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Series Editors' Foreword 

The topics of control engineering and signal processing continue to flourish and 
develop. In common with general scientific investigation, new ideas, concepts and 
interpretations emerge quite spontaneously and these are then discussed, used, 
discarded or subsumed into the prevailing subject paradigm. Sometimes these 
innovative concepts coalesce into a new sub-discipline within the broad subject 
tapestry of control and signal processing. This preliminary battle between old and 
new usually takes place at conferences, through the Internet and in the journals of 
the discipline. After a little more maturity has been acquired by the new concepts 
then archival publication as a scientific or engineering monograph may occur. 

A new concept in control and signal processing is known to have arrived when 
sufficient material has developed for the topic to be taught as a specialised tutorial 
workshop or as a course to undergraduates, graduates or industrial engineers. The 
Advanced Textbooks in Control and Signal Processing Series is designed as a 
vehicle for the systematic presentation of course material for both popular and 
innovative topics in the discipline. It is hoped that prospective authors will 
welcome the opportunity to publish a structured presentation of either existing 
subject areas or some of the newer emerging control and signal processing 
technologies. 

Fault detection and process monitoring is one of the new growth areas in 
process control. The reason for this development is not hard to find. New 
instrumentation and communications technologies have created a wealth of real­
time data from processes in both new and existing manufacturing plant 
installations. Process operators are therefore keen to use this data to minimise 
plant downtime and optimise plant operations. The traditional routes to fault 
detection were model based and to use them the process has to be well understood. 
An alternative group of methods has emerged which do not require the use of an 
explicit model. This is the key basic construct for the data-driven paradigm. 
Model-free and non-parametric methods for fault detection, process optimisation 
and control design are currently at a particularly exciting stage of development. 

This new advanced textbook by Chiang, Russell and Braatz primarily tackles 
the data-driven routes to Fault Detection and Diagnosis. It is an outgrowth of a 
prior Advances in Industrial Control monograph; Russell, Chiang and Braatz. 
Data-driven Techniques for Fault Detection and Diagnosis in Chemical 
Processes, 2000, ISBN 1-85233-258-1. The new textbook expands the material of 
the monograph and gives a fuller presentation of some of the alternative model­
based methods, the analytical methods, and of the knowledge-based techniques. 
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This allows the reader to compare and contrast the different approaches to the 
problem of fault detection and diagnosis. Thus the text is suitable for advanced 
courses for process, chemical and control engineers. 

M.J. Grimble and M.A. Johnson 
Industrial Control Centre 
Glasgow, Scotland, U.K. 

October, 2000 



Preface 

Modern manufacturing facilities are large scale, highly complex, and oper­
ate with a large number of variables under closed-loop control. Early and 
accurate fault detection and diagnosis for these plants can minimize down­
time, increase the safety of plant operations, and reduce manufacturing costs. 
Plants are becoming more heavily instrumented, resulting in more data be­
coming available for use in detecting and diagnosing faults. Univariate control 
charts (e.g., Shewhart charts) have a limited ability to detect and diagnose 
faults in such multivariable processes. This has led to a surge of academic 
and industrial effort concentrated on developing more effective process moni­
toring methods. A large number of these methods are being regularly applied 
to real industrial systems, which makes these techniques suitable for coverage 
in undergraduate and graduate courses. 

This textbook presents the theoretical background and practical tech­
niques for process monitoring. The intended audience is engineering students 
and practicing engineers. The book is appropriate for a first-year graduate or 
advanced undergraduate course in process monitoring. Numerous simple ex­
amples and a simulator for a large-scale industrial plant are used to illustrate 
the methods. As the most effective method for learning the techniques is by 
applying them, the Tennessee Eastman plant simulator has been made avail­
able at http://brahms . ses. uiue. edu. Readers are encouraged to collect 
process data from the simulator, and then apply a range of process moni­
toring techniques to detect, isolate, and diagnose various faults. The process 
monitoring techniques can be implemented using commercial software pack­
ages such as the MATLAB PLS Toolbox and ADAPTx. 

What were the goals in writing this textbook? Although much effort has 
been devoted to process monitoring by both academics and industrially em­
ployed engineers, books on the subject are still rather limited in coverage. 
These books usually focus entirely on one type of approach such as statistical 
quality control (Montgomery (1991), Park and Vining (2000)) or analytical 
methods (Chen and Patton (1999), Gertler (1998), Patton, Frank, and Clark 
(1989)). Some books treat both statistical and analytical methods (Himmel­
blau (1978), Basseville and Nikiforov (1993)), but do not cover knowledge­
based methods. Wang (1999) covers both statistical and knowledge-based 
methods, but does not cover analytical methods. Many process monitoring 
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methods of practical importance, such as those based on canonical variate 
analysis and Fisher discriminant analysis, are described in hardly any books 
on process monitoring (an exception is Russell, Chiang, and Braatz (2000)). 

While many of these books do an excellent job covering their intended top­
ics, it was our opinion that there was a need for a single textbook that covers 
data-driven, analytical, and knowledge-based process monitoring methods. 
Part of the motivation for this is that many engineering curricula do not 
have sufficient space for courses on each of these topics in isolation. But all of 
these methods are becoming increasingly important in practice, and should be 
studied by engineering students who plan to work in industry. These include 
mechanical, electrical, industrial, chemical, nuclear, manufacturing, control, 
aerospace, quality, and reliability engineers, as well as applied statisticians. 

The proportion of coverage given to each topic is based on our own experi­
ence (all three authors have applied process monitoring methods to industrial 
systems with hundreds of measured variables), as well as on the industrial 
experience of other engineers as described in person or in publications. The 
first chapter gives an overview of process monitoring procedures and methods. 
Chapter 2 provides background in multivariate statistics, including univari­
ate control charts and a discussion of data requirements. Chapter 3 discusses 
pattern classification, including discriminant analysis and feature extraction, 
which are fundamental to fault diagnosis techniques. 

Chapters 4-7 cover data-driven process monitoring methods. Principal 
component analysis (PCA) and partial least squares (PLS) are multi­
variate statistical methods that generalize the univariate control charts that 
have been applied for decades. Fisher discriminant analysis (FDA) is a 
fault diagnosis method based on the pattern classification literature. Canon­
ical variate analysis (CVA) is a subspace identification method that has 
been used in process monitoring in a similar manner to PCA and PLS. These 
four methods represent the state of the art in data-driven process monitor­
ing methods, which are the methods most heavily used in many chemical 
and manufacturing industries. One reason for the popularity of data-driven 
methods is that they do not require first-principles models, the development 
of which is usually costly or time-consuming. For this reason, these meth­
ods are also the predominant methods that have been applied to large-scale 
systems. In Chapters 8-10 the methods are compared through application 
to a large-scale system, the Tennessee Eastman plant simulator. This gives 
the readers an understanding of the strengths and weaknesses of various ap­
proaches, as well as some realistic homework problems. 

Chapter 11 describes analytical methods, including parameter estimation, 
state estimation, and parity relations. While not as pervasive as data-driven 
methods in many industries, in some cases a first-principles model is available, 
and analytical methods are suited to using these models for process monitor­
ing. Also, in most engineering curricula it is the analytical approach that is 
most closely related to topics covered in other control courses. Chapter 12 de-
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scribes knowledge-based methods, including causal analysis, expert systems, 
and pattern recognition. Knowledge-based methods are especially suited to 
systems in which there are inadequate data to apply a data-driven method, 
but qualitative or semi-qualitative models can be derived from causal mod­
eling of the system, expert knowledge, or fault-symptom examples. Each of 
the data-driven, analytical, and knowledge-based approaches have strengths 
and limitations. Incorporating several techniques for process monitoring can 
be beneficial in many applications. Chapter 12 also discusses various combi­
nations of process monitoring techniques. 

The authors thank International Paper, DuPont, and the National Center 
for Supercomputing Applications for funding over the past three years this 
textbook was being written. 

L.H.C., E.L.R., R.D.B 
Urbana, Illinois 
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Introduction 



1. Introduction 

In the process and manufacturing industries, there has been a large push to 
produce higher quality products, to reduce product rejection rates, and to 
satisfy increasingly stringent safety and environmental regulations. Process 
operations that were at one time considered acceptable are no longer ade­
quate. To meet the higher standards, modern industrial processes contain a 
large number of variables operating under closed-loop control. The standard 
process controllers (PID controllers, model predictive controllers, etc.) are 
designed to maintain satisfactory operations by compensating for the effects 
of disturbances and changes occurring in the process. While these controllers 
can compensate for many types of disturbances, there are changes in the 
process which the controllers cannot handle adequately. These changes are 
called faults. More precisely, a fault is defined as an unpermitted deviation 
of at least one characteristic property or variable of the system [140]. 

The types of faults occurring in industrial systems include process param­
eter changes, disturbance parameter changes, actuator problems, and sensor 
problems [162]. Catalyst poisoning and heat exchanger fouling are examples 
of process parameter changes. A disturbance parameter change can be an ex­
treme change in the concentration of a process feed stream or in the ambient 
temperature. An example of an actuator problem is a sticking valve, and a 
sensor producing biased measurements is an example of a sensor problem. 
To ensure that the process operations satisfy the performance specifications, 
the faults in the process need to be detected, diagnosed, and removed. These 
tasks are associated with process monitoring. Statistical process con­
trol (SPC) addresses the same issues as process monitoring, but to avoid 
confusion with standard process control, the methods mentioned in this text 
will be referred to as process monitoring methods. 

The goal of process monitoring is to ensure the success of the planned 
operations by recognizing anomalies of the behavior. The information not 
only keeps the plant operator and maintenance personnel better informed of 
the status of the process, but also assists them to make appropriate reme­
dial actions to remove the abnormal behavior from the process. As a result of 
proper process monitoring, downtime is minimized, safety of plant operations 
is improved, and manufacturing costs are reduced. As industrial systems have 
become more highly integrated and complex, the faults occurring in modern 

L. H. Chiang et al., Fault Detection and Diagnosis  in Industrial  Systems
© Springer-Verlag London Limited 2001



4 1. Introduction 

processes present monitoring challenges that are not readily addressed us­
ing univariate control charts (e.g., Shewhart charts, see Section 2.3). The 
weaknesses of univariate control charts for detecting faults in multivariate 
processes have led to a surge of research literature concentrated on develop­
ing better methods for process monitoring. This growth of research activity 
can also be explained by the fact that industrial systems are becoming more 
heavily instrumented, resulting in larger quantities of data available for use 
in process monitoring, and that modern computers are becoming more pow­
erful. The availability of data collected during various operating and fault 
conditions is essential to process monitoring. The storage capacity and com­
putational speed of modern computers enable process monitoring algorithms 
to be computed when applied to large quantities of data. 

1.1 Process Monitoring Procedures 

The four procedures associated with process monitoring are: fault detec­
tion, fault identification, fault diagnosis, and process recovery. There 
appears to be no standard terminology for these procedures as the termi­
nology varies across disciplines; the terminology given by Raich and Cinar 
[272) is adopted here. Fault detection is determining whether a fault has 
occurred. Early detection may provide invaluable warning on emerging prob­
lems, with appropriate actions taken to avoid serious process upsets. Fault 
identification is identifying the observation variables most relevant to diag­
nosing the fault. The purpose of this procedure is to focus the plant operator's 
and engineer's attention on the subsystems most pertinent to the diagnosis 
of the fault, so that the effect of the fault can be eliminated in a more effi­
cient manner. Fault diagnosis is determining which fault occurred, in other 
words, determining the cause of the observed out-of-control status. Isermann 
[138) more specifically defines fault diagnosis as determining the type, lo­
cation, magnitude, and time of the fault. The fault diagnosis procedure is 
essential to the counteraction or elimination of the fault. Process recovery, 
also called intervention, is removing the effect of the fault, and it is the 
procedure needed to close the process monitoring loop (see Figure 1.1). 
Whenever a fault is detected, the fault identification, fault diagnosis, and pro­
cess recovery procedures are employed in the respective sequence; otherwise, 
only the fault detection procedure is repeated. 

While all four procedures may be implemented in a process monitoring 
scheme, this is not always necessary. For example, a fault may be diagnosed 
(fault diagnosis) without identifying the variables immediately affected by 
the fault (fault identification). Additionally, it is not necessary to automate 
all four procedures. For instance, an automated fault identification proce­
dure may be used to assist the plant operators and engineers to diagnose the 
fault (fault diagnosis) and recover normal operation. Often the goal of pro­
cess monitoring is to incorporate the plant operators and engineers into the 
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process monitoring loop efficiently rather than to automate the monitoring 
scheme entirely. 

After a fault occurs, the in-control operations can often be recovered by 
reconfiguring the process, repairing the process, or retuning the controllers. 
Once a fault has been properly diagnosed, the optimal approach to coun­
teract the fault may not be obvious. A feasible approach may be to retune 
the standard process controllers. Several methods have been developed to 
evaluate controller performance [66, 111, 162, 274, 295, 312], and these can 
be used to determine which controllers in the process need to be retuned to 
restore satisfactory performance. In the case of a sensor problem, a sensor 
reconstruction technique can be applied to the process to restore in-control 
operations [77]. Even though process recovery is an important and necessary 
component of the process monitoring loop, process recovery is not the focus 
of this book. 

Fig. 1.1. A schema of the process monitoring loop 

1.2 Process Monitoring Measures 

A typical process monitoring scheme contains one or more measures, based 
on developments from statistical theory, pattern classification theory, infor­
mation theory, and/or systems theory. These measures in some way represent 
the state or behavior of the process. The idea is to convert on-line data col­
lected from the process into a few meaningful measures, and thereby assist 
the operators in determining the status of the operations and if necessary in 
diagnosing the faults. For fault detection, limits may be placed on some of the 
measures, and a fault is detected whenever one of the evaluated measures is 
outside the limits. In this way, the measures are able to define the in-control 
process behavior and accordingly the out-of-control status. By developing 
measures that accurately characterize the behavior of each observation vari­
able, the measure value of one variable can be compared against the measure 
values for other variables to determine the variable most affected by the 
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fault. Faults can also be diagnosed by developing and comparing measures 
that accurately represent the different faults of the process. 

