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Preface

The chemical industry is a vital sector of the global economy. Increasingly faced
with the requirements of safety, environmental sustainability, energy efficiency, and
profitability, chemical process operation is relying extensively on automated process
control systems involving a large number of control actuators and measurement sen-
sors. While process automation is critical in achieving the above requirements, the
increasing reliance on actuators and sensors tends to increase the vulnerability of
the process to faults (for example, defects/malfunctions in process equipment, sen-
sors and actuators, failures in the controllers or in the control loops), leading to the
failure of the control system and potentially causing a host of economic, environ-
mental, and safety problems that can seriously degrade the operating efficiency of
the process. Problems due to faults may include physical damage to the process
equipment, raw material and energy waste, increase in process downtime, result-
ing in significant production losses, and jeopardizing personnel and environmental
safety. Management of abnormal situations resulting from actuator and sensor mal-
functions is a challenge in the chemical industry since abnormal situations account
for tens of billions of dollars in annual lost revenue in the US alone.

The above considerations provide a strong motivation for the development of
methods and strategies for the design of advanced fault-tolerant control systems
that ensure an efficient and timely response to enhance fault recovery, prevent
faults from propagating or developing into total failures, and reduce the risk of
safety hazards. To this end, this book presents methods for the design of advanced
fault-tolerant control systems for chemical processes which explicitly deal with ac-
tuator/controller failures and sensor data losses. Specifically, the book proposes:
(i) a fault-detection, isolation, and diagnosis framework for handling actuator and
sensor faults for nonlinear systems; (ii) reconfiguration and safe-parking based
fault-handling methodologies; (iii) integrated data and model based fault-detection
and isolation and fault-tolerant control methods; (iv) methods for handling sen-
sor malfunctions; and (v) methods for monitoring the performance of low-level
proportional-integral-derivative (PID) control loops. The proposed methods employ
tools ranging from nonlinear systems analysis, Lyapunov techniques, optimization,
statistical methods, and hybrid systems theory and are predicated upon the idea of
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vi Preface

integrating fault-detection, local feedback control, and supervisory control. The ap-
plicability and performance of the proposed methods are demonstrated through a
number of chemical process examples.

Application of the proposed fault-tolerant control methods to processes subject to
actuator and sensor malfunctions is expected to significantly improve their operation
and performance, increase process safety and reliability, and minimize the negative
economic impact of failures on overall process operation.

The book requires basic knowledge of differential equations, linear and nonlinear
control theory, and optimization methods, and is intended for researchers, graduate
students, and process control engineers. Throughout the book, practical implemen-
tation issues are discussed to help engineers and researchers understand the appli-
cation of the methods in greater depth.

Finally, we would like to thank all the people who contributed in some way to this
project. In particular, we would like to thank our colleagues at McMaster University,
the University of Alberta, and UCLA for creating a pleasant working environment.
Last, but not least, we would like to express our deepest gratitude to our families
for their dedication, encouragement and support over the course of this project. We
dedicate this book to them.

Prashant Mhaskar
Jinfeng Liu

Panagiotis D. Christofides

Hamilton, Ontario, Canada
Edmonton, Alberta, Canada
Los Angeles, CA, USA
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Chapter 1
Introduction

1.1 Motivation

The operation of chemical processes is characterized both by the complexity of the
individual units and the intricate interconnection of these geographically distributed
units via a network of material and energy streams, and control loops. The non-
linear behavior exhibited by most chemical processes, together with the presence
of constraints on the operating conditions, modeling uncertainty and disturbances,
and the lack of availability of state measurements has motivated several research
results in the area of nonlinear process control focusing on these issues. The de-
velopment of the advanced control algorithms (alongside developments in sensing,
communication, and computing technologies) has led to extensive automation of
plant operation. Increased automation, however, also makes the plant susceptible
to faults (e.g., defects/malfunctions in process equipment, sensors and actuators,
failures in the controllers or in the control loops), which, if not appropriately han-
dled in the control system design, can potentially cause a host of undesired eco-
nomic, environmental, and safety problems. These considerations provide a strong
motivation for the development of advanced fault-tolerant control methods that en-
sure an efficient and timely response to enhance fault recovery, prevent faults from
propagating or developing into total failures, and reduce the risk of safety haz-
ards.

The area of fault-tolerant control stands on three key pegs: (i) fault detection and
isolation methods, (ii) robust and nonlinear control designs, and (iii) fault-handling
mechanisms. While there have been significant contributions in these three indi-
vidual areas, the key to a successful fault-tolerant control method lies on a seam-
less integration of the above three in a way that accounts for system complexi-
ties such as nonlinearity, uncertainty, and constraints and provides a mechanism
for an efficient and timely response to enhance fault recovery. Motivated by the
above, this book presents methods for integrated fault-detection and isolation and
fault-tolerant control, accompanied by their application to nonlinear process sys-
tems.

P. Mhaskar et al., Fault-Tolerant Process Control, DOI 10.1007/978-1-4471-4808-1_1,
© Springer-Verlag London 2013
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2 1 Introduction

Fig. 1.1 A traditional
fault-tolerant control structure

1.2 Background

Over the past 15 years, fault-tolerant control has become an active area of research
within control engineering as a means for avoiding disaster in the case of a fault;
see, for example, [44, 48, 111, 113, 114]. Many research studies can be found in
the field of aerospace control engineering [17, 131, 182] as well as within chemical
process control [13, 111, 113]. Fault-tolerant control works on the basic premise that
there still exist some degrees of freedom/partial controllability in the presence of a
fault, which inherently stems from some form of actuator/sensor redundancy. Fault-
tolerant control solutions typically exist as an integrated fault-detection/isolation
and diagnosis and fault-tolerant control framework, with process control algorithms
being integral to the success of the framework. In the remainder of this section,
we will briefly review the state-of-the-art in the key components of a fault-tolerant
control framework.

The highly nonlinear behavior of many chemical processes has motivated exten-
sive research on nonlinear process control. Chemical process nonlinearities can arise
from the first principles process model, bounds on manipulated inputs, controller el-
ements, or complex process interactions. Excellent reviews of results in the area of
nonlinear process control can be found, for example, in [15, 67]; for a more recent
review, see [28]. The problems caused by input constraints have motivated numer-
ous studies on the dynamics and control of systems subject to input constraints.
Important contributions in this area include results on optimization-based control
methods such as model predictive control (e.g., [60, 100]), Lyapunov-based control
(e.g., [45, 46, 78, 85, 156]), and hybrid predictive control (e.g., [50, 109]).

The traditional approach to handling faults has been to design robust control
structures. The control designs essentially rely on availability of sufficient control
effort in the presence of faults that allows the controller to implement control action
to counter the effect of faults (that are treated essentially as disturbances). Such de-
signs can be categorized as “passive” designs in that no explicit action is taken based
on the occurrence of faults. The benefit of this approach is that it does not require
an explicit fault-detection and isolation mechanism, with the obvious limitation be-
ing the conservativeness of the control design. Figure 1.1 shows a schematic of the
traditional fault-tolerant control structure.
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Fig. 1.2 An active fault tolerant control structure

More recent results have focussed on designing active fault tolerant control struc-
tures where the specific action taken is triggered by the detection (and isolation and,
where applicable, diagnosis) of the fault. Figure 1.2 shows a schematic of the tradi-
tional fault-tolerant control structure. Methods for fault detection and isolation fall
into two broad categories: model-based methods [54, 164] and data-based methods
[163]. Model-based methods utilize a mathematical model of the process to build,
under appropriate assumptions, dynamic filters that use process measurements to
compute residuals that relate directly to specific faults; in this way, fault detection
and isolation can be accomplished for specific model and fault structures (see, for
example, [54, 164]). The problem of using fundamental process models for the pur-
pose of detecting faults has been studied extensively in the context of linear sys-
tems [21, 22, 39, 54, 55, 63, 98, 106, 132, 164]; and more recently, some results
in the context of nonlinear and distributed parameter systems have been derived
[8, 18, 38, 44, 48, 115, 134, 146, 153, 177, 179, 180]. In this approach, fault de-
tection and isolation (FDI) is often achieved by generating residuals through the
system model and input/output data. Under fault-free conditions, the magnitudes of
residuals are small. A fault is reported when a residual breaches the user-specified
threshold. Due to the presence of plant–model mismatch, residuals that are sen-
sitive to faults but insensitive to uncertainty and disturbances are desired. On the
other hand, data-based methods are primarily based on past measured plant-data to
construct indicators that identify deviations from normal operation to detect faults
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(e.g., [7, 36, 42, 43, 82, 123, 128, 142, 155, 178]). Analyzing measured data gives
a picture of the location and direction of the system in the state-space. It is then
possible to extract information about the fault by comparing the location and/or di-
rection of the system in the state-space with past behavior under faulty operation
(e.g., [144, 174]) or with expected behavior as predicted by the structure or model
of the system. Several methods have been developed that process the measured data
to reduce their dimension and extract information from the data with respect to actu-
ator/sensor faults using principle component analysis (PCA) or partial least squares
(PLS) techniques (e.g., [90, 123, 139, 171]). These methods reduce the dimension-
ality of the data by eliminating directions in the state-space with low common-cause
variance. Many methods use this reduced space and consequent null space to gain
further information about the process behavior as well as about actuator/sensor
faults, including techniques such as contribution plots (e.g., [80]) or multi-scale
statistical process control using wavelets (e.g., [6, 7, 12]). One of the main draw-
backs of these data-based methods is that in order to accomplish fault isolation,
they commonly require fault-specific historical data that may be costly to obtain.
Furthermore, due to the nature of the chemical process, its structure and/or how it is
instrumented, in practice, it is often hard to distinguish between regions/directions
corresponding to operation in the presence of different faults due to overlap, making
fault isolation difficult. For a comprehensive review of model-based and data-based
fault detection and isolation methods, the reader may refer to [163, 164]. In general,
most of the FDI methods mentioned thus far rely on measurements that are contin-
uously or synchronously sampled, and they do not account for measurements that
arrive asynchronously. Recently, research has been done on the topic of feedback
control with asynchronous measurements [113, 120]. These efforts provide a start-
ing framework for control subject to asynchronous measurements, but they do not
include FDI.

Unknown input observers are developed in [22] to decouple the effect of un-
known inputs, such as disturbances, from that of the faults for linear systems. A fault
detection filter can then be developed to make the residuals directional for the pur-
pose of fault isolation by using the remaining design freedom. For nonlinear sys-
tems, the problem has been studied by using uniform thresholds in [115] (and adap-
tive thresholds in [177, 179, 180]), where the isolation of faults relies on the exis-
tence of a state variable such that its evolution is directly and uniquely affected by
the potential fault. For systems modeled by polynomial differential algebraic equa-
tions, analytical redundancy relations, which are constructed through a successive
derivation of the system inputs and outputs to eliminate the unknown state variables,
are used to generate structured residuals for FDI (e.g., [153]). Furthermore, a geo-
metric approach is explored in [38], where a nonlinear FDI filter is designed to solve
the fundamental problem of residual generation. Recently, a feedback control law
was designed to decouple the dependency between certain system state variables to
allow fault isolation using the structure of the closed-loop system (e.g., [129, 130]).

Compared to the problem of actuator faults, relatively fewer results on the han-
dling of sensor faults for nonlinear systems are available. In one line of work, the
problem of sensor FDI has been studied for Lipschitz nonlinear systems (see, e.g.,
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[140, 162, 176, 179]). In [140], a nonlinear state observer is designed to generate
state estimates by using a single sensor, and residuals are defined as the differences
between the measurements and the corresponding state estimates. The fault iso-
lation logic, however, is only limited to systems with three or more outputs. The
method developed in [176, 179] utilizes adaptive estimation techniques to account
for unstructured but bounded uncertainty, which requires knowledge of Lipschitz
constants in the generation of the adaptive thresholds. A bank of fault isolation es-
timators are activated after the detection of a fault, and fault mismatch functions
are used to describe the faults that are isolable. Linear matrix inequality techniques
are used to design observers [133], which can be used to identify the fault vector,
thereby achieving detection and estimation at the same time. A sliding mode ob-
server is designed [172] to reconstruct or estimate faults by transforming sensor
faults into pseudo-actuator faults. However, this approach requires a special struc-
ture of the system, and there is a limitation on the nonlinearities that can be handled.
A bank of nonlinear observers are used to generate residuals that are sensitive to
faults in all the sensors except for the one under consideration [99]. However, the
design of the observer gain is based on a linearized model. In addition to sensor bias
faults, the effect of intermittent unavailability of measurements has also been stud-
ied (see, e.g., [113, 120]). Despite the above methods, there exist limited results that
consider the problem of detecting and isolating sensor faults for nonlinear systems.

The occurrence of faults in chemical processes and subsequent switching to fall-
back control configurations naturally leads to the superposition of discrete events
on the underlying continuous process dynamics thereby making a hybrid systems
framework a natural setting for the analysis and design of fault-tolerant control
structures. Proper coordination of the switching between multiple (or redundant)
actuator/sensor configurations provides a means for fault-tolerant control. However,
at this stage, despite the large and growing body of research work on a diverse array
of hybrid system problems (e.g., [37, 47, 51, 61, 62, 68]), the use of a hybrid system
framework for the study of fault-tolerant control problems for nonlinear systems
subject to constraints has received limited attention.

In summary, a close examination of the existing literature indicates a lack
of general and practical methods for the design of integrated fault-detection and
fault-tolerant control structures for chemical plants accounting explicitly for actua-
tor/controller and sensor failures, process nonlinearities exhibited by most chemical
processes, input constraints, modeling uncertainty and disturbances, and the lack of
availability of state measurements.

1.3 Objectives and Organization of the Book

Motivated by the lack of a comprehensive integrated fault-detection and isolation
and fault-tolerant control approach for nonlinear process systems, the broad objec-
tives of this book are as follows:

1. To develop integrated fault-detection, isolation and diagnosis frameworks for
handling actuator and sensor faults for nonlinear systems
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2. To develop reconfiguration and safe-parking based fault-handling methodologies
3. To develop integrated data and model based fault-detection and isolation and

fault-tolerant control methods
4. To develop methods for handling sensor malfunctions and methods for monitor-

ing the performance of low-level proportional-integral-derivative (PID) control
loops

5. To illustrate the applications of the developed fault-detection and isolation and
fault-tolerant control methods to nonlinear process systems

The book is organized as follows. In Chap. 2, we first review some basic re-
sults on nonlinear systems and control, including definitions of stability of nonlinear
systems, Lyapunov-based control, feedback linearization, model predictive control,
Lyapunov-based model predictive control and hybrid systems.

In Chap. 3, we focus on actuator faults for single-input nonlinear systems and
present a methodology to detect and handle the actuator fault through controller
reconfiguration. First, the problem is considered under the assumption that state
feedback is available; and then the approach is extended to the case where only
certain outputs are available for measurement. Simulations of a chemical reactor
example are carried out to illustrate the effectiveness of the presented approaches.

In Chap. 4, we generalize the results of Chap. 3 to include multi-input multi-
output nonlinear systems subject to multiple faults in the control actuators and con-
straints on the manipulated inputs. We present a framework for integrated fault de-
tection and isolation and fault-tolerant control. Similar to Chap. 3, we consider the
case that state feedback is available first and then consider the case of output feed-
back. Applications of the methods to a chemical reactor and a reverse osmosis water
desalination process are presented to demonstrate the applicability and effectiveness
of the methods.

In Chap. 5, we move away from the assumption of availability of a redundant
control configuration and present a “safe-parking” approach to handle faults. The
safe-parking approach dictates driving the system to a (appropriately chosen) tem-
porary operating point (the so-called safe-park point) until the fault is rectified. The
choice of the safe-park point is based on stability and performance considerations,
and also necessitates fault diagnosis (estimating the magnitude of the fault), go-
ing beyond FDI. A comprehensive mechanism for Fault-detection and Diagnosis
(FDD) and safe-parking is presented and illustrated through chemical process ex-
amples.

In Chap. 6, we relax the assumption on the knowledge of the location and mag-
nitude of the fault made in Chap. 5 and consider the problem of designing an in-
tegrated fault diagnosis and fault-handling framework to deal with actuator faults
in nonlinear systems. A model-based fault diagnosis design is first proposed, which
cannot only identify the failed actuator, but also estimate the fault magnitude. The
efficacy of the integrated fault diagnosis and safe-parking framework is demon-
strated through a chemical reactor example.

In Chap. 7, we demonstrate the use of FDI considerations in both control de-
sign and performance monitoring. We first develop a data-based method of fault
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detection and isolation that utilizes the design of the controller to enhance the isola-
bility of the faults in the closed-loop system. It is demonstrated in this chapter
that a data-based FDI scheme is able to isolate a given set of faults if the non-
linear closed-loop system satisfies certain isolability conditions in the presence of
common-cause process variation. This is achieved through the use of appropriate
nonlinear control laws that effectively decouple the dependency between certain
process state variables. The theoretical results are applied to a continuous stirred
tank reactor example and to a polyethylene reactor example. Next, we focus on the
problem of monitoring and retuning of low-level PID control loops used to regu-
late control actuators to the values computed by a model-based controller. Under
the assumption that the real-time measurement of the actuation level is unavail-
able, we use process state measurements and process models to carry out PID con-
troller monitoring and compute appropriate residuals. Once a poorly-tuned PID con-
troller is detected and isolated, a PID tuning method based on the estimated transfer
function of the control actuator is applied to retune the PID controller. The pre-
sented method is applied to a nonlinear reactor–separator process operating under
model predictive control with low-level PID controllers regulating the control actu-
ators.

In Chap. 8, we consider the problem of sensor FDI and FTC for nonlinear sys-
tems subject to input constraints. The key idea of the presented method is to exploit
model-based sensor redundancy through state observer design. An output feedback
control design using high-gain observers is first presented; and then an FDI scheme
is presented, which comprises of a bank of high-gain observers. Residuals are de-
fined as the discrepancies between these state estimates and their predicted values
based on previous estimates. A fault is identified when all the residuals breach their
thresholds except for the one generated without using the measurements provided by
the faulty sensor. Upon FDI, the state estimate generated using measurements from
the remaining healthy sensors is used to preserve practical stability of the closed-
loop system. The implementation of the sensor FDI and fault-handling framework
subject to uncertainty and measurement noise is illustrated using a chemical reactor
example.

Finally, in Chap. 9, we address the problem of control and fault-handling subject
to asynchronous measurements and data losses. First, we develop an approach for
handling sensor data losses via Lyapunov-based model predictive control. Specif-
ically, in this control scheme, when feedback is lost due to sensor data losses, the
actuators implement the last optimal input trajectory evaluated by the controller.
This control scheme allows for an explicit characterization of the stability region
and guarantees practical stability in the absence of sensor data losses. Application
of the control scheme to a continuous crystallization process subject to sensor mal-
functions is presented to illustrate the robustness of the control scheme when the
process is subject to measurement unavailability, asynchronous sampling and para-
metric model uncertainties. Next, an integrated fault detection, isolation and fault-
tolerant control framework is applied to a polyethylene reactor system where sev-
eral process measurements are not available synchronously. First, an FDI scheme
that employs model-based techniques is designed that allows for the isolation of the
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faults. This scheme employs model-based FDI filters in addition to observers that
estimate the fault-free evolution of the asynchronously measured states during times
when they are unmeasured. The FDI scheme provides detection and isolation for a
fault where the fault entered into the differential equation of only synchronously
measured states, and grouping of faults where the fault entered into the differential
equation of any asynchronously measured state.



Chapter 2
Background on Nonlinear Systems and Control

In this chapter, we review some basic results on the analysis and control of nonlinear
systems. This review is not intended to be exhaustive but to provide the reader with
the necessary background for the results presented in the subsequent chapters. The
results presented in this chapter are standard in the nonlinear systems and control
literature. For detailed discussion and proofs of the results, the reader may refer to
the classic books [72, 76].

2.1 Notation

Throughout this book, the operator | · | is used to denote the absolute value of a scalar
and the operator ‖ · ‖ is used to denote Euclidean norm of a vector, while we use
‖ ·‖Q to denote the square of a weighted Euclidean norm, i.e., ‖x‖Q = xT Qx for all
x ∈ R

n. The symbol Ωr is used to denote the set Ωr := {x ∈ R
n : V (x) ≤ r} where

V is a scalar positive definite, continuous differentiable function and V (0) = 0, and
the operator ‘/’ denotes set subtraction, that is, A/B := {x ∈ R

n : x ∈ A,x /∈ B}.
The notation R = [r1 r2] is used to denote the augmented vector R ∈ R

m+n com-
prising the vectors r1 ∈ R

m and r2 ∈ R
n. The notation x(T +) denotes the limit of

the trajectory x(t) as T is approached from the right, i.e., x(T +) = limt→T + x(t).
The notation Lf h denotes the standard Lie derivative of a scalar function h(·) with
respect to the vector function f (·), i.e., Lf h(x) = ∂h

∂x
f (x).

2.2 Nonlinear Systems

In this book, we deal with a class of time invariant nonlinear systems that can be
described by the following state-space model:

ẋ = f (x,u), (2.1)

P. Mhaskar et al., Fault-Tolerant Process Control, DOI 10.1007/978-1-4471-4808-1_2,
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where x ∈ R
n denotes the vector of state variables, u ∈ R

m denotes the vector of
control (manipulated) input variables, and f is a locally Lipschitz vector function
on R

n × R
m such that f (0,0) = 0. This implies that the origin is an equilibrium

point for the unforced system. The input vector is restricted to be in a nonempty
convex set U ⊆ R

m which is defined as follows:

U := {
u ∈R

m : ‖u‖ ≤ umax}, (2.2)

where umax is the magnitude of the input constraint. Another version of the set that
we will use is

Ucon := {
u ∈R

m : umin
i ≤ ui ≤ umax

i , i = 1, . . . ,m
}
, (2.3)

where umin
i and umax

i denote the constraints on the minimum and maximum value
of the ith input.

In many chapters, we will restrict our analysis to a special case of the system of
Eq. (2.1) where the input vector u enters the dynamics of the state x in an affine
fashion as follows:

ẋ = f (x) + G(x)u, (2.4)

where f is a locally Lipschitz vector function on R
n such that f (0) = 0 and G is an

n × m matrix of locally Lipschitz vector functions on R
n.

2.3 Stability of Nonlinear Systems

For all control systems, stability is the primary requirement. One of the most widely
used stability concepts in control theory is that of Lyapunov stability, which we
employ throughout the book. In this section, we briefly review basic facts from
Lyapunov’s stability theory. To begin with, we note that Lyapunov stability and
asymptotic stability are properties not of a dynamical system as a whole, but rather
of its individual solutions. We restrict our attention to the class of time-invariant
nonlinear systems:

ẋ = f (x), (2.5)

where the control input u does not appear explicitly. This does not necessarily mean
that the input to the system is zero. It could be that the input u has been specified as
a given function of the state x, u = u(x), and could be considered as a special case
of the system of Eq. (2.1).

The solution of Eq. (2.5), starting from x0 at time t0 ∈ R, is denoted as
x(t;x0, t0), so that x(t0;x0, t0) = x0. Because the solutions of Eq. (2.5) are invariant
under a translation of t0, that is, x(t +T ;x0, t0 +T ) = x(t;x0, t0), the stability prop-
erties of x(t;x0, t0) are uniform, i.e., they do not depend on t0. Therefore, without
loss of generality, we assume t0 = 0 and write x(t;x0) instead of x(t;x0,0).
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Lyapunov stability concepts describe continuity properties of x(t;x0, t0) with
respect to x0. If the initial state x0 is perturbed to x̃0, then, for stability, the perturbed
solution x̃(t;x0) is required to stay close to x(t;x0) for all t ≥ 0. In addition, for
asymptotic stability, the error x̃(t;x0) − x(t;x0) is required to vanish as t → ∞.
Some solutions of Eq. (2.5) may be stable and some unstable. We are particularly
interested in studying and characterizing the stability properties of equilibria, that
is, constant solutions x(t;xe) ≡ xe satisfying f (xe) = 0.

For convenience, we state all definitions and theorems for the case when the
equilibrium point is at the origin of Rn; that is, xe = 0. There is no loss of generality
in doing so since any equilibrium point under investigation can be translated to
the origin via a change of variables. Suppose xe 
= 0, and consider the change of
variables, z = x − xe. The derivative of z is given by:

ż = ẋ = f (x) = f (z + xe) := g(z),

where g(0) = 0. In the new variable z, the system has an equilibrium point at the ori-
gin. Therefore, for simplicity and without loss of generality, we will always assume
that f (x) satisfies f (0) = 0 and confine our attention to the stability properties of
the origin xe = 0.

2.3.1 Stability Definitions

The origin is said to be a stable equilibrium point of the system of Eq. (2.5), in the
sense of Lyapunov, if for every ε > 0 there exists a δ > 0 such that we have:

∥∥x(0)
∥∥ ≤ δ =⇒ ∥∥x(t)

∥∥ ≤ ε, ∀t ≥ 0. (2.6)

In this case, we will also simply say that the system of Eq. (2.5) is stable. A similar
convention will apply to other stability concepts introduced below. The origin is said
to be unstable if it is not stable. The ε–δ requirement for stability takes a challenge–
answer form. To demonstrate that the origin is stable, for every value of ε that a
challenger may care to design, we must produce a value of δ, possibly dependent on
ε, such that a trajectory starting in a δ neighborhood of the origin will never leave
the ε neighborhood.

The origin of the system of Eq. (2.5) is said to be asymptotically stable if it is
stable and δ in Eq. (2.6) can be chosen so that (attractivity property of the origin):

∥∥x(0)
∥∥ ≤ δ =⇒ x(t) → 0 as t → ∞. (2.7)

When the origin is asymptotically stable, we are often interested in determining
how far from the origin the trajectory can be and still converge to the origin as
t approaches ∞. This gives rise to the definition of the region of attraction (also
called region of asymptotic stability, domain of attraction, and basin). Let φ(t;x)

be the solution of Eq. (2.5) that starts at initial state x at time t = 0. Then the region
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of attraction is defined as the set of all points x such that limt→∞φ(t;x) = 0. If the
origin is a stable equilibrium and its domain of attraction is the entire state-space,
then the origin is called globally asymptotically stable.

If the system is not necessarily stable but has the property that all solutions with
initial conditions in some neighborhood of the origin converge to the origin, then
it is called (locally) attractive. We say that the system is globally attractive if its
solutions converge to the origin from all initial conditions.

The system of Eq. (2.5) is called exponentially stable if there exist positive real
constants δ, c, and λ such that all solutions of Eq. (2.5) with ‖x(0)‖ ≤ δ satisfy the
inequality:

∥∥x(t)
∥∥ ≤ c

∥∥x(0)
∥∥e−λt , ∀t ≥ 0. (2.8)

If this exponential decay estimate holds for any x(0) ∈ R
n, the system is said to be

globally exponentially stable.

2.3.2 Stability Characterizations Using Function Classes K, K∞,
and KL

Scalar comparison functions, known as class K, K∞, and KL, are important stabil-
ity analysis tools that are frequently used to characterize the stability properties of a
nonlinear system.

Definition 2.1 A function α : [0, a) → [0,∞) is said to be of class K if it is con-
tinuous, strictly increasing, and α(0) = 0. It is said to belong to class K∞ if a = ∞
and α(r) → ∞ as r → ∞.

Definition 2.2 A function β : [0, a) × [0,∞) → [0,∞) is said to be of class KL
if, for each fixed t ≥ 0, the mapping β(r, t) is of class K with respect to r and, for
each fixed r , the mapping β(r, t) is decreasing with respect to t and β(r, t) → 0 as
t → ∞.

We will write α ∈ K and β ∈ KL to indicate that α is a class K function and β

is a class KL function, respectively. As an immediate application of these function
classes, we can rewrite the stability definitions of the previous section in a more
compact way. For example, stability of the system of Eq. (2.5) is equivalent to the
property that there exist a δ > 0 and a class K function, α, such that all solutions
with ‖x(0)‖ ≤ δ satisfy:

∥∥x(t)
∥∥ ≤ α

(∥∥x(0)
∥∥)

, ∀t ≥ 0. (2.9)

Asymptotic stability is equivalent to the existence of a δ > 0 and a class KL func-
tion, β , such that all solutions with ‖x(0)‖ ≤ δ satisfy:

∥∥x(t)
∥∥ ≤ β

(∥∥x(0)
∥∥, t

)
, ∀t ≥ 0. (2.10)
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Global asymptotic stability amounts to the existence of a class KL function, β , such
that the inequality of Eq. (2.10) holds for all initial conditions. Exponential stability
means that the function β takes the form β(r, s) = cre−λs for some c,λ > 0.

2.3.3 Lyapunov’s Direct (Second) Method

Having defined stability and asymptotic stability of equilibrium points, the next task
is to find ways to determine stability. To be of practical interest, stability conditions
must not require that we explicitly solve Eq. (2.5). The direct method of Lyapunov
aims at determining the stability properties of an equilibrium point from the proper-
ties of f (x) and its relationship with a positive-definite function V (x).

Definition 2.3 Consider a C1 (i.e., continuously differentiable) function V :
R

n → R. It is called positive-definite if V (0) = 0 and V (x) > 0 for all x 
= 0. If
V (x) → ∞ as ‖x‖ → ∞, then V is said to be radially unbounded.

If V is both positive-definite and radially unbounded, then there exist two class
K∞ functions α1, α2 such that V satisfies:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖) (2.11)

for all x. We write V̇ for the derivative of V along the solutions of the system of
Eq. (2.5), i.e.:

V̇ (x) = ∂V

∂x
f (x). (2.12)

The main result of Lyapunov’s stability theory is expressed by the following state-
ment.

Theorem 2.1 (Lyapunov) Let x = 0 be an equilibrium point for the system of
Eq. (2.5) and D ⊂ R

n be a domain containing x = 0 in its interior. Suppose that
there exists a positive-definite C1 function V : Rn → R whose derivative along the
solutions of the system of Eq. (2.5) satisfies:

V̇ (x) ≤ 0, ∀x ∈ D (2.13)

then x = 0 of the system of Eq. (2.5) is stable. If the derivative of V satisfies:

V̇ (x) < 0, ∀x ∈ D/{0} (2.14)

then x = 0 of the system of Eq. (2.5) is asymptotically stable. If in the latter case,
V is also radially unbounded, then x = 0 of the system of Eq. (2.5) is globally
asymptotically stable.
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A continuously differentiable positive-definite function V (x) satisfying
Eq. (2.13) is called a Lyapunov function. The surface V (x) = c, for some c > 0,
is called a Lyapunov surface or a level surface. The condition V̇ ≤ 0 implies that
when a trajectory crosses a Lyapunov surface V (x) = c, it moves inside the set
Ωc = {x ∈ R

n : V (x) ≤ c} and can never come out again. When V̇ < 0, the trajec-
tory moves from one Lyapunov surface to an inner Lyapunov surface with smaller
c. As c decreases, the Lyapunov surface V (x) = c shrinks to the origin, showing
that the trajectory approaches the origin as time progresses. If we only know that
V̇ (x) ≤ 0, we cannot be sure that the trajectory will approach the origin, but we can
conclude that the origin is stable since the trajectory can be contained inside any
ball, Bε , by requiring that the initial state x0 lie inside a Lyapunov surface contained
in that ball.

The utility of a Lyapunov function arises from the need (or difficulty) of specify-
ing a unique (necessary and sufficient) direction of movement of states for stability.
To understand this, consider any scalar system (whether linear or nonlinear). The
necessary and sufficient condition for stability is that, for any value of the state x,
the value of ẋ should be opposite in sign to x, and greater than zero in magnitude
(unless x = 0). A Lyapunov function that allows readily capturing this requirement

is V (x) = x2

2 , resulting in V̇ (x) = xẋ. If and only if the origin of the systems is
stable (i.e., x is opposite in sign to ẋ), it will result in V̇ (x) < 0.

For non-scalar systems, this ‘unique’ direction of movement of states, while pos-
sible for linear systems (see Remark 2.1), is in general difficult to identify for non-
linear systems. For instance, if one considers a simple two state system, and restricts
the choice of the Lyapunov function to quadratic forms, it is clear that the square
of the distance to the origin (resulting in ‘circles’ as level curves) is not necessarily
the only choice of the Lyapunov-function, and there is no unique way to find a nec-
essary and sufficient direction of the movement of states to achieve stability. This
is the problem that lies at the core of the Lyapunov-stability theory—the inability
to define (and/or construct) a unique Lyapunov function for a given system that is
necessary and sufficient to establish stability. Having recognized this limitation, it
is important to note that the Lyapunov-based analysis at least provides sufficient
conditions to ascertain stability.

In this direction, various converse Lyapunov theorems show that the conditions
of Theorem 2.1 are also necessary. For example, if the system is asymptotically
stable, then there exists a positive-definite C1 function V that satisfies the inequality
of Eq. (2.14). The theorems, however, do not provide a way of constructing this
Lyapunov function.

Remark 2.1 It is well-known that for the linear time-invariant system

ẋ = Ax (2.15)

asymptotic stability, exponential stability, and their global versions are all equivalent
and amount to the property that A is a Hurwitz matrix, i.e., all eigenvalues of A have
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negative real parts. Fixing an arbitrary positive-definite symmetric matrix Q and
finding the unique positive-definite symmetric matrix P that satisfies the Lyapunov
equation

AT P + PA = −Q,

one obtains a quadratic Lyapunov function V (x) = xT Px whose time derivative
along the solutions of the system of Eq. (2.15) is V̇ = −xT Qx. The explicit formula
for P is

P =
∫ ∞

0
eAT tQeAt dt.

Indeed, we have

AT P + PA =
∫ ∞

0

d

dt

(
eAT tQeAt

)
dt = −Q,

because A is Hurwitz.

2.3.4 LaSalle’s Invariance Principle

With some additional knowledge about the behavior of solutions, it is possi-
ble to prove asymptotic stability using a Lyapunov function which satisfies the
nonstrict inequality of Eq. (2.13). This is facilitated by LaSalle’s invariance
principle. To state this principle, we first recall the definition of an invariant
set.

Definition 2.4 A set M is called (positively) invariant with respect to the given
system if all solutions starting in M remain in M for all future times.

We now state a version of LaSalle’s theorem.

Theorem 2.2 (LaSalle) Suppose that there exists a positive-definite C1 function V :
R

n → R whose derivative along the solutions of the system of Eq. (2.5) satisfies
the inequality of Eq. (2.13). Let M be the largest invariant set contained in the
set {x : V̇ (x) = 0}. Then the system of Eq. (2.5) is stable and every solution that
remains bounded for t ≥ 0 approaches M as t → ∞. In particular, if all solutions
remain bounded and M = {0}, then the system of Eq. (2.5) is globally asymptotically
stable.

To deduce global asymptotic stability with the help of this result, one needs
to check two conditions. First, all solutions of the system must be bounded.
This property follows automatically from the inequality of Eq. (2.13) if V is
chosen to be radially unbounded; however, radial boundedness of V is not nec-
essary when boundedness of solutions can be established by other means. The
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second condition is that V be not identically zero along any nonzero solution.
We also remark that if one only wants to prove asymptotic convergence of
bounded solutions to zero and is not concerned with Lyapunov stability of the
origin, then positive-definiteness of V is not needed (this is in contrast to Theo-
rem 2.1).

While Lyapunov’s stability theorem readily generalizes to time-varying systems,
for LaSalle’s invariance principle this is not the case. Instead, one usually works
with the weaker property that all solutions approach the set {x : V̇ (x) = 0}.

2.3.5 Lyapunov’s Indirect (First) Method

Lyapunov’s indirect method allows one to deduce stability properties of the nonlin-
ear system of Eq. (2.5), where f is C1, from stability properties of its linearization,
which is the linear system of Eq. (2.15) with

A := ∂f

∂x
(0). (2.16)

By the mean value theorem, we can write

f (x) = Ax + g(x)x,

where g is given componentwise by gi(x) := ∂fi

∂x
(zi) − ∂fi

∂x
(0) for some point, zi ,

on the line segment connecting x to the origin, i = 1, . . . , n. Since ∂f
∂x

is contin-
uous, we have ‖g(x)‖ → 0 as x → 0. From this it follows that if the matrix A

is Hurwitz (i.e., all its eigenvalues lie in the open left half of the complex plane),
then a quadratic Lyapunov function for the linearization serves—locally—as a Lya-
punov function for the original nonlinear system. Moreover, its rate of decay in a
neighborhood of the origin can be bounded below by a quadratic function, which
implies that stability is, in fact, exponential. This is summarized by the following
result.

Theorem 2.3 If f is C1 and the matrix of Eq. (2.16) is Hurwitz, then the system of
Eq. (2.5) is locally exponentially stable.

It is also known that if the matrix A has at least one eigenvalue with a posi-
tive real part, the origin of the nonlinear system of Eq. (2.5) is not stable. If A has
eigenvalues on the imaginary axis but no eigenvalues in the open right half-plane,
the linearization test is inconclusive. However, in this critical case, the system of
Eq. (2.5) cannot be exponentially stable since exponential stability of the lineariza-
tion is not only a sufficient but also a necessary condition for (local) exponential
stability of the nonlinear system.
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2.3.6 Input-to-State Stability

It is of interest to extend stability concepts to systems with disturbance inputs. In
the linear case represented by the system

ẋ = Ax + Bθ,

it is well known that if the matrix A is Hurwitz, i.e., if the unforced system, ẋ = Ax,
is asymptotically stable, then bounded inputs θ lead to bounded states while inputs
converging to zero produce states converging to zero. Now, consider a nonlinear
system of the form

ẋ = f (x, θ), (2.17)

where θ is a measurable bounded disturbance input. In general, global asymptotic
stability of the unforced system ẋ = f (x,0) does not guarantee input-to-state sta-
bility with respect to θ of the kind mentioned above. For example, the scalar system

ẋ = −x + xθ (2.18)

has unbounded trajectories under the bounded input θ ≡ 2. This motivates the fol-
lowing important concept, introduced by Sontag [151].

Definition 2.5 The system of Eq. (2.17) is called input-to-state stable (ISS) with
respect to θ if for some functions γ ∈ K∞ and β ∈ KL, for every initial state x(0),
and every input θ , the corresponding solution of the system of Eq. (2.17) satisfies
the inequality

∥
∥x(t)

∥
∥ ≤ β

(∥∥x(0)
∥
∥, t

) + γ
(‖θ‖s

[0,t]
)
, (2.19)

where ‖θ‖s
[0,t] := ess.sup{‖θ(s)‖ : s ∈ [0, t]} (supremum norm on [0, t] except for a

set of measure zero).

Since the system of Eq. (2.17) is time-invariant, the same property results if we
write

∥
∥x(t)

∥
∥ ≤ β

(∥∥x(t0)
∥
∥, t − t0

) + γ
(‖θ‖s[t0,t]

)
, ∀t ≥ t0 ≥ 0. (2.20)

The ISS property admits the following Lyapunov-like equivalent characterization:
The system of Eq. (2.17) is ISS if and only if there exists a positive-definite radially
unbounded C1 function V : Rn → R such that for some class K∞ functions α and
χ we have

∂V

∂x
f (x, θ) ≤ −α

(‖x‖) + χ
(‖θ‖), ∀x, θ. (2.21)

This is, in turn, equivalent to the following “gain margin” condition:

‖x‖ ≥ ρ
(‖θ‖) =⇒ ∂V

∂x
f (x, θ) ≤ −α

(‖x‖), (2.22)
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where α,ρ ∈ K∞. Such functions V are called ISS-Lyapunov functions. If the sys-
tem of Eq. (2.17) is ISS, then θ(t) → 0 implies x(t) → 0.

The system of Eq. (2.17) is said to be locally input-to-state stable (locally ISS)
if the bound of Eq. (2.19) is valid for solutions with sufficiently small initial condi-
tions and inputs, i.e., if there exists a δ > 0 such that Eq. (2.19) is satisfied whenever
‖x(0)‖ ≤ δ and ‖θ‖s

[0,t] ≤ δ. It turns out that (local) asymptotic stability of the un-
forced system ẋ = f (x,0) implies local ISS.

2.4 Stabilization of Nonlinear Systems

This book is primarily about control design. Our objective is to create closed-loop
systems with desirable stability and performance properties, rather than analyze the
properties of a given system. For this reason, we are interested in an extension of
the Lyapunov function concept, called a control Lyapunov function (CLF).

Suppose that our problem for the time-invariant system

ẋ = f (x,u), (2.23)

where x ∈ R
n, u ∈ R (i.e., we consider the unconstrained problem), f (0,0) = 0,

is to design a feedback control law α(x) for the control variable u such that the
equilibrium x = 0 of the closed-loop system

ẋ = f
(
x,α(x)

)
(2.24)

is globally asymptotically stable. We can pick a function V (x) as a Lyapunov func-
tion candidate, and require that its derivative along the solutions of the system of
Eq. (2.24) satisfies V̇ ≤ −W(x), where W(x) is a positive-definite function. We
therefore need to find α(x) to guarantee that for all x ∈R

n

∂V

∂x
(x)f

(
x,α(x)

) ≤ −W(x). (2.25)

This is a difficult task. A stabilizing control law for the system of Eq. (2.23) may
exist, but it may fail to satisfy Eq. (2.25) because of a poor choice of V (x) and
W(x). A system for which a good choice of V (x) and W(x) exists is said to possess
a CLF. This notion is made more precise below.

Definition 2.6 A smooth positive-definite radially unbounded function V : Rn →R

is called a control Lyapunov function (CLF) for the system of Eq. (2.23) if

inf
u∈R

{
∂V

∂x
(x)f (x,u)

}
< 0, ∀x 
= 0. (2.26)

The CLF concept of Artstein [9] is a generalization of Lyapunov design results
by Jacobson and Judjevic and Quinn. Artstein showed that Eq. (2.26) is not only
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necessary, but also sufficient for the existence of a control law satisfying Eq. (2.25),
that is, the existence of a CLF is equivalent to global asymptotic stabilizability.

For systems affine in the control, namely,

ẋ = f (x) + g(x)u, f (0) = 0, (2.27)

the CLF inequality of Eq. (2.25) becomes

Lf V (x) + LgV (x)u ≤ −W(x). (2.28)

If V is a CLF for the system of Eq. (2.27), then a particular stabilizing control law
α(x), smooth for all x 
= 0, is given by Sontag’s formula [150]:

u = αs(x) =
⎧
⎨

⎩
−Lf V (x)+√

(Lf V )2(x)+(LgV )4(x)

(LgV )2(x)
LgV (x), LgV (x) 
= 0,

0, LgV (x) = 0.
(2.29)

It should be noted that Eq. (2.28) can be satisfied only if

LgV (x) = 0 =⇒ Lf V (x) < 0, ∀x 
= 0. (2.30)

The intuitive interpretation of the existence of a CLF is as follows: For any x such
that LgV (x) 
= 0, since there are no constraints on the input, V̇ can be made negative
by picking a ‘large enough’ control action, with an appropriate sign, to counter the
effect of possibly positive Lf V (x) term. For all x such that LgV (x) = 0, the control
action has no effect on the Lyapunov-function derivative. For it to be possible to
show stability using the CLF V , it should therefore be true that whenever LgV (x) =
0, we also have that Lf V (x) < 0. This is the requirement that is formalized in
Eq. (2.30). With such a CLF, Eq. (2.29) results in

W(x) =
√

(Lf V )2(x) + (LgV )4(x) > 0, ∀x 
= 0. (2.31)

A further characterization of a stabilizing control law α(x) for the system of
Eq. (2.27) with a given CLF V is that α(x) is continuous at x = 0 if and only if
the CLF satisfies the small control property: For each ε > 0 there is a δ(ε) > 0 such
that, if x 
= 0 satisfies |x| ≤ δ, then there is some u with |u| < ε such that

Lf V (x) + LgV (x)u < 0. (2.32)

The main deficiency of the CLF concept as a design tool is that for most nonlinear
systems a CLF is not known. The task of finding an appropriate CLF maybe as com-
plex as that of designing a stabilizing feedback law. In the next section, we review
one commonly used tool for designing a Lyapunov-based control law that utilizes
coordinate transformations. We also note that in the presence of input constraints,
the concept of a CLF needs to be revisited, and this issue is discussed in Sect. 2.6.
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2.5 Feedback Linearization and Zero Dynamics

One of the popular methods for nonlinear control design (or alternatively, one way
to construct a Lyapunov-function for the purpose of control design) is feedback
linearization, which employs a change of coordinates and feedback control to trans-
form a nonlinear system into a system whose dynamics are linear (at least partially).
This transformation allows the construction and use of a Lyapunov function for the
control design utilizing results from linear systems analysis. A great deal of re-
search has been devoted to this subject over the last four decades, as evidenced by
the comprehensive books [72, 126] and the references therein. In this section, we
briefly review some of the basic geometric concepts that will be used in subsequent
chapters. While this book does not require the formalism of differential geometry,
we will employ Lie derivatives only for notational convenience. If f : Rn → R

n

is a vector field and h : Rn → R is a scalar function, the notation Lf h is used for
∂h
∂x

f (x). It is recursively extended to

Lk
f h(x) = Lf

(
Lk−1

f h(x)
) = ∂

∂x

(
Lk−1

f h(x)
)
f (x).

Let us consider the following nonlinear system:

ẋ = f (x) + g(x)u,

y = h(x),
(2.33)

where x ∈ R
n, u ∈ R, y ∈ R, f , g, h are analytic (i.e., infinitely differentiable)

vector functions. The derivative of the output y = h(x) is given by

ẏ = ∂h

∂x
(x)f (x) + ∂h

∂x
(x)g(x)u

= Lf h(x) + Lgh(x)u. (2.34)

If Lgh(x0) 
= 0, then the system of Eq. (2.33) is said to have relative degree one at
x0 (note that since the functions are smooth Lgh(x0) 
= 0 implies that there exists a
neighborhood of x0 on which Lgh(x) 
= 0). In our terminology, this implies that the
output y is separated form the input u by one integration only. If Lgh(x0) = 0, there
are two cases:

(i) If there exist points arbitrarily close to x0 such that Lgh(x) 
= 0, then the system
of Eq. (2.33) does not have a well-defined relative degree at x0.

(ii) If there exists a neighborhood B0 of x0 such that Lgh(x) = 0 for all x ∈ B0,
then the relative degree of the system of Eq. (2.33) may be well-defined.

In case (ii), we define

ψ1(x) = h(x), ψ2(x) = Lf h(x) (2.35)
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and compute the second derivative of y

ÿ = ∂ψ2

∂x
(x)f (x) + ∂ψ2

∂x
(x)g(x)u

= L2
f h(x) + LgLf h(x)u. (2.36)

If LgLf h(x0) 
= 0, then the system of Eq. (2.33) is said to have relative degree two
at x0. If LgLf h(x) = 0 in a neighborhood of x0, then we continue the differentiation
procedure.

Definition 2.7 The system of Eq. (2.33) is said to have relative degree r at the point
x0 if there exists a neighborhood B0 of x0 on which

Lgh(x) = LgLf h(x) = · · · = LgL
r−2
f h(x) = 0, (2.37)

LgL
r−1
f h(x) 
= 0. (2.38)

If Eq. (2.37)–(2.38) are valid for all x ∈ R
n, then the relative degree of the system

of Eq. (2.33) is said to be globally defined.

Suppose now that the system of Eq. (2.33) has relative degree r at x0. Then
we can use a change of coordinates and feedback control to locally transform this
system into the cascade interconnection of an r-dimensional linear system and an
(n− r)-dimensional nonlinear system. In particular, after differentiating r times the
output y = h(x), the control appears:

y(r) = Lr
f h(x) + LgL

r−1
f h(x)u. (2.39)

Since LgL
r−1
f h(x) 
= 0 in a neighborhood of x0, we can linearize the input–output

dynamics of the system of Eq. (2.33) using feedback to cancel the nonlinearities in
Eq. (2.39):

u = 1

LgL
r−1
f h(x)

[−Lr
f h(x) + v

]
. (2.40)

Then the dynamics of y and its derivatives are governed by a chain of r integra-
tors: y(r) = v. Since our original system of Eq. (2.33) has dimension n, we need
to account for the remaining n − r states. Using differential geometry tools, it can
be shown that it is always possible to find n − r functions ψr+1, . . . ,ψn(x) with
∂ψi

∂x
(x)g(x) = 0, for i = r + 1, . . . , n such that the change of coordinates

ζ1 = y = h(x), ζ2 = ẏ = Lf h(x), . . . , ζr = y(r−1) = Lr−1
f h(x),

η1 = ψr+1, . . . , ηn−r = ψn(x)
(2.41)
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is locally invertible and transforms, along with the feedback law of Eq. (2.40), the
system of Eq. (2.33) into

ζ̇1 = ζ2,

...

ζ̇r = v,

η̇1 = Ψ1(ζ, η),

...

η̇n−r = Ψn−r (ζ, η),

y = ζ1,

(2.42)

where Ψ1(ζ, η) = Lr+1
f h(x), Ψn−r (ζ, η) = Ln

f h(x).
The states η1, . . . , ηn−r have been rendered unobservable from the output y by

the control of Eq. (2.40). Hence, feedback linearization in this case is the nonlin-
ear equivalent of placing n − r poles of a linear system at the origin and canceling
the r zeros with the remaining poles. Of course, to guarantee stability, the canceled
zeros must be stable. In the nonlinear case, using the new control input v to sta-
bilize the linear subsystem of Eq. (2.42) does not guarantee stability of the whole
system, unless the stability of the nonlinear part of the system of Eq. (2.42) has been
established separately.

When v is used to keep the output y equal to zero for all t > 0, that is, when
ζ1 ≡ · · · ≡ ζr ≡ 0, the dynamics of η1, . . . , ηn−r are described by

η̇1 = Ψ1(0, η),

...

η̇n−r = Ψn−r (0, η).

(2.43)

They are called the zero dynamics of the system of Eq. (2.33) because they evolve
on the subset of the state-space on which the output of the system is identically
zero. If the equilibrium at η1 = · · · = ηn−r = 0 of the zero dynamics of Eq. (2.43) is
asymptotically stable, the system of Eq. (2.33) is said to be minimum phase.

Remark 2.2 Most nonlinear analytical controllers emanating from the area of ge-
ometric control are input–output linearizing and induce a linear input–output re-
sponse in the absence of constraints [72, 81]. For the class of processes modeled by
equations of the form of Eq. (2.33) with relative order r and under the minimum
phase assumption, the appropriate linearizing state feedback controller is given by

u = 1

LgL
r−1
f h(x)

(
v − Lr

f h(x) − β1L
r−1
f h(x) − · · · − βr−1Lf h(x) − βrh(x)

)

(2.44)
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and induces the linear r th order response

dry

dtr
+ β1

dr−1y

dtr−1
+ · · · + βr−1

dy

dt
+ βry = v, (2.45)

where the tunable parameters, β1, . . . , βr , are essentially closed-loop time constants
that influence and shape the output response. The nominal stability of the process is
guaranteed by placing the roots of the polynomial sr + β1s

r−1 + · · · + βr−1s + βr

in the open left-half of the complex plane.

2.6 Input Constraints

The presence of input constraints requires revisiting the concept of the CLF for both
linear and nonlinear systems. To understand this, consider a scalar linear system of
the form ẋ = αx +βu, with umin ≤ u ≤ umax. For the sake of simplicity and without
loss of generality, let us assume umin < 0 < umax and β > 0. For the case of scalar
systems, it is possible to determine the entire set of initial conditions from where
the system can be driven to the origin subject to input constraints (regardless of the
choice of the control law). This set is generally referred to as the null controllable
region (NCR). An explicit computation of the NCR is possible in this case because
for scalar systems (as discussed earlier) there exists a unique direction in which the
system states needs to move to achieve stability.

To determine this set, one can simply analyze the system trajectory to the left
and right of zero. Consider first x > 0, and the requirement that for x > 0, ẋ < 0.
If α < 0, ẋ < 0 ∀x > 0 (and also ẋ > 0 ∀x < 0). On the other hand, if α > 0,

ẋ < 0 can only be achieved for x <
−uminβ

α
. Similarly, ẋ > 0 can only be achieved

for x >
−umaxβ

α
. The analysis reveals what was perhaps intuitive to begin with: For

linear systems, if the steady state is open-loop stable, the NCR is the entire state
space, while if the steady state is open-loop unstable, it has a finite NCR, which

in this case is {x : −umaxβ
α

< x <
−uminβ

α
}. The same result for the NCR can also

be obtained using a CLF V (x) = x2

2 and determining the states for which V̇ < 0 is
achievable using the available control action. Furthermore, it points to the require-
ment of additional considerations when defining CLFs for systems with constrained
inputs. In particular, requiring that V̇ (x) < 0 ∀x is simply not achievable for certain
cases, at best what is achievable is that V̇ (x) < 0 ∀x ∈ NCR −{0}. The definition of
a CLF (or more appropriately, a constrained CLF) then becomes intricately linked
with the characterization of the NCR. The characterization of the NCR, however,
is an increasingly difficult (although possible, see [71]) problem when considering
non-scalar linear systems, and currently an open problem for nonlinear systems.

To understand the impact of the lack of availability of constrained CLFs
(CCLFs), let us first consider again the linear scalar system under a feedback law
of the form uc(x) = −kx, with k > 0 such that (α − kβ) < 0 under two possible
scenarios: (i) α < 0 (i.e., for the unforced system, there is an isolated equilibrium
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point at the origin and the system is stable at that operating point) and (ii) α > 0 (i.e.,
for the unforced system, there is an isolated equilibrium point at the origin and the
system is unstable at that operating point). Due to the presence of input constraints,
the closed-loop system is no longer a linear system, but operates in three ‘modes’,
depending on the state, described by the following set of equations:

dx

dt
= αx + βuc, umin ≤ uc ≤ umax,

dx

dt
= αx + βumax, uc > umax,

dx

dt
= αx + βumin, umin > uc.

(2.46)

Let us analyze the three possible modes of operation of the closed-loop system

for scenario (i). For −|umax|
k

≤ x ≤ |umin|
k

, we have that dx
dt

= αx +βuc = (α − kβ)x,

which establishes that for all initial conditions x0 such that −|umax|
k

≤ x0 ≤ |umin|
k

,
the prescribed control action uc is within the constraints and the system state will

be driven to the origin. For |umin|
k

< x ≤ −uminβ
α

, uc > umax resulting in u = umax, in

turn resulting in ẋ < 0. A similar result is obtained for −umaxβ
α

< x < −|umax|
k

. The
analysis shows that for scalar systems, while the region of unconstrained operation
for a particular control law might depend on the specific control law chosen, the
stability region under the control law might still possibly be the entire NCR.

The issue of directionality again crops up when considering non-scalar systems.
While it is relatively easy to determine the region of unconstrained operation for a
particular control law, and, in certain cases, the region of attraction for the closed-
loop system, it is not necessary that the region of attraction for the closed-loop
system match the NCR. This happens due to the fact that it is in general difficult
to determine, for a particular value of the state, the unique direction in which the
inputs should saturate to achieve closed-loop stability. To achieve this objective, re-
cent control designs have utilized the explicit characterization of the NCR [71] in
designing CCLF based control laws that ensure stabilization from all initial con-
ditions in the NCR [93, 94]. For nonlinear systems, where the characterization of
the NCR is still an open problem, a meaningful control objective is to be able to
explicitly account for the constraints in the control design and provide an explicit
characterization of the closed-loop stability region.

2.7 Model Predictive Control

One of the control methods useful for accounting for constraints and optimality si-
multaneously is that of model predictive control (MPC). MPC is an approach which
accounts for optimality considerations explicitly and is widely adopted in industry
as an effective approach to deal with large multivariable constrained optimal con-
trol problems. The main idea of MPC is to choose control actions by repeatedly
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solving an online a constrained optimization problem, which aims at minimizing a
performance index over a finite prediction horizon based on predictions obtained by
a system model. In general, an MPC design is composed of three components:

1. A model of the system. This model is used to predict the future evolution of the
system in open-loop and the efficiency of the calculated control actions of an
MPC depends highly on the accuracy of the model.

2. A performance index over a finite horizon. This index is minimized subject to
constraints imposed by the system model, restrictions on control inputs and sys-
tem state, and other considerations at each sampling time to obtain a trajectory
of future control inputs.

3. A receding horizon scheme. This scheme introduces the notion of feedback into
the control law to compensate for disturbances and modeling errors, whereby
only the first piece of the future input trajectory is implemented and the con-
strained optimization problem is resolved at the next sampling instance.

Consider the control of the system of Eq. (2.1) and assume that the state mea-
surements of the system of Eq. (2.1) are available at synchronous sampling time
instants {tk≥0}, a standard MPC is formulated as follows [60]:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ + F

(
x(tk+N)

)
(2.47)

s.t. ˙̃x(t) = f
(
x̃(t), u(t)

)
, (2.48)

u(t) ∈ U, (2.49)

x̃(tk) = x(tk), (2.50)

where S(Δ) is the family of piece-wise constant functions with sampling period
Δ, N is the prediction horizon, Qc and Rc are strictly positive definite symmetric
weighting matrices, x̃ is the predicted trajectory of the system due to control input
u with initial state x(tk) at time tk , and F(·) denotes the terminal penalty.

The optimal solution to the MPC optimization problem defined by Eq. (2.47)–
(2.50) is denoted as u∗(t |tk) which is defined for t ∈ [tk, tk+N). The first step value
of u∗(t |tk) is applied to the closed-loop system for t ∈ [tk, tk+1). At the next sam-
pling time tk+1, when a new measurement of the system state x(tk+1) is available,
and the control evaluation and implementation procedure is repeated. The manipu-
lated input of the system of Eq. (2.1) under the control of the MPC of Eq. (2.47)–
(2.50) is defined as follows:

u(t) = u∗(t |tk), ∀t ∈ [tk, tk+1), (2.51)

which is the standard receding horizon scheme.
In the MPC formulation of Eq. (2.47)–(2.50), Eq. (2.47) defines a performance

index or cost index that should be minimized. In addition to penalties on the state
and control actions, the index may also include penalties on other considerations;
for example, the rate of change of the inputs. Equation (2.48) is the model of the
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system of Eq. (2.1) which is used in the MPC to predict the future evolution of the
system. Equation (2.49) takes into account the constraint on the control input, and
Eq. (2.50) provides the initial state for the MPC which is a measurement of the
actual system state. Note that in the above MPC formulation, state constraints are
not considered but can be readily taken into account.

It is well known that the MPC of Eq. (2.47)–(2.50) is not necessarily stabilizing.
To understand this, let us consider a discrete time version of the MPC implementa-
tion, for a scalar system described by x(k + 1) = αx(k) + u(k), in the absence of
input constraints. Also, let N = 1, q and r denote the horizon, penalty on the state
deviation and input deviation, respectively. The objective function then simplifies to
q(α2x(k)2 + u(k)2 + 2αx(k)u(k)) + ru(k)2, and the minimizing control action is
u(k) = −qαx(k)

q+r
, resulting in the closed-loop system x(k+1) = rαx(k)

q+r
. The minimiz-

ing solution will result in stabilizing control action only if q > r(α − 1). Note that
for α < 1, this trivially holds (i.e., the result trivially holds for stabilization around
an open-loop stable steady state). For α > 1, the result establishes how large the
penalty on the set point deviation should be compared to the penalty on the control
action for the controller to be stabilizing. The analysis is meant to bring out the fact
that generally speaking, the stability of the closed-loop system in the MPC depends
on the MPC parameters (penalties and the control horizon) as well as the system
dynamics. Note also that even though we have analyzed an unconstrained system,
the prediction horizon we used was finite (in comparison to linear quadratic regula-
tor designs, where the infinite horizon cost is essentially captured in computing the
control action, and therefore results in stabilizing controller in the absence of con-
straints). Finally, also note that for the case of infinite horizon, the optimum solution
is also the stabilizing one, and it can be shown that such an MPC will stabilize the
system with the NCR as the stability region (albeit at an impractical computational
burden).

To achieve closed-loop stability without relying on the objective function pa-
rameters, different approaches have been proposed in the literature. One class of
approaches is to use well-designed terminal penalty terms that capture infinite hori-
zon costs; please, see [16, 100] for surveys of these approaches. Another class
of approaches is to impose stability constraints in the MPC optimization problem
[3, 14, 100]. There are also efforts focusing on getting explicit stabilizing MPC laws
using offline computations [92]. However, the implicit nature of MPC control law
makes it very difficult to explicitly characterize, a priori, the admissible initial con-
ditions starting from where the MPC is guaranteed to be feasible and stabilizing.
In practice, the initial conditions are usually chosen in an ad hoc fashion and tested
through extensive closed-loop simulations.

2.8 Lyapunov-Based MPC

In this section, we introduce Lyapunov-based MPC (LMPC) designs proposed in
[93, 108, 110] which allow for an explicit characterization of the stability region
and guarantee controller feasibility and closed-loop stability.
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For the predictive control of the system of Eq. (2.1), the key idea in LMPC-based
designs is to utilize a Lyapunov-function based constraint and achieve immediate
decay of the Lyapunov function. The set of initial conditions for which it is possible
to achieve an instantaneous decay in the Lyapunov function value can be computed
explicitly, and picking the (preferably largest) level curve contained in this set can
provide the explicitly characterized feasibility and stability region for the LMPC.

The following example of the LMPC design is based on an existing explicit con-
trol law h(x) which is able to stabilize the closed-loop system [108, 110]. The for-
mulation of the LMPC is as follows:

min
u∈S(Δ)

∫ tk+N

tk

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ (2.52)

s.t. ˙̃x(t) = f
(
x̃(t), u(t)

)
, (2.53)

u(t) ∈ U, (2.54)

x̃(tk) = x(tk), (2.55)

∂V (x(tk))

∂x
f

(
x(tk), u(tk)

) ≤ ∂V (x(tk))

∂x
f

(
x(tk), h

(
x(tk)

))
, (2.56)

where V (x) is a Lyapunov function associated with the nonlinear control law h(x).
The optimal solution to this LMPC optimization problem is denoted as u∗

l (t |tk)
which is defined for t ∈ [tk, tk+N). The manipulated input of the system of Eq. (2.1)
under the control of the LMPC of Eq. (2.52)–(2.56) is defined as follows:

u(t) = u∗
l (t |tk), ∀t ∈ [tk, tk+1), (2.57)

which implies that this LMPC also adopts a standard receding horizon strategy.
In the LMPC defined by Eq. (2.52)–(2.56), the constraint of Eq. (2.56) guarantees

that the value of the time derivative of the Lyapunov function, V (x), at time tk is
smaller than or equal to the value obtained if the nonlinear control law u = h(x)

is implemented in the closed-loop system in a sample-and-hold fashion. This is a
constraint that allows one to prove (when state measurements are available every
synchronous sampling time) that the LMPC inherits the stability and robustness
properties of the nonlinear control law h(x) when it is applied in a sample-and-hold
fashion; please, see [30, 125] for results on sampled-data systems.

Let us denote the stability region of h(x) as Ωρ . The stability properties of the
LMPC implies that the origin of the closed-loop system is guaranteed to be stable
and the LMPC is guaranteed to be feasible for any initial state inside Ωρ when the
sampling time Δ is sufficiently small. Note that the region Ωρ can be explicitly
characterized; please, refer to [110] for more discussion on this issue. The main
advantage of the LMPC approach with respect to the nonlinear control law h(x)

is that optimality considerations can be taken explicitly into account (as well as
constraints on the inputs and the states [110]) in the computation of the control
actions within an online optimization framework while improving the closed-loop
performance of the system. Since the closed-loop stability and feasibility of the
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LMPC of Eq. (2.52)–(2.56) are guaranteed by the nonlinear control law h(x), it is
unnecessary to use a terminal penalty term in the cost index (see Eq. (2.52) and
compare it with Eq. (2.47)) and the length of the horizon N does not affect the
stability of the closed-loop system but it affects the closed-loop performance.

2.9 Hybrid Systems

Hybrid systems are characterized by the co-existence of continuous modes of op-
eration along with discrete switches between the distinct modes of operation and
arise frequently in the design and analysis of fault-tolerant control systems. The
class of hybrid systems of interest to the focus of this book–switched systems–can
be described by

ẋ = fi(x,t)(x) + gi(x,t)(x)ui(x,t), (2.58)

where x ∈ R
n, u ∈ R

n are the continuous variables and i ∈ N are the discrete vari-
ables indexing the mode of operation. The nature of the function i(x, t) and, in par-
ticular, its two specific forms i(x) and i(t) result in the so-called state-dependent and
time-dependent switching. What is of more interest from a stability analysis and de-
sign point of view (both when considering the design of control laws and, in the case
of time-dependent switching, the switching signal) is the possibility of infinitely
many switches where it becomes crucial to explicitly consider the switched nature
of the system in the stability analysis. In particular, when the possibility of infinitely
many switches exists, establishing stability in the individual modes of operation
is not sufficient [19], and additional conditions on the behavior of the Lyapunov-
functions (used to establish stability in the individual modes of operation) during
the switching (as well as of sufficient dwell-time [68]) need to be satisfied for the
stability of the switched system. For the case of finite switches, the considerations
include ensuring stability requirements at the onset of a particular mode are satisfied
and, in particular, satisfied for the terminal (last) mode of operation.

2.10 Conclusions

In this chapter, some fundamental results on nonlinear systems analysis and control
were briefly reviewed. First, the class of nonlinear systems that will be considered
in this book was presented; then the definitions of stability of nonlinear systems
were introduced; and following that, techniques for stabilizing nonlinear systems,
for example, Lyapunov-based control, feedback linearization, handling constraints,
model predictive control and Lyapunov-based model predictive control and stability
of hybrid (switched) systems were discussed.



Chapter 3
Integrated Fault-Detection and Fault-Tolerant
Control

3.1 Introduction

In this chapter, we consider the problem of implementing fault-detection and fault-
tolerant control to single-input nonlinear processes with input constraints subject
to control actuator failures. An approach predicated upon the idea of integrating
fault-detection, feedback and supervisory control is presented and demonstrated. To
illustrate the main idea behind the approach, we first assume availability of mea-
surements of all the process state variables. For the processes under consideration,
a family of candidate control configurations, characterized by different manipulated
inputs, is first identified. For each control configuration, a Lyapunov-based con-
troller that enforces asymptotic closed-loop stability in the presence of constraints
is designed, and the constrained stability region associated with it is explicitly char-
acterized. A fault-detection filter is used to compute the expected closed-loop be-
havior in the absence of faults. Deviations of the process states from the expected
closed-loop behavior are used to detect faults. A switching policy is then derived
on the basis of the stability regions to orchestrate the activation/deactivation of the
constituent control configurations in a way that guarantees closed-loop stability in
the event that a failure is detected. Often, in chemical process applications, all state
variables are not available for measurement. To deal with the problem of lacking
process state measurements, a nonlinear observer is designed to generate estimates
of the states, which are then used to implement the state feedback controller and
the fault-detection filter. A switching policy is then derived to orchestrate the acti-
vation/deactivation of the constituent control configurations in a way that accounts
for the estimation error. Finally, simulation studies are presented to demonstrate the
implementation and evaluate the effectiveness of the proposed fault-tolerant control
scheme.

