking the limit ε → 0 as the final step
in the following manner:

B0 = lim
ε→0

∫ L

−L
A0

(y − � sinΛ)2 + ε2
d�

= lim
ε→0

A0

ε sinΛ
tan−1

[
� sinΛ− y

ε

]L
−L
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= lim
ε→0

A0

ε sinΛ
tan−1

(
2L sinΛ

ε2 + y2 − L2 sin2 Λ

)

= 2LA0

y2 − L2 sin2 Λ
(3.218)

Similarly,

B1 = lim
ε→0

∫ L

−L
A1�

(y − � sinΛ)2 + ε2
d�

= A1

sin2 Λ
log

(
y − L sinΛ

y + L sinΛ

)
+ 2LyA1

(y2 − L2 sin2 Λ) sinΛ
(3.219)

B2 = lim
ε→0

∫ L

−L
A2�

2

(y − � sinΛ)2 + ε2
d�

= 2LA2

sin2 Λ
+ 4yA2

sinΛ
log

(
y − L sinΛ

y + L sinΛ

)
+ 2Ly2A2

(y2 − L2 sin2 Λ) sin2 Λ
(3.220)

The coordinate y in these equations represents the distance of the upwash point of the
receiving box from the center of the swept doublet line in the sending box (Fig. 3.25).

The kernel factor, K̄ , is to be evaluated carefully, as it has a singularity in the limit
| y0 |→ 0, for which the term u1 tends to either ∞ or −∞, depending upon whether
x0 < 0, or x0 ≥ 0. This singularity occurs for the receiving box lying directly
downstream of the sending box, and results in the integral I1 becoming improper for
the planar case. The evaluation of the integral is numerically carried out as follows.

1. | y0 |�= 0, u1 ≥ 0: Integration by parts yields

I1 =
∫ ∞

u1

e−ik1u 1(
1 + u2

)3/2 du

=
[
e−ik1u u√

1 + u2

]∞

u1

+ ik1

∫ ∞

u1

e−ik1u u√
1 + u2

du

= −u1e
−ik1u1

1√
1 + u2

1

+ e−ik1u1 − ik1

∫ ∞

u1

e−ik1udu

+ ik1

∫ ∞

u1

e−ik1u u√
1 + u2

du

= e−ik1u1

⎛
⎜⎝1 − u1√

1 + u2
1

⎞
⎟⎠ − ik1

∫ ∞

u1

e−ik1u

(
1 − u√

1 + u2

)
du (3.221)

The series approximation of Laschka [98] is employed next for numerical
integration as follows:

1 − u√
1 + u2

�
11∑
n=1

ane
−ncu, (3.222)
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Table 3.1 Series coefficients
of Laschka [98]

c = 0.372

n an

1 0.24186198

2 −2.7918027

3 24.991079

4 −111.59196

5 271.43549

6 −305.75288

7 −41.18363

8 545.98537

9 −644.78155

10 328.72755

11 −64.279511

the coefficients of which are listed in Table 3.1. This results in the following
expression for the integral:

I1 = e−ik1u1

⎛
⎜⎝1 − u1√

1 + u2
1

− ik1J1

⎞
⎟⎠ , (3.223)

where

J1 = eik1u1

∫ ∞

u1

e−ik1u

(
1 − u√

1 + u2

)
du �

11∑
n=1

ane
−ncu

nc + ik1
. (3.224)

2. | y0 |�= 0, u1 < 0:

I1 =
∫ ∞

u1

e−ik1u 1(
1 + u2

)3/2 du

=
∫ 0

u1

e−ik1u 1(
1 + u2

)3/2 du +
∫ ∞

0
e−ik1u 1(

1 + u2
)3/2 du

=
∫ 0

u1

e−ik1u 1(
1 + u2

)3/2 du + 1 − ik1J0, (3.225)

where

J0 =
∫ ∞

0
e−ik1u

(
1 − u√

1 + u2

)
du �

11∑
n=1

an

nc + ik1
, (3.226)
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and the integral term is evaluated by taking advantage of the integrand’s symmetry
about u = 0, using v = −u and v1 = −u1 > 0:

∫ 0

u1

e−ik1u 1(
1 + u2

)3/2 du =
∫ v1

0
eik1v 1(

1 + v2
)3/2 dv

=
[
eik1v v√

1 + v2

]z1

0

− ik1

∫ v1

0
eik1v v√

1 + v2
dv

= eik1v1
v1√

1 + v2
1

− ik1

∫ v1

0
eik1v

(
1 −

11∑
n=1

ane
−ncv

)
dv

= 1 + eik1v1

⎛
⎜⎝ v1√

1 + v2
1

− 1 + ik1

11∑
n=1

an e
−ncv1

−nc + ik1

⎞
⎟⎠

− ik1

11∑
n=1

an

−nc + ik1
(3.227)

3. | y0 |= 0, x0 < 0:

I1 = 0 (3.228)

4. | y0 |= 0, x0 ≥ 0:

I1 = 2 (3.229)

In order to calculate the influence of the line doublets lying on the other side of the
plane of symmetry (if it exists), signs of the coefficients B1,B2 are reversed, and the
spanwise locations of the sending box coorners are also reversed in sign. After the
influence coefficient matrix is computed for all collocation points, it is inverted in
order to yield the pressure distribution by Eq. (3.190).

It must be emphasized that there is no rigorous theoretical basis for the doublet-
lattice method, other than linear superposition of elementary solutions in the manner
of the vortex-lattice method. The placement of the doublet line at 1/4-chord and
the upwash collocation point at 3/4-chord of each box is a purely numerical de-
vice, and is simply borrowed from the vortex-lattice method, which uses it in order
to satisfy the Kutta condition at the trailing edge in the steady, incompressible
limit. Consequently, there is no guarantee that the doublet-lattice method would
produce physically accurate steady-state results, especially for higher Mach num-
bers. However, the oscillatory data predicted by the doublet-lattice method is quite
well established by agreement with experimental data, and is thus historically em-
ployed in aeroelastic analyses. Caution must be exercised in the selection of the
number of boxes in both chordwise and spanwise directions, because the pressure
distribution produced by the discrete paneling can often be discontinuous. This could
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be at problem at high reduced frequencies where the rapid pressure fluctuations could
be realistically captured only by a much finer paneling than that required at lower
frequencies. The required box density can also increase with a higher mode shape,
which involves an increasingly wavy upwash distribution. Furthermore, in cases of
small aspect ratio planforms, the aspect ratio of the boxes can also be important.

A variation of the doublet-lattice method is the doublet-point method [180] in
which the line doublet in each panel is replaced by a point doublet whose strength
is directly proportional to the concentrated lift force at the panel’s centroid. The
singularity of the kernel function is treated by separating the kernel into singular and
nonsingular parts, and evaluating the singular integral in the sense of Mangler [109].
The doublet-point method is an attractive alternative to the doublet-lattice method,
because it not only gives a realistic pressure distribution in the steady limit (k → 0)—
which the DLM surprisingly does not—but can also be extended to the supersonic
regime (M > 1) for which the DLM is inapplicable.

Formulations alternative to the acceleration potential integral equation,
Eq. (3.182), include the velocity potential method [80, 59] wherein the classical
Helmholtz wave equation is solved over the wing and the wake, and the Green’s
function method [114]. Both of these methods require a model of the unsteady
wake. Although such methods have the advantages of higher accuracy as well as ap-
plicability to thick wings and wing–body combinations undergoing large amplitude
oscillations, their computational complexity could be an order of magnitude higher
than that of acceleration potential based methods, thereby proving less suitable for
ASE modeling.

The doublet-lattice method for planar surfaces detailed here is coded into a MAT-
LAB computer program, and is used to generate subsonic unsteady aerodynamic data
throughout this book. Some numerical results of the code’s application are discussed
below.

3.6.1 Numerical Results

The first validation of the doublet-lattice code is on a rectangular wing of aspect ratio
2.0 with a trailing-edge, full-span flap of 40 % chord. Figures 3.26 and 3.27 show the
hinge-moment coefficient magnitude and phase, respectively, of the flap oscillating
at various reduced frequencies, and with various chordwise and spanwise divisions of
equal lengths in each direction. The results are compared with the experimental data
of Beals and Targoff [16] as reported in Albano and Rodden [7]. Good agreement
of the magnitude and phase trends with the experimental data at lower reduced
frequencies can be observed. The doublet-lattice method overpredicts the phase at
higher frequencies, which is somewhat improved by increasing the number of boxes.
The discrepancy in the magnitude when compared to experimental results increases
at higher frequencies. This indicates that the high-frequency pressure waves due to
flap oscillation are only approximately captured by the doublet-lattice method. The
real and imaginary parts of the unsteady pressure distribution are plotted in Figs. 3.28
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Fig. 3.26 Magnitude of hinge-moment coefficient of a rectangular wing of aspect ratio 2.0 with an
oscillating flap of 40 % chord at M = 0.24

and 3.29 for k = 1.5, respectively, clearly showing the pressure discontinuity at the
flap hinge line.

The next study is for theAGARD wing of aspect ratio 1.4509, taper ratio 0.709, and
leading-edge sweep angle 39 ◦, whose plan form shape is depicted in Fig. 3.30, with
coordinates rendered nondimensional with the semispan s. The computed pressure
distributions for reduced frequencies, k = 0.4, 0.8, 1.2, 1.6 are plotted in Figs. 3.31–
3.34. The unsteady lift due to the rigid plunge mode at various reduced frequencies
is compared is Fig. 3.35 with that of the commercial doublet-lattice code H7WC
and the time-domain panel method, both as reported by Blair and Williams [24].
The convergence of the results with the increased number of boxes is evident in this
figure. However, while the comparison between the three schemes is good at lower
reduced frequencies, the higher frequency results show a slight disagreement. This
is due to the fact that higher frequency pressure waves are differently captured by
the different integration methods.

Figure 3.36 shows the upwash distribution on the AGARD wing produced by
the combination of a chordwise and a spanwise bending mode, and Figs. 3.37–3.39
are the corresponding real and imaginary parts of the unsteady pressure distribution
computed by the doublet-lattice method for k = 0.6.
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Fig. 3.27 Phase of hinge-moment coefficient of a rectangular wing of aspect ratio 2.0 with an
oscillating flap of 40 % chord at M = 0.24
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Fig. 3.28 Real part of unsteady pressure distribution on a rectangular wing of aspect ratio 2.0 with
an oscillating flap of 40 % chord at M = 0.24 and k = 1.5 using a doublet lattice of 15 chordwise
and 5 spanwise boxes
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Fig. 3.29 Imaginary part of unsteady pressure distribution on a rectangular wing of aspect ratio
2.0 with an oscillating flap of 40 % chord at M = 0.24 and k = 1.5 using a doublet lattice of 15
chordwise and 5 spanwise boxes
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Fig. 3.30 AGARD wing of aspect ratio 1.49 discretized with 15 spanwise and 15 chordwise divisions
for doublet lattice calculation
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Fig. 3.31 Unsteady pressure distribution on AGARD wing due to a rigid plunge mode at M = 0.8
and k = 0.4
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Fig. 3.32 Unsteady pressure distribution on AGARD wing due to a rigid plunge mode at M = 0.8
and k = 0.8
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Fig. 3.33 Unsteady pressure distribution on AGARD wing due to a rigid plunge mode at M = 0.8
and k = 1.2
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Fig. 3.34 Unsteady pressure distribution on AGARD wing due to a rigid plunge mode at M = 0.8
and k = 1.6
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Fig. 3.35 Unsteady lift on AGARD wing due to a rigid plunge mode at M = 0.8 compared with
the results of H7WC and time-domain panel codes [24]
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Fig. 3.36 Unsteady upwash distribution on AGARD wing due to chordwise and spanwise bending
modes at M = 0.8 and k = 0.6 based upon semispan, s
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Fig. 3.37 Unsteady pressure distribution on AGARD wing at the root and tip due to chordwise and
spanwise bending modes at M = 0.8 and k = 0.6
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Fig. 3.38 Real part of unsteady pressure distribution on AGARD wing due to chordwise and
spanwise bending modes at M = 0.8 and k = 0.6
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Fig. 3.39 Imaginary part of unsteady pressure distribution on AGARD wing due to chordwise and
spanwise bending modes at M = 0.8 and k = 0.6

The final numerical study is based on NASA-Langley’s drone for aeroelastic test-
ing, (DAST-ARW1). This wing is modified for the present by a trapezoidal plan form
depicted in Fig. 3.40 for a sample grid consisting of 20 equal spanwise and 10 chord-
wise boxes, which does not include the leading-edge extension of the original wing.
The first computation is for a linear combination of three structural modes, whose
mode shapes are plotted in Figs. 3.41–3.43. Here, h(x, y) is the vertical deflection
and dh/dx(x, y) is the chordwise slope of the vertical deflection required for satis-
fying the upwash boundary condition according to Eq. (3.189). The normalization
of the deflections and slopes is carried out by dividing by the magnitudes | h | and
| dh/dx |, respectively. The computed real and imaginary parts of the resulting pres-
sure distribution for 30 spanwise and 10 chordwise divisions are shown in Fig. 3.44.
Where the pressure waviness and increased magnitudes near the tip due to bending
and torsion modes are evident.

3.7 Supersonic Lifting Surface Methods

The supersonic integral equations derived by the alternative approaches of the
velocity and acceleration potentials (see above), can be solved by employing a
numerical procedure based upon approximate discretization. There are many such
methods available in the literature, and have differing formulations based upon the
way the upwash–pressure relationship is inverted. Our focus here will be on the
three-dimensional lifting surface procedures.
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Fig. 3.40 DAST-ARW1 wing discretized for doublet lattice calculation

0 0.5 1 1.5 2
0

1
2

−0.05

0

0.05

0.1

x (m)y (m)

h/
⏐h

⏐

0 0.5 1 1.5 2
0

1
2

−0.2

0

0.2

x (m)y (m)

dh
/d

x

Fig. 3.41 Vertical deflection and chordwise slope for the first structural mode of DAST-ARW1
wing with natural frequency 9.3 Hz
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Fig. 3.42 Vertical deflection and chordwise slope for the second structural mode of DAST-ARW1
wing with natural frequency 32.72 Hz
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Fig. 3.44 Unsteady pressure distribution on DAST-ARW1 wing due to three bending/torsion modes
at M = 0.7 and k = 0.6

3.7.1 Mach-Box Method

While Possio [133] devised an acceleration potential based formulation for the two-
dimensional supersonic case quite early, the first practical supersonic lifting surface
method finding a common application in aircraft industry of 1950s–1980s is based
upon the velocity potential approach. This is the Mach-box method [129], which
employs a grid of rectangular boxes for approximating the lifting surface. Each box
width is chosen such that the diagonal was a Mach line, which facilitates integrations
over boxes lying in the forward-facing Mach cone (Fig. 3.22), because such integrals
would be either over complete or half boxes. However, this also implies that the grid
is not exactly aligned with the wing plan form shape (like it is in the doublet-lattice
method), but instead has jagged leading and trailing edges. Each box is assumed to
have a separate vertical deflection (h) at the center (xc, yc) as well as pitch (α) and
roll (θ ) rotations about it. Hence, the net upwash amplitude at a point (x, y) of the
j th box is given by

w̄(xj , yj ) = iω
[
hj + (x − xc)αj + (y − yc)θj

]
, (j = 1, . . .,N ) (3.230)

The pressure loading amplitude at a given point (x, y) on the wing caused by the j th
box of plan form area Sj is calculated by the velocity potential integral equation as
follows:

Δ̄p(x, y)

ρ∞
= 2

π

(
iω + U∞

∂

∂x

)∫∫
Sj

w̄(ξ , η)
e−iκM(x−ξ )

R̂
cos (κR̂)dηdξ (3.231)
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Fig. 3.45 Geometry of the flowfield around a wing for Green’s integral theorem formulation

where β = √
M2 − 1

R̂ =
√

(x − ξ )2 − β2(y − η)2

and

κ = ω

a∞β2
.

A simple approximation is to take an average (constant) upwash evaluated at the re-
ceiving box centroid, which means taking the term w̄ out of the integral in Eq. (3.231).
While this can be accurate for boxes of very small dimensions, in most cases it could
cause unrealistic pressure distributions. The influence of a box upon itself is constant
and equal to the pressure at the centroid. The individual influences on a receiving
(pressure) box due to all the sending (upwash) boxes in the forward-facing Mach
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cone are assembled into the following matrix form:

Δp̄
q∞

= C
w̄
U∞

, (3.232)

where C is the matrix of complex aerodynamic influence coefficients (AICs).
The generalized aerodynamic forces for each structural mode can be individually
computed by the principle of virtual work.

The presence of subsonic wing edges requires placing boxes in the off-wing
region between the concerned edge and the Mach cone. These are called the di-
aphragm boxes, and require special treatment. This is carried out by partitioning
Eq. (3.232) into regular wing boxes and diaphragm boxes, and by applying zero
pressure difference in the diaphragm boxes.

The Mach-box method is a systematic and reasonably accurate method for gen-
eralized forces and flutter calculations, but can give spurious pressure distributions
due to subsonic and jagged edges. In order to improve its numerical accuracy, more
sophisticated integration methods can be adopted than taking a constant pressure in
each box. One such approach is the use of Gaussian quadrature [31]. Another short-
coming of the Mach-box method is the dependence of the grid on the Mach number,
which makes it difficult to be used in a matched flutter analysis (i.e., matching the
flight velocity and Mach number at which flutter occurs).

3.7.2 Doublet-Point Method

In order to avoid the problems associated with the velocity potential Mach-box
method, several alternative strategies based upon either velocity potential, or the
acceleration potential have been adopted. An alternative velocity potential formula-
tion to the Mach-box method is that of Evvard [28, 51], where the requirement of
considering the diaphragm region for subsonic edges is completely eliminated. The
velocity potential integral equation has also led to the potential-gradient method [82],
[74], which introduced upwash integration along receiving box boundary in order
to remove the Mach number grid dependence of the Mach-box method. However,
wake elements are necessary in this boundary-element type scheme, which cause
modeling difficulties. The constant pressure panel method [9] is an improvement of
the potential gradient method, where the wake elements between two planar surfaces
are eliminated.

While the velocity potential methods for supersonic oscillatory aerodynamics are
useful, they require a different scheme and computational grid (such as the doublet-
lattice method) for subsonic flutter calculations. In contrast, a method based upon
the acceleration potential integral equation would require little change in the grid
geometry, from the doublet-lattice method for the subsonic flow. As in the sub-
sonic case, the supersonic acceleration potential methods fall into two categories: (a)
Kernel function collocation methods, where the supersonic kernel is expanded by
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a polynomial, whose coefficients are computed by satisfying the upwash boundary
condition at selected points. (b) Integral equation solution of the pressure distribution
by inversion on a discretized geometry, like the subsonic doublet-lattice method. The
kernel function techniques [35, 104] require a priori knowledge of all pressure dis-
continuities such as control-surface hinge lines and intersecting surfaces, for which
the collocation points must be suitably selected. This makes the method application
specific. Under the second category fall the harmonic-gradient method [29], and the
doublet-point method [181]. Of these, we shall consider the latter, because it re-
quires no change at all in the grid geometry when applied to subsonic and supersonic
flows. Furthermore, our discussion of it here will be brief, since it has many features
in common with the subsonic doublet-lattice method (which we have already cov-
ered in some detail). Our treatment will focus only on the planar part for simplicity.
The extension for the nonplanar kernel [67] is given by the nonplanar supersonic
doublet-point method [167].

The doublet-point method is based upon a discretization of the lift (or pressure)
distribution on the wing into a number n of load points, (ξj , ηj ):

Δp̄

q∞
(ξ , η) =

n∑
j=1

Fjδ(ξ − ξj )δ(η − ηj ), (3.233)

where δ(.) is the Dirac delta function. Then the discretized integral equation is given
by

w̄

U∞
(xi , yi) = 1

8π

n∑
j=1

FjK(xi − ξj , yi − ηj , k,M), (3.234)

where the upwash amplitude w̄ is averaged over n trapezoidal boxes into which
the wing plan form is discretized, and K(x0, y0, k,M) is the nondimensional kernel
function, k as the reduced frequency andM the Mach number. For the subsonic case,
the load points are taken at the 1/4-chord, mid-span locations of the boxes, while
the upwash boundary condition is applied at the 3/4-chord point (like the DLM).
Application of Eq. (3.234) involves a simple evaluation of the kernel for each pair
of load and upwash points, while treating the kernel singularity for upwash points
located directly downstream of the load point in Mangler’s sense [109] through an
averaging procedure.

For the supersonic case, both load and upwash points are collocated at a box’s
mid-chord, mid-span point. Here, the kernel function has additional singularities
on the Mach cones emanating downstream from the load point, which must be
accounted for in the upwash averaging process. This process involves separating the
supersonic kernel function into steady and unsteady factors. the supersonic kernel
(derived earlier) is expressed in a nondimensional form as follows:

K(x0, y0, k,M) = lim
z→0

eikx0

[
M2

R

(
e−ikX1

x0+X1
+ e−ikX2

x0+X2

)
+
∫ X2

X1

e−ikv

(
r2

0 + v2
)3/2 dv

]

(3.235)
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where

R =
√
x2

0 − β2r2
0 ; r0 = y2

0 + z2

and

X1 = x0−MR

β2
; X2 = x0+MR

β2

In the steady case (k = 0), the planar kernel is simply the following:

Ks = lim
z→0

2x0

Rr2
(3.236)

Since the steady factor has singularities at directly downstream points and on the
Mach cone, it varies rapidly over each box. Therefore, it needs to be averaged over a
rectangular area Awith the same width as that of the receiving box, and with leading
edge at the box mid-chord point. Depending upon the ten different ways [181] in
which the averaging area can intersect the Mach cone emanating from the load point,
the integral is performed to obtain the average steady part:

Ks = 1

A
lim
z→0

∫∫
S

2x0

Rr2
dx0dy0 (3.237)

Thus we write

K = KsK̄ = Ks lim
z→0

eikx0

[M2r2
0

2x0

(
e−ikX1

x0+X1
+ e−ikX2

x0+X2

)

+ Rr2

2x0

∫ X2

X1

e−ikv

(
r2

0 + v2
)3/2 dv

]
(3.238)

In contrast with the steady kernel, the unsteady factor K̄ has a singularity only at the
apex of the Mach cone x0 = 0, and is therefore only varying slowly over the receiving
box, and its value can be approximated as that at the box center. The evaluation of
the unsteady factor involves the expansion of the integral term as follows:

∫ X2

X1

e−ikv

(
r2

0 + v2
)3/2 dv = X2e

−ikX2

r2
0

√
r2

0 +X2
2

− X1e
−ikX1

r2
0

√
r2

0 +X2
1

+ ik

∫ X2

X1

ve−ikv

r2
0

√
r2

0 + v2
dv

(3.239)

The integral on the right-hand side of Eq. (3.239) is numerically evaluated by using the
same series approximation [98] as that employed for Eq. (3.222), with the coefficients
listed in Table 3.1.

The supersonic doublet-point method is encoded in the N5KM program of Mc-
Donnell Aircraft Company (now a part of Boeing), and has been used for many
decades of aeroelastic modeling with good results. Its competitor, the harmonic-
gradient code [29] ZONA51 of Arizona State University, is also in continuous
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practical use since the 1990s, especially by researchers at NASA-Langley. Other
panel methods have also evolved, such as the SPNLRI, GUL, and CAR of Nationaal
Lucht- en Ruimtevaartlaboratorium (NLR)-Amsterdam developed by the team of
M.H.L. Hounjet, and the CHB code of Svenska Aeroplan AB (SAAB)-Scania by
Valter Stark’s team.

3.8 Transonic Small-Disturbance Solution by Green’s Function
Method

It is generally difficult to solve the unsteady aerodynamics problem associated with
oscillating lifting surfaces in the transonic flowfield. The difficulty is due to the
presence of nonlinear terms in the governing partial differential equations, which
are necessary for capturing the phenomena of nearly normal shock waves. While
an accurate steady-state solution of the transonic flow requires either Euler, or
full-potential methods, for thin surfaces oscillating with small amplitudes, the ap-
proximate solution by transonic small-disturbance (TSD) model can be sufficiently
accurate in aeroelastic applications. However, even TSD solutions could be cum-
bersome, requiring iterative, time-dependent evaluations over a large computational
grid, such as computational elasticity program (CAP)-TSD [14, 15]. The mem-
ory and CPU time of such a computation could approach that of the Euler and
full-potential methods [79], thereby negating the advantages of the much simpler
governing equation.

Due to the success enjoyed by the panel methods (doublet-lattice, doublet-point,
etc.) for linearized flows, there has been some effort to devise a similarly efficient
scheme for the TSD equation. The field-panel method [188], which is based upon
Morino and Kuo’s [114] boundary-value solution by Green’s theorem, is such a
method. Other methods which could be considered in an efficient application are
based upon corrections to the doublet-lattice method for the transonic case, such
as the method of Pitt and Goodman [130]. However, since the doublet-lattice-like
methods have an uncertain theoretical foundation, their transonic correction is fraught
with similar numerical experimentation, and thus cannot be expected to be valid in
a general application. Hence, one has to look for a simple but theoretically rigorous
method. A TSD solution by the Green’s function approach, which incorporates ac-
celeration potential doublets on the wing mean surface and velocity potential sources
for the wake and field points, is such a candidate. For illustration of this approach,
let us consider the transonic doublet-lattice method (TDLM) as formulated by Lu
and Voss [105] for planar mean surface configurations. However, before discussing
the TDLM formulation, it is necessary to study the extension of Green’s function
method for aircraft wings in unsteady transonic flow.



3.8 Transonic Small-Disturbance Solution by Green’s Function Method 145

3.8.1 Transonic Green’s Integral Equation

The Green’s integral formulation presented here is along the lines of Morino et
al. [115], and can be considered an extension of the approach given earlier in this
chapter for incompressible flows. Some of the concepts that were briefly touched
upon earlier, will be detailed here for clarity. Consider a frame attached to the
freestream and convecting downstream with it at velocity (U∞, 0, 0)T . In such a
frame, the substantial (or Eulerian) derivative is given by

(
D

Dt

)

∞
(.) = ∂

∂t
(.) + U∞

∂

∂x
(.) (3.240)

The Laplacian of the perturbation velocity potential,Φ, in this frame is the following:

∇2Φ = 1

a2

(
D2Φ

Dt2

)

∞
, (3.241)

where a is the local speed of sound. By substituting the unsteady Bernoulli equation
for the isentropic case,

∂Φ

∂t
+ q2

2
+ a2

γ − 1
= a2∞

γ − 1
, (3.242)

into Eq. (3.241), where

∇φ = q, (3.243)

is the perturbation velocity vector, the speed of sound is eliminated and the following
FPE is obtained:

∇2Φ − 1

a2∞

∂2Φ

∂t2
= χ , (3.244)

where

χ = 1

a2∞

[
(a2 − a2

∞)∇2Φ + 2q · ∂q
∂t

+ 1

2
q · ∇q2

]
(3.245)

represents the nonlinear terms required to describe the transonic flowfield. The left-
hand side of Eq. (3.244) equated to zero (χ = 0) is the linear wave equation utilized
for subsonic and supersonic flows.

The boundary conditions consist of the impermeable (solid) wall condition on the
body, (x, y, z) ∈ Sb,

∂Φ

∂n
= qb · n, (3.246)

where q = qb for (x, y, z) ∈ Sb, and n is the local outward normal to the surface, the
condition in the far field,

Φ = 0, x2 + y2 + z2 → ∞, (3.247)
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as well as the discontinuities presented by the wake and shock waves. The wake,
(x, y, z) ∈ Sw, is the infinitesimally thin region trailing behind the wing, where
the vorticity generated by the wing is transported downstream. Being a region of
rotational flow, Kelvin’s theorem is inapplicable normal to the wake, therefore the
velocity potential on the wake is undefined. This causes a mathematical problem of
an arbitrary (or ambiguous) value ofΦ on the wake. In the two-dimensional case, this
problem is handled by taking a cut along the wake surface, and applying a different
value of Φ at its either side, which leads to a discontinuous velocity potential across
the wake. For the three-dimensional case, the momentum conservation leads to a
zero-pressure jump across the wake,Δp = 0, whereΔ(.) is the operator representing
the change as one crosses the wake region from the lower to the upper surface.
Additionally, mass conservation requires the velocity should be continuous normal
to the wake. These conditions, substituted into the unsteady, isentropic Bernoulli
equation, Eq. (3.242), result in the following:

(
DΔΦ

Dt

)

w

= ∂ΔΦ

∂t
(.) + qw · ∇ (ΔΦ), (3.248)

where

qw = 1

2

(
q1 + q2

)
, (3.249)

and

ΔΦ = Φ2 −Φ1. (3.250)

The mathematical ambiguity (or nonunicity) of the value of the jump in the velocity
potential (or doublet strength) across the wake, ΔΦ, is physically resolved by fol-
lowing fluid particles as they slide off the wing’s trailing edge into the wake. As stated
earlier, Kelvin’s theorem cannot be applied to a closed curve comprising such parti-
cles due to shear stress at the solid surface, which causes them to rotate. However,
conforming with the experimental observation that the flow leaves the trailing edge
of an airfoil nearly tangentially to the mid-plane, Kutta hypothesis (or condition) can
be applied to fix the correct circulation at the trailing edge. Kutta condition translates
into the following equation for the value of ΔΦ on the wake at the trailing edge:

ΔΦw = lim
xw→xte

ΔΦ = lim
xu→xte

Φ(xu) − lim
x�→xte

Φ(x�). (3.251)

Here, the subscripts u, � stand for the points on the upper and lower surfaces, respec-
tively, and xte represents the streamwise location of the trailing edge. Thus, the fluid
particles coming from the upper and lower surfaces meet smoothly at the trailing-
edge, thereby producing a continuity of ΔΦ at that point. This implies the presence
of a concentrated vortex at the trailing edge. The value of ΔΦw remains constant as
a fluid particle convects along the wake, by virtue of Eq. (3.248). Hence, a problem
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that could not be closed mathematically is resolved by physical considerations. How-
ever, the evolution of the wake geometry with time presents another problem, which
requires a numerical approximation. The initial condition can be taken as follows:

Φ(x, y, z, 0) = 0, (3.252)

which implies the flow everywhere is undisturbed at t = 0. This includes the case
of a wing suddenly started from rest, q(t), t > 0. In the limiting case of t = 0+,
the time immediately after t = 0, while the wing has a nonzero velocity, the wake
has not had a sufficient time to develop and ΔΦw(0+) = 0 is a valid assumption.
The wake circulation develops continuously with time as the fluid particles convect
downstream from the trailing edge.

We now proceed to the integral formulation, which involves solution to the partial
equation Eq. (3.244) subject to the boundary conditions specified by Eqs. (3.246)–
(3.248). Since the solution is sought outside a solid surface, Sb, and a wake surface,
Sw, on both of which normal (or gradient) boundary conditions are specified, such a
boundary-value problem is termed an exterior Neumann problem. The region interior
to the wing and wake boundary is assumed to have an infinitesimally thin extent lying
between the upper and lower surfaces of the wing and wake. Consider a flowfield
volume V , bounded by the body and wake region on the inner side and the far field
boundary, S∞, on the outer side, where

(x, y, z) ∈ S∞ :
√
x2 + y2 + z2 → ∞,

as shown in Fig. 3.45. The boundary of V can be denoted by S = Sb
⋃
Sw

⋃
S∞,

and its outward normal by n. Green’s integral theorem [88] for the exterior Neumann
problem is expressed as follows:

∫ ∫ ∫
V

(
f∇2g − g∇2f

)
dV =

∫ ∫
S

(
f
∂g

∂n
− g

∂f

∂n

)
dS

+
∫ ∫

S∞

(
f
∂g

∂n
− g

∂f

∂n

)
dS (3.253)

where f , g are piecewise smooth functions. Let us now consider a field point P
with coordinates (ξ , η, ζ ), at which the solution to the governing partial differential
equation, Eq. (3.244) for a specific time τ is sought, given by

g(ξ , η, ζ , τ ) = Φ(ξ , η, ζ , τ ).

Furthermore, let f (x − ξ , y − η, z − ζ ) be the following Green’s function,

f (x − ξ , y − η, z − ζ , t − τ ) = − 1

4πr
δ(t − τ + r/a∞), (3.254)

which satisfies the linear part of Eq. (3.244), rewritten as the following wave equation:

∇2f − 1

a2∞

∂2f

∂t2
= δ(x − ξ , y − η, z − ζ )δ(t − τ ), (3.255)
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with the terminal boundary condition

lim
t→∞ f (x − ξ , y − η, z − ζ , t − τ ) = 0. (3.256)

Here

r =
√

(x − ξ )2 + (y − η)2 + (z − ζ )2,

and δ(.) is the Dirac delta function. Note that the wave equation solution has the
properties limr→∞ f = 0, limr→∞ ∂f/∂n = 0, and f = 0 for t > τ .

Substituted into Eq. (3.253), the selected solutions, f , g cause the second integral
on the right-hand side to vanish due to the far-field boundary condition, Eq. (3.247),
resulting in

∫∫∫
V

(
f∇2Φ −Φ∇2f

)
dV =

∫∫
S

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS. (3.257)

Now consider a small sphere, Sε , of radius ε surrounding the point P , which is
located inside the far-field boundary, S∞, and outside the boundary of the potential
flow region, S = Sb

⋃
Sw, as shown in Fig. 3.45. This small volume must be excluded

from the volume integral of Eq. (3.257) as the point P lies outside the flowfield. The
result of spatial integration is then the following:

∫∫∫
V

(
f∇2Φ −Φ∇2f

)
dV =

∫∫
S
⋃
Sε

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS = 0, (3.258)

or, since the direction of n on the small sphere is radially inward,

−
∫∫

Sε

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dSε +

∫∫
S

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS = 0. (3.259)

When the wave solution expression given by Eq. (3.254) is substituted into
Eq. (3.259)9, and the result is integrated with time, we have the following in the
limit of the radius of the spherical volume vanishing, (ε → 0):

Φ(ξ , η, ζ , t) =
∫ t

−∞

∫∫
S

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS dτ . (3.260)

If the point P is located either outside the far-field surface S∞, or inside the the
boundary of the potential flow, S, Green’s integral theorem results in

0 =
∫ t

−∞

∫∫
S

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS dτ . (3.261)

9 The spatial integration over the sphere yields the following:

−
∫∫

Sε

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dSε =

(
ε
∂Φ

∂n
−Φ

)
δ(t − τ + ε/a∞)
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Therefore, a convenient representation of Green’s theorem inside the flowfield is the
following:

Φ̂ = E(x, y, z, t)Φ(x, y, z, t) =
∫ t

−∞

∫∫
S

(
f
∂Φ

∂n
−Φ

∂f

∂n

)
dS dτ , (3.262)

where

E(x, y, z, t) =
⎧⎨
⎩

1, (x, y, z) outside S, t > 0

0 otherwise
(3.263)

Substitution of Eq. (3.262) into the transonic governing equation, Eq. (3.244), yields
the following:

∇2Φ̂ − 1

a2∞

∂2Φ̂

∂t2
= χ̂ , (3.264)

where

χ̂ = Eχ + ∇E · ∇Φ + ∇ · (Φ∇E) − 1

a2∞

[
∂E

∂τ

∂Φ

∂τ
+ ∂

∂τ

(
Φ
∂E

∂τ

)]
(3.265)

The solution to Eq. (3.264) is finally expressed as follows by Green’s identity:

Φ̂ =
∫ t

−∞

∫∫∫
V

G(X − X∗, τ − τ ∗ )χ̂ (X, τ )dV dτ , (3.266)

where X = (x, y, z)T , andG is the elementary solution (Green’s function) associated
with disturbance applied at (X∗, τ ∗) of the wave equation:

∇2G− 1

a2∞

∂2G

∂t2
= δ(X − X∗)δ(τ − τ ∗) (3.267)

In three-dimensional flow, the Green’s function is expressed as the following retarded
potential solution:

G(X − X∗, τ − τ ∗) = − 1

4πR
δ

(
τ − τ ∗ + R

R∞

)
(3.268)

where R =| X − X∗ |. We have already utilized this result for the linear wave
equation, i.e., subsonic and supersonic flows.

3.8.2 Transonic Doublet-Lattice Method

Consider Φ to be the perturbation velocity potential over that of the freestream,
rendered nondimensional by dividing by U∞b, where b is a characteristic length.
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Then the velocity components nondimensionalized by the freestream velocity are
the following:

u

U∞
= Φx ;

v

U∞
= Φy ;

w

U∞
= Φz, (3.269)

where the subscripts denote partial derivatives with respect to spatial coordinates,
which are rendered nondimensional by dividing by b. With the small-perturbation
assumptions,

Φx << 1; Φy << 1; Φz << 1, (3.270)

and the time nondimensionalized byb/U∞, the FPE is approximated by the following
nondimensional TSD equation (see above):

[
1 −M2

∞ − (γ + 1)M2
∞Φx

]
Φxx +Φyy +Φzz = 2M2

∞Φxt +M2
∞Φtt . (3.271)

The freestream Mach number is subsonic, M∞ < 1, but the local flow can be mixed
(subsonic, sonic, and supersonic). The TSD equation is essentially nonlinear and
thus capable of capturing weak shock waves associated with the mixed regions, but
is theoretically simpler to solve than the full-potential equation, because the solid
boundary conditions can be applied on the mean surface of the thin wing. If we
change the definition of the non-dimensional coordinates in the y and z directions
by dividing them by bβ, where

β =
√

1 −M2∞,

we obtain the following form of the TSD equation used by Lu and Voss [105]:

(1 −KΦx)Φxx +Φyy +Φzz = 2
M2∞
β2

Φxt + M2∞
β2

Φtt , (3.272)

where

K = (γ + 1)M2
∞/β2.

The main assumption required by the TDLM approach is the concept of time lin-
earization. This approximation involves expressing the total perturbation Φ as a
superimposition of the first harmonic component Φ1 over that of the mean steady
flow Φ0, and is expressed as follows:

Φ(x, y, z, t) = Φ0(x, y, z) + Re[Φ1(x, y, z)eikt ], (3.273)

where k = ωb/U∞ is the reduced frequency. It is therefore assumed that only
the first harmonic component of a Fourier series expansion is retained, which is
tantamount to linearization in time. This assumption has been verified in experimental
investigations over oscillating airfoils with small amplitude motion [176]. Since
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the harmonic perturbation amplitude Φ1 is considered small, its products can be
neglected, resulting in the following low-frequency TSD equation:

(
1 −KΦ0

x

)
Φ1
xx +Φ1

yy +Φ1
zz − (2iε +KΦ0

xx)Φ1
x + kεΦ1 = 0, (3.274)

where

ε = kM2
∞/β2

The spatial nonlinearity is thus preserved, while the time dependence is rendered
linear. However, there is an inherent coupling between the steady and unsteady flow
components. Such a coupling could cause a nonuniformity of the coefficients over
the flowfield, especially in the presence of supersonic bubbles and shock waves.
In fact, the coefficent (1 − KΦ0

x ) changes sign when the local speed changes
from subsonic to supersonic (and vice versa). Since it is expected that mixed sub-
sonic/supersonic flow is present in the transonic flowfield, the low-frequency TSD
equation has mixed elliptic/hyperbolic nature, which can cause convergence issues
in a finite-difference/finite-volume computational scheme.

The boundary condition on the wing Sb is the following:

w̄

U∞
= Φ1

z = ∂h

∂x
+ ikh, (3.275)

while that on the wake Sw is given by

ΔΦ1
x + ikΔΦ1 = 0. (3.276)

In order to obtain the solution by Green’s integral formula, the following change of
perturbation variables is adopted:

φ = Φ1e−iεx . (3.277)

u = φx + iνφ, (3.278)

where ν = k/β2. This substitution transforms the low-frequency TSD to the
following Helmholtz form :

uxx + uyy + uzz + λ2u =
(
∂

∂x
+ iν

)
ψ , (3.279)

where

λ = kM∞/β2

ψ =
(
∂

∂x
+ iε

)
σ , (3.280)
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with

σ = KΦ0
x (φx + iεφ) (3.281)

For a source at (ξ , η, ζ ), the perturbation at (x, y, z) satisfying the homogeneous
Helmholtz equation

Gxx +Gyy +Gzz + λ2G = −δ(x − ξ , y − η, z − ζ ), (3.282)

and the far-field (Sommerfeld) condition, is given by

G(r) = e−iλr

4πr
(3.283)

where r = √
(x − ξ )2 + (y − η)2 + (z − ζ )2. With the Green’s identity applied to

the flowfield (Fig. 3.45),

∫∫∫
V

(
u∇2G−G∇2u

)
dV =

∫∫
S

(
u
∂G

∂n
−G

∂u

∂n

)
dS (3.284)

we have

u(x, y, z) = −
∫∫∫

V

G

(
∂

∂ξ
+ iν

)
ψdV −

∫∫
Sb+Sw

(
Δu

∂G

∂n
−G

∂Δu

∂n

)
dS

(3.285)

where Sb +Sw is the wing plus wake region and Δ represents the difference between
upper and lower surfaces, Δu = uu − u�. For a thin wing and wake, this reduces to
the following:

u(x, y, z) = −
∫∫∫

V

G

(
∂

∂ξ
+ iν

)
ψdV −

∫∫
Sb

Δu
∂G

∂n
dS (3.286)

The solution is now split into the surface integral (u1) computed by a doublet lattice
grid, and the volume integral (u2) evaluated over the field V :

u1 = −
∫∫

Sb

Δu
∂G

∂n
dS

u2 = −
∫∫∫

V

G

(
∂

∂ξ
+ iν

)
ψdV (3.287)

This yields a system of the following coupled integrodifferential equations [105] :

w̄

U∞
(x, y, z) = 1

8π

∫∫
Sb

Δ̄p

q∞
K(x0, y0, k,M∞)dS − βeiεx

∫∫∫
V

σ
(
Gξξ − iεGζ

)
dV

(3.288)
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and

φ(x, y, z) = e−iεx

8πb

∫∫
Sb

Δ̄p

q∞
K(x0, y0, k,M∞)dS +

∫∫∫
V

σ
(
Gξ − iεG

)
dV

(3.289)

Here K(x0, y0, k,M∞) is the familiar subsonic kernel function.
Lu and Voss suggest a solution procedure by discretizing the wing plan form into

trapezoidal panels (like the doublet-lattice method), and the flowfield into volume
(field) elements. Each panel element is assumed to have a constant pressure difference
Δ̄p on it, whereas each field element has constant value of σ . These assumptions
yield the following linear set of equations, to be solved for Δ̄p and φ:

w̄
U∞

= [A]
Δ̄p
q∞

+ [B]σ

φ = [C]
Δ̄p
q∞

+ [D]σ , (3.290)

where the elements of the respective coefficient matrices are given by

Aij = 1

8π

∫∫
Sj

K[(xi − ξ ), (yi − η), k,M∞]dξdη

Bij = −βeiεxi
∫∫∫

Vj

(
Gξξ − iεGζ

)
dξdηdζ

Cij = e−iεxi

8πb

∫∫
Sj

K[(xi − ξ ), (yi − η), k,M∞]dξdη

Dij =
∫∫∫

Vj

(
Gξ − iεG

)
dξdηdζ .

