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Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has developed for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduates, graduates or industrial engineers. The
Advanced Textbooks in Control and Signal Processing Series is designed as a
vehicle for the systematic presentation of course material for both popular and
innovative topics in the discipline. It is hoped that prospective authors will
welcome the opportunity to publish a structured presentation of either existing
subject areas or some of the newer emerging control and signal processing
technologies.

Fault detection and process monitoring is one of the new growth areas in
process control. The reason for this development is not hard to find. New
instrumentation and communications technologies have created a wealth of real-
time data from processes in both new and existing manufacturing plant
installations. Process operators are therefore keen to use this data to minimise
plant downtime and optimise plant operations. The traditional routes to fault
detection were model based and to use them the process has to be well understood.
An alternative group of methods has emerged which do not require the use of an
explicit model. This is the key basic construct for the data-driven paradigm.
Model-free and non-parametric methods for fault detection, process optimisation
and control design are currently at a particularly exciting stage of development.

This new advanced textbook by Chiang, Russell and Braatz primarily tackles
the data-driven routes to Fault Detection and Diagnosis. It is an outgrowth of a
prior Advances in Industrial Control monograph; Russell, Chiang and Braatz.
Data-driven Techniques for Fault Detection and Diagnosis in Chemical
Processes, 2000, ISBN 1-85233-258-1. The new textbook expands the material of
the monograph and gives a fuller presentation of some of the alternative model-
based methods, the analytical methods, and of the knowledge-based techniques.



vi  Series Editors’ Foreword

This allows the reader to compare and contrast the different approaches to the
problem of fault detection and diagnosis. Thus the text is suitable for advanced
courses for process, chemical and control engineers.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, UK.

October, 2000



Preface

Modern manufacturing facilities are large scale, highly complex, and oper-
ate with a large number of variables under closed-loop control. Early and
accurate fault detection and diagnosis for these plants can minimize down-
time, increase the safety of plant operations, and reduce manufacturing costs.
Plants are becoming more heavily instrumented, resulting in more data be-
coming available for use in detecting and diagnosing faults. Univariate control
charts (e.g., Shewhart charts) have a limited ability to detect and diagnose
faults in such multivariable processes. This has led to a surge of academic
and industrial effort concentrated on developing more effective process moni-
toring methods. A large number of these methods are being regularly applied
to real industrial systems, which makes these techniques suitable for coverage
in undergraduate and graduate courses.

This textbook presents the theoretical background and practical tech-
niques for process monitoring. The intended audience is engineering students
and practicing engineers. The book is appropriate for a first-year graduate or
advanced undergraduate course in process monitoring. Numerous simple ex-
amples and a simulator for a large-scale industrial plant are used to illustrate
the methods. As the most effective method for learning the techniques is by
applying them, the Tennessee Eastman plant simulator has been made avail-
able at http://brahms.scs.uiuc.edu. Readers are encouraged to collect
process data from the simulator, and then apply a range of process moni-
toring techniques to detect, isolate, and diagnose various faults. The process
monitoring techniques can be implemented using commercial software pack-
ages such as the MATLAB PLS Toolbox and ADAPTx.

What were the goals in writing this textbook? Although much effort has
been devoted to process monitoring by both academics and industrially em-
ployed engineers, books on the subject are still rather limited in coverage.
These books usually focus entirely on one type of approach such as statistical
quality control (Montgomery (1991), Park and Vining (2000)) or analytical
methods (Chen and Patton (1999), Gertler (1998), Patton, Frank, and Clark
(1989)). Some books treat both statistical and analytical methods (Himmel-
blau (1978), Basseville and Nikiforov (1993)), but do not cover knowledge-
based methods. Wang (1999) covers both statistical and knowledge-based
methods, but does not cover analytical methods. Many process monitoring
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methods of practical importance, such as those based on canonical variate
analysis and Fisher discriminant analysis, are described in hardly any books
on process monitoring (an exception is Russell, Chiang, and Braatz (2000)).

While many of these books do an excellent job covering their intended top-
ics, it was our opinion that there was a need for a single textbook that covers
data-driven, analytical, and knowledge-based process monitoring methods.
Part of the motivation for this is that many engineering curricula do not
have sufficient space for courses on each of these topics in isolation. But all of
these methods are becoming increasingly important in practice, and should be
studied by engineering students who plan to work in industry. These include
mechanical, electrical, industrial, chemical, nuclear, manufacturing, control,
aerospace, quality, and reliability engineers, as well as applied statisticians.

The proportion of coverage given to each topic is based on our own experi-
ence (all three authors have applied process monitoring methods to industrial
systems with hundreds of measured variables), as well as on the industrial
experience of other engineers as described in person or in publications. The
first chapter gives an overview of process monitoring procedures and methods.
Chapter 2 provides background in multivariate statistics, including univari-
ate control charts and a discussion of data requirements. Chapter 3 discusses
pattern classification, including discriminant analysis and feature extraction,
which are fundamental to fault diagnosis techniques.

Chapters 4-7 cover data-driven process monitoring methods. Principal
component analysis (PCA) and partial least squares (PLS) are multi-
variate statistical methods that generalize the univariate control charts that
have been applied for decades. Fisher discriminant analysis (FDA) is a
fault diagnosis method based on the pattern classification literature. Canon-
ical variate analysis (CVA) is a subspace identification method that has
been used in process monitoring in a similar manner to PCA and PLS. These
four methods represent the state of the art in data-driven process monitor-
ing methods, which are the methods most heavily used in many chemical
and manufacturing industries. One reason for the popularity of data-driven
methods is that they do not require first-principles models, the development
of which is usually costly or time-consuming. For this reason, these meth-
ods are also the predominant methods that have been applied to large-scale
systems. In Chapters 8-10 the methods are compared through application
to a large-scale system, the Tennessee Eastman plant simulator. This gives
the readers an understanding of the strengths and weaknesses of various ap-
proaches, as well as some realistic homework problems.

Chapter 11 describes analytical methods, including parameter estimation,
state estimation, and parity relations. While not as pervasive as data-driven
methods in many industries, in some cases a first-principles model is available,
and analytical methods are suited to using these models for process monitor-
ing. Also, in most engineering curricula it is the analytical approach that is
most closely related to topics covered in other control courses. Chapter 12 de-
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scribes knowledge-based methods, including causal analysis, expert systems,
and pattern recognition. Knowledge-based methods are especially suited to
systems in which there are inadequate data to apply a data-driven method,
but qualitative or semi-qualitative models can be derived from causal mod-
eling of the system, expert knowledge, or fault-symptom examples. Each of
the data-driven, analytical, and knowledge-based approaches have strengths
and limitations. Incorporating several techniques for process monitoring can
be beneficial in many applications. Chapter 12 also discusses various combi-
nations of process monitoring techniques.

The authors thank International Paper, DuPont, and the National Center
for Supercomputing Applications for funding over the past three years this
textbook was being written.

L.H.C,, ELR. R.D.B
Urbana, Illinois



Contents

Part 1. Introduction

1. Introduction......... ... . ittt 3
1.1 Process Monitoring Procedures........................... 4
1.2 Process Monitoring Measures ..............c.coveninarn... 5
1.3 Process Monitoring Methods ............................. 7
1.4 Book Organization ..............oviiiiiiiinnennnnnnnn.. 10

Part II. Background

2. Multivariate Statistics ................ ... ... . ... . ... 15
2.1 Imtroduction ........... ..ottt 15
2.2 Data Pretreatment ........... ..., 16
2.3 Univariate Statistical Monitoring .................ccov... 17
2.4 T2 StatIStIC .« .ot v ettt et e e e e e 21
2.5 Thresholds for the 72 Statistic .........o.ovvreennueennnn.. 22
2.6 Data Requirements ..............ciiiiiiiiiii .. 24
2.7 Homework Problems .............cccoiiiiiiiiiiiiinnn.. 25

3. Pattern Classification................. ... ..., 27
3.1 Imtroduction ..........cccoiiiiiiiiiii ittt 27
3.2 Discriminant Analysis............ccoiiiiiiiiiin s, 28
3.3 Feature Extraction .............ccoiiiiiiiiiiinnnnnn. 30
3.4 Homework Problems ..............cc ... 31

Part III. Data-driven Methods

4.

Principal Component Analysis............................ 35
4.1 Introduction ..............iiiiiiiiiiiiiiiiiienn, 35
4.2 Principal Component Analysis ................ccovunnnn.. 36
4.3 Reduction Order .........oiiiiiiniii it 41
4.4 Fault Detection ..........cooiiiiiiiniiiin .. 42
4.5 Fault Identification ...........cciiiiiiiiiii i, 45



xii

Contents
4.6 Fault Diagnosis .........cooiiiiiiniineiieinneennennnnn. 48
4.7 Dynamic PCA ... ... .. e 52
4.8 Other PCA-based Methods .....................c..c ..., 54
4.9 Homework Problems ................. ... iiiiiin... 55
Fisher Discriminant Analysis ............................. 57
51 Introduction .............coiiiiiiiiiniiii i, 57
5.2 Fisher Discriminant Analysis.............cccocvvviiin... 57
53 ReductionOrder .......... ..ottt 60
5.4 Fault Detection and Diagnosis ..................cooo.... 62
5.5 Comparison of PCAand FDA ........................... 63
56 Dynamic FDA .......... . i 69
5.7 Homework Problems ................ ... iiiiiiiinn... 70
Partial Least Squares .................coiiiiiiiiininennnn. 71
6.1 Introduction ..............cciiiiniiniirineniennnennennn. 71
6.2 PLS Algorithms ......... ... 72
6.3 Reduction Order and PLS Prediction ..................... 7
6.4 Fault Detection, Identification, and Diagnosis .............. 78
6.5 Comparison of PCAand PLS ............................ 79
6.6 Other PLS Methods ...............cciiiiiiiiiiiinnn... 81
6.7 Homework Problems ................ccciiiiiininnnnn... 83
Canonical Variate Analysis ............................... 85
7.1 Introduction ............coiiiiiiininniiinnnennennenn. 85
7.2 CVA Theorem .........coiiiiiiniiieiiiiieiinnnnenn. 87
7.3 CVA Algorithm .......... ... i, 89
7.4 State Space Model and System Identifiability .............. 91
7.5 Lag Order Selection and Computation .................... 92
7.6 State Order Selection and Akaike’s Information Criterion.... 94
7.7 Subspace Algorithm Interpretations....................... 95
7.8 Process Monitoring Statistics ............. ... 97
7.9 Homework Problems ............ ... . iiiiiiiiiiinennn. 98

Part IV. Application

8.

Tennessee Eastman Process...................ccoivivun... 103
81 Introduction ..........c.oviiiiiniiiii it ieinanennnann 103
8.2 ProcessFlowsheet .........ccoiiiiiiiiiiniiiiiinnn.. 104
8.3 Process Variables..........cvviiiiiiiinniiiiinnnnnn. 104
84 ProcessFaults ............ it 104
8.5 Simulation Program ............... ... .. . i, 107
8.6 Control Structure ...........oouiiiiiii i, 109
8.7 Homework Problems ..........ccoiiiiiiiiininininnnnnnn. 109



Contents xiii

9. Application Description ................ ... ool 113
9.1 Introduction ............ccviiuiiiirinrieniiinniiaennn. 113
0.2 Data Sets ...ovuiiiiti i e e et e 113
9.3 Sampling Interval ......... ... .. o i 114
9.4 Sample SiZe.......cviiiiiiiii i e i 115
9.5 Lag and Order Selection.................coiiiiiiiiia... 117
9.6 Fault Detection .......... .. ..., 118
9.7 Fault Identification ........... ... ..o i i, 119
9.8 Fault Diagnosis ............coiiiiiiii il 119
10. Results and Discussion ............... ... ... .ol 121
10.1 Introduction .........cooviiuiiiiin i i 121
10.2 Case Studyon Fault 1 ............... .ot iiia... 121
10.3 Case Studyon Fault 4 .............. ... ... iiiiiienn.. 124
10.4 Case Studyon Fault 5 .......... ... ... iiiiiiiiiaan.. 129
10.5 Case Study on Fault 11 ......... ... ..coiiiiiiiiinannn. 131
10.6 Fault Detection .......... ..ottt iiniinennn. 133
10.7 Fault Identification ............ ... ... .o .. 142
10.8 Fault Diagnosis ..........couuuiinnieiiiiiiiennnnn. 146
10.9 Homework Problems . ........... ... i, 166

Part V. Analytical and Knowledge-based Methods

11. Analytical Methods................. ... ... .. .ot 173
11.1 Introduction . ... ..ottt it 173
11.2 Fault Descriptions .......... ... oo, 175
11.3 Parameter Estimation................ ... .. ... ......... 179
11.4 Observer-based Method ............. ... ... ..., 190

11.4.1 Full-order State Estimator......................... 191
11.4.2 Reduced-order Unknown Input Observer ............ 195
11.5 Parity Relations .. ............ i i i i 197
11.5.1 Residual Generation ......................cou.... 197
11.5.2 Detection Properties of the Residual ................ 201
11.5.3 Specification of the Residuals ...................... 203
11.5.4 Implementation of the Residuals ................... 204
11.5.5 Connection Between the Observer and Parity Relations 208
11.5.6 Isolation Properties of the Residual ................. 211
11.5.7 Residual Evaluation .............................. 214

11.6 Homework Problems . ..., 218



xiv Contents
12. Knowledge-based Methods. ............................... 223
12.1 Introduction .........cooiiiuiiiii i 223
12.2 Causal Analysis . .......oooviiiiiiii i 224
12.2.1 Signed Directed Graph................ccooiiee.... 224
12.2.2 Symptom Tree Model ..................vivienn. 227
12.3 Expert Systems ... .....covuriinneerriiiiiieieean, 228
12.3.1 Shallow-Knowledge Expert System ................. 229
12.3.2 Deep-Knowledge Expert Systems ................... 229
12.3.3 Combination of Shallow-Knowledge and Deep-Knowledge
Expert Systems ..........ccoiiiiiiiiiiiiiiii. .. 230
12.3.4 Machine Learning Techniques ...................... 230
12.3.5 Knowledge Representation......................... 231
12.3.6 Inference Engine ............... ... ... it 232
12.4 Pattern Recognition .............. . .. .. il 232
12.4.1 Artificial Neural Networks ......................... 233
12.4.2 Self-Organizing Map . .........ccoiiiiiiiininnnnn 239
12.5 Combinations of Various Techniques ...................... 242
12.5.1 Neural Networks and Expert Systems ............... 242
125.2 Fuzzy Logic ........coiiiiiiii i 243
12.5.3 Fuzzy Expert Systems ............... ... ..., 245
12.5.4 Fuzzy Neural Networks.................... .o 0. 248
12.5.5 Fuzzy Signed Directed Graph ...................... 249
12.5.6 Fuzzy Logic and the Analytical Approach ........... 250
12.5.7 Neural Networks and the Analytical Approach ....... 251
12.5.8 Data-driven, Analytical, and Knowledge-based Ap-
PrOaches .. ....covuiuiinin i ennenennenennennn, 251
12.6 Homework Problems ............c.ooviiiiiiiniannn 252
References....... ... ... i 255
Index ... ..o 275



Part 1

Introduction



1. Introduction

In the process and manufacturing industries, there has been a large push to
produce higher quality products, to reduce product rejection rates, and to
satisfy increasingly stringent safety and environmental regulations. Process
operations that were at one time considered acceptable are no longer ade-
quate. To meet the higher standards, modern industrial processes contain a
large number of variables operating under closed-loop control. The standard
process controllers (PID controllers, model predictive controllers, etc.) are
designed to maintain satisfactory operations by compensating for the effects
of disturbances and changes occurring in the process. While these controllers
can compensate for many types of disturbances, there are changes in the
process which the controllers cannot handle adequately. These changes are
called faults. More precisely, a fault is defined as an unpermitted deviation
of at least one characteristic property or variable of the system [140].

The types of faults occurring in industrial systems include process param-
eter changes, disturbance parameter changes, actuator problems, and sensor
problems [162]. Catalyst poisoning and heat exchanger fouling are examples
of process parameter changes. A disturbance parameter change can be an ex-
treme change in the concentration of a process feed stream or in the ambient
temperature. An example of an actuator problem is a sticking valve, and a
sensor producing biased measurements is an example of a sensor problem.
To ensure that the process operations satisfy the performance specifications,
the faults in the process need to be detected, diagnosed, and removed. These
tasks are associated with process monitoring. Statistical process con-
trol (SPC) addresses the same issues as process monitoring, but to avoid
confusion with standard process control, the methods mentioned in this text
will be referred to as process monitoring methods.

The goal of process monitoring is to ensure the success of the planned
operations by recognizing anomalies of the behavior. The information not
only keeps the plant operator and maintenance personnel better informed of
the status of the process, but also assists them to make appropriate reme-
dial actions to remove the abnormal behavior from the process. As a result of
proper process monitoring, downtime is minimized, safety of plant operations
is improved, and manufacturing costs are reduced. As industrial systems have
become more highly integrated and complex, the faults occurring in modern

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems

© Springer-Verlag London Limited 2001



4 1. Introduction

processes present monitoring challenges that are not readily addressed us-
ing univariate control charts (e.g., Shewhart charts, see Section 2.3). The
weaknesses of univariate control charts for detecting faults in multivariate
processes have led to a surge of research literature concentrated on develop-
ing better methods for process monitoring. This growth of research activity
can also be explained by the fact that industrial systems are becoming more
heavily instrumented, resulting in larger quantities of data available for use
in process monitoring, and that modern computers are becoming more pow-
erful. The availability of data collected during various operating and fault
conditions is essential to process monitoring. The storage capacity and com-
putational speed of modern computers enable process monitoring algorithms
to be computed when applied to large quantities of data.

1.1 Process Monitoring Procedures

The four procedures associated with process monitoring are: fault detec-
tion, fault identification, fault diagnosis, and process recovery. There
appears to be no standard terminology for these procedures as the termi-
nology varies across disciplines; the terminology given by Raich and Cinar
[272] is adopted here. Fault detection is determining whether a fault has
occurred. Early detection may provide invaluable warning on emerging prob-
lems, with appropriate actions taken to avoid serious process upsets. Fault
identification is identifying the observation variables most relevant to diag-
nosing the fault. The purpose of this procedure is to focus the plant operator’s
and engineer’s attention on the subsystems most pertinent to the diagnosis
of the fault, so that the effect of the fault can be eliminated in a more effi-
cient manner. Fault diagnosis is determining which fault occurred, in other
words, determining the cause of the observed out-of-control status. Isermann
[138] more specifically defines fault diagnosis as determining the type, lo-
cation, magnitude, and time of the fault. The fault diagnosis procedure is
essential to the counteraction or elimination of the fault. Process recovery,
also called intervention, is removing the effect of the fault, and it is the
procedure needed to close the process monitoring loop (see Figure 1.1).
Whenever a fault is detected, the fault identification, fault diagnosis, and pro-
cess recovery procedures are employed in the respective sequence; otherwise,
only the fault detection procedure is repeated.

While all four procedures may be implemented in a process monitoring
scheme, this is not always necessary. For example, a fault may be diagnosed
(fault diagnosis) without identifying the variables immediately affected by
the fault (fault identification). Additionally, it is not necessary to automate
all four procedures. For instance, an automated fault identification proce-
dure may be used to assist the plant operators and engineers to diagnose the
fault (fault diagnosis) and recover normal operation. Often the goal of pro-
cess monitoring is to incorporate the plant operators and engineers into the
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process monitoring loop efficiently rather than to automate the monitoring
scheme entirely.

After a fault occurs, the in-control operations can often be recovered by
reconfiguring the process, repairing the process, or retuning the controllers.
Once a fault has been properly diagnosed, the optimal approach to coun-
teract the fault may not be obvious. A feasible approach may be to retune
the standard process controllers. Several methods have been developed to
evaluate controller performance [66, 111, 162, 274, 295, 312], and these can
be used to determine which controllers in the process need to be retuned to
restore satisfactory performance. In the case of a sensor problem, a sensor
reconstruction technique can be applied to the process to restore in-control
operations [77]. Even though process recovery is an important and necessary
component of the process monitoring loop, process recovery is not the focus
of this book.

No Fault Yes | Fault | Fault Process
Detection " | Identification "| Diagnosis Recovery

Fig. 1.1. A schema of the process monitoring loop

1.2 Process Monitoring Measures

A typical process monitoring scheme contains one or more measures, based
on developments from statistical theory, pattern classification theory, infor-
mation theory, and/or systems theory. These measures in some way represent
the state or behavior of the process. The idea is to convert on-line data col-
lected from the process into a few meaningful measures, and thereby assist
the operators in determining the status of the operations and if necessary in
diagnosing the faults. For fault detection, limits may be placed on some of the
measures, and a fault is detected whenever one of the evaluated measures is
outside the limits. In this way, the measures are able to define the in-control
process behavior and accordingly the out-of-control status. By developing
measures that accurately characterize the behavior of each observation vari-
able, the measure value of one variable can be compared against the measure
values for other variables to determine the variable most affected by the
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fault. Faults can also be diagnosed by developing and comparing measures
that accurately represent the different faults of the process.

The goal of process monitoring is to develop measures that are maximally
sensitive and robust to all possible faults. Faults are manifested in several
ways; however, and it is highly unlikely that all faults occurring in a process
can be effectively detected and diagnosed with only a few measures. Since
each measure characterizes a fault in a different manner, one measure will be
more sensitive to certain faults and less sensitive to other faults relative to
other measures. This motivates using multiple process monitoring measures,
with the proficiency of each measure determined for the particular process
and the possible faults at hand.

Process monitoring measures can be classified as being associated with
one or more of three approaches; namely, data-driven, analytical, and
knowledge-based. The data-driven measures are derived directly from pro-
cess data. Modern industrial systems, whether an entire industrial plant or
a single paper machine, are large-scale systems. With the heavy instrumen-
tation typical of modern processes, large-scale systems produce an excep-
tionally large amount of data. Even though much information is available
from these processes, it is beyond the capabilities of an operator or engi-
neer to effectively assess process operations simply from observing the data.
The strength of data-driven techniques is their ability to transform the high-
dimensional data into a lower dimension, in which the important information
is captured. By computing some meaningful statistics for the process oper-
ators and engineers, a process monitoring scheme for a large-scale system
can be improved significantly. The main drawback of data-driven measures
is that their proficiency is highly dependent on the quantity and quality of
the process data.

Unlike the data-driven approach, the analytical approach uses mathemat-
ical models often constructed from first principles. The analytical approach is
applicable to information-rich systems, where satisfactory models and enough
sensors are available. Most analytical measures are based on parameter esti-
mation, observer-based design, and/or parity relations. Most applications of
the analytical approach have been to systems with a relatively small number
of inputs, outputs, and states. It is difficult to apply the analytical approach
to large-scale systems (i.e., systems containing a large number of inputs,
outputs, and/or states) because it requires detailed models in order to be
effective [73, 141, 360]. Detailed models for large-scale systems are expensive
to obtain given all the crosscouplings associated with a multivariable system
[137]. The main advantage of the analytical approach is the ability to in-
corporate physical understanding of the process into the process monitoring
scheme. In other words, when detailed analytical models are available, the
analytical measures can significantly outperform the data-driven measures.

The knowledge-based approach uses qualitative models to develop pro-
cess monitoring measures. The knowledge-based approach is especially well
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suited for systems in which detailed mathematical models are not available.
Most knowledge-based measures are based on causal analysis, expert systems,
and/or pattern recognition. Like the analytical approach, most applications
of the knowledge-based approach have been to systems with a relatively small
number of inputs, outputs, and states. Constructing the fault models for a
large-scale system can require a large amount of effort [8, 360]. Software pack-
ages are being developed to enable the knowledge-based approach to be more
easily applied to complex systems.

1.3 Process Monitoring Methods

The proficiency of the data-driven, analytical, and knowledge-based ap-
proaches depends on the quality and type of available models, and on the
quantity and quality of data available. These aspects along with the advan-
tages and disadvantages of various methods are discussed in this textbook.

Traditional monitoring methods consisted of limit sensing and discrep-
ancy detection. Limit sensing raises an alarm when observations cross pre-
defined thresholds, and has been applied traditionally because it is easy to
implement and understand. Limit sensing, however, lacks sensitivity to some
process upsets because it ignores interactions between the process variables
for the various sensors [73, 138]. Discrepancy detection raises an alarm by
comparing simulated to actual observed values. Discrepancy detection highly
depends on model accuracy, and model inaccuracies are unavoidable in prac-
tice. Since it is difficult to distinguish genuine faults from errors in the model,
discrepancy detection can lack robustness [73]. As discussed in Section 1.2,
robust discrepancy detection statistics have been studied, however, effective
statistics are difficult to obtain, especially for large-scale systems.

Limit sensing determines thresholds for each observation variable without
using any information from the other variables, and in this way is identical to
the univariate statistical techniques discussed in Section 2.3. These methods
ignore the correlations among the observation variables (spacial correla-
tions) and the correlations among measurements of the same variable taken
at different times (serial correlations). (Note that spacial correlations also
refer to correlations between different measurements taken at essentially the
same physical location.) Process data are spacially correlated because there is
often a large number of sensor readings taken throughout the process and the
variability of the process variables is restricted to a lower dimension (for ex-
ample, due to phase equilibria or conservation laws, such as the material and
energy balances) [76]. Also, process data are serially correlated because the
sampling intervals are relatively small and the standard process controllers
are unable to remove all the systematic trends due to inertial components,
such as tanks, reactors, and recycle streams. Because limit sensing does not
take into account the spacial correlations, it lacks sensitivity to many faults
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occurring in industrial systems [142, 143], and because limit sensing also ig-
nores the serial correlations, it can lack robustness [112].

The need to handle spacial correlations has led to the development and
employment of process monitoring statistics based on multivariate statistical
techniques. Principal component analysis (PCA) is the most widely used
data-driven technique for monitoring industrial systems. PCA is a dimen-
sionality reduction technique for process monitoring which has been heavily
studied and applied to industrial systems over the past decade. PCA is an op-
timal dimensionality reduction technique in terms of capturing the variance
of the data, and it accounts for correlations among variables [142, 143]. The
lower-dimensional representations of the data produced by PCA can improve
the proficiency of detecting and diagnosing faults using multivariate statis-
tics. The structure abstracted by PCA can be useful in identifying either the
variables responsible for the fault and/or the variables most affected by the
fault. In cases where most of the information in the data can be captured
in only two or three dimensions, which can be true for some processes [207],
the dominant process variability can be visualized with a single plot (for ex-
ample, see Figure 4.3). Irrespective of how many dimensions are required in
the lower-dimensional space, other plots (e.g., T2 and Q charts) can be used
which look similar to univariate control charts but are based on multivari-
ate statistics. These control charts can help the operators and engineers to
interpret significant trends in the process data [177].

Fisher discriminant analysis (FDA) is a dimensionality reduction
technique developed and studied within the pattern classification com-
munity [74]. FDA determines the portion of the observation space that is
most effective in discriminating amongst several data classes. Discriminant
analysis is applied to this portion of the observation space for fault diagno-
sis. The dimensionality reduction technique is applied to the data in all the
classes simultaneously. Thus, all fault class information is utilized when the
discriminant function is evaluated for each class and better fault diagnosis
performance is expected. The theoretical developments for FDA suggest that
it should be more effective than PCA for diagnosing faults.

Partial least squares (PLS) are data decomposition methods for mazi-
mizing covariance between predictor (independent) block and predicted (de-
pendent) block for each component. PLS attempts to find loading and score
vectors that are correlated with the predicted block X while describing a
large amount of the variation in the predictor block Y [343]. A popular ap-
plication of PLS is to select X to contain sensor data and Y to contain only
product quality data [207]. Similar to PCA, such inferential models (also
known as soft sensors) can be used for detecting, identifying, and diagnosing
faults [207, 259, 260]. Another application of PLS primarily focusing on fault
diagnosis is to define Y as class membership [46]. This PLS method is known
as discriminant partial least squares.
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The process monitoring statistics based on PCA, PLS, and FDA can be
extended to include serial correlations by augmenting the data collected at
a particular time instant to the data collected during several of the previous
consecutive sampling instances. An alternative method to address serial cor-
relations is to average the measurements over many data points (this method
has the similar philosophy of CUSUM and EWMA charts, see Section 2.3 for
a brief discussion). Another simple approach is to use a larger sampling inter-
val. However, these approaches do not utilize the useful developments made
in system identification theory for quantifying serial correlation. A class of
system identification methods that produces state variables directly from
the data are called subspace algorithms. The subspace algorithm based
on canonical variate analysis (CVA) is particularly attractive because of
its close relationship to PCA, FDA, and PLS. These relationships motivate
the deviation of CVA-based statistics for fault detection, identification, and
diagnosis that take serial correlations into account.

The measures for PCA, FDA, PLS, and CVA can be calculated based
entirely on the data. When a detailed first-principles or other mathematical
model is available, the analytical approach can provide more effective process
monitoring than data-driven techniques. Based on the measured input and
output, the analytical methods generate features using detailed mathemati-
cal models. Commonly used features include residuals, parameter estimates,
and state estimates. Faults are detected or diagnosed by comparing, either di-
rectly and after some transformation, the observed features with the features
associated with normal operating conditions.

Analytical methods that use residuals as features are commonly referred
to as analytical redundancy methods. The residuals are the outcomes of
consistency checks between the plant observations and a mathematical model.
In the preferred situation, the residuals or transformations of the residuals
will be relatively large when faults are present, and small in the presence
of disturbances, noise, and/or modeling errors. This allows the definition of
thresholds to detect the presence of faults [87, 101, 221].

The three main ways to generate residuals are parameter estimation,
observers, and parity relations [94].

1. Parameter estimation. For parameter estimation, the residuals are
the difference between the nominal model parameters and the estimated
model parameters. Deviations in the model parameters serve as the basis
for detecting and isolating faults [20, 135, 136, 163].

2. Observers. The observer-based method reconstructs the output of the
system from the measurements or a subset of the measurements with the
aid of observers. The difference between the measured outputs and the
estimated outputs is used as the vector of residuals [86, 54, 68].

3. Parity relations. This method checks the consistency of the mathemat-
ical equations of the system with the measurements. The parity relations
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are subjected to a linear dynamic transformation, with the transformed
residuals used for detecting and isolating faults [63, 101, 226, 227].

The analytical approach requires accurate quantitative mathematical
model in order to be effective. For large-scale systems, such information may
not be available or it may be too costly and time-consuming to obtain. An
alternative method for process monitoring is to use knowledge-based meth-
ods such as causal analysis, expert systems, and pattern recognition. These
techniques are based on qualitative models, which can be obtained through
causal modeling of the system, expert knowledge, a detailed description of the
system, or fault-symptom examples. Causal analysis techniques are based on
the causal modeling of fault-symptom relationships. Qualitative and semi-
quantitative relationships in these causal models can be obtained without
using first principles. Causal analysis techniques including signed directed
graphs and the symptom tree are primarily used for diagnosing faults.

Expert systems are used to imitate the reasonings of human expert
when diagnosing faults. The experience from a domain expert can be for-
mulated in terms of rules, which can be combined with the knowledge from
first principles or a structural description of the system for diagnosing faults.
Expert systems are able to capture human diagnostic associations that are
not readily translated into mathematical or causal models.

Pattern recognition techniques use association between data patterns and
fault classes without an explicit modeling of internal process states or struc-
ture. Examples include artificial neural networks and self-organizing
maps. These techniques are related to the data-driven techniques (PCA,
PLS, FDA, and CVA) in terms of modeling the relationship between data
patterns and fault classes. The data-driven techniques are dimensionality re-
duction techniques based on rigorous multivariate statistics. On the other
hand, neural networks and self-organizing maps are black box methods that
learn the pattern based entirely from the training sessions.

All measures based on data-driven, analytical, and knowledge-based ap-
proaches have their advantages and disadvantages, so that no single approach
is best for all applications. Usually the best process monitoring scheme em-
ploys multiple statistics or methods for fault detection, identification, and
diagnosis [73]. Efforts have been made to incorporate several techniques for
process monitoring. This can be beneficial in many applications.

1.4 Book Organization

This book is an introduction to techniques for detecting, identifying, and di-
agnosing faults in industrial systems. This includes descriptions of all three
of the main approaches to process monitoring: data-driven, analytical, and
knowledge-based. All of these approaches are becoming increasingly impor-
tant in practice, and it is necessary for engineering students and industrially-
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employed engineers to understand the strengths and weaknesses of all the
approaches and to understand how to apply them. Many examples are used
to compare the effectiveness and illustrate how to apply various process moni-
toring methods. These include a chemical plant, a gravity tank problem where
a number of leaks can occur, and a water recirculation system with a cen-
trifugal pump driven by a DC motor.

The book is organized into five parts. Part I (this chapter) is an intro-
duction to process monitoring approaches. Part II provides the background
necessary to understand the process monitoring methods described later in
the book. Chapter 2 provides an introduction to multivariate statistics, and
Chapter 3 covers pattern classification. Part III describes the data-driven
process monitoring methods: PCA, FDA, PLS, and CVA. The methods as
described in the literature are extended in cases where the process monitoring
statistics were incomplete or inadequate. Part IV describes the application
of the process monitoring methods to the Tennessee Eastman process. The
Tennessee Eastman process is described in Chapter 8, while Chapter 9 states
how the methods are applied to the Tennessee Eastman process. The results
of the methods applied to the simulated data are discussed in Chapter 10.
Part V describes the analytical and knowledge-based approaches. Chapter 11
describes analytical methods based on parameter estimation, observer-based
design, and parity relations. Chapter 12 describes knowledge-based meth-
ods based on causal analysis, expert systems, and pattern recognition. This
is followed by a discussion of combinations of multiple process monitoring
techniques. Application examples in Part V include a gravity tank problem
where a number of leaks can occur, and a water recirculation system with a
centrifugal pump driven by a DC motor.



Part 11

Background



2. Multivariate Statistics

2.1 Introduction

The effectiveness of the data-driven measures depends on the characteriza-
tion of the process data variations. There are two types of variations for
process data: common cause and special cause [245]. The common cause
variations are those due entirely to random noise (e.g., associated with sensor
readings), whereas special cause variations account for all the data variations
not attributed to common cause. Standard process control strategies may
be able to remove most of the special cause variations, but these strategies
are unable to remove the common cause variations, which are inherent to
process data. Since variations in the process data are inevitable, statistical
theory plays a large role in most process monitoring schemes.

The application of statistical theory to monitor processes relies on the
assumption that the characteristics of the data variations are relatively un-
changed unless a fault occurs in the system. By the definition of a fault as
an abnormal process condition (see Chapter 1), this is a reasonable assump-
tion. It implies that the properties of the data variations, such as the mean
and variance, are repeatable for the same operating conditions, although the
actual values of the data may not be very predictable. The repeatability of
the statistical properties allows thresholds for certain measures, effectively
defining the out-of-control status, to be determined automatically. This is an
important step to automating a process monitoring scheme.

The purpose of this chapter is to illustrate how to use statistical meth-
ods for monitoring processes, in particular methods using the multivariate
T? statistic. This chapter begins in Section 2.2 by describing the data pre-
treatment procedure, which is typically performed before determining the
statistical parameters (mean, covariance, etc.) for the data. The traditional
approach to statistical process monitoring using univariate statistics is dis-
cussed in Section 2.3. Then in Section 2.4, the T? statistic is described along
with its advantages over univariate statistics for process monitoring. It is
shown in Section 2.5 how to apply the T? statistic with statistically-derived
thresholds, in order to automate the fault detection procedure and to remove
outliers from the training data. In Section 2.6, the applicability of the T
statistic is determined in terms of the amount of data available to calculate
the statistical parameters.

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems

© Springer-Verlag London Limited 2001
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2.2 Data Pretreatment

To extract the information in the data relevant to process monitoring ef-
fectively, it is often necessary to pretreat the data in the training set. The
training set contains off-line data available for analysis prior to the on-
line implementation of the process monitoring scheme and is used to develop
the measures representing the in-control operations and the different faults.
The pretreatment procedures consist of three tasks: removing variables,
autoscaling, and removing outliers.

The data in the training set may contain variables that have no infor-
mation relevant to monitoring the process, and these variables should be
removed before further analysis. For instance, it may be known a priori that
certain variables exhibit extremely large measurement errors, such as those
due to improper sensor calibrations, or some of the variables may be phys-
ically separate from the portion of the process that is being monitored. In
these instances, the proficiency of the process monitoring method can be
improved by removing the inappropriate variables.

Process data often need to be scaled to avoid particular variables dom-
inating the process monitoring method, especially those methods based on
dimensionality reduction techniques, such as PCA and FDA. For example,
when performing an unscaled dimensionality reduction procedure on tem-
perature measurements varying between 300K and 320K and concentration
measurements varying between 0.4 and 0.5, the temperature measurements
would dominate even though the temperature measurements may be no more
important than the concentration measurements for monitoring the process.

Autoscaling standardizes the process variables in a way that ensures each
variable is given equal weight before the application of the process monitoring
method. It consists of two steps. The first step is to subtract each variable
by its sample mean because the objective is to capture the variation of the
data from the mean. The second step is to divide each variable of the mean-
centered data by its standard deviation. This step scales each variable to
unit variance, ensuring that the process variables with high variances do not
dominate. When autoscaling is applied to new process data, the mean to
be subtracted and the standard deviation to be divided are taken from the
training set.

Outliers are isolated measurement values that are erroneous. These val-
ues may significantly influence the estimation of statistical parameters and
other parameters related to a given measure. Removing the outliers from
the training set can significantly improve the estimation of the parameters
and should be an essential step when pretreating the data [255). Obvious
outliers can be removed by plotting and visually inspecting the data for out-
lying points. More rigorous methods based on statistical thresholds can be
employed for removing outliers, and a method for doing this using the T?
statistic is discussed in Section 2.5. For simplicity of presentation omly, it is
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assumed in the remainder of this book that the data has been pretreated,
unless otherwise stated.

2.3 Univariate Statistical Monitoring

A univariate statistical approach to limit sensing can be used to determine
the thresholds for each observation variable (a process variable observed
through a sensor reading), where these thresholds define the boundary for in-
control operations and a violation of these limits with on-line data would in-
dicate a fault. This approach is typically employed using a Shewhart chart
[10, 70, 230] (see Figure 2.1) and has been referred to as limit sensing [73]
and limit value checking [138]. The values of the upper and lower con-
trol limits on the Shewhart chart are critical to minimizing the rate of false
alarms and the rate of missed detections. A false alarm is an indication
of a fault, when in actuality a fault has not occurred; a missed detection
is no indication of a fault, though a fault has occurred. For fault detection,
there is an inherent tradeoff between minimizing the false alarm and missed
detection rates. Tight threshold limits for an observation variable result in
a high false alarm and low missed detection rate, while limits which are too
spread apart result in a low false alarm and a high missed detection rate.

In-control Out-of-control Upper Control Limit
v.
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l o ® Target

° ® o ° ° /
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[ ]
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Fig. 2.1. An illustration of the Shewhart chart. The black dots are observations.

Lower Control Limit

Given certain threshold values, statistical hypothesis theory can be ap-
plied to predict the false alarm and missed detection rates based on the
statistics of the data in the training sets. Consider the case where there can
potentially be a single fault ; (the more general case of multiple fault classes
will be treated thoroughly in the next chapter). Let w represents the event
of an in-control operation and w; represents the event of a specific fault, i.
Consider a single observation z with the null hypothesis (assign z as w) and
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the alternative hypothesis (assign z as w;), the false alarm rate is equal to
the type I error, and the missed detection rate for fault i is equal to the type
II error [230]. This is illustrated graphically in Figure 2.2.

Threshold

B:mﬁrm\

Type Il Error ~ Type I Error

Fig. 2.2. The type I and type II error regions for the null hypothesis (assign z as
w) and the alternative hypothesis (assign z as w;). The probability density function
for z conditioned on w is p(z|w); the probability density function for x conditioned
on w; is p(z|w:). The probability of a type I error is a and the probability of a type
II error is 8. Using Bayesian decision theory [74], these notions can be generalized
to include a priori probabilities of w and w;.

Increasing the threshold (shifting the vertical line to the right in Figure
2.2) decreases the false alarm rate but increases the missed detection rate.
Attempts to lower the false alarm rate are usually accompanied with an
increase in the missed detection rate, with the only ways to get around this
tradeoff being to collect more data, or to reduce the normal process variability
(e.g., through installation of sensors of higher precision). The value of the type
1 error, also called the level of significance «, specifies the degree of tradeoff
between the false alarm rate and the missed detection rate.

As a specific example, assume for the null hypothesis that any devia-
tions of the process variable z from a desired value p are due to inherent
measurement and process variability described by a normal distribution with
standard deviation o:

p(z) = - 1% exp [— (= - ;‘)2} . (2.1)

The alternative hypothesis is that = # . Assuming that the null hypothesis
is true, the probabilities that z is in certain intervals are

Pr{z < (p — cq/20)} = /2 (2.2)
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Pr{z > (u+cq/20)} = /2 (2.3)

Pr{(p — caj20) <z < (u+cay20)} =1-a (2.4)

where co /9 is the standard normal deviate corresponding to the (1 — a/2)
percentile. The standard normal deviate is calculated using the cumulative
standard normal distribution [120]; the standard normal deviates correspond-
ing to some common « values are listed in Table 2.1.

Table 2.1. Some typical standard normal deviate values

a/2 Ca/2
0.00135 | 3.00
0.0025 | 2.81
0.005 2.58
0.01 2.33
0.025 1.96

The lower and upper thresholds for the process variable x are u — co/20
and p+c, /20, respectively. Figure 2.3 illustrates the application of Shewhart
chart to monitor the Mooney viscosity of an industrial elastomer [245]. The
desired value g is 50.0; a standard deviation value of ¢ = 0.5 is known to
characterize the intrinsic variability associated with the sampling procedure.
Since all the data points fall inside the upper and lower control limit lines
corresponding to c, /2 = 3.0, the process is said to be “in control”.

As long as the sample mean and standard deviation of the training set
accurately represent the true statistics of the process, the thresholds using
(2.2) and (2.3) should result in a false alarm rate equal to o when applied to
on-line data. If 20,000 data points were collected during “in control” operation
defined by cq/2 = 3.0, 27 data points would be expected to fall above the
upper control limit, while 27 data points would be expected to fall below
the lower control limit. Some typical a values for fault detection are 0.005,
0.01, and 0.05. It has been suggested that even if  does not follow a normal
distribution, the limits derived from (2.2) and (2.3) are effective as long as
the data in the training set are an accurate representation of the variations
during normal operations [171].

Process monitoring schemes based on Shewhart charts may not provide
adequate false alarm and missed detection rates. These rates can be im-
proved by employing measures that incorporate observations from multiple
consecutive time instances, such as the cumulative sum (CUSUM) and
exponentially-weighted moving average (EWMA) charts [80, 230, 245].



20 2. Multivariate Statistics

52 T T T T

Upper Control Limit p+3c

505+ 4

4951 _

491 e

Lower Control Limit -
485F — - —— - L e o —— —— = — = B30 _____ —

48 1 1 A 1
Time (hr)

Fig. 2.3. Shewhart chart for the Mooney viscosity data taken from [245]

For a given false alarm rate, these methods can increase the sensitivity to
faults over the measures using the Shewhart charts and accordingly decrease
the missed detection rate, but at the expense of increasing the detection
delay, which is the amount of time expended between the start of the fault
and time to detection. This suggests that the CUSUM and EWMA charts are
better suited for faults producing small persistent process shifts, and the She-
whart charts are better for detecting faults producing sudden large process
shifts.

The univariate statistical charts (Shewhart, CUSUM, and EWMA) deter-
mine the thresholds for each observation variable individually without con-
sidering the information contained in the other variables. As discussed in
Section 1.3, because these methods ignore the correlation between variables,
they do not accurately characterize the behavior of most modern industrial
processes. The next section describes the multivariate T? statistic, which
takes into account the correlations between the variables.
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2.4 T? Statistic

Let the data in the training set, consisting of m observation variables and n
observations for each variable, be stacked into a matrix X € R"**™, given by

Z11 T12 *°° Tim
T21 T22 '+ Tam

X=1. . I (2.5)
Tnl Tn2 *** Tnm
then the sample covariance matrix of the training set is equal to

1
n—1

S = XTX. (2.6)

An eigenvalue decomposition of the matrix S,
S=vavT, (2.7)

reveals the correlation structure for the covariance matrix, where A is diago-
nal and V is orthogonal (VTV = I, where I is the identity matrix) [104]. The
projection y = V Tx of an observation vector x € R™ decouples the observa-
tion space into a set of uncorrelated variables corresponding to the elements
of y. The variance of the i** element of y is equal to the i** eigenvalue in the
matrix A. Assuming S is invertible and with the definition

z=A"12yTx, (2.8)
the Hotelling’s T2 statistic is given by [143]
T? = z7z. (2.9)

The matrix V rotates the major axes for the covariance matrix of x so that
they directly correspond to the elements of y, and A scales the elements of y
to produce a set of variables with unit variance corresponding to the elements
of z. The conversion of the covariance matrix is demonstrated graphically in
Figure 2.4 for a two-dimensional observation space (m = 2).

The T? statistic is a scaled squared 2-norm of an observation vector x
from its mean. The scaling on x is in the direction of the eigenvectors and is
inversely proportional to the standard deviation along the eigenvectors. This
allows a scalar threshold to characterize the variability of the data in the
entire m-dimensional observation space. Given a level of significance, appro-
priate threshold values for the 72 statistic can be determined automatically
by applying the probability distributions discussed in the next section.
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Fig. 2.4. A graphical illustration of the covariance conversion for the T? statistic

2.5 Thresholds for the T2 Statistic

Appropriate thresholds for the T statistic based on the level of significance,
a, can be determined by assuming the observations are randomly sampled
from a multivariate normal distribution. If it is assumed additionally that the
sample mean vector and covariance matrix for normal operations are equal
to the actual mean vector and covariance matrix, respectively, then the 72
statistic follows a x? distribution with m degrees of freedom [209),

T2 = x%(m). (2.10)

The set T2 < T2 is an elliptical confidence region in the observation space,
as illustrated in Figure 2.5 for two process variables m = 2. Applying (2.10)
to process data produces a confidence region defining the in-control status
whereas an observation vector projected outside this region indicates that a
fault has occurred. Given a level of significance o, Figure 2.5 illustrates the
conservatism eliminated by employing the T? statistic versus the univariate
statistical approach outlined in Section 2.3. As the degree of correlation be-
tween the process variables increases, the elliptical confidence region becomes
more elongated and the amount of conservatism eliminated by using the T
statistic increases.

When the actual covariance matrix for the in-control status is not known
but instead estimated from the sample covariance matrix (2.6), faults can be
detected for observations taken outside the training set using the threshold
given by

-1 1
T2 = mr= D+l o m) (2.11)
n(n —m)
where F,(m,n — m) is the upper 100a% critical point of the F-distribution
with m and n — m degrees of freedom [209]. For a given level of significance,
the upper in-control limit in (2.11) is larger (more conservative) than the
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Fig. 2.5. A comparison of the in-control status regions using the T? statistic (2.9)
and the univariate statistics (2.2) and (2.3) for two process variables [272, 307]

limit in (2.10), and the two limits approach each other as the amount of data
increases (n — 0o) [308].

When the sample covariance matrix (2.6) is used, the outliers in the train-
ing set can be detected using the threshold given by

72 _ (0= Dm/(n—m — 1)) Fa(m,n —m —1)
¢ a1+ (m/(n—m—-1))Fy(mn—m-1)

. (2.12)

For a given level of significance, the upper in-control limit in (2.12) is smaller
(less conservative) than the limit in (2.10), and the two limits approach each
other as the amount of data increases (n — co) [308]. Equation (2.12) is also
appropriate for detecting faults during process startup, when the covariance
matrix is determined recursively on-line because no data are available a prior:
to determine the in-control limit.

The upper control limits in (2.10), (2.11), and (2.12) assume that the
observation at one time instant is statistically independent to the observations
at other time instances. This can be a bad assumption for short sampling
intervals. However, if there are enough data in the training set to capture the
normal process variations, the T? statistic can be an effective tool for process
monitoring even if there are mild deviations from the normality or statistical
independence assumptions {30, 171].

There are several extensions that are usually not studied in the process
control literature, but for which there are rigorous statistical formulations. In
particular, lower control limits can be derived for 72 [308] which can detect
shifts in the covariance matrix (although the upper control limit is usually
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used to detect shifts in mean, it can also detect changes in the covariance
matrix) [114].

The above T? tests are multivariable generalizations of the Shewhart chart
used in the scalar case. The single variable CUSUM and EWMA charts can be
generalized to the multivariable case in a similar manner [171, 203, 292, 338].
As in the scalar case, the multivariable CUSUM and EWMA charts can detect
small persistent changes more readily than the multivariable Shewhart chart,
but with increased detection delay.