3.2 Process Description

We consider a class of continuous-time, single-input nonlinear processes with con-
straints on the manipulated input, represented by the following state-space descrip-
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tion:

ẋ(t) = f
(
x(t)

) + gk(t)

(
x(t)

)
(uk(t) + mk(t)), ym = hm(x),

k(t) ∈K = {1, . . . ,N},N < ∞, |uk(t)| ≤ uk
max,

(3.1)

where x(t) ∈ R
n denotes the vector of process state variables, ym ∈ R denotes the

measured variable, uk(t) ∈ [−uk
max, u

k
max] ⊂ R denotes the constrained manipulated

input associated with the kth control configuration and mk(t) ∈ R denotes the fault
in the kth control configuration. For each value that k assumes in K, the process is
controlled via a different manipulated input which defines a given control configu-
ration.

It is assumed that the origin is the equilibrium point of the nominal process (i.e.,
f (0) = 0), gk(x) �= 0 ∀x ∈ R

n and that the vector functions f (·) and gk(·) are suf-
ficiently smooth, for all k, on R

n. It is also assumed that for any |uk| ≤ uk
max the

solution of the system of Eq. (3.1) exists and is continuous for all t .

3.3 Motivating Example

To motivate our fault-tolerant control design methodology, we introduce in this sec-
tion a benchmark chemical reactor example that will be used to illustrate the de-
sign and implementation of the fault-tolerant control structure. To this end, consider
a well-mixed, non-isothermal continuous stirred tank reactor (see Fig. 3.1) where

three parallel irreversible elementary exothermic reactions of the form A
k1→ B,

A
k2→ U, and A

k3→ R take place, where A is the reactant species, B is the desired
product and U, R are undesired byproducts. Under standard modeling assumptions,
a mathematical model of the process can be derived from material and energy bal-
ances and takes the following form:

dT

dt
= F

V
(TA0 − T ) +

3∑

i=1

(−�Hi)

ρcp

ki0 exp

(−Ei

RT

)
CA + Q

ρcpV
,

dCA

dt
= F

V
(CA0 − CA) −

3∑

i=1

ki0 exp

(−Ei

RT

)
CA, (3.2)

dCB

dt
= −F

V
CB + k10 exp

(−E1

RT

)
CA,

where CA and CB denote the concentrations of the species A and B, T denotes
the temperature of the reactor, Q denotes the rate of heat input/removal from the
reactor, V denotes the volume of the reactor, �Hi, ki, Ei , i = 1,2,3, denote the
enthalpies, pre-exponential constants and activation energies of the three reactions,
respectively, and cp and ρ denote the heat capacity and density of the reactor, re-
spectively. The values of the process parameters and the corresponding steady-state
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Table 3.1 Process
parameters and steady-state
values for the reactor of
Eq. (3.2)

V = 1000.0 L R = 8.314 J/mol K

CA0s = 4.0 mol/L TA0s = 300.0 K

�H1 = −5.0 × 104 J/mol �H2 = −5.2 × 104 J/mol

�H3 = −5.4 × 104 J/mol k10 = 5.0 × 104 min−1

k20 = 5.0 × 103 min−1 k30 = 5.0 × 103 min−1

E1 = 5.0 × 104 J/mol E2 = 7.53 × 104 J/mol

E3 = 7.53 × 104 J/mol cp = 0.231 J/g K

ρ = 1000.0 g/L F = 83.3 L/min

Ts = 390.97 K CAs = 3.58 mol/L

CDs = 0.42 mol/L

Fig. 3.1 A schematic of the CSTR showing the three candidate control configurations

values are given in Table 3.1. It was verified that these conditions correspond to an
unstable equilibrium point of the process of Eq. (3.2).

The control objective considered here is the one of stabilizing the reactor at
the (open-loop) unstable steady-state. Operation at this point is typically sought
to avoid high temperature, while simultaneously achieving reasonable conversion.
To accomplish this objective in the presence of control system failures, we con-
sider as manipulated inputs the rate of heat input, u1 = Q, subject to the constraints
|Q| ≤ u1

max = 748 kJ/s, the inlet stream temperature, u2 = TA0 − TA0s , subject to
the constraints |u2| ≤ u2

max = 100 K, with TA0s = 300 K and the inlet reactant con-
centration, u3 = CA0 − CA0s , subject to the constraints |u3| ≤ u3

max = 4 kmol/m3,
with CA0s = 4 kmol/m3.
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Each of the above manipulated inputs, together with measurements of reac-
tor temperature and/or concentration, represents a unique control configuration (or
control-loop) that, by itself, can stabilize the reactor. In the event of some failure in
the primary configuration (involving the heat input, Q), the important questions that
arise include how can the supervisor detect this fault (note that measurements of
the manipulated input variable are not available), and which control loop to activate
once failure is detected in the active configuration. The answer to the first question
involves the design of an appropriate fault-detection filter. The approach that we will
utilize to answer the second question, i.e., that of deciding which backup controller
should be activated in the event of a fault, will be based on the stability regions
under the individual control configuration. To this end, we next review a state feed-
back control design that allows for characterizing the constrained stability region
under each control configuration. Note that this particular choice of the controller
is presented only as an example to illustrate our results, and that any other con-
troller design that allows for an explicit characterization of the constrained stability
region can be used instead. Note also that while the above example will be used to
illustrate the main ideas behind the proposed fault-detection and fault-tolerant con-
trol method, we also investigate in the simulation studies below an application to a
network of chemical reactors in the presence of uncertainty and measurement noise.

3.4 State Feedback Case

3.4.1 Bounded Lyapunov-Based Control

Consider the system of Eq. (3.1) for which a family of control Lyapunov functions
(CLFs), Vk(x), k ∈ K ≡ {1, . . . ,N} has been found (see below for a discussion on
the construction of CLFs). Using each control Lyapunov function, we construct,
using the results in [85] (see also [45]), the following continuous bounded control
law:

uk(x) = −
L∗

f Vk(x) +
√

(L∗
f Vk(x))2 + (uk

max‖(Lgk
Vk)(x)‖)4

‖(Lgk
Vk)(x)‖2[1 +

√
1 + (uk

max‖(Lgk
Vk)(x)‖)2]

(Lgk
Vk)(x) (3.3)

when (Lgk
Vk)(x) �= 0 and uk(x) = 0 when (Lgk

Vk)(x) = 0, L∗
f Vk(x) = ∂Vk(x)

∂x
f (x)

+ ρkVk(x), ρk > 0 and Lgk
Vk(x) = ∂Vk(x)

∂x
gk(x). Let Πk be the set defined by

Πk

(
uk

max

) = {
x ∈ R

n : L∗
f Vk(x) ≤ uk

max

∥∥(Lgk
Vk)(x)

∥∥}
(3.4)

and assume that

Ωk := {
x ∈R

n : Vk(x) ≤ cmax
k

} ⊆ Πk

(
uk

max

)
(3.5)



3.4 State Feedback Case 33

for some cmax
k > 0. It can be shown, using standard Lyapunov arguments, that in

the absence of faults (mk(t) = 0), Ωk provides an estimate of the stability region,
starting from where the control law of Eq. (3.3) guarantees asymptotic (and local
exponential) stability of the origin of the closed-loop system under each control
configuration. This implies that there exist class KL functions βi, i = 1, . . . ,N ,
such that ‖x(t)‖ ≤ βi(‖x(0)‖, t). We will use this property later in the design of the
output feedback controllers.

Referring to the above controller design, it is important to make the following re-
marks. First, a general procedure for the construction of CLFs for nonlinear systems
of the form of Eq. (3.1) is currently not available. Yet, for several classes of nonlin-
ear systems that arise commonly in the modeling of engineering applications, it is
possible to exploit system structure to construct CLFs (see, for example, [56, 83]).
Second, given that a CLF, Vk , has been obtained for the system of Eq. (3.1), it is im-
portant to clarify the essence and scope of the additional assumption that there exists
a level set, Ωk , of Vk that is contained in Πk . Specifically, the assumption that the
set, Πk , contains an invariant subset around the origin, is necessary to guarantee the
existence of a set of initial conditions for which closed-loop stability is guaranteed
(note that even though V̇k < 0 ∀x ∈ Πk\{0}, there is no guarantee that trajectories
starting within Πk remain within Πk for all times). Moreover, the assumption that
Ωk is a level set of Vk is made only to simplify the construction of Ωk . This as-
sumption restricts the applicability of the proposed control method because a direct
method for the construction of a CLF with level sets contained in Πk is not avail-
able; see also Chap. 2. However, the proposed control method remains applicable if
the invariant set Ωk is not a level set of Vk but can be constructed in some other way
(which, in general, is a difficult task). Note also that possibly larger estimates of
the stability region can be computed using constructive procedures such as Zubov’s
method [41] or by using a combination of several Lyapunov functions.

3.4.2 State Feedback Fault-Tolerant Control

Consider the system of Eq. (3.1) where all process states are available as measure-
ments, i.e., hm(x) = x, and, without loss of generality, assume that it starts operating
using control configuration i, under the controller of Eq. (3.3). At some unknown
time, T

f
i , a fault occurs in the first control configuration such that for all t ≥ T

f
i ,

mi = −ui , i.e., control configuration i fails. The problems at hand are those of de-
tecting that a fault has occurred and, upon detection, to decide which of the available
backup configurations should be implemented in the closed-loop to achieve fault-
tolerant control. To this end, we consider a fault-detection filter and a switching
logic of the form:

ẇ(t) = ff (w,x), r(t) = hf (w,x), k(t) = ϕ(r,w,x), (3.6)

where w ∈ R
n is the state of the filter, r(t) ∈R is a residual that indicates the occur-

rence of a fault and is the output of the filter, ff ∈ R
n is the vector field describing
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the evolution of the filter state w, and ϕ(r,w,x) is the switching logic that dictates
which of the available control configurations should be activated.

The main idea behind the fault-tolerant control design is as follows: (i) use the
available state measurements, the process model, and the computed control action
to simulate the evolution of the closed-loop process in the absence of actuator faults,
compare it with the actual evolution of the states, and use the difference between the
two behaviors, if any, to detect faults, and (ii) having detected the fault, activate a
backup control configuration for which the closed-loop state is within its stability
region estimate. To formalize this idea, consider the constrained system of Eq. (3.1)
for which a bounded controller of the form of Eq. (3.3) has been designed for each
control configuration, and the stability region, Ωj, j = 1, . . . ,N has been explic-
itly characterized. The fault-detection filter and the fault-tolerant control design are
described in Theorem 3.1 below.

Theorem 3.1 Let k(0) = i for some i ∈ K and x(0) := x0 ∈ Ωi . Set w(0) = x(0)

and consider the system

ẇ = f (w) + gi(w)ui(w); r = ‖w − x‖, (3.7)

where w ∈ R
n is the filter state and ui(·) is the feedback control law defined in

Eq. (3.3). Let T
f
i be such that mi(t) = 0 ∀0 ≤ t ≤ T

f
i , then r(T

f +
i ) > 0 if and only

if mi(T
f
i ) �= 0. Furthermore, let T s

i be the earliest time such that r(t) > 0, then the
following switching rule:

k(t) =
{

i, 0 ≤ t < T s
i ,

j �= i, t ≥ T s
i , x(T s

i ) ∈ Ωj

(3.8)

guarantees asymptotic stability of the origin of the closed-loop system.

Proof We split the proof of the theorem in two parts. In the first part, we show that
the filter detects a fault if and only if one occurs, and in the second part we establish
closed-loop stability under the switching rule of Eq. (3.8).
Part 1: Let x(T

f
i ) := x

T
f
i

and w(T
f
i ) := w

T
f
i

, and consider

ẇ
(
T

f
i

) − ẋ
(
T

f
i

) = f (x
T

f
i

) + g(x
T

f
i

)
(
ui(xT

f
i

) + mi

(
T

f
i

))

− (
f (w

T
f
i

) + g(w
T

f
i

)ui(wT
f
i

)
)

(3.9)

with mi(T
f
i ) �= 0. Since w

T
f
i

= x
T

f
i

, we have that

f (x
T

f
i

) + g(x
T

f
i

)
(
ui(xT

f
i

) + mi

(
T

f
i

)) − (
f (w

T
f
i

) + g(w
T

f
i

)ui(wT
f
i

)
)

= g(x
T

f
i

)mi

(
T

f
i

)
. (3.10)
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Furthermore, since g(x
T

f
i

) �= 0, we have that

ẇ
(
T

f
i

) − ẋ
(
T

f
i

) = g(x
T

f
i

)mi

(
T

f
i

) �= 0 (3.11)

if and only if mi(T
f
i ) �= 0. Since w

T
f
i

− x
T

f
i

= 0 and ẇ(T
f
i ) − ẋ(T

f
i ) �= 0 if and

only if mi(T
f
i ) �= 0, we have that

w
(
T

f +
i

) − x
(
T

f +
i

) �= 0 (3.12)

or

r
(
T

f +
i

) = ∥∥w
(
T

f +
i

) − x
(
T

f +
i

)∥∥ > 0 (3.13)

if and only if mi(T
f
i ) �= 0.

Part 2: We prove closed-loop stability for the two possible cases; first, if no switch-
ing occurs, and second, if a switch occurs at a time T s

i .

Case 1: The absence of a switch implies ri(t) = 0. Furthermore, ri(t) = 0 ⇒
x(t) = w(t). Since x(0) = w(0) ∈ Ωi , and control configuration i is implemented
for all times in this case, we have that asymptotic closed-loop stability is achieved.

Case 2: At time T s
i , the supervisor switches to a control configuration j for which

x(T s
i ) ∈ Ωj . From this time onwards, since configuration j is implemented in the

closed-loop system for all times, and since x(T s
i ) ∈ Ωj , closed-loop asymptotic

stability follows. This completes the proof of Theorem 3.1. �

The fault-detection filter and fault-tolerant controller are designed and imple-
mented as follows (see also Fig. 3.2):

• Given any x0 ∈ Ωi , initialize the filter states as w(0) = x0 and integrate the filter
dynamics using Eq. (3.7).

• Compute the norm of the difference between the filter states and the process
states, r(t) = ‖w(t) − x(t)‖, and if r(t) = 0, continue to implement control con-
figuration i.

• At any time T s
i that r(T s

i ) > 0, switch to a control configuration j �= i, for which
x(T s

i ) ∈ Ωj to achieve asymptotic stability of the origin of the closed-loop sys-
tem.

Note that the fault-detection filter uses a replica of the process dynamics, and
that the state of the filter w is initialized at the same value as the process states
x(0). In the absence of faults, the evolution of w(t) is identical to x(t), and hence
r(t) = 0. In the presence of faults, however, the effect of the fault is registered by
a change in the evolution of the process, but not in that of the filter state (since
the filter state dynamics include the computed control action, ui(w), and not the
implemented control action, ui(w) + mi ). This change is detected by a change in
the value of r(t) and declared as a fault. Note also that the fact that the faults mi

appear as additive terms to the manipulated input variable is a natural consequence
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Fig. 3.2 Integrated fault-detection and fault-tolerant control design: state feedback case

of focusing on the problem of detecting (through the design of appropriate fault-
detection filters) and dealing (via reconfiguration) with faults in control actuators.
The approach employed in the design of the fault-detection filter can also be used to
detect faults that do not necessarily appear in the control actuators, as long as they
influence the evolution of the state variables.

Remark 3.1 Once a fault is detected, the switching logic ensures that the backup
control configuration that is implemented in the closed-loop is one that can guar-
antee closed-loop stability in the presence of constraints, and this is achieved by
verifying that the state of the process, at the time that a fault is detected, is present
in the constrained stability region of the candidate control configuration. Note that
while the bounded controller is used for a demonstration of the main ideas, other
control approaches that provide an explicit characterization of the set of initial con-
ditions for which closed-loop stability is guaranteed (achieved, for example, via the
use of the hybrid predictive control approach [50] or via a Lyapunov-based model
predictive control design [108]) can be used within the proposed framework. Note
also that early detection of a fault enhances the chances that corrective action can
be taken in time to achieve fault-tolerant control (Theorem 3.1 guarantees that a
fault is detected as soon as it occurs). Specifically, it may happen that a fault occurs
when the closed-loop state resides in the stability region of one of the backup con-
figurations, but if the fault is not immediately detected, the destabilizing effect of
the fault may drive the state outside the stability region of the backup configuration
by the time a fault is detected (for a demonstration, see the simulation example in
Sect. 3.4.3).

In the event that the process state, at the time of the failure of the primary control
configuration, lies in the stability region of more than one backup control configura-
tion, additional performance considerations such as ease and/or cost of implement-
ing one control configuration over another can be used in choosing which control
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configuration should be implemented in the closed-loop system [111]. If the state
at the time of a failure lies outside the stability region of all the backup controllers,
then this indicates that the back up controllers do not have enough control action
available and calls for increasing the allowable control action in the fall-back config-
urations. Recall that the set of initial conditions starting from where a given control
configuration can stabilize a steady state—the so-called null-controllable region—
is fundamentally limited by the constraints on the available control action, and that
different control laws typically provide estimates of the stability region which are
subsets of the null-controllable region; see also Chap. 2.

Remark 3.2 In the presence of plant-model mismatch or unknown disturbances, the
value of r(t) will be nonzero even in the absence of faults. The FDFTC problem in
the presence of time-varying disturbances with known bounds on the disturbances
can be handled by (i) redesigning the filter to account for the disturbances; specif-
ically, requiring that a fault be declared only if the value of r(t) increases beyond
some threshold, δ, where δ accounts for the deviation of the plant dynamics from
the nominal dynamics in the absence of faults (please, see the simulation example
for a demonstration of this idea in an application to a network of chemical reac-
tors in the presence of uncertainty and measurement noise) and (ii) by redesigning
the controllers for the individual control configurations to mitigate the effect of dis-
turbances on the process, and characterizing the robust stability regions and using
them as criteria for deciding which backup controller should be implemented in the
closed-loop system. Note that while Theorem 3.1 presents the fault-detection filter
and fault-tolerant control (FDFTC) design for a fault in the primary control config-
uration, extensions to faults in successive backup configurations are straightforward
and involve similar filter designs for the active control configuration and a switching
logic that orchestrates switching to the remaining control configurations.

Remark 3.3 While we illustrate our approach using a single input, extensions to
multi-input systems are possible, and fault-detection filters can be designed in the
same way, using a replica of the process dynamics. The case of multi-input sys-
tems, however, introduces an additional layer of complexity due to the need of iden-
tifying which particular manipulated input has failed, i.e., the additional problem
of fault-isolation. For the purpose of presenting the integrated fault-detection and
fault-tolerant control structure, we focus here on multiple control configurations,
where each control configuration comprises of a single input that does not require
the filter to perform the additional task of fault-isolation. For a simple illustration
of a fault-detection and isolation filter design, please, see the simulation example
in Sect. 3.4.3. Please, also see Chap. 4 for a complete fault detection and isolation
approach.

Remark 3.4 Note that the fault-detection filter presented in Theorem 3.1 detects the
presence of both complete and partial failures. Once a fault is detected, the con-
trol reconfiguration strategy is the same for both cases, and that is to shut down
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the faulty configuration and switch to some well-functioning fall-back configura-
tion. Note that in the case of a partial failure, unless the faulty configuration is shut
down, the backup control configurations will have to be redesigned to be robust
with respect to the bounded disturbance generated by the faulty configuration (for
the backup control configuration, the unmeasured actuator action of the faulty con-
trol configuration will act as a disturbance and will be bounded because of the fact
that the actuator itself has a limited capacity and, therefore, even if the implemented
control action is not the same as that prescribed by the controller, it cannot exceed
the physical limitations and will remain bounded). By shutting down the faulty con-
figuration, however, the source of the disturbance is eliminated and no controller
redesign is needed for the backup control configurations.

3.4.3 Simulation Results

In this subsection, we illustrate the implementation of the proposed fault-detection
and fault-tolerant control methodology to the chemical reactor introduced as a moti-
vating example in Sect. 3.3. We first describe the controller design for the individual
control configurations. Note that our objective is full state stabilization; however, to
facilitate the controller design and subsequent stability analysis, we use a state trans-
formation to transform the system of Eq. (3.3) into the following one describing the
input/output dynamics:

ė = Ae + lk(e) + bαkuk := f̄k(e) + ḡk(e)uk (3.14)

where e ∈ R
n is the variable in transformed coordinate (for the specific transforma-

tions used for each control configuration, please see below), A = [ 0 1
0 0

]
, b = [ 0

1

]
,

lk(·) = L2
fk

hk(x), αk(·) = Lgk
Lfk

hk(x), hk(x) = yk is the output associated with

the kth configuration, x = [x1 x2]T with x1 = T − Ts , x2 = CA − CAs , and the
functions fk(·) and gk(·) can be obtained by rewriting the (T ,CA) model equa-
tions in Eq. (3.2) in the form of Eq. (3.1). The explicit forms of these func-
tions are omitted for brevity. A quadratic Lyapunov function of the form Vk =
eT Pke, where Pk is a positive-definite symmetric matrix that satisfies the inequality
AT Pk + PkA − PkbbT Pk < 0, is used for controller design. In particular,

1. For the first configuration with u1 = Q, we consider the controlled output y1 =
CA −CAs . The coordinate transformation (in error variables form) takes the form

e1 = CA − CAs , e2 = F
V

(CA0 − CA) − ∑3
i=1ki0e

−Ei
RT CA and yields a relative

degree of two with respect to the manipulated input.
2. For the second configuration with u2 = TA0 − TA0s , we choose the output y2 =

CA − CAs which yields the same relative degree as in the first configuration,
r2 = 2, and the same coordinate transformation.

3. For the third configuration with u3 = CA0 − CA0s , a coordinate transformation
of the form used for configurations 1 and 2 above does not yield a sufficiently
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Fig. 3.3 Evolution of the
closed-loop state profiles
under the switching rule of
Eq. (3.8) subject to failures in
control systems 1 and 2 (solid
line) and under arbitrary
switching (dashed line)

Fig. 3.4 Evolution of the closed-loop (a) temperature and (b) reactant concentration under the
switching rule of Eq. (3.8) subject to failures in control systems 1 and 2 (solid lines) and under
arbitrary switching (dashed lines)

large estimate of the stability region, we therefore choose a candidate Lyapunov
function of the form V3(x) = x′Px, where P > 0 and x = [T − Ts CA − CAs]′
with P = [ 0.011 0.019

0.019 0.101

]
.

Figure 3.3 depicts the stability region in the (T ,CA) space for each configura-
tion. The desired steady-state is depicted with an asterisk that lies in the intersection
of the three stability regions. The reactor as well as the fault-detection filter for the
first control configuration is initialized at T (0) = 330 K, CA(0) = 3.6 kmol/m3,
CB(0) = 0.0 kmol/m3, using the Q-control configuration, and the supervisor pro-
ceeds to monitor the evolution of the closed-loop trajectory.

As shown by the solid lines in Figs. 3.3–3.4, the controller proceeds to drive the
closed-loop trajectory towards the desired steady-state, up until the Q-configuration
fails after 3 minutes of reactor startup (see Fig. 3.6(a)). As can be seen in Fig. 3.5(a),
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Fig. 3.5 Evolution of the closed-loop residual under the fault-detection filter for (a) control con-
figuration 1 and (b) control configurations 2 and 3 under the switching rule of Eq. (3.8) subject to
failures in control systems 1 and 2 (solid lines) and under arbitrary switching (dashed lines)

at this time the value of r1(t) becomes nonzero and the fault-detection filter detects
this fault. If the supervisor switches arbitrarily and, in particular, switches to backup
configuration 3, closed-loop stability is not achieved (dashed lines in Figs. 3.3–3.4).
Note that this happens because the closed-loop state is outside the stability region of
the third control configuration, and even though the third control configuration does
not encounter a fault (r3(t) = 0; see dashed line in Fig. 3.5(b)), the limited control
action available in this configuration is unable to achieve closed-loop stability. On
the basis of the switching logic of Eq. (3.8), the supervisor activates the second
configuration (with TA0 as the manipulated input, see Fig. 3.6b), which continues to
drive the state trajectory closer to the desired steady-state.

To demonstrate the implementation of the proposed FDFTC strategy when faults
occur in successive control configurations, we consider the case when a second fail-
ure occurs (this time in the TA0-configuration) at t = 13 minutes. Once again, the
filter detects this failure via an increase in the value of r2(t) (solid line in Fig. 3.5(b))
using the fault-detection filter for control configuration 2. From Fig. 3.3, it is clear
that the failure of the second control configuration occurs when the closed-loop
trajectory is within the stability region of the third configuration. Therefore, the
supervisor immediately activates the third control configuration (with CA0 as the
manipulated input, see Fig. 3.6(c)) which finally stabilizes the reactor at the desired
steady-state.

3.5 Handling Availability of Limited Measurements: The Output
Feedback Case

The feedback controllers, the fault-detection filters, and the switching rules in the
previous section were designed under the assumption of availability of measure-
ments of all the process states. The unavailability of full state measurements has
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Fig. 3.6 Manipulated input profiles under (a) control configuration 1, (b) control configuration 2,
and (c) control configuration 3 under the switching rule of Eq. (3.8) subject to failures in control
systems 1 and 2 (solid lines) and under arbitrary switching (dashed lines)

several implications. First, it necessitates generating estimates of the states to be
used in conjunction with both the state feedback controller and the fault-detection
filter. The state estimates, however, contain errors, and this results in a difference
between the expected closed-loop behavior of the measured variables (computed
using the state estimates) and the evolution of the measured variables, even in the
absence of actuator faults. The fault-detection filter has to be redesigned to account
for this fact so that it does not treat this difference to be an indicator of an actua-
tor fault (i.e., to prevent a false alarm). Also, the switching logic has to account for
the fact that the supervisor can monitor only the state estimates and needs to make
inferences about the true values of the states using the state estimates.

In the remainder of this section, we first review an output feedback controller
design, proposed in [46], based on a combination of a high-gain observer and a state
feedback controller (see also [26, 74, 75, 96, 152] for results on observer designs and
output feedback control for unconstrained nonlinear systems) and characterize the
stability properties of the closed-loop system under output feedback control. Then,
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we present the fault-detection filter and fault-tolerant controller and demonstrate its
application via a simulation example.

3.5.1 Output Feedback Control

To facilitate the design of a state estimator with the required convergence properties,
we make the following assumption:

Assumption 3.1 For each i ∈K, there exists a set of coordinates

[ξi] =

⎡

⎢⎢⎢
⎣

ξ1
i

ξ2
i
...

ξn
i

⎤

⎥⎥⎥
⎦

= χi(x) =

⎡

⎢⎢⎢
⎣

hm(x)

Lf hm(x)
...

Łn−1
f hm(x)

⎤

⎥⎥⎥
⎦

(3.15)

such that the system of Eq. (3.1) takes the form

ξ̇1
i = ξ2

i ,

...

ξ̇ n−1
i = ξn

i ,

ξ̇ n
i = Ln

f hm

(
χ−1

i (ξ)
) + Lgi

Ln−1
f hm

(
χ−1

i (ξ)
)
(ui(t) + mi(t)),

(3.16)

where Lgi
Ln−1

f hm(x) �= 0 for all x ∈R
n. Also, ξi → 0 if and only if x → 0.

We note that the change of variables is invertible since, for every x, the variable
ξi is uniquely determined by the transformation ξi = χi(x). This implies that if one
can estimate the values of ξi for all times, using an appropriate state observer, then
we automatically obtain estimates of x for all times, which can be used to implement
the state feedback controller. The existence of such a transformation will facilitate
the design of high-gain observers which will be instrumental in preserving the same
closed-loop stability properties achieved under full state feedback.

Proposition 3.1 below presents the output feedback controller used for each mode
and characterizes its stability properties. The proof of the proposition, which invokes
singular perturbation arguments (for a result on input-to-state stability with respect
to singular perturbations, and further references, see [29]), is a special case of the
proof of Theorem 3.2 in [46], and is omitted for brevity. To simplify the statement of
the proposition, we first introduce the following notation. We define αi(·) as a class
K function that satisfies αi(‖x‖) ≤ Vi(x). We also define the set Ωb,i := {x ∈ R

n :
Vi(x) ≤ δb,i}, where δb,i is chosen such that βi(α

−1
i (δb,i ),0) < α−1

i (cmax
i ), where

βi(·, ·) is a class KL function and cmax
i is a positive real number defined in Eq. (3.5).
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Proposition 3.1 Consider the nonlinear system of Eq. (3.1), for a fixed mode, k(t) =
i, and with mi(t) ≡ 0, under the output feedback controller:

˙̃y =

⎡

⎢
⎢⎢⎢
⎣

−Lia
(i)
1 1 0 . . . 0

−L2
i a

(i)
2 0 1 . . . 0

...
...

...
. . .

...

−Ln
i a

(i)
n 0 0 . . . 0

⎤

⎥
⎥⎥⎥
⎦

ỹ +

⎡

⎢
⎢⎢⎢
⎣

Lia
(i)
1

L2
i a

(i)
2

...

Ln
i a

(i)
n

⎤

⎥
⎥⎥⎥
⎦

ym,

ui = uc
i

(
x̂, umax

i

)
,

(3.17)

where uc
i is defined in Eq. (3.3), the parameters, a

(i)
1 , . . . , a

(i)
n are chosen such

that the polynomial sn + a
(i)
1 sn−1 + a

(i)
2 sn−2 + · · · + a

(i)
n = 0 is Hurwitz, x̂ =

χ−1
i (sat(ỹ)), sat(·) = min{1, ζmax,i/| · |}(·), with ζmax,i = βζ (δζ,i ,0) where βζ is

a class KL function and δζ,i is the maximum value of the norm of the vector
[hm(x), . . . ,Ln−1

fi
hm(x)] for Vi(x) ≤ cmax

i and let εi = 1/Li . Then, given Ωb,i ,
there exists ε∗

i > 0 such that if εi ∈ (0, ε∗
i ], x(0) ∈ Ωb,i , and ‖ỹ(0)‖ ≤ δζ,i , the ori-

gin of the closed-loop system is asymptotically (and locally exponentially) stable.
Furthermore, given any positive real numbers, em,i and T b

i , there exists a positive
real number ε∗∗

i such that if εi ∈ (0, ε∗∗
i ] then ‖x(t) − x̂(t)‖ ≤ em,i for all t ≥ T b

i .

The state observer in Eq. (3.17) ensures sufficiently fast convergence that is nec-
essary for the implementation of both the state feedback controller (and preserving
its stability properties under output feedback control), and the fault-detection fil-
ter. The most important feature of this estimator (and one that will be used in the
fault-detection filter design) is that the estimation error is guaranteed to fall below a
certain value in a small period of time, T b

i , which can be chosen arbitrarily small by
sufficiently increasing the observer gain. This requirement or constraint on the error
dynamics is needed even when other estimation schemes, such as moving horizon
observers, are used (for example, see [116, 141]). For such observers, however, it is
difficult in general to obtain a transparent relationship between the tunable observer
parameters and the error decay rate.

Due to the lack of full state measurements, the supervisor can rely only on the
available state estimates to decide whether switching at any given time is permissi-
ble, and, therefore, needs to make reliable inferences regarding the position of the
states based upon the available state estimates. Proposition 3.2 below establishes the
existence of a set, Ωs,i := {x ∈R

n : Vi(x) ≤ δs,i}, such that once the state estimation
error has fallen below a certain value (note that the decay rate can be controlled by
adjusting Li ), the presence of the state within the output feedback stability region,
Ωb,i , can be guaranteed by verifying the presence of the state estimates in the set
Ωs,i . A similar approach was employed in the construction of the output feedback
stability regions Ωb,i and the regions for the state estimates Ωs,i in the context of
output feedback control of linear systems in [107].
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Proposition 3.2 Given any positive real number δb,i , there exist positive real num-
bers e∗

m,i and δs,i such that if ‖x − x̂‖ ≤ em,i , where em,i ∈ (0, e∗
m,i], and Vi(x̂) ≤

δs,i , then Vi(x) ≤ δb,i .

Proof From the continuity of the function Vi(·), we have that for any positive real
number em,i , there exists a positive real number γi such that ‖x − x̂‖ ≤ em,i ⇒
|Vi(x)−Vi(x̂)| ≤ γi ⇒ Vi(x) ≤ Vi(x̂)+γi . Since γi can be made small by choosing
em,i small, it follows that given any positive real number δb,i , there exists a positive
real number, e∗

m,i , such that for all em,i ∈ (0, e∗
m,i], γi < δb,i . Now, let δs,i be any

positive real number that satisfies δs,i + γi ≤ δb,i . Then if ‖x − x̂‖ ≤ em,i ≤ e∗
m,i

and Vi(x̂) ≤ δs,i , we have Vi(x) ≤ Vi(x̂) + γi ≤ δs,i + γi ≤ δb,i . This completes the
proof of the proposition. �

Note that for the inference that x̂ ∈ Ωs,i ⇒ x ∈ Ωb,i to be useful in executing
the switching, the set Ωs,i needs to be contained within Ωb,i . From Proposition 3.2,
this can be ensured if em,i is sufficiently small, which in turn is ensured for all times
greater than T b

i provided that the observer gain is sufficiently large. In practice, the
use of a sufficiently high observer gain leads to an Ωb,i that is almost identical to
Ωi , and furthermore, once the error has sufficiently decreased, Ωs,i can be taken to
be almost equal to Ωb,i .

3.5.2 Integrating Fault-Detection and Fault-Tolerant Output
Feedback Control

In this subsection, we will present a fault-tolerant controller that uses the estimates
generated by the high-gain observer for the implementation of the fault-detection
filter, the state feedback controllers and the switching logic (see Fig. 3.7). We pro-
ceed by first showing how the implementation of the design and implementation
of the fault-detection filter should be modified to handle the absence of full state
measurements. To this end, we consider the following system:

ẇ(t) = f (w) + gi(w)ui(w),

r(t) = ∥∥x̂(t) − w(t)
∥∥.

(3.18)

Note that, as in the full state feedback case, the state equation for the filter in
Eq. (3.18) is a replica of the closed-loop state equation under full state feedback
and in the absence of faults. However, because of the absence of full state mea-
surements, the residual can only be defined in terms of the state estimates, not the
actual states. The residual therefore provides a measure of the discrepancy between
the evolution of the nominal closed-loop system (i.e., with no faults) under full state
feedback and the evolution of the closed-loop state estimates under output feedback.
Since the discrepancy can be solely due to estimation errors and not necessarily due
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Fig. 3.7 Integrated fault-detection and fault-tolerant control design under output feedback

to faults, it is important to establish a bound on the residual which captures the ex-
pected difference in behavior in the absence of faults. This bound, which is given
in Proposition 3.3 below, will be useful as a threshold to be used by the supervisor
in declaring when a fault has occurred and consequently when switching becomes
necessary.

Proposition 3.3 Consider the nonlinear system of Eq. (3.1), for a fixed mode,
k(t) = i, and with mi(t) ≡ 0, under the output feedback controller of Eq. (3.17).
Consider also the system of Eq. (3.18). Then, given the set of positive real num-
bers {δb,i , δζ,i , δm,i , T

b
i }, there exists a positive real number, ε′

i > 0, such that if
εi ∈ (0, ε′

i], Vi(x(0)) ≤ δb,i , ‖ỹ(0)‖ ≤ δζ,i , w(T b
i ) = x̂(T b

i ), the residual satisfies a
relation of the form r(t) ≤ δm,i for all t ≥ T b

i .

Proof Consider the system of Eq. (3.1) with mi(t) ≡ 0 under the output feedback
controller of Eq. (3.17). From the result of Proposition 3.1, we have that given
x(0) ∈ Ωb,i and any positive real number T b

i , there exists a real positive number
ε∗∗
i such that ‖x(t) − x̂(t)‖ ≤ k1εi , for all t ≥ T b

i , εi ∈ (0, ε∗∗
i ], for some k1 > 0,

i.e., x(t) = x̂(t) + O(εi), where O(εi) is the standard order of magnitude notation.
Now, consider the following two systems for t ≥ T b

i :

ẋ(t) = f
(
x(t)

) + gi

(
x(t)

)
ui

(
x̂(t)

)
, (3.19)

ẇ(t) = f
(
w(t)

) + gi

(
w(t)

)
ui

(
w(t)

)
, (3.20)

where w(T b
i ) = x̂(T b

i ). The system of Eq. (3.20) is exactly the closed-loop system
under full state feedback and has an asymptotically (and exponentially) stable equi-
librium at the origin, for all initial conditions within Ωi . The system of Eq. (3.19)
is the closed-loop system under output feedback and (from Proposition 3.1) has an
asymptotically (and locally exponentially) stable equilibrium at the origin, for all
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initial conditions within Ωb,i ⊂ Ωi and for all εi ≤ ε∗
i . Since x(t) = x̂(t) + O(εi)

for all t ≥ T b
i , we have that x(T b

i ) = x̂(T i
b ) + O(εi) and, when εi = 0, the two

systems of Eqs. (3.19)–(3.20) become identical. Let Fi(·) = f (·) + gi(·)ui(·), and
x(T b

i ) = x̂(T i
b ) + O(εi) := η(εi), where η is a continuous function that depends

smoothly on εi , then we can write

ẋ(t) = Fi

(
x(t), εi

)
, x

(
T b

i

) = η(εi),

ẇ(t) = Fi

(
w(t)

)
, w

(
T b

i

) = η(0).
(3.21)

It is clear from the above representation that the state equations for both the fil-
ter system and the closed-loop system, as well as their initial conditions at T b

i ,
are identical when εi = 0. Therefore, we can use the theory of regular pertur-
bations (see Chap. 8 in [76]) to establish the closeness of solutions between the
two systems over the infinite time interval. In particular, since Fi(·) is continu-
ous and bounded on Ωb,i , and the w-system is exponentially stable, an applica-
tion of the result of Theorem 8.2 in [76] yields that there exists ε′′

i > 0 such that
for all εi ∈ (0, ε′′

i ], x(t) = w(t) + O(εi) for all t ≥ T b
i . We therefore have that,

for εi ∈ (0,min{ε∗∗
i , ε′′

i }], r(t) = ‖x̂(t) − w(t)‖ = ‖x̂(t) − x(t) + x(t) − w(t)‖ ≤
‖x̂(t) − x(t)‖ + ‖x(t) − w(t)‖ ≤ (k1 + k2)εi for all t ≥ T b

i . This implies that given
any positive real number δm,i , there exists ε′

i > 0 such that ‖x̂(t) − w(t)‖ ≤ δm,i for
all εi ∈ (0, ε′

i], for all t ≥ T b
i , where ε′

i = min{ε∗∗
i , ε′′

i , δm,i/(k1 + k2)}.
To summarize, we conclude that given the set of positive real numbers {δb,i ,

δζ,i , δm,i , T
b
i }, there exists a positive real number, ε′

i > 0, such that if εi ∈ (0, ε′
i],

Vi(x(0)) ≤ δb,i , ‖ỹ(0)‖ ≤ δζ,i , w(T b
i ) = x̂(T b

i ), the residual satisfies a relation of
the form r(t) ≤ δm,i for all t ≥ T b

i . This completes the proof of the proposition. �

Note that the bound δm,i can be chosen arbitrarily small by choosing the observer
gain to be sufficiently large. Note also that, unlike the case of full state feedback, the
fault-detection filter is initialized only after the passage of some short period of time,
[0, T b

i ] (which can be chosen arbitrarily small by increasing the observer gain), to
ensure that the closed-loop state estimates have converged sufficiently close to the
true closed-loop states and thus—by setting the filter state w at this time equal to the
value of the state estimate—ensure that the filter state is initialized sufficiently close
to the true values of the state. From this point onwards, the filter simply integrates
a replica of the dynamics of the process in the absence of errors. In the absence
of actuator faults, the difference between the filter states and the process states is a
function of the initial error, which can be bounded from above by a value that can be
made as small as desired by decreasing the initial error, which in turn can be done
by appropriate choice of the observer parameters.

Having established a bound on the residual in the absence of faults, we are
now ready to proceed with the design of the switching logic. To this end, con-
sider the nonlinear system of Eq. (3.1) where, for each control configuration, an
output feedback controller of the form of Eq. (3.17) is available and, given the
desired output feedback stability regions Ωb,i ⊂ Ωi , i = 1, . . . ,N , as well as the
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desired values for δm,i , T i
b , an appropriate observer gain has been determined (e.g.,

εi ≤ min{ε∗
i , ε

′
i , ε

∗∗
i } to guarantee both stability and satisfaction of the desired bound

on the residual) and the sets Ωs,i (see Proposition 3.2) have been computed. The im-
plementation of the fault-detection filter and fault-tolerant controller is described in
Theorem 3.2 below.

Theorem 3.2 Let k(0) = i for some i ∈ K, x(0) ∈ Ωb,i , w(T b
i ) = x̂(T b

i ), and con-
sider a fault for which r(T s

i ) ≥ δm,i , where T s
i > T b

i is the earliest time for which
r(t) ≥ δm,i . Then under the switching rule

k(t) =
{

i, 0 ≤ t < T s
i ,

j �= i, t ≥ T s
i , x̂(T s

i ) ∈ Ωs
j

(3.22)

the origin of the closed-loop system is asymptotically stable.

Proof Consider the nonlinear system of Eq. (3.1), under the output feedback con-
troller of Eq. (3.17), and the system of Eq. (3.18), where k(0) = i for some i ∈ K,
x(0) ∈ Ωb,i , w(T b

i ) = x̂(T b
i ), εi ≤ min{ε∗

i , ε
′
i , ε

∗∗
i }, where ε∗

i , ε∗∗
i were defined in

Proposition 3.1 and ε′
i was defined in Proposition 3.3. Since we consider only faults

for which r(T s
i ) ≥ δi

m, where T s
i > T b

i is the earliest time for which r(t) ≥ δi
m, it

follows that

(a) In the absence of such faults, no switching takes place and configuration i is
implemented for all times. Since x(0) ∈ Ωb,i and εi ≤ ε∗

i , asymptotic closed-
loop stability of the origin follows directly from Proposition 3.1.

(b) In the case that such faults take place, the earliest time a fault is detected is
T s

i > T b
i and we have, from Eq. (3.22), that k(t) = i for 0 ≤ t < T s

i . From the
stability of the ith closed-loop system established in Proposition 3.1, we have
that the closed-loop trajectory stays bounded within Ωb,i for 0 ≤ t < T s

i . At
time T s

i , the supervisor switches to a control configuration j for which x̂(T s
i ) ∈

Ωs,j . By design, x̂(t) ∈ Ωs,j ⇒ x(t) ∈ Ωb,j for all t ≥ T s
i > T b

i . From this
point onwards, configuration j is implemented in the closed-loop system for
all future times and, since x(T s

i ) ∈ Ωb,j , asymptotic closed-loop stability of the
origin follows from the result of Proposition 3.1. This completes the proof of
Theorem 3.2. �

The design and implementation of the fault-detection filter and fault-tolerant con-
troller proceed as follows:

1. Given the nonlinear process of Eq. (3.1), identify the available control configu-
rations, k = 1, . . . ,N . For each configuration, design the output feedback con-
troller of Eq. (3.17), and for a given choice of the output feedback stability re-
gion, Ωb,i , determine a stabilizing observer gain, ε∗

i .
2. Given any positive real numbers, δm,i and T b

i , determine the observer gain, ε′
i ,

for which the maximum possible difference between the filter states and the state
estimates, in the absence of faults, is less than the threshold δm,i for all times
greater than T b

i .
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3. Given the output feedback stability region, Ωb,i , determine the maximum error,
e∗
m,i , and the set Ωs,i such that if ‖x − x̂‖ ≤ em,i ≤ e∗

m,i (i.e., the error between
the estimates and the true values of the states is less than em,i ) and x̂ ∈ Ωs,i (i.e.,
the state estimates belong to Ωs,i ), then x ∈ Ωb,i (i.e., the state belongs to the
output feedback stability region).

4. For a choice of em,i ∈ (0, e∗
m,i] and given T b

i , determine the observer gain, ε∗∗
i ,

for which the maximum possible difference between the states and the state esti-
mates, in the absence of faults, is less than the threshold em,i for all times greater
than T b

i . Set εi := min{ε∗
i , ε

′
i , ε

∗∗
i }. Note that this choice guarantees that by time

T b
i : (i) the residual is within the desired threshold and (ii) the presence of x̂

within Ωs,i guarantees that x belongs to Ωb,i .
5. Initialize the closed-loop system such that x(0) ∈ Ωb,i , for some i ∈ K, and start

generating the state estimates x̂(t). At time T b
i , initialize and start integrating the

filter dynamics of Eq. (3.18) with w(T b
i ) = x̂(T b

i ), where x̂ is the state estimate
generated by the high-gain observer.

6. At the earliest time T s
i > T b

i that r(t) > δm,i (implying that the difference be-
tween the expected evolution of the process states and the estimates of the pro-
cess states is more than what can be accounted for by the error in the initializa-
tion of the filter states, implying that a fault has occurred), activate the backup
configuration for which x̂(T s

i ) ∈ Ωs,j (note that since t = T s
i > T b

i , we have
that ‖x(T s

i ) − x̂(T s
i )‖ ≤ em,i ; this, together with x̂(T s

i ) ∈ Ωs,j , implies that
x(T s

i ) ∈ Ωb,j , i.e., the state belongs to the stability region of configuration j ).
Implement the backup configuration j to achieve closed-loop stability.

Theorem 3.2 considers faults that are “observable” from the filter’s residual in the
sense that if the residual in Eq. (3.18) exceeds the allowable threshold δm,i at any
time, then the supervisor can conclude with certainty that a fault has occurred. On
the other hand, if the residual does not exceed the allowable threshold, it might still
be possible that some “unobservable” fault—the effect of which is within the filter
threshold—has taken place. Note that in contrast to the case of full state feedback,
the states in this case are only known up to a certain degree of accuracy. There-
fore, any fault that causes a difference in the closed-loop behavior that is within
that margin of (i.e., indistinguishable from) the effect of the estimation error will,
in principle, go undetected. This class of faults is not considered in Theorem 3.2
since its effect on closed-loop stability cannot be discerned from the behavior of the
residual. This, however, is not a restriction since the observability threshold δm,i is
a design parameter and can be chosen arbitrarily small, thus rendering the possi-
bility of major (i.e., destabilizing) faults that cannot be detected quite small. Ulti-
mately, the choice of δm,i reflects a fundamental tradeoff between the need to avoid
false alarms that could be caused by estimation errors (this favors a relatively large
threshold) and the need to minimize the possibility of some faults going undetected
(this favors a relatively small threshold).

Note that for all times prior to T b
i , the filter is inactive. Until this time, the state

estimates have not yet converged close enough to the true values of the states, and no
inference about the state of the system can be drawn by looking at the evolution of
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the state estimate, and therefore no inference about any possible faults can be drawn
via the fault-detection filter. If a fault occurs within this time, the filter will detect
its occurrence only after the time T b

i . By choosing a larger value of the observer
gain, however, the time T b

i can be reduced further, if so desired. Note also that
while we consider the problem of unavailability of some of the state variables as
measurements, we do not consider the problem of sensor faults, i.e., we assume that
the sensors do not malfunction both in the state and output feedback cases; these
issues will be studied in Chaps. 8 and 9. In the event of availability of multiple
measurements in a way that each of them can be used to estimate of the process
states, the estimates of the states generated using the different measurements can be
used to also detect sensor faults.

Remark 3.5 The central idea behind the model-based fault-detection filter design,
that of comparing the evolution of the process to the expected evolution of the pro-
cess in the absence of faults, can also be used to design a rule-based fault-detection
filter. One example of a rule-based fault-detection filter is to declare a fault if the
state estimates, after a time T b

i , touch the boundary of Ωs,i , indicating that the
closed-loop states themselves may be about to escape the output feedback stability
region Ωb,i . The rule-based fault detection filter, however, would be able to detect
the fault only when the state estimates hit the boundary of Ωs,i , as opposed to the
model-based fault detection filter, which detects a fault as soon as the effect of the
fault on the closed-loop evolution goes beyond a prescribed threshold. This delay
in a rule-based approach could result in the state escaping the stability region of the
available backup configurations (see the simulation for an example). Also, it may
happen that the fault causes the closed-loop process states evolving within Ωs,i to
neither escape Ωs,i nor converge to the origin. The rule based fault-detection filter
would not be able to detect such a fault. In contrast, the model-based fault-detection
filter of Theorem 3.2, is able to detect faults that have an effect, up to a desirable
threshold, on the evolution of the closed-loop process. Note also that the model-
based fault-detection filter of Theorem 3.2 and the rule-based fault-detection filter
discussed above differ only in that the model-based filter of Theorem 3.2 uses a
more quantitative knowledge of the closed-loop dynamics to predict the expected
closed-loop trajectory, instead of using the qualitative knowledge that the fault-free
closed-loop state trajectory does not escape the stability region.

3.5.3 Simulation Results

In this subsection, we first illustrate the implementation of the proposed fault-
tolerant control methodology to the chemical reactor introduced as a motivating
example to clearly explain the main ideas behind the application of the proposed
fault-detection and fault-tolerant control method, and then demonstrate an appli-
cation to a chemical reactor example, investigating issues such as uncertainty and
measurement noise.
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Fig. 3.8 Evolution of the closed-loop (a) temperature (solid line), estimate of temperature (dash–
dotted line) and the temperature profile generated by the filter (dashed line) and (b) concentration
(solid line), estimate of concentration (dash-dotted line) and the concentration profile generated by
the filter (dashed line) under control configuration 1 when the fault detection filter is initialized at
t = 0.005 minutes

For the chemical reactor of Sect. 3.3, Fig. 3.11 depicts the stability region, in the
(T ,CA) space, for each configuration. The desired steady-state is depicted with an
asterisk that lies in the intersection of the three stability regions. For the first two
control configurations, a state estimator of the form of Eq. (3.17) is designed. For
thresholds of δm = 0.0172 and 0.00151 in the fault detection filters, the parameters
in the observer of Eq. (3.17) are chosen as L1 = L2 = 100, a

(1)
1 = a

(2)
1 = 10, and

a
(1)
2 = a

(2)
2 = 20. For the third configuration, the estimates, T̂ , ĈA are generated as

follows:

dT̂

dt
= F

V
(TA0 − T̂ ) +

3∑

i=1

(−�Hi)

ρcp

ki0e
−Ei

RT̂ ĈA + α1(CA − ĈA),

dĈA

dt
= F

V
(CA0 − ĈA) −

3∑

i=1

ki0e
−Ei

RT̂ ĈA + α2(CA − ĈA),

(3.23)

where α1 = −104 and α2 = 10. The reactor is initialized at T (0) = 330 K, CA(0) =
3.6 kmol/m3, CB(0) = 0.0 kmol/m3, using the Q-control configuration, while the
state estimates are initialized at T̂ (0) = 390 K, ĈA(0) = 3.6 kmol/m3 and the su-
pervisor proceeds to monitor the evolution of the closed-loop estimates.

We first demonstrate the need to wait for a sufficient time before initializing the
filter. To this end, consider the fault-detection filter initialized at t = 0.005 minutes
≡ T b

1 at which time the state estimates (dash-dotted lines in Fig. 3.8) have not con-
verged to the true values (solid lines in Fig. 3.8). As a result, the fault-detection
filter shows a false alarm (see Fig. 3.9(a)) by crossing the threshold even when
control configuration 1 is functioning properly (see Fig. 3.9(b)) and stabilizes the
closed-loop system. Note that while the initialization of the filter at a time when
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Fig. 3.9 Evolution of (a) the residual and (b) the manipulated input profile for the first control
configuration when the fault detection filter is initialized at t = 0.005 minutes

Fig. 3.10 Evolution of the closed-loop (a) temperature (solid line), estimate of temperature (dash-
dotted line) and the temperature profile generated by the filter (dashed line) and (b) concentration
(solid line), estimate of concentration (dash-dotted line) and the concentration profile generated by
the filter (dashed line) under the switching rule of Eq. (3.22) subject to failures in control systems 1
and 2

the state estimates have not converged leads to the residual crossing the threshold,
the residual eventually goes to zero as expected, since both the filter states and the
closed-loop process states eventually stabilize and go to the same equilibrium point.

We now demonstrate the application of the fault-detection filter and fault-tolerant
controller of Theorem 3.2. Starting from the same initial conditions, the estimates of
T and CA (dash-dotted lines in Fig. 3.10(a)–(b)) converge very quickly to the true
values of the states (solid lines in Fig. 3.10(a)–(b)). The states in the fault-detection
filter are initialized and set equal to the value of the state estimates at t = 0.01
minutes ≡ T b

1 ; note that by this time the estimates have converged to the true values.
By initializing the fault-detection filter appropriately, a false alarm is prevented (the
value of r1(t) does not hit the threshold in the absence of a fault after a time t = 0.01
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Fig. 3.11 Evolution of the
closed-loop state trajectory
under the switching rule of
Eq. (3.22) subject to failures
in control systems 1 and 2,
using an appropriate
fault-detection filter (solid
line) and in the absence of a
fault-detection filter (dashed
line)

Fig. 3.12 Evolution of the residual for (a) the first control configuration and (b) the second control
configuration

minutes, see Fig. 3.12(a)). As shown by the solid lines in Fig. 3.11, the controller
proceeds to drive the closed-loop trajectory towards the desired steady-state, up until
the Q-configuration fails after 3.0 minutes ≡ T

f

1 of reactor startup (see solid lines
in Fig. 3.14(a)). Note that at this time, the value of r1(t) becomes non-zero and hits
the threshold at t = 3.3 minutes ≡ T s

1 . From Fig. 3.11, it is clear that the failure of
the primary control configuration occurs when the closed-loop trajectory is within
the stability region of the second control configuration, and outside the stability
region of the third control configuration. Therefore, on the basis of the switching
logic of Eq. (3.22), the supervisor activates the second configuration (with TA0 as
the manipulated input). The result is shown by the solid line in Fig. 3.11 where it
is seen that upon switching to the TA0-configuration, the corresponding controller
continues to drive the state trajectory closer to the desired steady-state.
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Fig. 3.13 Evolution of the closed-loop (a) temperature (solid line), estimate of temperature (dash–
dotted line) and the temperature profile generated by the filter (dashed line) and (b) concentration
(solid line), estimate of concentration (dash-dotted line) and the concentration profile generated by
the filter (dashed line) under the switching rule of Eq. (3.22) subject to failures in control systems
1 and 2 in the absence of a fault-detection filter

Fig. 3.14 Manipulated input profiles under (a) control configuration 1, (b) control configuration 2,
and (c) control configuration 3 under the switching rule of Eq. (3.22) subject to failures in control
systems 1 and 2 in the presence (solid lines) and absence (dashed lines) of a fault-detection filter
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When a second failure occurs (this time in the TA0-configuration) at t = 13.0
minutes ≡ T

f

2 (which is simulated by fixing TA0 for all t ≥ 13.0 minutes, see solid
lines in Fig. 3.14(b)) before the process has reached the steady state, the filter detects
this failure via the value of r2(t) hitting the threshold (see Fig. 3.12(b)). From the
solid line in Fig. 3.11, it is clear that the failure of the second control configuration
occurs when the closed-loop trajectory is within the stability region of the third
configuration. However, if the fault-detection filter is not in place and the backup
configuration is implemented late in the closed-loop (at t = 30 minutes ≡ T s

3 ), by
this time the state of the closed-loop system has moved out of the stability region of
the third control configuration, and closed-loop stability is not achieved (see dashed
line in Fig. 3.11, see also Fig. 3.13 and dashed lines in Fig. 3.14). In contrast, when
the fault-detection filter is in place, it detects a fault at t = 15.82 minutes ≡ T s

2 and
when the supervisor switches to configuration 3, closed-loop stability is achieved
(see solid line in Fig. 3.11).

3.6 Conclusions

In this chapter, fault-detection and fault-tolerant control strategies for single-input
nonlinear systems were presented. The problem was first studied in the case that the
whole state feedback is available and then extended to the case of output feedback.
The presented framework integrates fault-detection, feedback, and supervisory con-
trol together and provides effective fault-tolerant control for nonlinear systems. Sim-
ulation studies were presented to demonstrate the implementation and evaluate the
effectiveness of the presented fault-tolerant control scheme.



Chapter 4
Integrated Fault-Detection and Isolation
and Fault-Tolerant Control

4.1 Introduction

This chapter considers the problem of implementing fault tolerant control on a
multi-input multi-output nonlinear system subject to multiple faults in the control
actuators and constraints on the manipulated inputs. To illustrate some of the ideas
behind the design of the fault-detection and isolation filter and subsequent reconfig-
uration, the case where all the states of the system are measured is first considered.
The state measurements and the model are used to design filters that essentially
capture the difference between the fault-free evolution and the evolution of the sys-
tem to detect and isolate faults. Once a fault is detected and isolated, out of the
available backup configurations, a configuration is chosen that (i) does not use the
failed control actuator and (ii) guarantees the stability of the closed-loop system
starting from the system state at the time of the failure. To be able to ascertain
the second condition, Lyapunov-based controllers are used in designing the control
laws for the individual control configurations which provide an explicit character-
ization of the set of initial conditions starting from where the closed-loop stability
is guaranteed. The more complicated and realistic problem where all the system
states are not measured is considered next. First, output-feedback controllers are
designed that use a combination of state estimators and state-feedback controllers
in a way that allows for an explicit characterization of the output-feedback stabil-
ity region. The state estimates are employed in the design of the fault-detection
and isolation filters, and also in devising the reconfiguration rule that determines
which of the backup control configurations should be implemented in the closed-
loop system. The implementation of the fault-detection and isolation filters and
reconfiguration strategy is first illustrated via a chemical reactor example under
state-feedback, and then issues such as uncertainty, measurement noise, and ap-
plicability in an output-feedback setting are investigated in further chemical reactor
examples. Finally, the application of the integrated fault detection and isolation and
fault-tolerant control framework to a reverse osmosis water desalination process is
presented.

P. Mhaskar et al., Fault-Tolerant Process Control, DOI 10.1007/978-1-4471-4808-1_4,
© Springer-Verlag London 2013
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4.2 Preliminaries

We consider nonlinear systems with input constraints, described by

ẋ = f (x) + Gk(t)(x)
(
uk(t)(x) + ũk(t)(t)

)
, y(x) = h(x),

uk ∈ Uk, k(t) ∈ K = {1, . . . ,N}, N < ∞, (4.1)

where x ∈ R
n denotes the vector of state variables, y ∈ R

m denotes the vector of
measured variables, and uk(t)(x) ∈ R

m denotes the control action prescribed by the
control law for the vector of constrained manipulated inputs under the kth configu-
ration. ũk(t) denotes the unknown fault vector with and uk(t)(x)+ ũk(t) taking values
in a nonempty convex subset Uk of Rm, where Uk = {uk + ũk ∈ R

m : ‖uk + ũk‖ ≤
umax

k }, umax
k > 0 is the magnitude of input constraints and f (0) = 0. The vector

function f (x) and the matrices Gk(x) = [g1,k(x) . . . gm,k(x)] are assumed to be
sufficiently smooth on their domains of definition. The function k(t), which takes
values in the finite index set K, represents a discrete state that indexes the matrix
Gk(·) as well as the manipulated input uk(·) and the possible faults in the manipu-
lated inputs ũk(·). For each value that k assumes in K, the process is controlled via
a different set of manipulated inputs which defines a given control configuration.
Throughout the chapter, we assume that for any uk ∈ Uk the solution of the system
of Eq. (4.1) exists and is continuous for all t .

To illustrate some of the ideas behind the fault detection and isolation filter design
and reconfiguration strategy, we begin by assuming that all the states are available
as measurements. We next review one example of a state-feedback controller that
provides an explicit estimate of the stability region for the closed-loop system sub-
ject to constraints (for more details on the controller design and the proof, see [46]
and [85]).

Theorem 4.1 (Cf. [46]) Consider the switched nonlinear system of Eq. (4.1) for a
configuration k for which a Control Lyapunov Function Vk exists, with ũk(t) ≡ 0,
under state-feedback using the following bounded nonlinear feedback controller:

uk = −wk

(
x,umax

k

)(
LGk

Vk(x)
)T

, (4.2)

where

wk

(
x,umax

k

) =

⎧
⎪⎪⎨

⎪⎪⎩

αk(x)+
√

α2
k (x)+(umax

k ‖bT
k (x)‖)4

‖bT
k (x)‖2[1+

√
1+(umax

k ‖bT
k (x)‖)2]

, bT
k (x) �= 0,

0, bT
k (x) = 0,

(4.3)

with αk(x) = Lfk
Vk(x)+ρkVk(x), ρk > 0, and bk(x) = LGk

Vk(x). Assume that the
set Φk(u

max
k ) of x satisfying

Lfk
Vk(x) + ρkVk(x) ≤ umax

k

∥∥(
LGk

Vk(x)
)T ∥∥ (4.4)
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contains the origin and a neighborhood of the origin. Also, let Ωk(u
max
k ) :=

{x ∈ R
n : Vk(x) ≤ cmax

k } be a level set of Vk , completely contained in Φk , for some
cmax
k > 0. Then for all x(0) ∈ Ωk(u

max
k ) the control law guarantees that the origin

of the closed-loop system is asymptotically stable.

4.3 State-Feedback Fault-Tolerant Control

In this section, we first consider the problem under state-feedback to illustrate the
main idea behind the fault detection and isolation filter and fault-tolerant controller
design.

4.3.1 State-Feedback Fault Detection and Isolation Filter

To be able to detect the occurrence of a fault in a control actuator via observing the
state evolution, it is necessary that the control actuator influences the evolution of at
least some of the states. To be able to isolate the occurrence of a fault, it becomes
further necessary that the control actuator in question be the only one influencing at
least some state. To understand this better, consider the following single state, two
input example: ẋ = x + u1(x) + ũ1 + u2(x) + ũ2. As is clear from the equation, the
faults in the manipulated inputs u1 and u2 effect the evolution of the state additively,
i.e., as the sum (ũ1 + ũ2). While it may be possible to detect that a fault has occurred
in either u1 or u2 (if the faults do not cancel out each other, i.e., if ũ1 + ũ2 �= 0), it
is not possible, in this case, to determine by observing the evolution of the system
state (and finding it to be different when compared to the expected evolution with
ũ1 = ũ2 = 0) whether ũ1 �= 0 or ũ2 �= 0, or both. In other words, while it may be
possible to detect the occurrence of a fault, it is not possible to isolate it. Below we
formulate a verifiable assumption on the structure of the system of Eq. (4.1) that
allows for fault detection and isolation.

Assumption 4.1 Consider the system of Eq. (4.1) in configuration k under state-
feedback. Then for every input uj,k , j = 1, . . . ,m, there exists a unique state xi,k ,
i ∈ {1, . . . , n} such that with xi,k as output, the relative degree of xi,k with respect to
uj,k and only with respect to uj,k is equal to 1.

Consider now the system of Eq. (4.1) in configuration k for which Assump-
tion 4.1 holds. Theorem 4.2 below formulates the fault detection and isolation filter
and outlines its fault detection and isolation properties.

Theorem 4.2 Consider the system of Eq. (4.1) in configuration k under the control
law of Eq. (4.2). Let the fault detection and isolation filter for the j th manipulated
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input in the kth configuration be described by

˙̃xi,k = fi(x1, . . . , x̃i,k, . . . , xn)

+ gj,k[i](x1, . . . , x̃i,k, . . . , xn)uj,k(x1, . . . , x̃i,k, . . . , xn),

ei,k = x̃i,k − xi,

(4.5)

where gj,k[i] denotes the ith element of the vector gj,k , x̃i,k(0) = xi(0), and the

subscripts i, k refer to the ith state under the kth control configuration. Let T
f
j,k be

the earliest time for which ũj,k �= 0, then the fault detection and isolation filter of

Eq. (4.5) ensures that ei,k(T
f
j,k

+
) �= 0. Also, ei,k(t) �= 0 only if ũj,k(s) �= 0 for some

0 ≤ s < t .

Proof Part 1: We first show the only if part of the theorem by contradiction. To this
end, consider the equation describing the evolution of the ith state, xi , described by

ẋi = fi(x) + gj,k[i](x)
(
uj,k(x) + ũj,k(t)

)
(4.6)

and let us assume that ũj,k(s) = 0, for all 0 ≤ s < t . Then for all 0 ≤ s < t Eq. (4.6)
reduces to

ẋi = fi(x) + gj,k[i](x)uj,k(x). (4.7)

Since xi(0) = x̃i,k(0), we therefore have that ẋi (s) = ˙̃xi,k(s) for s = 0 and subse-
quently for all 0 ≤ s < t . Therefore, ei,k(s) = 0 for all 0 ≤ s < t , which leads to
a contradiction. This means that the assumption that ũj,k(s) = 0, for all 0 ≤ s < t

does not hold, i.e., ũj,k(s) �= 0 for some 0 ≤ s < t . This completes the proof of the
first part of the theorem.

Part 2: To prove the if part of the theorem, consider once again Eq. (4.5) and
Eq. (4.6) with ũk

j (t) = 0 for all t ≤ T
f
k . Then following the line of reasoning as in

Part 1, we get that xi(T
f
j,k) = x̃i,k(T

f
j,k). Since ũj,k(T

f
j,k) �= 0, we get that ẋi (T

f
j,k) �=

˙̃xi,k(T
f
j,k), and therefore, that xi(T

f
j,k

+
) �= x̃i,k(T

f
j,k

+
), i.e., ei,k(T

f
j,k

+
) �= 0. This

completes the proof of Theorem 4.2. �

Remark 4.1 As stated in Theorem 4.2 above, the fault detection and isolation filter
performs the task of detection as well as isolation. Specifically, the if part of the
theorem characterizes the detection capabilities where the residual for a manipulated
input becomes nonzero if a fault occurs in the given manipulated input. The only if
part of the theorem allows isolation since a residual is non-zero only if a fault has
occurred at some previous time in the given manipulated input. Note that in general
it is possible that a fault occurs for some time and disappears, and also the fault
profile is such that after some time the evolution of the system becomes identical
again to the fault-free system, in which case the residual would once again go back
to zero. The immediate detection capability of the filter above, however, precludes
the possibility that such a fault goes undetected.
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Remark 4.2 Note that Assumption 4.1 is a sufficient condition that allows fault de-
tection and isolation filter design, and can be readily relaxed. For instance, if the
inputs influence the evolution of the states in an ‘upper triangular’ or ‘lower tri-
angular’ form, fault detection and isolation is possible using the same idea as in
Theorem 4.2 above. As an illustration, consider a two state two input system of the
form

ẋ1 = f1(x) + g1[1](x)
(
u1(x) + ũ1(t)

)
,

ẋ2 = f2(x) + g1[2](x)
(
u1(x) + ũ1(t)

) + g2[2](x)
(
u2(x) + ũ2(t)

)
,

(4.8)

where fi(·) denotes the ith elements of the vector function f (·) and gi[j ] denotes
the j th element of the vector gi . While this system does not satisfy Assumption 4.1,
fault detection and isolation can still be achieved. Specifically, a filter design of the
form of Eq. (4.5) can be used to build a detection filter for the first manipulated
input. The dynamics of the second filter can then be designed as

˜̇x2 = f2(x1, x̃2) + g1[2](x1, x̃2)
(
u1(x1, x̃2)

) + g2[2](x1, x̃2)
(
u2(x1, x̃2)

)
,

e2 = x̃2 − x2.
(4.9)

In this setup, faults in u1 will be captured in both e1 and e2, while faults in u2 will
only effect e2. The task of fault detection and isolation can therefore be carried out
via a simple process of elimination.