The goal of process monitoring is to develop measures that are maximally 
sensitive and robust to all possible faults. Faults are manifested in several 
ways; however, and it is highly unlikely that all faults occurring in a process 
can be effectively detected and diagnosed with only a few measures. Since 
each measure characterizes a fault in a different manner, one measure will be 
more sensitive to certain faults and less sensitive to other faults relative to 
other measures. This motivates using multiple process monitoring measures, 
with the proficiency of each measure determined for the particular process 
and the possible faults at hand. 

Process monitoring measures can be classified as being associated with 
one or more of three approaches; namely, data-driven, analytical, and 
knowledge-based. The data-driven measures are derived directly from pro­
cess data. Modern industrial systems, whether an entire industrial plant or 
a single paper machine, are large-scale systems. With the heavy instrumen­
tation typical of modern processes, large-scale systems produce an excep­
tionally large amount of data. Even though much information is available 
from these processes, it is beyond the capabilities of an operator or engi­
neer to effectively assess process operations simply from observing the data. 
The strength of data-driven techniques is their ability to transform the high­
dimensional data into a lower dimension, in which the important information 
is captured. By computing some meaningful statistics for the process oper­
ators and engineers, a process monitoring scheme for a large-scale system 
can be improved significantly. The main drawback of data-driven measures 
is that their proficiency is highly dependent on the quantity and quality of 
the process data. 

Unlike the data-driven approach, the analytical approach uses mathemat­
ical models often constructed from first principles. The analytical approach is 
applicable to information-rich systems, where satisfactory models and enough 
sensors are available. Most analytical measures are based on parameter esti­
mation, observer-based design, and/or parity relations. Most applications of 
the analytical approach have been to systems with a relatively small number 
of inputs, outputs, and states. It is difficult to apply the analytical approach 
to large-scale systems (i.e., systems containing a large number of inputs, 
outputs, and/or states) because it requires detailed models in order to be 
effective [73, 141, 360J. Detailed models for large-scale systems are expensive 
to obtain given all the crosscouplings associated with a multi variable system 
[137J. The main advantage of the analytical approach is the ability to in­
corporate physical understanding of the process into the process monitoring 
scheme. In other words, when detailed analytical models are available, the 
analytical measures can significantly outperform the data-driven measures. 

The knowledge-based approach uses qualitative models to develop pro­
cess monitoring measures. The knowledge-based approach is especially well 
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suited for systems in which detailed mathematical models are not available. 
Most knowledge-based measures are based on causal analysis, expert systems, 
and/ or pattern recognition. Like the analytical approach, most applications 
of the knowledge-based approach have been to systems with a relatively small 
number of inputs, outputs, and states. Constructing the fault models for a 
large-scale system can require a large amount of effort [8, 360]. Software pack­
ages are being developed to enable the knowledge-based approach to be more 
easily applied to complex systems. 

1.3 Process Monitoring Methods 

The proficiency of the data-driven, analytical, and knowledge-based ap­
proaches depends on the quality and type of available models, and on the 
quantity and quality of data available. These aspects along with the advan­
tages and disadvantages of various methods are discussed in this textbook. 

Traditional monitoring methods consisted of limit sensing and discrep­
ancy detection. Limit sensing raises an alarm when observations cross pre­
defined thresholds, and has been applied traditionally because it is easy to 
implement and understand. Limit sensing, however, lacks sensitivity to some 
process upsets because it ignores interactions between the process variables 
for the various sensors [73, 138]. Discrepancy detection raises an alarm by 
comparing simulated to actual observed values. Discrepancy detection highly 
depends on model accuracy, and model inaccuracies are unavoidable in prac­
tice. Since it is difficult to distinguish genuine faults from errors in the model, 
discrepancy detection can lack robustness [73]. As discussed in Section 1.2, 
robust discrepancy detection statistics have been studied, however, effective 
statistics are difficult to obtain, especially for large-scale systems. 

Limit sensing determines thresholds for each observation variable without 
using any information from the other variables, and in this way is identical to 
the univariate statistical techniques discussed in Section 2.3. These methods 
ignore the correlations among the observation variables (spacial correla­
tions) and the correlations among measurements of the same variable taken 
at different times (serial correlations). (Note that spacial correlations also 
refer to correlations between different measurements taken at essentially the 
same physical location. ) Process data are spacially correlated because there is 
often a large number of sensor readings taken throughout the process and the 
variability of the process variables is restricted to a lower dimension (for ex­
ample, due to phase equilibria or conservation laws, such as the material and 
energy balances) [76]. Also, process data are serially correlated because the 
sampling intervals are relatively small and the standard process controllers 
are unable to remove all the systematic trends due to inertial components, 
such as tanks, reactors, and recycle streams. Because limit sensing does not 
take into account the spacial correlations, it lacks sensitivity to many faults 
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occurring in industrial systems [142, 143], and because limit sensing also ig­
nores the serial correlations, it can lack robustness [112]. 

The need to handle spacial correlations has led to the development and 
employment of process monitoring statistics based on multivariate statistical 
techniques. Principal component analysis (peA) is the most widely used 
data-driven technique for monitoring industrial systems. peA is a dimen­
sionality reduction technique for process monitoring which has been heavily 
studied and applied to industrial systems over the past decade. peA is an op­
timal dimensionality reduction technique in terms of capturing the variance 
of the data, and it accounts for correlations among variables [142, 143]. The 
lower-dimensional representations of the data produced by peA can improve 
the proficiency of detecting and diagnosing faults using multivariate statis­
tics. The structure abstracted by peA can be useful in identifying either the 
variables responsible for the fault and/or the variables most affected by the 
fault. In cases where most of the information in the data can be captured 
in only two or three dimensions, which can be true for some processes [207], 
the dominant process variability can be visualized with a single plot (for ex­
ample, see Figure 4.3). Irrespective of how many dimensions are required in 
the lower-dimensional space, other plots (e.g., T2 and Q charts) can be used 
which look similar to univariate control charts but are based on multivari­
ate statistics. These control charts can help the operators and engineers to 
interpret significant trends in the process data [177]. 

Fisher discriminant analysis (FDA) is a dimensionality reduction 
technique developed and studied within the pattern classification com­
munity [74]. FDA determines the portion of the observation space that is 
most effective in discriminating amongst several data classes. Discriminant 
analysis is applied to this portion of the observation space for fault diagno­
sis. The dimensionality reduction technique is applied to the data in all the 
classes simultaneously. Thus, all fault class information is utilized when the 
discriminant function is evaluated for each class and better fault diagnosis 
performance is expected. The theoretical developments for FDA suggest that 
it should be more effective than peA for diagnosing faults. 

Partial least squares (PLS) are data decomposition methods for maxi­
mizing covariance between predictor (independent) block and predicted (de­
pendent) block for each component. PLS attempts to find loading and score 
vectors that are correlated with the predicted block X while describing a 
large amount of the variation in the predictor block Y [343]. A popular ap­
plication of PLS is to select X to contain sensor data and Y to contain only 
product quality data [207]. Similar to peA, such inferential models (also 
known as soft sensors) can be used for detecting, identifying, and diagnosing 
faults (207, 259, 260]. Another application ofPLS primarily focusing on fault 
diagnosis is to define Y as class membership [46]. This PLS method is known 
as discriminant partial least squares. 
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The process monitoring statistics based on PCA, PLS, and FDA can be 
extended to include serial correlations by augmenting the data collected at 
a particular time instant to the data collected during several of the previous 
consecutive sampling instances. An alternative method to address serial cor­
relations is to average the measurements over many data points (this method 
has the similar philosophy of CUSUM and EWMA charts, see Section 2.3 for 
a brief discussion). Another simple approach is to use a larger sampling inter­
val. However, these approaches do not utilize the useful developments made 
in system identification theory for quantifying serial correlation. A class of 
system identification methods that produces state variables directly from 
the data are called subspace algorithms. The subspace algorithm based 
on canonical variate analysis (CVA) is particularly attractive because of 
its close relationship to PCA, FDA, and PLS. These relationships motivate 
the deviation of CVA-based statistics for fault detection, identification, and 
diagnosis that take serial correlations into account. 

The measures for PCA, FDA, PLS, and CVA can be calculated based 
entirely on the data. When a detailed first-principles or other mathematical 
model is available, the analytical approach can provide more effective process 
monitoring than data-driven techniques. Based on the measured input and 
output, the analytical methods generate features using detailed mathemati­
cal models. Commonly used features include residuals, parameter estimates, 
and state estimates. Faults are detected or diagnosed by comparing, either di­
rectly and after some transformation, the observed features with the features 
associated with normal operating conditions. 

Analytical methods that use residuals as features are commonly referred 
to as analytical redundancy methods. The residuals are the outcomes of 
consistency checks between the plant observations and a mathematical model. 
In the preferred situation, the residuals or transformations of the residuals 
will be relatively large when faults are present, and small in the presence 
of disturbances, noise, and/or modeling errors. This allows the definition of 
thresholds to detect the presence offaults [87, 101, 221). 

The three main ways to generate residuals are parameter estimation, 
observers, and parity relations [94]. 

1. Parameter estimation. For parameter estimation, the residuals are 
the difference between the nominal model parameters and the estimated 
model parameters. Deviations in the model parameters serve as the basis 
for detecting and isolating faults [20, 135, 136, 163). 

2. Observers. The observer-based method reconstructs the output of the 
system from the measurements or a subset of the measurements with the 
aid of observers. The difference between the measured outputs and the 
estimated outputs is used as the vector of residuals [86, 54, 68). 

3. Parity relations. This method checks the consistency of the mathemat­
ical equations of the system with the measurements. The parity relations 
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are subjected to a linear dynamic transformation, with the transformed 
residuals used for detecting and isolating faults [63, 101, 226, 227]. 

The analytical approach requires accurate quantitative mathematical 
model in order to be effective. For large-scale systems, such information may 
not be available or it may be too costly and time-consuming to obtain. An 
alternative method for process monitoring is to use knowledge-based meth­
ods such as causal analysis, expert systems, and pattern recognition. These 
techniques are based on qualitative models, which can be obtained through 
causal modeling of the system, expert knowledge, a detailed description of the 
system, or fault-symptom examples. Causal analysis techniques are based on 
the causal modeling of fault-symptom relationships. Qualitative and semi­
quantitative relationships in these causal models can be obtained without 
using first principles. Causal analysis techniques including signed directed 
graphs and the symptom tree are primarily used for diagnosing faults. 

Expert systems are used to imitate the reasonings of human expert 
when diagnosing faults. The experience from a domain expert can be for­
mulated in terms of rules, which can be combined with the knowledge from 
first principles or a structural description of the system for diagnosing faults. 
Expert systems are able to capture human diagnostic associations that are 
not readily translated into mathematical or causal models. 

Pattern recognition techniques use association between data patterns and 
fault classes without an explicit modeling of internal process states or struc­
ture. Examples include artificial neural networks and self-organizing 
maps. These techniques are related to the data-driven techniques (PCA, 
PLS, FDA, and CVA) in terms of modeling the relationship between data 
patterns and fault classes. The data-driven techniques are dimensionality re­
duction techniques based on rigorous multivariate statistics. On the other 
hand, neural networks and self-organizing maps are black box methods that 
learn the pattern based entirely from the training sessions. 

All measures based on data-driven, analytical, and knowledge-based ap­
proaches have their advantages and disadvantages, so that no single approach 
is best for all applications. Usually the best process monitoring scheme em­
ploys multiple statistics or methods for fault detection, identification, and 
diagnosis [73]. Efforts have been made to incorporate several techniques for 
process monitoring. This can be beneficial in many applications. 

1.4 Book Organization 

This book is an introduction to techniques for detecting, identifying, and di­
agnosing faults in industrial systems. This includes descriptions of all three 
of the main approaches to process monitoring: data-driven, analytical, and 
knowledge-based. All of these approaches are becoming increasingly impor­
tant in practice, and it is necessary for engineering students and industrially-
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employed engineers to understand the strengths and weaknesses of all the 
approaches and to understand how to apply them. Many examples are used 
to compare the effectiveness and illustrate how to apply various process moni­
toring methods. These include a chemical plant, a gravity tank problem where 
a number of leaks can occur, and a water recirculation system with a cen­
trifugal pump driven by a DC motor. 

The book is organized into five parts. Part I (this chapter) is an intro­
duction to process monitoring approaches. Part II provides the background 
necessary to understand the process monitoring methods described later in 
the book. Chapter 2 provides an introduction to multivariate statistics, and 
Chapter 3 covers pattern classification. Part III describes the data-driven 
process monitoring methods: PCA, FDA, PLS, and CVA. The methods as 
described in the literature are extended in cases where the process monitoring 
statistics were incomplete or inadequate. Part IV describes the application 
of the process monitoring methods to the Tennessee Eastman process. The 
Tennessee Eastman process is described in Chapter 8, while Chapter 9 states 
how the methods are applied to the Tennessee Eastman process. The results 
of the methods applied to the simulated data are discussed in Chapter 10. 
Part V describes the analytical and knowledge-based approaches. Chapter 11 
describes analytical methods based on parameter estimation, observer-based 
design, and parity relations. Chapter 12 describes knowledge-based meth­
ods based on causal analysis, expert systems, and pattern recognition. This 
is followed by a discussion of combinations of multiple process monitoring 
techniques. Application examples in Part V include a gravity tank problem 
where a number of leaks can occur, and a water recirculation system with a 
centrifugal pump driven by a DC motor. 