2.6 Data Requirements

The quality and quantity of the data in the training set have a large influ-
ence on the effectiveness of the T2 statistic as a process monitoring tool. An
important question concerning the training set is, “How much data is needed
to statistically populate the covariance matrix for m observation variables?”
This question is answered here by determining the amount of data needed
to produce a threshold value sufficiently close to the threshold obtained by
assuming infinite data in the training set.

For a given level of significance ¢, a threshold based on infinite observa-
tions in the training set, or equivalently an exactly known covariance matrix,
can be computed using (2.10), and the threshold for n observations in the
training set is calculated using (2.11). The relative error produced by these
two threshold values,

ml DL potmy = m) = X m)
€= ) , (2.13)

indicates the sufficiency of the data amount n, where a large € implies that
more data should be collected. Table 2.2 shows the data requirements using
(2.13) for various numbers of observation variables, where ¢ = 0.10 and a =
0.5; this implies that the medians of the T? statistic using (2.10) and (2.11)
differ by less than 10%. The table indicates that the required number of
observations is approximately 10 times the dimensionality of the observation
space. The data requirements given in Table 2.2 do not take into account
sensitivities that occur when some diagonal elements of A in (2.8) are small. In
such cases the accuracy of the estimated values of the corresponding diagonal
elements of the inverse of A will be poor, which will give erratic values for 72
in (2.9). This motivates the use of the dimensionality reduction techniques
described in Part III of this book.
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Table 2.2. The amount of data n required for various number of observation
variables m where € = 0.10 and a = 0.5

Number of Observation Variables | Data Requirement
m n
1 19
2 30
3 41
4 52
5 63
10 118
25 284
50 559
100 1110
200 2210

2.7 Homework Problems

1. Read the original article by Hotelling on the T? statistic [126]. How
much of the results of this chapter were anticipated by Hotelling? Suggest
reasons why these ideas took so long to work their way into industrial
process applications.

2. Write a short report on the lower control limits for the T statistic dis-
cussed by [308]. For what types of processes and faults will such limits
be useful? Give a specific process example (list process, sensors, actua-
tors, etc.). Suggest reasons why most of the process control and statistics
literature ignores the lower control limit. Justify your statements.

3. Write a short report on the single variable CUSUM and EWMA con-
trol charts, including the mathematical expressions for the upper control
limits in terms of a distribution function and assumptions on the noise
statistics. You are welcome to use any books or journal articles on sta-
tistical quality control.

4. Extend the report in Problem 3 to the case of multivariate systems.

5. Consider the photographic process with the covariance matrix given in
Table 1 of Jackson and Mulholdkar [145]. Reproduce as much as possible
the results reported in the subsequent tables. Discuss the relative mer-
its of the multivariate 72 compared to scalar Shewhart charts for that
process.
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3.1 Introduction

Today’s processes are heavily instrumented, with a large amount of data col-
lected on-line and stored in computer databases. Much of the data are usually
collected during out-of-control operations. When the data collected during
the out-of-control operations have been previously diagnosed, the data can
be categorized into separate classes where each class pertains to a particular
fault. When the data have not been previously diagnosed, cluster analysis
may aid the diagnoses of the operations during which the data were collected
[299], and the data can be categorized into separate classes accordingly. If hy-
perplanes can separate the data in the classes as shown in Figure 3.1, these
separating planes can define the boundaries for each of the fault regions.
Once a fault is detected using on-line data observations, the fault can be
diagnosed by determining the fault region in which the observations are lo-
cated. Assuming the detected fault is represented in the database, the fault
can be properly diagnosed in this manner.

This assignment of data to one of several categories or classes is the prob-
lem addressed by pattern classification theory [74]. The typical pattern
classification system assigns an observation vector to one of several classes
via three steps: feature extraction, discriminant analysis, and max-
imum selection (see Figure 3.2). The objective of the feature extraction
step is to increase the robustness of the pattern classification system by re-
ducing the dimensionality of the observation vector in a way that retains
most of the information discriminating amongst the different classes. This
step is especially important when there is a limited amount of quality data
available. Using the information in the reduced-dimensional space, the dis-
criminant calculator computes for each class the value of the discriminant
function, a function quantifying the relationship between the observation
vector and a class. By selecting the class with the maximum discriminant
function value, the discriminant functions indirectly serve as the separating
planes shown in Figure 3.1; however, in general the decision boundaries will
not be linear.

The objective of this chapter is to provide an overview of the statistical
approach to pattern classification. The focus of this chapter is on parametric
approaches to pattern classification. Assuming the statistical distributions of
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Fig. 3.1. A graphical illustration of the separating plane approach to pattern
classification

the classes are known, an optimal pattern classification system can be de-
veloped using a parametric approach, while nonparametric approaches, such
as the nearest neighbor rule [55], are suboptimal [74]. Pattern classification
theory has been a key factor in developing fault diagnosis methods [270, 272],
and the background in this chapter is important to understanding the fault
diagnosis methods discussed in Part III. This chapter proceeds in Section
3.2 by presenting the optimal discriminant analysis technique for normally
distributed classes. Section 3.3 discusses the feature extraction step.

3.2 Discriminant Analysis

The pattern classification system assigns an observation to class ¢ with the
maximum discriminant function value

gi(x) > g;j(x) Vji#i (3.1)

where g;(x) is the discriminant function for class j given a data vector x
€ R™. The statistics of the data in each class can provide analytical measures
to determine the optimal discriminant functions in terms of minimizing the
error rate, the average probability of error. With w; being the event of class
i (for example, a fault condition), the error rate can be minimized by using
the discriminant function {74]

9i(x) = P(wi[x) (3:2)
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Fig. 3.2. A schema of a typical pattern classification system, where f;(x) are the
feature extraction functions and g;(t) are the discriminant analysis functions

where P(w;|x) is the a posteriori probability of x belonging to class 7. This
is equivalent to choosing the separating curves to be the points at which the
a posteriori probabilities are equal.

Using Bayes’ rule,

P(x|wi) P(w:)
Pwi|x) = ————— 3.3
(wibe) = (33)

where P(w;) is the a priori probability for class w;, p(x) is the probability
density function for x, and p(x|w;) is the probability density function for x
conditioned on w;. It can be shown that identical classification occurs when
(3.2) is replaced by [74]

9i(x) = In p(x|w;) + In P(w;). (3.4)
If the data for each class is normally distributed, p(x|w;) is given by

1
(21)™/2 [det(Z;)]"/2 &P

plxles) = |37 5 )

(3.5)

where m is the number of measurement variables, and p; and X; are the
mean vector and covariance matrix for class i, respectively [74]. Substituting
(3.5) into (3.4) gives

gi(x) = —%(x — ) TE (x = ) - _rg_ In2m — %ln[det(ﬂ,-)] + In P(w;)
(3.6)
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This equation assumes that the mean vector and covariance matrix are
known. In process monitoring applications, the true mean and covariance are
not known. If the mean vector and covariance matrix are estimated and the
sufficient data are available for each class to obtain highly accurate estimates,
then using the estimated mean vector and covariance matrix in (3.6) will re-
sult in nearly optimal classification. Assuming that the a prior: probability
for each class is the same, the discriminant function (3.6) can be replaced by

gi(x) = —(x — %) T8} (x — %;) — In [det (S;)] (3.7)

where X; is the mean vector for class ¢ and S; € R™*™ is the sample co-
variance matrix for class 7. Using this discriminant function for classification
will be referred to as multivariate statistics (MS) when it uses the entire
data dimensionality for classification. If sufficient data are not available to
accurately estimate the mean vector and covariance matrix for each class,
then (3.6) will result in suboptimal classifications. In this case dimensional-
ity reduction can be used to improve classification, as described in the next
section.

Assuming that the a priori probability for each class is the same and the
total amount of variability in each class is the same, an identical classification
occurs when (3.6) is replaced by

gi(x) = = T7 = —(x — ) 757 (x — ) (3.8)

where T? is the T? statistic for class i (see last chapter). By using the thresh-
old T2 in (2.11), the values for each g;(x) in (3.8) can be converted to levels of
significance which implicitly account for the uncertainties in the mean vector
and covariance matrix for each class.

3.3 Feature Extraction

The objective of the pattern classification system is to minimize the misclas-
sification rate, the number of incorrect classifications divided by the total
number of classifications, whenever it is applied to testing data, data in-
dependent of the training set. The dimensionality reduction of the feature
extraction step can play a key role in minimizing the misclassification rate
for observations outside the training set, especially when the dimensionality
of the observation space m is large and the number of observations in each
class n is small. If the statistical parameters such as the mean and covari-
ance of the classes are known exactly, from an information point of view the
entire observation space should be maintained for the discriminant analysis
step. In reality, inaccuracies in the statistical parameters of the classes exist.
Consequently, the amount of information obtained in some directions of the
observation space, specifically those that do not add much information in dis-
criminating the data in the training set, may not outweigh the inaccuracies
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in the statistical parameters, and the elimination of these directions in the
feature extraction step can decrease the misclassification rate when applied
to data independent of the training set.

The dimensionality reduction of the feature extraction step can also be
motivated using system identification theory [199]. In system identification,
it is shown that the accuracy of a model can be improved by decreasing the
number of independent model parameters. This is due to the fact that the
mean-squared error of the parameter estimates is reduced by decreasing the
number of independent model parameters. By decreasing the number of in-
dependent parameters, the variance contribution of the parameter estimates
on the mean-squared error is decreased more than the bias contribution is in-
creased. These same arguments can be applied to the feature extraction step.
For normally distributed classes, the covariance matrix has m(m +1)/2 inde-
pendent parameters. Reducing the data dimensionality reduces the number
of independent parameters in the covariance matrix. This increases the bias
of the estimate of the covariance matrix, but decreases the variance. When
the decrease in the variance contribution to the parameter error outweighs
the increase in the bias contribution, the dimensionality reduction results in
better covariance estimates and possibly lower misclassification rates when
applied to data outside the training set.

Once the dimensionality reduction has been performed, classification is
performed by applying discriminant analysis to the reduced-dimensional
space. Applications of discriminant analysis to various reduced-dimensional
spaces will be described in Part III. In particular, Chapter 5 describes a
procedure for optimally reducing the dimensionality in terms of pattern clas-
sification.

3.4 Homework Problems

Derive Equation 3.4.

Derive Equation 3.6.

Derive Equation 3.8.

Explain in detail how to use (3.8) to compute levels of significance for
each class 1.

5. Consider the case where all the class covariance matrices in (3.5) are
equal, X; = X. Show that the discriminant function (3.6) can be re-
placed by a discriminant function which is linear in x without changing
the classification. With this linear discriminant function, show that the
equations g;(x) = g;(x) define separating planes as shown in Figure 3.1.
Derive the equations for the separating curves when the class covariance
matrices are not equal. What are the shapes of these separating curves?

Ll el



Part 111

Data-driven Methods



4. Principal Component Analysis

4.1 Introduction

By projecting the data into a lower-dimensional space that accurately char-
acterizes the state of the process, dimensionality reduction techniques can
greatly simplify and improve process monitoring procedures. Principal com-
ponent analysis (PCA) is such a dimensionality reduction technique. It
produces a lower-dimensional representation in a way that preserves the cor-
relation structure between the process variables, and is optimal in terms of
capturing the variability in the data.

The application of PCA as a dimensionality reduction tool for monitoring
industrial processes has been studied by several academic and industrial en-
gineers [177, 260]. Applications of PCA to plant data have been conducted at
DuPont and other companies, with much of the results published in confer-
ence proceedings and journal articles [169, 260, 259, 343]. Several academics
have performed similar studies based on data collected from computer simu-
lations of processes (75, 117, 157, 183, 204, 207, 269, 270, 272, 307]. For some
applications, most of the variability in the data can be captured in two or
three dimensions [207], and the process variability can be visualized with a
single plot. This one-plot visualization and the structure abstracted from the
multidimensional data assist the operators and engineers in interpreting the
significant trends of the process data [177].

For the cases when most of the data variations cannot be captured in two
or three dimensions, methods have been developed to automate the process
monitoring procedures [209, 260, 272]. The application of PCA in these meth-
ods is motivated by one or more of three factors. First, PCA can produce
lower-dimensional representations of the data which better generalize to data
independent of the training set than that using the entire dimensionality of
the observation space, and therefore, improve the proficiency of detecting and
diagnosing faults. Second, the structure abstracted by PCA can be useful in
identifying either the variables responsible for the fault and/or the variables
most affected by the fault. Third, PCA can separate the observation space
into a subspace capturing the systematic trends of the process and a subspace
containing essentially the random noise. Since it is widely accepted that cer-
tain faults primarily affect one of the two subspaces {77, 345, 346], applying
one measure developed for one subspace and another measure developed for
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the other subspace can increase the sensitivity of the process monitoring
scheme to faults in general. The three aforementioned attributes of PCA are
further discussed later in this chapter.

The purpose of this chapter is to describe the PCA methods for process
monitoring. It begins in Section 4.2 by defining PCA and in Section 4.3 by
discussing the different methods which can be used to automatically deter-
mine the order of the PCA representation. Sections 4.4, 4.5, and 4.6 discuss
the PCA developments for fault detection, identification, and diagnosis, re-
spectively. In Section 4.7 is a discussion of dynamic PCA (DPCA), which
takes into account serial correlations in the process data. Section 4.8 discusses
other PCA-based process monitoring methods.

4.2 Principal Component Analysis

PCA is a linear dimensionality reduction technique, optimal in terms of cap-
turing the variability of the data. It determines a set of orthogonal vectors,
called loading vectors, ordered by the amount of variance explained in the
loading vector directions. Given a training set of n observations and m pro-
cess variables stacked into a matrix X as in (2.5), the loading vectors are
calculated by solving the stationary points of the optimization problem

TyT
viX'Xv
—_— 4.1

I‘I}% vTv (4.1)

where v € R™. The stationary points of (4.1) can be computed via the

singular value decomposition (SVD)
1
——X=UzVT 4.2
Vas1 (4.2)
where U € R™ "™ and V € R™*™ are unitary matrices, and the matrix

XY € R™ ™ contains the non-negative real singular values of decreasing

magnitude along its main diagonal (o7 > 02 >+ > Opin(m,n) > 0), and

zero offdiagonal elements. The loading vectors are the orthonormal column
vectors in the matrix V', and the variance of the training set projected along
the it" column of V is equal to o?. Solving (4.2) is equivalent to solving an

eigenvalue decomposition of the sample covariance matrix S,

S =

L xTx —vavT (4.3)
n—1
where the diagonal matrix A = X7 X € R™*™ contains the non-negative real
eigenvalues of decreasing magnitude (A; > Ay > --- > A, > 0) and the ith
eigenvalue equals the square of the i** singular value (i.e., \; = 0?).

In order to optimally capture the variations of the data while minimizing
the effect of random noise corrupting the PCA representation, the loading
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vectors corresponding to the a largest singular values are typically retained.
The motivation for reducing the dimensionality of the PCA representation
is analogous to the arguments given in Section 3.3 for pattern classification.
Selecting the columns of the loading matrix P € R™*% to correspond to the
loading vectors associated with the first a singular values, the projections of
the observations in X into the lower-dimensional space are contained in the
score matrix,

T=XP, (4.4)
and the projection of T back into the m-dimensional observation space,

X =TPT. (4.5)
The difference between X and X is the residual matrix E:

E=X-X. (4.6)

The residual matrix captures the variations in the observation space
spanned by the loading vectors associated with the m — a smallest singu-
lar values. The subspaces spanned by X and E are called the score space
and residual space, respectively. The subspace contained in the matrix F
has a small signal-to-noise ratio, and the removal of this space from X can
produce a more accurate representation of the process, X.
Defining t; to be it" column of T in the training set, the following prop-

erties can be shown (see Homework Problem 5) [259]

1. Var(ty) > Var(tg) > --- > Var(ta).

2. Mean(t;) = 0; Vi.

3. tiTtk = 0; Vi =/= k.

4. There exists no other orthogonal expansion of a components that cap-

tures more variations of the data.

A new observation (column) vector in the testing set, x € R™, can be
projected into the lower-dimensional score space t; = xT p; where p; is the
ith loading vector (see Figure 4.1). The transformed variable ¢; is also called
the it* principal component of x [147]. To distinguish between the trans-
formed variables and the transformed observation, the transformed variables
will be called principal components and the individual transformed ob-
servations will be called scores. The statistical properties listed above allow
each of the scores to be monitored separately using the univariate statistical
procedures discussed in Section 2.3. With the vectors projected into the lower
dimensional space using PCA, only a variables needed to be monitored, as
compared with m variables without the use of PCA. When enough data are
collected in the testing set, the score vectors ty,ta,...,ts can be formed. If
these score vectors do not satisfy the four properties listed above, the testing
set is most likely collected during different operating conditions than for the
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training set. This abstraction of structure from the multidimensional data
is a key component of the score contribution method for fault identification
discussed in Section 4.5.

Score
t Space
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° . Data
T Loading
X — \Y > 1, Vectors
Data
Loading fasi
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Residual

=\
D s

Fig. 4.1. The projection of the observation vector x into the score and residual
spaces, and the computation of the filtered observation %

The application of PCA will be illustrated using Fisher’s classic data set
[45, 82]. The data set consists of three classes, with each class containing
m = 4 measurements and n = 50 observations (see Table 4.1 and Figure
4.2).

Class 3 data were used to construct X as in (2.5). After autoscaling X
and solving (4.3), we have

192 0 0 O

0 096 0 O
A= 0 0 08 0 |’ (47)
0 0 0 024

and

0.64 —0.29 0.052 —0.71
0.64 —0.23 0.25 0.69
V=1034 033 088 011 | (4.8)

0.25 0.87 0.41 —-0.09

The total variance for X projected along V is equal to the trace of A, which
is 4.0. The 7** value in the diagonal of A indicates the amount of variance
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Table 4.1. Statistics of Fisher’s data [45, 82]
Class 1: Iris Virginica || Mean | Std. Deviation | Range
Sepal length 6.59 0.64 4.9-79
Sepal width 2.98 0.32 2.2-3.8
Petal length 5.55 0.55 4.5-6.9
Petal width 2.03 0.27 1.4-2.5
Class 2: Iris Versicolor || Mean | Std. Deviation | Range
Sepal length 5.94 0.52 4.9-7.0
Sepal width 2.77 0.31 2.0-3.4
Petal length 4.29 0.47 3.0-5.1
Petal width 1.33 0.20 1.0-1.8
Class 3: Iris Setosa Mean | Std. Deviation | Range
Sepal length 5.01 0.35 4.3-5.8
Sepal width 343 0.38 2.3-44
Petal length 1.46 0.17 1.0-1.9
Petal width 0.30 0.40 0.1-3.0
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Fig. 4.2. Plot of Fisher’s data [82, 45]
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Fig. 4.3. The projections of Fisher’s data [82, 45} for three classes onto the first
two PCA loading vectors

captured by the i*® principal component. If only one principal component is
retained (i.e., a = 1), then (1.92/4.0)100% = 48.0% of the total variance is
captured. For a = 2, 72% of the total variance is captured. For a = 2, the
loading matrix P is equal to the first two columns of V:

0.64 —0.29
0.64 —0.23
P= 0.34 033 |° (49)

0.25 0.87

The score matrix T is calculated according to (4.4). The advantage of
retaining only two principal components is that the process variability can
be visualized by plotting t5 versus t; (see Figure 4.3).

It is easy to verify that Var(t;)> Var(t3) by observing that the variation
along the horizontal axis is much greater than that of the vertical axis for
the Class 3 data in Figure 4.3. The ellipsoid and the data for Class 3 are
centered at the origin, which indicates that Mean(t;) = Mean(tz) = 0. It is
straightforward to verify that t; and t are orthogonal to each other.



4.3 Reduction Order 41

A threshold defines an elliptical confidence region for data belonging to
Class 3 (the calculation of the threshold will be described in Section 4.4). In
this example, statistics predict that there is a 95% probability that a Class
3 data point should fall inside the ellipsoid. It is clearly shown in Figure 4.3
that PCA is able to separate Class 3 data from Classes 1 and 2, except for
the apparent outlier located at (t1,t2) = (2.5, 5.6).

4.3 Reduction Order

It is commonly accepted and with certain assumptions theoretically justified
[345] that the portion of the PCA space corresponding to the larger singular
values describes most of the systematic or state variations occurring in the
process, and the portion of the PCA space corresponding to the smaller
singular values describes the random noise. By appropriately determining the
number of loading vectors, @, to maintain in the PCA model, the systematic
variations can be decoupled from the random variations, and the two types
of variations can be monitored separately, as discussed in Section 4.4. Several
techniques exist for determining the value of the reduction order a [117, 144,
267, 315), but there appears to be no dominant technique. The methods for
determining a described here are:

1. the percent variance test,
2. the scree test,

3. parallel analysis, and

4. the PRESS statistic.

The percent variance method determines a by calculating the smallest
number of loading vectors needed to explain a specific minimum percentage
of the total variance. (Recall that the variance associated with the ith loading
vector is equal to the square of the singular value, 02.) Because this minimum
percentage is chosen arbitrarily, it may be too low or too high for a particular
application.

The scree test assumes that the variance, a?, corresponding to the ran-
dom noise forms a linear profile. The dimension of the score space a is de-
termined by locating the value of o? where the profile is no longer linear.
The identification of this break can be ambiguous, and thus, this method is
difficult to automate. It is especially ambiguous when several breaks from
linearity occur in the profile.

Parallel analysis determines the dimensionality by comparing the vari-
ance profile to that obtained by assuming independent observation variables.
The reduction order is determined as the point at which the two profiles cross.
This approach ensures that the significant correlations are captured in the
score space, and it is particularly attractive since it is intuitive and easy to
automate. Ku, Storer, and Georgakis [183] recommend the parallel analysis
method, because in their experience, it performs the best overall.
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The dimension of the score space can also be determined using a cross-

validation procedure with the prediction residual sum of squares
(PRESS) statistic [347],

PRESS(i) = HIT;HX _ X (4.10)

where i is the number of loading vectors retained to calculate X and ||- || is
the Frobenius norm (the square root of the sum of squares of all the elements).
For the implementation of this technique, the training set is divided into
groups. The PRESS statistic for one group is computed based on various
dimensions of the score space, ¢, using all the other groups. This is repeated
for each group, and the value 7 associated with the minimum average PRESS
statistic determines the dimension of the score space.

4.4 Fault Detection

As discussed in Section 2.4, the T? statistic can be used to detect faults for
multivariate process data. Given an observation vector x and assuming that
A = ETX is invertible, the T2 statistic in (2.9) can be calculated directly
from the PCA representation (4.2)

T =xTv(ET2)'vTx. (4.11)

This follows from the fact that the V matrix in (2.7) can be computed to
be identical to the V matrix in (4.2), and the o2 are equal to the diagonal
elements of A. When the number of observation variables is large and the
amount of data available is relatively small, the 72 statistic (4.11) tends to
be an inaccurate representation of the in-control process behavior, especially
in the loading vector directions corresponding to the smaller singular values.
Inaccuracies in these smaller singular values have a huge effect on the cal-
culated T2 statistic because the square of the singular values is inverted in
(4.11). Additionally, the smaller singular values are prone to errors because
these values contain small signal-to-noise ratios and the associated loading
vector directions often suffer from a lack of excitation. Therefore, in this case
the loading vectors associated only with the larger singular values should be
retained in calculating the T2 statistic.

By including in the matrix P the loading vectors associated only with the
a largest singular values, the T2 statistic for the lower-dimensional space can
be computed [143]

T =xTP5;?PTx. (4.12)

where X, contains the first a rows and columns of X. The T? statistic (4.12)
measures the variations in the score space only. If the actual mean and co-
variance are known, the T2 statistic threshold derived from (2.10) is
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T2 = X2(a). (4.13)

When the actual covariance matrix is estimated from the sample covariance
matrix, the T? statistic threshold derived from (2.11) is

T2 = g(n—;(:—)_(?a)illFa(a,n —a). (4.14)

To detect outliers in the training set, the threshold derived from (2.12) is

T? = (n——1)2(a/(n—a—1))Fa(a,n—a—1). (4.15)
n(l+(a/(n—a—1))Fy(a,n —a—1)

Because the T? statistic in (4.12) is not affected by the inaccuracies in the
smaller singular values of the covariance matrix, it is able to better repre-
sent the normal process behavior and provides a more robust fault detection
measure when compared to the T2 statistic in (4.11). Using the arguments
in Section 4.3, the T? statistic (4.12) can be interpreted as measuring the
systematic variations of the process, and a violation of the threshold would
indicate that the systematic variations are out of control.

For the example in the last section, we have n = 50 and a = 2. According
to an F—distribution table [120], Fp.os(2,48) = 3.19. The threshold T2 is
equal to 6.64 according to (4.14). The elliptical confidence region, as shown
in Figure 4.3, is given by

T? =xTP¥;2PTx < 6.64, (4.16)
with
1.92 0
2= [ o 0'96] : (4.17)

The equation
t=PTx (4.18)

converts this region into the ellipse in Figure 4.3. Inserting (4.18) into (4.16)
gives

tT X%t < 6.64 (4.19)
or

il + B 6.64 (4.20)

1.92 © 0.96 — '

where t = [t; t,] 7.
Data from Classes 1 and 2 are used to illustrate that the PCA model is
able to detect data that do not come from Class 3. The data sets for Classes
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1 and 2 are first autoscaled according to the mean and standard deviation
of Class 3. Equation 4.4 is used to calculate the score matrices for Classes 1
and 2. As shown in Figure 4.3, the mean of each score vector for Classes 1
and 2 is not equal to zero. Indeed, all the data points for Classes 1 and 2 fall
outside the elliptical confidence region, indicating data from Classes 1 and 2
are indeed different from the Class 3 data.

The T? statistic in (4.11) is overly sensitive to inaccuracies in the PCA
space corresponding to the smaller singular values because it directly mea-
sures the variation along each of the loading vectors. In other words, it
directly measures the scores corresponding to the smaller singular values.
The portion of the observation space corresponding to the m — a smallest
singular values can be monitored more robustly by using the @ statistic
[145, 144, 150, 176, 348]

Q=rTr, r=(I - PPT)x, (4.21)

where r is the residual vector, a projection of the observation x into the
residual space. Since the Q statistic does not directly measure the variations
along each loading vector but measures the total sum of variations in the
residual space, the @ statistic does not suffer from an over-sensitivity to
inaccuracies in the smaller singular values [145]. The @ statistic, also known
as the squared prediction error (SPE), is a squared 2-norm measuring the
deviation of the observations to the lower-dimensional PCA representation.

The distribution for the @ statistic has been approximated by Jackson
and Mudholkar [145]

1/ho
hoCo /202 O2ho(ho — 1
Qo =0y |[22V2 g 2 "(;’ ) (4.22)
6, 62
h 0.—§n: %opoo=1- 20105 d e is th 1 deviat
where 6; = o;,ho =1~ W, and ¢, is the normal deviate cor-

j=a+1
responding to the (1 — a) percentile. Given a level of significance, o, the
threshold for the Q statistic can be computed using (4.22) and be used to
detect faults.

Within the context of Section 4.3, the @ statistic measures the random
variations of the process, for example, that associated with measurement
noise. The threshold (4.22) can be applied to define the normal variations
for the random noise, and a violation of the threshold would indicate that
the random noise has significantly changed. The T2 and Q statistics along
with their appropriate thresholds detect different types of faults, and the
advantages of both statistics can be utilized by employing the two measures
together. When these two statistics are utilized along with their respective
thresholds, it produces a cylindrical in-control region, as illustrated for a = 2
in Figure 4.4. The figure indicates that the ‘x’ data were collected during
in-control operations, the ‘o’ data represent T2 statistic violation, and the
‘+’ data represent () statistic violation.
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Fig. 4.4. A graphical illustration for fault detection using the Q and T? statistics

4.5 Fault Identification

Once a fault has been detected, the next step is to determine the cause
of the out-of-control status. The task of diagnosing the fault can be rather
challenging when the number of process variables is large, and the process
is highly integrated. Also, many of the measured variables may deviate from
their set-points for only a short time period when a fault occurs, due to
control loops bringing the variables back to their set-points (even though the
fault is persisting in the system). This type of systems behavior can disguise
the fault, making it difficult for an automated fault diagnosis algorithm to
correctly isolate the correct fault acting on the system.

The objective of fault identification is to determine which observation vari-
ables are most relevant to diagnosing the fault, thereby focusing the plant
operators and engineers on the subsystem(s) most likely where the fault oc-
curred. This assistance provided by the fault identification scheme in locating
the fault can effectively incorporate the operators and engineers in the pro-
cess monitoring scheme and significantly reduce the time to recover in-control
operations.

Traditionally, univariate statistical techniques were employed for fault
identification. Given an observation vector x, the normalized errors for each
variable z; were calculated as

ej = (zj — 1;)/3; (4.23)

where 4; is the mean and s; is the standard deviation of the j** variable.
These normalized errors were plotted on the same graph, and thresholds
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based on the level of significance were used to detect the out-of-control vari-
ables, as discussed in Section 2.3. However, univariate statistical techniques
for fault identification can leave out variables that are responsible for the
fault because the techniques do not account for correlations among the pro-
cess variables, or can give alarm readings for so many variables that the
engineer has little guidance on the main variables of concern [171].
Contribution plots are a PCA approach to fault identification that takes
into account the spacial correlations, thereby improving upon the univariate
statistical techniques [171, 225]. The approach is based on quantifying the
contribution of each process variable to the individual scores of the PCA
representation, and for each process variable summing the contributions only
of those scores responsible for the out-of-control status. The procedure is
applied in response to a T2 violation, and it is summarized as follows:

1. Check the normalized scores (¢;/;)? for the observation x and determine
the 7 < a scores responsible for the out-of-control status. For instance,
those scores with (t;/0;)? > 1(T2). (Recall that t; is the score of the
observation projected onto the it* loading vector, and o; is the corre-
sponding singular value.)

2. Calculate the contribution of each variable z; to the out-of-control scores
t;

t.
conti; = —5Pi,;(T; = 13) (4.24)
1

where p; ; is the (i, j)** element of the loading matrix P.
3. When cont; ; is negative, set it equal to zero.
4. Calculate the total contribution of the j** process variable, z;,

CONT; =) (cont; ;). (4.25)

i=1
5. Plot CONT] for all m process variables, z;, on a single graph.

The variables responsible for the fault can be prioritized or ordered by the
total contribution values CONTj, and the plant operators and engineers can
immediately focus on those variables with high CONT; values and use their
process knowledge to determine the cause of the out-of-control status. While
the overall variable contribution approach can be applied to the portion of
the observation space corresponding to the m — a smallest singular values,
it is not practical because the total contribution values CONT; would be
overly sensitive to the smaller singular values.

Wise et al. [346] developed a PCA approach to fault identification which
is based on quantifying the total variation of each of the process variables
in the residual space. Assuming that the m — a smallest singular values are
all equal, the variance for each variable z; inside the residual space can be
estimated as [346]
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&= piol (4.26)

Given q new observations, the variance of the j** variable outside the PCA
model space can be tested where

s?/§12->Fa(q—a—1,n—a—1) (4.27)

would indicate an out-of-control variable, where sjz- and §? are the variance
estimates of the jt* variable for the new and training set observations, re-
spectively, and Fo(¢ —a —1,n — a — 1) is the (1 — a) percentile limit using
the F distribution [120]. Equation 4.27 is testing the null hypothesis, with
the null hypothesis being s; = §; and the one-sided alternative hypothesis
being s; > §;. The one-sided alternative hypothesis is accepted (i.e., the null
hypothesis is rejected) if (4.27) holds [120]. In most of the times, the variable
that is responsible for a fault has a larger variance than it has in the training
set (i.e., s; > §;). However, this is not always true. For example, a broken
sensor may give constant reading, indicating that s; < §;. This motivates the
use of two-sided hypothesis testing, with the null hypothesis being s; = 3;
and the two-sided alternative hypothesis being s; # ;. We conclude §; # s;
if [120]

sf/é? > Fypp(g—a-1,n—a-1) (4.28)
or
.§?/s?>Fa/2(n——a—1,q—a—1). (4.29)

In addition, a large shift in the mean inside the residual space occurs if
[346, 120]

— B Staa(gtn—2a-2) (4.30)
§i4/ L + 2L
I\ gq—a n—a
or
BB <ty (qg+n—2a—2), (4.31)

where p; and /i; are the means of z; for the new and training set observations,
respectively, and t,/2(q +n — 2a — 2) is the (1 — a/2) percentile limit using
the ¢ distribution. Equations 4.30 and 4.31 are testing the null hypothesis,
with the null hypothesis being p; = j; and the alternative hypothesis being
j # p;. The alternative hypothesis is accepted if (4.30) or (4.31) holds [120].

The variables responsible for the out-of-control status, detected by the Q
statistic, can be identified using (4.27), (4.30), and (4.31). In addition, the
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variables can be prioritized using the expression values (4.27), (4.30), and
(4.31) where the variable with the largest expression value is given priority.
In [346], sensor failures are detected and identified using (4.27), (4.30), and
(4.31). Other PCA-based methods developed specifically for detecting sensor
failures are discussed elsewhere {77, 239).

The fault identification approaches using (4.27), (4.30), and (4.31) require
a group of ¢ >> 1 observations. As discussed in Section 2.3, measures based
on several consecutive observations are able to increase the robustness and
sensitivity over measures based on only a single observation, but result in a
slower response time for larger process shifts. A fault identification measure
based on an observation vector at a single time instant is the normalized error

RES] = Tj/éj (432)

where r; is the jt* variable of the residual vector. The values of (4.32) can be
used to prioritize the variables where the variable with the highest normalized
error is given priority. The measure (4.32), when compared to (4.27), (4.30),
and (4.31), is able to indicate the current status of the process immediately
after a large process shift more accurately.

4.6 Fault Diagnosis

The previous section discussed fault identification methods, which identify
the variables associated with the faulty subsystem. Although these methods
assist in diagnosing the faults, it may take a substantial amount of time and
process expertise on behalf of the plant operators and engineers before the
fault is properly diagnosed. Much of this time and expertise can be elimi-
nated by employing an automated fault diagnosis scheme. One approach is
to construct separate PCA models for each process unit [117]. A fault associ-
ated with a particular process unit is assumed to occur if the PCA model for
that unit indicates that the process is out of control. While this approach can
narrow down the cause of abnormal process operations, it will not unequiv-
ocally diagnose the cause. This distinguishes these fault isolation techniques
(which are based on non-supervised classification) from the fault diagnosis
techniques (which are based on supervised classification) described below.

Several researchers have proposed techniques to use principal component
analysis for fault diagnosis. The simplest approach is to construct a single
PCA model and define regions in the lower-dimensional space which classifies
whether a particular fault has occurred [346]. This approach is unlikely to be
effective when a significant number of faults can occur {360].

The way in which a pattern classification system can be applied to di-
agnose faults automatically was described in Chapter 3 how a pattern. The
feature extraction step was shown to be important especially when the di-
mensionality of the data is large and the quantity of quality data is relatively
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small (see Section 3.3). A PCA approach which can handle a larger number
of faults than using a single PCA model is to develop a separate PCA model
based on data collected during each specific fault situation, and then apply
the Q [181], T? [269], or other statistics [269, 270, 272, 360] to each PCA
model to predict which fault or faults most likely occurred. This approach
is a combination of principal component analysis and discriminant analysis
[270]. Various discriminant functions for diagnosing faults are discussed in
the following,.

One way to use PCA for fault diagnosis is to derive one model based on
the data from all fault classes. Stacking the data for all fault classes into
matrix X, the loading matrix P can be calculated based on (4.2) or (4.3).
The maximum likelihood classification for an observation x is fault class ¢
with the maximum score discriminant, which is derived from (3.6) to be

\T -1 X
(1 — %) TP (PTS;P)™" PT(x — %) + In(p:) (4.33)

[det (PTS;P)]

gi(x) = —3(x
1
2

where X; is the mean vector for class ¢,

Z Xj, (4.34)

i X3EX;

n; is the number of data points in fault class i, A; is the set of vectors x;
which belong to the fault class 7, and S; € R™*™ is the sample covariance
matrix for fault class ¢, as defined in (2.6).

If P is selected to include all of the dimensions of the data (i.e., P=V €
R™*™) and the overall likelihood for all fault classes is the same, Equation
4.33 reduces to the discriminant function for multivariate statistics (MS) as
defined in (3.7). MS selects the most probable fault class based on maximizing
the discriminant function (3.7). MS also serves as a benchmark for the other
statistics, as the dimensionality should only be reduced if it decreases the
misclassification rate for a testing set.

The score discriminant, residual discriminant, and combined dis-
criminant are three discriminant analysis techniques used with multiple
PCA models [269]. Assuming the PCA models retain the important vari-
ations in discriminating between the faults, an observation x is classified as
being in the fault class ¢ with the maximum score discriminant

1
gi(x) = —‘2“XTP ToiPIx— > ln[det 22 )]+ In(p:) (4.35)

where P; is the loading matrix for fault class i, X4, is the diagonal matrix
X, as shown in (4.12) for fault class i (X2 is the covariance matrix of P;x),
and p; is the overall likelihood of fault class i [150, 272]. Note that (4.35)
assumes that the observation vector x has been autoscaled according to the
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mean and standard deviation of the training set for fault class i. Equation
4.35 is based on the discriminant function (3.6).

The matrices P;, X, ;, and p; in (4.35) depend solely on fault class 7, that
is, the discriminant function for each fault class is derived individually. A
weakness of this approach is that useful information for other classes is not
utilized when each model is derived. In general, the reduction order a for each
fault class is different. This indicates that the discriminant function (4.35) for
each fault class 7 is evaluated based on different dimensions of the projected
data PTx. This inconsistency can result in relatively high misclassification
rates.

In contrast to (4.35), the projection matrix P in (4.33) not only utilizes
information from all fault classes, but also projects the data onto the same
dimensions for each class. Because of these properties, the discriminant func-
tion (4.33) can significantly outperform (4.35) for diagnosing faults. To dis-
tinguish the one-model PCA with the multi-model PCA, we will refer to the
one-model PCA as PCA1 and the multi-model PCA as PCAm throughout
the book.

Assuming that the overall likelihood for all fault classes is the same and
the sample covariance matrix of P;x for all classes is the same, the use of the
score discriminant (4.35) reduces to use of the T2 statistic, where

T} =x"P;¥ 2P x (4.36)

(similarly as shown in Section 3.2). In this case, the score discriminant will
select the fault class as that which corresponds to the minimum 77 statistic.

Assuming that the important variations in discriminating between the
faults are contained in the residual space for each fault class, it is most likely
that an observation is represented by the fault class ¢ with the minimum
residual discriminant

Qi/(Qa); (4.37)

where the subscript 7 indicates fault class i. If the important variations in
discriminating between the faults are contained both within the score and
residual space, then an observation is most likely to be represented by the
fault class ¢ with the minimum combined discriminant

GlT2/(T3)i) + (1 = )[Qi/(Qa)i] (4.38)

where ¢; is a weighting factor between 0 and 1 for fault class i. Assuming
an out-of-control observation does not represent a new fault, each of these
discriminant analysis techniques (4.35), (4.37), and (4.38) can be used to
diagnose the fault.

When a fault is diagnosed as fault 7, it is not likely to represent a new
fault when

[T7/(T3):] << 1 (4.39)
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and

[Qi/(Qa)i] << 1. (4.40)

These conditions indicate that the observation is a good match to fault model
i. If either of these conditions is not satisfied (for example, [T2/(T2);] or
[Qi/(Qq)i] is greater than 1), then the observation is not accurately repre-
sented by fault class 7 and it is likely that the observation represents a new
fault.

Before the application of a pattern classification system to a fault diag-
nosis scheme, it is useful to assess the likelihood of successful diagnosis. In
[270, 272], Raich and Cinar describe a quantitative measure of similarity be-
tween the covariance structures of two classes. The measure, referred to as
the similarity index, for Classes 1 and 2 is calculated as

1 o
f= ;n—;aj (4.41)

where G; is the j th singular value of VlTVz and the matrices V; and V5 contain
all m loading vectors for Classes 1 and 2, respectively. The value of f ranges
between 0 and 1, where a value near 0 indicates a lack of similarity and a
value equal to 1 indicates an ezact similarity [179]. While a high similarity
does not guarantee misdiagnosis, a low similarity does generally indicate a
low probability of misdiagnosis. The similarity index can be applied to PCA
models by replacing V; and V2 with the loading matrix P; for Class 1 and
the loading matrix P, for Class 2, respectively.

In [270, 272], a measure of class similarity using the overlap of the mean
for one class into the score space of another class is developed from [212].
Define 1 € R™ and pe € R™ to be the means of Classes 1 and 2, respectively,
P € R™*% as the projection matrix containing the a loading vectors for Class
2, p as the fraction of the explained variance in the data used to build the
second PCA model, and ¥ € R**® as the covariance in a model directions for
the second PCA model. The test statistic, referred to as the mean overlap,
for Classes 1 and 2 is

I‘TI‘

m= e (4.42)

where t = PT(u; — p2) is the approximation of u; by the second model and
r = Pt — p; is the residual error in y; unexplained by the second model. The
threshold for (4.42) can be determined from the following distribution

Mo = Fo(m —a,n — a) (4.43)

where n is the number of model observations for Class 2. In simulations,
Raich and Cinar found that the mean overlap was not as successful as the
similarity index for indicating pairwise misdiagnosis [270, 272].
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Multiple faults occurring within the same time window are likely to hap-
pen for many industrial processes. The statistics for detecting a single fault
are directly applicable for detecting multiple faults because the threshold
in (4.14) depends only on the data from the normal operating conditions
(Fault 0). The task of diagnosing multiple faults is rather challenging and
the proficiencies of the fault diagnosis statistics depend on the nature of the
combination of the faults. A straightforward approach for diagnosing multi-
ple faults is to introduce new models for each combination of interest; this
approach could describe combinations of faults that produce models that are
not simply the consensus of component models [270, 272]. The disadvantage
of this approach is that the number of combinations grows exponentially with
the number of faults. For a detailed discussion of diagnosing multiple faults,
refer to the journal articles [270, 272].

4.7 Dynamic PCA

The PCA monitoring methods discussed previously assume implicitly that
the observations at one time instant are statistically independent to observa-
tions at past time instances. For typical industrial processes, this assumption
is valid only for long sampling times, :.e., 2 to 12 hours. This suggests that
a method taking into account the serial correlations in the data is needed in
order to implement a process monitoring method with fast sampling times.
A simple method to check whether correlations are present in the data is
through the use of an autocorrelation chart of the principal components
[272, 336). If significant autocorrelation is shown in the autocorrelation chart,
the following approaches can be used. One approach to address this issue is
to incorporate EWMA /CUSUM charts with PCA (see Section 4.8). Another
approach is to average the measurements over a number of data points. Al-
ternatively, PCA can be used to take into account the serial correlations by
augmenting each observation vector with the previous h observations and
stacking the data matrix in the following manner,

- T T ]
X¢ X(1 7 Xeh
T T T
x x “ s x
t—1 t—2 t—h-1
xm=| " | . (4.44)
T T T
| Xt+h-n Xt+h-n-1 """ X{—n |

where x[ is the m-dimensional observation vector in the training set at time
interval t. By performing PCA on the data matrix in (4.44), a multivariate
autoregressive (AR), or ARX model if the process inputs are included, is
extracted directly from the data [183, 343]. To see this, consider a simple
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example of a single input single output (SISO) process, which is described by
the ARX(h) model

Yt = oqYi—1+ -+ onYs—n + Bous + Brus—1 + - - + Brug—n + €
(4.45)

where y; and u; are the output and input at time £, respectively, a;,...,
o, P, ..., 0, are constant coefficients, and e; is a white noise process with
zero mean (336, 343]. Mathematically, the ARX(h) model states that the
output at time £ is linearly related to the past h inputs and outputs. With
xI = [y¢ w), the matrix X (h) in (4.44) becomes:

Yt Ut Yt—1 Ug—1 - Yt—h Ut-h
Y1 Ut—1 Yt—2 Ut—-2 **° Yt—h—-1 Ut—h-1
X(h) = . . . ) . . :
. . . . .. . . (4.46)
| Yt+h—n Ut+h—n Yt+h—n—-1 Ut+h—n—-1 """ Yt-n Ut—n |

The ARX(h) model indicates that the first column of X (h) is linearly related
to the remaining columns. In the noise-free case the matrix formed in (4.46)
would be rank deficient (i.e., not full rank). When PCA is applied to X (h)
using (4.3), the eigenvector corresponding to the zero eigenvalue would reveal
the ARX(h) correlation structure [183]. In the case where noise is present,
the matrix will be nearly rank deficient. The eigenvector corresponding to a
nearly zero eigenvalue will be an approximation of the ARX(h) correlation
structure [183, 240].

Note that the @ statistic is then the squared prediction error of the ARX
model. If enough lags h are included in the data matrix, the @ statistic is
statistically independent from one time instant to the next, and the threshold
(4.22) is theoretically justified. This method of applying PCA to (4.44) is
referred to as dynamic PCA (DPCA). When multi-model PCAm is used
with (4.44) for diagnosing faults, it will be referred to as DPCAm. Note
that a statistically justified method can be used for selecting the number of
lags h to include in the data for our studies (see Section 7.5). The method for
automatically determining h described in [183] is not used here. Experience
indicates that » = 1 or 2 is usually appropriate when DPCA is used for
process monitoring. The fault detection and diagnosis measures for static
PCA generalize directly to DPCA. For fault identification, the measures for
each observation variable can be calculated by summing the values of the
measures corresponding to the previous h lags.

It has been stated that in practice the presence of serial correlations in
the data does not compromise the effectiveness for the static PCA method
when there are enough data to represent all the normal variations of the
process [171]. Irrespective of this claim, including lags in the data matrix as
in (4.44) can result in the PCA representation correlating more information.
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Therefore, as long as there are enough data to justify the added dimension-
ality of including h lags, DPCA is expected to perform better than PCA for
detecting faults from serially correlated data, and this has been confirmed by
testing PCA and DPCA on the Tennessee Eastman problem [183].

4.8 Other PCA-based Methods

The EWMA and CUSUM charts have been generalized to the multivariate
case [56, 202, 207, 258, 351, 116], and these generalizations can be applied
to the PCA-based T2 statistic in (4.12). Applying these methods can result
in increased sensitivity and robustness of the process monitoring scheme, as
discussed in Section 2.3. EWMA and CUSUM charts use data from consec-
utive observations. If a large number of observations is required, an increase
in the detection delay can be expected.

The process monitoring measures discussed so far are for continuous pro-
cesses. Process monitoring measures for batch processes have been devel-
oped with the most heavily studied being multiway PCA, [243, 343, 39].
Multiway PCA is a three-dimensional extension of the PCA approach. The
three dimensions of the array represent the observation variables, the time
instances, and the batches, respectively, whereas PCA methods for continu-
ous processes contain only two dimensions, the observation variables and the
time instances. Details and applications of multiway PCA are provided in
the references [243, 343, 39].

PCA is a linear dimensionality reduction technique, which ignores the
nonlinearities that may exist in the process data. Industrial processes are
inherently nonlinear; therefore, in some cases nonlinear methods for pro-
cess monitoring may result in better performance compared to the linear
methods. Kramer [172] has generalized PCA to the nonlinear case by using
autoassociative neural networks (this is called nonlinear principal com-
ponent analysis). Dong and McAvoy [71] have developed a nonlinear PCA
approach based on principal curves and neural networks that produce in-
dependent principal components. It has been shown that for certain data
nonlinearities these nonlinear PCA neural networks are able to capture more
variance in a smaller dimension compared to the linear PCA approach. A
comparison of three neural network approaches to process monitoring has
been made [76]. Neural networks can also be applied in a pattern classifica-
tion system to capture the nonlinearities in the data. A text on using neural
networks as a pattern classifier is Neural Networks for Pattern Recogni-
tion by Bishop [29]. Although neural networks potentially can capture more
information in a smaller-dimensional space than the linear dimensionality re-
duction techniques, an accurate neural network typically requires much more
data and computational time to train, especially for large-scale systems.
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4.9 Homework Problems

1. Read an article on the use of multiway PCA (e.g., [39, 93, 243, 343])
and write a report describing in detail how the technique is implemented
and applied. Describe how the computations are performed and how the
statistics are computed. Formulate both fault detection and diagnosis ver-
sions of the algorithm. For what types of processes are these algorithms
suited? Provide some hypothetical examples.

2. Describe in detail how to blend PCA with CUSUM and EWMA, includ-
ing the equations for the thresholds.

3. Read an article on the use of PCA for diagnosing sensor faults (e.g.,
[77, 239]) and write a report describing in detail how the technique is im-
plemented and applied. Compare and contrast the techniques described
in the paper with the techniques described in this book.

4. Read an article on the application of nonlinear PCA (e.g., [172, 71])
and write a report describing in detail how the technique is implemented
and applied. Describe how the computations are performed and how the
statistics are computed. For what types of processes are these algorithms
suited? Provide some hypothetical examples.

5. Prove the properties 1-4 given below Equation 4.6.

6. Section 5 of [145] describes several alternatives to the @Q statistic for
quantifying deviations outside of those quantified by the T2 statistic.
Describe these statistics in detail, including their thresholds, advantages,
and disadvantages. [Note: one of the statistics is closely related to the 772
statistic in Chapter 7.]