Remark 4.3 Even in cases where the structure of the process dynamic model does
not allow for complete isolation of a fault (i.e., more than one manipulated input
has a relative degree one with respect to a given state), the proposed method can
still isolate the failure to a subset of the entire group of active manipulated inputs.
This would be especially useful in the case of high-dimensional process systems
with a large number of states and inputs where several redundant inputs are used
simultaneously. However, once a subset of control actuators including the failed
ones has been identified by the filter, nothing can be said about which actuator(s) of
the ones in this subset has actually failed. Therefore, in order to guarantee stability in
the controller reconfiguration phase, the worst case scenario, where all the actuators
in this subset have failed, must be assumed and the supervisor must then switch
to a fall-back configuration that does not implement any of the control actuators
included in this subset.

4.3.2 State-Feedback Fault-Tolerant Controller

Given that a fault is detected and isolated using the filters designed in the previ-
ous section, the problem that we address in this section is that of determining an
appropriate backup configuration. The first requirement for an appropriate backup
control configuration is that it does not use the faulty control actuator. Secondly,
the limitations imposed by the presence of input constraints must be accounted for,
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and in particular, a backup configuration should be implemented for which the state
of the closed-loop system resides in its stability region. This idea is formalized in
Theorem 4.3 below.

Theorem 4.3 Consider the closed-loop system of Eqs. (4.1)–(4.2) under state-
feedback and let x(0) := x0 ∈ Ωk0 for some k0 ∈ K. Let Tj,k0 be the earliest
time such that ei,k0 �= 0 for some i corresponding to a manipulated input uj,k0 in
Eq. (4.5). Then the following switching rule:

k(t) =
{

k0, 0 ≤ t < Tj,k0 ,

q �= k0, t ≥ Tj,k0 , x(Tj,k0) ∈ Ωq, uj,k0 /∈ uq

(4.10)

guarantees asymptotic stability of the origin of the closed-loop system.

Proof We consider the two cases:

1. ei,k0(t) = 0 for all t ≥ 0 for all i ∈ {1, . . . , n} and
2. ei,k0(t) �= 0 for some Tj,k0 for some j ∈ {1, . . . ,m}.
Case 1: ei,k0(t) = 0 ∀t ≥ 0 for all j ∈ {1, . . . ,m} implies (using Theorem 4.2) that
ũj,k(t) = 0 for all t ≥ 0 and for all j ∈ {1, . . . ,m}. The switching rule of Eq. (4.10)
then dictates that k(t) = k0 ∀t ≥ 0. Since x(0) ∈ Ωk0 , asymptotic stability of the
origin of the closed-loop system follows from Theorem 4.1.

Case 2: If ei,k0(t) �= 0 for some Tj,k0 for some j ∈ {1, . . . ,m}, the switching rule
dictates switching to configuration q such that x(Tj,k0) ∈ Ωq . Stability of the origin
of the closed-loop system again follows from Theorem 4.1. This completes the
proof of Theorem 4.3. �

Remark 4.4 Early detection of a fault enhances the chances that corrective action
can be taken in time to achieve fault-tolerant control. Specifically, it may happen
that a fault occurs when the closed-loop state resides in the stability region of one
of the backup configurations, but the destabilizing effect of the fault may drive the
state outside the stability region of the backup configuration by the time the fault
is detected. Theorem 4.2 guarantees that a fault is detected as soon as it occurs.
Note also that in the presence of plant–model mismatch or unknown disturbances,
the value of ei,k(t) will be nonzero even in the absence of faults. The presence of
time-varying disturbances θ(t) with known bounds θb on the disturbances can be
accounted for in the filter design as well as reconfiguration. Specifically, the filter
can be redesigned to declare a fault only if the value of ei,k(t) increases beyond
some threshold, δ(θb), where δ(θb) accounts for the deviation of the plant dynamics
from the nominal dynamics in the absence of faults. Further robust controllers can
be utilized and the robust stability regions can be used as criteria for deciding which
backup configuration should be implemented in the closed-loop system.

Remark 4.5 In the event that the process state at the time of the failure of the pri-
mary control configuration lies in the stability region of more than one backup con-
trol configurations, additional performance considerations such as ease and/or cost
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of implementing one control configuration over another can be used in choosing the
backup control configuration to be implemented [111]. Note that the set of initial
conditions starting from where a given control configuration can stabilize a steady
state—the so-called null-controllable region—is fundamentally limited by the con-
straints on the available control action, and that different control laws typically pro-
vide estimates of the stability region which are subsets of the null-controllable re-
gion. If the state at the time of a failure lies outside the stability region of all the
backup configurations, then this indicates that the backup configurations do not have
enough control action available and calls for increasing the allowable control action.

4.4 Output-Feedback Fault-Tolerant Control

In the previous section, we assumed the availability of all the state measurements
to illustrate the design of the fault detection and isolation filters and the controller
reconfiguration strategy. In this section, we consider the case where only some of
the process states are available for measurement. The unavailability of some states
as measurements necessitates estimating the states from the measurements for the
purposes of fault detection and isolation, feedback control and controller recon-
figuration. To this end, we next review an output-feedback controller design [46]
that provides estimates of the states (for other examples of nonlinear observer and
output-feedback controller designs, see [74, 77]) along with an explicit characteri-
zation of the output feedback stability region.

4.4.1 Output Feedback Controller

To design the output feedback controllers for the individual configurations, we will
use the following assumption:

Assumption 4.2 Consider the system of Eq. (4.1) in configuration k with ũk ≡ 0.
There exists a set of integers r1,k, r2,k, . . . , rm,k (with r1,k + r2,k + · · · + rm,k = n

for each k) and a coordinate transformation ζk = χk(x) such that the representation
of the system of Eq. (4.1), in the ζk coordinates, takes the form:

ζ̇
(i)
1,k = ζ

(i)
2,k,

...

ζ̇
(i)
ri,k−1 = ζ (i)

ri,k
,

ζ̇ (i)
ri,k

= L
ri,k
f hi(x) + Lgi,k

L
ri,k−1
f hi(x)ui,k,

(4.11)

where x = χ−1
k (ζk) and ζk = [ζ (1)

k

T
. . . ζ

(m)
k

T ]T .
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Theorem 4.4 (Cf. [46]) Consider the constrained nonlinear process of Eq. (4.1)
with ũk(t) ≡ 0 for which Assumption 4.2 holds, under the output feedback controller
using the kth control configuration:

˙̃yi,k =

⎡

⎢⎢⎢⎢
⎣

−Li,ka
(1)
i,k 1 0 . . . 0

−L2
i,ka

(2)
i,k 0 1 . . . 0

...
...

...
. . .

...

−L
ri
i,ka

(ri )
i,k 0 0 . . . 0

⎤

⎥⎥⎥⎥
⎦

ỹi,k +

⎡

⎢⎢⎢⎢
⎣

Li,ka
(1)
i,k

L2
i,ka

(2)
i,k

...

Ln
i,ka

(ri )
i,k

⎤

⎥⎥⎥⎥
⎦

yi,k,

uk = −wk

(
x̂, umax

k

)(
LGk

Vk(x̂)
)T

,

(4.12)

where x̂ = χ−1
k (sat(ỹk)), ỹk = [ỹT

(1,k) . . . ỹ
T
(m,k)]T , i = 1, . . . ,m, and where the

parameters a
(1)
i,k , . . . , a

(ri )
i,k are chosen such that the polynomial sri + a

(1)
i,k sn−1 +

a
(2)
i,k sri−2 + · · · + a

(ri )
i,k = 0 is Hurwitz, x̂ = χ−1

k (sat(ỹ)), sat(·) = min{1, ζmax,k/

‖ · ‖}(·), with ζmax,k = βζ (δζ,k,0) where βζ is a class KL function and δζ,k is
the maximum value of the vector [lT1 (x)lT2 (x) . . . lTm(x)]T for Vk(x) ≤ δb,k , where

li (x) = [hi(x)Lf hi(x) . . .L
ri−1
f hi(x)]T , and let εk = maxi 1/Li,k . Then, given

Ωb,k := {x ∈ R
n|Vk(x) ≤ δb,k} and positive real numbers em,k , ũ∗

k , and dk , there
exist ε∗

k > 0, T b
k > 0 such that if εk ∈ (0, ε∗

k ], x(0) ∈ Ωb,k , and ‖ỹ(0)‖ ≤ δζ,k , the
origin of the closed-loop system is asymptotically (and locally exponentially) stable,
and if ‖ũk(t)‖ ≤ ũ∗

k then ‖x(t) − x̂(t)‖ ≤ em,k for all t ≥ T b
k and lim supt→∞ x(t)

= dk .

Remark 4.6 Theorem 4.4 above provides the estimation and controller design that
guarantees asymptotic stability in the case of fault-free system as well as practical
stability in the presence of ‘small’ faults (that preserve stability). The result relies
on closeness of the state estimates to the true states over the infinite time interval.
In fault detection and isolation, the closeness of solution would be required to hold
even in the presence of large, possibly destabilizing faults, at least up-to some finite
time to be able to detect and isolate the faults. This requirement is formalized in
Assumption 4.3 below.

Assumption 4.3 Consider the system of Eq. (4.1) in configuration k under the
output feedback controller of Theorem 4.4. There exist positive real numbers
Tclose > T b

k and δk such that if ‖ũk(t)‖ > ũ∗
k for some Tfault > T b

k where ũ∗
k was

defined in Theorem 4.4, then ‖x(t) − x̂(t)‖ ≤ em,k for all t ∈ [T b
k , Tfault + T close

k ]
and ‖ ∫ t

T b
k

gj,k[i](x(τ ))ũj,k(τ ) dτ‖ > δk for some t ∈ [Tfault, Tfault + T close
k ].

Due to the lack of full state measurements, the reconfiguration decision needs
to be done based only on the available state estimates. It is therefore necessary to
be able to make reliable inferences regarding the states using the state estimates.
Proposition 4.1 below establishes the existence of a set, Ωs,k := {x ∈ R

n : Vk(x) ≤
δs,k}, such that once the state estimation error has fallen below a certain value (note
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that the decay rate can be controlled by adjusting Lk), the presence of the state
within the output feedback stability region, Ωb,k , can be guaranteed by verifying
the presence of the state estimates in the set Ωs,k . A similar approach was employed
in the construction of the output feedback stability regions Ωb,k and the regions for
the state estimates Ωs,k in the context of output feedback control of linear systems
in [107], and for nonlinear systems in [51]. For a proof of the proposition, see [51];
see also Chap. 3.

Proposition 4.1 Given any positive real number δb,k , there exist positive real
numbers e∗

m,k and δs,k such that if ‖x − x̂‖ ≤ em,k , where em,k ∈ (0, e∗
m,k], and

Vk(x̂) ≤ δs,k , then Vk(x) ≤ δb,k .

4.4.2 Output-Feedback Fault Detection and Isolation Filter

The output feedback fault detection and isolation filter uses the same principle as
the state feedback fault detection and isolation filter while using the state estimates
to implement the filter. For the system of Eq. (4.1), the fault detection and isolation
filter for the j th manipulated input in the kth configuration is designed as:

˙̃xi,k = fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

+ gj,k[i]
(
x̂k

1 , . . . , x̃i,k, . . . , x̂n,k

)
uj,k(x̂1,k, . . . , x̃i,k, . . . , x̂n,k), (4.13)

ei,k = x̂i,k − x̃i,k,

where gj,k[i] denotes the ith element of the vector gj,k , and x̃i,k(T
b
k ) = x̂i,k(T

b
k ),

where T b
k was defined in Theorem 4.4

Proposition 4.2 Consider the nonlinear system of Eq. (4.1), for a fixed mode under
the output feedback controller of Eq. (4.12) and the filter of Eq. (4.13). Given ũ∗

j,k ,

δk and T close
k there exist positive real numbers δj,k and ε∗∗

k such that if |ũj,k(t)| ≥
ũ∗

j,k for some T fault
k ≥ Tb,k and εk ≤ min{ε∗

k , ε
∗∗
k } then ei,k(t) > δj,k for some t ∈

[T fault
k , T fault

k + T close
k ].

Proof Consider the filter of Eq. (4.13) and the evolution of xi for t ∈ [T b
k , T fault

k +
T close

k ], i.e., consider the systems

˙̃xi,k = fi(x) + gj,k[i](x)
(
uj,k(x)

) + (
fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k) − fi(x)

)

+ (
gj,k[i](x̂1,k, . . . , x̃i,k, . . . , x̂n,k)uj,k(x̂1,k, . . . , x̃i,k, . . . , xn,k + x̂n,k)

− gj,k[i](x)uj,k(x)
)

(4.14)

and

ẋi,k = fi(x) + gj,k[i](x)
(
uj,k(x) + ũj,k(t)

)
. (4.15)
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Therefore,

ẋi,k − ˙̃xi,k = gj,k[i](x)ũj,k(t) + (
fi(x) − fi(x̂1,k, . . . , x̃i,k, . . . , x̂n,k)

)

+ (
gj,k[i](x)uj,k(x)

)

− gj,k[i](x̂1,k, . . . , x̃i,k, . . . , x̂n,k)uj,k(x̂1,k, . . . , x̃i,k, . . . , xn,k + x̂n,k).

(4.16)

Note that x̂(Tb) − x(Tb) can be made as small as desired by choosing a sufficiently
small ε. From the continuity of fi(·) and gj,k[i](·), this implies that the last two
terms in Eq. (4.16) can be made as small as desired. The difference between ẋi,k

and ˙̃xi,k can therefore be made as close as desired to gj,k[i](x)(ũj,k(t)). Using As-
sumption 4.3, therefore, given a time T close > T b

k , there exists a positive real number
δ∗
j,k = δ∗

k such that if |ũj,k(t)| > ũ∗
j,k for some T fault

k ≥ T b
k then ‖xi,k(t)− x̃i,k(t)‖ ≥

δ∗
j,k for some t ∈ [T fault

k , T fault
k +T close

k ]. Finally, once again since x̂(t)−x(t) can be

made as close as desired (up until T close
k ), then given that ‖xi,k(t) − x̃i,k(t)‖ ≥ δ∗

j,k ,
there exists a positive real number δj,k such that ei,k = ‖x̂i,k(t) − x̃i,k(t)‖ ≥ δj,k for
some t ∈ [T fault

k , T fault
k + T close

k ]. In summary, there exists a positive real number
ε∗∗
k such that if εk ≤ min{ε∗

k , ε
∗∗
k } and |ũj,k(t)| ≥ ũ∗

j,k for some T fault
k ≥ Tb,k then

ei,k(t) > δj,k for some t ∈ [T fault
k , T fault

k + T close
k ]. �

Remark 4.7 Note that unlike the case of full state-feedback, the fault detection filter
is initialized only after the passage of some short period of time, T b

k (which can be
chosen arbitrarily small by increasing the observer gain), to ensure that the closed-
loop state estimates have converged sufficiently close to the true closed-loop states
and thus—by setting the filter state x̃i,k at this time equal to the value of the state
estimate—ensure that the filter state is initialized sufficiently close to the true val-
ues of the state. Note also that unlike the case of full state availability, where the
filter is able to immediately detect and isolate the occurrence of fault, the lack of
measurements which induces the error in the initialization of the filter states allows
detection of only such faults that impact the states of the closed-loop system above a
certain threshold. The key is to ensure that only such faults go undetected which do
not impact undesirably on the stability of the closed-loop system. In the subsequent
section, we design an output-feedback fault detection and isolation and fault-tolerant
control structure that ensures detection and isolation of destabilizing faults.

4.4.3 Output-Feedback Fault Detection and Isolation and Fault
Tolerant Control

Having designed the state estimators and controllers and output feedback fault de-
tection and isolation filters, in this section we present an integrated output-feedback
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fault detection and isolation and fault-tolerant controller structure. To this end, con-
sider the nonlinear system of Eq. (4.1), for which the output feedback controller
of Eq. (4.12) and the filters of Eq. (4.13) have been designed for each manipulated
input under the primary configuration, k(0) = k0 under possible faults in only one
control actuator. The theorem below formalizes the integrated output-feedback fault
detection and isolation and fault-tolerant control structure.

Theorem 4.5 Let k(0) = k0 for some k0 ∈ K, x(0) ∈ Ωb,k0 , x̃i,k(T
b
i,k) = x̂(T b

i,k).
Given a positive real number dk0 there exist positive real numbers δi,k and ε∗∗∗

k such
that if εk ∈ (0, ε∗∗∗

k ] then under the switching rule

k(t) =
{

k0, 0 ≤ t < Tdetect,

q �= k0, t ≥ Tdetect, x̂(Tdetect) ∈ Ωs,q, uj,k0 /∈ uq,
(4.17)

where Tdetect is the earliest time for which ei,k > δi,k for some i ∈ {0, . . . , n}, we
have that lim supt→∞ ‖x(t)‖ ≤ dk0 .

Proof We consider the two cases:

1. ei,k(t) ≤ δi,k ∀t and
2. ei,k(t) > δi,k for some t = Tdetect.

Case 1: From Theorem 4.4, we have that given a positive real number dk ,
there exist positive real numbers ε∗∗

k and ũ∗
k such that if ‖ũj,k(t)‖ ≤ ũ∗

k ,
then lim supt→∞ x(t) = dk0 . For such choices of ε∗∗

k and ũ∗
k , we have from

Proposition 4.2 that there exists a positive real number δi,k such that if εk ∈
(0,min{ε∗

k , ε
∗∗
k } = ε∗∗∗

k ] then ei,k ≤ δi,k ⇒ ‖ũj,k(t)‖ ≤ ũ∗
k . Therefore, for the

above choices of ũ∗
k , ε∗∗∗

k , and δj,k , we have that ei,k(t) ≤ δi,k implies ‖ũi,k0(t)‖ ≤
ũ∗

i,k0
, yielding lim supt→∞ ‖x(t)‖ = dk0 .

Case 2: The switching rule of Eq. (4.17) ensures that at t = Tdetect, x̂(t) ∈ Ωs,q ,
which in turn implies that x(t) ∈ Ωb,q (Proposition 4.1). This, together with
the switching to the qth control configuration, ensures asymptotic stability of
the origin of the closed-loop system (Theorem 4.4). In either case, we get that
lim supt→∞ ‖x(t)‖ ≤ dk0 . This completes the proof of the theorem. �

The design of the output feedback fault detection and isolation filter and con-
troller reconfiguration is best understood through the following algorithm

1. Given the system of the form of Eq. (4.1), design the output feedback controller
of Eq. (4.12) that also yields estimates of the states, and estimate the output
feedback stability regions of the control configurations, Ωb,k , and the sets Ωs,k ,
defined in Proposition 4.1, and compute the values of T b

k . For an initial condi-
tion in the stability region of the k0th control configuration, initialize the state
estimator and the output feedback controller as described in Theorem 4.4.

2. After a time T b
k0

, initialize the fault detection and isolation filters of the form of

Eq. (4.13) using the values of the state estimates at time T b
k0

.
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3. Monitor the evolution of the residuals (ei,k0 ). If any of the residuals go above the
threshold, it implies that a possibly destabilizing fault has occurred.

4. Switch to a configuration q for which the closed-loop state estimates at the time
of fault detection lie in Ωs,q , where Ωs,q was defined in Proposition 4.1 (this
ensures that the states are in the output feedback stability region of the qth con-
figuration) and one which does not involve the failed control actuator.

5. Implement this control configuration to achieve closed-loop stability and fault-
tolerant control.

Remark 4.8 Note that while the above switching rule provides a sufficient condition
for practical stability, it is not a necessary condition. In other words, the value of the
residual going above the threshold does not imply that a destabilizing fault has oc-
curred. However, the value of the residual being less than the threshold does ensure
that no destabilizing fault has occurred. So while the above switching logic may
trigger a switching where simply continuing with the primary control configuration
could have preserved stability (i.e., it allows for false alarms), it is designed to pre-
clude the possibility that a destabilizing fault takes place and reconfiguration is not
executed. This, however, is not a limitation of the proposed filter, but stems simply
from the fundamental problem of differentiating between the error introduced in the
filtering system due to the presence of estimation errors and those due to the faults.

Remark 4.9 Note that while the algorithm above is written for the case of a sin-
gle fault, generalization to multiple faults, whether simultaneous or otherwise, is
straightforward. The current fault detection filter design can detect and isolate multi-
ple faults, while the reconfiguration rule can be ‘re-initialized’ after the first backup
control configuration is activated to handle subsequent faults (see the simulation
section for a demonstration).

4.5 Simulation Examples

We demonstrate the application of the proposed fault detection and isolation and
reconfiguration strategy to two chemical reactors configured to operate in series. To
this end, consider two well mixed, non-isothermal continuous stirred tank reactors
(see Fig. 4.1), where three parallel irreversible elementary exothermic reactions of

the form A
k1→ B, A

k2→ U, and A
k3→ R take place. A is the reactant species, B is

the desired product, and U and R are undesired byproducts. The feed to the first
reactor consists of pure A at a flow rate F0, molar concentration CA0 and temper-
ature T0. The output from the first reactor is fed to the second reactor along with
a fresh feed that consists of pure A at a flow rate F3, molar concentration CA03,
and temperature T03. Due to the non-isothermal nature of the reactions, jackets are
used to remove or provide heat to the reactors. Under standard modeling assump-
tions, a mathematical model of the process can be derived from material and energy
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Fig. 4.1 A schematic of two CSTRs operating in series

balances and takes the following form:

dT1

dt
= F0

V1
(T0 − T1) +

3∑

i=1

(−
Hi)

ρcp

Ri(CA1, T1) + Q1

ρcpV1
,

dCA1

dt
= F0

V1
(CA0 − CA1) −

3∑

i=1

Ri(CA1, T1),

dT2

dt
= F0

V2
(T1 − T2) + F3

V2
(T03 − T2) +

3∑

i=1

(−
Hi)

ρcp

Ri(CA2, T2) + Q2

ρcpV2
,

dCA2

dt
= F0

V2
(CA1 − CA2) + F3

V2
(CA03 − CA2) −

3∑

i=1

Ri(CA2, T2),

(4.18)
where Ri(CAj , Tj ) = ki0 exp(

−Ei

RTj
)CAj , for j = 1,2. T , CA, Q, and V denote

the temperature of the reactor, the concentration of species A, the rate of heat in-
put/removal from the reactor, and the volume of reactor, respectively, with subscript
1 denoting CSTR 1 and subscript 2 denoting CSTR 2. 
Hi, ki, Ei , i = 1,2,3,
denote the enthalpies, pre-exponential constants and activation energies of the three
reactions, respectively, cp and ρ denote the heat capacity and density of the fluid.
The values of the process parameters can be found in Table 4.1. CSTR 1, with
Q1 = 0, has three steady-states: two locally asymptotically stable and one unstable
at (T s

1 ,Cs
A1) = (388.57 K,3.59 kmol/m3). The unstable steady-state of CSTR 1

corresponds to three steady-states for CSTR 2 (with Q2 = 0), one of which is un-
stable at (T s

2 ,Cs
A2) = (429.24 K,2.55 kmol/m3).

The control objective is to stabilize the reactors at the (open-loop) unstable
steady-state. Operation at this point is typically sought to avoid high temperatures
while simultaneously achieving reasonable reactant conversion. To accomplish this
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Table 4.1 Process
parameters and steady-state
values for the chemical
reactors of Eq. (4.18)

F0 = 4.998 m3/hr F1 = 4.998 m3/hr

F3 = 30.0 m3/hr V1 = 1.0 m3

V2 = 3.0 m3 R = 8.314 kJ/kmol K

T0 = 300.0 K T03 = 300.0 K

CA0 = 4.0 kmol/m3 Cs
A03 = 3.0 kmol/m3


H1 = −5.0 × 104 kJ/kmol 
H2 = −5.2 × 104 kJ/kmol


H3 = −5.4 × 104 kJ/kmol k10 = 3.0 × 106 hr−1

k20 = 3.0 × 105 hr−1 k30 = 3.0 × 105 hr−1

E1 = 5.0 × 104 kJ/kmol E2 = 7.53 × 104 kJ/kmol

E3 = 7.53 × 104 kJ/kmol ρ = 1000.0 kg/m3

cp = 0.231 kJ/kg K T s
1 = 388.57 K

Cs
A1 = 3.59 kmol/m3 T s

2 = 429.24 K

Cs
A2 = 2.55 kmol/m3

objective in the presence of actuator failures, we consider the following manipulated
input candidates:

1. Rate of heat input into reactor one, Q1, subject to the constraint |Q1| ≤ 1.4 ×
107 kJ/hr.

2. Reactor one inlet stream temperature, T0 − T s
0 , subject to the constraint |T0 −

T s
0 | ≤ 60 K.

3. Reactor one inlet reactant concentration, CA0 − Cs
A0, subject to the constraint

|CA0 − Cs
A0| ≤ 4.0 kmol/m3.

4. Rate of heat input into reactor two, Q2, subject to the constraint |Q2| ≤ 4.2 ×
107 kJ/hr.

5. Reactor two inlet stream temperature, T03 − T s
03, subject to the constraint |T03 −

T s
03| ≤ 60 K.

6. Reactor two inlet reactant concentration, CA03 − Cs
A03, subject to the constraint

|CA03 − Cs
A03| ≤ 3.0 kmol/m3.

The above manipulated inputs can be used in various combinations to stabilize
the reactors using measurements of the reactor temperatures and reactant concentra-
tions provided by the sensors (full state-feedback) and to employ reconfiguration.
The primary control configuration (k = 1) involves four inputs consisting of the two
heating jackets and the two inlet stream concentrations (Q1, Q2, CA0, and CA03).
In the event of a partial failure in this configuration, the supervisor needs to de-
tect and isolate the fault and activate a fall-back configuration in order to maintain
closed-loop stability.

We first illustrate the application of the fault detection and isolation and fault-
tolerant control under state-feedback control. A quadratic Lyapunov function of the
form Vk = xT Pkx, where Pk is a positive-definite symmetric matrix that satisfies
the Riccati inequality AT Pk + PkA − Pkbkb

T
k Pk < 0, is used in controller design

with A and b based on the linearized system around the desired steady-state.
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1. For the primary control configuration, the manipulated inputs are scaled to give

b∗
1 =

⎡

⎢⎢
⎣

1 0 0 0
0 0.0198 0 0
0 0 1 0
0 0 0 0.0297

⎤

⎥⎥
⎦

and

P1 =

⎡

⎢⎢
⎣

1.2290 2.2195 0.0203 0.1733
2.2195 28.4462 0.1396 8.8183
0.0203 0.1396 1.6150 9.8728
0.1733 8.8183 9.8728 145.7245

⎤

⎥⎥
⎦ .

2. The fall-back control configuration involves four manipulated inputs given by
u2 = [T0 − T s

0 CA0 − Cs
A0 T03 − T s

03 CA03 − Cs
A03]′. Scaling the manipulated

input yields

b∗
2 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0.1333 0 0
0 0 2 0
0 0 0 0.2

⎤

⎥
⎥
⎦

and

P2 =

⎡

⎢⎢
⎣

1.1991 1.8730 .00051 0.0236
1.8730 12.6725 0.0093 0.4141
0.0051 0.0093 0.6150 1.9055
0.0236 0.4141 1.9055 17.9826

⎤

⎥⎥
⎦ .

The state-feedback controller of Eq. (4.2) is subsequently designed for both the
control configurations, and their stability region characterization, yielding cmax

1 and
cmax

2 equal to 7.2 and 1.9, respectively. The fault detection filters are designed using
Eq. (4.5) and the reactors as well as the filter states for the first control configura-
tion are initialized at T1(0) = 386.8 K, CA1(0) = 3.6 kmol/m3, T2(0) = 430.5 K,
CA2(0) = 2.56 kmol/m3. This initial condition is within the stability region of the
primary control configuration (V1(x) = 6.64 ≤ cmax

1 = 7.2). As shown by the solid
lines in Figs. 4.2, 4.3, 4.4 and 4.5, the controller proceeds to drive the closed-loop
trajectory toward the desired steady-state until the heating jackets fail simultane-
ously 0.1 minutes after reactor startup. As can be seen in Figs. 4.6 and 4.7, the
values of only the residuals e1,1(t) and e3,1(t) become nonzero, thereby detecting
as well as isolating the faults in the control actuators. If the supervisor does not per-
form any switching at this point, closed-loop stability is not achieved (dashed lines
in Figs. 4.2–4.5). Note that this occurs because the actuators heating/cooling jackets
have failed, but the controller still tries to use the heat supplied to/removed from the
reactors as manipulated inputs. Having identified that the faults occurred in the actu-
ators changing Q1 and Q2, the supervisor can implement the fall-back configuration
(using T0, CA0, T03, and CA03 as the manipulated inputs, k = 2) since the fall-back
configuration does not use the failed actuators. Furthermore, at the time when the
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Fig. 4.2 Evolution of reactor
one closed-loop temperature
profile under the switching
rule of Theorem 4.3 (solid
line) and in the absence of
fault-tolerant control (dashed
line) subject to simultaneous
failures in both the heating
jackets

Fig. 4.3 Evolution of reactor
two closed-loop temperature
profile under the switching
rule of Theorem 4.3 (solid
line) and in the absence of
fault-tolerant control (dashed
line) subject to simultaneous
failures in both the heating
jackets

fault is detected, the state of the closed loop system is within the stability region of
the backup control configuration (V2(x(t = 0.162)) = 0.221 < cmax

2 = 1.9). The su-
pervisor therefore activates the fall-back configuration (solid lines in Figs. 4.2–4.5)
which stabilizes the closed-loop system and achieves fault-tolerant control.

The next simulation illustrates the application of fault detection and isolation and
fault-tolerant control when not all of the process states are available for measure-
ment. In this case, the output-feedback methodology is implemented on the same
two-reactor system used for the previous simulation study with changes to the pa-
rameters F3 = 4.998 m3/hr and V2 = 0.5 m3. This changes the unstable steady state
of the second reactor to T s

2 = 433.96 K and Cs
A2 = 2.88 kmol/m3. The dynamics

for the controller are designed using the same state-feedback methodologies as in
the previous simulation study. However, the controller utilizes the state estimates to
compute a control action. The fault detection and isolation filter is designed based
on Eq. (4.13).
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Fig. 4.4 Evolution of reactor
one closed-loop reactant
concentration profile under
the switching rule of
Theorem 4.3 (solid line) and
in the absence of
fault-tolerant control (dashed
line) subject to simultaneous
failures in both the heating
jackets

Fig. 4.5 Evolution of reactor
two closed-loop reactant
concentration profile under
the switching rule of
Theorem 4.3 (solid line) and
in the absence of
fault-tolerant control (dashed
line) subject to simultaneous
failures in both the heating
jackets

The control objective is to stabilize the reactor at the open-loop unstable steady-
state using measurements of CA1 and CA2. The available manipulated inputs include
the rate of heat input into reactor one, Q1, subject to the constraint |Q1| ≤ 2.333 ×
106 kJ/hr, the rate of heat input into reactor two, Q2, subject to the constraint |Q2| ≤
1.167×106 kJ/hr, and a duplicate backup heating configuration for reactor one, Q3,
subject to the constraint |Q3| ≤ 2.333 × 106 kJ/hr.

The primary control configuration (k = 1) consists of the manipulated inputs
Q1 and Q2, while the backup configuration (k = 2) consists of manipulated inputs
Q2 and Q3. In order to implement the state-feedback Lyapunov-based controllers,
estimates of T1 and T2 are generated using a state estimator of the form of Eq. (4.12)
with Li,k = 10000, a

(1)
i,k = 5, and a

(2)
i,k = 1 for i = 1,2 and k = 1,2. The reactors are

initialized at T1(0) = 386.97 K, CA1(0) = 3.59 kmol/m3, T2(0) = 432.36 K, and
CA2(0) = 2.88 kmol/m3. The state estimator is initialized at the steady-state values
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Fig. 4.6 Evolution of
residuals e1,1 (solid line) and
e2,1 (dashed line)
corresponding to the
manipulated inputs in the first
reactor

Fig. 4.7 Evolution of
residuals e3,1 (solid line) and
e4,1 (dashed line)
corresponding to the
manipulated inputs in the
second reactor

for this system (T̃1(0) = 388.57 K, C̃A1(0) = 3.59 kmol/m3, T̃2(0) = 433.96 K,
and C̃A2(0) = 2.88 kmol/m3). The fault detection filter states are initialized with
the value of the state estimates at t = 0.0022 min ≡ T b

1 . Note that by this time the
estimates have converged sufficiently close to the true values as can be seen as the
dash-dotted lines in Fig. 4.8.

As shown by the solid line in Fig. 4.8, the controller drives the closed-loop system
to the desired steady-state (for the sake of brevity, only T1 is shown). A complete
failure occurs in Q1 early on at Tf = 0.01 min while the system is still moving
toward the desired steady-state. If the fault is not detected and no switching takes
place the value of T1 moves away from the desired operating temperature shown
as the dotted line in Fig. 4.8. However, when the fault detection and isolation filter
is utilized we can see the filter value T̂1, dashed line in Fig. 4.8, diverges from the
estimated value T̃1. This discrepancy causes the residual e1,1(t) corresponding to
Q1 to rise to the threshold value of 0.01 K (chosen to ensure that all destabilizing
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Fig. 4.8 Evolution of the
closed-loop temperature
(solid line), estimate of
temperature (dash-dotted
line), and the temperature
profile generated by the FDI
filter (dashed line) with
fault-tolerant control in place.
Evolution of the temperature
(dotted line) without
fault-tolerant control in place

Fig. 4.9 Evolution of the
residual corresponding to Q1
before switching (k = 1, solid
line), and Q3 after switching
(k = 2, dashed line). A fault
is declared when e1,1 reaches
the threshold at 0.1

faults are detected) at time t = 0.0116 min, as shown in Fig. 4.9. A fault in Q1 is
declared at this time, and the supervisor checks the value of the Lyapunov function
for k = 2. Since V2(0.0116) = 0.38 < cmax

2 = 9.4 the supervisor activates the fall-
back configuration to achieve closed-loop stability despite actuator failure in Q1.
The fault detection and isolation filter is restarted 0.0022 minutes later at T b

2 =
0.0138 min. As expected, no fault is declared at any time in Q2 as can be seen in
Fig. 4.10. In summary, the output-feedback fault detection and isolation and fault-
tolerant control system is able to detect and isolate the fault to allow reconfiguration
and drive the system to the desired steady state (solid line in Fig. 4.8).

The application and effectiveness of the proposed fault-detection and isolation
and fault-tolerant control method has been illustrated in the case of both state and
output feedback. Next, this method is applied in the presence of uncertainty and
measurement noise. To this end consider the two reactor system used in the previous
example with full-state feedback.
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Fig. 4.10 Evolution of the
residual corresponding to Q2
before switching (k = 1, solid
line), and after switching
(k = 2, dashed line). No fault
is declared

The control objective is to stabilize the reactor at the open-loop unstable steady-
state where (T s

1 ,Cs
A1) = (388.57 K, 3.59 kmol/m3) and (T s

2 ,Cs
A2) = (433.96 K,

2.88 kmol/m3). The measurements of temperature and concentration are assumed to
contain a noise of magnitude 1 K and 0.1 kmol/m3, respectively. Also, the concen-
trations of A in the inlet streams CA0 and CA03 used in the process model are 10 %
smaller than the values used in the filter equations and the controller. The available
manipulated inputs include the rate of heat input into reactor one, Q1, subject to the
constraint |Q1| ≤ 2.333×106 kJ/hr, the rate of heat input into reactor two, Q2, sub-
ject to the constraint |Q2| ≤ 1.167 × 106 kJ/hr, and a duplicate backup heating con-
figuration for reactor two, Q3, subject to the constraint |Q3| ≤ 1.167 × 106 kJ/hr.

The primary control configuration consists of the manipulated inputs Q1 and
Q2, while the backup configuration comprises manipulated inputs Q1 and Q3. As
before, quadratic Lyapunov functions of the form Vk = xT Pkx are used for con-
troller design. the controller design yields a stability region estimate with cmax

1 and
cmax

2 both approximately equal to 9.4. Note that all the information about the stabil-
ity region is completely contained in the values of cmax

1 and cmax
2 . Specifically, the

presence of the closed-loop state in the stability region can be ascertained by sim-
ply evaluating the value of the Lyapunov-function and checking against the value
of cmax.

In the first scenario, the ability to detect a fault in the presence of multiple distur-
bances and noise is demonstrated. The reactors, as well as the fault detection filter
for the first control configuration are initialized at the desired unstable steady-state.
For the sake of brevity, only the evolution of T2 and of the residuals are shown.
As can be seen in Fig. 4.11(a), the controller maintains the closed-loop trajectory
near the desired steady-state until heating jacket two (Q2) fails 40 min after reactor
startup. If a fault-detection and isolation filter is not in place, and the fault is not de-
tected, closed-loop stability is not achieved (dotted lines in Fig. 4.11(a)). The fault-
detection and isolation filter designed using the proposed methodology, however,
detects this fault when the value of residual e2,1(t) becomes greater than the thresh-
old value of 2.0 K at t = 40.79 min (see Fig. 4.11(c)) while e1,1(t) (Fig. 4.11(b))
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Fig. 4.11 (a) Temperature profile of reactor two with reconfiguration (solid line) and without re-
configuration (dotted line), (b) Q1 residual profile, and (c) Q2 residual profile (note fault detection
at time t = 40.79 min)

remains below the threshold of 2.0, allowing the detection and isolation of the fault.
While at the time of the failure (t = 40 min), the state of the closed-loop system is
within the stability region of the backup-configuration, but the time that the failure
is detected at t = 40.79 min, operation of reactor two in an open-loop fashion for
0.79 min results in the state moving out of the stability region of the backup con-
figuration (V2(40.79) = 73.17 > cmax

2 = 9.4) and stability is not guaranteed after
switching. However, it is possible that stability may still be achieved by using the
fall-back configuration. In particular, having been alerted by the fault-detection and
isolation filter of the occurrence of the fault, the supervisor activates the fall-back
configuration (with Q1 and Q3 as the manipulated inputs, solid lines in Fig. 4.11(a))
and is able to drive the system to the desired steady-state and enforce closed-loop
stability.

Detection of faults in the presence of process disturbances and noise is clearly
possible using the methodology above. In order to guarantee stability after switch-
ing, however, the disturbances acting on the system should be reduced or the con-
straints on the control action should be relaxed to enlarge the estimate of the closed-
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loop stability region. In the second scenario, the ability to detect a fault in the pres-
ence of noise and single disturbance (in contrast to two disturbances in the first sce-
nario), then switch to a fall-back configuration with guaranteed stability is demon-
strated. In this case, the measurements of temperature and concentration are again
assumed to contain noise of magnitude 1 K and 0.1 kmol/m3, respectively. Also,
the concentration of A in the inlet stream CA03 used in the process model is 10 %
smaller than the values used in the filter equations and the controller. The reactors
as well as the fault detection filter for the first control configuration are initialized
at the desired steady state. As can be seen in Fig. 4.12(a), the controller maintains
the closed-loop trajectory near the desired steady-state until heating jacket two (Q2)
fails 40 min after reactor startup. If a fault-detection filter is not in place and the fault
is not detected, closed-loop stability is not achieved (dotted lines in Fig. 4.12(a)).
The implemented fault-detection and isolation filter detects this fault when the value
of the residual e2,1(t) becomes greater than the threshold value of 2.0 at 41.33 min
(see Fig. 4.12(c)) while e1,1(t) (Fig. 4.12(b)) remains below the threshold of 2.0,
allowing the detection and isolation of the fault. In this scenario, by the time that
the fault is detected, the state of the closed-loop system resides within the stability
region of configuration two (V2 = 8.03 < cmax

2 = 9.4). Therefore, the supervisor ac-
tivates the fall-back configuration with Q1 and Q3 as the manipulated inputs (solid
lines in Fig. 4.12(a)) and the control system is able to drive the process to the desired
steady-state and enforce closed-loop stability.

Remark 4.10 In order to implement the fault detection and isolation filter on process
systems accounting for noise, disturbances, and/or output feedback considerations,
one needs to decide on a value for the detection threshold for each individual resid-
ual. Given the complexity of the closed-loop system, there is no simple and explicit
way (formula) to directly calculate this threshold; a trial-and-error procedure needs
to be followed. However, there are several things to consider when choosing an ap-
propriate threshold value. The threshold should be chosen large enough so that noisy
data, system disturbances, or discrepancies due to estimation error do not cause fre-
quent false alarms. The threshold must also be chosen small enough so that at the
time of detection the state of the system is within the stability region of a fall-back
configuration. These two considerations will give a reasonable range of threshold
values to implement on the fault detection and isolation filter.

4.6 Application to a Reverse Osmosis Desalination Process

In this section, we focus on FTC of a reverse osmosis (RO) process. First, a de-
tailed mathematical model that adequately describes the process evolution is de-
rived. A family of candidate control configurations are identified, and Lyapunov-
based feedback control laws are constructed for each configuration such that closed-
loop stability is guaranteed within an associated constrained stability region. Sub-
sequently, an FDI filter that observes the deviation of the process states from the
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Fig. 4.12 (a) Temperature profile of reactor two with reconfiguration (solid line) and without re-
configuration (dotted line), (b) Q1 residual profile, and (c) Q2 residual profile (note fault detection
at time t = 41.33 min)

expected closed-loop behavior is developed to detect and isolate actuator failures.
A supervisory switching logic is then derived, on the basis of stability regions and
FDI filter information, to orchestrate switching between the available control con-
figurations in a way that guarantees closed-loop stability in the event of actuator
faults. The effectiveness of the proposed FDIFTC structure is demonstrated through
simulation. For more results on FTC of RO processes, please refer to [102].

4.6.1 Process Description and Modeling

Figure 4.13 shows a schematic of an elementary RO desalination process. This is a
single-unit RO system with no pre-treatment or post-treatment units. Feed brackish
or seawater enter the system through the high pressure pump. This high-pressure
water then flows across an RO membrane, and low salinity product water perme-
ates. Concentrated brine then continues through a throttling valve and is discharged
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Fig. 4.13 Single membrane
unit reverse osmosis
desalination process

at atmospheric pressure. The RO plant consists of a high pressure pump, three auto-
mated valves, membrane unit, and required plumbing and tanks. The valve settings
can be manipulated in real-time based on measurement information which includes
the flow velocities.

The first principles model of this system is based on a macroscopic kinetic energy
balance. This model assumes an incompressible fluid and constant internal volume
and mass. Skin friction through piping and the membrane system are negligible
relative to hydraulic losses in the throttling valves and across the membrane. Three
ordinary differential equations that can describe such a system are derived and they
have the following form:

dv2

dt
= 1

ρV

(
Wp

v1(v2, v3, v4)
− 1

2
ev1v2

)
,

dv3

dt
= 1

ρV

(
Wp

v1(v2, v3, v4)
− 1

2
ev2v3

)
,

dv4

dt
= 1

ρV

(
Wp

v1(v2, v3, v4)
− 1

2
ev3v4

)
,

v1 = −1

2
b + 1

2

√
b2 + 4c,

b = −
(

v2 + v3 + v4 − AmKm
π

ρAp

)
,

c = AmKmWp

ρA2
p

,

(4.19)

where v1, feed velocity, is a nonlinear function of v2, v3, and v4. v2, v3, and v4
are the velocities of bypass discharge one, brine discharge, and bypass discharge
two, respectively. ρ is the fluid density, V is the internal volume, Wp is the power
delivered by the pump, Ap is the pipe cross-sectional area. ev1, ev2, and ev3 are
the frictional valve constants. Am is the membrane area, Km is a membrane mass
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Table 4.2 Process
parameters and steady-state
values for the desalination
process

ρ = 1000 kg/m3 V = 10 L

Wp = 104.4 W Ap = 0.25 in2

Am = 5 m2 Km = 9.218 × 10−9 s/m


π = 200 psi es1
v1 = 100

es1
v2 = 230 es1

v3 = 10−8

vs1
2 = 1.0547 m/s vs1

3 = 0.4625 m/s

vs1
4 = 1.07 × 10−6 m/s P s1 = 243.7 psi

es2
v1 = 150 es2

v2 = 230

es2
v3 = 300 vs2

2 = 0.7092 m/s

vs2
3 = 0.4625 m/s vs2

4 = 0.3546 m/s

P s2 = 243.7 psi

transfer coefficient, and 
π is the osmotic pressure. The potential manipulated in-
puts of the model are the valve constants (ev1, ev2, and ev3) which can be manip-
ulated in practice by an automated electric motor that partially opens or closes the
valves. The measured outputs are the velocities of the fluid in the bypass lines, and
brine velocity (v2, v3, and v4). Internal pressure, P can be related to feed velocity
by P = Wp

v1Ap
. The product velocity, v5, can be related to the system pressure by

v5 = AmKm

ρAp
(P − 
π). Table 4.2 shows the parameter values used for this example.

The control objective is to stabilize the process at the desired steady-state. There
are at least two unique configurations that will give simultaneous independent con-
trol of transmembrane pressure and brine flow-rate. Configuration one, u1, uses the
back valve and the first bypass valve (ev1, ev2) as manipulated inputs. The valves
are subjected to input constraints of the form 0 < ev1 < 200 and 130 < ev2 < 330.
Configuration two, u2, uses the back valve with the second bypass valve (ev2, ev3)
as manipulated inputs. These valves are subjected to input constraints of the form
130 < ev2 < 330 and 200 < ev3 < 400. The first control configuration, u1, will
be considered as the primary configuration. However, in the event of a failure the
plant supervisor may need to implement the fall-back configuration, u2, to main-
tain closed-loop stability. By observing the evolution of the plant the FDI filters can
detect and isolate an actuator fault. If there is a fall-back control configuration avail-
able that is able to stabilize the RO plant, then the supervisor will initiate a mode
transition to the fall-back configuration. These issues are addressed in detail in the
next section.

4.6.2 Fault-Detection and Isolation and Fault-Tolerant Control

Given the properties of the dynamic model, Eq. (4.19), it can be shown that both con-
figurations, u1 and u2, satisfy the requirements of achieving fault-detection and iso-
lation of actuator faults. This section discusses the four steps to implement FDIFTC
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on the RO process. The first step is to synthesize stabilizing feed-back controllers
for each configuration. The second step is to explicitly characterize the constrained
stability region associated with each configuration. The third step is to design FDI
filters for each manipulated input. The final step is to design the switching law
that orchestrates the reconfiguration of the control system in a way that guarantees
closed-loop stability in the event of faults in the active control configuration.

To present results in a convenient form, the model of Eq. (4.19) is written in
deviation variable form around the desired steady state. This is defined as x =
[x1 x2 x3]T where x1 = v2 − v2s , x2 = v2 − v2s , and x3 = v4 − v4s . The plant can
then be described by the following nonlinear continuous-time system:

ẋ(t) = fk(t)

(
x(t)

) + gk(t)

(
x(t)

)
uk(t),

|uk(t),i | ≤ umax
k,i ,

k(t) ∈ K = {1,2},
(4.20)

where x(t) ∈ R
3 denotes the vector of process state variables and uk(t) is a vector

of inputs where uk,i(t) ∈ [−umax
k,i , uk,i

max] ⊂ R denotes the ith constrained manip-
ulated input associated with the kth control configuration. The function k(t), which
takes values in the finite set K , represents a discrete state that indexes the vector
fields fk(·), gk(·) and the manipulated inputs uk(·). The explicit form of the vec-
tor fields can be obtained by comparing Eqs. (4.19) and (4.20) and is omitted for
brevity. For each value that k assumes in K , the process is controlled via a different
set of manipulated inputs which define a given control configuration. Switching be-
tween the two available configurations is handled by the high-level supervisor. The
control objective is to stabilize the process in the presence of actuator constraints
and possible faults. The state feedback problem where measurements of all process
states are available for all times is considered to simplify presentation of the results.

4.6.2.1 Constrained Feedback Controller Synthesis

In this step, we synthesize for each control configuration a feedback controller that
enforces asymptotic closed-loop stability in the presence of actuator constraints. To
accomplish this task, first a quadratic Lyapunov function of the form Vk = xT Pkx

is defined, where Pk is a positive-definite symmetric matrix that satisfies the Ric-
cati inequality. This Lyapunov function is used to synthesize a bounded nonlinear
feedback control law for each control-loop (see [85] and [46]) of the form

uk = −r
(
x,umax

k

)
Lḡk

Vk, (4.21)

where

r =
L∗̄

fk
Vk +

√
(L∗̄

fk
Vk)2 + (umax

k |Lḡk
Vk|)4

(|Lḡk
Vk|)2(1 +

√
1 + (umax

k |Lḡk
Vk|)2)

(4.22)
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and L∗̄
fk

Vk = Lf̄k
Vk +αVk , α > 0. The scalar function r(·) in Eqs. (4.21) and (4.22)

can be considered as a nonlinear controller gain. It can be shown that each con-
trol configuration asymptotically stabilizes the states in each mode. This controller
gain, which depends on both the size of actuator constraints, umax

k , and the partic-
ular configuration used is shaped in a way that guarantees constraint satisfaction
and asymptotic stability within a well-characterized region in the state space. The
characterization of this region is discussed in the next step.

Actuator constraints place fundamental limitations on the initial conditions from
which the closed-loop system is asymptotically stable. It is important for the con-
trol system designer to explicitly characterize these limitations by identifying, for
each control configuration, the set of initial conditions for which the constrained
closed-loop system is asymptotically stable. This is necessary for the design of an
appropriate switching policy that ensures the fault-tolerance of the closed-loop sys-
tem. The feedback controller of Eq. (4.21) that is synthesized for each configuration
provides such a characterization. Specifically, using a Lyapunov argument, one can
show that the set

Θ
(
umax

k

) = {
x ∈R

3 : L∗̄
fk

Vk ≤ umax
k |Lḡk

Vk|
}

(4.23)

describes a region in the state-space where the control action satisfies the constraints
and the time-derivative of the corresponding Lyapunov function is negative-definite
along the trajectories of the closed-loop system (see [28]). Note that the size of
the set depends on the magnitude of the constraints. The set becomes smaller as
the constraints become tighter (smaller umax

k,i ). For a given control configuration,
the above inequality can be used to estimate the associated stability region. This
can be done by constructing the largest invariant subset of Θ , which is denoted
by Ω(umax

k ). Initial conditions within the set Ω(umax
k ) ensure that the closed-loop

trajectory stays within the region defined by Θ(umax
k ), and thereby Vk continues to

decay monotonically, for all times that the kth control configuration is active (see
[45] for further discussion on this issue). An estimate of Ω(umax

k ) is obtained by
defining a composite Lyapunov function of the form VCk

= xT PCx, where PC is a
positive definite matrix, and choosing a level set of VCk

, ΩCk
, for which V̇Ck

< 0 for
all x in ΩCk

. The value cmax
k represents a level set on VCk

where V̇Ck
< 0.

The third step in implementing FDIFTC is that of designing appropriate fault-
detection filters. The filters should detect and isolate the occurrence of a fault in an
actuator by observing the behavior of the closed-loop process. The FDI filter design
for the primary control configuration takes the form:

dṽ2

dt
= 1

ρV

(
Wp

v1(ṽ2, v3, v4)
− 1

2
ev1(ṽ2, v3, v4)ṽ2

)
,

dṽ3

dt
= 1

ρV

(
Wp

v1(v2, ṽ3, v4)
− 1

2
ev2(v2, ṽ3, v4)ṽ3

)
,

r1,1 = |v2 − ṽ2|,
r1,2 = |v3 − ṽ3|,

(4.24)
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where ṽ2 and ṽ3 are the filter states for valve one and two, respectively. rk,i is the
residual associated with the ith input of the kth configuration. The filter states are
initialized at the same value as the process states (x̃(0) = x(0)) and essentially pre-
dict the evolution of the process in the absence of actuator faults. The residual as-
sociated with each manipulated input captures the difference between the predicted
evolution of the states in the absence of a fault on that actuator and the evolution of
the measured process state. If a given residual becomes nonzero, a fault is declared
on the associated input.

The final step is to design a switching logic that the plant supervisor will use
to decide what fall-back control configuration to implement given an actuator fail-
ure. The supervisor should only implement those configurations that will guarantee
closed-loop stability and do not utilize a failed actuator. This requires that the su-
pervisor only activates fall-back control configurations for which the state is within
the associated stability region at the time of fault-detection. Let the initial actuator
configuration be k(0) = 1, Tfault be the time of an actuator failure, and Tdetect be the
earliest time at which the value of r1,i (t) > δr1,i

> 0 (for the ith input where δr1,i
is

the ith detection threshold). The switching rule given by

k(t ≥ Tdetect) = 2 if x(Tdetect) ∈ ΩC2

(
umax

2

)
(4.25)

guarantees asymptotic closed-loop stability if u2 does not include any faulty actua-
tors. The switching law requires monitoring of FDI filters and process state location
with respect to fall-back stability regions.

4.6.3 Simulation Results

A simulation has been performed to demonstrate the implementation of the pro-
posed FDIFTC strategy on the RO plant of Fig. 4.13. The states in the mathematical
model given in Eq. (4.19) may not be the system parameters of interest for the op-
erator because bypass flows (v2 and v4) do not interact with the membrane unit.
Pressure and brine flow, P and v3, are useful parameters to regulate because they
directly effect the membrane unit. Hence, two steady-states have been considered,
each one of them has the same system pressure and brine flow rate (v3), but different
bypass flows (v2 and v4). The first steady-state corresponds to bypass valve two be-
ing closed. The parameters and steady-state values can be seen in Table 4.2. Under
these operating conditions the open-loop system behaves in a stable fashion at each
steady-state.

First, nonlinear feedback control under the primary configuration, u1, was con-
sidered. The bounded nonlinear controller was synthesized using Eq. (4.21) and
(4.22), with α = 0.1. The stability region for the primary configuration was esti-
mated using the Lyapunov function, V1 = xT P1x, yielding a cmax

1 = 1 (note that
this value of cmax

1 represents a sufficiently large region of the state space for this
simulation, in general much higher values can be considered). Figure 4.14 shows
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Fig. 4.14 Evolution of the closed-loop state profiles under fault-tolerant control (dashed line) and
without fault tolerant-control (solid line). FTC recovers the desired brine flow, v3

the evolution of the closed-loop state profiles starting from the initial condition
v2 = v3 = 0.1 m/s and v4 = 0.001 m/s for which V1(x(0)) = 0.0263. Evolution of
the system pressure is shown in Fig. 4.15. Since the initial state was within the sta-
bility region of the primary control configuration, V1(x(0)) = 0.0263 ≤ cmax

1 = 1,
the primary control configuration was able to stabilize the system at the desired
steady-state.

Next, a fault in the primary configuration (in ev1 specifically) at a time Tfault =
10 s was considered. In this case, the fall-back configuration, u2, was available with
valve three, ev3, as one of the manipulated inputs. The quadratic Lyapunov function
V2 = xT P2x and α = 0.1 was used to design the controller. The stability region was
also estimated using V2 yielding a cmax

2 = 1.
To demonstrate the advantage of operating under the FDIFTC structure consider

the case where no control system reconfiguration takes place after Tfault. The system
is initialized at v2 = v3 = 0.1 m/s and v4 = 0.001 m/s, and the primary control
configuration operates normally until the time Tfault = 10 s. At this time, valve one
stops operating and is partially closed, ev1 = 150. As shown by the solid lines in
Figs. 4.14 and 4.15, the states move away from the desired values, and settle at a
new, undesired, steady-state.
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Fig. 4.15 Evolution of the
closed-loop pressure profile
under fault tolerant control
(dashed line) and without
fault tolerant control (solid
line). FTC recovers the
desired operating pressure

However, by implementing the FDIFTC structure the fault can be mitigated. The
residual value associated with valve one, r1,1, becomes nonzero and reaches the de-
tection threshold, δr1,1 = 0.01, at Tdetect = 10.004 s when the fault is declared. The
residual value associated with valve two, r1,2, remains at zero, indicating that the
fault is effecting only valve one. At time Tdetect, the value of the fall-back Lyapunov
function is checked against the fall-back stability region to see if switching would
guarantee stability. The value of V2(x(Tdetect)) = 0.0119 < cmax

2 = 1, so reconfig-
uration to the fall-back controller, k = 2, does guarantee closed-loop stability. The
evolution of the system states and pressure under the proposed FDIFTC structure
can be seen in Figs. 4.14 and 4.15 (solid lines). This automated reconfiguration al-
lowed the closed-loop system to maintain pressure and brine flow at the desired
values.

4.7 Conclusions

In this chapter, we extended the results of Chap. 3 to include multi-input multi-
output nonlinear systems subject to multiple faults in the control actuators and con-
straints on the manipulated inputs. A fault-tolerant control framework integrating
fault detection, fault isolation, and feedback control configurations was discussed.
In order to illustrate the ideas, we considered the case that the state feedback is
available first and then considered the case of output feedback. Applications of the
methods to a chemical reactor and a reverse osmosis water desalination process were
presented to demonstrate the applicability and effectiveness of the methods.



Chapter 5
Safe-Parking

5.1 Introduction

In Chaps. 3 and 4, we presented fault handling methods that assume availability
of sufficient residual control effort or redundant control configurations to preserve
operation at the nominal equilibrium point. In particular, if redundant control con-
figurations are available, control-loop reconfiguration (activating an appropriately
chosen fall-back configuration) can be implemented to preserve closed-loop stabil-
ity at the nominal equilibrium point. In this chapter, we consider the scenario where
a fault results in temporary loss of stability that cannot be handled by redundant
control loops. In other words, we consider faults for which there simply does not
exist a fall-back configuration that allows continuation of operation at the nominal,
desired equilibrium point. Handling such faults requires the design of a mechanism
that achieves the transition of the plant to an appropriately chosen temporary operat-
ing point in such a way that nominal operation can be resumed safely and smoothly.
In the absence of a framework for handling such faults, ad-hoc approaches could
result in performance degradation or even result in process shutdowns.

Motivated by the above considerations, this chapter considers the problem of
control of nonlinear systems subject to input constraints and destabilizing faults in
the control actuators. Specifically, faults are considered that cannot be handled via
robust control approaches or activation of redundant control configurations, and ne-
cessitate fault-rectification. A safe-parking framework is developed to address the
problem of determining how to run the process during fault-rectification to enable
smooth resumption of nominal operation. The rest of the chapter is organized as fol-
lows: we first present, in Sect. 5.2.1, the class of processes considered, followed by a
styrene polymerization process in Sect. 5.2.2 and review a Lyapunov-based predic-
tive controller in Sect. 5.2.3. The safe-parking problem is formulated in Sect. 5.3.1,
and safe-parking designs that address stability and performance objectives are pre-
sented in Sects. 5.3.2 and 5.3.3, respectively. A chemical reactor example is used
to illustrate the details of the safe-parking framework in Sect. 5.3.4 while applica-
tion to the styrene polymerization process, subject to parametric uncertainty and
disturbances, is demonstrated in Sect. 5.4. Finally, in Sect. 5.5 we summarize our
results.

P. Mhaskar et al., Fault-Tolerant Process Control, DOI 10.1007/978-1-4471-4808-1_5,
© Springer-Verlag London 2013
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5.2 System Description

In this section, we describe the class of processes considered, present a polystyrene
process example to motivate the proposed framework, and review a Lyapunov-based
model predictive control design.

5.2.1 Process Description

We consider nonlinear process systems subject to input constraints and failures de-
scribed by

ẋ(t) = f
(
x(t)

) + G
(
x(t)

)
uσ (t), uσ (·) ∈ U, (5.1)

where x ∈ R
n denotes the vector of state variables, uσ (t) ∈ R

m denotes the vector
of constrained manipulated inputs, taking values in a nonempty convex subset U of
R

m, where U = {u ∈R
m : umin ≤ u ≤ umax}, where umin, umax ∈ R

m denote the con-
straints on the manipulated inputs, and unorm > 0 is such that |u| ≤ unorm =⇒ u ∈ U,
f (0) = 0 and σ ∈ {1,2} is a discrete variable that indexes the fault-free and faulty
operation (σ = 1 denotes fault-free operation and σ = 2 denotes faulty opera-
tion). The vector function f (x) and the matrix G(x) = [g1(x) . . . gm(x)] where
gi(x) ∈ R

n, i = 1, . . . ,m are assumed to be sufficiently smooth on their domains
of definition. Throughout the chapter, we assume that for any u ∈ U the solution of
the system of Eq. (5.1) exists and is continuous for all t , and we focus on the state
feedback problem where x(t) is assumed to be available for all t .

5.2.2 Motivating Example

To motivate the safe-parking framework and to demonstrate an application of our
results, we introduce in this section a polystyrene polymerization process. To this
end, consider the following model for a polystyrene polymerization process given
in [69] (also studied in, e.g., [136] and [93]).

ĊI = (FiCIf − FtCI )

Vpr

− kdCI ,

ĊM = (FmCMf − FtCM)

Vpr

− kpCMCP ,

Ṫ = Ft(Tf − T )

Vpr

+ (−�H)

ρcp

kpCMCP − hA

ρcpV
(T − Tc),

Ṫc = Fc(Tcf − Tc)

Vc

+ hA

ρcCpcVc

(T − Tc),
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Table 5.1 Styrene polymerization parameter values and units

Parameter Value Unit Parameter Value Unit

Fi 0.3 L/s Fm 1.05 L/s

Fs 1.275 L/s Ft 2.625 L/s

Fc 1.31 L/s CIf,n 0.5888 kmol/m3

CI 0.067 kmol/m3 CMf,n 9.975 kmol/m3

CM 3.968 kmol/m3 Tf,n 306.71 K

T 303.55 K Tcf,n 294.85 K

Tc 297.95 K Ad 5.95 × 1014 s−1

At 1.25 × 1010 s−1 Ap 1.06 × 108 kmol/(m3 s)

Ed/R 14.897 × 103 K Et/R 8.43 × 102 K

Ep/R 3.557 × 103 K f 0.6

�H −1.67 × 104 kJ/kmol ρcp 360 kJ/(m3 K)

hA 700 J/(K s) ρccpc 966.3 kJ/(m3 K)

Vpr 3.0 m3 Vc 3.312 m3

CP =
[

2f kdCI

kt

] 1
2

,

kd = Ade
−Ed
RT ,

kp = Ape
−Ep
RT ,

kt = Ate
−Et
RT ,

(5.2)

where CI , CIf , CM , CMf refer to the concentrations of the initiator and monomer
in the reactor and inlet stream, respectively, T and Tf refer to the reactor and inlet
stream temperatures, and Tc and Tcf refer to the coolant jacket and inlet tempera-
tures, respectively. The manipulated inputs are the monomer (Fm) and coolant (Fc)
flow rates. As is the practice with the operation of the polystyrene polymerization
process [69], the solvent flow rate is also changed in proportion to the monomer
flow rate. The values of the process parameters are given in Table 5.1.

The control objective is to stabilize the reactor at the equilibrium point (CI =
0.067 kmol/m3, CM = 3.97 kmol/m3, T = 303.55 K, Tc = 297.95 K), corre-
sponding to the nominal values of the manipulated inputs of Fc = 1.31 L/s and
Fm = 1.05 L/s. The manipulated inputs are constrained as 0 ≤ Fm ≤ 31.05 L/s and
0 ≤ Fc ≤ 31 L/s.

Consider the scenario where the valve manipulating the coolant flow rate fails
and reverts to the fail-safe position (fully open). With the coolant flow rate set to
the maximum, there simply does not exist an admissible value of the functioning
manipulated input Fm such that the nominal equilibrium point remains an equilib-
rium point for the process, precluding the possibility of continued operation at the
nominal equilibrium point. The key problem is to determine how to operate the pro-
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cess under failure condition so that upon fault-recovery, nominal operation can be
resumed efficiently. We will demonstrate the application as well as investigate the
robustness of the proposed safe-parking framework via the styrene polymerization
process in Sect. 5.4, while illustrating the details of the proposed framework using
an illustrative chemical reactor in Sect. 5.3.4.

5.2.3 Lyapunov-Based Model Predictive Control

In this section, we briefly review a recent result on the design of a Lyapunov-based
predictive controller that possesses an explicitly characterized set of initial condi-
tions from where it is guaranteed to be feasible, and hence stabilizing in the presence
of input constraints. Consider the system of Eq. (5.1), for σ(t) = 1 (i.e., under no
fault, where all the manipulated inputs can be changed via a feedback law), under
the predictive controller [108] of the form:

u1(·) = argmin
{
J
(
x, t, u(·))|u(·) ∈ S

}
, (5.3)

s.t. ẋ = f (x) + G(x)u(t), (5.4)

V̇
(
x(τ)

) ≤ −ε∗ ∀τ ∈ [t, t + Δ) if V
(
x(t)

)
> δ′, (5.5)

V
(
x(τ)

) ≤ δ′ ∀τ ∈ [t, t + Δ) if V
(
x(t)

) ≤ δ′, (5.6)

where S = S(t, T ) is the family of piecewise continuous functions (functions con-
tinuous from the right), with period Δ, mapping [t, t + T ] into U , and T is the
horizon. Equation (5.4) is the nonlinear model describing the time evolution of the
state x, V is a control Lyapunov function and δ′, ε∗ are parameters to be determined.
A control u(·) in S is characterized by the sequence {u[j ]} where u[j ] := u(jΔ) and
satisfies u(t + τ) = u[j ] for all τ ∈ [t + jΔ, t + (j + 1)Δ). The performance index
is given by

J
(
x, t, u(·)) =

∫ t+T

t

[∥∥xu(s;x, t)
∥∥

Qw
+ ∥∥u(s)

∥∥
Rw

]
ds, (5.7)

where Qw is a positive semi-definite symmetric matrix and Rw is a strictly positive
definite symmetric matrix. xu(s;x, t) denotes the solution of Eq. (5.1), due to con-
trol u, with initial state x at time t . The minimizing control u[1] ∈ S is then applied
to the plant over the interval [t, t + Δ) and the procedure is repeated indefinitely.

The stability properties of the predictive controller are characterized using a
bounded controller of the form (e.g., see [46, 85]):

u(x) = −k(x)(LGV )′(x), (5.8)

k(x) =
Lf V (x) +

√
(Lf V (x))2 + (umax‖(LGV )′(x)‖)4

‖(LGV )′(x)‖2[1 + √
1 + (umax‖(LGV )′(x)‖)2] , (5.9)
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when LGV (x) 	= 0 and k(x) = 0 when LGV (x) = 0 where LGV (x) = [Lg1V (x) . . .