Part II 

Background 



2. Multivariate Statistics 

2.1 Introduction 

The effectiveness of the data-driven measures depends on the characteriza­
tion of the process data variations. There are two types of variations for 
process data: common cause and special cause [245]. The common cause 
variations are those due entirely to random noise (e.g., associated with sensor 
readings), whereas special cause variations account for all the data variations 
not attributed to common cause. Standard process control strategies may 
be able to remove most of the special cause variations, but these strategies 
are unable to remove the common cause variations, which are inherent to 
process data. Since variations in the process data are inevitable, statistical 
theory plays a large role in most process monitoring schemes. 

The application of statistical theory to monitor processes relies on the 
assumption that the characteristics of the data variations are relatively un­
changed unless a fault occurs in the system. By the definition of a fault as 
an abnormal process condition (see Chapter 1), this is a reasonable assump­
tion. It implies that the properties of the data variations, such as the mean 
and variance, are repeatable for the same operating conditions, although the 
actual values of the data may not be very predictable. The repeatability of 
the statistical properties allows thresholds for certain measures, effectively 
defining the out-of-control status, to be determined automatically. This is an 
important step to automating a process monitoring scheme. 

The purpose of this chapter is to illustrate how to use statistical meth­
ods for monitoring processes, in particular methods using the multivariate 
T2 statistic. This chapter begins in Section 2.2 by describing the data pre­
treatment procedure, which is typically performed before determining the 
statistical parameters (mean, covariance, etc.) for the data. The traditional 
approach to statistical process monitoring using univariate statistics is dis­
cussed in Section 2.3. Then in Section 2.4, the T2 statistic is described along 
with its advantages over univariate statistics for process monitoring. It is 
shown in Section 2.5 how to apply the T2 statistic with statistically-derived 
thresholds, in order to automate the fault detection procedure and to remove 
outliers from the training data. In Section 2.6, the applicability of the T2 
statistic is determined in terms of the amount of data available to calculate 
the statistical parameters. 

L. H. Chiang et al., Fault Detection and Diagnosis  in Industrial  Systems
© Springer-Verlag London Limited 2001
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2.2 Data Pretreatment 

To extract the information in the data relevant to process monitoring ef­
fectively, it is often necessary to pretreat the data in the training set. The 
training set contains off-line data available for analysis prior to the on­
line implementation of the process monitoring scheme and is used to develop 
the measures representing the in-control operations and the different faults. 
The pretreatment procedures consist of three tasks: removing variables, 
autoscaling, and removing outliers. 

The data in the training set may contain variables that have no infor­
mation relevant to monitoring the process, and these variables should be 
removed before further analysis. For instance, it may be known a priori that 
certain variables exhibit extremely large measurement errors, such as those 
due to improper sensor calibrations, or some of the variables may be phys­
ically separate from the portion of the process that is being monitored. In 
these instances, the proficiency of the process monitoring method can be 
improved by removing the inappropriate variables. 

Process data often need to be scaled to avoid particular variables dom­
inating the process monitoring method, especially those methods based on 
dimensionality reduction techniques, such as peA and FDA. For example, 
when performing an unscaled dimensionality reduction procedure on tem­
perature measurements varying between 300K and 320K and concentration 
measurements varying between 0.4 and 0.5, the temperature measurements 
would dominate even though the temperature measurements may be no more 
important than the concentration measurements for monitoring the process. 

Autoscaling standardizes the process variables in a way that ensures each 
variable is given equal weight before the application of the process monitoring 
method. It consists of two steps. The first step is to subtract each variable 
by its sample mean because the objective is to capture the variation of the 
data from the mean. The second step is to divide each variable of the mean­
centered data by its standard deviation. This step scales each variable to 
unit variance, ensuring that the process variables with high variances do not 
dominate. When autoscaling is applied to new process data, the mean to 
be subtracted and the standard deviation to be divided are taken from the 
training set. 

Outliers are isolated measurement values that are erroneous. These val­
ues may significantly influence the estimation of statistical parameters and 
other parameters related to a given measure. Removing the outliers from 
the training set can significantly improve the estimation of the parameters 
and should be an essential step when pretreating the data [255]. Obvious 
outliers can be removed by plotting and visually inspecting the data for out­
lying points. More rigorous methods based on statistical thresholds can be 
employed for removing outliers, and a method for doing this using the T2 
statistic is discussed in Section 2.5. For simplicity of presentation only, it is 
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assumed in the remainder of this book that the data has been pretreated, 
unless otherwise stated. 

2.3 Univariate Statistical Monitoring 

A univariate statistical approach to limit sensing can be used to determine 
the thresholds for each observation variable (a process variable observed 
through a sensor reading), where these thresholds define the boundary for in­
control operations and a violation of these limits with on-line data would in­
dicate a fault. This approach is typically employed using a Shewhart chart 
[10, 70, 230] (see Figure 2.1) and has been referred to as limit sensing [73] 
and limit value checking [138]. The values of the upper and lower con­
trollimits on the Shewhart chart are critical to minimizing the rate of false 
alarms and the rate of missed detections. A false alarm is an indication 
of a fault, when in actuality a fault has not occurred; a missed detection 
is no indication of a fault, though a fault has occurred. For fault detection, 
there is an inherent tradeoff between minimizing the false alarm and missed 
detection rates. Tight threshold limits for an observation variable result in 
a high false alarm and low missed detection rate, while limits which are too 
spread apart result in a low false alarm and a high missed detection rate. 

In-control Out-of-control ~. Upper Control Limit t\ .;f 

\ Lower Control Limit 

Fig. 2.1. An illustration of the Shewhart chart. The black dots are observations. 

Given certain threshold values, statistical hypothesis theory can be ap­
plied to predict the false alarm and missed detection rates based on the 
statistics of the data in the training sets. Consider the case where there can 
potentially be a single fault i (the more general case of multiple fault classes 
will be treated thoroughly in the next chapter). Let w represents the event 
of an in-control operation and Wi represents the event of a specific fault, i. 
Consider a single observation x with the null hypothesis (assign x as w) and 
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the alternative hypothesis (assign x as Wi), the false alarm rate is equal to 
the type I error, and the missed detection rate for fault i is equal to the type 
II error [230j. This is illustrated graphically in Figure 2.2. 

Fig. 2.2. The type I and type II error regions for the null hypothesis (assign x as 
w) and the alternative hypothesis (assign x as Wi). The probability density function 
for x conditioned on W is p(xlw)j the probability density function for x conditioned 
on Wi is p(xlw.). The probability of a type I error is Q and the probability of a type 
II error is {3. Using Bayesian decision theory [74], these notions can be generalized 
to include a priori probabilities of wand Wi. 

Increasing the threshold (shifting the vertical line to the right in Figure 
2.2) decreases the false alarm rate but increases the missed detection rate. 
Attempts to lower the false alarm rate are usually accompanied with an 
increase in the missed detection rate, with the only ways to get around this 
tradeoff being to collect more data, or to reduce the normal process variability 
(e.g., through installation of sensors of higher precision). The value ofthe type 
I error, also called the level of significance Q, specifies the degree of tradeoff 
between the false alarm rate and the missed detection rate. 

As a specific example, assume for the null hypothesis that any devia­
tions of the process variable x from a desired value J.L are due to inherent 
measurement and process variability described by a normal distribution with 
standard deviation 0': 

1 [(X-J.L)2] 
p( x) = O'..fi;i exp - 20'2 • (2.1) 

The alternative hypothesis is that x =1= J.L. Assuming that the null hypothesis 
is true, the probabilities that x is in certain intervals are 

(2.2) 
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Pr{x> (JL + Ca /20")} = a./2 (2.3) 

where Ca /2 is the standard normal deviate corresponding to the (1 - a./2) 
percentile. The standard normal deviate is calculated using the cumulative 
standard normal distribution [120] j the standard normal deviates correspond­
ing to some common a. values are listed in Table 2.1. 

Table 2.1. Some typical standard normal deviate values 

a/2 Ca./2 

0.00135 3.00 
0.0025 2.81 
0.005 2.58 
0.01 2.33 

0.025 1.96 

The lower and upper thresholds for the process variable x are JL - Ca /20" 

and JL + Ca /20", respectively. Figure 2.3 illustrates the application of Shewhart 
chart to monitor the Mooney viscosity of an industrial elastomer [245]. The 
desired value JL is 50.0j a standard deviation value of 0" = 0.5 is known to 
characterize the intrinsic variability associated with the sampling procedure. 
Since all the data points fall inside the upper and lower control limit lines 
corresponding to Ca /2 = 3.0, the process is said to be "in control". 

As long as the sample mean and standard deviation of the training set 
accurately represent the true statistics of the process, the thresholds using 
(2.2) and (2.3) should result in a false alarm rate equal to a. when applied to 
on-line data. If 20,000 data points were collected during "in control" operation 
defined by Ca /2 = 3.0, 27 data points would be expected to fall above the 
upper control limit, while 27 data points would be expected to fall below 
the lower control limit. Some typical a. values for fault detection are 0.005, 
0.01, and 0.05. It has been suggested that even if x does not follow a normal 
distribution, the limits derived from (2.2) and (2.3) are effective as long as 
the data in the training set are an accurate representation of the variations 
during normal operations [171]. 

Process monitoring schemes based on Shewhart charts may not provide 
adequate false alarm and missed detection rates. These rates can be im­
proved by employing measures that incorporate observations from multiple 
consecutive time instances, such as the cumulative sum (CUSUM) and 
exponentially-weighted moving average (EWMA) charts [80, 230, 245]. 
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Fig. 2.3. Shewhart chart for the Mooney viscosity data taken from [245] 

For a given false alarm rate, these methods can increase the sensitivity to 
faults over the measures using the Shewhart charts and accordingly decrease 
the missed detection rate, but at the expense of increasing the detection 
delay, which is the amount of time expended between the start of the fault 
and time to detection. This suggests that the CUSUM and EWMA charts are 
better suited for faults producing small persistent process shifts, and the She­
whart charts are better for detecting faults producing sudden large process 
shifts. 

The univariate statistical charts (Shewhart, CUSUM, and EWMA) deter­
mine the thresholds for each observation variable individually without con­
sidering the information contained in the other variables. As discussed in 
Section 1.3, because these methods ignore the correlation between variables, 
they do not accurately characterize the behavior of most modern industrial 
processes. The next section describes the multivariate T2 statistic, which 
takes into account the correlations between the variables. 
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2.4 T2 Statistic 

Let the data in the training set, consisting of m observation variables and n 
observations for each variable, be stacked into a matrix X E R nxm , given by 

[
XU X12 ... Xlmj 
X21 X22 ••• X2m 

X= .. ., .. . .. . 
Xnl X n 2 ••• Xnm 

then the sample covariance matrix of the training set is equal to 

s= _l_XTX. 
n-l 

An eigenvalue decomposition of the matrix S, 

(2.5) 

(2.6) 

(2.7) 

reveals the correlation structure for the covariance matrix, where A is diago­
nal and V is orthogonal (VTV = I, where I is the identity matrix) [104]. The 
projection y = VTx of an observation vector x E R m decouples the observa­
tion space into a set of uncorrelated variables corresponding to the elements 
of y. The variance of the ith element of y is equal to the ith eigenvalue in the 
matrix A. Assuming S is invertible and with the definition 

(2.8) 

the Hotelling's T2 statistic is given by [143] 

T2 = ZT Z . (2.9) 

The matrix V rotates the major axes for the covariance matrix of x so that 
they directly correspond to the elements of y, and A scales the elements of y 
to produce a set of variables with unit variance corresponding to the elements 
of z. The conversion of the covariance matrix is demonstrated graphically in 
Figure 2.4 for a two-dimensional observation space (m = 2). 

The T2 statistic is a scaled squared 2-norm of an observation vector x 
from its mean. The scaling on x is in the direction of the eigenvectors and is 
inversely proportional to the standard deviation along the eigenvectors. This 
allows a scalar threshold to characterize the variability of the data in the 
entire m-dimensional observation space. Given a level of significance, appro­
priate threshold values for the T2 statistic can be determined automatically 
by applying the probability distributions discussed in the next section. 



22 2. Multivariate Statistics 

Fig. 2.4. A graphical illustration of the covariance conversion for the T2 statistic 

2.5 Thresholds for the T2 Statistic 

Appropriate thresholds for the T2 statistic based on the level of significance, 
a, can be determined by assuming the observations are randomly sampled 
from a multivariate normal distribution. If it is assumed additionally that the 
sample mean vector and covariance matrix for normal operations are equal 
to the actual mean vector and covariance matrix, respectively, then the T2 
statistic follows a X2 distribution with m degrees of freedom [209), 

(2.10) 

The set T2 ::; T~ is an elliptical confidence region in the observation space, 
as illustrated in Figure 2.5 for two process variables m = 2. Applying (2.10) 
to process data produces a confidence region defining the in-control status 
whereas an observation vector projected outside this region indicates that a 
fault has occurred. Given a level of significance a, Figure 2.5 illustrates the 
conservatism eliminated by employing the T2 statistic versus the univariate 
statistical approach outlined in Section 2.3. As the degree of correlation be­
tween the process variables increases, the elliptical confidence region becomes 
more elongated and the amount of conservatism eliminated by using the T2 
statistic increases. 

When the actual covariance matrix for the in-control status is not known 
but instead estimated from the sample covariance matrix (2.6), faults can be 
detected for observations taken outside the training set using the threshold 
given by 

T 2 = m(n-l)(n+l)F ( _) 
a ( ) a m,n m nn-m 

(2.11) 

where Fa (m, n - m) is the upper 100a% critical point of the F -distribution 
with m and n - m degrees of freedom [209). For a given level of significance, 
the upper in-control limit in (2.11) is larger (more conservative) than the 
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Fig. 2.5. A comparison of the in-control status regions using the T2 statistic (2.9) 
and the univariate statistics (2.2) and (2.3) for two process variables [272, 307] 

limit in (2.10), and the two limits approach each other as the amount of data 
increases (n -+ 00) [308] . 