7. Apply PCA to the original Class 3 data set reported by Fisher [82],
and construct Figure 4.3 including the confidence ellipsoid. Now reapply
PCA and reconstruct the figure for the case where the outlier at (¢1,t2) =
(2.5,5.6) is removed from the Class 3 data set. Compare the confidence
ellipsoids obtained in the two cases. Comment on the relative importance
of removing the outlier from the Class 3 data set before applying PCA.

8. Read the article [100] which describes the use of structured residuals
and PCA to isolate and diagnose faults, and write a report describing
in detail how the technique is implemented and applied. Compare and
contrast the approach with the techniques described in this book.
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5.1 Introduction

In the pattern classification approach to fault diagnosis outlined in Chapter
3, it was described how the dimensionality reduction of the feature extraction
step can be a key factor in reducing the misclassification rate when a pattern
classification system is applied to new data (data independent of the training
set). The dimensionality reduction is especially important when the dimen-
sionality of the observation space is large while the numbers of observations
in the classes are relatively small. A PCA approach to dimensionality reduc-
tion was discussed in the previous chapter. Although PCA contains certain
optimality properties in terms of fault detection, it is not as well-suited for
fault diagnosis because it does not take into account the information between
the classes when determining the lower-dimensional representation. Fisher
discriminant analysis (FDA), a dimensionality reduction technique that
has been extensively studied in the pattern classification literature, takes
into account the information between the classes and has advantages over
PCA for fault diagnosis [46, 277).

This chapter begins in Section 5.2 by defining FDA and presenting some
of its optimality properties for pattern classification. An information criterion
for FDA is developed in Section 5.3 for automatically determining the order of
dimensionality reduction. In Section 5.4, it is described how FDA can be used
for fault detection and diagnosis. PCA and FDA are compared in Section 5.5
both theoretically and in application to some data sets. Section 5.6 describes
dynamic FDA (DFDA), an approach based on FDA that takes into account
serial (temporal) correlations in the data.

5.2 Fisher Discriminant Analysis

For fault diagnosis, data collected from the plant during specific faults are
categorized into classes, where each class contains data representing a par-
ticular fault. FDA is a linear dimensionality reduction technique, optimal in
terms of maximizing the separation amongst these classes [74]. It determines
a set of linear transformation vectors, ordered in terms of maximizing the
scatter between the classes while minimizing the scatter within each class.

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems
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Define n as the number of observations, m as the number of measurement
variables, p as the number of classes, and n; as the number of observations
in the j** class. Represent the vector of measurement variables for the it*
observation as x;. If the training data for all classes have already been stacked
into the matrix X € R™™ as in (2.5), then the transpose of the i** row of
X is the column vector x;.

To understand Fisher discriminant analysis, first we need to define various
matrices that quantify the total scatter, the scatter within classes, and the
scatter between classes. The total-scatter matrix is [74, 129]

Se=) (xi—%)(xi—%)” (5.1)
=1

where X is the total mean vector

Z Xj. (5.2)

With X; defined as the set of vectors x; which belong to the class j, the
within-scatter matrix for class j is

Si= Y (xi—%)(xi—%)" (5.3)

xiEXj

X =

S|~

where X; is the mean vector for class j:
Xj = i Xj. (54)
% n
J X;€X;
The within-class-scatter matrix is
Sy = Z S; (5.5)
j=1
and the between-class-scatter matrix is
p
Sp=) n;i(% — %)% —%)". (5.6)
j=1

The total-scatter matrix is equal to the sum of the between-scatter matrix
and the within-scatter matrix [74],

St = Sb + Sw. (57)

The objective of the first FDA vector is to maximize the scatter between
classes while minimizing the scatter within classes:
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vISv
max
v#0 vT S,v

(5.8)

assuming invertible S,, where v € R™. The second FDA vector is computed
so as to maximize the scatter between classes while minimizing the scatter
within classes among all axes perpendicular to the first FDA vector, and so on
for the remaining FDA vectors. It can be shown that the linear transformation
vectors for FDA can be calculated by computing the stationary points of
the optimization problem (5.8) [74, 129]. The FDA vectors are equal to the
eigenvectors wy of the generalized eigenvalue problem

Sbwk = /\k Swwk (5.9)

where the eigenvalues A\; indicate the degree of overall separability among
the classes by projecting the data onto wy. Any software package that does
matrix manipulations, such as MATLAB [109, 110] or IMSL [132], has sub-
routines for computing the generalized eigenvalues and eigenvectors. Because
the direction and not the magnitude of wy is important, the Euclidean norm
(square root of the sum of squares of each element) of wi can be chosen to
be equal to 1 (J|wg|| = 1).

The FDA vectors can be computed from the generalized eigenvalue prob-
lem as long as S,, is invertible. This will almost always be true provided that
the number of observations n is significantly larger than the number of mea-
surements m (the case in practice). Since S, is expected to be invertible for
applications of FDA to fault diagnosis, methods to calculate the FDA vectors
for the case of non-invertible S,, are only cited here [45, 123, 305].

The first FDA vector is the eigenvector associated with the largest eigen-
value, the second FDA vector is the eigenvector associated with the second
largest eigenvalue, and so on. A large eigenvalue Ay indicates that when the
data in the classes are projected onto the associated eigenvector wy there is
overall a large separation of the class means relative to the class variances,
and consequently, a large degree of separation among the classes along the
direction wy. Since the rank of S is less than p, there will be at most p — 1
eigenvalues which are not equal to zero, and FDA provides useful ordering of
the eigenvectors only in these directions.

It is useful to write the goal of FDA more explicitly in terms of a linear
transformation. Define the matrix W, € R™*(~1) with the p—1 FDA vectors
as columns. Then the linear transformation of the data from m-dimensional
space to (p — 1)-dimensional space is described by

zZ; = WpTxi (5.10)

where z; € R®~1. FDA computes the matrix Wy such that data X3,...,Xq
for the p classes are optimally separated when projected into the p—1 dimen-
sional space. In the case where p is equal to 2, this is equivalent to projecting
the data onto a line in the direction of the vector w, for which the projected
data are the best separated.



60 5. Fisher Discriminant Analysis

5.3 Reduction Order

No reduction of dimensionality would be needed if the covariance matrix
and mean vector were known exactly (see Section 3.3). Errors in the sample
covariance matrix (2.6) occur in practice, however, and the dimensionality
reduction provided by FDA may be necessary to reduce the misclassifica-
tion rate when the pattern classification system is applied to new data (data
independent of the training set). A popular method for selecting the reduc-
tion order for dimensionality reduction methods is to use cross-validation
[98, 343]. This approach separates the data into multiple sets: the training
set, and the testing (or validation) set. The dimensionality reduction proce-
dure is applied to the data in the training set, and then its performance is
evaluated by applying the reduced-dimension model to the data in the test-
ing set for each reduction order. The reduction order is selected to optimize
the performance based on the testing set. For example, if the goal is fault
diagnosis, the order of the reduced model would be specified by minimizing
the misclassification rate of the testing set.

Cross-validation is not always practical in fault diagnosis applications
because there may not be enough data to separate into two sets. In this
situation, it is desirable to determine the order of the dimensionality reduction
using all the data in the training set. Variations on cross-validation that split
the data into larger numbers of sets (such as “leave-one-out” cross-validation
[344]) are computationally expensive.

As discussed in Section 3.3, the error of a model can be minimized by
choosing the number of independent parameters so that it optimally trades
off the bias and variance contributions on the mean-squared error. In an effort
to minimize the mean-squared error, criteria in the form

(prediction error term) + (model complexity term) (5.11)

have been minimized to determine the appropriate model order [199]. The
Akaike’s information criterion (AIC), popularly applied in system iden-
tification for optimally selecting the model order (for an example, see Section
7.6), can be derived in the form (5.11) [199]. In (5.11), the prediction error
term is a function of the estimated model parameters and the data in the
training set, and the model complexity term is a function of the number
of independent parameters and the amount of data in the training set. In
system identification, the prediction error term is usually chosen as the aver-
age squared prediction error for the model, but in general, the choice of the
complexity term is subjective [199)].

A strength of the AIC is that it relies only on information in one set of data
(the training data), unlike cross-validation which requires either additional
data or a partitioning of the original data set. A criterion in the form (5.11)
can be developed for automatically selecting the order for FDA using the
information only in the training set [46, 277]. The order can be determined
by computing the dimensionality a that minimizes the information criterion
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fmla) + % (5.12)

where f,,(a) is the misclassification rate (the proportion of misclassifications,
which is between 0 and 1) for the training set by projecting the data onto the
first @ FDA vectors, and 7 is the average number of observations per class.
The misclassification rate of the training set, fn,(a), indicates the amount
of information contained in the first a FDA vectors beneficial for pattern
classification. While the misclassification rate of the training set typically
decreases as a increases, for new data (data independent of the training set),
the misclassification rate initially decreases and then increases above a certain
order due to overfitting the data. The model complexity term a/7 is added
in (5.12) to penalize the increase of dimensionality.

The scaling of the reduction order a by the average number of observations
per class, 71, has some intuitive implications. To illustrate this, consider the
case where the number of observations in each class is the same, n; = 7. It
can be shown using some simple algebra that the inclusion of the a/7 term in
(5.12) ensures that the order selection procedure produces a value for a less
than or equal to 7. In words, this constraint prevents the lower-dimensional
model from having a higher dimensionality than justified by the number of
observations in each class.

The model complexity term a/7 can also be interpreted in terms of the
total number of misclassifications per class. Defining m(a) as the total number
of misclassifications in the training set for order a and assuming that n; = 7,
the information criterion (5.12) can be written as

m(a)
pn

a
+2 (5.13)

where n = pn is the total number of observations. Let us consider the case
where it is to be determined whether a reduction order of a + 1 should be
preferred over a reduction order of a. Using the information criterion (5.13)
and recalling that a smaller value for the information criterion is preferred,
a reduction order of a + 1 is preferred if

1 1
metl) atl m) e (5.14)
pn n pn n
This is equivalent to

m(a) m(a+1) >1
p P '

(5.15)

The complexity term does not allow the reduction order to be increased
merely by decreasing the number of misclassifications, but only if the decrease
in the total number of misclassifications per class is greater than 1.

The above analyses indicate that the scaling of a in the model complexity
term a/7 in the information criterion (5.12) is reasonable. This is confirmed
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by application in Chapter 10 (for example, see Figure 10.21, where the infor-
mation criterion correctly captures the shape and slope of the misclassifica-
tion rate curves for the testing sets).

5.4 Fault Detection and Diagnosis

When FDA is applied for pattern classification, the dimensionality reduc-
tion technique is applied to the data in all the classes simultaneously. More
precisely, denote W, € R™*® as the matrix containing the eigenvectors
Wi, W2,..., W, computed from (5.9). The discriminant function can be de-
rived from (3.6) to be [97]

nj—l

-1
0;(x) = ~3(x = %) W (G WIS Wa) W (x— %)) + In(p:)
—1ln [det (Elj wrs; Wa)] (5.16)
where Sj, X;, and n; are defined in (5.3) and (5.4). In contrast to PCA1
(see Section 4.6), FDA uses the class information to compute the reduced-
dimensional space, so that the discriminant function (5.16) exploits that class
information to a far greater degree than can be done by PCA. In contrast
to PCAm, FDA utilizes all p fault class information when evaluating the
discriminant function or each class.

FDA can also be applied to detect faults by defining an additional class of
data, that collected during normal operating conditions, to the fault classes.
The proficiency of fault detection using (5.16) depends on the similarity be-
tween the data from the normal operating conditions and the data from
the fault classes in the training sets. When there exists a transformation W
such that the data from the normal operating conditions can be reasonably
separated from the other fault classes, using FDA for fault detection will
produce small missed detection rates for the known fault classes. Equation
5.16 does not take into account unknown faults associated with data outside
of the lower-dimensional space defined by the FDA vectors, so (5.16) may
not detect these kinds of faults. It is best to use (5.16) with a residual-based
FDA statistic (see Homework Problem 2), which together can detect both
faults associated with data inside the space defined by the FDA vectors, and
faults associated with data outside of this space. This joint use of two FDA
statistics is similar to the joint use of the PCA Q or T? statistics, as dis-
cussed in Chapter 4. The advantage of using the FDA statistics instead of
the PCA statistics is that the fault classification information can be taken
into account to improve the ability to detect faults. The disadvantage is that
the FDA statistics require that fault classification information to define its
lower-dimensional space (defined by W).

As mentioned in Section 5.2, only the first p — 1 eigenvectors in FDA
maximize the scatter between the classes while minimizing the scatter within
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each class. The rest of the m — p + 1 eigenvectors corresponding to the zero
eigenvalues are not ordered by the FDA objective (5.8). The ranking of these
generalized eigenvectors is determined by the particular software package
implementing the eigenvalue decomposition algorithm, which does not order
the eigenvectors in a manner necessarily useful for classification. However,
more than p — 1 dimensions in a lower-dimensional space may be useful for
classification, and a procedure to select vectors beyond the first p — 1 FDA
vectors can be useful. Here two methods are described which use PCA to
compute additional vectors for classification.

One method is to use FDA for the space defined by the first p — 1 eigen-
vectors, and to use the PCA1 vectors for the rest of the m — p + 1 vectors,
ordered from the PCA vectors associated with the highest variability to the
vectors associated with the lower variability. If the reduction order a < p—1,
Equation 5.16 is used directly. If a > p, the alternative discriminant function
is used:

-1
9(%) = =3 = %) Winia,o (557 Wikiz a5 Winizia) Wil a(x — %))

miz,a

—3in [det (515 Wik, o) Wnis,a )| +In(p:) (5.17)

where Winiz o = [Wp—1 Pa—py1], and P,_pq is the first a — p + 1 columns
of the PCA1 loading matrix P (defined in Section 4.6). When this method is
used for diagnosing faults, it will be referred to as the FDA /PCA1 method.
Recall from Section 4.2 that the variances associated with the loading vectors
in PCA are ranked in descending order. Given that the vectors from PCA1
can be useful in a classification procedure (see Section 4.6), incorporating
the first a — p + 1 PCAL1 loading vectors into the FDA/PCA1 method may
provide additional information for discriminating amongst classes.

Another method to define an additional m — p + 1 vectors is to apply
PCA1 to the residual space of FDA, defined by

R=X(I-W,1W],). (5.18)

As before, if the reduction order a < p — 1, Equation 5.16 is used directly. If
a > p, then the alternative discriminant function (5.17) is used with Wz o =
[Wp—1 Ps_pt1], where P,_,.; is the first a — p + 1 columns of the PCA1
loading matrix when PCA is applied to R. This method for diagnosing faults
will be referred to as the FDA /PCA2 method.

5.5 Comparison of PCA and FDA

Here the PCA and FDA dimensionality reduction techniques are compared
via theoretical and graphical analyses for the case where PCA is applied to all
the data in all the classes together (PCA1 in Section 4.6). This highlights the
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geometric differences between the two dimensionality reduction procedures.
The way in which FDA can result in superior fault diagnosis to that achieved
by PCA is also shown.

The optimization problems for PCA and FDA have been stated math-
ematically in (4.1) and (5.8), respectively. It can be shown that the PCA
loading vectors and FDA vectors can also be calculated by computing the
stationary points of the optimization problems

vTS,v
Y Ty >:19)
and
vTS,v
T VTS, (520

respectively. Equations 5.19 and 5.20 indicate that the PCA and FDA vectors
are identical for the case when S,, = oI where o > 0. One case in which this
situation occurs if the data in each class can be described by a uniformly
distributed ball (z.e., circle in 2-D space and sphere in 3-D space), even if the
balls are of distinct sizes. Differences between the two techniques can occur
only if there is elongation in the data used to describe any one of the classes.
These elongated shapes occur for highly correlated data sets (see Figure 4.3),
typical for data collected from industrial processes. Therefore, when PCA
and FDA are applied in the same manner to process data, the PCA loading
vectors and FDA vectors are expected to be significantly different, and the
differing objectives, (5.19) and (5.20), suggest that FDA will be significantly
better for discriminating among classes of faults.

Figure 5.1 illustrates a difference between PCA and FDA that can occur
when the distribution of the data in the classes is somewhat elongated. The
first FDA vector and PCA loading vector are nearly perpendicular, and the
linear transformation of the data onto the first FDA vector is much better
able to separate the data in the two classes than the linear transformation of
the data onto the first PCA loading vector.

The linear transformations of Fisher’s data (introduced in Chapter 4) onto
the first two PCA and FDA loading vectors are shown in Figure 5.2. The
within-class-scatter matrix and between-class-scatter matrix are calculated

568 37.3 164 917
373 884 101 17.1
Sw=1164 101 875 4.64 (5.21)

9.17 171 4.64 228

and
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Fig. 5.1. A comparison of PCA and FDA for the linear transformation of the data
in classes ‘x’ and ‘o’ onto the first FDA vector and PCA loading vector
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Sp = (5.22)

respectively. Solving (5.9), we have p — 1 = 2 eigenvectors associated with
non-zero eigenvalues, which are

0.15
0.12
—0.96
—0.18

W1 =

(5.23)

and
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Fig. 5.2. The linear transformations of Fisher’s data [45, 82] for three classes onto
the first two FDA and PCA loading vectors, respectively

~0.13
~0.70
wa=| oo | (5.24)

0.68

and the corresponding eigenvalues are A; = 27 and A, = 0.24, respectively.
The large A; value indicates that there is a large separation of the class means
relative to the class variances on z; (see Figure 5.2). Indeed the average values
of z; for the 3 classes are -1.0, -0.37, and 1.42. The small A\ value indicates
that the overall separation of the class means relative to the class variances
is small in the z2 direction. The average values of z; for the 3 classes are 0.30,
-0.43, and 0.12.

The 95% elliptical confidence region for each class can be approximated
by solving (3.8) with T? set to 6.64. The T threshold is the same as in
the example we showed in Chapter 4. Data falling in the intersection of the
two elliptical confidence regions can result in misclassification. The degree of
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overlap between the confidence regions for Classes 1 and 2 is greater for PCA
than for FDA (49 points vs. 17 points), indicating that the misclassification
rates for PCA would be higher.

While the elliptical confidence region can be used to illustrate the qual-
itative classification performance for FDA, the discriminant function (5.16)
can be used to determine the exact misclassification rates for the experiment
data [82, 45]. The results are illustrated in Table 5.1 for different FDA reduc-
tion orders. Although Class 1 and Class 2 data overlap to some extent (see
Figure 5.2), the discriminant function (5.16) is able to classify almost all of
the data points correctly. Indeed, no more than 3 out of 50 data points are
misclassified regardless of the order selection (see Table 5.1).

Table 5.1. The misclassification rates for the training data [45, 82] for FDA

Order (a) 1 2 3 4
Class 1 Misclassifications | 0.06 | 0.02 0.02 0.02
Class 2 Misclassifications | 0.06 | 0.06 0.04 0.06
Class 3 Misclassifications 0 0 0

0
Overall Misclassifications | 0.04 | 0.027 r0.02| 0.027

This example is effective at illustrating the difference in the objectives be-
tween PCA and FDA. By comparing the limits of the horizontal and vertical
axes and visually inspecting the data, it is clear that the span of the PCA
linear transformation is larger than the FDA linear transformation. While
PCA is better able to separate the data as a whole, FDA is better able to
separate the data among the classes (*, o, x). This is evident in the degree of
overlap between ‘*’ and ‘o’ data regions in the two plots, in which the data
points “*’ and ‘o’ barely overlap for the FDA linear transformation, while
there is a clear intermingling of data for the PCA linear transformation.

All of Fisher’s data was used for training the FDA and PCA models in the
previous example. A much more accurate comparison of PCA and FDA is to
train the techniques with one data set (the training data), then apply them
to a new data set (the testing data). In this example two fifth of Fisher’s data
(20 observations for each class, for a total of 60 observations) were used for
training, while the rest of the data (30 observations for each class, for a total
of 90 observations) were used for testing. The overall misclassification rates
of the training data and testing data using the data-driven fault diagnosis
methods are shown in Table 5.2 and 5.3, respectively.

The overall misclassification rates for FDA, FDA/PCA1, and FDA /PCA2
were the same at a given reduction order (Section 10.8 has an example where
FDA/PCA1 and FDA/PCA2 produce lower overall misclassification rates).
The FDA vectors corresponding to the two non-zero eigenvalues are very
effective in discriminating the three classes. At a = 2, the overall misclassi-
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Table 5.2. Overall misclassification rates for the training data [45, 82] using several
data-driven fault diagnosis methods (60 observations in the training set)

Order (a) 1 2 3 4
FDA 0 0 0 0
FDA/PCA1 0 0 0 0
FDA/PCA2 | 0 0 0 0
PCA1l 0.083 | 0.033 | 0.020 0

PCAm 0.28 0.20 0.15 | 0.13
MS - - - 0

Table 5.3. Overall misclassification rates of the testing data [45, 82] using several
data-driven fault diagnosis methods (60 observations in the training set)

Order (a) 1 2 3 4
FDA 0.067 | 0.067 | 0.078 | 0.033
FDA/PCAL1 | 0.067 | 0.067 | 0.078 | 0.033
FDA/PCA2 | 0.067 | 0.067 | 0.078 | 0.033

PCAl 0.10 | 0.10 | 0.044 | 0.033
PCAm 0.17 | 0.18 | 0.11 | 0.11
MS - - - 0.033

fication rate for the testing set is 0.0667 (i.e., 84 out of 90 data points were
correctly classified).

For a < p, the FDA methods had a lower overall misclassification rate than
either PCA method. This agrees with earlier comments that FDA can do a
much better job at diagnosing faults than PCA, especially at lower reduction
orders. At any reduction order, PCA1l gave lower overall misclassification
rates than PCAm. This supports our discussion in Section 4.6 that PCA1 will
usually produce a better PCA representation for diagnosing faults. For a = 4,
all of the methods, except for PCAm, gave the same overall misclassification
rates. As discussed in Section 4.6, MS is the same as PCA1 when all orders
are included. This does not always hold for the FDA methods.

To illustrate the dependence of the number of data points used in the
training set on the proficiency of classification, another example was run
using 120 observations in the training set and 30 observations in the testing
set. The overall misclassification rates for the training data and testing data
are shown in Table 5.4 and 5.5, respectively.

This example shows that, with more data points in the training set, the
overall misclassification rates in the testing set for all methods are signifi-
cantly lower. This example shows the same trends that all of the FDA meth-
ods outperforms the PCA methods, and that PCA1 outperforms PCAm.

Note that this data set is a relatively small-scale example, in which dimen-
sionality reduction was not necessary for providing low misclassification rates.
The benefit of dimensionality reduction is most apparent for the classification
of new data from large-scale systems, in which training data are insufficient
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Table 5.4. Overall misclassification rates for the training data [45, 82] using several
data-driven fault diagnosis methods (120 observations in the training set)

Order (a) 1 2 3 4
FDA 0.05 | 0.033 [ 0.033 | 0.033
FDA/PCA1 | 0.05 | 0.033 | 0.033 | 0.033
FDA/PCA2 | 0.05 | 0.033 | 0.033 | 0.033
PCAl 0.092 | 0.10 | 0.050 | 0.033
PCAm 0.20 0.19 | 0.067 | 0.067
MS - ~ - 0.033

Table 5.5. Overall misclassification rates for the testing data [45, 82] using several
data-driven fault diagnosis methods (120 observations in the training set)

Order (a) 1 2 3 4
FDA 0 0 0 0
FDA/PCA1 0 0 0 0
FDA/PCA2 | 0 0 0 0
PCA1l 0.033 | 0.033 0 0

PCAm 0.067 | 0.067 | 0.067 | 0.067
MS - - - 0

(practical case in industry). Applications of the methods to simulated plant
data in Chapter 10 illustrate this point.

5.6 Dynamic FDA

As mentioned in Section 4.8, CUSUM and EWMA charts can be used to cap-
ture the serial correlations in the data for PCA. CUSUM and EWMA charts
can also be generalized for FDA. The pattern classification method for fault
diagnosis discussed in Chapter 3 and Section 5.4 can be extended to take
into account the serial (temporal) correlations in the data, by augmenting
the observation vector and stacking the data matrix in the same manner as
(4.44). This method will be referred to as dynamic FDA (DFDA). This en-
ables the pattern classification system to use more information in classifying
the observations. Since the information contained in the augmented observa-
tion vector is a superset of the information contained in a single observation
vector, it is expected from a theoretical point of view that the augmented
vector approach can result in better performance. However, the dimensional-
ity of the problem is increased by stacking the data, where the magnitude of
the increase depends on the number of lags h. This implies that more data
may be required to determine the mean vector and covariance matrix to the
same level of accuracy for each class. In practice, augmenting the observation
vector is expected to perform better when there is both significant serial cor-
relation and there are enough data to justify the larger dimensionality. Since
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the amount of data n is usually fixed, performing dimensionality reduction
using FDA becomes even more critical to the pattern classification system
when the number of lags h is large. The application of FDA/PCAL1 to (4.44)
will be referred to as DFDA /DPCAL1, and the developments in this chapter
for FDA readily apply to DFDA and DFDA/DPCAL.

5.7 Homework Problems

@

. An unknown fault is a fault that is not represented in the training set.

Assume that the known fault classes are augmented with an additional
class which contains normal operating data (see Section 5.4). It is possible
that using (5.16) by itself can be unable to detect a fault which can be
detected by the joint application of the PCA T? and @ statistics discussed
in Chapter 4. Construct data sets (in which you apply both PCA and
FDA) to illustrate the key reasoning underlying this conclusion.

Define a residual-based statistic for FDA similar to the @ statistic used
in PCA. Would the FDA-based () statistic be expected to outperform the
PCA-based @ statistic for fault detection? Construct data sets (in which
you apply both PCA and FDA) to illustrate the key reasoning underlying
your conclusions. How does this answer depend on the reduction order
for FDA?

Derive Equations 5.19 and 5.20.

Describe in detail how to blend FDA with CUSUM and EWMA, includ-
ing the equations for the thresholds.

. Write a one page technical summary of the classic paper by Fisher on

discriminant analysis [82]. Compare the equations derived by Fisher to
the equations in this chapter. Explain any significant differences.

. Peterson and Mattson [256] consider more general criteria for dimension-

ality reduction. Compare their criteria to the Fisher criterion. What are
the advantages and disadvantages of each? For what types of data would
you expect one criterion to be preferable over the others?

. Show that the FDA vectors are not necessarily orthogonal (hint: the

easiest way to show this is by example). Compare FDA with PLS and
PCA in this respect.
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6.1 Introduction

Partial least squares (PLS), also known as projection to latent struc-
tures, is a dimensionality reduction technique for maximizing the covariance
between the predictor (independent) matrix X and the predicted (depen-
dent) matrix Y for each component of the reduced space [98, 350]. A popular
application of PLS is to select the matrix Y to contain only product qual-
ity data which can even include off-line measurement data, and the matrix
X to contain all other process variables [207]. Such inferential models (also
known as soft sensors) can be used for the on-line prediction of the product
quality data [215, 222, 223], for incorporation into process control algorithms
[158, 259, 260], as well as for process monitoring [207, 259, 260]. Discriminant
PLS selects the matrix X to contain all process variables and selects the Y
matrix to focus PLS on the task of fault diagnosis [46].

PLS computes loading and score vectors that are correlated with the pre-
dicted block while describing a large amount of the variation in the predictor
block [343]. If the predicted block has only one variable, the PLS dimension-
ality reduction method is known as PLS1; if the predicted block has multiple
variables, the dimensionality reduction method is known as PLS2. PLS re-
quires calibration and prediction steps. The most popular algorithm used in
PLS to compute the parameters in the calibration step is known as non-
iterative partial least squares (NIPALS) [98, 343]. Another algorithm,
known as SIMPLS, can also be used [62]. As mentioned, the predicted blocks
used in discriminant PLS and in other applications of PLS are different. In
chemometrics and process control applications, where PLS is most commonly
applied, the predicted variables are usually measurements of product quality
variables. In pattern classification, where discriminant PLS is used, the pre-
dicted variables are dummy variables (1 or 0) where ‘1’ indicates an in-class
member while ‘0’ indicates a non-class member [9, 64, 244]. In the predic-
tion step of discriminant PLS, discriminant analysis is used to determine the
predicted class [244].

Section 6.2 defines the PLS1 and PLS2 algorithms in enough detail to
allow the reader to implement these techniques. Section 6.3 discusses the se-
lection of the reduction order. Section 6.4 discusses fault detection, identifica-
tion, and diagnosis using PLS. The PLS and PCA techniques are compared in
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Section 6.5. Section 6.6 summarizes several variations of the PLS algorithms
for process monitoring.

6.2 PLS Algorithms

PLS requires a matrix X € R™*™ and a matrix Y € R"*P, where m is the
number of predictor variables (the number of measurements in each observa-
tion), n is the total number of observations in the training set, and p is the
number of observation variables in Y. When Y is selected to contain only the
product quality variables, then p is the number of product quality variables.
When Y is selected as in discriminant PLS, p is the number of fault classes.

In discriminant PLS, diagnosed data are needed in the calibration. To aid
in the description of discriminant PLS, the data in X will be ordered in a
particular way. With p fault classes, suppose that there are ny, ng, ..., np
observations for each variable in Classes 1, 2, ... , p respectively. Collect the
training set data into the matrix X € R™*™, as shown in (2.5), so that the
first n; rows contain data from Fault 1, the second ny rows contain data from
Fault 2, and so on. Altogether, there are ny + ng + - -+ n, = n rows. There
are two methods, known as PLS1 and PLS2, to model the predicted block.
In PLS1, each of the p predicted variables is modeled separately, resulting
in one model for each class. In PLS2, all predicted variables are modeled
simultaneously [217].

In PLS2, the predicted block Y € R™*P contains p product quality vari-
ables; in discriminant PLS2, the predicted block Y € R™*P is

10 0 - 0]
10 0--0
01 00
y=|0120-0 (6.1)
00 0--1
00 0 -1
pCOIlrlmnS

where each column in Y corresponds to a class. Each element of Y is filled
with either one or zero. The first n; elements of Column 1 are filled with
a ‘1’, which indicates that the first n; rows of X are data from Fault 1. In



6.2 PLS Algorithms 73

discriminant PLS1, the algorithm is run p times, each with the same X, but
for each individual column of Y in (6.1).

As mentioned in Section 2.2, data pretreatment is applied first, so that
X and Y are mean-centered and scaled. The matrix X is decomposed into a
score matrix T € R™*% and a loading matrix P € R™*%, where a is the PLS
component (reduction order), plus a residual matrix E € R™*™:

X=TPT+E. (6.2)

The matrix product TPT can be expressed as the sum of the product of the
score vectors t; (the j** column of T) and the loading vectors p; (the
j** column of P) [98, 157, 343]:

X =) tp] +E. (6.3)
j=1

Similarly, Y is decomposed into a score matrix U € R™ %, a loading
matrix Q € RP*?, plus a residual matrix F € R"*?:

Y =UQT +F. (6.4)

The matrix product UQT can be expressed as the sum of the product of the
score vectors u; (the j** column of U) and the loading vectors q; (the jth
column of Q):

Y =) uq] +F. (6.5)

=1

The decompositions in (6.3) and (6.5) have the same form as that used in
PCA (see (4.5)). The matrices X and Y are represented as the sum of a series
of rank one matrices. If a is set equal to min(m, n), then E and F are zero and
PLS reduces to ordinary least squares. Setting a less than min(m, n) reduces
noise and collinearity. The goal of PLS is to determine the loading and score
vectors which are correlated with Y while describing a large amount of the
variation in X.

PLS regresses the estimated Y score vector ii; to the X score vector t; by

ﬁj = b;t; (6.6)

where b; is the regression coefficient. In matrix form, this relationship can be
written

U=TB (6.7)

where B € R%*¢ is the diagonal regression matrix with B;; = b;, and U has

U; as its columns. Substituting ¥ from (6.7) in for U in (6.4), and taking into
account that this will modify the residual matrix, gives
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Y =TBQT+F (6.8)

where F' is the prediction error matrix. The matrix B is selected such that
the induced 2-norm of F' (the maximum singular value of F' [104]), ||F||2,
is minimized [157]. The score vectors t; and u; are calculated for each PLS
factor (j = 1,2, ..., a) such that the covariance between X and Y is maximized
at each factor. In PLS1, similar steps are performed, resulting in

yi = T:Biql + £ (6.9)

where y; € R™ is the it? column of Y, T; € R™*? is the score matrix,
B; € R%*% is the regression matrix, q; € R® is the loading vector, and f;
€ R™ is the prediction error vector. Since there are p columns in Y, the range
of i is from 1 to p.

Now if the score and loadings matrices for X and Y were calculated
separately, then their successive score vectors could be weakly related to each
other, so that the regression (6.6) which relates X and Y would result in a
poor reduced dimension relationship. The NIPALS algorithm is an iterative
approach to computing modified score vectors so that rotated components
result which lead to an improved regression in (6.6). It does this by using the
score vectors from Y in the calculation of the score vectors for X, and wice
versa.

For the case of PLS2, the NIPALS algorithm computes the parameters
using (6.10) to (6.20) [98, 157, 343]. The first step is the cross regression of
X and Y, which are scaled so as to have zero mean and unit variance for
each variable. Initialize the NIPALS algorithm using Fy = X and Fp =Y,
J =1, and u; equal to any column of F;_;. Equations 6.10-6.13 are iteratively
computed until convergence, which is determined by comparing t; with its
value from a previous iteration (the nomenclature || - || refers to the vector
2-norm, also known as the Euclidean norm).

ET u;
5—1%)
Wi = ——p—— (6.10)
’ ”Ej’{luj”
t; = E;i_1w; (6.11)
FT t;
3j—1%
qj = —F— (6.12)
|
uj = Fj_1q; (6.13)

Proceed to (6.14) if convergence; return to (6.10) if not. Mathematically, de-
termining t;, u;, and wy from (6.10) to (6.13) is the same as iteratively
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determining the eigenvectors of XXTYY”T, YYTX X7, and XTYYTX as-
sociated with the largest eigenvalue, respectively [266, 344].
In the second step, pj is calculated as

E'T;1t.i
pj = _th—tJ (6.14)

The final values for pj, tj, and wj are scaled by the norm of pj o1a:

Pj,old

Pj,new = 6.15
12w = TIpj otal (6.15)
tjnew = t;.oldl[Pj,oall (6.16)
Wjnew = Wj,old||Pj,otdll (6.17)

Although it is common to apply the scalings (6.15) to (6.17) in the algorithm
[98, 343, 344], the scalings are not absolutely necessary [215]. In particular,
the score vectors t; used to relate X to Y in (6.6) are orthogonal in either
case.

Now that u; and t; are computed using the above expressions, the regres-
sion coefficient b; that relates the two vectors can be computed from

_uy
t; Tt

b (6.18)

The residual matrices E; and F; needed for the next iteration are calculated
from

E; =E;_y — t;pf (6.19)
and
Fj = Fj—-l - bjtjq}-v. (620)

This removes the variance associated with the already calculated score and
loading vectors before computing the score and loading vectors for the next
iteration. The entire procedure is repeated for the next factor (commonly
called as latent variable [343, 344]) (j + 1) starting from (6.10) until j =
min(m, n).

As discussed in the next section, predictions based on the PLS model can
be computed directly from the observation vector and pj,q;, w;j, and b; for
j=1,2,..., min(m,n). We will also see an alternative approach where the
predictions are obtained from the regression matrix B2; [217, 344]

B2; = W;(PTW,) (T]T;) T} Fo (6.21)
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where the matrices P; € R™mn)xi T, ¢ R"XJ and W; € R™in(mn)xj
are formed by stacking the vectors pj, t;, and wj, respectively. This matrix
is saved for j = 1,2,...,min(m,n).

The NIPALS algorithm for PLS1 is calculated using (6.22) to (6.27). Ini-
tialize the NIPALS algorithm using Fy = X, 7 = 1, and set ¢ = 1. The
following equations are used:

ET .y
j—1J1
wi = I 6.22
b= B il (622)
t;,; = Ej_1wy,j (6.23)
ET t;
j—1"L)
pij= 220 6.24
AR (6:24

After rescaling of p; j, t; j, and w; j in a manner similar to that used in (6.15)
to (6.17), the regression coefficient b; ; is computed from

T
Yi tij
b, ; = : 6.25
CREEY (625
The residuals for the next iteration are calculated as follows
Ej=Ej_1 - ti;pi; (6:26)

where fo; = yi and g¢;, ; = 1. The entire procedure is repeated for the next
latent variable (j + 1) starting from (6.22) until j = min(m,n). After all
the parameters for ¢ = 1 are calculated, the algorithm is repeated for i =
2,3,...,p.

As discussed in the next section, predictions based on the PLS model can
be computed directly from the observation vector and the p; j, w; j, and b; ;.

Alternatively, the predictions are obtained from the regression matrix Bl;
[9, 217]

Blj=[by,jby ;- bp;] (6.28)
where
-1 _
bi,j = Wi,j(PiTj Wi,j) (ng Ti,j) lTiijD,j (6-29)

the matrices P; ; € R™n(™m)XJ W, ; € RmiR(mn)Xi and T; ; € R™ are
formed by stacking the vectors p; j, Wi j, and t; j, respectively.



6.3 Reduction Order and PLS Prediction 77

6.3 Reduction Order and PLS Prediction

It is important to have a proper number a of PLS factors selected in order to
obtain a good prediction, since too high a number (the maximum theoretical
value for a is the rank of X) will cause a magnification of noise and poor
process monitoring performance. A standard way to determine the proper
reduction order, denoted as ¢, is to apply cross-validation using the predic-
tion residual sum of squares (PRESS). The order c is set to be the order
at which PRESS is minimum [98]. As discussed previously, the weakness of
this approach is that it requires that the data be split into two parts (the
training and the testing sets), with the PLS vectors computed based only on
the data from the testing set.

In the case of fault diagnosis, an alternative approach is to select the value
of ¢ which minimizes the information criterion (5.12). To determine c, the
PLS vectors are constructed using all of the data, and then the PLS vectors
are applied to all of the data to calculate the misclassification rates for each
choice of the reduction order, where the misclassification rate is defined to be
the ratio of the number of incorrectly assigned classes to the total number of
classifications made (the number of observations in the training set). _

For each factor j = 1,2,..., min(m,n), the estimated score vector tj and
matrix residual E; are

= Bj_aw; (6.30)

E;j=E;1 - tpf (6.31)

where Ey = X. To compute a prediction of the predicted block Y:;4in2,q of
the training set using PLS2 with a PLS components:

},trainZ,a = Fj = Zb]i:]qf (632)
i=1

For PLS1, the prediction of the predicted block Y;rqin1,q of the training set
using PLS1 with ¢ PLS components is computed by

},trainl,a = [ytrainl,a Ytrain2,a " Ytrainp,a] (633)
where
a
Yeraini,a = fi,j = Z b; jti 4, 5 (6.34)
Jj=1

Alternatively, a prediction of PLS2 with ¢ PLS components is given by
the regression equation [9]:

Y;Srain2,a = XB2a (635)

The above equation is also used for the alternative prediction of PLS1 by
replacing B2, with Bl,.
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6.4 Fault Detection, Identification, and Diagnosis

One common approach to using PLS is to apply it in the same manner as
PCA, selecting the Y matrix to be the product quality variables. Monitoring
the PLS scores in this way has the advantage over the PCA scores in that the
PLS scores will only monitor variations in X which are known to be related
to the product quality variables. All the fault detection, identification, and
diagnosis techniques for PCA can be applied in exactly the same way for PLS
(e.g., including the @ and T? statistics, contribution plots, and discriminant
analysis) [171, 343].

The use of discriminant PLS for fault diagnosis requires significantly more
explanation. In discriminant PLS, the rows of Y4, will not have the form
[0,0,0,...,1,...,0,0], which requires a method for assigning the class ¢ to
each observation k. One method is to assign ¢ to correspond to the column
index whose element is the closest to one [244]. A second method is to assign
¢ to correspond to the column whose element has the maximum value.

The term overestimation refers to the case where the element of Y;.qin
for an in-class member > 1 or the element of Y}, 4, for a non-class member
> 0. Underestimation is where the element of Y;,.4;, for an in-class member
< 1 or the element of Y;,4i, for a non-class member < 0. Both assignment
methods give accurate classifications in the ideal case, that is, when none of
the elements of Y;,4:, are overestimated nor underestimated, and in the case
where all of the elements of Y;,4i, are underestimated. If all of the elements
of Yirqin are overestimated, then the first assignment method can give high
misclassification rates, while the second assignment method will still tend to
give good classifications [244]. The second assignment method is preferred
because of this wider usefulness.

If some of the elements of Y;.4;, are underestimated while others are
overestimated, either of the above assignment methods can perform poorly.
A method to resolve this problem is to take account of the underestimation
and overestimation of Y into a second cycle of PLS algorithm [244]. The
NIPALS algorithm is run for the second time for PLS1 and PLS2 by replacing
¥i bY Ytrain1,s and Y by Yi,gin2, respectively. To distinguish between the
normal PLS method and this adjusted method, PLS1 and PLS2 are denoted as
PLS1,4; and PLS2,4j, respectively. The predicted Y of the training set using
PLS1,4; and PLS2,4j, denoted as Y;r4in1,adj a0d Yirqin2,a4j, are obtained in
similar fashion as PLS1 and PLS2, respectively.

The effectiveness of the algorithm can be determined by applying it to a
testing set X;co¢ € R™*™. The predicted block Y;est; of the testing set using
PLS1 is calculated using (6.30) to (6.31) and (6.33) to (6.34) by replacing X
with Xies; while the predicted block Yiest2 of the testing set using PLS2 is
calculated using (6.30) to (6.32) by replacing X with X;.s. The predicted
blocks Yiest1,adj and Yiese2,a5 using PLS1,q; and PLS2,4;, respectively, are
obtained similarly.
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To illustrate the application of discriminant PLS2, the same experimental
data set [82, 45] is used as in Chapter 4. The predictor matrix X is formed by
using data from all three classes, where n = 150 and m = 4; the corresponding
predicted matrix Y is formed as in (6.1), where p = 3. The matrices X and
Y are first autoscaled. The NIPALS algorithm is initialized using Ey = X,
Fy =Y, and u; arbitrarily set to the third column of Y. After 12 iterations of
(6.10)-(6.13), the score vector t; converges with an error of less than 10710,
The following vectors are then obtained:

wy = [0.48 —0.32 0.60 0.56] ",

6.36

p1 = [0.52 —0.29 0.58 0.56]” . (6:36)
The same procedure is done for E; and F;, which results in

wa = [—0.28 —0.93 0.023 —0.28] 7, (6.37)

p2 = [~0.37 —0.91 —0.045 —0.16]".

Since the rank of X is four, the procedure can be repeated until j = 4.
Since only two factors are retained in the example as shown in Chapter 4, we
will stop the calibration here and form the regression matrix B2, as

—0.21 —-0.051 0.26
0.36 —0.46 0.096
-0.33 0.078 0.25
—0.26 —0.038 0.30

B2, = (6.38)

The matrix Yirqin2,2 is formed using (6.35). With the i** column of
Yirain2,2 denoted by y;, the three-dimensional plot of y; vs. y2 vs. y3 is illus-
trated in Figure 6.1. The data are reasonably well separated. Notice that all
the ‘x’ points have large y3 values and small y; and y; values, so all Class
3 data would be correctly assigned. Some of the ‘o’ and ‘*’ points overlap,
which indicates that a small portion of the Class 2 data may be misclassified
as Class 1 and wvice versa.

The way to diagnose faults, based on the rows of Y, was discussed above.
An alternative fault diagnosis approach based on discriminant PLS is to apply
discriminant analysis to the PLS scores for classification [160]. In the termi-
nology introduced in Chapter 5, for classifying p classes, the p —1 PLS direc-
tions can have substantially non-zero between-groups variance. This method
can also provide substantially improved fault diagnosis over PCA [160].

6.5 Comparison of PCA and PLS

For fault diagnosis, a predicted block Y is not used in PCA, instead a linear
transformation is performed in X such that the highest ranked PCA vectors
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x Class 3
* Class 2
x e O Class 1

Fig. 6.1. The discriminant PLS predicted matrix plot for the data from [82, 45]

retain most of the variation in X. As described in Chapter 4, the retained
scores can be used with discriminant analysis for classification. The disad-
vantage of the PCA approach is that the highest ranked PCA vectors may
not contain the discriminatory power needed to diagnose faults.

PCA maximizes the variance in X while PLS maximizes the covariance
between X and Y. By specifying Y to include the fault information as in
discriminant PLS, the PLS vectors are computed so as to provide a lower-
dimensional representation which is correlated with differences in fault class.
Thus, fewer of the discriminant PLS vectors should be required and lower
misclassification rates obtained. As discriminant PLS exploits fault informa-
tion when constructing its lower-dimensional model, it would be expected
that discriminant PLS can provide better fault diagnosis than PCA. How-
ever, this is not always true, as will be demonstrated in application in Chapter
10.

The projection of the experimental data taken from [82, 45| onto the
first two PCA and discriminant PLS loading vectors is shown in Figure 6.2.
Recall that the PCA model is built based on the data from all three classes.
The two plots look similar indicating that PCA and discriminant PLS give
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similar separability of the data when two score vectors are used. For data of
high dimension, our experience is that similarity between the first few PCA
and PLS score vectors is often observed [157]. For score vectors of higher
orders, the difference between PCA and discriminant PLS usually becomes
more apparent. In this example, the loading matrices corresponding to all
four loading vectors for PCA and discriminant PLS are

0.5255 —0.3634 0.6686 —0.3804
—0.2695 —0.9266 —0.1869 0.1842

Prca=| (5837 —0.0081 —0.0013 0.8119 (6.39)
0.5572 —0.0969 —0.7197 —0.4027
and
0.5167 —0.3709 0.7510 —0.2896
—0.2885 —0.9136 —0.0275 0.2084
PrLs = | (5836 —0.0449 0.0024 0.8001 |’ (6.40)

0.5561 —0.1607 —0.6597 —0.4823

respectively.

Note that the first PCA and discriminant PLS loading vectors are very
closely aligned and the fourth loading vectors are much less so. Recall that the
loading vectors for PCA are orthogonal. In PLS, the loading vectors are ro-
tated slightly in order to capture a better relationship between the predicted
and predictor blocks (i.e., maximize the covariance between X and Y') [157].
As a result of this rotation, the PLS loading vectors are rarely orthogonal.
In general, the rotation for the first PLS loading vector is usually small. As
the order increases, the deviation from orthogonality for the discriminant
PLS loading vectors usually increases. Although the discriminant PLS load-
ing vectors are not orthogonal, their score vectors are indeed orthogonal (see
Homework Problem 4).

6.6 Other PLS Methods

The PLS methods described in this chapter can be extended to take into
account the serial correlations in the data, by augmenting the observation
vector and stacking the data matrix in the same manner as (4.44). The matrix
Y has to be changed correspondingly. Implementation of this approach is left
as an exercise for the readers (see Homework Problem 5).

The PLS approaches can be generalized to nonlinear systems using non-
linear partial least squares (NPLS) algorithms [83, 213, 349]. In NPLS,
the relationship between U; and t; in (6.6) is replaced by

& = (t;) (6.41)
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Fig. 6.2. The projections of experimental data [82, 45] for three classes onto the
first two discriminant PLS and PCA loading vectors, respectively

where f(t;) is a nonlinear, continuous, and differentiable function in t;. The
simplest nonlinear relationship for NPLS is a quadratic function

f(tj,k) =a;+ bjtj,k + Cjt?,k (6.42)

and f(t;) = [f(tj1) f(t,2) - --f(¢»)]T. This NPLS model is commonly known
as quadratic partial least squares (QPLS). At each iteration of QPLS, the
ordinary PLS steps are applied to tj, q;, and uj, and ordinary least squares
are used to estimate the coefficients a;, b;, and c; (see [349] for the detailed
procedure). The nonlinearities can also be based on sigmoidal functions as
used in artificial neural networks [122, 268].

For systems with mild nonlinearities, the same degree of fit can usually
be obtained by a linear model with several factors, or by a nonlinear model
with fewer dimensions [349]. In cases where the systems display strong non-
linearities (i.e., if the nonlinearities have maxima, minima, or have significant
curvature), a nonlinear model is appropriate and NPLS can perform better
than linear PLS especially when the systems are well-determined and with
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high observation/variable ratio. However, for an underdetermined system,
the models cannot be fitted with acceptable variance using NPLS because of
the small number of degrees of freedom in the data sets [83].

Other PLS methods in the literature that have been applied to either sim-
ulations or actual process applications are recursive partial least squares
(RPLS) [266], multiblock partial least squares [208, 343], and multiway par-
tial least squares [243, 343]. The multiway technique is especially useful for
the monitoring of batch processes, in which the predictor X is usually selected
to be a three-dimensional array (i X j X k). A straightforward generalization
of the PLS technique to the multiway technique provides a strategy for the
detection and diagnosis of faults in batch processes.