LgmV (x)]′ and gi(x) is the ith column of the matrix G(x). For the controller of
Eq. (5.8)–(5.9), one can show, using a standard Lyapunov argument, that whenever
the closed-loop state, x, evolves within the region described by the set

Π = {
x ∈R

n : Lf V (x) ≤ unorm
∥∥(LGV )′(x)

∥∥}
, (5.10)

where unorm > 0 is such that ‖u‖ ≤ unorm implies u ∈ U, then the control law
satisfies the input constraints, and the time-derivative of the Lyapunov function is
negative-definite. An estimate of the stability region can be constructed using a level
set of V , i.e.,

Ω = {
x ∈ R

n : V (x) ≤ cmax}, (5.11)

where cmax > 0 is the largest number for which Ω ⊆ Π . Closed-loop stability and
feasibility properties of the closed-loop system under the Lyapunov-based predictive
controller are inherited from the bounded controller under discrete implementation
and are formalized in Theorem 1 below (for a proof, see [108]).

Theorem 5.1 [108] Consider the constrained system of Eq. (5.1) under the MPC
law of Eqs. (5.3)–(5.7). Then, given any d ≥ 0, x0 ∈ Ω , where Ω was defined in
Eq. (5.11), there exist positive real numbers δ′, ε∗, and Δ∗, such that if Δ ∈ (0,Δ∗],
then the optimization problem of Eqs. (5.3)–(5.7) is feasible for all times, x(t) ∈ Ω

for all t ≥ 0, and lim supt→∞ ‖x(t)‖ ≤ d .

Remark 5.1 The predictive controller formulation of Eqs. (5.3)–(5.7) requires that
the value of the Lyapunov function decrease during the first step only. Practical sta-
bility of the closed-loop system is achieved since only the first move of the set of
calculated moves is implemented and the problem is re-solved at the next time step.
If the optimization problem is initially feasible and continues to be feasible, then ev-
ery control move that is implemented enforces a decay in the value of the Lyapunov
function, leading to stability. Furthermore, the constraint of Eq. (5.5) is guaranteed
to be satisfied since the control action computed by the bounded controller design
provides a feasible initial guess to the optimization problem. Finally, since the state
is initialized in Ω , which is a level set of V , the closed-loop system evolves so as to
stay within Ω , thereby guaranteeing feasibility at future times. The key idea in the
predictive control design is to identify stability constraints that can (a) be shown to
be feasible and (b) upon being feasible can guarantee stability. Note that the model
predictive controller of Eqs. (5.3)–(5.7) is only used to illustrate the safe-parking
framework, and any other controller that provides an explicit characterization of the
closed-loop stability region can be used within the proposed framework.

5.3 Safe-Parking of Nonlinear Process Systems

We first formalize the problem in Sect. 5.3.1, and present a safe-parking algorithm
focusing on closed-loop stability in Sect. 5.3.2. We then incorporate performance
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considerations in the safe-parking framework in Sect. 5.3.3, where we also sum-
marize results on implementation of the safe-parking approach subject to limited
availability of measurements and uncertainty, as well as application to chemical
processes described by distributed parameter systems.

5.3.1 Problem Definition

We consider faults where one of the control actuators fails and reverts to the fail-
safe value. Examples of fail-safe positions include fully open for a valve controlling
a coolant flow rate, fully closed for a valve controlling a steam flow, etc. (gener-
alization to the case where multiple actuators fail and get ‘stuck’ at non-nominal
values is discussed in Remark 5.4). Specifically, we characterize the fault occur-
ring w.l.o.g., in the first control actuator at a time T fault, subsequently rectified at
a time T recovery (i.e., for t ≤ T fault and t > T recovery, σ(t) = 1, and σ(t) = 2 for
T fault < t ≤ T recovery), as u1

2(t) = u1
failed, with u1

min ≤ u1
failed ≤ u1

max, where ui de-
notes the ith component of a vector u, for all T fault < t ≤ T recovery, leaving only
ui

2, i = 2, . . . ,m available for feedback control. With u1
2(t) = u1

failed, there ex-
ists a (possibly connected) manifold of equilibrium points where the process can
be stabilized, which we denote as the candidate safe-park set Xc := {xc ∈ R

n :
f (xc) + g1(xc)u

1
failed + ∑m

i=2 gi(xc)u
i
2 = 0, ui

min ≤ ui
2 ≤ ui

max, i = 2, . . . ,m}. The
safe-park candidates therefore represent equilibrium points that the system can be
stabilized at, subject to the failed actuator, and with the other manipulated inputs
within the allowable ranges. Note that if u1

failed 	= 0, then it may happen that 0 /∈ Xc,
i.e., if the failed actuator is frozen at a non-nominal value, then it is possible that
the process simply cannot be stabilized at the nominal equilibrium point using the
functioning control actuators. In other words, if one of the manipulated inputs fails
and reverts to a fail-safe position, it may happen that no admissible combination of
the functioning inputs exists for which the nominal equilibrium point continues to
be an equilibrium point. Maintaining the functioning actuators at the nominal values
may drive the process state to a point from where it may not be possible to resume
nominal operation upon fault-recovery, or even if possible, may not be ‘optimal’. We
define the safe-parking problem as the one of identifying safe-park points xs ∈ Xc

that allow efficient resumption of nominal operation upon fault-recovery.

5.3.2 Safe-Parking to Resume Nominal Operation

In this section, we present a safe-parking framework and a controller that executes
safe-parking as well as resumption of nominal operation. To account for the pres-
ence of constraints on the manipulated inputs, the key requirements for a safe-park
point include that the process state at the time of the failure resides in the stability
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region for the safe-park point (so the process can be driven to the candidate safe-
park point), and that the safe-park point should reside in the stability region under
nominal operation (so the process can be returned to nominal operation). These re-
quirements are formalized in Theorem 5.2 below. To this end, consider the system
of Eq. (5.1) for which the first control actuator fails at a time T fault and is reacti-
vated at time T recovery, and for which the stability region under nominal operation,
denoted by Ωn, has been characterized using the predictive controller formulation
of Eqs. (5.3)–(5.7). Similarly, for a candidate safe-park point xc, we denote Ωc as
the stability region (computed a priori) under the predictive controller of Eqs. (5.3)–
(5.7), and u2,xc as the control law designed to stabilize at the candidate safe-park
with u1,n being the nominal control law.

Theorem 5.2 Consider the constrained system of Eq. (5.1) under the MPC law of
Eqs. (5.3)–(5.7). If x(T fault) ∈ Ωc and Ωc ⊂ Ωn, then the switching rule

u(t) =

⎧
⎪⎨

⎪⎩

u1,n, 0 ≤ t < T fault,

u2,xc , T fault ≤ t < T recovery,

u1,n, T recovery ≤ t

(5.12)

guarantees that x(t) ∈ Ωn ∀t ≥ 0 and lim supt→∞ ‖x(t)‖ ≤ d .

Proof We consider the two possible cases: first, if no fault occurs (T fault =
T recovery = ∞), and second, if a fault occurs at a time T fault < ∞ and is recovered
at a time T fault ≤ T recovery < ∞.

Case 1: The absence of a fault implies u(t) = u1,n ∀t ≥ 0. Since x(0) ∈ Ωn, and
the nominal control configuration is implemented for all times, we have from The-
orem 5.1 that x(t) ∈ Ωn ∀t ≥ 0 and lim supt→∞ ‖x(t)‖ ≤ d .

Case 2: At time T fault, the control law designed to stabilize the process at xc is ac-
tivated and implemented till T recovery. Since x(T fault) ∈ Ωc ⊂ Ωn, we have that
x(t) ∈ Ωn ∀T fault ≤ t ≤ T recovery. At a time T recovery, we therefore also have that
x(T recovery) ∈ Ωn. Subsequently, as with Case 1, the nominal control configura-
tion is implemented for all time thereafter, we have that x(t) ∈ Ωn ∀t ≥ T recovery.
In conclusion, we have that x(t) ∈ Ωn ∀t ≥ 0 and lim supt→∞ ‖x(t)‖ ≤ d . This
completes the proof of Theorem 5.2. �

Remark 5.2 The statement of Theorem 5.2 requires that for a safe-park point, the
stability (and invariant) region be such that the process state at the time of the failure
resides in the stability region for the safe-park point so the process can be driven to
the point of safe-park with the depleted control action available. Note that this char-
acterization can be done off-line. Specifically, for a fail-safe position of an actuator,
the entire set of candidate safe-park points Xc can be computed off-line, and also,
for any given point in this set, the stability region subject to depleted control action
can also be computed off-line (as is done for the nominal equilibrium point). The
statement of the theorem also requires that the stability (and invariant) region for a
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safe-park point be completely contained in the stability region under nominal oper-
ation, so the state trajectory always stays within the stability region under nominal
operation. This requirement can be readily relaxed to only require that the state at
the time of the failure resides in the stability region of the safe-park point. This will
allow for the state trajectory to leave the stability region under nominal operation,
and it may happen that at the time of fault-recovery, the closed-loop state trajectory
does not reside in the stability region under nominal operation. However, to preserve
closed-loop stability upon fault-recovery, the control law utilizing depleted control
action may be continued up until the time that the state trajectory enters the stabil-
ity region under nominal operation (this is guaranteed to happen because xc ∈ Ωn),
after which the control law utilizing all the manipulated inputs can be implemented
to achieve closed-loop stability.

Remark 5.3 The key motivation, from a resumption of nominal operation stand
point, for safe-parking is as follows: In the absence of a safe-park framework, if
the control law still tries to utilize the available control action to preserve opera-
tion at the nominal operating point, the active actuators may saturate and drive the
process state to a point starting from where resumption of nominal operation, even
after fault-recovery, may not be achievable. Note that if continued operation at nom-
inal operating point was possible either via the depleted control configuration or via
control-loop reconfiguration (as developed in Chaps. 3 and 4), then reconfiguration-
based fault-tolerant control approaches could be utilized. However, Theorem 5.2
addresses the problem where a fault occurs that precludes operation at nominal op-
erating point, and provides an appropriately characterized safe-park point where the
process can be temporarily ‘parked’ until nominal operation can be resumed.

Remark 5.4 Note that the assumption that the failed actuator reverts to the fail-safe
position allows enumerating the possible fault situations for any given set of ma-
nipulated inputs a-priori to determine the safe-park candidates and then pick the
appropriate safe-park point online (the condition xs ∈ Ωn can be verified off-line;
however, x(T fault) ∈ Ωxs can only be verified online, upon fault-occurrence; for fur-
ther discussion on this point, see Remark 5.5). The assumption reflects the practice
wherein actuators have a built-in fail-safe position that they revert to upon failure.
The fail-safe positions are typically determined to minimize possibilities of excur-
sions to dangerous conditions such as high temperatures and pressures (setting a
coolant valve to fail to a fully open position, while setting a steam valve to fail
to a shut position). In the event that the actuators experience a mechanical fail-
ure and are not able to revert to a fail-safe position, one can work with simplified
(albeit without guarantees) estimates of the stability regions that can be generated
much faster (and therefore computed online, upon fault-occurrence), to implement
the proposed safe-parking mechanism. Specifically, instead of stability regions es-
timated by constructing invariant sets Ω within the set of initial conditions Π for
which the Lyapunov-function can be made to decay, one can use the set Π (which
is much easier to compute) to implement the proposed safe-park mechanism (see
Sect. 5.4 for a demonstration). Note also that while the statement of Theorem 5.2
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Fig. 5.1 A schematic illustrating the safe-parking framework for a process with two actuators.
Ω denotes the stability region under nominal operation. Safe-parking candidates lie on the equi-
librium curve corresponding to the fail-safe value of the first actuator, and admissible values of the
second actuator. Arbitrarily choosing a safe-park candidate (e.g., safe-parking candidate 2) does
not guarantee resumption of nominal operation upon fault-recovery, while choosing safe-park can-
didate 1 guarantees resumption of nominal operation upon fault-recovery

considers faults in one of the actuators, generalizations to multiple faults (simulta-
neous or otherwise) are possible, albeit involving the expected increase in off-line
computational cost (due to the necessity of determining the safe-park points for all
combinations of the faults in the control actuators).

Remark 5.5 The presence of constraints on the manipulated inputs limits the set
of initial conditions from where the process can be driven to a desired equilibrium
point. Control designs that allow an explicit characterization of their stability re-
gions, and their use in deciding the safe-park point is therefore critical in determin-
ing the viability of a candidate safe-park point. Note also that while the schematic
in Fig. 5.1 shows two dimensional representations of the stability region to enable
visual verification of the presence of a candidate safe-park point in the stability re-
gion, the visual representation is not necessary. Specifically, the presence of a point
in the stability region can be verified by evaluating the Lyapunov function value.
Note that while the proposed safe-parking framework assumes a priori knowledge
of the fail-safe positions of the actuators, it does not require a priori knowledge of
the fault and recovery times, and only provides appropriate switching logic that is
executed when and if a fault takes place and is subsequently rectified.

Remark 5.6 While the results in the present chapter are presented using the
Lyapunov-based MPC of Eqs. (5.3)–(5.7), the use of this controller is not critical to
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the implementation of the proposed safe-parking design. Any other control law that
provides an explicit characterization of the stability region subject to constraints can
be used instead to implement the proposed safe-parking framework. With respect to
the design of the Lyapunov-based predictive controller of Eqs. (5.3)–(5.7), we also
note that while the use of a control Lyapunov function provides a better estimate
of the stability region, even a quadratic Lyapunov function (chosen such that it is
locally a control Lyapunov function) can be used to generate (possibly conservative)
estimates of the stability region. For further discussion on this issue, see [109].

Remark 5.7 Implicit in the implementation of the proposed safe-parking mechanism
is the assumption of the presence of fault-detection and isolation filters such as those
presented in Chaps. 3 and 4. The proposed safe-parking framework determines the
necessary course of action after a fault has been detected and isolated and can be
readily integrated with any of the existing fault-detection and isolation structures.

5.3.3 Incorporating Performance Considerations in Safe-Parking

In the previous section, the requirements for an equilibrium point to be denoted
a safe-park point was provided. A large set of equilibrium points may qualify as
safe-park points and satisfy the requirements in Theorem 5.2. In this section, we
introduce performance considerations in the eventual choice of the ‘optimal’ safe-
park point. To this end, consider again the system of Eq. (5.1) for which the first
control actuator fails at a time T fault and is reactivated at time T recovery, and for
which the set of safe-park points, xs ∈ Xs , have been characterized. For a given safe-
park point (one that satisfies the requirements of Theorem 5.2), define the followings
costs:

Jtr =
∫ T fault+Ts

T fault

[∥∥xu(s;x, t)
∥∥

Q2
tr

+ ∥∥u(s)
∥∥

R2
tr

]
ds, (5.13)

where Qtr and Rtr are positive definite matrices, the subscript tr signifying that this
value captures the ‘cost’ associated with transitioning to the safe-park point, with
Ts being the time required to go to a sufficiently close neighborhood of the safe-
park point. This cost can be estimated online, upon fault-occurrence, by running
fast simulations of the closed-loop system under the auxiliary controller of Eq. (5.8)
(for further discussion on this issue, see Remark 5.8). Similarly, define

Js = fs(xs, us), (5.14)

where fs(xs, us) is an appropriately defined cost function and the subscript s de-
notes that this value captures the ‘cost’ associated with operating at the safe-park
point. Unlike the cost in Eq. (5.13), this cost does not involve an integration over
time, and can be determined off-line. The framework allows for inclusion of (pos-
sibly nonlinear) costs associated with further unit operations that may have to be
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performed to recover useful products from the process operating at the safe-park
point (for further discussion on this issue, see Remark 5.9). Finally, define

Jr =
∫ Tr

0

[∥∥xu(s;x, t)
∥∥

Q2
r
+ ∥∥u(s)

∥∥
R2

r

]
ds, (5.15)

where Qr and Rr are positive definite matrices, with the subscript r signifying that
this value captures the ‘cost’ associated with resuming nominal operation, with Tr

being the time required to return to a sufficiently close neighborhood of the nominal
operating point, and the integration performed with the safe-park point as the initial
condition. Again, this cost can be estimated off-line by running simulations of the
closed-loop system under the auxiliary controller of Eq. (5.8). Consider now the
safe-park points xs,i ∈ Xs, i = 1, . . . ,Ns where Ns is the number of safe-park points
to be evaluated for optimality and let Jxs,i

= Jtr,i + Js,i + Jr,i , i = 1, . . . ,Ns .

Theorem 5.3 Consider the constrained system of Eq. (5.1) under the MPC law of
Eqs. (5.3)–(5.7) and the switching rule

u(t) =

⎧
⎪⎨

⎪⎩

u1,n, 0 ≤ t < T fault,

u2,xs,o , T fault ≤ t < T recovery,

u1,n, T recovery ≤ t,

(5.16)

where o ∈ {1, . . . ,Ns} = argmini=1,Ns
Jxs,i

guarantees that x(t) ∈ Ωn ∀t ≥ 0 and
lim supt→∞ ‖x(t)‖ ≤ d .

Proof Any xs,o chosen according to Theorem 5.3 satisfies the requirements of Theo-
rem 5.2. x(t) ∈ Ωn ∀t ≥ 0 and lim supt→∞ ‖x(t)‖ ≤ d follow from Theorem 5.2. �

Remark 5.8 Note that the cost of transitioning to the safe-park point Jtr can be
estimated using the auxiliary controller of Eq. (5.8) since the auxiliary controller
achieves decay of the same Lyapunov function as that used in the predictive con-
troller design. This cost has to be estimated online because it depends on the process
state at which the failure occurs (in the special case that faults occur after the process
has been stabilized at the nominal operating points, this cost can also be computed
off-line; see Sect. 5.4 for a demonstration). In contrast, the cost incurred in resum-
ing nominal operation from the safe-park point can be computed off-line. Such a
computation can be done by running simulations under the predictive controller to
get a more accurate estimate of the ‘cost’. Additional terms in Jtr and Js can be
readily included to cater to the specific process under consideration. Furthermore,
the contribution of the cost Js to the total cost can be appropriately scaled utilizing
reasonable estimates of fault-rectification times. Specifically, if the malfunctioned
actuator is known to require significant time to be rectified, then this cost can be
‘weighed’ more to recognize the fact that the process will deliver substantial amount
of product corresponding to the safe-park point under consideration. If, on the other
hand, it is known that the fault can be rectified soon, then the cost involving the
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resumption to nominal operation Jr , or alternatively, the time required to resume
nominal operation can be given increased weight. Finally, if a significant number
of safe-park points are to be evaluated for optimality (leading to possible compu-
tational issues), one safe-park point can be initially chosen to ensure stability and
subsequently revised once the optimality computations are complete.

Remark 5.9 For the ‘product’ being generated during safe-parking, further unit op-
erations may be required, ranging from simple separations to further processing,
all of which may have associated costs. Possible loss of revenue during safe-park
can be incorporated in the estimate Js . If the process is connected to further units
downstream, then increased utility costs associated with downstream processing can
also be accounted for in this cost. Finally, we note that the costs outlined here are
only some of the representative costs, and the framework allows for incorporating
costs/revenues that may be specific to the process under consideration.

Remark 5.10 Note that while the set of safe-parking points (satisfying the require-
ments of Theorem 5.2) could be a continuous manifold of equilibrium points, safe-
parking points to be evaluated for optimality can be picked by discretizing the man-
ifold. The minimization in determining the optimal safe-park point can then be car-
ried out by a simple procedure of comparison of the cost estimates associated with
the finite number of safe-parking candidates. Choosing a finer discretization in eval-
uating the safe-parking candidates could possibly yield improved closed-loop costs,
however, the approximations involved in the cost estimation (the cost of going to
and returning from the safe-parking points are only approximately estimated us-
ing the auxiliary controller of Eq. (5.8)) could offset the benefits out of the finer
discretization. Therefore, a balance has to be struck in picking the number of safe-
parking points that will be evaluated for optimality that trades off the increased
computational complexity, the approximations in cost estimation, and the improved
performance derived out of the finer discretization.

Remark 5.11 Note that the proposed approach, with appropriate modifications, can
also be used to handle faults in situations where not all states are available as mea-
surements and in the presence on uncertainty. The key is to design the safe-park
points (and their associated stability regions) accounting for uncertainty, and to only
make the switching decision after the state estimator has converged (see [95] for de-
tails). In processes requiring a description by distributed parameter system models
(e.g., diffusion–reaction processes), the approach can be implemented using con-
trollers designed using reduced order models that ensure stability of the infinite
dimensional system (see [95] for details).

Remark 5.12 The proposed approach can also be used to handle faults in a network
of multiple units characterized by complex interconnections such as parallel and
recycle streams. Furthermore, instead of ‘safe-parking’ the entire network, ‘subsec-
tions’ of the network can be identified (for faults in specific units) such that the rest
of the network can continue nominal operation even during the fault (see [40] for
details and simulation results).
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Table 5.2 Chemical reactor
parameters and steady-state
values

V = 0.1 m3

R = 8.314 kJ/(kmol K)

CA0s = 0.73 kmol/m3

T0s = 310.0 K

Qs = 10.0 kJ/s

�H = −4.78 × 104 kJ/kmol

k0 = 72 × 109 min−1

E = 8.314 × 104 kJ/kmol

cp = 0.239 kJ/(kg K)

ρ = 1000.0 kg/m3

F = 100 × 10−3 m3/min

TRs = 393 K

CAs = 0.447 kmol/m3

5.3.4 Illustrative Simulation Example

We illustrate in this section the proposed safe-park framework via a continuous
stirred tank reactor (CSTR). To this end, consider a CSTR where an irreversible,

first-order exothermic reaction of the form A
k→ B takes place. The mathematical

model for the process takes the form:

ĊA = F

V
(CA0 − CA) − k0e

−E
RTR CA,

ṪR = F

V
(T0 − TR) + (−�H)

ρcp

k0e
−E
RTR CA + Q

ρcpV
,

(5.17)

where CA denotes the concentration of the species A, TR denotes the temperature
of the reactor, Q is the heat added to/removed from the reactor, V is the volume of
the reactor, k0, E, �H are the pre-exponential constant, the activation energy, and
the enthalpy of the reaction, and cp and ρ are the heat capacity and fluid density in
the reactor. The values of all process parameters can be found in Table 5.2.

The control objective is to stabilize the reactor at the unstable equilibrium
point (Cs

A, T s
R) = (0.447 kmol/m3,393 K). Manipulated variables are the rate of

heat input/removal, Q, and change in inlet concentration of species A, �CA0 =
CA0 − CA0s , with constraints: |Q| ≤ 32 kJ/s and 0 ≤ CA0 ≤ 2 kmol/m3. The heat
input/removal Q consists of heating stream Q1 and cooling stream Q2 with the
constraints on each as, 0 kJ/s ≤ Q1 ≤ 32 kJ/s and −32 kJ/s ≤ Q2 ≤ 0 kJ/s.
The nominal operating point (N ) corresponds to steady state values of the inputs
CA0 = 0.73 kmol/m3 and Q = 10 kJ/s.

For stabilizing the process at the nominal equilibrium point, the Lyapunov based
MPC of Sect. 5.2.3 is designed using a quadratic Lyapunov function of the form
V = xT Px with P = [ 4.32 0

0 0.004

]
. The stability region is estimated and denoted by

Ω in Fig. 5.2. Note that here stability region (Ω) is not a complete ellipse because of
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Fig. 5.2 Evolution of closed–loop states for the CSTR example. Dashed line (- -) indicates the
case when a safe-park point S1 is arbitrarily chosen (resulting in the inability to resume nominal
operation upon fault-recovery) while the solid line (—) indicates the case when S2 is chosen ac-
cording to Theorem 5.2, guaranteeing resumption of nominal operation upon fault-recovery. The
dash-dotted lines show the closed-loop response when optimality considerations are included in
the choice of the safe-park point and S3 is chosen

naturally invariant boundary of positive concentrations. We consider the problem of
designing a safe-parking framework to handle temporary faults in the heating valve
(resulting in a fail-safe value of Q1 = 0). The nominal operating point corresponds
to Qs = 10 kJ/s, and no value of the functioning manipulated inputs −32 kJ/s ≤
Q2 < 0 kJ/s and 0 ≤ CA0 ≤ 2 kmol/m3 exists such that the nominal equilibrium
point continues to be an equilibrium point of the process subject to the fault. For
Q2 = −14.7 kJ/s, CA0 = 1.33 kmol/m3 and Q2 = −4 kJ/s, CA0 = 1.27 kmol/m3,
the corresponding equilibrium points are S1 = (1.05 kmol/m3,396 K) and S2 =
(0.93 kmol/m3,393 K), which we denote as safe-park candidates. For each of these
safe-park candidates, we also design Lyapunov based MPC of Sect. 5.2.3 using

P = [ 12.56 0
0 0.049

]
for S1 and P = [ 12.32 0

0 0.026

]
for S2. The matrices in the objective

function (Eq. (5.7)), are chosen as Qw = [ 72.72 0
0 1

]
and Rw = [ 640 0

0 0.67

]
. Prediction

and control horizons of 0.10 min and 0.02 min, respectively, are used in imple-
menting the predictive controller. The discretized version of the stability constraint
of the form V (x(t + Δ)) ≤ 0.99V (x(t)) is incorporated in the optimization prob-
lem.

Consider a scenario where the process starts from O = (1.25 kmol/m3, 385 K)

and the predictive controller drives the process toward the nominal operating point,
N = (0.447 kmol/m3, 393 K). At t = 0.16 min, when the process state is at
F = (0.9975 kmol/m3, 394.02 K), the heating valve fails, and reverts to the fail-
safe position (completely shut), resulting in Q1 = 0 kJ/s. This restricts the heat
input/removal to −32 kJ/s ≤ Q < 0 kJ/s instead of −32 kJ/s ≤ Q < 32 kJ/s. We
first consider the case where the safe-park candidate S1 is arbitrarily chosen as the
safe-park point, and the process is stabilized at S1 until the fault is rectified. At
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Fig. 5.3 Evolution of the closed-loop state (a)–(b) and input (c)–(d) profiles for the CSTR exam-
ple. Dashed lines (- -) indicate the case when a safe-park point S1 is arbitrarily chosen (resulting
in the inability to resume nominal operation upon fault-recovery) while the solid lines (—) show
the case when S2 is chosen according to Theorem 5.2, guaranteeing resumption of nominal oper-
ation upon fault-recovery. The dash-dotted lines show the closed-loop response when optimality
considerations are included in the choice of the safe-park point and S3 is chosen

t = 8.0 min, the fault is rectified, however, we see that even after fault-recovery,
nominal operation cannot be resumed (see dashed lines in Fig. 5.2). This happens
because S1 lies outside the stability region under nominal operation. In contrast,
if S2 is chosen as the safe-park point, we see that the process can be successfully
driven to S2 with limited control action as well as it can be successfully driven back
to N after fault-recovery (see solid lines in Fig. 5.2). The state and input profiles are
shown in Fig. 5.3. In summary, the simulation scenario illustrates the necessity to
account for the presence of input constraints (characterized via the stability region)
in the choice of the safe-park point.

Next, we demonstrate the incorporation of performance criterion in selecting the
safe-park point. To this end, we consider another point S3 (corresponding to Q2 =
−14.6 kJ/s, CA0 = 1.53 kmol/m3), which is also inside the stability region of N ,
and is thereby also a viable safe-park point (i.e., either of S2 or S3 can be chosen
as safe-park point from stability perspective). Using the approach in Sect. 5.3.3,
the cost associated with operating at the two safe-park points is calculated utilizing
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Table 5.3 Safe-parking cost estimates for the illustrative CSTR example of Sect. 5.3.4

CA T Objective function

Estimated using the bounded controller Closed–loop process cost

S2 0.9346 393 2406 4072

S3 0.8107 391 1209 1105

f (xs, us) = ‖xu
ss‖Q2

s
+‖uss‖R2

s
and the weighting matrices in Eqs. (5.13)–(5.15) are

chosen as Qtr = Qr = Qs = [ 727 0
0 10

]
and Rtr = Rr = Rs = [ 0.64 0

0 0.04

]
. At the time

of the failure, the auxiliary controller of Eq. (5.8) is used to estimate Jtr and Jr ,
which are divided by Ts and Tr , to determine Jsafe-parking = Jtr

Ts
+ Js + Jr

Tr
. Note that

the computation of Jsafe-parking does not require prior information about the time of
fault recovery. We also note that while in this illustrative simulation example, we
only use two safe-park points for the purpose of illustration, the cost comparison
can be carried out over a larger number of safe-park points (see the styrene process
in Sect. 5.4). Table 5.3 shows the objective function value for the safe-park points
calculated using the auxiliary controller. As can be seen from the table, the cost
estimate for S3 is significantly lower than for S2, indicating that S3 is a better choice
for safe-parking the process. Subsequently, if S3 is chosen as the safe-park point,
it yields a closed-loop cost significantly lower than the closed-loop cost achieved
when safe-parking the process at S2 (the corresponding closed-loop state and input
profiles are shown by the dash-dotted lines in Figs. 5.2–5.3).

5.4 Application to the Styrene Polymerization Process

In this section, we implement the proposed safe-parking framework on the styrene
polymerization process described in Sect. 5.2.2. To evaluate the robustness of the
proposed framework, we consider errors in the values of the parameters Ap , hA,
and Vc of magnitude 1 %, 2 %, and 10 %, respectively, as well as sinusoidal dis-
turbances in the initiator flowrate Fi of magnitude 10 % around the nominal values.
The control objective is to stabilize the process at the nominal equilibrium point
(CI = 0.067 kmol/m3, CM = 3.968 kmol/m3, T = 303.55 K, Tc = 297.95 K),
corresponding to the nominal values of the manipulated inputs of Fc = 1.31 L/s
and Fm = 1.05 L/s, while handling a fault in the valve manipulating the coolant
flow rate.

For nominal operation, the predictive controller of Eqs. (5.3)–(5.7) is designed
using a quadratic Lyapunov function of the form V (x) = x′Px with

P =

⎡

⎢⎢
⎣

3662.2 89.43 −18.59 −25.02
89.430 2.953 −0.628 −0.845

−18.592 −0.628 0.682 −0.036
−25.023 −0.845 −0.036 2.002

⎤

⎥⎥
⎦
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Table 5.4 Safe-parking cost estimates for the styrene polymerization process of Sect. 5.4

CI CM T Tc Objective function

Bounded controller Closed-loop process cost

N 0.0673 3.9685 303.55 297.95 −11.272 –

S1 0.4298 1.165 297.36 294.91 −2.079 −2.144

S2 0.2068 2.8708 299.25 294.95 −8.282 –

S3 0.1362 3.4256 300.35 294.97 −9.407 –

S4 0.1015 3.6998 301.14 294.99 −9.692 –

S5 0.0809 3.8631 301.74 295.01 −9.734 −9.732

S6 0.0673 3.9716 302.22 295.02 −9.655 –

S7 0.0576 4.0488 302.62 295.03 −9.530 –

S8 0.0503 4.1065 302.95 295.03 −9.383 –

S9 0.0447 4.1513 303.22 295.04 −9.227 –

S10 0.0402 4.1871 303.46 295.04 −9.069 –

S11 0.0365 4.2163 303.67 295.05 −8.912 –

In Sect. 5.3.4, we demonstrated the implementation of the safe-parking framework
where the fault occurs before the process is stabilized at the nominal equilibrium
point. In this section, we consider faults that occur after the process has been sta-
bilized at the nominal equilibrium point. Determination of the safe-park points and
evaluation of the cost estimates for safe-park points can therefore be carried out
off-line. The nominal operating point for the process is a stable operating point,
and several safe-park points satisfy the requirements of Theorem 5.2 (guarantee-
ing resumption of nominal operation upon fault-recovery). Ten safe-park points
are chosen to be evaluated for optimality and using the approach in Sect. 5.3.3,
the cost associated with each safe-park point is estimated using the cost func-
tion, f (xs, us) = ‖uss‖R2

s
− qsMused, where the first term represents the cost of

the utilities, while the second term represents the value of the product formed
(via computing the rate of consumption of the monomer). With such a formula-
tion of the steady-state cost, the safe-park points where the rate of product forma-

tion is more are preferred. The weighting factors are chosen as Rs = [ 0.25 0
0 0

]
and

qs = 0.5. The weighting matrices in Eq. (5.13)–(5.15) are chosen as diagonal ma-
trices with the elements on the diagonal as Qtr = Qr = diag(1000, 1000, 10, 10)

and Rtr = Rr = diag(1, 1).
For the safe-park points, the costs are tabulated in Table 5.4. Note that the cost

is the minimum for the nominal operating point, and out of the ten safe-park points,
point S5 (CI = 0.081 kmol/m3, CM = 3.863 kmol/m3, T = 301.75 K, Tc =
295.01 K) yields the lowest cost and is therefore picked as the optimal safe-park
point. Closed-loop simulations are shown for the case where a fault occurs at 33.3
minutes and is rectified at 300 minutes. For the sake of comparison, closed-loop
simulations are also shown when safe-park point S1 (CI = 0.430 kmol/m3, CM =
1.165 kmol/m3, T = 297.37 K, Tc = 294.91 K) is picked. The equilibrium
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Fig. 5.4 Evolution of the state profiles for the styrene polymerization process for an arbitrarily
chosen safe-park point (dashed lines) and under the proposed safe-park mechanism (solid lines).
Fault occurs at 33.3 min and is rectified at 300 min. The nominal equilibrium point N and the
safe-park points S5 and S1 are denoted by the markers �, ◦, and +, respectively

Fig. 5.5 The input profiles for the styrene polymerization process for an arbitrarily chosen safe–
park point (dashed lines) and under the proposed safe-park mechanism (solid lines). Fault occurs
at 33.3 min, resulting in the coolant flow rate being stuck at the maximum value during this time,
and is rectified at 300 min

points N , S5, and S1 are denoted in Figs. 5.4–5.5 by the markers �, ◦, and +, respec-
tively. The closed-loop trajectories and input profiles when the safe-park points S5
and S1 are picked are shown by solid and dashed lines, respectively. The closed-loop
costs for the two points is also shown in Table 5.4. Once again, even in the presence
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of uncertainty and disturbances, the closed-loop costs follow the same trend as the
estimates, yielding a low cost for the ‘optimal’ safe park point and demonstrating
the robustness of the proposed safe-parking framework.

5.5 Conclusions

In this chapter, we considered the problem of control of nonlinear process systems
subject to input constraints and faults in the control actuators. A safe-parking frame-
work was developed for handling faults that preclude the possibility of continued
operation at the nominal equilibrium point. First, Lyapunov-based model predictive
controllers that allow for an explicit characterization of the stability region sub-
ject to constraints on the manipulated input were designed. The stability region
was utilized in selecting ‘safe-park’ points from the safe-park candidates (equilib-
rium points subject to failed actuators). Specifically, a candidate parking point was
termed a safe-park point if (i) the process state at the time of failure resides in the
stability region of the safe-park candidate (subject to depleted control action) and
(ii) the safe-park candidate resides within the stability region of the nominal con-
trol configuration. Performance considerations, such as ease of transition from and
to the safe-park point and cost of running the process at the safe-park point, were
then quantified and utilized in choosing the optimal safe-park point. The proposed
framework was illustrated using a chemical reactor example and its robustness with
respect to parametric uncertainty and disturbances was demonstrated via a styrene
polymerization process.



Chapter 6
Fault Diagnosis and Robust Safe-Parking

6.1 Introduction

In Chap. 5, we presented a safe-parking framework to handle faults with the as-
sumption that an appropriate fault-detection and isolation mechanism was in place,
which allowed the choice of the safe-parking mechanism that utilized the remaining
functioning actuators. Moreover, we assumed that the actuator reverts to a known
fail-safe position which determines the ‘size’ of the fault vector. In this chapter,
we relax the assumption on the knowledge of the location and magnitude of the
fault, necessitating appropriate fault detection and isolation and diagnosis mech-
anisms. For the existing model-based FDI approaches, FDI is often achieved by
generating residuals through the system model and input/output data. Under fault-
free conditions, the magnitudes of residuals are small. A fault is reported when a
residual breaches the user-specified threshold. Due to the presence of plant–model
mismatch, residuals that are sensitive to faults but insensitive to uncertainty and dis-
turbances are desired. Relatively less attention has been paid to the problem of fault
diagnosis (not only isolating the fault but also estimating its magnitude), in part due
to the nature of the fault-tolerant control techniques described in Chaps. 3–5, that
rely on inherent robustness, existence of backup control configurations or actuators
reverting to known fail-safe positions.

Motivated by the above considerations, in this chapter we consider the problem
of designing an integrated fault diagnosis and safe-parking framework to deal with
actuator faults in nonlinear systems. The remainder of the chapter is organized as
follows. In Sect. 6.2, the class of systems considered and a control design used to
illustrate the safe-parking framework are presented. A model-based fault diagnosis
design is first developed under state feedback control in Sect. 6.3.1 and then gen-
eralized to handle state estimation errors in Sect. 6.3.2. In the proposed methodol-
ogy, the fault information is obtained by estimating the outputs of the actuators and
comparing them with the corresponding prescribed control inputs. In Sect. 6.4, the
safe-parking framework developed previously (to handle the case where the failed
actuator reverts to a known fixed value) for fault-tolerant control is extended to han-
dle the case where an actuator seizes at an arbitrary value. The estimate of the failed
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actuator position provided by the fault diagnosis design is used to choose a safe-
park point at which the system operates temporarily during fault repair, from those
generated off-line for a series of design values of the failed actuator position. The
discrepancy between the actual value of the failed actuator position and the cor-
responding design value is handled through the robustness of the control design.
The efficacy of the integrated fault diagnosis and safe-parking framework is demon-
strated through a chemical reactor example in Sect. 6.5. Finally, Sect. 6.6 presents
some concluding remarks.

6.2 Preliminaries

In this section, we present the system description and a robust control design, which
will be used to illustrate the safe-parking framework in Sect. 6.5.

6.2.1 System Description

Consider a nonlinear system subject to actuator faults with the following state-space
description:

ẋ = f
(
x, θ(t)

) + G(x)
[
u(t) + ũ(t)

]
,

u(t) ∈ U , θ(t) ∈ Θ,

u(t) + ũ(t) = u(tk) + ũ(tk) ∈ U for all t ∈ [tk, tk+1), k = 0, . . . ,∞,

(6.1)

where x = [x1, . . . , xn]T ∈ R
n is the vector of state variables, u = [u1, . . . , um]T ∈

R
m is the vector of prescribed control inputs given by the control law and ũ =

[ũ1, . . . , ũm]T ∈ R
m is the unknown fault vector for the actuators, with the ac-

tual control input u + ũ implemented to the plant taking values in a nonempty
compact convex set U := {u ∈ R

m : umin ≤ u ≤ umax} that contains 0, where
umin = [u1,min, . . . , um,min]T ∈ R

m and umax = [u1,max, . . . , um,max]T ∈ R
m de-

note the lower and upper bounds (constraints) on the vector of manipulated vari-
ables, respectively, and θ = [θ1, . . . , θq ]T ∈ R

q is the vector of (possibly time-
varying) uncertain variables taking values in a nonempty compact convex set Θ :=
{θ ∈ R

q : θmin ≤ θ ≤ θmax} that contains 0, where θmin = [θ1,min, . . . , θq,min]T ∈
R

q and θmax = [θ1,max, . . . , θq,max]T ∈ R
q denote the lower and upper bounds

on the vector of uncertain variables, respectively. It is assumed that the func-
tions f (x, θ) = [fi(x, θ)]n×1 and G(x) = [gij (x)]n×m are locally Lipschitz in
their arguments, and f (x, θ) is differentiable with respect to θ (i = 1, . . . , n;
j = 1, . . . ,m). The origin is an equilibrium point of the nominal system (the sys-
tem of Eq. (6.1) with ũ(t) ≡ 0 and θ(t) ≡ 0) for u = 0, i.e., f (0,0) = 0. The
control input is prescribed at discrete times tk := kΔ, k = 0, . . . ,∞, where Δ

denotes the period during which the control action is kept constant. The faults
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considered are such that an actuator seizes at an arbitrary position. It is assumed
that the corrupted input to the plant is constant during each time interval, that
is, u(t) + ũ(t) = u(tk) + ũ(tk) for all t ∈ [tk, tk+1). Note that −umin (or −θmin)
does not have to be equal to umax (or θmax), and we have that ‖u‖ ≤ ub and
‖θ‖ ≤ θb, where ub = ‖[max{−u1,min, u1,max}, . . . ,max{−um,min, um,max}]T‖ and
θb = ‖[max{−θ1,min, θ1,max}, . . . ,max{−θq,min, θq,max}]T‖.

6.2.2 Lyapunov-Based Predictive Control

To illustrate the safe-parking framework for FTC, the Lyapunov-based predictive
controller described in Sect. 2.8 is adapted under Assumption 6.1 below and used
as an example of a robust control design with a well characterized stability region.

Assumption 6.1 For the system of Eq. (6.1), fi(x, θ), i = 1, . . . , n, is monotonic
with respect to θj , j = 1, . . . , q , for any x ∈R

n and θl ∈ [θl,min, θl,max], l = 1, . . . , q

and l �= j .

Remark 6.1 In many practical systems, the form of f (x, θ) is known and the un-
certain variables affect f (x, θ) monotonically, as required in Assumption 6.1. For
example, in the Arrhenius law of reaction rates, the parametric uncertainty includes
errors in the pre-exponential constant and the activation energy. The reaction rate
is monotonically increasing with respect to the pre-exponential constant, while it is
monotonically decreasing with respect to the activation energy. Other uncertainty
includes the enthalpy of reaction and the heat transfer coefficient. In addition to the
parametric uncertainty, θ also models the unknown disturbances entering the sys-
tem. Typical disturbances include errors in the temperature and concentration of a
feed stream, or the temperature of a cooling stream, which also affect the value of
f (x, θ) monotonically. While we work with Assumption 6.1 to simplify the presen-
tation, it should be noted that a more general assumption can be stated as follows:
There exist known functions fl(x) and fu(x) such that fl(x) ≤ f (x, θ) ≤ fu(x) for
all θ ∈ Θ .

Consider the system of Eq. (6.1) under fault-free conditions, for which a control
Lyapunov function V (x) exists and Assumption 6.1 holds. Let Π denote a set of
states where V̇ (x(t)) can be made negative by using the allowable values of the
constrained input:

Π =
{
x ∈ R

n : sup
θ∈Θ

Lf V (x, θ) + inf
u∈U

LGV (x)u ≤ −εV (x)
}
, (6.2)

where LGV (x) = [Lg1V (x), . . . ,LgmV (x)], with gi being the ith column of G, and
ε is a positive real number. It is assumed that Lf V (x, θ) and LGV (x) are locally
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Lipschitz. To estimate the upper bound on Lf V (x, θ), let θi,l = [θi,1,l , . . . , θi,q,l]
and

θi,u = [θi,1,u, . . . , θi,q,u], i = 1, . . . , n, where θi,j,l =
⎧
⎨

⎩

θj,max if dfi

dθj
≤ 0,

θj,min if dfi

dθj
> 0

and

θi,j,u =
⎧
⎨

⎩

θj,min if dfi

dθj
≤ 0,

θj,max if dfi

dθj
> 0,

j = 1, . . . , q.

Note that θi,l and θi,u are the instances of θ that make fi(x, θ) take its minimum
and maximum values for given x, respectively. Let

θ̃i =
{

θi,l,
∂V
∂xi

≤ 0,

θi,u,
∂V
∂xi

> 0,
i = 1, . . . , n.

It follows that
∑n

i=1
∂V
∂xi

fi(x, θ̃i ) is an estimate of the upper bound on Lf V (x, θ).
Note that infu∈U LGV (x)u can be computed in a similar way. The robust controller
of [95] possesses a stability region, an estimate of which is given by

{
x ∈ Π ′ : V (x) ≤ c

}
, (6.3)

where Π ′ is an estimate of Π by replacing supθ∈Θ Lf V (x, θ) with
∑n

i=1
∂V
∂xi

×
fi(x, θ̃i) and c is a positive (preferably the largest possible) constant.

The Lyapunov-based predictive controller adapted from [95] takes the following
form:

u∗(·) = argmin
{
J
(
x, t, u(·))∣∣u(·) ∈ S

}
, (6.4a)

s.t. ẋ = f (x,0) + G(x)u, (6.4b)

LGV
(
x(t)

)
u(t) ≤ −

n∑

i=1

∂V

∂xi

fi(x, θ̃i ) − εV
(
x(t)

)
, (6.4c)

x(τ) ∈ Π ′ for all τ ∈ [t, t + Δ), (6.4d)

where S = S(t, T ) is a family of piecewise continuous functions (functions con-
tinuous from the right), with T denoting the control horizon, mapping [t, t + T )

into U . A control u(·) in S is characterized by the sequence {u(tk)} and satisfies
u(τ) = u(tk) for all τ ∈ [tk, tk + Δ). The objective function is given by

J
(
x, t, u(·)) =

∫ t+T

t

[∥∥xu(s;x, t)
∥∥2

Qw
+ ∥∥u(s)

∥∥2
Rw

]
ds, (6.5)

where Qw is a positive semi-definite symmetric matrix, Rw is a strictly positive
definite symmetric matrix, and xu(s;x, t) denotes the solution of Eq. (6.4b), due
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to control u(·), with the initial state x at time t . In accordance with the receding
horizon implementation, the minimizing control u∗(·) is then applied to the system
over [t, t + Δ) and the same procedure is repeated at the next instant.

The stability property of the control law of Eqs. (6.4a)–(6.4d) can be formu-
lated as follows: Given any positive real number d , there exists a positive real num-
ber Δ∗ such that if Δ ∈ (0,Δ∗] and x(0) ∈ Ω , then x(t) ∈ Ω for all t ≥ 0 and
lim supt→∞ ‖x(t)‖ ≤ d (see [95] for further details on the control design). Finally,
note that while the control law of Eqs. (6.4a)–(6.4d) is used as an example of a con-
trol design for illustration, the proposed results hold under any control law (which
we refer to as RC(x)) satisfying Assumption 6.2 below.

Assumption 6.2 For the system of Eq. (6.1) under fault-free conditions, there exist
a robust control law RC(x) and a set Ω ⊆ R

n such that given any positive real
number d , there exist positive real numbers Δ∗ and Tf such that if Δ ∈ (0,Δ∗] and
x(0) ∈ Ω , then x(t) ∈ Ω for all t ≥ 0 and ‖x(t)‖ ≤ d for all t ≥ Tf .

6.3 Fault Detection and Diagnosis Structure

In this section, we first propose a fault diagnosis design under state feedback control
in Sect. 6.3.1, and then generalize it to handle state estimation errors in Sect. 6.3.2.

6.3.1 Fault Diagnosis Under State Feedback Control

In this section, under the assumption of full state feedback, we design an FDI
scheme using constant thresholds and then for a special case, devise an FDD
scheme using time-varying thresholds. With the assumption that m ≤ n, the sys-
tem of Eq. (6.1) can be decomposed into two coupled subsystems that we de-
note as a diagnosable subsystem and the remainder of the original system, with
states denoted by xd ∈ R

m and xd̄ ∈ R
n−m, respectively. Accordingly, we have

f (x, θ) = [fd(x, θ)T, fd̄ (x, θ)T]T and G(x) = [Gd(x)T,Gd̄(x)T]T. The system of
Eq. (6.1) can then be written as follows:

ẋd = fd(x, θ) + Gd(x)
[
u(t) + ũ(t)

]
, (6.6a)

ẋd̄ = fd̄(x, θ) + Gd̄(x)
[
u(t) + ũ(t)

]
. (6.6b)

The key idea of the proposed methodology is to estimate the outputs of the ac-
tuators by using the system model and state measurements, and then compare them
with the corresponding prescribed control inputs to construct input-based residuals.
To this end, consider the time interval [tk, tk+1), with tk+1 being the current time.
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Integrating both sides of Eq. (6.6a) over [tk, tk+1) gives the following equation:

xd(tk+1) = xd(tk) +
∫ tk+1

tk

{
fd(x, θ) + Gd(x)

[
u(t) + ũ(t)

]}
dt

= xd(tk) + Fd,k + Gd,k

[
u(tk) + ũ(tk)

]
, (6.7)

where Fd,k = ∫ tk+1
tk

fd(x, θ) dt and Gd,k = ∫ tk+1
tk

Gd(x) dt . Let xd,i , fd,i , Fd,i,k ,
and Gd,i,k denote the ith element or row of xd , fd , Fd,k , and Gd,k , respectively, for
i = 1, . . . ,m. We say that the subsystem of Eq. (6.6a) is diagnosable if it satisfies
Assumption 6.3 below.

Assumption 6.3 For the system of Eq. (6.1), m ≤ n and Gd,k is invertible for k =
0, . . . ,∞.

Remark 6.2 To illustrate the idea behind Assumption 6.3, consider a scalar system
described by ẋ = x +u1 +2u2, where x,u1, u2 ∈ R. For this system, it is impossible
to differentiate between faults in u1 and u2 because the number of state variables
is eclipsed by that of the input variables (i.e., m > n). Alternatively, it is possible
that inputs affect states in the same manner through different channels. For example,
consider the system described by ẋ = x + [ 1 1

2 2

]
u, where x,u ∈ R

2. For this case,
the definition of a new variable v = u1 + u2 leads to an equivalent system of the
form ẋ = x +[1,2]Tv. Although the number of state variables is equal to that of the
input variables in the original system, any fault in u1 or u2 can be seen as a fault
in v, thereby impeding fault isolation. A simple example of a diagnosable system is
given by ẋ = x + [ 1 2

2 1

]
u, where x,u ∈ R

2. In this example, u2 affects x1 more than
u1, and u1 affects x2 more than u2, thereby satisfying the condition that the inputs
affect the state dynamics uniquely through different channels.

Remark 6.3 In [115], the isolation of faults relies on the assumption that there exists
a state variable such that its evolution is directly and uniquely affected by the poten-
tial fault. Specifically, it requires that for every input uj , j = 1, . . . ,m, there exist a
state xi , i ∈ {1, . . . , n} such that with xi as an output, the relative degree of xi with
respect to uj and only with respect to uj is equal to 1. In other words, gi,j (x) �= 0
for all x ∈ R

n and gi,l(x) ≡ 0 for l = 1, . . . ,m and l �= j . In this case, Gd(x) is a di-
agonal matrix with non-zero elements on its diagonal. Therefore, Gd,k is invertible.
Assumption 6.3, however, only requires that Gd,k be invertible, and Gd(x) could be
a non-diagonal matrix.

Let [G−1
d,k]i denote the ith row of G−1

d,k and [G−1
d,k]ij denote the j th element of

[G−1
d,k]i . It follows from Eq. (6.7) that

ui(tk) + ũi (tk) = [
G−1

d,k

]
i

[
xd(tk+1) − xd(tk) − Fd,k

]
. (6.8)

For i = 1, . . . ,m, define the residuals as

ri,k = ∣∣[G−1
d,k

]
i

[
xd(tk+1) − xd(tk) − F̄d,k

] − ui(tk)
∣∣, (6.9)
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where F̄d,k = ∫ tk+1
tk

fd(x,0) dt . Note that [G−1
d,k]i[xd(tk+1) − xd(tk) − F̄d,k] is the

estimate of the actual input to the plant by using the nominal system model. Substi-
tuting ui(tk) in Eq. (6.8) into Eq. (6.9) gives ri,k = |[G−1

d,k]i (Fd,k − F̄d,k) + ũi (tk)|.
The FDI scheme using constant thresholds is formalized in Theorem 6.1 below.

Theorem 6.1 Consider the system of Eq. (6.1), for which Assumption 6.3 holds. As-
sume that ‖[G−1

d,k]T
i ‖ ≤ Kg,i for k = 0, . . . ,∞, where Kg,i is a positive real number.

Then, there exists δi > 0 such that if ri,k > δi , then ũi (tk) �= 0.

Proof Since fd(x, θ) is locally Lipschitz in θ , there exists Lf > 0 such that
∥∥fd(x, θ) − fd(x,0)

∥∥ ≤ Lf θb. (6.10)

If ũi (tk) = 0, it follows that

ri,k = ∣∣[G−1
d,k

]
i
(Fd,k − F̄d,k)

∣∣ =
∣∣∣∣
[
G−1

d,k

]
i

∫ tk+1

tk

[
fd(x, θ) − fd(x,0)

]
dt

∣∣∣∣

≤ Kg,iLf θbΔ. (6.11)

It means that for δi = Kg,iLf θbΔ, if ũi (tk) = 0, then ri,k ≤ δi . Therefore, ri,k > δi

implies that ũi (tk) �= 0. This concludes the proof of Theorem 6.1. �

Remark 6.4 Theorem 6.1 shows that there exists a uniform bound on the absolute
error between the estimate of the input to the plant and the prescribed control input
for each manipulated variable. This result establishes a sufficient condition for FDI:
If the bound is breached, then an actuator fault must have taken place. The design
allows for ‘small’ faults, which are indistinguishable from the effect of the system
uncertainty, to go undetected; however, such faults, since they essentially have the
same effect as the system uncertainty, may be handled by the robustness of the
control design.

We then consider a case where Assumption 6.1 is satisfied and derive time-
varying bounds (in the discrete-time domain) on the outputs of the actuators for
FDD. To this end, we first derive bounds on Fd,k . Define θd,i,l and θd,i,u in the same
way as θi,l and θi,u were defined in Sect. 6.2.2, for i = 1, . . . ,m. It follows that

∫ tk+1

tk

fd,i(x, θd,i,l) dt ≤ Fd,i,k ≤
∫ tk+1

tk

fd,i(x, θd,i,u) dt. (6.12)

Let fd,i,k,l = ∫ tk+1
tk

fd,i(x, θd,i,l) dt and fd,i,k,u = ∫ tk+1
tk

fd,i(x, θd,i,u) dt denote the
lower and upper bounds on Fd,i,k , respectively. The FDD scheme using time-
varying thresholds is formalized in Theorem 6.2 below.

Theorem 6.2 Consider the system of Eq. (6.1), for which Assumptions 6.1 and
6.3 hold. Then, there exist ui,k,l and ui,k,u such that if ui(tk) /∈ [ui,k,l , ui,k,u], then
ũi (tk) �= 0, and ui(tk) + ũi (tk) ∈ [ui,k,l , ui,k,u].
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Proof It follows from Eq. (6.8) that

ui(tk) + ũi (tk) = [
G−1

d,k

]
i

[
xd(tk+1) − xd(tk)

] −
m∑

j=1

[
G−1

d,k

]
ij
Fd,j,k

≥ [
G−1

d,k

]
i

[
xd(tk+1) − xd(tk)

] −
m∑

j=1

[
G−1

d,k

]
ij
Fd,j,k,l , (6.13)

where

Fd,j,k,l =
{

fd,j,k,l if [G−1
d,k]ij ≤ 0,

fd,j,k,u if [G−1
d,k]ij > 0,

j = 1, . . . ,m.

Let Fd,k,l = [Fd,1,k,l , . . . ,Fd,m,k,l]T. Then, we have that

ui(tk) + ũi (tk) ≥ [
G−1

d,k

]
i

[
xd(tk+1) − xd(tk) − Fd,k,l

]
. (6.14)

Similarly, we have that

ui(tk) + ũi (tk) ≤ [
G−1

d,k

]
i

[
xd(tk+1) − xd(tk) − Fd,k,u

]
, (6.15)

where Fd,k,u = [Fd,1,k,u, . . . ,Fd,m,k,u]T, with

Fd,j,k,u =
{

fd,j,k,u if [G−1
d,k]ij ≤ 0,

fd,j,k,l if [G−1
d,k]ij > 0,

j = 1, . . . ,m.

Let ui,k,l = [G−1
d,k]i[xd(tk+1) − xd(tk) − Fd,k,l] and ui,k,u = [G−1

d,k]i[xd(tk+1) −
xd(tk)−Fd,k,u]. Thus, ui,k,l ≤ ui(tk)+ ũi (tk) ≤ ui,k,u, and ui,k,l ≤ ui(tk) ≤ ui,k,u if
ũi (tk) = 0. Therefore, ui(tk) /∈ [ui,k,l , ui,k,u] implies that ũi (tk) �= 0. This concludes
the proof of Theorem 6.2. �

Remark 6.5 In Theorem 6.2, the monotonic property of the right-hand side of the
state equation with respect to the uncertain variables is utilized to generate time-
varying bounds on the actual input to the plant. In the absence of faults, the actual
input is equal to its prescribed value, which should reside within the set dictated
by the estimated bounds on the actual input, for each manipulated variable. If the
prescribed value breaches these bounds for some manipulated variable, the only
way that it can happen is when the actual input is no longer equal to the prescribed
value, resulting in the detection and isolation of a fault. Note that while faults that do
not lead to ui(tk) /∈ [ui,k,l , ui,k,u] cannot be detected, they may be handled through
the robustness of the control design. Note also that beyond FDI, the fault diagnosis
scheme provides an estimate of the output of the failed actuator.

The FDD procedure for the case where an actuator seizes at an arbitrary position
is summarized as follows:
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1. At time tk+1, k = 0, . . . ,∞, compute ui,k,l and ui,k,u, i = 1, . . . ,m.
2. Let

rb,i,k :=
{

1 if ui(tk) /∈ [ui,k,l , ui,k,u],
0 otherwise,

(6.16)

where rb,i,k denotes a binary residual for ui . If nd nonzero residuals for ui

are monitored consecutively, where nd is a design parameter for FDD, report
a fault at time td = tk+1 for the actuator that corresponds to ui and choose
ūi,l = max

⋃
j∈{k+1−nd ,...,k}{ui,j,l} ∪ {ui,min} as the lower bound and ūi,u =

min
⋃

j∈{k+1−nd ,...,k}{ui,j,u} ∪ {ui,max} as the upper bound on the failed actua-
tor position, respectively. Otherwise, repeat step 1.

6.3.2 Handling State Estimation Errors for Fault Diagnosis

In many practical situations, it is not economical to measure all the system states, or
in some situations, only part of the system states are inherently measurable, which
necessitates output feedback control by using state estimators. In this section, we
generalize the fault diagnosis scheme of Sect. 6.3.1 to handle state estimation errors,
with the focus on the problem of FDD (and not the state estimator design). To this
end, we assume the existence of a state estimator (observer or predictor) which can
provide the state estimate, denoted by x̂(t) at time t , that is accurate enough (at least
for some time even after an actuator fault takes place) to perform fault diagnosis (see
Remark 6.6 for examples of such observers). This is formalized in Assumption 6.4
below [115].

Assumption 6.4 For the system of Eq. (6.1), there exists a state estimator such that,
given positive real numbers e and ũb , there exists te > 0 such that if ‖ũ(t)‖ ≤ ũb ,
then ‖x(t)− x̂(t)‖ ≤ e for all t ∈ [te,∞). Furthermore, there exists Td > 0 such that
if ‖ũ(t)‖ > ũb for some tf > te , then ‖x(t) − x̂(t)‖ ≤ e for all t ∈ [te, tf + Td ].

The key idea of the FDD design for the case with state estimation errors is to
use the state estimate and the bounds on uncertainty and the estimation errors to
determine the bounds on u(tk) + ũ(tk) as in Sect. 6.3.1, which is formalized in The-
orem 6.3 below. To this end, let F̂d,k = ∫ tk+1

tk
fd(x̂, θ(t)) dt , Ĝd,k = ∫ tk+1

tk
Gd(x̂) dt ,

F̂d,i,k denote the ith element of F̂d,k , and Ĝd,i,k denote the ith row of Ĝd,k . The
lower and upper bounds on F̂d,i,k , denoted by f̂d,i,k,l and f̂d,i,k,u, can be computed
in the same way as fd,i,k,l and fd,i,k,u in Sect. 6.3.1 by using x̂ instead of x.

Theorem 6.3 Consider the system of Eq. (6.1) subject to state estimation errors, for
which Assumptions 6.1 and 6.4 hold. Assume that m ≤ n and Ĝd,k is invertible for
k = 0, . . . ,∞. Then, for [tk, tk+1] ⊆ [te, tf +Td ], there exist γ = [γ1, . . . , γm]T > 0,
ûi,k,l(γ ), and ûi,k,u(γ ), such that if ui(tk) /∈ [ûi,k,l(γ ), ûi,k,u(γ )], then ũi (tk) �= 0,
and ui(tk) + ũi (tk) ∈ [ûi,k,l(γ ), ûi,k,u(γ )].
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Proof It follows from Eq. (6.7) that Fd,i,k = xd,i(tk+1) − xd,i(tk) − Gd,i,k[u(tk) +
ũ(tk)]. Similarly, define F̃d,i,k = x̂d,i (tk+1)− x̂d,i (tk)− Ĝd,i,k[u(tk)+ ũ(tk)], where
x̂d,i denotes the estimate of xd,i . Since ‖x(t) − x̂(t)‖ ≤ e for all t ∈ [tk, tk+1] un-
der Assumption 6.4 and G(x) is locally Lipschitz, there exists Lg,i > 0 such that
‖ĜT

d,i,k − GT
d,i,k‖ ≤ Lg,iΔe. It follows that

|F̃d,i,k − Fd,i,k| ≤ ∣∣x̂d,i (tk+1) − xd,i(tk+1)
∣∣ + ∣∣x̂d,i (tk) − xd,i(tk)

∣∣

+ ∣∣(Ĝd,i,k − Gd,i,k)
[
u(tk) + ũ(tk)

]∣∣

≤ e + Lg,iubΔe, (6.17)

which leads to

Fd,i,k − (2 + Lg,iubΔ)e ≤ F̃d,i,k ≤ Fd,i,k + (2 + Lg,iubΔ)e. (6.18)

Since fd(x, θ) is locally Lipschitz in x, there exists Lf,i > 0 such that |Fd,i,k −
F̂d,i,k| ≤ Lf,iΔe, which leads to

F̂d,i,k − Lf,iΔe ≤ Fd,i,k ≤ F̂d,i,k + Lf,iΔe. (6.19)

Note that f̂d,i,k,l ≤ F̂d,i,k ≤ f̂d,i,k,u. Then, Eq. (6.18) and Eq. (6.19) yield

f̂d,i,k,l − γi ≤ F̃d,i,k ≤ f̂d,i,k,u + γi, (6.20)

where γi = (2 + Lf,iΔ + Lg,iubΔ)e. Since Ĝd,k is invertible, we have ui(tk) +
ũi (tk) = [Ĝ−1

d,k]i[x̂d (tk+1) − x̂d (tk) − F̃d,k], where [Ĝ−1
d,k]i denotes the ith row

of Ĝ−1
d,k , x̂d = [x̂d,1, . . . , x̂d,m]T, and F̃d,k = [F̃d,1,k, . . . , F̃d,m,k]T. Now, with the

bounds on F̃d,i,k computed, the rest of the proof proceeds along the same lines as
the proof of Theorem 6.2. This concludes the proof of Theorem 6.3. �

Remark 6.6 In the context of output feedback control, the fault diagnosis scheme
of Theorem 6.3 requires that the structure of the system allow the design of a state
estimator that can provide an accurate enough state estimate. Examples of such
estimators include a high-gain state observer (see Chaps. 3 and 4) and a reduced-
order nonlinear observer developed in [130].

6.4 Robust Safe-Parking for Fault-Tolerant Control

In this section, we consider the problem of fault-handling for the case where an actu-
ator seizes at an arbitrary position (and does not revert to the pre-designed fail-safe
position). The key idea of the proposed approach is to design safe-park point can-
didates off-line for a series of the output values of the potential failed actuator, and
upon FDD, choose a safe-park point online such that the system can be stabilized



6.4 Robust Safe-Parking for Fault-Tolerant Control 115

at the chosen safe-park point by the robust control law, which can handle the error
between the actual value of the failed actuator position and its design counterpart.

Specifically, we design safe-park point candidates for M actuator positions of ui

denoted by ūs,i,j ∈ [ui,min, ui,max], j = 1, . . . ,M . When designing the control law
and characterizing the stability region of a safe-park point candidate, a design uncer-
tain variable of magnitude δs (over and above the uncertain variables in the system
description), is used to account for the error between the actual value of the failed
actuator position, denoted by ūi,f , and the one used to design the safe-park point
candidate (ūs,i,j ). Let unom and us,i,j denote the control laws to stabilize the sys-
tem at the nominal equilibrium point xnom and a safe-park point xs,i,j , respectively,
yielding Ωnom and Ωs,i,j as their stability regions. The schematic in Fig. 6.1 shows
the integrated fault diagnosis and safe-parking framework, which is formalized in
Theorem 6.4 below (the proof of this theorem follows a similar line of argument as
in [57] and is omitted).

Theorem 6.4 Consider the system of Eq. (6.1) under a control law RC(x) satisfy-
ing Assumption 6.2. Let tf be the time when a fault takes place, td the time when
it is detected and diagnosed, and tr the time when it is repaired. If x(0) ∈ Ωnom,
[ūi,l , ūi,u] ⊆ [ūs,i,j − δs, ūs,i,j + δs], x(td) ∈ Ωs,i,j , and Bd,s,i,j ⊆ Ωnom, where
Bd,s,i,j is a closed ball of radius d around xs,i,j , then the switching rule

u(t) =

⎧
⎪⎨

⎪⎩

unom(t), 0 ≤ t < td,

us,i,j (t), td ≤ t < ts,

unom(t), ts ≤ t,

(6.21)

where ts ≥ tr is such that x(ts) ∈ Ωnom, guarantees that x(t) ∈ Ωnom ∀t ∈ [0, tf ] ∪
[ts ,∞) and there exists a positive real number Tf such that ‖x(t)‖ ≤ d for all
t ≥ Tf .

Remark 6.7 Upon the confirmation of a fault, the safe-parking mechanism described
by Theorem 6.4 is activated to shift the control objective from operating the system
at the nominal equilibrium point to maintaining it at a suboptimal but admissible
operating point. Note that a safe-park point is chosen from the candidates gener-
ated for the design value of the failed actuator position ūs,i,j such that the range
[ūs,i,j − δs, ūs,i,j + δs] designed off-line contains the range [ūi,l , ūi,u] identified
on-line for the failed actuator position, as illustrated in Fig. 6.2. Since [ūi,l , ūi,u]
contains the actual value of the failed actuator position ūi,f , it is guaranteed that
such a safe-park point candidate is a feasible equilibrium point subject to the fault.
Note also that an arbitrarily chosen safe-park point candidate is not guaranteed to
be a feasible equilibrium point in the presence of the fault. Therefore, the fault in-
formation provided by the fault diagnosis design is essential in choosing a safe-park
point.