When the sample covariance matrix (2.6) is used, the outliers in the train­
ing set can be detected using the threshold given by 

T2 _ (n -1)2(mj(n - m -1))F,,{m,n - m - 1) 
,,- n(1 + (mj{n - m - I))F,,(m, n - m - 1) . 

(2.12) 

For a given level of significance, the upper in-control limit in (2.12) is smaller 
(less conservative) than the limit in (2.10), and the two limits approach each 
other as the amount of data increases (n -+ 00) [308]. Equation (2.12) is also 
appropriate for detecting faults during process startup, when the covariance 
matrix is determined recursively on-line because no data are available a priori 
to determine the in-control limit. 

The upper control limits in (2.10) , (2.11) , and (2.12) assume that the 
observation at one time instant is statistically independent to the observations 
at other time instances. This can be a bad assumption for short sampling 
intervals. However, if there are enough data in the training set to capture the 
normal process variations, the T2 statistic can be an effective tool for process 
monitoring even if there are mild deviations from the normality or statistical 
independence assumptions [30, 171] . 

There are several extensions that are usually not studied in the process 
control literature, but for which there are rigorous statistical formulations. In 
particular, lower control limits can be derived for T2 [308] which can detect 
shifts in the covariance matrix {although the upper control limit is usually 
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used to detect shifts in mean, it can also detect changes in the covariance 
matrix) [114]. 

The above T2 tests are multivariable generalizations of the Shewhart chart 
used in the scalar case. The single variable CUSUM and EWMA charts can be 
generalized to the multivariable case in a similar manner [171, 203, 292, 338]. 
As in the scalar case, the multivariable CUSUM and EWMA charts can detect 
small persistent changes more readily than the multivariable Shewhart chart, 
but with increased detection delay. 

2.6 Data Requirements 

The quality and quantity of the data in the training set have a large influ­
ence on the effectiveness of the T2 statistic as a process monitoring tool. An 
important question concerning the training set is, "How much data is needed 
to statistically populate the covariance matrix for m observation variables?" 
This question is answered here by determining the amount of data needed 
to produce a threshold value sufficiently close to the threshold obtained by 
assuming infinite data in the training set. 

For a given level of significance a, a threshold based on infinite observa­
tions in the training set, or equivalently an exactly known covariance matrix, 
can be computed using (2.10), and the threshold for n observations in the 
training set is calculated using (2.11). The relative error produced by these 
two threshold values, 

m{n-1)(n+1)F. ( ) 2{) 
( ) a m, n - m - Xa m 

nn-m 
f = ---'-----'------;:::--;--;--------

X~{m) 
(2.13) 

indicates the sufficiency of the data amount n, where a large f implies that 
more data should be collected. Table 2.2 shows the data requirements using 
(2.13) for various numbers of observation variables, where f = 0.10 and a = 
0.5; this implies that the medians of the T2 statistic using (2.10) and (2.11) 
differ by less than 10%. The table indicates that the required number of 
observations is approximately 10 ti'lles the dimensionality of the observation 
space. The data requirements given in Table 2.2 do not take into account 
sensitivities that occur when some diagonal elements of A in (2.8) are small. In 
such cases the accuracy of the estimated values of the corresponding diagonal 
elements of the inverse of A will be poor, which will give erratic values for T2 
in (2.9). This motivates the use of the dimensionality reduction techniques 
described in Part III of this book. 
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Table 2.2. The amount of data n required for various number of observation 
variables m where E = 0.10 and Q = 0.5 

Number of Observation Variables Data Requirement 
m n 
1 19 
2 30 
3 41 
4 52 
5 63 
10 118 
25 284 
50 559 
100 1110 
200 2210 

2.7 Homework Problems 

1. Read the original article by Hotelling on the T2 statistic [126]. How 
much of the results of this chapter were anticipated by Hotelling? Suggest 
reasons why these ideas took so long to work their way into industrial 
process applications. 

2. Write a short report on the lower control limits for the T2 statistic dis­
cussed by [308]. For what types of processes and faults will such limits 
be useful? Give a specific process example (list process, sensors, actua­
tors, etc.). Suggest reasons why most of the process control and statistics 
literature ignores the lower control limit. Justify your statements. 

3. Write a short report on the single variable CUSUM and EWMA con­
trol charts, including the mathematical expressions for the upper control 
limits in terms of a distribution function and assumptions on the noise 
statistics. You are welcome to use any books or journal articles on sta­
tistical quality control. 

4. Extend the report in Problem 3 to the case of multivariate systems. 
5. Consider the photographic process with the covariance matrix given in 

Table 1 of Jackson and Mulholdkar [145]. Reproduce as much as possible 
the results reported in the subsequent tables. Discuss the relative mer­
its of the multivariate T2 compared to scalar Shewhart charts for that 
process. 



3. Pattern Classification 

3.1 Introduction 

Today's processes are heavily instrumented, with a large amount of data col­
lected on-line and stored in computer databases. Much of the data are usually 
collected during out-of-control operations. When the data collected during 
the out-of-control operations have been previously diagnosed, the data can 
be categorized into separate classes where each class pertains to a particular 
fault. When the data have not been previously diagnosed, cluster analysis 
may aid the diagnoses of the operations during which the data were collected 
[299J, and the data can be categorized into separate classes accordingly. Ifhy­
perplanes can separate the data in the classes as shown in Figure 3.1, these 
separating planes can define the boundaries for each of the fault regions. 
Once a fault is detected using on-line data observations, the fault can be 
diagnosed by determining the fault region in which the observations are lo­
cated. Assuming the detected fault is represented in the database, the fault 
can be properly diagnosed in this manner. 

This assignment of data to one of several categories or classes is the prob­
lem addressed by pattern classification theory [74]. The typical pattern 
classification system assigns an observation vector to one of several classes 
via three steps: feature extraction, discriminant analysis, and max­
imum selection (see Figure 3.2). The objective of the feature extraction 
step is to increase the robustness of the pattern classification system by re­
ducing the dimensionality of the observation vector in a way that retains 
most of the information discriminating amongst the different classes. This 
step is especially important when there is a limited amount of quality data 
available. Using the information in the reduced-dimensional space, the dis­
criminant calculator computes for each class the value of the discriminant 
function, a function quantifying the relationship between the observation 
vector and a class. By selecting the class with the maximum discriminant 
function value, the discriminant functions indirectly serve as the separating 
planes shown in Figure 3.1; however, in general the decision boundaries will 
not be linear. 

The objective of this chapter is to provide an overview of the statistical 
approach to pattern classification. The focus of this chapter is on parametric 
approaches to pattern classification. Assuming the statistical distributions of 
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Fault I + 
+ +++ 

++ + 
+ + + 

Fault 2 
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x x x 
Xx Xx 

Fault 3 x x x 

Fig. 3.1. A graphical illustration of the separating plane approach to pattern 
classification 

the classes are known, an optimal pattern classification system can be de­
veloped using a parametric approach, while nonparametric approaches, such 
as the nearest neighbor rule [55), are suboptimal (74). Pattern classification 
theory has been a key factor in developing fault diagnosis methods [270, 272), 
and the background in this chapter is important to understanding the fault 
diagnosis methods discussed in Part III. This chapter proceeds in Section 
3.2 by presenting the optimal discriminant analysis technique for normally 
distributed classes. Section 3.3 discusses the feature extraction step. 

3.2 Discriminant Analysis 

The pattern classification system assigns an observation to class i with the 
maximum discriminant function value 

(3.1) 

where 9j(X) is the discriminant function for class j given a data vector x 
E 'R m. The statistics of the data in each class can provide analytical measures 
to determine the optimal discriminant functions in terms of minimizing the 
error rate, the average probability of error. With Wi being the event of class 
i (for example, a fault condition), the error rate can be minimized by using 
the discriminant function (74) 

(3.2) 
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Data Feature Vector Discriminant Calculator Maximum Selector Decision 

Fig. 3.2. A schema of a typical pattern classification system, where Ji(x) are the 
feature extraction functions and 9i(t) are the discriminant analysis functions 

where P(wilx) is the a posteriori probability of x belonging to class i. This 
is equivalent to choosing the separating curves to be the points at which the 
a posteriori probabilities are equal. 

Using Bayes' rule, 

(3.3) 

where P(Wi) is the a priori probability for class Wi, p(x) is the probability 
density function for x, and P(XIWi) is the probability density function for x 
conditioned on Wi. It can be shown that identical classification occurs when 
(3.2) is replaced by [74] 

(3.4) 

If the data for each class is normally distributed, P(XIWi) is given by 

(3.5) 

where m is the number of measurement variables, and J.Li and Ei are the 
mean vector and covariance matrix for class i, respectively [74]. Substituting 
(3.5) into (3.4) gives 

() 1 ( T -1 m 1 [ 9i X = -2 x - J.Li) Ei (x - J.Li) - "2 ln21l" - 2ln det(Ei)] + InP(wi) 
(3.6) 
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This equation assumes that the mean vector and covariance matrix are 
known. In process monitoring applications, the true mean and covariance are 
not known. If the mean vector and covariance matrix are estimated and the 
sufficient data are available for each class to obtain highly accurate estimates, 
then using the estimated mean vector and covariance matrix in (3.6) will re­
sult in nearly optimal classification. Assuming that the a priori probability 
for each class is the same, the discriminant function (3.6) can be replaced by 

(3.7) 

where Xi is the mean vector for class i and Si E nmxm is the sample co­
variance matrix for class i. Using this discriminant function for classification 
will be referred to as multivariate statistics (MS) when it uses the entire 
data dimensionality for classification. If sufficient data are not available to 
accurately estimate the mean vector and covariance matrix for each class, 
then (3.6) will result in suboptimal classifications. In this case dimensional­
ity reduction can be used to improve classification, as described in the next 
section. 

Assuming that the a priori probability for each class is the same and the 
total amount of variability in each class is the same, an identical classification 
occurs when (3.6) is replaced by 

(3.8) 

where T; is the T2 statistic for class i (see last chapter). By using the thresh­
old T~ in (2.11), the values for each gi(X) in (3.8) can be converted to levels of 
significance which implicitly account for the uncertainties in the mean vector 
and covariance matrix for each class. 

3.3 Feature Extraction 

The objective of the pattern classification system is to minimize the misclas­
sification rate, the number of incorrect classifications divided by the total 
number of classifications, whenever it is applied to testing data, data in­
dependent of the training set. The dimensionality reduction of the feature 
extraction step can play a key role in minimizing the misclassification rate 
for observations outside the training set, especially when the dimensionality 
of the observation space m is large and the number of observations in each 
class n is small. If the statistical parameters such as the mean and covari­
ance of the classes are known exactly, from an information point of view the 
entire observation space should be maintained for the discriminant analysis 
step. In reality, inaccuracies in the statistical parameters of the classes exist. 
Consequently, the amount of information obtained in some directions of the 
observation space, specifically those that do not add much information in dis­
criminating the data in the training set, may not outweigh the inaccuracies 
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in the statistical parameters, and the elimination of these directions in the 
feature extraction step can decrease the misclassification rate when applied 
to data independent of the training set. 

The dimensionality reduction of the feature extraction step can also be 
motivated using system identification theory [199]. In system identification, 
it is shown that the accuracy of a model can be improved by decreasing the 
number of independent model parameters. This is due to the fact that the 
mean-squared error of the parameter estimates is reduced by decreasing the 
number of independent model parameters. By decreasing the number of in­
dependent parameters, the variance contribution of the parameter estimates 
on the mean-squared error is decreased more than the bias contribution is in­
creased. These same arguments can be applied to the feature extraction step. 
For normally distributed classes, the covariance matrix has m( m + 1) /2 inde­
pendent parameters. Reducing the data dimensionality reduces the number 
of independent parameters in the covariance matrix. This increases the bias 
of the estimate of the covariance matrix, but decreases the variance. When 
the decrease in the variance contribution to the parameter error outweighs 
the increase in the bias contribution, the dimensionality reduction results in 
better covariance estimates and possibly lower misclassification rates when 
applied to data outside the training set. 

Once the dimensionality reduction has been performed, classification is 
performed by applying discriminant analysis to the reduced-dimensional 
space. Applications of discriminant analysis to various reduced-dimensional 
spaces will be described in Part III. In particular, Chapter 5 describes a 
procedure for optimally reducing the dimensionality in terms of pattern clas­
sification. 

3.4 Homework Problems 

1. Derive Equation 3.4. 
2. Derive Equation 3.6. 
3. Derive Equation 3.8. 
4. Explain in detail how to use (3.8) to compute levels of significance for 

each class i. 
5. Consider the case where all the class covariance matrices in (3.5) are 

equal, Ei = E. Show that the discriminant function (3.6) can be re­
placed by a discriminant function which is linear in x without changing 
the classification. With this linear discriminant function, show that the 
equations 9i(X) = 9j(X) define separating planes as shown in Figure 3.1. 
Derive the equations for the separating curves when the class covariance 
matrices are not equal. What are the shapes of these separating curves? 



Part III 

Data-driven Methods 



4. Principal Component Analysis 

4.1 Introduction 

By projecting the data into a lower-dimensional space that accurately char­
acterizes the state of the process, dimensionality reduction techniques can 
greatly simplify and improve process monitoring procedures. Principal com­
ponent analysis (peA) is such a dimensionality reduction technique. It 
produces a lower-dimensional representation in a way that preserves the cor­
relation structure between the process variables, and is optimal in terms of 
capturing the variability in the data. 