6.7 Homework Problems

1. Describe in some detail how to formulate the Q and T? statistics for
detecting faults using PLS, where Y is the matrix of product quality
variables. Compare and contrast this fault detection approach with the
PCA-based Q and T? statistics. Describe in detail how to generalize
the discriminant-based PCA methods for fault diagnosis to PLS, where
Y is the matrix of product quality variables. How would you expect
the performance of this approach to compare with the performance of
discriminant PLS?

2. Generalize PLS as described in Problem 1 to EWMA and CUSUM ver-
sions, and to dynamic PLS.

3. Show that the PCA loading vectors for the experimental data from
[45, 82] are orthogonal (hint: compute PZ, 4 Ppc 4 using Ppc 4 in (6.39)).
Show that the PLS loading vectors for the data are not orthogonal. Cal-
culate the angle between the j** PCA and j** PLS loading vector for the
data for j = 1,...,4. How does the angle change as a function of 57

4. Show that the discriminant PLS loading vectors are not orthogonal, and
their score vectors are orthogonal for the experimental data from [45, 82].

5. Generalize discriminant PLS to dynamic discriminant PLS.

6. Provide a detailed comparison of FDA and discriminant PLS. Which
method would be expected to do a better job diagnosing faults? Why?

7. Read an article on the use of multiway PLS (e.g., [170, 243]) and write a
report describing in detail how the technique is implemented and applied.
Describe how the computations are performed and how the statistics are
computed. Formulate a discriminant multiway PLS algorithm. For what
types of processes are these algorithms suited? Provide some hypothetical
examples.

8. Read an article on the application of multiblock PLS (e.g., [84, 208])
and write a report describing in detail how the technique is implemented
and applied. Describe how the computations are performed and how the
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statistics are computed. Formulate a discriminant multiblock PLS algo-
rithm. For what types of processes are these algorithms suited? Provide
some hypothetical examples.

. Read an article on the application of nonlinear PLS (e.g., [83, 213, 349])

and write a report describing in detail how the technique is implemented
and applied. Describe how the computations are performed and how the
statistics are computed. For what types of processes are these algorithms
suited? Provide some hypothetical examples.
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7.1 Introduction

In Section 4.7, it was shown how DPCA can be applied to develop an au-
toregressive with input ARX model and to monitor the process using the
ARX model. The weakness of this approach is the inflexibility of the ARX
model for representing linear dynamical systems. For instance, a low order
autoregressive moving average ARMA (or autoregressive moving av-
erage with input ARMAX) model with relatively few estimated parameters
can accurately represent a high order ARX model containing a large number
of parameters [199]. For a single-input-single-output (SISO) process, an
ARMAX(h) model is:

h h h
Y= 0y it+ Y Biur—it+ ) viewit+e (7.1)

i=1 =0 =1
where y; and u; are the output and input at time ¢, respectively, a;,..., an,
B1,-.-,8n,and y1,...,7vs are constant coefficients, and e, is a white noise pro-

cess with zero mean [336]. For an invertible process, the ARMAX(h) model
can be written as an infinite-order ARX model [336):

(o o] oo
Yyt = Z TiYt—i + Z piut—i + €g. (7.2)
i=1 i=0
The constant coefficients 73, 7s,... and p;, p2,... are determined from the

coefficients in (7.1) via the backshift and division operations [336].

The classical approach to identifying ARMAX processes requires the a
priori parameterization of the ARMAX model and the subsequent estima-
tion of the parameters via the solution of a least squares problem [199]. To
avoid over-parameterization and identifiability problems, the structure of the
ARMAX model needs to be properly specified; this is especially important
for multivariable systems with a large number of inputs and outputs. This
structure specification for ARMAX models is analogous to specifying the
observability (or controllability) indices and the state order for state-space
models, and is not trivial for higher-order multivariable systems [317]. An-
other problem with the classical approach is that the least squares problem
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© Springer-Verlag London Limited 2001



86 7. Canonical Variate Analysis

requires the solution of a nonlinear optimization problem. The solution of
the nonlinear optimization problem is iterative, can suffer from convergence
problems, can be overly sensitive to small data fluctuations, and the required
amount of computation to solve the optimization problem cannot be bounded
[189].

To avoid the problems of the classical approach, a class of system iden-
tification methods for generating state-space models called subspace algo-
rithms has been developed in the past few years. The class of state-space
models is equivalent to the class of ARMAX models {12, 199]. That is, given
a state-space model, an ARMAX model with an identical input-output map-
ping can be determined, and vice versa. The subspace algorithms avoid a
priori parameterization of the state-space model by determining the states of
the system directly from the data, and the states along with the input-output
data allow the state-space and covariance matrices to be solved directly via
linear least squares [317] (see Figure 7.1). These algorithms rely mostly on
the singular value decomposition (SVD) for the computations, and there-
fore do not suffer from the numerical difficulties associated with the classical
approach.

Input-ouput
Data {u,, y; }

Orthogonal or Oblique Projections Classical Identification
Pt T Yy "~ I rTTTT T Yy ~—~~—~~°- I
| 1 | |
| ! | | State Space and !
! Kalman States ' ! | Covariance Matrices | '
| | | |
I | | |
: Multiple \ : Kalman :
| Linear ! ! Filter !
i y Regression | | 1] |
| | | |
| | State Space and : : :
i | Covariance Matrices | | ! Kalman States !
l e l
Subspace Algorithm Approach Classical Approach

Fig. 7.1. A comparison of the subspace algorithm approach to the classical ap-
proach for identifying the state-space model and extracting the Kalman states [318]
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Three popular subspace algorithms are numerical algorithms for
subspace state space system identification (N4SID), multivariable
output-error state space (MOESP), and canonical variate analysis
(CVA) [318]. Although the subspace algorithm based on CVA is often re-
ferred to as “CVA”, CVA is actually a dimensionality reduction technique in
multivariate statistical analysis involving the selection of pairs of variables
from the inputs and outputs that maximize a correlation measure [189]. For
clarity of presentation, “CVA” in this book refers to the dimensionality reduc-
tion technique, and the subspace algorithm based on CVA is called the CVA
algorithm. The philosophy of CVA shares many common features to PCA,
FDA, and PLS (see Section 7.2), which makes it a natural subspace iden-
tification technique for use in developing process monitoring statistics. The
CVA-based statistics described in in this chapter can be readily generalized
to the other subspace identification algorithms.

To fully understand all aspects of CVA requires knowledge associated
with materials outside of the scope of this book. Enough information is given
in this chapter for the readers to gain some intuitive understanding of how
CVA works and to implement the process monitoring techniques. Section 7.2
describes the CVA Theorem and an interpretation of the theorem indicating
the optimality of CVA for dimensionality reduction. Section 7.3 describes the
CVA algorithm with a statistical emphasis. Determination of the state-space
model and the issues of system identifiability are discussed in Section 7.4.
Section 7.5 addresses the computational issues of CVA. A procedure for au-
tomatically and optimally selecting the state order of the state-space model
is presented in Section 7.6. Section 7.7 presents a systems theory interpreta-
tion for the CVA algorithm and the other subspace algorithms. Section 7.8
discusses the process monitoring measures developed for the states extracted
by the CVA algorithm.

7.2 CVA Theorem

CVA is a linear dimensionality reduction technique, optimal in terms of max-
imizing a correlation measure between two sets of variables. The CVA The-
orem states that given a vector of variables x € R™ and another vector of
variables y € R™ with covariance matrices X, and Xy, respectively, and
cross covariance matrix X, there exist matrices J € R™*™ and L € R™*"
such that

IS =15, LE,LT = I, (7.3)
and
JzzcyLT =D= dla‘g(’yl, a’Y‘r’Oa"' ,0)7 (74)

where y; > --- > 7., m = rank(X,;), i = rank(X,,), D contains the
canonical correlations v;, I;, € R™*™ is a diagonal matrix containing
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the first m diagonal elements as one and the rest of the diagonal elements as
zero, and I; € R™*™ is the diagonal matrix containing the first 7 diagonal
elements as one and the rest of the diagonal elements as zero [189]. The
vector of canonical variables ¢ = Jx contains a set of uncorrelated random
variables and has the covariance matrix

Zee = I 5227 = I, (7.5)

and the vector of canonical variables d = Ly contains a set of uncorrelated
random variables and has the covariance matrix

Bia=LE, LT = I. (7.6)
The cross covariance matrix between ¢ and d is diagonal
Ecd = JEzyLT =D=dlag(’7’1’ ’71"0"" 70)7 (77)

which indicates that the two vectors are only pairwise correlated. The degree
of the pairwise correlations is indicated and can be ordered by the canonical
correlations ~;.

CVA is equivalent to a generalized singular value decomposition
(GSVD) [184, 189]. When X', and X, are invertible, the projection matrices
J and L and the matrix of canonical correlations D can be computed by
solving the SVD

SR s, s M =UsyT (7.8)

where J = UT 5% L = VT 5;,}/% and D = ¥ [185]. It is easy to verify that
J, L, and D computed from (7.8) satisfy (7.3) and (7.4). The weightings Xz, />
and Zy_yl/ 2 ensure that the canonical variables are uncorrelated and have unit
variance, and the matrices UT and V7T rotate the canonical variables so that
c and d are only pairwise correlated. The degree of the pairwise correlations
is indicated by the diagonal elements of X. Note that the GSVD mentioned
above is not the same as the GSVD described in most of the mathematics
literature [104, 316].

A CVA-related approach in the multivariate statistics literature [67, 180,
193, 234, 300] is known as canonical correlation analysis (CCA), which
can be generalized into the CVA Theorem [180, 234]. While both CCA and
CVA are suitable for correlating two sets of variables, CVA has been ap-
plied on time series data (see Section 7.3). To emphasize the application of
the process monitoring algorithmn on time series data, we prefer to use the
terminology CVA over CCA.

Several dimensionality reduction techniques have been interpreted in the
framework of the GSVD [193, 189]. For example, consider the case where the

left hand side of (7.8) is replaced by 231,42. Then
2 - pygvT. (7.9)
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Using the fact that U = V (Since Zi2 s symmetric), squaring both sides
give

ee =UXVT, (7.10)
The corresponding equation (4.3) for PCA is
Ppe =UAVT. (7.11)

We see that the diagonal elements of X in (7.9) are equal to the diagonal
elements of X in (4.2).

CVA can be reduced to FDA. The generalized eigenvalue problem for
FDA (5.9) can be written as a function of z and y as defined in (7.3), where
z contains the measurement variables and y contains dummy variables which
represent class membership similarly to (6.1) [193].

PLS is also related with CVA, where both methods are equivalent to a
GSVD on the covariance matrix. The difference is that CVA uses a weighting
so as to maximize correlation, whereas PLS maximizes covariance [283]. CVA
simultaneously obtains all components (J, L, and D) in one GSVD, whereas
the PLS algorithm is sequential in selecting the important components, work-
ing with the residuals from the previous step.

7.3 CVA Algorithm

In Section 7.2, the optimality and the structure abstraction of CVA were
presented via the CVA Theorem. While the CVA concept for multivariate
statistical analysis was developed by Hotelling [125], it was not applied to
system identification until Akaike’s work on the ARMA model [3, 4, 5, 189).
Larimore developed CVA for state-space models [184, 185, 189]. This section
describes the linear state-space model and the CVA algorithm for identifying
state space models directly from the data.

Given time series input data uy € R™+ and output data y; € R™v, the
linear state-space model is given by [187]

X¢+1 = Px¢ + Gug + Wy (7.12)

Yt = Hx¢ + Aug + Bwg + v (7.13)

where x¢ € RF is a k-order state vector and w, and v¢ are white noise pro-
cesses that are independent with covariance matrices @ and R, respectively.
The state-space matrices @, G, H, A, and B along with the covariance ma-
trices Q and R specify the state-space model. It is assumed here that the
state-space matrices are constant (time-invariance) and the covariance ma-
trices are constant (weakly stationary). The term Bwy in (7.13) allows the
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noise in the output equation (7.13) to be correlated with the noise in the state
equation (7.12). Omitting the term Buwy, typically done for many state-space
models, may result in a state order that is not minimal [185]. Time-varying
trends in the data can be fitted by augmenting polynomial functions of time
to the state-space model; a software package that implements thisis ADAPTx
Version 3.03 [187).

An important aspect of the CVA algorithm is the separation of past and
future. At a particular time instant ¢ € (1,---,n) the vector containing the
information from the past is

T
Pt = [YE_1aYE_2,"' ’ug'—l’ug’—za"'] ) (714)

and the vector containing the output information in the present and future
is

T T T

ft = [yt ,yt+1a o ] (715)

Assuming the data is generated from a linear state space model with a finite
number of states k, the elements of the state vector x; is equal to a set of k
linear combinations of the past,

x¢ = JikPt (7.16)

where J;, € R*¥*™» is a constant matrix with my, < 0o. The state vector x¢ has
the property that the conditional probability of the future f; conditioned on
the past p¢ is equal to the conditional probability of the future f; conditioned
on the state x;

P(fe|pe) = P(felxe). (7.17)

In other words, the state provides as much information as past data do as to
the future values of the output. This also indicates that only a finite number
of linear combinations of the past affects the future outputs. This property
of the state vector can be extended to include future inputs [187]

P((felae)|pe) = P((felae)lxe) (7.18)

where q¢ = [uf,uli;, --]7. In the process identification literature, a process
satisfying (7.18) is said to be a controlled Markov process of order k.

Let the k-order memory, my € R*, be a set of k linear combinations of
the past p¢

my = Cyps (7.19)

where C, € RF*™», The term “memory” is used here instead of “state”
because the vector m¢ may not necessarily contain all the information in the
past (for instance, the dimensionality of k may not be sufficient to capture all
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the information in the past). The goal of process identification is to provide
the optimal prediction of the future outputs based on the past and current
state. Now in a real process the true state order k is unknown, so instead the
future outputs are predicted based on the current memory:

fe(me) = S Tt my (7.20)

where f't(mt) is the optimal linear prediction of the future f; based on the
memory my [187]. The CVA algorithm computes the optimal matrix for Cj
in (7.19), that is, the matrix Cj which minimizes the average prediction error:

E{(f, - f) A (& — )} (7.21)

where E is the expectation operator and A is the pseudo inverse of A, which
is a positive semidefinite symmetric matrix used to weigh the relative impor-
tance of the output variables over time. The choice A = Xy results in nearly
maximum likelihood estimates [184, 283].

The optimal value for Cj in (7.19) is computed via the GSVD by substi-
tuting the matrix X, with X,,, X, with Xy, and Xy, with Xp¢ in (7.3)
and (7.4) [187]. The optimal estimate for matrix Cy is equal to Jy, where Jj
is the first k rows of the matrix J in (7.3) [189]. The optimal k-order memory
is

m{?* = Jiyps. (7.22)

The structure of the solution indicates that the optimal memory for order k
is a subset of the optimal memory for order k + 1. The optimal memory for a
given order k corresponds to the first k states of the system [187], and these
states are referred to as the CVA states.

7.4 State Space Model and System Identifiability

The process monitoring statistics described in Section 7.8 are based on the
matrix J which is used to construct the CVA states, and do not require the
construction of an explicit state-space model (7.12)-(7.13). The calculation of
the state space matrices in (7.12)-(7.13) is described here for completeness.

Assuming the order of the state space model, k, is chosen to be greater
than or equal to the order of the minimal state space realization of the actual
system, the state vectors x¢ in (7.12) and (7.13) can be replaced by the state
estimate my:

Mgty | ® G myg I0 Wt

AR IR 29
Since u; and y; are known, and m can be computed once Ji in (7.22) is
known, this equation’s only unknowns (@, G, H, A, and B) are linear in the
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parameters. The state space matrices can be estimated by multiple linear
regression (see Figure 7.1)

Gl . o\
[EI A] = Emy,muzm}‘,mu (724)
where
myg Mg
— , = , 7.25
mo= [ omy= [ 7507] 025

and X; ; represents the sample covariance matrix for variables i and j. The
error of the multiple regression has the covariance matrix

Su 8 . . N
[S;i S;:] = Zmy,my - Emy,muzmi’muzg,;y,mm (726)

and the matrices B = 52151.1, Q = Su, and R = 522 - 521511512 where
1 signifies the pseudo-inverse [104]. With the matrices fi, é, H , G’, 43, Q,
and R estimated, the state space model as shown in (7.12) and (7.13) can be
used for various applications such as multistep predictions and forecasts, for
example, as needed in model predictive control [159, 283].

There is a significant advantage in terms of identifiability of state space
identification approaches over classical identification based on polynomial
transfer functions. For polynomial transfer functions, it is always possible
to find particular values of the parameters that produce arbitrarily poor
conditioning [102, 187], and hence a loss in identifiability of the model [264,
325]. The simplest example of this is when a process pole nearly cancels a
Process zero.

The state space model estimated using (7.24) and (7.26) is globally iden-
tifiable, so that the method is statistically well-conditioned [189]. The CVA
algorithm guarantees the choice of a well-conditioned parameterization.

7.5 Lag Order Selection and Computation
The discussion in Section 7.3 assumes that an infinite amount of data is
available. For the computational problem, there is a finite amount of data
available, and the vectors p, fi, and q; are truncated as

T
Pt = [y;;r—l, y;;I:-z, e 1YtT—h1 utT—11 utT—-21 e ’utT——h] ’ (727)

T
ft = [yg,ya-l T 1ytT-'H—-1] ) (728)
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T
qe = [0, udy, -y ughy ] (7.29)

where h and ! are the number of lags included in the vectors. Note that py with
h lags directly corresponds to the observation vector for (4.44) with h—1 lags.
Theoretically, the CVA algorithm does not suffer when h =1 > k, where k is
the state order of the system generating the data (actually, h and ! just need
to be larger than the largest observability index [318]). However, the state
order of the system is not known a priori. The first step of computing of CVA
is to determine the number of lags h. Assuming there are n observations in
the training set and the maximum number for the lag order is maz, Larimore
suggests fitting autoregressive models with several different numbers of lags
to the training data:

Y= CJ'XJ' + Ej (730)
where the predicted matrix Y € R(mutmy)x(n—maz) jg given as:

Y = {Ymu+1 Ymax+2 °*° ¥n (731)
Umax+1 Umax+2 *°° Un

and the predictor matrix X; € RI(mutmy)x(n—maz) with j lags is given as
the first j(m, + m,) rows of

- -

Ymax Ymax+1 " ¥Yn-1
Umax Umax+1 ' Un-1
Ymax-1 ¥Ymax °°° Yn-2
X = | Umax—-1 Umax °°° Up-2 (7.32)
y1 Y2 *** ¥Yn—max
| W U2 *°* Un-max |

and E, € R(mutmy)x(n-maz) j5 the residual matrix for lag order j. The
regression matrix for C; is determined via least squares:

Cj = Zyx,; Zx}x, (7.33)

where the covariance matrix Yyx, is equal to n_}n MYX}' . The residual
matrix E; is calculated for j = 1,2,...,maz. The lag order h is selected
to be the lag minimizing the small sample AIC criterion (7.37) discussed in
Section 7.6. This ensures that large enough lags are used to capture all the
statistically significant information in the data. The selection of the state
order k is described in the next section.

The computational requirements are known a priori for the GSVD compu-
tation. The number of flop counts grows by order (nh+ h3), and the required

storage space is on the order (n + h2) [189].
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The near optimality of the state-space model produced by the CVA
algorithm has been observed in Monte Carlo simulations. The estimated
Kullback-Leibler information distances (see Section 7.6) for both open-
and closed-loop simulations were close to the information distances, related
to the Cramer-Rao bound, corresponding to the minimum possible parame-
ter estimation error for any unbiased estimation procedure [189]. Simulations
have also verified the robustness of the CVA algorithm for systems involving
feedback [189).

7.6 State Order Selection and Akaike’s Information
Criterion

The selection of the state order is an important step in identifying a state-
space model. The existence of a true state order is highly suspect when dealing
with real process data; however, the state order can be utilized as a trade-off
parameter for the model complexity, similar to the order of model reduction,
a, described for PCA, FDA, and PLS in Chapters 4, 5, and 6, respectively. For
instance, choosing the state order too large results in the model overfitting the
data, and choosing the state order too small results in the model underfitting
the data. This section presents a method for state order selection based on
Akaike’s information criterion (AIC).

The agreement between two probability density functions can be mea-
sured in terms of the Kullback-Leibler information distance (KLID)
[199]

(o), 5(0) = [ pule) 0 2D (734
p(z)

where z contains the random variables, p.(z) is the true probability density
function, and p(z) is the estimated probability density function. The KLID
is based on the statistical principles of sufficiency and repeated sampling in
a predictive inference setting, and is invariant to model reparameterization
[188]. If the true probability density function of the process data is known,
then the information distance (7.34) could be computed for various state
orders and the optimal state order would correspond to the minimum infor-
mation distance.

For large samples, the optimal estimator of the information distance (7.34)
for a given order k is the AIC,

AIC(k) = —2Inp(y™, u™; ) + 2M;, (7.35)

where p is the likelihood function [13], the vectors u™ and y™ contain n ob-
servations for the input and output variables, respectively, and 0, are the M
independent parameters estimated for state order k. The order k is selected
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such that the AIC criterion (7.35) is minimized. The number of independent
parameters in the state-space model (7.12) and (7.13) is

my(my + 1)
—

The number of independent parameters is far less than the actual number of
parameters in the state-space model [199], and the result (7.36) was developed
by considering the size of the equivalence class of state-space models having
the same input-output and noise characteristics [187].

For small samples, the AIC can be an inaccurate estimate of the KLID.
This has led to the development of the small sample correction to the AIC
[187]

My, = k(2my + my) + mymy + (7.36)

AIC(k) = —21Inp(y™, u™; 6x) + 2f My, (7.37)

where the correction factor for small samples is

= i
T ( M, mu+my+1>
n— +
My + My 2

(7.38)

where 72 is the number of one-step ahead predictions used to develop the
model. The small sample correction to the AIC approaches the AIC (f — 1)
as the sample size increases (i — 00). It has been reported to produce state
order selections that are close to the optimal prescribed by the KLID [189).
Within the context of Section 3.3, the selection of the optimal state order
results in an optimal tradeoff between the bias and variance effects on the
model error.

7.7 Subspace Algorithm Interpretations

The book Subspace Identification of Linear Systems by Van Overschee and
De Moor [318] presents a unified approach to the subspace algorithms. It
shows that the three subspace algorithms (N4SID, MOESP, and CVA) can
be computed with essentially the same algorithm, differing only in the choice
of weights. Larimore [189] states that the other algorithms differ from the
CVA algorithm only in the choice of the matrices X5, and Xy, used in (7.3),
and claims accordingly that the other algorithms are statistically suboptimal.

It has been proven under certain assumptions that the subspace algo-
rithms can be used to produce asymptotically unbiased estimates of the
state-space matrices [318]. However, the state-space matrices estimated by
the three algorithms can be significantly different when the amount of input
and output data is relatively small.

Van Overschee and De Moor also show that the state sequences generated
by the subspace algorithms are the outputs of non-steady-state Kalman filter
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banks. The basis for the states is determined by the weights used by the var-
ious algorithms, and the state-space realizations produced by the algorithms
are balanced realizations under certain frequency-weightings. Therefore, re-
ducing the dimensionality of the memory in the subspace algorithms can be
interpreted in the framework of the frequency-weighted balanced truncation
techniques developed by Enns [79], with the exception that the subspace al-
gorithms truncate the state-space model before the model is estimated (see
Figure 7.2). The amount of model error introduced by reducing the order is
minimized by eliminating only those states with the smallest effect on the
input-output mapping, and for the CVA algorithm, the amount of model er-
ror is proportional to the canonical correlations [187]. The model reduction
approach of the CVA algorithm has the advantage in that truncating the
memory vector prior to the estimation of the state-space model instead of
truncating the state vector based on a full order state-space model is much
more computationally and numerically robust (see Figures 7.1 and 7.2). The
degree of model reduction, or equivalently the selection of the state order,
is an important step in the identification process, and a statistically optimal
method was discussed in Section 7.6.

Input-Output
Data {u,, y, }

Subspace Algorithm Classical Identification
rTTT T T L I rTT T T T L |
! | I I
| | Truncate the Memory | | ! | Identify the State !
! | Vector ! | | Space Model |
I | ! 1
E Multiple E E Enns’ Model:I
' Linear . ' I Reduction 1
' y Regression I Y I
! | I |
: Compute the State II : Truncate the State ',
1 | Space Model | | | Space Model !
————— I | ',
Subspace Algorithm Approach Classical Approach

Fig. 7.2. A comparison of the approaches to model reduction using Enns’ model
reduction technique and the subspace algorithm [318]
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7.8 Process Monitoring Statistics

The GSVD for the CVA algorithm produces a set of canonical variables, ¢ =
Jp¢ (where ¢ € Rh(m“+m")), that are uncorrelated and have unit variance.
The T? statistic for the canonical variables is

T? =plJT Jps. (7.39)

The T? statistic (7.39), however, may contain a large amount of noise and
may not be very robust for monitoring the process. Reducing the order a
for DPCA can increase the effectiveness of the T? statistic, and allows the
process noise to be monitored separately via the @ statistic. An analogous
approach is taken here for monitoring the process using the CVA states:

x¢ = Jyps = UF 251/ %py (7.40)

where Uy, contains the first & columns of U in (7.8)

A process monitoring statistic based on quantifying the variations of the
CVA states has been applied by Negiz and Cinar to a milk pasteurization
process [240, 241]. The measure is the T2 statistic

T? = p{ I Jepe, (7.41)
and assuming normality, the T? statistic follows the distribution

_k(n®-1)
.sz,a - mFa(ka n-— k) (742)

where n is the number of observations (see 2.11). The T2 statistic measures
the variations inside the state space, and the process faults can be detected,
as shown in Section 2.4, by choosing a level of significance and solving the
appropriate threshold using TZ,,.

The variations outside the state space can be measured using the statistic
[279]

T? = p J] Jopi (7.43)

where J, contains the last ¢ = h(m, +my) — k rows of J in (7.8). Assuming
normality, the T2 statistic (7.43) follows the distribution

1)

2 _ ‘I(n2 -
n(n - q)

o F,(g,n —q). (7.44)
A weakness of this approach is that T2 can be overly sensitive because of
the inversion of the small values of X, in (7.8) [145, 279]. This can result
in a high false alarm rate. To address this concern, the threshold should be
readjusted before applying the statistics for process monitoring (see Section
10.6 for an example).
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The residual vector of the state-space model in terms of the past p; can
be calculated

re = (I — JF Ji)ps, (7.45)

and the variation in the residual space can be monitored using the ) statistic
similar to the (D)PCA approaches

Q=ri"ry. (7.46)

The statistics of T2 and @ essentially measure the noise of the process.
The T2 statistic (7.39) is equal to T2 + 7?2, and by extracting the CVA states
from the data, the variations in the state and measurement noise space can be
decoupled and measured separately using 72 and T2, respectively. A violation
of the T2 statistic indicates that the states are out of control, and a violation
of the T?? statistic indicates that the characteristic of the measurement noise
has changed and/or new states have been created in the process. This is
similar to the PCA approach to fault detection outlined in Section 4.4, with
the exception that the states of the system are extracted in a different manner.
The flexibility of the state-space model and the near optimality of the CVA
approach suggest that the CVA states more accurately represent the status
of the operations compared to the scores using PCA or DPCA. Other CVA-
based fault detection statistics are reported in the literature [190, 328].

The correlation structure of the CVA states allows the PCA-based statis-
tics in Chapter 4 for fault identification and diagnosis to be applicable to
the CVA model. It is straightforward to extend the PCA-based statistics to
CVA. The total contribution statistic (4.25) can be computed for the CVA
model by replacing the scores with the CVA estimated states, m¢ = Jps.
The statistic (4.32) can be applied for fault identification using the residual
vector in (7.45). A pattern classification system for fault diagnosis can be
employed using the discriminant function (3.6) based on (T2);, (T2);, or Q;
for each class i. These discriminant functions can improve the classification
system upon using the discriminant function (3.6) based on the entire obser-
vation space, py, when most of the discriminatory power is contained in the
state space or the residual space.

7.9 Homework Problems

1. Verify that the matrices J, L, and D computed from (7.8) satisfy (7.3)
and (7.4).

2. Describe in some detail how to formulate the CONT and RES statistics
for identifying faults using CVA. Name advantages and disadvantages of
this approach to alternative methods for identifying faults. Would CONT
or RES expected to perform better? Why?
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. Describe in detail how to formulate CVA for fault diagnosis. Name ad-
vantages and disadvantages of this approach to alternative methods for
diagnosing faults.

. Compare and contrast the CVA-based @ and T? statistics. Which statis-
tic would you expect to perform better for fault detection? Why?

. Read the following materials [189, 193, 283] and formulate PCA, PLS,
FDA, and CVA in the framework of the generalized singular value decom-
position. Based on the differences between the methods as represented in
this framework, state the strengths and weaknesses of each method for
applying process monitoring statistics.

. Read a chapter in a book on the application of canonical correlation
analysis (CCA) [67, 193, 234]. Compare and contrast CCA with FDA
and CVA.

. Compare and contrast the CVA-based statistics described in this chap-
ter with the CVA-based process monitoring statistics reported in these
papers {190, 328].

. Read an article on the application of nonlinear CVA (e.g., [186]) and
write a report describing in detail how the technique is implemented and
applied. Describe how the computations are performed and how process
monitoring statistics can be computed. For what types of processes are
these algorithms suited? Provide some hypothetical examples.



Part IV

Application



8. Tennessee Eastman Process

8.1 Introduction

In Part IV the various data-driven process monitoring statistics are compared
through application to a simulation of an industrial plant. The methods would
ideally be illustrated on data collected during specific known faults from an
actual industrial process, but this type of data is not publicly available for any
large-scale industrial plant. Instead, many academics in process monitoring
perform studies based on data collected from computer simulations of an
industrial process. The process monitoring methods in this book are tested on
the data collected from the process simulation for the Tennessee Eastman
process (TEP). The TEP has been widely used by the process monitoring
community as a source of data for comparing various approaches (16, 39, 40,
46, 99, 100, 113, 117, 183, 191, 270, 272, 271, 278, 279].

The TEP was created by the Eastman Chemical Company to provide
a realistic industrial process for evaluating process control and monitoring
methods [72]. The test process is based on a simulation of an actual industrial
process where the components, kinetics, and operating conditions have been
modified for proprietary reasons. The process consists of five major units: a
reactor, condenser, compressor, separator, and stripper; and, it contains eight
components: A, B, C, D, E, F, G, and H.

Chapter 8 describes the TEP in enough detail to interpret the application
of the process monitoring statistics in Chapters 9 and 10. Sections 8.2 to 8.6
describe the process flowsheet, variables, faults, and simulation program. In
reality, processes are operated under closed-loop control. To simulate real-
istic conditions, the second plant-wide control structure described in [205]
was implemented to generate the data for demonstrating and comparing the
various process monitoring methods. The control structure is described in
Section 8.6. Detailed discussions on control structures for the TEP are avail-
able [219, 218, 237, 321].

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems
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8.2 Process Flowsheet

Figure 8.1 is a flowsheet for the industrial plant. The gaseous reactants A,
C, D, and E and the inert B are fed to the reactor where the liquid products
G and H are formed. The reactions in the reactor are:

A(g) + C(g) + D(g) — G(liq),
A(g) + C(g) + E( ) hQ)’ (8.1)

H(
A(g) + E(g) — F(lig),
3D(g) — 2F(liq).

The species F is a by-product of the reactions. The reactions are irreversible,
exothermic, and approximately first-order with respect to the reactant con-
centrations. The reaction rates are Arrhenius functions of temperature where
the reaction for G has a higher activation energy than the reaction for H, re-
sulting in a higher sensitivity to temperature.

The reactor product stream is cooled through a condenser and then fed
to a vapor-liquid separator. The vapor exiting the separator is recycled to
the reactor feed through a compressor. A portion of the recycle stream is
purged to keep the inert and byproduct from accumulating in the process.
The condensed components from the separator (Stream 10) is pumped to a
stripper. Stream 4 is used to strip the remaining reactants from Stream 10,
which are combined with the recycle stream via Stream 5. The products G
and H exiting the base of the stripper are sent to a downstream process which
is not included in the diagram.

8.3 Process Variables

The process contains 41 measured and 12 manipulated variables. The manip-
ulated variables are listed in Table 8.1. The 22 measured variables which are
sampled every 3 minutes, XMEAS(1) through XMEAS(22), are listed in Ta-
ble 8.2. The 19 composition measurements, XMEAS(23) through XMEAS(41),
are described in Table 8.3. The composition measurements are taken from
Streams 6, 9, and 11. The sampling interval and time delay for Streams 6
and 9 are both equal to 6 minutes, and for Stream 11 are equal to 15 minutes.
All the process measurements include Gaussian noise.

8.4 Process Faults

The Tennessee Eastman process simulation contains 21 preprogrammed faults
(see Table 8.4). Sixteen of these faults are known, and five are unknown.
Faults 1-7 are associated with a step change in a process variable, e.g., in
the cooling water inlet temperature or in feed composition. Faults 8-12 are
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8. Tennessee Eastman Process

Table 8.1. Manipulated variables

Variable Description

XMV(1) D Feed Flow (Stream 2)
XMV(2) E Feed Flow (Stream 3)
XMV(3) A Feed Flow (Stream 1)

XMV (4) Total Feed Flow (Stream 4)
XMV(5) Compressor Recycle Valve
XMV(6) Purge Valve (Stream 9)
XMV(T) Separator Pot Liquid Flow (Stream 10)
XMV(8) | Stripper Liquid Product Flow (Stream 11)
XMV(9) Stripper Steam Valve
XMV(10) Reactor Cooling Water Flow
XMV(11) Condenser Cooling Water Flow
XMV(12) Agitator Speed

Table 8.2. Process measurements (3 minute sampling interval)

Variable Description Units
XMEAS(1) A Feed (Stream 1) kscmh
XMEAS(2) D Feed (Stream 2) kg/hr
XMEAS(3) E Feed (Stream 3) kg/hr
XMEAS(4) Total Feed (Stream 4) kscmh
XMEAS(5) Recycle Flow (Stream 8) kscmh
XMEAS(6) Reactor Feed Rate (Stream 6) kscmh
XMEAS(7) Reactor Pressure kPa gauge
XMEAS(8) Reactor Level b
XMEAS(9) Reactor Temperature Deg C
XMEAS(10) Purge Rate (Stream 9) kscmh
XMEAS(11) Product Sep Temp Deg C
XMEAS(12) Product Sep Level %
XMEAS(13) Prod Sep Pressure kPa gauge
XMEAS(14) Prod Sep Underflow (Stream 10) m®/hr
XMEAS(15) Stripper Level %
XMEAS(16) Stripper Pressure kPa gauge
XMEAS(17) Stripper Underflow (Stream 11) m?/hr
XMEAS(18) Stripper Temperature Deg C
XMEAS(19) Stripper Steam Flow kg/hr
XMEAS(20) Compressor Work kW
XMEAS(21) | Reactor Cooling Water Outlet Temp Deg C
XMEAS(22) | Separator Cooling Water Outlet Temp Deg C
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Table 8.3. Composition measurements

Variable Description Stream | Sampling Interval (min.
XMEAS(23) | Component A 6 6
XMEAS(24) | Component B 6 6
XMEAS(25) | Component C 6 6
XMEAS(26) | Component D 6 6
XMEAS(27) | Component E 6 6
XMEAS(28) | Component F 6 6
XMEAS(29) | Component A 9 6
XMEAS(30) | Component B 9 6
XMEAS(31) | Component C 9 6
XMEAS(32) | Component D 9 6
XMEAS(33) | Component E 9 6
XMEAS(34) | Component F 9 6
XMEAS(35) | Component G 9 6
XMEAS(36) | Component H 9 6
XMEAS(37) | Component D 11 15
XMEAS(38) | Component E 11 15
XMEAS(39) | Component F 11 15
XMEAS(40) | Component G 11 15
XMEAS(41) | Component H 11 15

107

Units are mole %. Dead time is equal to the sampling interval

associated with an increase in the variability of some process variables. Fault
13 is a slow drift in the reaction kinetics, and Faults 14, 15, and 21 are
associated with sticking valves.

The sensitivity and robustness of the various process monitoring methods
will be investigated in Chapter 10 by simulating the process under various
fault conditions. The simulation program allows the faults to be implemented
either individually or in combination with one another.

8.5 Simulation Program

The simulation code for the process is available in FORTRAN, and a detailed
description of the process and simulation is available [72]. There are six modes
to the process operation corresponding to various G/H mass ratios and pro-
duction rates of Stream 11. Only the base case will be used here. The program
is implemented with 50 states in open loop and a 1 second interval for integra-
tion. This integration interval is reasonable since the largest negative eigen-
value of the process is about 1.8 seconds. The simulation code for the process
in open loop can be downloaded from http://brahms.scs.uiuc.edu.
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8.6 Control Structure

The simulation of the TEP is made available by the Eastman Chemical Com-
pany in open-loop operation. Since the process is open-loop unstable and
industrial processes in reality are operated under closed loop, a plant-wide
control scheme was employed when applying the process monitoring methods
in Chapter 10. In [205, 206], four different plant-wide control structures using
only Proportional (P) and Proportional-Integral (PI) controllers were inves-
tigated for the TEP. The second control structure listed in [205, 206] was
chosen for this book because this structure provided the best performance
according to the authors.

The control structure implemented to obtain the results in Chapter 10
is shown schematically in Figure 8.1. The control structure consists of nine-
teen loops, and the values of the control parameters and other details of
the control structure are listed in Table 8.5. The exact values for the con-
troller gains implemented by the author of [205] could not be determined
because the controller gains were scaled to be dimensionless and the scalings
on the controller inputs and outputs were not presented. However, we esti-
mated the controller parameters based on the values from [205], and these
parameters are reported in Table 8.5 with units consistent with the manip-
ulated and measurement variables [72]. Some closed-loop simulations with
the control parameters from Table 8.5 are shown in Figures 8.2 and 8.3. A
comparison of these plots with those in [205] indicates that relatively similar
values for the control parameters were employed for both sets of simulations.
The simulation code for the process in closed loop can be downloaded from
http://brahms.scs.uiuc.edu.

8.7 Homework Problems

1. Plot the manipulated and measured variables over time for one of the
process faults in Table 8.4 using the closed-loop controllers (the code
can be downloaded from http://brahms.scs.uiuc.edu). Explain how
the effect of the process fault propagates through the plant, as indicated
by the process variables. What is the physical mechanism for each of
the process variable changes? Does each variable change in the way you
would expect? Explain. For each variable, explain how its time history
is affected by the closed-loop controllers. Which controllers mask the
effect of the fault on the process variables? [Note to instructor: consider
assigning a different fault to each student in the class.]

2. Describe the step-by-step procedure used to arrive at the plant-wide con-
trol structure used in this chapter (hint: read [206}).
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Fig. 8.2. Closed-loop simulation for the steady state case with no faults. The solid

and dotted lines in the lower right plot represent the compositions of G and H,
respectively.
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Fig. 8.3. Closed-loop simulation for a step change in the composition of the inert
B (IDV(2) in Table 8.4)



9. Application Description

9.1 Introduction

Chapter 8 describes the process, the control system, and the type of faults for
the Tennessee Eastman plant simulator. In Chapter 10, this simulator will be
used to demonstrate and compare the various process monitoring methods
presented in Part III. The process monitoring methods are tested on data
generated by the TEP simulation code, operating under closed loop with the
plant-wide control structure discussed in Section 8.6. The original simulation
code allows 20 preprogrammed faults to be selectively introduced to the pro-
cess [72]. We have added an additional fault simulation, which results in a
total of 21 faults as shown in Table 8.4. In addition to the aforementioned
aspects of the process, the process monitoring performance is dependent on
the way in which the data are collected, such as the sampling interval and
the size of the data sets.

The purpose of this chapter is to describe the data sets and to present the
process monitoring measures employed for comparing the process monitoring
methods. Section 9.2 describes how the data in the training and testing sets
were generated by the TEP. A discussion on how the selection of the sam-
pling interval and sample size of the data sets affects the process monitoring
methods follows in Sections 9.3 and 9.4, respectively. Section 9.5 discusses
the selection of the lag and order for each method. Sections 9.6, 9.7, and
9.8 present the measures investigated for fault detection, identification, and
diagnosis, respectively. The process monitoring methods (covered in Parts II
and IIT) used for these purpose are collected into Tables 9.2-9.4 which show
how the methods are related.

9.2 Data Sets

The data in the training and testing sets included all the manipulated and
measured variables (see Tables 8.1-8.3), except the agitation speed of the
reactor’s stirrer for a total of m = 52 observation variables. (The agitation
speed was not included because it was not manipulated.) An observation
vector at a particular time instant is given by

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems

© Springer-Verlag London Limited 2001
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x = [XMEAS(1),- - - , XMEAS(41), XMV(1),--- , XMV(11)] 7. (9.1)

The observations were simulated with an integration step size of 1 second,
and this did not produce any numerical inaccuracies. Although some of the
observations are sampled continuously while other variables contain time de-
lays (see Section 8.3), it simplifies the implementation to employ the same
sampling interval for each variable when the data are collected for calculating
multivariate process monitoring measures. A sampling interval of 3 minutes
was used to collect the simulated data for the training and testing sets.

The data in the training set consisted of 22 different simulation runs,
where the random seed was changed between each run. One simulation run
(Fault 0) was generated with no faults; another simulation run (Fault 21)
was generated by fixing the position of the valve for Stream 4 at the steady
state position; and, each of the other 20 simulation runs (Faults 1-20) was
generated under a different fault, each corresponding to a fault listed in Table
8.4. The simulation time for each run was 25 hours. The simulations started
with no faults, and the faults were introduced 1 simulation hour into the run.
The total number of observations generated for each run was n = 500, but
only 480 observations were collected after the introduction of the fault. It is
only these 480 observations actually used to construct the process monitoring
measures.

The data in the testing set also consisted of 22 different simulation runs,
where the random seed was changed between each run. These simulation
runs directly correspond to the runs in the training set (Faults 0-21). The
simulation time for each run was 48 hours. The simulation started with no
faults, and the faults were introduced 8 simulation hours into the run. The
total number of observations generated for each run was n = 960.

9.3 Sampling Interval

The amount of time in which quality data are collected from industrial pro-
cesses during either in-control or out-of-control operations is usually limited
in practice. Typically, only a small portion of the operation time exists where
it can be determined with confidence that the data were not somehow cor-
rupted and no faults occurred in the process. Also, the process supervisors
do not generally allow faults to remain in the process for long periods of time
for the purpose of producing data used in fault diagnosis algorithms.

Typically data collected during faulty operations are stored in historical
databases in which engineers or operators diagnose the faults sometime after
the fault occurs, and then enter that information into the historical database.
The amount of such data available in the historical database is typically fixed
and the sampling interval for the process monitoring methods needs to be
determined.
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It is desirable to detect, identify, and diagnose faults as soon as possible.
This suggests a high sampling rate. Also, given a fixed time T = nAt, it
is beneficial from an information point-of-view to sample as fast as possible
(At — 0, n — 00). In terms of process monitoring, however, there are three
possible problems with sampling as fast as possible. For the amount of data
produced, the computational requirements may exceed the computational
power available. Additionally, the model fit may be concentrated to the higher
frequencies, where measurement noise is predominant. When identifying an
ARX model via a least-squares approach, Ljung [199] shows how the bias
is shifted when sampling with higher frequencies. This bias shift for fast
sampling rates may be undesirable, especially if the faults primarily affect
the lower frequency dynamics of the process. Finally, statistics that ignore
serial correlation will generally perform more poorly for short sampling times.

The choice of the sampling interval for process monitoring is usually se-
lected based on engineering judgment. For system identification, a rule of
thumb is to set the sampling interval to one-tenth the time constant of the
process [199]. Considering that many of the time constants of the Tennessee
Eastman problem under closed loop appear to be about 2 hours (see Figure
8.2), it is advisable from a system identification point of view to sample at
an interval of 12 minutes. This does not, however, take advantage of the in-
strumentation of the process, which allows much faster sampling rates (see
Section 8.3). A sampling interval of 3 minutes was selected here to allow fast
fault detection, identification, and diagnosis, and to allow a good comparison
between techniques that either take into account or ignore serial correlations.
In addition, the same sampling interval has been used in other applications
of process monitoring to the TEP [46, 113, 183, 279].

An alternative approach would be to average each measurement over a
period of time before using the data in the process monitoring algorithms.
This and similar “moving window” techniques will generally reduce normal
process variability and hence produce a more sensitive process monitoring
method. However, this comes at a cost of delaying fault detection. Wise and
co-workers [345] pointed out that the width of the windows (i.e., the number
of data points used to compute the average) had an important effect on the
performance. In general, a “wide” window allows the detection of smaller
changes, but does not respond as quickly to changes as “narrow” windows.

9.4 Sample Size

As mentioned in the previous section, the total time spanned by the training
set is generally limited. In the cases where the total time T = nAt is fixed,
the selection of the sampling interval At and the sample size n cannot be
decoupled. Therefore, the effect of the sampling interval on the sample size
should be considered when selecting the sampling interval, and wice versa.
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An important consideration for the sample size is the total number of inde-
pendent parameters contained in the model being identified. It is desirable to
have the number of model parameters be much smaller than the total number
of process variables m multiplied by the total number of observations n.

Because the data for this book are simulated by the TEP, the sample
size is not limited by T and can be considered separately from the sampling
interval. Downs and Vogel [72] recommend a simulation time between 24
and 48 hours to realize the full effect of the faults. With a sampling interval
equal to 3 minutes, 24 to 48 hours of simulation time contain n = 480 to
960 observations. Simulations (see Figure 8.3) suggest that a run containing
24 simulation hours sufficiently captures the significant shifts in the data
produced by the fault.

The sufficiency of the sample size for the training set n = 480 can be
determined by examining the total number of independent parameters asso-
ciated with the orders of the various process monitoring methods (see Table
9.1). The total number of states in the closed-loop process is k = 61; 50 states
from the open-loop process plus 11 states from the PI controllers. For a state-
space model of state order £ = 61 with 11 inputs and 41 outputs, the number
of independent parameters Mj, is equal to 6985 according to (7.36). For fault
detection using the PCA-based T? statistic (4.12), the number of estimated
parameters M, is equal to the number of independent degrees of freedom of
the matrix product of PX;2PT in (4.12), which is calculated from

2
M, = AH2em—a” 9.2)
2
For a = 51, the number of independent parameters is 1377. For fault detection
using the CVA-based T2 statistic (7.41), the number of estimated parameters
Mj, is equal to the number of independent degrees of freedom of JT J; in
(7.41), which is calculated from

_ k+ 2kmh — k2

My, 5

(9.3
For h = 2 and k = 61, the number of independent parameters is 4029. The
total number of data points in the training set is equal to nm = (480)(52) =
24,960. The absolute minimum requirement to apply the PCA, CVA, or state-
space model at a given order is that the number of data points is greater
than the number of independent parameters in the model. The ratio of the
number of data points to the number of independent parameters is nm /M, =
(480)(52)/6985 = 3.57 for the state-space model, nm/M, = 18.1 for the
PCA-based model, and nm/M; = 5.53 for the CVA-based model. With all
other variables being equal (e.g., the noise level), the larger the ratio is greater
than one, the higher the accuracy of the model. For this data set, all ratios
are greater than one, indicating that the size of the training set (n = 480)
is sufficient to apply the PCA, CVA, and state-space model. Reducing the
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order may still result in a higher quality model, depending on the noise level.
As shown in Table 9.1, the state-space model requires the largest number
of independent parameters, followed by CVA, and PCA. A PCA model of a
given order has significantly less independent parameters, but does not take
into account serial correlations.

Table 9.1. The number of independent parameters estimated for the various mod-
els and orders

Order’ | Inputs | Outputs | Parameters | Parameters | Parameters
State Space't PCAlttt CVAlTtt

1 11 41 1405 52 104

11 11 41 2335 517 1089
21 11 41 3265 882 1974
31 11 41 4195 1147 2759
41 11 41 5125 1312 3444
51 11 41 6055 1377 4029
61 11 41 6985 - 4514

T The order is equal to a for PCA and the state order k for the state-space model and CVA
tt The number of parameters is based on (7.36)

ttt The number of parameters is based on (9.2)

111t The number of parameters is based on (9.3), using h = 2 lags

9.5 Lag and Order Selection

The number of lags included in the DPCA, DFDA, and CVA process mon-
itoring methods can substantially affect the monitoring performance. It is
best to choose the number of lags as the minimum needed to capture the
dynamics of the process accurately. Choosing the number of lags larger than
necessary may significantly decrease the robustness of the process monitor-
ing measures, since the extra dimensionality captures additional noise, which
may be difficult to characterize with limited data. The procedure used for
this book follows Larimore’s suggestion of selecting the number of lags h as
that minimizing the small sample AIC criterion using an ARX model (see
Section 7.5). This ensures that the number of lags is large enough to capture
all the statistically significant information in the data.