Remark 6.8 The remaining conditions dictating the choice of a safe-park point fol-
low from the safe-parking framework designed for a fail-safe position in Chap. 5.
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Fig. 6.1 Schematic of the
integrated fault diagnosis and
safe-parking framework

Fig. 6.2 Schematic illustrating the choice of a safe-park point. The range [ūs,i,j −δs , ūs,i,j +δs ] is
designed off-line for the actuator position ūs,i,j with the robustness margin δs . The range [ūi,l , ūi,u]
is identified online, which contains the actual value of the failed actuator position ūi,f

In particular, to make sure that the system can be driven to the temporary operating
point, it requires that the system state should reside within the stability region of the
safe-park point at the time of fault confirmation. Note that ts denotes a time when
the system state is within the stability region of the nominal equilibrium point after
the fault is repaired. If it is already within the stability region of the nominal equi-
librium point at the time of fault repair, then ts = tr . Otherwise, the control action
is implemented to drive the system state to the safe-park point until it reaches the
stability region of the nominal equilibrium point. Note in general that the possibility
of finding safe-park points and resuming normal operation can be enhanced by the
use of control designs (or Lyapunov functions) that yield as large a stability region
for the nominal (and safe-park) operation as possible. The size of the stability region
remains case-specific; however, the ability to explicitly characterize the stability re-
gion (provided by the control design used in this chapter) is useful in ascertaining
the ability of the controller to best utilize the available control effort and design the
safe-parking framework.

6.5 Simulation Example

In this section, we illustrate the proposed fault diagnosis techniques and the gen-
eralized safe-parking framework via a continuous-stirred tank reactor example, as
shown in Fig. 6.3, where three parallel irreversible elementary exothermic reactions

of the form A
k1−→ B, A

k2−→ U, and A
k3−→ R take place, with A being the reactant
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Fig. 6.3 Schematic of the
chemical reactor example

species, B the desired product, and U and R the undesired byproducts. The feed to
the reactor consists of reactant A at a flow rate F , concentration CA0, and tempera-
ture T0. Under standard assumptions, the mathematical model of the process can be
derived from material and energy balances, which takes the following form:

ĊA = F

V
(CA0 − CA) −

3∑

i=1

Ri(CA, TR),

ṪR = F

V
(T0 − TR) +

3∑

i=1

(−�Hi)

ρcp

Ri(CA, TR) + Q

ρcpV
,

(6.22)

where Ri(CA, TR) = ki0e
−Ei/RTRCA for i = 1,2,3, CA is the concentration of

species A in the reactor, TR is the temperature of the reactor, Q is the rate of
heat input to the reactor, V is the volume of the reactor, ki0, Ei , and �Hi are the
pre-exponential constant, the activation energy, and the enthalpy of reaction i, re-
spectively, and cp and ρ are the heat capacity and density of the reacting mixture,
respectively. The process parameters can be found in Table 6.1.

Under fault-free conditions, the control objective is to stabilize the reactor at
the unstable equilibrium point (CA, TR) = (3.50 kmol/m3, 405.0 K), denoted by
N in Fig. 6.4, by manipulating CA0 and Q, where 0 ≤ CA0 ≤ 6 kmol/m3 and
−8 × 105 kJ/hr ≤ Q ≤ 8 × 105 kJ/hr. The manipulated variable Q = Qc + Qh,
where Qc and Qh denote cooling and heating, respectively, with −8 × 105 kJ/hr
≤ Qc ≤ 0 and 0 ≤ Qh ≤ 8 × 105 kJ/hr. The nominal steady-state values of the ma-
nipulated variables are CA0 = 4.25 kmol/m3 and Q = −6.55 × 104 kJ/hr. The sim-
ulations are conducted under a 0.5 % error in the pre-exponential constant (k10) for
the main reaction and sinusoidal disturbances in the feed temperature (T0) with an
amplitude of 3 K and a period of 0.2 hr. The bounds on the errors in k10 and T0 used
in the monitoring and control design are ±1.5 % and ±5 K, respectively. The con-
centration and temperature measurements are assumed to have a truncated gaussian
noise with a standard deviation of 0.01 kmol/m3 and 0.1 K for the parent normal
distribution, respectively. The lower and upper truncation points are −0.02 kmol/m3

and 0.02 kmol/m3 for the concentration, and −0.2 K and 0.2 K for the temperature,
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Table 6.1 Process
parameters for the chemical
reactor example

Parameter Value Unit

F 4.998 m3/hr

T0 300.0 K

V 1.0 m3

R 8.314 kJ/kmol K

k10 3.0 × 106 hr−1

k20 3.0 × 105 hr−1

k30 3.0 × 105 hr−1

E1 5.00 × 104 kJ/kmol

E2 7.53 × 104 kJ/kmol

E3 7.53 × 104 kJ/kmol

�H1 −5.0 × 104 kJ/kmol

�H2 −5.2 × 104 kJ/kmol

�H3 −5.4 × 104 kJ/kmol

cp 0.231 kJ/kg K

ρ 1000.0 kg/m3

Fig. 6.4 Closed-loop state
trajectories for the chemical
reactor example where the
process starts from O1 and
the cooling valve fails at F1.
The solid line shows the case
where the fault is confirmed
at D1, the process is
stabilized at the safe-park
point S4, and nominal
operation is resumed upon
fault repair. The dashed line
shows process instability
when no fault-handling
mechanism is implemented.
The arrows show the
directions of the trajectories

respectively. The measurements are filtered before performing fault diagnosis and
control calculations as xf (tk+1) = 0.25xf (tk) + 0.75xm(tk+1), where xf and xm

denote the filtered state and noisy measurement, respectively.
To demonstrate the efficacy of the integrated fault diagnosis and safe-parking

framework, we consider a failure in the actuator used to control Qc . The safe-park
point candidates are shown in Table 6.2 for 6 actuator positions of Qc with a ro-
bustness margin δs = 1.25 × 104 kJ/hr. In the control law of Eq. (6.4a)–(6.4d), an
execution time Δ = 0.025 hr = 1.5 min and a prediction horizon of 2Δ are used,
with Qw = [ 1 0

0 10

]
and Rw = [

105 0
0 10−6

]
. The Lyapunov function used to character-
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Table 6.2 Safe-park point candidates, steady-state values of the manipulated variables, and Lya-
punov functions for the chemical reactor example

Safe-park
point
candidates

Qc

(104 kJ/hr)
CA
(kmol/m3)

TR

(K)

CA0
(kmol/m3)

Q

(104 kJ/hr)
P

V (x) = xTPx

S1 −6.55 ± 1.25 3.50 380 3.78 2.21
[ 2.7 0

0 2.5×10−3

]

S2 −5.73 ± 1.25 3.85 375 4.10 2.40
[ 2.7 0

0 2.5×10−3

]

S3 −4.91 ± 1.25 3.50 380 3.78 2.21
[ 2.7 0

0 3.5×10−3

]

S4 −4.10 ± 1.25 3.50 375 3.73 2.97
[ 2.7 0

0 2.5×10−3

]

S5 −3.28 ± 1.25 3.50 375 3.73 2.97
[ 2.7 0

0 3.5×10−3

]

S6 −2.46 ± 1.25 3.85 375 4.10 2.40
[ 5.0 0

0 7.0×10−3

]

ize the stability region and to prescribe the control input for the nominal equilibrium

point is chosen as V (x) = xTPx, where P = [ 7.72×10−1 0
0 4×10−4

]
, and those for the

safe-park point candidates can be found in Table 6.2. It is assumed that there are 20
samplings during one execution period (i.e., the sampling time is 4.5 s). The trape-
zoidal rule is used to compute the integrals for the estimation of the bounds on the
actual input to the plant. To account for measurement noise, the lower and upper
bounds on the estimates of CA0 and Q implemented to the plant under state feed-
back control are relaxed by a magnitude of 0.32 kmol/m3 and 1848 kJ/hr (inferred
from process data under healthy conditions), respectively.

We first consider a case where full state measurements are available and the pro-
cess starts from an initial condition at O1 (2.50 kmol/m3, 405.0 K). The actuator
fails at time tf = 0.05 hr, with the process state at F1 (2.78 kmol/m3, 396.1 K).
The output value of the failed actuator is ūf = −4.19 × 104 kJ/hr (the same as it
was at time t−f ) during fault repair. The FDD scheme can be explained by Fig. 6.5,
where the prescribed inputs are marked by crosses, the actual inputs marked by cir-
cles, and the estimated bounds on the actual inputs marked by error bars. Note that
a fault is declared when the prescribed value breaches the bounds identified from
state measurements. It can be seen that the fault in Qc is first declared at 0.1 hr (i.e.,
there is a two-step time delay). Upon the first alarm, the actuator for Qh is disabled
(i.e., the prescribed value of Qh is 0) to allow FDD for Qc until the fault is con-
firmed to be true or false (this step is necessitated by the fact that the FDD scheme
cannot differentiate between faults in Qc and Qh since they affect the system in an
identical fashion). The fault is confirmed at time td = 0.175 hr after 4 consecutive
alarms (i.e., nd = 4), with the process state at D1 (3.35 kmol/m3, 358.1 K). The
binary residuals for the manipulated variables CA0 and Q are shown in Figs. 6.6(a)
and 6.6(b), respectively, while the residuals of the manipulated variables obtained
by using the nominal process model are shown in Figs. 6.6(c) and 6.6(d), where the
thresholds (see the dashed lines) are 0.5 kmol/m3 and 1.5×104 kJ/hr, respectively.
It can be seen that similar results are obtained by the FDI designs using constant and
time-varying thresholds, with no false alarms generated.
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Fig. 6.5 Illustration of the FDD scheme of Theorem 6.2 for the chemical reactor example. The
cooling valve fails at time 0.05 hr. The fault is first detected and isolated at 0.1 hr and confirmed
at 0.175 hr after 4 consecutive alarms. Crosses denote the prescribed inputs, circles denote the
implemented inputs, and error bars denote the estimated bounds on the actual inputs for CA0 (a),
Qc (b), and Qh (c)

Beyond FDI, the fault diagnosis scheme also identifies the lower and upper
bounds on the actual value of the failed actuator position, which are −5.00 ×
104 kJ/hr and −3.81 × 104 kJ/hr, respectively. This information is then used to
choose a safe-park point. By referring to Table 6.2, it is found that the safe-park
point candidate S4(3.50 kmol/m3, 375 K) is designed for the case where the cool-
ing valve seizes at some value in [−5.35 × 104 kJ/hr, −2.85 × 104 kJ/hr], which
contains [−5.00×104 kJ/hr, −3.81×104 kJ/hr]. Note that the process state at time
td is also within the stability region of S4, denoted by Ωs,4. Therefore, S4 is chosen
as a safe-park point. As shown by the solid line in Fig. 6.4, if the safe-parking strat-
egy is implemented, the process is first stabilized at S4, and nominal operation is
resumed upon fault repair. The absence of an appropriately designed fault-handling
framework, however, results in process instability, as shown by the dashed line in
Fig. 6.4. The corresponding state and input profiles are shown in Fig. 6.7.

We then consider a case where concentration measurements are only available
every 10Δ. For this case, we study the problem of estimating the output of the
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Fig. 6.6 Binary residuals (a)–(b) defined by Eq. (6.16) and residuals (c)–(d) defined by Eq. (6.9)
for manipulated variables CA0 and Q, respectively, in the chemical reactor example

failed actuator and using its estimate to implement the safe-parking operation, with
the focus on the diagnosis of the fault magnitude for a fault in Q. The concentration
between consecutive measurements is predicted by using the nominal process model
and temperature measurements as follows:

˙̂
CA = F

V
(CA0 − ĈA) −

3∑

i=1

Ri(ĈA, TR),

ĈA(10kΔ) = CA,

(6.23)

where ĈA denotes the estimate of the concentration, which is set to its true value
each time an asynchronous measurement is available. In the fault diagnosis design,
γ = [0.04,0.2]T is used to relax the bounds on the estimate of the actual input to
the plant. As shown in Fig. 6.8, the process starts from O2 (4.25 kmol/m3, 390 K).
The fault in Qc takes place at time tf = 0.05 hr, with the actuator frozen at
−2.59 × 104 kJ/hr and the process state at F2 (4.14 kmol/m3, 389.1 K). The
fault is first detected and isolated at time 0.125 hr and confirmed after 4 con-
secutive alarms at time td = 0.2 hr, as shown in Fig. 6.9, with the process state
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Fig. 6.7 Closed-loop state (a)–(b) and input (c)–(d) profiles for the chemical reactor example.
The safe-parking operation starts from 0.175 hr, and nominal operation is resumed at 1.5 hr

Fig. 6.8 Closed-loop state
trajectory for the chemical
reactor example with
asynchronous concentration
measurements where the
process starts from O2 and
the cooling valve fails at F2.
The fault is confirmed at D2,
the process is stabilized at the
safe-park point S6, and
nominal operation is resumed
upon fault repair. The arrow
shows the direction of the
trajectory

at D2 (4.01 kmol/m3, 369.4 K). It can be seen from Fig. 6.9 that the estimate
of the failed actuator output is [−3.60 × 104,−2.17 × 104], which is a subset of
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Fig. 6.9 Illustration of the FDD scheme of Theorem 6.3 for the chemical reactor example with
asynchronous concentration measurements. The cooling valve fails at time 0.05 hr. The fault is first
detected and isolated at 0.125 hr and confirmed at 0.2 hr after 4 consecutive alarms. Crosses denote
the prescribed inputs, circles denote the implemented inputs, and error bars denote the estimated
bounds on the actual inputs for Qc (a) and Qh (b)

Fig. 6.10 Closed-loop state (a)–(b) and input (c)–(d) profiles for the chemical reactor example
with asynchronous concentration measurements. The safe-parking operation starts from 0.2 hr,
and nominal operation is resumed at 1.5 hr
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[−3.71 × 104,−1.21 × 104] designed for S6 (3.85 kmol/m3, 375 K) in Table 6.2.
Because D2 also resides within the stability region of S6, denoted by Ωs,6, S6 is
chosen as a safe-park point. As shown in Fig. 6.8, the process operates at S6 during
fault repair until nominal operation is resumed at tr = 1.5 hr. The corresponding
state and input profiles are depicted in Fig. 6.10.

6.6 Conclusions

In this chapter, we considered the problem of designing an integrated fault diagno-
sis and fault-handling framework to deal with actuator faults in nonlinear systems.
A model-based fault diagnosis design was first proposed, which cannot only iden-
tify the failed actuator, but also estimate the fault magnitude. The fault information
is obtained by estimating the outputs of the actuators and comparing them with the
corresponding prescribed control inputs. This methodology was developed under
state feedback control and generalized to deal with state estimation errors. Then, the
safe-parking framework developed previously (to handle the case where the failed
actuator reverts to a known fixed value) for fault-tolerant control was extended to
handle the case where an actuator seizes at an arbitrary value. The estimate of the
failed actuator position provided by the fault diagnosis design is used to choose a
safe-park point, at which the system operates temporarily during fault repair, from
those generated off-line for a series of design values of the failed actuator posi-
tion. The discrepancy between the actual value of the failed actuator position and
the corresponding design value is handled through the robustness of the control de-
sign. The efficacy of the integrated fault diagnosis and safe-parking framework was
demonstrated through a chemical reactor example.



Chapter 7
Utilizing FDI Insights in Controller Design
and PID Monitoring

7.1 Introduction

In the previous chapters, the key concepts for FDI were developed and focused on
the problem of actuator fault-detection and isolation under a well-performing con-
troller. The FDI schemes were designed independently from the feedback control
law and were then applied on top of the closed-loop system operating under a feed-
back control law that was previously designed without consideration of the possible
faults that might occur. The key ideas of fault-detection and isolation can, however,
be utilized to design a holistic control structure where the controller is designed to
aid the FDI problem and the FDI ideas are utilized to monitor controller perfor-
mance. In this chapter, we present results along both the above themes.

Figure 7.1(a) shows an independently designed feedback control law and an FDI
scheme which are combined only in the final closed-loop system. The paradigm
shift proposed in this chapter is illustrated in Fig. 7.1(b) which demonstrates the
idea of designing both the feedback control law and the FDI scheme with each other
in mind. With the controller design taking into account the FDI scheme, faults may
be more easily isolated in the resulting closed-loop system.

The above considerations motivate the development of a data-based method of
fault detection and isolation that utilizes the design of the controller to enhance the
isolability of the faults in the closed-loop system. Specifically, it is demonstrated in
the first part of this chapter that a data-based FDI scheme is able to isolate a given set
of faults if the nonlinear closed-loop system satisfies certain isolability conditions in
the presence of common-cause process variation. We explicitly characterize this set
of isolability conditions and show that it is possible, under certain conditions on the
system structure, to design a feedback control law that guarantees that the closed-
loop system satisfies the isolability conditions and that the origin of the closed-loop
system is asymptotically stable. This is achieved through the use of appropriate non-
linear control laws that effectively decouple the dependency between certain process
state variables. The controller enforces a specific structure on the system that makes
fault detection and isolation possible without prior knowledge of system behavior
under faulty operation. The theoretical results are applied to a CSTR example and
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Fig. 7.1 (a) (top) Common
methods of fault diagnosis
apply the FDI scheme and
feedback control law to the
closed-loop system
independently from each
other. (b) (bottom) This work
proposes integrating the
feedback control law design
with the FDI scheme in the
closed-loop system

to a polyethylene reactor example. It should also be noted that although the exam-
ples given in this chapter are presented using a specific method for data-based fault
diagnosis, the closed-loop system structure enforced by the presented approach can
also be exploited to achieve fault isolation using other data-based fault detection
methods.

The importance of controller performance monitoring is well recognized. In the
second part of the chapter, we focus on the problem of PID loop monitoring that
typically involves lower level controllers with MPC at the higher level providing
‘optimal’ setpoints. In general, in the calculation of the optimal input trajectories
for the manipulated inputs via MPC, the dynamics of the corresponding control ac-
tuators that will implement the control actions computed by the MPC are neglected
and the MPC-computed control actions are assumed to be directly implemented by
the control actuators. However, in practice, these control actuators have their own
specific dynamics. As a result of this, there are always discrepancies (i.e., time lags,
magnitude differences, etc.) between the actual control actions applied to the pro-
cess by the control actuators and the control actions requested by the MPC. The
mitigation of the influence of these discrepancies in closed-loop performance, relies
on the performance of the PID controllers [10]. The representation of this added ex-
tra layer of the PID controllers around the control actuators is shown in Fig. 7.2. In
this case, the tuning of the PID controllers is critical for the overall control actuator
and closed-loop system performance. An actuator with a well-tuned PID controller
can effectively implement the actions requested by the MPC; whereas, an actuator
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Fig. 7.2 Closed-loop system with MPC as advanced model-based controller and low-level PID
controller implemented to regulate the control actuators

with a poorly-tuned PID controller may reduce the performance of the closed-loop
system dramatically or may even cause instability of the closed-loop system.

In the second part of the chapter, we show how the concepts of FDI can be utilized
towards monitoring the performance of low-level PID loops. With respect to previ-
ous works on the subject, there is indeed a plethora of techniques discussed in the
literature on monitoring of the performance and tuning of PID controller parameters.
With respect to tuning, methods such as Ziegler–Nichols [64, 184], Cohen–Coon
[31], internal model control [149, 165], pole placement [168, 175], and others have
been widely used to tune PID controller parameters based on either the estimated
plant’s transfer function or experimentally-obtained step response and/or frequency
response curves. Gain scheduling [145, 181] has also been developed to allow PID
controllers to be able to self-tune to accommodate changing operating conditions.
Multiple works have also been published on automatic retuning of PID parameters
based on the current performance of the PID controller and on-line system identi-
fication [4, 20, 127, 147, 154, 157, 165, 183]. On the monitoring front, references
[52] and [138] provide a survey of available monitoring techniques. Specifically,
minimum variance control [66] has been developed as a tool to assess PID per-
formance, while [160, 161], and [159] utilize statistical process control (SPC) to
monitor and provide performance criteria to assess the performance of PID con-
trollers. In another work [148], a monitoring scheme was proposed to determine
poor tuning/faults using principal component analysis (PCA) and neural networks.
One common feature in all of the works in the PID monitoring field mentioned
above is the assumption that measurements of the output of the PID-controlled loop
are available.

Motivated by the above considerations, in the second part of this chapter, we
will address in Sect. 7.3 the problem of real-time monitoring and retuning of low-
level PID controllers in the case where the measurement of the actual control action
implemented on the process is unavailable. Specifically, we present a method for
monitoring the PID performance via a model-based FDI method [112, 115] coupled
with real-time process measurements. Using an estimated transfer function model
of the control actuators, model-based FDI can be used to detect the discrepancies
between the expected actuation level and the actual actuation level performed by the
control actuators. Based on the patterns of the residuals, a poorly-tuned actuator can
be isolated and retuned accordingly. An example of a nonlinear reactor–separator
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process under MPC control with low-level PID controllers around the control actu-
ators is used to demonstrate the approach.

7.2 Controller Enhanced FDI

This part of the chapter focuses on a broad class of nonlinear systems subject to
actuator faults and disturbances with the following state-space description:

ẋ = f (x,u, d), (7.1)

where x ∈ R
n denotes the vector of process state variables, u ∈ R

m denotes the vec-
tor of manipulated input variables and d ∈ R

p denotes the vector of p possible actu-
ator faults or disturbances. Normal operating conditions are defined by d = 0. Each
component dk, k = 1, . . . , p, of vector d characterizes the occurrence of a given
fault. When fault k occurs, variable dk can take any value. Therefore, the model of
Eq. (7.1) can include a broad class of possible faults ranging from actuator faults
to complex process disturbances and failures. The system under normal operating
conditions and zero input has an equilibrium point at the origin, i.e., f (0,0,0) = 0.

Before proceeding with the theoretical development, it is important to state that
the presented FDI method brings together model-based analysis and controller de-
sign techniques for nonlinear, deterministic ordinary differential equation systems
and statistical data-based fault-diagnosis techniques that will be applied to the
closed-loop system to diagnose faults that affect the process outside of the region de-
termined by the common-cause process variation. To this end, we will first state the
isolability conditions for the closed-loop system that need to be enforced by the ap-
propriate control laws on the basis of the nonlinear deterministic system of Eq. (7.1).
Subsequently, we will introduce additive autocorrelated noise in the right-hand side
of Eq. (7.1) and additive Gaussian noise in the measurements of the vector x to
compute the region of operation of the process variable, x, under common-cause
variance. Finally, we will demonstrate that the enforcement of an isolable structure
in the closed-loop system by an appropriate feedback law allows isolating specific
faults whose effect on the closed-loop system leads to sustained process operation
outside of the region of common-cause variance.

Under the assumptions of single-fault occurrence and available measurements for
all of the process state variables, a data-based fault detection and isolation technique
is presented based on the structure of the system in closed-loop with a state feedback
controller u(x). The conditions (denoted as isolability conditions) under which this
technique can be applied are provided. The main objective is to design a state feed-
back controller u(x) such that the origin of the system of Eq. (7.1) in closed-loop
with this controller is asymptotically stable under normal operating conditions, i.e.,
d(t) = 0, and that the closed-loop system satisfies the isolability conditions needed
to apply the presented FDI method. It is shown that for certain systems, the con-
troller can be designed to guarantee that these conditions are satisfied, as well as to
stabilize the closed-loop system.
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Referring to the assumption that only a single fault occurs at any specific time in-
stance, note that this is a logical assumption from a practical point of view. Namely,
it is more likely that a single control actuator (e.g., an automatic valve) will fail
at a single time instance during the process operation than it is that two or more
control actuators will fail at exactly the same instance of time. Referring to the as-
sumption that measurements of the process state variables are available, note that
this assumption is made to simplify the development. In principle, this assumption
can be relaxed by using model-based state estimator design techniques for nonlin-
ear systems (e.g., [28]) to construct dynamic systems which yield estimates of the
unmeasured states from the output measurements; however, the detailed develop-
ment of the results for this case is outside the scope of this book. Finally, we focus
our attention on general actuator faults and disturbances and do not explicitly con-
sider sensor faults since this issue will be addressed in Chaps. 8 and 9 (see also
[43, 105, 106, 143, 169, 170]). Note that with the general way in which the faults dk

are modeled, it is possible to represent virtually any fault because dk is not restricted
in any way and may be any time-varying signal; however, to achieve data-based de-
tection and isolation of the fault dk in the closed-loop system in the presence of
noise in the state equations and measurements (noise which is introduced to model
common-cause process variance), dk(t) should be sufficiently large in a way that is
stated precisely in Sect. 7.2.2.

In order to present the FDI method, it is necessary to define the incidence graph
of a system and its reduced representation. The following definitions are motivated
by standard results in graph theory [65]. This kind of graph-theoretic analysis has
been applied before in the context of feedback control of nonlinear systems (see, for
example, [35]).

Definition 7.1 The incidence graph of an autonomous system ẋ = f (x) with
x ∈R

n is a directed graph defined by n nodes, one for each state, xi , of the sys-
tem. A directed arc with origin in node xi and destination in node xj exists if and

only if
∂fj

∂xi
�= 0.

The incidence graph of a system shows the dependence of the time derivatives of
its states. Figure 7.3 shows the incidence graph of the following system:

ẋ1 = −2x1 + x2 + d1,

ẋ2 = −2x2 + x1 + d2,

ẋ3 = −2x3 + x1 + d3

(7.2)

when d1 = d2 = d3 ≡ 0. A path from node xi to node xj is a sequence of connected
arcs that starts at xi and reaches xj . A path through more than one arc that starts and
ends at the same node is denoted as a loop. States that belong to a loop have mutually
dependent dynamics, and any disturbance affecting one of them also affects the
trajectories of the others. The mutual dependence of the dynamics of the states that
belong to a given loop makes data-based isolation of faults that affect the system a
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Fig. 7.3 Incidence graph and
reduced incidence graph for
the system of Eq. (7.2)

difficult task. The following definition introduces the reduced incidence graph of an
autonomous system. In this graph, the nodes of the incidence graph belonging to a
given loop are united in a single node. This allows identifying which states do not
have mutually dependant dynamics.

Definition 7.2 The reduced incidence graph of an autonomous system ẋ = f (x)

with x ∈ R
n is the directed graph of nodes qi , where i = 1, . . . ,N , that has the

maximum number of nodes, N , and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi = {xj }. These sets of states
are a partition of the state vector of the system, i.e.,

⋃
Xi = {x1, . . . , xn}, Xi ∩ Xj = ∅, ∀i �= j.

• A directed arc with origin qi and destination qj exists if and only if ∂fl

∂xk
�= 0 for

some xl ∈ Xi , xk ∈ Xj .
• There are no loops in the graph.

In the reduced incidence graph, states that belong to a loop in the incidence graph
correspond to a single node. In this way, the states of the system are divided into
subsystems that do not have mutually dependent dynamics; that is, there are no loops
connecting them. The arcs of the graph indicate if there exists a state corresponding
to the origin node that affects a state corresponding to the destination node. Note
that the reduced incidence graph can be always obtained, but for strongly coupled
systems, it may be defined by a single node, i.e., in the incidence graph there exists a
loop that contains all the states of the system. In this case, data-based fault detection
and isolation cannot be achieved using the presented method. In the incidence graph
of the system of Eq. (7.2) there is a loop that contains states x1 and x2. The reduced
incidence graph of the system of Eq. (7.2) contains two nodes. Node q1 corresponds
to the states of the loop, that is, X1 = {x1, x2}. Node q2 corresponds to X2 = x3.
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Figure 7.3 shows the reduced incidence graph of the system of Eq. (7.2). It can be
seen that in the reduced incidence graph there are no loops.

Remark 7.1 In the process model of Eq. (7.1), process and sensor noises are not
explicitly taken into account. However, noise is indirectly accounted for in the FDI
method below by means of appropriate tolerance thresholds in the decision criteria
for fault detection and isolation. The thresholds are generated on the basis of op-
erating data and take into account both sensor and process noise, allowing for an
appropriate FDI performance even if the process model and the measurements are
corrupted by noise. To demonstrate this point, process and sensor noise are included
in the two examples discussed below; see Sect. 7.2.4 for details.

Remark 7.2 Due to the complex nature of faults in nonlinear systems, performing
fault isolation with data-based methods alone generally leaves an ambiguous pic-
ture. On the other hand, it is possible to perform data-based fault isolation of simple
faults using data-based FDI methods (this is discussed and demonstrated in [173]
using contribution plots). In some cases, historical data from faulty operation will
improve isolation capabilities of data-based methods; however, even with this infor-
mation, due to overlap in the state-space of the regions corresponding to different
faults and incomplete fault libraries, it still may be very difficult to isolate faults in
nonlinear process systems.

7.2.1 Data-Based Fault Detection

Data-based methods for fault detection in multivariate systems are well established
in statistical process monitoring. This section reviews a standard data-based method
of fault detection that will be used in the context of the presented FDI method.

A common approach to monitoring multivariate process performance is based
upon the T 2 statistic introduced by Harold Hotelling [70]. This approach allows
multivariate processes to be monitored for a shift in the operating mean, X̄, using
a single test statistic that has a well-defined distribution. The true operating mean
can be estimated from past history or chosen based on the known process. Gen-
erally, the true process variance is unknown and must be estimated using sampled
data. Hotelling’s T 2 statistic tests the hypothesis that the current operating mean is
the same as X̄ with a certain degree of confidence, α · 100 %. This is the multi-
variate generalization of Student’s t-distribution. Consider a vector X ∈ R

n that is
the average of m randomly sampled state measurements. Assuming that X has an
n-variate normal distribution with an unknown variance–covariance matrix, Σ , the
T 2 statistic can be computed using the operating mean, X̄, estimated from historical
data, and the estimated covariance matrix, S, estimated from the m measurements
contributing to X, as follows:

T 2 = m(X − X̄)T S−1(X − X̄). (7.3)
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Based on the assumption that the measurements in X are normally distributed, the
T 2 statistic has the following distribution:

T 2 ∼ mn

(m − n + 1)
F (n,m − n + 1), (7.4)

where F(n,m−n+1) is the F distribution with n and m−n+1 degrees of freedom.
An upper control limit (UCL) for the T 2 statistic can be calculated by finding the
value, T 2

UCL on the T 2 distribution for which there is probability α of a greater or
equal value occurring, that is, P(T 2 ≥ T 2

UCL) = α with

T 2
UCL = mn

(m − n + 1)
Fα(n,m − n + 1). (7.5)

Note that T 2 is a positive quantity and has no lower control limit. With this definition
of the UCL, α is the probability of a Type I error, or false alarm. This implies that
at least once every 1/α samples there is expected to be a false alarm or, in other
words, the average run length (ARL) is equal to 1/α. Decreasing the value of α

will increase the ARL and thus decrease the likelihood of a Type I error. However,
this decreases the power of the statistical test. Power is measured as 1 − β where
β is the probability of a Type II error, which is that a failure has occurred, but is
not detected by the test. Because the focus of this work is on failures that cause
significant change in the operating point and assumes a persistent state of failure
before declaring a fault, finding the balance between the statistical power of the test
and the likelihood of a false alarm is not considered (see Remark 7.6 for further
discussion on this issue).

In addition to the method presented above, other methods using Hotelling’s T 2

statistic have been established which deviate from the strict definition of the test.
In particular, due to the nature of continuous chemical processes, it is sometimes
convenient to estimate S from historical data. This assumes that data from future
observations will have similar covariance. Methods that use historical data generally
have two phases of operation. Phase 1 is for testing during fault-free operation to
verify that the process is in control. The following UCL is used for the T 2 statistic
in Phase 1 [104]:

T 2
UCL = n(h − 1)(m − 1)

hm − h − n + 1
Fα(n,hm − h − n + 1), (7.6)

where h is the number of m-sized samples used to evaluate the covariance matrix
S from historical data. Phase 2 is for the normal monitoring of a process for faults
with the following control limit:

T 2
UCL = n(h + 1)(m − 1)

hm − h − n + 1
Fα(n,hm − h − n + 1). (7.7)

Note that when h is large, these limits are nearly identical. In addition, it is often
convenient to use a sample size of m = 1 where individual observations are mon-
itored (i.e., [104, 158]). This is commonly used in data-based fault detection and
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isolation methods (see, for example, [80, 104, 144, 158, 171]). In this scenario, the
UCL becomes

T 2
UCL = (h2 − 1)n

h(h − n)
Fα(n,h − n), (7.8)

where h is now the total number of historical measurements used to evaluate the
covariance matrix S. In the simulation section of this chapter, we use both the tradi-
tional method of Hotelling’s T 2 statistic by monitoring sampled data sets of size m

with the corresponding UCL in Eq. (7.5) where the estimated covariance matrix, S,
is evaluated at each step from the m observations, as well as the single observation
approach using the control limit from Eq. (7.8) and the appropriate S based on h

historical observations.
The T 2 statistic is widely used for fault detection purposes in multivariate pro-

cesses and can be used for both the full state vector and the transformed state vector
in the reduced PCA space. The T 2 statistic for the full state vector does not provide
additional information that can be used for isolating the underlying cause of a fault.
In some cases, the T 2 statistics of certain subgroups of the state vector (or functions
of it) can be monitored in addition to the full vector to assist in fault isolation. In
this situation, the process is decomposed into subsystems, generally based on func-
tion, structure and/or behavior allowing fault detection and isolation techniques to
be applied to subgroups of sensor measurements. The context of the decomposition
itself narrows the detection and isolation focus allowing the application of the T 2

statistic for localized detection. As the focus of the process decomposition context
narrows, detection approaches isolation. If the focus is narrowed to a particular pro-
cess component then detection and isolation become one and the same. Examples
of work in which decompositions are used for localized FDI are in [135] and [91].
This idea for data-based isolation using the T 2 statistic for each subsystem is also
utilized in the context of the presented method in the next section.

Remark 7.3 Note that the methods of fault detection presented in this section will
naturally account for process and sensor noise. Thus, the T 2 statistic, which scales
the process data by the inverse of the covariance matrix, will be tolerant to the nor-
mal amount of process and measurement variation without signalling a fault. How-
ever, if the variance of the system were to change during the course of operation,
this could signal a fault in the system when using a covariance matrix, S, estimated
from historical data. This type of fault will generally not be declared as this work
requires a fault large enough to cause persistent failure as discussed in Remark 7.6.

7.2.2 Data-Based Isolation Based on a Fault Signature

Data-based isolation of the underlying cause of a faulty process behavior is, in gen-
eral, a difficult problem which strongly depends on the structure of the closed-loop
system. In systems with multiple possible faults, one-dimensional statistics such as
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Fig. 7.4 Isolability graph for
the system of Eq. (7.2)

the T 2 statistic presented in the previous section cannot be used to perform fault
isolation when applied globally. To understand this point in the context of a specific
example, consider the system of Eq. (7.2). It can be seen, based upon the structure
of the system, that a fault in d1 or a fault in d2 will affect the state trajectories of all
three states of the system. In this case, the fault will be readily detected, but the T 2

statistic and the state trajectories will not provide further information with which
one can reliably determine whether a fault in d1 or d2 had occurred. However, if a
failure in d3 were to occur, it can be seen from the system equations that only the
state trajectory of state 3 would be affected. With this particular structure, which is
that there is no path from the affected state, x3, to x1 or x2, it is possible to isolate
the fault d3 by observing the affected state trajectories at the time of the failure.
Thus, it can be seen that under certain conditions, isolation is possible.

The example given above motivates introducing a set of isolability conditions
which guarantee that fault isolation is possible based on the state trajectories af-
fected by a given fault. This will also provide guidelines for the design of control
laws that guarantee that these conditions are satisfied. In order to precisely state
these conditions, the isolability graph of an autonomous system is defined below.

Definition 7.3 The isolability graph of an autonomous system ẋ = f (x, d) with
x ∈R

n, d ∈ R
p is a directed graph made of the N nodes of the reduced incidence

graph of the system ẋ = f (x,0) and p additional nodes, one for each possible
fault dk . The graph contains all the arcs of the reduced incidence graph of the system
ẋ = f (x,0). In addition, a directed arc with origin in fault node dk and destination
to a state node qj exists if and only if ∂fl

∂dk
�= 0 for some xl ∈ Xj .

Figure 7.4 shows the isolability graph of the system of Eq. (7.2). The isolability
graph of an autonomous system subject to p faults shows, in addition to the inci-
dence arcs of the reduced incidence graph, which loops of the system are affected
by each possible fault. Based on this graph, it is possible to define the signature of a
fault.

Definition 7.4 The signature of a fault dk of an autonomous system subject to p

faults ẋ = f (x, d) with x ∈ R
n, d ∈ R

p is a binary vector Wk of dimension N ,
where N is the number of nodes of the reduced incidence graph of the system. The
ith component of Wk , denoted Wk

i , is one if there exists a path in the isolability
graph from the node corresponding to fault k to the node qi corresponding to the set
of states Xi , or zero otherwise.
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The signature of a fault indicates the set of states that are affected by the fault.
If each of the corresponding signatures of the faults is different, then it is possible
to isolate the faults using a data-based fault-detection method. Faults d1 and d2 in
the system of Eq. (7.2) have the same signature, W 1 = [1 1]T , because d1 and d2

both directly affect q1 and there is a path from q1 to q2. This implies that both faults
affect the same states and upon detection of a fault with the signature W 1 = [1 1]T ,
it is not possible to distinguish between them based upon the signature. On the other
hand, the signature of fault d3 in the same system is W 1 = [0 1]T because there is no
path to q1 from q2, which is the node directly affected by d3. This implies that the
states corresponding to node q1 are effectively decoupled from fault d3. This allows
distinguishing between a fault in d3 and a fault in either d1 or d2 in the system of
Eq. (7.2) based on the profiles of the state trajectories.

In this chapter, we design and implement appropriate feedback laws in the closed-
loop system that induce distinct signatures for specific faults to allow their isolation.
In the next section, we present methods for the design of controllers that enforce an
isolable structure in the closed-loop system. In the remainder of this section, we
discuss the issue of determination of the fault signatures for the closed-loop sys-
tem in the absence and presence of noise in the differential equations and measure-
ments. This determination of the fault signature from process measurements will
also lead to a characterization of the type of fault signals, dk(t), for which isolation
can be achieved when common-cause variation is considered for the closed-loop
system (caused by the introduction of noise in the differential equations and mea-
surements). Specifically, referring to the deterministic closed-loop system (i.e., no
noise is present in the states or in the measurements), the signature of the fault, Wk ,
for any time-varying signal, dk(t), can be computed directly from the isolability
graph and is independent of the type of time-dependence of dk(t). In other words,
the signal dk(t) need not satisfy any conditions for its signature to be computed.
Once the fault signature is computed, then fault isolation is immediate in the deter-
ministic case by checking whether or not the signature of the system corresponds to
a defined fault. However, in the presence of noise in the states and measurements,
dk(t) has to be sufficiently large to have an effect that leads to operation of the
process states outside of the range expected due to common-cause variance for a
sufficiently large period of time to allow isolation of the fault, based on its signa-
ture, from other causes that can lead to violations of the upper control limit for a
small period of time. Specifically, in the presented method, the following statistics
based on the state trajectories of the system of Eq. (7.1) in closed-loop with a given
feedback controller u(x) in the presence of noise in the states and measurements are
monitored:

• T 2 statistic based on the full state x with upper control limit T 2
UCL.

• T 2
i statistic with i = 1, . . . ,N based on the states xj ∈ Xi , where Xi are the sets

of states corresponding to each one of the nodes of the reduced incidence graph.
To each T 2

i statistic a corresponding upper control limit T 2
UCLi is assigned.

The fault detection and isolation procedure then follows the steps given below:
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1. A fault is detected if T 2(t) > T 2
UCL, ∀t, tf ≤ t ≤ TP , where TP is chosen so

that the window TP − tf is large enough to allow fault isolation with a desired
degree of confidence and depends on the process time constants and potentially
on available historical information of the process behavior.

2. A fault that is detected can be isolated if the signature vector of the fault
W(tf , TP ) can be built as follows:

T 2
i (t) > T 2

UCLi, ∀t, tf ≤ t ≤ TP → Wi(tf , TP ) = 1;
T 2

i (t) ≯ T 2
UCLi, ∀t, tf ≤ t ≤ TP → Wi(tf , TP ) = 0.

In such a case, fault dk is detected at time TP if W(tf , TP ) = Wk . If two or more
faults are defined by the same signature, isolation between them is not possible
on the basis of the fault signature obtained from the isolability graph.

The conditions in steps 1 and 2 above state that the fault dk(t) has to be sufficiently
large in order to be detected and isolated.

Remark 7.4 States for which there is no path from a given fault node to the corre-
sponding subsystem node in the isolability graph are not affected by changes in the
value of dk ; thus, they are effectively decoupled from the fault dk . The FDI method
can be applied if the signatures of the closed-loop system faults are different. This
is the isolability condition. Note that the signature of a fault depends on the struc-
ture of the closed-loop system, in particular, on the isolability graph. For example,
if the reduced incidence graph has only one node, isolation is not possible. In the
following section, we propose to design the feedback controller u(x) to guarantee
that the reduced incidence graph of the closed-loop system has more than one node,
that there exist faults with different signatures, and that the origin of the closed-loop
system is asymptotically stable.

Remark 7.5 The concept of the “signature of a fault” employed in this section can be
generalized in the context of monitoring the evolution of a set of variables defined as
functions of the state. In particular, given any variable change, the isolability graph
can be obtained in the new state space and the signature defined on the basis of
the new state variables. In the next section, an example of this idea is provided for
input/output linearizable, nonlinear systems where the signature of a fault is given
in a partially linearized state space.

Remark 7.6 The upper control limit is chosen taking into consideration common-
cause variance, including process and sensor noise, in order to avoid false
alarms. Thus, small disturbances or failures may go undetected if the magni-
tude and effect of the disturbance is similar to that of the inherent process vari-
ance. For this reason, it was stated in the fault detection and isolation pro-
cedure that a fault dk must be “sufficiently large” in order for T 2

i (t) to ex-
ceed the threshold T 2

UCLi, ∀t, tf ≤ t ≤ TP . It is assumed that if a fault dk

is not large enough to cause T 2
i (t) to exceed the threshold T 2

UCLi, ∀t, tf ≤
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t ≤ TP (where tf is the time in which T 2
i (tf ) ≥ T 2

UCL for the first time) then the
fault is not “sufficiently large” and its effect on the closed-loop system, from the
point of view of faulty behavior, is not of major consequence. Therefore, such a
dk is not considered to be a fault. However, it should be noted that a fault dk that
is large enough to cause the T 2 derived from the full state vector, x, to cross the
upper control limit signaling a fault may not be large enough to signal a fault in
all of the affected subgroups. In this case, it is possible to have a false isolation.
This is investigated in the simulation case studies section. Finally, the condition
T 2

i (t) ≯ T 2
UCLi, ∀t, tf ≤ t ≤ TP , allows violation of the UCL in the full state vector

and individual subsystems due to other causes for a short period of time. However,
such violations do not modify the fault signature W(tf , TP ) if TP is chosen to be
sufficiently large.

Remark 7.7 We would like to point out that the isolability conditions are not restric-
tive from a practical point of view. These conditions are not restrictive in the sense
that it is generally possible to induce at least some degree of decoupling within any
given system. For example, any system with a relative degree r ≤ n can be decou-
pled using the method presented in the next section based on feedback linearization.
Systems such as this are very common in practice. However, while the isolability
conditions can generally be met for one or a few faults in almost any system, it can
be difficult to isolate all faults within any given system using this method alone.

7.2.3 Controller Enhanced Isolation

7.2.3.1 Enforcing an Isolable Closed-Loop System Structure Through
Controller Design

In general, control laws are designed without taking into account the FDI scheme
that will be applied to the closed-loop system. We propose to design an appropriate
nonlinear control law to allow isolation of given faults using the method presented
in the previous section by effectively decoupling the dependency between certain
process state variables to enforce the fault isolability conditions in the closed-loop
system. As explained in the previous section, this requires that the structure of the
isolability graph of the closed-loop system be such that at least one or more faults
be partially decoupled from one or more nodes on the isolability graph. The main
idea is to obtain an isolability graph of the closed-loop system which provides a
different signature for each fault. The achievement of this key requirement can be
accomplished by a variety of nonlinear control laws. In general, providing a system-
atic procedure to design a controller that guarantees both closed-loop stability and
satisfaction of the isolability conditions for any nonlinear process is not possible.
The specific form of the controller depends on the structure of the open-loop system
and such a controller may not exist. One general procedure that can be followed,
however, is to decouple a set of states from the rest. Recursively applying this de-
coupling technique, appropriate closed-loop isolability graphs can be obtained in
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certain cases. As an example of this design approach, we first provide a controller
that can be applied to nonlinear systems with the following state space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1,

ẋ2 = f2(x1, x2) + d2,
(7.9)

where x1 ∈ R, x2 ∈ R
n, u ∈ R and g1(x1, x2) �= 0 for all x1 ∈ R, x2 ∈ R

n. With a
state feedback controller of the form

u(x1, x2) = −f12(x1, x2) − v(x1)

g1(x1, x2)
, (7.10)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1,

ẋ2 = f2(x1, x2) + d2,
(7.11)

where v(x1) has to be designed in order to achieve asymptotic stability of the origin
of the x1 subsystem when d1 = 0. Note that explicit stabilizing control laws that pro-
vide explicitly-defined regions of attraction for the closed-loop system have been de-
veloped using Lyapunov techniques for specific classes of nonlinear systems, partic-
ularly input-affine nonlinear systems; please, see Chap. 2 (see also [28, 45, 46, 78])
for results in this area. The origin of the closed-loop system is asymptotically stable
if ẋ2 = f2(x1, x2) is input-to-state stable with respect to x1; please, see Chap. 2 for
discussion on ISS. In this case, the presented controller guarantees asymptotic sta-
bility of the closed-loop system, as well as different signatures for faults d1 and d2.
Note that the reduced incidence graph is defined by two nodes corresponding to both
states and the signatures are given by W 1 = [1 1]T and W 2 = [0 1]T .

The controller design method discussed above provides a basic tool for obtaining
control laws that provide closed-loop stability and satisfy the isolability constraints.
The main idea is to force decoupling in a first controller design step (in this case
u(x)) and then ensure closed-loop stability in a second (in this case v(x)). Addi-
tionally, the next section provides a systematic controller design for a particular
class of nonlinear systems. This procedure along with the class of systems under
consideration are introduced in the following subsection.

7.2.3.2 Input/Output Linearizable Nonlinear Systems

In this subsection, we focus on a class of process systems modeled by single-input
single-output nonlinear systems with multiple possible faults which have the fol-
lowing state-space description

ẋ = f (x) + g(x)u +
p∑

k=1

wk(x)dk,

y = h(x),

(7.12)
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where x ∈ R
n is the state, u ∈ R is the input, y ∈ R is the controlled output and

dk ∈R represents a possible fault. It is assumed that f , g, h, and wk are sufficiently
smooth functions, that is, all necessary derivatives exist and are continuous functions
of x, and that a set of p possible faults has been identified. Each of these faults is
characterized by an unknown input to the system dk that can model actuator failures
and disturbances. As before, this definition of dk is not restricted by value and may
be time-varying, and thus, it can model a very broad class of faults. The system has
an equilibrium point at x = 0 when u(t) = 0, dk(t) ≡ 0 and h(0) = 0. Note that in
general this equilibrium point may correspond to a given set-point of the output.

The main control objective is to design a feedback control law u(x) such that
the origin is an asymptotically stable equilibrium point of the closed-loop system,
and moreover, the closed-loop system satisfies the isolability conditions. Feedback
linearization is used to accomplish this task. First, it is necessary to review the def-
inition of the relative degree of the output, y, with respect to the input, u, in the
system of Eq. (7.12) (see also Sect. 2.5).

Definition 7.5 (Cf. [72]) Referring to the system of Eq. (7.12), the relative degree
of the output, y, with respect to the input, u, is the smallest integer, r ∈ [1, n], for
which

LgL
i
f h(x) = 0, i = 0, . . . , r − 2,

LgL
r−1
f h(x) �= 0.

A system with an input relative degree r ≤ n is input-output linearizable. If r = n

the entire input-state dynamics can be linearized. If r < n, the feedback controller
can be chosen so that a linear input–output map is obtained from an external input,
v, to the output, y, even though the state equations are only partially linearized (see
also, [72]). To be specific, if the system of Eq. (7.12) has input relative degree r < n,
then there exists a coordinate transformation (see [72]) (ζ, η) = T (x) such that the
representation of the system of Eq. (7.12) with dk = 0 for all k = 1, . . . , p (that is,
the system without faults), in the (ζ, η) coordinates, takes the form

ζ̇1 = ζ2,

...

ζ̇r−1 = ζr ,

ζ̇r = Lr
f h(x) + LgL

r−1
f g(x)u,

η̇1 = Ψ1(ζ, η),

...

η̇n−r = Ψn−r (ζ, η),

(7.13)
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where y = ζ1, x = T −1(ζ, η), ζ = [ζ1, . . . , ζr ]T and η = [η1, . . . , ηn−r ]T . Choos-
ing u(x) in an appropriate way, the dynamics of ζ can be linearized and controlled
properly using linear control theory. The stability of the closed-loop system, how-
ever, can only be assured if the inverse dynamics (η̇ = Ψ (ζ,η)) satisfy additional
stability assumptions. In particular, the inverse dynamics must be input-to-state sta-
ble with respect to ζ . If this is the case, then an appropriate control law can be de-
signed for the input–output subsystem that guarantees stability of the entire closed-
loop system. In the following theorem, we review one example of an input–output
feedback-linearizing controller. The controller presented, under the assumption of
no faults, guarantees asymptotic stability of the closed-loop system.

Theorem 7.1 (Cf. [72]) Consider the system of Eq. (7.12) with dk = 0 for all k =
1, . . . , p under the feedback law

u(x) = 1

LgL
r−1
f h(x)

[
KTζ (x) − Lr

f h(x)
]
, (7.14)

where ζ = Tζ (x). Assume K is chosen such that the matrix A + BK has all of its
eigenvalues in the left-hand side of the complex plane where

A =
[

0r−1 Ir−1

0 0T
r−1

]
, B =

[
0r−1

1

]
.

Ir−1 is the (r − 1) × (r − 1) identity matrix and 0r−1 is the (r − 1) × 1 zero vector.
Then, if the dynamic system η̇ = Ψ (ζ,η) is locally input-to-state stable (ISS) with
respect to ζ , the origin of the closed-loop system is locally asymptotically stable.

We prove that under certain assumptions, if the state-feedback law given in
Eq. (7.14) is used, then the faults of system of Eq. (7.12) can be isolated into two
different groups: those that affect the output and those that do not affect the output.
The main idea is that the isolability graph of the closed-loop system in the coordi-
nates (ζ, η) provides different signatures for the faults depending on their relative
degree, which is defined below (this definition was introduced in [34] in the context
of feedforward/feedback control of nonlinear systems with disturbances, but it is
employed here to address a completely different issue).

Definition 7.6 (Cf. [34]) Referring to the system of Eq. (7.12), the relative degree,
ρk ∈ [1, n], of the output, y, with respect to the fault dk is the smallest integer for
which

Lwk
Li

f h(x) = 0, i = 0, . . . , ρk − 2,

Lwk
L

ρk−1
f h(x) �= 0.

(7.15)

The definition of the relative degree of a fault is analogous to that of the relative
degree of the input, but instead of relating the output to the input, this definition
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of relative degree relates the output to a particular fault. If a feedback-linearizing
controller is used, then the faults can be divided into two different groups: those
with a relative degree ρk that is greater than the relative degree r and those with a
relative degree ρk that is less than or equal to r . When a fault occurs, the faults of
the first group will not affect the output, y, while those of the latter will.

To show this point, taking into account Definitions 7.5 and 7.6, there exists
(see [72]) a coordinate transformation (ζ, η) = T (x) such that the representation
of the system of Eq. (7.12) with dj = 0 for all dj �= dk (that is, the system subject
only to fault dk), in the (ζ, η) coordinates, takes the form

ζ̇1 = ζ2,

...

ζ̇r−1 = ζr ,

ζ̇r = Lr
f h(x) + LgL

r−1
f h(x)u,

η̇1 = Ψ1(ζ, η, dk),

...

η̇n−r = Ψn−r (ζ, η, dk),

where y = ζ1, x = T −1(ζ, η), ζ = [ζ1, . . . , ζr ]T and η = [η1, . . . , ηn−r ]T . Follow-
ing the definition of the state-feedback law of Eq. (7.14), the following state-space
representation is obtained for ζ :

ζ̇ = (A + BK)ζ.

This dynamical system is independent of dk . Therefore, the trajectory of the output
y is independent of the fault dk . This result, however, does not hold if the relative
degree ρk of the fault dk is equal to or smaller than r . In this case, the coordinate
change does not eliminate the dependence of the output on the fault dk . Applying
the same coordinate change (ζ, η) = T (x), the dynamics of the system of Eq. (7.12)
with dj = 0 for all dj �= dk (that is, the system subject to fault dk), in the (ζ, η)

coordinates, takes the form

ζ̇1 = ζ2 + Φ1(dk),

...

ζ̇r−1 = ζr + Φr−1(dk),

ζ̇r = Lr
f h(x) + LgL

r−1
f h(x)u + Φr(dk),

η̇1 = Ψ1(ζ, η, dk),

...
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η̇n−r = Ψn−r (ζ, η, dk),

where y = ζ1, x = T −1(ζ, η), ζ = [ζ1, . . . , ζr ]T and η = [η1, . . . , ηn−r ]T . In this
case, when the fault occurs, the output is affected. In summary, if controller of
Eq. (7.14) is used, the possible faults of the system of Eq. (7.12) are divided into
two groups, each with a different signature. When a fault occurs, taking into ac-
count whether the trajectory of the output is affected or not, one can determine
which group the fault belongs to. Note that if only two faults are defined and ρ1 ≤ r

and ρ2 > r , then the fault is automatically isolated.

Remark 7.8 The feedback linearizing control laws presented in this subsection are
designed to enforce a linear input/output structure in the closed-loop system. Al-
though the external input, v = Kζ , may be designed to stabilize the resulting linear
closed-loop system optimally, the total control action u is not optimal with respect to
a closed-loop performance index (cost) that includes a penalty on the control action.

7.2.4 Simulation Case Studies

In this section, the presented approach for integrated FDI and controller design is ap-
plied to two chemical process examples. First, we consider a CSTR example and uti-
lize feedback linearization to design a nonlinear controller that yields a closed-loop
system for which the isolability conditions hold. Second, we consider a polyethylene
reactor example and design a nonlinear control law, based on the general method of
Sect. 7.2.3.1, that yields a closed-loop system for which the isolability conditions
hold. In both cases, we demonstrate that data-based fault detection and isolation
is achieved under feedback control laws that enforce isolability in the closed-loop
system, an outcome that is not possible, in general, when other feedback control
designs that do not enforce the required structure are used.

7.2.4.1 Application to a CSTR Example

The first example considered is a well-mixed CSTR in which a feed component
A is converted to an intermediate species B and finally to the desired product C,
according to the reaction scheme

A
1
� B

2
� C.

Both steps are elementary, reversible reactions and are governed by the following
Arrhenius relationships

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT CB,

r2 = k20e
−E2
RT CB, r−2 = k−20e

−E−2
RT CC,
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where ki0 is the pre-exponential factor and Ei is the activation energy of the ith
reaction where the subscripts 1,−1, 2,−2 refer to the forward and reverse reac-
tions of steps 1 and 2. R is the gas constant while CA, CB, and CC are the molar
concentrations of species A, B, and C, respectively. The feed to the reactor consists
of pure A at flow rate F , concentration CA0 and temperature T0. The state variables
of the system include the concentrations of the three main components CA, CB, and
CC as well as the temperature of the reactor, T . Using first principles and standard
modeling assumptions, the following mathematical model of the process is obtained

ĊA = F

V
(CA0 − CA) − r1 + r−1 + d1,

ĊB = −F

V
CB + r1 − r−1 − r2 + r−2,

ĊC = −F

V
CC + r2 − r−2,

Ṫ = F

V
(T0 − T ) + (−�H1)

ρcp

(r1 − r−1) + (−�H2)

ρcp

(r2 − r−2) + u + d2,

(7.16)

where V is the reactor volume, �H1 and �H2 are the enthalpies of the first and
second reactions, respectively, ρ is the fluid density, cp is the fluid heat capacity, d1

and d2 denote faults/disturbances and u = Q/ρcp is the manipulated input, where
Q is the heat input to the system. The values of the parameters of the process model
of Eq. (7.16) are given in Table 7.1.

The system of Eq. (7.16) is modeled with sensor measurement noise and au-
toregressive process noise. The sensor measurement noise was generated using a
zero-mean normal distribution with standard deviation σM applied to the measure-
ments of all the process states. The autoregressive process noise was generated dis-
cretely as wk = φwk−1 + ξk , where k = 0,1, . . . , is the discrete time step, φ is the
autoregressive coefficient, and ξk is obtained at each sampling step using a zero-
mean normal distribution with standard deviation σp . Table 7.2 provides the values
of the noise parameters for each state of the system of Eq. (7.16). Because of the
dynamic nature of the process and the autocorrelated process noise, it is expected
that the state trajectories will be serially correlated. Although the distribution of the
state measurements in open-loop operation may not be normal (Gaussian), the influ-
ence of feedback control is such that the measurements under closed-loop operation
are approximately normal (see also [104]). Figure 7.5 shows the distribution of the
state measurements of the closed-loop system of Eq. (7.16) under the feedback-
linearizing control law in fault-free operation over a long period of time compared
with a Gaussian distribution. Note that although the long-term distribution is ap-
proximated well by a normal distribution, this will not hold true for short-term oper-
ation, a point that will affect the choice of test statistic to be applied. The controlled
output, y, of the system is defined as the concentration of the desired product CC.
This particular definition of the output, while meaningful from the point of view
of regulating the desired product concentration, will be also useful in the context
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Fig. 7.5 CSTR example. Distribution of normalized, fault-free operating data compared with a
normal distribution of the same mean and variance

Table 7.1 CSTR example process parameters

F 1 [m3/h] V 1 [m3]

k10 1.0 · 1010 [min−1] E1 6.0 · 104 [kJ/kmol]
k−10 1.0 · 1010 [min−1] E−1 7.0·104 [kJ/kmol]
k20 1.0 · 1010 [min−1] E2 6.0 · 104 [kJ/kmol]
k−20 1.0 · 1010 [min−1] E−2 6.5 · 104 [kJ/kmol]
�H1 −1.0 · 104 [kJ/kmol] R 8.314 [kJ/kmol K]

�H2 −0.5 · 104 [kJ/kmol] T0 300 [K]

CA0 4 [kmol/m3] ρ 1000 [kg/m3]

cp 0.231 [kJ/kg K]

of fault isolation. We consider only faults d1 and d2, which represent undesired
changes in CA0 (disturbance) and T0/Q (disturbance/actuator fault), respectively.
For example, if CA0 changes by �CA0 then d1 = F

V
�CA0. These changes may be

the consequence of an error in external control loops. In this system, the input u

appears in the temperature dynamics and is of relative degree 2 with respect to the
output, y = CC. The fault d1 appears only in the dynamics of CA and is of relative
degree 3 with respect to the output, y = CC. Finally, fault d2 is of relative degree 2.

The control objective is to regulate the system at the equilibrium point

CCs = 0.9471 kmol/m3, Ts = 312.6 K, us = 0 K/s, (7.17)
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Table 7.2 CSTR example noise parameters

σm σp φ

CA 1E–2 1E–2 0.9

CB 1E–2 1E–2 0.9

CC 1E–2 1E–2 0.9

T 1E–1 1E–1 0.9

Fig. 7.6 Isolability graph for
the system of Eq. (7.16).
v1 = {ζ1}, v2 = {ζ2}, and
v3 = {η}

where the subscript s refers to the steady state value at equilibrium. To this end,
we consider two different feedback controllers: a controller based on feedback lin-
earization and a proportional controller (it is important to point out that the con-
clusions of this simulation study would continue to hold if the proportional con-
troller is replaced by proportional-integral-derivative control, model-predictive con-
trol, or any other controller that does not achieve decoupling of the controlled out-
put, y = CC, from the fault, d1, in the closed-loop system). The feedback-linearizing
controller takes the form of Eq. (7.14) with

K = [−1 −1].
Note that the state variables are shifted so that the origin represents the desired set
point. The proportional controller takes the form

u = (Ts − T ).

In the closed-loop system operating under the feedback-linearizing control law,
according to the results of previous section, faults with a relative degree higher than
that of the input (i.e., ρk > 2) will not affect the output in the event of a failure.
Therefore, because d1 has a relative degree of 3, it will not affect the behavior of
the output. Conversely, because fault d2 is of relative degree 2, its effect cannot
be decoupled from the output. This result is illustrated in Fig. 7.6. The nodes in
this figure are q1 = ζ1, q2 = ζ2, and q3 = {η1, η2}, where ζ1 = CC, ζ2 = ζ1, and
{η1, η2} are combinations of CA, CB, and T such that [ζ ;η] = T (CA,CB,CC, T ) is
an invertible transformation. The isolability graph of this system in the transformed
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coordinates shows that each of the states in the ζ subsystem is a separate node and
that the states in the η subsystem form a single additional node. Although there are
multiple nodes in the ζ subsystem, because each is directly affected by d1, the effect
is the same as if they were a single node. Moreover, since there is no path from the η

subsystem node to any of the ζ subsystem nodes and d2 only affects the η subsystem
node directly, the signatures for faults d1 and d2 will be unique and thus isolable.
Additionally, it should be noted that the trajectory of ζ1 follows that of the output,
CC, and the ζ subsystem is not affected by the other states. Thus, monitoring the
output, CC, as one subsystem and the remaining states as a second subsystem is
equivalent to monitoring the subsystems formed in the transformed space.

The isolability property stated above, however, does not hold for the closed-loop
system under proportional control. In that case, when a fault occurs (whether it
be d1 or d2), the output is affected by the presence of the fault. These theoretical
predictions were tested by simulating the system of Eq. (7.16) in closed-loop under
both proportional control and feedback-linearizing control. In both cases, the system
was initially operating at the steady-state of Eq. (7.17) with a failure appearing at
time t = 0.5 hr.

Based upon the structure of the closed-loop system under feedback-linearizing
control, the state vector was divided into two subvectors, X1 = {CC} and X2 =
{CA,CB, T } as discussed above. Hotelling’s statistic (Eq. (7.3)) for the full state
vector (T 2) and each of the subvectors (T 2

1 and T 2
2 ) were monitored to detect and

evaluate the presence of a fault. Detection was performed based on the T 2 statistic
violating the upper control limit T 2

UCL defined in Eq. (7.5) using m = 10 randomly
sampled measurements at intervals of �t = − ln(ξ)/Ws where ξ is a uniformly
distributed random variable from 0 to 1 and Ws is the sample rate of 1 sample per
minute. Similarly, isolation was done based on the detection of a violation of the
UCL in T 2

1 and T 2
2 and the known fault signatures computed from the isolability

graph, W1 = [0 1] and W2 = [1 1]. Additionally, the same data was tested with a
sample size m = 1 and the upper control limits as defined in Eq. (7.8). In this case a
much higher sampling rate was used (20 samples per minute) because there was no
need to capture a larger time scale (see Remark 7.9). As described in the section on
data-based fault detection, the method of single observations relies on the covariance
matrix S calculated from historical data under common-cause variation only and the
method of m = 10 observations uses a covariance matrix S obtained from the new
observations being analyzed in each sample.

The closed-loop system was simulated under proportional and feedback-lineariz-
ing control. Noise in the states and measurements was included as discussed above.
A fault in d1 was introduced as a step change of magnitude 1 kmol/m3 s. Figure 7.7
shows the state trajectories for the closed-loop system under the proportional and
the feedback-linearizing controller. Figure 7.8 shows the T 2 statistics for the sys-
tem under feedback-linearizing control, calculated from m = 10 randomly sampled
state measurements using the T 2

UCL from Eq. (7.5) with confidence level α = 0.001
and degrees of freedom (3,8) for T 2

1 , (1,10) for T 2
2 , and (4,7) for T 2. Also, the

data is prone to greater false alarms, because over the short window of 10 obser-
vations the trajectories are much more serially correlated and can be susceptible to
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Fig. 7.7 CSTR example.
State trajectories of the
closed-loop system under
feedback-linearizing (�) and
P (×) control with a fault d1
at t = 0.5 hr

Fig. 7.8 CSTR example.
Closed-loop system under
feedback-linearizing control
with sample size m = 10.
Statistics T 2, T 2

1 , and T 2
2

(solid) with TUCL (dashed)
with a failure in d1 at
t = 0.5 hr

almost singular covariance matrices, leading to large T 2 values for small deviations
from the mean. Figure 7.9 shows the T 2 statistic for the same results, calculated
instead from individual observations (m = 1) using the UCL from Eq. (7.8) with
confidence level α = 0.01 and degrees of freedom (3,2997), (1,2999), and (4,2996)
for T 2

1 , T 2
2 , and T 2, respectively. Observe that the moving average of m = 10 ob-

servations causes a delay in the fault detection time compared to the case where
m = 1.

In both methods, the T 2 statistic exceeds the upper control limit T 2
UCL, signal-

ing a failure, around t = 0.5 hr. The T 2
1 value remained below its threshold while

the T 2
2 value exceeded T 2

UCL2. This shows that the output (subvector 1) was not af-
fected by the failure. In the case of proportional control with a failure in d1, the
T 2 statistic accurately shows that the failure occurred around time t = 0.5 hr. Fig-
ures 7.10 and 7.11 show the results m = 10 and m = 1, respectively. However, in
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Fig. 7.9 CSTR example.
Closed-loop system under
feedback-linearizing control
with sample size m = 1.
Statistics T 2, T 2

1 , and T 2
2

(solid) with TUCL (dashed)
with a failure in d1 at
t = 0.5 hr

Fig. 7.10 CSTR example.
Closed-loop system under
proportional control with
sample size m = 10. Statistics
T 2, T 2

1 , and T 2
2 (solid) with

TUCL (dashed) with a failure
in d1 at t = 0.5 hr

this simulation, all of the state trajectories were affected by the failure resulting in
values of T 2

1 and T 2
2 that exceeded the upper control limits. In the case of a failure

in d2, introduced as a step change of magnitude 1 K/s both proportional control
and feedback-linearizing control show failures in T 2 at t = 0.5 hr as well as in both
subsystems T 2

1 and T 2
2 see Fig. 7.12 and Fig. 7.13. Looking at T 2

1 and T 2
2 in Fig. 7.9

and Fig. 7.12, it is clear that fault d1 did not affect the output whereas d2 did. In
this situation, where only one fault in each group is considered, it is possible to suc-
cessfully identify the failure in Fig. 7.9 as d1. However, for proportional control, all
of the states were affected by each failure (see Fig. 7.11 and Fig. 7.13) leaving an
unclear picture as to the cause of the fault.