The application of peA as a dimensionality reduction tool for monitoring 
industrial processes has been studied by several academic and industrial en­
gineers [177, 260]. Applications of peA to plant data have been conducted at 
DuPont and other companies, with much of the results published in confer­
ence proceedings and journal articles [169, 260, 259, 343]. Several academics 
have performed similar studies based on data collected from computer simu­
lations of processes [75, 117, 157, 183, 204, 207, 269, 270, 272, 307]. For some 
applications, most of the variability in the data can be captured in two or 
three dimensions [207], and the process variability can be visualized with a 
single plot. This one-plot visualization and the structure abstracted from the 
multidimensional data assist the operators and engineers in interpreting the 
significant trends of the process data [177]. 

For the cases when most of the data variations cannot be captured in two 
or three dimensions, methods have been developed to automate the process 
monitoring procedures [209, 260, 272]. The application of peA in these meth­
ods is motivated by one or more of three factors. First, peA can produce 
lower-dimensional representations of the data which better generalize to data 
independent of the training set than that using the entire dimensionality of 
the observation space, and therefore, improve the proficiency of detecting and 
diagnosing faults. Second, the structure abstracted by peA can be useful in 
identifying either the variables responsible for the fault and/or the variables 
most affected by the fault. Third, peA can separate the observation space 
into a subspace capturing the systematic trends of the process and a subspace 
containing essentially the random noise. Since it is widely accepted that cer­
tain faults primarily affect one of the two subspaces [77, 345, 346], applying 
one measure developed for one subspace and another measure developed for 
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the other subspace can increase the sensitivity of the process monitoring 
scheme to faults in general. The three aforementioned attributes of PCA are 
further discussed later in this chapter. 

The purpose of this chapter is to describe the PCA methods for process 
monitoring. It begins in Section 4.2 by defining PCA and in Section 4.3 by 
discussing the different methods which can be used to automatically deter­
mine the order of the PCA representation. Sections 4.4, 4.5, and 4.6 discuss 
the PCA developments for fault detection, identification, and diagnosis, re­
spectively. In Section 4.7 is a discussion of dynamic peA (DPCA), which 
takes into account serial correlations in the process data. Section 4.8 discusses 
other PCA-based process monitoring methods. 

4.2 Principal Component Analysis 

PCA is a linear dimensionality reduction technique, optimal in terms of cap­
turing the variability of the data. It determines a set of orthogonal vectors, 
called loading vectors, ordered by the amount of variance explained in the 
loading vector directions. Given a training set of n observations and m pro­
cess variables stacked into a matrix X as in (2.5), the loading vectors are 
calculated by solving the stationary points of the optimization problem 

vTXTXv 
max ---;:;:---
vi'0 vTv 

(4.1) 

where v E nm. The stationary points of (4.1) can be computed via the 
singular value decomposition (SVD) 

1 X = U17yT 
vn-1 

(4.2) 

where U E nnxn and Y E nmxm are unitary matrices, and the matrix 
17 E nnxm contains the non-negative real singular values of decreasing 
magnitude along its main diagonal (0"1 ~ 0"2 ~ ••• ~ O"min(m,n) ~ 0), and 
zero offdiagonal elements. The loading vectors are the orthonormal column 
vectors in the matrix Y, and the variance of the training set projected along 
the ith column of Y is equal to O"l. Solving (4.2) is equivalent to solving an 
eigenvalue decomposition of the sample covariance matrix S, 

S = _1_XTX = YAyT 
n-1 

(4.3) 

where the diagonal matrix A = 17T E E nmxm contains the non-negative real 
eigenvalues of decreasing magnitude (AI ~ A2 ~ ... ~ Am ~ 0) and the ith 
eigenvalue equals the square of the ith singular value (i.e., Ai = O"l). 

In order to optimally capture the variations of the data while minimizing 
the effect of random noise corrupting the PCA representation, the loading 
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vectors corresponding to the a largest singular values are typically retained. 
The motivation for reducing the dimensionality of the peA representation 
is analogous to the arguments given in Section 3.3 for pattern classification. 
Selecting the columns of the loading matrix P E 'Rmxa to correspond to the 
loading vectors associated with the first a singular values, the projections of 
the observations in X into the lower-dimensional space are contained in the 
score matrix, 

T=XP, (4.4) 

and the projection of T back into the m-dimensional observation space, 

A T 
X=TP. (4.5) 

The difference between X and X is the residual matrix E: 

E=X-X. (4.6) 

The residual matrix captures the variations in the observation space 
spanned by the loading vectors associated with the m - a smallest singu­
lar values. The subspaces spanned by X and E are called the score space 
and residual space, respectively. The subspace contained in the matrix E 
has a small signal-to-noise ratio, and the removal of this space from X can 
produce a more accurate representation of the process, X. 

Defining ti to be ith column of T in the training set, the following prop-
erties can be shown (see Homework Problem 5) [259] 

1. Var(t1) ~ Var(t2) ~ ... ~ Var(ta). 
2. Mean(ti) = OJ Vi. 
3. tiTtk = OJ Vi i- k. 
4. There exists no other orthogonal expansion of a components that cap­

tures more variations of the data. 

A new observation (column) vector in the testing set, x E 'Rm, can be 
projected into the lower-dimensional score space ti = XTPi where Pi is the 
ith loading vector (see Figure 4.1). The transformed variable ti is also called 
the ith principal component of x [147]. To distinguish between the trans­
formed variables and the transformed observation, the transformed variables 
will be called principal components and the individual transformed ob­
servations will be called scores. The statistical properties listed above allow 
each of the scores to be monitored separately using the univariate statistical 
procedures discussed in Section 2.3. With the vectors projected into the lower 
dimensional space using peA, only a variables needed to be monitored, as 
compared with m variables without the use of peA. When enough data are 
collected in the testing set, the score vectors t1, t2, ... , ta can be formed. If 
these score vectors do not satisfy the four properties listed above, the testing 
set is most likely collected during different operating conditions than for the 
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training set. This abstraction of structure from the multidimensional data 
is a key component of the score contribution method for fault identification 
discussed in Section 4.5. 

P 
A 
x 

Filtered 

Data 

VT 
Loading 

X Vectors 

Data 

Loading 
Vectors Residual 

Space 

Fig. 4.1. The projection of the observation vector x into the score and residual 
spaces, and the computation of the filtered observation x 

The application of PCA will be illustrated using Fisher's classic data set 
[45, 82]. The data set consists of three classes, with each class containing 
m = 4 measurements and n = 50 observations (see Table 4.1 and Figure 
4.2). 

Class 3 data were used to construct X as in (2.5). After autoscaling X 
and solving (4.3), we have 

and 

[
1.92 0 0 0] 

A = 0 0.96 0 0 
o 0 0.88 0 ' 
o 0 0 0.24 

[
0.64 -0.29 0.052 -0.71] 

V = 0.64 -0.23 0.25 0.69 . 
0.34 0.33 -0.88 0.11 
0.25 0.87 0.41 -0.09 

(4.7) 

(4.8) 

The total variance for X projected along V is equal to the trace of A, which 
is 4.0. The ith value in the diagonal of A indicates the amount of variance 
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Table 4.1. Statistics of Fisher's data [45, 82] 

Class 1: Iris Virginica Mean Std. Deviation Range 
Sepal length 6.59 0.64 4.9-7.9 
Sepal width 2.98 0.32 2.2-3.8 
Petal length 5.55 0.55 4.5-{).9 
Petal width 2.03 0.27 1.4-2.5 

Class 2: Iris Versicolor Mean Std. Deviation Range 
Sepal length 5.94 0.52 4.9-7.0 
Sepal width 2.77 0.31 2.0-3.4 
Petal length 4.29 0.47 3.0-5.1 
Petal width 1.33 0.20 1.0-1.8 

Class 3: Iris Setosa Mean Std. Deviation Range 
Sepal length 5.01 0.35 4.3-5.8 
Sepal width 3.43 0.38 2.3-4.4 
Petal length 1.46 0.17 1.0-1.9 
Petal width 0.30 0.40 0.1-3.0 

9r-----------------.-----------------,-----------~ 
x Sepal Length 
o Sepal Width 

Petal Length 
* Petal Width 

Class 3: Selosa Class 2: Versicolor Class 1: Virginica 

8 
x '" x x 
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Fig. 4.2. Plot of Fisher's data [82, 45] 
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Fig. 4.3. The projections of Fisher's data [82, 45] for three classes onto the first 
two PCA loading vectors 

captured by the ith principal component. If only one principal component is 
retained (i.e., a = 1), then (1.92/4.0)100% = 48.0% of the total variance is 
captured. For a = 2, 72% of the total variance is captured. For a = 2, the 
loading matrix P is equal to the first two columns of V: 

[
0.64 -0.29] 

P _ 0.64 -0.23 
- 0.34 0.33 . 

0.25 0.87 

(4.9) 

The score matrix T is calculated according to (4.4). The advantage of 
retaining only two principal components is that the process variability can 
be visualized by plotting t2 versus tl (see Figure 4.3). 

It is easy to verify that Var(tl)~ Var(t2) by observing that the variation 
along the horizontal axis is much greater than that of the vertical axis for 
the Class 3 data in Figure 4.3. The ellipsoid and the data for Class 3 are 
centered at the origin, which indicates that Mean(tt} = Mean(t2) = 0. It is 
straightforward to verify that tl and t2 are orthogonal to each other. 
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A threshold defines an elliptical confidence region for data belonging to 
Class 3 (the calculation of the threshold will be described in Section 4.4). In 
this example, statistics predict that there is a 95% probability that a Class 
3 data point should fall inside the ellipsoid. It is clearly shown in Figure 4.3 
that PCA is able to separate Class 3 data from Classes 1 and 2, except for 
the apparent outlier located at (tl, t2) = (2.5,5.6). 

4.3 Reduction Order 

It is commonly accepted and with certain assumptions theoretically justified 
[345] that the portion of the PCA space corresponding to the larger singular 
values describes most of the systematic or state variations occurring in the 
process, and the portion of the PCA space corresponding to the smaller 
singular values describes the random noise. By appropriately determining the 
number of loading vectors, a, to maintain in the PCA model, the systematic 
variations can be decoupled from the random variations, and the two types 
of variations can be monitored separately, as discussed in Section 4.4. Several 
techniques exist for determining the value of the reduction order a [117, 144, 
267, 315], but there appears to be no dominant technique. The methods for 
determining a described here are: 

1. the percent variance test, 
2. the scree test, 
3. parallel analysis, and 
4. the PRESS statistic. 

The percent variance method determines a by calculating the smallest 
number of loading vectors needed to explain a specific minimum percentage 
of the total variance. (Recall that the variance associated with the ith loading 
vector is equal to the square of the singular value, a;.) Because this minimum 
percentage is chosen arbitrarily, it may be too low or too high for a particular 
application. 

The scree test assumes that the variance, a;, corresponding to the ran­
dom noise forms a linear profile. The dimension of the score space a is de­
termined by locating the value of a; where the profile is no longer linear. 
The identification of this break can be ambiguous, and thus, this method is 
difficult to automate. It is especially ambiguous when several breaks from 
linearity occur in the profile. 

Parallel analysis determines the dimensionality by comparing the vari­
ance profile to that obtained by assuming independent observation variables. 
The reduction order is determined as the point at which the two profiles cross. 
This approach ensures that the significant correlations are captured in the 
score space, and it is particularly attractive since it is intuitive and easy to 
automate. Ku, Storer, and Georgakis [183J recommend the parallel analysis 
method, because in their experience, it performs the best overall. 
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The dimension of the score space can also be determined using a cross­
validation procedure with the prediction residual sum of squares 
(PRESS) statistic [347], 

PRESS(i) = _1 IIX - XII} (4.10) 
mn 

where i is the number of loading vectors retained to calculate X and II·IIF is 
the Frobenius norm (the square root of the sum of squares of all the elements). 
For the implementation of this technique, the training set is divided into 
groups. The PRESS statistic for one group is computed based on various 
dimensions of the score space, i, using all the other groups. This is repeated 
for each group, and the value i associated with the minimum average PRESS 
statistic determines the dimension of the score space. 

4.4 Fault Detection 

As discussed in Section 2.4, the T2 statistic can be used to detect faults for 
multivariate process data. Given an observation vector x and assuming that 
A = ET E is invertible, the T2 statistic in (2.9) can be calculated directly 
from the peA representation (4.2) 

(4.11) 

This follows from the fact that the V matrix in (2.7) can be computed to 
be identical to the V matrix in (4.2), and the a-t are equal to the diagonal 
elements of A. When the number of observation variables is large and the 
amount of data available is relatively small, the T2 statistic (4.11) tends to 
be an inaccurate representation of the in-control process behavior, especially 
in the loading vector directions corresponding to the smaller singular values. 
Inaccuracies in these smaller singular values have a huge effect on the cal­
culated T2 statistic because the square of the singular values is inverted in 
(4.11). Additionally, the smaller singular values are prone to errors because 
these values contain small signal-to-noise ratios and the associated loading 
vector directions often suffer from a lack of excitation. Therefore, in this case 
the loading vectors associated only with the larger singular values should be 
retained in calculating the T2 statistic. 

By including in the matrix P the loading vectors associated only with the 
a largest singular values, the T2 statistic for the lower-dimensional space can 
be computed [143] 

( 4.12) 

where Ea contains the first a rows and columns of E. The T2 statistic (4.12) 
measures the variations in the score space only. If the actual mean and co­
variance are known, the T2 statistic threshold derived from (2.10) is 
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T~ = x~(a). (4.13) 

When the actual covariance matrix is estimated from the sample covariance 
matrix, the T2 statistic threshold derived from (2.11) is 

T 2 _ a(n -1)(n + 1)F. ( _) 
0- ( ) 0 a,n a. nn-a 

(4.14) 

To detect outliers in the training set, the threshold derived from (2.12) is 

T2 = (n - 1)2(a/(n - a - 1})Fo(a, n - a - 1) . 
o n(1 + (a/(n - a - 1})Fo(a, n - a - 1) 

(4.15) 

Because the T2 statistic in (4.12) is not affected by the inaccuracies in the 
smaller singular values of the covariance matrix, it is able to better repre­
sent the normal process behavior and provides a more robust fault detection 
measure when compared to the T2 statistic in (4.11). Using the arguments 
in Section 4.3, the T2 statistic (4.12) can be interpreted as measuring the 
systematic variations of the process, and a violation of the threshold would 
indicate that the systematic variations are out of control. 