It is to be noted here that the Green’s function is evaluated in the field panel integrals
by using r = √

(xi − ξ )2 + (yi − η)2 + (zi − ζ )2. Noting the relationship between
σ and φ (Eq. (3.281)), Lu and Voss suggest a finite-difference approximation of the
derivatives of φ, including an artificial viscosity [120] term for numerical conver-
gence. Solution of the linear equations is through the upwash boundary condition
specified on the wing, and φ = 0 on the field elements. However, instead of direct
inversion of the aerodynamic influence coefficients, it is recommended [105] that
an iterative scheme be adopted in which subsonic and supersonic field elements are

separately inverted, based upon the flow velocity
√
U 2 + φ2

x + φ2
y + φ2

z in each el-

ement. Numerical results reported in the paper of Lu and Voss include fighter and
transport aircraft wings, over which unsteady shock waves are successfully captured
in comparison with experimental data. Thus a relatively simple TSD method can
yield reasonable results for use in aeroservoelastic analysis.



Chapter 4
Finite-State Aeroelastic Modeling

4.1 Finite-State Unsteady Aerodynamics Model

Dynamic aeroelastic applications—such as the flutter analysis—have traditionally
incorporated unsteady aerodynamics models based upon simple harmonic motion of
lifting surfaces. The previous chapter was devoted to techniques wherein linearized,
integral equation formulations were employed to develop frequency-domain aero-
dynamic forces and moments. The approximation of harmonic motion to aeroelastic
modeling is equivalent to applying Fourier transform to the equations of motion in the
time domain. This traditional approach is covered in many aeroelasticity textbooks,
cf. Bisplinghoff et al. [21], Fung [55], and Scanlan and Rosenbaum [147].

Consider a linear aeroelastic system with the following governing equation of
motion:

Mq̈ + Kq = Q, (4.1)

where the structural damping is neglected for the convenience of discussion. Here, q
is the vector of generalized coordinates representing the structural vibration, M is the
generalized mass matrix, K is the generalized stiffness matrix, and Q is the vector
of generalized aerodynamic forces arising due to structural motion. As discussed in
the beginning of Chap. 3, the unsteady aerodynamic forces depend upon structural
motion coordinates through a relationship given by

D (Q) = F (q) , (4.2)

where D(.) is a linear differential operator, and F(.) is a functional operator. The so-
lution for the motion coordinates, q(t), requires a simultaneous solution to structural
dynamics equations, Eq. (4.1), and unsteady aerodynamic field equations, Eq. (4.2),
which could be linear, partial differential equations. The coupled integration of such
fluid-structure equations requires iterative solution in the time domain, which is not
very amenable to aeroelastic computations.

© Springer Science+Business Media, LLC 2015 155
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4.1.1 Traditional Flutter Analysis

In a flutter (or other dynamic aeroelastic) analysis, one is primarily interested
in deriving the boundary between stable (exponentially decaying) and unstable
(exponentially growing) structural motion, given by

q = q̄eiωt , (4.3)

q̄ is the amplitude (or eigenvector) of structural motion and ω is the vibration fre-
quency. This very boundary, for the linear case, brings us to the simple harmonic
(Fourier or Laplace transform) analysis, for which many aerodynamic tools are read-
ily available. The harmonic airloads on a structure can be represented in a transfer
matrix form as follows:

Q = G(iω)q̄eiωt , (4.4)

where G(s) is the unsteady aerodynamic transfer matrix in the harmonic limit (s =
iω), and is a function of flow properties, namely the airspeed, U , and atmospheric
density, ρ. Substituting Eq. (4.4) into Eq. (4.1), we have

(
K − ω2M

)
q̄eiωt = G(iω)q̄eiωt , (4.5)

which cannot be satisfied for any real value of the frequencyω. If a fictitious, viscous
damping term, Cq̇ = gKq̇ with g being a real constant, is added to the left-hand side
of Eq. (4.1), then Eq. (4.5) is modified as follows:

[
(1 + ig)K − ω2M

]
q̄eiωt = G(iω)q̄eiωt . (4.6)

The flutter analyst can now seek a real pair, (g,ω), for which Eq. (4.6) is satisfied.
This essentially requires checking the damping parameter, g, for a range of flow
parameters (U , ρ), which influence the aerodynamic transfer matrix. For g < 0,
energy must be continuously fed into the system to keep it oscillating at constant
amplitude, hence the system is stable. If a condition exists where g > 0, then the
flutter boundary is said to have been crossed, because energy must be extracted from
the flow to maintain harmonic motion. The traditional U − g − ω method of flutter
analysis thus involves plotting g and ω for various values of airspeed, U (or density,
ρ), and noting the airspeed and corresponding frequency for which g becomes zero.

While the simple harmonic flutter condition can be investigated in this man-
ner, there is no possibility of applying the traditional frequency domain analysis to
subcritical (below flutter speed), and supercritical (above flutter speed) cases. The
non-harmonic (convergent or divergent) motion involves a change of motion ampli-
tude with time, therefore its stability analysis requires either Laplace transform, or
time-domain methods. Such a method would not only be able to analyze the transient
aeroelastic response for any given flight condition, but also predict the transition from
stable to unstable motion encountered close to the flutter point. This latter is invalu-
able in designing a control system for a stable aeroservoelastic (ASE) response at
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the open-loop flutter speed. Hence, derivation of a state-space model is necessary for
ASE applications. However, deriving a time-domain equation of motion, Eq. (4.1),
requires representation of the generalized aerodynamics forces vector, Q(t), for any
arbitrary motion, which is a formidable task.

4.1.2 Unsteady Aerodynamics in Time Domain

With the exception of transonic and high-angle-of-attack-flow regimes, it is pos-
sible to approximate the unsteady aerodynamics forces to depend linearly on the
exciting structural motion. This important step enables the linear superposition of
simple aerodynamic solutions for approximating an arbitrary motion. Consider an
airfoil experiencing a sudden (impulsive) change in the angle of attack at t = 0,
approximated by the unit impulse (Dirac delta) function,

αi(t) = δ(t) =
⎧⎨
⎩

∞ (t = 0)

0 (t �= 0)
. (4.7)

The corresponding change in the two-dimensional lift is given by the unit impulse
response function,

�i(t) = h(t). (4.8)

Assuming the aerodynamics to be linear and time-invariant (LTI), the lift due to an
arbitrary change in the angle of attack, α(t), is given by the following convolution
integral:

�(t) =
∫ t

−∞
α(τ )h(t − τ )dτ =

∫ t

−∞
α(t − τ )h(τ )dτ , (4.9)

the existence of which requires that the impulse response of the system, h(t), should
vanish for all previous times, (t < 0), when no input was applied (i.e., the system is
causal). Furthermore, it is also necessary thath(t) should be finite, which is a property
of a stable system. Therefore, the lift of a causal and stable system in response to an
arbitrary change in the angle of attack, which begins to act at t = 0 is given by

�(t) =
∫ t

0
α(τ )h(t − τ )dτ . (4.10)

For example, consider the following unit step (indicial) change in the angle of attack:

αs(t) = us(t) =
⎧⎨
⎩

1 (t > 0)

0 (t ≤ 0)
. (4.11)
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The corresponding indicial lift is then given by

�s(t) =
∫ t

0
αs(t − τ )h(τ )dτ =

∫ t

0
�i(τ )dτ . (4.12)

Hence, the indicial response of a causal, stable LTI system is the time-integral of its
impulsive response. Another useful input is the unit harmonic change in the angle of
attack, which begins to act at t = 0 and is given by

α(t) = eiωtus(t), (4.13)

resulting in the following harmonic lift:

�(t) =
∫ t

0
eiωτh(t − τ )h(τ )dτ = eiωt

∫ t

0
e−iωτ h(τ )dτ . (4.14)

The last equation can be expressed as follows for a causal, stable LTI system:

�(t) = eiωt
[∫ ∞

0
e−iωτ h(τ )dτ −

∫ ∞

t

e−iωτ h(τ )dτ

]
, (4.15)

which for large times (t → ∞) is approximated by

�(t) = G(iω)eiωt , (4.16)

where

G(iω) =
∫ ∞

0
e−iωth(t)dt (4.17)

is the Fourier transform of the impulse response function, and is called the frequency
response of the lifting system. The existence of the Fourier transform requires that
the second integral in Eq. (4.15) should vanish, implying that the impulse response
h(t) should tend to zero as t → ∞. This is the property of an asymptotically stable
system. Hence, harmonic (frequency response) analysis is possible only for causal,
LTI, asymptotically stable systems. By taking the Fourier transform of the lift, we
have the following result:

�(iω) =
∫ ∞

0
e−iωt �(t)dt

=
∫ ∞

0
e−iωt

∫ t

0
α(t − τ )h(τ )dτdt

=
∫ ∞

0
e−iωth(t)dt ·

∫ ∞

0
e−iωtα(t)dt

= G(iω)α(iω). (4.18)

Thus, the lift is linearly related to the angle-of-attack via the frequency response
function in the frequency domain. Here, it is to be noted that both �(iω) and G(iω)
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are complex functions, implying that the lift can be different in both magnitude and
phase from the applied simple harmonic input, α(iω).

Proceeding to more general inputs given by

α(t) = α0e
(σ+iωt)us(t), (4.19)

where σ is a real number, the concept of Fourier response is extended to Laplace
transform, L{h(t)}, for a causal, asymptotically stable system merely by equating
s = iω in the following defining relationship:

�(s) = G(s)α(s), (4.20)

where

G(s) = G(σ + iω) = L{h(t)} =
∫ ∞

0
e−sth(t)dt , (4.21)

is called the aerodynamic transfer function between α(s)L{α(t)} and �(s) = L{�(t)},
the Laplace transforms of the angle-of-attack and lift, respectively, for zero initial
condition (α(0) = α̇(0) = α̈(0) = . . . = 0, etc.). For the existence of transfer func-
tion,G(s), the requirement of stability is removed, since the integral of Eq. (4.21) can
exist even for unstable systems (i.e., h(t) need not be finite)1. Clearly, the extension
from the Laplace domain to frequency domain (and vice versa) is not possible if the
system is either acausal or unstable. This fact is commonly missed. The relationship
among indicial response of a linear, time-invariant, stable system, and its transfer
function is given by the following inverse Laplace transform:

�s(t) = L−1

{
G(s)

s

}
, (4.22)

comparing which with Eqs. (4.12) and (4.20) reveals that the time integration is equiv-
alent to the division by the Laplace variable in Laplace domain. Stability analysis
by transfer function G(s) requires that the latter should be expressible as a rational
function of the Laplace variable s, which is possible only for a linear, time-invariant
system

G(s) = N (s)

D(s)
= bms

m + bm−1s
m−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0
. (4.23)

For a proper transfer functionG(s), the degree,m, of the numerator polynomial, must
not be greater than that of the denominator polynomial, n. The roots of the numerator
polynomial, N (s) = 0, are called the zeroes of the transfer function, while those of
the denominator, D(s) = 0, are its poles. Stability requires that no pole of G(s) must
be in the right-half s-plane, whereas asymptotic stability implies that all the poles
are strictly in the left-half s-plane. Please consult a textbook basic controls [168]
for linear systems representation by transfer function, and the associated stability
analysis.

1 For the necessary conditions for the existence, and properties of Laplace transform of a function,
refer to a textbook on engineering mathematics [88].
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4.2 Transient Aerodynamics in Two-Dimensions

Historically, the problem of representing two-dimensional, unsteady aerodynamics
in the time domain has received much attention, beginning with the early analytical
developments by Birnbaum [20], Wagner [189], Küssner [90], Glauert [63], von
Karman and Sears [187], and Theodorsen [173]. For a thin airfoil of semi-chord b

undergoing simple harmonic oscillation in the angle of attack in an incompressible,
two-dimensional freestream of speed U , Theodorsen [173] expressed the harmonic
lift as a sum of circulatory (�c(ik)) and non-circulatory (�nc(ik)) parts:

�(ik) = �c(ik) + �nc(ik), (4.24)

where

k = ωb

U

is the non-dimensional reduced frequency, which is a ratio of the airfoil’s forward
advance in one period of oscillation to the semi-chord. For a thin airfoil, the non-
circulatory part of lift is much smaller in magnitude than the circulatory part, and can
be regarded as only a slight modification in the mass, damping, and stiffness of the
structure2. In contrast, the circulatory part is much more significant, being responsi-
ble for aerodynamic lag associated with the wake. Theodorsen used a distribution of
sources and sinks to relate the circulatory lift to the upwash, w(ik), induced by the
wake,

�c(ik) = C(ik)w(ik), (4.25)

where the Theodorsen function, C(ik), is given by (see Chap. 3 for derivation)

C(ik) =
∫∞

1
x√
x2−1

e−ikxdx
∫∞

1
x+1√
x2−1

e−ikxdx
, (4.26)

is the frequency response function representing the circulatory phase lag due to the
oscillating wake operating linearly on w(ik). The infinite integrals for Theodorsen
function are evaluated by Hankel functions of the second kind [6], H (2)

0 (k),H (2)
1 (k),

that are of orders zero and one, respectively, as follows:

C(ik) = H
(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

. (4.27)

2 The noncirculatory lift is mainly responsible for a change in the airfoil’s effective mass due
to a layer of the fluid being vertically displaced. This effect is termed the apparent inertia. The
noncirculatory effects for a gas on stiffness and damping are usually negligible.
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Reference

z

 b 
 ab b/2

U

b

w

Fig. 4.1 Thin airfoil with pitch (θ (t)) and plunge (z(t)) displacements

If the airfoil is undergoing simultaneous oscillations in pitch, θ (t) = θ0e
ikt , and

plunge, z(t) = z0e
ikt , (see Fig. 4.1), the resulting upwash is given in the time domain

by

w(t) = ż + Uθ + b

(
1

2
− a

)
θ̇ , (4.28)

and in the frequency domain by

w(ik) = ikz0 +
[
U + ikb

(
1

2
− a

)]
θ0. (4.29)

This is regarded as the input to the linear lifting system, with the corresponding
change in the angle of attack expressed as follows:

α(ik) = w(ik)

U
= ik

z0

U
+
[

1 + ikb

(
1

2
− a

)]
θ0

U
. (4.30)

4.2.1 Rational Function Approximation

Since the Theodorsen function, C(ik), represents the frequency response of a circu-
latory wake-induced upwash, it can be generalized as a linear aerodynamic operator
for general motions. Such an extension (called analytic continuation) from the sim-
ple harmonic limit to a general transient motion is justified, because a step change of
the upwash (angle of attack) results in an asymptotically stable (decaying) pressure
magnitude (lift) response, which is related to the inverse Fourier transform of the
Theodorsen function as follows [56]:

Φ(τ ) = 1 + 2

π

∫ ∞

0

C(ik) − 1

ik
eikτdk. (4.31)
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Here τ = Ut/b > 0 is the nondimensional time representing the time required
to travel one semichord, and Φ(τ ) is the Wagner function [189] representing the
indicial response of circulatory lift to a unit step change in the angle of attack. When
comparing Eq. (4.31) with Eq. (4.22), the relationship between Wagner function and
Theodorsen function is seen to be identical to that between the indicial response and
the frequency response, respectively, of the circulatory lift:

C(ik) − 1

ik
=
∫ ∞

0
[Φ(τ ) − 1]e−ikτdτ . (4.32)

Jones [80] derived the following approximate expression for Φ(τ ) from a curve fit
with Wagner’s numerical data:

Φ(τ ) � 1 − 0.165e−0.0455τ − 0.335e−0.3τ , (4.33)

which is, however, not accurate enough for practical applications. Jones’ method
of using a series of decaying exponential functions in time domain to approximate
the effect of circulation on transient aerodynamic response, by fitting the frequency
response to Theodorsen function at selected frequency points can be generalized.
Herein, the process of analytic continuation is brought into effect by adopting an
asymptotically stable transfer function representation ofC(ik), wherein ik is replaced
by the nondimensional Laplace variable s = σ + ik and results in the following
rational function approximation (RFA):

Ca(s) = N (s)

D(s)
. (4.34)

Such a representation of C(s) is by a series of first order, asymptotically stable poles
was given by Dowell [40] as follows:

Ca(s) = a0 +
N∑
n=1

ans

s + bn
, (4.35)

where bn > 0, n = 1, . . .,N . The real coefficients a0, an, bn can be determined by
fitting Ca(ik) = C(ik) at a discrete set of reduced frequencies k. This corresponds
to the approximate indicial response,

Φ(τ ) � a0 +
N∑
n=1

ane
−bnτ . (4.36)

The curve fitting is practically carried out by using a least squares process, where
the squared fit error over m selected reduced frequencies is given by

ε2 =
m∑
j=1

[
C̄a(ikj ) − C̄(ikj )

] [
Ca(ikj ) − C(ikj )

]
, (4.37)
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where the bar represents the complex conjugate. Let F be the matrix of the following
frequency data:

F =

⎛
⎜⎜⎜⎜⎜⎝

ik1
ik1+b1

ik1
ik1+b2

· · · ik1
ik1+bn

ik2
ik2+b1

ik2
ik2+b2

· · · ik2
ik2+bn

...
...

...
...

ikm
ikm+b1

ikm
ikm+b2

· · · ikm
ikm+bn

⎞
⎟⎟⎟⎟⎟⎠

, (4.38)

and a = (a0, a1, a2, . . ., an)T be the vector of the unknown numerator coefficients
to be determined from the fitting process. The squared fit error can be expressed as
follows:

ε2 =
(

C̄
T − aT F̄

T
)
(C − Fa) , (4.39)

where C is the vector of Theodorsen function evaluated at the selected frequency
points,

C = [C(ik1), C(ik2), . . ., C(ikm)]T .

When the fit error is minimized with respect to the numerator coefficients, we have

∂ε2

∂a
= −F̄

T
(C − Fa)− FT

(
C̄
T − aT F̄

T
)T = 0, (4.40)

or

a =
(
F̄
T

F + FT F̄
)−1 (

F̄
T

C + FT C̄
)

(4.41)

Dowell [40], following the method of Jones, used a0 = 1, and curve-fittedCa(ik)−1
in order to determine the remaining linear coefficients, an, n = 2, . . .,N . In Dowell’s
method, the denominator coefficients (poles), bn, n = 1, . . .,N , are held constant
in the minimization process. However, these parameters can be selected by an op-
timization process for minimizing the total least-squared fit error summed over a
range of reduced frequencies, ε2. Peterson and Crawley [128] carried out such
an optimization for Dowell’s RFA by a gradient-based method, while Eversman
and Tewari [50] employed a nongradient (Simplex) optimization for the poles of
Ca(s). Table 4.1 compares the results of the two methods for up to 3 lag parameters
(N = 3) for the Theodorsen function. It was shown [50] that the optimum fit accuracy
with the Thoedorsen function can be remarkably improved by using a multiple-pole
approximation:

Ca(s) = a0 +
r∑

n=1

mn∑
p=1

anps

(s + bn)p
, (4.42)
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Table 4.1 Rational function
approximations for the
theodorsen function

kj = (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1)

Optimized Dowell’s Method [128] Eversman and
Tewari [50]

(N = 1)

a0 = 1 a0 = 0.9672

a1 = −0.4542 a1 = −0.4299

b1 = 0.1660 b1 = 0.1851

ε = 0.0215 ε = 0.0072

(N = 2)

a0 = 1 a0 = 0.9962

a1 = −0.4027 a1 = −0.1667

b1 = 0.1297 b1 = 0.0553

a2 = −0.1343 a2 = −0.3119

b2 = 1.2660 b2 = 0.2861

ε = 0.0109 ε = 0.0005608

(N = 3)

a0 = 1 a0 = 0.9994

a1 = −0.1524 a1 = −0.1055

b1 = 0.0490 b1 = 0.0371

a2 = −0.2212 a2 = −0.2879

b2 = 0.2385 b2 = 0.1859

a3 = −0.1088 a3 = −0.1003

b3 = 0.3576 b3 = 0.5886

ε = 0.00102 ε = 0.0002034

where

r∑
n=1

mn = N ,

which has the advantage of reducing the total number of polesN required for a given
curve-fit accuracy.

A variation of the least squares method is the Padé approximation by Vepa [185],
which uses a common denominator polynomial, D(s) = (s+b1)(s+b2) · · · (s+bN ),
in all the terms of the series, resulting in

Ca(s) = a0 + 1

D(s)

N∑
n=1

ansD(s), (4.43)

which enables a determination of the poles, bn (along with the numerator coefficients,
an), by the least squares fitting process, thereby removing the ambiguity in their
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selection. However, this method gives undue weightage to the fit-error at higher
values of k, which degrades accuracy at smaller frequencies. Furthermore, the poles
could migrate into the right-half Laplace domain during the curve-fitting process.

Another interesting RFA for the Theodorsen function is the following continued
fraction approximation by Desmarais [38]:

Ca(s) = 1 + −1/2

1 + 1
4s+ 1

1+ 3
4s+ 3

1+ 5
4s+ 5

1+···

(4.44)

This can be truncated to give a desired order of transfer function by a recursive
method. A disadvantage of this RFA is the denser clustering of the poles as the
order is increased. This implies that the order of approximation is unnecessarily
increased beyond what is required by the conventional approximations of Eq. (4.35)
and Eq. (4.42) for a given fit accuracy.

It is possible to extend the two-dimensional (2D) incompressible RFA model-
ing approach to compressible, subsonic, and supersonic flows. In such a case, the
Theodorsen function C(ik) is replaced by a more general frequency response func-
tion, G(ik), and the harmonic data is obtained from a suitable method. The subsonic
integral equation formulation of Possio [134] can be employed for determining the
unknown harmonic lift distribution by enforcing upwash boundary condition at spe-
cific collocation points on the airfoil. Similar 2D subsonic integral equation–solution
techniques are the iterative kernel evaluation methods of Dietze [39] andTurner [179],
and the kernel function expansion methods of Schade [148, 149] and Fettis [52]. A
direct solution procedure that does not employ the integral equation at all is the
boundary-value solution by Mathieu functions developed by Haskind [69], Reissner
[139], Timman [177, 178], and Küssner [94].

For the 2D supersonic case, the available frequency domain methods that can
provide the harmonic data for the least squares curve fitting, are based upon a modifi-
cation of the acceleration potential integral equation employed by Possio for subsonic
flow. The modification essentially consists of limiting the integration to the area in-
side the Mach cone emanating from the given load point, (ξ , ζ ), and changing β to
β = √

M2∞ − 1 in the kernel function. Alternative formulation is the velocity po-
tential source distribution proposed by Possio [133] and developed into a numerical
procedure by Garrick and Rubinow [57]. It is interesting to note that the super-
sonic integral formulation based upon velocity potential is valid also for arbitrary
(non-harmonic) motions. Stewartson [164] showed that the harmonic solution for the
velocity potential can be directly derived by taking Laplace transform of the govern-
ing wave equation. Apparently, the presence of Mach cones allows the small pressure
disturbances to attenuate in the far field, thereby enabling a process of analytic contin-
uation from Laplace to frequency domain. It is to be further noted that the linearized
supersonic aerodynamics is valid only for thin airfoils undergoing infinitesimal oscil-
lations. For a thick airfoil undergoing finite amplitude oscillations, the Mach waves
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are replaced by oblique shock waves whose analysis is essentially nonlinear. This
results in a reduction of supersonic damping, which can potentially cause flutter,
as investigated by Van Dyke [183]. However, at large reduced frequencies and rea-
sonably large supersonic-hypersonic Mach numbers, a linear approximation called
piston theory becomes valid even for thick airfoils. Lighthill [101] and Ashley and
Zartarian [8] developed the piston theory into a systematic numerical procedure for
flutter calculation, based upon Hayes [71] equivalence principle, which states that a
steady hypersonic flow on a slender body is equivalent to an unsteady flow in one
fewer space dimensions, and can include real gas effects.

4.2.2 Indicial Admittance by Duhamel’s Integral

The alternative approach to RFA for deriving unsteady aerodynamics representation
in the time domain for a general transient motion is by employing linear superposition
of the prescribed geometric upwash via Duhamel’s integral. In this way, the indicial
admittance is directly evaluated by an integral. For the incompressible case, this
approach gives the unsteady lift by Wagner function as follows:

�(t) = 2bπρU

[
Φ(t)w(ξ , 0) +

∫ t

0
Φ(t − τ )

∂

∂τ
w(ξ , τ )dτ

]
. (4.45)

Peloubet et al. [126] developed a finite series of Tschebychev polynomials to ap-
proximate the real part of the unsteady aerodynamic transfer function in this manner.
This approximation is integrated in a closed form to yield the indicial admittance
in terms of a finite series of constants and inverse tangent functions in time. Hassig
[70] applied the integral method to determine the indicial response of circulatory
aerodynamics in incompressible flow. The Laplace transform of indicial admittance
derived by this method gives the unsteady aerodynamics transfer function at discrete
points in the Laplace domain, which is fitted by a cubic spline to frequency response
data at selected frequencies. Hassig demonstrated a good correlation with the work
of Luke and Dengler [106] in deriving a generalized Theodorsen type function for
complex reduced frequency, which was valid for growing (unstable) oscillations.
However, the spline fit requires harmonic data at a much wider range of frequencies
than is possible to generate either theoretically or experimentally. Furthermore, the
approach is invalid for decaying (convergent) oscillations. Apart from the tables of
the generalized Theodorsen function provided by Luke and Dengler [106], an early
systematic attempt to extend the Theodorsen function for decaying oscillations was
by Fraeys de Veubeke [54].

Mazelsky and Drischler [112] derived indicial responses for the compressible
subsonic case, and used reciprocal relationship between the pitch and angle of attack
changes on unsteady lift and pitching moment. They also proposed that the circulatory
lag effect is a property of the fluid in the linear subsonic case, and is independent
of airfoil boundary conditions. The indicial response technique was adopted by
Leishman [100] for the unsteady lift and moment of an airfoil with an arbitrary
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flap motion, and was shown to have a reasonable comparison with experimental
results for the compressible subsonic case.

4.2.3 Transient Aerodynamics in Three-Dimensions

The problem of representing unsteady aerodynamics for transient structural response
of three-dimensional lifting surfaces has been the topic of research for the last five
decades. Incompressible flutter calculations of finite-span wings were routinely car-
ried out in World War II era by a strip-wise application of the Theodorsen function
(cf. Smilg and Wasserman [159]), followed by subsonic, supersonic, and hypersonic
flutter calculations in 1950s and 60s by the modified strip theory ofYates [196]. How-
ever, the earliest transient application was the simple extension from two-dimensions
proposed by Rodden and Stahl [142] in their subsonic strip theory, wherein the wing
span is broken up into a number of chordwise rigid strips (Fig. 4.2). Each strip has
essentially the degrees of freedom of pitch and plunge (plus a control surface rota-
tion, if present) like an airfoil, and can be regarded as being connected to neighboring
strips by linear and rotary springs, whose stiffnesses are the bending and torsional
stiffnesses of the wing at the given spanwise station (Chap. 2). On each strip, the sub-
sonic transient aerodynamic response is calculated by applying a two-term rational
polynomial approximation to the Wagner function, which is based upon W.P. Jones’
[81] improvement over the approximation of R.T. Jones, Eq. (4.33). The upwash (or
angle of attack) boundary condition is enforced at a selected chordwise location, xi ,
on the i th strip, based upon its vertical deflection, zi , and slope, θi :

wi = żi + Uθi , (4.46)

while the lift, Li , and pitching moment, Mi , are calculated at the aerodynamic
center. Since these are now functions of the spanwise variable, yi , locating the mid-
span of each strip (Fig. 4.2), the degrees of freedom of the structure are equal to
2n (plus the number of control surface rotations, if any), where n is the number
of strips. Control surface degrees of freedom, βi , if present, can be added to each
strip, with the corresponding hinge moment, Hi , added to the vector of generalized
aerodynamic forces. The strip method is made more accurate by using a compressible,
two-dimensional subsonic model (such as those discussed in the last subsection) for
generating the harmonic aerodynamic data, rather than the Wagner function. Obvious
limitations of the strip method are its inapplicability to low and medium aspect-ratio
wings, and its inability to account for loads due to chordwise bending deformations.

In order to overome the deficiencies of the strip theory, the method of RFA in
Laplace domain for three-dimensional lifting surfaces was developed in the 1970s.
This method required curve fitting with frequency domain data, which can be gen-
erated using doublet-lattice, kernel collocation, and double-point methods covered
in Chap. 3. For the subsonic case, the double-lattice method of Albano and Rod-
den [7], and its nonplanar extension by Giesing et al. [61], became standard and
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Fig. 4.2 Strip idealization of an aircraft wing

was incorporated into industrial software used by the major aircraft companies (e.g.,
NASTRAN, STABCAR, ASTROS, H7WC, N5KM). However, the problem of de-
riving a suitable RFA for transient modeling remained open, and became the subject
of active research in the 1975–1995 era.

Inspired by the linear transform relationship between the Theodorsen and Wagner
functions in two-dimensional incompressible flow, Richardson [140] was the first to
suggest deriving a finite-state aerodynamic model for a three-dimensional aircraft
wing based upon a exponential series type approximation (similar to that of R.T.
Jones [80]), which could be combined with a series approximation of the continuous
structure by only a finite number of modes. This immediately led to a finite order,
linear unsteady aerodynamic transfer matrix in the Laplace domain, given by the
following relationship

Q(s) = G(s)q(s), (4.47)

where Q(s) is the unsteady aerodynamic generalized force vector, G(s) is the un-
steady aerodynamic transfer matrix, and q(s) is the vector of generalized motion
coordinates based upon a finite number, n, of structural degrees of freedom. For in
vacuo structural response (Q = 0), the structural modes (λi , q̄i), i = 1, . . ., n are
identified from the solution of the following eigenvalue problem:

(
K + λ2

i M
)

q̄i = 0 (i = 1, . . ., n), (4.48)

and result in the following structural modal matrix:

Φ = (
q̄1, q̄2, . . ., q̄n

)
. (4.49)
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Motivated by having to accurately predict the flutter envelope of highly maneu-
verable fighter aircraft being prototyped at that time, as well as by the need to design
active flutter suppression systems for transport/bomber type aircraft, many workers
simultaneously developed the RFA for finite-span wings and wing–tail combinations.
Sevart [152] was the first to apply an RFA-based model with a second-order polyno-
mial with simple poles (lag parameters) using a curve fit with doublet-lattice data.
This was followed by Roger et al. [143, 144], Vepa [186], Edwards [44], and Abel et
al. [2–4]. While the RFAs developed by Sevart, Roger et al., and Abel et al. were of
simple pole type, where each element of G(s) has the same denominator polynomial,
the matrix Padé RFA of Vepa and Edwards had a different denominator polynomial
for each column of G(s). The latter approach was expected to reduce the number of
state variables in the aeroelastic model required for representing the lag effect of the
wake (called lag states), which are approximated by the denominator polynomial of
the transfer matrix. Since the Padé approximation does not employ simple poles, but
rather a common denominator polynomial (see Eq. (4.43)), and applies least squares
curve fit to simultaneously determine the numerator and denominator coefficients, it
cannot guarantee that the poles do not migrate into the right-half s-plane for some
reduced frequencies during the curve-fitting process. This was quite a major lim-
itation, and was only addressed later by imposing optimization constraints (at the
cost of fit accuracy). Other disadvantages of the Padé approximant were its giving
undue weightage to higher frequencies in the fitting process, and needing as many
frequency points as the order of the aerodynamic influence coefficients (AIC) matrix
(thereby requiring an interpolation of the frequency domain database). Consequently,
a minor reduction in the number of lag states is offset by an increased computational
complexity for obtaining a given fit accuracy, when compared with the method of
Sevart, Roger, and Abel et al.

A variation to matrix Padé approximation was the twin transfer functions model of
Burkhart [27], wherein the aerodynamic stiffness and damping terms were approxi-
mated by rational functions of second degree numerator polynomial and first order
denominator, and each element of the transfer matrix employed different poles (which
dramatically increased the number of lag states). The poles were constrained to be
stable, and a gradient-indexgradient optimization based optimizer (rather than least-
squares fitting) determined both numerator and denominator coefficients. Hence,
Burkhart was the first to employ optimization in the determination of RFA. How-
ever, his model produced a much larger state-space model as well as computation
cost than those of the other schemes, for a given accuracy.

In the second wave of RFA developments, there was an attempt to improve the
curve-fit accuracy with the frequency domain data by employing nonlinear opti-
mization of the lag parameters (poles) of the transfer matrix. Dunn [43] introduced
lag parameter optimization in the RFA of Vepa [186] and Edwards [44], calling it
the modified matrix Padé approximation. He used a gradient-based optimizer for
the purpose and reported considerable improvement in the fit-accuracy over the un-
optimized method. Karpel [85] derived a minimum-state RFA, which yielded the
smallest number of aerodynamic states in the aeroelastic model for a given fit accu-
racy. This was achieved by reversing the traditional approach of first finding the RFA
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and then the state-space model, and used a constrained, gradient optimization for
the lag parameters based upon variable cost metric. The main advantage of Karpel’s
method was the independence of the number of aerodynamic states from the order
of the structural plant, which had the potential for a large reduction in the overall
order of the ASE plant. Tiffany and Adams [175] introduced a nongradient optimiza-
tion method for lag minimization, and applied it to improve the methods of Karpel,
Dunn, and Roger. The new optimizer was more efficient and robust with respect to
starting conditions, when compared to the previously used gradient-based schemes.
Tiffany and Adams [175] compared the various RFA formulations extended by them
and reported that it was possible to achieve a similar fit accuracy with the previous
(unextended) methods, but with up to 63 % reduction in the number of aerodynamic
states. This was taken as an inspiration by Eversman and Tewari [49], who devised
their own consistent RFA based upon non-gradient optimization of the aerodynamic
states, and reported a remarkable reduction in the number of lag parameters to be
optimized for a given curve-fit accuracy. The formulation of Eversman and Tewari
[49] used multiple poles, which meant only a single lag parameter needed to be op-
timized for a comparable accuracy with Tiffany and Adam’s optimized least squares
RFA of several simple poles. This resulted in a great reduction in the order (and cost)
of nonlinear optimization.

Our focus here is on the technique devised by Sevart [152], Roger [144], and Abel
et al. [2], and pole optimized by Tiffany and Adams [175] and Eversman and Tewari
[49], which will be referred to as the least squares method. Here, the RFA is of the
following type:

G(s) = A0 + A1s + A2s
2 +

N∑
j=1

Aj+2
s

s + bj
, (4.50)

where bj > 0, j = 1, . . .,N . The numerator coefficient matrices,

A0, A1, A2, . . ., AN+2,

are determined by fitting G(ik) to the doublet-lattice (or doublet-point) data, D(ik),
at a discrete set of reduced frequencies k. The curve fitting is practically carried
out by using a least-squares process, where the squared fit error3 over M-selected
reduced frequencies is given by

ε2 =
n∑
i=1

n∑
j=1

M∑
m=1

[
ḡij (ikm) − d̄ij (ikm)

] [
gij (ikm) − dij (ikm)

]
, (4.51)

where gij is the (i, j ) element of G, and dij is the (i, j ) element of D. The order of the
aerodynamic transfer function, n, must be same as the number of structural degrees
of freedom.

3 The fit error, ε, is divided by the number of elements n2 as well as by the number M over which
the curve fit is carried out, in order to yield an average fit error per element and per frequency point.
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For deriving the frequency domain, generalized aerodynamic matrix, D, the fol-
lowing procedure is adopted. After generating the discretized wing geometry data
as box corner points, the coordinates and sweep angles required for calculating the
aerodynamic influence coefficients (AICs) by either the subsonic doublet-lattice, the
supersonic Mach box, or the subsonic/supersonic doublet-point method are computed
and stored. Then theAIC computation begins by enforcing the upwash boundary con-
dition at the selected chordwise location, xi (3/4-chord in doublet-lattice/subsonic
doublet-point and mid-chord in Mach box and supersonic doublet-point), on the ith
box, based upon its vertical deflection, zi , and slope, (dz/dx)i , which in turn, are
determined by the normalized, in vacuo structural mode shapes (including control
surfaces, if any), q̄i , i = 1, . . ., n:

wi = żi + U (dz/dx)i . (4.52)

The resulting aerodynamic influence coefficients matrix, AIC, is inverted and pre-
and postmultiplied by the structural modal matrix to yield the generalized (and
normalized) aerodynamic matrix:

D = φT {AIC}−1φ. (4.53)

If the nondimensional form of AIC matrix, ¯AIC, is available (such as the one calcu-
lated by doublet-lattice method of Chap. 3), it requires conversion to the dimensional
form as follows, before being used in the RFA model:

Δp = {AIC}−1w = 1

2
ρU 2{ ¯AIC}−1 w

U
= 1

2
ρU{ ¯AIC}−1w (4.54)

This implies a multiplication by the factor 1/2ρU .
For the curve-fitting process, let F be the matrix of the following frequency data:

F =

⎛
⎜⎜⎜⎜⎜⎝

1 ik (ik)2 ik1
ik1+b1

ik1
ik1+b2

· · · ik1
ik1+bN

1 ik (ik)2 ik2
ik2+b1

ik2
ik2+b2

· · · ik2
ik2+bN

...
...

...
...

1 ik (ik)2 ikM
ikM+b1

ikM
ikM+b2

· · · ikM
ikM+bN

⎞
⎟⎟⎟⎟⎟⎠

, (4.55)

and

A =
(
AT

0 , AT
1 , AT

2 , . . ., AT
N+2

)T

be the [(N+3)×n×n] array of the unknown numerator coefficients to be determined
from the fitting process. The squared fit error matrix is then given by

E2 =
(

D̄
T − AT F̄

T
)
(D − FA) , (4.56)
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where D is the (M×n×n) array of the generalized aerodynamics data, D, evaluated
at the selected frequency points,

D =
[
DT (ik1), DT (ik2), . . ., DT (ikM )

]T
.

When the fit error is minimized with respect to the numerator coefficients, we have

∂E2

∂A
= −F̄

T
(D − FA)− FT

(
D̄
T − AT F̄

T
)T = 0, (4.57)

or

A =
(
F̄
T

F + FT F̄
)−1 (

F̄
T

D + FT D̄
)

(4.58)

The total order of the aeroelastic system produced by the least squares RFA is
n(2 + N ), where N is the number of lag parameters (poles) in the aerodynamic
transfer matrix. If a suitable optimization can be performed to reduce the number
of aerodynamic (lag) states, then the overall size of the aeroelastic plant can be
significantly reduced. This is the objective of the nonlinear optimization method of
Tiffany and Adams [175] and Eversman and Tewari [50]. The latter observed the
tendency of some of the RFA poles to coalesce together, which indicated the need
of a multiple-pole RFA that is consistent with the optimization process. Otherwise,
using simple poles that have nearly identical values results in the inconsistent (ill-
conditioned, or nearly singular) state-space representation. Table 4.2 shows some
results of the optimizations reported by the latter [50] for a high aspect-ratio wing
with six structural modes retained in the modal matrix, at a Mach number of 0.9
and fitted to doublet-lattice data at 11 reduced frequencies. It is observed in the
table that a given fit accuracy can be achieved by using multiple poles of the same
order as simple poles in the conventional RFA4. This has the advantage of significant
reduction in the size of the nonlinear optimization problem to be solved, although
the order of the resulting state-space model remains unchanged from that of simple
poles.

The methodology of RFA derivation is schematically shown in Fig. 4.3. Note the
necessity of selecting the lag parameters, bi , i = 1, . . .,N , by a suitable optimization
process. The options are either the usage of a constrained minimization by gradient
based optimizer (such as CONMIN [184] and the function fmincon of MATLAB’s

4 The RFA of Eversman and Tewari [50] is slightly different from Eq. (4.50) in that the lag terms
do not have the Laplace variable in their numerators:

G(s) = A0 + A1s + A2s
2 +

N∑
j=1

Aj+2
1

s + bj
,

An effect of this change is that the coefficient matrix A0 can no longer be regarded as the
“aerodynamic stiffness”, which was the case in the original RFA of Sevart [152] and Roger [144].
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Table 4.2 Multiple-pole
rational function
approximations (RFA) [50]
for a wing at mach number
0.9

kj = (0, 0.05, 0.1, 0.125, 0.175, 0.2, 0.3, 0.5, 0.7, 0.9, 1.2)

Simple pole RFA Multiple pole RFA

(N = 2)

b1 = 0.21822 b1 = 0.2185 (Double pole)

b2 = 0.21854

ε = 0.04197 ε = 0.041967

(N = 3)

b1 = 0.142086 b1 = 0.1425 (Triple pole)

b2 = 0.142831

b3 = 0.142031

ε = 0.03259 ε = 0.03257

(N = 4)

b1 = 0.172794 b1 = 0.175295 (Triple pole)

b2 = 0.17281 b2 = 0.58698 (Simple pole)

b3 = 0.17733

b4 = 0.603264

ε = 0.006112 ε = 0.006107

Optimization Toolbox), or a direct search method without the need for computing
gradients, such as the simple but versatile simplex algorithm of Nelder and Mead
[121]. A gradient-based scheme requires extensive user experience, because it can
get stuck into convergence problems, especially if the number of lag parameters is
larger than 2 or 3, and can also have starting problems if the initial guess is outside
the feasible space. In contrast, the simplex method is easier to use and is also blessed
with good convergence properties, but can quickly get out of the feasible space
because it is unconstrained. A way of adding hard constraints to the simplex method
is through wall-penalty functions, such as when a lag parameter crosses into the
negative region, the objective function is made to assume a large value. The author
had little difficulty with the simplex algorithm as a graduate student in the early days
of personal computers, and thus would expect anybody with a basic programming
experience to easily write a simplex code nowadays.