A Monte Carlo simulation study was performed by randomly varying the fault
sizes and the amount of variance in the process and measurement noise in order
to verify that the method performs as expected in a broad range circumstances. In
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Fig. 7.11 CSTR example.
Closed-loop system under
proportional control with
sample size m = 1. Statistics
T 2, T 2

1 , and T 2
2 (solid) with

TUCL (dashed) with a failure
in d1 at t = 0.5 hr

Fig. 7.12 CSTR example.
Closed-loop system under
feedback-linearizing control
with sample size m = 1.
Statistics T 2, T 2

1 , and T 2
2

(solid) with TUCL (dashed)
with a failure in d2 at
t = 0.5 hr

total, 500 simulations were run, each with uniformly distributed random values of
fault size, process noise variance, and sensor noise variance. Only a fault in d1 was
considered with values ranging from 0 to 3 kmol/m3 s. The standard deviation of
the process noise σp and the sensor noise σm ranged from 0 to twice the values
reported in Table 7.2. A single observation T 2 statistic was used with the associated
UCL. The results of these simulations were that from 500 runs, faults were detected
when d1 > 0.21 with an average initial detection time of 30.7 min. Out of the 500
runs, a single run was detected by the T 2 statistic, but showed no failure in either
T 2

1 or T 2
2 .

Finally, to follow-up on the point of Remark 7.8, while the feedback-linearizing
controller is not an optimal controller, Fig. 7.14 shows that the control action re-
quested by the feedback-linearizing controller is not excessive and is comparable to
that of the control action requested by the proportional controller.
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Fig. 7.13 CSTR example.
Closed-loop system under
proportional control with
sample size m = 1. Statistics
T 2, T 2

1 , and T 2
2 (solid) with

TUCL (dashed) with a failure
in d2 at t = 0.5 hr

Fig. 7.14 CSTR example.
Manipulated input profiles for
both the proportional
controller (�) and the
feedback-linearizing
controller (×) with a failure
in d1 at time t = 0.5 hr

Remark 7.9 The simulation results showed that the traditional setting for Hotelling’s
T 2 statistic which calls for using m randomly sampled observations and a covari-
ance matrix based upon the sampled data was less accurate than the method of indi-
vidual observations. This is due to the fact that the data is not normally distributed on
a short timescale. A small number of observations in a sample can lead to an almost
singular S, while on the other hand, the predicted distribution for a large number of
observations per sample becomes increasingly narrow which reveals the fact that the
data over a short period are in fact serially correlated. While this could be remedied
by using a larger sample timescale, this may become inappropriate due to the need
to quickly identify faults. However, the single observation method is a reasonable
approach because the individual observations hold to the normal distribution over a
long period of time.
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Table 7.3 Polyethylene reactor example process variables

ac active site concentration of catalyst

bt overhead gas bleed

Bw mass of polymer in the fluidized bed

Cpm1 specific heat capacity of ethylene

Cv vent flow coefficient

Cpw , CpIn, Cppol specific heat capacity of water, inert gas, and polymer

Ea activation energy

Fc, Fg flow rate of catalyst and recycle gas

FIn, FM1 , Fw flow rate of inert, ethylene, and cooling water

Hf , Hg0 enthalpy of fresh feed stream, total gas outflow stream from reactor

Hg1 enthalpy of cooled recycle gas stream to reactor

Hpol enthalpy of polymer

Hr heat liberated by polymerization reaction

Hreac heat of reaction

[In] molar concentration of inerts in the gas phase

kd1 , kd2 deactivation rate constant for catalyst site 1, 2

kp0 pre-exponential factor for polymer propagation rate

[M1] molar concentration of ethylene in the gas phase

Mg mass holdup of gas stream in heat exchanger

MrCpr product of mass and heat capacity of reactor walls

Mw mass holdup of cooling water in heat exchanger

MW1 molecular weight of monomer

Pv pressure downstream of bleed vent

R, RR ideal gas constant, unit of J/mol K, m3 atm/mol K

T , Tf , Tfeed reactor, reference, feed temperature

Tg1 , Tw1 temperature of recycle gas, cooling water stream from exchanger

Twi
inlet cooling water temperature to heat exchanger

UA product of heat exchanger coefficient with area

Vg volume of gas phase in the reactor

Vp bleed stream valve position

Y1, Y2 moles of active site type 1, 2

7.2.4.2 Application to a Polyethylene Reactor

In this subsection, the presented method will be demonstrated using a model of an
industrial gas phase polyethylene reactor. The feed to the reactor consists of ethy-
lene, comonomer, hydrogen, inerts, and a catalyst. A recycle stream of unreacted
gases flows from the top of the reactor and is cooled by passing through a water-
cooled heat exchanger. Cooling rates in the heat exchanger are adjusted by mixing
cold and warm water streams while maintaining a constant total cooling water flow
rate through the heat exchanger. Mass balances on hydrogen and comonomer have
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not been considered in this study because hydrogen and comonomer have only mild
effects on the reactor dynamics [101]. A mathematical model for this reactor has the
following form [33]:

d[In]
dt

= 1

Vg

(
FIn − [In]

[M1] + [In]bt

)
,

d[M1]
dt

= 1

Vg

(
FM1 − [M1]

[M1] + [In]bt − RM1

)
,

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw

+ d2,

dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw

+ d2, (7.18)

dT

dt
= Hf + Hg1 − Hg0 − Hr − Hpol

MrCpr + BwCppol
+ d1,

dTw1

dt
= Fw

Mw

(Twi
− Tw1) − UA

MwCpw

(Tw1 − Tg1),

dTg1

dt
= Fg

Mg

(T − Tg1) + UA

MgCpg

(Tw1 − Tg1) + d3,

where

bt = VpCv

√([M1] + [In])RRT − Pv,

RM1 = [M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Y1 + Y2),

Cpg = [M1]
[M1] + [In]Cpm1 + [In]

[M1] + [In]CpIn,

Hf = (FM1Cpm1 + FInCpIn)(Tfeed − Tf ),

Hg1 = Fg(Tg1 − Tf )Cpg,

Hg0 = (Fg + bt )(T − Tf )Cpg,

Hr = HreacMW1RM1,

Hpol = Cppol(T − Tf )RM1MW1 .

(7.19)

The definitions for all the variables used in Eqs. (7.18)–(7.19) are given in Ta-
ble 7.3 and their values can be found in Table 7.4 (see [33, 58]). Under normal
operating conditions, the open-loop system behaves in an oscillatory fashion (i.e.,
the system possesses an open-loop unstable steady-state surrounded by a stable limit
cycle). The open-loop unstable steady-state around which the system will be con-
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Table 7.4 Polyethylene
reactor example parameters
and units

Vg = 500 m3

Vp = 0.5

Pv = 17 atm

Bw = 7 · 104 kg

kp0 = 85 · 10−3 m3/mol s

Ea = (9000)(4.1868) J/mol

Cpw = (
103

)
(4.1868) J/kg K

Cv = 7.5 mol/atm0.5 s

Cpm1, CpIn = (11)(4.1868), (6.9)(4.1868) J/mol K

Cppol = (0.85 · 103)(4.1868) J/kg K

kd1 = 0.0001 s−1

kd2 = 0.0001 s−1

MW1 = 28.05 · 10−3 kg/mol

Mw = 3.314 · 104 kg

Mg = 6060.5 mol

MrCpr = (1.4 · 107)(4.1868) J/K

Hreac = (−894 · 103)(4.1868) J/kg

UA = (1.14 · 106)(4.1868) J/K s

FIn, FM1 , Fg = 5, 190, 8500 mol/s

Fw = (3.11 · 105)(18 · 10−3) kg/s

F s
c = 5.8

3600 kg/s

Tf , T s
feed, Twi

= 360, 293, 289.56 K

RR = 8.20575 · 10−5 m3 atm/mol K

R = 8.314 J/mol K

ac = 0.548 mol/kg

umax
1 , umax

2 = 5.78 · 10−4, 3.04 · 10−4 K/s, mol/s

[In]s = 439.68 mol/m3

[M1]s = 326.72 mol/m3

Y1s , Y2s = 3.835, 3.835 mol

Ts , Tw1s
, Tg1s

= 356.21, 290.37, 294.36 K

trolled is

[In]ss = 439.7 mol/m3, [M1]ss = 326.7 mol/m3,

Y1ss , Y2ss = 3.835 mol, Tss = 356.2 K,

Tg1ss = 290.4 K, Tw1ss = 294.4 K.

Note that with the given parameters, the dynamics of Y1, Y2 are identical and will be
reported in the results as a single combined state. In this example, we consider three
possible faults, d1, d2, and d3 which represent a change in the feed temperature,
catalyst deactivation, and a change in the recycle gas flow rate, respectively. The
manipulated inputs are the feed temperature, Tfeed, and the inlet flow rate of ethy-
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lene, FM1 . The control objective is to stabilize the system at the open-loop unstable
steady state. In addition, in order to apply the presented FDI scheme, the controller
must guarantee that the closed-loop system satisfies the isolability conditions. The
open-loop system is highly coupled. If the controller does not impose a specific
structure, all the states have mutually dependent dynamics (i.e., they consist of one
node in the isolability graph as stated in Definition 7.4). In the present work, we
propose to design a nonlinear controller to decouple [In], [M1], and T from (Y1, Y2)

and from Tw1 and Tg1 . In this way, the resulting closed-loop system consists of three
subsystems (i.e., three nodes in the isolability graph) that do not have mutually de-
pendent dynamics. In addition, the signature of each of the three faults is different,
and thus, the fault isolability conditions are satisfied. In order to accomplish this
objective, we define the following control laws:

FM1 = u2Vg + FM1ss ,

Tfeed = u1(MrCpr + BWCppol) + Hf ss

FM1Cpm1 + FInCpIn
+ Tf

(7.20)

with

u1 = Hr − Hrss + Hpol − Hpolss − Hg1 + Hg1ss

MrCpr + BwCppol
+ v1,

u2 = RM1 − RM1ss

Vg

+ v2,

(7.21)

where terms with the subscript ss are constants evaluated at the steady state and
v1, v2 are the external inputs that will allow stabilizing the resulting closed-loop
system (see Eq. (7.22)) below. Under the control law of Eq. (7.21), the dynamics of
the states, T and [M1], take the following form in the closed-loop system:

d[M1]
dt

=
(

FM1 − [M1]
[M1] + [In]bt − RM1ss

)
1

Vg

+ v2,

dT

dt
= Hf + Hg1ss − Hg0 − Hrss − Hpolss

MrCpr + BwCppol
+ v1 + d1.

(7.22)

It can be seen that these states only depend on [In], [M1], and T . The closed-
loop system under the controller of Eq. (7.20) has a reduced incidence graph with
three nodes q1, q2, and q3 corresponding to the three partially decoupled subsys-
tems X1 = {[In], [M1], T }, X2 = {Y1, Y2}, and X3 = {Tg1, Tw1}, respectively. The
resulting isolability graph for the closed-loop system is shown in Fig. 7.15. This
structure leads to each of the three faults d1, d2, and d3 having unique signatures
W 1 = [1 1 1]T , W 2 = [0 1 0]T , and W 3 = [0 0 1]T and allows fault detection and
isolation in the closed-loop system using the presented data-based FDI scheme. In
open-loop operation, the system has an unstable steady-state with a limit-cycle as
shown by [58]. In order to understand the stability properties of the entire closed-
loop system, the stability of each subsystem around its equilibrium point was inves-
tigated assuming that the remaining states were at their equilibrium points. It can be
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Fig. 7.15 Isolability graph
for the system of Eq. (7.18)

seen that both of the uncontrolled subsystems X2 = {Y1, Y2}, and X3 = {Tg1, Tw1}
are stable. This implies that to obtain a stable closed-loop system, the control inputs
v1, v2 have to be designed to stabilize the subsystem X1 = {[In], [M1], T }. In the
present example, two PI controllers are implemented that determine v1 and v2 to
regulate each state independently. By simulation, the PI controllers have been tuned
to stabilize the equilibrium point of the closed-loop system and achieve a reason-
able closed-loop response with regard to requested control action and response time.
Note that any controller that stabilizes subsystem X1 can be used. The main objec-
tive is to demonstrate the presented data-based FDI method. The PI controllers are
defined as follows:

v1(t) = K1

(
Tss − T + 1

τ1

∫ t

0
(Tss − T )dt

)
,

v2(t) = K2

(
[M1]ss − [M1] + 1

τ2

∫ t

0

([M1]ss − [M1]
)
dt

) (7.23)

with K1 = 0.005, K1 = 0.0075, τ2 = 1000, τ1 = 500. We will refer to the con-
troller defined by Eqs. (7.20), (7.21), and (7.23) as the “decoupling” controller. Ad-
ditionally, for comparison purposes, a controller is used that stabilizes the closed-
loop system, but does not take into account the isolability conditions of the presented
FDI method. Specifically, two PI controllers will be used to regulate T and M1. This
will be denoted as the “PI-only” control law. The inputs FM1 and Tfeed are defined
by Eq. (7.20), but in this case, u1 and u2 are evaluated by applying the PI controllers
of Eq. (7.23) with the same tuning parameters to the states T and M1.

The PI-only controller stabilizes the equilibrium point under normal operating
conditions, however, all the states are mutually dependent, or in other words the
reduced incidence graph consists of only one node. This implies that every fault
affects all the state trajectories, making isolation of the fault a difficult task. The
presented FDI scheme cannot be applied because the closed-loop system does not
satisfy the isolability conditions, i.e., all the system faults have the same signature.

Simulations have been carried out for several scenarios to demonstrate the effec-
tiveness of the presented FDI scheme in detecting and isolating the three faults d1,
d2, and d3. In all the simulations, sensor measurement and process noise were in-
cluded. The sensor measurement noise trajectory was generated using a sample time



156 7 Utilizing FDI Insights in Controller Design and PID Monitoring

Table 7.5 Polyethylene
reactor noise parameters σp σm φ

[In] 1E–3 5E–2 0

[M1] 1E–3 5E–2 0.7

Y 1E–3 1E–2 0.7

T 5E–3 5E–2 0.7

Tg1 5E–3 5E–2 0.7

Tw1 5E–3 5E–2 0.7

Fig. 7.16 Polyethylene reactor example. Distribution of normalized, fault-free operating data
compared with a normal distribution of the same mean and covariance

of ten seconds and a zero-mean normal distribution with standard deviation σM . The
autoregressive process noise was generated discretely as wk = φwk−1 + ξk , where
k = 0,1, . . . , is the discrete time step, with a sample time of ten seconds, φ is the
autoregressive coefficient, and ξk is obtained at each sampling step using a zero-
mean normal distribution with standard deviation σp . The autoregressive process
noise is added to the right-hand side of the differential equations for each state and
the sensor measurement noise is added to the measurements of each state. Sensor
measurement noise and process noise are evaluated independently for each state
variable. The process and sensor measurement noise for Y1 and Y2 are taken to be
equal. Table 7.5 provides the values of the noise parameters for each state of the
system of Eq. (7.18). The same assumptions regarding the multivariate normal dis-
tribution of the measured process data under closed-loop operation for the CSTR
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Fig. 7.17 Polyethylene reactor example. State trajectories of the closed-loop system under decou-
pling (solid) and PI-only (dashed) controllers with a fault d2 at t = 0.5 hr

example of Sect. 7.2.4.1 apply to this example. Figure 7.16 shows the distribution
of the state measurements over a long period of fault-free operation is approximately
Gaussian.

For each failure dk , two simulations have been carried out. One using the de-
coupling controller and another using the PI-only controller. Both simulations have
been carried out using the same sensor measurement and process noise trajecto-
ries. Starting from steady-state, the three different failures with values d1 = 10 K/s,
d2 = −0.002 mol/s, and d3 = 300 K/s were introduced at time t = 0.5 hr. These
failures are disturbances in the dynamics of T , Y , and Tg1 and represent changes in
the feed temperature, catalyst deactivation, and changes in the recycle gas flow rate,
respectively. Figures 7.17, 7.18, and 7.19 show the state trajectories of the closed-
loop system under the decoupling controller (solid line) and the PI-only controller
(dashed line) for each of the three possible faults. It can be seen that for the PI-only
controller, each time a fault occurs, all states deviate from the normal operating re-
gion around the equilibrium point. This makes isolation a difficult task. However,
the closed-loop state trajectories under the decoupling controller demonstrate that
when a given fault occurs, not all state trajectories are affected. The decoupling
of some states from given faults allows for the isolation of the faults based on the
T 2

i statistics. Specifically, the state trajectories of the closed-loop system under the
decoupling controller were monitored using the T 2 statistic based on all the states
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Fig. 7.18 Polyethylene reactor example. State trajectories of the closed-loop system under the
decoupling (solid) and PI-only (dashed) controllers with a fault d3 at t = 0.5 hr

Fig. 7.19 Polyethylene reactor example. State trajectories of the closed-loop system under the
decoupling (solid) and PI-only (dashed) controllers with a fault d1 at t = 0.5 hr
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Fig. 7.20 Polyethylene
reactor example. Statistics
T 2, T 2

1 , T 2
2 , and T 2

3 (solid)
with TUCL (dashed) of the
closed-loop system under the
decoupling controller with a
failure in d2 at t = 0.5 hr

Fig. 7.21 Polyethylene
reactor example. Statistics
T 2, T 2

1 , T 2
2 , and T 2

3 (solid)
with TUCL (dashed) of the
closed-loop system under the
decoupling controller with a
failure in d3 at t = 0.5 hr

of the system of Eq. (7.18) and the T 2
i statistic corresponding to each one of the

three subsystems X1, X2, and X3. All statistics were monitored using the single-
observation method (m = 1) with the upper control limit defined in Eq. (7.8) and
the covariance matrix, S, obtained from historical observations. As in the CSTR ex-
ample, simulations were also run using a multiple observation test statistic (m = 10).
This method showed similar results in terms of fault detection and isolation to the
ones of the single observation statistic and are not presented here for brevity.

Figures 7.20, 7.21, and 7.22 show the trajectories of T 2, T 2
1 , T 2

2 , and T 2
3 for each

different scenario along with the corresponding upper control limits. Each failure
is defined by a unique signature that can be isolated based on the monitored statis-
tics. Figure 7.20 shows the statistics corresponding to the simulation with a failure
in d2. The signature of d2 is W 2 = [0 1 0]T because the dynamics of the states corre-
sponding to X1 and X3 are not affected by fault d2, that is, there is no path from the
node corresponding to d2 to the nodes corresponding to X1 and X2 in the isolability
graph of the closed-loop system. Figure 7.20 clearly shows the fault occurring at
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Fig. 7.22 Polyethylene
reactor example. Statistics
T 2, T 2

1 , T 2
2 , and T 2

3 (solid)
with TUCL (dashed) of the
closed-loop system under the
decoupling controller with a
failure in d1 at t = 0.5 hr

Fig. 7.23 Polyethylene
reactor example. Manipulated
input profiles for both
decoupling (solid) and
PI-only (dashed) control with
a fault in d2 at t = 0.5 hr

time t = 0.5 hr and the signature that we would expect, that is, only T 2
2 violates the

upper control limit. The state trajectories of this faulty scenario of Fig. 7.17 demon-
strates that there is a failure affecting Y starting at t = 0.5 hr. The failure affects
all the state trajectories under PI-only control but affects only Y for the closed-loop
system under nonlinear decoupling control. Similarly, a failure in Tg1 affects only
subsystem X3. The state trajectories of Fig. 7.18 shows that under PI-only control,
all of the states are affected, whereas under decoupling control, only the subsystem
X3 = {Tg1, Tw1} is affected. The statistics in Fig. 7.21 show that the signature of the
fault is [0 0 1]T = W 3. The signature of fault d1 is W 1 = [1 1 1]T , meaning that
this fault affects all the states in the closed-loop system. The state trajectories and
the corresponding statistics are shown in Fig. 7.19 and Fig. 7.22. The control action
required under the decoupling control law is on the same order of magnitude as that
of the PI-only controller. Figure 7.23 shows the manipulated input trajectories for
both controllers in the scenario with fault d2 occurring.
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Remark 7.10 Although the method of determining faults by monitoring T 2
i values

was used in this example, other FDI methods could benefit from the fact that the en-
forced structure separates regions of faulty operation. In the case where the desired
structure is only partially achieved due to plant-model mismatch or other uncertain-
ties, it may be necessary to utilize more sophisticated methods of fault detection
and isolation (e.g., contribution plots or clustering). It should be noted that even an
incomplete decoupling will benefit many of these methods as the regions of faulty
operation are still at least partially separated.

7.3 Using FDI for Controller Performance Monitoring

In this part of the chapter, we consider nonlinear process systems with constraints
on the inputs described by the following state-space model:

ẋ(t) = f
(
x(t)

) + G
(
x(t)

)
ua(t) + w(t), (7.24)

where x(t) ∈ R
nx is an nx -element column vector representing nx states of the sys-

tem, ua(t) ∈ U ⊆ R
mu is an mu-element column vector representing mu inputs to

the system, and w(t) ∈ W ⊆ R
nx is an nx -element column vector representing the

process noise to the system. U is a convex set, f (·) is a non-linear sufficiently
smooth vector function, and G(·) is a nx × mu matrix whose elements are suffi-
ciently smooth functions that relate the j th input to the ith state with 1 ≤ j ≤ mu

and 1 ≤ i ≤ nx . Without loss of generality, x = 0 is assumed to be the equilibrium
of the unforced system, i.e., ẋ(t) = 0 when x = 0, ua = 0, and w = 0.

Since the central focus of this part of the chapter is on the difference between the
requested actuation computed by the model-based controller and the actual actuation
level applied to the process by the control actuators, we shall distinguish the two
elements by calling the requested actuation um(t) and the actual actuation ua(t). The
results in this part of the chapter are illustrated using the LMPC design presented in
Sect. 2.8. One assumption about the design of the model-based control system used
is that it does not explicitly account for the dynamics of the control actuators and
the presence of the process noise. Therefore, the model used for the design of the
model-based control system assumes the following dynamics for the process:

˙̃x(t) = f
(
x̃(t)

) + G
(
x̃(t)

)
um(t), (7.25)

where um is the commanded actuation by the high-level MPC.
We make the following assumptions regarding the stability of the closed-loop

system. We assume that there exists a Lyapunov-based controller h(x̃) as well as a
corresponding Lyapunov function V (x) such that the origin of the nominal closed-
loop system under this controller, i.e., system of Eq. (7.25) with um(t) = h(x̃) ∀t ,
is asymptotically stable. The existence of the controller h(x̃) allows us to formulate
an LMPC that inherits the stability properties of h(x̃), and it is described by the
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following optimization problem:

min
uc∈S(Δ)

∫ NcΔ

0

[
x̂T (τ )Qx̂(τ ) + uT

c (τ )Ruc(τ )
]
dτ, (7.26a)

˙̂x(τ) = f
(
x̂(τ )

) + G
(
x̂(τ )

)
uc(τ ), (7.26b)

x̂(0) = x(tk), (7.26c)

uc(τ ) ∈ U, (7.26d)

∂V (x(tk))

∂x
G

(
x(tk)

)
uc(0) ≤ ∂V (x(tk))

∂x
G

(
x(tk)

)
h
(
x(tk)

)
, (7.26e)

where S(Δ) is the family of piece-wise constant functions with sampling period Δ,
Q, and R are strictly positive definite symmetric weighting matrices, x(tk) is the
process state measurement obtained at tk , x̂ is the predicted trajectory of the system
under the MPC, Nc is the number of steps in the prediction horizon, and V is the
Lyapunov function corresponding to the controller h(x̃).

The optimal solution to this optimization problem is denoted by u∗
c (τ |tk). The

LMPC is implemented following a receding horizon strategy; at each sampling time
tk , a new state measurement x(tk) is received from the sensors and the optimization
problem of Eq. (7.26a)–(7.26e) is solved, and u∗

c (0|tk) is sent to the actuators and it
is implemented for t ∈ [tk, tk+1].

As depicted in Fig. 7.2, um(t) is sent from the model-based controller as the
set-point to the control actuators. PID controllers are installed around these control
actuators to help accelerate the actuator’s response so that ua(t) can approach the
value of um(t) faster. Equation (7.27) below shows the relationship between um and
ua in the Laplace domain:

ua(s) = GpGc

1 + GpGc

um(s), (7.27)

where Gp is the actuator’s transfer function and Gc is the PID controller’s trans-
fer function. Gc contains 3 parameters: Kc (proportional gain), τI (integral time
constant), and τD (derivative time constant) and takes the following form:

Gc = Kc

(
1 + 1

τI s
+ τDs

)
. (7.28)

The transfer function of the actuator’s dynamics, Gp , on the other hand, can be
approximated as a first-order transfer function with dead time G′

p as follows:

G′
p = Kp

e−τd s

τps + 1
, (7.29)

where Kp is the actuator’s gain, τd is the actuator dead time, and τp is the actuator’s
time constant.
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The estimation of the actuator’s transfer function (G′
p) will be needed by the

FDI algorithm below when the actuator’s expected behavior is calculated and also
at the retuning step when a new set of PID parameters is calculated. The expected
actuation level (denoted by u′

a(t)) will be used as the benchmark upper limit of
how well the control actuators can perform. We note that the parameters of the PID
controller should be tuned in such a way that the low-level closed-loop response
(i.e., actuator under the PID controller) is fast relative to the sampling time of the
MPC controller such that the actual actuator output (control action implemented on
the process) is as close as possible to the control action requested by the MPC at
each sampling time. A rigorous analysis of this problem can be done using singular
perturbation techniques for two-time-scale processes.

Remark 7.11 Note that in the design of the LMPC of Eqs. (7.26a)–(7.26e) and its
closed-loop stability analysis, one assumption is that the requested actuation um(t)

is applied directly to the process by the control actuators. In a practical setting, how-
ever, um(t) has to go through the dynamics of the PID-controlled actuators before
the system is actuated with ua(t). The central focus of this work is on how to bring
ua(t) to be as close as possible to um(t). The relationship between ua(t) and um(t)

will be discussed in detail in the next section.

Remark 7.12 Though a Lyapunov-based MPC is used in this chapter as the model-
based control system to demonstrate how the problem of low-level PID monitoring
and retuning based on process state measurements can be approached, the moni-
toring and retuning methods presented here can be applied to any type of model-
based control system (i.e., geometric control or Lyapunov-based control discussed
in Chap. 2, distributed MPC [87, 88], etc.). Specifically, as long as the requested
actuation level um(t) and the process state measurements are available to the mon-
itoring and retuning system at all times, the same method presented in this work
can be applied to detect the deviation of the actual actuation level ua(t) from the
requested actuation level um(t).

7.3.1 Monitoring and Retuning of Low-Level PID Loops

We consider the case where there is no access by the monitoring system to the mea-
surements of the actual actuation levels ua(t) implemented by the control actuators
on the process. Therefore, the detection of poor PID tunings must be performed
based on the measurements of the states of the process. To this end, an FDI method
is used as the main tool to extract actuator behavior from the process state mea-
surements. Specifically, we use exponentially-weighted-moving-average (EWMA)
residuals to detect and isolate poorly-tuned PID loops. Once a poorly-tuned actu-
ator is isolated, a model-based tuning rule such as Cohen–Coon or internal model
control is applied to the PID controller that regulates the poorly-tuned actuator.

The residuals are constructed from the difference between the expected behavior
and the actual behavior of the plant. This is done by comparing the evolution of
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the actual system obtained from the state measurements against the evolution of the
ideal filtered states based on the plant model. The actual closed-loop system state
(x(t)) evolves in the following manner:

ẋ(t) = f
(
x(t)

) + G
(
x(t)

)
ua(t) + w(t),

ua(s) = GpGc

1 + GpGc

um(s),
(7.30)

where um(t) is the control action computed by the MPC and ua(t) is the actual ac-
tuation performed by the actuators. The filter state (x̆(t)), on the other hand, evolves
as follows:

˙̆xi(t) = fi

(
x̂i (t)

) + Gi

(
x̂i (t)

)
u′

a(t),

x̂i = [x1, . . . , xi−1, x̆i , xi+1, . . . , xnx ]T ,

u′
a(s) = G′

pG′
c

1 + G′
pG′

c

um(s),

x̆(NΔm) = x(NΔm), ∀N = 0,1,2, . . . ,

(7.31)

where Δm is the MPC sampling time, G′
p is the estimated transfer function matrix

of the control actuators, G′
c is a well-tuned PID controller transfer function matrix

based on the estimated model of the actuator G′
p . This makes u′

a(t) the expected
actuation level of ua(t).

Using Eq. (7.30) and Eq. (7.31), the real-time measurements of x(t) can be com-
pared against the evolution of x̆(t). The residual, or the difference between xi(t)

and x̆i (t) denoted by ri(t), is expressed in the following manner:

ri(t) = ∣∣x̆i (t) − xi(t)
∣∣. (7.32)

In the absence of noise and if G′
p = Gp , whenever the j th element of ua deviates

from its expected behavior u′
aj and the ith-row-j th-column element of the G(x)

matrix is nonzero, the ith residual (ri ) would instantaneously become nonzero. In
other words, ri is nonzero only when there is a problem with the actuators that
directly affect the ith state of the system (relative degree of 1) [112, 115].

In practice, however, model mismatch, process noise, and measurement noise
are always present to some degree. Therefore, in a practical setting, the residuals
will be nonzero regardless of the accuracy of the process model used in Eq. (7.31).
Thus, before the model-based FDI method can be used in practice, the effects of
process and measurement noise levels must first be recorded from fault-free closed-
loop process operation data (with both the PID controllers and the MPC being well-
tuned). On the basis of these noisy closed-loop system states, the mean and the
standard deviation of the residuals are calculated and the thresholds are determined.

Occasional noise spikes can make the residuals exceed the thresholds for a brief
period of time even when the actuators are functioning well; this can lead to the com-
mon problem of false alarms. To reduce the incidence of false alarms, we define a
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Fig. 7.24 Monitoring
scheme of PID response
behavior based on the
EWMA residuals of the
process state. Poor tuning is
declared after rE,i exceeds its
threshold ΩE,i continuously
for t = td

modified residual rE,i , i = 1, . . . , nx , for each residual ri , calculated at discrete time
instants tk with tk = t0 + kΔr, k = 0,1,2, . . . and Δr being the interval between
two consecutive state measurements. The weighted residual is calculated using an
exponentially weighted moving average (EWMA) method as follows [23, 24]:

rE,i(tk) = λri(tk) + (1 − λ)rE,i(tk−1) (7.33)

with rE,i(t0) = ri(t0) and the weighting factor λ ∈ (0,1]. The parameter λ deter-
mines the rate at which past data enters into the calculations of the weighted resid-
ual. When λ = 1, rE,i is equivalent to ri . The typical range of λ is between 0.2 and
0.5 depending on the desired level of sensitivity [24, 89]. Lower values of λ make
the rE(t) curve smoother as potential noise spikes will have a smaller effect on the
overall shape of the curve, i.e., instances of false alarm will be reduced. However, in
the event where an actual poor tuning occurs, it may be detected and isolated more
slowly.

The threshold, denoted by ΩE,i , for fault detection is defined as follows:

ΩE,i = μi + ασi

√
λ

2 − λ
, (7.34)

where α is a threshold parameter determining how sensitive the FDI is; a typical
value of α is an integer value between 1 and 5. The parameters μi and σi are the
mean and the standard deviation of the ith residual during normal operation. Once
rE,i exceeds the threshold (ΩE,i ) for a fixed amount of time td (determined by the
user), then poor tuning is declared in the actuator(s) directly affecting the ith state
and the retuning algorithm is activated. Figure 7.24 shows the schematic of how
the EWMA residuals are used to activate the PID retuning algorithm at the end of
waiting time td .

Once a poorly-tuned actuator is isolated, a PID tuning method can be applied
to the PID controller based on the estimated transfer function of the actuator G′

p .



166 7 Utilizing FDI Insights in Controller Design and PID Monitoring

To help ensuring the stability of the retuning algorithm, we employ a stability con-
straint. Specifically, whenever retuning is performed, the retuning algorithm makes

sure that
G′

pGc

1+G′
pGc

contains only strictly negative poles. In this work, we use Cohen–

Coon and internal model control method to retune the PID parameters to demon-
strate the approach. If desired, other model-based tuning rules may be used as well.
Please, see [149, 154, 165, 183] for other PID tuning methods.

Remark 7.13 One feature that should be noted is that the PID retuning will be initi-
ated if the magnitude of the residuals is above a certain threshold. This means that
even if the difference between uaj (t) and u′

aj (t) is appreciable but the difference
between x̆i (t) and xi(t) is smaller than the threshold, the retuner will do nothing.
This is a direct result of the fact that the real value of ua(t) is unknown and has to
be estimated from the trajectories of the process states. A scenario like this can also
happen when Gij (·) is small.

Remark 7.14 The isolability structure of the system is also critical to the use of
the monitoring algorithm proposed here. If, from the patterns of the residuals, a
poorly-performing actuator cannot be isolated with high confidence (i.e., two actua-
tors have the same signature because they directly affect the same system state), then
all control actuators that may be poorly tuned should be retuned. In principle, it is
also possible to use empirical models from input-output data in the MPC design as
well as in the monitoring of the PID control loops. One potential problem of using
this approach is the difficulty of isolating which specific PID control loop is poorly
performing because input/output empirical models can not account for the coupling
between different process variables the way state-space first principles models do.

Remark 7.15 In the design of the filter of Eq. (7.31), a well-tuned PID controller,
G′

c, is assumed to be known and is used to calculate the benchmark performance
of the overall control system. In the case that G′

c is not known, the control action
computed by the MPC, um, can be used directly in the filter design (i.e., replace u′

a

by um in Eq. (7.31)) to obtain an estimate of the expected process state evolution.
Furthermore, once a poorly-tuned actuator is isolated, retuning of the parameters of
PID controller used in this actuator should be carried out to account for changes in
operation conditions as well as control actuator wear and tear over time.

7.3.2 Application to a Nonlinear Chemical Process Network

7.3.2.1 Process Description and Modeling

We demonstrate the PID monitoring and retuning methodology presented in the
previous section using a three-vessel reactor–separator chemical process network.
A schematic of the process is shown in Fig. 7.25. The first two vessels are assumed
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Fig. 7.25 Schematic of the
process. Two CSTRs and a
flash tank with recycle stream

Table 7.6 Process parameter
values T10 = 300, T20 = 300 K

F10s = 5, F20s = 5, Fr = 1.9 m3/hr

Q1s = 0, Q2s = 0, Q3s = 0 kJ/hr

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ/kmol

k1 = 3E6, k2 = 3E6 1/hr

�H1 = −5E4, �H2 = −5.3E4 kJ/kmol

Hvap = 5 kJ/kmol

Cp = 0.231 kJ/kg K

R = 8.314 kJ/kmol K

ρ = 1000 kg/m3

αA = 2, αB = 1, αC = 1.5, αD = 3 unitless

MWA = 50, MWB = 50, MWC = 50 kg/kmol s

to be ideal CSTRs, followed by a flash tank separator. There are two fresh feed
streams of pure reactant A of concentration CA10 to both reactors (with flow rates
F10 and F20 respectively) and a recycle stream (Fr ) from the flash tank to the first
reactor. Specifically, the overhead vapor from the flash tank is condensed and re-
cycled to the first CSTR, and the bottom product stream is removed. The effluent
of vessel 1 is fed to vessel 2 and the effluent from vessel 2 is fed to the flash tank.
Each vessel has an external heat input or heat removal system (Q1,Q2, and Q3).
The steady-state flow rate and heat input are denoted by F10s , F20s , Q1s ,Q2s , and
Q3s and their values are given in Table 7.6. There are two parallel chemical reac-
tions considered in this process; first, reactant A is converted to desired product B ,
and second, A is converted to undesired product C (referred to as reaction 1 and 2,
respectively). Under standard modeling assumptions, the dynamic energy and ma-
terial balance equations that can describe this process take the following form:

dT1

dt
= F10

V1
(T10 − T1) + Fr

V1
(T3 − T1) + Q1

ρCpV1
+ −(�H1)

ρCp

k1e
−E1
RT1 CA1

+ (−�H2)

ρCp

k2e
−E2
RT1 CA1, (7.35a)
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dCA1

dt
= F10

V1
(CA10 − CA1) + Fr

V1
(CAr − CA1) − k1e

−E1
RT1 CA1 − k2e

−E2
RT1 CA1,

(7.35b)

dCB1

dt
= −F10

V1
CB1 + Fr

V1
(CBr − CB1) + k1e

−E1
RT1 CA1, (7.35c)

dCC1

dt
= −F10

V1
CC1 + Fr

V1
(CCr − CC1) + k2e

−E2
RT1 CA1, (7.35d)

dT2

dt
= F1

V2
(T1 − T2) + F20

V2
(T20 − T2) + Q2

ρCpV2
+ (−�H1)

ρCp

k1e
−E1
RT2 CA2

+ (−�H2)

ρCp

k2e
−E2
RT2 CA2, (7.35e)

dCA2

dt
= F1

V2
(CA1 − CA2) + F20

V2
(CA20 − CA2) − k1e

−E1
RT2 CA2 − k2e

−E2
RT2 CA2,

(7.35f)

dCB2

dt
= F1

V2
(CB1 − CB2) − F20

V2
CB2 + k1e

−E1
RT2 CA2, (7.35g)

dCC2

dt
= F1

V2
(CC1 − CC2) − F20

V2
CC2 + k2e

−E2
RT2 CA2, (7.35h)

dT3

dt
= F2

V3
(T2 − T3) − HvapFr

ρCpV3
+ Q3

ρCpV3
, (7.35i)

dCA3

dt
= F2

V3
(CA2 − CA3) − Fr

V3
(CAr − CA3), (7.35j)

dCB3

dt
= F2

V3
(CB2 − CB3) − Fr

V3
(CBr − CB3), (7.35k)

dCC3

dt
= F2

V3
(CC2 − CC3) − Fr

V3
(CCr − CC3), (7.35l)

where T1, T2, and T3 are the temperatures of vessels 1, 2, and 3, respectively, T10

and T20 are the temperatures of the feed streams to vessels 1 and 2, respectively,
F10 and F20 are the volumetric feed flow rates into vessels 1 and 2, respectively, and
F1 and F2 are the volumetric flow rates out of vessels 1 and 2, respectively. Fr is
the recycle stream volumetric flow rate from vessel 3 to vessel 1. V1, V2, and V3

are the volumes of the three vessels, Q1, Q2, and Q3 are the heat inputs into the
vessels, CA1, CB1, CC1, CA2, CB2, CC2, CA3, CB3, and CC3 are the concentrations
of A, B, and C in the vessels 1, 2, and 3, respectively, CAr , CBr , and CCr are the
concentrations of A, B, and C in the recycle stream. ρ is the mass density of the
reacting fluid, Cp is the heat capacity of the reacting fluid, k1 and k2 are the reaction
rate constants of reactions 1 and 2, respectively, E1 and E2 are the activation energy
of reactions 1 and 2, respectively, �H1 and �H2 are the enthalpies of reactions 1



7.3 Using FDI for Controller Performance Monitoring 169

and 2, respectively, and Hvap is the heat of vaporization for the fluid in vessel 3.
Finally, R is the universal gas constant.

The composition of the flash tank recycle stream is described by Eqs. (7.36a)–
(7.36d) below, which assumes constant relative volatility for each species within the
temperature operating range. This assumption allows calculation of the composition
in the recycle stream relative to the composition of the liquid holdup in the flash
tank. Each tank is assumed to have static holdup and the reactions in the flash tank
are considered negligible. Specifically, we have:

CAr = αACA3

K
, (7.36a)

CBr = αBCB3

K
, (7.36b)

CCr = αCCC3

K
, (7.36c)

K = αACA3
MWA

ρ
+ αBCB3

MWB

ρ
+ αCCC3

MWC

ρ
+ αDxD, (7.36d)

where αA, αB, αC, and αD are the relative volatility constants of the three reacting
species along with the inert species D. MWA, MWB, and MWC, are the molecular
weights of the three reacting species. Finally, xD is the mass fraction of the inert
species D in the liquid phase of vessel 3. The values of the process parameters are
given in Table 7.6.

The system of Eqs. (7.35a)–(7.35l) is solved numerically using explicit Euler
method with a time step of Δp = 0.001 hr. Process and sensor measurement noise
are also used in the process simulation. The sensor measurement noise is gener-
ated using a zero-mean normal distribution with a standard deviation of 2.5 K for
the three temperature state measurements and 1 kmol/m3 for the nine concentra-
tion state measurements. The process noise is generated similarly and it is included
as an additive term in the right-hand-side of the ordinary differential equations of
Eqs. (7.35a)–(7.35l) with a zero-mean normal distribution and the same standard
deviation values used for the measurement noise. In all three vessels, the heat in-
puts are used as the manipulated variables for controlling the process network at the
operating steady-state. Therefore, the corresponding relative degrees of these vari-
ables with respect to the temperatures of the three vessels (reactor 1, reactor 2, and
separator) are all one, thereby allowing isolation of poor-tuning in each one of these
actuators from process measurements. In addition the second tank’s inlet flow rate
is chosen as another manipulated variable. The system has one unstable and two
stable steady states. The operating steady-state is the unstable steady-state shown in
Table 7.7.

We focus on the problem of monitoring and retuning of the PID controllers used
to regulate the three heat input control actuators to each of the vessels: Q1, Q2, Q3,
at the values computed by the MPC in each sampling time. In order to calculate the
benchmark performance for each actuator (u′

a(s)) and a new set of PID parameters
when PID retuning is needed, a first-order approximation of the transfer function
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Table 7.7 Operating
steady-state (xs ) T1 370 K

CA1 3.32 kmol/m3

CB1 0.17 kmol/m3

CC1 0.04 kmol/m3

T2 435 K

CA2 2.75 kmol/m3

CB2 0.45 kmol/m3

CC2 0.11 kmol/m3

T3 435 K

CA3 2.88 kmol/m3

CB3 0.50 kmol/m3

CC3 0.12 kmol/m3

of the actuator (G′
p) must be computed. In this example, all actuator dynamics are

modeled with first-order transfer functions with time delay. All actuators have the
same time constant (τp) of 2.82 seconds and time delay (τd ) of 3.60 seconds, re-
sulting in the following transfer function:

Gactuator = e−3.60s

2.82s + 1
. (7.37)

The control action computed by the MPC is sent to the control actuators every
Δm = 0.01 hr. Thus, at every sampling time t = NΔm, N = 0,1,2, . . . , the low-
level PID controllers take the MPC command (um(t)) as the set-point and drive
the actual actuation level (ua(t)) to the set-point under the following closed-loop
dynamics:

ua(s) = GpGc

1 + GpGc

um(s).

We choose the following parameters for PID monitoring and retuning. We pick
the EWMA parameter λ to be 0.2. The EWMA residual threshold parameter α is
chosen to be 5. The waiting time for fault isolation based on the EWMA residual is
set to be td = 0.01 hr.

For the actuators with the transfer function presented in Eq. (7.37), the PID pa-
rameters that give the best closed-loop response were found to be the following:

K∗
c = 0.648,

τ ∗
I = 5.94 s,

τ ∗
D = 0.54 s.

(7.38)

These parameters were used to calculate G′
c. The poles of

G′
pG′

c

1+G′
pG′

c
calculated

with the parameters above are found to be all negative. This, in conjunction with the
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Fig. 7.26 Example 1:
Requested actuation level by
the MPC (um(t)) and actual
actuation level (ua(t)) when
PID retuning is not
implemented

approximate transfer function (G′
p) of the actuators of Eq. (7.37), was then used to

approximate the ideal actuation performance (u′
a(s)) of each control actuator.

7.3.2.2 Simulation Results

In the following two examples, we will illustrate how PID monitoring and retuning
are applied to the system.

Example 1 In this example, we start the process from the following initial condi-
tion: x(0) = 0.8xs where xs is the operating steady-state. All the control actuators
are properly tuned with the PID parameters shown in Eq. (7.38). At time t = 0.45 hr,
we apply poor tuning to the PID controller for the actuator Q1 with the following
parameters:

Kc = 0.00909,

τI = 11.9 s,

τD = 0.655 s.

(7.39)

Figure 7.26 shows the comparison between the requested actuation level um(t)

and the actual actuation level ua(t) for Q1 if the monitoring and retuning sys-
tem is inactive. The EWMA residuals of the temperature in 3 vessels are shown
in Fig. 7.27.

With the monitoring system active, Fig. 7.28 shows the evolution of PID response
ua(t) as it is retuned at t = 0.475 hr. As shown in Fig. 7.29, at t = 0.465 hr, rE,T1

starts exceeding its threshold ΩE,T1 . At this point, the value of rE,T1 starts being
monitored closely for td = 0.01 hr. By the time the system reaches t = 0.475 hr, the
value of rE,T1 is found to have been above its threshold ΩE,T1 for the entire duration
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Fig. 7.27 Example 1:
Temperature residuals for the
3 vessels computed via
EWMA when PID retuning is
not implemented. The dashed
lines represent the EWMA
residual thresholds ΩE,i

Fig. 7.28 Example 1:
Requested actuation level by
the MPC (um(t)) and actual
actuation level (ua(t)) when
PID retuning is implemented

from t = 0.465 hr to t = 0.475 hr. Because the process state T1 is the only state that
is directly affected by the control actuator Q1, given the model-based FDI filter
design, any anomaly detected in rE,T1 is the result of a problem with the Q1 control
actuator. Therefore, the actuator Q1 can be isolated with high confidence as the
actuator with poor PID tuning. While other residuals (rE,T2 and rE,T3 ) occasionally
exceed their thresholds at various time instances during the operation, they do not
exceed the thresholds for longer than td = 0.01 hr. Thus, the monitoring system
concludes that their values exceed their thresholds simply because of process and
measurement noise.

Once the Q1 control actuator is isolated as the poorly-tuned actuator, Cohen–
Coon tuning method is applied to the controller around Q1 based on the estimated
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Fig. 7.29 Example 1:
Temperature residuals for the
3 vessels computed via
EWMA when PID retuning is
implemented. The dashed
lines represent the EWMA
residual thresholds ΩE,i

transfer function of the control actuator G′
p . The Cohen–Coon tuning rule is based

on the first-order-plus-dead-time estimation of the transfer function of the controlled
process. Specifically, the Cohen–Coon tuning rule is as follows [31]:

Kc = τp

Kpτd

(
4

3
+ τd

4τp

)
, (7.40a)

τI = τd

32 + 6 τd

τp

13 + 8 τd

τp

, (7.40b)

τD = τd

4

11 + 2 τd

τp

, (7.40c)

where Kp is the actuator’s gain, τd is the actuator dead time, and τp is the actua-
tor’s time constant. With this tuning rule and the estimated transfer function of the
actuator G′

p presented in Eq. (7.37), the resulting parameters for the PID of Q1 are
as follows:

Kc = 1.29,

τI = 6.15 s,

τD = 1.06 s.

(7.41)

After Q1 is retuned, no more problem can be detected from the EWMA
residuals of T1. In terms of the actual control actuator performance, after be-
ing retuned with Cohen–Coon method, ua(t) tracks um(t) quite well; please, see
Fig. 7.28.

Example 2 In this example, we will use internal model control tuning rule [149]
to tune the PID parameters. We initialize the process model from the following
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Fig. 7.30 Example 2:
Requested actuation level by
the MPC (um(t)) and actual
actuation level (ua(t)) when
PID retuning is not
implemented

initial condition: x(0) = 0.8xs where xs is the operating steady-state. All PID con-
trollers start out being properly tuned with the parameters presented in Eq. (7.38).
At time t = 0.1 hr, a poor PID tuning with the following parameters:

Kc = 6.48,

τI = 0.594 s,

τD = 5.40 s

(7.42)

is applied to the PID controller for the control actuator Q3. Figure 7.30 shows that
the tuning of the PID controller for Q3 causes ua(t) to oscillate significantly. Fig-
ure 7.31 shows the EWMA residuals of the temperature of the 3 vessels when PID
retuning is not implemented.

With the monitoring system implemented, Fig. 7.32 shows that rE,T3 is found to
start exceeding its threshold ΩE,T3 at t = 0.206 hr. After waiting for td = 0.01 hr,
rE,T3 is found to have been continuously above its threshold until t = 0.216 hr.
Because Q3 is the only actuator that has relative degree 1 with the process state T3,
at t = 0.216 hr the monitoring system isolates Q3 and declares that Q3 is poorly
tuned. As a result, at t = 0.216 hr, a set of PID parameters is calculated via internal
model control tuning method based on the estimated transfer function of the control
actuator G′

p . For a tuning with fast PID step response, internal model control tuning
rule suggests the following PID parameters for processes that can be approximated
with first-order-plus-dead-time transfer function [149]:

Kc = τp

2Kpτd

, (7.43a)

τI = min(τp,8τd), (7.43b)

τD = 0, (7.43c)
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Fig. 7.31 Example 2:
Temperature residuals for the
3 vessels computed via
EWMA when PID retuning is
not implemented. The dashed
lines represent the EWMA
residual thresholds ΩE,i

where Kp is the actuator’s gain, τd is the actuator dead time, τp is the actuator’s
time constant. This results in the following PID parameters:

Kc = 0.392,

τI = 2.82 s,

τD = 0 s.

(7.44)

Figure 7.33 shows the resulting actual actuation level (ua(t)) of Q3. Though
poor PID tuning is applied at t = 0.1 hr, its effect in terms of PID response of
the control actuator is observed at t = 0.185 hr when the step change happens. In
terms of detecting this oscillation pattern from the process sate measurements, this
is detected and isolated at t = 0.216 hr and the PID parameters of Q3 are retuned.

Notice in Fig. 7.31 that the magnitude of the residuals of the directly-affected
process state (rE,T3 in this case) is much lower than rE,T1 in Example 1 (shown in
Fig. 7.27). This is because the poor PID tuning problem in this example results in an
actuator oscillation (ua(t)) that oscillates with very high frequency around the set-
point (um(t)). In terms of the process states, this leads to a smaller overall deviation
of the actual process state (x(t)) from the expected process state (x̆(t)). This is why
there is a slightly larger time lag between the initial time when ua(t) starts deviating
from um(t) and the time when the poor tuning is isolated, compared to Example 1.

Remark 7.16 While the mean and standard deviation of the residuals are calculated
in the presence of process noise under normal operation at the desired steady-state,
the applicability of the proposed dynamic filter for computing the residuals together
with real-time state variable measurements is not limited to steady-state operation;
the reason is the design of the proposed dynamic filter which can accurately predict
normal evolution of the process state variables away from the steady-state in the
closed-loop system, thereby leading to the computation of residual values that are
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Fig. 7.32 Example 2:
Temperature residuals for the
3 vessels computed via
EWMA when PID retuning is
implemented. The dashed
lines represent the EWMA
residual thresholds ΩE,i

Fig. 7.33 Example 2:
Requested actuation level by
the MPC (um(t)) and actual
actuation level (ua(t)) when
PID retuning is implemented

valid for process operation away from the steady-state (note that the initial condition
in the example is not chosen to be the steady-state).

7.4 Conclusion

This chapter presented methods for utilizing FDI concepts for controller design as
well as controller performance monitoring. The first approach strengthens existing
FDI techniques by enforcing an appropriate structure on the closed-loop system that
may separate regions of faulty operation in the state-space such that fault isolation
may become possible. This was illustrated through two chemical process examples,
a CSTR example and a polyethylene reactor example. By carefully designing the
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feedback controller, it was demonstrated that it is possible to enhance the isola-
bility of particular faults. In the CSTR example, feedback linearization was used
to achieve the required closed-loop system structure in order to perform fault de-
tection and isolation, whereas in the polyethylene reactor example, a more general
approach to nonlinear controller design was used in meeting the required conditions
for isolability. Additionally, it was demonstrated that using a data-based method of
monitoring the T 2 values of the resulting subsystems, it was possible to isolate cer-
tain faults due to the enforced closed-loop system structure. In the second part of
the chapter, we focused on the problem of monitoring and retuning of low-level PID
control loops used to regulate control actuators to the values computed by advanced
model-based control systems like MPC. Focusing on the case where the real-time
measurement of the actuation level is unavailable, we use process state measure-
ments and process models to carry out PID controller monitoring and compute ap-
propriate residuals. Once a poorly-tuned PID controller is detected and isolated, a
PID tuning method based on the estimated transfer function of the control actuator
was applied to retune PID controller. The proposed method was applied to a non-
linear reactor-separator process operating under MPC control with low-level PID
controllers regulating the control actuators and its performance was successfully
evaluated via extensive simulations.



Chapter 8
Isolation and Handling of Sensor Faults

8.1 Introduction

In the earlier chapters, we considered the problem of handling actuator faults. Com-
pared to actuator faults, relatively fewer results for the problem of detecting, iso-
lating, and handling sensor faults are available for nonlinear systems. When sensor
faults are considered, observers are typically required to fully or partly recover the
system state. The design of observers, however, is a challenging problem for non-
linear systems. In the context of output feedback control, high-gain observers are
known to have good convergence properties and have been studied for continuous-
time systems (e.g., [11, 46, 51]) and sampled-data systems with uniform [32, 120]
and multiple [2] sampling rates. These results, however, rely on a special struc-
ture for the system to be in to begin with, or after an appropriate transformation.
To generalize the application of this type of observers, a model predictive control
formulation has been studied in [53], where the discrete nature of the control im-
plementation is exploited to relax the relatively restrictive system structure required
in the standard high-gain observer design. This generalization, however, is devel-
oped under the assumption of the locally Lipschitz continuity of the control input
in the system state. Note that this assumption is hard to verify, especially under
controllers such as model predictive control where the control law is not explicit
but results from the solution to an optimization problem. One of the contributions
of the present chapter is to generalize the design and applicability of the high-gain
observers under less restrictive and easily verifiable conditions, which also helps
satisfy the requirements of the filter design in the present approach.

Specifically, this chapter considers the problem of sensor FDI and FTC for non-
linear systems subject to input constraints. To this end, first results are presented that
generalize the design of high-gain observers for nonlinear systems. The presented
observer design is subject to less restrictive and easily verifiable assumptions com-
pared to the results in the literature (the analysis in the standard high-gain observer
design is not directly applicable to the system considered in this chapter due to the
differences in the system structures or the coordinate transformations). Specifically,
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it expands the class of nonlinear systems to which high-gain observers can be ap-
plied, without assuming the locally Lipschitz continuity of the control input in the
system state as required in [53]. Exploiting this increased applicability of the high-
gain observers, a fault isolation mechanism is designed by using a bank of high-
gain observers, and a novel residual generation method is proposed for FDI, which
is based on the comparison between the state estimates and their predictions using
previous estimates. While a similar isolation logic is presented algorithmically in
[99], where the nonlinear system is first approximated by a linear parameter varying
system, and there are other results that use the idea of a bank of observers in the
context of linear (or linear approximations of nonlinear) systems, the present results
provide a rigorous filter design and analysis that explicitly handles the presence of
nonlinearities and input constraints.

8.2 Preliminaries

Consider a multi-input multi-output nonlinear system described by

ẋ = f (x) + g(x)u,

y = h(x) + v(t),
(8.1)

where x ∈ R
n denotes the vector of state variables, u ∈ R

m denotes the vec-
tor of constrained input variables, taking values in a nonempty compact convex
set U ⊆ R

m that contains 0, y = [y1, . . . , yp]T ∈ R
p denotes the vector of out-

put variables, v = [v1, . . . , vp]T ∈ R
p denotes the fault vector for the sensors,

and g(x) = [g1(x), . . . , gm(x)]. In the control design, we consider the system of
Eq. (8.1) under fault-free conditions (i.e., v ≡ 0), which satisfies Assumption 8.1
below.

Assumption 8.1 The functions f : Rn → R
n and gi : Rn → R

n, i = 1, . . . ,m, are
C1 functions on their domains of definition, f (0) = 0, and the function h :Rn → R

p

is C1 on its domain of definition.

Instead of using a specific control law, the results in this chapter are developed
for any control law that satisfies Assumption 8.2 below.

Assumption 8.2 For the system of Eq. (8.1), there exists a control Lyapunov
function V : Rn → R, which is a C2 function on its domain of definition. Let
Ωc = {x ∈ R

n : V (x) ≤ c} denote the stability region of the closed-loop system
obtained under a state feedback control law uc : Ωc → U . Furthermore, there ex-
ists a class K function α : [0, c) → [0,∞) such that for any x ∈ Ωc, the following
inequality holds:

Lf V (x) + LgV (x)uc(x) ≤ −α
(
V (x)

)
, (8.2)

where LgV (x) = [Lg1V (x), . . . ,LgmV (x)].
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Remark 8.1 Assumption 8.2 requires that the input prescribed by the controller
should be able to make the derivative of the control Lyapunov function negative
for any state, except for the origin, within the stability region obtained under the
state feedback control law. It encompasses feedback controllers under which the
origin is an asymptotically stable equilibrium point of the closed-loop system. It
also allows inclusion of model predictive control designs, for which an inequality
leading to Eq. (8.2) is used to guarantee practical stability of the closed-loop system
(e.g., [93, 95, 108, 110]).

We now present an assumption on the system structure that is suitable for high-
gain observer designs.

Assumption 8.3 (c.f. [53]) There exist integers ωi , i = 1, . . . , p, with
∑p

i=1 ωi = n,
and a coordinate transformation ζ = T (x,u) such that if u = ū, where ū ∈ U is a
constant vector, then the representation of the system of Eq. (8.1) in the ζ coordinate
takes the following form:

ζ̇ = Aζ + Bφ(x, ū),

y = Cζ,
(8.3)

where ζ = [ζ1, . . . , ζp]T ∈R
n, A = blockdiag[A1, . . . ,Ap], B = blockdiag[B1, . . . ,

Bp], C = blockdiag[C1, . . . ,Cp], φ = [φ1, . . . , φp]T, ζi = [ζi,1, . . . , ζi,ωi
]T, Ai =

[ 0 Iωi−1

0 0

]
, with Iωi−1 being the (ωi −1)× (ωi −1) identity matrix, Bi = [0T

ωi−1,1]T,

with 0ωi−1 being a vector of zeros of dimension ωi − 1, Ci = [1,0T
ωi−1], and

φi(x, ū) = φi,ωi
(x, ū), with φi,ωi

(x, ū) defined through the successive differen-

tiation of hi(x): φi,1(x, ū) = hi(x) and φi,j (x, ū) = ∂φi,j−1
∂x

[f (x) + g(x)ū], j =
2, . . . ,ωi . Furthermore, the functions T : Rn × U → R

n and T −1 : Rn × U → R
n

are C1 functions on their domains of definition.

Remark 8.2 Note that the system structure requirement on high-gain observer de-
signs as described in Assumption 8.3 is less restrictive than those in literature (e.g.,
[11, 46, 95]). In particular, the input information can be used in the coordinate trans-
formation, which is assumed to be known (see [53] for a more general assumption,
where the derivatives of the input variables are possibly non-zero). In contrast, the
standard high-gain observer design requires that it be possible to transform the orig-
inal system into a similar form to Eq. (8.3) by using a coordinate transformation
without the involvement of the input.

We next present the output feedback control design, where the input is prescribed
at discrete times tk = kΔ, k = 0, . . . ,∞, with Δ being the hold-time of the control
action. For t ∈ [tk, tk+1), consider the following output feedback controller using
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high-gain observers:

˙̂
ζ = Aζ̂ + Bφ0

(
x̂, u(tk)

) + H(y − Cζ̂ ),

ζ̂ (tk) = T
(
x̂(tk), u(tk)

)
,

u = uc

(
sat

(
x̂(tk)

))
for all t ∈ [tk, tk+1),

(8.4)

where x̂ and ζ̂ denote the estimates of x and ζ , respectively, H = blockdiag[H1, . . . ,

Hp] is the observer gain, Hi = [ ai,1
ε

, . . . ,
ai,ωi

εωi ]T, with sωi +ai,1s
ωi−1 +· · ·+ai,ωi

=
0 being a Hurwitz polynomial and ε being a positive constant to be specified, and
x̂(tk) = T −1(ζ̂ (t−k ), u(tk−1)) for k = 1, . . . ,∞. The initial state of the observer is
denoted by x̂0 := x̂(0), which takes values from any compact set Q ⊆ R

n. In the
transformed coordinate, the state estimate in the ζ coordinate is re-initialized at
discrete times to account for the possible changes in the input. A saturation function
is used to scale back the estimate (passed to the controller) to lie within the state
feedback stability region (to prevent the peaking phenomenon and enable using the
state feedback control law designed for the same region), which is defined as sat(x̂):

x̂ for x̂ ∈ Ωc, (8.5)

βx̂ for x̂ /∈ Ωc, (8.6)

where β ∈ (0,1) is a scaling factor such that V (βx̂) = c and the computation of β

is specific to the choice of the control Lyapunov function. For a quadratic control
Lyapunov function, it may be computed as follows:

β =
√

c

V (x̂)
. (8.7)

The function φ0 is a nominal model of φ used in the observer design. The following
analysis (see Proposition 8.1 below) requires the global boundedness of φ0. If φ

is known, but not globally bounded, the global boundedness of φ0 can always be
achieved by bounding φ outside a compact set of interest. To this end, the function
φ0 is required to satisfy the following assumption.

Assumption 8.4 φ0(x,u) is a C0 function on its domain of definition and globally
bounded in x.

Let D = blockdiag[D1, . . . ,Dp], where Di = diag[εωi−1, . . . ,1], and define the
scaled estimation error e = D−1(ζ − ζ̂ ) ∈ R

n. For t ∈ [tk, tk+1), the scaled estima-
tion error evolves as follows:

εė = A0e + εB
[
φ
(
x,u(tk)

) − φ0
(
x̂, u(tk)

)]
,

e(tk) = D−1[T
(
x(tk), u(tk)

) − T
(
x̂(tk), u(tk)

)]
,

(8.8)
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where A0 = blockdiag[A0,1, . . . ,A0,p], A0,i = [
ai

Iωi−1

0T
ωi−1

]
, and ai = [−ai,1, . . . ,

−ai,ωi
]T.

Remark 8.3 The output feedback control design of Eq. (8.4) extends the class of
nonlinear systems to which high-gain observers can be applied. This is achieved by
utilizing the discrete nature of the control implementation under Assumption 8.3.
Specifically, the control input is determined at discrete times and this information is
available to the observer over each time interval. The design of high-gain observers
subject to the less restrictive system structure has been studied in [53], which as-
sumes the local Lipschitz continuity of the control input in the system state. This
assumption, however, is hard to verify, in particular for model predictive control
implementations, where the control input is obtained by solving a nonlinear opti-
mization problem for a given state and an explicit control law is not available. In
contrast, the assumptions used in this chapter can be verified algebraically. There-
fore, one of the contributions of the present chapter is that it generalizes the design
of high-gain observers subject to less restrictive and easily verifiable assumptions
for constrained nonlinear systems.

Applying the change of time variable τ = t
ε

and setting ε = 0, the boundary-layer
system is given by

de

dτ
= A0e. (8.9)

For the boundary-layer system, we define a Lyapunov function W(e) = eTP0e,
where P0 is the symmetric positive definite solution of the Lyapunov function
AT

0 P0 + P0A0 = −I . Let λmin and λmax denote the minimum and maximum eigen-
values of P0, respectively. In preparation to the presentation of the main results, we
first give the following proposition, which is similar to a result obtained in [11], and
hence stated without proof.

Proposition 8.1 Consider the system of Eq. (8.1), for which Assumptions 8.1, 8.3,
and 8.4 hold. If x0 := x(0) ∈ Ωb, where 0 < b < c, then given b′ ∈ (b, c), there
exists a finite time te, independent of ε, such that x(t) ∈ Ωb′ for all t ∈ [0, te]. Fur-
thermore, there exists σ > 0, independent of ε, such that for any e(t) ∈ Wo := {e ∈
R

n : W(e) ≥ σε2} and x(t) ∈ Ωc, the following equation holds:

Ẇ ≤ − 1

2ε
‖e‖2. (8.10)

Remark 8.4 Proposition 8.1 establishes a finite time (te) such that given an initial
condition within a subset of Ωb′ , the system state continues to reside in Ωb′ over this
time period (see Fig. 8.1). As a matter of fact, the same result holds for Ωc. The set
Ωb′ , a subset of Ωc , is used because in the next section, we will establish a result that
if the system state is within Ωb′ and the scaled estimation error is sufficiently small,
then the state estimate is also within Ωc . In addition, Proposition 8.1 establishes
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Fig. 8.1 Schematic of the stability region and the evolution of the closed-loop state trajectories
under fault-free (solid line) and faulty (dashed line) conditions. The notation Ωc denotes the stabil-
ity region obtained under state feedback control. For any initial condition x0 within Ωb , the state
estimate is guaranteed to converge before the system state goes outside Ωb′ . Subsequently, if a
fault is detected and isolated before the system state goes outside Ωb′′ (i.e., within the FDI time
window), the use of the state estimate generated using measurements from the remaining healthy
sensors guarantees practical stability of the closed-loop system (i.e., the system state converges to
a closed ball of radius d around the origin, which contains the set Ωδ )

a fact that over each time interval before the system state goes outside Ωb′ , the
derivative of the Lyapunov function (Ẇ ) remains negative if the scaled estimation
error is not within the neighborhood of the origin (or within Wo).

8.3 Practical Stability of the Closed-Loop System Under Output
Feedback Control

This section establishes the closed-loop property of the system under output feed-
back control and forms the basis for the sensor FDI design in the subsequent sec-
tion. To this end, consider the system of Eq. (8.1), for which Assumptions 8.1–8.4
hold, under the output feedback controller of Eq. (8.4). The stability property of the
closed-loop system is formalized in Theorem 8.1 below.

Theorem 8.1 Given any 0 < b < c and d > 0, there exist Δ∗ > 0 and ε∗ > 0
such that if Δ ∈ (0,Δ∗], ε ∈ (0, ε∗], and x0 ∈ Ωb , then x(t) ∈ Ωc ∀t ≥ 0 and
lim supt→∞ ‖x‖ ≤ d .

Proof The proof is divided into two parts. In the first part, we show that given
eb > 0, which is to be determined in the second part, there exists ε∗ > 0 such that
if ε ∈ (0, ε∗] and Δ ∈ (0, te], then the scaled estimation error e(t−k ) enters E := {e ∈
R

n : ‖e‖ ≤ eb} no later than the time te , which is defined in Proposition 8.1, and
stays in E thereafter as long as x(t) remains in Ωc. In the second part, we show that
for any d > 0, there exist e∗

b > 0 and Δ∗ > 0 such that if e(t−k ) ∈ E for some tk′ ≤ te ,
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eb ∈ (0, e∗
b], and Δ ∈ (0,Δ∗], then practical stability of the closed-loop system can

be established.
Consider Δ ∈ (0,Δ1] and ε ∈ (0, ε1], where Δ1 = te and ε1 =

√
γ
σ

, with 0 <

γ < min‖e‖=eb
W(e). In order to show that e(t−k ) converges to E , we only need to

show that it converges to Wi := {e ∈ R
n : W(e) ≤ σε2}.