For the example in the last section, we have n = 50 and a = 2. According 
to an F-distribution table [120], FO•05 (2,48) = 3.19. The threshold T~ is 
equal to 6.64 according to (4.14). The elliptical confidence region, as shown 
in Figure 4.3, is given by 

with 

E2 = [1.92 0 ] 
a 0 0.96 . 

The equation 

t=pTX 

(4.16) 

(4.17) 

(4.18) 

converts this region into the ellipse in Figure 4.3. Inserting (4.18) into (4.16) 
gives 

(4.19) 

or 

t~ t~ <664 
1.92 + 0.96 - . (4.20) 

where t = [tl ~] T. 
Data from Classes 1 and 2 are used to illustrate that the PCA model is 

able to detect data that do not come from Class 3. The data sets for Classes 
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1 and 2 are first autoscaled according to the mean and standard deviation 
of Class 3. Equation 4.4 is used to calculate the score matrices for Classes 1 
and 2. As shown in Figure 4.3, the mean of each score vector for Classes 1 
and 2 is not equal to zero. Indeed, all the data points for Classes 1 and 2 fall 
outside the elliptical confidence region, indicating data from Classes 1 and 2 
are indeed different from the Class 3 data. 

The T2 statistic in (4.11) is overly sensitive to inaccuracies in the PCA 
space corresponding to the smaller singular values because it directly mea­
sures the variation along each of the loading vectors. In other words, it 
directly measures the scores corresponding to the smaller singular values. 
The portion of the observation space corresponding to the m - a smallest 
singular values can be monitored more robustly by using the Q statistic 
[145, 144, 150, 176, 348] 

r = (I - ppT)x, (4.21) 

where r is the residual vector, a projection of the observation x into the 
residual space. Since the Q statistic does not directly measure the variations 
along each loading vector but measures the total sum of variations in the 
residual space, the Q statistic does not suffer from an over-sensitivity to 
inaccuracies in the smaller singular values [145]. The Q statistic, also known 
as the squared prediction error (SPE), is a squared 2-norm measuring the 
deviation of the observations to the lower-dimensional PCA representation. 

The distribution for the Q statistic has been approximated by Jackson 
and Mudholkar [145] 

Q = () [hoco:V20z 1 (}2 hO{ho -1)] l/ho 
0: 1 (}1 + + ()~ (4.22) 

where (}i = t aJi, ho = 1 - 2:~~3, and Co: is the normal deviate cor-
j=a+l 2 

responding to the (I - a) percentile. Given a level of significance, a, the 
threshold for the Q statistic can be computed using (4.22) and be used to 
detect faults. 

Within the context of Section 4.3, the Q statistic measures the random 
variations of the process, for example, that associated with measurement 
noise. The threshold (4.22) can be applied to define the normal variations 
for the random noise, and a violation of the threshold would indicate that 
the random noise has significantly changed. The T2 and Q statistics along 
with their appropriate thresholds detect different types of faults, and the 
advantages of both statistics can be utilized by employing the two measures 
together. When these two statistics are utilized along with their respective 
thresholds, it produces a cylindrical in-control region, as illustrated for a = 2 
in Figure 4.4. The figure indicates that the 'x' data were collected during 
in-control operations, the '0' data represent T2 statistic violation, and the 
'+' data represent Q statistic violation. 
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Fig. 4.4. A graphical illustration for fault detection using the Q and T2 statistics 

4.5 Fault Identification 

Once a fault has been detected, the next step is to determine the cause 
of the out-of-control status. The task of diagnosing the fault can be rather 
challenging when the number of process variables is large, and the process 
is highly integrated. Also, many of the measured variables may deviate from 
their set-points for only a short time period when a fault occurs, due to 
control loops bringing the variables back to their set-points (even though the 
fault is persisting in the system). This type of systems behavior can disguise 
the fault, making it difficult for an automated fault diagnosis algorithm to 
correctly isolate the correct fault acting on the system. 

The objective of fault identification is to determine which observation vari­
ables are most relevant to diagnosing the fault, thereby focusing the plant 
operators and engineers on the subsystem(s) most likely where the fault oc­
curred. This assistance provided by the fault identification scheme in locating 
the fault can effectively incorporate the operators and engineers in the pro­
cess monitoring scheme and significantly reduce the time to recover in-control 
operations. 

Traditionally, univariate statistical techniques were employed for fault 
identification. Given an observation vector x, the normalized errors for each 
variable x j were calculated as 

ej = (Xj - J-Lj)/8j (4.23) 

where J-Lj is the mean and 8j is the standard deviation of the lh variable. 
These normalized errors were plotted on the same graph, and thresholds 
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based on the level of significance were used to detect the out-of-control vari­
ables, as discussed in Section 2.3. However, univariate statistical techniques 
for fault identification can leave out variables that are responsible for the 
fault because the techniques do not account for correlations among the pro­
cess variables, or can give alarm readings for so many variables that the 
engineer has little guidance on the main variables of concern [171). 

Contribution plots are a PCA approach to fault identification that takes 
into account the spacial correlations, thereby improving upon the univariate 
statistical techniques [171, 225). The approach is based on quantifying the 
contribution of each process variable to the individual scores of the PCA 
representation, and for each process variable summing the contributions only 
of those scores responsible for the out-of-control status. The procedure is 
applied in response to a T2 violation, and it is summarized as follows: 

1. Check the normalized scores (ti/Ui)2 for the observation x and determine 
the r ~ a scores responsible for the out-of-control status. For instance, 
those scores with (ti/Ui)2 > ~(T~). (Recall that ti is the score of the 
observation projected onto the ith loading vector, and Ui is the corre­
sponding singular value.) 

2. Calculate the contribution of each variable Xj to the out-of-control scores 
ti 

t· 
cont· . = ~p. ·(x· - .... ) t,3 2 t,3 3 t"'] 

Ui 
(4.24) 

where Pi,j is the (i,j)th element of the loading matrix P. 
3. When conti,j is negative, set it equal to zero. 
4. Calculate the total contribution of the lh process variable, x j , 

r 

CONTj = I)conti,j). (4.25) 
i=l 

5. Plot CONTj for all m process variables, Xj, on a single graph. 

The variables responsible for the fault can be prioritized or ordered by the 
total contribution values CO NTj , and the plant operators and engineers can 
immediately focus on those variables with high CONTj values and use their 
process knowledge to determine the cause of the out-of-control status. While 
the overall variable contribution approach can be applied to the portion of 
the observation space corresponding to the m - a smallest singular values, 
it is not practical because the total contribution values CONTj would be 
overly sensitive to the smaller singular values. 

Wise et al. [346) developed a PCA approach to fault identification which 
is based on quantifying the total variation of each of the process variables 
in the residual space. Assuming that the m - a smallest singular values are 
all equal, the variance for each variable x j inside the residual space can be 
estimated as [346) 
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p 

L (4.26) 
i=a+l 

Given q new observations, the variance of the jth variable outside the peA 
model space can be tested where 

S~/S~ > JCa(q- a - l,n - a- 1) (4.27) 

would indicate an out-of-control variable, where s~ and s~ are the variance 
estimates of the jth variable for the new and training set observations, re­
spectively, and JCa(q - a-I, n - a -1) is the (1 - a) percentile limit using 
the JC distribution [120]. Equation 4.27 is testing the null hypothesis, with 
the null hypothesis being Sj = Sj and the one-sided alternative hypothesis 
being S j > S j. The one-sided alternative hypothesis is accepted (i. e., the null 
hypothesis is rejected) if (4.27) holds [120]. In most of the times, the variable 
that is responsible for a fault has a larger variance than it has in the training 
set (i.e., Sj > Sj). However, this is not always true. For example, a broken 
sensor may give constant reading, indicating that Sj < Sj. This motivates the 
use of two-sided hypothesis testing, with the null hypothesis being Sj = Sj 

and the two-sided alternative hypothesis being Sj # Sj. We conclude Sj # Sj 

if [120] 

S~/S~ > JCaj2 (q - a-I, n - a-I) (4.28) 

or 

S~/S~ > JCaj2(n - a -1,q - a-I). (4.29) 

In addition, a large shift in the mean inside the residual space occurs if 
[346, 120] 

(4.30) 

or 

(4.31) 

where f.Lj and Pj are the means of Xj for the new and training set observations, 
respectively, and t a j2(q + n - 2a - 2) is the (1 - a/2) percentile limit using 
the t distribution. Equations 4.30 and 4.31 are testing the null hypothesis, 
with the null hypothesis being f.Lj = Pj and the alternative hypothesis being 
f.Lj # Pj· The alternative hypothesis is accepted if (4.30) or (4.31) holds [120]. 

The variables responsible for the out-of-control status, detected by the Q 
statistic, can be identified using (4.27), (4.30), and (4.31). In addition, the 
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variables can be prioritized using the expression values (4.27), (4.30), and 
(4.31) where the variable with the largest expression value is given priority. 
In [346], sensor failures are detected and identified using (4.27), (4.30), and 
(4.31). Other PCA-based methods developed specifically for detecting sensor 
failures are discussed elsewhere [77, 239]. 

The fault identification approaches using (4.27), (4.30), and (4.31) require 
a group of q > > 1 observations. As discussed in Section 2.3, measures based 
on several consecutive observations are able to increase the robustness and 
sensitivity over measures based on only a single observation, but result in a 
slower response time for larger process shifts. A fault identification measure 
based on an observation vector at a single time instant is the normalized error 

(4.32) 

where rj is the lh variable of the residual vector. The values of (4.32) can be 
used to prioritize the variables where the variable with the highest normalized 
error is given priority. The measure (4.32), when compared to (4.27), (4.30), 
and (4.31), is able to indicate the current status of the process immediately 
after a large process shift more accurately. 

4.6 Fault Diagnosis 

The previous section discussed fault identification methods, which identify 
the variables associated with the faulty subsystem. Although these methods 
assist in diagnosing the faults, it may take a substantial amount of time and 
process expertise on behalf of the plant operators and engineers before the 
fault is properly diagnosed. Much of this time and expertise can be elimi­
nated by employing an automated fault diagnosis scheme. One approach is 
to construct separate PCA models for each process unit [117]. A fault associ­
ated with a particular process unit is assumed to occur if the PCA model for 
that unit indicates that the process is out of control. While this approach can 
narrow down the cause of abnormal process operations, it will not unequiv­
ocally diagnose the cause. This distinguishes these fault isolation techniques 
(which are based on non-supervised classification) from the fault diagnosis 
techniques (which are based on supervised classification) described below. 

Several researchers have proposed techniques to use principal component 
analysis for fault diagnosis. The simplest approach is to construct a single 
PCA model and define regions in the lower-dimensional space which classifies 
whether a particular fault has occurred [346]. This approach is unlikely to be 
effective when a significant number of faults can occur [360]. 

The way in which a pattern classification system can be applied to di­
agnose faults automatically was described in Chapter 3 how a pattern. The 
feature extraction step was shown to be important especially when the di­
mensionality of the data is large and the quantity of quality data is relatively 
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small (see Section 3.3). A peA approach which can handle a larger number 
of faults than using a single peA model is to develop a separate peA model 
based on data collected during each specific fault situation, and then apply 
the Q [181], T2 [269], or other statistics [269, 270, 272, 360] to each peA 
model to predict which fault or faults most likely occurred. This approach 
is a combination of principal component analysis and discriminant analysis 
[270]. Various discriminant functions for diagnosing faults are discussed in 
the following. 

One way to use PCA for fault diagnosis is to derive one model based on 
the data from all fault classes. Stacking the data for all fault classes into 
matrix X, the loading matrix P can be calculated based on (4.2) or (4.3). 
The maximum likelihood classification for an observation x is fault class i 
with the maximum score discriminant, which is derived from (3.6) to be 

9i(X} = -~(x - Xl) T P (p T SiP) -1 pT(x - Xi} + In(Pi} 

-~ In [det (p T SiP)] 

where Xl is the mean vector for class i, 

(4.33) 

(4.34) 

ni is the number of data points in fault class i, Xi is the set of vectors Xj 

which belong to the fault class i, and Si E 'Rmxm is the sample covariance 
matrix for fault class i, as defined in (2.6). 

If P is selected to include all of the dimensions of the data (i. e., P = V E 
'Rmxm) and the overall likelihood for all fault classes is the same, Equation 
4.33 reduces to the discriminant function for multivariate statistics (MS) as 
defined in (3. 7). MS selects the most probable fault class based on maximizing 
the discriminant function (3.7). MS also serves as a benchmark for the other 
statistics, as the dimensionality should only be reduced if it decreases the 
misclassification rate for a testing set. 

The score discriminant, residual discriminant, and combined dis­
criminant are three discriminant analysis techniques used with multiple 
peA models [269]. Assuming the PCA models retain the important vari­
ations in discriminating between the faults, an observation x is classified as 
being in the fault class i with the maximum score discriminant 

{4.35} 

where Pi is the loading matrix for fault class i, Ea,i is the diagonal matrix 
Ea as shown in {4.12} for fault class i (E!,i is the covariance matrix of PiX), 
and Pi is the overall likelihood of fault class i [150, 272]. Note that (4.35) 
assumes that the observation vector x has been autoscaled according to the 
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mean and standard deviation of the training set for fault class i. Equation 
4.35 is based on the discriminant function (3.6). 