For an illustration of the RFA method, let us consider a high-aspect-ratio wing
modeled after NASA-Langley’s Drone for Aeroelastic Testing, (DAST-ARW1) [34]
(see Chap. 3) with a doublet-lattice gridding of 20 spanwise and 10 chordwise boxes.
The DAST-ARW1 wing is modified for ease of aerodynamic modeling by removing
the root leading-edge extension of the original wing, which results in a trapezoidal
plan form (see Chap. 3), and assuming that this does not result in a significant change
in the mass and structural parameters. The in vacuo structural vibration modes for
this drone were experimentally investigated by Cox and Gilyard [34] using a ground
vibration analysis, and the natural frequencies and damping ratios for the first six
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Aeroservoelastic Control-
Law Design 
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TDLM) 

Fig. 4.3 Schematic diagram showing the process of rational function approximation (RFA)

wing modes reported by them are listed in Table 4.3. The mode shapes for the
symmetric and anti-symmetric5 modes are plotted in Figs. 4.4–4.9.

In order to generate RFA for the given set of symmetric and anti-symmetric wing
modes, consider the simplified doublet-lattice grid of one chordwise and six span-
wise boxes for the optimization of the lag parameters. Such a coarse grid, while
being insufficient for an accurate computation of aerodynamic influence coefficients
and pressure distribution, is useful in reducing the size of the nonlinear program-
ming problem of lag parameters selection. Once the lag parameters are determined,
the doublet-lattice grid can be refined for a more accurate fitting. Using the sim-
plex nongradient optimizer of Nelder and Mead [121] as coded in MATLAB’s
Optimization Toolbox function fminsearch, optimization is carried out for the least

5 Antisymmetric modes have mutually opposite signs of deflections at either side of the wing, and
result in a modification of the aerodynamic influence coefficients, such as those computed by the
doublet-lattice method (Chap. 3).
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Table 4.3 Structural vibration modes of DAST-ARW1 Wing [34]

Natural frequency (Hz) Damping ratio Mode type

9.3 0.00588 Symmetric bending

13.56 0.00882 Antisymmetric bending

30.30 0.00937 Symmetric bending/

Torsion

32.72 0.01943 Antisymmetric bending/

Torsion

38.96 0.01447 Symmetric torsion

48.91 0.02010 Antisymmetric torsion
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Fig. 4.4 Vertical deflection mode shape of the first symmetric bending mode of natural frequency
9.3 Hz

squares RFA poles (Eq. (4.50)) bj , j = 1, . . .,N where the number of poles N is
varied from 2 to 6. The objective function for minimization is the curve-fit error,
ε, without any weighting for the frequencies. The optimized (1x6) RFAs are gen-
erated for the exact harmonic data from the doublet-lattice code at 30 frequency
points (selected to cover the natural frequencies of the structural modes), and a
flight Mach number of M = 0.807 (corresponding to a flight speed of 250 m/s
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Fig. 4.5 Vertical deflection mode shape of the first antisymmetric bending mode of natural frequency
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Fig. 4.6 Vertical deflection mode shape of the second symmetric bending/torsion mode of natural
frequency 30.3 Hz



4.2 Transient Aerodynamics in Two-Dimensions 177

0
0.5

1
1.5

2

−2
−1

0
1

2
−0.005

0

0.005

x (m)

Second anti−symmetric bending mode (32.72 Hz)

y (m)

h 
(m

)

Fig. 4.7 Vertical deflection mode shape of the second antisymmetric bending/torsion mode of
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Fig. 4.8 Vertical deflection mode shape of the symmetric torsion mode of natural frequency 38.96 Hz
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Fig. 4.9 Vertical deflection mode shape of the antisymmetric torsion mode of natural frequency
48.91 Hz

at a standard altitude of 7.6 km):

ω =

⎡
⎢⎢⎣

0 0.05 0.1 0.2 0.5 1 1.5 2 2.5 3

4 5 7 10 12 15 17 20 22 25

27 30 32.5 35 37 40 42 45 47 50

⎤
⎥⎥⎦ (Hz)

Curve fits for sample elements of the RFA matrix are shown in Figs. 4.10–4.14,
while the optimized values of the lag parameters are listed in Table 4.4. It is to be
noted that while 2- or 3-pole RFA can give a rough fit for some elements, they are
inadequate for other elements, for which the use of either 4- or 6-pole RFAs shows a
significant improvement in the fit accuracy. However, there is a tendency for the term
in Eq. (4.58) involving the frequency weighting matrix F to become nearly singular
for some values of the lag parameters when closely space frequency points are taken.
An obvious solution to this problem is to take fewer frequency points for the curve
fit, and then applying a spline interpolation for intermediate frequencies. The higher
order RFAs give a better fit at higher values of reduced frequency, which indicates
that a further optimization is possible by employing frequency weighting functions,
which can reduce the number of poles required for a given accuracy. The harmonic
aerodynamic transfer-matrix data used in this example for carrying out the curve fits
are listed in Appendix C.
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Fig. 4.10 Curve fitting for element (6,6) of generalized aerodynamic transfer matrix of modified
DAST-ARW1 wing with 6 symmetric and anti-symmetric modes and (1×6) doublet-lattice grid at
M = 0.807

4.2.4 Alternative Methods for 3D Transient Aerodynamics

Alternative techniques have been presented for bypassing the rational function ap-
proximations (RFA) method, and to derive the unsteady aerodynamics transfer
matrix directly from a generalized integral equation. The first such method was
by Cunningham and Desmarais [36] who derived the generalized kernel function
for the subsonic lifting surfaces, for validity in both converging and diverging
oscillations. They compared their results with an RFA model for the convergent
case, and observed a looping and spiraling of the generalized aerodynamic forces
in the complex plane for high-reduced frequencies. Blair and Williams [24] pre-
sented a time-domain panel method in which the subsonic integral equation is
solved by a variation of the indicial (Duhamel’s integral) method based on cal-
culating and storing the time-history of doublet strengths. Cho and Williams [32]
devised a Laplace domain evaluation of the kernel function, which could be ap-
plied to both subsonic and supersonic regimes, and obtained good agreement
with doublet-lattice and doublet-point methods for oscillatory response. Unfor-
tunately, neither Blair and Williams [24] nor Cho and Williams [32] compare
their data with an RFA model for the transient case, and hence it is difficult to
comment on their applicability to an aeroservoelastic plant model. Furthermore, they
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Fig. 4.11 Curve fitting for element (4,3) of generalized aerodynamic transfer matrix of modified
DAST-ARW1 wing with 6 symmetric and antisymmetric modes and (1×6) doublet-lattice grid at
M = 0.807
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Fig. 4.12 Curve fitting for element (3,5) of generalized aerodynamic transfer matrix of modified
DAST-ARW1 wing with 6 symmetric and antisymmetric modes and (1×6) doublet-lattice grid at
M = 0.807
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Fig. 4.13 Curve fitting for element (6,2) of generalized aerodynamic transfer matrix of modified
DAST-ARW1 wing with 6 symmetric and antisymmetric modes and (1×6) doublet-lattice grid at
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Fig. 4.14 Curve fitting for element (1,1) of generalized aerodynamic transfer matrix of modified
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Table 4.4 Optimized values
of lag parameters for
modified DAST-ARW1 wing
at U = 250 m/s

N bj ε

2 0.020077, 414503.75 0.00159

3 6.9187 × 10−5, 3403.8425 0.00093

5202.256

4 0.001969, 0.230118 0.0008935

7869.2315, 7782.0475

6 0.238246, 0.05157 0.00074

2.03284, 813.363

8570.242, 7980.97

seem to require much higher data storage than an RFA-based model, which indicates
that they suffer from a similar disadvantage as the CFD-based methods for routine
ASE applications.

4.2.5 Direct Integration of Governing Equations

With the advent of high-speed digital computers in the 1980s, it became possible to
directly solve the governing partial differential equations of unsteady aerodynamics
by an appropriate discretization procedure, such as finite-difference, finite-volume,
and finite-element method. The resulting field came to be known as computational
fluid dynamics (CFD), and has been employed in many practical applications, partly
covered in Chap. 3. The early developments at NASA-Langley for a transonic small-
disturbance (CAP-TSD) code [14], and its applications to realistic configurations
are noteworthy. The main utility of CFD is in calculating the nonlinear aerodynamic
and aeroelastic response associated with unsteady flow separation and oscillation of
strong shock waves, typically in the transonic regime (Chap. 8). In such an applica-
tion, the aerodynamic loads vector, Q(t), is related to the structural response, q(t),
by a nonlinear relationship,

Q = F(q, q̇), (4.59)

where F(.) can be regarded as a nonlinear operator representing the CFD solution,
with q(t), q̇(t) acting as the time-dependent boundary conditions. The CFD solution
is then coupled to the essentially linear structural dynamics model, Eq. (4.1), resulting
in the following aeroelastic plant model:

Mq̈ + Kq = F(q, q̇). (4.60)

The coupled CFD-structural dynamics system much be solved iteratively for a time-
accurate solution, which is a computationally intensive process, and cannot be
conducted routinely as part of an ASE stability analysis. Another drawback of the
CFD procedure that it often does not lead to any physical insight into the aeroelastic
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problem that could possibly be employed in a control system design. However, the
CFD method can be used to simulate the ASE response, thereby verifying an already
designed control system.

4.3 State-Space Representation

The basic aeroelastic plant is governed by linear ordinary differential equations,
which can be written in the following matrix form:

Mq̈ + Cq̇ + Kq = Q + Qc, (4.61)

where q(t) is the generalized coordinate vector corresponding to the n degrees of
structural freedom, M, C, and K are the corresponding generalized mass, damping,
and stiffness matrices of the structure respectively, and Qc(t) is an n-dimensional
vector of generalized aerodynamic control forces acting as inputs to the system.
The generalized aerodynamic force vector, Q(t), is assumed to be linearly related
to q(t), q̇(t), and q̈(t), as well as to gust inputs, regarded as the generalized gust
state vector, xg(t), and also to certain additional state variables collected into the
aerodynamic lag state vector, xa(t), which is required for modeling the aerodynamic
lag caused by a circulatory wake. Such a relationship is enabled by an RFA for the
unsteady aerodynamics transfer matrix in the Laplace domain, as discussed in the
last section, resulting in the following finite-state approximation for the aerodynamic
force vector:

Q = Maq̈ + Caq̇ + Kaq + Ngxg + Naxa , (4.62)

where Ma, Ca, and Ka are the generalized aerodynamic inertia, aerodynamic damp-
ing, and aerodynamic stiffness matrices, respectively, Ng is the gust coefficient
matrix, and Na is the aerodynamic lag coefficient matrix associated with the time
lag due to a circulatory wake. Substitution of Eq. (4.62) into Eq. (4.61) yields

(M − Ma)q̈ + (C − Ca)q̇ + (K − Ka)q = Ngxg + Naxa + Qc. (4.63)

The gust states are governed by the following state equations:

ẋg = Agxg + �g

⎧⎨
⎩

q

q̇

⎫⎬
⎭ , (4.64)

where Ag ∈ Rng×ng , 	g ∈ Rng×2n are the coefficient matrices corresponding to
aerodynamic effects of the gust.

The aerodynamic lag states are assumed to be governed by the following linear
state equations:

ẋa = Aaxa + �a

⎧⎨
⎩

q

q̇

⎫⎬
⎭ , (4.65)
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where Aa ∈ Rna×na , �a ∈ Rna×2n are the aerodynamic coefficient matrices corre-
sponding to noncirculatory (apparent aerodynamic inertia, stiffness, and damping)
and circulatory lag effects. By collecting the structural and aerodynamic state vectors
into an augmented state vector, x(t) : R → R2n+na ,

x =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q

q̇

xg

xa

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4.66)

we have the following augmented state equations of the linear aeroelastic plant:

ẋ = Ax + BQc, (4.67)

where

A =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 0

−M̄
−1

K̄ −M̄
−1

C̄ M̄
−1

Ng M̄
−1

Na

�g Ag 0

�a 0 Aa

⎞
⎟⎟⎟⎟⎟⎠

, (4.68)

and

B =

⎛
⎜⎜⎜⎜⎜⎝

0

M̄
−1

I

0

0

⎞
⎟⎟⎟⎟⎟⎠

, (4.69)

where M̄ = M − Ma, C̄ = C − Ca, K̄ = K − Ka are the generalized mass, damping,
and stiffness matrices, respectively, of the aeroelastic system, and 0 and I represent
the null and identity matrices, respectively, of appropriate dimensions.

An output equation is necessary for the aeroelastic plant before control can be
applied to it, and can be expressed as follows:

y = Cx + DQc, (4.70)

where the output variables, y, can consist of a set of normal accelerations mea-
sured by accelerometers at selected locations, and/or optically (laser) sensed vertical
deflections. The sensor locations must be selected such that the resulting plant is
observable [171] with the given combination of the coefficient matrices, A, C.

The most common output for an aeroelastic wing is the normal acceleration,
y = q̈i , measured at selected points by accelerometers. Let the coordinates of the
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Table 4.5 State-space
variables for aeroservoelastic
system

Symbol Name Dimension

q Generalized coordinates n× 1

xa Aerodynamic states na × 1

xg Gust states ng × 1

xc Actuators’ states nc × 1

u Actuators’ torques m× 1

Qc Generalized aerodynamic forces n× 1

produced by control surfaces

y Sensors’ outputs ns × 1

sensor locations correspond to the indices is of the doublet-lattice grid. Then the
normal acceleration output vector picked up by the sensors is the following:

y = −(M̄
−1

K)is,jq − (M̄
−1

C)is,j q̇

+ (M̄
−1

Na)is,j + (M̄
−1

Ng)is,j + M̄
−1
is,jQc, j = 1, . . ., n (4.71)

where Ais,j , j = 1, . . ., n represents the submatrix constructed out of is rows of the
original matrix A. Thus, the output coefficient matrices are given by

C =
[
−(M̄

−1
K)is,j , −(M̄

−1
C)is,j , (M̄

−1
Na)is,j , (M̄

−1
Ng)is,j

]

D = M̄
−1
is,j , j = 1, . . ., n (4.72)

The control surfaces are governed by separate subsystems called actuators whose
linearized dynamical model can be represented by the following state-space model:

ẋc = Acxc + Bcu, (4.73)

Qc = Ccxc + Dcu, (4.74)

where xc is the actuator state vector of order nc, u is the vector of m control torques
applied by the actuators as inputs to drive the control surfaces, and Ac ∈ Rnc×nc ,
Bc ∈ Rnc×m, Cc ∈ Rn×nc , Dc ∈ Rn×m are the actuator coefficient matrices. Table 4.5
lists the important variables of the aeroservoelastic state-space plant model.

4.3.1 Typical Section Model

When the typical section model proposed by Theodorsen and Garrick [174] is applied
to an aircraft wing of reasonably high aspect ratio, the resulting aerodynamics is of
two-dimensional in nature. Such a model is essentially based upon two degrees
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of freedom for the airfoil, plunge, z(t), and pitch, θ (t), and an additional degree
of freedom for control surface rotation, β(t). The control surface hinge moment
is regarded as the single control input, u(t), resulting in the following structural
equations of motion:

Mq̈ + Cq̇ + Kq = Q + (0, 1)T u, (4.75)

where q = (z/b, θ ,β)T is the generalized coordinates vector, Q = ( − L,Mθ ,Mβ)T

is the generalized air loads vector with b being a characteristic length (usually the
semi-chord) used for nondimensionalizing the distances, and M, C,and K are the
generalized mass, damping, and stiffness matrices, respectively, of the structure. If
the total mass of the wing per unit span is m, and total mass of the control surface per
unit span is mc, then the nondimensional distance of the center of mass of the wing
behind the pitch axis is xθ , the nondimensional distance of the control surface hinge
line behind the pitch axis is xc, and the nondimensional distance of the control surface
center of mass behind its own hinge line is xβ (Fig. 4.1). The structural stiffnesses in
plunge, pitch, and control surface rotation are k, kθ , kβ , respectively, which denote
the bending, torsion, and control stiffnesses, respectively. The generalized mass and
stiffness matrices of the structure are given by:

M =

⎛
⎜⎜⎝

m mxθ mcxβ

mxθ Iθ mcxc
(
xβ − xc

)

mcxβ mcxc
(
xβ − xc

)
Iβ

⎞
⎟⎟⎠ (4.76)

K =

⎛
⎜⎜⎝

k 0 0

0 kθ 0

0 0 kβ

⎞
⎟⎟⎠ . (4.77)

The generalized structural damping matrix, C, is difficult to model and is thus
commonly neglected.

For aerodynamic modeling, the typical airfoil section of semichord b is idealized
as a flat plate, placed in uniform flow of speed U and density ρ, and oscillating with
reduced frequency, k = ωb/U . In Theodorsen’s [173] incompressible flow model,
which is used as a basis for most typical section applications, the plunge is taken
about the mid-chord point, and pitching is about an axis located a distance ab aft
of the mid-chord point. The trailing edge control surface has its hinge line located a
distance bc aft of the mid-chord point. The two-dimensional lift L, pitching moment
Mθ , and control surface hinge moment Mβ in such a case are given as follows [173]:

L = ρb2
(
π z̈ + πUθ̇ − πabθ̈ − UT4θ̇ − T1bθ̈

) + 2πρUbΨ (4.78)

Mθ = −ρb2

[
−πabz̈ + πUb

(
1

2
− a

)
θ̇ + πb2

(
1

8
+ a2

)
θ̈ + (T4 + T10)U 2β
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+ Ub

{
T1 − T8 − (c − a)T4 + 1

2
T11

}
β̇ − b2 {T7 + (c − a)T1} β̈

]
(4.79)

+ 2πρUb2

(
a + 1

2

)
Ψ

Mβ = −ρb2

[
−T1bz̈ + Ub

{
−2T9 − T1 + T4

(
a − 1

2

)}
θ̇

+ 2T13θ̈ + 1

π
(T5 − T4T10)U 2β − 1

2π
UbT4T11β̇

− 1

π
b2T3β̈

]
+ 2πρUb2

(
a + 1

2

)

− ρUb2T12Ψ (4.80)

Here, Ψ (k) is the lag effect of circulation due to the wake, and can be regarded
as the frequency response of the upwash w induced by the wake at the 3/4-chord
location as follows:

Ψ (k) = C(ik)w(k)

= C(ik)

{
ż + Uθ + b

(
1

2
− a

)
θ̇ + 1

π
UT10β + b

2π
T11β̇

}
, (4.81)

C(ik) is the Theodorsen function, and the geometric coefficients, Ti , i = 1 . . . 14
employed in Eqs. (4.78)–(4.81) are listed in Theodorsen’s report [173]. The general-
ized loads vector, Q = (−L,Mθ ,Mβ)T , contains both circulatory and noncirculatory
terms. It is to be noted here that the noncirculatory terms in Eqs. (4.78)–(4.80) (those
not involving Ψ ) are clubbed together with the mass, stiffness, and damping coef-
ficients of the structure, resulting in the generalized mass, damping, and stiffness
matrices of the modified structural system, M̄, C̄, and K̄, respectively, which are
expressed in a nondimensional form as follows:

M̄ =

⎛
⎜⎜⎝

κ + 1 xθ − aκ

xθ − aκ r2
θ + κ

{
1
8 + a2

}

xβ − T1
κ
π

r2
β + (c − a)xβ − κ

π
{T7 + T1(c − a)}

xβ − T1
κ
π

r2
β + (c − a)xβ − κ

π
{T7 + T1(c − a)}

r2
β − κ

π2 T3

⎞
⎟⎟⎠

C̄ =

⎛
⎜⎜⎝

0 κ − κ
π
T4

0 κ
(

1
2 − a

)
κ
π

{
4T9 − (

a + 1
2

)
T4
}

0 − κ
π

{
T1 + 2T9 − (

a − 1
2

)
T4
} − κ

2π2 T4T11

⎞
⎟⎟⎠
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K̄ =

⎛
⎜⎜⎝
ω2

z 0 0

0 ω2
θ r

2
θ

κ
π

{T4 + T10}
0 0 ω2

βr
2
β + κ

π2 {T5 − T4T10}

⎞
⎟⎟⎠ ,

where

κ = πρb2

m

is the nondimensional mass parameter representing the ratio of mass of a cylinder
of air per unit span with diameter equal to the chord to the wing mass per unit span.
The nondimensional radii of gyration in pitch and control rotation are given by

rθ =
√

Iθ

mb2
, rβ =

√
Iβ

mb2
,

respectively, while the non-dimensional structural frequencies of plunge, pitch, and
control surface modes are respectively the following:

ωz = b

U

√
k

m
, ωθ = b

U

√
kθ

Iθ
, ωβ = b

U

√
kβ

Iβ
.

For the transient aeroelastic plant, the Theodorsen function is approximated in the
Laplace domain by a rational function approximation, as explained in the previous
section, resulting in the unsteady aerodynamics transfer matrix, G(s),

Q(s) = G(s)q(s). (4.82)

The equations of motion of the aeroelastic plant, Eq. (4.75), can now be written in
the non-dimensional Laplace domain for zero initial conditions:

(
s2M̄ + sC̄ + K̄

)
q(s) = G(s)q(s) + (0, 0, 1)T u(s). (4.83)

The order of the plant is 6 + �, where � is the total number of aerodynamic states
(the number of poles of the RFA, Ca(s)). A possible choice of the augmented state
vector, x(t), is the following:

x =

⎧⎪⎪⎨
⎪⎪⎩

q

q̇

xa

⎫⎪⎪⎬
⎪⎪⎭

, (4.84)

where the aerodynamic states, xa(t), are derived from the transfer-function relation-
ship derived from analytic continuation of Eq. (4.81), and the overdot represents
differentiation with respect to the non-dimensional time, τ = tU/b:

Ψ (s) = Ca(s)w(s) = Ca(s)
{
s, 1 + (

1
2 − a

)
s, 1

π

(
T10 + 1

2T11s
)}

q
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and an RFA Ca(s) such as Eq. (4.35) or Eq. (4.42). The aerodynamic state equations
can thus be expressed as follows:

ẋa = Aaxa + �a

⎧⎨
⎩

q

q̇

⎫⎬
⎭ , (4.85)

where Aa ∈ R�×�, 	a ∈ R�×6 are the aerodynamic coefficient matrices. The
structural equations of motion in non-dimensional time are then written as follows:

M̄ ¨̄q + C̄ ˙̄q + K̄q̄ = C�q̇ + K�q + Naxa + (0, 0, 1)T u, (4.86)

where the aerodynamic coefficient matrix Na ∈ R3×�, and the circulatory damping
and stiffness matrices, C� ∈ R3×3 and K� ∈ R3×3, respectively, arise from the
aerodynamic transfer matrix G(s). The matrices C�, K� must be subtracted from the
corresponding structural matrices, C̄, K̄, respectively.

For example, if the simple-pole RFA of Eq. (4.35) is adopted for Ca(s), we have,

Na = −2κ

⎧⎪⎪⎨
⎪⎪⎩

−1
1
2 + a

− 1
2π T12

⎫⎪⎪⎬
⎪⎪⎭

{
a1b1 a2b2 · · · a�b�

}
(4.87)

K� = 2κ(a0 + a1 + · · · + a�)

⎧⎪⎪⎨
⎪⎪⎩

−1
1
2 + a

− 1
2π T12

⎫⎪⎪⎬
⎪⎪⎭

{
0 1 1

π
T10

}
(4.88)

C� = 2κ(a0 + a1 + · · · + a�)

⎧⎪⎪⎨
⎪⎪⎩

−1
1
2 + a

− 1
2π T12

⎫⎪⎪⎬
⎪⎪⎭

{
1

(
1
2 − a

)
1

2π T11

}
(4.89)

The final state equations of the aeroelastic system are as follows:

ẋ = Ax + Bu, (4.90)

where

A =

⎛
⎜⎜⎝

0 I 0

−M̄
−1

K̂ −M̄
−1

Ĉ −M̄
−1

Na

�a Aa

⎞
⎟⎟⎠ , (4.91)
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and

B = (01×5, 1, 01×�)T , (4.92)

where Ĉ = C̄ − C�, K̂ = K̄ − K�. The controllability of the plant with the control
surface torque input u(t) can be verified by the rank of the following controllability
test matrix [168]:

P =
(
B, AB, A2B, A3B, A4B, A5B, A6B

)
. (4.93)

Since B is a column vector, P is a square. The determinant | P | is always nonzero,
which signifies an unconditionally controllable plant.

The gust states can be added to the foregoing plant by suitably augmenting the state
vector, as discussed above. For compressible flows, the aerodynamic force vector is
derived in a similar manner, but without the recourse to the closed-form expressions
(Eqs. (4.78)–(4.81)). The RFA of G(s) in that case involves curve-fitting with the
frequency domain data that is available only in a tabular form for compressible
subsonic and supersonic flows, in the same manner as carried out for the three-
dimensional case discussed below.

4.3.2 Three-Dimensional Wing Model

By substituting the RFA G(s) for a three-dimensional wing, into the Laplace
transform of structural dynamics equations with zero initial conditions,

(
Ms2 + Cs + K

)
q(s) = G(s)q(s) + Qc(s), (4.94)

we have the following state equations:

⎧⎨
⎩

q

q̇

⎫⎬
⎭ =

⎛
⎝ 0 I

−M̄
−1

K̄ −M̄
−1

C̄

⎞
⎠
⎧⎨
⎩

q

q̇

⎫⎬
⎭ +

⎛
⎝ 0

M̄
−1

Na

⎞
⎠ xa

+ +
⎛
⎝ 0

M̄
−1

Ng

⎞
⎠ xg

⎛
⎝ 0

M̄
−1

I

⎞
⎠Qc, (4.95)

and

ẋa = Aaxa + �a

⎧⎨
⎩

q

q̇

⎫⎬
⎭ , (4.96)
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ẋg = Agxg + �g

⎧⎨
⎩

q

q̇

⎫⎬
⎭ , (4.97)

where M̄, K̄, C̄ denote the generalized mass, stiffness, and damping matrices, respec-
tively, of the aeroelastic system (each of size n×n) derived by clubbing the relevant
terms of the RFA transfer matrix with the corresponding structural matrices, M, K, C,
respectively. The number na of the additional aerodynamic state variables, xa , and
the dimensions of their state-space coefficient matrices, Aa, Na,�a, depend on the
type of the RFA employed. A comparison of the augmented state dimensions for the
selected RFAs is shown in Table 4.6. The gust influence on the unsteady aerodynamic
forces is modeled by a total number ng of gust states, xg , with corresponding gust
coefficient matrices, Ag, Ng,�g.

The state equations of the overall aeroelastic plant can be expressed as follows:

ẋ = Ax + BQc, (4.98)

where

x = (
qT , q̇T , xTa

)T
,

A =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 0

−M̄
−1

K̄ −M̄
−1

C̄ M̄
−1

Na M̄
−1

Ng

�a Aa 0

�g 0 Ag

⎞
⎟⎟⎟⎟⎟⎠

, (4.99)

and

B =

⎛
⎜⎜⎝

0

M̄
−1

I

0

⎞
⎟⎟⎠ . (4.100)

When the least squares RFA of Eq. (4.50) is introduced (without considering any
gust states for the moment), we have the following expression for the generalized
aerodynamic force (GAF) vector:

Q(t) = A0q + A1q̇ + A2q̈ + Naxa , (4.101)

where

Na = (A3, A4, A5, . . ., AN+2) (4.102)
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Table 4.6 Augmented state
dimensions for various RFA
formulations

Method Lag parameters na

Least-squares [143]
∑N

k=1 {ak+2}ij 1
s+bk na = nN

Matrix-Padé [185]
∑Nj

k=1 {ak+2}ij 1
s+{bj }k na = ∑n+ng

j=1 Nj

Minimum-state [85] D̄(sI − R)−1Ē na = N

[R = diag.(b1, b2, . . ., bN ) and D̄, Ē

to be derived by nonlinear optimization]

is the coefficient matrix of dimension n × nN and xa is the nN × 1-dimensional
aerodynamic state vector satisfying the following state equation:

ẋa = Aaxa + �aq̇, (4.103)

with

Aa =

⎛
⎜⎜⎜⎜⎜⎝

−b1In 0 0 · · · 0

0 −b2In 0 · · · 0
...

...
...

...
...

0 0 0 · · · −bN In

⎞
⎟⎟⎟⎟⎟⎠

, (4.104)

�a =

⎛
⎜⎜⎜⎜⎜⎝

In

In
...

In

⎞
⎟⎟⎟⎟⎟⎠

, (4.105)

where In denotes the identity matrix of dimension n (order of structural system), bj >
0, j = 1, . . .,N are the lag parameters (or aerodynamic poles), Aa has dimension
nN × nN , and �a is of dimension nN × n. When substituted into Eq. (4.67), this
results in the following state-space model:

A =

⎛
⎜⎜⎝

0n In 0n×nN
−M̄

−1
K̄ −M̄

−1
C̄ M̄

−1
Na

0nN×n �a Aa

⎞
⎟⎟⎠ , (4.106)

where M̄ = M − A2, C̄ = C − A1, K̄ = K − A0, and single subscript n indicates a
square matrix. The control coefficient matrix is the following:

B =

⎛
⎜⎜⎝

0n×m
M̄

−1
In

0nN×m

⎞
⎟⎟⎠ . (4.107)
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Modeling of Control Surfaces
Modeling of control surfaces requires additional state variables, which can generate
the generalized aerodynamic control force vector, Qc. The control inputs can either
take the form of control hinge moments, u, applied by the actuators, which need
to be modeled separately, or control surface deflections, δ, which are treated as
separate generalized coordinates. The latter approach of treating control surface
deflections as control inputs is tantamount to a quasi-steady approximation, in which
the unsteady aerodynamic inertia and lag effect of the wake are neglected. Many flight
dynamics textbooks adopt this approach, but we will not use it here due to its obvious
limitations. Instead, full account is given of the aerodynamic noncirculatory and
circulatory effects of control surfaces by using a rational function approximation.
Thus a control surface can be regarded as a separate lifting surface with its own
degrees of freedom and aerodynamics.

The most accurate model of a control surface would include the bending defor-
mation of the hinge line, a rigid rotation of the surface about the hingeline, as well
as spanwise bending and twisting of the surface. However, due to its generally small
size in comparison to the wing, the bending and twisting deformations can be often
neglected, resulting in the approximation of a rigid rotation, δ, of the control surface
about the hinge-line. This allows a significant reduction in the degrees of freedom of
the overall structural system, as well as an ease of control law development, without
any great penalty on modeling accuracy.

Consider a control surface (assumed to be rigid for simplicity) with the following
actuator dynamics:

Iδδ̈ + cδδ̇ + kδδ = u +H , (4.108)

where δ(t) is the control surface deflection about the hinge line, Iδ , cδ , and kδ the
corresponding moment of inertia, damping, and stiffness of the control surface re-
spectively, H (t) is the unsteady aerodynamic hinge moment acting on the control
surface, and u(t) is the hinge moment control input applied by the actuator. The aero-
dynamic hinge moment H (t), and the generalized aerodynamic force vector created
on the wing by the control surface deflection, Qc(t), are assumed to be linearly related
to δ(t)(t), δ̇(t)(t), and δ̈(t)(t), as well as to certain additional state variables collected
into the control surface aerodynamic lag state vector, xc(t). Such a relationship can
be represented by the following least squares RFA:

Qc(t) = B0δ + B1δ̇ + B2δ̈ + Ncξc, (4.109)

where

Nc = (B3, B4, B5, . . ., BN+2) (4.110)

is the coefficient matrix of dimension n×N and ξc is the N ×1-dimensional control
aerodynamic state vector satisfying the following state equation:

ξ̇ c = �cξ c + 	cδ̇, (4.111)
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with

�c =

⎛
⎜⎜⎜⎜⎜⎝

−b1 0 0 · · · 0

0 −b2 0 · · · 0
...

...
...

...
...

0 0 0 · · · −bN

⎞
⎟⎟⎟⎟⎟⎠

, (4.112)

�c =

⎛
⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎠

, (4.113)

Similarly, the aerodynamic hinge moment can be expressed by

H (t) = a0δ + a1δ̇ + a2δ̈ + NT
h ξ c, (4.114)

where

NT
h = (a3, a4, a5, . . ., aN+2) (4.115)

The coefficients sets (B0, B1, B2, B3, . . ., BN ) and (a0, a1, a2, a3, . . ., aN ) are the nu-
merator coefficients of the RFAs for the unsteady aerodynamic-generalized forces
and the hinge moment, respectively, with N lag parameters determined by a least
squares curve fit with the harmonic aerodynamic data.

By defining the control surface state vector as follows:

xc = (
δ, δ̇, ξTc

)T
,

we can write the control surface state equation by

ẋc = Acxc + Bcu, (4.116)

and the output equation as the following:

Qc = Ccxc + Dcu, (4.117)

where

Ac =

⎛
⎜⎜⎝

0 1 01×N
a0−kδ
Iδ−a2

a1−cδ
Iδ−a2

1
Iδ−a2

NT
h

0 	c �c

⎞
⎟⎟⎠ , (4.118)
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Fig. 4.15 Six selected spanwise locations on modified DAST-ARW1 wing for vertical deflection
mode shapes

Bc =

⎛
⎜⎜⎝

0
1

Iδ−a2

0N×1

⎞
⎟⎟⎠ , (4.119)

Cc =
(

B0 + (a0 − kδ)

(Iδ − a2)
B2, B1 + (a1 − cδ)

(Iδ − a2)
B2,

1

(Iδ − a2)
Nc

)
, (4.120)

and

Dc = B2/(Iδ − a2). (4.121)

4.3.3 Illustrative Example

For illustration of the state-space modeling method, consider the modified DAST-
ARW1 wing for which doublet-lattice computations were reported in Chap. 3, and
rational function approximations were derived in the previous section. The vertical
deflection mode shapes of the six structural modes (Table 4.3) at six selected spanwise
locations (Fig. 4.15) listed column-wise are the following:
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{zi} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0029 −0.1437 −0.0030 −0.0793 0.0691 −0.0418

0.0442 −0.1775 0.2304 0.1076 −0.3412 −0.3048

0.1595 −0.1179 0.4772 0.2880 −0.5993 −0.5098

0.2879 0.0763 0.6381 0.5552 −0.5854 −0.6427

0.4864 0.3901 0.5500 0.6535 −0.3532 −0.4567

0.8081 0.8809 0.0980 0.4048 0.2284 0.1542

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

while the corresponding mode shapes for the deflection slopes are the following:

{dz/dxi} =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0199 0.0064 −0.0211 −0.0265 0.0004 −0.0821

0.1017 0.0676 −0.0162 −0.0934 −0.2300 −0.2363

0.2032 0.1949 −0.0832 −0.1066 −0.3250 −0.3518

0.4406 0.4023 −0.2004 −0.0414 −0.0047 −0.3758

0.7306 0.6987 −0.4231 −0.0319 0.5398 −0.4374

0.4692 0.5544 −0.8793 −0.9882 −0.7417 −0.6936

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

These are combined to yield the modal matrix for aerodynamic influence coefficients
by Eq. (4.53):

φ = iω{zi} + U{dz/dxi}.
The modal masses, stiffnesses, and damping coefficients are derived in order to

fit the flight flutter test data for this wing reported by Bennett and Abel [19], and are
the following:

M = diag.(2.0967, 1.9164, 1.8036, 1.7360, 1.6007, 1.4429) kg

K = 105

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.7861 1.9831 0.2042 1.1739 0.5544 0.4213

1.4578 2.3976 −2.9320 −2.4571 3.5898 3.5093

−1.3326 −4.6836 5.8085 2.6710 −8.3447 −6.9302

−1.4480 −1.4594 1.9777 2.2929 −1.8597 −2.4083

−0.0841 −0.1959 0.4750 0.3269 −0.4011 −0.5714

−1.6214 −3.8540 4.8391 3.1149 −6.5868 −5.7113

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N/m

C=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.9877 18.0085 −35.1898 −19.0859 40.9523 42.3896

75.3328 50.9966 72.4875 66.8918 −54.2124 −63.2161

−56.3060 −60.5175 −13.7980 −35.6402 −14.8539 2.2176

−60.9295 −38.6040 −51.3028 −42.4412 41.6701 42.9690

4.3764 −0.8387 17.5343 14.1483 −15.3260 −18.6483

−89.2669 −66.3578 −78.0079 −80.2630 48.9853 66.8707

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N s/m
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The state–space model for a particular flight condition (U = 250 m/s, M =
0.807, altitude 7.6 km) requires aerodynamic representation. The unsteady harmonic
aerodynamic data for this flight condition are listed in Appendix C. For brevity, we
will consider the RFA derived above for this condition with only two lag paramaters,
whose values are selected as follows:

b1 = 10−6(b/U ), b2 = 1.85(b/U )

Such a choice allows for easily varying the lag parameters with a changing flight speed
U—which is necessary for conducting a flutter analysis—without having to conduct
a nonlinear optimization at every speed. The aerodynamic coefficient matrices for
the given flight condition are as follows:

Ka = A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.0439 −1.8487 −1.3809 3.9490 13.1090 10.1600

−1.0560 −9.4088 −12.9280 −4.3663 10.8807 −17.4327

−2.3908 −16.3010 −24.9145 −19.3065 −7.4486 −50.4676

−4.0111 −15.5809 −28.4172 −44.9707 −66.6647 −69.2923

−6.5650 −11.3063 −29.2660 −82.7733 −162.4312 −98.8830

−10.5992 −49.2321 −85.0047 −100.0319 −123.2653 −310.7789

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N/m

Ca = A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0520 0.2624 0.5311 0.8836 1.3630 1.8723

0.0576 0.4082 0.8074 1.2481 1.8042 2.4824

0.0643 0.5062 0.9901 1.4725 2.0781 3.0577

0.0793 0.5296 1.0416 1.5725 2.2962 3.6159

0.1049 0.5011 1.0036 1.6079 2.5485 4.2165

0.1318 0.4444 0.9058 1.5382 2.6537 4.7587

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N s/m

Ma = A2 = 10−3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.030532 −0.15834 −0.31831 −0.52236 −0.80225 −1.142

−0.037911 −0.22624 −0.44583 −0.69237 −1.0269 −1.5394

−0.046541 −0.2666 −0.52024 −0.78915 −1.1747 −1.914

−0.059263 −0.27506 −0.53894 −0.83841 −1.3151 −2.2701

−0.077774 −0.27169 −0.53823 −0.88757 −1.5016 −2.6505

−0.095264 −0.28659 −0.56147 −0.93688 −1.6284 −2.9442

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

kg

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.93425 −4.3053 −8.5849 −13.636 −21.377 −37.71

−1.0965 −5.0894 −10.107 −16.025 −25.031 −43.459

−1.2479 −5.8489 −11.583 −18.324 −28.489 −48.958

−1.4115 −6.7693 −13.283 −20.635 −31.657 −55.203

−1.5679 −7.6391 −14.872 −22.774 −34.585 −60.877

−1.6774 −8.1089 −15.734 −24.037 −36.443 −63.821

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−97.801 −508.18 −1032.1 −1717.8 −2646.2 −3603.9

−105.13 −773.73 −1549.3 −2437.5 −3563 −4743

−115.29 −949.42 −1888.5 −2880.3 −4142.5 −5880.7

−145.1 −980.48 −1966.5 −3042.1 −4539.5 −7127.2

−198.92 −905.88 −1853.1 −3030.2 −4923.9 −8493.1

−245.95 −854.23 −1735.1 −2903.1 −5038.3 −9282.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Flutter Analysis
When the aeroelastic data given above are substituted in Eq. (4.106) and an
eigenvalue analysis is carried out by solving the characteristic equation,

| sI − A |= 0

the open-loop poles of the aeroelastic system at M = 0.807 and altitude 7.6 km are
the following:

−0.00097699 + 0i

5× −0.0010173 + 0i

−0.31449 ± 57.797i

−1.6542 ± 100.35i

−0.4830 ± 181.35i

−5.5118 ± 219.83i

−3.0523 ± 237.59i

−6.0303 ± 305.03i

−1875.1 + 0i

−1881.6 + 0i

2× −1882 + 0i

−1882 ± 0.019859i.