Part 1: We first show that e(t−k ) reaches Wi no later than the time te. Let N be the
largest integer such that NΔ ≤ te . It follows from Proposition 8.1 that if tk+1 ≤ te ,
k = 0, . . . ,N − 1, then for any e ∈ Wo and t ∈ [tk, tk+1), we have

Ẇ ≤ − 1

2λmaxε
W. (8.11)

It follows that

W
(
e
(
t−k+1

)) ≤ e
− Δ

2λmaxε W
(
e(tk)

)
. (8.12)

Since T (x,u) and T −1(ζ, u) are locally Lipschitz in x and ζ , respectively, and

e(tk) = D−1[ζ(tk) − ζ̂ (tk)
]

= D−1[T
(
x(tk), u(tk)

) − T
(
x̂(tk), u(tk)

)]
, (8.13)

there exist L1,L2 > 0 such that the following equation holds:

∥
∥e(tk)

∥
∥ ≤ L1 max

{
1, ε1−ωmax

}∥∥x(tk) − x̂(tk)
∥
∥

= L1 max
{
1, ε1−ωmax

}∥∥T −1(ζ(tk−1), u(tk−1)
) − T −1(ζ̂ (tk−1), u(tk−1)

)∥∥

≤ L1L2 max
{
1, ε1−ωmax

}
max

{
1, εωmax−1}∥∥e

(
t−k

)∥∥

= L1L2η1(ε)
∥∥e

(
t−k

)∥∥,

(8.14)
where ωmax = maxi=1,...,p{ωi} and η1(ε) = ε(ωmax−1)sgn(ε−1). Let L̃1 = L1L2. It
follows from Eq. (8.12) and Eq. (8.14) that if e(t) ∈ Wo for all t ∈ [tk, tk+1), then
the following equation holds:

W
(
e(tk+1)

) ≤ λmax
∥∥e(tk+1)

∥∥2

≤ λmaxL̃
2
1

[
η1(ε)

]2∥∥e
(
t−k+1

)∥∥2

≤ λmax

λmin
L̃2

1

[
η1(ε)

]2
e
− Δ

2λmaxε W
(
e(tk)

)
. (8.15)

Note that once e(t) reaches W1, it stays there at least until the end of the same
time interval. Since T (x,u) is continuous, for any x0 ∈ Ωb and x̂0 ∈Q, there exists
K1 > 0 such that

∥∥e(0)
∥∥ ≤ K1η2(ε), (8.16)
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where η2(ε) = max{1, ε1−ωmax}. To guarantee that e(t−k ) reaches Wi by the time tN ,
it is required that the following equation hold:

λmax

λmin
L̃2

1

[
η1(ε)

]2
e
− Δ

2λmaxε ≤
{

σε2

λmaxK
2
1 [η2(ε)]2

} 1
N

. (8.17)

Rearranging the above equation gives

[η1(ε)]2N [η2(ε)]2

ε2
e
− NΔ

2λmaxε ≤ σ

λmaxK
2
1

(
λmin

λmaxL̃
2
1

)N

. (8.18)

Since the left-hand side of the above inequality is continuous in ε and tends to zero
as ε tends to 0, there exists ε2 > 0 such that if ε ∈ (0, ε2], then Eq. (8.17) holds.

We then show that after the scaled estimate error e(t−k ) reaches Wi , it stays there
as long as x(t) stays in Ωc. Note that given e(t−k ) ∈Wi , it is possible that e(tk) goes
outside Wi due to the re-initialization to the system state and its estimate in the ζ

coordinate. It follows from Eq. (8.14) that if e(t−k ) ∈Wi , then ‖e(tk)‖ ≤ L̃1η1(ε)eb .
To guarantee that e(t−k+1) stays in Wi , it is required that the following equation

hold:

e
− Δ

2λmaxε ≤ σε2

λmaxL̃
2
1[η1(ε)]2e2

b

. (8.19)

It can be shown that there exists ε3 > 0 such that if ε ∈ (0, ε3], then Eq. (8.19) holds.
In the first part of the proof, it is established that for ε ∈ (0, ε∗], where ε∗ =

min{ε1, ε2, ε3}, e(t−k ) enters E in some finite time tk′ ≤ tN ≤ te, where tk′ denotes
the earliest time tk such that e(t−k ) ∈ E , and stays in E thereafter as long as x(t)

remains in Ωc. In addition, x(t) ∈ Ωc ∀t ∈ [0, tk′ ].
Part 2: We first show that if the system state resides within a subset of Ωc and

the scaled estimation error is sufficiently small, then the state estimate also resides
within Ωc. It follows from the first part of the proof that we have

‖x − x̂‖ = ∥∥T −1(ζ, u) − T −1(ζ̂ , u)
∥∥ ≤ L2η3(ε)‖e‖ ≤ L2η3(ε1)‖e‖, (8.20)

where η3(ε) = max{1, εωmax−1}. It can be shown that given 0 < δ1 < δ2, there exists
ẽ > 0 such that if eb ∈ (0, ẽ], then V (x̂) ≤ δ1 implies V (x) ≤ δ2. It follows from
Proposition 8.1 that given b′ ∈ (b, c), we have that x(tk′) ∈ Ωb′ . Therefore, there
exists eb,1 > 0 such that if eb ∈ (0, eb,1], then x̂(tk′) ∈ Ωc.

We then show the existence of e∗
b > 0 and Δ∗ > 0 such that if eb ∈ (0, e∗

b] and
Δ ∈ (0,Δ∗], then any state trajectory originating in Ωb′ at time tk′ converges to a
closed ball of radius d around the origin. Since V (x) is a continuous function of
the state, one can find a positive real number δ < b′ such that V (x) ≤ δ implies
‖x‖ ≤ d . Let δ̂ be a positive real number such that 0 < δ̂ < δ. If eb ∈ (0, eb,1], the
state estimate at time tk′ can either be such that δ̂ < V (x̂(tk′)) ≤ c or V (x̂(tk′)) ≤ δ̂.

Case 1: Consider x̂(tk) ∈ Ωc\Ωδ̂
. For this case, we have

Lf V
(
x̂(tk)

) + LgV
(
x̂(tk)

)
u(tk) ≤ −α

(
V

(
x̂(tk)

))
< −α(δ̂).
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It follows from the continuity properties of f (·), g(·), and V (·) that Lf V (·) and
LgV (·) are locally Lipschitz on the domain of interest. Therefore, there exists
L3 > 0 such that

∣∣Lf V
(
x(tk)

) + LgV
(
x(tk)

)
u(tk) − Lf V

(
x̂(tk)

) − LgV
(
x̂(tk)

)
u(tk)

∣∣

≤ L3
∥∥x(tk) − x̂(tk)

∥∥

≤ L2L3η3(ε1)
∥∥e

(
t−k

)∥∥. (8.21)

Since the functions f (·) and g(·) are continuous, u is bounded, and Ωb′ is bounded,
one can find K2 > 0 such that ‖x(t) − x(tk)‖ ≤ K2Δ for any Δ ∈ (0,Δ1], x(tk) ∈
Ωb′ and t ∈ [tk, tk + Δ). It follows that ∀t ∈ [tk, tk + Δ), the following equation
holds:

V̇
(
x(t)

) = Lf V
(
x̂(tk)

) + LgV
(
x̂(tk)

)
u(tk) + [

Lf V
(
x(t)

) + LgV
(
x(t)

)
u(tk)

− Lf V
(
x(tk)

) − LgV
(
x(tk)

)
u(tk)

] + [
Lf V

(
x(tk)

) + LgV
(
x(tk)

)
u(tk)

− Lf V
(
x̂(tk)

) − LgV
(
x̂(tk)

)
u(tk)

]

< −α(δ̂) + L3K2Δ + L2L3η3(ε1)
∥∥e

(
t−k

)∥∥. (8.22)

Consider Δ ∈ (0,Δ2], where Δ2 = α(δ̂)
3L3K2

, and eb ∈ (0, eb,2], where eb,2 =
α(δ̂)

3L2L3η3(ε1)
. Then, we have

V̇
(
x(t), u(t)

)
< −1

3
α(δ̂) < 0. (8.23)

Since V̇ (x(t)) remains negative over [tk, tk + Δ), x(t) remains in Ωc over the same
time interval, and V (x(tk + Δ)) < V (x(tk)).

If x̂(t ′k) ∈ Ωc\Ωδ̂
, we have V̇ (x(t)) < 0 over [tk′ , tk′ + Δ). It follows that

x̂(tk′+1) ∈ Ωc for eb ∈ (0, eb,1]. Similarly, it can be shown that for tk > tk′ , V̇ (x(t))

remains negative until x̂(tk) reaches Ω
δ̂
.

Case 2: Consider x̂(tk) ∈ Ω
δ̂
. Let δ′ be a positive real number such that δ̂ <

δ′ < δ. There exists eb,3 > 0 such that if eb ∈ (0, eb,3], then V (x̂) ∈ Ω
δ̂

implies
V (x) ∈ Ωδ′ and {x ∈ R

n : ‖x − x̂‖ ≤ L2η3(ε1)eb,3 ∀x̂ ∈ Ω
δ̂
} ⊂ Ωδ . Since V (x) is

continuous, and x evolves continuously in time, there exists Δ3 > 0 such that for
x(tk) ∈ Ωδ′ , if Δ ∈ (0,Δ3], then V (x(t)) ≤ δ for any t ∈ [tk, tk +Δ). If Δ ∈ (0,Δ3],
we have x(tk+1) ∈ Ωδ . It follows that x̂(tk+1) ∈ Ωc for eb ∈ (0, eb,1].

For eb ∈ (0, e∗
b] and Δ ∈ (0,Δ∗], where e∗

b = min{eb,1, eb,2, eb,3} and Δ∗ =
min{Δ1,Δ2,Δ3}, it can be shown by iteration that any state trajectory originating
in Ωb′ at time tk′ converges to the set Ωδ , and hence converges to the closed ball of
radius d around the origin.

In the second part of the proof, it is established that for any d > 0 there exists
e∗
b > 0 and Δ∗ > 0 such that if e(t−

k′ ) ∈ E , eb ∈ (0, e∗
b], and Δ ∈ (0,Δ∗], then x(t) ∈

Ωc ∀t ≥ tk′ and lim supt→∞ ‖x‖ ≤ d .
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Fig. 8.2 Schematic of the evolution of the scaled estimation error. E is the terminal set and Wi

is the level set of the Lyapunov function contained in E . Note that after convergence, while jumps
resulting from input changes may drive the estimation error outside E (see the dotted lines), by the
end of each interval, the estimation error is guaranteed to be within E (see the solid lines)

In summary, it is shown that given any 0 < b < c and d > 0, there exist Δ∗ > 0
and ε∗ > 0 such that if Δ ∈ (0,Δ∗], ε ∈ (0, ε∗], and x0 ∈ Ωb , then x(t) ∈ Ωc ∀t ≥ 0
and lim supt→∞ ‖x‖ ≤ d . This concludes the proof of Theorem 8.1. �

Remark 8.5 Note that locally Lipschitz continuity of the coordinate transformation
function and its inverse function is used to construct the relationship between the
values of the scaled estimation error associated with different values of the input.
By using this technique (not required in the standard high-gain observer design), it
is shown that although the scaled estimation error may deviate from the origin due
to changes in the input, a sufficiently small ε can make it be at an inner level surface
at the next update time until e(t−k ) reaches the neighborhood of the origin, denoted
by Wi . Therefore, it is unnecessary to require that it converge to the neighborhood
of the origin at the end of the first time interval as in [53]. More importantly, it
is shown that the scaled estimation error e(t−k ) stays in the terminal set, denoted
by E , which contains the neighborhood of the origin, ultimately (see Fig. 8.2 for
an illustration). Note also that the hold-time for the control implementation should
be less than the time te (at least for the first time interval). This is because if the
control input is not updated at a sufficiently fast rate, the system state may leave the
stability region obtained under state feedback control, and consequently there will
be no guarantee of closed-loop stability under output feedback control.

8.4 Fault Isolation and Handling Design

In this section, we present the FDI and fault-handling framechapter by utilizing the
flexibility in the state observer design shown in the previous section. In particular,
the fault isolation design presented in this chapter uses a bank of state observers,
each of which is driven by a subset of the outputs. For each set of the outputs, we
derive rigorous conditions on the faults that are detectable by the proposed method.
The isolation logic is based on the assumption that only one fault takes place (see
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Remark 8.12 for an extension to multiple faults). In other words, if a fault takes place
in yi , then vi �≡ 0 and vj ≡ 0 for all j ∈ {1, . . . , p}\{i} in the system of Eq. (8.1).

We first design p high-gain observers for the system of Eq. (8.1) under different
sensor configurations in the same way as in Sect. 8.3. Let yi = hi(x) + vi ∈ R

p−1

denote the system output used in the design of the ith observer, where yi =
[y1, . . . , yi−1, yi+1, . . . , yp]T, hi(x) = [h1(x), . . . , hi−1(x), hi+1(x), . . . , hp(x)]T,
and vi = [v1, . . . , vi−1, vi+1, . . . , vp]T. The FDI design relies on the satisfaction
of Assumption 8.5 stated in the following.

Assumption 8.5 For the system of Eq. (8.1), Assumptions 8.3 and 8.4 hold for the
ith high-gain observer design, which uses yi as the system output, i = 1, . . . , p.

Remark 8.6 Assumption 8.5 dictates the system structure requirement on the fault
isolation and handling design in this chapter. In particular, it implies that the sys-
tem should be observable with any p − 1 outputs. This results in a possibility of
designing p observers, each of which uses p − 1 measured outputs (in addition to
the one that uses all p outputs). Note that this requirement is more general than that
of physical redundancy of sensors (where multiple sensors are used to measure the
same output), and can be satisfied by sensors that measure different variables, but
have analytical redundancy (in the sense of enabling full-state estimation). Note that
the relaxation on the system structure for the high-gain observer design presented in
Sect. 8.3 aids in the ability to satisfy the above requirement, which is necessary (in
some form) to be able to isolate faults in any of the p sensors. In the absence of the
satisfaction of the above requirement, the key idea in the proposed method can be
used to “isolate” a fault to a subset of the sensors (see Remark 8.9).

The key idea of the proposed fault detection mechanism is to monitor the er-
ror between the state estimate provided by a high-gain observer and some accurate
enough predicted value. Let x̂i denote the state estimate provided by the ith ob-
server. Similarly, let x̂0 denote the state estimate under the nominal sensor config-
uration, where all the outputs are used. For the same set of the outputs used by the
ith observer, let the state prediction, denoted by x̃i ∈ R

n, initially be the state esti-
mate: x̃i (0) = x̂i (0) because no previous measurements are available. For tk > 0, it
is computed in the following moving horizon fashion:

x̃i (tk) = ˆ̃xi(tk),

˙̃̂
xi = f

( ˆ̃xi, u
)
,

ˆ̃xi(tk−T ) = x̂i (tk−T ),

(8.24)

where ˆ̃xi ∈R
n denotes the state of the model used in the predictor design, and T =

1, 0 < tk ≤ tk′ , (8.25)

k − k′, tk′ < tk ≤ tk′+T ′ , (8.26)
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T ′, tk > tk′+T ′ (8.27)

denotes the prediction horizon, with a positive integer T ′ being the prediction hori-
zon after the initialization period [0, tk′ ]. In Eq. (8.24), the system state at time tk
is predicted by solving the state equation with the initial condition being the state
estimate at time tk−T . Before time tk′ (i.e., before the estimator convergence), a one-
step prediction horizon is used. After time tk′ , the prediction horizon increases from
one to T ′ steps as the time increases. The corresponding residual (at the discrete
time tk) is defined as follows:

ri(k) = ∥∥x̃i (tk) − x̂i (tk)
∥∥. (8.28)

The fault isolation design is activated only after the estimation error of the initial
value used for prediction is sufficiently small (i.e., after time tk′ ). In the absence
of faults, ri should be below some small threshold. A fault is declared when some
notable discrepancy is observed. The proposition below presents the fault detection
mechanism, and explicitly characterizes the class of faults that are detectable by the
proposed method. To this end, let a superscript i denote the ith sensor configuration,
and tf denote the time of fault occurrence.

Proposition 8.2 Consider the system of Eq. (8.1), for which Assumptions 8.1–8.5
hold, under the output feedback controller of Eq. (8.4). Then, given any 0 < b <

c, d > 0, δ0,i > 0, and integer T > 0, there exist Δ̃∗ > 0, ε∗,i > 0, and δi > 0
such that if Δ ∈ (0, Δ̃∗], ε ∈ (0, ε∗], εi ∈ (0, ε∗,i], x0 ∈ Ωb, tk′ ≤ tk−T ≤ tf , and
ri(k) > δi , where ε∗ is defined in Theorem 8.1, then vi(t) �= 0 for some t ∈ [tk′ , tk].
Furthermore, for tk > tk′ , if ri(k − 1) ≤ δi and

∥∥Mh,i + Mf,i

∥∥ > Li
1η

i
2

(
εi

)
(δ0,i + δi) (8.29)

holds for all ‖ē‖ ≤ Li
1η

i
2(εi)(δ0,i + δi) and ‖φi − φi

0‖ ≤ ki , where

Mh,i = exp

(
Δ

εi
Ai

0

)
ē +

∫ tk

tk−1

exp

(
tk − τ

εi
Ai

0

)
Bi

(
φi − φi

0

)
dτ,

Mf,i = −
∫ tk

tk−1

exp

(
tk − τ

εi
Ai

0

)[
Di

]−1
Hivi(τ ) dτ,

and ki > 0 is the upper bound on ‖φi − φi
0‖ for any x ∈ Ωc, then ri(k) > δi .

Proof First, we show that the system state evolves within Ωc until time tk . Since
V (x) is continuous, and x evolves continuously in time, given b < b′ < b′′ < c,
there exists Δ4 > 0 such that if x(tk) ∈ Ωb′ and Δ ∈ (0,Δ4], then V (x(τ)) ≤ b′′
for any τ ∈ [tk, tk + T Δ]. It follows from the proof of Theorem 8.1 that there exist
Δ̃∗ = min{Δ∗,Δ4} such that if tf ≥ tk−T , then x(t) ∈ Ωb′′ for all t ∈ [0, tk] (see
Fig. 8.1 for an illustration).
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Next, we show that if the residual breaches the threshold, then a fault takes
place. Since f (x,u) is continuous and locally Lipschitz, given δ0,i > 0, there exists
e
∗,i
b > 0 such that if ‖x̃(tk−T ) − x(tk−T )‖ < Li

2η
i
3(ε

i)e
∗,i
b , then ‖x̃(t) − x(t)‖ < δ0,i

for any t ∈ [tk−T , tk] (see Theorem 3.5 in [76]). It follows from the proof of The-
orem 8.1 that given e

∗,i
b > 0, there exists ε∗,i > 0 such that if εi ∈ (0, ε∗,i] and

tk−T ≥ tk′ , then ‖ei(tk)‖ ≤ e
∗,i
b for any k ≥ k′, and consequently ‖ei(tk−T )‖ ≤ e

∗,i
b .

In the absence of faults, the following equation holds:

ri(k) = ∥∥x̃i (tk) − x̂i (tk)
∥∥

≤ ∥∥x̃i (tk) − xi(tk)
∥∥ + ∥∥xi(tk) − x̂i (tk)

∥∥

≤ δ0,i + Li
2η

i
3

(
εi

)∥∥ei(tk)
∥∥

≤ δ0,i + Li
2η

i
3

(
εi

)
e
∗,i
b . (8.30)

Let δi = δ0,i + Li
2η

i
3(ε

i)e
∗,i
b . Therefore, ri(k) > δi implies that vi(t) �= 0 for some

t ∈ [tk′ , tk].
Finally, we show that if the residual does not breach the threshold at the previous

time and Eq. (8.29) is satisfied, then the residual breaches the threshold at the current
time. To this end, consider the scaled error dynamic system subject to sensor faults
for t ∈ [tk−1, tk) as follows:

ėi = 1

εi
Ai

0e
i + Bi

(
φi − φi

0

) − [
Di

]−1
Hivi . (8.31)

The solution to the above equation gives

ei(tk) = exp

(
Δ

εi
Ai

0

)
ei(tk−1) +

∫ tk

tk−1

exp

(
tk − τ

εi
Ai

0

)
Bi(φi − φ0,i ) dτ

−
∫ tk

tk−1

exp

(
tk − τ

εi
Ai

0

)[
Di

]−1
Hivi(τ ) dτ. (8.32)

Then, we consider two cases: (i) tf ≥ tk−1 and (ii) tf < tk−1. For the first case, it
follows from Eq. (8.14) that ‖e(tk−1)‖ ≤ L̃i

1η
i
1(ε

i)e
∗,i
b . For the second case, we have

‖e(tk−1)‖ ≤ Li
1η

i
2(ε

i)(δ0,i + δi), which can be shown by a contradiction argument.
Suppose ‖e(tk−1)‖ > Li

1η
i
2(ε

i)(δ0,i + δi). Then, we have

∥∥xi(tk−1) − x̂i (tk−1)
∥∥ ≥ 1

Li
1η

i
2(ε

i)

∥∥e(tk−1)
∥∥ > δ0,i + δi . (8.33)

Because ri(k−1) ≥ |‖x̃i (tk−1)−xi(tk−1)‖−‖xi(tk−1)− x̂i (tk−1)‖| and ‖x̃i (tk−1)−
xi(tk−1)‖ ≤ δ0,i , it follows from Eq. (8.33) that we have

ri(k − 1) > δi. (8.34)
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The above equation contradicts the condition that ri(k − 1) ≤ δi , which shows that
‖e(tk−1)‖ ≤ Li

1η
i
2(ε

i)(δ0,i +δi). It can be shown that L̃i
1η

i
1(ε

i) = Li
1η

i
2(ε

i)Li
2η

i
3(ε

i).

Consequently, we have L̃i
1η

i
1(ε

i)e
∗,i
b < Li

1η
i
2(ε

i)(δ0,i +δi). It follows from Eq. (8.29)
that for both the cases, we have

∥∥xi(tk) − x̂i (tk)
∥∥ ≥ 1

Li
1η

i
2(ε

i)

∥∥e(tk)
∥∥ > δ0,i + δi . (8.35)

By a similar argument as above, it can be shown

ri(k) > δi. (8.36)

This concludes the proof of Proposition 8.2. �

Remark 8.7 Note that Proposition 8.2 establishes the fault detection property, and
considers the residual for the ith sensor configuration (the one that does not contain
the ith sensor). A fault is detected upon the observation of a notable discrepancy
between the state estimate and prediction. This, in turn, relies on sufficient accu-
racy of the state estimate used for the purpose of prediction. The result of Theo-
rem 8.1 enables achieving a desired rate of convergence of the state estimation error
to facilitate good enough prediction (denoted by δ0,i ), by using a previous estimate
(an estimate after time t ′k) for a given prediction horizon. It is established that, un-
der fault-free conditions, the residual, which describes the discrepancy between the
state estimate and the predicted value, is guaranteed to be below the threshold (δi ).
Therefore, the only way that the residual breaches the threshold is that the measured
outputs used in the observer design are not identical to their true values, forming the
basis of the fault detection mechanism.

Remark 8.8 Proposition 8.2 also establishes rigorous conditions on the class of
faults that are detectable by the proposed method. In particular, it considers an in-
terval for which no fault is detected at the end of the previous one (ri(k − 1) ≤ δi ).
According to these conditions, faults may not be detected at the end of the interval
where it takes place if its accumulating effect is not significant enough to trigger an
alarm. However, this may result in the state estimate deviating from the system state,
invalidating the convergence property of the state observer established under fault-
free conditions. In this way, the effect of the fault propagates and accumulates over
multiple intervals, leading to possible fault detection. Note that these conditions are
only sufficient for the detection of a fault. After the fault is detected, persistent de-
tection is possible as long as the residual breaches its threshold at each instant (see
Sect. 8.5 for an illustration).

With the ability of detecting a fault in a subset of the sensors, we then present a
method to isolate the fault and preserve practical stability of the closed-loop system.
This is formalized in Theorem 8.2 below.
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Theorem 8.2 Consider the system of Eq. (8.1), for which Assumptions 8.1–8.5 hold,
under the output feedback controller of Eq. (8.4) and the fault detection design of
Proposition 8.2. If tk′ ≤ tk−T ≤ tf and ri(k) > δi for all i ∈ {1, . . . , p}\{j}, then
vj (t) �= 0 for some t ∈ [tk′ , tk]. Let td denote the time of fault isolation. Then, given
any 0 < b < c and d > 0, there exists ε̃∗,i > 0 such that if Δ ∈ (0, Δ̃∗], ε ∈ (0, ε∗],
εi ∈ (0, ε̃∗,i], x0 ∈ Ωb , where Δ̃∗ is defined in Proposition 8.2 and ε∗ defined in
Theorem 8.1, then the control law

u(t) = uc

(
sat

(
x̂l(tk)(tk)

))
for all t ∈ [tk, tk+1) (8.37)

and the switching rule

l(t) =
{

0, 0 ≤ t < td,

j, td ≤ t
(8.38)

guarantee that x(t) ∈ Ωc for all t ∈ [0,∞) and lim supt→∞ ‖x‖ ≤ d .

Proof First, we show a fault taking place in the j th sensor by a contradiction argu-
ment, using the results of Proposition 8.2. Suppose that a fault takes place in some
sensor indexed by s ∈ {1, . . . , p}\{j}. Since rs(k) > δs , a fault must have taken place
in some sensor indexed by w ∈ {1, . . . , p}\{s}. Note that w �= s, which is contradic-
tory to the assumption that only one sensor fault takes place. Therefore, ri(k) > δi

for all i ∈ {1, . . . , p}\{j} implies that a fault takes place in the j th sensor.
Then, we show practical stability of the closed-loop system under the control

law of Eq. (8.37) and the switching rule of Eq. (8.38) with the focus on the analysis
for the time interval after time td . It follows from the proof of Theorem 8.1 that
there exists ẽi

b,1 > 0 such that if x(tk) ∈ Ωb′′ and ei
b ∈ (0, ẽi

b,1], then x̂i (tk) ∈ Ωc.

Furthermore, given ẽ
∗,i
b = min{ẽi

b,1, e
i
b,2, e

i
b,3, e

∗,i
b }, there exists ε̃∗,i > 0 such that

if εi ∈ (0, ε̃∗,i], then ei(tk) ≤ ẽ
∗,i
b for any k ≥ k′, and consequently ei(td) ≤ ẽ

∗,i
b .

It follows from the proof of Proposition 8.2 that x(td) ∈ Ωb′′ . Therefore, if εi ∈
(0, ε̃∗,i] for all i ∈ {1, . . . , p}, then x̂j (td ) ∈ Ωc. The rest of the proof follows from
the same line of arguments as Part 2 of the proof of Theorem 8.1, and is omitted.
This concludes the proof of Theorem 8.2. �

Remark 8.9 In Theorem 8.2, a fault isolation mechanism is designed by using a
bank of high-gain observers, with each driven by p − 1 outputs. Specifically, the
fault isolation logic is designed as follows: for the sensor configuration that does
not use the faulty sensor, the state estimate and prediction continue to be close to-
gether because the estimate continues to be accurate enough (and close to the pre-
diction). In contrast, for every other sensor configuration (of which the faulty sensor
is a part), the state estimate and prediction diverge (subject to the satisfaction of
the detectability conditions) because of the incorrect estimation of the system state.
This observation forms the basis of the fault isolation mechanism. After the fault is
isolated, it can be handled by simply switching to a sensor configuration that does
not include the faulty sensor. Note that the key idea of the fault isolation design is
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to utilize the model-based sensor redundancy. If the system is observable only for
certain subsets of the outputs, the proposed method can be used to narrow down
the possibility of a fault to an appropriate subset of sensors. In particular, the faulty
sensor can be “isolated” to be in the intersection of the subsets of the sensors corre-
sponding to the measured outputs for which the residuals breach their thresholds.

Remark 8.10 The proposed FDI scheme remains applicable under any admissible
control (possibly without using a control Lyapunov function) as long as the system
state evolves within a compact set. This requirement is often satisfied for practical
systems because physical variables, such as temperatures, concentrations, and pres-
sures, typically evolve within finite ranges. The output feedback control design in
Sect. 8.3 provides one way to guarantee that the state of the constrained nonlinear
system evolves within a stability region, which serves as a positively invariant set for
the closed-loop system under fault-free conditions. Furthermore, the fault-handling
mechanism of Theorem 8.2 requires that faults be detected and isolated in a rea-
sonably quick fashion (i.e., within a certain time window). To this end, a “cushion”
(see the region Ωb′′ \Ωb′ in Fig. 8.1) is built to account for possible runaway be-
haviors of the closed-loop system between fault occurrence and declaration within
the time window dictated by the prediction horizon T ′. The “cushion” is provided
for the purpose of stability guarantees; in most practical situations, a sensor fault
will likely cause the system state to drift (not necessarily runaway), while keeping
it within the stability region (see Sect. 8.5 for an illustration), and maintaining the
applicability of the proposed FDI design.

Remark 8.11 Note that the FDI scheme is presented in this chapter using high-gain
observers because of their ability to deal with the system nonlinearity, and provide a
convergence property at a desired rate. This property is exploited for the generation
of FDI residuals. Note also that the negative impact of measurement noise on the
high-gain observer can be reduced by filtering the noisy measurements before state
estimation (see Sect. 8.5 for an illustration) or adopting a switched-gain approach to
achieve quick convergence initially and “stable” performance later on (see, e.g., [1]).
The FDI design, however, is not restricted to this particular choice of observers; any
other observer that is able to provide good convergence properties and is able to
handle measurement noise better can be used instead in the proposed FDI scheme.

The design and implementation of the proposed FDI and fault-handling method
of Theorem 8.2 proceed as follows (see also Fig. 8.3):

1. Given the system model of Eq. (8.1), design a state feedback control law, uc , that
satisfies Assumption 8.2 and compute the stability region estimate, Ωc, at each
point of which the derivative of the control Lyapunov function, V (x), can be
made negative and sufficiently small by using the available input (i.e., Eq. (8.2)
is satisfied).

2. Given two subsets of the stability region obtained under state feedback control,
Ωb and Ωb′ , with 0 < b < b′ < c, compute the time te, by the end of which the
system state remains within Ωb′ for any initial condition within Ωb .
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Fig. 8.3 Schematic of the FDI and fault-handling framechapter. Before FDI, the state estimate
used for feedback control is generated by observer 0, which uses all the measured outputs. After
a fault takes place and FDI is achieved, the supervisor switches to the observer which uses the
outputs from the remaining healthy sensors

3. Given b < b′, and the size of the closed ball, d , to which the system state is re-
quired to converge, compute Δ∗ for the system under fault-free conditions, with
Δ∗ ∈ (0, te], and ε∗ for the high-gain observer design according to Theorem 8.1.

4. Given b′ < b′′ < c and the prediction horizon T ′, compute Δ̃∗ according to
Proposition 8.2, and use it for the purpose of closed-loop implementation. Given
the prediction error, δ0,i , and the size of the closed ball, d , and b′ < b′′, compute
ε̃∗,i for the ith high-gain observer design used for FDI, i = 1, . . . , p, according
to Theorem 8.2.

5. At each time instant tk , monitor the residuals after the scaled estimation error
converges (i.e., after the time tk′ ) and
(a) If all the residuals are below their thresholds (i.e., ri(k) ≤ δi for all i ∈

{1, . . . , p}), continue to use the state estimate, x̂0, that is provided by the
observer using all the outputs and compute the control input according to
Eq. (8.37).

(b) Otherwise, if a fault is detected and isolated (i.e., ri(k) > δi for all i ∈
{1, . . . , p}\{j}), switch to use the state estimate, x̂j , that is provided by the
observer using the outputs of the remaining healthy sensors (i.e., yj ) and
compute the control input according to Eq. (8.37).

Remark 8.12 The proposed methodology can be extended to detect and isolate mul-
tiple faults. To understand this point, consider the occurrence of two faults. To detect
faults, we design a bank of observers, which use combinations of p − 1 outputs. If
all the residuals breach their thresholds, then at lease two faults have taken place. To
isolate the faults, we design another bank of observers, which use combinations of
p − 2 outputs. If one residual does not breach its threshold and the remaining resid-
uals do, then the two faults are isolated, which correspond to the outputs not used by
that particular observer. Note that the above extension is based on the assumption
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that the system is observable with the chosen outputs so that the high-gain observers
can be designed.

Remark 8.13 In most of the existing results on FDI of nonlinear systems, actuator
and sensor faults are considered separately. With the consideration of the occurrence
of one (actuator or sensor) fault, however, the proposed FDI mechanism is able to
indicate whether a fault takes place in an actuator or sensor. Specifically, if only
p − 1 residuals breach their thresholds, then a sensor fault must have taken place,
and that fault is also isolated. Otherwise, if all the residuals breach their thresholds,
then an actuator fault must have taken place. This is because an actuator fault will
not only result in possible errors in a state estimate, but also errors in the state
prediction, which is used in the evaluation of all the residuals. A detailed analysis
of the problem of fault isolation in this case is beyond the scope of this book.

8.5 Application to a Chemical Reactor Example

In this section, we consider a continous stirred tank reactor example, where an irre-

versible elementary exothermic reaction of the form A
k−→ B takes place. The feed

to the reactor consists of reactant A at a flow rate F , concentration CA0, temperature
T0. A cooling jacket is equipped to remove heat from the reactor. The cooling stream
going to the jacket is at a flow rate Fc and temperature Tcf . The mathematical model
of this chemical reactor takes the following form:

ĊA = F

V
(CA0 − CA) − k0e

−E/RTRCA,

ṪR = F

V
(T0 − TR) + (−�H)

ρcp

k0e
−E/RTRCA − UA

ρcpV
(TR − Tc), (8.39)

Ṫc = Fc

Vc

(Tcf − Tc) + UA

ρccpcVc

(TR − Tc),

where CA is the concentration of species A, TR is the temperature in the reactor, Tc

is the temperature in the cooling jacket, V is the volume of the reactor, k0, E, and
�H are the pre-exponential constant, the activation energy, and the enthalpy of the
reaction, respectively, R is the ideal gas constant, ρ and cp are the density and the
heat capacity of the fluid in the reactor, respectively, U is the overall heat transfer
coefficient, A is the heat transfer area of the CSTR, Vc is the volume of the cooling
jacket, and ρc and cpc are the density and the heat capacity of the cooling stream,
respectively. The process parameters can be found in Table 8.1.

We first illustrate the enhanced applicability of the output feedback control de-
sign. To this end, we consider u = [F,Fc]T and y = [TR,Tc]T as the input and
output, respectively, where 0 ≤ F ≤ 60 L/min and 0 ≤ Fc ≤ 10 L/min. The control
objective is to operate the process at an equilibrium point where CA = 0.5 mol/L,
TR = 325.0 K, and Tc = 315.9 K. The corresponding steady-state values of the input
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Table 8.1 Process
parameters for the chemical
reactor example

Parameter Value Unit

V 100 L

k0 7.2 × 1010 min−1

E/R 8750 K

�H −5 × 104 J/mol

ρ 1000 g/L

cp 0.239 J/g K

UA 5 × 104 J/min K

Vc 20 L

ρc 1000 g/L

cpc 4.2 J/g K

CA0 1 mol/L

T0 350 K

Tcf 293 K

variables are F = 14.6 L/min and Fc = 4.7 L/min. Note that the relative degrees
for the output with respect to the input are ω1 = 1 and ω2 = 1, respectively, for
the process of Eq. (8.39). Therefore, the assumption of a coordinate transformation
ζ = T (x) that is required for the standard high-gain observer designs (see, e.g., [95])
is not satisfied. However, it satisfies Assumption 8.3, with the following coordinate
transformation:

ζ1,1 = TR,

ζ1,2 = F

V
(TA0 − TR) + (−�H)

ρcp

k0e
−E/RTRCA − UA

ρcpV
(TR − Tc),

ζ2,1 = Tc.

(8.40)

For t ∈ [tk, tk+1), the high-gain observer is designed as follows:

˙̂
ζ1,1 = ζ̂1,2 + a1,1

ε
(y1 − ζ̂1,1),

˙̂
ζ1,2 = a1,2

ε2
(y1 − ζ̂1,1),

˙̂
ζ2,1 = a2,1

ε
(y2 − ζ̂2,1),

ζ̂ (tk) = T
(
x̂(tk), u(tk)

)
,

(8.41)

where ε = 0.04, a1,1 = a2,1 = 5, and a1,2 = 10. A Lyapunov-based model predictive
controller of [93] is used to illustrate the results. The hold-time for the control action
is chosen as Δ = 0.25 min, the prediction horizon is chosen as 2Δ, the weighting
matrices used to penalize the deviations of the state and input from their nominal
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Fig. 8.4 Closed-loop state (solid lines) and state estimate (dashed lines) profiles for the chemical
reactor example under fault-free conditions. The insets show the quick convergence of the state
estimation error

values are chosen as Qw = diag[105,103,10] and Rw = diag[5,50], respectively,
and the stability region is characterized as {x ∈ R

3 : V (x) = xTPx ≤ c}, where

P =
⎡

⎣
507.90 9.47 14.02

9.47 0.57 0.53
14.02 0.53 1.05

⎤

⎦

and c = 75.5.
To show practical stability of the closed-loop system, we consider the process

starting from an initial condition CA = 0.28 mol/L, TR = 335 K, and Tc = 308 K.
The high-gain observer is initialized at the nominal equilibrium point. The closed-
loop state profiles are depicted in Fig. 8.4, where the solid and dashed lines denote
the process state and state estimate profiles, respectively. It can be seen that the
state estimates approach the process states sufficiently fast, and the controller drives
the process to the nominal equilibrium point. The corresponding input profiles are
plotted in Fig. 8.5.
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Fig. 8.5 Input profiles for the chemical reactor example under fault-free conditions

We next illustrate the FDI and fault-handling design. To this end, we first design
three high-gain observers, which use outputs y1 = [CA, TR]T, y2 = [CA, Tc]T, and
y3 = [TR,Tc]T, respectively. The coordinate transformations for the first and second
observers are as follows:

ζ 1
1,1 = CA,

ζ 1
2,1 = TR,

ζ 1
2,2 = F

V
(TA0 − TR) + (−�H)

ρcp

k0e
−E/RTRCA − UA

ρcpV
(TR − Tc),

ζ 2
1,1 = CA,

ζ 2
2,1 = Tc,

ζ 2
2,2 = Fc

Vc

(Tcf − Tc) + UA

ρccpcVc

(TR − Tc),

(8.42)

and the corresponding observers are designed as follows (i = 1,2):

˙̂
ζ i

1,1 = ai
1,1

ε

(
yi

1 − ζ̂ i
1,1

)
,

˙̂
ζ i

2,1 = ζ̂ i
2,2 + ai

2,1

ε

(
yi

2 − ζ̂ i
2,1

)
,

˙̂
ζ i

2,2 = ai
2,2

ε2

(
yi

2 − ζ̂ i
2,1

)
,

(8.43)

where ε = 0.04, ai
1,1 = 5, and ai

2,1 = ai
2,2 = 10. Note the third observer design is

the same as the one used to show practical stability of the closed-loop system under
fault free conditions (i.e., ζ 3 = ζ ).
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Fig. 8.6 Closed-loop measurements under faulty conditions in the presence of the proposed FDI
and fault-handling method resulting in practical stability (solid lines) and in the absence of the
proposed FDI and fault-handling method resulting in degraded control performance (dashed lines).
The dotted and dash-dotted lines show the evolution of the state profiles for the two cases, respec-
tively

Fig. 8.7 Input profiles under faulty conditions in the presence (solid lines) and absence (dashed
lines) of the proposed FDI and fault-handling method
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Fig. 8.8 State estimate (solid lines) and prediction (circles) profiles generated using measurements
of (a) CA and TR , (b) CA and Tc , and (c) TR and Tc , respectively. After a fault takes place in CA at
time tf = 1.625 min, notable discrepancies between state estimates and predictions are observed
for the first two cases

To show the effectiveness of the FDI and fault-handling design subject to plant-
model mismatch and measurement noise, we consider a fault that takes place in CA
at time tf = 1.625 min by simulating a non-abrupt bias in the concentration sensor
of magnitude 0.2 mol/L, which is described by v1 = [1 − e−2(t−tf )] × 0.2 × ν(t −
tf ) mol/L, where ν(t − tf ) =

{
0 if t<tf
1 if t≥tf

. Furthermore, k0 is 2 % smaller than its

nominal value, and CA0 varies sinusoidally by a magnitude of 5 % about its nom-
inal value. The concentration and temperature measurements have combinations of
eleven high-frequency (about 50 Hz) sinusoidal noises with the largest of the mag-
nitudes being 0.01 mol/L and 0.2 K, respectively. The noisy measurements are pro-
cessed through a first-order low-pass filter with the filter time constant being 0.3 s.
Full state feedback (i.e., the nominal sensor configuration) is used under fault-free
conditions. In the FDI design, the prediction horizon after the initialization period
is chosen as T ′ = 2, and the thresholds are chosen as 0.025, 0.025, and 0.05 for the
three FDI filters, respectively. The thresholds are chosen by observing the normal
variations of the residuals under fault-free conditions and using a conservative upper
bound to account for the presence of uncertainty and measurement noise.
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Fig. 8.9 Residuals (crosses) generated using measurements of (a) CA and TR , (b) CA and Tc , and
(c) TR and Tc , respectively. The fault in CA is detected and isolated at time td = 1.75 min via the
residuals r1 and r2 breaching their thresholds (dashed lines)

As shown by the solid and dotted lines in Fig. 8.6 and Fig. 8.7, the proposed
FDI and fault-handling framechapter preserves practical stability of the closed-loop
system. The absence of an appropriate fault-handling mechanism, however, results
in degraded control performance, as shown by the dashed and dash-dotted lines in
Fig. 8.6 and Fig. 8.7. To explain the FDI mechanism, the state estimate and predic-
tion profiles are shown in Fig. 8.8. The residuals, evaluated using the normalized
state against its steady state value, and thresholds are shown by crosses and dashed
lines, respectively, in Fig. 8.9. It can be seen that the residuals are above the thresh-
olds at time 0.25 min (i.e., the second time instant) because of the initial transient
in the observers for the state estimates to converge to their true values. After the
state estimates converge, however, all the residuals are below the thresholds until
the fault takes place. After the occurrence of the fault, residuals r2 and r3 breach
their thresholds at the next time instant while r1, which corresponds to the sensor
configuration that does not use the faulty sensor, still stays below its threshold, re-
sulting in detection and isolation of a fault in CA at time td = 1.75 min. Upon FDI,
the state estimate x̂1, which is generated by using measurements from the remaining
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healthy sensors, is used for feedback control, and practical stability of the closed-
loop system is preserved.

8.6 Conclusions

This chapter considered the problem of sensor FDI and FTC for nonlinear sys-
tems subject to input constraints. The key idea of the proposed method is to ex-
ploit model-based sensor redundancy through state observer design. To this end, an
output feedback control design using high-gain observers was first presented un-
der less restrictive and easily verifiable assumptions. By utilizing the flexibility in
the observer design, a novel FDI scheme was then proposed, which is composed
of a bank of high-gain observers. Each observer uses a subset of the measured out-
puts to generate state estimates. Residuals are defined as the discrepancies between
these state estimates and their predicted values based on previous estimates. A fault
is identified when all the residuals breach their thresholds except for the one gen-
erated without using the measurements provided by the faulty sensor. Conditions
characterizing the detectable faults were rigorously established. Upon FDI, the state
estimate generated using measurements from the remaining healthy sensors is used
to preserve practical stability of the closed-loop system. The implementation of the
FDI and fault-handling framechapter subject to uncertainty and measurement noise
was illustrated using a chemical reactor example.



Chapter 9
Control and Fault-Handling Subject
to Asynchronous Measurements

9.1 Introduction

In this chapter, we present a control and fault-handling approach for handling sen-
sor malfunctions. Specifically, we first modify the Lyapunov-based MPC presented
in Chap. 2 to take into account sensor data losses or asynchronous measurements
due to sensor malfunctions, both in the optimization problem formulation and in the
controller implementation. In this LMPC scheme, when feedback is lost, instead of
setting the control actuator outputs to zero or to the last available values, the actu-
ators implement the last optimal input trajectory [119] evaluated by the controller
(this requires that the actuators store in memory the last optimal input trajectory
received). The LMPC is designed based on a nonlinear control law which is able
to stabilize the closed-loop system and inherits the stability and robustness proper-
ties in the presence of uncertainty and sensor data losses of the nonlinear controller,
while taking into account optimality considerations. Specifically, the LMPC scheme
allows for an explicit characterization of the stability region, guarantees practical
stability in the absence of sensor data losses or asynchronous measurements, and
guarantees that the stability region is an invariant set for the closed-loop system if
the maximum time in which the loop is open is shorter than a given constant that
depends on the parameters of the system and the nonlinear control law that is used to
formulate the optimization problem. A schematic diagram of the considered closed-
loop system is shown in Fig. 9.1. The application of the LMPC to a continuous
crystallization process subject to sensor malfunctions is also presented.

Subsequently, we develop an FDI scheme that will allow fault tolerant control to
take place when process measurements are available at asynchronous time instants.
First, an FDI scheme that employs model-based techniques is proposed that allows
for the isolation of faults. This scheme employs model-based FDI filters similar to
those presented in Chaps. 3 and 4 in addition to observers that estimate the fault
free evolution of asynchronously measured states during time intervals in which
their measurements are not available. Specifically, the presented FDI scheme pro-
vides detection and isolation of any fault that enters into the differential equation of
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Fig. 9.1 LMPC design for
systems subject to sensor data
losses. Dashed lines denote
sensor data
losses/asynchronous
sampling

only synchronously measured states, and grouping of faults that enter into the differ-
ential equation of any asynchronously measured state. For a fully coupled process
system, fault detection occurs shortly after a fault takes place, and fault isolation,
limited by the arrival of asynchronous measurements, occurs when asynchronous
measurements become available. Once the FDI methodology has provided the sys-
tem supervisor with a fault diagnosis, the supervisor takes appropriate action to
seamlessly reconfigure the system to an alternative control configuration that will
enforce the desired operation. Applications of the presented asynchronous FDI and
FTC framework to a polyethylene reactor are presented.

9.2 Handling Sensor Malfunctions in the Control Design

Consider nonlinear systems described by the following state-space model:

ẋ(t) = f
(
x(t), u(t),w(t)

)
, (9.1)

where x(t) ∈ R
n denotes the vector of state variables, u(t) ∈ R

m denotes the vector
of control (manipulated) input variables, w(t) ∈ R

w denotes the vector of distur-
bance variables, and f is a locally Lipschitz vector function on R

n × R
m × R

w

such that f (0,0,0) = 0. This implies that the origin is an equilibrium point for the
nominal system (i.e., system of Eq. (9.1) with w(t) ≡ 0 for all t) with u = 0.

The input vector is restricted to be in a nonempty convex set U ⊆ R
m which is

defined as follows:

U := {
u ∈R

m : ‖u‖ ≤ umax}, (9.2)

where umax is the magnitude of the input constraint.
The disturbance vector is bounded, that is, w(t) ∈ W where

W := {
w ∈R

w : ‖w‖ ≤ θ, θ > 0
}

(9.3)

with θ being a known positive real number. The vector of uncertain variables, w(t),
is introduced into the model in order to account for the occurrence of uncertainty
in the values of the process parameters and the influence of disturbances in process
control applications.
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9.2.1 Lyapunov-Based Control

We assume that there exists a feedback control law u(t) = h(x(t)) which satisfies
the input constraint on u for all x inside a given stability region and renders the
origin of the nominal closed-loop system asymptotically stable. This assumption is
essentially equivalent to the assumption that the nominal system is stabilizable or
that there exists a Lyapunov function for the nominal system or that the pair (A,B)

in the case of linear systems is stabilizable. Using converse Lyapunov theorems [28,
76, 86, 97], this assumption implies that there exist functions αi(·), i = 1,2,3,4 of
class K and a continuously differentiable Lyapunov function V (x) for the nominal
closed-loop system that satisfy the following inequalities:

α1
(‖x‖) ≤ V (x) ≤ α2

(‖x‖), (9.4)

∂V (x)

∂x
f

(
x,h(x),0

) ≤ −α3
(‖x‖), (9.5)

∥∥∥∥
∂V (x)

∂x

∥∥∥∥ ≤ α4
(‖x‖), (9.6)

h(x) ∈ U, (9.7)

for all x ∈ O ⊆ R
n where O is an open neighborhood of the origin. We denote the

region Ωρ ⊆ O as the stability region of the closed-loop system under the control
u = h(x). Note that explicit stabilizing control laws that provide explicitly defined
regions of attraction for the closed-loop system have been developed using Lya-
punov techniques for specific classes of nonlinear systems, particularly input-affine
nonlinear systems; the reader may refer to [5, 28, 78, 150] as well as to Chap. 2 for
results in this area including results on the design of bounded Lyapunov-based con-
trollers by taking explicitly into account constraints for broad classes of nonlinear
systems [45, 46, 85].

By continuity, the local Lipschitz property assumed for the vector field f (x,u,w),
the fact that the manipulated input u is bounded in a convex set and the continuous
differentiable property of the Lyapunov function V , there exist positive constants
M , Lw , Lx , and L′

x such that

∥∥f (x,u,w)
∥∥ ≤ M, (9.8)

∥∥f (x,u,w) − f
(
x′, u,0

)∥∥ ≤ Lw‖w‖ + Lx

∥∥x − x′∥∥, (9.9)
∥∥∥∥
∂V (x)

∂x
f (x,u,0) − ∂V (x′)

∂x
f

(
x′, u,0

)
∥∥∥∥ ≤ L′

x

∥∥x − x′∥∥, (9.10)

for all x, x′ ∈ Ωρ , u ∈ U and w ∈ W . These constants will be used in characterizing
the stability properties of the system of Eq. (9.1) under LMPC designs.
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9.2.2 Modeling of Sensor Data Losses

To model sensor data losses, we assume that feedback of the state of the system
of Eq. (9.1), x(t), is available at asynchronous time instants ta where {ta≥0} is a
random increasing sequence of times, that is, the intervals between two consecutive
instants are not fixed. The distribution of {ta≥0} characterizes the time the feedback
loop is closed or the time needed to obtain a new state measurement. In general,
if there exists the possibility of arbitrarily large periods of time in which feedback
is not available, then it is not possible to provide guaranteed stability properties
because there exists a non-zero probability that the system operates in open-loop
for a period of time large enough for the state to leave the stability region. In order
to study the stability properties in a deterministic framework, we assume that there
exists an upper bound Tm on the interval between two successive time instants in
which the feedback loop is closed or new state measurements are available, that is,

max
a

{ta+1 − ta} ≤ Tm. (9.11)

This assumption is reasonable from process control and networked control systems
perspectives [113, 124, 166, 167] and allows us to study deterministic notions of
stability. This model of feedback/measurements is of relevance to systems subject
to asynchronous measurement samplings due to sensor malfunctions.

9.2.3 LMPC Formulation with Asynchronous Feedback

When feedback is lost, most approaches set the control input to zero or to the last
implemented value. Instead, in this LMPC for systems subject to sensor data losses
due to sensor malfunctions, when feedback is lost, we take advantage of the MPC
scheme to update the input based on a prediction obtained using the system model.
This is achieved using the following implementation strategy:

1. At a sampling time, ta , when the feedback loop is closed (i.e., the current system
state x(ta) is available for the controller and the controller can send information
to the actuators), the LMPC evaluates the optimal future input trajectory u(t) for
t ∈ [ta, ta + NΔ).

2. The LMPC sends the entire optimal input trajectory (i.e., u(t) ∀t ∈ [ta, ta +NΔ))
to the actuators.

3. The actuators implement the input trajectory until the feedback loop is closed
again at the next sampling time ta+1, that is, the actuators implement u(t) in
t ∈ [ta, ta+1).

4. When a new measurement is received (a ← a + 1), go to Step 1.

In this implementation strategy, when the state is not available, the actuators keep
implementing the last received optimal input trajectory. If sensor data is lost for a
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period larger than the prediction horizon, the actuators set the inputs to the last im-
plemented values or to fixed values. This strategy is a receding horizon scheme,
which takes into account that sensor data losses may occur. This strategy is moti-
vated by the fact that when no feedback is available, a reasonable estimate of the
future evolution of the system is given by the nominal trajectory. The LMPC design
taking into account asynchronous measurements, therefore, modifies the standard
implementation scheme of switching off the actuators (u = 0) or setting the actu-
ators to zero or to the last computed input values. The idea of using the model to
predict the evolution of the system when no feedback is possible has also been used
in the context of sampled-data linear systems, see [117, 118, 121, 122]. The actu-
ators not only receive and implement given inputs, but must also be able to store
future trajectories to implement them in case sensor data losses occur. This means
that to handle sensor data losses, not only the control algorithms must be modified,
but also the control actuator hardware that implements the control actions.

When sensor data losses are present in the feedback loop, the existing LMPC
schemes of Chap. 2 (see also [79, 108, 110, 137]) cannot guarantee the closed-loop
stability no matter whether the actuators keep the inputs at the last values, set the
inputs to constant values, or keep on implementing the previously evaluated input
trajectories. In particular, there is no guarantee that the LMPC optimization prob-
lems will be feasible for all time, i.e., that the state will remain inside the stability
region for all time. In the LMPC design of Eqs. (2.52)–(2.56), the constraint of
Eq. (2.56) only takes into account the first prediction step and does not restrict the
behavior of the system after the first step. If no additional constraints are included
in the optimization problem, no claims on the closed-loop behavior of the system
can be made. For this reason, when sensor data losses are taken into account, the
constraints of the LMPC problem have to be modified. The LMPC that takes into
account sensor data losses in an explicit way is based on the following finite horizon
constrained optimal control problem:

min
u∈S(Δ)

∫ ta+NΔ

ta

[∥∥x̃(τ )
∥∥

Qc
+ ∥∥u(τ)

∥∥
Rc

]
dτ (9.12)

s.t. ˙̃x(t) = f
(
x̃(t), u(t),0

)
, (9.13)

˙̂x(t) = f
(
x̂(t), h

(
x̂(ta + jΔ)

)
,0

)
, ∀t ∈ [

ta + jΔ, ta + (j + 1)Δ
)
, (9.14)

u(t) ∈ U, (9.15)

x̃(ta) = x̂(ta) = x(ta), (9.16)

V
(
x̃(t)

) ≤ V
(
x̂(t)

)
, ∀t ∈ [ta, ta + NRΔ), (9.17)

where x̂(t) is the trajectory of the nominal system under a nonlinear control law u =
h(x̂(t)) when it is implemented in a sample-and-hold fashion, j = 0,1, . . . ,N − 1,
and NR is the smallest integer satisfying NRΔ ≥ Tm. This optimization problem
does not depend on the uncertainty and assures that the LMPC inherits the properties
of the nonlinear control law h(x). To take full advantage of the use of the nominal
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model in the computation of the control action, the prediction horizon should be
chosen in a way such that N ≥ NR .

The optimal solution to the LMPC optimization problem of Eqs. (9.12)–(9.17) is
denoted as u∗

a(t |ta) which is defined for t ∈ [ta, ta +NΔ). The manipulated input of
the system of Eq. (9.1) under the LMPC of Eqs. (9.12)–(9.17) is defined as follows:

u(t) = u∗
a(t |ta), ∀t ∈ [ta, ta+1), (9.18)

where ta+1 is the next time instant in which the feedback loop will be closed again.
This is a modified receding horizon scheme which takes advantage of the predicted
input trajectory in the case of sensor data losses.

In the design of the LMPC of Eqs. (9.12)–(9.17), the constraint of Eq. (9.14) is
used to generate a system state trajectory under the nonlinear control law u = h(x)

implemented in a sample-and-hold fashion; this trajectory is used as a reference
trajectory to construct the Lyapunov-based constraint of Eq. (9.17) which is required
to be satisfied for a time period which covers the maximum possible open-loop
operation time Tm. This Lyapunov-based constraint allows one to prove the closed-
loop stability in the presence of sensor data losses in the closed-loop system.

9.2.3.1 Stability Properties

The LMPC of Eqs. (9.12)–(9.17) computes the control input u applied to the system
of Eq. (9.1) in a way such that in the closed-loop system, the value of the Lyapunov
function at time instant ta (i.e., V (x(ta))) is a decreasing sequence of values with a
lower bound. Following Lyapunov arguments, this property guarantees practical sta-
bility of the closed-loop system. This is achieved due to the constraint of Eq. (9.17).
This property is summarized in Theorem 9.1 below. To state this theorem, we need
the following propositions.

Proposition 9.1 Consider the nominal sampled trajectory x̂(t) of the system of
Eq. (9.1) in closed-loop for a controller h(x), which satisfies the conditions of
Eqs. (9.4)–(9.7), obtained by solving recursively:

˙̂x(t) = f
(
x̂(t), h

(
x̂(tk)

)
,0

)
, t ∈ [tk, tk+1), (9.19)

where tk = t0 + kΔ, k = 0,1, . . . . Let Δ,εs > 0, and ρ > ρs > 0 satisfy

−α3
(
α−1

2 (ρs)
) + L′

xMΔ ≤ −εs/Δ. (9.20)

Then, if ρmin < ρ where

ρmin = max
{
V

(
x̂(t + Δ)

) : V (
x̂(t)

) ≤ ρs

}
(9.21)

and x̂(t0) ∈ Ωρ , the following inequality holds:

V
(
x̂(t)

) ≤ V
(
x̂(tk)

)
, ∀t ∈ [tk, tk+1), (9.22)

V
(
x̂(tk)

) ≤ max
{
V

(
x̂(t0)

) − kεs, ρmin
}
. (9.23)
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Proof Following the definition of x̂(t), the time derivative of the Lyapunov function
V (x) along the trajectory x̂(t) of the system of Eq. (9.1) in t ∈ [tk, tk+1) is given by

V̇
(
x̂(t)

) = ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)
. (9.24)

Adding and subtracting ∂V (x̂(tk))
∂x

f (x̂(tk), h(x̂(tk)),0) and taking into account
Eq. (9.5), we obtain

V̇
(
x̂(t)

) ≤ −α3
(∥∥x̂(tk)

∥∥) + ∂V (x̂(t))

∂x
f

(
x̂(t), h

(
x̂(tk)

)
,0

)

− ∂V (x̂(tk))

∂x
f

(
x̂(tk), h

(
x̂(tk)

)
,0

)
. (9.25)

From the Lipschitz property of Eq. (9.10) and the above inequality of Eq. (9.25), we
have that

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

x

∥∥x̂(t) − x̂(tk)
∥∥ (9.26)

for all x̂(tk) ∈ Ωρ/Ωρs . Taking into account the Lipschitz property of Eq. (9.8) and
the continuity of x̂(t), the following bound can be written for all t ∈ [tk, tk+1):

∥∥x̂(t) − x̂(tk)
∥∥ ≤ MΔ. (9.27)

Using the expression of Eq. (9.27), we obtain the following bound on the time
derivative of the Lyapunov function for t ∈ [tk, tk+1), for all initial states x̂(tk) ∈
Ωρ/Ωρs :

V̇
(
x̂(t)

) ≤ −α3
(
α−1

2 (ρs)
) + L′

xMΔ. (9.28)

If the condition of Eq. (9.20) is satisfied, then V̇ (x̂(t)) ≤ −εs/Δ. Integrating this
bound on t ∈ [tk, tk+1) we obtain that the inequality of Eq. (9.22) holds. Using
Eq. (9.22) recursively, it is proved that, if x(t0) ∈ Ωρ/Ωρs , the state converges to
Ωρs in a finite number of sampling times without leaving the stability region. Once
the state converges to Ωρs ⊆ Ωρmin , it remains inside Ωρmin for all times. This state-
ment holds because of the definition of ρmin in Eq. (9.21). �

Proposition 9.1 ensures that if the nominal system under the control u = h(x)

implemented in a sample-and-hold fashion with state feedback every sampling time
starts in the region Ωρ , then it is ultimately bounded in Ωρmin . The following Propo-
sition 9.2 provides an upper bound on the deviation of the system state trajectory
obtained using the nominal model of Eq. (9.1), from the closed-loop state trajectory
of the system of Eq. (9.1) under uncertainty (i.e., w(t) �= 0) when the same control
actions are applied.

Proposition 9.2 Consider the systems:

ẋa(t) = f
(
xa(t), u(t),w(t)

)
, (9.29)
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ẋb(t) = f
(
xb(t), u(t),0

)
(9.30)

with initial states xa(t0) = xb(t0) ∈ Ωρ . There exists a class K function fW(·) such
that

∥∥xa(t) − xb(t)
∥∥ ≤ fW(t − t0), (9.31)

for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with

fW(τ) = Lwθ

Lx

(
eLxτ − 1

)
. (9.32)

Proof Define the error vector as e(t) = xa(t) − xb(t). The time derivative of the
error is given by

ė(t) = f
(
xa(t), u(t),w(t)

) − f
(
xb(t), u(t),0

)
. (9.33)

From the Lipschitz property of Eq. (9.9), the following inequality holds:

∥∥ė(t)
∥∥ ≤ Lw

∥∥w(t)
∥∥ + Lx

∥∥xa(t) − xb(t)
∥∥ ≤ Lwθ + Lx

∥∥e(t)
∥∥, (9.34)

for all xa(t), xb(t) ∈ Ωρ and w(t) ∈ W . Integrating ‖ė(t)‖ with initial condition
e(t0) = 0 (recall that xa(t0) = xb(t0)), the following bound on the norm of the error
vector is obtained:

∥∥e(t)
∥∥ ≤ Lwθ

Lx

(
eLx(t−t0) − 1

)
. (9.35)

This implies that the inequality of Eq. (9.31) holds for

fW(τ) = Lwθ

Lx

(
eLxτ − 1

)
, (9.36)

which proves this proposition. �

Proposition 9.3 below bounds the difference between the magnitudes of the Lya-
punov function of two states in Ωρ .

Proposition 9.3 Consider the Lyapunov function V (·) of the system of Eq. (9.1).
There exists a quadratic function fV (·) such that

V (x) ≤ V
(
x′) + fV

(∥∥x − x′∥∥)
, (9.37)

for all x, x′ ∈ Ωρ where

fV (s) = α4
(
α−1

1 (ρ)
)
s + Mvs

2 (9.38)

with Mv > 0.
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Proof Since the Lyapunov function V (x) is continuous and bounded on compact
sets, there exists a positive constant Mv such that a Taylor series expansion of V

around x′ yields

V (x) ≤ V
(
x′) + ∂V (x′)

∂x

∥∥x − x′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ. (9.39)

Note that the term Mv‖x − x′‖2 bounds the high order terms of the Taylor series of
V (x) for x, x′ ∈ Ωρ . Taking into account Eq. (9.6), the following bound for V (x) is
obtained:

V (x) ≤ V
(
x′) + α4

(
α−1

1 (ρ)
)∥∥x − x′∥∥ + Mv

∥∥x − x′∥∥2
, ∀x, x′ ∈ Ωρ, (9.40)

which proves this proposition. �

In Theorem 9.1 below, we provide sufficient conditions under which the LMPC
design of Eqs. (9.12)–(9.17) guarantees that the state of the closed-loop system of
Eq. (9.1) is ultimately bounded in a region that contains the origin.

Theorem 9.1 Consider the system of Eq. (9.1) in closed-loop, with the loop closing
at asynchronous time instants {ta≥0} that satisfy the condition of Eq. (9.11), under
the LMPC of Eqs. (9.12)–(9.17) based on a controller h(x) that satisfies the condi-
tions of Eqs. (9.4)–(9.7). Let Δ,εs > 0, ρ > ρmin > 0, ρ > ρs > 0, and N ≥ NR ≥ 1
satisfy the condition of Eq. (9.20) and the following inequality:

−NRεs + fV

(
fW(NRΔ)

)
< 0 (9.41)

with fV (·) and fW(·) defined in Eq. (9.38) and Eq. (9.32), respectively, and NR be-
ing the smallest integer satisfying NRΔ ≥ Tm. If x(t0) ∈ Ωρ , then x(t) is ultimately
bounded in Ωρa ⊆ Ωρ where

ρa = ρmin + fV

(
fW(NRΔ)

)
(9.42)

with ρmin defined as in Eq. (9.21).

Proof In order to prove that the closed-loop system is ultimately bounded in a region
that contains the origin, we prove that V (x(ta)) is a decreasing sequence of values
with a lower bound. The proof is divided into two parts.

Part 1: In this part, we prove that the stability results stated in Theorem 9.1 hold
in the case that ta+1 − ta = Tm for all a and Tm = NRΔ. This case corresponds to
the worst possible situation in the sense that the LMPC needs to operate in open-
loop for the maximum possible amount of time. In order to simplify the notation,
we assume that all the notations used in this proof refer to the final solution of the
LMPC of Eqs. (9.12)–(9.17) solved at time ta . By Proposition 9.1 and the fact that
ta+1 = ta + NRΔ, the following inequality can be obtained:

V
(
x̂(ta+1)

) ≤ max
{
V

(
x̂(ta)

) − NRεs, ρmin
}
. (9.43)



214 9 Control and Fault-Handling Subject to Asynchronous Measurements

From the constraint of Eq. (9.17), the inequality of Eq. (9.43) and taking into ac-
count the fact that x̂(ta) = x̃(ta) = x(ta), the following inequality can be written:

V
(
x̃(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
}
. (9.44)

When x(t) ∈ Ωρ for all times (this point will be proved below), we can apply Propo-
sition 9.3 to obtain the following inequality:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(∥∥x̃(ta+1) − x(ta+1)
∥∥)

. (9.45)

Applying Proposition 9.2, we obtain the following upper bound on the deviation of
x̃(t) from x(t):

∥∥x(ta+1) − x̃(ta+1)
∥∥ ≤ fW(NRΔ). (9.46)

From inequalities of Eq. (9.45) and Eq. (9.46), the following upper bound on
V (x(ta+1)) can be written:

V
(
x(ta+1)

) ≤ V
(
x̃(ta+1)

) + fV

(
fW(NRΔ)

)
. (9.47)

Using the inequality of Eq. (9.44), we can rewrite the inequality of Eq. (9.47) as
follows:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − NRεs, ρmin
} + fV

(
fW(NRΔ)

)
. (9.48)

If the condition of Eq. (9.41) is satisfied, from the inequality of Eq. (9.48), we know
that there exists εw > 0 such that the following inequality holds:

V
(
x(ta+1)

) ≤ max
{
V

(
x(ta)

) − εw,ρa

}
, (9.49)

which implies that if x(ta) ∈ Ωρ/Ωρa , then V (x(ta+1)) < V (x(ta)), and if x(ta) ∈
Ωρa , then V (x(ta+1)) ≤ ρa .