The matrices Pi, Ea,i, and Pi in (4.35) depend solely on fault class i, that 
is, the discriminant function for each fault class is derived individually. A 
weakness of this approach is that useful information for other classes is not 
utilized when each model is derived. In general, the reduction order a for each 
fault class is different. This indicates that the discriminant function (4.35) for 
each fault class i is evaluated based on different dimensions of the projected 
data pt x. This inconsistency can result in relatively high misclassification 
rates. 

In contrast to (4.35), the projection matrix P in (4.33) not only utilizes 
information from all fault classes, but also projects the data onto the same 
dimensions for each class. Because of these properties, the discriminant func­
tion (4.33) can significantly outperform (4.35) for diagnosing faults. To dis­
tinguish the one-model peA with the multi-model peA, we will refer to the 
one-model peA as PCAl and the multi-model peA as PCAm throughout 
the book. 

Assuming that the overall likelihood for all fault classes is the same and 
the sample covariance matrix of PiX for all classes is the same, the use of the 
score discriminant (4.35) reduces to use of the T;2 statistic, where 

(4.36) 

(similarly as shown in Section 3.2). In this case, the score discriminant will 
select the fault class as that which corresponds to the minimum T;2 statistic. 

Assuming that the important variations in discriminating between the 
faults are contained in the residual space for each fault class, it is most likely 
that an observation is represented by the fault class i with the minimum 
residual discriminant 

(4.37) 

where the subscript i indicates fault class i. If the important variations in 
discriminating between the faults are contained both within the score and 
residual space, then an observation is most likely to be represented by the 
fault class i with the minimum combined discriminant 

(4.38) 

where Ci is a weighting factor between 0 and 1 for fault class i. Assuming 
an out-of-control observation does not represent a new fault, each of these 
discriminant analysis techniques (4.35), (4.37), and (4.38) can be used to 
diagnose the fault. 

When a fault is diagnosed as fault i, it is not likely to represent a new 
fault when 

(4.39) 
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and 

(4.40) 

These conditions indicate that the observation is a good match to fault model 
i. If either of these conditions is not satisfied (for example, [Tl /(T~)i] or 
[Qi/(Qa)i] is greater than 1), then the observation is not accurately repre­
sented by fault class i and it is likely that the observation represents a new 
fault. 

Before the application of a pattern classification system to a fault diag­
nosis scheme, it is useful to assess the likelihood of successful diagnosis. In 
[270,272], Raich and Cinar describe a quantitative measure of similarity be­
tween the covariance structures of two classes. The measure, referred to as 
the similarity index, for Classes 1 and 2 is calculated as 

(4.41) 

where Uj is the lh singular value of VtV2 and the matrices Vl and V2 contain 
all m loading vectors for Classes 1 and 2, respectively. The value of f ranges 
between 0 and 1, where a value near 0 indicates a lack of similarity and a 
value equal to 1 indicates an exact similarity [179]. While a high similarity 
does not guarantee misdiagnosis, a low similarity does generally indicate a 
low probability of misdiagnosis. The similarity index can be applied to PCA 
models by replacing Vl and V2 with the loading matrix Pl for Class 1 and 
the loading matrix P2 for Class 2, respectively. 

In [270, 272], a measure of class similarity using the overlap of the mean 
for one class into the score space of another class is developed from [212]. 
Define J.Ll E nm and J.L2 E nm to be the means of Classes 1 and 2, respectively, 
P E nmxa as the projection matrix containing the a loading vectors for Class 
2, p as the fraction of the explained variance in the data used to build the 
second PCA model, and t; E naxa as the covariance in a model directions for 
the second PCA model. The test statistic, referred to as the mean overlap, 
for Classes 1 and 2 is 

rTr 
m= ~--~~~-

(1 - p)t T E-lt 
(4.42) 

where t = pT(J.Ll - J.L2) is the approximation of J.Ll by the second model and 
r = Pt - J.Ll is the residual error in J.Ll unexplained by the second model. The 
threshold for (4.42) can be determined from the following distribution 

ma = Fa (m - a, n - a) ( 4.43) 

where n is the number of model observations for Class 2. In simulations, 
Raich and Cinar found that the mean overlap was not as successful as the 
similarity index for indicating pairwise misdiagnosis [270, 272]. 
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Multiple faults occurring within the same time window are likely to hap­
pen for many industrial processes. The statistics for detecting a single fault 
are directly applicable for detecting multiple faults because the threshold 
in (4.14) depends only on the data from the normal operating conditions 
(Fault 0). The task of diagnosing multiple faults is rather challenging and 
the proficiencies of the fault diagnosis statistics depend on the nature of the 
combination of the faults. A straightforward approach for diagnosing multi­
ple faults is to introduce new models for each combination of interest; this 
approach could describe combinations of faults that produce models that are 
not simply the consensus of component models [270, 272]. The disadvantage 
of this approach is that the number of combinations grows exponentially with 
the number of faults. For a detailed discussion of diagnosing multiple faults, 
refer to the journal articles [270, 272]. 

4.7 Dynamic peA 

The PCA monitoring methods discussed previously assume implicitly that 
the observations at one time instant are statistically independent to observa­
tions at past time instances. For typical industrial processes, this assumption 
is valid only for long sampling times, i.e., 2 to 12 hours. This suggests that 
a method taking into account the serial correlations in the data is needed in 
order to implement a process monitoring method with fast sampling times. 
A simple method to check whether correlations are present in the data is 
through the use of an autocorrelation chart of the principal components 
[272, 336]. If significant autocorrelation is shown in the autocorrelation chart, 
the following approaches can be used. One approach to address this issue is 
to incorporate EWMA/CUSUM charts with PCA (see Section 4.8). Another 
approach is to average the measurements over a number of data points. Al­
ternatively, PCA can be used to take into account the serial correlations by 
augmenting each observation vector with the previous h observations and 
stacking the data matrix in the following manner, 

X(h) = 

xl 
T 

xt-1 

y.T ... x T h -.-1 t-

xl-2 ... Xl-h - 1 

xT T ... 
t+h-n xt+h-n-1 

T 
xt-n 

(4.44) 

where xl is the m-dimensional observation vector in the training set at time 
interval t. By performing PCA on the data matrix in (4.44), a multivariate 
autoregressive (AR), or ARX model if the process inputs are included, is 
extracted directly from the data [183, 343]. To see this, consider a simple 
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example of a single input single output (8180) process, which is described by 
the ARX(h) model 

Yt = alYt-l + ... + ahYt-h + /3oUt + /31Ut-l + ... + /3hUt-h + et 

( 4.45) 

where Yt and Ut are the output and input at time t, respectively, al, ... , 

ah, /31. ... ,/3h are constant coefficients, and et is a white noise process with 
zero mean [336, 343]. Mathematically, the ARX(h) model states that the 
output at time t is linearly related to the past h inputs and outputs. With 
xl = [Yt Ut], the matrix X(h) in (4.44) becomes: 

Yt Ut Yt-l Ut-l Yt-h Ut-h 

X(h) = 
Yt-l Ut-l Yt-2 Ut-2 Yt-h-l Ut-h-l 

( 4.46) 

Yt+h-n Ut+h-n Yt+h-n-l Ut+h-n-l . .. Yt-n Ut-n 

The ARX( h) model indicates that the first column of X (h) is linearly related 
to the remaining columns. In the noise-free case the matrix formed in (4.46) 
would be rank deficient (i.e., not full rank). When PCA is applied to X(h) 
using (4.3), the eigenvector corresponding to the zero eigenvalue would reveal 
the ARX(h) correlation structure [183]. In the case where noise is present, 
the matrix will be nearly rank deficient. The eigenvector corresponding to a 
nearly zero eigenvalue will be an approximation of the ARX(h) correlation 
structure [183, 240]. 

Note that the Q statistic is then the squared prediction error of the ARX 
model. If enough lags h are included in the data matrix, the Q statistic is 
statistically independent from one time instant to the next, and the threshold 
(4.22) is theoretically justified. This method of applying PCA to (4.44) is 
referred to as dynamic PCA (DPCA). When multi-model PCAm is used 
with (4.44) for diagnosing faults, it will be referred to as DPCAm. Note 
that a statistically justified method can be used for selecting the number of 
lags h to include in the data for our studies (see 8ection 7.5). The method for 
automatically determining h described in [183] is not used here. Experience 
indicates that h = 1 or 2 is usually appropriate when DPCA is used for 
process monitoring. The fault detection and diagnosis measures for static 
PCA generalize directly to DPCA. For fault identification, the measures for 
each observation variable can be calculated by summing the values of the 
measures corresponding to the previous h lags. 

It has been stated that in practice the presence of serial correlations in 
the data does not compromise the effectiveness for the static PCA method 
when there are enough data to represent all the normal variations of the 
process [171]. Irrespective of this claim, including lags in the data matrix as 
in (4.44) can result in the PCA representation correlating more information. 
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Therefore, as long as there are enough data to justify the added dimension­
ality of including h lags, DPCA is expected to perform better than PCA for 
detecting faults from serially correlated data, and this has been confirmed by 
testing PCA and DPCA on the Tennessee Eastman problem [183]. 

4.8 Other PeA-based Methods 

The EWMA and CUSUM charts have been generalized to the multivariate 
case [56, 202, 207, 258, 351, 116], and these generalizations can be applied 
to the PCA-based T2 statistic in (4.12). Applying these methods can result 
in increased sensitivity and robustness of the process monitoring scheme, as 
discussed in Section 2.3. EWMA and CUSUM charts use data from consec­
utive observations. If a large number of observations is required, an increase 
in the detection delay can be expected. 

The process monitoring measures discussed so far are for continuous pro­
cesses. Process monitoring measures for batch processes have been devel­
oped with the most heavily studied being multiway peA, [243, 343, 39]. 
Multiway PCA is a three-dimensional extension of the PCA approach. The 
three dimensions of the array represent the observation variables, the time 
instances, and the batches, respectively, whereas PCA methods for continu­
ous processes contain only two dimensions, the observation variables and the 
time instances. Details and applications of multi way PCA are provided in 
the references [243, 343, 39]. 

PCA is a linear dimensionality reduction technique, which ignores the 
nonlinearities that may exist in the process data. Industrial processes are 
inherently nonlinear; therefore, in some cases nonlinear methods for pro­
cess monitoring may result in better performance compared to the linear 
methods. Kramer [172] has generalized PCA to the nonlinear case by using 
autoassociative neural networks (this is called nonlinear principal com­
ponent analysis). Dong and McAvoy [71] have developed a nonlinear PCA 
approach based on principal curves and neural networks that produce in­
dependent principal components. It has been shown that for certain data 
nonlinearities these nonlinear PCA neural networks are able to capture more 
variance in a smaller dimension compared to the linear PCA approach. A 
comparison of three neural network approaches to process monitoring has 
been made [76]. Neural networks can also be applied in a pattern classifica­
tion system to capture the nonlinearities in the data. A text on using neural 
networks as a pattern classifier is Neural Networks for Pattern Recogni­
tion by Bishop [29]. Although neural networks potentially can capture more 
information in a smaller-dimensional space than the linear dimensionality re­
duction techniques, an accurate neural network typically requires much more 
data and computational time to train, especially for large-scale systems. 
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4.9 Homework Problems 

1. Read an article on the use of multiway PCA (e.g., [39, 93, 243, 343]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. Formulate both fault detection and diagnosis ver­
sions of the algorithm. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 

2. Describe in detail how to blend PCA with CUSUM and EWMA, includ­
ing the equations for the thresholds. 

3. Read an article on the use of PCA for diagnosing sensor faults (e.g., 
[77, 239]) and write a report describing in detail how the technique is im­
plemented and applied. Compare and contrast the techniques described 
in the paper with the techniques described in this book. 

4. Read an article on the application of nonlinear PCA (e.g., [172, 71]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 

5. Prove the properties 1-4 given below Equation 4.6. 
6. Section 5 of [145J describes several alternatives to the Q statistic for 

quantifying deviations outside of those quantified by the T2 statistic. 
Describe these statistics in detail, including their thresholds, advantages, 
and disadvantages. [Note: one of the statistics is closely related to the T; 
statistic in Chapter 7.J 

7. Apply PCA to the original Class 3 data set reported by Fisher [82], 
and construct Figure 4.3 including the confidence ellipsoid. Now reapply 
PCA and reconstruct the figure for the case where the outlier at (tl, t2) = 
(2.5,5.6) is removed from the Class 3 data set. Compare the confidence 
ellipsoids obtained in the two cases. Comment on the relative importance 
of removing the outlier from the Class 3 data set before applying PCA. 

8. Read the article [100J which describes the use of structured residuals 
and PCA to isolate and diagnose faults, and write a report describing 
in detail how the technique is implemented and applied. Compare and 
contrast the approach with the techniques described in this book. 
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5.1 Introduction 

In the pattern classification approach to fault diagnosis outlined in Chapter 
3, it was described how the dimensionality reduction of the feature extraction 
step can be a key factor in reducing the misclassification rate when a pattern 
classification system is applied to new data (data independent of the training 
set). The dimensionality reduction is especially important when the dimen­
sionality of the observation space is large while the numbers of observations 
in the classes are relatively small. A PCA approach to dimensionality reduc­
tion was discussed in the previous chapter. Although PCA contains certain 
optimality properties in terms of fault detection, it is not as well-suited for 
fault diagnosis because it does not take into account the information between 
the classes when determining the lower-dimensional representation. Fisher 
discriminant analysis (FDA), a dimensionality reduction technique that 
has been extensively studied in the pattern classification literature, takes 
into account the information between the classes and has advantages over 
PCA for fault diagnosis [46, 277]. 