The aeroelastic modes and the aerodynamic lag parameters can be clearly iden-
tified in this list. All the stable, real poles result from the aerodynamic lag states,
while the complex conjugate pairs (except the last one) are the aeroelastic modes.
When flight speed is increased, flutter is experienced by one of the aeroelastic modes
becoming unstable. This is shown in Figs. 4.16–4.18, which show the variation of the
natural frequencies and damping ratios of the aeroelastic modes in the speed range
250–295 m/s at 7.6 km standard altitude. The second symmetric bending/torsion
mode of in vacuo natural frequency 30.3 Hz is seen, in Fig. 4.16, to become unstable
at flutter speed of 284.7 m/s, which corresponds to a Mach number of 0.9192 at
the given altitude. The flutter frequency for this mode is 28.691 Hz (181.272 rad/s).
This is in agreement with the flight flutter test [19], which indicates a flutter Mach
number of 0.92 for the same mode. At a higher velocity, close to the sonic speed, the
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Fig. 4.16 Open-loop flutter analysis of modified DAST-ARW1 wing at 7.6 km standard altitude
(second symmetric bending/torsion mode of in vacuo natural frequency 30.3 Hz)

symmetric torsion mode (in vacuo natural frequency 38.96 Hz) becomes unstable,
as indicated by Fig. 4.17. The natural frequencies and damping ratios of the stable
aeroelastic modes are plotted in Fig. 4.18. In order to ensure that the curve fit does not
deteriorate badly at higher Mach number, the average fit error is plotted in Fig. 4.19.
The error does not increase very much as the speed is varied, which shows that the
results of flutter analysis can be considered reliable.

Control Surface Effects
For the determination of the controls coefficient matrix, B, we require the generalized
aerodynamics forces (GAF), as well as the hinge moment due to control surface. Here,
we derive the GAF contribution of a single trailing edge flap of 40 % chord flap on
the outboard 76–98 % semi-span location for the modified DAST-ARW1 wing6:
(Fig. 4.20). The moment of inertia of the flap about its hinge line is Iδ = 0.1 kg m2

while its rotational stiffness about the hinge line is kδ = 100 N m/rad, which implies
a flap mode of 31.623 rad/s.

The effect of an oscillating flap on the pressure distribution on DAST-ARW1
wing is shown in Figs. 4.21 and 4.22, which plots the real and imaginary parts of the
pressure coefficient for the flap oscillating with k = 0.8 atM = 0.8. The flap motion
causes large and discontinuous pressure magnitude and phase at outboard locations,
and relatively smaller pressure modifications at inboard points. The flap hinge line
has a sharp pressure discontinuity in the chordwise direction. Detailed chordwise
pressure plots for this case at selected spanwise stations are shown in Appendix-C.

6 The original DAST-ARW1 wing has two trailing edge control surfaces of approximately 20 %
chord each, one inboard, and the other outboard. These are replaced by a single outboard flap here.
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Fig. 4.17 Open-loop flutter analysis of modified DAST-ARW1 wing at 7.6 km standard altitude
(symmetric torsion mode of in vacuo natural frequency 38.96 Hz)
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Fig. 4.19 Curve fit error with two lag parameters for flutter analysis of modified DAST-ARW1
wing at 7.6 km standard altitude
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Fig. 4.22 Imaginary part of unsteady pressure distribution on modified DAST-ARW1 wing due to
the flap mode at M = 0.807 and k = 0.8
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Fig. 4.23 Least squares curve fit of unsteady hinge moment for modified DAST-ARW1 wing at
M = 0.807 with two lag parameters. (circle: harmonic data; solid line: RFA)

Due to a pressure discontinuity at the hinge line of an oscillating flap, it is expected
that the curve fit for control surface GAF with a given number of lag parameters
would be degraded when compared to that of wing without the control surface. This
is indeed the fact for the two lag parameters case, wherein the fit error is increased
at M = 0.807 from 0.18 % for wings with 6 structural modes, to 0.35 % for wings
with only the trailing-edge flap mode. The RFA coefficients for the control surface
GAF with two lag parameters are derived from the GAF data (Appendix C) to be the
following:

BT
0 = (−1.1880, −1.5713, −2.9118, −10.4382, −101.6408, −120.6015)

BT
1 = (1.0286, 0.8900, 0.4865, 0.2060, 0.1702, 0.2863)

BT
2 = 10−3 (−0.5646, −0.5204, −0.3229, −0.1787, −0.1288, −0.1616)

BT
3 = (0.6953, 0.4578, 0.3557, 0.3885, 0.4454, 0.3734)

BT
4 = 103 (−1.9612, −1.7064, −0.9540, −0.4534, −0.4078, −0.5711)

The hinge-moment RFA is computed next, with the curve fit shown in Fig. 4.23
using the same two lag parameters as those for the generalized aerodynamic forces.
The average fit error per frequency point is only 0.027 %. The numerator coefficients
of hinge-moment RFA for U = 250 m/s are listed as follows:
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Fig. 4.24 Least squares curve fits for elements (1 × 5) and (1 × 6) of generalized aerodynamics
forces due to flap mode for modified DAST-ARW1 wing at M = 0.95 with two lag parameters.

a0 = 3.4524

a1 = −0.0036

a2 = 8.6236 × 10−7

a3 = −0.0040

a4 = 4.4747

When the flight speed is increased beyond the flutter velocity toU = 295 m/s, the
nature of the RFA undergoes a transformation to a more spiraling character, as shown
in Fig. 4.24. This indicates the need for including more intermediate frequency points
for a better curve fit. The hinge-moment RFA coefficients at U = 295 m/s (listed
below) for aerodynamic damping and aerodynamic inertia change in sign, while the
lag numerator coefficients are seen to change in sign and increase in magnitude, all of
which indicate a stabilizing aerodynamic influence on the flap rotation at supercritical
speed (above flutter velocity):
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a0 = 4.4327

a1 = 0.0047

a2 = −4.3595 × 10−6

a3 = 0.0048

a4 = −11.1086

Finally, we derive the coefficient matrices for the output equation. The sensor
location for the modified DAST-ARW1 wing is shown in Fig. 4.20. The outboard
selection of accelerometer gives the best resolution of individual contributions from
all the relevant modes to the acceleration output. The output coefficients for the given
flight condition (U = 250 m/s, M = 0.807, altitude 7.6 km) are the following:

CT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.1207 × 105

2.6638 × 105

−3.3454 × 105

−2.1536 × 105

4.5524 × 105

3.9455 × 105

61.807

46.18

54.575
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−32.051
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−1.1581

−5.5986
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−16.595

−25.16

−44.061

−169.87
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Fig. 4.25 Subcritical (M = 0.8) and supercritical (M = 0.95) accelerometer output for initial unit tip
deflection of the modified DAST-ARW1 wing

D = (−3.138 × 10−5, −0.00010323, −0.00021489,

−0.00037257, −0.00070238, 0.69163)

The simulated normal acceleration response to an initial unit tip deflection at
a subcritical (below flutter speed) Mach number of 0.8 and a supercritical Mach
number of 0.95 at 7.6 km altitude are compared in Fig. 4.25 for the first 5 s. The
stable (or decaying) subcritical response and an exponentially growing (unstable)
supercritical response are evident.



Chapter 5
Linear Aeroelastic Control

5.1 Introduction

Control problems in aeroservoelasticity (ASE) are broadly categorized into the fol-
lowing two types: (a) avoidance of adverse ASE interactions and (b) design of active
aeroelastic control systems. While (a) is necessary for designing all modern aircraft
with airspeeds and load factors large enough to bring adverse ASE problems within
the flight envelope, and control applications falling under category (b) involve a de-
liberate use of ASE interactions to improve certain flight characteristics. Category
(a) is the area of classical ASE applications that have passive solutions, such as
inserting standard filters in an existing flight control system in order to block out
(or suppress) problematic aeroelastic modes at specific frequencies. Such solutions
were common in early applications of 1950–1970 era before the advent of modern
control design techniques. A modern, statically unstable fighter aircraft is an exam-
ple of category (a), where an attempt to stabilize the rigid flight dynamics can lead
to inadvertent destabilization of some aeroelastic modes. Due to its very haphaz-
ard nature, the main difficulty associated with the approach of tinkering with the
gains of an existing controller can lead to a spillover effect of adversely affecting
higher-order (and often unmodeled) dynamics. Furthermore, the analysis of such
inadvertent and unmodeled ASE interactions requires extensive experimental work
in the form of wind tunnel and flight tests. In contrast, category (b)—consisting of
a systematic controller design for achieving a desired set of performance objectives
in an optimal manner—takes into account all of the important aeroelastic modes on
an ab initio basis, and has less probability of leading to any surprises in actual flight
implementation.

Modern control design techniques can be immediately classified as either linear,
or nonlinear, based upon their mathematical behavior. While most of the practical
ASE control laws are essentially linear, their implementation often requires gain
scheduling (or other adaptive techniques) with flight parameters, which make the
overall control system a nonlinear one. This chapter presents linear ASE design
applications, while Chap. 6 covers nonlinear ASE control analysis and design tech-
niques. The reader is referred to a textbook on modern control design [168] for the

© Springer Science+Business Media, LLC 2015 207
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basic controls concepts covered here. It may also be helpful to see a textbook on
automatic flight control systems, such as Tewari [171].

The main problem of active aeroelastic control is the possible lack of robustness of
the designed control laws under actual operating conditions. This is the reason why
many ASE applications are not implemented on certified civilian aircraft. If it were
possible to do so, most commercial airliners could routinely fly beyond the open-loop
flutter velocity, thereby increasing their speed and possibly efficiency. Attention is
therefore required on designing control laws that can be robust under most operating
conditions with some parametric uncertainties. Fortunately, the advancements in
control theory in the past 30 years have enabled robust design methodologies for
linear systems. The large part of this chapter will focus on such techniques. However,
it is hardly possible to do full justice to the robust aeroservoelastic control in a brief
chapter, and perhaps a future monograph can be completely devoted to such a topic.

5.2 Linear Feedback Stabilization

Consider the linear aeroservoelastic (ASE) plant derived in Chap. 4 with the state
equations,

ẋ = Ax + BQc, (5.1)

ẋc = Acxc + Bcu, (5.2)

with the aeroelastic state vector,

x = (
qT , q̇T , xTg , xTa

)T
,

gust state vector, xg , the actuators state vector,

xc =
(
δT , δ̇

T
, ξTc

)T
,

control generalized aerodynamics forces vector, Qc, actuators state vector, xc, and
actuator torque inputs vector, u. The outputs of all control surface actuators, Qc,
are the aeroelastic plant inputs, thereby implying a series connection between the
actuators and aeroelastic blocks as shown in Fig. 5.1:

Qc = Ccxc + Dcu.

The outputs of the aeroelastic plant are accelerometer and laser optic-sensed accel-
eration and structural displacements signals collected from selected points in the
structure and given by the output equation

y = Cx + DQc.
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Fig. 5.1 Aeroservoelastic subsystems

Finally, a linear feedback1 control law given by additional controller states, x̂, is
necessary to close the loop between the output signals and actuator torque inputs, in
order to yield a stable and well-behaved aeroservoelastic system:

u = K̂x̂ + Ky, (5.3)

where the controller state equations are the following:

˙̂x = Fx̂ + Ly + Hu. (5.4)

The controller coefficient matrices K̂, K, F, L, H must be determined such that the
resulting closed-loop system (Fig. 5.1) has desirable properties. A hypothetical case
is that of full-state feedback, where all the states x of the aeroelastic plant and the states
xc of all actuators are available for direct measurement. In such a case, yT = (x, xc)
and the system can be stabilized with K̂ = 0, therefore, no additional controller states
are necessary and Eq. (5.4) can be dropped. However, we know that the aerodynamic
states required for rational function approximation are not even physical variables
that can be measured. Consequently, even if an infinitely large number of sensors
can be arranged to measure deflections q and their rates at virtually every point on
the structure, full-state feedback would still be impossible because a large part of
the aeroelastic system (namely, the aerodynamic augmented states) cannot be fed

1 Feedback control (or regulation ) is part of a more general control scheme called tracking control,
where in addition to achieving the desired closed-loop system characteristics, it is also required to
follow (or track) a time-varying signal.
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u(s) 
u(s) = H(s)e(s) (s) = G(s)u(s) 

Servo-controller Actuator 
e(s) c(s) (s)δ

δ
δ

Fig. 5.2 Servo actuator for a control surface

back. Hence, modeling of a controller by Eq. (5.4) is almost always necessary in
order to estimate the state variables that cannot be directly measured. The problem of
solving Eq. (5.4) such that the solution x̂(t) yields a good estimate of the actual state
variables, based upon a knowledge of the u(t) and y(t), is called the state estimation
(or observation) problem. We will return to the problem of state estimation later.

The controller state equation, Eq. (5.4), has another important application. Even
if all states were available for feedback, there is no guarantee that the closed-loop
response will track a desired step change in the state variables. In order to achieve
a good tracking performance, integral action is provided by the addition of the con-
troller states x̂(t), which can be redefined as the error from a desired (or commanded)
state of the ASE plant, x̂ = xc − x. This concept is discussed next.

5.2.1 Servo Actuators

The actuators are not entirely free systems in the sense that their response to step
commanded control deflections, δc, must be asymptotically stable, with a good
transient behavior, and must also be free from any steady-state errors [168]. If these
properties are absent, even a well-planned control strategy may fail to stabilize the
overall ASE system. We saw in Chap. 4 that a control surface can be considered rigid
for modeling purposes, and the rotation of each surface about its hinge line is driven
by actuators independently of the other surfaces. Hence, actuators are a collection
of second-order subsystems, each of which can be modeled separately of the others.

Let us consider one such actuator with moment of inertia Iδ and rotational stiffness
kδ . The commanded control surface deflection is δc(t), while the actual deflection is
δ(t). The motion of the control surface produces a generalized aerodynamic force
vector Qc(t) on the wing, which can be regarded as the output vector of the actuator
subsystem. The hinge moment u(t) driving the control surface can be regarded as
the input to the actuator. If no torque is applied by a control system, we have the
free control surface (u = 0), which can either stabilize or destabilize the aeroelastic
system depending upon its aerodynamic balance. Therefore, a feedback controller
called a servo controller (or simply servo) is necessary for ensuring system stability.
The closed-loop actuator system along with the servo is called the servo actuator,
and is depicted by a classical block diagram in Fig. 5.2. Here, H (s) refers to the
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transfer function of the servo controller, G(s) is that of the actuator, and e = δc − δ

is the error between commanded and actual deflections.
The simplest servo is the proportional-derivative (PD) controller, which applies

the control torque as a linear combination of the measured rotation angle, δ(t), and
its rate, δ̇(t), as follows:

u = k0(δc − δ) + k1(δ̇c − δ̇), (5.5)

where δc(t) is the commanded deflection, and k0, k1 are positive constants called the
gains. The corresponding servo transfer function is given by

H (s) = k0 + k1s.

The angle and angular rate can be measured by an optical digital encoder mounted
on the hinge line with a high accuracy. Furthermore, the torque output u(t) of the
actuator can be calibrated in terms of the measured electric current passing through
its driving circuit. Adding the PD control law to the actuator results in the following
servo actuator dynamics:

(Iδ − a2)δ̈ + (k1 − a1)δ̇ + (kδ + k0 − a0)δ = k0δc + k1δ̇c + (a3, . . . , aN )ξc, (5.6)

where ξ c is the control aerodynamic state vector satisfying the following state
equation:

ξ̇ c = �cξ c + 	cδ̇,

with

�c =

⎛
⎜⎜⎜⎜⎜⎝

−b1 0 0 · · · 0

0 −b2 0 · · · 0
...

...
...

...
...

0 0 0 · · · −bN

⎞
⎟⎟⎟⎟⎟⎠

,

�c =

⎛
⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞
⎟⎟⎟⎟⎟⎠
.

Defining the actuator state vector as follows:

xc = (
δ, δ̇, ξTc

)T
,

we can write the closed-loop servo actuator state equation by

ẋc = Asxc + Bc(k0δc + k1δ̇c), (5.7)
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and the output equation as the following:

Qc = Csxc + Dc(k0δc + k1δ̇c), (5.8)

where

As =

⎛
⎜⎜⎜⎜⎝

0 1 01×N

a0 − kδ − k0

Iδ − a2

a1 − cδ − k1

Iδ − a2

(a3, . . . , aN )

Iδ − a2

0 	c �c

⎞
⎟⎟⎟⎟⎠

, (5.9)

Bc =

⎛
⎜⎜⎜⎝

0
1

Iδ − a2

0N×1

⎞
⎟⎟⎟⎠ ,

Cs =
(

B0 + (a0 − kδ − k0)

(Iδ − a2)
B2, B1 + (a1 − cδ − k1)

(Iδ − a2)
B2,

1

Iδ − a2
Nc

)
,

Dc = B2/(Iδ − a2),

Nc = (B3, B4, B5, . . ., BN+2)

and (B0, B1, B2, B3, . . ., BN ), (a0, a1, a2, a3, . . ., aN ) are the numerator coefficients
of the RFAs with N lag parameters determined by a least squares curve fit with
corresponding harmonic aerodynamic data (Chap. 4). The controller gains can be
selected in order to yield an asymptotically stable response, δ(t) for a given excitation
δc(t). An example of this fact is shown in Fig. 5.3 for the modified DAST-ARW1 wing
at M = 0.8 and 7.6 km standard altitude, using actuator constants Iδ = 0.1 kg m2,
kδ = 100 N m/rad, and servo gains k0 = 0.1, k1 = 10 for a unit step torque input
uc(t) = k0δc + k1δ̇c = 1, t > 0, and zero initial conditions δ(0) = δ̇(0) = 0. The
servo actuator step response results in a stable normal acceleration output y(t) on
the wing, which is plotted in Fig. 5.4 for 2 s.

While PD control gives an acceptable closed-loop servo response, sometimes it
may be insufficient for accurately following a commanded step deflection, δc(t) =
1, t > 0, because there are no pure integrators in the forward path [168] of the
servo actuator (Fig. 5.2). In order to make the steady-state error to a commanded
step deflection vanish, integral action must be provided in the servo by adding the
controller state variable, x̂(t) as follows:

u = k0(δc − δ) + k1(δ̇c − δ̇) + k2x̂

˙̂x = δc − δ. (5.10)
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Fig. 5.3 Flap deflection response to a step servo actuator torque input for the modified DAST-ARW1
wing at M = 0.8 and 7.6 km standard altitude
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the modified DAST-ARW1 wing at M = 0.8 and 7.6 km standard altitude
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The transfer function of this servo is given by

H (s) = k0 + k1s + k2/s.

Such a controller is termed proportional-integral-derivative (PID) controller and
results in a zero steady-state error to step commands.

The simple feedback technique of PD/PID control used to stabilize a servo actuator
can be seen in the context of a larger, systematic design procedure offered by the
optimal control theory. We will consider this before proceeding to the control laws
for specific ASE applications.

5.3 Optimal Control

The linear optimal control is a special case of optimal control theory and dynamic
programming, which has been the driver of control systems technology over the last
half-century. The reader can consult the classical texts of Bellman [17], Bryson and
Ho [25], and Athans and Falb [11], or Chap. 2 of Tewari [170] for an exposition
of the optimal control theory. Here, we will highlight some important concepts and
their application to the ASE problem.

Consider a dynamic system with x(t) as the state vector governed by the following
state equation with a known initial condition:

ẋ = f(x, u, t), x(t0) = x0, (5.11)

where u(t) is the controls vector bounded by constraints in a given interval, t0 ≤
t ≤ tf (called admissible control input), and f(.) is a continuous functional and has a
continuous partial derivative with respect to the state ∂f/∂x in the given interval. The
optimal control problem is to find u(t) such that the following objective function2 is
minimized subject to the constraint of the dynamic state equation, Eq. (5.11):

J = ϕ[x(tf ), tf ] +
∫ tf

t0

L[x(t), u(t), t]dt, (5.12)

where L(x, u, t) is a Lagrangian function defining the transient performance objec-
tives to be minimized in the control interval, t0 ≤ t ≤ tf , and ϕ[x(tf ), tf ] is a
terminal cost function to be minimized at the final time. Minimization of the cost
function subject to a full-state feedback control law,

u = g(x, t), (5.13)

would result in driving the final state vector, x(tf ), to zero while also minimizing the
total excursions of x(t) from zero (both positive and negative) in the given control

2 The objective function is alternatively called the performance index or the cost function.
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interval t0 ≤ t ≤ tf . Derivation of the functional g(x, t) for achieving this task
is called the optimal regulator problem. There are various alternative formulations
of the optimal regulator problem. In our brief discussion, we will focus on the
Hamilton–Jacobi–Bellman (HJB) formulation given below for its relatively direct
nature.

5.3.1 Hamilton–Jacobi–Bellman Equation

For an optimal control history, ũ(t) and the corresponding optimal trajectory, x̃(t),
minimizing the performance index given by Eq. (5.12), subject to Eq. (5.11), one
can define the following optimal return function for the control interval t0 ≤ t ≤ tf :

Ṽ [x̃(t), t] = ϕ[x̃(tf ), tf ] +
∫ tf

t

L[x̃(τ ), ũ(τ ), τ ]dτ, (5.14)

or

Ṽ [x̃(t), t] = ϕ[x̃(tf ), tf ] −
∫ t

tf

L[x̃(τ ), ũ(τ ), τ ]dτ. (5.15)

Differentiating Ṽ with time, we have

dṼ

dt
= −L[x̃(t), ũ(t), t] , (5.16)

and also

dṼ

dt
= ∂Ṽ

∂t
+ ∂Ṽ

∂x
ẋ

= ∂Ṽ

∂t
+ ∂Ṽ

∂x
f. (5.17)

By equating Eqs. (5.16) and (5.17), we have the following partial differential
equation, called the HJB equation, that must be satisfied by the optimal return
function:

−∂Ṽ

∂t
= L[x̃(t), ũ(t), t] + ∂Ṽ

∂x
f. (5.18)

The boundary condition for the optimal return function is the following:

Ṽ [x̃(tf ), tf ] = ϕ[x̃(tf ), tf ]. (5.19)

A solution for the HJB equation in optimal trajectory space, x̃, and time, t , for a
set of initial states, x0, results in a field of optimal solutions. A finite set of small
initial perturbations about a given optimal path thus produces a set of neighboring
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optimal solutions by the solution of HJB equation. However, a solution of the HJB
equation is a formidable task requiring simultaneous integration in space and time for
neighboring extremal trajectories with finite-difference (or finite volume) methods.
A more practical use of the HJB equation is to provide a sufficient condition for
testing the optimality of a given return function.

In an alternative formulation of Euler–Lagrange, the following equivalence of
notation exists:

−∂Ṽ

∂t

.= H [x̃(t), λ̃(t), ũ(t), t] (5.20)

where H (λ, u, t) is the Hamiltonian function and

λ̃T = ∂Ṽ

∂x
. (5.21)

is the optimal co-state (or Lagrange multipliers) vector.
While the HJB equation can be used to provide the necessary and sufficient op-

timality conditions, its main application lies in deriving nonlinear feedback control
laws of the form,

u(t) = ũ [t , x(t)] , (5.22)

from the arguments of the optimal return function, Ṽ [x̃(t), t].
If the optimal return function, Ṽ [x̃(t), t], satisfies Lyapunov’s theorem (Appendix-

D) for global asymptotic stability for all optimal trajectories, x̃(t), then the given
system is globally asymptotically stable about the origin, x = 0. In this regard, the
optimal return function is regarded as a Lyapunov function. The task of a designer
is to find a return function, V (x, t), which is continuously differentiable with respect
to the time and the state variables of the system, and satisfies the following sufficient
conditions for global asymptotic stability about the equilibrium point at origin:

V (0, t) = 0, V (x, t) > 0;
dV

dt
(x, t) < 0 ; for all x �= 0 (5.23)

|| x ||→ ∞ implies V (x, t) → ∞. (5.24)

5.3.2 Linear Systems with Quadratic Performance Index

Consider a linear, time-varying system given by

ẋ = A(t)x(t) + B(t)u(t), x(t0) = x0, (5.25)

for which the following quadratic objective function, representing a regulation of the
state and control to zero steady state, is to be minimized:

J = xT (tf )Qfx(tf )

+
∫ tf

t0

[
xT (t)Q(t)x(t) + 2xT (t)S(t)u(t) + uT (t)R(t)u(t)

]
dt. (5.26)
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Here, Qf, Q(t), and R(t) are symmetric (but S(t) could be asymmetric) cost
coefficient matrices. Since J ≥ 0, we also require that Qf, Q(t), and R(t) be at least
positive semidefinite.

L[x(t), u(t), t] = xT (t)Q(t)x(t) + 2xT (t)S(t)u(t) + uT (t)R(t)u(t), (5.27)

the following quadratic value function with a positive definite, symmetric matrix,
P(t), is proposed:

V [x(t), t] = xT (t)P(t)x(t), (5.28)

whose optimal value must satisfy the HJB equation with the terminal boundary
condition,

Ṽ [x̃(tf ), tf ] = xT (tf )Qfx(tf ). (5.29)

Thus, we have

λT = ∂V

∂x
= 2xT (t)P(t), (5.30)

and the following Hamiltonian:

H = xT (t)Q(t)x(t) + 2xT (t)S(t)u(t) + uT (t)R(t)u(t)

+ 2xT (t)P(t)[A(t)x(t) + B(t)u(t)]. (5.31)

For deriving the optimal control, we differentiate H with respect to u and equate
the result to zero Hu = 0:

x̃T (t)S(t) + ũT (t)R(t) + x̃T (t)P̃(t)B(t) = 0, (5.32)

or

ũ(t) = −R−1(t)[BT (t)P̃(t) + ST (t)]x̃(t). (5.33)

Equation (5.33) is perhaps the most important equation in modern control theory,
and is called the linear optimal feedback control law. Since the matrix P(t) is chosen
to be positive definite, we have V [x(t), t] > 0 for all x(t), and by substituting the
linear, optimal feedback control law into

H̃ = −∂Ṽ

∂t
= −x̃T ˙̃Px̃, (5.34)

we have the Legendre–Clebsch sufficiency condition for optimality, Huu > 0, which

implies a negative definite matrix, ˙̃P(t) (i.e., V̇ [x(t), t] < 0 for all x(t)). There-
fore, the optimal return function given by Eq. (5.28) with a positive definite P̃(t)
is globally asymptotically stable by Lyapunov’s theorem. We also note that the
Legendre–Clebsch condition also implies that R(t) is positive definite.
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Substitution of Eq. (5.30) into Eq. (5.28) results in the optimal Hamiltonian, which
satisfies the HJB equation, Eq. (5.18):

x̃T ˙̃Px̃ = −x̃T [(A − BR−1ST )T P̃ + P̃(A − BR−1ST )

− P̃BR−1BT P̃ + Q − SR−1ST ]x̃, (5.35)

and yields the following matrix Riccati equation (MRE) to be satisfied by the optimal
matrix, P̃:

− ˙̃P = Q + (A − BR−1ST )T P̃ + P̃(A − BR−1ST )

− P̃BR−1BT P̃ − SR−1ST , (5.36)

which must be solved subject to the boundary condition,

P̃(tf ) = Qf. (5.37)

MRE is fundamental to linear, optimal control and must be integrated backward
in time by an appropriate numerical scheme. Being nonlinear in nature, the MRE
solution procedure is termed nonlinear (or dynamic) programming. The existence of
a unique, positive definite solution, P̃(t), is guaranteed if Qf, Q(t), R(t) are positive
definite, although less restrictive conditions on the cost coefficients are possible.

Alternatively, the linear state and co-state equations for the optimal control
problem with a quadratic cost function are the following:

ẋ = [A(t) − B(t)R−1(t)ST (t)]x(t) − B(t)R−1(t)BT (t)λ(t), (5.38)

λ̇ = −[AT (t) − S(t)R−1(t)BT (t)]λ(t) + [S(t)R−1(t)ST (t) − Q(t)]x(t), (5.39)

and must be solved subject to the following boundary conditions,

x(t0) = x0 ; λ(tf ) = Qfx(tf ) . (5.40)

Linearity of the adjoint system of equations assures the existence of a state transition
matrix, !(t , t0), such that

⎧⎨
⎩

x(t)

λ(t)

⎫⎬
⎭ = !(t , t0)

⎧⎨
⎩

x(t0)

λ(t0)

⎫⎬
⎭, (5.41)

with the boundary conditions of Eq. (5.40). The state transition matrix has the
following properties [170]:

1. Identity:

!(t0, t0) = I
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2. Inversion:

!(t0, t) = !−1(t , t0)

3. Time Derivative:

!̇(t , t0) =
⎡
⎣A − BR−1ST −BR−1BT

SR−1ST − Q −AT + SR−1BT

⎤
⎦!(t , t0)

4. Symplectic Nature:

!T (t , t0)

⎛
⎝ 0 I

−I 0

⎞
⎠!(t , t0) =

⎛
⎝ 0 I

−I 0

⎞
⎠

Here, I is the identity matrix, and 0 the null matrix. The solution of linear optimal
regulation problem stated above for a quadratic performance is called the linear-
quadratic regulator (LQR).

5.4 Kalman Filter

Some mathematical modeling errors are always present in a plant model. These are
classified as the process noise vector, which represents random variables applied
as inputs to the plant, and the measurement noise vector representing the random
errors due to imprecise measurement and feedback of the output variables. A linear,
deterministic plant behaves like a stochastic system in the presence of process and
measurement noise. Consider such a plant with the state vector x(t), output vector
y(t), having the following linear, time-varying state-space representation:

ẋ(t) = A(t)x(t) + B(t)u(t) + F(t)ν(t)

y(t) = C(t)x(t) + D(t)u(t) + w(t), (5.42)

where ν(t) is the process noise vector which arises due to modeling errors such as
neglecting nonlinear, high-frequency, or stochastic dynamics, and w(t) is the mea-
surement noise vector. By assuming ν(t) and w(t) to be white noises with a zero
mean, we can greatly simplify the model of the stochastic plant. Since the time-
varying stochastic system is a nonstationary process, the random noises, ν(t) and
w(t), are also assumed to be nonstationary white noises for generality. A nonsta-
tionary white noise can be simply derived by passing a stationary white noise signal
through an amplifier with a time-varying gain [168]. The correlation matrices of
nonstationary white noises, ν(t) and w(t), are expressed as follows [170]:

Rν(t , τ ) = Sν(t)δ(t − τ )

Rw(t , τ ) = Sw(t)δ(t − τ ), (5.43)
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where Sν(t) and Sw(t) are the time-varying, power spectral density matrices of
ν(t) and w(t), respectively, and Rν(t , t) and Rw(t , t), are the corresponding infinite
covariance matrices, respectively.

A full-state feedback control system cannot be designed for a stochastic plant
because its state vector, x(t), is unknown at any given time. Instead, one has to rely
on an estimated state vector, x̂(t), that is derived from the measurement of the output
vector, y(τ ), over a previous, finite time interval, t0 ≤ τ ≤ t . Thus, a subsystem
of the controller must be dedicated to form an accurate estimate of the state vector
from a finite record of the outputs. Such a subsystem is called an observer (or state
estimator). The performance of the control system depends upon the accuracy and
efficiency with which a state estimate can be supplied by the observer to the control
system, despite the presence of process and measurement noise.

In order to take into account the fact that the measured outputs as well as the
state variables are random variables, we need an observer that estimates the state
vector based upon a statistical description of the output and state. Such an observer
is the Kalman filter, which can be regarded as an optimal observer that minimizes
the covariance matrix of the estimation error,

ê(t) = x(t) − x̂(t). (5.44)

In order to understand why it may be useful to minimize the covariance of estimation
error, we note that the estimated state, x̂(t), is based on the measurement of the output,
y(τ ), while knowing the applied input vector, u(τ ), for a finite time, t0 ≤ τ ≤ t .
However, being a nonstationary signal, an accurate average of x(t) would require
measuring the output for an infinite time, i.e., gathering infinite number of samples
from which the expected value of x(t) could be derived. Therefore, the best estimate
that the Kalman filter could obtain for x(t) is not the true mean, but a conditional
mean, xm(t), based on only a finite time record of the output expressed as follows
by the expected value operator, E(.):

xm(t) = E[x(t)|y(τ ), t0 ≤ τ ≤ t]. (5.45)

The deviation of the estimated state vector, x̂(t), from the conditional mean, xm(t),
is given by

Δx(t) = x̂(t) − xm(t). (5.46)

The conditional covariance matrix is defined as the covariance matrix based on a
finite record of the output and can be written as follows:

Re(t , t) = E[x(t)xT (t)] − x̂(t)xTm(t) − x̂T (t)xm(t) + x̂(t)x̂T (t)

= E[x(t)xT (t)] − xm(t)xTm(t) +Δx(t)ΔxT (t). (5.47)

It is evident from Eq. (5.47) that the best estimate of the state vector, i.e., Δx(t) = 0,
would result in a minimization of the conditional covariance matrix, Re(t , t). In other
words, the minimization of Re(t , t) yields the optimal observer (Kalman filter). The
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state equation of the full-order Kalman filter is that of a time-varying observer, and
is expressed as follows:

˙̂x = Â(t)x̂(t) + B̂(t)u(t) + L(t)y(t), (5.48)

where L(t) is the gain matrix and Â(t), B̂(t) the coefficient matrices of the Kalman
filter. Thus, we have the following state equation for the estimation error dynamics:

˙̂e(t) = Â(t)ê(t) + [A(t) − L(t)C(t) − Â(t)]x(t)

+ [B(t) − L(t)D(t) − B(t)]u(t) + F(t)ν(t) − L(t)w(t). (5.49)

In order that the estimation error dynamics be independent of the state and control
variables, we require

Â(t) = A(t) − L(t)C(t)

B̂(t) = B(t) − L(t)D(t), (5.50)

which yields

˙̂e(t) = [A(t) − L(t)C(t)]ê(t) + F(t)ν(t) − L(t)w(t). (5.51)

Given that ν(t) and w(t) are white, nonstationary signals with zero mean values, we
have their linear combination also a white and nonstationary, random signal with a
zero mean:

z(t) = F(t)ν(t) − L(t)w(t), (5.52)

that drives the estimation error dynamics of the Kalman filter:

˙̂e(t) = [A(t) − L(t)C(t)]ê(t) + z(t). (5.53)

A solution to the error state equation for a given initial error, ê(t0), and a corresponding
initial error covariance, Re(t0, t0) = E[ê(t0)êT (t0)] = Re0, can be expressed as
follows:

ê(t) = !(t , t0)ê(t0) +
∫ t

t0

!(t , λ)z(λ)dλ, (5.54)

where !(t , t0) is the error transition matrix corresponding to the homogeneous error
state equation,

˙̂e(t) = [A(t) − L(t)C(t)]ê(t) = Â(t)ê(t). (5.55)

The conditional error covariance is then derived (dropping the conditional notation
for simplicity) by noting that z(t) is a zero mean, white noise, i.e., E[z(t)] = 0 and

Rz(t , τ ) = Sz(t)δ(t − τ ), (5.56)
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where Sz(t) is the time-varying, power spectral density matrix of z(t), resulting in
the following [168]:

Re(t , t) = E[ê(t)êT (t)] = !(t , t0)Re(t0, t0)!T (t , t0) +
∫ t

t0

!(t , λ)Sz(λ)!T (t , λ)dλ.

(5.57)

Differentiation of Eq. (5.57) with time, along with the fact that the error transition
matrix satisfies its own homogeneous state equation,

d

dt
{!(t , t0)} = Â(t)!(t , t0), (5.58)

yields the following MRE for the optimal error covariance matrix:

d

dt
{Re(t , t)} = Â(t)Re(t , t) + Re(t , t)Â

T
(t) + Sz(t). (5.59)

The MRE for the Kalman filter must be integrated forward in time, subject to the
initial condition,

Re(t0, t0) = Re0. (5.60)

When the process and measurement noise are cross-correlated, we have

Rνw(t , τ ) = E[ν(t)wT (τ )] = Sνw(t)δ(t − τ ), (5.61)

where Sνw(t) is the cross-spectral density matrix of ν(t) and w(t). This leads to the
following expression for the measurement noise power spectral density:

Sw = FSνF
T − 2FSνwLT + LSwLT . (5.62)

Finally, the following optimal Kalman filter gain matrix is derived:

L =
[
ReCT + FSνw

]
S−1

w , (5.63)

where the optimal error covariance matrix is the positive definite solution of the
following MRE:

d

dt
{Re(t , t)} = AG(t)Re(t , t) + Re(t , t)AT

G(t)

− Re(t , t)CT (t)S−1
w (t)C(t)Re(t , t) + F(t)SG(t)FT (t), (5.64)

and

AG(t) = A(t) − F(t)Sνw(t)S−1
w (t)C(t)

SG(t) = Sν(t) − Sνw(t)S−1
w (t)ST

νw(t). (5.65)
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It is interesting to note the following one-to-one equivalence between the Kalman
filter and the LQR of the previous section, in that both the LQR gain and the Kalman
filter gain are based upon the solution to an MRE:

AT (t) ⇔ A(t)

CT (t) ⇔ B(t)

Sw(t) ⇔ R(t)

F(t)Sν(t)FT (t) ⇔ Q(t)

F(t)Sνw(t) ⇔ S(t).

Hence, Kalman filter is termed the dual of the LQR regulator.
A major simplification in Kalman filter design occurs when the process and mea-

surement noise are uncorrelated with each other, i.e., Sνw(t) = 0. This is a common
situation in many applications (especially ASE) for which we have

L = ReCT S−1
w , (5.66)

where

d

dt
{Re(t , t)} = A(t)Re(t , t) + Re(t , t)AT (t)

− Re(t , t)CT (t)S−1
w (t)C(t)Re(t , t) + F(t)Sν(t)FT (t). (5.67)

It is now clear that a practical ASE problem must be solved such that the feedback
law of LQR problem employs the states estimated by the Kalman filter as its feedback
variables. A controller thus obtained is called the linear-quadratic-Gaussian (LQG)
compensator, and has the following state equations:

ẋ = A(t)x − B(t)R−1(t)
[
ST (t) + BT (t)P̃(t)

]
x̂(t), (5.68)

˙̂x =
{
A(t) − L(t)C(t) − BR−1(t)[BT (t)P̃(t) + ST (t)]

}
x̂(t) + L(t)y(t), (5.69)

where P̃(t) and L(t) are determined from the solutions to the respective MREs,
Eqs. (5.32) and (5.59) subject to their respective boundary conditions, Eqs. (5.33)
and (5.60).

5.5 Infinite-Horizon Linear Optimal Control

A practical regulator problem requires dissipation of all errors to zero when the
time becomes large compared with the timescale of plant dynamics. Hence, the
much slower plant dynamics can often be essentially approximated by linear, time-
invariant (LTI) systems where the plant coefficient matrices, A,B,C,D, are constants.
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Such a regulation problem is referred to as infinite-horizon control, because the
control interval can be taken to be infinite in comparison with the plant dynamics. In
such cases, both LQR and Kalman filter designs are greatly simplified by having an
infinite-control interval. The MRE solutions, P(t), Re(t , t), approach their respective
steady-state values given by P(∞), Re(∞, ∞), which can then be expressed simply
as the constants P, Re. The governing equation for a time-invariant LQR problem is
derived simply by putting Ṗ = 0 in the MRE, Eq. (5.32), resulting in the following
algebraic Riccati equation (ARE):

0 =
(
A − BR−1ST

)T
P + P

(
A − BR−1ST

)

− PBR−1BT P + Q − SR−1ST
. (5.70)

The optimal feedback control law is obtained from the algebraic Riccati solution,

u(t) = −R−1
(
BT P + ST

)
x(t), (5.71)

where the cost coefficient matrices, Q,R,S, are constants. For asymptotic stability
of the regulated system, all the eigenvalues of the closed-loop dynamics matrix,

A − BR−1
(
BT P + ST

)
,

must be in the left-half s-plane, which requires that the ARE solution, P must be
a symmetric, positive semidefinite matrix [170], i.e., a matrix with all eigenvalues
being either greater than, or equal to zero. There may not always be a positive
semidefinite solution; on the other hand, there could be several such solutions of
which it cannot be determined which one is to be regarded as the best one. However,
it can be proved [62] that if the following sufficient conditions are satisfied, there
exists a unique, symmetric, positive semidefinite solution to the ARE:

• The control cost coefficient matrix, R, is symmetric and positive definite, the
matrix (Q − SR−1ST ) is symmetric and positive semidefinite, and the pair (A −
BR−1ST , Q − SR−1ST ) is detectable (i.e., its unobservable subsystem is stable).

• The pair (A,B) is either controllable, or at least stabilizable (i.e., its uncontrollable
subsystem is stable).

The infinite-horizon control can be extended to the Kalman filter, because the latter
is the dual of the LQR problem. In the stochastic sense, a constant error covariance
matrix, Re, implies a stationary white noise process. If the estimation error of a linear
system is stationary, the system must be driven by stationary processes. Therefore,
an LTI Kalman filter essentially involves the assumption of stationary, zero mean,
Gaussian white (ZMGWN) models for both process noise, ν(t), and measurement
noise, w(t). Thus, the error covariance matrix must now satisfy the following ARE:

0 = AGRe + ReAT
G − ReCT S−1

w CRe + F
(
Sν − SνwS−1

w ST
νw

)
FT , (5.72)
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where Sw, Sν , Sνw are constant spectral density matrices and

AG = A − FSνwS−1
w C. (5.73)

The constant Kalman filter gain matrix is the following:

L =
(
ReCT + FSνw

)
S−1

w . (5.74)

Clearly, the ARE for the Kalman filter must also have a symmetric, positive semidef-
inite solution, Re, for an asymptotically stable Kalman filter dynamics. Furthermore,
by satisfying sufficient conditions that are dual to those stated above for the LQR
problem, a unique, positive semidefinite solution to the ARE can be found.

The ARE is at the heart of both LQR and Kalman filter design for LTI systems.
Being a nonlinear algebraic equation, it must be solved numerically, such as by
iteration of the following Lyapunov equation for a symmetric matrix, X:

AX + XAT + Q = 0. (5.75)

There are several efficient algorithms for iteratively solving the ARE, such as the one
programmed in the MATLAB function, are [110].

Next, we will consider how the infinite horizon LQR and Kalman filter can be
applied to an ASE problem of Type (a).