As described in Part III, the selection of the reduction order is critical
to developing efficient measures for process monitoring. The order selection
methods described in Part III will be used. The parallel analysis method
(see Section 4.3) is applied to select a in PCA and DPCA. The information
criterion (5.12) is used to determine a for FDA and DFDA. The small sample
AIC (7.37) is applied to CVA to determine the state order k.

Although it is popularly referred to in the literature, the cross-validation
method is not used here for any of the process monitoring methods. Cross-
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validation is computationally expensive when dealing with several large data
sets. More importantly, there can be problems with cross-validation when
serial correlations in the data exist [183].

9.6 Fault Detection

The proficiencies of PCA, DPCA, and CVA for detecting faults were investi-
gated on the TEP. The measures applied for each method, the corresponding
equation numbers, and the distributions used to determine the thresholds for
the measures are listed in Table 9.2. For instance, the first row indicates that
PCA is used to generate the T statistic according to (4.12) and the threshold
is calculated according to (4.14). The distribution listed as “TR” means that
the threshold is set to be the tenth highest value for Fault 0 of the testing set,
in which the number of observations n = 960. The threshold corresponds to
a level of significance o = 0.01 by considering the probability distribution of
the statistics for Fault 0. A thorough discussion of the measures is available
in the respective chapters, and more information related to applying these
measures to the TEP is contained in Section 10.6.

Table 9.2. The measures employed for fault detection

Method | Basis | Equation | Distribution
PCA T2 4.12 4.14
PCA Q 4.21 4.22

DPCA T2 4.12¢ 4.14¢

DPCA Q 4211 4.20t
CVA T2 7.41 7.42
CVA T2 7.43 7.41
CVA Q 7.46 TR

t Applied to the data matrix with lags
TR - Threshold set based on testing data for Fault 0

There exist techniques to increase the sensitivity and robustness of the
PCA and DPCA process monitoring measures as described in Section 4.8, for
example, through the use of the CUSUM or EWMA version of the measures.
However, these techniques compromise the response time of the measures.
Although such techniques can be highly useful in practice, the process moni-
toring methods applied in Chapter 10 do not employ them because it would
complicate the comparison of the process monitoring methods. The mea-
sures investigated for each process monitoring method are designed to detect
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and diagnose the faults with the smallest delay. Applying the CUSUM and
EWMA versions of PCA and DPCA is left as a homework problem.

9.7 Fault Identification

The proficiencies of PCA, DPCA, and CVA for identifying faults were inves-
tigated on the TEP. The measures applied for each method and the corre-
sponding equation numbers are presented in Table 9.3. A discussion on how
to apply the measures based on PCA, DPCA, and CVA can be found in Sec-
tions 4.5, 4.7, and 7.8, respectively. A thorough discussion of the measures is
available in the respective chapters, and more information related to applying
these measures to the TEP is contained in Section 10.7.

Table 9.3. The measures employed for fault identification

Method | Basis Equation
PCA CONT 4.25
PCA RES 4.32

DPCA | CONT | 4.25 with 4.44
DPCA RES | 4.32 with 4.44
CVA CONT | 4.25 with 7.22
CVA RES | 4.32 with 7.45

9.8 Fault Diagnosis

The proficiencies of the fault diagnosis methods described in Part III were
investigated on the TEP. Fault diagnosis measures based on discriminant
analysis that use no dimensionality reduction are given in (3.7). When this
multivariate statistic (MS) is applied to data with no lags, it will be referred
to as the T statistic. When the multivariate statistic is applied to data with 1
lag, it will be referred to as the T? statistic. These are considered in Chapter
10 to serve as a benchmark for the other measures, as the dimensionality
should only be reduced if it decreases the misclassification rate for a testing
set. The fault diagnosis measures and the corresponding equation or section
numbers are presented in Table 9.4. The statistic(s) upon which each measure
is based is also listed in the table. A thorough discussion of the measures is
available in the respective chapters, and more information related to applying
these measures to the TEP is contained in Section 10.8.
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Table 9.4. The measures employed for fault diagnosis

Method Basis Equation/Section
PCAm T? Equation 4.35'
PCA1 T2 Equation 4.33%
PCAm Q Equation 4.37
PCAm T & Q Equation 4.381
DPCAm T2 Equations 4.35" and 4.44
DPCAm Q Equations 4.37 and 4.44
DPCAm T2 & Q Equations 4.38't and 4.44

FDA T2 Equation 5.161

FDA/PCA1 T2 Equations 5.17' and 5.16
FDA/PCA2 T? Equations 5.17 and 5.16
DFDA/DPCA1 T? Equations 5.17%, 5.16, and 4.44

CVA T? Equations 4.35" and 7.41

CvA T2 Equations 4.35 and 7.43

CVA Q Equations 4.37 and 7.46

PLS1 - Section 6.3

PLS2 - Section 6.3
PLSladj - Section 6.4
PLS2.4; - Section 6.4

MS T2 Equation 3.7
MS T2 Equation 3.7

t Applied to the score space only
tte; = 0.5 and & = 0.01



10. Results and Discussion

10.1 Introduction

In this chapter, the process monitoring methods in Part III are compared
and contrasted through application to the Tennessee Eastman process
(TEP). The proficiencies of the process monitoring statistics listed in Tables
9.2-9.4 are investigated for fault detection, identification, and diagnosis. The
evaluation and comparison of the statistics are based on criteria that quantify
the process monitoring performance. To illustrate the strengths and weak-
nesses of each statistic, Faults 1, 4, 5, and 11 are selected as specific case
studies in Sections 10.2, 10.3, 10.4, and 10.5, respectively. Sections 10.6, 10.7,
and 10.8 present and apply the quantitative criteria for evaluating the fault
detection, identification, and diagnosis statistics, respectively. The overall re-
sults of the statistics are evaluated and compared. Results corresponding to
the case studies are highlighted in boldface in Tables 10.6 to 10.20.

10.2 Case Study on Fault 1

In the normal operating condition (Fault 0), Stream 4 in Figure 8.1 contains
0.485, 0.005, and 0.510 mole fraction of A, B, and C, respectively [72]. When
Fault 1 occurs, a step change is induced in the A/C feed ratio in Stream 4,
which results in an increase in the C feed and a decrease in the A feed in
Stream 4. This results in a decrease in the A feed in the recycle Stream 5 and
a control loop reacts to increase the A feed in Stream 1 (see Figure 10.1).
These two effects counteract each other over time, which results in a constant
A feed composition in Stream 6 after enough time (see Figure 10.2).

The variations in the flow rates and compositions of Stream 6 to the
reactor causes variations in the reactor level (see Figure 8.1), which affects
the flow rate in Stream 4 through a cascade control loop (see Figure 10.3).
The flow rate of Stream 4 eventually settles to a steady-state value lower
than its value at the normal operating conditions.

Since the ratio of the reactants A and C changes, the distribution of the
variables associated with material balances (i.e., level, pressure, composition)
changes correspondingly. Since more than half of the variables monitored de-
viate significantly from their normal operating behavior, this fault is expected

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems

© Springer-Verlag London Limited 2001
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to be easily detected. Process monitoring statistics that show poor perfor-
mance on Fault 1 are likely to perform poorly on other faults as well.
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Fig. 10.1. Comparison of XMEAS(1) for Faults 0 and 1

The (D)PCA-based and CVA-based statistics for fault detection are
shown in Figures 10.4 and 10.5, respectively. The dotted line in each figure is
the threshold for the statistic, the statistic above its threshold indicates that
a fault is detected (the statistic is shown as a solid line). The first eight hours
were operated under normal operating conditions. Thus, all statistics are ex-
pected to fall below the thresholds for the first eight hours, which they did.
The quantitative fault detection results are shown in Table 10.1. All of the
statistics produced nearly zero missed detection rates. For a fault that signifi-
cantly changes the distribution of the variables monitored, all fault detection
statistics perform very well.

Assuming that process data collected during a fault are represented by a
previous fault class, the objective of the fault diagnosis statistics in Table 9.4
is to classify the data to the correct fault class. That is, a highly proficient
fault diagnosis statistic produces small misclassification rates when applied



Fig. 10.2. Comparison of XMEAS(23) for Faults 0 and 1

Table 10.1. Missed detection rates for Faults 1, 4, 5, and 11

Fault 1 4 5 11
Method | Basis

PCA T2 | 0.008 | 0.956 | 0.775 | 0.794
PCA Q 0.003 | 0.038 | 0.746 | 0.356
DPCA T2 | 0.006 | 0.939 | 0.756 | 0.801

DPCA | @ |o0.005| [0] |o0.748

CVA T2 | 0.001 | 0688 | (0] | 0515

cvA | 72 | [o] | [o] | [o] | o195

CVA Q 0.003 | 0.975 0 0.669
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Fault 0: Normal operating condition
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to data independent of the training set. As shown in Table 10.2, most of
the fault diagnosis statistics performed very well (Fault 1 being correctly
diagnosed > 96% of the time).

10.3 Case Study on Fault 4

Fault 4 involves a step change in the reactor cooling water inlet temperature
(see Figure 8.1). A significant effect of Fault 4 is to induce a step change in the
reactor cooling water flow rate (see Figure 10.6). When the fault occurs, there
is a sudden temperature increase in the reactor (see Figure 10.7 at time = 8
hr), which is compensated by the control loops. The other 50 measurement
and manipulated variables remain steady after the fault occurs; the mean
and standard deviation of each variable differ less than 2% between Fault
4 and the normal operating condition. This makes the fault detection and
diagnosis tasks more challenging than for Fault 1.
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Table 10.2. The overall misclassification rates for Faults 1, 4, 5, and 11

Fault 1 4 5 11

Method Basis
PCAm T? 0.680 | 0.810 | 0.956 | 0.989
PCA1l T2 0.024 | 0.163 | 0.021 | 0.234
PCAm Q 0.028 | 0951 | 0913 | 0.859
PCAm T2&Q | 0.041 1.000 | 0.973 | 0.968
DPCAm T? 0.880 | 0.720 | 0.874 | 0.948
DPCAm Q 0.035 | 0.964 | 0.856 | 0.843
DPCAm T2&Q | 0.038 | 1.000 | 1.000 | 0.983
PLS1 - 0.013| | 0.170 | |0.006|| 0.989
PLS2 ~ 0.013] | [0.119] | 0.008 | 0.979
PLS1ag; - 0.019 | 0.364 | 0.044 | 0.859
PLS244; - 0.019 | 0.320 | 0.043 | 0.886
CVA T2 0.028 0.981 0.061 0.904
CVA T2 0.026 | 0.358 | 0.040 | 0.139
CVA Q 0.245 | 0.890 | 0.174 | 0.901
FDA T2 0.025 0.176 | 0.020 0.245
FDA/PCA1 T? 0.024 | 0.163 | 0.020 | 0.244
FDA/PCA2 T? 0.025 | 0.176 | 0.020 | 0.245
DFDA/DPCA1 T2 0.026 | 0.159 | 0.023 ||0.118
MS T 0.025 | 0.178 | 0.020 | 0.245
MS T2 0.035 0.427 0.040 0.121

The extent to which the (D)PCA-based and CVA-based statistics are sen-
sitive to Fault 4 can be examined in Figure 10.8 and Figure 10.9 respectively.
The quantitative fault detection results are shown in Table 10.1. The vari-
ation in the residual space was captured by T2, but not by the CVA-based
Q statistic. The potential advantage of applying T? to capture variation in
the residual space is clearly shown. It is interesting to see that the PCA and
DPCA-based @ statistics were able to detect Fault 4, but the CVA-based Q
statistic did not. The CVA-based T? statistic passes the threshold much of
time after the fault occurs, but does not have the persistence of the CVA-
based T? statistic (see Figure 10.9). Although the PCA and DPCA-based
Q statistics both are able to detect the fault, the DPCA-based @ statistic
outperformed the PCA-based statistic in terms of exceeding the threshold
by a greater degree. This indicates the potential advantage of taking serial
correlation into account when developing fault detection procedures.

For this fault the PCA and DPCA-based @ statistics were more sensi-
tive than the PCA and DPCA-based T? statistics, and the CVA-based T2



126 10. Results and Discussion

Fault 1 Fault 1
1000 1200

1000

800

600

Q, PCA

400

200

0 10 20 30 40 50

2000

1500

DPCA

1000

T2

500

0 10 20 30 40 50 0 10 20 30 40 50
Time (hr) Time (hr)

Fig. 10.4. The (D)PCA multivariate statistics for fault detection for Fault 1

statistic was more sensitive than the CVA-based T2 statistic (see Table 10.1).
These statistics quantifying variations in the residual space were overall more
sensitive to Fault 4 than the statistics quantifying the variations in the score
or state space. In other words, the fault created new states in the process
rather than magnifying the states based on in-control operations. Although
this conclusion does not hold for all faults, it certainly is true for a large
portion of them.

Recall that Fault 4 is associated with a step change in the reactor cooling
water inlet temperature (see Table 8.4), which is unmeasured. Engineering
judgment and an examination of Figure 8.1 and Tables 8.1-8.3 indicate that
the most closely related observation variable is the reactor cooling water flow
rate. The fault identification statistics in Table 9.3 provide a rank ordering
of the observation variables from most relevant to least relevant in terms of
being associated with the fault. For Fault 4, the third column of Table 10.3
lists where the reactor cooling water flow rate was ranked by the various
fault identification methods. All of the methods correctly ranked the reactor



10.3 Case Study on Fault 4 127

Fault 1
8000 T T T T T T T T T
< 6000 b
>
O 4000 .
N'_u)
2000+ B
o . oL j - e . ] k. -
0 5 10 15 20 25 30 35 40 45 50
x10°
6 T T T T T T T T T
$4r 7
[&]
ot 4
0 | ol L 1 . - U I b de
0 5 10 15 20 25 30 35 40 45 50
x10°
3 L T T T T T T T T
2 -
2r
(&
g4t 4
o el e - 1 Y - | Y A
0 5 10 15 20 25 30 35 40 45 50
Time (hr)

Fig. 10.5. The CVA multivariate statistics for fault detection for Fault 1

cooling water flow rate as most closely related to Fault 4 except for the CVA-
based CONT statistic.

Table 10.3. The overall rankings for Faults 4 and 11

Fault 4 |11

Method Basis
PCA CONT | 1 1
PCA RES 1 1
DPCA | CONT | 1 1
DPCA RES 1 1
CVA CONT | 11 | 13
CVA RES 1 1

The CVA-based CONT statistic did not perform well because the inverse
of the matrix ﬁpp in (7.40) allowed certain observation variables to dominate
the statistic. In particular, the maximum values of the J,, matrix correspond-
ing to the observation variables 12, Z15, T17, Z48, Z49, and x5 are above 50
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Fig. 10.6. Comparison of XMV(10) for Faults 0 and 4

while the elements of J, corresponding to all the other variables are less than
3 (see Figure 10.10). The dominance of the observation variables 12, Z15, T17,
T48, T4g, and e in Ji was observed for all of the other faults investigated
as well.

For fault diagnosis, many of the statistics performed poorly for Fault 4
(see Table 10.2). PLS2 gave the lowest misclassification rates. This indicates
that discriminant PLS can outperform FDA for some faults although it would
be expected theoretically that FDA should be better in most cases. PLS1 had
a similar misclassification rate as all the FDA-based statistics, PCA1, and
MS TZ2. PLS1 and PLS2 gave significantly lower misclassification rates than
PLS1,4; and PLS2,4;. This makes the point that the adjustment procedure
described in Section 6.4 does not always improve fault diagnosis.

DFDA/DPCAL1 produced similar misclassification rates as the static FDA
methods. However, including lagged variables actually degraded the perfor-
mance of the MS statistic.
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Fig. 10.7. Comparison of XMEAS(9) for Faults 0 and 4

10.4 Case Study on Fault 5

Fault 5 involves a step change in the condenser cooling water inlet temper-
ature (see Figure 8.1). The significant effect of the fault is to induce a step
change in the condenser cooling water flow rate (see Figure 10.11). When
the fault occurs, the flow rate of the outlet stream from the condenser to
the vapor/liquid separator also increases, which results in an increase in tem-
perature in the vapor/liquid separator, and thus the separator cooling water
outlet temperature (see Figure 10.12). Similar to Fault 4, the control loops
are able to compensate for the change and the temperature in the separa-
tor returns to its set-point. The time it takes to reach the steady state is
about 10 hours. For the rest of the 50 variables that are being monitored, 32
variables have similar transients that settle in about 10 hours. Detecting and
diagnosing such a fault should not be a challenging task.

The (D)PCA-based and CVA-based statistics for fault detection are
shown in Figures 10.13 and 10.14, respectively. The quantitative fault detec-
tion results are shown in Table 10.1, where it is seen that the (D)PCA-based
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Fig. 10.8. The (D)PCA multivariate statistics for fault detection for Fault 4

statistics had a high missed detection rate, and all the CVA statistics had a
zero missed detection rate. The reason for the apparent poor behavior of the
(D)PCA-based statistics is clear from plotting the observation variables over
time. Most variables behaved similarly to Figure 10.12—they returned to
their set-points 10 hours after the fault occurred. The (D)PCA-based statis-
tics fail to indicate a fault 10 hours after the fault occurs (see Figure 10.13).
On the other hand, all the CVA statistics stayed above their thresholds (see
Figure 10.14).

The persistence of a fault detection statistic (the CVA statistic in this
case) is important in practice. At any given time a plant operator has several
simultaneous tasks to perform and typically does not focus on all tasks with
the same degree of attentiveness. Also, it usually takes a certain amount
of time to track down the cause of abnormal process operation. When the
time to locate the source of a fault is longer than the persistence of the
fault detection statistic, a plant operator may conclude that the fault has
“corrected itself” and assume that the process is again operating in normal
operating conditions. In contrast, a persistent fault detection statistic will
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Fig. 10.9. The CVA multivariate statistics for fault detection for Fault 4

continue to inform the operator of a process abnormality although all the
process variables will appear to have returned to their normal values.

It is somewhat interesting that examination of the canonical variables
(Jp¢) for Fault 5 reveals that the canonical variable corresponding to the
99th generalized singular value is solely responsible for the out-of-control 7’2
values between 10-40 hours after the fault occurred.

10.5 Case Study on Fault 11

Similar to Fault 4, Fault 11 induces a fault in the reactor cooling water inlet
temperature. The fault in this case is a random variation. As seen in Figure
10.15, the fault induces large oscillations in the reactor cooling water flow
rate, which results in a fluctuation of reactor temperature (see Figure 10.16).
The other 50 variables are able to remain around the set-points and behave
similarly as in the normal operating conditions.

The extent to which the (D)PCA-based and CVA-based statistics are
sensitive to Fault 11 can be examined in Figure 10.17 and Figure 10.18,
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respectively. The quantitative fault detection results are shown in Table 10.1.
The (D)PCA-based @ statistics performed better than the (D)PCA-based T2
statistics. Similarly to Fault 4, the variation in residual space was captured
better by T than the CVA-based @ statistic. Overall, the DPCA-based @
statistic gave the lowest missed detection rate (see Table 10.1).

As Fault 11 and Fault 4 affect the same process variable, the fault was
expected to influence the reactor cooling water flow the most. Similarly to
Fault 4, the CVA-based RES and the (D)PCA-based statistics gave superior
results, in terms of correctly identifying the reactor cooling water flow as the
variable responsible for this fault (see Table 10.3). The improper dominance of
the observation variables z13, 15, 17, Z48, Z49, and T5; was again responsible
for the poor performance of the CVA-based CONT (see Figure 10.19).

Some fault diagnosis techniques more easily diagnosed Fault 4 while others
did better diagnosing Fault 11 (see Table 10.2). The lowest misclassification
rates were provided by the MS T2, DFDA /DPCA1 T2, and CVA T? statistics,
all of which take serial correlation into account. It is interesting that ‘dynamic’
versions of PCA which are designed to take serial correlation into account did
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Fig. 10.11. Comparison of XMV(11) for Faults 0 and 5

not provide significantly improved fault diagnosis over their static versions
for Fault 11.

10.6 Fault Detection

The objectives of a fault detection statistic are to be robust to data inde-
pendent of the training set, sensitive to all the possible faults of the process,
and prompt to the detection of the faults. The robustness of each statistic
in Table 9.2 is determined by calculating the false alarm rate for the normal
operating condition of the testing set and comparing it against the level of
significance upon which the threshold is based. The sensitivity of the statis-
tics is quantified by calculating the missed detection rates for Faults 1-21 of
the testing set. The promptness of the statistics is based on the detection
delays for Faults 1-21 of the testing set.

Prior to applying each of the statistics to the testing set, the parameter
values associated with each statistic need to be specified. The orders deter-
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Fig. 10.12. Comparison of XMEAS(22) for Faults 0 and 5

mined for PCA, DPCA, PLS, and CVA and the number of lags h determined
for DPCA and CVA are listed in Table 10.4. The orders and the number of
lags were determined by applying the procedures described in Section 9.5 to
the pretreated data for the normal operating condition of the training set.

The probability distributions used to determine the threshold for each
statistic are listed in Table 9.2. Using a level of significance a = 0.01, the
false alarm rates of the training and testing sets were computed and tabu-
lated in Table 10.5. The false alarm rates for the PCA and DPCA-based T?
statistics are comparable in magnitude to oo = 0.01. The CVA-based statis-
tics and the DPCA-based Q statistic resulted in relatively high false alarm
rates for the testing set compared to the other multivariate statistics. The
lack of robustness for T2 and T2 can be explained by the inversion of 5,,
in (7.40). The high false alarm rate for the DPCA-based @ statistic may be
due to a violation of the assumptions used to derive the threshold (4.22) (see
Homework Problem 12 for a further exploration of this issue).

It would not be fair to directly compare the fault detection statistics in
terms of missed detection rates when they have such widely varying false
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Fig. 10.13. The (D)PCA multivariate statistics for fault detection for Fault 5

Table 10.5. False alarm rates for the training and testing sets

Method | Measures | Training Set | Testing Set
PCA T? 0.002 0.014
PCA Q 0.004 0.016

DPCA T2 0.002 0.006

DPCA Q 0.004 0.281
CVA T2 0.027 0.083
CVA T2 0 0.126
CVA Q 0.009 0.087
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Fig. 10.14. The CVA multivariate statistics for fault detection for Fault 5

alarm rates. In computing the missed detection rates for Faults 1-21 of the
testing set, the threshold for each statistic was adjusted to the tenth high-
est value for the normal operating condition of the testing set. The adjusted
thresholds correspond to a level of significance o = 0.01 by considering the
probability distributions of the statistics for the normal operating condition.
For statistics which showed low false alarm rates, the adjustment only shifted
the thresholds slightly. For each statistic which showed a high false alarm
rate, the adjustment increased the threshold by approximately 50%. Numer-
ous simulation runs for the normal operating conditions confirmed that the
adjusted thresholds indeed corresponded to a level of significance a = 0.01.
It was felt that this adjustment of thresholds provides a fairer basis for the
comparison of the sensitivities of the statistics. For each statistic, the missed
detection rates for all 21 faults were computed and tabulated in Table 10.6.

The missed detection rates for Faults 3, 9, and 15 are very high for all the
fault detection statistics. No observable change in the mean or the variance
can be detected by visually comparing the plots of each observation variable
associated with Faults 3, 9, and 15 to the plots associated with the normal
operating condition (Fault 0). It is conjectured that any statistic will result
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Fault 0: Normal operating condition
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Fig. 10.15. Comparison of XMV(10) for Faults 0 and 11

in high missed detection rates for those faults, in other words, Faults 3, 9,
and 15 are unobservable from the data. Including the missed detection rates
for these faults would skew the comparison of the statistics, and therefore
these faults are not analyzed when comparing the overall performance of the
statistics.

The minimum missed detection rate achieved for each fault except Faults
3, 9, and 15 is contained in a box in Table 10.6. The T2 statistic with the
threshold rescaled as described above had the lowest missed detection rate
except for the unobservable Faults 3 and 9. The conclusion that the T77? statis-
tic with a scaled threshold will always give lower missed detection rates than
the other statistics would be incorrect, since another method may be better
for a different amount of data or a different process. In particular, a fault that
does not affect the states in the T2 statistic will be invisible to this statistic.
Since many of the statistics have comparable missed detection rates for many
of the faults, it seems to have an advantage to incorporate the T statistics
with other statistics for fault detection.
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Fault 0: Normal operating condition

XMEAS(9): Reactor Temperature (Deg C)
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Fig. 10.16. Comparison of XMEAS(9) for Faults 0 and 11

The CVA-based @ statistic gave missed detection rates similar to those
from the T7? statistic for some faults, but performed more poorly for others.
Other results, not shown here for brevity, showed that a slight shift in the lag
order h or state order k can result in a large variation of the CVA-based @
statistic. Tweaking these parameters may improve the CVA-based @ statistic
enough to give fault detection performance more similar to the T2 statistic.

The number of minimums achieved with the residual-based statistics is
far more than the number of minimums achieved with state- or score-based
statistics. Residual-based multivariate statistics tended to be more sensitive
to the faults of the TEP than the state or score-based statistics. The better
performance of residual-based statistics supports the claims in the literature,
based on either theoretical analysis [345] or case studies [183], that residual-
based statistics tend to be more sensitive to faults. A comparison of all the
fault detection statistics revealed that the residual-based T2 statistic was
overall the most sensitive to the faults of the TEP. However, the T'? statistic
was found not to be very robust compared to most of the other statistics, due
to the inversion of the matrix 21,1, in (7.40). Also, recall that the threshold
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Fig. 10.17. The (D)PCA multivariate statistics for fault detection for Fault 11

used here was rescaled based on the testing set to give a false alarm rate of
0.01, as described in Section 10.6. The behavior of the T statistic with the
threshold (7.44) can give large false alarm rates, as was discussed earlier.

On average, the DPCA-based statistics were somewhat more sensitive
to the faults than the PCA-based statistics, although the overall difference
was not very large. The high false alarm rates found for the DPCA-based Q
statistic (see Table 10.5) indicate that the threshold (4.22) may need to be
rescaled based on an additional set of data as was done here.

Most statistics performed well for the faults that affect a significant num-
ber of observation variables (Faults 1, 2, 6, 7, 8, 14, and 18). In these cases,
most variables deviated significantly from their distribution in the normal op-
erating conditions. The other faults had a limited number of the observation
variables deviate from their distribution in the normal operating conditions.
Detecting such faults is relatively more challenging.

Since false alarms are inevitable, it is often difficult to determine whether
the out-of-control value of a statistic is the result of a fault or of a false
alarm. In order to decrease the rate of false alarms, it is common to show an
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Fig. 10.18. The CVA multivariate statistics for fault detection for Fault 11

alarm only when several consecutive values of a statistic have exceeded the
threshold. In computing the detection delays for the statistics in Table 10.7,
a fault is indicated only when six consecutive measure values have exceeded
the threshold, and the detection delay is recorded as the first time instant
in which the threshold was exceeded. Assuming independent observations
and o = 0.01, this corresponds to a false alarm rate of 0.016 = 1 x 10712,
The detection delays for all 21 faults listed in Table 10.7 were obtained by
applying the same thresholds as used to determine the missed detection rates.

For the multivariate statistics, a close examination of Tables 10.6 and 10.7
reveals that the statistics exhibiting small detection delays tend to exhibit
small missed detection rates and vice versa. Since the detection delay results
correlate well with the missed detection rate results, all of the conclusions for
missed detection rates apply here.
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Fig. 10.19. The average contribution plot for Fault 11 for the CVA-based CONT

10.7 Fault Identification

The objective of a fault identification statistic is to identify the observation
variable(s) most closely related to the fault. The challenge in developing a
good criterion for comparing the different statistics is choosing which obser-
vation variable(s) is most relevant to diagnosing the fault. This, of course,
depends on the knowledge and expertise of the plant operators and engineers.
The only faults investigated here for fault identification are those in which
a direct and clear link between the fault and an observation variable could
be determined. The faults investigated in this section for fault identification
and the observation variables directly related to each fault are listed in Table
10.8. The ranking of these observation variables for each fault is the criterion
used to compare the different statistics listed in Table 9.3.

The statistics investigated in this section are listed in Table 9.3, and the
parameter values associated with the statistics are listed in Table 10.4. The
rankings of the observation variables listed in Table 10.8 for each statistic
and fault are contained in Tables 10.9, 10.10, and 10.11. These tables list the
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Table 10.6. Missed detection rates for the testing set

Fault | PCA | PCA | DPCA | DPCA | CVA | CVA | CVA
T’ Q T Q T; T} Q
1 | 0.008 | 0.003 | 0.006 | 0.005 |0.001 | [0o] |o0.003
2 | 0020 | 0.014 | 0019 | 0.015 | 0.011 |[0.010] | 0.026
3 | 0998 | 0991 | 0991 | 0990 | 0.981 | 0.986 | 0.985
4 |0956|0.038| 093 | [0] |o0688| [0] |0.975
5 |0.775 | 0.746 | 0.758 | 0.748 | [0] 0] o]
6 | 0011 0.013 0] 0] 0]
7 | 008 | [0] | 0.159 0] 038 | (0] | 0.486
8 | 0034 | 0024 | 0028 | 0025 | 0.021 |[0.016] | 0.486
9 | 0994 | 0.981 | 0.995 | 0.994 | 0.986 | 0.993 | 0.993
10 | 0.666 | 0.659 | 0.580 | 0.665 | 0.166 | [0.099] | 0.599
11 | 0.794 | 0.356 | 0.801 0.515 | 0.195 | 0.669
12 | 0029 | 0025 | 0.010 | 0024 | [0] [0] | 0.021
13 | 0.060 | 0.045 | 0.049 | 0.049 | 0.047 |[0.040] | 0.055
14 | 0158 | [o] | o061 | [o] [o] | [o] | o122
15 | 0.988 | 0.973 | 0.964 | 0976 | 0.928 | 0903 | 0.979
16 | 0.834 | 0.755 | 0.783 | 0.708 | 0.166 | [0.084] | 0.429
17 | 0259 | 0.108 | 0.240 | 0.053 | 0.104 | [0.024]| 0.138
18 | 0113 | 0.101 | 0.111 | 0.00 | 0.094 | [0.092]| 0.102
19 | 099 | 0.873 | 0.993 | 0.735 | 0.849 | [0.019]| 0.923
20 | 0701 | 0.550 | 0.644 | 0.490 | 0.248 | [0.087] | 0.354
21 | 0736 | 0570 | 0.644 | 0.558 | 0.440 | [0.342] | 0.547

rankings for the average statistic values over the time periods 0-5 hours, 5-24
hours, and 24-40 hours, after the fault occurred. A ranking of 1 in the tables
indicates that the observation variable listed in Table 10.8 had the largest
average statistic value, and a ranking of 52 indicates that the observation
variable listed in Table 10.8 had the smallest average statistic value. The
best ranking for each fault is contained in a box. The results are divided
into three tables because it is useful to analyze how the proficiencies of the
statistics change with time. It is best to identify the fault properly as soon as
it occurs, and therefore the results during the time period 0-5 hours after the
fault are tabulated separately. The results for the time period between 5-24
and 24-40 hours after the fault occurred were tabulated separately, because
this is useful in determining the robustness of the statistics.

As shown in Tables 10.9-10.11, the (D)PCA-based CONT performed well.
The better performance of the (D)PCA-based CONT to the (D)PCA-based
RES suggests that the abstraction of structure provided by PCA was even
more critical to fault identification than fault detection. For the faults where
fault propagation occurred, the performance of the data-driven statistics de-



144

10. Results and Discussion

Table 10.7. Detection delays (minutes) for the testing set

Fault | PCA | PCA | DPCA | DPCA | CVA | CVA | CVA
T Q T Q T 7 Q
1 [ 21| 9 18 15 9
2 51 48 39 39 45 | 75
3 — — — — — — —_
4 ~ 9 | 453 | [3] |1386 | [3] | -
5 48 3 6 6 3 3 0]
6 30 3 33 3 3 3 0]
7 3 3 3 3 3 3 0]
8 | 69 69 63 63
9 — —_ —_ — —_ —_ —
10 | 288 | 147 | 303 | 150 | 75 132
11 | 912 | 33 | 585 876 | 33 | 81
12 | 66 | 24 9 24 6 6 | [0]
13 | 147 |[111]] 135 120 | 126 | 117 | 129
14 | 12 18 6
15 - |20 | - — | 2031 | = =
16 | 936 | 591 | 597 588 42 33
17 | 87 | 75 84 72 81 | [60] | 69
18 | 279 | 252 | 279 252 | 249 |[237]| 252
19 - - - 246 - -
20 | 261 | 261 | 267 252 | 246 |[198]| 216
21 | 1689 | 855 | 1566 | 858 |[819]| 1533 | 906

Table 10.8. The variables assumed to be most closely related to each disturbance

Fault | Process Variable | Data Variable Variable Description

2 XMV(6) Za7 Purge Valve (stream 9)

4 XMV(10) z51 Reactor Cooling Water Flow

5 XMEAS(22) T2 Sep. Cooling Water Outlet Temp
6 XMV (3) Taq A Feed Flow (stream 1)

11 XMV(10) Z51 Reactor Cooling Water Flow
12 XMEAS(22) T22 Sep. Cooling Water Outlet Temp
14 XMV(10) Ts1 Reactor Cooling Water Flow
21 XMV (4) Za5 A, B, and C Feed Flow (stream 4)
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Table 10.9. The rankings for the time period 0-5 hours after the fault occurred

Fault | PCA PCA | DPCA | DPCA | CVA CVA
CONT | RES | CONT | RES | CONT | RES

2 | l2] | 4 | [2] | 5 | 10 | [2
s @ || O | E| » | T
5
6

12 21 11 8| 15 17

6 3 2 6 6
12 6 3 10 14
14 2 2 2 11
21 52 40 48 48 52 52

Table 10.10. The rankings for the time period 5-24 hours after the fault occurred

Fault | PCA | PCA | DPCA | DPCA | CVA CVA
CONT | RES | CONT | RES | CONT | RES

2 5 7 10 3
5 31 34 30 31 14
6 5 52 8 45 8
12 12 3 13 24
14 2 2 2 10
21 52 46 51 51 52 52

Table 10.11. The rankings for the time period 24-40 hours after the fault occurred

Fault | PCA PCA | DPCA | DPCA | CVA CVA
CONT | RES | CONT | RES | CONT | RES

2 5 3 12 10 4
5 9] 35 14 30 16 16
6 7 51 11 45 3
12 10 21 4] 36 17 26
14 2 2 2 11
21 52 48 52 52 52 50
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teriorated as the effect of the fault evolved. Robustness may be achieved by
applying model-based fault identification statistics that are able to take into
account the propagation of the fault (see Chapter 11).

All fault identification statistics performed poorly for Fault 21 (see Tables
10.9-10.11). The A/B/C feed flow valve for Stream 4 was fixed at the steady
state position (see Figure 8.1). The valve was stuck, indicating that the sig-
nals from this valve were constant, which corresponds to zero variance. The
RES and CONT-based statistics had great difficulty identifying the A/B/C
feed flow as the variable associated with the fault because these statistics are
designed to detect positive shift in variance only. This illustrates the impor-
tance in such cases of implementing statistics such as Equation 4.29 which
can detect a negative shift in variance. This type of statistic implemented in
the appropriate manner would have detected Fault 21 rather easily. In gen-
eral it is suggested that such a statistic should be applied to each process
variable, with the « level set to keep the false alarm rate low.

The performance of a fault identification statistic can significantly de-
teriorate over time for faults whose effects on the process variables change
over time. For instance, the effect of Fault 12 propagates over the interval 5
to 40 hours after the fault occurred. As a result, there is only one statistic
producing a ranking below 10 in Table 10.11 while all but one statistic pro-
duced a ranking at or above 10 in Table 10.9. For Fault 6, the performance of
the (D)PCA-based fault identification statistics substantially degraded over
time, while the performance of the CVA-based statistics actually improved.

10.8 Fault Diagnosis

Assuming that process data collected during a fault are represented by a
previous fault class, the objective of the fault diagnosis statistics in Table 9.4
is to classify the data to the correct fault class. That is, a highly proficient
fault diagnosis statistic produces small misclassification rates when applied to
data independent of the training set. Such a statistic usually has an accurate
representation of each class, more importantly such a statistic separates each
class from the others very well. Recall that all the methods listed in Table
9.4 are based on supervised classification. For the discriminant PLS, PCA1,
MS, and FDA methods, one model is built for all fault classes. For the other
methods listed in Table 9.4, a separate model is built for each fault class. The
proficiencies of the statistics in Table 9.4 are investigated in this section based
on the misclassification rates for Faults 1-21 of the testing set. The parameters
for each statistic were determined from Faults 1-21 of the training set. The
lags and orders associated with the statistics are listed in Table 10.4.

The overall misclassification rate for each statistic when applied to Faults
1-21 of the testing set is listed in Table 10.12. For each statistic, the mis-
classification rates for all 21 faults were computed and tabulated in Tables
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10.13-10.20. The minimum misclassification rate achieved for each fault ex-
cept Faults 3, 9, and 15 is contained in a box.

Table 10.12. The overall misclassification rates

Method Basis Misclassification
Rate
PCAm T 0.742
PCA1l T2 0.212
PCAm Q 0.609
PCAm T? & Q 0.667
DPCAm T2 0.724
DPCAm Q 0.583
DPCAm T2 & Q 0.662
PLS1 - 0.565
PLS2 - 0.567
PLS1a4; - 0.576
PLS2.4i - 0.574
CVA T2 0.501
CVA T2 0.213
CVA Q 0.621
FDA T? 0.195
FDA/PCA1 T2 0.206
FDA/PCA2 T? 0.195
DFDA/DPCA1 T2 0.192
MS T2 0.214
MS T2 0.208

When applying the fault diagnosis statistics, it was assumed that the a
priori probability for each class i was equal to P(w;) = 1/p where p = 21
is the number of fault classes. DFDA/DPCA1 produced the lowest overall
misclassification rate (0.192), followed by the rest of the FDA-based meth-
ods, as shown in Table 10.12. The CVA-based T2, PCA1, and MS statistics
produced comparable overall misclassification rates.

To compare the FDA/PCA1 and FDA/PCA2 methods for diagnosing
faults, the overall misclassification rates for the training and testing sets and
the information criterion (5.12) are plotted for various orders using FDA,
FDA/PCA1, and FDA/PCA2 (see Figures 10.20, 10.21, and 10.22), respec-
tively. The overall misclassification rates for the testing set using FDA/PCA1
and FDA /PCA2 was lower than that of the FDA for most orders a > p. The
performance of FDA /PCA1 and FDA /PCA2 was very similar, indicating that
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Fig. 10.20. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using FDA

using PCA1 to rank the m — p + 1 eigenvectors corresponding to the zero
eigenvalues in FDA is a reasonable approach. A close comparison of Figures
10.21 and 10.22 indicates that for 20 < a < 48, the overall misclassification
rate for the testing set using FDA /PCAL1 is lower than FDA/PCAZ2. Because
of this advantage of using FDA/PCA1 over FDA for this problem, lag vari-
ables will be included only on the data for FDA/PCA1 when investigating
the proficiency of the methods for removing serial correlations of the data.
To evaluate the potential advantage of including lagged variables in
FDA/PCAL to capture correlations, the overall misclassification rates for the
training and testing sets and the information criterion (5.12) are plotted for
various orders using FDA/PCA1 and DFDA/DPCAL1 (see Figures 10.21 and
10.23), respectively. FDA/PCA1 and DFDA/DPCAL select excellent vectors
for projecting to a lower-dimensional space for small a. Figures 10.21 and
10.23 show that most of the separation between the fault classes occurs in
the space provided by the first 13 generalized eigenvectors. The misclassifi-
cation rate with a = 13 for FDA/PCAL1 is 0.33 and DFDA/DPCAL1 is 0.34.
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Fig. 10.21. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using FDA/PCA1

The FDA/PCA and DFDA/DPCAl-based statistics were able to separate
the fault classes well for the space spanned by the first p — 1 generalized
eigenvectors. The proficiency was slightly increased as the dimensionality
was increased further for FDA/PCA1 and DFDA/DPCA1. DFDA/DPCA1
produced the lowest overall misclassification rate among all of the fault di-
agnosis methods investigated in this chapter. Including lagged variables in
FDA/PCAL1 can give better fault diagnosis performance. The advantage be-
comes especially clear when DFDA/DPCA1 is applied to a system with a
short sampling time (see Homework Problem 11).

The information criterion performed relatively well, as the slope of the
misclassification rate of the testing set is fairly equivalent to the slope of the
information criterion for a = 15 to 50 in Figures 10.20-10.23. The AIC cap-
tures the shape and slope of the misclassification rate curve for the testing
data. The AIC weighs the prediction error term and the model complexity
term fairly. If one desires to have a lower-dimensional FDA model for diag-
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Fig. 10.22. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using FDA/PCA2

nosing faults, the model complexity term can be weighed more heavily (see
Homework Problem 5).

Figure 10.24 plots the overall misclassification rates for the training and
testing sets and the information criterion (5.12) for various orders using PLS1
and PLS2. The reduction order c is the point at which the information crite-
rion is minimized. The reduction order for each class in PLS1 is ¢; = 13 and
the reduction order for PLS2 ¢; = 45. In general, the overall misclassification
rate of PLS1 is lower than that of PLS2 for a fixed order, especially when
a < ¢1. Also, the performance of PLS1 is less sensitive to order selection than
PLS2. The misclassification rate on average is the same for the best reduction
orders for PLS1 and PLS2, as shown in Table 10.12.

Figure 10.25 plots the overall misclassification rates for the training and
testing sets and the information criterion (5.12) for various orders using
PLS1,4; and PLS2,4;. Figures 10.24 and 10.25 show similar trends. Regard-
less of order selected, PLS1,4; performs better than PLS2,4; in terms of lower
overall misclassification rates. The reduction orders that minimize the AIC
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Fig. 10.23. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using DFDA/DPCA1

(5.12) for PLS1,4; and PLS2,4; are 16 and 41, respectively, which are close
to the orders for PLS1 and PLS2 (¢; and cp), respectively. In terms of over-
all misclassification rates, PLS1,4; and PLS2,4; have similar performance to
PLS1 and PLS2, respectively. For a fixed model order, the PLS1 methods
almost always gave better fault diagnosis than the PLS2 methods. The per-
formance of the PLS1 methods was also less sensitive to order selection than
the PLS2 methods, and with the AIC resulting in lower model orders (see
Table 10.4).

The information criterion worked fairly well for all discriminant PLS
methods. The overall misclassification rate for the testing set with the re-
duction order using the information criterion for PLS1,4; is 0.58 while that
for the other three PLS methods is 0.57. The minimum overall misclassifica-
tion rate for the testing set is 0.56 for PLS1,4; and PLS2,4; and 0.55 for PLS1
and PLS2. The AIC curves (see Figures 10.24 and 10.25) nearly overlap the
misclassification rate curves for PLS2 and adjusted PLS2, which indicates
that the AIC will give similar model orders as cross-validation in these cases.
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Fig. 10.24. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using PLS1 and PLS2

For PLS1 and adjusted PLS1, the AIC does not overlap with the classification
rate curves, but does have a minimum at approximately the same order as
where the misclassification rate curves for the testing data flatten out. This
indicates that the AIC provided good model orders for the PLS1 methods.
Figure 10.26 plots the overall standard deviation of misclassification rates
for the testing sets for various orders using PLS1, PLS2, PLS1,4;, and
PLS2,4;. The standard deviations for PLS1,4; and PLS2,4; were 10-25% lower
than that of PLS1 and PLS2 (respectively) for most orders. This indicates
that PLS1,4; and PLS2,4; provided a more consistent prediction quality than
PLS1 and PLS2. For example, 7 of 21 classes had misclassification rates be-
tween 0.90 to 1.00 using PLS1 and PLS2, respectively (see Table 10.14).
However, only 2 of 21 classes were between 0.90 and 1.00 using PLS1,4;
and PLS2,4; and the highest misclassification rate was 0.93. This also means
that when PLS1 and PLS2 produced low misclassification rates, PLS1,4;
and PLS2,4; tended to produce higher misclassification rates. There was an
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Fig. 10.25. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using PLS1.4; and PLS2,g;

advantage to apply PLS1,4; and PLS2,4; when PLS1 and PLS2 performed
poorly.

Although PLS1 was able to capture a large amount of variance using
only a few factors, it does require more computation time. Recall that in the
calibration steps, PLS1 needs to run the NIPALS p times whereas PLS2 only
needs to run the NIPALS one time, and that NIPALS runs from (6.10) to
(6.20) for each PLS component. Since iteration from (6.10) to (6.13) is needed
for PLS2, NIPALS requires a longer computation time in PLS2. Assume that
it takes ¢; computation time to run from (6.22) to (6.27) for PLS1, and that
it takes PLS2 t; + € computation time. The total computation time ¢rqin
in the calibration steps is equal to pat; and a(t; + €) for PLS1 and PLS2,
respectively, where @ = min(m,n). In the prediction steps, assume it takes
to computation time unit to run from (6.30) to (6.32), and that the total
computation time #;.,; in the prediction step is equal to pcity and coty for
PLS1 and PLS2, respectively. The ratio r; of the total computation time
between PLS1 and PLS2 is
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Fig. 10.26. The standard deviation of misclassification rates for the testing set for
various orders using PLS1, PLS2, PLS1.4j, and PLS2,.q;

pati + pcita

=S 10.1
mt a(ty + €) + cata (10.1)

This ratio is much greater than 1 when p is large.

The overall misclassification rates for the training and testing sets and
the information criterion (5.12) for various orders using PCA1 are plotted in
Figure 10.27. At a = 52, the overall misclassification rates for the T2 statistics
based on PCA1 and MS were the same (0.214). This verifies the discussion
in Section 4.6 that PCA1 reduces to MS when a = m. Regardless of order
selected, all FDA methods always gave a lower overall misclassification rate
than PCA1 (see Figure 10.20, 10.21, and 10.27). This suggests that FDA
model has an advantage over PCA model for diagnosing faults.

It is interesting to see that when all of the factors are included in the
FDA methods, the overall misclassification rates were about 0.20, which were
different from the overall misclassification rate produced by MS. This is be-
cause, when a = m, the matrices W, in (5.16) and W,z 4 in (5.17) are not
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necessarily orthogonal, and so may not project the data into an orthogonal
space.
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Fig. 10.27. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using PCA1

The PCAm-based and DPCAm-based statistics produced high overall
misclassification rates (see Table 10.12). A weakness of the PCAm-based
statistics is that PCAm reduces the dimensionality of each class by using the
information in only one class but not the information from all the classes.
As shown in Table 10.13, the T2 statistic based on PCA1 gave a much lower
misclassification rate than the statistic based on PCAm for almost all faults.

Now let us consider the PCA, DPCA, and CVA fault diagnosis statistics,
all of which separate the dimensionality into a state or score space, and a
residual space. For some faults the state or score space version of the statistic
gave lower misclassification rates; in other cases the residual space statistics
gave lower misclassification rates. Hence, a complete fault diagnosis approach
should contain score/state space and residual statistics.
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The misclassification rates for the 21 faults were separated into three
time periods after the occurrence of the fault (0-5, 5-24, and 24-40 hours),
and have been tabulated in Tables 10.15 to 10.20. These tables indicate that
each fault diagnosis statistic gives the lowest misclassification rate for some
choice of fault and time period. There is no single fault diagnosis statistic
that is optimal for all faults or all time periods.

Fault 6 is one of the more interesting faults, so it will be investigated
in more detail here. For the time period 0-5 hours after the fault occurred,
only the (D)PCAm-based statistics had high misclassification rates (see Table
10.15). For the time period 5-24 hours after the fault occurred, the (D)PCAm-
based statistics have low misclassification rates, while the discriminant PLS
methods have high misclassification rates (see Table 10.17). For the time
period 24-40 hours after the fault occurred, each fault diagnosis technique
has a zero misclassification rate except for the discriminant PLS methods,
which have nearly 100% misclassification.

The very poor behavior of the discriminant PLS method for Fault 6 af-
ter ¢ = 5 hours is somewhat surprising when studying the extreme process
behavior caused by the fault. For Fault 6, there is a feed loss of A in Stream
1 at t = 8 hours (see Figures 8.1 and 10.28), the control loop on Stream 1
reacts to fully open the A feed valve. Since there is no reactant A in the feed,
the reaction will eventually stop. This causes the gaseous reactants D and E
build up in the reactor, and hence the reactor pressure increases. The reactor
pressure continues to increase until it reaches the safety limit of 2950 kPa, at
this point the valve for Control Loop 6 is fully open. Clearly, it is very impor-
tant to detect this fault promptly before the fault upsets the whole process.
While the discriminant PLS methods were able to correctly diagnose Fault
6 shortly after the fault, its diagnostic ability degraded nearly to zero once
the effects of the fault worked their way through the system (which occurs
approximately at ¢t = 8 + 5 = 13 hours, see Figure 10.28).