Because fW(·) and fV (·) are strictly increasing functions of their arguments
and fV (·) is convex (see Propositions 9.2 and 9.3 for the expressions of fW(·) and
fV (·)), the inequality of Eq. (9.49) also implies that

V
(
x(t)

) ≤ max
{
V

(
x(ta)

)
, ρa

}
, ∀t ∈ [ta, ta+1). (9.50)

Using the inequality of Eq. (9.50) recursively, it can be proved that if x(t0) ∈ Ωρ ,
then the closed-loop trajectories of the system of Eq. (9.1) under the LMPC of
Eqs. (9.12)–(9.17) stay in Ωρ for all times (i.e., x(t) ∈ Ωρ, ∀t). Moreover, it can
be proved that if x(t0) ∈ Ωρ , the closed-loop trajectories of the system of Eq. (9.1)
satisfy

lim sup
t→∞

V
(
x(t)

) ≤ ρa.

This proves that x(t) ∈ Ωρ for all times and x(t) is ultimately bounded in Ωρa for
the case when ta+1 − ta = Tm for all a and Tm = NRΔ.
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Part 2: In this part, we extend the results proved in Part 1 to the general case,
that is, ta+1 − ta ≤ Tm for all a and Tm ≤ NRΔ which implies that ta+1 − ta ≤
NRΔ. Because fW(·) and fV (·) are strictly increasing functions of their arguments
and fV (·) is convex, following similar steps as in Part 1, it can be shown that the
inequality of Eq. (9.50) still holds. This proves that the stability results stated in
Theorem 9.1 hold. �

Remark 9.1 Theorem 9.1 is important from an MPC point of view because if the
maximum time without sensor data losses is smaller than the maximum time that the
system can operate in open-loop without leaving the stability region, the feasibility
of the optimization problem for all times is guaranteed, since each time feedback is
regained, the state is guaranteed to be inside the stability region, thereby yielding a
feasible optimization problem.

Remark 9.2 In the LMPC of Eqs. (9.12)–(9.17), no state constraint has been con-
sidered but the presented approach can be extended to handle state constraints by
restricting the closed-loop stability region further to satisfy the state constraints.

Remark 9.3 It is also important to remark that when there are sensor data losses in
the control system, standard MPC formulations do not provide guaranteed closed-
loop stability results. For any MPC scheme, in order to obtain guaranteed closed-
loop stability results, even in the case where initial feasibility of the optimization
problem is given, the formulation of the optimization problem has to be modified
accordingly to take into account sensor data losses in an explicit way.

Remark 9.4 Although the proof of Theorem 9.1 is constructive, the constants ob-
tained are conservative. This is the case with most of the results of the type presented
in this book. In practice, the different constants are better estimated through closed-
loop simulations. The various inequalities provided are more useful as guidelines
on the interaction between the various parameters that define the system and the
controller and may be used as guidelines to design the controller and the network.

9.2.4 Application to a Continuous Crystallizer

We apply the LMPC presented in the previous section to a continuous crystalliza-
tion process subject to asynchronous measurement sampling. Asynchronous mea-
surement sampling may arise due to measurement system malfunctions or differ-
ent sampling rates of the measurement sensors. In particular, a standard MPC, the
LMPC presented in Chap. 2 (see also [108]), and the LMPC presented in the pre-
vious section, are applied to stabilize a continuous crystallizer at an open-loop un-
stable steady-state. Extensive simulations are presented to evaluate the closed-loop
stability and robustness of the three control methods under three different assump-
tions on how the measurements from the crystallizer are obtained.
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9.2.4.1 Model of a Continuous Crystallizer

In this section, the population balance model of a continuous crystallizer and the
corresponding reduced-order moments model are introduced.

Population Balance Model Under the assumptions of isothermal operation, con-
stant volume, mixed suspension, nucleation of crystals of infinitesimal size, and
mixed product removal, a dynamic model for a continuous crystallizer can be de-
rived from a population balance for the particle phase and a mass balance for the
solute concentration. The resulting model has the following form [73, 84]:

∂n

∂t̄
= −∂(R(t̄)n)

∂r
− n

τ
+ δ(r − 0)Q(t̄),

dc

dt̄
= (c0 − ρ)

ε̄τ
+ (ρ − c)

τ
+ (ρ − c)

ε̄

dε̄

dt̄
,

(9.51)

where n(r, t̄) is the number density of crystals of radius r ∈ [0,∞) at time t̄ in the
suspension, τ is the residence time, c is the solute concentration in the crystallizer,
c0 is the solute concentration in the feed, ε̄ = 1 − ∫ ∞

0 n(r, t̄) 4
3πr3 dr is the volume

of liquid per unit volume of suspension, R(t̄) is the growth rate, δ(r − 0) is the
standard Dirac function, ρ is the density of crystals, and Q(t̄) is the nucleation rate.
The term δ(r −0)Q(t̄) accounts for the production of crystals of infinitesimal (zero)
size via nucleation. R(t̄) and Q(t̄) are assumed to follow McCabe’s growth law and
Volmer’s nucleation law, respectively, that is,

R(t̄) = k1(c − cs), Q(t̄) = ε̄k2 exp
[−k3/(c/cs − 1)2], (9.52)

where k1, k2, and k3 are positive constants and cs is the concentration of solute at
saturation.

The values of the parameters in Eq. (9.51) and Eq. (9.52) that define the process
are given in Table 9.1. The open-loop crystallizer model exhibits a highly oscillatory
behavior, which is the result of the interplay between growth and nucleation caused
by the relative nonlinearity of the nucleation rate as compared to the growth rate.
See [25] for a detailed discussion on the nature of the oscillations exhibited by this
process. The population model introduced provides a good approximation of the
dynamics of a continuous crystallizer [27]. All simulations have been carried out
using the model of Eq. (9.51).

Reduced-Order Moments Model The population balance model is not appro-
priate for synthesizing model-based low-order feedback control laws due to its dis-
tributed parameter nature. To overcome this problem, following the same approach
as in [25], we derive a reduced-order moments model which accurately reproduces
the dominant dynamics of the system and is suitable for directly synthesizing low-
order feedback control laws.
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Table 9.1 Process
parameters for the continuous
crystallizer

cs = 980.2 kg/m3

c0s = 999.943 kg/m3

ρ = 1770.0 kg/m3

τ = 1.0 hr

k1 = 5.065 × 10−2 mm m3/kg hr

k2 = 7.958 l/mm3 hr

k3 = 1.217 × 10−3

We define the j th moment of n(r, t̄) as

μj =
∫ ∞

0
rjn(r, t̄) dr, j = 0,1, . . . ,∞. (9.53)

Multiplying the population balance in Eq. (9.51) by rj , integrating over all par-
ticle sizes, and introducing the following set of dimensionless variables and param-
eters:

x̃0 = 8πσ 3μ0, x̃1 = 8πσ 2μ1, x̃2 = 4πσμ2, x̃3 = 4

3
πμ3, . . . ,

t = t̄

τ
, σ = k1τ(c0s − cs), Da = 8πσ 3k2τ, (9.54)

F = k3c
2
s

(c0s − cs)2
, α = (ρ − cs)

(c0s − cs)
, ỹ = (c − cs)

(c0s − cs)
, u = (c0 − c0s)

(c0s − cs)
,

where c0s is the steady-state solute concentration in the feed, the dominant dynam-
ics of Eq. (9.51) can be adequately captured by the following fifth-order moments
model which includes the dynamics of the first four moments and those of the solute
concentration:

dx̃0

dt
= −x̃0 + (1 − x̃3)Dae

−F

ỹ2 ,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dỹ

dt
= 1 − ỹ − (α − ỹ)ỹx̃2

1 − x̃3
+ u

1 − x̃3
,

(9.55)

where x̃ν , ν = 0,1,2,3, are dimensionless moments of the crystal size distribution,
ỹ is the dimensionless concentration of the solute in the crystallizer, and u is a di-
mensionless concentration of the solute in the feed. The values of the dimensionless
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Table 9.2 Dimensionless
parameters for the continuous
crystallizer

σ = k1τ(c0s − cs) = 1.0 mm

Da = 8πσ 3k2τ = 200.0

F = k3c
2
s /(c0s − cs)

2 = 3.0

α = (ρ − cs)/(c0s − cs) = 40.0

model parameters in Eq. (9.54) are given in Table 9.2. Note that since the moments
of order four and higher do not affect those of order three and lower, the state of
the infinite dimensional system is bounded when x̃3 and ỹ are bounded, and it con-
verges to a globally exponentially stable equilibrium point when limt→∞ x̃3 = c1

and limt→∞ ỹ = c2, where c1, c2 are constants. In this work, the state of the crystal-
lizer is denoted as x̃ = [x̃0 x̃1 x̃2 x̃3 ỹ]T , and the reduced-order moments model is
used to define different model predictive control strategies.

The reduced-order moments model is a very good approximation of the popula-
tion balance model and is suitable for directly synthesizing model-based low-order
feedback control laws. The reader may refer to [25, 49] for a detailed derivation
of the moments model, and to [27] for further results and references in this area.
The stability properties of the fifth-order model of Eq. (9.55) have been also studied
and it has been shown [73] that the global phase space of this model has a unique
unstable steady-state surrounded by a stable periodic orbit at

x̃s = [x̃0s x̃1s x̃2s x̃3s ỹs]T = [0.0471 0.0283 0.0169 0.0102 0.5996]T ,

and that the linearization of Eq. (9.51) around the unstable steady-state includes
two isolated complex conjugate eigenvalues with a positive real part. The control
objective is to regulate the system to the unstable steady state x̃s by manipulating
the solute feed concentration c0.

We consider constraints in the input. The dimensionless solute feed concen-
tration, u, is subject to the constraints: −umax ≤ u ≤ umax, where umax = 3.
For umax = 3, the constraint on the inlet solute concentration corresponds to
940 kg/m3 ≤ c0 ≤ 1060 kg/m3.

We denote the state x as the error, that is x = x̃ − x̃s . Then, we can rewrite
Eq. (9.55) in a more compact form:

ẋ(t) = f
(
x(t)

) + g
(
x(t)

)
u(t), (9.56)

where x = [x0 x1 x2 x3 y]T , and f and g have the following form:

f (x) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

−(x0 + x̃0s) + (1 − x3 − x̃3s)Dae
−F

(y+ỹs )2

−(x1 + x̃1s) + (y + ỹs)(x0 + x̃0s)

−(x2 + x̃2s) + (y + ỹs)(x1 + x̃1s)

−(x3 + x̃3s) + (y + ỹs)(x2 + x̃2s)

1−y−ỹs−(α−y−ỹs )(y+ỹs )(x2+x̃2s )
1−x3−x̃3s

⎤

⎥⎥
⎥⎥⎥⎥
⎦

, g(x) =

⎡

⎢
⎢⎢⎢⎢
⎣

0
0
0
0
1

1−x3−x̃3s

⎤

⎥
⎥⎥⎥⎥
⎦

.
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Next we are going to define a feedback control law hL : Rn → R which satisfies
hL(0) = 0 that renders the origin x = 0 of the closed-loop system of Eq. (9.56)
asymptotically stable under continuous measurements. Stabilizing state feedback
control laws for nonlinear systems have been developed using Lyapunov techniques;
the reader may refer to Chap. 2 and to [28, 78] for results on this area. In this work,
we use the Lyapunov-based feedback control proposed in [85] (see also [45, 46])
which is based on a control Lyapunov function of the open-loop system.

Consider the control Lyapunov function V (x) = xT Px with P = I of the system
of Eq. (9.56). The following Lyapunov-based feedback control law [85] asymptoti-
cally stabilizes the open-loop unstable steady-state under continuous state feedback
implementation for an appropriate set of initial conditions:

hL(x) = −k(x)LgV (x), (9.57)

where

k(x) =
⎧
⎨

⎩

Lf V (x)+√
(Lf V (x))2+(umaxLgV (x))4

(LgV (x))2[1+√
1+(umaxLgV (x))2] , LgV (x) �= 0,

0, LgV (x) = 0.

The feedback controller hL(x) will be used to design the contractive constraints of
the two LMPCs.

9.2.4.2 Modeling Asynchronous Measurements

We assume that the sampling of the state of the continuous crystallizer of Eq. (9.51)
takes at least 15 minutes, and if errors occur in the sampling system or in the com-
munication network, it may take a much longer time. We assume that the maxi-
mum time interval (worst case occurrence) between two consecutive measurements
is shorter than 2.5 hours, which is denoted as Tmax. Note that a Tmax is needed in the
present stabilization problem because the open-loop crystallizer is unstable.

To account for asynchronous sampling, the sampling times are defined by an
increasing time sequence {ta≥0}. At each sampling time ta , a new measurement
from the sensors is obtained. The interval between two consecutive samplings is not
fixed. In the simulation section, we present three different ways of generating the
time sequence {ta≥0}. The only assumption made on the time sequence {ta≥0} is that
there is an upper bound (which is Tmax) on the maximum time in which the system
operates in open-loop which is needed in the present stabilization problem because
the open-loop crystallizer is unstable.

We also take into account that the controller may not receive the whole state
(x0, x1, x2, x3, y) at each sampling instant but just part of it, that is, the state of PSD
(x0, x1, x2, x3) or the solute concentration (y) (see Figs. 9.2–9.3) may be transmitted
only at a specific time instant. This is due to the fact that PSD and solute concen-
tration are measured by different sensors with different sampling rates. At sampling
time ta , if only part of the state is available, an estimation of the current state x̂(ta)
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Fig. 9.2 Closed-loop system
with asynchronous
measurements: the whole
state is sampled
simultaneously

Fig. 9.3 Closed-loop system
with asynchronous
measurements: the states of
PSD and solute concentration
are sampled separately

is obtained and sent to the controller to generate a new control input. We use an aux-
iliary variable s(ta) to indicate what part of the process state is available at sampling
time ta as follows:

1. s(ta) = 1 implies that both measurements of PSD and solute concentration are
available at ta , and x̂(ta) = x(ta).

2. s(ta) = 2 implies that only the measurement of PSD is available at ta . The cor-
responding value of the solute concentration at ta is estimated by using the last
available value of solute concentration, that is, ŷ(ta) = ŷ(ta−1).

3. s(ta) = 3 implies that only the measurement of solute concentration is available
at ta . The corresponding state of PSD at ta is estimated by the reduced-order
moments model of Eq. (9.56). The last available estimated state x̂(ta−1) is taken
as the initial state.

The estimated state used by the controller at each sampling time is given by the
following equation:

x̂(ta) =

⎧
⎪⎨

⎪⎩

x(ta) if s(ta) = 1,

{x0(ta), x1(ta), x2(ta), x3(ta), ŷ(ta−1)} if s(ta) = 2,

{x̂0(ta), x̂1(ta), x̂2(ta), x̂3(ta), y(ta)} if s(ta) = 3,

(9.58)

where x̂ν, ν = 0,1,2,3, are estimated by using the reduced-order moments model.
Note that we have to store the implemented manipulated input trajectory.

Remark 9.5 Note that regardless of the method used to estimate the state when only
partial state information is available, there exist errors between the estimated state
x̂ and the actual state of the system x, that have to be compensated by the available
feedback.
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In this class of processes, the solute concentration is obtained with a higher sam-
pling rate than the crystallizer PSD. This motivates using the last available value
of the solute concentration when a new PSD measurement is obtained. On the other
hand, instead of using the last available values of the PSD each time we obtain a new
concentration measurement, which may introduce a large error because the PSD is
sampled less frequently, we use the reduced-order moments model to estimate the
missing information, which increases the computational complexity but decreases
the estimation error.

The controller has to take into account that the measurements arrive in an asyn-
chronous manner and that the time in which it has to operate in open-loop may be
long. In order to decide the manipulated input u(t) that has to be applied at each
time t , the controller uses the last estimated state x̂(ta) and the corresponding sam-
pling time ta . We assume that each controller is defined by a function h(Δ, x̂(ta)),
where x̂ is the last available estimated state and Δ is the time that has passed since
that state was received. This function allows us to model different implementation
strategies. For example, h(Δ, x̂) = hL(x̂) implements a sample-and-hold strategy
based on the Lyapunov-based controller of Eq. (9.57). In this case, the input is kept
constant between samples independently of the time Δ that has passed since the last
measurement.

In order to consider the models in this work in a unified time scale and with
the same manipulated input, we substitute Eq. (9.52), the expressions of dimen-
sionless time t and manipulated input u into Eq. (9.51). We obtain the following
asynchronous nonlinear model for the closed-loop system of the crystallizer:

1

τ

∂n

∂t
= −k1(c − cs)

∂n

∂r
− n

τ
+ δ(r − 0)ε̄k2 exp

[−k3/(c/cs − 1)2],

1

τ

dc

dt
= (c0s − ρ)

ε̄τ
+ (ρ − c)

τ
+ (ρ − c)

ε̄τ

dε̄

dt
+ (c0s − cs)u(t)

ε̄τ
,

t ∈ [ta, ta+1],
(9.59)

u(t) = h
(
t − ta, x̂(ta)

)
.

At time ta , new information is available from the sensors and the content of the
information is decided by the corresponding value of s(ta). The state x̂(ta) is an
estimation of the actual state x(ta) and it is estimated by the approach presented
before in this section, see Eq. (9.58). The controller generates a future manipulated
input trajectory h(Δ, x̂) that depends on this estimated state, where Δ is the time
that has passed since ta .

9.2.4.3 Controller Design

Three different MPC controllers, a standard MPC as presented in Sect. 2.7, the
LMPC presented in Sect. 2.8 and the LMPC presented in Sect. 9.2.3, are applied
to the continuous crystallizer. We denote, in the remainder of this chapter, the three
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model predictive controllers as MPC, LMPC I, and LMPC II, respectively. These
controllers are based on the reduced-order moments model of Eq. (9.56) and the
Lyapunov-based controller of Eq. (9.57). All the three model predictive controllers
use the same sampling time Δc . In most control systems where the measurements
are obtained synchronously and the communications are flawless, this sampling time
is equal to the sampling time used to obtain new measurements and implement the
manipulated input (sample-and-hold schemes). In this section, however, we deal
with systems subject to asynchronous measurements and the time sequence that de-
termines when new information is available is independent of Δc .

The cost functions of these controllers are defined by matrices Qc = P and
Rc = 4. The weight matrices Qc and Rc have been chosen to provide a performance
similar to the Lyapunov-based controller under a sample-and-hold implementation.
The sampling time of the MPC controllers is Δc = 0.25h which is equal to the
minimum time needed to obtain a new measurement.

Through simulations, we have estimated the transition time for the crystallizer in
closed-loop with the Lyapunov-based controller which is 2 hours for states x0, y

and 4 hours for states x1, x2, x3. We choose the prediction horizon N = 11 for
the model predictive controllers so that the prediction captures most of the dynamic
evolution of the process.

9.2.4.4 Simulation Results

In this section, we apply the three model predictive control laws MPC, LMPC I,
and LMPC II to the continuous crystallizer population balance model of Eq. (9.59)
to evaluate the stability and robustness properties of the corresponding closed-loop
systems in the presence of measurement unavailability and asynchronous measure-
ments. First, we simulate with PSD and solute concentration sampled synchronously
and simultaneously subject to measurement unavailability. Following that, we sim-
ulate the system with asynchronous measurements in which measurements of PSD
and solute concentration come simultaneously, and then simulate with asynchronous
measurements in which PSD and solute concentration are sampled separately. The
control objective is to suppress the oscillatory behavior of the crystallizer and stabi-
lize it at the open-loop unstable steady-state x̃s that corresponds to the desired PSD
by manipulating the solute feed concentration. The following initial conditions are
used in the simulations:

n(0, r) = 0.0, c(0) = 990.0 kg/m3, x̃(0) = [0 0 0 0 0.498]T . (9.60)

To simulate the continuous crystallizer, we use a second-order accurate finite-
difference discretization scheme. At every model evaluation step (which is different
from the sampling time and should be chosen to be sufficiently small in order to get
a continuous and accurate solution) of Eq. (9.59), the values of n(t, r) and c(t) can
be obtained, so we can use them to calculate the state x at that time using Eq. (9.53)
and Eq. (9.54) and the steady-state x̃s .
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Fig. 9.4 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled synchronously and simultaneously and 95 % probability of measurement unavailability
using the predicted manipulated input trajectories of LMPC II (solid curves) and the standard MPC
(dashed curves)

Results of Synchronous Sampling Subject to Measurement Unavailability
For this set of simulations, we assume that a new measurement of the whole state
of the crystallizer is made every Δm, the synchronous sampling time, but the mea-
surement might be lost due to errors in the measurement or communication systems
with a probability p ∈ (0,1). To generate the time partition {tk≥0} that indicates
when a new sample is available and the corresponding auxiliary variable s(tk) for a
simulation of length tsim, we use the following algorithm:

t0 = 0, k = 0
while tk < tsim

tk+1 = tk, γ = 0
while γ ≤ p

tk+1 = tk+1 + Δm,γ = rand(1)

end
if tk+1 > tk + Tmax then tk+1 = tk + Tmax
s(tk) = 1, k = k + 1

end

where tsim is the simulation time, rand(1) generates a uniformly distributed random
value γ between 0 and 1, and Tmax is the maximum allowable transmission interval.
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Fig. 9.5 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled synchronously and simultaneously and 95 % probability of measurement unavailability
using the predicted manipulated input trajectories of LMPC II (solid curves) and LMPC I (dashed
curves)

As mentioned before Tmax is taken to be 2.5 hr, and the simulation time tsim is
30 hr in this work. The sampling time Δm is equal to Δc , that is Δm = 0.25 hr.
For this sampling time, the sampled-data system in closed-loop with u = hL(x) is
practically stable and its performance is similar to the closed-loop system with con-
tinuous measurements. We choose γ = 95 %, that is, there is a probability of 95 %
that the measurement of the state is unavailable at every sampling time. First, we
compare LMPC II with MPC. The state and manipulated input trajectories of this
simulation are shown in Fig. 9.4. In this figure, it can be seen that LMPC II pro-
vides a better performance than MPC. In particular, LMPC II is able to stabilize
the process at the open-loop unstable steady-state in about 5 hours while the sys-
tem in closed-loop with MPC presents an oscillatory behavior indicating that the
stabilization of the operating unstable steady-state has not been achieved. Second,
we compare LMPC II with LMPC I. The state and manipulated input trajectories of
this simulation are shown in Fig. 9.5. In this case, LMPC I is not able to regulate
the system to the desired equilibrium. Finally, we compare two LMPC II controllers
using the predicted manipulated input trajectory and the “last implemented manipu-
lated input”, respectively. The “last implemented manipulated input” strategy keeps
constant the manipulated input, that is h(Δ, x̃) = u∗(0) for all Δ where u∗(·) is the
optimal solution of the optimization problem that defines LMPC II with an initial
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Fig. 9.6 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled synchronously and simultaneously and 95 % probability of measurement unavailability
using the predicted manipulated input trajectory (solid curves) and the last implemented manipu-
lated input (dashed curves) of LMPC II

state x̃. The state and manipulated input trajectories of this simulation are shown
in Fig. 9.6. This simulation demonstrates that, in this case, using only the last im-
plemented manipulated input is not possible to maintain the process at the desired
steady-state.

The simulations demonstrate that LMPC II is more robust to measurements un-
availability than MPC and LMPC I. This is because LMPC II is designed taking
explicitly into account measurement unavailability. Moreover, we should make full
use of the predicted manipulated input trajectory of LMPC II in order to get the best
closed-loop system performance.

Results of Asynchronous Sampling: PSD and Solute Concentration Sampled
Simultaneously For the simulations in this subsection, we assume that the time
between consecutive measurements is obtained using a random process and that the
PSD and solute concentration are measured simultaneously. To generate the time
intervals between samples we use a random Poisson process as in [59, 110]. The
Poisson process is defined by the number of events per unit time W . At a given
time t , an event takes place which means that the state is sampled. The interval
between two consecutive sampling times is given by Δa = − lnχ

W
, where χ is a

random variable with uniform probability distribution between 0 and 1. At t + Δa ,
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Fig. 9.7 Asynchronous sampling times for both PSD and solute concentration

another event occurs. The sequence {tk≥0} and the corresponding auxiliary variable
s(tk) for a simulation of length tsim is generated as follows:

t0 = 0, k = 0
while tk < tsim

χ = rand(1)

tk+1 = tk + − lnχ
W

if tk+1 > tk + Tmax, then tk+1 = tk + Tmax

if tk+1 < tk + Tmin, then tk+1 = tk + Tmin

s(tk) = 1, k = k + 1
end

where rand(1) generates a uniformly distributed random value χ between 0 and 1,
Tmax is the maximum allowable transmission interval and Tmin is the minimum time
interval between two consecutive samplings. Note that Tmin should be smaller than
Tmax, that is, Tmin < Tmax. As mentioned before Tmax is 2.5 hr. The minimum time
limit Tmin is equal to the synchronous sampling time, that is, Tmin = Δm = 0.25 hr.
For the simulations carried out in this subsection we pick the value of the number
of events per unit time to be W = 0.15. The sampling times for the simulations
are shown in Fig. 9.7. Note that because the number of events is low, the time be-
tween consecutive samplings (and hence, the time in which the control system must
operate in open-loop) may be large but always smaller than Tmax.

We carry out the same comparisons as we did in the previous subsection. First,
we compare LMPC II with MPC. The state and manipulated input trajectories of
this simulation are shown in Fig. 9.8. In this simulation, MPC can not stabilize the
process, while LMPC II is able to maintain the process at the desired steady-state.
Second, we compare LMPC II with LMPC I. The state and manipulated input tra-
jectories are shown in Fig. 9.9. Though LMPC II and LMPC I can both stabilize
the process, the transient of the closed-loop system under LMPC II is shorter than
the transient under LMPC I and has a smaller overshoot. Finally, we compare two
LMPC II controllers using the predicted manipulated input trajectory and the last
implemented manipulated input, respectively; the state and manipulated input tra-
jectories are shown in Fig. 9.10. As in the simulation of the previous subsection, the
last implemented manipulated input strategy is not able to stabilize the process.

From the results of this subsection, one can also conclude that LMPC II us-
ing the predicted manipulated input trajectory is the most robust in the presence of
asynchronous sampling among the three controllers.



9.2 Handling Sensor Malfunctions in the Control Design 227

Fig. 9.8 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled asynchronously and simultaneously using the predicted manipulated input trajectories of
LMPC II (solid curves) and the standard MPC (dashed curves)

Results of Asynchronous Sampling: PSD and Solute Concentration Sampled
Separately For the last set of simulations, we assume that we have the measure-
ments of PSD and solute concentration sampled separately. This implies that we
may get a measurement of PSD at a sampling time but lack corresponding mea-
surement of solute concentration; and we may have a measurement of solute con-
centration but lack the corresponding measurement of PSD. In addition, we have
asynchronous sampling which means that the length of the time interval between
two consecutive measurements is varying.

Using the same method presented in Sect. 5.2, we generate two different time
sequences {tpk≥0} for PSD (s = 2) and {tck≥0} for solute concentration (s = 3) us-

ing Wp = 0.15 and Wc = 1, respectively. Both time sequences are generated with
the same constraints Tmax = 2.5 hr and Tmin = 0.25 hr. The choice of Wc = 1 for
{tck≥0} is based on the fact that we can get a measurement of concentration faster.

The sampling sequence {tpk≥0} corresponding to the PSD measurements is shown in
Fig. 9.7 and the sampling sequence {tck≥0} corresponding to the solute concentration

measurements is shown in Fig. 9.11. Subsequently, the two sequences are merged
into an ordered one {tk≥0} by increasing time and the overlapping times correspond
to instants that both measurements of PSD and solute concentration can be obtained
(s = 1). The new sequence {tk≥0} is shown in Fig. 9.12. Every sampling instant in
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Fig. 9.9 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled asynchronously and simultaneously using the predicted manipulated input trajectories of
LMPC II (solid curves) and LMPC I

the new sequence represents a measurement of PSD or solute concentration or both.
The auxiliary variable s(tk) is defined accordingly.

We first compare LMPC II with MPC. The state and manipulated input trajecto-
ries are shown in Fig. 9.13. As expected, LMPC II is able to stabilize the process,
but MPC fails. The result is consistent with the previous simulations. Following that,
we compare LMPC II with LMPC I. The state and manipulated input trajectories are
shown in Fig. 9.14. In this figure, it can be seen that LMPC I can also stabilize the
process but it takes a longer time compared with LMPC II. Finally, we compare two
LMPC II controllers using the predicted manipulated input trajectory and the last
implemented input, respectively. Figure 9.15 shows the trajectories of the state and
manipulated input. This simulation demonstrates that for this case, only using the
last implemented manipulated input of LMPC II can not stabilize the process as in
the other simulations.

In this case, the overshoots of the trajectories generated by MPC and the ampli-
tudes of oscillations of the trajectories generated by LMPC II using the last imple-
mented manipulated input are smaller compared with the case discussed in Sect. 5.2.
This improvement is due to the decrease of the average time interval between two
consecutive measurements. Despite of this decrease, the performances of LMPC I



9.2 Handling Sensor Malfunctions in the Control Design 229

Fig. 9.10 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentra-
tion sampled asynchronously and simultaneously using the predicted manipulated input trajectory
(solid curves) and the last implemented manipulated input (dashed curves) of LMPC II

Fig. 9.11 Asynchronous sampling times for solute concentration

Fig. 9.12 Asynchronous sampling times, +: sampling times of PSD (s(tk) = 2), ×: sampling
times of solute concentration (s(tk) = 3), Δ: sampling times of both PSD and solute concentration
(s(tk) = 1)

and LMPC II using the predicted manipulated input trajectories do not get much im-
provement because there still exists some large intervals between two consecutive
measurements as shown in Fig. 9.12.



230 9 Control and Fault-Handling Subject to Asynchronous Measurements

Fig. 9.13 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentra-
tion sampled asynchronously and separately using the predicted manipulated input trajectories of
LMPC II (solid curves) and the standard MPC (dashed curves)

Fig. 9.14 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentra-
tion sampled asynchronously and separately using the predicted manipulated input trajectories of
LMPC II (solid curves) and LMPC I (dashed curves)
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Fig. 9.15 State and manipulated input trajectories of Eq. (9.59) with PSD and solute concentration
sampled asynchronously and separately using the predicted manipulated input trajectory (solid
curves) and the last implemented manipulated input (dashed curves) of LMPC II

Finally, to evaluate the robustness properties of the LMPC controllers, we also
carried out another set of simulations to demonstrate that LMPC II is more robust
than the other two controllers when there are uncertainties in the model parameters.
We assume that uncertainties are present in k1 and k2 of Eq. (9.59) and the actual
values used to evaluate the population balance model of Eq. (9.59) are 1.1k1 and
1.1k2 (10 % uncertainty) which are different from the values (k1 and k2) used in the
reduced-order moments model of Eq. (9.56). Figure 9.16 shows the results when
MPC and LMPC II are applied and Fig. 9.17 shows the results when LMPC I and
LMPC II are implemented. From the two figures, we conclude that LMPC II can
stabilize the system, but both MPC and LMPC I fail.

In summary, LMPC II using the predicted manipulated input trajectory yields a
more robust closed-loop performance when the process is subject to measurement
unavailability, asynchronous sampling, and parametric model uncertainties.

9.3 FDI Using Asynchronous Measurements: Problem
Formulation and Solution

9.3.1 Class of Nonlinear Systems

In this section, we consider nonlinear process systems described by the following
state-space model:
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Fig. 9.16 State and manipulated input trajectories of Eq. (9.59) with 10 % uncertainty in param-
eters k1 and k2 when PSD and solute concentration are sampled asynchronously and separately
using the predicted manipulated input trajectories of LMPC II (solid curves) and the standard
MPC (dashed curves)

ẋs = fs(xs, xa, u, d),

ẋa = fa(xs, xa, u, d),
(9.61)

where xs ∈ R
ns denotes the set of state variables that are sampled synchronously,

xa ∈R
na denotes the set of state variables that are sampled asynchronously, u ∈R

nu

denotes the input and d ∈ R
p is a model of the set of p possible faults. The faults

are unknown and dj , j = 1, . . . , p, can take any value. The state of the full system
is given by the vector

x =
[
xs

xa

]
∈ R

ns+na .

Using this definition for x, the system of Eq. (9.61) can be written in the following
equivalent compact form:

ẋ = f (x,u, d). (9.62)

We assume that f is a locally Lipschitz vector function and that f (0,0,0) = 0.
This means that the origin is an equilibrium point for the fault-free system with
u(t) ≡ 0. Moreover, we assume that the fault-free system (di(t) ≡ 0 for all t) has an
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Fig. 9.17 State and manipulated input trajectories of Eq. (9.59) with 10 % uncertainty in param-
eters k1 and k2 when PSD and solute concentration are sampled asynchronously and separately
using the predicted manipulated input trajectories of LMPC II (solid curves) and LMPC I (dashed
curves)

asymptotically stable equilibrium at the origin x = 0 for a given feedback control
function h : Rns+na → R

nu which satisfies h(0) = 0.

9.3.2 Modeling of Asynchronous Measurements

The system of Eq. (9.61) is controlled using both sampled synchronous and asyn-
chronous measurements. We assume that each state xs,i , i = 1, . . . , ns , is sam-
pled continuously (i.e., at intervals of fixed size Δ > 0 where Δ is a sufficiently
small positive number). Each state xa,i , i = ns + 1, . . . , ns + na , is sampled asyn-
chronously and is only available at time instants tk,i where tk,i is a random increas-
ing sequence of times. A controller design that takes advantage of the asynchronous
measurements must take into account that it will have to operate without complete
state information between asynchronous samples. This class of systems arises natu-
rally in process control, where process variables such as temperature, flow, or con-
centration have to be measured. In such a case, temperature and flow measurements
can be assumed to be available continuously. Concentration measurements, how-
ever, are available at an asynchronous sampling rate.
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If there exists a non-zero probability that the system operates in open-loop for a
period of time large enough for the state to leave the stability region or even diverge
to infinity (i.e., finite escape time), it is not possible to provide guaranteed stability
properties. In order to study the stability properties in a deterministic framework,
we consider systems where there is a limit on the maximum number of consecutive
sampling times in which measurements of xa,i are not available, i.e.,

max(tk+1,i − tk,i ) ≤ ΔM.

This bound on the maximum period of time in which the loop is open has been
also used in other works in the literature [107, 124, 167] and allows us to study
deterministic notions of stability.

9.3.3 Asynchronous State Observer

An observer that takes advantage of both synchronous and asynchronous measure-
ments can be constructed to estimate the fault-free evolution of asynchronous states
between consecutive measurements. The observer states are updated by setting the
observer state equal to the measurement each time a new asynchronous measure-
ment becomes available at tk,i . The asynchronous state observer takes the form

˙̂xa = fa(xs, x̂a, u,0) (9.63)

with x̂a,i (tk,i ) = xa,i(tk,i ) for all tk,i , that is, each time a new asynchronous mea-
surement is received, the estimated states x̂a,i with i = ns + 1, . . . , ns +na are reset
to match the true process state. The information generated by this observer provides
a fault-free estimate for each asynchronous state at any time t and allows for the
design of nonlinear control laws that utilize full state information. Using the esti-
mated states, the control input applied to the system is given by u = h(x̂) where
x̂ = [xT

s x̂T
a ]T .

This control input is defined for all times because it is based on both the syn-
chronous states and the estimated asynchronous states. We assume that ΔM is small
enough to guarantee that the system in closed-loop with this control scheme is prac-
tically stable, see [107, 124, 167] for details on similar stability results.

9.3.4 Design of Fault-Detection and Isolation Filter

In this section, we construct FDI filters that will automatically identify the source of
a failure in a timely manner. Utilizing both synchronous state measurements, x̂i (t),
i = 1, . . . , ns , and asynchronous state estimates, x̂i (t), i = ns + 1, . . . , ns + na , the
following ns + na filters are defined:

˙̃xi = fi

(
x̂1, . . . , x̃i , . . . , x̂ns+na , h(x̂1, . . . , x̃i , . . . , x̂ns+na ),0

)
, (9.64)
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where x̃i is the filter output for the ith state in x̂ and fi is the ith component of the
vector function f . The FDI filters are only initialized at t = 0 such that x̃(0) = x̂(0).
For each state in x̂, the FDI residual can be defined as

ri(t) = ∣
∣x̂i (t) − x̃i (t)

∣
∣, i = 1, . . . , ns + na.

The synchronous residuals ri(t) with i = 1, . . . , ns are computed continuously be-
cause x̂i (t) with i = 1, . . . , ns is known for all t . On the other hand, the asyn-
chronous residuals ri(t), i = ns + 1, . . . , ns + na , are computed only at times tk,i

when a new asynchronous measurement of x̂i (t), i = ns + 1, . . . , ns + na , is re-
ceived. These FDI filters operate by essentially predicting the fault-free evolution of
each individual state, accounting for faults that enter the system when the predicted
evolution of the state diverges from the measured evolution (see also Chap. 4).

The dynamics of the synchronous states and asynchronous observers, x̂, and the
FDI filters, x̃i , are identical to those of the system of Eq. (9.61) when there are
no disturbances or noise acting on the system. When the states are initialized as
x̂(0) = x̃(0) = x(0) both the observer and filter states will track the true process
states. For faults affecting the synchronous states, when a fault, dj , occurs, only the
residual corresponding to the affected state, ri , will become nonzero. This is the
case when the fs(xs, xa, h(x), d) vector field has a structure such that Type I faults
are isolable; see Chap. 4 for a precise determination of such a structure. In the case
with faults affecting asynchronously measured states, at least one ri will become
non-zero when a fault occurs. However, faults that affect asynchronous states cause
the asynchronous observer x̂a to diverge from the true process state xa between
consecutive measurements, and any FDI filter states that are a function of x̂a will
no longer accurately track the corresponding true process states. When such a fault
occurs more than one residual value may become nonzero.

Continuous measurements for asynchronous states are not available, thus the FDI
filters in Eq. (9.64) cannot always completely isolate all failures. We consider two
classes of faults. Type I faults are faults that only affect states that are measured
continuously; that is, dj is a Type I fault if

∂fi

∂dj

= 0, ∀i = ns + 1, . . . , ns + na.

Type II faults affect at least one asynchronous state, that is, dj is a Type II fault if
there exists at least one i = ns + 1, . . . , ns + na such that

∂fi

∂dj

�= 0.

The FDI filter will detect and isolate a Type I fault dj because the asynchronous state
observers will track the asynchronous states accurately (i.e., the effect of the fault
dj (t) on an asynchronous observer state is accounted for through the synchronous
states, so dj (t) is accounted for in the observer of Eq. (9.63) and hence the FDI
filter). A Type II fault enters the system in the differential equation of a state that
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is sampled asynchronously. The effect of Type II faults cannot be accounted for by
the observer x̂i , and such a fault will cause x̂i to no longer track xi and will eventu-
ally affect other coupled filter states as well. Strict isolation cannot take place for a
Type II fault. The FDI filter will detect and partially isolate disturbances in this case
because the asynchronous state observers will diverge from the asynchronous states
(i.e., the effect of the fault dj (t) on an asynchronous observer state is unmeasured
and unaccounted for, thus the observer in Eq. (9.63) does not track the disturbed
state). In other words, if a Type I fault occurs, then it can be detected and isolated. If
a Type II fault occurs, then this fault can be grouped to the subset of Type II faults.

A fault is detected at time tf if there exists a residual i such that ri(tf ) > ri,max,
where ri,max is an appropriate threshold chosen to account for process and sensor
noise. In order to isolate the possible source of the fault, it is necessary to wait until
the residuals of all the asynchronous state filters are updated after tf to determine
if the fault is Type I or Type II. The residual of each asynchronous state filter x̃i is
updated at time

ti (tf ) = min
k

{tk,i | tk,i > tf }.
If ri(ti(tf )) ≤ ri,max with i = ns + 1, . . . , ns + na , then the fault occurred at time tf
is a Type I fault and can be appropriately isolated. Otherwise, the fault belongs to
the set of Type II faults.

Consider that a synchronous residual ri indicates a fault at time tf . In this case,
the fault could have two possible causes, a Type I or Type II fault. In order to deter-
mine the true cause of this fault, one has to wait for the complete set of asynchronous
measurements to arrive after tf . When all the asynchronous measurements arrive
and if all the residuals of the asynchronous states are smaller than the threshold,
then the fault can be attributed to a Type I fault. If any asynchronous measurement
arrives and the corresponding residual indicates a fault, then the fault is Type II.
Note that when an asynchronous residual indicates a fault, we can also conclude
that the fault is Type II. When the fault is Type II it has been detected, and it is pos-
sible to narrow the fault source down to the set of faults that enter the differential
equations of asynchronous states.

When the fault can be attributed to a Type I fault and it has been detected and
isolated, then automated fault tolerant (FTC) control action can be initiated. For
example, when a fault event that is due to a manipulated input failure (i.e., an ac-
tuator failure) is detected and isolated, fault tolerant control methods, discussed in
Chaps. 3–6, can be initiated. In general an FTC switching rule may be employed
that orchestrates the reconfiguration of the control system in the event of control
system failure. This rule determines which of the backup control loops can be acti-
vated, in the event that the main control loop fails, in order to preserve closed-loop
stability. Owing to the limitations imposed by input constraints on the stability re-
gion for each control configuration, switching from a malfunctioning configuration
to a well-functioning, but randomly selected, backup configuration will not preserve
closed-loop stability if the state of the system, at the time of failure, lies outside the
stability region of the chosen backup configuration. In this case, stabilization using
this configuration requires more control action than is allowed by its constraints.
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This observation motivates the development of switching logic, which is to switch
to the control configuration for which the closed-loop state resides within the sta-
bility region at the time of control failure. Without loss of generality, let the initial
actuator configuration be k(0) = 1 and let td be the time when this failure has been
isolated, then the switching rule given by

k(t) = j, ∀t ≥ td if x(td) ∈ Ω
(
umax

j

)
(9.65)

for some j ∈ {2,3, . . . ,N} guarantees closed-loop asymptotic stability, where
Ω(umax

j ) is the stability region for the j th control configuration. The implementa-
tion of the above switching law requires monitoring the closed-loop state trajectory
with respect to the stability regions associated with the various fall-back configura-
tions. The reader may refer to [58] for application of FTC to a polyethylene reactor
with constraints on the manipulated inputs. In this work we consider a control law
without constraints on the manipulated inputs, and the primary control configuration
with a faulty actuator will be deactivated in favor of a fully functional fall-back con-
trol configuration where the fall-back configuration can guarantee global stability of
the closed-loop system. This integrated FDI/FTC reconfiguration allows for seam-
less fault-recovery in the event of an actuator failure. Section 9.3.5 demonstrates
integrated FDI/FTC for the polyethylene reactor.

9.3.5 Application to a Polyethylene Reactor

9.3.5.1 Process and Measurement Modeling

The presented model-based asynchronous FDI and FTC method will be demon-
strated using a model of an industrial gas phase polyethylene reactor. The feed to
the reactor consists of ethylene ([M1]), comonomer, hydrogen, inerts ([In]) and cata-
lyst (Y ). A recycle stream of unreacted gases flows from the top of the reactor and is
cooled by passing through a water-cooled heat exchanger. Cooling rates in the heat
exchanger are adjusted by mixing cold and warm water streams while maintaining a
constant total cooling water flow rate through the heat exchanger. Mass balances on
hydrogen and comonomer have not been considered in this study because hydrogen
and comonomer have only mild effects on the reactor dynamics [101]. A mathemat-
ical model for this reactor has the following form [33]:

d[In]
dt

= 1

Vg

(
FIn − [In]

[M1] + [In]bt

)
,

d[M1]
dt

= 1

Vg

(
FM1 − [M1]

[M1] + [In]bt − RM1

)
+ d4,

dY1

dt
= Fcac − kd1Y1 − RM1MW1Y1

Bw

+ d2,
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dY2

dt
= Fcac − kd2Y2 − RM1MW1Y2

Bw

+ d2, (9.66)

dT

dt
= Hf + Hg1 − Hg0 − Hr − Hpol

MrCpr + BwCppol
+ Q + d1,

dTw1

dt
= Fw

Mw

(Twi − Tw1) − UA

MwCpw

(Tw1 − Tg1),

dTg1

dt
= Fg

Mg

(T − Tg1) + UA

MgCpg

(Tw1 − Tg1) + d3,

where

bt = VpCv

√([M1] + [In])RRT − Pv,

RM1 = [M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Y1 + Y2),

Cpg = [M1]
[M1] + [In]Cpm1 + [In]

[M1] + [In]CpIn,

Hf = (FM1Cpm1 + FInCpIn)(Tfeed − Tf ),

Hg1 = Fg(Tg1 − Tf )Cpg,

Hg0 = (Fg + bt )(T − Tf )Cpg,

Hr = HreacMW1RM1,

Hpol = Cppol(T − Tf )RM1MW1 .

(9.67)

The definitions for all the variables used in (9.66) and (9.67) are given in Table 9.3
and their values can be found in [33] (see also [58]). Under normal operating condi-
tions, the open-loop system behaves in an oscillatory fashion (i.e., the system pos-
sesses an open-loop unstable steady-state surrounded by a stable limit cycle). The
open-loop unstable steady-state around which the system will be controlled is

[In]ss = 439.7 mol/m3, [M1]ss = 326.7 mol/m3,

Yss = 7.67 mol, Tss = 356.2 K,

Tg1ss = 290.4 K, Tw1ss = 294.4 K,

where T , Tg1 , and Tw1 are the temperatures of the reactor, recycle gas after cooling,
and exit-stream cooling water, respectively. In this example, we consider four possi-
ble faults, d1, d2, d3, and d4 which represent a heat jacket fault, catalyst deactivation,
a change in the recycle gas flow rate, and ethylene consumption, respectively. The
primary manipulated input for these studies is the heat input, Q, and the fall-back
manipulated input is the feed temperature, Tfeed. A fall-back manipulated input is
required to maintain desired system performance in the presence of failure in the
primary control configuration.
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Table 9.3 Polyethylene reactor example process variables

ac active site concentration of catalyst

bt overhead gas bleed

Bw mass of polymer in the fluidized bed

Cpm1 specific heat capacity of ethylene

Cv vent flow coefficient

Cpw , CpIn, Cppol specific heat capacity of water, inert gas and polymer

Ea activation energy

Fc, Fg flow rate of catalyst and recycle gas

FIn, FM1 , Fw flow rate of inert, ethylene and cooling water

Hf , Hg0 enthalpy of fresh feed stream, total gas outflow stream from reactor

Hg1 enthalpy of cooled recycle gas stream to reactor

Hpol enthalpy of polymer

Hr heat liberated by polymerization reaction

Hreac heat of reaction

[In] molar concentration of inerts in the gas phase

kd1 , kd2 deactivation rate constant for catalyst site 1, 2

kp0 pre-exponential factor for polymer propagation rate

[M1] molar concentration of ethylene in the gas phase

Mg mass holdup of gas stream in heat exchanger

MrCpr product of mass and heat capacity of reactor walls

Mw mass holdup of cooling water in heat exchanger

MW1 molecular weight of monomer

Pv pressure downstream of bleed vent

Q Heat added/removed by heating jacket

R, RR ideal gas constant, unit of J/(mol K), m3 atm/(mol K)

T , Tf , Tfeed reactor, reference, feed temperature

Tg1 , Tw1 temperature of recycle gas, cooling water stream from exchanger

Twi
inlet cooling water temperature to heat exchanger

UA product of heat exchanger coefficient with area

Vg volume of gas phase in the reactor

Vp bleed stream valve position

Y1, Y2 moles of active site type 1, 2

Simulations have been carried out for several scenarios to demonstrate the ef-
fectiveness of the proposed FDI scheme in detecting and isolating the four faults
d1, d2, d3, and d4 in the presence of asynchronous measurements. The temperature
measurements (T , Tg1 , Tw1 ) are all assumed to be available synchronously, while
the concentration measurements ([In], [M1], Y ) arrive at asynchronous intervals. In
all the simulations, sensor measurement and process noise are included. The sensor
measurement noise trajectory was generated using a sample time of ten seconds and
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Table 9.4 Polyethylene
reactor noise parameters σp σm φ

[In] 1E–4 5E–2 0

[M1] 1E–4 5E–2 0.7

Y 1E–4 1E–2 0.7

T 5E–3 5E–2 0.7

Tg1 5E–3 5E–2 0.7

Tw1 5E–3 5E–2 0.7

a zero-mean normal distribution with standard deviation σM . The autoregressive
process noise was generated discretely as wk = φwk−1 + ξk , where k = 0,1, . . . is
the discrete time step, with a sample time of ten seconds, φ is the autoregressive
coefficient, and ξk is obtained at each sampling step using a zero-mean normal dis-
tribution with standard deviation σp . The autoregressive process noise is added to
the right-hand side of the differential equations for each state and the sensor mea-
surement noise is added to the measurements of each state. Sensor measurement
noise and process noise are evaluated independently for each state variable. Ta-
ble 9.4 provides the values of the noise parameters for each state of the system. The
length of time between consecutive asynchronous measurements is generated ran-
domly based on a Poisson process. The time when the system will receive the next
asynchronous measurement of the ith state is given by tk+1,i = tk,i + Δa where
Δa = − ln(ξ)/Wa and ξ ∈ (0,1) is a random variable chosen from a uniform prob-
ability distribution and Wa = 0.003 s−1 is the mean rate of asynchronous sampling.
There is an upper bound limiting the time between consecutive measurements such
that Δa ≤ ΔM = 1200 s. This value of ΔM is small enough to provide practical
closed-loop stability around the desired equilibrium point for the polyethylene re-
actor. An increasing sequence of measurement arrival times is generated indepen-
dently for each asynchronously measured state.

9.3.5.2 Design of the Asynchronous State Observers

To perform FDI for the polyethylene reactor system we need to construct the asyn-
chronous state observers of the form in Eq. (9.63). The asynchronous state observers
for this system have the form:

d[În]
dt

= 1

Vg

(
FIn − [În]

ˆ[M1] + [În] b̂t

)
,

d ˆ[M1]
dt

= 1

Vg

(
FM1 − ˆ[M1]

ˆ[M1] + [În] b̂t − R̂M1

)
,

dŶ

dt
= Fcac − kd1 Ŷ − R̂M1MW1Y

Bw

,
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b̂t = VpCv

√( ˆ[M1] + [În])RRT (t) − Pv,

R̂M1 = ˆ[M1]kp0e
−Ea

R
( 1

T (t)
− 1

Tf
)
(Ŷ ),

[În](tk,[In]) = [In](tk,[In]),

ˆ[M1](tk,[M1]) = [M1](tk,[M1]),

Ŷ (tk,Y ) = Y(tk,Y ),

(9.68)

where [În], ˆ[M1], and Ŷ are the asynchronous observer states. Each asynchronous
observer state is initialized each time new measurement information becomes avail-
able at the times tk,i . The observer states provide estimates for the asynchronous
states between consecutive measurements allowing the computation of control ac-
tions and FDI residuals at each time.

9.3.5.3 Design of the State Feedback Controller

The control objective is to stabilize the system at the open-loop unstable steady state.
A nonlinear Lyapunov-based feedback controller that enforces asymptotic stability
of the closed-loop system is synthesized using the method as discussed in Chap. 2.
This is a single input controller that utilizes synchronous measurements as well as
observer states. The polyethylene reactor dynamics belong to the following class of
nonlinear systems:

ẋ(t) = f
(
x(t)

) + g1
(
x(t)

)
u1(t) + g2

(
x(t)

)
u2(t) + w

(
x(t)

)
d(t), (9.69)

where

x(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

[In] − [In]ss
[M1] − [M1]ss

Y − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

and

u1(t) = Q, u2(t) = Tfeed.

Consider the quadratic control Lyapunov function V (x) = xT Px where

P = 1 × 10−2diag[0.5 0.5 0.5 1 0.005 0.005].

The values of the weighting matrix P are chosen to account for the different range
of numerical values for each state. The following feedback laws [150] (see also
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Chap. 2) asymptotically stabilize the open-loop and possibly unstable steady-state
of the nominal system (i.e., d(t) ≡ 0)

hi(x) =
⎧
⎨

⎩

Lf V +
√

Lf V 2+Lgi
V 4

−Lgi
V

if Lgi
V �= 0,

0 if Lgi
V = 0,

i = 1,2. (9.70)

In the simulations, the primary control configuration is given by

u1(t) = h1
(
x̂(t)

)
,

and the fall-back control configuration is given by

u2(t) = h2
(
x̂(t)

)
,

where

x̂(t) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

[În] − [In]ss
ˆ[M1] − [M1]ss
Ŷ − Yss

T − Tss

Tg1 − Tg1ss

Tw1 − Tw1ss

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

9.3.5.4 Design of FDI/FTC Scheme

Fault detection and isolation for the system in closed-loop with the primary con-
figuration is accomplished by generating FDI filters as in Eq. (9.64), and for the
polyethylene system the FDI filters take the following form:

d[Ĩn]
dt

= 1

Vg

(
FIn − [Ĩn]

ˆ[M1] + [Ĩn] b̃
[In]
t

)
,

d ˜[M1]
dt

= 1

Vg

(
FM1 − ˜[M1]

˜[M1] + [În] b̃
[M1]
t − R̃

[M1]
M1

)
,

dỸ

dt
= Fcac − kd1 Ỹ − R̃Y

M1
MW1 Ỹ

Bw

,

dT̃

dt
= Hf + H̃ T

g1 − H̃ T
g0 − H̃ T

r − H̃ T
pol

MrCpr + BwCppol
+ h1

(
x̂(t)

)
,

dT̃w1

dt
= Fw

Mw

(Twi
− T̃w1) − UA

MwCpw

(T̃w1 − Tg1),

dT̃g1

dt
= Fg

Mg

(T − T̃g1) + UA

MgC̃pg

(Tw1 − T̃g1),

(9.71)
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where

b̃
[In]
t = VpCv

√( ˆ[M1] + [Ĩn])RRT − Pv,

b̃
[M1]
t = VpCv

√( ˜[M1] + [În])RRT − Pv,

b̃
[T ]
t = VpCv

√( ˆ[M1] + [În])RR T̃ − Pv,

R̃
[M1]
M1

= ˜[M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Ŷ ),

R̃Y
M1

= ˆ[M1]kp0e
−Ea

R
( 1

T
− 1

Tf
)
(Ỹ ),

R̃T
M1

= ˆ[M1]kp0e
−Ea

R
( 1

T̃
− 1

Tf
)
(Ŷ ), (9.72)

C̃pg = ˆ[M1]
ˆ[M1] + [În]Cpm1 + [În]

ˆ[M1] + [În]CpIn,

H̃ T
g1

= Fg(Tg1 − Tf )C̃pg,

H̃ T
g0

= (
Fg + b̃T

t

)
(T̃ − Tf )C̃pg,

H̃ T
r = HreacMW1R̃

T
M1

,

H̃ T
pol = Cppol(T̃ − Tf )R̃T

M1
MW1 .

In addition, the FDI residuals take the following form:

r[In] = ∣∣[În](tk) − [Ĩn](tk)
∣∣,

r[M1] = ∣∣ ˆ[M1](tk) − [Ĩn](tk)
∣∣,

rY = ∣∣Ŷ (tk) − Ỹ (tk)
∣∣,

rT = |T − T̃ |,
rTg1

= |Tg1 − T̃g1 |,
rTw1

= |Tw1 − T̃w1 |.

(9.73)

In the case with measurement and process noise, the residuals will be nonzero even
without a failure event. This motivates the use of detection thresholds such that a
fault is declared when a residual exceeds a specific threshold value, ri,max (note that
a different threshold value can be used for each residual). This threshold value must
be selected to avoid false alarms due to process and measurement noise, but it should
also be sensitive enough (small enough) to detect faults in a timely manner so that
efficient FTC action can be initiated. The threshold values used for each residual in
the numerical simulations can be seen as the dashed lines in Figs. 9.20, 9.23, 9.26,
and 9.29.
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If the fault can be isolated to d1 (i.e., rT exceeds rT ,max at t = tf , while
ri(ti(tf )) ≤ ri,max with i = [In], [M1], Y ), then one can invoke fault tolerant con-
trol methods to handle actuator failures by activation of a fall-back control con-
figuration. In the simulation studies, it is assumed that a fall-back configuration,
where the fall-back manipulated input is u2 = Tfeed, is available. The control law of
Eq. (9.70) enforces stability when the control actuator is functioning properly, thus
switching to the operational fall-back configuration will guarantee stability in the
case of failure of the primary control configuration, u1 = Q.

9.3.5.5 Closed-Loop Process Simulation Results

This section consists of four simulation studies, each examining one of the faults
d1, d2, d3, or d4. The first simulation considers a fault, d1, on the heating jacket
which is the primary manipulated input. In this case, the simulation includes fault
tolerant control that automatically reconfigures the plant so that the fall-back ma-
nipulated input, u2 = Tfeed, is activated to maintain stability. Specifically, the su-
pervisory control element will deactivate the primary control configuration, u1 and
activate the fall-back configuration u2 when rT > rT,max and ri(ti(tf )) ≤ ri,max with
i = [In], [M1], Y . This specific fault signature corresponds to a Type I fault that can
be isolated to d1. The reader may refer to [58] to obtain more information on FTC
and reconfiguration rules for a polyethylene reactor with constraints on the manip-
ulated inputs that give rise to stability regions. This work does not consider con-
straints on the manipulated inputs, hence, the fall-back configuration can guarantee
stability from anywhere in the state space because the closed-loop system under
the fall-back control configuration is globally asymptotically stable. The remaining
simulation studies explore faults that disturb the system, but do not arise from actu-
ator failures. Since they are not caused by actuation component malfunctions these
failures cannot be resolved simply by actuator reconfiguration. However, these sim-
ulations demonstrate quick detection and isolation in the presence of asynchronous
measurements that enables the operator to take appropriate and focused action in a
timely manner.

For the fault d1 a simulation study has been carried out to demonstrate the pro-
posed asynchronous fault detection and isolation and fault tolerant control method.
The sequence of asynchronous measurements for this scenario is shown in Fig. 9.18.
This first simulation uses the primary control configuration in which Q is the ma-
nipulated input and has a fall-back configuration, in which Tfeed is the manipulated
input, available in case of a fault in d1. A fault takes place where d1 = 1 K/s at
t = 0.5 hr, representing a failure in the heating jacket, Q. At this time, the syn-
chronous states in Fig. 9.19 all move away from the equilibrium point. Addition-
ally, as asynchronous measurements become available, it is clear the asynchronous
states also move away from the equilibrium point after the failure. It is unclear
from the state information alone what caused this faulty behavior. However, if the
FDI residuals in Fig. 9.20 are examined, it is clear that the residual rT that is as-
sociated with the manipulated input Q, violates its threshold at tf = 0.5003 hr.
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Fig. 9.18 Asynchronous
sampling times tk,[In] (star),
tk,[M1] (cross), and tk,Y

(circle) with a fault d1 at
t = 0.5 hr

Fig. 9.19 State trajectories of the closed-loop system without fault-tolerant control (circle/solid)
and with appropriate fault detection and isolation and fault-tolerant control where the fall-back
control configuration is activated (star/dotted) with a fault d1 at t = 0.5 hr

The fault is detected upon this threshold violation. However, isolation cannot take
place until one new measurement for each asynchronous state becomes available.
At t = 0.5944 hr all three required asynchronous measurements have arrived, and
the asynchronous residuals remain below their thresholds, hence ri(ti(tf )) ≤ ri,max

with i = [In], [M1], Y . This signals that this is a Type I fault that can be isolated
to d1. At this time, the system is reconfigured to the fall-back configuration where
Tfeed is the manipulated input, and the resulting state trajectory, shown as the dotted
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Fig. 9.20 Fault-detection and isolation residuals for the closed-loop system with a fault d1 at
t = 0.5 hr. The fault is detected immediately, but isolation occurs at t = 0.59 hr when all three
asynchronous states have reported a residual below their detection threshold. This signals a Type I
fault, and we can isolate the source of this fault as d1

Fig. 9.21 Manipulated input
for the closed-loop system
without fault-tolerant control
(solid) and with appropriate
fault-tolerant control where
the fall-back control
configuration is activated
(dotted) with a fault d1 at
t = 0.5 hr

line in Fig. 9.19, moves back to the desired operating point. The manipulated input
for this scenario can be seen in Fig. 9.21 where the solid line is the manipulated
input without detection and reconfiguration, and the dotted line represents the input
after FDI and reconfiguration.

The second simulation demonstrates the proposed asynchronous model-based
fault-detection and isolation method when a Type II fault occurs. The sequence of
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Fig. 9.22 Asynchronous
sampling times tk,[In] (star),
tk,[M1] (cross), and tk,Y

(circle) with a fault d2 at
t = 0.5 hr

asynchronous measurements for this scenario are found in Fig. 9.22. This simula-
tion uses the primary control configuration in which Q is the manipulated input.
A fault takes place where d2 = −0.001 mol/s at t = 0.5 hr, representing a catalyst
deactivation event. After the failure, two synchronous states in move away from the
equilibrium point (see [103] for additional figures). Additionally, as asynchronous
measurements become available it can be seen that asynchronous states also move
away from the equilibrium point after the failure. It is unclear from the state in-
formation alone what caused this faulty behavior. However, if the FDI residuals in
Fig. 9.23 generated by (9.73) are examined, it is clear that the residuals r[M1], rY , and
rT violate their thresholds. The fault is detected upon the first threshold violation (rY
at t = 0.5333 hr). When the residual associated with Y exceeds the threshold this
signals that the fault is Type II and entered the system in the differential equation of
an asynchronous state. When the fault is Type II it cannot be isolated. However, such
a fault can be grouped in the subset of faults that enter into the differential equation
of an asynchronous state (i.e., the group of Type II faults, specifically, d2 or d4). At
this time, the system operator can utilize the above partial isolation to examine the
plant and determine the exact source of the failure. The manipulated input for this
scenario can be seen in Fig. 9.24.

The third simulation study examines FDI in the presence of a Type I fault, d3,
representing a change in the recycle gas flow rate. The sequence of asynchronous
measurements for this scenario are found in Fig. 9.25. This simulation study uses the
primary control configuration in which Q is the manipulate input, and a fault takes
place where d3 = 300 K/s at t = 0.5 hr. At this time the synchronous states all move
away from the equilibrium point (see [103] for additional figures). Additionally, as
asynchronous measurements become available it is observed that the asynchronous
states also move away from the equilibrium point after the failure. It is unclear from
the state information alone what caused this faulty behavior. However, if the FDI
residuals in Fig. 9.26 are examined, the residual associated with Tg1 violates its
threshold at t = 0.5003 hr. The fault is detected upon this threshold violation. How-
ever, isolation cannot take place until one new measurement for each asynchronous
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Fig. 9.23 Fault-detection and isolation residuals for the closed-loop system with a fault d2 at
t = 0.5 hr. The fault is detected when residual for Y exceeds the threshold. Subsequently, T and
[M1] exceed their thresholds. When any asynchronous residual violates the threshold, this indicates
that the fault is in the set of Type II faults, d2 or d4

Fig. 9.24 Manipulated input
for the closed-loop system
with a fault d2 at t = 0.5 hr

state becomes available. At t = 0.6086 hr, all three required asynchronous measure-
ments have become available, and the residuals signal a Type I fault, allowing the
isolation of the fault to d3. The manipulated input for this scenario can be seen in
Fig. 9.27.

The final simulation study demonstrates the proposed asynchronous model-based
fault-detection and isolation method when a Type II fault occurs. The sequence of
asynchronous measurements for this scenario are found in Fig. 9.28. This simula-
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Fig. 9.25 Asynchronous
sampling times tk,[In] (star),
tk,[M1] (cross), and tk,Y

(circle) with a fault d3 at
t = 0.5 hr

Fig. 9.26 Fault-detection and isolation residuals for the closed-loop system with a fault d3 at
t = 0.5 hr. A fault is detected immediately when residual for Tg1 exceeds the threshold. Subse-
quently, none of the asynchronous residuals exceed their thresholds, indicating that the fault source
can be isolated as d3

tion uses the primary control configuration in which Q is the manipulated input.
A fault takes place where d4 = −0.2 mol/s at t = 0.5 hr, representing unexpected
monomer consumption. After the failure, the synchronous states diverge from their
desired values (see [103] for additional figures). Additionally, as asynchronous mea-
surements become available, it can be seen that asynchronous states also diverge af-
ter the failure. It is unclear from the state information alone what caused this faulty
behavior. However, if the FDI residuals in Fig. 9.29 are examined, the residuals
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Fig. 9.27 Manipulated input
for the closed-loop system
with a fault d3 at t = 0.5 hr

Fig. 9.28 Asynchronous
sampling times tk,[In] (star),
tk,[M1] (cross), and tk,Y

(circle) with a fault d4 at
t = 0.5 hr

r[In], r[M1], rT , and rTg1
violate their thresholds. The fault is detected upon the first

threshold violation (r[M1] at t = 0.05667 hr). When the residual r[M1] exceeds the
threshold this signals that a Type II fault has occurred. When a Type II fault occurs,
it cannot be isolated. As in the second simulation, such a fault can be grouped in the
subset of Type II faults, d2 or d4. At this time, the system operator can utilize the
partial isolation to examine the plant and determine the exact source of the failure.
The manipulated input for this scenario can be seen in Fig. 9.30.

9.4 Conclusions

This chapter presented a control and fault handling approach to handle asyn-
chronous measurements. First, an LMPC scheme was presented where when feed-
back is lost, the actuators implement the last optimal input trajectory evaluated by
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Fig. 9.29 Fault-detection and isolation residuals for the closed-loop system with a fault d4 at
t = 0.5 hr. The fault is detected when residual for [M1] exceeds the threshold. Subsequently, T and
[In] exceed their thresholds. When any asynchronous residual violates the threshold, this indicates
the fault is in the set of Type II faults, d2 or d4

Fig. 9.30 Manipulated input
for the closed-loop system
with a fault d4 at t = 0.5 hr

the LMPC. The LMPC scheme allows for an explicit characterization of the stabil-
ity region, guarantees practical stability in the absence of sensor data losses or asyn-
chronous measurements. Extensive simulations of the application of the LMPC to a
continuous crystallization process subject to sensor malfunctions were carried out.
From the simulations, we found out that the presented LMPC accounting for sensor
data losses yields a more robust closed-loop performance when the process is sub-
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ject to measurement unavailability, asynchronous sampling, and parametric model
uncertainties. Next, an application of fault detection and isolation and fault-tolerant
control to a polyethylene reactor system was presented where several process mea-
surements were not available synchronously. First, an FDI scheme that employs
model-based techniques was introduced that allowed for the isolation of faults. This
scheme employed model-based FDI filters in addition to observers that estimate
the fault-free evolution of asynchronously measured states during times when they
are unmeasured. Specifically, the proposed FDI scheme provided detection and iso-
lation for a Type I fault where the fault entered into the differential equation of
only synchronously measured states, and grouping of Type II faults where the fault
entered into the differential equation of any asynchronously measured state. The
detection occurred shortly after a fault took place, and the isolation, limited by the
arrival of asynchronous measurements, occurred once all of the asynchronous mea-
surements became available. Once the FDI methodology provided the system su-
pervisor with a fault diagnosis, the supervisor took appropriate action to seamlessly
reconfigure the polyethylene reactor system to an alternative control configuration
that enforced the desired operation.
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