5.6 Adverse Aereoservoelastic Interaction

Consider a realistic illustration of ASE coupling encountered by a tailless delta
winged fighter-type aircraft (Fig. 5.5). Neglecting long-period (phugoid) dynamics
involving airspeed variation, the aircraft has a rigid longitudinal flight dynamics
model consisting of the state vector xr = (α, θ , q)T , where α is the angle of attack,
θ the pitch angle, and q the pitch rate as shown in Fig. 5.5. The rigid longitudinal
state equations are given by

ẋr = Arxr + Br δc, (5.76)

where

Ar =

⎡
⎢⎢⎢⎢⎢⎣

Zα

mU − Zα̇

−mg sinΘe

mU − Zα̇

mU + Zq

mU − Zα̇

0 0 1

Mα

Jyy
+ Mα̇Zα

Jyy(mU − Zα̇)
−Mα̇(mg sinΘe)

Jyy(mU − Zα̇)

Mq

Jyy
+ Mα̇(mU + Zq)

Jyy(mU − Zα̇)

⎤
⎥⎥⎥⎥⎥⎦

(5.77)
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Fig. 5.5 Longitudinal control system for a tailless delta fighter aircraft

is the state dynamics matrix for longitudinal, short-period, rigid body dynam-
ics [171], and

Br =

⎛
⎜⎜⎜⎜⎜⎝

Zδ

mU − Zα̇

0
Mδ

Jyy
+ Mα̇Zδ

Jyy(mU − Zα̇)

⎞
⎟⎟⎟⎟⎟⎠
. (5.78)

The aircraft is intentionally designed to be statically unstable in open loop (Mα > 0)
for better maneuverability. This feature requires a closed-loop flight control system
for stability augmentation. The longitudinal control is provided by a pair of elevons,
whose deflection, δ, is driven by a second-order actuator called the elevon servo,
with the transfer function

δ

δc
= ω2

a

s2 + 2ζaωas + ω2
a

, (5.79)

where δc is the commanded elevon deflection, ωa the actuator’s natural frequency,
and ζa , its damping ratio. An accelerometer located on the fuselage at a distance
� aft of the center of mass senses the normal acceleration, az = U (α̇ − q) + �q̇,
while a rate gyro measures the pitch rate, q. Thus, the rigid body dynamics has three
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observer-based controller for determining the control input, u = δc. The pilot’s
commands for the desired angle of attack, αc and the desired pitch rate, qc, are the
inputs of the closed-loop system, of which the block diagram is depicted in Fig. 5.8.
For the purpose of demonstrating inadvertent aeroservoelastic interaction, assume
that the design procedure neglects the vehicle’s structural dynamics, and is entirely
based upon the rigid, short-period model given by Eq. (5.76). First, a linear, full-order
observer is designed with the gain matrix L, for the rigid aircraft’s output equation,

y = Crxr + Dru, (5.86)

and the following state equation:

˙̂x = (Ar − LCr) x̂ + (Br − LDr) u + Ly. (5.87)

Since the plant is observable with the normal acceleration output, the observer gain
matrix, L, is selected by either eigenstructure assignment [168] (pole placement) for
the observer dynamics matrix, Ar − LCr, or by the Kalman filter approach. Taking
the latter approach with the following parameters:

Sνw(t) = 0, Sν(t) = 10−2I, Sw(t) = 1, F = I,
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the observer gain matrix is determined to be the following:

L =
⎛
⎝−0.1102

−0.1340

⎞
⎠. (5.88)

The rigid observer’s poles are located at s = −3.8997, −8.3177. After the observer
is designed, the loop is closed with a linear control law,

u = Kdxd + K
(
xc − x̂

)
, (5.89)

where K is the regulator gain matrix, and the feedforward gain matrix, Kd, is added to
ensure the pilot’s commands, xd = (αc, qc)T , are followed without any steady-state
error. We will not design the feedforward gains here, since it does not serve our
present purpose, and the reader can refer to controls references [168], [171] for its
details. Next, the infinite horizon LQR problem is solved with

S = 0, Q = 10−6I, R = 1,

in order to determine the regulator gains to be the following:

K = (−2.3435, −0.4609). (5.90)

The regulated plant has stable eigenvalues of s = −1.9146, −5.3924, implying that
the unstable pole of the plant has been turned around into its mirror image about the
imaginary axis, while the stable pole is unchanged.

However, while the rigid plant has been stabilized by the controller designed
without giving any regard to the aircraft’s structural dynamics, the same is not true
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Fig. 5.9 Pole–zero map of the closed-loop aeroservoelastic system of the fighter aircraft for the
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for the total aeroservoelastic system. Here, it is to be noted that the original aeroelastic
plant was stable, but after the feedback control is applied to stabilize the rigid plant
the aeroservoelastic system has become unstable! This can be seen in Figs. 5.9–
5.12, which show the stability analysis of the overall ASE system (Fig. 5.8) with
state equations

⎧⎨
⎩

ẋ
˙̂x

⎫⎬
⎭ =

⎛
⎝ A −BK

LC Ar − BrK − LCr

⎞
⎠
⎧⎨
⎩

x

x̂

⎫⎬
⎭ +

⎛
⎝B(K + Kc)

Br(K + Kc)

⎞
⎠ xc. (5.91)

Figure 5.9 is the pole–zero map of the aeroservoelastic system. It can be seen that
the LQR-based rigid dynamics controller—while attempting to cancel the unstable
rigid pole by placing a closed-loop zero at the same location—moves three of the
neglected aeroelastic modes into the right-half s-plane.

The Nyquist plot of az(s)/αc(s) for the complete aeroservoelastic system is shown
in Fig. 5.10, where several positive (clockwise) encirclements of the point s = −1
can be observed. Since there is only one right-half s-plane pole of the open-loop
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Fig. 5.10 Nyquist locus of the aeroservoelastic system of the fighter aircraft for the transfer function
az(s)/αc(s) at M = 0.9 level flight condition

transfer function, the Nyquist stability theorem [168]3 implies there are several
unstable poles of the ASE system. Figure 5.11 compares the step responses to a
commanded change in the angle of attack (αc = 1.9◦ ) of the rigid aircraft and the
flexible aircraft with the controller designed to stabilize the rigid mode. Here the
feedforward gain matrix, Kc, is taken to be zero. While the rigid aircraft has a stable
response settling to a steady state in 2 s, the response of the ASE system is unstable,
crossing 15 g normal acceleration in less than 0.5 s.

The associated commanded elevon deflections for the rigid and ASE systems
are compared in Fig. 5.12, showing that the maximum allowable elevon deflection
is quickly crossed for the flexible aircraft. Clearly, the inadvertent ASE instability
will destroy the aircraft if any step changes are commanded. Such unstable ASE
interactions between the flight control system and the structural modes are thought

3 Nyquist stability theorem states that a feedback system has Z unstable poles, if and only if, the
locus of open-loop transfer function for s = iω, −∞ < ω < ω encircles the point (−1, 0) in the
clockwise direction exactly N = Z − P times, where P is the number of poles of the open-loop
transfer function in the right-half s-plane, provided no pole–zero cancellations have occurred in the
open-loop system.
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to have been responsible for crashes of several fighter prototypes (e.g., Lockheed F-
22 and Taiwan IDF fighter). The unstable ASE system is also shown by the negative
gain margin in the Bodé plot shown in Fig. 5.13.

5.6.1 Closed-Loop Stabilization of the ASE System

The problem of unstable aeroelastic modes is solved by a reprogramming the flight
control computer with the LQR and Kalman filter gains based upon the aeroelas-
tic (rather than the rigid) plant. The Kalman filter is designed with the following
parameters:

Sνw(t) = 0, Sν(t) = 10−4I, Sw(t) = 1, F = I,

while the LQR parameters are taken to be

S = 0, Q = 10−2CT C, R = 1.

The dimensions of the aeroelastic plant are (38×38), and the resulting regulator and
observer gains are listed in Table 5.1.

The regulator (LQR) and observer (Kalman filter) poles are listed in Tables 5.2 and
5.3, respectively. Note that the first two are rigid poles, while the rest are aeroelastic
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poles. As expected all the closed-loop poles are in the left-half s-plane. The observer
has 8 real poles and 15 complex conjugate pairs of poles, whereas the regulator has
10 real poles and 14 complex pair of poles.

Figure 5.14 shows the pole–zero map of the aeroservoelastic system, wherein
all the poles are now in the left-half plane. The right-half plane zeros of the open-
loop plant, as well as of the rigid stabilized plant in Fig. 5.9—which indicated the
non-minimum phase [168] “tail wag the dog” behavior of the rigid pitch dynamics
controlled by the elevons—have also been moved to the left-half s-plane, thereby
improving the closed-loop transient response. The Nyquist diagram of the closed-
loop transfer function az(s)/αc(s) is now seen to be stable for the complete ASE
system in Fig. 5.15. The response to an initial pitch rate perturbation of 1◦/s is shown
in Fig. 5.16 for the normal acceleration output, the commanded and actual elevon
deflections, the angle of attack, and the pitch rate, which confirms the well behaved
closed-loop response settling in less than 3 s. The waviness in the normal acceleration
response is due to the aeroelastic modes, the first four of these contribute individually
to the normal acceleration of the closed-loop ASE system as shown in Fig. 5.17.
The well-damped structural response is evident, and the magnitude of a particular
mode decreases as its natural frequency increases. This fact is also confirmed by
Fig. 5.18, which is the Bodé gain and phase plot of the closed-loop transfer function
az(s)/αc(s) with aeroelastic modes included in the plant model. The high robustness
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gain margin hence an unstable aeroservoelastic system

of the complete ASE system is evident in Fig. 5.18 showing an infinite gain margin
and a phase margin of 90◦. The raising of the DC gain of the open-loop plant in order
to achieve the positive gain margin (thus closed-loop stabilization) can be also seen
in the Bodé plot.

5.6.2 Active Maneuver Load Alleviation

A cleverASE controller design can alleviate the peak normal acceleration experienced
by a maneuvering aircraft for a given pitch rate, thereby reducing the structural
fatigue and increasing the aircraft’s service life. In a fighter-type aircraft, such an
active alleviation can have the additional benefit of increasing the load factor for
maneuvering, thereby increasing the maneuverability and making the aircraft more
competitive vis-a-vis its contemporaries. Let us briefly consider a typical load alle-
viation example for our simple, tailless aircraft with a pair of trailing-edge elevons.
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Table 5.1 Regulator and
observer gain matrices for the
tailless fighter aircraft at
U = 306 m/s and standard
sea level

KT L

−103.66 −2.8736

−20.505 −6.8318

−36.649 −0.20525

109.24 −0.04129

58.78 −0.042994

387.66 0.0011039

−7.6391 −0.027634

0.06913 −0.00028134

6.0975 −0.0014706

−83.762 −0.018054

−45.864 0.0094441

10.086 0.002567

130.45 −0.00089379

4.2596 −7.5657×10−5

13.72 0.0010321

2.9304 −0.010766

−0.39514 0.0079591

−2.7375 −0.0025357

−1.3979 −0.20684

8.5541 −0.023023

1.5883 −0.051001

1.7031 −0.0025858

−3.3272 −0.037805

−2.3168 −0.0038365

−1.014 −0.00082518

−4.4959 −0.0055202

11.472 −0.014006

8.6004 0.005582

−4.8648 2.4076×10−5

−5.0704 −6.8233×10−8

−0.9564 6.6789×10−7

−6.503 1.8302×10−6

5.6262 −1.0659×10−6

−0.43071 4.0438×10−7

0.76822 −1.1487×10−7

−0.90782 1.9441×10−7

0.021961 −1.5219×10−9

−0.0043702 2.3804×10−10
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Table 5.2 LQR poles of the
tailless fighter aircraft at
U = 306 m/s and standard
sea level

Mode No. Pole

1 −2.2512 + 0i

2 −5.4649 + 0i

3 −14.61 + 0i

4 −16.974 + 0i

5 −51.947 + 0i

6 −34.522 ± 40.753i

7 −53.386 ± 5.2487i

8 −55.965 + 0i

9 −2.0083 ± 56.442i

10 −56.876 ± 4.773i

11 −23.855 ± 65.835i

12 −63.495 ± 39.034i

13 −4.6203 ± 77.837i

14 −86.402 + 0i

15 −2.1758 ± 89.017i

16 −98.633 + 0i

17 −107.78 ± 14.109i

18 −1.6801 ± 116.12i

19 −125.53 ± 21.428i

20 −157.15 ± 16.057i

21 −189.47 ± 22.9i

22 −208.55 ± 15.317i

23 −215.87 + 0i

24 −275.1 + 0i

The actual modern fighter-type aircraft also has leading-edge flaps, which provide a
better controllability and offer a greater reduction in the maneuvering loads.

Let us consider the response shown in Fig. 5.19 for a commanded unit step change
in the angle of attack of the fighter aircraft with the original design presented above
(solid line). This is compared with the response of the controller redesigned with a
maneuver load alleviation objective (dashed line), using the following parameters
for the regulator (the observer is unchanged):

S = 0, Q = 10−9BBT , R = 1.

While the original system behaves in a jagged manner with a high peak acceleration
and pitch rate, and requires very large control deflections (which are likely to be
saturated in the actual implementation), the much smoother acceleration response
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Table 5.3 Kalman filter poles
of the tailless fighter aircraft
at U = 306 m/s and standard
sea level

Mode No. Pole

1 −2.0744 + 0i

2 −5.4649 + 0i

3 −15.89 + 0i

4 −18.173 + 0i

5 −52.073 + 0i

6 −51.866 ± 5.1181i

7 −13.552 ± 52.182i

8 −56.175 ± 7.8233i

9 −33.57 ± 45.861i

10 −21.539 ± 53.441i

11 −65.785 + 0i

12 −67.055 ± 13.021i

13 −4.6089 ± 76.479i

14 −88.803 + 0i

15 −1.0911 ± 89.019i

16 −100.29 + 0i

17 −108.14 ± 14.51i

18 −0.40361 ± 116.08i

19 −125.54 ± 21.569i

20 −157.16 ± 16.078i

21 −189.51 ± 22.876i

22 −208.63 ± 15.294i

23 −215.98 + 0i

24 −274.8 + 0i

of the maneuver alleviation design is striking in comparison. It also requires only a
third of the peak acceleration, and a fourth of the control deflection of the original
design. The shaping of the aeroelastic modes in order to achieve a smaller initial peak
acceleration for load alleviation is well evident in Fig. 5.20, which plots the normal
acceleration contributions of the first four aeroelastic modes. The achievement of
smooth aeroelastic behavior translates into a smaller peak acceleration for all the
modes. The cost of load alleviation is a reduction in the gain margin from infinity to
about 60 dB, which is quite adequate for practical implementation.
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5.7 Robust Control of Linear Time-Invariant Systems

Although the example in the previous section could achieve a robust controller design
for the fighter aircraft, there is no guarantee that separately designed regulator and
observer can produce an acceptable behavior in the overall closed-loop system. For
example, both LQR and Kalman filter have good stability and performance properties
by themselves, but when combined into an LQG compensator can result in an appre-
ciable degradation of such properties. This is because in a combination, neither can be
regarded as being the optimal solution of the overall problem. In order to recover the
good stability and performance characteristics displayed by LQR and Kalman filter,
design of a robust controller is necessary. There are two main robust design methods,
namely the LQG/LTR and H2/H∞ design, and we will briefly discuss them here.
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Fig. 5.15 Nyquist locus of the aeroservoelastic system for the fighter aircraft for the transfer function
az(s)/αc(s) with aeroelastic modes included in the plant model
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aircraft with aeroelastic modes stabilization, showing a stable and well-behaved aeroservoelastic
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Fig. 5.19 Closed-loop response for a commanded step change in the angle of attack of the fighter
aircraft with and without maneuver load alleviation
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change in the angle of attack of the fighter aircraft with and without maneuver load alleviation
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5.7.1 LQG/LTR Method

The procedure by which an LQR and a Kalman filter are designed separately for a
linear, time-invariant plant, and then put together to form an LQG compensator can
lead to an unacceptable design in the presence of parametric disturbances. Consider
a general case where the output vector, y(t), is to match a desired output (also called a
reference, or commanded output), yd(t), in the steady state. Such a reference output
is usually commanded by the terminal controller (not shown in the figure). Clearly,
the measured signal given to Kalman filter is [y(t) − yd(t)], based upon which (as
well as the known input vector, u(t)) it supplies the estimated state for feedback
to the LQR regulator. Since the design of the LQG compensator—specified by the
gain matrices, (K,L)—depends upon the chosen LQR cost parameters, Q,R,S, and
the selected Gaussian white noise spectral densities, Sw, Sν , Sνw, it is possible to
design infinitely many compensators for a given plant. Usually, there are certain
performance and robustness requirements specified for the closed-loop system that
indirectly restrict the choice of the cost parameters to a given range. Being based upon
optimal control, an LQG compensator has excellent performance features for a given
set of cost parameters, but its robustness is subject to the extent the performance is
degraded by state estimation through the Kalman filter. If the filter gains are too small,
the estimation error does not tend to zero fast enough for the feedback to be accurate.
On the other hand, if the Kalman filter has very large gains, there is an amplification of
process and measurement noise by feedback, thereby reducing the overall robustness
of the control system. Clearly, a balance must be struck in selecting the Kalman filter
design parameters, Sw, Sν , Sνw, such that a good robustness is obtained without
unduly sacrificing performance.

In order to study the robustness of an LQG compensated system, refer to the block
diagram of the control system transformed to Laplace domain in a negative feedback
configuration. For simplicity, consider a strictly proper plant [i.e, D = 0] of order
n, represented by the following transfer matrix:

G(s) = C (sI − A)−1 B

of dimension �×m, where � is the number of outputs, and m the number of inputs.
An LQG compensator of dimension m× � has transfer matrix,

H(s) = −K (sI − A + BK + LC)−1 L.

The process noise is represented by a ZMGWN disturbance, ν(s), appearing at the
plant’s output, while the ZMGWN measurement noise, w(s), affects the feedback
loop as shown. The overall system’s transfer matrix, T(s), from the desired output
to the output, is called the transmission matrix. On the other hand, the effect of the
process noise on the output is given by the transfer matrix, S(s), called the sensitivity
matrix. Both T(s) and S(s) are derived as follows:

y = ν + Gu = ν + G
[
H
(
yd − y − w

)]
, (5.92)
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or

(I + GH) y = ν + GH
(
yd − w

)
, (5.93)

thereby implying

y = (I + GH)−1
ν + (I + GH)−1 GH

(
yd − w

)
, (5.94)

or

y(s) = S(s)ν(s) + T(s)
[
yd(s) − w(s)

]
, (5.95)

where

S(s) = [
I + G(s)H(s)

]−1
(5.96)

T(s) = [
I + G(s)H(s)

]−1
G(s)H(s).

Because it can be easily shown that T(s) = I − S(s), the transmission matrix is also
called complementary sensitivity.

The sensitivity and transmission matrices give us criteria for defining robust-
ness. For a good robustness with respect to the process noise, the sensitivity matrix,
S(s), should have a small “magnitude,” while a good robustness with respect to the
measurement noise requires that the transmission matrix, T(s), must have a small
“magnitude.” However, it is unclear what we mean by the magnitude of a matrix.
One can assign a scalar measure, such as the Euclidean norm [170] for vectors, to
matrices. Since we are now dealing with square arrays of complex numbers, M(s),
where s = iω, suitable norms for such a matrix, M(iω), at a given frequency, ω, are
based upon its singular values (also called principal gains), defined as the positive
square roots of the eigenvalues of the following real matrix,

MT (− iω)M(iω).

The Hilbert (or spectral) norm is the largest singular value at a given frequency, ω,
denoted as

σ̄ {M(iω)} ,

or simply as σ̄ (M). The magnitude of a frequency dependent, complex matrix is thus
represented by its largest singular value. Clearly, for robustness with respect to the
process noise, we require σ̄ (S) should be as small as possible, whereas robustness
with respect to the measurement noise can be achieved by minimizing σ̄ (T). However,
there is a serious conflict between simultaneously minimizing both σ̄ (S) and σ̄ (T),
because the minimization of one results in the maximization of the other (and vice
versa). A design compromise is obtained by choosing different ranges of frequencies
for the minimization of σ̄ (S) and σ̄ (T).

The process noise, ν(s), is generally experienced due to modeling errors, which—
while being present at all frequencies—usually have their maximum effect on a
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physical model at the lowest frequencies. An example is the neglect of higher-order
dynamics while deriving the plant model, such as structural flexibility of a flight
vehicle. Of all the neglected modes, that with the smallest natural frequency typ-
ically has the largest contribution to the transfer matrix. As the natural frequency
increases, the concerned modes have successively smaller magnitude contributions.
Thus, it makes sense to minimize σ̄ (S) in the low-frequency range. On the other
hand, measurement noise has its largest contribution at high frequencies, and thus
σ̄ (T) should be minimized at high frequencies. However, we should also remember
that T(s) is the overall system’s transfer matrix. A minimization of σ̄ (T) at higher
frequencies has the additional effect of slowing down the closed-loop system’s per-
formance in tracking a reference signal, which implies a larger tracking error at a
given time. Therefore, in the interest of maintaining a reasonable performance, the
minimization of σ̄ (T) must take place outside the desired bandwidth of the control
system.

As discussed above, the gains of the regulator and the Kalman filter must be
selected in such a way that there is as little loss as possible of both the performance
and robustness by combining the two in a single compensator. The transfer matrix
H(s)G(s) denotes the transfer of the input, u(s), back to itself if the loop is broken at
the input, and is thus called the return ratio at input. If all the states are available for
measurement, there is no need for a Kalman filter and the ideal return ratio at input
would be the following:

H(s)G(s) = −K (sI − A)−1 B.

On the other hand, if the feedback loop is broken at the output, the transfer matrix,
G(s)H(s), represents the transfer of the output, y(s), back to itself and is called the
return ratio at output. If there is no regulator in the system, then the ideal return ratio
at output is given by

G(s)H(s) = −C (sI − A)−1 L.

If one can recover the ideal return ratio at either the plant’s input or the output by
suitably designing the LQG compensator, the best possible combination of the LQR
regulator and the Kalman filter is achieved and the design process is called loop-
transfer recovery (LTR). For simplicity in the following discussion, we assume there
is no cross-correlation between process and measurement noise, i.e., Sνw = 0. It
can be proved [108] that by selecting

F = B ; Sν = ρSw

and making the positive scalar parameter ρ arbitrarily large, the LQG return ratio at
input,

H(s)G(s) = −K (sI − A + BK + LC)−1 LC (sI − A)−1 B

can be made to approach the ideal return ratio at input. The following procedure for
LTR at the input is thus commonly applied:
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• Select an LQR regulator by a suitable choice of the weighting matrices Q,R,S
such that good performance and robustness with state feedback are obtained.

• Select F = B, Sν = ρSw and increase ρ until the desired state feedback properties
are recovered in the closed-loop system.

A variation of this approach can be applied for LTR at the plant’s output, beginning
with the design of Kalman filter, and then iterating for the LQR gain until the ideal
return ratio at output is recovered:

• Select a Kalman filter by a suitable choice of the weighting matrices, Sν , Sw, Sνw,
such that a satisfactory return ratio at output obtained.

• Select Q = ρR and increase ρ until the ideal return ratio at output is recovered
in the closed-loop system.

Further details of LQG/LTR methods can be found in [108] and [62]. MATLAB’s
Control Systems Toolbox [110] provides the functions lqr and lqe for carrying out
the LQR and Kalman filter designs, respectively. Alternatively, the Robust Control
Toolbox [110] has specialized functions lqg for “hands-off” LQG compensator de-
sign, and ltru and ltry for LTR at plant input and output, respectively. However, for
a beginner we recommend the use of a basic ARE solver, such as are, in order that
the relevant design steps are clearly understood.

5.7.2 H2/H∞ Control

Rather than indirectly designing a feedback compensator via a regulator and a Kalman
filter, an alternative design approach is to extend the frequency domain design
methodology commonly used for single variable (SISO) systems, to the multivari-
able control system. The regulator and Kalman filter then result naturally from such a
design, in which the singular value spectra replace the Bodé gain plot, and parameters
analogous to the gain and phase margins of an SISO system [cf. Chap. 2 of [168]]
are addressed for a robust, multivariable design directly in the frequency domain. In
deriving such a compensator, one minimizes a combined, frequency weighted mea-
sure of sensitivity, complementary sensitivity, and transfer matrix from disturbance
to plant output, integrated over a range of frequencies. There are two such frequency
domain, optimal control methods that only differ by the matrix norm sought to be
minimized, namely the H2 and H∞ synthesis.

Consider a strictly proper plant, G(s), with control inputs, u(s), and measured
outputs, y(s). All other inputs to the control system, namely, the reference output
yd(s), process noise ν(s), and measurement noise w(s), are clubbed together in a
single vector, d(s), called external disturbances. An output feedback compensator,
H(s), is to be designed for simultaneously minimizing an integrated measure of sen-
sitivity, S(s), and complementary sensitivity, T(s), of the output with respect to the
disturbance, and transfer matrix, Gu(s) = −H(s)S(s), from disturbance to plant in-
put. However, since these objectives are contradictory, different ranges of frequency
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are specified for the minimization of each objective. This is practically implemented
through weighting the concerned matrix by frequency weights as follows:

WS(s)S(s) = WS(s)
[
I + G(s)H(s)

]−1

WT(s)T(s) = WT(s)
[
I + G(s)H(s)

]−1
G(s)H(s) (5.97)

Wu(s)Gu(s) = −Wu(s)H(s)S(s).

Here, WS(s) is a strictly proper, square transfer matrix, and WT(s),Wu(s) are square
transfer matrices. The plant is thus augmented by the frequency weighting matrices
with the additional outputs, z1(s), z2(s), z3(s), called error signals :

y(s) = G(s)u(s) + d(s)

z1(s) = WS(s)y(s) = WS(s)
[
G(s)u(s) + d(s)

]
(5.98)

z2(s) = WT(s)G(s)u(s)

z3(s) = Wu(s)u(s).

The output feedback control law is given by

u(s) = −H(s)y(s). (5.99)

Note that the compensator design is entirely dependent on the chosen frequency
weights (rather than on the LQR cost parameters and noise spectral densities of the
LQG case). Furthermore, the controller design is based upon output feedback, which
requires the following inherent observer dynamics that is part of the augmented plant:

˙̂x = (A − FC)x̂ + Bu + Fy. (5.100)

Since the coefficients A,F,C depend upon the chosen frequency weights, a stable
observer requires a judicious choice of the frequency weights.

The overall closed-loop transfer matrix, Gc(s), from the disturbance, d, to the
error vector, z = (z1, z2, z3)T , is thus given by

z(s) = Gc(s)d(s) =

⎡
⎢⎢⎣

WS(s)S(s)

−WT(s)T(s)

−Wu(s)Gu(s)

⎤
⎥⎥⎦ d(s). (5.101)

In order to see how frequency weights can be selected, let us define the following
frequency integral of a proper and asymptotically stable transfer matrix, Q(iω), as
its H2-norm :

|| Q ||2=
√

1

2π

∫ ∞

−∞
tr
[
Q(iω)QT ( − iω)

]
dω, (5.102)
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where tr(.) refers to the trace of a square matrix (i.e., sum of its diagonal elements).
Another related operator norm for Q(iω), is its H∞-norm defined by

|| Q ||∞= supω
[
σ̄ {Q(iω)}] , (5.103)

where supω(.) is the supremum (the maximum value) with respect to the frequency.
Both the operator norms, || . ||2 and || . ||∞, provide a single, positive real number
measuring the largest possible magnitude of a frequency dependent matrix. There-
fore, one can employ either of them for minimizing the combined sensitivity reflected
by the closed-loop transfer matrix, Gc(s).

Finally, the H2/H∞ design method can be summarized by considering the
following H2-norm of Gc(s):

|| Gc ||2=|| WSS ||2 + || WTT ||2 + || WuGu ||2 . (5.104)

The minimization of || Gc ||2 guarantees a simultaneous minimization of the H2-
norm of the weighted sensitivity, complementary sensitivity, and Gu(s). We also note
that the power spectral density of the error vector, z(t), when the disturbance, d(t), is
a white noise of unit intensity (i.e, has identity matrix as its power spectral density)
is the following:

Sz(ω) = Z(iω)ZT ( − iω) = Gc(iω)GT
c ( − iω). (5.105)

Thus, the minimization of || Gc ||2 directly results in a minimization of the error
power spectral density, which is an objective quite similar to that of the LQG com-
pensator. Therefore, one can proceed to derive the compensator that minimizes the
H2-norm of the error in much the same manner as the LQG case.

The augmented plant can be represented in an LTI state-space form as follows:

ẋ = Ax + Bu + Fd

y = Cx + d (5.106)

z = Mx + Nu.

The optimal H2 synthesis then consists of deriving an LQR regulator with Q =
MT M, R = I and gain, K = BT P such that

H(s) = −K
(
sI − A + BBT P + FC

)−1
F, (5.107)

where P is a symmetric, positive semidefinite solution to the following algebraic
Riccati equation :

0 = AT P + PA − PBBT P + MT M. (5.108)

For simplicity of discussion, let us assume

NT M = 0 ; NT N = I. (5.109)
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A good way to ensure a stable observer dynamics (A-FC) is by replacing F with a
Kalman filter gain, L, which requires a particular structure for the frequency weights.
Evidently, a major part ofH∞ design involves selection of suitable frequency weights.

An optimization procedure can be adopted for minimizing the H∞-norm of Gc(s)
based upon the augmented plant. However, now there being no direct relationship
between H∞-norm of the closed-loop transfer matrix and the objective function of
an LQG design, it is difficult to know in advance what is the minimum value of
|| Gc ||∞ that would lead to an acceptable design. A practical method [64] is to
choose a positive number, γ , and aim at deriving a stabilizing compensator that
achieves

|| Gc ||∞= supω
[
σ̄ {Gc(iω)}] ≤ γ. (5.110)

By decreasing γ until the compensator fails to stabilize the system, one has found
the limit on the minimum value of || Gc ||∞. It is to be noted that if γ is increased to
a large value, the design approaches that of the optimal H2 (or LQG) compensator.
Thus, one can begin iterating for γ from a value corresponding to a baseline H2 (or
LQG) design.

There is a serious drawback of the H∞ approach in that it does not automatically
produce a stabilizing compensator. We have just now demonstrated the existence of
a nonpositive Lyapunov function, f (t), which shows that a compensator designed
by the H∞ method does not meet the sufficient conditions for stability in the sense
of Lyapunov (Appendix-D). Therefore, stability of the H∞ compensator must be
separately ensured by requiring that the dynamics matrix, (A − BBT P), must have
all the eigenvalues in the left-half s-plane.

The following optimization procedure by [64] can be implemented for the solution
of the H∞ design problem:

(a) Select a set of frequency weights, WS(s),WT(s),Wu(s), for augmenting the
plant, G(s). These are typically diagonal matrices of proper transfer functions.
Also, ensure that the chosen frequency weights yield a stable observer dynamics
(A-FC).

(b) Select a value for γ (usually 1).
(c) Solve Eq. (5.108) for a symmetric, positive semidefinite matrix, P. If no such

solution exists, go back to (b) and increase γ . If a symmetric, positive semidef-
inite P exists which yields a stable dynamics matrix, (A − BBT P) try to find a
better solution by going back to (b) and decreasing γ .

(d) If the closed-loop properties are satisfactory, stop. Otherwise, go back to (a) and
modify the frequency weights.

MATLAB’s Robust Control Toolbox (RCT) [110] function, hinfopt, automates the
H∞ design procedure of [64], even for those cases where Eq. (5.110) does not hold.
However, it replaces γ by its reciprocal, and aims at maximizing the reciprocal
for a stabilizing controller. MATLAB-RCT contains another function h2LQG for
automatedH2 synthesis. Both hinfopt and h2LQG first require augmenting the model
by adding frequency weights through a dedicated function augtf.
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5.8 Active Flutter Suppression

Airplanes are designed to be light in weight, and hence have highly flexible structures
compared to other vehicles. In the interests of fuel efficiency, airplanes also must
cruise at much higher speeds, and hence encounter aerodynamic loading several
orders of magnitude larger than that of surface transport vehicles. The combination of
structural flexibility, inertia, and aerodynamic loads can lead to a destructive dynamic
coupling called flutter, which is unique to airplanes. Here, the unsteady airloads build-
up in magnitude in a resonance like manner with the structural vibrations, which in
turn grow in amplitude, ultimately causing a catastrophic failure of the wing or the
tail from which there can be no safe recovery. It is not surprising then that flutter be
regarded as the Nemesis which must be avoided at all costs, or at least be pushed out
of the operating envelope by either passive or active means.

Let us begin with the state equations of the aeroelastic plant, which were derived
in Chap. 4:

ẋ = Ax + BQc, (5.111)

where

x = (
qT , q̇T , xTa

)T
,

A =

⎛
⎜⎜⎜⎜⎜⎝

0 I 0 0

−M̄
−1

K̄ −M̄
−1

C̄ M̄
−1

Na M̄
−1

Ng

Γa Aa 0

Γg 0 Ag

⎞
⎟⎟⎟⎟⎟⎠

,

and

B =

⎛
⎜⎜⎝

0

M̄
−1

I

0

⎞
⎟⎟⎠ .

To the aeroelastic plant, the state equations of m control surface actuators with
deflections vector, δ = (δ1, δ2, . . . , δm)T , and control torques input vector, u =
(u1, u2, . . . , um)T , are added as follows:

ẋc = Acxc + Bcu, (5.112)

where

xc = (
δ, δ̇, ξTc

)T
,
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and

Qc = Ccxc + Dcu.

The actuator and the aeroelastic system are two subsystems of the open-loop
aeroeservoelastic (ASE) plant, with the overall state vector

X = (
xT , xTc

)T
,

overall state equation,

Ẋ = ĀX + B̄u, (5.113)

and output equation,

y = C̄X + D̄u, (5.114)

where

Ā =
⎛
⎝A BCc

0 Ac

⎞
⎠ , B̄ =

⎛
⎝BDc

Bc

⎞
⎠ ,

C̄ =
(

C DCc

)
, D̄ = DDc.

The ASE plant must be stabilized with the following linear feedback control law 4:

u = −KX̂, (5.115)

where X̂ is the estimated state vector generated by a linear observer with the following
state equations:

Ẋ =
(
Ā − LC̄

)
X +

(
B̄ − LD̄

)
u + Lŷ. (5.116)

One could alternatively employ a reduced-order observer [171] for a reduction in
the order of the ASE system.

Since the flutter suppression problem is a regulator problem, we can consider the
desired output vector (i.e., normal accelerations at selected locations) to be zero.

4 Note that here we are not designing separate control laws for the servo actuator and the aeroelastic
system. Instead, we have clubbed the two as being the subsystems of the ASE plant. The controller
and observer gains of the actuator and aeroelastic subsystems can be extracted from the respective
gain matrices for an implementation on a flight control computer.



252 5 Linear Aeroelastic Control

K
Regulatoor

u 

Linea

Q

+ L

ar Observer 

ASE

c=Acxx. x.c+Bcu
Qc=Ccxc+Dcu

u
i

Aeroelastic Pl

Qc

Ly

 = Ax+BQ
y = Cx+DQ

E Plant 
yj

ant

Qc
Qc

y 

Fig. 5.21 Block diagram of a flutter suppression system

The state equations of the regulated ASE system (depicted by a block diagram in
Fig. 5.21) are, therefore, the following:

⎧⎨
⎩

Ẋ
˙̂X

⎫⎬
⎭ =

⎛
⎝ Ā −B̄K

LC̄ Ā − B̄K − LC̄

⎞
⎠
⎧⎨
⎩

X

X̂

⎫⎬
⎭ . (5.117)

In order to consider an example of active flutter suppression, let us consider the
modified DAST-ARW1 wing whose open-loop flutter speed was obtained in Chap. 4
to be 284.7 m/s at a standard altitude of 7.6 km. The corresponding flutter Mach
number is 0.9192. This wing is equipped with a trailing-edge control surface and a
4th-order actuator (with 2 lag-parameters) for driving the control surface with actuator
torque input, u. An outboard accelerometer provides the output y, while six spanwise
locations are selected for the aeroelastic deflections. The resulting aeroelastic plant
(with 2 lag-parameters) is of order 24, therefore the overall ASE plant is of order 28.
To this plant is added a regulator and observer designed by the LQG/LTR procedure
in order to yield the best combination of maximum control torque magnitude and
robustness. The selected design parameters are as follows:

Sνw(t) = 0, Sν(t) = 10−12B̄B̄
T

, Sw(t) = 1, F = I,

while the LQR parameters are taken to be

S = 0, Q = 5000C̄
T

C̄, R = 1,

which results in the gain matrices of the Kalman filter and the regulator, listed in
Table 5.4.
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Table 5.4 Regulator and
Kalman filter gains for the
active flutter suppression
system

KT L

3.9766×106 −9.6977×10−5

−7.0627×107 0.00044932

−1.6821×107 −0.00057742

−8.2738×107 −0.00033756

−1.2608×108 3.2843×10−5

−9.0589×107 −0.00080993

−4.2405×109 2.7185×10−7

−4.121×109 −2.9803×10−7

−2.8641×109 −2.4542×10−6

−6.318×109 1.2329×10−6

2.1176×109 −3.6159×10−7

1.2046×109 −1.0203×10−6

−9853.7 −1.2291×10−7

−52637 6.0445×10−8

−94157 −2.4566×10−6

−1.139×105 7.738×10−7

−1.4867×105 −7.3826×10−7

−3.8988×105 −1.019×10−6

7.9125×1011 −2.339×10−10

4.0714×1012 1.0837×10−9

7.8012×1012 −1.393×10−9

1.1572×1013 −8.1399×10−10

1.7344×1013 7.9229×10−11

3.0728×1013 −1.9536e×10−9

1.793×1010 2.6796×10−7

−6.1962×106 5.7031×10−6

−3.1483×109 2.6798×10−7

4.9487×108 1.376×10−11

The closed-loop response to an initial tip displacement is compared in Fig. 5.22
with that of the open-loop ASE plant for supercritical speed M = 0.95 at altitude
7.6 km. Note that the closed-loop acceleration response is stable at the given su-
percritical condition, has smaller initial peak magnitude than that of the open-loop
syatem, and settles to zero in less than 1 s. The required control torque is plotted in
Fig. 5.23, showing a peak magnitude of 59.25 N m per m of initial tip displacement.
The Bodé plot of the closed-loop ASE system is shown in Fig. 5.24, indicating a gain
margin of 37 dB and an infinite phase margin. Therefore, the design is quite robust to
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Fig. 5.22 Open-loop and closed-loop response of the flutter suppression system for an initial unit
tip displacement at supercritical speed M = 0.95 and altitude 7.6 km
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Fig. 5.23 Closed-loop control-surface torque input of the flutter suppression system for an initial
tip displacement at supercritical speed M = 0.95 and altitude 7.6 km
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Fig. 5.24 Bodé plot of the closed-loop flutter suppression system at supercritical speed M = 0.95
and altitude 7.6 km

parametric variations in the ASE plant. Adequate robustness to high-frequency mea-
surement noise is also evident in the magnitude roll-off of 20 dB per decade. This
design is ready to be implemented under actual flight conditions, where the Nyquist
bandwidth provided by digital controller will cut-off all high-frequency signals, such
as that due to shock-induced turbulence at transonic speeds.

With a slight modification involving the addition of gust states, xg(t), in the
ASE plant (Chap. 4), the concept of active flutter suppression is readily extended
to gust load alleviation for better ride comfort/ targeting accuracy while penetrating
an atmospheric gust [22]. Here, the design need not necessarily be carried out for a
supercritical case, and the open-loop plant need not be unstable. The optimal control
strategy, especially LQG/LTR design, is ideally suited for such an application. The
author has devised an optimization strategy [172] especially for the gust alleviation
problem, where the regulator design is based upon a quadratic cost function for
minimization including the rate of change of normal acceleration, in order to produce
a much smoother closed-loop response (hence smaller aerodynamic loading) than
possible by a traditional LQR method.



Chapter 6
Nonlinear Aeroservoelastic Applications

6.1 Nonlinear Aeroservoelasticity

Aeroservoelastic models can be nonlinear in nature due to the presence of struc-
tural, aerodynamic, or control nonlinearities. For example, a wing undergoing large
amplitude vibrations may encounter significantly inelastic behavior. Similarly, the
unsteady transonic flow and the flow at large angles of attack are nonlinear due to
mixed subsonic–supersonic regions and separation, respectively. Periodically, sepa-
rating and reattaching flows due to shock-wave/boundary-layer interactions are also
inherently nonlinear. Lastly, nonlinear control elements such as adaptive controllers,
and saturated and rate-limited actuators, also result in a nonlinear ASE system.

6.2 Describing Functions for Nonlinear ASE

Since ASE systems operate in a closed loop, the effects of nonlinearities are hardly
confined to the nonlinear elements themselves, but can be felt throughout the sys-
tem. At the outset, the treatment of nonlinearities might appear to be a daunting
task, because there is no systematic procedure available for designing a nonlinear
control system. Fortunately, nonlinear ASE systems can be analyzed by a useful
approximation, called the describing function method [158].