For these data sets it was found that the FDA-based methods gave the
lowest misclassification rates averaged over all fault classes (see Table 10.12),
and that the MS, PCA1, and CVA T? statistics gave comparable overall mis-
classification rates as the FDA methods. Based only on this information, one
might hypothesize that dimensionality reduction techniques are not useful
for fault diagnosis as their performance is very similar to MS. However, this
conclusion would be incorrect, even for this particular application. For partic-
ular faults and particular time periods, substantially lower misclassification
rates were provided by the statistics that used dimensionality reduction (see
Tables 10.15 to 10.20). For example, 24-40 hours after Fault 18 occurred, two
dimensionality reduction statistics resulted in a zero misclassification rate
while one MS statistic had a 70% misclassification rate and the other had a
100% misclassification rate (see Table 10.20).

There are several general reasons that fault diagnosis statistics based on
dimensionality reduction are useful in practice. First, there are inherent lim-
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Fig. 10.28. Closed loop simulation for a step change of A feed loss in Stream 1
(Fault 6)

itations due to round-off errors that usually prevent the construction of full-
dimensional models for large-scale systems such as industrial plants. Second,
there can be limitations on the size of the models used by process monitoring
methods that can be implemented in real time on the computer hardware
connected to a particular process. While this limitation is becoming less of
an issue over time, the authors are aware of industrial control systems still
using older control computers.

The main reason for dimensionality reduction is based on the amount
of data usually available in practice that has been sufficiently characterized
for use in process monitoring. This data, for example, should be cleaned
of all outliers caused by computer or database programming errors [255].
For the application of fault diagnosis methods it is required to label each
observation as being associated with normal operating conditions or with
a particular fault class. These requirements can limit the available training
data, especially for the purposes of computing fault diagnosis statistics, to
less than what was used in this chapter.
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To illustrate the relationship between data dimensionality and the size
of the training set, 100 data points were collected for each fault class in the
training set (for all other simulations shown in this chapter, 500 data points
were collected in the training sets). The overall misclassification rates for
the training and testing sets and the information criterion (AIC) for various
orders using PCA1 are plotted in Figure 10.29. Although the misclassification
rates reduced nearly to zero as a goes to 52 for the training set, the overall
misclassification rates for the testing set were very high as compared to Figure
10.27. Recall that PCA1 reduces to the MS statistic when a = 52, this shows
that the MS statistic gives a higher overall misclassification rate for many
reduction orders (a = 20 to 45, as seen in Figure 10.29). In the case where
the number of data points in the training set is insufficient (the usual case in
practice), errors in the sample covariance matrix will be significant. In such
cases there is an advantage to using dimensionality reduction techniques. The
relationship between reduction order and the size of the training set is further
investigated in Homework Problem 11.

The purpose of dimensionality reduction techniques (PCA, FDA, PLS,
and CVA) is to reduce the dimensions of the data while retaining the
most useful information for process monitoring. In most cases, the lower-
dimensional representations of the data will improve the proficiency of de-
tecting and diagnosing faults.

10.9 Homework Problems

1. A co-worker at a major company suggested that false alarms were not an
issue with fault identification and that it may be useful to apply all the
scores (not just the first a scores) for the PCA, DPCA, and CVA-based
CONT as shown in Section 4.5. Evaluate the merits of the proposal.
Apply this idea to the data collected from the Tennessee Eastman plant
simulator (http://brahms.scs.uiuc.edu). What are your conclusions?

2. Apply the similarity index (4.41) and mean overlap (4.42) to the data
collected from the Tennessee Eastman plant simulator. Relate your re-
sults with these two measures with the misclassification rates of the fault
diagnosis statistics as reported in this chapter. Do the similarity index
and mean overlap assess the likelihood of successful diagnosis? Explain
in detail why one measure performs better than the other.

3. As discussed in Chapter 5, (D)FDA only ranks the eigenvectors associ-
ated with the non-zero eigenvalues. Propose a method other than PCA1
to rank the eigenvectors associated with the zero eigenvalues. Evaluate
your proposal using the data collected from the Tennessee Eastman plant
simulator.

4. In addition to the original 21 faults for the TEP, simulate 39 additional
multiple faults (combination of two faults) of your choice. Apply FDA,
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Fig. 10.29. The overall misclassification rates for the training and testing sets and
the information criterion (AIC) for various orders using PCA1 with 100 data points
in the training set

FDA/PCA1, FDA/PCA2, and their corresponding dynamic version to
diagnose these 60 faults and comment on your findings.

5. A co-worker at a major company proposed to modify the model complex-
ity term in the information criterion (5.12) to 1.5a/7. Based only on the
performance as given by Figure 10.23 which was obtained by an applica-
tion of the original information criterion (5.12) to a simulated industrial
plant, evaluate the relative merits of the co-worker’s proposal. Another
co-worker suggested to modify the model complexity term in the infor-
mation criterion (5.12) to a/n. Evaluate the relative merits of the second
proposal. Based on Figure 10.23, propose a modification of the model
complexity term which will give the best results for the simulated indus-
trial plant. How well does your modified model complexity term perform?
[Note that designing the best information criterion for one specific pro-
cess application does not necessarily give the best possible information
criterion for other process applications.]
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6.

10.

11.

12.

10. Results and Discussion

Formulate dynamic discriminant PLS for diagnosing faults. Apply this
approach to the data collected from the Tennessee Eastman plant sim-
ulator. Compare the results with the discriminant PLS results as shown
in this chapter. Does dynamic discriminant PLS perform better?

. Discuss the effect of lag order h and state order k selection on the fault

detection performance using all the CVA statistics. Apply the Q, T, and
T? statistics for fault detection to the data collected from the Tennessee
Eastman plant simulator. Now, perturb h and k from their optimal val-
ues. Report on your results. Which statistic deviates the most? Why?

. Describe in detail how to formulate CVA for fault diagnosis. Apply these

techniques to the data collected from the Tennessee Eastman plant sim-
ulator. How do these fault diagnosis results compared with the results
reported in this chapter?

. Write a report describing in detail how to implement PCA and PLS with

EWMA and CUSUM charts to detect faults. Apply this technique to the
data collected from the Tennessee Eastman plant simulator. Compare the
results with the DPCA results as shown in this chapter. Which technique
seems to capture the serial correlations of the data better? Justify your
findings. List an advantage and disadvantage of using each technique.

A co-worker proposed to average each measurement over a period of time
before applying the data to the process monitoring algorithms. Evaluate
the merits of this “moving window” proposal and apply the approach
to PCA, DPCA, and CVA for fault detection using the data collected
from the Tennessee Eastman plant simulator. Investigate the effect of the
number of data points used in the averaging on the process monitoring
performance. Was it possible to improve on DPCA and CVA using this
approach? Justify your answers.

Evaluate the effects of the size of training set and the sampling interval
on the reduction order and process monitoring performance. Construct
training and testing data sets for the TEP using (i) 150 points with a
sampling interval of 10 minutes, (ii) 1500 points with a sampling interval
of 1 minute, and (iii) 1500 points with a sampling interval of 10 minutes.
Implement all process monitoring statistics described in this book. How
is the relative performance of each process monitoring statistic affected?
Why? How is the reduction order affected? Compare the techniques in
terms of the sensitivity of their performance to changes in the size of the
training set and the sampling interval.

While the threshold for the @ statistic (Equation 4.22) is widely used in
practice, its derivation relies on certain assumptions that are not always
true (as mentioned in Section 10.6). Write a report on the exact distri-
bution for Q and how to compute the exact threshold for the @ statistic.
Under what conditions is Equation 4.22 a valid approximation? Would
these conditions be expected to hold for most applications to process
data collected from large-scale industrial plants? (Hint: Several papers
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that describe the exact distribution for @ are cited at the end of the
paper by Jackson and Mudholkar [145].)



Part V

Analytical and Knowledge-based Methods



11. Analytical Methods

11.1 Introduction

As discussed in Section 1.2, process monitoring measures can be character-
ized as being data-driven, analytical, or knowledge-based. Part III focused
mostly on the data-driven methods, which include control charts (Shewhart,
CUSUM, and EWMA charts) and dimensionality reduction techniques (PCA,
PLS, FDA, and CVA). A well-trained engineer should also have some famil-
iarity with the analytical and knowledge-based approaches since they have
advantages for some process monitoring problems. Also, many measures can
be associated with more than one approach. For example, the CVA method,
while being entirely data driven, can also be characterized as being an analyt-
ical method since a state-space model can be constructed from the Kalman
states (see Chapter 7). Other measures at the intersection of more than one
approach are discussed in Chapter 12.

Based on the measured input u and output y, the analytical methods gen-
erate features using detailed mathematical models. Commonly used features
include residuals r, parameter estimates p, and state estimates X. Faults are
detected or diagnosed by comparing the observed features with the features
associated with normal operating conditions either directly or after some
transformation.

Analytical methods that use residuals as features are commonly referred
to as analytical redundancy methods. The residuals are the outcomes of
consistency checks between the plant observations and a mathematical model.
The residuals will be non-zero due to faults, disturbances, noise, and /or mod-
eling errors. As we will see, part of the challenge in designing a process
monitoring system based on analytical redundancy is distinguishing between
residuals caused by faults, and residuals caused by the other variations. In
the preferred situation, the residuals or transformations of the residuals will
be relatively large when faults are present, and small in the presence of dis-
turbances, noise, and/or modeling errors. In this case the presence of faults
can be detected by defining appropriate thresholds. In any case, an analytical
redundancy method will arrive at a diagnostic decision based on the residuals
[87, 101, 221].

The three main ways to generate residuals are parameter estimation,
observers, and parity relations [94].

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems
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1. Parameter estimation. For parameter estimation, the residuals are
the difference between the nominal model parameters and the estimated
model parameters. Deviations in the model parameters serve as the basis
for detecting and isolating faults [20, 135, 136, 163].

2. Observers. The observer-based method reconstructs the output of the
system from the measurements or a subset of the measurements with the
aid of observers. The difference between the measured outputs and the
estimated outputs is used as the vector of residuals [54, 68, 86].

3. Parity relations. This method checks the consistency of the mathemat-
ical equations of the system with the measurements. The parity relations
are subjected to a linear dynamic transformation, with the transformed
residuals used for detecting and isolating faults [63, 101, 226, 227].

When an accurate first-principles or other mathematical model is avail-
able, the analytical approach can provide improved process monitoring com-
pared to data-driven or knowledge-based approaches. Analytical approaches
can also incorporate process flowsheet information in a straightforward way.

As mentioned in Section 1.1, process monitoring terminology varies across
disciplines. The definition of fault detection is fairly consistent, while a variety
of overlapping definitions is used for fault identification and fault diagnosis.
A term not defined in Section 1.1 is fault isolation, which is commonly
defined as determining the exact location of the fault or faulty component,
that is, to determine which component is faulty [101]. Fault isolation provides
more information than a fault identification procedure as defined in Section
1.1, in which only the observation variables associated with the fault are
determined. Fault isolation does not provide as much information as a fault
diagnosis procedure as defined in Section 1.1, in which the type, magnitude,
and time of the fault are determined. More specifically, a single component
may have a variety of different types of faults associated with it (e.g., a valve
may be stuck closed, or may just have occasional sticking). A fault isolation
procedure may locate the component (e.g., the valve), but a fault diagnosis
procedure would be needed to determine the type of fault associated with the
component (e.g., “stuck closed” versus “occasional sticking”). A commonly
used term in the literature is the FDI system, which is a process monitoring
method that contains both fault detection and isolation stages.

Most of the analytical methods described in this chapter can be char-
acterized as being FDI systems. Enough background is provided on each
method so that the reader can determine which approach is likely to be most
promising in a particular application. Plenty of references are given for the
reader to learn more about implementation. The chapter begins in Section
11.2 by defining additive and multiplicative faults, and describing how these
faults affect the process dynamics. Analytical approaches based on parameter
estimation, state estimators/observers, and parity relations are discussed in
Sections 11.3, 11.4, and 11.5, respectively.
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11.2 Fault Descriptions

For a plant with input u € R™+ and output y € R™v, the discrete-time
linear state-space model (without faults, disturbance, and noise) is

x(t +1) = Ax(¢) + Bu(t) (11.1)

y(t) = Cx(t) + Du(t) (11.2)

where x € R is the state vector, ¢ is the discrete-time index, and the state-
space matrices A, B, C, and D specify the state-space model.

Faults that can be modeled as unknown changes in signals in the system
are called additive faults. Additive faults include

e actuator faults Au(t),
e sensor faults Ay(t),
e some plant faults (such as, leaks) Aup(2).

An example of an actuator fault is a sticking valve or a burnt-out motor.
A sensor fault is a corroded thermocouple, or a leak in the pressure line to
a differential pressure gauge. An example of a plant fault that acts as an
additive fault is a leak in a pipe containing process fluid.

Now consider the effect of additive faults on the observed values of the
inputs and outputs. As shown in Figure 11.1, the observed values of the input
u(t) and output y(t) are related to the true values (those acting on or arising
from the plant) u°(t) and y°(t) as

u°(t) = u(t) + Au(t), (11.3)
and

y°(t) = y(t) + Ay (¢). (11.4)

The plant faults affect both the true output and the observed output.

Now the above equations are augmented to include additive noise and dis-
turbances. Consider additive plant disturbance d(t) and the following noise
signals:

e actuator noise du(t),
e sensor noise dy(t),
e plant noise dup(t).

The observed and true values for the plant input u and output y are related
to the additive faults and noise signals by

u’(t) = u(t) + Au(t) + du(t), (11.5)

and
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Au Au,

Plant y

_Ay

Fig. 11.1. Relationship between the additive faults and the plant variables

y°(t) = y(t) + Ay(t) + oy (¢). (11.6)

Define the combined vector of additive faults as
Au(t)

f(t) = | Aup(t) (11.7)
Ay(t)

and the combined vector of additive noise as

du(t)

n(t) = | dup(t) | . (11.8)
Sy (t)

Extending the state equations (11.1) and (11.2) to include the additive
noise, disturbances, and faults gives

x(t + 1) = Ax(t) + Bu(t) + B¢f(t) + Bad(t) + Bnn(t) (11.9)

¥(t) = Ox(t) + Du(t) + Df(t) + Dad(t) + Dun(t) (11.10)

where the subscript f is for matrices associated with faults, d is for matrices
associated with disturbances, and n is for matrices associated with noise.
The state-space matrices are usually highly structured, especially for the
matrices associated with the faults (By, Dy) and disturbances (Bg, Dg) in
which entire rows or columns of zeros are common. For example, the column
of By associated with a sensor fault in f is commonly equal to zero, since a
sensor fault may affect the output equation without affecting the states.
By introducing the shift operator [19]

gx(t) = x(t+1), (11.11)

the state equations (11.9) and (11.10) can be rewritten in terms of transfer
functions:
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y(t) = P(q)u(t) + Pr(q)f(t) + Pa(q)d(t) + Prn(g)n(t) (11.12)

with the transfer functions being described by

P(q)=C(ql - A)'B+ D,
Ps(q) = C(qI — A)™'B; + Dy,
Py(q) = C(qI — A)~'By+ Dy,
P.(q) = C(qI — A)"'B,, + D,,.

(11.13)

Equation 11.12 describes the effects of additive faults, disturbances, and noise
on the plant output. Each effect enters the output equation only as changes
in signals, not as changes in the transfer functions (the state-space matrices
are assumed fixed).

Alternatively, some faults are best modeled as being multiplicative
faults, which are written in state-space form as

x(t+1) = (A + AA)x(t) + (B + AB)u(t) (11.14)

y(t) = (C + AC)x(t) + (D + AD)u(t). (11.15)

Using the shift operator, the state equations can be written in transfer func-
tion form

y(t) = P°(q)u() (11.16)
where
P°(q) = (C+ AC)(¢gI — A— AA)"Y(B+ AB)+ D + AD (11.17)

where P°(q) is the true transfer function for the physical system.
The discrepancy AP(q) between the model and the true system is defined
by

P°(q) = P(q) + AP(g). (11.18)

Introducing the expression for the process model P(g) from (11.13) and re-
arranging gives
AP(q) = P°(q) — P(q)
=(C+ AC)(gI — A—- AA)"Y(B+ AB)+ D+ AD

— (C(¢f — A)7'B + D). (11.19)

The discrepancy may be due to parametric faults, where the plant has de-
viated from its earlier normal behavior, which was properly represented by
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the model. Instead, the discrepancy could be due to modeling error, which
may be present since the implementation of the algorithm. The modeling
error may be due to inaccuracy in some of the physical parameters, or due
to unmodeled dynamics caused by simplifying a higher-order model with a
lower-order model. Another common source of modeling error is from ap-
proximating a nonlinear model with a linear model, or by making simplifying
assumptions in the derivation of a first-principles model for the plant.

In the absence of the additive faults, disturbances, or noise, the plant
output would be

y(t) = (P(q) + AP(g))u(t) = P(q)u(t) + AP(q)u(t). (11.20)

This equation shows why the discrepancy in (11.18) is said to be multiplica-
tive rather than additive. By comparing (11.20) with (11.12), we see that
multiplicative faults and additive faults affect the plant output in a differ-
ent manner. Additive faults and disturbances are signals that are related
to the output through time-invariant transfer functions. On the other hand,
parametric faults and model errors cause a discrepancy in the input-output
transfer function. This discrepancy is multiplied by the plant input.

Let us consider a specific case, where the plant input u is doubled in size.
For an additive fault (11.12), this doubling would not affect the mapping
between the faults and the plant output. For a multiplicative fault (11.20),
doubling the magnitude of the plant input u doubles the magnitude of the
effect of the discrepancy on the plant output. This example is useful to keep
in mind when classifying a particular type of fault as being additive or mul-
tiplicative.

In the above presentation, the state-space model (11.9) and (11.10) was
written in discrete-time form and the transfer function form of the input-
output relationship (11.12) was derived using the shift operator. An alterna-
tive approach is to use a continuous-time state-space model:

d);_(tt) = Ax(t) + Bu(t) + Byf(t) + Bad(t) + Ban(t) (11.21)
y(t) = Ox(t) + Du(t) + Dyf(t) + Dad(t) + Dun(t)- (11.22)

Applying the Laplace transform on (11.21) and (11.22) and rearranging re-
sults in the transfer function form for the input-output relationship:

v(s) = P(s)u(s) + Ps(s)f(s) + Pa(s)d(s) + Pn(s)n(s) (11.23)
where
P(s)=C(sI - A)™'B+D,

(11.24)
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Similarly, multiplicative faults can be written as

y(s) = P°(s)u(s) (11.25)
where
P°(s) = P(s) + AP(s) (11.26)

and the model discrepancy AP(s) is defined by

AP(s) = P°(s) — P(s)

=(C+AC)(sI-A- AA)Y(B+AB)+ D+ AD
~ = 11.27
- (C(sI — A)~'B+ D) ( )
and AA, AB, AC, and AD are the perturbations in the state-space matrices
for the continuous-time system.

The next three sections describe how additive and multiplicative faults
can be detected and isolated using parameter estimation, observers, and par-
ity relations. As we will see, parameter estimation is especially suited for
handling multiplicative faults, whereas additive faults are more naturally ad-
dressed using observers or parity relations.

11.3 Parameter Estimation

The parameter estimation method is appropriate if the process faults are as-
sociated with changes in model parameters (i.e., multiplicative faults), and
appropriate mathematical models are available. The model parameters are
generally unmeasured, but can be estimated using standard parameter esti-
mation techniques [25, 199], which can be implemented recursively to reduce
computational requirements. Constructing the models from first-principles
facilitates relating the model parameters directly to parameters that have
physical meaning in the process. Thresholds can be placed on the individual
differences between the nominal model parameters and the parameter esti-
mates, or on some combination of these differences. Many papers based on
the parameter estimation method are available [58, 135, 263].
The parameter estimation method consists of the following steps:

1. Write the process equations for the measurable input variables u(t) and
output variables y(¢) using conservation equations and phenomenological
relationships (e.g., phase equilibria, fluid constitutive equations). The
process equations relate the input variables u(t) and the physical model
parameters p; to the output variables y(t).
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2. If necessary, make simplifying assumptions or lump the physical model
parameters p; together so the parameter estimation problem for the new
parameters 0; is observable, that is, so that the new parameters can be
uniquely determined. During this step, it is also useful to re-define vari-
ables so that the new variables §; enter linearly in the process equations,
as this will simplify the parameter estimation problem.

3. Estimate the model parameters 6; from the current and recent past
measurements of the input variables u(t) and output variables y(t)
[22, 25, 199]. If the §; appear linearly in the process equations, then
it is possible to stack the equations so that

z="U0+e (11.28)

where z is a vector the elements of which are known functions of the
measured variables, ¥ is a matrix of measured variables, 6 is the vector
of parameters to be estimated, and e is the vector of the equation errors.
If the measurement noise is relatively small, then the vector of estimated
parameters 6 can be obtained by minimizing the sum-of-squared-errors
function eTe by least squares:

0= ) 0T, (11.29)
These parameter estimates will be biased if there is significant measure-
ment noise. If there is significant measurement noise or the 6; appear non-
linearly, then more sophisticated parameter estimation algorithms should
be used [25, 199, 355].

4. Calculate estimates of the physical parameters p; from the estimated
model parameters éj. If lumping was used, then in some cases only com-
binations of the physical parameters p; can be determined.

5. Faults are indicated if changes in the physical parameters are larger than
those observed in training data. Isolate faults by comparing changes in
the physical parameters with observations stored in historical databases.

In the parameter estimation method, it is required that the signals have
sufficiently high persistent excitation. This motivates keeping the number of
independent parameters as small as possible, by simplifying the model or by
lumping several parameters together (Step 2).

For fault detection and isolation, Step 5 compares the parameter estimates
to their nominal values by computing the differences

Apj = pj - ]3_7' (1130)

where p; is the nominal value for the physical parameter. Even if no faults
are occurring in the plant, the Ap; will not be equal to zero due to process
disturbances and noise. In other words, the Ap; will be stochastic variables,
and a threshold must be used to indicate whether a fault has occurred. A fault
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is detected when a single Ap; is larger than some threshold, or some com-
bination of Ap; is greater than some threshold. The parameters associated
with the threshold violation are those associated with the fault. Thresholds
can be defined using the T2 statistics with training data as discussed in Parts
IT and III, or by more sophisticated statistics [141]. The process monitoring
procedure can be made more sensitive to slow drifts by applying exponential
moving averages or cumulative sums on the parameter differences (11.30), in
a way similar to that in univariate or multivariate control charts (see Chapter
2).

The procedure of detecting faults using the parameter estimation method
is illustrated using a gravity flow tank (see Figure 11.2) [245]. The single-
input-single-output system is governed by the material balance equation:

fi-’t—’ =F,—ch (11.31)

Acd

where A, is the cross-sectional area of the tank, h is the liquid level, c is a
constant which depends on the valve, and F; is the measured inlet flow rate.
The outlet flow rate F, is measured, and is nominally equal to ch. Equation
11.31 can be written in terms of the state-space equations

Z—’: = Ax(t) + Bu(t) (11.32)
y(t) = Ox(t) (11.33)

where u = F;, y = F,, x = h, A = —c/A;, B = 1/A., and C = c. All
measured signals are assumed to have additive normally distributed noise
with zero mean and variance with magnitude of 1074

F;
Stream 0 @ Stream 1

o/

[ -

F,

——— () ——

Stream 2 tream 3

Fig. 11.2. A gravity flow tank system with one measured input F;, one measured
output F,, and one measured state h. The FT is standard nomenclature for a flow
transmitter [134].
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Fig. 11.3. The measured input (inlet flow rate), the measured state (liquid height),
and the measured output (outlet flow rate) of the gravity tank during normal
operating conditions

Assuming ¢ = 0.3 and A, = 1, Figure 11.3 plots the measured input u, the
measured output y, and the measured state x for a step change in inlet flow
rate. The state x and output y follow first-order responses. Now consider the
case where a leak (a 30% drop of magnitude in Stream 1) occurs in Stream
1 for t > 14.5 (see Figure 11.2 for definition of Stream 1). Figure 11.4 plots
the measured input «, the measured output y, and the measured state z for
a step change in inlet flow rate. Although a leak in Stream 1 does not affect
the measured input F;, the fault does affect the true input flow rate to the
tank, which is unmeasured. Because the true input flow rate to the tank drops
at t = 14.5, the measured state h and measured output F, also drop. This
fault corresponds to a change in the parameter B in the state-space equation
(11.32), so it would be expected that changes in an on-line estimate of B can
be used to detect the leak.

To estimate the parameter B in (11.32), the process model equation is
written in the form:

2(t) = T (t)0+e(t) (11.34)
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Fig. 11.4. The measured input (inlet flow rate), the measured state (liquid height),
and the measured output (outlet flow rate) of the gravity tank when a leak in Stream
1 occurs at £t = 14.5

where 2(t) = dz/dt, ¥ 7T (t) = [z, ul, § = [4, B]T, and e(t) is the equation er-
ror. The derivative of the state can be numerically approximated by backward
difference applied to the measured state

dz(t) ~ z(t) — z(t — To)
dt To

(11.35)

where Ty = 0.5 was the sampling interval.

Better parameter estimates are obtained by using consecutive time inter-
vals. To put this system into the standard form for parameter estimation,
stack the elements of z(t) and 7 (t) into vectors

z = [2(0), 2(1), -+, z(n)]T (11.36)

and
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[47(0) |
v, = v (1) (11.37)
| 9T (n) |
Then
z=V0+e (11.38)
where
€= [6(0), 6(1), T ae(n)]T (11'39)

is the vector of the equation errors. Here it is assumed that the process
is monitored during startup, in which case it is reasonable to compute the
parameter estimates using all sampling instances from ¢ = 0 to the current
sampling instance t = n.

The estimated parameter vector 6 was determined by least squares, with
the results shown in Figure 11.5. In the noise-free and fault-free case, the
estimated parameter B would be equal to 1. Because of the measurement
noise, the estimated parameter Bis actually approximately 0.88 in the fault-
free case (see top plot in Figure 11.5). The middle plot in Figure 11.5 is
the parameter estimate B for the case where the fault occurs at t = 14.5.
The bottom plot in Figure 11.5 is the residual AB, which is the difference
between the estimated parameter B in the normal operating conditions (0.88)
and the parameter in the case where the fault occurs at ¢ = 14.5. The residual
significantly deviates from zero at ¢ = 21, indicating that a fault is detected.
The detection delay is 13 sampling intervals. The fact that the estimated
model parameter B is decreasing with time suggests that the fault is due to
a leak in Stream 1.

This example illustrates the fact that least-squares estimation can give bi-
ased estimates of the parameters. This is why the estimated model parameter
during normal operating conditions (0.88) was used to compute the residual,
rather than the true model parameter (1). With the properly defined residual,
this bias in the parameter estimate did not affect the ability of the param-
eter estimation method to correctly detect the fault. An FDI system based
on parameter estimation should always include model validation, where the
parameters are estimated using normal operating conditions. Beyond just
ensuring that the parameter estimation algorithm is correctly implemented,
this allows the determination of consistent biases in the parameter estimates,
so that the residuals can be redefined to avoid false alarms. If the biases are
too large, then an unbiased parameter estimation algorithm should be used
[25, 199].

Let us further illustrate the parameter estimation method with a multi-
input-multi-output example. Consider a process consisting of a centrifugal
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Fig. 11.5. The estimated parameter B during normal operating conditions (top
plot), the estimated parameter when a leak in Stream 1 occurs at ¢t = 14.5 (middle
plot), and the associated residual for the gravity tank (bottom plot)

pump with a water circulation system, driven by a speed-controlled direct-
current (DC) motor [96, 135]. The physical process coefficients are listed in
Table 11.1. Because these coefficients are not measurable, changes in their
values are determined by parameter estimation.

The first step of parameter estimation is to model the input-output re-
lationship of the system to satisfy phenomenological relationships and the
underlying physical laws such as the material, momentum, and energy bal-
ance equations. The first-principles model for this system is [135]:

e Armature circuit

dly (¢)

Ll—d?— = —RlIl(t) — WUJ(t) + uy (t) (1140)

e Mechanics of motor and pump

dw(t) _

(I + Ip) =5 = WL (8) — (0 + er)e(t) — gneM(0) (11.41)
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Table 11.1. Physical process coefficients for a centrifugal pump with a water cir-
culation system, driven by a speed-controlled DC motor

armature inductance L
armature resistance R
flux linkage '
moment of inertia of the pump Ip
moment of inertia of the motor Ing
sum of the friction coefficients for the motor and pump | cr1
torque coefficient for the pump o
torque coefficient for the motor aM
first coefficient of the momentum equation Qac
second coefficient of the momentum equation ar
first coeflicient of the specific energy of the pump he
second coefficient of the specific energy of the pump hny

¢ Pipe system

aac%ﬂt—l = —arM(t)+ Y (2) (11.42)

e Pump specific energy
Y (t) = how(t) + har M (2). (11.43)

Many of the variables are written in terms of deviations about steady-state
operating conditions, and the signal variables are defined in Table 11.2.

Table 11.2. Input, state, and output variables for the centrifugal pump with a
water circulation system, driven by a speed-controlled DC motor. All the variables
are measurable.

armature voltage of the motor | u; | input
armature current of the motor | I state

angular velocity of the motor w state
mass flow rate of the pump M | state
specific energy of the pump Y | output

The state-space equations for the system are

% = Ax(t) + Bu(t) (11.44)
y(t) = Cx(t), (11.45)

with the manipulated variable

u(t) = w(t), (11.46)



the state vector

[ I (t) ]

x(t) = | w(®) |,

| M ()]

and the plant output vector

B

(L) ]
w(t
y®)=| )
| Y(2) ]
The state-space matrices are
[a11 012 0
A= |a2 a2 a3
| 0 a3z as33
b,
B=1]0]|,
0
(10 0
01 0
C= 00 1
| 0 hy hy
where
w =B
u=-7
g = - L
12 =~
14
a1 =
el N
ags = _cFl + Jw
Iy +1Ip
ags = M

_IM+IP
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(11.47)

(11.48)

(11.49)

(11.50)

(11.51)

(11.52)
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hy
agz = —
aac
hM — apRr
assz =
Qgc
1
by = —.
L

The state-space matrices A and B are nonlinear in the physical model param-
eters (see Equation 11.52), the new model parameters a;; and b; are defined
so that A and B are linear in these parameters. This results in a parameter
estimation problem that is linear in the parameters.

To estimate the a;; and b; in (11.49) and (11.50), the process model
equations for the measurable input and output signals are written in the
form:

2 (t) = ¢ (£)0;+e;(t) j=1,2,3,4 (11.53)
where

1(t) = dI;ft); 2(8) = 71(:_); z(t) = dAZt(t)’ Al =Y() (11.54)

¥ (8) = L), w(), m@®)]; 61 = [ans, a2, ba]” (11.55)

¥ (8) = [L(),w(t), M(2)]; 62 = [a21,a22,a23]" (11.56)

$3 (t) = [w(t), M(t)); 05 = [ass,ass]" (11.57)

¥i () = Ww®), MO 64 = [k, ha]” ' (11.58)

The functions ;7 () are measured variables. If the measurement of Y (t) is
less noisy than the measurement of w(t), then (11.57) can be replaced by

Y3 (8) = [Y(8), M(2)]; 05 = [ah, aly]" (11.59)
where
agy = ;1— (11.60)

and
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g = ——& (11.61)

Qgc

The z;(t) are determined by differentiating the measurements. The deriva-
tives can be numerically approximated such as by backward differences, for
example,

dh(t) L) — Lt —To)
dt To

(11.62)

where T is the sampling interval. However, this method can give poor re-
sults when the measurements are noisy, which is the usual case. Filtering
approaches can give better results [355].

Obtaining accurate parameter estimates for a system of this complexity
requires using multiple consecutive measurements to obtain the estimates.
Since the measurements of the input and output signals are made at discrete
sampling instances ¢, (11.53) can be written as

zi(t) = ¢ (t)05+e;(t),  §=1,2,3,4,¢=0,1,---,n (11.63)

To put this system into the standard form for parameter estimation, stack
the elements of z;(t) and ;" (t) into vectors

25 = [2(0), 2i(1), -+, 2i(n)] " (11.64)
and
[ 47 (0)]
¥, = %T_(l) (11.65)
¢ (m) ]
Then
z; = ¥;0; + ¢ (11.66)
where
e; = [(0), (1), , &5 (n)] T (11.67)

is the vector of the equation errors.

For each j, the estimated model parameter éj is obtained by minimizing
the sum-of-squared-errors ejTeJ-. The estimated model parameters are com-
puted by least squares:

b = (@) 0 g (11.68)

2
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Alternatively, the model parameters could be estimated simultaneously using
(11.29).

The relationships between the estimated model parameters éj and the es-
timated physical parameters p are determined by rearranging (11.52), which
gives

~ 1 . a
By= A (11.69)
by by
¥ =212, g+ Ip =222 (11.70)
by d21b1
N ag2a . dg3a
ép1+ o = —2; = B (11.71)
a1 by d21b1
1 dhq
N f = 333 11.72
aac &éz, aR &{32 ( )
b = hu; Ay = b (11.73)

While all of the coefficients that describe the linearized dynamic behavior can
be determined by least squares, several of the parameters had to be lumped
together so that there are only ten unique combinations of parameters. For
example, the moments of inertia of the pump and the motor show up only as
the sum of the two terms. While the sum of the moments of inertia can be
determined by parameter estimation, their individual values could not. This
lumping is usually needed in practice to result in an identifiable parameter
estimation problem. Thus, a significant change in the sum of the moments
of inertia of the motor and the pump (Ip + Ip) may be due to a fault in
either the motor or the pump. A significant change in most of the other
physical parameters can be isolated to a particular component. For example,
a significant change in the torque coefficient for the motor gy indicates that
a fault has occurred in the motor. Some faults are associated with significant
changes in multiple physical parameters, in which case a historical database
of parameter changes that occurred during past faults can be used to isolate
the faults.

11.4 Observer-based Method

The observer-based method is appropriate if the faults are associated with
changes in actuators, sensors, or unmeasurable state variables, that is, it is
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especially appropriate for detecting and isolating additive faults. A detailed
mathematical model for the plant is required, preferably derived from first
principles so that the states in the state-space equations have a physical
interpretation. The unmeasured states are reconstructed from the measurable
input and output variables using a Luenberger observer or Kalman filter
[31, 38, 54, 153]. The observer-based method is in sharp contrast to the
CVA-based method for process monitoring described in Chapter 7, in which
the states are directly constructed from the process data, rather than through
the use of a known process model and an observer.

For the states that are measured, a residual can be defined as the differ-
ence between the estimated state and the measured state. For states that are
unmeasurable (the usual case), the residual is defined based on the difference
in the estimated plant output and the measured plant output, or by some
linear transformation of this difference. Based on thresholds on the residu-
als of the state variables or output variables, abrupt changes can be detected
[341]. The main reason for preferring first-principles models is that such mod-
els add significant structure to the state-space equations, which is especially
useful for modeling the effect of faults on the states and plant outputs. Also,
physically-meaningful states greatly aid in isolating and diagnosing faults
once thresholds on the residuals have been violated.

It is also possible to design an observer-based FDI scheme purely from
an input-output point of view, which allows a frequency-based design based
on the transfer functions (11.12) or (11.23) [90]. A drawback of such an
approach is that relationships to any physically-meaningful states are lost.
An advantage of a frequency-domain method is that model uncertainties, one
of the main concerns in an FDI system, is often more conveniently modeled
in the frequency domain [232, 291]. Hence a frequency-domain method can
be more natural for designing FDI systems that simultaneously optimize
sensitivity to faults, while minimizing sensitivity to model uncertainties.

This section focuses on state-space methods, because it is useful for
both linear and nonlinear plants, and it provides a connection between the
FDI system and any physically-meaningful states. Readers interested in the
frequency-based design of observer-based FDI systems are referred to a rather
detailed review [41]. Several more general reviews describing process monitor-
ing methods based on the observer-based method are available [86, 135, 140].
Several papers have been published using these methods, especially in recent
years [136, 137, 141, 162, 182, 220, 233, 367].

11.4.1 Full-order State Estimator

This section describes the basic idea of the observer-based method, illustrat-
ing the concepts with a simple process example.

The state vectors can be reconstructed from the measurable plant input
u and plant output y using an observer. Consider a linear process with the
state-space equations (11.9) and (11.10), in which the disturbance d(t) is



192 11. Analytical Methods

lumped together with the noise term n(t), and the matrix D is assumed to
be zero:

x(t + 1) = Ax(t) + Bu(t) + B¢f(t) + Bad(t) (11.74)

y(t) = Ox(t) + Dff(t) + Dad(t). (11.75)

The state X(t) and output §(t) estimated by a linear full-order observer is
described by the equations:

%(t +1) = A%(t) + Bu(t) + H[y(t) — §(t)] (11.76)

y(t) = Cx(t). (11.77)

The observer gain H is selected to satisfy design specifications such as sta-
bility, fault sensitivity, and robustness.

With (11.74)-(11.77), the relations for the state estimation error Ax(t) =
x(t) — %(t) and the output estimation error Ay(t) = y(t) — §(¢) are

Ax(t +1) = [A — HC|Ax(t) + [B; — HD{If(t) + [Bg — HD4)d(2)
(11.78)

Ay(t) = CAx(t) + Dyf(t) + Dad(t). (11.79)

The state estimation error Ax(t) and the output estimation error Ay(t)
are functions of the disturbances d(t) and the faults f(¢), but do not depend
on the input u(¢). If the states were measured, then Ax(t) could be used to
detect and diagnose faults. Usually the states are not measured, and Ay(t)
is used as the residual which forms the basis for the observer-based FDI
system. This residual is usually transformed so as to increase the effect of
faults and decrease the effect of disturbances on the transformed residuals.
Before describing these transformations, let us first illustrate the procedure of
using the full-order observer method for detecting faults on the gravity tank
example introduced in Section 11.2. When Stream 1 has a leak, the measured
input u(t) is related to the true input u°(t) by

w(t) = u(t) + Au(t), (11.80)

where Au(t) = f(¢t) is a negative value representing the magnitude of the
leak. The state-space equations (11.32) and (11.33) become

% = Ax(t) + Bu(t) + Bs£(t) (11.81)

y(t) = Cx(¢) (11.82)
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where By = 1/A.. The estimated state %(t) is obtained using (11.76). In this
particular example, the state is the height of the liquid which is measurable.
Hence in this case the state estimation error Ax(t) could be used as the
residual. Since the states are unmeasurable in most practical problems, we
will use the output estimation error Ay(t) from (11.79) as the residual. The
measured output, the estimated output, and the associated residual during
normal operating conditions are plotted in Figure 11.6, where the observer
matrix H = 0.01. The estimated output matches fairly well with the mea-
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Fig. 11.6. The measured output, the estimated output, and their associated resid-
ual obtained from the full-order observer in the normal operating conditions of the
gravity tank

sured output, with a fairly small residual (—0.05 < Ay < 0.05 for almost all
t). The measured output, the estimated output, and the associated residual
in the case where a leak occurs at ¢ = 14.5 are shown in Figure 11.7. The
residual deviates from zero significantly at ¢ = 15.5, indicating that the fault
is detected in two sampling intervals. The full-order observer was much more
prompt in detecting the fault than the parameter estimation method shown
in the last section.
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This example illustrates the point that some faults can be modeled equally
well as being additive or multiplicative. The best approach for such faults
depends on performance and convenience. For this particular example, the
observer-based method (which modeled the fault as being additive) had a
much shorter detection delay than the parameter estimation method (which
modeled the fault as being multiplicative). If all the faults are best modeled
as being parametric faults except for a few faults that can be modeled as
being either additive or multiplicative, then it is more convenient to model
all of the faults as being multiplicative, so that the FDI system only depends
on a single method.
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Fig. 11.7. The measured output, the estimated output, and the associated residual
obtained from the full-order observer when a leak occurs in Stream 1 at ¢ = 14.5,
for the gravity tank

In this example disturbances were not considered and the residual was
driven only by the fault and zero-mean white noise in the measured vari-
ables. In practice the output estimation error Ay(t) is driven by significant
disturbances d(t). Also, model errors can result in an imperfect cancella-
tion of the effect of the control inputs u(t) on the output estimation error.
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The potential sensitivity of the output estimation error to disturbances and
model errors motivates the use of a transformed output estimation error as
the residual:

r(t) = WAy(t). (11.83)

The design problem is to select the matrix W so that the residual r(t) is
sensitive to faults while being relatively insensitive or even invariant to dis-
turbance and model errors. Various procedures have been proposed for the
design of the observer gain H and the transformation matrix W to satisfy
these goals {139]. One procedure is known as eigenstructure assignment, in
which the matrices are designed to zero out the effect of the disturbances on
the residual r(¢) {249, 253]. A related method is to use an unknown input ob-
server to decouple the disturbances from the state estimation error [42, 331].
This method is described below.

11.4.2 Reduced-order Unknown Input Observer

This section derives the design equations for an unknown input observer
(UIO), which is a fairly general method for the design of an observer-based
FDI system.

As in the last section, consider a plant described by the state-space equa-
tions:

x(t+1) = Ax(t) + Bu(t) + Bsf(t) + Bad(t) (11.84)

y(t) = Cx(t) + Dsf(t) + Dad(t) (11.85)
A generalized reduced-order observer for this system is:

z(t + 1) = Fz(t) + Gy(t) + Ju(t) (11.86)

The observer estimates a linear transformation of the state, Tx(t), where T
is a constant matrix. For a reduced-order observer, the number of rows of T
is less than the number of columns. The design matrices are F, G, J, L;, and
L.

The estimation error is defined by

e(t) = a(t) — Tx(t). (11.88)

Inserting the observer equations and the state-space equations for the plant,
and grouping terms gives



196 11. Analytical Methods

e(t+1) = Fz(t) + [GC — TA|x(t) + [J — TB]u(t)

(11.89)
+ [GDy — TByflf(t) + [GDgq — TB4]d(t)
and the residual
r(t) = le(t) + L, Cx(t) + Lszf(t) + Lded(t). (11.90)

In the unknown input observer, the observer matrices are designed so
that the residual r(¢) and estimation error e(t) are independent of the plant
inputs u(t) and the disturbances d(¢) (the “unknown inputs”). This implies
that

J=TB (11.91)
GDy = TBy (11.92)
LyDg = 0. (11.93)

This gives the simplified equations

e(t+1) = Fz(t) + [GC — TA]x(t) + [GDy — TBy]f(t) (11.94)
and the residual

r(t) = L1z(t) + L2 Cx(t) + Lo Dff(2). (11.95)

For fault detection, it is also desired for the estimation error and the
residual to be independent of the plant states x(¢). This is achieved by setting

GC-TA=-FT (11.96)
and

LoC = -I4T, (11.97)
which results in

e(t + 1) = Fe(t) + (GDy — TByf(t) (11.98)
and the residual

r(t) = Lie(t) + Lo Df(2). (11.99)

The estimation error and the residual depend solely on the faults and are
independent of the process state x(t), input u(t), and disturbances d(t).
For stability of the estimation error, the matrix F' must have its eigenvalues
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within the unit circle. To maximize the effect of the faults on the residual,
the matrices G, T, and L should be selected so that the matrix

[GDf —TBf]

1.0, (11.100)

has a high rank. Maximizing the rank of L, Dy is especially useful, since this
term is a direct mapping of the faults to the residual, without being filtered
by the observer dynamics (see Equation 11.99).

In the UIO method, the matrices F', G, J, L1, and L are designed so that
F is stable and Equations 11.91, 11.92, 11.93, 11.96, and 11.97 are satisfied.
Extra degrees of freedom are used to maximize the rank of the matrices
(11.100). The extra degrees of freedom can also be used to decouple the
effect of each fault on the residual. Necessary and sufficient conditions for
the existence of solutions to these types of equations are available, as well as
methods for computing the design matrices [41, 352].

11.5 Parity Relations

It was shown in the last section how observers can be used to generate resid-
uals. Another popular method to generate the residuals is to use parity rela-
tions.

11.5.1 Residual Generation

The residual must be generated solely from the observations. A general equa-
tion for the residual is

r(t) = V(qu(t) + W(q)y(t) (11.101)

where r(t) is the residual vector, and V(q) and W(q) are transfer function
matrices. The residual should be zero when the unknown inputs (the faults
f(t), disturbances d(t), and noise n(t)) are zero. Substituting the system
equation (11.12) into (11.101) and setting the unknown inputs to zero gives

V(g)u(t) + W(q)P(q)u(t) =0. (11.102)
For this to hold for all inputs u(t), we must have

V(g) = ~W(q)P(q) (11.103)
Inserting this into (11.101) gives

r(t) = W(q)ly(t) - P(g)u(®)), (11.104)

The transfer function P(g) (or matrices A, B,C, and D in (11.1) and (11.2))
is assumed to be known either from first principles or from prior identification
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of the plant. Specifying the transfer function W(q) is the main focus of the
design of the FDI system.

Substituting (11.12) into (11.104) gives the residual r(t) in terms of the
unknown inputs:

r(t) = W(q)[Pr(9)f(¢) + Pa(g)d(t) + Pn(g)n(t)]. (11.105)

This equation gives the dependence of the residual on the faults, disturbances,
and noise. Before going into details on how W(q) is designed, let us first
illustrate the use of the parity relation (11.105) for detecting faults. Recall
the gravity tank example in which there is a single potential fault (see Figure
11.2). Since there are no significant disturbances in this example, the design
matrix W(q) can be set to one.

The residual (11.104) was computed both during normal operating con-
ditions and in the case where there is a fault (a leak in Stream 1 at ¢ = 14.5).
The residuals are plotted in Figure 11.8. In the normal operating conditions,

0-4 T T T T T T T T T

0.2f 4

0.1 4

Residual (Normal)

Residual (Fault)

5 10 15 20 25 30 35 40 45 50
Time

Fig. 11.8. The residual obtained from the parity relations in the normal operating
conditions and the faulty condition (a leak in Stream 1 at ¢ = 14.5) of the gravity
tank
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the residual remains close to zero, indicating that a threshold can be defined
so that there is a low false alarm rate. When the fault occurs, the residual
deviates from zero significantly at ¢ = 15, indicating that a fault is detected.
Similarly to the full-order observer, the parity relation method promptly de-

tected the fault.

A general equation for the residual r(t) in terms of the unknown in-
puts can also be derived directly from the state-space equations (11.9) and
(11.10) [47, 101]. To simplify the algebra, the presentation will neglect the

disturbance and noise terms, and insert them later.
With a time delay o, (11.9) and (11.10) become

x(t — o +1) = Ax(t — o) + Bu(t — o) + Bsf(t — o)
y(t— o) = Cx(t — o) + Du(t — o) + Dff(t — o).
Inserting (11.106) into (11.107) gives the expression:

y(t —o+1) = CAx(t — o) + CBu(t — o) + CBsf(t — o)
+Du(t — o + 1) + Def(t — o + 1).

Recursively, the following extended state equation is obtained:

y(t-o0) u(t - o)
y(t—o+1 u(t—o+1
( . ) =Jx(t-o0)+ K ( ) )
y(t) u(t)
S S —
¥(t) (1)
f(t — o)
f(t—o+1)
+Ly )
£(t)
N —
F(t)
where
C
CA
J= ,

(11.106)

(11.107)

(11.108)

(11.109)

(11.110)
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) 0 - 0 0]
CB D .00

K=| cap  coB . - il (11.111)
0
|c4°-'B CA°?B ... CB D|

and
[ Dy o - 0 0]
CBy Dy .0
Ly=| CAB; cBy .. |- (11.112)
: : .
| CA°-'B; CA°2By --- CBy Dy|

Then the residual can be written as:
r(t) = Wy(t) — Ki(t)] (11.113)

where W € RP*(e+1)my ig the transformation matrix, and p is the dimension
of the residual vector. This equation can be used to compute the residual
from the measured inputs and outputs of the plant. Inserting (11.109) into
this equation gives

r(t) = W[J%(t — o) + LsE(2)). (11.114)

The dependence of the state vector X(¢ — o) can be eliminated by choosing
a transformation W such that

WJ =0. (11.115)

For an appropriately large o, it follows from the Cayley-Hamilton theorem
[153] that the solution for W always exists [47]. Then the residual is only a
function of the faults

r(t) = WL (¢). (11.116)

For a particular fault to be detectable, W must be selected so that the ap-
propriate columns of WLy are not equal to the zero vector. For a residual
to be affected by at least one fault, W must be selected so that none of the
rows of WLy are equal to the zero vector.

The length of the data window, o, is a design parameter. A sufficiently
large o guarantees that there is a large number of degrees of freedom in W
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for satisfying the above detectability conditions. However, a low value of o
is preferred to simplify the design and implementation of the FDI system.
The smallest value of o such that (11.115) can be satisfied is given by the
inequalities [41, 226, 227]:

rank(O)
2 <o < - .
rank(C) = Omin < rank(O) — rank(C) + 1 (11.117)

where O is the observability matrix [153] (which is closely related to J)

c
CA
o=\ . (11.118)

CcAe

and a is the number of states. If the system is observable and the rows of the
matrix C are linearly independent, then the inequality can be written as

2 < omn<a—my+1 (11.119)
My
To consider additive noise and disturbances in the system, the vector 1i(¢)

and d(¢) are defined similarly to f(#), and its accompanying matrices L, and
Lg can be computed. This more general form of the residual (11.116) is

r(t) = WL (t) + Loii(t) + Lad(2)). (11.120)

While this state-space form for the transformation matrix can be used, more
insights can be obtained by using the transfer function W(g) in (11.104).
Hence the rest of this chapter will use the transfer function form.

11.5.2 Detection Properties of the Residual

Ideally, the transformation matrix W(q) is designed so that non-zero residuals
occur only when faults occur. However, the residuals can also be affected
by measurement noise, model uncertainty, and disturbances. The simplest
approach to reduce the effect of noise is low-pass filtering of the measured
signals. More sophisticated Kalman filtering can be used for more complicated
noise signals [12]. Quantifying the contribution of the measurement noise on
the residuals based on (11.105) is rather straightforward provided that the
noise is modeled stochastically. The noise will continue to have some effect
on the residuals, so a threshold must be used to determine whether a fault
has occurred.

Characterizing the model uncertainties and quantifying their effect on
the residuals are more difficult. The larger the model uncertainty, the more
difficult it is to detect and diagnose faults using residuals. Much attention has
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been focused on improving the robustness of analytical redundancy methods
to model uncertainty. Two of the more popular methods in the literature
include robust residual generators [88, 108, 322], and structured residuals with
an unknown input observer [91, 248, 286]. The simplest approach is to model
the uncertainties as additional disturbances. Then, when the transformation
matrix W(q) is designed so that the residual is insensitive to this larger
set of disturbances, the residual is also insensitive to the uncertainties. This
approach is possible when the total number of disturbances and uncertainties
is small [101].

An ideal residual would be sensitive to each fault in the system. The
triggering limit is a useful measure of the sensitivity of the residual with
respect to faults [101]. Recall the general equation for the residual (11.105)
as a function of the faults, disturbances, and noise:

r(t) = W(q)[Ps(9)f(t) + Pa(q)d(2) + Pn(g)n(t)]. (11.121)

The relationship between the j** fault f;(t) and the i** residual induced by
the fault is

ri(tlf;) = wi (9)ps; ()i (2) (11.122)

where w (q) is the i** row of W(q) and ps;(q) is the j** column of Py(q).
The time response of the i** residual depends on the time response of the
j* fault, which is not usually precisely known. If the time response f;(t)
is not known, then it is simplest to assume that it is a unit step function
H(t) [245, 296]. Then the absolute value of the steady-state value for the it*
residual is

Jim (| H(0)| = [w] (0)pes(0)],y (11.123)

from the final value theorem for discrete-time systems (a similar equation
holds for continuous-time systems). The triggering limit is defined as

k.
TL;; = i
Y W (@)pei(a)] s

(11.124)

where k; is the threshold for 7;(t). A small triggering limit indicates a high
fault sensitivity.

If the nominal magnitude, f;o,, of the j®* fault is known, then it is useful
to define a normalized triggering limit

k;

TLNj' = .
g fjo IwiT(Q)pfj(q)lq=1

(11.125)

A normalized triggering limit T'L ;; greater than one indicates that the fault
does not bring the residual to its threshold at steady-state, clearly an undesir-
able situation. A normalized triggering limit TLy;; less than one is desired.
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Alternative definitions of the triggering limits can be useful in certain
applications. If the time response of the j** fault f;(t) is known, then the
time response can be used to define the triggering limit instead of the unit
step function. Also, the maximum of the ith residual can be used instead of
the steady-state value.

11.5.3 Specification of the Residuals

Recall that the main design consideration for an FDI system based on par-
ity relations is the design of the transformation matrix W(q) in (11.121).
The approach to the design of W(q) is similar to the design of feedforward
controllers as taught in an undergraduate process control course [245]. This
approach is to specify the desired transfer functions between the inputs and
outputs, and then compute W(q) that gives the desired transfer functions.
The inputs are the disturbances and faults, and the outputs are the residuals.

Denote the response of the i** element of the residual to the fault f;(t)
as r;(t|f;) and its response to the disturbance d;(t) as r;(t|d;). For additive
faults and disturbances, the response specifications are given in the form of
transfer functions that incorporate all the desired behavior:

ri(tlf;) = z5i5(0) f; () (11.126)

and
ri(tld;) = zaij(q)d;(2) (11.127)

where z5;;(q) and z4;(q) are scalar transfer functions. The response speci-
fication for a scalar residual 7;(t) can be written in terms of the vector of
additive faults f(¢) and the vector of additive disturbances d(t):

ri(t) = 25(Q)E() + 25 (0)d(1) (11.128)

where zf’:’;(q) = [2i1 2i2 **+ %im;) and 22(q) = [24i1 2ai2 - Zdim,] are vec-
tors of the individual transfer functions and my and mg are the numbers of
faults and disturbances, respectively. The response of the full residual vector
r(t) can be written in terms of the vector of additive faults f(t) and the
vector of additive disturbances d(¢):

() = Zy(9)£() + Za(g)d(2) (11.129)

where Z; = (21 Zg2 -+ zep)T and Zg = [2Za1 Zaz - z4p]T are transfer
function matrices, and p is the number of residuals.

For disturbance decoupling, the response to the disturbances is specified
as zero (that is, r;(t|d;) = 0 or z4;(¢) = 0 in Equation 11.127). For the faults,
either zero or specific non-zero responses are specified for each zs;;(q).
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11.5.4 Implementation of the Residuals

Ignoring noise (which is assumed to be addressed by filtering as discussed in
Section 11.5.2), the single residual r;(t) from (11.105) is

ri(t) = wi (9)[P(a)f(t) + Pa(g)d(2)]. (11.130)

Comparing (11.130) with the specification (11.128) reveals that

wi' (9)Pra(q) =2 (q) (11.131)
where

Pra(q) = [Pf(q) Pa(q)] (11.132)
and

2 (¢) = [26i(0) 2zdi(9)] - (11.133)

The transfer function Py4(q) is governed by the plant, and is assumed known.
The z[T (q) are specifications on the residuals, which are set by the engineer.
Equation 11.131 relates the rows of the transformation matrix W(q) with the
specifications. If a transformation matrix W(q) can be computed that satisfies
(11.131), then the desired specifications on the residuals will be achieved.

One objective of the design is to obtain an appropriate transformation
wi(g) such that its elements are rational functions or polynomials in the
shift operator. The transformation w;(g) also needs to be causal and stable.
Actually, both W(q) and W(q)P(g) must be stable and implementable in
(11.104). This implies that W (q) must cancel any unstable poles of the plant
P(q). It is also desired for W(q) to be of low complexity.

If Ps4(q) is a square matrix and it has a stable inverse, then setting the

ith row of W as

wi (¢) = 2{ (9) P () (11.134)

satisfies (11.131). If the inverse of Pfs(q) exists but is not stable, then the
specifications in z (¢) can be modified so that w, (¢) consists of stable trans-
fer functions. If there are multiple solutions to (11.131), then some elements
of wiT (¢) can be fixed so that the resulting system has a unique solution. The
transformation matrix W (q) is constructed by stacking up its rows wl'(g).
The above procedure looks at each residual r;(¢) individually. Alterna-
tively, the equations can be written in terms of the vector residual r(t).
Stacking the equations (11.131) gives the design condition on the transfor-

mation matrix W(q):

W(q)[Ps(q) Pa(a)] = [Zs(q) Za(q)]- (11.135)

If Pf4(q) is a square matrix and it has a stable inverse, then
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W(q) = [Z5(q) Za(a)IP;'(q) (11.136)

satisfies the specifications on the residuals.

An alternative method to design W(q) is to use an observer. This rela-
tionship between the observer-based method and parity equations is made
clear in the next section. But first, let us consider an example.

F;
Stream 0 @Stream 1

o/

Stream 6

Stream 2 Stream 3

Fo2

Stream 4 : Stream 5

Fig. 11.9. Two non-interacting flow tanks in series. The system has one measured
input F;, two measured outputs F,1 and Fj,2, and two measured states h; and ha.
The FT is standard nomenclature for a flow transmitter [134].

A system consisting of two non-interacting flow tanks in series is used
to illustrate the use of parity relation for disturbance decoupling (see Figure
11.9) [245]. The system in the disturbance-free and fault-free case is governed
by the material balance equations:

dh
Acld_tl =F—ah (11.137)
and
dh
Aczd—: = Clhl - Cghz (11138)

where A.; and A., are the cross-sectional areas of Tanks 1 and 2, h; and
ho are the liquid levels for Tanks 1 and 2, ¢; and ¢y are constants which
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depend on the valves, and F; is the measured inlet flow rate. The outlet flow
rates Fy; and Fo; are measured, and are nominally equal to c;h; and czhs,
respectively. Equations 11.137 and 11.138 can be written in state-space form

% — Ax(t) + Bu(t) (11.139)
y(t) = Cx(t) (11.140)
where
A= Z—g 0 , B= Alcl , C = c1 0 ,
i a2 0 0 c (11.141)

u=F;,yT = [F,1 Fo2),and xT = [h; hy]. All measured signals are assumed
to have additive normally distributed noise with zero mean and variance with
magnitude of 10™%. Assuming ¢; = 0.3, c; = 0.2, A,y = 1, and Ay = 1,
Figure 11.10 plots the measured input u, the measured output y, and the
measured state x for a step change in inlet flow rate. The state z; and output
Y1 follow first-order responses and the state zo and output y, follow second-
order responses.

Consider the case where a step disturbance stream (Stream 6 in Figure
11.9) of 0.2 flow units is introduced into Tank 2 for ¢ > 0. The state-space
form (11.139) and (11.140) becomes

% = Ax(t) + Bu(t) + Bud(t) (11.142)

y(t) = Cx(t) (11.143)

where d = d represents the disturbance stream, and BY = [0 1/A.]. Figure
11.11 plots the measured input u, the measured output y, and the measured
state x for a step change in inlet flow rate. Comparison between Figures
11.10 and 11.11 indicates that the disturbance stream increases 2 and y, by
roughly 20% and that it does not affect z; and y;.

Now consider the case where a leak (a 30% drop in Stream 1) occurs in
Stream 1 for ¢ > 14.5 (see Figure 11.9 for definition of Stream 1), in addition
to the disturbance stream introduced into Tank 2 for ¢t > 0. The state-space
form (11.142) and (11.143) becomes

%’;‘ = Ax(t) + Bu(t) + Byd(t) + B;£(t) (11.144)

y(t) = Cx(t) (11.145)
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Fig. 11.10. The measured input (inlet flow rate), the measured state (liquid
height), and the measured output (outlet flow rate) of two non-interacting flow
tanks in series during normal operating conditions

where f = f represents the leak in Stream 1, and B}' = [1/A. 0]. Figure
11.12 plots the measured input u, the measured output y, and the measured
state x for a step change in inlet flow rate. Comparison between Figures 11.11
and 11.12 shows that the leak in Stream 1 caused a decrease in zi, 2, y1,
and yo.

The residual (11.104) was computed during normal operating conditions,
in the case where there is a disturbance, and in the case where there are
a disturbance and a fault (a leak in Stream 1 at ¢ = 14.5). For illustration
purposes, first use the transformation w(s) = [1 1]7 where the residuals are
plotted in Figure 11.13. Similarly to Figure 11.8, the residual remains close
to zero in the normal operating conditions, indicating that a threshold can be
defined so that there is a low false alarm rate. With the chosen transforma-
tion w(s), the disturbance and the fault both cause the residual to deviate
significantly from zero.

To determine the appropriate transformation such that the disturbance
is decoupled from the residual, (11.134) is used in the discrete-time case. In
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Fig. 11.11. The measured input (inlet flow rate), the measured state (liquid
height), and the measured output (outlet flow rate) of two non-interacting flow
tanks in series when a step disturbance is introduced into Tank 2 at ¢t =0

the continuous-time case, the equation becomes

T(s) = zT(s)Pf]l(s). (11.146)

In this example, we have

Pr(s) = T Ao 0 (11.147)
fa\s ercs . .

(c1+Ac18)(c2+Ac2s) 02+Ac25

With the specification z7 (s) = [s55%5 0l the transformation w7 (s) = [1 0].
With the proper choice of transformatlon, the residual is decoupled from the
disturbance, but remains driven by the fault (see Figure 11.14).

11.5.5 Connection Between the Observer and Parity Relations

Recall the equations for a full-order observer:
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Fig. 11.12. The measured input (inlet flow rate), the measured state (liquid
height), and the measured output (outlet flow rate) of two non-interacting flow
tanks in series when a leak in Stream 1 occurs at ¢ = 14.5 and a step disturbance
is introduced into Tank 2 at t =0

R(t +1) = AR(t) + Bu(t) + Hly(t) — §(¢)] (11.148)

§(t) = Cx(t) + Du(t). (11.149)

Inserting (11.149) into (11.148), introducing the shift operator, and solving
for the state estimates gives

%(t) = (¢f — A+ HC) '[Hy(t) — HDu(t) + Bu(t)). (11.150)
Inserting this into (11.149) gives the output estimates

§(t) = C(qgI — A+ HC) '[Hy(t) — HDu(t) + Bu(t)] + Du(t).
(11.151)

Recall the definition of the output estimation error:
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Fig. 11.13. The residual obtained from the parity relations with the weight
w' (s) = [1 1] in the normal operating conditions, the disturbance case, and the
faulty condition of the two non-interacting tanks in series

Ay (t) =y(t) - §(t). (11.152)

Inserting (11.151) gives the transfer function relationship for the output es-
timation error

Ay(t)=[I - C(¢l — A+ HC) 'Hy(t
y(t) =11 - Clq ) Hy(1) (L159
+[(C(¢I — A+ HC)~1(HD — B) — D]u(t).
Some matrix algebra simplifies this to

Ay(t)=[I - C(¢l — A+ HC) ' H][y(t) - (C(oI — 4)7'B + D)u(1)].
(11.154)

Since P(q) = C(¢f — A)™'B + D, we have
Ay(t) =[I — C(qI — A+ HC) 1 H][y(t) — P(q)u(t)]. (11.155)

In the observer-based method, the output estimation error is multiplied by a
transformation matrix
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Fl§ 11.14. The residual obtained from the parlty relations with weight

(s) =11 0] (determined using Equation 11.134) in the normal operating con-
dltlons, the disturbance case, and the faulty condition of the two non-interacting
tanks in series

r(t) = WAy(t). (11.156)

Equation 11.156 can be written in terms of the generic form for the resid-
ual (11.104), by setting

W(q) = W[I - C(qI — A+ HC)™*H]. (11.157)

Hence any observer implementation can be replaced by a direct implemen-
tation using parity relations in accordance with (11.157). The residuals ob-
tained from the direct implementation are identical. More detailed discussions
of the connections between the observer-based method and parity relations
are available [101].

11.5.6 Isolation Properties of the Residual

A vector of residuals is required for isolating faults. To distinguish among
faults, it is desirable for the residuals corresponding to a given fault to be
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unique for that fault. Since the dynamics of a particular fault are not precisely
known, it is useful to characterize the residuals in terms of the direction of
the residual vector, or in the pattern of its elements that violate thresholds
placed on each element [101]. Here we focus on the latter method, which is
called structured residuals.

Structured residuals are designed so that each residual is sensitive to
a particular subset of faults, but insensitive to the other faults. When a
particular fault occurs, some of the residuals respond, while others do not.
The pattern of the response set, known as the fault code or fault signature,
is characteristic of the fault. To state this mathematically, the outcome of
comparing the residual r;(t) to its threshold k; is a binary variable +;(¢):

0 if |7'1(t)| < ki,

7i(t) = {1 if |ri(t)] > ki (11.158)

The vector v = [y172 - - 7p] T is the fault code.

The fault codes are determined by the structure of the transfer function
matrix W(q)Py(q) between the faults and the transformed residuals. A re-
quirement for the isolation of single faults is that the fault code for each fault
be different and non-zero.

The structure matrix S describes the causal relationship between the
faults and residuals. Each column of the matrix represents a fault and each
row represents a binary result. A value of S;; = 1 indicates that the 4th fault
caused the i** residual to violate its threshold, whereas S;; = 0 indicates that
the ** residual is relatively insensitive to the occurrence of the 5" fault. The
structure matrix is defined by the residual specifications (see Section 11.5.3).
The columns of S must be distinct to be able to distinguish among all the
faults.

For fault isolation, the fault code «(t) is computed from the observations
and compared with the columns of the structure matrix S. If the observed
fault code satisfies

V(1) =sj, (11.159)

where s; is the j** column of the structure matrix S, then the j** fault
is indicated as having occurred. For simple implementation, the number of
residuals p should be kept low while the number of “0” elements in each
column should be made high.

To illustrate the procedure of designing structured residuals for isolating
faults, the non-interacting tanks system is used (see Figure 11.9). To simplify
the algebra, this example will neglect the disturbance and consider only two
faulty cases, where there is a leak in Stream 1 for ¢t > 14.5 (denoted as Fault
1) and that the flow transmitter for Fos gives a biased reading for ¢t > 7
(denoted as Fault 2). When the faults occur, the state-space equations are

dx

= = Ax(t) + Bu(t) + Bff(t) (11.160)
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y(t) = Cx(t) + Dsf(t) (11.161)
where
- 1] 1
4= —Aj; N - ke
Ac2 Acz O . O 0
(11.162)

o [cl 0], D, = 00],
0 C2 01
u=F;,yT = [F,1 Fos], xT = [k ko), fT = [f1 f2], f1 represents the leak in
Stream 1, and f; represents the bias in the F,3 measurement.
All measured signals are assumed to have additive normally distributed
noise with zero mean and variance with magnitude of 10~%. Assuming ¢; =
0.3, co =02, A,y = 1, and A, = 1, the measured input u, the measured

output y, and the measured state x are plotted in Figures 11.15 and 11.16
during occurrences of Faults 1 and 2. Using (11.24), we have

Ps(s) = crtdas 0 (11.163)
f ercs 1 . .

(c1+Ac18)(c2+Ac28)

The dimension of the residual vector r(t) is set to 2, so that there is enough
dimensionality to distinguish between the faults based on the structure of
the residuals. For convenience, the structure matrix S is set to the identity
matrix. In other words, the residuals r;(t) and ro(t) are driven by Faults 1
and 2, respectively. This suggests that the transfer function matrix Z¢(s) for
the residual specification should have the form:

Z4(s) = [zf 16(5) zﬁg (s)} : (11.164)

Equation 11.136 can be used to determine the transformation W(q) in the
discrete-time case. In the continuous-time and disturbance-free case, the
equation becomes

W(s) = Zs(s)P;*(s). (11.165)

Therefore, the transformation matrix W(s) can be determined as

W(s) = an(s)(1+45s) 0 (11.166)

zp22(8) sy #f22(8)

C

The design parameter zf11(s) was set as oA

and the transformation matrix becomes

and zfp2(s) was set as one
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Fig. 11.15. The measured input (inlet flow rate), the measured state (liquid
height), and the measured output (outlet flow rate) of two non-interacting flow
tanks in series when Fault 1 (a leak in Stream 1) occurs at ¢t = 14.5

W(s) = Loy (11.167)
——c 1
c2+Aczs
The residuals r(t) and r(t) are plotted in Figures 11.17 and 11.18, respec-
tively. The residual r;(t) remains close to zero in the normal operating
conditions and in the case when Fault 2 occurs. As suggested by the de-
sign specification, ry(t) is driven only by Fault 1. The residual r3(t) remains
close to zero in the normal operating conditions and in the case when Fault
1 occurs. As suggested by the design specification, ro(t) is driven only by
Fault 2. These indicate that the transformation matrix W (s) was robust and
sensitive.

11.5.7 Residual Evaluation

After the residuals are computed, the resulting residual is used as feature
inputs to fault detection and diagnosis through logical, causal, or pattern
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Fig. 11.16. The measured input (inlet flow rate), the measured state (liquid
height), and the measured output (outlet flow rate) of two non-interacting flow
tanks in series when Fault 2 (Fi2 gives a biased reading) occurs at t =7

recognition techniques. When the disturbances and model uncertainty are
decoupled from the residuals (see Section 11.5.2), then only the noise and
the faults contribute to the residuals:

r(t) = re(t) + ra(?) (11.168)

where r¢(t) = W(q)Ps(q)f(¢) is the fault-induced part of the residual, while
ra(t) = W(q)Pn(g)n(¢) is the noise-induced part of the residuals. Although
unknown, the faults are assumed to be deterministic. With the assumption
that the noise has zero mean, the residual has a time-varying mean con-
tributed entirely by the faults

pr(t) = re(2). (11.169)

The noise is assumed to be stochastic. If the faults are not stochastic, then
the covariance of the residual is entirely due to the noise:

Cov(r(t),r(t — 7)) = Cov(rn(t), ra(t — 7)). (11.170)
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Fig. 11.17. The residual r;(t) obtained from the parity relations with the weight

w1 (s) = [1 0] in the normal operating conditions and in the cases when Faults 1
and 2 occur

For fault detection, the null hypothesis is that the residual has zero mean.
The T? statistics in Chapter 2 can be used to define thresholds on the resid-
uals used for determining whether a fault has occurred. Each residual can be
tested separately, as done in univariate control charts, or the residual vector
can be tested using a single threshold defined by multivariate statistics. The
process monitoring procedure can be made more sensitive to slow drifts by
taking window averages, by applying exponential moving averages, or by us-
ing cumulative sums on the residuals. The methods of dealing with temporal
correlation discussed in Part III, such as time histories, can also be applied.
These methods also apply to fault isolation.

One way to diagnose faults is to apply pattern classification techniques, as
discussed in Chapter 3, on the residuals. Discriminant analysis can be used to
select the fault class which maximizes the a posteriori probability. This allows
the direct incorporation of prior fault probabilities to improve fault diagnosis.
A closely related approach is the generalized likelihood ratio technique.
In this approach, conditional estimates of the residual means are computed
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Fig. 11.18. The residual r2(t) obtained from the parity relations with the weight
wi(s) = (54,5 1] in the normal operating conditions and in the cases when
Faults 1 and 2 occur

with the various fault hypotheses, under the geometric constraints posed by
the respective structure, and the likelihood functions obtained with those
means are compared [101]. This allows the directionality and structuring of
residuals to be included rather explicitly.

Gomez et al. [105] suggested using operating point computation, Schef-
fee’s statistic, and Hotelling’s statistic to detect the normality of the residuals.
The results are then formulated as a fuzzy logic rule for detecting and diag-
nosing faults. Frank and Kiupel [92] evaluated the residual based on fuzzy
logic incorporated with either adaptive thresholds or fuzzy inference with the
assistance of a human operator. Garcia and Frank [94] proposed a method
to integrate the observer-based method with the parameter estimation ap-
proach. The observer-based residual is used for fault detection; when the
signals are sufficiently rich, the parameter identification residual is then used
for fault diagnosis. Ding and Guo [68] suggested that integrating the gener-
ation of the residual with its evaluation may improve the ability to detect
and diagnose faults. They proposed a frequency domain method to design
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an integrated fault detection system. Many other recent papers on analytical
redundancy methods are available [27, 36, 69, 197, 242, 251, 252].

11.6 Homework Problems

1. Derive (11.29). Hint: Set the derivative of the objective (eTe) with re-
spect to 6 equal to zero, and solve for 6.

2. A weighting matrix 2 is usually used in parameter estimation to take
into account the relative accuracy of the measurements. Derive the model
parameter vector 6 that minimizes the weighted sum of equation errors
eT 2T e. Describe an approach to defining the weighting matrix {2 based
on the relative accuracy of the measurements (hint: see [22, 25]). Thor-
oughly justify the approach.

3. Repeat the parameter estimation study for the gravity flow tank system
in Section 11.3, for various amounts of measurement noise. Produce plots
such as Figures 11.3-11.5 for each case. Report the parameter estimates
B obtained during normal operating conditions in each case, and plot as
a function of the amount of measurement noise. Under what conditions
are the parameter estimates obtained by least squares acceptable for fault
detection?

4. Repeat the parameter estimation study for the gravity flow tank system
in Section 11.3, except with an unbiased parameter estimation algorithm
[25, 199, 355] replacing the least-squares estimates. How do the results
change when the measurement noise is increased by a factor of 57

5. Repeat the parameter estimation study for the gravity flow tank system
in Section 11.3, except with the parameters estimated using only the past
10 consecutive time intervals. Comment on the accuracy of the parameter
estimates obtained after the process dynamics have settled out. Discuss
the importance of having persistent excitation when applying the param-
eter estimation method. Change the operating conditions for the process
so that there is persistent excitation, and reapply the parameter esti-
mation method. Comment on the accuracy of the parameter estimates,
and discuss how this affects the ability to detect and diagnose faults.
Using the same change in operating conditions, reapply the parameter
estimation method using 30 consecutive time intervals. Comment on the
relationships between the number of consecutive time intervals used in
the parameter estimation method, the time it takes to detect the fault,
and the accuracy of the parameter estimates.

6. Repeat the parameter estimation study for the gravity flow tank system
in Section 11.3, except with the leak occurring immediately after the
valve at the exit of the tank.

7. Repeat the parameter estimation study for the gravity flow tank system
in Section 11.3, except where leaks at four locations are considered: (i)
Stream 1, (ii) the tank, (iii) Stream 2, and (iv) between the valve and
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the second flow transmitter. Can the parameter estimation algorithm
distinguish between leaks at the four locations? Thoroughly justify your
answer.

Consider the pump example in Section 11.3, except where only a steady-
state model for the process is used. Formulate the parameter estimation
problem. Specify the model parameters 6;. How many model parameters
are there? Derive the relationship between the 6; and the p;. How many
physical parameters can be estimated? Which of the physical parameters
can be estimated uniquely, and which physical parameters are lumped?
Consider the pump example in Section 11.3, but with the valve closed, so
that M (t) = 0. The measured variables are u;(t), I (), and w(t). Formu-
late the parameter estimation problem. Specify the model parameters 6;.
How many model parameters are there? Derive the relationship between
the 6; and the p;. How many physical parameters can be estimated?
Which of the physical parameters can be estimated uniquely, and which
physical parameters are lumped?

For Problem 8, how would the answers change if only a steady-state
model for the process was used?

Consider the pump example in Section 11.3, except with Y (t) not mea-
surable. Formulate the parameter estimation problem. Specify the model
parameters 6;. How many model parameters are there? Derive the re-
lationship between the 6; and the p;. How many physical parameters
can be estimated? Which of the physical parameters can be estimated
uniquely, and which physical parameters are lumped?

For Problem 10, how would the answers change if only a steady-state
model for the process was used?

Consider the pump example in Section 11.3, except with M (t) not mea-
surable. Formulate the parameter estimation problem. Specify the model
parameters §;. How many model parameters are there? Derive the re-
lationship between the §; and the p;. How many physical parameters
can be estimated? Which of the physical parameters can be estimated
uniquely, and which physical parameters are lumped?

For Problem 12, how would the answers change if only a steady-state
model for the process was used? Note: Problems 7-13 are patterned after
an experimental study [96, 137].

Consider a chemical reaction where the reactant A forms products B and
C on a catalyst surface. Consider the estimation of the kinetic rate con-
stant k in the rate law, r4 = kC4, where Cj is the molar concentration
of species A. Assume that the experiments are carried out in a well-mixed
batch reactor with initial concentration C4g, and that the volume and
temperature remain constant throughout the reaction. Assume that the
concentration of A can be measured once a minute.
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a) Solve for C4 as a function of the initial concentration of A, the kinetic
rate constant k, and time ¢. [Hint: the molar balance equation for
species A is dgt = —kCa.|

b) Write out the least-squares objective function for the estimation of
the kinetic rate constant k. Clearly define each variable and its di-
mensions. Simplify as much as possible. Explain in words how to
compute the best fit model parameter k. Is it possible to derive an
analytical expression for the best fit k?

c) Write out the least-squares objective function for the estimation of
the kinetic rate constant k as above, except with the assumption that
the logarithm of the concentration of A can be measured directly (this
happens, for example, when a pH probe is used to measure hydrogen
ion concentration). Derive an analytical expression for the best fit
kinetic rate constant k as a function of the time at the sampling
instances and the measurement of the logarithm of the concentration
of A at each sampling instant.

d) During a batch run, changes in the kinetic rate constant can occur
due to deactivation of the catalyst used in the reaction. Explain how
you would determine the threshold on the change in the kinetic rate
constant which would signal when catalyst deactivation has occurred.

Repeat the full-order observer study for the gravity flow tank system
in Section 11.4.1, for various amounts of measurement noise, where the
initial estimated state is 0. Plot the state and output estimates obtained
during normal operating conditions and during fault conditions in each
case. How does the tuning of H depend on the noise level? Repeat the
problem for the case where the initial estimated state is 0.3. Discuss
how to tune H depending on the noise level and the accuracy of the
initial estimated state. Repeat the problem for the case where the values
for A and B in the observer equations are 20% larger than the A and
B in the state-space equations for the process (this represents model
uncertainties). Discuss how to tune H depending on the level of model
uncertainty.

Repeat the full-order observer study for the gravity flow tank system in
Section 11.4.1, except with the leak occurring immediately after the valve
at the exit of the tank.

Repeat the full-order observer study for the gravity flow tank system in
Section 11.4.1, except where leaks at four locations are considered: (i)
Stream 1, (ii) the tank, (iii) Stream 2, and (iv) between the valve and
the second flow transmitter. Can the fault detection algorithm distinguish
between leaks at the four locations? Thoroughly justify your answer.
Propose a method to blend the observer-based method with canonical
variate analysis (CVA) as described in Chapter 7. Thoroughly justify
your method, while listing both its advantages and disadvantages over the



20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

11.6 Homework Problems 221

CVA-based measures in Chapter 7 and the pure observer-based method
discussed in this chapter.

Rederive the equations in Section 11.4.2 for continuous-time systems.
Compare with a published derivation [89]. Which derivation is more gen-
eral? Note: there is a typographical error in Equation 23 of [89].

It is stated in Section 11.5.1 that (11.115) can always be satisfied for
sufficiently large o. Prove this statement.

Derive (11.117). Hint: see [226, 227].

Derive (11.119) from (11.117).

Derive the expressions for #i(t), d(t), Ly, and Lg in (11.120). Comment on
the design of W L4 so that the disturbances do not affect the transformed
residuals.

Derive (11.154) from (11.153).

Recall the full-order observer study for the gravity flow tank system in
Section 11.4.1. Compute the transformation matrix W (gq) for the equiva-
lent fault detection system based on parity relations. Then compute the
associated specification on the residual Z¢(q). Are the dynamics in these
transfer functions what you would expect? Does this provide some in-
sight into the suitability of the observer design? Thoroughly justify your
answers. Hint: derive P(g), and use (11.135) and (11.157).

Read one of the following papers: [53, 88, 139, 151, 154, 155, 178, 238,
249, 311, 312, 331, 332]. Write a summary report. Compare the method
described in the paper with the methods described in this chapter. Which
methods are more general? Which types of faults are best handled by each
method? Thoroughly justify your answers.

A technique that has been applied in the process industries is data rec-
onciliation. Read one of the following papers on data reconciliation:
[6, 43, 57, 121, 214, 275, 276, 306, 337]. Write a summary report. Com-
pare the method described in the paper with the methods described in
this chapter. Which approaches are more general? Which types of faults
are best handled by each method? Thoroughly justify your answers.

In the generalized observer scheme, an observer dedicated to a certain
sensor is driven by all outputs except that of the respective sensor. This
allows the detection and isolation of a single fault in any sensor [85]. Write
a summary report based on [85]. Would such an method be expected
to give better results for faults in single sensors than the observer-based
methods described in this chapter? Does this answer depend on the char-
acteristics of the plant? Thoroughly justify your answers.

In contrast to a single observer, a bank of observers can also be used,
in which each observer is excited by all outputs [54]. For fault isolation,
multiple hypotheses testing can be applied, in which each of the esti-
mators is designed for a different fault hypothesis. The hypotheses are
tested in terms of likelihood functions (e.g., Bayesian decision theory)
[341]. Read the papers [54, 341] which describe this method, and write a
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report describing the method in some detail. Compare and contrast with
the single observer method. What are the advantages and disadvantages
of each method? Thoroughly justify your answers.

For a stochastic process, the innovations (prediction errors) of a Kalman
filter can be used to detect faults. In the fault-free case, the innovations
are white noise with zero mean and known covariance matrix. A fault
is detected when the character of zero mean white noise with known
covariance has changed. Read the papers [221, 341, 342] which describe
this method, and write a report describing the method in some detail.
Compare and contrast with the observer-based method described in this
chapter. What are the advantages and disadvantages of each method?
Thoroughly justify your answers.

For nonlinear processes, nonlinear observers can be used to estimate the
state [1, 18, 86, 88, 89]. Write a report based on [89], which discusses
the differences between the unknown input observer design for linear and
nonlinear systems.



12. Knowledge-based Methods

12.1 Introduction

As discussed in Chapter 11, the analytical approach requires a detailed quan-
titative mathematical model in order to be effective. For large-scale sys-
tems, such information may not be available or may be too costly and time-
consuming to obtain. An alternative method for process monitoring is to use
knowledge-based methods such as causal analysis, expert systems, and pat-
tern recognition. These techniques are based on qualitative models, which can
be obtained through causal modeling of the system, expert knowledge, a de-
tailed description of the system, or fault-symptom examples. Causal analysis
techniques are based on the causal modeling of fault-symptom relationships.
Qualitative and semi-quantitative relationships in these causal models can be
obtained without using first principles. Causal analysis techniques including
signed directed graphs and symptom trees are primarily used for diagnosing
faults. These techniques are described in Section 12.2.

Expert systems are used to imitate the reasoning of human experts when
diagnosing faults. The experience from a domain expert can be formulated
in terms of rules, which can be combined with the knowledge from first prin-
ciples or a structural description of the system for diagnosing faults. Expert
systems are able to capture human diagnostic associations that are not read-
ily translated into mathematical or causal models. A description of expert
systems is provided in Section 12.3.

Pattern recognition techniques use associations between data patterns and
fault classes without explicit modeling of internal process states or structure.
Examples include artificial neural networks and self-organizing maps. These
techniques are related to the data-driven techniques (PCA, PLS, FDA, and
CVA) described in Chapters 4 to 7 in terms of modeling the relationships
between data patterns and fault classes. The data-driven techniques are di-
mensionality reduction techniques based on rigorous multivariate statistics,
whereas neural networks and self-organizing maps are black box methods
that learn the patterns based entirely from training sessions. Section 12.4
provides a description of these pattern recognition techniques.

Each of the data-driven, analytical, and knowledge-based approaches have
strengths and limitations. Incorporating several techniques for process moni-
toring can be beneficial in many applications. Many of these approaches can

L. H. Chiang et al., Fault Detection and Diagnosis in Industrial Systems

© Springer-Verlag London Limited 2001



224 12. Knowledge-based Methods

be combined with fuzzy logic. Section 12.5 discusses various combinations of
process monitoring techniques.

12.2 Causal Analysis

Approaches based on causal analysis use the concept of causal modeling
of fault-symptom relationships. Causal analysis is primarily used for di-
agnosing faults. Several recent papers that use causal analysis are available
[127, 196, 228, 229, 303, 304, 320].

12.2.1 Signed Directed Graph

The signed directed graph (SDG) is a qualitative model-based approach
for fault diagnosis that incorporates causal analysis [133, 287, 310]. It is a
map showing the relationship of the process variables and it also reflects
the behavior of the equipment involved as well as general system topology.
A SDG for the gravity flow tank system in Figure 11.2 is shown in Figure
12.1. Nodes can depict process variables, sensors, system faults, component

Leak in Stream 0 Leak in Stream 1 Stuck Valve

Leak in Tank

Fig. 12.1. A signed directed graph for the gravity tank system

failures, or subsystem failures. To use a SDG for diagnosing faults, high and
low thresholds for each variable are first defined. A node takes the value of
0 when its measure variable is normal. A node takes a value of + when its
measured variable is larger than the high threshold or the event as indicated
by the node occurs. A node takes a value of — when its measured variable
is smaller than the low threshold. Relationships between the cause nodes to
effect nodes are embodied in the direct arcs between the nodes. These arcs
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may be conditional upon other events. Arc signs associated with each directed
arc can take values of + and — representing whether the cause and effect
change in the same direction or the opposite direction, respectively. A — sign
can also be taken when the occurrence of an event in the cause node causes
the negative deviation in the event in the effect node. For example, when
“Leak in Stream 1” occurs, it will decrease the liquid height A. Therefore, a
— sign is taken. Similarly, a + sign can also be taken when the occurrence
of an event in the cause node causes the positive deviation in the event in
the effect node. The goal of utilizing a SDG for diagnosing faults is to locate
the possible root nodes representing the system faults based on the observed
symptoms. To achieve this, the measured node deviations are propagated
from effect nodes to cause nodes via consistent arcs until the root nodes are
identified. An arc is consistent if the sign of the cause node times the sign
of the arc times the sign of the effect node is positive.

Assuming that a single fault affects only a single root node and that
the fault does not change other causal pathways in the SDG, the causal
linkages will connect the fault origin to the observed symptoms of the fault.
The gravity flow tank (see Figure 11.2) is used to illustrate the procedure
of diagnosing faults using a SDG. The first step of developing a SDG is
to connect the nodes in the fault-free case. The second step is the fault
modeling step, which determines the initial effects of the fault on the SDG.
The following faults are considered in this example: (i) leak in Stream 0,
(i) leak in Stream 1, (iii) leak in tank, and (iv) valve is stuck in the closed
position. The corresponding SDG is shown in Figure 12.1.

Leak in Stream 0 Leak in Stream 1 Stuck Valve

Leak in Tank

Fig. 12.2. A signed directed graph for the gravity tank system with the symptoms
“h is increasing, while F, is decreasing”

Consider the case where the observed symptoms are that the liquid level
h is increasing, while the output flow rate F, is decreasing. These symptoms



226 12. Knowledge-based Methods

indicate that the nodes F;, h, and F, take the values of 0, +, and —, re-
spectively. Based on a consistent path check (see Figure 12.2), the fault is
determined uniquely as “the valve is stuck in the closed position”. A + sign
in any of the other unmarked nodes in Figure 12.2 results in an inconsistent
arc.

Now consider the case where the observed symptoms are that h and F, are
decreasing. The nodes h and F,, now take values of —, while the node F; takes
a value of 0. Based on a consistent path check (see Figure 12.3), the possible
root nodes responsible for the symptoms are identified as “Leak in Tank” and
“Leak in Stream 1”. Simulations of these two faults are shown in Figures 11.4
and 12.4, respectively. The simulations indicate that these two faults share
the same symptoms. The SDG narrows down the search for the possible
faults, but it can produce more than one fault candidate. To determine the
ezact cause of the symptoms, expert knowledge is often needed. Alternatively,
taking additional measurements of the process at different locations may
reveal different symptoms for the faults “Leak in Tank” and “Leak in Stream
17,

Leak in Stream 0 Leak in Stream 1 Stuck Valve

root node

root node

Leak in Tank

Fig. 12.3. A signed directed graph for the gravity tank system with the symptoms
“h and F, are decreasing”

The SDG shown in Figure 12.1 was developed based on knowledge from
observation and analysis of the system. For complex and large-scale systems, a
SDG for the process can be developed from the model equations of individual
units in the process [235]. Alternatively, the SDG can also be developed based
on the knowledge of the process from a domain expert or historical data. The
SDG is able to provide a list of possible fault candidates. Expert knowledge
is often needed to deduce the most likely fault candidates from the list.

There are some drawbacks of using this basic version of the SDG. These
include the lack of resolution, potentially long computing times, and the single
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Fig. 12.4. The measured input (inlet flow rate), measured state (liquid height),
and measured output (outlet flow rate) of a gravity tank in faulty case (Tank is
leaking)

fault assumption. The resolution of a SDG has been improved by using extra
information on the reliability of equipment, the infeasibility of certain root
nodes, and equipment maintenance schedules [319]. This knowledge base is
used to eliminate physically improbable nodes.

The computing time required for using the SDG can be reduced by compil-
ing the SDG into rules [173]. The SDG has been extended to handle variables
with compensatory response and inverse response (81, 247]. A digraph-based
diagnosis reasoning approach known as the possible cause-effect graph
can reduce the search space [339, 340]. The SDG has also been extended to
multiple fault diagnosis by assuming that the probability of occurrence of a
multiple fault decreases with an increasing number of faults [319].

12.2.2 Symptom Tree Model

A closely related representation to the SDG that can be used in causal anal-
ysis is the symptom tree model (STM). The STM is a real-time version



228 12. Knowledge-based Methods

of a fault tree model that relates the faults and symptoms [354, 362, 363].
In STM, the root cause of a fault is determined by taking the intersection
of causes attached to observed symptoms. It is highly likely that this pro-
cedure will result in more than one candidate fault, and it is impossible to
determine the most probable cause among the suggested candidates. The
weighted symptom tree model (WSTM) resolves the problem by at-
taching a weight to each symptom-fault pair, with the weight obtained by
training the WSTM. With the WSTM, the proposed candidate faults are
ranked according to their probability. In the next step, a pattern matching
algorithm is used which matches the observed fault propagation trends with
standard fault propagation trends based on training set [246]. The fault that
best matches the observed process variable changes is selected as the most
probable candidate among the proposed ones.

12.3 Expert Systems

Many fault diagnosis applications in the areas of engineering have made use
of expert systems. Expert systems are knowledge-based techniques which
are closer in style to human problem solving. A well-developed expert sys-
tem is able to represent existing expert knowledge, accommodate existing
databases, accumulate new knowledge, make logical inferences, make recom-
mendations, and make decisions with reasoning. The main advantage of using
expert systems is that experts need not be present for a consultation.

The basic components of an expert system include a knowledge base,
an inference engine, and a human/expert system interface. The knowledge
base can be obtained via shallow knowledge (based on heuristics and ex-
pert testimony) and/or deep knowledge (based on structural, behavioral,
or mathematical models) [257, 366]. Various types of knowledge representa-
tion schemes can be used including production rules, frames, and semantic
networks. The correctness and completeness of the information stored in the
knowledge base specifies the performance achievable by the expert system. To
benefit from new experience and knowledge, the knowledge base also needs
to be updated periodically. The inference engine directs the use of the knowl-
edge base. Inference mechanisms include forward-backward chaining, hypoth-
esis/test methods, heuristic search, meta-rules, and artificial neural networks
[23]. The human/expert system interface must translate user input into com-
puter language and presents conclusions and explanations to the user in an
easy-to-understand form.

Early work on expert systems was focused primary on medical diagnostic
systems [32, 52]. Efforts have been made to expand the applications to equip-
ment maintenance and diagnostics, science, engineering, agriculture, busi-
ness, and finance [34, 175, 198, 211, 284, 314]. Here we provide an introduc-
tion to expert systems. Many references provide a more detailed description
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[37, 107, 131, 161, 335]. Several recent papers describing applications of ex-
pert systems are available [14, 33, 35, 265, 359].

12.3.1 Shallow-Knowledge Expert System

An experienced engineer or domain expert is capable of diagnosing faults
in a much shorter time than an inexperienced operator because the experi-
enced personnel have accumulated knowledge and experience. To assist the
personnel to diagnose faults, expert experience can be formulated as a set
of IF-THEN rules, which can be used to build an expert system. This is
referred to as a shallow-knowledge expert system (also known as expe-
riential knowledge and empirical reasoning expert systems) [174, 198]. The
method does not depend on a functional understanding of the mechanism or
physics of the system.

Advantages of shallow-knowledge expert systems are that they are flexible
and their conclusions can be easily verified and explained. Shallow-knowledge
expert systems map the observations to conclusions directly; therefore, shal-
low knowledge can also be applied to areas where fundamental principles or
complete descriptions of the systems are lacking, but heuristic solutions are
available. For example in medical diagnosis where detailed and reliable mod-
els of the subjects are lacking, rules have been formulated to relate sets of
symptoms to possible diseases [32, 52].

The results from a shallow-knowledge expert system depend strongly on
the adequacy of the knowledge incorporated into the expert system. However,
heuristics do not guarantee any solution to the fault diagnosis problems,
especially for situations in which the domain experts have not encountered
before (i.e., knowledge outside of the domain of expertise). At a minimum,
a well-developed shallow-knowledge expert system should be able to offer
solutions which are good enough most of the time [60].

The main difficulty of applying shallow-knowledge expert systems is in
the knowledge acquisition step, which is the step of collecting adequate
knowledge from domain experts and translating it into computer programs.
First, domain experts may not be available for unique operating scenarios
and for new or retrofitted plants. Second, when domain experts are available,
they may not understand or be able to explain clearly how they solve a
problem [115, 174, 293, 309, 327]. Each expert system is application specific.
Developing an effective expert system from scratch can be time-consuming
and costly for a large-scale system.

12.3.2 Deep-Knowledge Expert Systems

In contrast to shallow-knowledge expert systems, deep-knowledge expert sys-
tems are based on a model such as engineering fundamentals, a structural de-
scription of a system, or a complete behavioral description of its components
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in faulty and normal cases. Deep-knowledge expert systems are also known
as model-based, functional reasoning, or diagnosis-from-first-principles expert
systems. For novel or unique situations, deep-knowledge expert systems of-
ten provide useful information for diagnosing faults. Deep knowledge is often
needed when a particularly difficult problem is confronted or an explanation
to the diagnostic process is required [273].

Deep knowledge involves using reasoning on causal and functional infor-
mation. Knowledge of the principles which govern the process can be used
in a deep-knowledge expert system. Governing equations based on physical
laws provide a set of constraints on the values of process variables. Signifi-
cant violations of these constraints are an indication of process faults. Each
constraint is associated with the set of faults which cause violation of the
constraint [174].

Another method to develop a deep-knowledge expert system is to use
causal reasoning via a SDG [173, 174, 301, 356]. One rule can be produced
for each possible fault origin in the SDG; combining these rules produces all
viable fault candidates [174].

Similarly to the analytical techniques which rely heavily on first principles,
a deep-knowledge expert system is also hard to develop for a complex large-
scale system whose mathematical model may not be available.

12.3.3 Combination of Shallow-Knowledge and Deep-Knowledge
Expert Systems

An experienced engineer uses a combination of techniques for diagnosis, in-
cluding a familiarity with the system documentation, a functional under-
standing of the system components, an understanding of the system interrela-
tionships, knowledge of the failure history of the device, along with numerous
heuristics [254]. This suggests that shallow knowledge and deep knowledge
should be combined in an expert system. Deep knowledge reasoning is often
needed to supplement the shallow knowledge.

Although it is costly to obtain a first-principles model for a large-scale
system, models of individual components are usually available [216]. Such
information can be combined with shallow knowledge in order to effectively
diagnose faults. One method to combine shallow and deep knowledge is to
convert the deep knowledge into production rules [174].

12.3.4 Machine Learning Techniques

As mentioned in Section 12.3.1, the main difficulty of using shallow knowl-
edge is in knowledge acquisition. Experts are usually better at collecting and
archiving cases than in expressing the experience and cases explicitly into
production rules [293, 327].
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One way to solve this problem is to use machine learning techniques, in
which knowledge is automatically extracted from data {21, 200, 201]. Sym-
bolic information can be integrated into an artificial neural network learning
algorithm [156, 298]. Such a learning system allows for knowledge extraction
and background knowledge encoded in the form of rules. Fuzzy rules can also
be used to extract knowledge from the data [156, 327].

12.3.5 Knowledge Representation

The simplest form of knowledge representation in an expert system is to use
a series of IF-THEN rules to represent the expert knowledge in the system.
The majority of industrial expert systems use a rule-based system, which
is composed of a rule base, a working memory, and a rule interpreter [107,
309]. The rule base is often partitioned into groups of rules, called rule
clusters. Each rule cluster encodes the knowledge required to perform a
certain task. A working memory is a database holding input data, inferred
hypotheses, and internal information about the program. A rule interpreter
is the mechanism to select rules and evaluate rules. Advantages of rule-based
systems are that they enforce a homogeneous representation of knowledge,
allow incremental knowledge growth through the addition of rules, and allow
unplanned but useful interactions [107, 293].

In addition to the rule-based systems to represent expert knowledge, a
semantic network can also be used. A semantic network is a method of knowl-
edge representation in which concepts are represented as nodes in the network
and relations are represented as directed arcs (see Figure 12.5). There must
be a way of associating meaning with the network. One way to do this is to
associate a set of programs that operate on descriptions in the representation
[293, 294].

Flow Transmitter
isa

flowrate

10m®/hr

Fig. 12.5. A semantic network representing the knowledge “FT is a flow transmit-
ter with a flow rate of 10 m3/hs”

Alternatively, frames can be used for knowledge representation. A frame
is a collection of semantic net nodes that together provides a structured
representation of an object, act, or event [293]. Frames may be linked in
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hierarchies to show the relationships between domain objects, while rules can
only indirectly describe the objects which comprise the domain [174, 293).