Briefly stated, the describing function approach takes advantage of the fact that
many nonlinear control systems of practical interest can be represented by a nonlinear
function block in negative series feedback with a linear, stable transfer function
(Fig. 6.1). Thus a simple harmonic signal,

u = u0 sin (ωt), (6.1)

passing through the nonlinear block is effectively amplified and distorted into several
harmonics, represented by the Fourier series,

© Springer Science+Business Media, LLC 2015 257
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Fig. 6.1 Nonlinear system
representation for describing
function approximation

z y z=f(.) G(s)

Nonlinear 
Block 

Linear 
Filter 

u 

z =
∞∑
k=1

ak cos (kωt) + bk sin (kωt), (6.2)

where

ak = 1

π

∫ π

−π
z(t) cos (kωt)d(ωt), (6.3)

bk = 1

π

∫ π

−π
z(t) sin (kωt)d(ωt), (6.4)

of which all the higher harmonics except the fundamental one are suppressed by the
linear transfer function acting as a low-pass filter in a feedback loop1. Consequently,
the output signal can be approximated by only the fundamental harmonic, which is
amplified and phase-lagged compared to the input signal, and given by

y = a1 cos (ωt) + b1 sin (ωt) = y0 sin (ωt + φ). (6.5)

Due to the presence of the nonlinear block, the amplification ratio, y0/u0, and the
phase angle, φ, are functions of both the forcing frequency, ω, and input magni-
tude, u0. Therefore, the nonlinear element is effectively modeled as the following
describing function:

N (u0,ω) = y0e
j (ωt+φ)

u0ejωt
= y0

u0
ejφ. (6.6)

In the multivariable case of m inputs and n outputs, the describing functions
matrix, N, can be defined as follows:

y0 = N(u0,ω)ej!u0, (6.7)

1 Here, the nonlinearity is assumed to be odd, i.e.,

0 =
∫ π

−π
z(t)d(ωt),

which is a good assumption for most systems.
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where

ejφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ejφ11 ejφ12 · · · ejφ1m

ejφ21 ejφ22 · · · ejφ2m

· · · · · · · · · · · ·
ejφn1 ejφn2 · · · ejφnm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.8)

The typical aeroservoelastic application involves a regulation problem in which
an aeroelastic system must be stabilized. In such a case, if the aeroelastic behavior
is nonlinear due to structural, aerodynamic, or control nonlinearities, the regulated
system can be generally represented2 as the block diagram of Fig. 6.2. Here, a linear
aeroelastic system with a state-space representation given by

ẋ = Ax + Bu, (6.9)

is to be stabilized in the presence of structural nonlinearities, aerodynamic nonlinear-
ities created by either flow separation, or shock waves, and controller nonlinearities,
all of which are collectively represented in a nonlinear functional form by the block

z = f(x, u), (6.10)

while a linear state-feedback regulator,

u = −Kx, (6.11)

closes the loop. Clearly, the linear plant plus the regulator act as a stable, linear filter
in closed loop with the nonlinear block. Therefore, the requirements of the describing
function approximation are satisfied by such ASE systems. When the nonlinearities
are large, the controller parameters, K, can be suitably adjusted with respect to x, by
an adaptation mechanism, based upon an online estimation of nonlinear behavior of
the plant by suitable describing functions.

In the present chapter, three examples of aeroservoelastic systems with nonlinear
unsteady aerodynamic behavior are considered. These are: (a) flapping-wing flight
for the incompressible case, (b) shock-induced buffett in the transonic regime, and (c)
transonic flutter. Since both applications contain a linear aeroelastic subsystem, this
can be regarded as the linear postfilter, G(s), of Fig. 6.1 in a negative feedback loop
with the unsteady aerodynamic nonlinear block, and a linear, stabilizing feedback
controller.

2 The state-feedback, linear regulator can be easily replaced by a linear observer-based compensator,
if the states are not directly measurable (Chap. 5).
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Fig. 6.2 Nonlinear
aeroservoelastic system
representation for describing
function approximation z x z = f(x, u) = Ax + Bu + z 

Nonlinear 
Block 

Linear Aeroelastic Plant 

u =  Kx 
Linear Regulator 

Linear Filter 

6.3 Flapping-Wing Flight

The design of modern airplanes became possible when people finally abandoned
the concept of bird-like flapping-wing flight in favor of separate mechanisms for
propulsion and lift generation. George Cayley proposed this conceptual breakthrough
in a coin engraving c. 1799, which showed lift and drag on a fixed wing. Such a wing
must be propelled forward by an engine in order to overcome the drag. These ideas,
almost a century later, led to the first successful controlled flight of a heavier than
air machine (Wright Flyer 1903). While modern aviation was thus founded on fixed
wings, it never really approached the seemingly effortless and graceful flight of the
birds. Airplanes need large airports to operate from and create massive noise pollution
in their wake. Thus, the desire of taking-off and landing from one’s own backyard
and soaring majestically into the skies like birds has always been a dream, as well
as an area of active research.

Emulating the bird flight through flapping, pitching, spanning, and morphing
motions requires highly flexible wings over which the local flow can be controlled
very effectively by relative motion of structural parts. While such a control is provided
by several powerful muscles in a bird, it can be artificially produced by motors (linear
and rotary) attached to the structure at discrete points. The structure should be capable
of many different degrees of freedom through a set of articulated joints actuated by
the motors. Such a highly actuated structure can be modeled by a lumped parameter
approach using rigid elements connected by flexible joints.

The simplest structural model for flapping-wing flight is a two-dimensional airfoil
suspended by linear and torsional springs representing lumped stiffnesses in the
heave, h(t), and pitch, θ (t), degrees of freedom. A vertical force, F (t), excites the
flapping (heaving) motion, while the rotation about the pitch axis can either be excited
by a motor, or by a trailing-edge control surface with deflection, β(t), as shown in
Fig. 6.3; in this case, an actuator of torque output H (t) is required about the control
surface hinge line. The coupled equations of linear structural vibration (Chap. 2) can
be written as follows:

Mq̈ + Kq = Qa + (F , 0,H )T , (6.12)



6.3 Flapping-Wing Flight 261

Fig. 6.3 Structural model for
a simple flapping-wing
system with a control surface
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where q = (h, θ ,β)T is the generalized coordinates vector, and M, K are the
following generalized mass and stiffness matrices of the structure:

M =

⎛
⎜⎜⎝

m mxθ mcxβ

mxθ Iθ mcxcxβ

mcxβ mcxcxβ Iβ

⎞
⎟⎟⎠ (6.13)

K =

⎛
⎜⎜⎝
kh 0 0

0 kθ 0

0 0 kβ

⎞
⎟⎟⎠,

with m being the wing’s mass per unit span, Iθ its moment of inertia per unit span
about the pitch axis, xθ the distance of wing’s center of mass aft of the pitch axis,
mc the mass per unit span of the control surface, xc the distance of control surface’s
hinge line aft of the pitch axis, Iβ the control surface’s moment of inertia per unit
span about its hinge line, and xβ the distance of control surface’s center of mass aft
of the hinge line. Here, Qa(t) is the generalized aerodynamic force vector, assumed
to be linearly related to the generalized coordinates and their time derivatives, as
well as to additional state variables called the aerodynamic lag state vector, xa(t),
required for modeling the influence of a circulatory wake (Chap. 3). Thus, we write

Qa = Maq̈ + Caq̇ + Kaq + Naxa , (6.14)

where Ma , Ca , and Ka are the generalized aerodynamic inertia, aerodynamic damp-
ing, and aerodynamic stiffness matrices, respectively, containing both circulatory
and noncirculatory effects, and Na is the aerodynamic lag coefficient matrix asso-
ciated with the circulatory wake. In continuation with the linear aeroelastic model,
the aerodynamic lag states are assumed to be governed by the following linear state
equations driven by the generalized coordinates and their rates:

ẋa = Faxa + �a

⎧⎨
⎩

q

q̇

⎫⎬
⎭, (6.15)
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where Fa and �a are the aerodynamic coefficient matrices corresponding to circula-
tory wake effects. Furthermore, the aeroelastic equations of motion, Eqs. (6.12) and
(6.14) can be combined to yield

(M − Ma)q̈ − Caq̇ + (K − Ka)q = Naxa + (F , 0,H )T. (6.16)

Hence, the linear aeroelastic system has the following state-space representation:

ẋ = Ax + Bu , (6.17)

where

A =

⎛
⎜⎜⎝

0 I 0

−M̄
−1

K̄ M̄
−1

Ca −M̄
−1

Na

�a Fa

⎞
⎟⎟⎠, (6.18)

and

B =

⎛
⎜⎜⎝

0

I

0

⎞
⎟⎟⎠, (6.19)

where M̄ = M − Ma , K̄ = K − Ka ,

x =

⎧⎪⎪⎨
⎪⎪⎩

q

q̇

xa

⎫⎪⎪⎬
⎪⎪⎭

, (6.20)

is the augmented state vector, and u = (F , 0,H )T , the control input vector.
The aerodynamic damping term occurring on the left-hand side of Eq. (6.16),

−Caq̇, offers an important insight into the aeroelastic motion. For an unforced motion
(u = 0), the energy removed from the system by aerodynamic damping results in a
stable motion where both q(t) and xa(t) tend to zeros in the steady limit, t → ∞. On
the other hand, the aerodynamic energy input to the system by the circulatory wake
due the term on the right-hand side of Eq. (6.16), Naxa , can exceed the damping
term under certain conditions, resulting in aeroelastic instability. At the limiting
case of flutter, this linearized inviscid model produces a self-sustained oscillation,
where the energy dissipated by damping is exactly compensated by that fed into the
system by a circulatory wake, in which case no external inputs are necessary for
maintaining a constant amplitude. However, if the motion amplitude is large, there
is a breakdown of aerodynamic linearity, and the nonlinear viscous aerodynamics
can again generate a limit-cycle oscillation at a certain flight condition, which does
not need an external forcing. Thus the aerodynamic forces and moments due to the
flapping motion require either an addition, or removal of energy by the force, F (t),
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Fig. 6.4 Schematic diagram showing the flapping and pitching of an airfoil

and torque, H (t), applied as external (control) inputs, in order to maintain a constant
amplitude of vibration. Consequently, flapping-wing flight control systems should be
designed to not only maximize the net lift and thrust per cycle, but also the smallest
input magnitudes for maintaining a nearly self-sustained oscillation.

6.3.1 Lift and Thrust for Flapping Flight

The main objective of flapping-wing flight is to combine both lift and thrust gen-
eration into a single mechanism. The success of bird-like flight depends upon the
efficiency of such a mechanism. In order to analyze a flapping wing, consider the
simple harmonic pitch and heave motions of a thin airfoil shown in Fig. 6.4. The
sectional lift, drag, and pitching moment of the airfoil per unit span are taken at the
center of mass of the wing (Fig. 6.4), and defined with respect to the wing’s trajectory.
The aircraft is moving forward at an instantaneous speed, U (t), while the wing is
forced to pitch, θ (t), and heave, h(t), relative to the flight direction. With reference to
a right-handed body frame, (i, j, k), fixed to the aircraft with i, k denoting the plane
of flight, the net velocity of the wing’s center of mass is expressed as follows:

v = U i + ḣk, (6.21)

and the angular velocity of the wing relative to the aircraft is given by

ω = −θ̇ j. (6.22)
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Fig. 6.5 Lift and thrust
created by flapping and
pitching of an airfoil
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The instantaneous angle of attack of the wing is the following:

α = θ − tan−1

(
ḣ

U

)
, (6.23)

and the net upwash (relative flow component normal to the airfoil) due to the unsteady
motion is given by

w = U sin θ − ḣ cos θ. (6.24)

Aerodynamic relationships determine the local lift and drag as functions of the
relative flow speed,

v =
√
U 2 + ḣ2, (6.25)

and either the angle of attack, α, or the upwash, w. An efficient fixed-wing operation
requires that the angle of attack must be always close to the optimum value, which
yields the largest lift-to-drag ratio. For a thin airfoil, this optimum angle of attack is
quite small, therefore linearized aerodynamic theory is applicable for fixed wings.
However, in case of flapping-wing flight, the instantaneous direction of flight of the
aircraft, i, is not the same as that of the wing. Therefore, the local instantaneous
lift and drag per unit span of the wing must be resolved in the net flight direction,
as shown in Fig. 6.5. Consequently, the net lift per unit span normal to the flight
direction is given by

L = L cos θ −D sin θ, (6.26)

and the net thrust per unit span is the following:

T = −L sin θ −D cos θ. (6.27)

From Eqs. (6.26) and (6.27), it is clear that even if the airfoil always operatedat its
optimum, local angle of attack, the net thrust over a flapping cycle would be either
zero or negative, and the net lift-to-drag ratio would be far from its optimum value. If
the pitch angle were constant during a flapping cycle, the downstroke (ḣ < 0) would
increase the local angle of attack, α, thereby increasing L and creating a larger net
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lift for a thin wing (L >> D), but a reduction in net thrust. However, if the angle of
attack is increased beyond a certain limit, it leads to the stalling of the airfoil, in which
case L � 0, and aerodynamic efficiency becomes zero. Similarly, with a constant
value of θ , the upstroke (ḣ > 0) creates a reduction in the angle of attack and local
lift magnitudeL, thereby producing a smaller net lift and thrust. If the constant value
of θ is either too large, or too small, the net lift and thrust for a complete flapping
cycle would be either zero or negative. Therefore, a loss of aerodynamic efficiency
(L/D) results whenever the pitch angle is maintained constant during a flapping
cycle. As indicated in Fig. 6.4, the best case scenario is obtained if θ is negative
during a downstroke, with a continuous reduction in its magnitude until reaching
the lowest point, after which it must be continuously increased to a positive value
corresponding to zero (or slightly negative) local lift angle of attack, L � 0, during
the upstroke. From this discussion, it is clear that the best aerodynamic efficiency
can be achieved by suitably adjusting the amplitudes and phase angles of the heaving
and pitching motions in a flapping oscillation.

In order to derive a functional aerodynamic model, consider, for example, a simple
harmonic oscillation in heave, h(t), driven by a motor about the flapping axis3 such
that

h = h0 cos (ωt), (6.28)

where ω is the forcing frequency. Since the flapping could generate large angles
of attack at which flow separation can cause nonlinear aerodynamic behavior, a
nonlinear analysis is necessary. The forced pitching motion, θ (t), is assumed to
involve only the fundamental harmonic of the driving frequency by the describing
function approximation, and is given by:

θ = θ0 cos (ωt + φ), (6.29)

where φ(ω,h0), the phase angle of pitching motion relative to the heaving motion, is
a function of the forcing frequency and amplitude, and the amplitudes h0, θ0(ω,h0)
need not be small. The lift and thrust per unit span, averaged over a complete flapping
cycle are given by

L̄ = ω

2π

∫ 2π/ω

0
(L cos θ −D sin θ) dτ, (6.30)

and

T̄ = −
∫ 2π/ω

0
(L sin θ +D cos θ) dτ. (6.31)

The flapping frequency, ω, and amplitudes, h0, dictate the values of local lift,
drag, and pitching moment per unit span of the wing, and hence the average lift

3 Due to the aerodynamic and inertial coupling, either of the two degrees of freedom can be
considered to be the input for driving the other degree of freedom.
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and thrust per cycle. Thus an unsteady aerodynamic model is necessary for relating
the two-dimensional (sectional) lift, drag, and pitching moment to the flight speed,
U , airfoil chord, c, viscosity coefficient, μ, atmospheric density, ρ (assumed con-
stant), oscillation frequency, ω, and the heave amplitude by the following nonlinear
functions:

L = L(U , c,μ, ρ,ω,h0),

D = D(U , c,μ, ρ,ω,h0), (6.32)

M = M(U , c,μ, ρ,ω,h0) .

By a dimensional analysis, it can be shown that the total number of nondimensional
parameters upon which the sectional aerodynamic coefficients depend are the num-
ber of dependent variables (6), minus the number of independent (mass, length,
time) dimensions, which leads to 6 − 3 = 3 dimensionless variables. The resulting
nondimensional relationships can thus be expressed as follows:

CL = L
1
2ρU

2c
= CL(Re, k, ĥ0),

CD = D
1
2ρU

2c
= CD(Re, k, ĥ0), (6.33)

Cm = M
1
2ρU

2c2
= Cm(Re, k, ĥ0) .

where the three aerodynamic parameters are the nondimensional heave amplitude,
ĥ0 = h0/c, the Reynolds number,

Re = ρUc

μ
, (6.34)

and the reduced frequency (or Strouhal number),

k = ωc

U
. (6.35)

An accurate aerodynamic model for flapping wing—being viscous and nonlinear
in nature due to separated flow at both leading and trailing edges—would require
the solution of unsteady Navier-Stokes equations (Chap. 3). Such computations have
been carried out by several researchers, such as Wang [190] and Zhu and Peng [198].
Less rigorous computational fluid dynamics (CFD) solutions of potential flows with
leading-edge separation are also available in literature [125]. However, being time
consuming and resource intensive in nature, it is not envisaged that a CFD model
can be adopted for online aeroservoelastic computations. Instead, online systems
identification of describing functions appears to be more suitable. For example,
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measurement of the normal acceleration as an output variable can produce an em-
pirical model expressed by Eq. (6.33). To this end, we write the total acceleration of
the wing’s center of mass as follows:

a = dv
dt

= U̇ i + ḧk − (
θ̇ j
) × (

U i + ḣk
)

= (
U̇ − ḣθ̇

)
i + (

ḧ+ Uθ̇
)

k, (6.36)

and substitute Eq. (6.28) in order to yield the normal acceleration output given by

y = ḧ+ Uθ̇

= −ω2h0 cos (ωt)− Uωθ0 sin (ωt + φ), (6.37)

which can be rendered nondimensional as follows:

ŷ = yc

U 2
= −k2ĥ0 cos (kτ )− kθ0 sin (kτ + φ), (6.38)

where τ = tU/c is the nondimensional time.
The unknown pitching amplitude, θ0, is a function of both reduced frequency and

the heave amplitude, ĥ0, and can be determined from the normal acceleration as
follows:

θ0(τ ) = −k2ĥ0 cos (kτ )+ ŷ0(τ )

k sin (kτ + φ)
, (6.39)

where the phase angle, φ(τ ), describes the time lag between the heaving and pitching
degrees of freedom in a forced oscillation, and is therefore an important aeroelastic
parameter. Since it is a function of the forcing frequency and motion amplitudes, the
unknown phase angle, φ(τ ), can be determined from the measurement of the output,
given a forcing condition (input), k, θ0(τ ), ĥ0. A finite record of the output taken at
specific time instants, τk , k = 1, 2, . . ., n can be expressed in the following vector
form:

ŷ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷ(τ1)

ŷ(τ2)
...

ŷ(τn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −k2ĥ0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos (kτ1)

cos (kτ2)
...

cos (kτn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

− k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0(τ1) sin [kτ1 + φ(τ1)]

θ0(τ2) sin [kτ2 + φ(τ2)]
...

θ0(τn) sin [kτn + φ(τn)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.40)

which is solved for the vector

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0(τ1) sin [kτ1 + φ(τ1)]

θ0(τ2) sin [kτ2 + φ(τ2)]
...

θ0(τn) sin [kτn + φ(τn)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −1

k
ŷ − kĥ0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos (kτ1)

cos (kτ2)
...

cos (kτn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6.41)
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Fig. 6.6 Schematic diagram for determining the pitch amplitude and heave-pitch phase lag from
measurement of the normal acceleration output at discrete time instants

Finally, the unknown phase angle is determined as the following vector at the given
discrete time instants:

φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(τ1)

φ(τ2)
...

φ(τn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= sin−1 x/θ0 − k

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ1

τ2

...

τn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= sin−1 x/θ0 − kτ , (6.42)

where

θ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0(τ1)

θ0(τ2)
...

θ0(τn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6.43)

and (.)/(.) denotes element-wise division of two vectors. Since neither the phase nor
the amplitude of pitching motion is known in advance, a recursive algorithm must be
used for their determination, employing Eqs. (6.39)–(6.42) until convergence within a
specified tolerance is obtained. Figure 6.6 depicts the recursive identification scheme
for the amplitude and the phase lag based upon the normal acceleration output.
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In order to develop an unsteady aerodynamic model, consider the net lift developed
by the forced heaving and pitching oscillations as the force normal to the flight path,
and described by the fundamental harmonic of the flapping frequency:

L(t) = my = m
(
ḧ+ Uθ̇

)

= −mω2h0 cos (ωt)−mUωθ0 sin (ωt + φ) (6.44)

= L0 cos (ωt + ψ), (6.45)

where L0(ω,h0) is the lift magnitude and ψ(ω,h0) the lift phase angle. It is to be
noted that the nonlinear aerodynamic behavior requires that the lift magnitude and
phase be functions of the forcing amplitudes as well as the frequency. Since the
pitching magnitude, θ0, and phase, φ, profiles have already been identified from the
normal acceleration data, it is now a simple matter to evaluate the lift amplitude and
phase by the following recursive formulae:

L0(t) = −mω [ωh0 cos (ωt)+ Uθ0(t) sin (ωt + φ(t))]

cos (ωt + ψ(t))
, (6.46)

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L0(t1) cos [ωt1 + ψ(t1)]

L0(t2) cos [ωt2 + ψ(t2)]
...

L0(tn) cos [ωtn + ψ(tn)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −mω2h0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos (ωt1)

cos (ωt2)
...

cos (ωtn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

−mUω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ0(t1) sin [ωt1 + φ(t1)]

θ0(t2) sin [ωt2 + φ(t2)]
...

θ0(tn) sin [ωtn + φ(tn)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.47)

ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(t1)

ψ(t2)
...

ψ(tn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= cos−1 x/L0 − ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1

t2
...

tn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= cos−1 x/L0 − ωt, (6.48)
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Fig. 6.7 Block diagram of an
autoregressive nonlinear
aerodynamic model for
flapping flight by describing
functions for lift and thrust
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⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6.49)

The determination of the thrust magnitude and phase can be carried out in a similar
manner by an autoregressive scheme. Figure 6.7 shows the recursive identification
scheme for the lift and thrust based upon the normal acceleration output.

The net acceleration of the wing’s center of mass can be derived in an inertial refer-
ence frame [169], and substituted into the aircraft’s translational dynamics equation
(Newton’s second law). Similarly, the pitching dynamics of the aircraft (which is
inherently coupled with the translational motion in the nonlinear case) can also be
represented [169]. Finally, optimal feedback control laws can be derived [170] based
upon the lift and pitching moment identified by the autoregressive scheme given
above, in order to generate the maximum possible lift and thrust per cycle. This
appears to be a promising research topic for the future.

The flapping-wing flight model can be extended to other nonlinear systems, for
which controller is to be designed. A general adaptation scheme based upon the
autoregressive identification of plant characteristics in a closed loop is depicted by a
schematic diagram in Fig. 6.8. Note the presence of an outer adaptation loop which
can adjust the controller gains based upon a changing plant model. Design of such
adaptation laws can be carried out to ensure the stability of the overall adaptive
control system [10]. Such adaptive techniques are very promising for a wide range
of ASE applications, including those briefly discussed below.
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Fig. 6.8 Schematic block diagram of an adaptive control system based upon autoregressive
identification of an uncertain plant

6.4 Shock-Induced Buffet

The transonic flight regime is home to several hazardous phenomena due to the pres-
ence of nearly normal shock waves on a wing’s upper and lower surfaces. The shock
waves are prone to self-induced oscillations in their locations, whereby unsteady
pressure fluctuations can be amplified by interaction with structural vibration and
rigid-body modes. When such oscillations assume larger amplitudes, they cause pe-
riodic strengthening of the shocks, resulting in cyclic separation and reattachment of
boundary layers. The aeroelastic coupling in such a case can produce limit-cycle buf-
feting motions that are potentially disastrous to fighter type aircraft maneuvering at
transonic speeds. Even high-subsonic airline transports can encounter shock-induced
buffeting of wings and tails while cruising in gusty conditions.

Experimental research into transonic buffet [107] reveals two basic types of buf-
feting of wing-like structures: (a) shock-induced buffet of moderately swept wings
and tails, and (b) vortex-induced buffet of highly swept, low-aspect-ratio wings. Type
(a) buffet has a rich frequency spectrum, capable of exciting several structural modes.
However, Type (b) buffet is usually of a single frequency due to its production by a
strong leading edge vortex, whose strength is not modified appreciably by the pres-
ence of shock waves. Both types of buffeting, however, require nonlinear, viscous
aerodynamic modeling due to separated flows. It appears that the single frequency
peak of Type (b) buffet can be filtered out by a linear controller, whose gain is suit-
ably adjusted with flight parameters (Mach number, altitude, and “g”-loading). Thus
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the gain-scheduling approach would be applicable here. Alternatively, a describing
function model can be applied. However, due to the multimodal response of Type
(a) buffet, an online identification of the aerodynamic parameters would be neces-
sary. This can be achieved either by an autoregressive scheme presented above for
the flapping-wing flight, or by Lyapunov-based model-reference adaptive control,
discussed below by an illustrative example.

6.5 Transonic Flutter

Presence of shock waves on an aircraft wing operating in the transonic regime causes
a hazardous two-fold flutter: (a) a dip in the flutter dynamic pressure, and (b) stall
flutter due to shock-induced flow separation. The earliest encounters with transonic
flutter were encountered toward the end of World-War II by fighter type aircraft
in steep dives. The phenomena of flutter dip and stall flutter are illustrated by the
experimental data in Figs. 6.9 and 6.10, respectively, obtained by Rivera et al. [141]
on a rectangular planform with NACA 0012 airfoil, suspended by a flexible pitch
and plunge apparatus in NASA Langley’s Transonic Dynamics Tunnel. Figure 6.9 is
based upon the data of this experiment, and shows that the classical flutter mechanism
of pitch and plunge at subsonic Mach numbers changes to pure plunge instability
above M = 0.90 and zero angle-of-attack, causing a rapid dip of flutter dynamic
pressure to less than half of its peak value at M = 0.85. The second hazard of a dip
in the flutter boundary due to increased angle-of-attack is seen in Fig. 6.10, where
separated flow due to shock waves for angle-of-attack above α = 3.5 degree symbol
results in a stall condition at transonic Mach number of 0.78. Such an increase in the
angle-of-attack can happen either due to an inadvertent maneuver, or a sharp-edged
atmospheric gust. For sweptback wings, the pitching moment contributions due to
the tip are such that the initial rise of flutter boundary seen in Fig. 6.9 is absent [199],
resulting in a steepening decline of the flutter speed until the sonic flight speed. Such
a behavior is depicted graphically in Fig. 6.11 [176] for three types of wing planforms
and an early attempt to predict the transonic dip by an empirical Mach correction
method for torsional stiffness [33]. An aeroservoelastic design that addresses the
transonic flutter problem requires a simple and adequate model of the associated
flutter mechanisms for both the phenomena (a) and (b).

The classical subsonic flutter mechanism for a high-aspect-ratio wing involves the
primary bending and primary torsion modes. For a typical section, these translate into
the plunge (heave) and pitch modes, respectively. The coupling of the two modes
is such that as the dynamic pressure is increased, the bending (plunging) natural
frequency, which is initially smaller, increases, while that of the torsion (pitch) mode
decreases, until they coalesce at the flutter condition. Thus at the flutter speed, the
two primary modes are almost merged into a single mode, whose damping becomes
negative, and energy can be extracted from the system at the flutter frequency.

At transonic speeds, the flutter mechanism changes drastically due to the following
phenomena:
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Fig. 6.9 Sudden dip in flutter boundary at transonic speeds on a NACA 0012 airfoil at zero angle-
of-attack [141]

1. Increase in the quasi-steady lift-curve-slope, CLα , with Mach number until
M = 1.

2. Aft movement of the aerodynamic center from nearly quarter-chord to mid-chord
position as the speed is increased from subsonic to supersonic.

Although these aerodynamic effects partly explain why a transonic flutter dip could
occur, the explanation of flutter mechanism responsible for the dip requires consid-
eration of structural properties (stiffness and mass parameters). Zwaan [199] offers
such an explanation with respect to a rectangular flat plate suspended by vertical and
torsional springs.

6.5.1 Adaptive Suppression of Transonic LCO: Illustrative
Example

An aeroservoelastic controller operating in transonic flight regime must necessar-
ily be adaptive with respect to unknown parametric variations in the aerodynamic
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Fig. 6.10 Stall flutter at transonic speeds on a NACA 0012 airfoil at M = 0.78 [141]

characteristics of the plant. This renders the control law to be nonlinear, due to its de-
pendence on operating conditions (hence state variables). There are several nonlinear
control design techniques, which can be applied to such a system, such as Lyapunov-
based controllers [60, 132], feedback linearization [78], sliding-mode (variable
structure) control [53], model reference adaptation [10], integral back-stepping [89],
etc. While a comprehensive discussion of such techniques is beyond our present
approach, we will briefly consider an illustrative application of the Lyapunov-based
back-stepping design to an interesting problem, where plant parameters are highly
uncertain.

Consider an aircraft wing experiencing transonic limit-cycle oscillation (LCO)
involving the primary torsion mode of natural frequency ωp and damping ratio ζp.
The unsteady aerodynamics feeding the LCO is caused by the shock-induced flow
separation near the trailing edge, and can be represented by a nonlinear angular
acceleration forcing term f (α, α̇), where α(t) is the angle of attack, as follows:

f (α) =

⎧⎪⎪⎨
⎪⎪⎩

0, α < θ

aα̇, α ≥ θ
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Fig. 6.11 Transonic flutter boundary dip for sweptback wings

with a, θ being unknown aerodynamic parameters.
The equation of motion of the single degree-of-freedom aeroelastic plant is the

following:

α̈ + 2ωpζpα̇ + ω2
pα = f (α, α̇) + u,

where u(t) is the angular acceleration control input provided by a trailing-edge control
surface. The task of theASE engineer is to suppress the LCO by designing a feedback
control law,

u = g(α̇),

where q = α̇ is the pitch rate picked up by a rate gyro. However, the design task is
complicated by the fact that the unsteady forcing parameters a, θ are unknown, and
vary with the flight Mach number in an unpredictable manner.

In order to carry out an adaptive controller design, the plant state equations are
expressed as follows:

α̇ = q

q̇ = −2ωpζpq − ω2
pα + f (α, α̇) + u,
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and an output feedback controller is proposed,

u = −(k + x)q,

with a constant parameter k > 0, and an adaptive gain x(t) with adaptation law

ẋ = q2.

The resulting closed-loop system is of third order and is given by

α̇ = q

q̇ = − [
2ωpζp + (k + x)

]
q − ω2

pα + f (α, α̇)

ẋ = q2.

For stability analysis of this ASE system, let us construct the following Lyapunov
function (Appendix-D):

V (α, q, x) = 1

2
ω2
pα

2 + 1

2
q2 + 1

2
(x − a)2

The time-derivative of V is then given by

V̇ (α, q, x) = ω2
pαα̇ + qq̇ + ẋ(x − a),

or

V̇ = ω2
pαq − [

2ωpζp + (k + x)
]
q2 − ω2

pαq + f (α, α̇)q + q2(x − a),

implying that

V̇ ≤ − [
2ωpζp + (k + x)

]
q2 + aq2 + q2(x − a),

or that

V̇ ≤ − [
2ωpζp + k

]
q2 < 0.

Since the time-derivative of the Lyapunov function is strictly negative-definite, by
Lyapunov stability theorem (Appendix-D) the closed-loop adaptive ASE system is
unconditionally and asymptotically stable, which implies that all initial perturbations
decay to zero as t → ∞. This fact is illustrated by the simulated response of the
closed-loop system in Figs. 6.12, 6.13 , and 6.14, which is carried out by a Runge–
Kutta algorithm [110, 111, 154] with ωp = 50 rad/s, ζp = 0.01, a = 2.9, θ = 1.5◦,
and k = 0.1, to initial condition α = 5◦, q = 0.5 rad/s.

It is important to highlight that the adaptation mechanism has regulated the ASE
system without any knowledge of the unknown system parameters a, θ . This would
not have been possible without such an adaptation law. Such an application could
be also applied to multi-degree of freedom ASE systems, such as transonic flutter
suppression and active control of aeroelastic buffeting at high angles-of-attack.
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for transonic LCO suppression with initial angle of attack and pitch rate perturbation
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Listing of Mass and Stiffness Matrices

The global stiffness and mass matrices for the cantilevered, high aspect-ratio wing of
Example 2.1, derived by the finite-element method with 20, two-noded, beam-shaft
finite elements are listed below. The notation uses the identifier indices of the matrix
element in parentheses (i, j ) followed by its value immediately below.

Nonzero Elements of Global Mass Matrix

(1,1) (1,2) (1,3) (1,4) (1,41) (1,42)

27.3085 −0.0182 4.6858 −0.6203 18.9165 3.9498

(2,2) (2,3) (2,4) (2,41) (2,42)

0.2117 0.6203 −0.0787 −0.0380 0.4827

(3,3) (3,4) (3,5) (3,6) (3,41) (3,42) (3,43)

26.8388 −0.0182 4.6045 −0.6096 −3.9498 17.9589 3.7469

(4,4) (4,5) (4,6) (3,41) (3,42) (3,43)

0.2081 0.6096 −0.0774 −0.4827 −0.0372 0.4579

(5,5) (5,6) (5,7) (5,8) (5,42) (5,43) (5,44)

26.3690 4.5232 −0.5988 −0.0182 −3.7469 17.0234 3.5488

(6,6) (6,7) (6,8) (6,42) (6,43) (6,44)

0.2045 0.5988 −0.0760 −0.4579 −0.0363 0.4337

(7,7) (7,8) (7,9) (7,10) (7,43) (7,44) (7,45)

25.8992 −0.0182 4.4419 −0.5880 −3.5488 16.1101 3.3555

© Springer Science+Business Media, LLC 2015 279
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(8,8) (8,9) (8,10) (8,10) (8,43) (8,44) (8,45)

0.2008 0.5880 −0.0746 −0.4337 −0.0354 0.4100

(9,9) (9,10) (9,11) (9,12) (9,44) (9,45) (9,46)

25.4294 −0.0182 4.3606 −0.5773 −3.3555 15.2188 3.1669

(10,10) (10,11) (10,12) (10,44) (10,45) (10,46)

0.1972 0.5773 −0.0733 −0.4100 −0.0346 0.3870

(11,11) (11,12) (11,13) (11,14) (11,45) (11,46) (11,47)

24.9596 −0.0182 4.2793 −0.5665 −3.1669 14.3498 2.9830

(12,12) (12,13) (12,14) (12,45) (12,46) (12,47)

0.1935 0.5665 −0.0719 −0.3870 −0.0337 0.3645

(13,13) (13,14) (13,15) (13,16) (13,46) (13,47) (13,48)

24.4898 −0.0182 4.1980 −0.5558 −2.9830 13.5028 2.8039

(14,14) (14,15) (14,16) (14,46) (14,47) (14,48)

0.1899 0.5558 −0.0705 −0.3645 −0.0328 0.3426

(15,15) (15,16) (15,17) (15,18) (15,47) (15,48) (15,49)

24.0201 −0.0182 4.1167 −0.5450 −2.8039 12.6780 2.6295

(16,16) (16,17) (16,18) (16,47) (16,48) (16,49)

0.1862 0.5450 −0.0692 −0.3426 −0.0320 0.3213

(17,17) (17,18) (17,19) (17,20) (17,48) (17,49) (17,50)

23.5503 −0.0182 4.0354 −0.5342 −2.6295 11.8753 2.4599

(18,18) (18,19) (18,20) (18,48) (18,49) (18,50)

0.1826 0.5342 −0.0678 −0.3213 −0.0311 0.3006

(19,19) (19,20) (19,21) (19,22) (19,49) (19,50) (19,51)

23.0805 −0.0182 3.9540 −0.5235 −2.4599 11.0947 2.2950

(20,20) (20,21) (20,22) (20,49) (20,50) (20,51)

0.1790 0.5235 −0.0664 −0.3006 −0.0302 0.2805
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(21,21) (21,22) (21,23) (21,24) (21,50) (21,51) (21,52)

22.6107 −0.0182 3.8727 −0.5127 −2.2950 10.3363 2.1348

(22,22) (22,23) (22,24) (22,50) (22,51) (22,52)

0.1753 0.5127 −0.0651 −0.2805 −0.0294 0.2609

(23,23) (23,24) (23,25) (23,26) (23,51) (23,52) (23,53)

22.1409 −0.0182 3.7914 −0.5019 −2.1348 9.6000 1.9794

(24,24) (24,25) (24,26) (24,51) (24,52) (24,53)

0.1717 0.5019 −0.0637 −0.2609 −0.0285 0.2419

(25,25) (25,26) (25,27) (25,28) (25,52) (25,53) (25,54)

21.6712 −0.0182 3.7101 −0.4912 −1.9794 8.8859 1.8288

(26,26) (26,27) (26,28) (26,52) (26,53) (26,54)

0.1680 0.4912 −0.0623 −0.2419 −0.0276 0.2235

(27,27) (27,28) (27,29) (27,30) (27,53) (27,54) (27,55)

21.2014 −0.0182 3.6288 −0.4804 −1.8288 8.1938 1.6829

(28,28) (28,29) (28,30) (28,53) (28,54) (28,55)

0.1644 0.4804 −0.0610 −0.2235 −0.0267 0.2056

(29,29) (29,30) (29,31) (29,32) (29,54) (29,55) (29,56)

20.7316 −0.0182 3.5475 −0.4696 −1.6829 7.5240 1.5417

(30,30) (30,31) (30,32) (30,54) (30,55) (30,56)

0.1608 0.4696 −0.0596 −0.2056 −0.0259 0.1884

(31,31) (31,32) (31,33) (31,34) (31,55) (31,56) (31,57)

20.2618 −0.0182 3.4662 −0.4589 −1.5417 6.8762 1.4053

(32,32) (32,33) (32,34) (32,55) (32,56) (32,57)

0.1571 0.4589 −0.0582 −0.1884 −0.0250 0.1717

(33,33) (33,34) (33,35) (33,36) (33,56) (33,57) (33,58)

19.7920 −0.0182 3.3849 −0.4481 −1.4053 6.2506 1.2736
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(34,34) (34,35) (34,36) (34,56) (34,57) (34,58)

0.1535 0.4481 −0.0569 −0.1717 −0.0241 0.1556

(35,35) (35,36) (35,37) (35,38) (35,57) (35,58) (35,59)

19.3223 −0.0182 3.3036 −0.4373 −1.2736 5.6471 1.1466

(36,36) (36,37) (36,38) (36,57) (36,58) (36,59)

0.1498 0.4373 −0.0555 −0.1556 −0.0233 0.1401

(37,37) (37,38) (37,39) (37,40) (37,58) (37,59) (37,60)

18.8525 −0.0182 3.2223 −0.4266 −1.1466 5.0657 1.0244

(38,38) (38,39) (38,40) (38,58) (38,59) (38,60)

0.1462 0.4266 −0.0541 −0.1401 −0.0224 0.1252

(39,39) (39,40) (39,59) (39,60) (40,40) (40,59) (40,60)

9.3088 −0.7219 −1.0244 2.3903 0.0722 −0.1252 −0.1878

(41,41) (41,42) (42,42) (42,43) (43,43) (43,44) (44,44)

57.7222 14.3137 56.7874 14.0800 55.8525 13.8463 54.9177

(44,45) (45,45) (45,46) (46,46) (46,47) (47,47) (47,48)

13.6126 53.9828 13.3789 53.0480 13.1451 52.1131 12.9114

(48,48) (48,49) (49,49) (49,50) (50,50) (50,51) (51,51)

51.1783 12.6777 50.2434 12.4440 49.3086 12.2103 48.3737

(51,52) (52,52) (52,53) (53,53) (53,54) (54,54) (54,55)

11.9766 47.4389 11.7429 46.5041 11.5092 45.5692 11.2754

(55,55) (55,56) (56,56) (56,57) (57,57) (57,58) (58,58)

44.6344 11.0417 43.6995 10.8080 42.7647 10.5743 41.8298

(58,59) (59,59) (59,60) (60,60)

10.3406 40.8950 10.1069 20.2138
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Nonzero Elements of Symmetric Global Stiffness Matrix (× 10−7)

(1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4)

93.0885 −0.4960 −45.6422 12.5496 9.3834 −12.5496 2.3004

(3,3) (3,4) (3,5) (3,6) (4,4) (4,5) (4,6)

89.4804 −0.4960 −43.8382 12.0535 9.0197 −12.0535 2.2095

(5,5) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8)

85.8724 −0.4960 −42.0342 11.5575 8.6560 −11.5575 2.1185

(7,7) (7,8) (7,9) (7,10) (8,8) (8,9) (8,10)

82.2643 −0.4960 −40.2301 11.0615 8.2923 −11.0615 2.0276

(9,9) (9,10) (9,11) (9,12) (10,10) (10,11) (10,12)

78.6562 −0.4960 −38.4261 10.5654 7.9286 −10.5654 1.9367

(11,11) (11,12) (11,13) (11,14) (12,12) (12,13) (12,14)

75.0481 −0.4960 −36.6220 10.0694 7.5649 −10.0694 1.8458

(13,13) (13,14) (13,15) (13,16) (14,14) (14,15) (14,16)

71.4400 −0.4960 −34.8180 9.5734 7.2012 −9.5734 1.7548

(15,15) (15,16) (15,17) (15,18) (16,16) (16,17) (16,18)

67.8319 −0.4960 −33.0140 9.0774 6.8375 −9.0774 1.6639

(17,17) (17,18) (17,19) (17,20) (18,18) (18,19) (18,20)

64.2239 −0.4960 −31.2099 8.5813 6.4738 −8.5813 1.5730

(19,19) (19,20) (19,21) (19,22) (20,20) (20,21) (20,22)

60.6158 −0.4960 −29.4059 8.0853 6.1101 −8.0853 1.4821

(21,21) (21,22) (21,23) (21,24) (22,22) (22,23) (22,24)

57.0077 −0.4960 −27.6018 7.5893 5.7464 −7.5893 1.3911

(23,23) (23,24) (23,25) (23,26) (24,24) (24,25) (24,26)

53.3996 −0.4960 −25.7978 7.0932 5.3827 −7.0932 1.3002

(25,25) (25,26) (25,27) (25,28) (26,26) (26,27) (26,28)

49.7915 −0.4960 −23.9937 6.5972 5.0190 −6.5972 1.2093
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(27,27) (27,28) (27,29) (27,30) (28,28) (28,29) (28,30)

46.1834 −0.4960 −22.1897 6.1012 4.6553 −6.1012 1.1184

(29,29) (29,30) (29,31) (29,32) (30,30) (30,31) (30,32)

42.5754 −0.4960 −20.3857 5.6051 4.2916 −5.6051 1.0274

(31,31) (31,32) (31,33) (31,34) (32,32) (32,33) (32,34)

38.9673 −0.4960 −18.5816 5.1091 3.9279 −5.1091 0.9365

(33,33) (33,34) (33,35) (33,36) (34,34) (34,35) (34,36)

35.3592 −0.4960 −16.7776 4.6131 3.5642 −4.6131 0.8456

(35,35) (35,36) (35,37) (35,38) (36,36) (36,37) (36,38)

31.7511 −0.4960 −14.9735 4.1170 3.2005 −4.1170 0.7547

(37,37) (37,38) (37,39) (37,40) (38,38) (38,39) (38,40)

28.1430 −0.4960 −13.1695 3.6210 2.8368 −3.6210 0.6637

(39,39) (39,40) (40,40) (41,41) (41,42) (42,42) (42,43)

13.1695 −3.6210 1.3275 3.2978 −1.6205 3.1842 −1.5637

(43,43) (43,44) (44,44) (44,45) (45,45) (45,46) (46,46)

3.0705 −1.5068 2.9568 −1.4500 2.8432 −1.3932 2.7295

(46,47) (47,47) (47,48) (48,48) (48,49) (49,49) (49,50)

−1.3364 2.6159 −1.2795 2.5022 −1.2227 2.3886 −1.1659

(50,50) (50,51) (51,51) (51,52) (52,52) (52,53) (53,53)

2.2749 −1.1090 2.1613 −1.0522 2.0476 −0.9954 1.9340

(53,54) (54,54) (54,55) (55,55) (55,56) (56,56) (56,57)

−0.9386 1.8203 −0.8817 1.7066 −0.8249 1.5930 −0.7681

(57,57) (57,58) (58,58) (58,59) (59,59) (59,60) (60,60)

1.4793 −0.7113 1.3657 −0.6544 1.2520 −0.5976 0.5976
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B.1 Aerodynamic Influence Coefficients for Vortex-Ring
Elements

Aij = vij · nj , (i = 1, . . . , N ; j = 1, . . . , N ) (B.1)

vij =
4∑

k=1

vkij , (i = 1, . . . , N ; j = 1, . . . , N ) (B.2)

v1ij = − (r2i − r1i) × [ (r1i + r2i ) /2 − rj ]

4π | (r1i + r2i ) /2 − rj |3 (B.3)

v2ij = − (r3i − r2i) × [ (r2i + r3i ) /2 − rj ]

4π | (r2i + r3i ) /2 − rj |3 (B.4)

v3ij = − (r4i − r3i) × [ (r3i + r4i ) /2 − rj ]

4π | (r3i + r4i ) /2 − rj |3 (B.5)

v4ij = − (r1i − r4i) × [ (r1i + r4i ) /2 − rj ]

4π | (r1i + r4i ) /2 − rj |3 (B.6)

The subscript i identifies the vortex-ring element of which the influence is calculated,
and subscript j stands for the panel at whose 3/4-chord, mid-span collocation point
the induced velocity is specified. The local outward normal to the wing surface at
the collocation point is denoted nj . The subscripts 1, 2, 3, 4 refer to the corner points
of the vortex-ring element, arranged in a clockwise direction.