12.3.6 Inference Engine

An inference engine uses an inference mechanism to gather the information
needed (from the knowledge base or the user) to draw inferences or conclu-
sions for the processes involved, and presents these inferences or conclusions
with explanations or bases. The most common approach used in an infer-
ence mechanism is backward/forward chaining. In backward chaining, the
system works backward from tentative conclusions or goals to find support-
ing evidence. Backward chaining starts with selecting a particular hypothesis,
the rules are examined to see if the hypothesis is a consequence. If so, the
premise (also called a condition, pattern, or antecedent) forms the next set
of hypotheses. The procedure is continued until some hypotheses are false or
all hypotheses are true based on the data.

In forward chaining the system reasons forward from a set of known facts
to infer the conclusions [293, 309]. System design is a forward-chaining appli-
cation where the expert system starts with the known requirements, inves-
tigates the possible arrangements, and makes a recommendation. A combi-
nation of forward and backward chaining are common in many applications
[309].

The hypothesis/test method is patterned closely to human diagnostic rea-
soning. This method first generates a hypothesis based on observations. The
effects of the hypothetical fault on the process are determined and compared
with the actual measurements. If the hypothesis cannot be verified, another
hypothesis is checked. The procedure is repeated until all hypotheses are
exhausted.

12.4 Pattern Recognition

Many data-driven, analytical, and knowledge-based methods incorporate pat-
tern recognition techniques to some extent. For example, Fisher discriminant
analysis is a data-driven process monitoring method based on pattern clas-
sification theory. Numerous fault diagnosis approaches described in Part IIT
combined dimensionality reduction (via PCA, PLS, FDA, or CVA) with dis-
criminant analysis, which is a general approach from the pattern recognition
literature. Other uses of pattern recognition in process monitoring are dis-
cussed in Section 12.2.

Some pattern recognition methods for process monitoring use the rela-
tionship between the data patterns and fault classes without modeling the
internal process states or structure explicitly. These approaches include arti-
ficial neural networks (ANN), and self-organizing maps. Since pattern
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recognition approaches are based on inductive reasoning through general-
ization from a set of stored or learned examples of process behaviors, these
techniques are useful when data are abundant, but when expert knowledge
is lacking. Recent reviews of pattern recognition approaches are available
[192, 224, 282]. The goal here is to describe artificial neural networks and
self-organizing maps, as these are two of the most popular pattern recogni-
tion approaches, and they are representative of other approaches.

12.4.1 Artificial Neural Networks

The artificial neural network (ANN) was motivated from the study of the
human brain, which is made up of millions of interconnected neurons. These
interconnections allow humans to implement pattern recognition computa-
tions. The ANN was developed in an attempt to mimic the computational
structures of the human brain.

An ANN is a nonlinear mapping between input and output which consists
of interconnected “neurons” arranged in layers. The layers are connected
such that the signals at the input of the neural net are propagated through
the network. The choice of the neuron nonlinearity, network topology, and
the weights of connections between neurons specifies the overall nonlinear
behavior of the neural network. Many books are available that provide an
introduction to neural networks [24, 28, 61, 156, 309, 358]. Numerous papers
are available which apply ANNs to fault detection and diagnosis; many of
these techniques were derived from the pattern recognition perspective [17,
26, 50, 49, 106, 118, 119, 124, 210, 250, 297, 313, 333, 334, 361, 365].

Of all the configurations of ANNSs, the three-layer feedforward ANN is the
most popular (see Figure 12.6). The network consists of three components: an
input layer, a hidden layer, and an output layer. Each layer contains neurons
(also called nodes). The input layer neurons correspond to input variables
and the output layer neurons correspond to output variables. Each neuron
in the hidden layer is connected to all input layer neurons and output layer
neurons. No connection is allowed within its own layer and the information
flow is in one direction only.

One common way to use a neural network for fault diagnosis is to assign
the input neurons to process variables and the output neurons to fault in-
dicators. The number of output neurons is equal to the number of different
fault classes in the training data. The j** output neuron is assigned to ‘1’ if
the input neurons are associated with fault j, and ‘0’ otherwise.

Each neuron j in the hidden and output layers receives a signal from
the neurons of the previous layer v = [v; vy --- v,], scaled by the weight
ij = [w1; wg; -+ wy;]. The strength of connection between two linked neu-
rons is represented in the weights, which are determined via the training
process. The jt* neuron computes the following value:

85 =W v+b (12.1)
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Input Layer Hidden Layer Output Layer

Fig. 12.6. Basic structure of a three-layer feedforward artificial neural network

where b; is the optional bias term of the j** neuron. Adding a bias term
provides an offset to the origin of the activation function and hence selectively
inhibits the activity of certain neurons [282, 309, 353]. The bias term b; can be
regarded as an extra weight term wyo; with the input fixed at one. Therefore,
the weight becomes ij = [wp; wij waj - - wyrj;]. The input layer neuron uses
a linear activation function and each input layer neuron j receives only one
input signal z;.

The quantity s; is passed through an activation function resulting in an
output o;. The most popular choice of the activation function is to use a
sigmoid function, which satisfies the following properties:

1. The function is bounded, usually in the range [0,1] or [-1,1].

2. The function is monotonically nondecreasing.

3. The function is smooth and continuous (i.e., differentiable everywhere in
its domain).

A common choice of sigmoid function is the logistic function:

1

S (122)

0j
The logistic function has been a popular choice of activation function because
many ANN training algorithms use the derivative of the activation function,
and the logistic function has a simple derivative, g—:f = 0j(1 — o). Another
choice of sigmoid function is the bipolar logistic function:

1—e %

= 12.
14+e % (12:3)

0j

which has a range of [-1,1]. Another common sigmoid function is the hyper-
bolic tangent:
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eaj —_ e-—sj

0j = —————.
e’ e %

(12.4)

Also, radial basis functions (Gaussian, bell-shaped functions) can be used in
place of or in addition to sigmoid functions [44, 130, 231, 262].

The training session of the network uses the error in the output values to
update the weights w;j of the neural network, until the accuracy is within the
tolerance level. An error quantity based on the difference between the correct
decision made by the domain expert and the one made by the neural network
is generated, and used to adjust the neural network’s internal parameters to
produce a more accurate output decision. This type of learning is known as
supervised learning. Mathematically, the objective of the training session is
to minimize the total mean square error (MSE) for all the output neurons
in the network and all the training data:

ZZ g™ — {2 (12.5)

m=1 j=1

Mmy

where M is the number of training data patterns, m, is the number of neurons

5™ is the prediction for the j** output neuron for the

(M) is the target value of the j** output
neuron for the given mt" training sample.

The backpropagation training algorithm is a commonly used steepest de-
scent method which searches for optimal solutions for the input layer-hidden
layer weights w and hidden layer-output layer weights wy for (12.5). The
general procedure for training a three-layer feedforward ANN is [156, 353]:

in the output layer, g;

given m*" training sample, and Y;

1. Initialize the weights (this is iteration ¢t = 0).

2. Compute the output §;(t) for an input x from the training data Ad-
just the weights between the it* hidden layer neuron and the j* h output
neuron using the delta rule [156]

w;(t + 1) = wi;(t) + Awf;(t + 1) (12.6)
where
Aw?(t +1) = nd;(t)o} (t) + adws;(t), (12.7)

n is the learning rate, « is the coefficient of momentum term, o’ (t)
is the output value of the i* hidden layer neuron at iteration ¢, and
d;(t) = y; — 9;(t) is the output error signal between the desired output
value y; and the value §;(t) produced by the j** neuron at iteration t.
Alternatively, the generalized delta rule can be used:

gy (¢ +1) = 08 ()6 (0 T (55(0) + 2wy (), (128)
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where 0%(s?) is the activation function, and
87 = Zw” o/ (i) + b3 (12.9)

is the combined input value from all of the hidden layer neurons to the jt*
output neuron. When the activation function o} is the logistic function
(12.2), the derivative becomes

= 09(1 - 02) = §;(1 — §). (12.10)

3. QCalculate the error e; for the it* hidden layer neuron:

oy do?
e =) Gl (12.11)
j=1 M
4. Adjust the weights between the k" input layer neuron and the i*" hidden
neuron:
wi(t+ 1) = wi(t) + Awl,(t + 1). (12.12)

When the delta rule (12.7) is used in Step 2, Awf,(t + 1) is calculated as
Awpi(t+ 1) = ne;(t)zx(t) + aduwl(t), (12.13)

where zj, is the k** input variable. When the generalized delta rule (12.8)
is used in Step 2, Awl,(t + 1) is calculated as

d h
Awf(t+1) = nes(t)i(t) G (57(0) + adwl(@), (12.14)
where
=Y wha + 0! (12.15)

is the combined input value from all of the input layer neurons to the t"
hidden neuron.

Steps 2 to 4 are repeated for an additional training cycle (also called an
iteration or epoch) with the same training samples until the error E in
(12.5) is sufficiently small, or the error no longer diminishes significantly.
The backpropagation algorithm is a gradient descent algorithm, indicat-
ing that the algorithm can stop at a local minimum instead of the global
minimum. In order to overcome this problem, two methods are suggested
[156]. One method is to randomize the initial weights with small numbers in
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an interval [—1/n,1/n], where n is the number of the neuronal inputs. An-
other method is to introduce noise in the training patterns, synaptic weights,
and output values.

The training of the feedforward neural networks requires the determina-
tion of the network topology (the number of hidden neurons), the learning
rate n, the momentum factor a, the error tolerance (the number of iterations),
and the initial values of weights. It has been shown that the proficiency of
neural networks depends strongly on the selection of the training samples
[50].

The learning rate 7 sets the step size during gradient descent. If 0 < 7 < 1
is chosen to be too high (e.g., 0.9), the weights oscillate with a large ampli-
tude, whereas a small 7 results in slow convergence. The optimal learning
rate has been shown to be inversely proportional to the number of hidden
neurons [156]. A typical value for the learning rate is taken to be 0.35 for
many applications [327]. The learning rate 7 is usually taken to be the same
for all neurons. Alternatively, each connection weight can have its individual
learning rate (known as the delta-bar-delta rule [146]). The learning rate
should be decreased when the weight changes alternate in sign and it should
be increased when the weight change is slow.

The degree to which the weight change Aw;(t+1) depends on the previ-
ous weight change Awg;(t) is indicated by the coefficient of momentum term
a. The term can accelerate learning when 7 is small and suppress oscilla-
tions of the weights when 7 is big. A typical value of « is taken to be 0.7
0<a<l).

The number of hidden neurons depends on the nonlinearity of the problem
and the error tolerance. The number of hidden neurons must be large enough
to form a decision region that is as complex as required by a given prob-
lem. However, the number of hidden neurons must not be so large that the
weights cannot be reliably estimated from available training data patterns.
A practical method is to start with a small number of neurons and gradually
increase the number. It has been suggested that the minimum number should
be greater than (M — 1)/(m, + 2) where m, is the number of inputs of the
network, and M is the number of training samples [156].

In [156] a (4,4,3) feedforward neural network (i.e., 4 input neurons, 4
hidden neurons, and 3 output neurons) was used to classify Fisher’s data
set (see Figure 4.2 and Table 4.1) into the three classes. The network was
trained based on 120 samples (80% of Fisher’s data). The rest of the data
was used for testing. A mean square error (MSE) of 0.0001 was obtained for
the training process and all of the testing data were classified correctly.

To compare the classification performance of neural networks with the
PCA and FDA methods, 40% of Fisher’s data (60 samples) were used for
training, while the rest of the data was used for testing. The MATLAB Neural
Network Toolbox [65] was used to train the network to obtain a MSE of
0.0001 using the backpropagation algorithm. The input layer-hidden layer
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weights wf;, and the hidden layer-output layer weights wy; are listed in Table
12.1. The hidden neuron biases b and the output neuron biases bj are listed
in Table 12.2. For example, ws; is 1.783 according to Table 12.1. This means
that the weight between the second input neuron and the first hidden neuron
is 1.783.

Table 12.1. The weights of the neural network for Fisher’s data [45, 82]

wh; 1 2 3 4 w 1 2 3

1 || 3714 | -0.2953 | 1.253 | 0.0536 0.0001 | 1.698 | -1.726
2 || 1.783 | 2.178 | 0.656 | -0.0421 2.206 | -2.811 | -0.0002
3 || -18.89 | -3.908 | -3.261 | 0.0187 0 1.112 | 0.0002
4 || -9.644 | -1.767 | -1.513 | 0.2086 3.031 | 0.120 | 1.834

510

W=

Table 12.2. The bias weights of the neural network for Fisher’s data [45, 82]

ot 5
1 15.04 | -0.8244
2 || -3.252 [ -0.1191
3 || 0.0059 | -0.1069
4| 4.368 -

The misclassification rates for Fisher’s data are shown in Table 12.3. The
overall misclassification rate for the testing set is 0.033, which is the same
as the best classification performance using the PCA or FDA methods (see
Table 5.3). This suggests that using a neural network is a reasonable approach
for this classification problem.

Table 12.3. Misclassification rate of Fisher’s data from [45, 82] using the neural
network method

Class 1 | Class 2 | Class3 || Overall
Training 0 0 0 0
Testing "0 0.10 0 0.033

The training time for a neural network using one of the variations of
backpropagation can be substantial (hours or days). For a simple 2-input
2-output system with 50 training samples, 100,000 iterations are not uncom-
mon [50]. In the Fisher’s data example, the computation time required to
train the neural network is noticeably longer than the time required by the
data-driven methods (PCA and FDA). For a large-scale system, the memory
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and computation time required for training a neural network can exceed the
hardware limit. Training a neural network for a large-scale system can be a
bottleneck in developing a fault diagnosis algorithm.

To investigate the dependence of the size of the training set on the pro-
ficiency of classification, 120 observations (instead of 60 observations) were
used for training and the rest of Fisher’s data were used for testing. A MSE
of 0.002 was obtained and the network correctly classified all the observations
in the testing set, which is consistent with the performance obtained by the
PCA and FDA methods (see Table 5.5).

Recall that the training of neural networks is based entirely on the avail-
able data. Neural networks can only recall an output when presented with
an input consistent with the training data. This suggests that the neural
networks need to be retrained when there is a slight change of the normal
operating conditions (e.g., a grade change in a paper machine).

Neural networks can represent complex nonlinear relationships and are
good at classifying phenomena into preselected categories used in the train-
ing process. However, their reasoning ability is limited. This has motivated
research on using expert systems or fuzzy logic to improve the performance
of neural networks (this is discussed in Section 12.5).

12.4.2 Self-Organizing Map

Neural network models can also be used for unsupervised learning using a
self-organizing map (SOM) (also known as a Kohonen self-organizing
map), in which the neural network learns some internal features of the input
vectors x [156, 164, 165, 166]. A SOM maps the nonlinear statistical depen-
dencies between high-dimensional data into simple geometric relationships,
which preserve the most important topological and metric relationships of
the original data. This allows the data to be clustered without knowing the
class memberships of the input data.

As shown in Figure 12.7, a SOM consists of two layers; an input layer
and an output layer. The output layer is also known as the feature map,
which represents the output vectors of the output space. The feature map
can be n-dimensional, but the most popular choice of the feature map is
two-dimensional. The topology in the feature map can be organized in a
rectangular grid, a hexagonal grid, or a random grid. The number of the
neurons in the feature map depends on the complexity of the problem. The
number of neurons must be chosen large enough to capture the complexity
of the problem, but the number must not be so large that too much training
time is required.

The weight w; connects all the m,, input neurons to the j** output neuron.
The input values may be continuous or discrete, but the output values are
binary. A particular implementation of a SOM training algorithm is outlined
below [7, 156]:
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Fig. 12.7. A self-organizing map with two inputs and a two-dimensional output
map

. Assign small random numbers to the initial weight vector w; for each

neuron j from the output map (this is iteration ¢ = 0).
Retrieve an input vector x from the training data, and calculate the
Euclidean distance between x and each weight vector w;:

% — w]]. (12.16)

The neuron closest to x is declared as the best matching unit (BMU).
Denote this as neuron k.

Each weight vector is updated so that the BMU and its topological neigh-
bors are moved closer to the input vector in the input space. The update
rule for neuron j is:

: _ [ wi(@) + a(t)x(t) —wi(?)] j € Ni(d)
wi(t+1) = { wy() i d Nold) (12.17)
where Ni(d) is the neighborhood function around the winning neuron k
and 0 < a(t) < 1 is the learning coefficient. Both the neighborhood func-
tion and learning coefficient are decreasing functions of iteration number
t. In general, the neighborhood function Ni(d) can be defined to contain
the indices for all of the neurons that lie within a radius d of the winning
neuron k.

Steps 2 to 4 are repeated for all the training samples until convergence.

The final accuracy of the SOM depends on the number of the iterations. A

“rule of thum

the

” is that the number of iterations should be at least 500 times

number of network units; over 100,000 iterations are not uncommon in

applications [166].

To illustrate the principle of the SOM, Fisher’s data set (see Table 4.1

and Figure 4.2) is used. The MATLAB Neural Network Toolbox [65] was used
to train the SOM, in which 60 observations are used and 15 by 15 neurons
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in a rectangular arrangement are defined in the feature map. The feature
map of the training set after 2,000 iterations is shown in Figure 12.8. Each
marked neuron (‘x’, ‘0’, and ‘*’) represents the BMU of an observation in the
training set. The activated neurons form three clusters. The SOM organizes
the neurons in the feature map such that observations from the three classes
can be separated.
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Fig. 12.8. The feature map (15 by 15 grid format) of Fisher’s training data [45, 82]

The feature map of a testing set is shown in Figure 12.9. The positions of
the ‘x’, ‘o’, and ‘*’ occupy the same regions as in Figure 12.8. This suggests
that the SOM has a fairly good recall ability when applied to new data.
An increase in the number of neurons and the number of iterations would
improve the clustering of the three classes.

The SOM has been successfully applied in fault diagnosis [289, 290]. For
fault detection, a SOM is trained to form a mapping of the input space
during normal operating conditions; a fault can be detected by monitoring
the distance between the observation vector and the BMU [7].
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Fig. 12.9. The feature map (15 by 15 grid format) of Fisher’s testing data [45, 82]

12.5 Combinations of Various Techniques

Each process monitoring technique has its strengths and limitations. Efforts
have been made to develop process monitoring schemes based on combina-
tions of techniques from knowledge-based, analytical, and data-driven ap-
proaches [51, 78, 95, 236, 323, 324]. Results show that combining multiple
approaches can result in better process monitoring performance for many
applications.

12.5.1 Neural Networks and Expert Systems

Most of the knowledge-based methods can be used in conjunction with each
other. For example, neural networks and expert systems have been combined
and used in industrial applications [329, 330]. As shown in Section 12.3, the
strength of expert systems is their ability to mimic human reasoning on solv-
ing fault diagnosis problems and the weakness is the knowledge acquisition
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bottleneck. As shown in Section 12.4, the strength of neural networks is their
ability to recognize patterns based on training examples and the weakness is
their lack of ability to explain the results.

The most direct application to using neural networks for improving ex-
pert systems is to have a neural network serve as the knowledge base for
an expert system. This allows the expert system to acquire knowledge from
data. The training may be on line or performed during an initialization pe-
riod. Knowledge bases may also contain models of systems which produce
real-time results or certain learning systems via neural networks to provide
new knowledge.

Expert systems can be used to improve neural networks as well. One ap-
plication is to use an expert system as an interpreter of neural networks to
execute fault diagnosis and evaluate the results [309, 366]. An expert system
can also be used to retrain the neural network to adapt to challenging sit-
uations. A combined neural network and expert system tool was developed
for transformer fault diagnosis [329, 330]. Results were that a tool which
combines an artificial neural network and an expert system provided better
performance than using either of the individual components.

12.5.2 Fuzzy Logic

Fuzzy logic was first developed in the mid-1960s for representing uncertain
and imprecise knowledge [357]. Fuzzy logic provides an approximate but ef-
fective means of describing complex ill-defined systems by using graded state-
ments rather than ones that are strictly true or false. Fuzzy logic has been
widely applied to many areas of engineering in recent years [2, 11, 48, 149,
148, 323]. There are many books on fuzzy logic (e.g., [156, 309, 364]).

Descriptions commonly used in engineering systems such as “big or small”
or “high or low” are inherently fuzzy. The fuzzy description is a conceptualiza-
tion of numerical values that can be qualitative and meaningful to operators.
A process variable can be translated to fuzzy concepts via a membership
function p4(z), which maps every element z of the set X to the interval
[0,1]. Mathematically, it can be defined as:

pa(z): X — [0,1] (12.18)

where A is a fuzzy subset of X. Each value of the membership function
is called a membership degree. A membership degree of 0 indicates no
membership, while a membership degree of 1 indicates full membership in
the set A. A set defined in classic logic (commonly referred to as a crisp set)
is a special case of fuzzy set, in which only two membership degrees 0 and
1 are allowed. A fuzzy set A defined on X may be written as a collection of
ordered pairs

A= (@ u) (12.19)

zeX
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where each pair (z,u(z)) is called a singleton. If the set X is discrete, a
membership function can be defined by a finite set:

A= U (zky (k). (12.20)
k
1{\ Low Normal High
092G ——-------
008t --------- .
0 04 98 g9 102 -

Body Temperature T(°F)

Fig. 12.10. Membership functions representing three fuzzy sets for the linguistic
variable “body temperature”

Fuzzy logic allows the representation of variables and relationships in lin-
guistic terms. A linguistic variable is a variable which takes fuzzy values
and has a linguistic meaning. Linguistic variables can be based on quantitative
variables in the process, for example, the linguistic variable body temperature,
which can take the fuzzy values of “Low”, “Normal”, and “High”. Each fuzzy
value may be modeled as shown in Figure 12.10. For example, a body tem-
perature of 99°F takes a fuzzy value of “Normal” and a membership degree of
0.92 via pnormal(T). It also takes a fuzzy value of “High” and a membership
degree of 0.08 via pgigh(T). Linguistic variables can also be qualitative, for
example, the linguistic variable certainty which can take fuzzy values such
as “Highly Certain” or “Not Very Certain”. The process of representing a
linguistic variable into a set of fuzzy values is called fuzzy quantization.

The membership functions shown in Figure 12.10 are defined based on sta-
tistical data. The membership functions for “Low”, “Normal”, and “High”
are represented by a Z-function (which is 1 minus a sigmoid function), bell-
shaped function, and sigmoid function, respectively. Other types of member-
ship functions including the trapezoidal, triangular, and single-valued func-
tions can also be used [156].
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Fuzzy logic systems address the imprecision of the input and output vari-
ables directly by defining them with fuzzy numbers and fuzzy sets that can
be expressed in linguistic terms. Complex process behavior can be described
in general terms without precisely defining the complex phenomena involved.
However, it is difficult and time consuming to determine the correct set of
rules and membership functions for a reasonably complex system. Fine tun-
ing a fuzzy solution takes a large amount of time. To resolve some of the
issues, neural networks can be used to learn the best membership function
through training.

12.5.3 Fuzzy Expert Systems

It has been observed that the number of IF-THEN rules required to define an
expert system tends to grow exponentially as the complexity of the system
increases. As the number of IF-THEN rules becomes larger than 200, it is
virtually impossible to write a meaningful rule that does not conflict with
the existing rules [309]. This has motivated recent research in incorporating
fuzzy logic into expert systems in an attempt to reduce the number of rules
required. Several recent papers based on fuzzy expert systems are available
[35, 152, 323].

A fuzzy expert system (also known as a fuzzy system) is defined
in the same way as an ordinary expert system as described in Section 12.3,
except that fuzzy logic is used. Fuzzy expert systems use fuzzy data, fuzzy
rules, and a fuzzy inference mechanism which may include fuzzification and
defuzzification. Input and output data can be fuzzy (as described in Section
12.5.2) or exact (crisp).

When the input data and output values are crisp, then the “fuzzification,
fuzzy rule, and defuzzification” inference method is applied. Fuzzification
is the process of finding the membership function p4(z) so that input data z
belong to the fuzzy set A. Rule evaluation deals with single values of the
membership function p4(z) and produces the output membership function.
Defuzzification is the process of calculating single-output numerical values
for a fuzzy output variable on the basis of the inferred membership function
for this variable.

The fuzzy rules and the membership functions form the system knowledge
base. Fuzzy rules deal with fuzzy values. The most popular rule is the IF-
THEN rule. Fuzzy IF-THEN rules are conditional statements that describe
the dependence of one or more linguistic variable on another. The number of
different implication relations is over 40 [194, 195]. The simplest form is the
Zadeh-Mamdani’s fuzzy rule:

IF (“z is A”), THEN (“y is B”) (12.21)

where = and y are fuzzy variables, A and B are fuzzy sets and (“z is A”)
and (“y is B”) are fuzzy propositions. The fuzzy rules can be generated
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based on clustering of data into groups [156, 326, 327]. To illustrate this idea,
Fisher’s data (see Table 4.1 and Figure 4.2) is used to generate the fuzzy
rules [156, 326, 327}:

1. As shown in Section 4.2, Fisher’s data set contains 3 groups, with each
group containing four measurements and 50 observations. The sepal
length, sepal weight, petal length, and petal width, are fuzzified into
4, 3, 6, and 3 fuzzy regions, respectively. Each region is represented by
a membership function (see Figure 12.11). Triangular functions are used
for intermediate intervals with the center of a triangular membership
function placed at the center of the interval and the other two vertexes
placed at the middle points of the neighboring intervals. Trapezoidal
membership functions are used for the end intervals.

2. The four measurement variables are fuzzified. For example, the first ob-
servation of Class 3 is (SL = 5.1, SW = 3.5, PL = 1.4, and PW = 0.2),
the variables can be fuzzy-quantized using the membership functions (see
Equation 12.11) and the results are shown in Table 12.4.

Table 12.4. Fuzzy-quantizing of an observation of Fisher’s data [45, 82]

Measurement | Fuzzy Value | Membership Degree
Sepal Length (SL) 5.1 M1 0.6
Sepal Width (SW) 3.5 M 1
Petal Length (PL) 1.4 S1 1
Petal Width (PW) 0.2 S 1
Iris Setosa (Class 3) - - 0.6

3. Each observation is represented by one fuzzy rule attached with a de-
gree of confidence, which is calculated by multiplying the membership
degrees of the condition elements by one another. For example, the first
observation of Class 3 results in the following fuzzy rule:

IF (“SLis M1”) AND (“SW is M”) AND (“PL is 517)

AND (“PW is §”),  THEN (“Class 3") (12.22)

with a degree of confidence of 0.6 (0.6 x 1 x 1 x 1 = 0.6).

One weakness of the fuzzy approach shown above is the relatively large
number of fuzzy rules generated. To reduce the number of rules required to
describe a complex system, a genetic algorithm optimization can be used [156,
309]. Alternatively, a statistical-based processor can analyze the situation and
give the contribution of each rule to the solution [309)].

Fuzzy inference takes inputs, applies fuzzy rules, and produces outputs.
Fuzzy inference is an inference method that uses fuzzy implication relations
(e.g., the IF-THEN rule), fuzzy composition operators (e.g, MIN, MAX), and
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Fig. 12.11. Divisions of the input spaces into fuzzy regions for variables a) Sepal
Length, b) Sepal Width, c) Petal Length, and d) Petal Width
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an operator (e.g., AND, OR) to link the fuzzy rules. The inference process re-
sults in inferring new facts based on the fuzzy rules and the input information
supplied [156].

In general, the larger the number of fuzzy rules, the higher the chance to
generate conflicting rules (i.e., rules that have the same IF part but different
THEN parts). To resolve this problem, the rule with the higher degree of
confidence is retained and the rule with the lower degree of confidence is
discarded. The maximum number of fuzzy rules generated in the training
sets is equal to the number of the observations in the training set (60 in this
example). Discarding the conflicting rules with lower degree of confidence,
the number of fuzzy rules becomes 58. The observations of Fisher’s data in
the testing set are fuzzified and the results are shown in Table 12.5.

Table 12.5. Misclassification rate of Fisher’s data [45, 82] using the fuzzy set
method

Class 1 | Class 2 | Class3 || Overall
Training 0.10 0 0 0.033
Testing 0.30 0.23 0 0.18

The overall misclassification rates for Fisher’s data are higher than the
data-driven methods (PCA, PLS, and FDA). The proficiency of the fuzzy
rules depends on the selection of the membership functions and the num-
ber of fuzzy values. Fine tuning of the parameters would result in better
classification results.

12.5.4 Fuzzy Neural Networks

Fuzzy logic can be used with neural networks. A fuzzy neuron has the
same basic structure as the artificial neuron, except that some or all of its
components and parameters may be described through fuzzy logic. A fuzzy
neural network is built on fuzzy neurons or on standard neurons but dealing
with fuzzy data. A fuzzy neural network is a connectionist model for the
implementation and inference of fuzzy rules. There are many different ways
to fuzzify an artificial neuron, which results in a variety of fuzzy neurons and
fuzzy networks in the literature [2, 11, 15, 48, 59, 156, 327, 364]. One common
configuration of a fuzzy network is illustrated in Figure 12.12, which contains
two fuzzy input variables z; and z; and one fuzzy output variable y [327].
Inside the dashed box of Figure 12.12 is a normal three-layer feedforward
neural network as discussed in Section 12.4.1. Suppose each fuzzy variable
takes three fuzzy values: “High”, “Normal”, and “Low”, then the membership
degrees of the fuzzy values corresponding to the variables x; and z; are the
input layer neurons, and the membership degrees of the fuzzy values corre-
sponding to the variable y are the output layer neurons. The configuration of
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Fig. 12.12. A fuzzy three-layer feedforward neural network [327]

this fuzzy neural network increases the size of the network dramatically and
increases the computational load. An alternative approach is to split each
input layer neuron into two; one for describing the fuzzy value and the other
for representing the membership value [327].

12.5.5 Fuzzy Signed Directed Graph

As shown in Section 12.2.1, the traditional signed directed graph (SDG) can
take one of three values (—, +, 0) for each node or branch. This can give
ambiguous solutions in complicated fault diagnosis problems. Fuzzy logic
can be combined with the signed directed graph [128, 302, 304, 327]. A fuzzy
set can be defined for a finite set of nodes and the relationship between two
nodes can be represented by a fuzzy relationship [128, 327].

Each node in the fuzzy SDG takes a fuzzy variable with its fuzzy value
determined by a membership function. Unlike the arcs in a traditional SDG
that only have + or — sign, the arcs in a fuzzy SDG also have a weight
representing the strength of the connection. The weight can be calculated
based on the value range and the sensitivity of the connecting nodes. A more
sophisticated method to represent the effect between two nodes is to use a
single layer perceptron [327].
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12.5.6 Fuzzy Logic and the Analytical Approach

Fuzzy logic can be used in accord with analytical approaches as described
in Chapter 11 for residual evaluation. Fuzzy residual evaluation transforms
quantitative knowledge (residuals) into qualitative knowledge (fault indica-
tions) using a three-step process: (i) fuzzification, (ii) inference, and (iii)
defuzzification (presentation of the fault indication) [90, 168].

Because of measurement noise and uncertainty, the residual threshold is
greater than zero. Further increasing the threshold will decrease the false
alarm rate, at the cost of increasing the missed detection rate. The tradeoff
between these two effects can be balanced via fuzzification on the residual
threshold [90]. The residual can be fuzzified via the membership functions for
fuzzy sets “Normal” and “Not Normal”. The membership functions xyormat
and fNot Normal are shown in Figure 12.13. The parameter ag has to be
assigned proportional to the noise amplitude and the effects of modeling un-
certainties. The parameter  can be chosen as the variance of the noise process
due to disturbances and the influences of time-varying modeling errors. With
the fuzzification procedure, a small change of the thresholds in the fuzzy do-
main [ag, ao + 0] has a small effect on the false alarm and missed detection
rate.

UNormal | fuzzy domain Not Normal

Y

ao ag+6 r
Fig. 12.13. Composition of the fuzzy set “Normal” and “Not Normal”
Similarly to the analytical approaches, the faults of interest are first de-

fined. In the fuzzification step, each residual r; is fuzzified into the fuzzy sets
“Normal” and “Not Normal”. Mathematically, it is described by

Ty = Tig O Ti1 (12.23)
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where o is the fuzzy composition operator, r;o describes the fuzzy set “Nor-
mal” of the i** residual, and r;; describes the fuzzy set “Not Normal” of the
ith residual.

The inference phase is to determine the indication signals for the faults
from the given rule base. The inference mechanism uses a series of IF-THEN
rules to map the residual (defined by their fuzzy sets) onto the faults, for
example

IF (effect = rio) AND (effect = rj1) ---

THEN (cause = fi) (12.:24)

where f, represents the k** fault of the system.

Two faults are distinguishable if they have at least one different definition
in the premise of the rule. If all premises of two fault descriptions fi and f;
have the same fuzzy values, a distinction is not possible. To resolve such an
inconsistency, one or more fuzzy sets have to be subdivided into at least two
fuzzy sets [168]. For example, the fuzzy set “Fault” can be subdivided into
“Strongly deviating” and “Slightly deviating” such that the residuals of these
two fuzzy sets are different for faults f; and f;. From the definition of the
fuzzy sets and the faults defined, the number of rules is determined.

12.5.7 Neural Networks and the Analytical Approach

The neural network can replace the analytical model (e.g., observer, par-
ity relations) describing the process under normal operating conditions. The
residual is taken as the difference between the actual output and the esti-
mated output from the neural network. It is useful to apply this approach
when no exact or complete analytical or knowledge-based model can be pro-
duced, but a large amount of measurement data is available [90].

For residual evaluation, a residual database and a corresponding fault
signature database can be used to train the neural networks. The residual
database can be generated from another neural and/or other analytical meth-
ods such as parity relations or an observer. One difficulty of applying this
approach is the lack of analytical information on the performance, stability,
and robustness of the neural network; on-line approximators and learning
algorithms have been proposed to resolve this problem [261].

12.5.8 Data-driven, Analytical, and Knowledge-based Approaches

The previous sections describe some efforts to combine ideas from more
than one approach to process monitoring. Many of the knowledge-based
approaches (e.g., the SDG, expert systems) are well suited for diagnosing
faults because of their ability to incorporate reasoning. On the other hand,
data-driven approaches are based on rigorous statistical development that
is able to capture the most important information onto a lower-dimensional



252 12. Knowledge-based Methods

space. As such, data-driven techniques are well suited for detecting faults
for large-scale industrial applications. When a detailed first-principles and
other mathematical model is available, the analytical approach can incorpo-
rate physical understanding into the process monitoring scheme. For these
reasons, a combined data-driven, analytical, and knowledge-based process
monitoring scheme will play an important role in industrial systems for de-
tecting, isolating, and diagnosing faults in upcoming years.

12.6 Homework Problems

1. Compare and contrast the SDG and the symptom tree model. Which
method is expected to perform better for fault diagnosis? Justify your
answers.

2. Read an article on the use of the SDG for diagnosing multiple faults (e.g.,
[196, 319]) and write a report describing in detail how the technique is
implemented and applied. What are the strengths and weaknesses of the
technique?

3. Which of the following expert systems (deep knowledge, shallow knowl-
edge, or a combination of shallow knowledge and deep knowledge) is
more popular in industrial applications? Why? Justify your answers, and
support them with at least ten journal articles from a literature search.

4. Read the article [34] on the use of meta-knowledge architecture to ac-
commodate both shallow and deep reasoning mechanisms in an expert
system. Write a report describing in detail how the method is imple-
mented and applied. How does the meta-knowledge architecture place in
the context with methods described in Section 12.3.67

5. Read one of the following articles [103, 280, 281, 288] on the use of
discrete-event models for fault diagnosis. Write a report describing in
detail how the method is implemented and applied. How do the discrete-
event models compare with the methods described in Section 12.37

6. Investigate the effects of (i) the number of hidden layer neurons, (ii) the
learning rate, (iii) the coefficient of the momentum term, (iv) different
types of sigmoid functions, and (e) the bias terms on the proficiency of
classification using Fisher’s data set. Comment on your findings.

7. Compare and contrast [156, 224, 285, 309]: (i) feedforward neural net-
works, (ii) adaptive neural networks, (iii) radial basis function neural
networks, (iv) time-delay neural networks, (v) recurrent neural networks,
and (vi) autoassociative neural networks. Find an industrial application
of each type of neural network in the literature, and write a few sentences
summarizing the results of each application.

8. Compare and contrast the following algorithms [65, 156, 309]: (i) variable
learning rate, (ii) Rprop, (iii) scaled conjugate gradient, (iv) Fletcher-
Powell conjugate gradient, (v) Polak-Ribiere conjugate gradient, (vi)
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Powell-Beale conjugate gradient, (vii) one-step-secant, (viii) BFGS quasi-
newton, and (ix) Levenberg-Marquardt. Run Fisher’s data set on a three-
layer feedforward neural network using all of the training algorithms and
compare the computation speeds. Discuss your results.

Derive the generalized delta rule (12.8) and (12.14) based on the method
of gradient descent. Hint: Write the error for a single observation x as

My

1 .
E=3) (6 -w) (12.25)
j=1

Gradient descent sets the changes in weights by

dE

Awfy = —n- 5 (12.26)
ij
dE

Al = —n—p (12.27)
' dw};

The expressions for dE/dwg; and dE/ dw?, can be derived using the chain
rule.

Describe in detail the idea of learning vector quantization when used
with the SOM [166, 167]. Apply the technique using Fisher’s data set and
compare with results shown in this book. Comment on your findings.
Re-run Fisher’s data set using a self-organizing map with the following
changes: (i) use a 25 X 25 rectangular map, (ii) use 150 observations
in the training set and 30 observations in the test set, (iii) use a 15 x
15 hexagonal map instead of rectangular map, (iv) set the number of
iterations to 100. Comment on your findings.

Write a summary report that reviews a book on the use of fuzzy logic in
engineering applications (e.g., [156, 309, 364]). What are the strengths
and weaknesses of fuzzy logic? Find three industrial applications which
use fuzzy logic in the literature, and discuss the application results.
Re-run Fisher’s data set using the fuzzy rules with the following changes:
(i) use different membership functions for each fuzzy variable, (ii) use
150 observations for training and 30 observations for testing, (iii) use
different fuzzy values for each fuzzy variable, and (iv) use the fuzzy rules
as suggested on page 219 of [156]. Comment on your findings.

Compare and contrast different types of fuzzy neural networks [2, 11, 48,
59, 156, 327, 364]. Pick two fuzzy neural networks and apply them to
Fisher’s data set. Compare your results with the results shown in this
book. Comment on your findings.

Compare and contrast different types of fuzzy SDGs [128, 302, 304, 327].
What are the advantages and disadvantages of the fuzzy SDG compared
to the traditional SDG?
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Read an article on the use of SDG with PCA (e.g., [320]) and write
a report describing in detail how the technique is implemented and ap-
plied. What are the advantages and disadvantages of using this technique
compared to using PCA and SDG alone? Justify your answers.

Read an article on the use of parity equations with PCA (e.g., [100])
and write a report describing in detail how the technique is implemented
and applied. What are the advantages and disadvantages of using this
technique compared to using PCA and parity equation alone? Justify
your answers.
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Additive fault, 175, 178

Adjusted PLS1, see PLS14q;

Adjusted PLS2, see PLS2.q;

Analytical approaches

— observer, 190

— parameter estimation, 179

— parity relations, 196

Analytical redundancy, 9, 173

ANN, 232, 233

— backpropagation algorithm, 235

— bias term, 234

— delta rule, 235

— epoch, 236

— feedforward ANN, 233

— generalized delta rule, 235

— incorporated with expert systems,
243

— learning rate, 237

— momentum term, 237

— sigmoid function, 234

ARMA, 85

Artificial neural network, see ANN

ARX, 52

— comparison with DPCA, 53

Autoregressive model, see ARX

Autoregressive moving average model,
see ARMA

Autoscaling, 16

Best matching unit, see BMU
Between class-scatter-matrix, 58
BMU, 240

Canonical correlation analysis, 88
Canonical correlations, 87
Canonical variables, 88

Canonical variate analysis, see CVA
Combined discriminant, 50
Common cause, 15

Contribution plots

— CVA, 98

— PCA, 46

- PLS, 78

Crisp set, 243

Cumulative sum chart, see CUSUM

CUSUM, 19, 54, 118

CVA, 9

— Akaike’s information criterion, 94

— algorithm, 89

— canonical correlations, 87

— canonical variables, 88

— comparison with discriminant PLS,
89

- comparison with DPCA, 85

- comparison with FDA, 89

— comparison with PCA, 88

— fault detection, 134

— fault diagnosis, 98

— fault identification, 98, 143

— identifiability, 92

— information criterion, 94

— Q statistic, 98

- SVD, 88

— T? statistic, 97

— Theorem, 87

Data reconciliation, 220

Data-driven approaches, 6

Defuzzification, 245

Delta rule, 235

DFDA, 69

— fault diagnosis, 150

Diagnosis-from-first-principles expert
systems, 230

Dimensionality reduction, 31

Discrepancy detection, 7

Discriminant analysis, 27, 28

- discriminant PLS, 78

Discriminant function, 28, 30, 49, 63

Discriminant partial least squares, see
Discriminant PLS

Discriminant PLS, 8

— comparison with CVA, 89

- comparison with DPCA, 79
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— discriminant analysis, 78

— dummy variables, 72

— fault diagnosis, 152

~ NIPALS algorithm, 76

— prediction, 77

— reduction order, 77

Discriminant projection to latent
structures, see Discriminant PLS

DPCA

— comparison with ARX, 53

— comparison with CVA, 85

— fault detection, 140

— fault diagnosis, 157

— fault identification, 53, 143

Dynamic Fisher discriminant analysis,
see DFDA

Dynamic principal component analysis,

see DPCA

Eigenvalue decomposition

— FDA, 59

- PCA, 36

— T? statistic, 21

Empirical reasoning expert systems,
229

ES, 228

— deep knowledge, 230

— incorporated with ANN, 243

— knowledge acquisition, 229, 230

— machine learning techniques, 230

— rule-based, 231

— shallow knowledge, 229

EWMA, 19, 54, 118

Experiential knowledge expert systems,
229

Expert systems, see ES

Exponentially-weighted moving
average, see EWMA

False alarm, 17, 250
Fault code, 211

Fault detection, 4

- CVA, 134

- DPCA, 53

- FDA, 62

— observer, 192

— parameter estimation, 181
— parity relations, 197
- PCA, 42

- PLS, 78

Fault diagnosis, 4

— ANN, 233

— CVA, 98

— DFDA, 150

- DPCA, 157

- ES, 228

— FDA, 62, 147

— PCA, 48, 157

— PLS1.q4;, 78, 152

— PLS2,4;, 78, 152

- PLS1, 78, 152

- PLS2, 78, 152

- SDG, 224

— symptom tree model, 227

Fault identification, 4

— CVA, 98, 143

- DPCA, 53, 143

— PCA, 45, 143

- PLS, 78

— univariate statistic, 45

Fault isolation, 174

— parity relations, 212

Fault signature, 211

FDA, 8, 57

— Akaike’s information criterion, 60

between class-scatter-matrix, 58

— comparison with CVA, 89

— comparison with PCA, 63

— eigenvalue decomposition, 59

— fault diagnosis, 62, 147

— FDA/PCA1, 63

— FDA/PCA2, 63

— optimization, 59

— reduction order, 60

— total-scatter matrix, 58

— within-class-scatter matrix, 58

FDI system, 174

Feature extraction, 27, 30

Feature map, 239

Fisher discriminant analysis, see FDA

Frame, 231

Functional reasoning expert systems,
230

Fuzzification, 245, 250

Fuzzy expert system, 245

Fuzzy logic

— linguistic variable, 244

— membership function, 243

Fuzzy neural networks, 248

Fuzzy quantization, 244

Fuzzy rules, 245, 246, 248

Fuzzy SDG, 249

Fuzzy system, 245

Generalized delta rule, 235
Generalized likelihood ratio, 216



Generalized singular value decomposi-
tion, see GSVD
GSVD, 88

Identifiability, 92
Information criterion

~ CVA, 94

~ DFDA, 151

— discriminant PLS, 153
- FDA, 60, 151

KLID, 94

Knowledge-based approaches

— causal analysis, 224

— expert systems, 228

— pattern recognition, 232

Kohonen self-organizing map, 239

Kullback-Leibler information distance,
see KLID

Limit sensing, 7, 17
Limit value checking, 17
Loading vectors, 36, 73

Markov process, 90

Maximum selection, 27

Mean overlap, 51

Mean square error, see MSE
Missed detection, 17, 250
Model-based expert systems, 230
MOESP, 95

MSE, 235

Multiplicative fault, 177, 179
Multivariate statistics, see MS

N4SID, 95

Neighborhood function, 240

NIPALS

- PLS1, 76

- PLS2, 74

Non-iterative partial least squares, see
NIPALS

Non-supervised classification, 48

Observability, 138, 200

Observer-based method, 9, 174, 190

— connection with the parity relations,
210

— eigenstructure assignment, 194

— fault detection, 192

— full-order state estimator, 191

— unknown input observer, 194

Ordinary least squares, 73
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Parallel analysis, 41

Parameter estimation, 9, 174

Parity relations, 9, 174

— connection with the observer-based
method, 210

— disturbance decoupling, 204

— fault detection, 204

— fault isolation, 212

— specification, 202

— state-space approach, 198

Partial least squares, see PLS

Pattern classification

— discriminant analysis, 27, 28

— feature extraction, 27, 30

— maximum selection, 27

PCA, 8

— application, 35

— combined discriminant, 50

— comparison with FDA, 63

— comparison with CVA, 88

— comparison with discriminant PLS,
79

— fault detection, 42

— fault diagnosis, 48, 157

— fault identification, 45, 143

— multiway, 54

— nonlinear, 54

— optimization problem, 36

— parallel analysis, 41

— percent variance method, 41

— PRESS statistic, 42

— properties, 37

— Q statistic, 44

— reduction order, 41

— residual discriminant, 50

— residual matrix, 37

— score discriminant, 49

— scree test, 41

SPE, 44

— SVD representation, 36

— T2 statistic, 42

Percent variance method, 41

PLS

— loading vectors, 73

multiblock, 83

multiway, 83

NIPALS algorithm, 76

nonlinear, 82

— PLS1.q4;, 78, 152

— PLS2,4;, 78, 152

- PLS1, 74

- PLS2, 72

- prediction, 77
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~ score matrix, 73

— score vectors, 73

Possible cause-effect graph, 227

Prediction residual sum of squares
statistic, see PRESS statistic

PRESS statistic, 42, 77

Principal component analysis, see PCA

Process monitoring

- analytical, 6, 173

— data-driven, 6, 35, 121

— discrepancy detection, 7

— knowledge-based, 6, 224, 232

— limit sensing, 7

— methods, 5

— multivariate statistic, 21

objective, 6

— procedure, 4

— univariate statistic, 17

Process recovery, 4

Promptness of statistics, 133

Q statistic
~ CVA, 98
- PCA, 4
- PLS, 78

Reduction order

— discriminant PLS, 77

~ FDA, 60

- PCA 41

Removing outliers, 16
Removing variables, 16
Residual discriminant, 50
Residual evaluation, 215

— T? statistics, 216

— ANN, 251

— fuzzy logic, 250

— generalized likelihood ratio, 216
Residual generation

— observer-based method, 193
— parameter estimation, 180

— parity relations, 197

~ state-space approach, 199
— unknown input observer, 195
Residual vector

- CVA, 98

- PCA, 37

Robustness of statistics, 133, 201, 214
Rule evaluation, 245
Rule-based system, 231

Score discriminant, 49
Score matrix, 73
Score vectors, 73

Scree test, 41

SDG, 224

— consistent path, 225

— fault diagnosis, 224

— possible cause-effect graph, 227

Self-organizing map, see SOM

Semantic network, 231

Sensitivity of statistics, 133

Serial correlation, 7, 52, 69, 81, 115,
133

Shewhart chart, 17

Sigmoid function, 234

Signed directed graph, see SDG

Similarity index, 51

Singular value decomposition, see SVD

SOM, 239

- BMU, 240

— feature map, 239

Spacial correlation, 46

SPE, 44

Special cause, 15

Squared prediction error, see SPE

State equation, 89

Statistical process control, see Process
monitoring

Structured residuals, 211

Subspace algorithm, 86

Supervised classification, 48, 146

Supervised learning, 235

SVD

— CVA, 88

— PCA, 36

Symptom tree model, 227

System identification theory, 31

T? statistic, 21

— CVA, 97

— eigenvalue decomposition, 21
- MS, 21

- PCA, 42

— threshold, 22

Tennessee Eastman process, see TEP
TEP

— controller parameters, 109

— faults, 104

- manipulated variables, 104
— process variables, 104
Threshold

— Q statistic, 44

— T? statistic, 22, 43, 97

— univariate statistic, 17
Total-scatter matrix, 58
Triggering limit, 201



Type I error, 18
Type II error, 18

Univariate statistic, 17
- CUSUM, 19

- EWMA, 19

~ fault identification, 45
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— Shewhart chart, 17

— threshold, 17

Unknown input observer, 194, 195
Unsupervised learning, 239

Weighted symptom tree model, 228
Within-class-scatter matrix, 58