The wake influence coefficients Bij , Cij , Dij are similarly computed, with the
sending (or receiving) panels being wake (rather than wing) panels. After the influ-
ence of panels on one side of the wing is computed, the one on the other (symmetrical)
side is added by a mirror image of Biot-Savart law , with yi replaced by −yi , and
the spanwise component of induced velocity vij also reversed in sign.
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B.2 Aerodynamic Influence Coefficients for Quadrilateral
Doublet Elements

Katz and Plotkin [86] (p. 287) present closed-form expressions for the velocity com-
ponents induced by a doublet of spatially constant strength μ (or a vortex-ring of
circulation Γ = μ). The doublet (or vortex-ring) panel has corners arranged clock-
wise denoted by coordinates, (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4),
while the induced-velocity components (u, v, w) are evaluated at a point (x, y, z).
For a quadrilateral doublet pointing along the z-axis, we have, by Green’s integral:

Φ(x, y, z) = lim
ε→0

− μ

4π

∫∫∫
zdξdηdζ

[(x − ξ )2 + (y − η)2 + (z − ε)2]
(B.7)

The velocity induced by the doublet is derived by differentiation, (u, v, w)T = ∇Φ,
and taking the limit ε → 0:

u = μ

4π

[
z(y1 − y2)(r1 + r2)

r1r2
{
r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]

}

+ z(y2 − y3)(r2 + r3)

r2r3
{
r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]

}

+ z(y3 − y4)(r3 + r4)

r3r4
{
r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]

}

+ z(y4 − y1)(r4 + r1)

r4r1
{
r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]

}
]

(B.8)

v = μ

4π

[
z(x2 − x1)(r1 + r2)

r1r2
{
r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]

}

+ z(x3 − x2)(r2 + r3)

r2r3
{
r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]

}

+ z(x4 − x3)(r3 + r4)

r3r4
{
r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]

}

+ z(x1 − x4)(r4 + r1)

r4r1
{
r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]

}
]

(B.9)

w = μ

4π

[
[(x − x2)(y − y1) − (x − x1)(y − y2)](r1 + r2)

r1r2
{
r1r2 − [(x − x1)(x − x2) + (y − y1)(y − y2) + z2]

}

+ [(x − x3)(y − y2) − (x − x2)(y − y3)](r2 + r3)

r2r3
{
r2r3 − [(x − x2)(x − x3) + (y − y2)(y − y3) + z2]

}
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+ [(x − x4)(y − y3) − (x − x3)(y − y4)](r3 + r4)

r3r4
{
r3r4 − [(x − x3)(x − x4) + (y − y3)(y − y4) + z2]

}

+ [(x − x1)(y − y4) − (x − x4)(y − y1)](r4 + r1)

r4r1
{
r4r1 − [(x − x4)(x − x1) + (y − y4)(y − y1) + z2]

}
]

(B.10)

Here ri = √
(x − xi)2 + (y − yi)2 + (z − zi)2, i = 1, 2, 3.
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C.1 Listing of Generalized Aerodynamics Harmonic Data

The following is a listing of generalized aerodynamics transfer matrix , D(s), for the
harmonic case (s = iω), generated by Doublet-Lattice method for the DAST-ARW1
wing (Chap. 3) with one chordwise and six spanwise boxes at Mach number 0.8072
and standard altitude 7.6 km, for six structural modes (3 symmetric and 3 anti-
symmetric) given in Chap. 4. This data is used for curve-fitting for the illustrative
example presented in Chap. 4. Each column of the listing has values of elements of
D(iω) at 30 frequency points listed row-wise. For example, a term D(22,3,1) implies
the element (3, 1) of D(iω) evaluated at the 22nd frequency point, i.e., for ω =
30 Hz. The first six matrices correspond to the GAF data produced by a combination
of the structural deformation modes, while the last matrix D( :, :, 7) is the GAF data
for the trailing-edge flap.

G(:,:,1) =

Columns 1 through 3

-1.0241 + 0i -2.2079 + 0i -3.7013 + 0i
-1.0241 + 0.00028767i -2.2079 - 0.0001723i -3.7013 - 0.00053639i
-1.0241 + 0.00057531i -2.2078 - 0.00034463i -3.7013 - 0.0010728i
-1.0241 + 0.0011503i -2.2078 - 0.00068962i -3.7013 - 0.0021461i
-1.0239 + 0.0028708i -2.2076 - 0.0017301i -3.701 - 0.0053724i
-1.0233 + 0.0057066i -2.2067 - 0.0035027i -3.6999 - 0.010795i
-1.0224 + 0.0084742i -2.2054 - 0.0053575i -3.6981 - 0.016314i
-1.0211 + 0.011144i -2.2035 - 0.0073288i -3.6956 - 0.021968i
-1.0194 + 0.013692i -2.2011 - 0.009445i -3.6924 - 0.027787i
-1.0175 + 0.016098i -2.1982 - 0.011729i -3.6887 - 0.033795i
-1.0126 + 0.020418i -2.1911 - 0.016867i -3.6793 - 0.046447i
-1.0068 + 0.024008i -2.1824 - 0.022849i -3.6678 - 0.060034i

-0.99238 + 0.028768i -2.1605 - 0.037634i -3.6385 - 0.09036i
-0.96604 + 0.029495i -2.1191 - 0.067423i -3.5818 - 0.14454i
-0.94642 + 0.025697i -2.0871 - 0.092386i -3.5371 - 0.18657i
-0.91537 + 0.013834i -2.0347 - 0.13701i -3.4624 - 0.25795i
-0.8943 + 0.002011i -1.9976 - 0.17116i -3.4085 - 0.31061i

-0.86317 - 0.021208i -1.9399 - 0.22835i -3.323 - 0.39625i
-0.84331 - 0.040058i -1.9007 - 0.27002i -3.2637 - 0.45716i
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Columns 4 through 6

-5.4942 + 0i -8.2153 + 0i -12.367 + 0i
-5.4942 - 0.00021782i -8.2153 + 0.00074983i -12.367 + 0.00018851i
-5.4942 - 0.00043569i -8.2153 + 0.0014996i -12.367 + 0.00037694i
-5.4941 - 0.00087188i -8.2152 + 0.0029986i -12.367 + 0.00075322i
-5.4937 - 0.0021882i -8.2148 + 0.0074864i -12.367 + 0.0018715i
-5.4924 - 0.0044359i -8.2133 + 0.014902i -12.365 + 0.0036632i
-5.4903 - 0.0067962i -8.2108 + 0.022186i -12.362 + 0.0053067i
-5.4873 - 0.0093123i -8.2074 + 0.029291i -12.358 + 0.0067507i
-5.4835 - 0.012017i -8.203 + 0.03618i -12.353 + 0.0079587i
-5.479 - 0.014933i -8.1978 + 0.042829i -12.347 + 0.0089035i

-5.4678 - 0.021475i -8.1848 + 0.055325i -12.333 + 0.0099105i
-5.4538 - 0.02906i -8.1687 + 0.06663i -12.314 + 0.0095896i
-5.4183 - 0.047795i -8.1276 + 0.085121i -12.267 + 0.0043282i
-5.3489 - 0.085857i -8.0469 + 0.10132i -12.175 - 0.016394i
-5.2938 - 0.11809i -7.9827 + 0.10414i -12.101 - 0.039054i
-5.2008 - 0.17633i -7.8738 + 0.096661i -11.974 - 0.086187i
-5.1331 - 0.22129i -7.7942 + 0.084238i -11.882 - 0.12604i
-5.0249 - 0.29686i -7.6665 + 0.055452i -11.732 - 0.19748i
-4.9493 - 0.35193i -7.5769 + 0.030239i -11.626 - 0.25215i
-4.8317 - 0.44016i -7.4369 - 0.015227i -11.46 - 0.34346i
-4.751 - 0.50191i -7.3405 - 0.04983i -11.344 - 0.40979i

-4.6268 - 0.59761i -7.1916 - 0.10686i -11.165 - 0.51628i
-4.5205 - 0.67915i -7.0639 - 0.15807i -11.01 - 0.61049i
-4.4118 - 0.76145i -6.9331 - 0.21174i -10.85 - 0.70886i
-4.323 - 0.82735i -6.8262 - 0.25598i -10.72 - 0.79012i

-4.1865 - 0.92566i -6.6619 - 0.32383i -10.518 - 0.91564i
-4.0931 - 0.99049i -6.5496 - 0.3697i -10.38 - 1.0014i
-3.9493 - 1.0863i -6.3769 - 0.43904i -10.167 - 1.1328i
-3.8509 - 1.1489i -6.2589 - 0.48543i -10.022 - 1.2219i
-3.6991 - 1.241i -6.0775 - 0.55502i -9.798 - 1.3578i

G(:,:,2) =

Columns 1 through 3

-6.3597 + 0i -14.749 + 0i -22.439 + 0i
-6.3597 + 0.0038241i -14.749 + 0.0025984i -22.439 + 0.0013866i
-6.3597 + 0.0076481i -14.749 + 0.0051966i -22.439 + 0.0027729i
-6.3596 + 0.015295i -14.749 + 0.010391i -22.439 + 0.0055436i
-6.3588 + 0.038213i -14.748 + 0.025948i -22.438 + 0.013821i
-6.3561 + 0.076254i -14.745 + 0.051677i -22.434 + 0.027376i
-6.3516 + 0.11396i -14.74 + 0.076987i -22.429 + 0.040421i
-6.3454 + 0.1512i -14.734 + 0.1017i -22.422 + 0.052747i
-6.3376 + 0.18784i -14.725 + 0.12566i -22.413 + 0.064189i
-6.3283 + 0.22378i -14.715 + 0.14877i -22.402 + 0.074616i
-6.3055 + 0.29327i -14.69 + 0.19202i -22.376 + 0.092045i

-0.7467 - 0.23356i -1.6214 - 0.63254i -2.7877 - 0.96213i
-0.74054 - 0.27442i -1.5713 - 0.70616i -2.6879 - 1.0637i
-0.73843 - 0.30046i -1.5387 - 0.75385i -2.6202 - 1.1302i
-0.73748 - 0.33703i -1.4908 - 0.8226i -2.5169 - 1.2275i
-0.73782 - 0.35948i -1.4591 - 0.86626i -2.4467 - 1.2905i
-0.73883 - 0.39006i -1.4115 - 0.92811i -2.3389 - 1.3821i

-0.81577 - 0.07275i -1.8419 - 0.33701i -3.1721 - 0.55312i
-0.79933 - 0.097027i -1.8031 - 0.3841i -3.1097 - 0.61944i
-0.77816 - 0.13624i -1.7462 - 0.45731i -3.0148 - 0.72127i
-0.76401 - 0.17061i -1.7003 - 0.51974i -2.9346 - 0.8073i
-0.75312 - 0.20563i -1.6558 - 0.58256i -2.8534 - 0.89351i
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-5.058 + 0.71237i -13.626 - 0.77561i -21.648 - 2.1036i
-5.0148 + 0.66868i -13.622 - 0.95208i -21.699 - 2.3852i
-4.9616 + 0.60231i -13.637 - 1.2295i -21.801 - 2.8279i
-4.9324 + 0.55913i -13.658 - 1.4216i -21.886 - 3.1358i
-4.8949 + 0.49789i -13.706 - 1.7186i -22.037 - 3.6161i
-4.8719 + 0.45998i -13.747 - 1.9216i -22.153 - 3.9482i
-4.8368 + 0.40732i -13.82 - 2.2328i -22.346 - 4.464i

Columns 4 through 6

-22.676 + 0i -19.305 + 0i -57.719 + 0i
-22.676 - 0.00046291i -19.305 - 0.0036554i -57.719 + 0.0057027i
-22.676 - 0.00092615i -19.305 - 0.0073112i -57.719 + 0.011405i
-22.675 - 0.0018549i -19.305 - 0.014625i -57.718 + 0.022806i
-22.674 - 0.0046827i -19.303 - 0.036617i -57.717 + 0.056955i
-22.671 - 0.0096834i -19.298 - 0.073608i -57.711 + 0.11349i
-22.665 - 0.015288i -19.291 - 0.1113i -57.701 + 0.16924i
-22.656 - 0.021732i -19.28 - 0.14995i -57.688 + 0.22393i
-22.646 - 0.029193i -19.267 - 0.18975i -57.671 + 0.27738i
-22.634 - 0.037806i -19.252 - 0.23083i -57.651 + 0.32946i
-22.605 - 0.05887i -19.214 - 0.3172i -57.603 + 0.4291i
-22.569 - 0.085551i -19.168 - 0.40974i -57.544 + 0.52213i
-22.485 - 0.15773i -19.057 - 0.61547i -57.399 + 0.68596i
-22.338 - 0.3178i -18.858 - 0.98041i -57.131 + 0.8725i
-22.234 - 0.46026i -18.712 - 1.2617i -56.929 + 0.95819i
-22.084 - 0.726i -18.49 - 1.7375i -56.607 + 1.0329i
-21.992 - 0.93591i -18.346 - 2.088i -56.384 + 1.0498i
-21.876 - 1.2956i -18.142 - 2.6584i -56.048 + 1.0317i
-21.816 - 1.5625i -18.019 - 3.0649i -55.825 + 0.99467i
-21.754 - 1.9986i -17.857 - 3.708i -55.499 + 0.90861i
-21.734 - 2.3106i -17.765 - 4.1552i -55.288 + 0.83477i
-21.736 - 2.8061i -17.654 - 4.8484i -54.981 + 0.7052i
-21.766 - 3.2412i -17.585 - 5.4423i -54.735 + 0.58424i
-21.822 - 3.6938i -17.537 - 6.0476i -54.496 + 0.45493i
-21.884 - 4.0675i -17.512 - 6.5384i -54.31 + 0.34724i
-22.006 - 4.6456i -17.497 - 7.2833i -54.038 + 0.18122i
-22.104 - 5.0423i -17.5 - 7.7846i -53.861 + 0.068808i
-22.277 - 5.6538i -17.523 - 8.5424i -53.6 - 0.10067i
-22.407 - 6.0724i -17.549 - 9.0511i -53.428 - 0.21344i
-22.624 - 6.7173i -17.604 - 9.8189i -53.173 - 0.38121i

G(:,:,3) =

Columns 1 through 3

-10.381 + 0i -23.535 + 0i -37.068 + 0i
-10.381 + 0.0082468i -23.535 + 0.0083001i -37.068 + 0.008031i
-10.381 + 0.016493i -23.535 + 0.0166i -37.068 + 0.016061i

-6.2778 + 0.3592i -14.66 + 0.23088i -22.346 + 0.10443i
-6.2101 + 0.47934i -14.588 + 0.29404i -22.272 + 0.11234i
-6.0869 + 0.62871i -14.458 + 0.34966i -22.142 + 0.078138i
-5.9954 + 0.70787i -14.364 + 0.36029i -22.051 + 0.023636i
-5.8509 + 0.79726i -14.221 + 0.33778i -21.918 - 0.10454i
-5.7528 + 0.83823i -14.127 + 0.29814i -21.837 - 0.21956i
-5.6076 + 0.87359i -13.994 + 0.20366i -21.731 - 0.43351i
-5.5144 + 0.88112i -13.914 + 0.11865i -21.675 - 0.60188i
-5.3837 + 0.87125i -13.808 - 0.039143i -21.614 - 0.88971i
-5.304 + 0.85249i -13.75 - 0.16272i -21.591 - 1.1032i

-5.1977 + 0.80974i -13.683 - 0.37238i -21.585 - 1.4526i
-5.122 + 0.76404i -13.646 - 0.56651i -21.605 - 1.7681i
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-9.6655 + 1.5597i -22.808 + 1.4692i -36.359 + 1.3173i
-9.3835 + 1.7739i -22.545 + 1.6118i -36.128 + 1.3805i
-9.1929 + 1.8792i -22.376 + 1.6575i -35.993 + 1.3637i
-8.9126 + 1.9847i -22.143 + 1.6563i -35.828 + 1.2559i
-8.734 + 2.0228i -22.006 + 1.6117i -35.75 + 1.1326i

-8.4855 + 2.037i -21.837 + 1.4843i -35.687 + 0.87745i
-8.3359 + 2.0217i -21.75 + 1.3627i -35.684 + 0.66438i
-8.1397 + 1.9688i -21.663 + 1.1317i -35.74 + 0.28675i
-8.0037 + 1.9035i -21.633 + 0.9002i -35.842 - 0.076141i
-7.8932 + 1.8255i -21.64 + 0.63844i -35.995 - 0.4786i
-7.8225 + 1.7577i -21.673 + 0.41033i -36.153 - 0.82684i
-7.7431 + 1.6534i -21.765 + 0.041907i -36.446 - 1.3898i
-7.7053 + 1.5854i -21.853 - 0.21856i -36.678 - 1.7909i
-7.6658 + 1.4902i -22.021 - 0.62786i -37.075 - 2.4294i
-7.6468 + 1.4329i -22.154 - 0.91153i -37.372 - 2.8794i
-7.6225 + 1.3566i -22.38 - 1.3515i -37.862 - 3.5908i

Columns 4 through 6

-42.339 + 0i -44.842 + 0i -101.48 + 0i
-42.339 + 0.0054487i -44.842 - 0.0010161i -101.48 + 0.010326i
-42.339 + 0.010897i -44.842 - 0.0020329i -101.48 + 0.020651i
-42.338 + 0.021788i -44.842 - 0.0040718i -101.48 + 0.041294i
-42.336 + 0.054382i -44.839 - 0.010284i -101.47 + 0.10312i
-42.33 + 0.10814i -44.831 - 0.021299i -101.46 + 0.20542i

-42.318 + 0.16071i -44.816 - 0.033683i -101.44 + 0.3062i
-42.303 + 0.21164i -44.797 - 0.047936i -101.42 + 0.40495i
-42.284 + 0.26057i -44.773 - 0.064415i -101.39 + 0.5013i
-42.262 + 0.30726i -44.744 - 0.083374i -101.35 + 0.59502i
-42.208 + 0.39314i -44.675 - 0.12948i -101.26 + 0.77376i
-42.144 + 0.46805i -44.592 - 0.18755i -101.16 + 0.93975i
-41.991 + 0.58101i -44.391 - 0.34402i -100.89 + 1.2287i
-41.727 + 0.64844i -44.033 - 0.6892i -100.4 + 1.5469i
-41.546 + 0.62281i -43.777 - 0.99415i -100.04 + 1.6831i
-41.291 + 0.48119i -43.392 - 1.5588i -99.458 + 1.7803i
-41.143 + 0.32156i -43.148 - 2.0021i -99.065 + 1.7791i
-40.97 - 0.00767i -42.818 - 2.7573i -98.48 + 1.6899i

-40.892 - 0.28169i -42.628 - 3.3142i -98.1 + 1.58i
-40.842 - 0.76499i -42.397 - 4.2178i -97.556 + 1.3529i
-40.854 - 1.13i -42.283 - 4.8587i -97.211 + 1.1675i
-40.942 - 1.7334i -42.171 - 5.8672i -96.725 + 0.84941i
-41.08 - 2.2813i -42.132 - 6.743i -96.346 + 0.55606i

-41.274 - 2.8653i -42.142 - 7.6445i -95.992 + 0.24365i
-41.468 - 3.3562i -42.183 - 8.3811i -95.723 - 0.016563i
-41.822 - 4.1291i -42.295 - 9.5073i -95.345 - 0.41908i
-42.096 - 4.6679i -42.402 - 10.27i -95.107 - 0.69315i
-42.562 - 5.5104i -42.607 - 11.432i -94.768 - 1.1097i
-42.906 - 6.0952i -42.771 - 12.216i -94.552 - 1.3897i
-43.472 - 7.0079i -43.055 - 13.408i -94.242 - 1.8114i

-10.381 + 0.032984i -23.535 + 0.033196i -37.067 + 0.032119i
-10.38 + 0.082411i -23.533 + 0.082929i -37.066 + 0.080221i

-10.374 + 0.16448i -23.527 + 0.16542i -37.059 + 0.15992i
-10.365 + 0.24588i -23.518 + 0.24708i -37.05 + 0.2386i
-10.353 + 0.32633i -23.505 + 0.32755i -37.036 + 0.31587i
-10.338 + 0.40559i -23.488 + 0.40654i -37.019 + 0.3914i
-10.319 + 0.48346i -23.469 + 0.48382i -36.999 + 0.46492i
-10.274 + 0.63443i -23.421 + 0.63253i -36.951 + 0.60525i
-10.22 + 0.77831i -23.364 + 0.77258i -36.894 + 0.73567i

-10.087 + 1.0427i -23.227 + 1.0238i -36.758 + 0.96331i
-9.8448 + 1.3775i -22.983 + 1.3228i -36.522 + 1.2135i
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-10.358 + 0.27251i -21.18 + 0.40082i -38.517 + 0.48431i
-10.344 + 0.40741i -21.166 + 0.59954i -38.502 + 0.72446i
-10.325 + 0.54077i -21.145 + 0.79638i -38.481 + 0.9624i
-10.301 + 0.67222i -21.12 + 0.99087i -38.455 + 1.1976i
-10.272 + 0.80142i -21.09 + 1.1827i -38.424 + 1.4297i
-10.201 + 1.0522i -21.018 + 1.557i -38.35 + 1.8835i
-10.115 + 1.2916i -20.93 + 1.9178i -38.261 + 2.3221i
-9.9053 + 1.7331i -20.72 + 2.594i -38.051 + 3.1479i
-9.5247 + 2.2963i -20.348 + 3.4851i -37.685 + 4.2441i
-9.2436 + 2.6054i -20.084 + 3.9946i -37.434 + 4.8758i
-8.8036 + 2.9735i -19.691 + 4.6361i -37.08 + 5.6782i
-8.508 + 3.1583i -19.444 + 4.9858i -36.873 + 6.1211i

-8.0757 + 3.3509i -19.112 + 5.4007i -36.629 + 6.6566i
-7.8023 + 3.4267i -18.924 + 5.6087i -36.517 + 6.9339i
-7.4255 + 3.4698i -18.704 + 5.8262i -36.44 + 7.2414i
-7.2019 + 3.4568i -18.603 + 5.9137i -36.452 + 7.3809i
-6.9153 + 3.3855i -18.526 + 5.9687i -36.57 + 7.5033i
-6.7253 + 3.2883i -18.534 + 5.9535i -36.76 + 7.5344i
-6.5819 + 3.1666i -18.608 + 5.8911i -37.033 + 7.5086i
-6.5006 + 3.0578i -18.714 + 5.8121i -37.31 + 7.4509i
-6.4321 + 2.8862i -18.95 + 5.6532i -37.816 + 7.3078i
-6.4193 + 2.7723i -19.155 + 5.5245i -38.211 + 7.1773i
-6.4425 + 2.611i -19.53 + 5.3038i -38.886 + 6.9316i
-6.4812 + 2.514i -19.82 + 5.141i -39.386 + 6.7351i
-6.5643 + 2.3886i -20.308 + 4.8767i -40.205 + 6.3915i

Columns 4 through 6

-66.608 + 0i -106.65 + 0i -125.23 + 0i
-66.607 + 0.020623i -106.65 + 0.0082443i -125.23 + 0.0093637i
-66.607 + 0.041245i -106.65 + 0.016487i -125.23 + 0.018726i
-66.607 + 0.082483i -106.65 + 0.032965i -125.23 + 0.037442i
-66.604 + 0.20607i -106.65 + 0.082252i -125.23 + 0.093425i
-66.593 + 0.41116i -106.63 + 0.16338i -125.21 + 0.1856i
-66.576 + 0.61442i -106.61 + 0.24241i -125.18 + 0.27548i
-66.552 + 0.81514i -106.58 + 0.31858i -125.14 + 0.36229i
-66.522 + 1.0128i -106.54 + 0.39137i -125.1 + 0.44552i
-66.487 + 1.207i -106.5 + 0.46041i -125.04 + 0.5248i
-66.403 + 1.5841i -106.39 + 0.58615i -124.9 + 0.67042i
-66.302 + 1.9444i -106.26 + 0.6938i -124.73 + 0.79692i
-66.06 + 2.6088i -105.94 + 0.84756i -124.32 + 0.98475i

-65.639 + 3.4477i -105.37 + 0.90802i -123.54 + 1.0895i
-65.346 + 3.8977i -104.95 + 0.83201i -122.96 + 1.0404i
-64.928 + 4.4124i -104.32 + 0.54851i -122.03 + 0.79458i
-64.681 + 4.6535i -103.91 + 0.25214i -121.39 + 0.52282i
-64.381 + 4.8737i -103.34 - 0.33934i -120.44 - 0.029122i
-64.24 + 4.9343i -103.01 - 0.82139i -119.82 - 0.4813i

-64.127 + 4.9113i -102.59 - 1.6574i -118.92 - 1.2654i
-64.123 + 4.829i -102.36 - 2.2794i -118.35 - 1.8476i
-64.227 + 4.6189i -102.12 - 3.2932i -117.54 - 2.7932i
-64.413 + 4.375i -102 - 4.1998i -116.9 - 3.6347i
-64.687 + 4.0769i -101.95 - 5.1527i -116.3 - 4.5142i

G(:,:,4) =

Columns 1 through 3

-10.37 + 0i -21.192 + 0i -38.53 + 0i
-10.37 + 0.013663i -21.192 + 0.020087i -38.53 + 0.024271i
-10.37 + 0.027324i -21.192 + 0.040173i -38.53 + 0.048541i

-10.369 + 0.054644i -21.192 + 0.080341i -38.529 + 0.097074i
-10.367 + 0.13653i -21.189 + 0.20075i -38.527 + 0.24257i
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G(:,:,5) =

Columns 1 through 3

-9.3535 + 0i -15.411 + 0i -37.344 + 0i
-9.3534 + 0.020534i -15.411 + 0.036198i -37.344 + 0.048034i
-9.3533 + 0.041068i -15.411 + 0.072394i -37.343 + 0.096067i
-9.3528 + 0.082129i -15.41 + 0.14478i -37.343 + 0.19212i
-9.349 + 0.2052i -15.406 + 0.3618i -37.338 + 0.48013i

-9.3358 + 0.40954i -15.392 + 0.72255i -37.323 + 0.95902i
-9.314 + 0.61223i -15.368 + 1.0813i -37.297 + 1.4355i
-9.284 + 0.81254i -15.336 + 1.4371i -37.262 + 1.9087i

-9.2462 + 1.0099i -15.296 + 1.7894i -37.218 + 2.3778i
-9.2011 + 1.2038i -15.247 + 2.1375i -37.166 + 2.8422i
-9.0908 + 1.5798i -15.13 + 2.8199i -37.04 + 3.7555i
-8.9569 + 1.9383i -14.989 + 3.4816i -36.888 + 4.6459i
-8.6306 + 2.5975i -14.647 + 4.7361i -36.52 + 6.3494i
-8.0362 + 3.4321i -14.033 + 6.4284i -35.863 + 8.6876i
-7.597 + 3.8845i -13.591 + 7.4261i -35.395 + 10.095i

-6.9098 + 4.4131i -12.926 + 8.7337i -34.701 + 11.985i
-6.4492 + 4.6706i -12.5 + 9.4866i -34.269 + 13.106i
-5.7777 + 4.9246i -11.914 + 10.451i -33.696 + 14.594i
-5.3548 + 5.0121i -11.572 + 10.991i -33.381 + 15.467i
-4.7758 + 5.0334i -11.148 + 11.662i -33.025 + 16.62i
-4.4356 + 4.9831i -10.934 + 12.026i -32.874 + 17.295i
-4.0066 + 4.8279i -10.725 + 12.465i -32.783 + 18.188i
-3.7308 + 4.6415i -10.66 + 12.747i -32.833 + 18.839i
-3.5334 + 4.4193i -10.695 + 12.966i -32.996 + 19.418i
-3.4323 + 4.226i -10.795 + 13.106i -33.205 + 19.836i
-3.3727 + 3.9279i -11.061 + 13.268i -33.641 + 20.4i
-3.3904 + 3.7338i -11.312 + 13.353i -34.009 + 20.737i
-3.4934 + 3.4654i -11.79 + 13.454i -34.668 + 21.19i
-3.6055 + 3.309i -12.171 + 13.51i -35.172 + 21.459i
-3.8241 + 3.1176i -12.824 + 13.583i -36.017 + 21.812i

Columns 4 through 6

-99.888 + 0i -198.76 + 0i -161.56 + 0i
-99.888 + 0.046856i -198.76 + 0.032699i -161.56 + 0.019391i
-99.887 + 0.093711i -198.76 + 0.065396i -161.56 + 0.03878i
-99.887 + 0.18741i -198.76 + 0.13078i -161.56 + 0.077544i
-99.881 + 0.46832i -198.75 + 0.32671i -161.55 + 0.19359i
-99.863 + 0.93519i -198.73 + 0.65175i -161.52 + 0.38535i
-99.833 + 1.3993i -198.69 + 0.97367i -161.48 + 0.57373i
-99.792 + 1.8597i -198.64 + 1.2914i -161.42 + 0.75759i
-99.741 + 2.3155i -198.58 + 1.6041i -161.34 + 0.93618i
-99.681 + 2.7662i -198.5 + 1.9112i -161.25 + 1.109i
-99.534 + 3.6507i -198.32 + 2.5072i -161.04 + 1.4354i
-99.356 + 4.5103i -198.1 + 3.0762i -160.77 + 1.7331i
-98.922 + 6.1447i -197.55 + 4.1209i -160.1 + 2.2297i
-98.135 + 8.3571i -196.53 + 5.4272i -158.85 + 2.701i
-97.565 + 9.6652i -195.77 + 6.1177i -157.89 + 2.827i
-96.699 + 11.382i -194.57 + 6.8859i -156.33 + 2.7361i
-96.143 + 12.37i -193.76 + 7.2263i -155.26 + 2.4969i

-64.968 + 3.8035i -101.96 - 5.9432i -115.85 - 5.2393i
-65.485 + 3.3405i -102.06 - 7.1689i -115.21 - 6.3548i
-65.89 + 2.9987i -102.18 - 8.0094i -114.81 - 7.113i

-66.581 + 2.4385i -102.42 - 9.3017i -114.23 - 8.267i
-67.094 + 2.0334i -102.62 - 10.183i -113.86 - 9.0455i
-67.936 + 1.3775i -102.98 - 11.534i -113.33 - 10.225i
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-93.73 + 17.11i -188.31 + 5.7941i -146.25 - 4.2085i
-93.81 + 17.336i -187.98 + 5.3114i -145.4 - 5.2779i

-94.049 + 17.607i -187.58 + 4.5153i -144.19 - 6.9515i
-94.283 + 17.747i -187.37 + 3.9418i -143.42 - 8.1073i
-94.734 + 17.899i -187.15 + 3.0238i -142.31 - 9.8937i
-95.097 + 17.964i -187.04 + 2.3752i -141.6 - 11.117i
-95.725 + 18.004i -186.96 + 1.3484i -140.56 - 12.997i

G(:,:,6) =

Columns 1 through 3

-29.344 + 0i -63.031 + 0i -101.84 + 0i
-29.344 + 0.02574i -63.031 + 0.026149i -101.84 + 0.037193i
-29.344 + 0.051479i -63.03 + 0.052297i -101.84 + 0.074383i
-29.343 + 0.10295i -63.029 + 0.10458i -101.83 + 0.14875i
-29.336 + 0.25717i -63.021 + 0.26121i -101.83 + 0.37158i
-29.313 + 0.51294i -62.992 + 0.52069i -101.79 + 0.7411i
-29.275 + 0.76601i -62.944 + 0.77687i -101.73 + 1.1067i
-29.223 + 1.0152i -62.878 + 1.0284i -101.66 + 1.4667i
-29.156 + 1.2596i -62.794 + 1.274i -101.56 + 1.82i
-29.077 + 1.4982i -62.694 + 1.5129i -101.44 + 2.1655i
-28.883 + 1.9562i -62.45 + 1.9675i -101.16 + 2.8302i
-28.647 + 2.3851i -62.15 + 2.388i -100.81 + 3.4562i
-28.067 + 3.1469i -61.41 + 3.1145i -99.944 + 4.5777i
-27.002 + 4.0337i -60.033 + 3.8947i -98.322 + 5.9002i
-26.209 + 4.4533i -58.996 + 4.2057i -97.095 + 6.5354i
-24.954 + 4.8361i -57.338 + 4.3738i -95.127 + 7.1339i
-24.105 + 4.9365i -56.199 + 4.3003i -93.772 + 7.313i
-22.856 + 4.8752i -54.491 + 3.9377i -91.734 + 7.2856i
-22.062 + 4.7078i -53.376 + 3.545i -90.398 + 7.0922i
-20.964 + 4.2977i -51.775 + 2.7635i -88.459 + 6.5804i
-20.307 + 3.939i -50.769 + 2.1362i -87.222 + 6.1154i
-19.452 + 3.3115i -49.371 + 1.0743i -85.464 + 5.2712i
-18.866 + 2.7409i -48.314 + 0.11159i -84.089 + 4.4633i
-18.394 + 2.1601i -47.357 - 0.89171i -82.794 + 3.586i
-18.095 + 1.7077i -46.66 - 1.7062i -81.812 + 2.8473i
-17.757 + 1.081i -45.718 - 2.9205i -80.419 + 1.6965i
-17.593 + 0.7141i -45.152 - 3.7107i -79.538 + 0.90943i
-17.409 + 0.26097i -44.378 - 4.8473i -78.274 - 0.29084i
-17.308 + 0.030637i -43.9 - 5.5639i -77.465 - 1.1006i
-17.152 - 0.2049i -43.221 - 6.568i -76.294 - 2.3269i

Columns 4 through 6

-127.21 + 0i -162.81 + 0i -377.84 + 0i
-127.21 + 0.071998i -162.81 + 0.11321i -377.84 + 0.075731i
-127.21 + 0.14399i -162.81 + 0.22642i -377.84 + 0.15146i
-127.21 + 0.28797i -162.81 + 0.45282i -377.84 + 0.30289i
-127.2 + 0.71957i -162.8 + 1.1316i -377.83 + 0.75677i

-127.16 + 1.4367i -162.76 + 2.2604i -377.78 + 1.5104i
-127.1 + 2.1492i -162.69 + 3.3839i -377.71 + 2.258i

-127.01 + 2.8553i -162.6 + 4.5i -377.6 + 2.9978i
-126.9 + 3.5536i -162.48 + 5.6073i -377.48 + 3.7281i

-95.379 + 13.635i -192.58 + 7.4992i -153.63 + 1.8951i
-94.934 + 14.346i -191.84 + 7.5383i -152.56 + 1.3495i
-94.388 + 15.24i -190.81 + 7.4113i -150.98 + 0.34453i
-94.111 + 15.735i -190.2 + 7.2191i -149.97 - 0.43379i
-93.832 + 16.353i -189.38 + 6.7946i -148.51 - 1.7388i
-93.725 + 16.769i -188.8 + 6.3348i -147.35 - 2.9333i

-126.78 + 4.2432i -162.34 + 6.7049i -377.32 + 4.448i
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-119.88 + 17.005i -154.93 + 28.801i -369 + 17.203i
-118.42 + 18.376i -153.38 + 31.629i -367.22 + 18.423i
-116.24 + 20.08i -151.08 + 35.465i -364.54 + 19.824i
-114.83 + 21.008i -149.6 + 37.779i -362.78 + 20.499i
-112.8 + 22.136i -147.5 + 40.936i -360.23 + 21.172i

-111.53 + 22.74i -146.19 + 42.86i -358.6 + 21.422i
-109.74 + 23.466i -144.39 + 45.517i -356.29 + 21.539i
-108.35 + 23.937i -143.03 + 47.554i -354.47 + 21.429i
-107.06 + 24.309i -141.79 + 49.454i -352.76 + 21.157i
-106.09 + 24.549i -140.88 + 50.889i -351.46 + 20.833i
-104.72 + 24.825i -139.66 + 52.914i -349.63 + 20.186i
-103.86 + 24.959i -138.92 + 54.186i -348.48 + 19.654i
-102.64 + 25.091i -137.93 + 55.983i -346.87 + 18.714i
-101.86 + 25.133i -137.33 + 57.109i -345.85 + 17.996i
-100.75 + 25.123i -136.54 + 58.689i -344.43 + 16.781i

D(:,:,7) =

Columns 1 through 3

-1.1879 + 0i -1.5712 + 0i -2.9117 + 0i
-1.1879 + 0.0064373i -1.5711 + 0.0073911i -2.9117 + 0.0096322i
-1.1878 + 0.012874i -1.5711 + 0.014782i -2.9116 + 0.019264i
-1.1876 + 0.025744i -1.5708 + 0.029559i -2.9113 + 0.038522i
-1.1859 + 0.06429i -1.569 + 0.073815i -2.9093 + 0.096209i
-1.1799 + 0.12809i -1.5625 + 0.14707i -2.9021 + 0.19176i
-1.1701 + 0.19097i -1.5519 + 0.21928i -2.8905 + 0.28612i
-1.1567 + 0.25263i -1.5377 + 0.29011i -2.8748 + 0.37892i
-1.1402 + 0.31285i -1.5201 + 0.35938i -2.8556 + 0.47001i
-1.1208 + 0.37152i -1.4994 + 0.42701i -2.833 + 0.55932i
-1.0739 + 0.48407i -1.4498 + 0.55721i -2.7787 + 0.73257i
-1.0173 + 0.59003i -1.3898 + 0.68048i -2.7131 + 0.89834i
-0.87844 + 0.7805i -1.2425 + 0.90378i -2.5517 + 1.2041i
-0.61981 + 1.0064i -0.97075 + 1.1729i -2.2565 + 1.5908i
-0.42451 + 1.1169i -0.76964 + 1.3095i -2.0395 + 1.8029i
-0.10588 + 1.2272i -0.45028 + 1.4589i -1.6979 + 2.0616i
0.1232 + 1.2634i -0.22793 + 1.5246i -1.4648 + 2.198i
0.4908 + 1.253i 0.11691 + 1.5729i -1.1161 + 2.3544i
0.74815 + 1.1947i 0.35215 + 1.5711i -0.88874 + 2.4316i
1.1386 + 1.0149i 0.70883 + 1.5159i -0.5594 + 2.5179i
1.3891 + 0.82511i 0.94689 + 1.4431i -0.34709 + 2.5622i
1.7197 + 0.42624i 1.3003 + 1.2761i -0.034026 + 2.6182i
1.9211 - 0.011595i 1.5866 + 1.0792i 0.22985 + 2.6604i
2.0186 - 0.53594i 1.8582 + 0.82367i 0.50617 + 2.7i
1.9977 - 1.0036i 2.0579 + 0.57299i 0.7429 + 2.7279i
1.7621 - 1.7426i 2.3103 + 0.11417i 1.1355 + 2.7548i
1.4504 - 2.2232i 2.4329 - 0.24816i 1.428 + 2.7542i
0.73823 - 2.8458i 2.5191 - 0.87154i 1.9182 + 2.7059i
0.10884 - 3.1421i 2.4925 - 1.3321i 2.2786 + 2.628i
-1.0197 - 3.3157i 2.2946 - 2.0643i 2.8604 + 2.417i

Columns 4 through 6

-10.438 + 0i -101.64 + 0i -120.6 + 0i
-10.438 + 0.014994i -101.64 + 0.01886i -120.6 + 0.0086053i
-10.438 + 0.029987i -101.64 + 0.037718i -120.6 + 0.01721i

-126.46 + 5.5929i -162.01 + 8.8674i -376.95 + 5.853i
-126.08 + 6.8993i -161.59 + 10.982i -376.49 + 7.2062i
-125.13 + 9.3646i -160.56 + 15.044i -375.34 + 9.7341i
-123.36 + 12.652i -158.65 + 20.677i -373.21 + 13.035i
-122.02 + 14.559i -157.22 + 24.114i -371.6 + 14.9i

-10.438 + 0.059968i -101.64 + 0.075429i -120.6 + 0.034413i
-10.435 + 0.14981i -101.64 + 0.18845i -120.6 + 0.085926i
-10.428 + 0.29886i -101.63 + 0.37604i -120.59 + 0.17113i
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-10.354 + 0.87892i -101.56 + 1.1091i -120.54 + 0.49788i
-10.297 + 1.1577i -101.51 + 1.4639i -120.5 + 0.65189i
-10.227 + 1.4285i -101.45 + 1.8101i -120.46 + 0.79879i
-10.057 + 1.942i -101.31 + 2.4723i -120.35 + 1.068i
-9.7494 + 2.6366i -101.05 + 3.3882i -120.17 + 1.4102i
-9.5249 + 3.0535i -100.88 + 3.9523i -120.04 + 1.6005i
-9.1733 + 3.6173i -100.62 + 4.7343i -119.86 + 1.831i
-8.9368 + 3.9555i -100.46 + 5.2166i -119.76 + 1.951i
-8.5927 + 4.4156i -100.26 + 5.8943i -119.63 + 2.0908i
-8.3764 + 4.6991i -100.15 + 6.325i -119.57 + 2.1642i
-8.0763 + 5.1056i -100.04 + 6.9561i -119.53 + 2.2551i
-7.8923 + 5.3736i -100 + 7.3757i -119.52 + 2.3084i
-7.6351 + 5.7861i -99.98 + 8.0172i -119.55 + 2.3861i
-7.4303 + 6.1503i -99.998 + 8.5732i -119.62 + 2.4551i
-7.2239 + 6.5415i -100.04 + 9.1574i -119.7 + 2.5334i
-7.0495 + 6.8772i -100.09 + 9.6492i -119.79 + 2.6052i
-6.7562 + 7.4213i -100.17 + 10.432i -119.94 + 2.731i
-6.5287 + 7.8095i -100.22 + 10.986i -120.05 + 2.8274i
-6.1214 + 8.4227i -100.29 + 11.864i -120.23 + 2.9895i
-5.7959 + 8.8445i -100.31 + 12.478i -120.35 + 3.1076i
-5.2131 + 9.4788i -100.32 + 13.435i -120.53 + 3.2957i

-10.415 + 0.44655i -101.62 + 0.56215i -120.59 + 0.2551i
-10.399 + 0.59254i -101.6 + 0.74641i -120.57 + 0.33757i
-10.378 + 0.73667i -101.59 + 0.92873i -120.56 + 0.4185i

C.2 Pressure Distribution due to Oscillating Flap

The real and imaginary parts of the unsteady pressure distribution on the modified
DAST-ARW1 wing (Fig. C.1) at the reference flight condition Mach number 0.8072
and standard altitude 7.6 km and reduced frequency 0.8 are plotted in Figs. C.2–C.6.
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Fig. C.1 Modified DAST-ARW1 wing with flap
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D.1 Lyapunov Stability Theorem

For the homogeneous system described by

ẋ = f(x, t); x(t0) = x0, (D.1)

whose equilibrium point is xe = 0, the Lyapunov stability theorem can be stated as
given below.

Definition D.1 A system described by Eq. (D.1) is said to be stable about the
equilibrium point, xe = 0 in the sense of Lyapunov, if for each real and positive
number, ε, however small, there exists another real and positive number, δ, such that

| x(0) |< δ (D.2)

implies that

| x(t) |< ε; t ≥ 0. (D.3)

Definition D.2 A system described by Eq. (D.1) is said to be asymptotically sta-
ble about the origin, xe = 0, if it is stable in the sense of Lyapunov and if for each
real and positive number, ε, however small, there exist real and positive numbers, δ

and τ , such that

| x(0) |< δ (D.4)

implies that

| x(t) |< ε; t > τ. (D.5)

Definition D.3 A system described by Eq. (D.1) is said to be globally asymptotically
stable about the origin, xe = 0, if it is stable in the sense of Lyapunov and if for each
real and positive pair, (δ, ε), there exists a real and positive number, τ , such that
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| x(0) |< δ (D.6)

implies that

| x(t) |< ε; t > τ. (D.7)

Theorem D.4 Let V (x, t) be a continuously differentiable, scalar function of
the time as well as of state variables of a system described by Eq. (D.1), whose
equilibrium point is xe = 0. If the following conditions are satisfied:

V (0, t) = 0, V (x, t) > 0;
dV

dt
(x) < 0; for all x �= 0 (D.8)

|| x ||→ ∞ implies V (x, t) → ∞, (D.9)

then the origin, xe = 0, is globally asymptotically stable.
Proof of Lyapunov’s theorem [158] is obtained from the unbounded, positive

definite nature of V (x, t), and negative definite nature of V̇ (x, t), implying that for
any initial perturbation from the origin, x(0) �= 0, the resulting solution satisfies
V (x(t), t) ≤ V (x(0), t) t > 0 (i.e., remains in a bounded neighborhood of the
origin). Furthermore, the same also implies that V (x(t2), t2) ≤ V (x(t1), t1) t2 > t1,
which means a convergence of every solution to the origin.



References

1. Abbot, I., Doenhoff, A.: Theory of Wing Sections. Dover, New York (1959)
2. Abel, I., Perry, B., III, Murrow, H.N.: Two synthesis techniques applied to active flutter

suppression on a flight research wing. J. Guid. Control 1, 340–346 (1978)
3. Abel, I.: An analytical design technique for predicting the characteristics of a flexible wing

equipped with an active flutter suppression system and comparison with wind-tunnel data.
NASA TP-1367 (1979)

4. Abel, I., Perry, B., III, Newsom, J.R.: Comparison of analytical and wind-tunnel results for
flutter and gust response of a transport wing with active controls. NASA TP-2010 (1982)

5. Abel, I., Noll, T.E.: Research and applications in aeroservoelasticity at NASA Langley
Research Center. Proceedings 16th ICAS Congress. Tel Aviv (1988)

6. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications,
New York (1974)

7. Albano, E., Rodden, W.P.: A doublet-lattice method for calculating lift distributions on
oscillating surfaces in subsonic flows. AIAA J. 7, 279–285 (1969)

8. Ashley, H., Zartarian, G.: Piston theory—a new aerodynamic tool for aeroelastician. J. Aero.
Sci. 23, 1109–1118 (1956)

9. Appa, K.: Constant pressure panel method for supersonic unsteady airload analysis. J. Aircr.
24, 696–702 (1987)

10. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1995)
11. Athans, M., Falb, P.L.: Optimal Control. Dover, New York (2007)
12. Ballhaus, W.F., Goorjian, P.M.: Computation of unsteady transonic flows by the indicial

method. AIAA J. 16, 117–124 (1978)
13. Ballhaus, W.F., Steger, J.L.: Implicit approximate-factorization schemes for the low-

frequency transonic equation. NASA Technical Memorandum. TM X-73082 (1975)
14. Batina, J.T.: An efficient algorithm for solution of the unsteady transonic small-disturbance

equation. AIAA Paper 87-0109 (1987)
15. Batina, J.T., Seidel, D.A., Bland, S.R., Bennett, R.M.: Unsteady transonic flow calculations

for realistic aircraft configurations. J. Aircr. 26, 131–139 (1989)
16. Beals, V., Targoff, W.P.: Control surface oscillatory coefficients measured on low-aspect ratio

wings. U.S. Air Force, Wright Air Development Center. AFFDL-TR-53-64 (1953)
17. Bellman, R.: Dynamic Programming. Princeton University, Princeton (1957)
18. Bendiksen, O.O.: Transonic limit-cycle flutter/LCO. AIAA Paper 2004–2694 (2004)
19. Bennett, R.M., Abel, I.: Flight flutter test and data analysis techniques applied to a drone

aircraft. J. Aircr. 19, 589–595 (1982)
20. Birnbaum, W.: Das ebene problem des schlagenden flügels. Z. Angew. Math. Mech. 4,

277–292 (1924)
21. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Addison-Wesley, Cambridge

(1955)

© Springer Science+Business Media, LLC 2015 303
A. Tewari, Aeroservoelasticity, Control Engineering,
DOI 10.1007/978-1-4939-2368-7



304 References

22. Bisplinghoff, R.L., Ashley, H.: Principles of Aeroelasticity. Dover, New York (1962)
23. Blair, M.: A compilation of the mathematics leading to the doublet-lattice method. U.S. Air

Force Wright Laboratory. WL-TR-92-3028 (1992)
24. Blair, M., Williams, M.H.: Time domain panel method for wings. J.Aircr. 30, 439–445 (1993)
25. Bryson, A.E., Ho, Y.: Applied Optimal Control. Wiley, New York (1979)
26. Boely, N., Botez, R.M.: New methodologies for the identification and validation of a nonlinear

F/A-18 model by use of neural networks. Proceedings AIAA Atmospheric Flight Mechanics
Conference, Toronto (2010)

27. Burkhart, T.M.: Subsonic transient lifting surface aerodynamics. J. Aircr. 14, 47–50 (1977)
28. Burkhart, T.M.: Numerical application of Evvard’s supersonic wing theory to flutter analysis.

Proceedings 21st. AIAA Structures, Structural Dynamics and Materials Conference, Seattle
(1980)

29. Chen, P.C., Liu, D.D.: A harmonic gradient method for unsteady supersonic flow calculations.
J. Aircr. 22, 371–379 (1985)

30. Chiang, R.Y., Safonov, M.G.: Robust Control Toolbox. The Math Works Inc., Natick (2000)
31. Chipman, R.R.: An improved mach-box approach for supersonic oscillatory pressures. J.

Aircr. 14, 887–893 (1977)
32. Cho, J., Williams, M.H.: S-plane aerodynamics of nonplanar lifting surfaces. J. Aircr. 30,

433–438 (1993)
33. Collar, A.R., Broadbent, E.G., Puttick, E.: An elaboration of the criterion for wing torsional

stiffness. British A.R.C. R&M 2154 (1946)
34. Cox, T.H., Gilyard, G.B.: Ground vibration test results for drones for aerodynamic and

structural testing (DAST)/aeroelastic research wing (ARW-1R) aircraft. NASA Tech. Memo.
85906 (1986)

35. Cunningham, A.M., Jr.: Oscillatory supersonic kernel function method for interfering
surfaces. J. Aircr. 11, 664–669 (1974)

36. Cunningham, H.J., Desmarais, R.N.: Generalization of the subsonic kernel function in the
s-plane, with applications to flutter analysis. NASA, TP-2292 (1984)

37. Denegri, C.M., Jr., Dubben, J.A.: F-16 limit-cycle oscillation analysis using transonic small-
disturbance theory. AIAA Paper 2005–2296 (2005)

38. Desmarais, R.: A continued fraction representation for Theodorsen’s circulation function.
NASA, TM-81838 (1980)

39. Dietze, F.: Die luftkrafte des harmonisch schwingenden flg̈els in kompressibaren medium
bei unterschallgeschwindigkeit (ebene problem) (The air forces of the harmonically vibrating
wing in a compressible medium at subsonic velocity (plane problem). I. Method of compu-
tation, II. Numerical tables and curves. ZWB Forsch. Ber. 1733 (1943). (Translated by Air
Materiel Command, U.S. Air Force, F-TS-506-RE and F-TS-948-RE (1947))

40. Dowell, E.H.: A simple approach of converting frequency domain aerodynamics to the time
domain. NASA, TM-81844 (1980)

41. Dowell, E.H., I’lgamov, M.: Studies in Nonlinear Aeroelasticity. Springer, New York (1988)
42. Doyle, J.C.: Structured uncertainty in control system design. In: Proceedings 24th IEEE

Conference on Decision and Control. Ft. Lauderdale, FL, 260–265 (1985)
43. Dunn, H.J.: An analytical technique for approximating unsteady aerodynamics in the time

domain. NASA, TP-1738 (1980)
44. Edwards, J.W.: Applications of Laplace transform methods to airfoil motion and stability

calculations. AIAA Paper 79-0772 (1979)
45. Edwards, J.W., Malone, J.B.: Current status of computational methods for transonic unsteady

aerodynamic and aeroelastic applications. AGARD CP-507 (1992)
46. Edwards, J.W.: Transonic shock oscillations calculated with a new interactive boundary layer

coupling method. AIAA Paper 93-0777 (1993)
47. Edwards, J.W.: Calculated viscous and scale effects on transonic aeroelasticity. J. Aircr. 45,

1863–1871 (2008)
48. Etkin, B., Reid, L.D.: Dynamics of Flight: Stability and Control. Wiley, New York (1995)



References 305

49. Eversman, W., Tewari, A.: Consistent rational function approximations for unsteady
aerodynamics. J. Aircr. 28, 545–552 (1991)

50. Eversman, W., Tewari, A.: Modified exponential series approximation for the Theodorsen
function. J. Aircr. 28, 553–557 (1991)

51. Evvard, J.: Use of source distributions for evaluating theoretical aerodynamics of thin finite
wings at supersonic speeds. NACA Rept. 951 (1950)

52. Fettis, H.E.: An approximate method for the calculation of nonstationary air forces at subsonic
speeds. Wright Air Develop. Center, U.S. Air Force, Tech. Rept. 52–56 (1952)

53. Filippov, A.F.: Differential Equations with Discontinuous Right-hand Sides. Kluwer,
Dordrecht (1988)

54. Fraeys de Veubeke, B.: Aerodynamique instationaire des profils minces deformables. Bulletin
du Service Technique de l’Aeronautique, Brussels, 25 (1953)

55. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Wiley, New York (1955)
56. Garrick, I.E.: On some reciprocal relations in the theory of non-stationary flow. NACA, Rept.

629 (1938)
57. Garrick, I.E., Rubinow, S.I.: Flutter and oscillating air force calculations for an airfoil in a

two-dimensional supersonic flow. NACA, Rept. 846 (1946)
58. Garrick, I.E.: Nonsteady wing characteristics. Section F,Vol.VII of High SpeedAerodynamics

and Jet Propulsion. Princeton University Press, Princeton (1957)
59. Geibler, W.: Ein numerisches verfahren zur berechnung der instationaren druckverteilung der

harmonisch schwingenden tragflache mit ruder in unterschallströmung. Teil I: Theorie und
ergebnisse für inkompressible strömung, Teil II: Theorie und ergebnisse für kompressible
strömung. DLR DLR-FB-75-37 (1975) and DLR-FB-77-15 (1977)

60. Gibson, J.E.: Nonlinear Automatic Control. McGraw-Hill, New York (1963)
61. Giesing, J.P., Kalman, T.P., Rodden, W.P.: Subsonic unsteady aerodynamics for general

configurations; Part I, Vol. I - Direct application of the nonplanar doublet-lattice method. U.S.
Air Force, AFFDL-TR-71-5 (1971)

62. Glad, T., Ljung, L.: Control Theory–Multivariable and Nonlinear Methods. Taylor and
Francis, New York (2000)

63. Glauert, H.: The force and moment on an oscillating airfoil. BritishA.R.C., R&M 1242 (1929)
64. Glover, K., Doyle, J.C.: State space formulae for all stabilizing controllers that satisfy an H∞

norm bound and relations to risk sensitivity. Syst. Control Lett. 11, 167–172 (1988)
65. Gupta, K.K., Brenner, M.J., Völker, L.S.: Integrated aeroservoelastic analysis capability with

X-29A comparisons. J. Aircr. 26, 84–90 (1989)
66. Hafez, M., South, J., Murman, E.: Artificial compressibility methods for numerical solutions

of transonic full potential equation. AIAA J. 17, 838–844 (1979)
67. Harder, R.L., Rodden, W.P.: Kernel function for nonplanar oscillating surfaces in supersonic

flow. J. Aircr. 8, 677–679 (1971)
68. Den Hartog, J.P.: Advanced Strength of Materials. McGraw-Hill, New York (1952)
69. Haskind, M.D.: Oscillations of a wing in a subsonic gas flow. Brown University Translation,

A9-T-22 (1948) (Originally Prikl. Mat. i Mekh., Moscow, XI, No. 1, 1947.)
70. Hassig, H.J.: An integral transform for obtaining A(p) from A(ik). Aerospace Flutter and

Dynamics Coucil Meeting, Williamsburg (1977)
71. Hayes, W.D., Probstein, R.F.: Hypersonic Flow Theory. Academic Press, New York (1959)
72. Hedman, S.G.: Vortex-lattice method for calculation of quasi steady state loadings on thin

elastic wings. Aeronautical Research Institute of Sweden, Rept. 105 (1965)
73. Holst, T.L., Ballhaus, W.F.: Fast conservative schemes for the full potential equation applied

to transonic flows. AIAA J. 17, 145–152 (1979)
74. Hounjet, M.H.L.: Improved potential gradient method to calculate airloads on oscillating

supersonic interfering surfaces. J. Aircr. 19, 390–399 (1982)
75. Hughes, T.J.R.: The Finite Element Method. Prentice-Hall, Englewood-Cliffs (1987)
76. Huttsell, L., Shuster, D., Vol, J., Giesing, J., Mike Love, M.: Evaluation of computational

codes for loads and flutter. AIAA Paper, 2001-569 (2001)



306 References

77. Ioannou, P.A., Sun, J.: Stable and Robust Adaptive Control. Prentice-Hall, Englewood-Cliffs
(1995)

78. Isidori, A.: Nonlinear Control Systems. Springer, New York (1989)
79. Isogai, K., Suetsugu, K.: Numerical calculation of unsteady transonic potential flow over

three-dimensional wings with oscillating control surfaces. AIAA J. 22, 478–485 (1984)
80. Jones, R.T.: The unsteady lift of a wing of finite aspect ratio. NACA, Rept. 681 (1939)
81. Jones, W.P.: Aerodynamic forces on wings in non-uniform motion. British A.R.C., R&M

2117 (1945)
82. Jones, W.P., Appa, K.: Unsteady supersonic aerodynamic theory by the method of potential

gradient. AIAA J. 15, 59–65 (1977)
83. Jordan, P.F.: Remarks on applied subsonic lifting-surface theory. Martin Marietta Corp., Tech.

Rept. 67-14 (1967)
84. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)
85. Karpel, M.: Design of active and passive flutter suppression and gust alleviation. NASA,

CR-3482 (1981)
86. Katz, J., Plotkin, A.: Low Speed Aerodynamics. McGraw-Hill, New York (1991)
87. Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust Pole assignment in linear state feedback.

Int. J. Control 41, 1129–1155 (1985)
88. Kreyszig, E.: Advanced Engineering Mathematics. Wiley, New York (2001)
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H2-norm, 247
H2/H∞ control, 6, 246, 248
H∞-norm, 248
U − g − ω method, 156

A
acceleration potential, 68, 112
acceleration potential doublet, 113, 114, 116
acceleration potential formulation, 165
acceleration potential method, 102, 112, 141
accelerometer, 3, 184, 205, 226
active aeroelastic control, 207, 208
Active Flexible Wing, 3
active flutter suppression, 2, 3, 169, 250, 252
actuator, 185, 193
actuator state, 185, 208
adaptation law, 276
adaptation scheme, 270
adaptive control, 3, 5, 11, 270, 274
adaptive gain, 276
adaptive LCO suppression, 275
adiabatic flow, 66
adjoint system, 218
admissible control input, 214
adverse ASE interaction, 207, 225
aerodynamic center, 23, 28, 30, 273
aerodynamic coefficient matrix, 189
aerodynamic damping, 261
aerodynamic differential operator, 59
aerodynamic inertia, 261
aerodynamic influence coefficient, 85, 87, 119,

141, 171, 285
aerodynamic influence matrix, 120, 121
aerodynamic lag, 160, 183
aerodynamic lag coefficient, 261
aerodynamic lag state, 9, 183, 261
aerodynamic state, 172, 188

aerodynamic state equation, 189
aerodynamic stiffness, 261
aerodynamic transfer function, 98
aerodynamic transfer matrix, 3, 8
aeroelastic modes, 3, 198
aeroelastic plant, 9, 227
aeroelastic state, 208
aeroelastic system, 155, 172, 189, 262
aeroelasticity, 1
aeroservoelastic controller, 273
aeroservoelastic plant, 185, 208
aeroservoelastic response, 156
aeroservoelasticity, 1, 207
AGARD wing, 129
airfoil, 7
algebraic Riccati equation, 224, 248
amplification ratio, 258
analytic continuation, 100, 161, 165, 188
analytical solution, 91
angle-of-attack, 7, 23, 30, 69, 80, 89, 157, 160,

225, 264, 272
angular velocity, 263
apparent inertia, 160
apparent mass, 8
approximate factorization, 71
area moment of inertia, 21
artificial viscosity, 69, 153
aspect-ratio, 88
assumed modes, 17, 31
asymptotic stability, 158, 210, 276, 301
attached flow, 63
augmented state, 184, 188, 227, 262
autoregressive identification, 270
autoregressive scheme, 270
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barotropic flow, 66
beam element, 38, 41
bending displacement, 38
bending moment, 20, 23, 40, 55
bending slope, 19
bending stiffness, 21, 23
bending stiffness matrix, 43
Bessel function, 101, 118
Biot-Savart law, 75, 82, 83, 285
Bodé plot, 233, 234, 253
body-fixed coordinates, 61, 68
body-fixed frame, 263
bound vortex, 82
boundary conditions, 34, 72
boundary-element method, 17
boundary-layer, 63
boundary-value problem, 33–35, 74
bulk viscosity, 62

C
camber line, 80, 89
CAP-TSD, 144
Cauchy principal value, 101
causal system, 157
center of mass, 7, 23, 24, 28, 186, 261
characteristic equation, 198
characteristic length, 70
CHB, 144
chord plane, 78, 79
chordwise rigid, 28, 33
circulation, 8, 72, 79, 80
circulatory lag, 166
circulatory lift, 84, 160, 162
circulatory potential, 94
circulatory pressure difference, 96
classical acoustics, 103
closed-loop system, 276
closure, 65
co-state vector, 216
collocation method, 36
collocation point, 16, 59, 82, 85, 120
commanded control deflection, 210
compatibility, 33, 37, 56
complementary sensitivity, 244
complex amplitude, 111
complex conjugate, 163
compressible flow, 66, 102
computational fluid dynamics, 4, 59, 182, 266
conditional mean, 220
conformal mapping, 93, 101
conforming element, 57
connectivity array, 45
consistent approximation, 170

constant pressure panel method, 141
constant-pressure specific heat, 63
constitutive relationship, 15, 20
continued fraction approximation, 165
continuity equation, 61, 67
continuously differentiable, 102
control aerodynamic state vector, 193
control generalized aerodynamics forces, 208
control history, 215
control input, 186, 193, 262
control interval, 215
control law, 207, 209
control point, 119
control surface, 3, 7, 23, 24, 38, 193
control surface angle, 28
control surface rotation, 186
control systems, 1
control torque, 185, 211
control-surface aerodynamic lag state, 193
control-surface buzz, 4
control-surface deflection, 193
control-surface state, 194
controllability, 9, 190
controller coefficients, 209
controller state, 212
controller state equation, 209
convolution integral, 104, 157
correlation matrix, 219
cosine-integral, 118
cost coefficients, 217
covariance matrix, 220
critical Mach number, 91
Crocco’s equation, 65
cross-correlation, 222
cross-spectral density matrix, 222
curve-fit, 162
curvilinear coordinates, 122

D
deformed surface, 14
degree of freedom, 13, 15, 16, 25, 28, 183, 186,

260
density, 24, 31, 62
describing function, 6
describing function method, 257
desired state, 210
detectability, 224
diaphragm boxes, 141
dihedral angle, 122
Dirac delta function, 84, 104, 142, 148, 157
direct integration method, 182
Dirichlet problem, 78
discretization, 15, 25, 27, 36, 40, 60, 119, 120,

142, 182
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distributed load, 15
domain, 102
doublet, 77, 78
doublet axis, 75, 78
doublet strength, 114, 116, 117, 120
Doublet-Lattice method, 5, 113, 119, 289
Doublet-Point method, 113, 128, 141, 142
downstroke, 264
drag, 23, 263
Drone for Aeroelastic Testing, 3, 136, 173
Duhamel’s integral, 166
dynamic aeroelasticity, 155
dynamic viscosity, 62

E
eigenstructure assignment, 3, 229
eigenvalue problem, 27, 34, 49
eigenvector, 156
elastic axis, 18, 21, 23, 24, 28
element, 33, 37
elemental degree of freedom, 45
elementary solution, 72
elevon, 226
elevon servo, 226
energy equation, 61
entropy gradient, 69
equations of motion, 7
equilibrium point, 216, 301
equivalence principle, 166
error signal, 247
error transition matrix, 221
estimated state, 220
estimation error, 220
Euclidean norm, 244
Euler equations, 64
Euler’s constant, 118
Euler-Bernoulli beam, 21–23, 38, 51, 53
Euler-Lagrange formulation, 216
Eulerian derivative, 67, 71, 80, 145
Eulerian flow model, 61
expected value, 220
exterior Neumann problem, 147
external disturbance, 246

F
far field boundary, 76
far field condition, 73, 145, 148
feedback linearization, 6
feedforward gain, 230
field element, 153
field equations, 155
field point, 102, 106, 107
field potential, 102

field-panel method, 144
final state, 214
finite-difference, 64
finite-element method, 16, 33, 37, 279
finite-state model, 155, 168, 183
first harmonic, 150
flap oscillation, 128
flapping-wing flight, 6, 260, 263
flexibility influence-coefficient, 15, 19
flight-flutter test, 2, 3
flow separation, 182, 265
flow variables, 62, 64
flowfield boundary, 76
fluid properties, 62
fluid-fixed coordinates, 68
flutter, 1, 2, 101
flutter analysis, 155, 156, 198
flutter speed, 204
forcing frequency, 258
forward-facing Mach cone, 108, 139
Fourier series, 101, 150, 257
Fourier transform, 158
freestream speed, 30
frequency domain, 113, 155
frequency domain aerodynamics, 6
frequency response, 158, 160, 187
frequency spectrum, 271
frequency weight, 247
full-potential equation, 67, 70, 74, 145
full-potential method, 5
full-state feedback, 209, 214

G
gain, 211
gain scheduling, 3, 6
Galerkin’s method, 37, 40
Galilean cum Lorentz transformation, 68, 72
Galilean transformation, 104
Gaussian quadrature, 141
generalized aerodynamic forces, 25, 59, 141,

155
generalized aerodynamic matrix, 171
generalized aerodynamics transfer matrix, 289
generalized control forces, 183
generalized coordinates, 7, 25, 28, 30–32, 155,

183, 186, 261
generalized damping, 9, 25
generalized displacement, 16, 25, 26, 59
generalized forces, 7
generalized gust state, 183
generalized kernel function, 179
generalized load, 16, 25, 30, 32
generalized mass, 7, 26, 32
generalized mass matrix, 155, 261
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generalized stiffness, 7, 32
generalized stiffness matrix, 155, 261
generalized Theodorsen function, 166
geometric boundary conditions, 31, 35, 40
geometric constraints, 15
Gibbs relation, 65
global assembly, 45
global asymptotic stability, 216, 301
global degrees of freedom, 45
global mass matrix, 45, 279
global stiffness matrix, 45, 279
governing equations, 61
gradient operator, 65
gradient optimization, 163, 170, 172
Green’s function, 102, 149
Green’s function method, 128, 144
Green’s integral solution, 102, 113, 145
Green’s theorem, 74, 76, 78, 94, 102, 144, 147
gust state, 208

H
H7WC, 129
Hamilton’s principle, 26
Hamilton-Jacobi-Bellman equation, 215
Hamiltonian function, 216
Hankel function, 100, 160
harmonic limit, 99, 103, 106, 156
harmonic-gradient method, 142
heat-flux, 62
heave, 23, 89, 260
heave amplitude, 266
Helmholtz equation, 113, 120, 151, 152
Helmholtz theorem, 72, 81
Hermite cubic polynomial, 41
high-frequency pressure waves, 128
Hilbert norm, 244
hinge moment, 8, 28, 186, 193
hinge-line, 7, 23, 28, 193, 203, 261
hinge-moment coefficient, 128
hinge-moment RFA, 203
homogeneous system, 301
Huygens’ principle, 102
hypersonic flow, 166

I
improper integral, 100, 117
impulse response, 157
incompressible flow, 7, 74, 99
indicial admittance, 166
indicial response, 157, 162
induced drag, 89
induced upwash, 85, 94, 187
induced velocity, 82

infinite-horizon control, 224
infinitesimal disturbance, 102
integral action, 210, 212
integral equation, 59, 73, 95, 101, 102, 105,

106, 110, 112, 139, 155
integral equation solution, 142
integro-differential equation, 152
interior velocity potential, 76
interpolation coefficients, 42
invariance principle, 103
inverse Fourier transform, 161
inverse Laplace transform, 159
inviscid flow, 64
irrotational flow, 66, 74, 80, 81, 99
isentropic flow, 66
isentropic relation, 66
iterative kernel evaluation, 165

K
Kalman filter, 220
Kalman filter coefficient, 221
Kalman filter gain, 221
Kelvin’s theorem, 80, 83, 94, 146
kernel factor, 125
kernel function, 59, 114–117, 121
kernel function collocation, 119, 141
kernel function expansion, 165
kernel function singularities, 118, 119, 121,

142
kinematical constraint, 41, 42
kinetic energy, 22, 24, 28, 41
Kirchoff’s formula, 102
Kutta condition, 65, 80, 82, 85, 95, 101, 119,

146
Kutta-Joukowski theorem, 76, 82

L
lag parameter, 169, 170, 172, 192
lag state, 169
Lagrange’s equations, 26, 28, 31, 32, 38
Lagrangian, 34
Lagrangian flow model, 61
Lagrangian function, 214
laminar flow, 91
Laplace domain aerodynamics, 8
Laplace domain kernel evaluation, 179
Laplace equation, 74, 76, 102
Laplace transform, 159
Laplacian operator, 67, 145
Laschka series approximation, 125, 143
leading-edge separation, 266
leading-edge vortex, 271
least-squares fit, 162, 164, 169, 170
least-squares method, 38, 170
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Legendre-Clebsch condition, 217
lift, 23, 28, 32, 84, 89, 157, 186, 263
lift-to-drag ratio, 264
limit-cycle oscillation, 4, 262, 271, 274
line-doublet, 119
line-vortex, 75
linear aerodynamic model, 59, 63, 71
linear aeroelastic model, 60
linear control, 207
linear differential operator, 155
linear feedback, 208
linear optimal feedback control law, 217
linear superposition, 15, 59, 72, 75, 103, 166
linear, quadratic regulator, 219, 223
linear, quadratic, Gaussian compensator, 6, 223
linear, time-invariant system, 157, 223
linear, time-varying system, 216
Load Alleviation and Mode Stabilization, 3
load point, 16, 60, 122
load-displacement relationship, 15, 22, 27
loop-transfer recovery, 6, 245
low-frequency limit, 70, 151
low-pass filter, 258
LQG/LTR, 243
lumped parameters method, 16, 27
lumped-vortex model, 82, 84
Lyapunov equation, 225
Lyapunov function, 216, 276
Lyapunov methods, 6
Lyapunov stability theorem, 276, 301
Lyapunov’s stability theorem, 216

M
Mach cone, 107, 112, 116
Mach hyperbola, 108
Mach number, 66
Mach-box method, 120, 139
maneuver load alleviation, 235
maneuver/gust load alleviation, 2
maneuverability, 226
Mangler’s principal value, 118, 123
Mangler’s sense, 121, 142
mass distribution, 24
mass matrix, 28
mass parameter, 188
material properties, 15, 35
Mathieu function, 165
MATLAB, 172, 174, 225, 246, 249
matrix Padé approximation, 169
matrix Riccati equation, 218, 222
mean aerodynamic chord, 88
mean steady flow, 150
mean surface, 14, 73

measurement noise, 219
mechanical energy, 26
minimum-state approximation, 169
mixed formulation, 78
modal mass, 31
modal matrix, 33, 168
modal stiffness, 31
mode shape, 27, 120, 136, 171, 174, 196
model reference adaptive control, 6
modified Bessel function, 118
modified matrix Padé approximation, 169
modified strip theory, 167
modified Struve function, 118
moment of inertia, 7, 24, 29, 193, 261
momentum equation, 61
moving doublet, 105
moving frame, 102
moving source, 103, 105, 106
multiple-pole RFA, 163, 170, 172
multivariable feedback control, 3

N
N5KM, 143
natural boundary conditions, 31, 33, 35, 40, 41
natural frequency, 27, 48
Navier–Stokes equations, 266
Navier-Stokes equations, 61
neighboring optimal solution, 216
Neumann problem, 78
neutral axis, 19
node, 33, 37
noise rejection, 5
non-circulatory flow, 93
non-circulatory lift, 160
non-circulatory upwash, 94, 97
non-conformal element, 56
non-conservative force, 22, 25
non-dimensional time, 162, 188
non-gradient optimization, 163, 170
non-harmonic motion, 165
non-isentropic flow, 68
non-singular kernel, 118
non-stationary white noise, 219
nonlinear aerodynamic relationship, 63
nonlinear aeroelasticity, 4, 6
nonlinear aeroservoelasticity, 257
nonlinear block, 257
nonlinear control, 5, 207, 216, 274
nonlinear operator, 182
nonlinear optimization, 169
nonlinear programming, 218
normal acceleration, 184, 206
normal displacement, 14
numerical methods, 6
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Nyquist bandwidth, 255
Nyquist plot, 231
Nyquist stability theorem, 232

O
objective function, 214
observability, 10, 184
observer, 220
observer gain, 229
open-loop flutter, 3, 157, 208
operating conditions, 274
operational relationship, 59
optimal control, 3, 214
optimal regulator, 215
optimal return function, 215
optimal trajectory, 215
output equation, 184, 194, 208
output feedback control, 247, 276
output variables, 184
outward normal, 102, 145

P
Padé approximation, 164
panel method, 60
parabolic function, 123
partial differential equation, 34, 40
perfect gas, 63
perturbation velocity, 145
perturbation velocity potential, 70
phase angle, 258
phase-lag, 99
piston theory, 166
pitch, 23, 28, 89, 161, 186, 260
pitch angle, 225
pitch axis, 7, 186, 261
pitch rate, 225
pitching moment, 8, 22, 23, 186, 263
plain stress, 52
plate, 51
plate bending element, 55
plate theory, 51
plunge, 28, 161, 186
point doublet, 75, 128
Poisson ratio, 56
Poisson-Kirchoff plate theory, 52
polar moment of inertia, 22
pole-zero map, 231, 234
poles, 159, 163
potential flow, 91
potential-gradient method, 141
power spectral density matrix, 220
pressure amplitude, 117
pressure difference, 73

pressure distribution, 60, 297
principle of virtual work, 31, 141
process noise, 219
proper transfer function, 159
proportional-derivative control, 211
proportional-integral-derivative control, 214

Q
quadratic objective function, 216
quadrature, 33
quadrilateral doublet, 286
quasi-steady, 100
quasi-steady approximation, 193

R
radius of gyration, 188
rate gyro, 226
rational function, 159
rational function approximation, 3, 6, 162, 167,

183
Rayleigh-Ritz method, 17, 31, 37
receiving box, 121
reciprocal principle, 17
rectangular element, 56
recursive backstepping, 6
reduced frequency, 72, 99, 117, 120, 160, 266
reduced-frequency, 71
reduced-order observer, 251
regulation, 209
regulation problem, 259
Reissner-Mindlin plate theory, 52
residual, 35
retarded potential, 103, 149
return-ratio, 245
Reynolds number, 266
rigid longitudinal model, 225
robust control, 3, 5, 6, 239
robustness, 244
rotational flow, 146
Runge-Kutta algorithm, 276

S
Saint-Venant’s theory, 13, 18, 21, 40
self-tuning regulator, 6
sending box, 121, 123
sensitivity matrix, 243
separated flow, 63
separation of variables, 101
series connection, 208
servo-actuator, 210
servo-controller, 210
shaft element, 38, 41, 42
shape function, 35, 41–43
shape functions, 33, 37, 55



Index 317

shear center, 18
shear deformation, 19
shear force, 20, 23, 55
shear modulus, 20, 22, 56
shear strain, 52
shearing constant, 21
shearing stiffness, 21
shearing stress, 52
shock waves, 64, 65, 68, 70, 144, 146, 166,

182, 271, 272
shock-induced buffet, 271
shock-induced flow separation, 4, 6, 272
simple harmonic, 27, 34, 98, 100, 111, 155,

156, 160, 257, 263, 265
simple-pole RFA, 169, 189
Simplex algorithm, 173
sine-integral, 118
single-valued, 102
singular integral, 117
singular kernel, 118
singular value, 244
sink, 75
sliding-mode control, 6
small amplitude motion, 68, 150
small-perturbation, 70
solid boundary condition, 76, 80, 95, 145
Sommerfeld condition, 103, 152
source, 74, 77, 78
spatial domain, 34, 35
specific enthalpy, 62
specific entropy, 65
specific gas constant, 63
specific heat ratio, 64
specific internal energy, 64
speed of sound, 66
spherical wave front, 107
spline fit, 166
SPNLRI, 144
stability, 9
stability analysis, 159, 276
stability augmentation, 226
stability in the sense of Lyapunov, 249, 301
stabilizability, 224
stable system, 157
stagnation enthalpy, 66
stall flutter, 272
stalling, 265
state equation, 183, 184, 190, 191, 194, 208
state estimation, 210
state transition matrix, 218
state-space model, 8, 157, 169, 183, 185, 192
static equilibrium, 28
static pressure, 62

static temperature, 62
statically unstable, 226
steady flow, 66, 74
steady-state, 84, 89
steady-state error, 210
stiffness coefficient, 17
stiffness influence coefficient, 22, 27, 31
stiffness matrix, 17, 28
stochastic system, 219
strain, 15
strain energy, 18, 21–23, 28, 31, 41
stress, 15
stress tensor, 62
strictly proper, 243
strip theory, 167
strong formulation, 35
structural deflection, 14
structural dynamics, 1
structured singular value synthesis, 6
subsonic flow, 72, 105, 114
supercritical airfoil, 89
supersonic flow, 72, 106, 115
supremum, 248
surface boundary, 102
swept doublet line, 122

T
tangential flow, 72
tangential velocity, 79, 87, 95
terminal cost function, 214
Theodorsen function, 101, 160, 187
thermal conductivity, 62
thin airfoil, 78, 160, 263
thin airfoils, 91
thin wing, 152
three-dimensional wing model, 190
thrust, 263
time interval, 34
time linearization, 150
time-domain aerodynamics, 157
time-domain panel method, 129, 179
time-marching, 64
torque input, 208
torsional spring, 23
torsional stiffness, 7, 22, 23
torsional stiffness matrix, 44
trace, 248
tracking control, 209
transfer function, 159
transfer matrix, 156, 168
transformation matrix, 15
transient aerodynamics, 160
transmission matrix, 243
transonic aerodynamics, 5
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transonic Doublet-Lattice method, 144, 149
transonic flight, 271
transonic flow, 68
transonic flutter, 272
transonic flutter dip, 272
transonic small-disturbance, 5, 68–70, 144
transverse strain, 56
triangular element, 56
Tschebychev polynomial, 166
turbulence models, 63
turbulent flow, 63
twin transfer functions model, 169
twist angle, 18, 21, 38
twisting moment, 21, 23, 40
twisting slope, 22
typical section, 185

U
uniform flow, 72, 74
unit step function, 115
unsteady aerodynamics, 1, 4, 5, 155
unsteady Bernoulli equation, 66–68, 73, 84, 87,

94, 111, 145, 146
upstroke, 265
upwash, 8, 30, 59, 78, 264
upwash amplitude, 113–116, 139, 142
upwash point, 122

V
value function, 217
variational form, 26
velocity components, 62
velocity potential, 66, 69
velocity potential formulation, 128, 141, 165
velocity potential gradient, 76
velocity vector, 65
vertical deflection, 18, 22
vertical deflection amplitude, 113

virtual coordinate, 17, 26, 37
virtual load, 17
viscous damping, 25, 156
viscous flow, 61
vortex, 79
vortex-induced buffet, 271
Vortex-Lattice method, 80, 88, 101, 119
vortex-lattice method, 84
vortex-ring, 84, 285
vorticity, 65, 80, 81, 94

W
Wagner function, 84, 162, 166
wake, 72, 76, 146, 160
wake circulation, 89
wake element, 94
wake model, 128
wake panel, 85
wake roll-up, 83, 101
wake vortex, 82
warp angle, 18
wave equation, 67, 102, 113, 147
wave number, 103, 107
weak formulation, 33, 35, 40
weighted-residual method, 36
weighting function, 36, 37
weighting matrix, 33
wind-tunnel test, 2

Y
Young’s modulus, 20, 56

Z
zero-lift pitching moment, 28
zero-mean, Gaussian white noise, 221, 224
zeroes, 159
ZONA51, 143
zone of influence, 108
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