This chapter begins in Section 5.2 by defining FDA and presenting some 
of its optimality properties for pattern classification. An information criterion 
for FDA is developed in Section 5.3 for automatically determining the order of 
dimensionality reduction. In Section 5.4, it is described how FDA can be used 
for fault detection and diagnosis. PCA and FDA are compared in Section 5.5 
both theoretically and in application to some data sets. Section 5.6 describes 
dynamic FDA (DFDA), an approach based on FDA that takes into account 
serial (temporal) correlations in the data. 

5.2 Fisher Discriminant Analysis 

For fault diagnosis, data collected from the plant during specific faults are 
categorized into classes, where each class contains data representing a par­
ticular fault. FDA is a linear dimensionality reduction technique, optimal in 
terms of maximizing the separation amongst these classes [74]. It determines 
a set of linear transformation vectors, ordered in terms of maximizing the 
scatter between the classes while minimizing the scatter within each class. 

L. H. Chiang et al., Fault Detection and Diagnosis  in Industrial  Systems
© Springer-Verlag London Limited 2001
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Define n as the number of observations, m as the number of measurement 
variables, p as the number of classes, and nj as the number of observations 
in the lh class. Represent the vector of measurement variables for the ith 

observation as Xi. If the training data for all classes have already been stacked 
into the matrix X E 'Rnxm as in (2.5), then the transpose of the ith row of 
X is the column vector Xi. 

To understand Fisher discriminant analysis, first we need to define various 
matrices that quantify the total scatter, the scatter within classes, and the 
scatter between classes. The total-scatter matrix is [74, 129] 

n 

St = ~)Xi - X)(Xi - x) T (5.1) 
i=l 

where x is the total mean vector 

(5.2) 

With Xj defined as the set of vectors Xi which belong to the class j, the 
within-scatter matrix for class j is 

Sj = L (Xi - Xj)(Xi - Xj) T (5.3) 
xlEXj 

where Xj is the mean vector for class j: 

(5.4) 

The within-class-scatter matrix is 

(5.5) 

and the between-class-scatter matrix is 

P 

Sb = L nj(xj - x)(Xj - x)T. (5.6) 
j=l 

The total-scatter matrix is equal to the sum of the between-scatter matrix 
and the within-scatter matrix [74], 

(5.7) 

The objective of the first FDA vector is to maximize the scatter between 
classes while minimizing the scatter within classes: 
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VTSbV 
~~ vTSwv (5.8) 

assuming invertible Sw where v E nm. The second FDA vector is computed 
so as to maximize the scatter between classes while minimizing the scatter 
within classes among all axes perpendicular to the first FDA vector, and so on 
for the remaining FDA vectors. It can be shown that the linear transformation 
vectors for FDA can be calculated by computing the stationary points of 
the optimization problem (5.8) [74, 129J. The FDA vectors are equal to the 
eigenvectors Wk of the generalized eigenvalue problem 

(5.9) 

where the eigenvalues Ak indicate the degree of overall separability among 
the classes by projecting the data onto Wk. Any software package that does 
matrix manipulations, such as MATLAB [109, 110J or IMSL [132J, has sub­
routines for computing the generalized eigenvalues and eigenvectors. Because 
the direction and not the magnitude of Wk is important, the Euclidean norm 
(square root of the sum of squares of each element) of Wk can be chosen to 
be equal to 1 (1Iwkii = 1). 

The FDA vectors can be computed from the generalized eigenvalue prob­
lem as long as Sw is invertible. This will almost always be true provided that 
the number of observations n is significantly larger than the number of mea­
surements m (the case in practice). Since Sw is expected to be invertible for 
applications of FDA to fault diagnosis, methods to calculate the FDA vectors 
for the case of non-invertible Sw are only cited here [45, 123, 305J. 

The first FDA vector is the eigenvector associated with the largest eigen­
value, the second FDA vector is the eigenvector associated with the second 
largest eigenvalue, and so on. A large eigenvalue Ak indicates that when the 
data in the classes are projected onto the associated eigenvector Wk there is 
overall a large separation of the class means relative to the class variances, 
and consequently, a large degree of separation among the classes along the 
direction Wk. Since the rank of Sb is less than p, there will be at most p - 1 
eigenvalues which are not equal to zero, and FDA provides useful ordering of 
the eigenvectors only in these directions. 

It is useful to write the goal of FDA more explicitly in terms of a linear 
transformation. Define the matrix Wp E nmx (p-l) with the p-1 FDA vectors 
as columns. Then the linear transformation of the data from m-dimensional 
space to (p - 1 )-dimensional space is described by 

Zi = WTXi p (5.10) 

where Zi E n(p-l). FDA computes the matrix Wp such that data Xl, •.. ,Xn 

for the p classes are optimally separated when projected into the p -1 dimen­
sional space. In the case where p is equal to 2, this is equivalent to projecting 
the data onto a line in the direction of the vector w, for which the projected 
data are the best separated. 
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5.3 Reduction Order 

No reduction of dimensionality would be needed if the covariance matrix 
and mean vector were known exactly (see Section 3.3). Errors in the sample 
covariance matrix (2.6) occur in practice, however, and the dimensionality 
reduction provided by FDA may be necessary to reduce the misclassifica­
tion rate when the pattern classification system is applied to new data (data 
independent of the training set). A popular method for selecting the reduc­
tion order for dimensionality reduction methods is to use cross-validation 
[98, 343]. This approach separates the data into multiple sets: the training 
set, and the testing (or validation) set. The dimensionality reduction proce­
dure is applied to the data in the training set, and then its performance is 
evaluated by applying the reduced-dimension model to the data in the test­
ing set for each reduction order. The reduction order is selected to optimize 
the performance based on the testing set. For example, if the goal is fault 
diagnosis, the order of the reduced model would be specified by minimizing 
the misclassification rate of the testing set. 

Cross-validation is not always practical in fault diagnosis applications 
because there may not be enough data to separate into two sets. In this 
situation, it is desirable to determine the order of the dimensionality reduction 
using all the data in the training set. Variations on cross-validation that split 
the data into larger numbers of sets (such as "leave-one-out" cross-validation 
[344]) are computationally expensive. 

As discussed in Section 3.3, the error of a model can be minimized by 
choosing the number of independent parameters so that it optimally trades 
off the bias and variance contributions on the mean-squared error. In an effort 
to minimize the mean-squared error, criteria in the form 

(prediction error term) + (model complexity term) (5.11) 

have been minimized to determine the appropriate model order [199]. The 
Akaike's information criterion (AIC), popularly applied in system iden­
tification for optimally selecting the model order (for an example, see Section 
7.6), can be derived in the form (5.11) [199]. In (5.11), the prediction error 
term is a function of the estimated model parameters and the data in the 
training set, and the model complexity term is a function of the number 
of independent parameters and the amount of data in the training set. In 
system identification, the prediction error term is usually chosen as the aver­
age squared prediction error for the model, but in general, the choice of the 
complexity term is subjective [199]. 

A strength of the AIC is that it relies only on information in one set of data 
(the training data), unlike cross-validation which requires either additional 
data or a partitioning of the original data set. A criterion in the form (5.11) 
can be developed for automatically selecting the order for FDA using the 
information only in the training set [46, 277]. The order can be determined 
by computing the dimensionality a that minimizes the information criterion 
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a 
fm{a) + -=- (5.12) 

n 

where f m (a) is the misclassification rate (the proportion of misclassifications, 
which is between 0 and 1) for the training set by projecting the data onto the 
first a FDA vectors, and ii is the average number of observations per class. 
The misclassification rate of the training set, fm(a), indicates the amount 
of information contained in the first a FDA vectors beneficial for pattern 
classification. While the misclassification rate of the training set typically 
decreases as a increases, for new data (data independent of the training set), 
the misclassification rate initially decreases and then increases above a certain 
order due to overfitting the data. The model complexity term alii is added 
in (5.12) to penalize the increase of dimensionality. 

The scaling of the reduction order a by the average number of observations 
per class, ii, has some intuitive implications. To illustrate this, consider the 
case where the number of observations in each class is the same, nj = ii. It 
can be shown using some simple algebra that the inclusion of the alii term in 
(5.12) ensures that the order selection procedure produces a value for a less 
than or equal to ii. In words, this constraint prevents the lower-dimensional 
model from having a higher dimensionality than justified by the number of 
observations in each class. 

The model complexity term alii can also be interpreted in terms of the 
total number of misclassifications per class. Defining m{ a) as the total number 
of misclassifications in the training set for order a and assuming that nj = ii, 
the information criterion (5.12) can be written as 

m(a) + ~ 
pii ii 

(5.13) 

where n = pii is the total number of observations. Let us consider the case 
where it is to be determined whether a reduction order of a + 1 should be 
preferred over a reduction order of a. Using the information criterion (5.13) 
and recalling that a smaller value for the information criterion is preferred, 
a reduction order of a + 1 is preferred if 

m(a + 1) a + 1 m(a) a --'----,-,-_ ---"- + -_ - < -_- + -=-. 
pn n pn n 

(5.14) 

This is equivalent to 

m(a) _ m(a + 1) > 1. 
p p 

(5.15) 

The complexity term does not allow the reduction order to be increased 
merely by decreasing the number of misclassifications, but only if the decrease 
in the total number of misclassifications per class is greater than 1. 

The above analyses indicate that the scaling of a in the model complexity 
term alii in the information criterion (5.12) is reasonable. This is confirmed 
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by application in Chapter 10 (for example, see Figure 10.21, where the infor­
mation criterion correctly captures the shape and slope of the misclassifica­
tion rate curves for the testing sets). 

5.4 Fault Detection and Diagnosis 

When FDA is applied for pattern classification, the dimensionality reduc­
tion technique is applied to the data in all the classes simultaneously. More 
precisely, denote Wa E 'Rmxa as the matrix containing the eigenvectors 
Wl, W2, ... , Wa computed from (5.9). The discriminant function can be de­
rived from (3.6) to be [97] 

9j(X) = -~(x - Xj)TWa (n/-l WaTSj Wa) -1 WaT(x - Xj) + In(Pi) 

-~ In [det (n;~1 WaT Sj Wa)] (5.16) 

where Sj, Xj, and nj are defined in (5.3) and (5.4). In contrast to PCA1 
(see Section 4.6), FDA uses the class information to compute the reduced­
dimensional space, so that the discriminant function (5.16) exploits that class 
information to a far greater degree than can be done by PCA. In contrast 
to PCAm, FDA utilizes all P fault class information when evaluating the 
discriminant function or each class. 

FDA can also be applied to detect faults by defining an additional class of 
data, that collected during normal operating conditions, to the fault classes. 
The proficiency of fault detection using (5.16) depends on the similarity be­
tween the data from the normal operating conditions and the data from 
the fault classes in the training sets. When there exists a transformation W 
such that the data from the normal operating conditions can be reasonably 
separated from the other fault classes, using FDA for fault detection will 
produce small missed detection rates for the known fault classes. Equation 
5.16 does not take into account unknown faults associated with data outside 
of the lower-dimensional space defined by the FDA vectors, so (5.16) may 
not detect these kinds of faults. It is best to use (5.16) with a residual-based 
FDA statistic (see Homework Problem 2), which together can detect both 
faults associated with data inside the space defined by the FDA vectors, and 
faults associated with data outside of this space. This joint use of two FDA 
statistics is similar to the joint use of the PCA Q or T2 statistics, as dis­
cussed in Chapter 4. The advantage of using the FDA statistics instead of 
the PCA statistics is that the fault classification information can be taken 
into account to improve the ability to detect faults. The disadvantage is that 
the FDA statistics require that fault classification information to define its 
lower-dimensional space (defined by W). 

As mentioned in Section 5.2, only the first P - 1 eigenvectors in FDA 
maximize the scatter between the classes while minimizing the scatter within 
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each class. The rest of the m - p + 1 eigenvectors corresponding to the zero 
eigenvalues are not ordered by the FDA objective (5.8). The ranking of these 
generalized eigenvectors is determined by the particular software package 
implementing the eigenvalue decomposition algorithm, which does not order 
the eigenvectors in a manner necessarily useful for classification. However, 
more than p - 1 dimensions in a lower-dimensional space may be useful for 
classification, and a procedure to select vectors beyond the first p - 1 FDA 
vectors can be useful. Here two methods are described which use PCA to 
compute additional vectors for classification. 

One method is to use FDA for the space defined by the first p - 1 eigen­
vectors, and to use the PCA1 vectors for the rest of the m - p + 1 vectors, 
ordered from the PCA vectors associated with the highest variability to the 
vectors associated with the lower variability. If the reduction order a ~ p -1, 
Equation 5.16 is used directly. If a ~ p, the alternative discriminant function 
is used: 

9j(X) = -~(x - Xj) T Wmix,a (n/-1 W!ix,aSj Wmiz,a) -1 W!iz,a(X - Xj) 

-~ In [det (n;~1 W!ix,aSj Wmiz,a)] + In(Pi) (5.17) 

where Wmiz,a = [Wp- 1 Pa-pH], and Pa-pH is the first a - p + 1 columns 
of the PCA1loading matrix P (defined in Section 4.6). When this method is 
used for diagnosing faults, it will be referred to as the FDA/PCAI method. 
Recall from Section 4.2 that the variances associated with the loading vectors 
in PCA are ranked in descending order. Given that the vectors from PCA1 
can be useful in a classification procedure (see Section 4.6), incorporating 
the first a - p + 1 PCA1 loading vectors into the FDA/PCA1 method may 
provide additional information for discriminating amongst classes. 

Another method to define an additional m - p + 1 vectors is to apply 
PCA1 to the residual space of FDA, defined by 

R = X(I - Wp - 1 W;_1)' (5.18) 

As before, if the reduction order a ~ p - 1, Equation 5.16 is used directly. If 
a ~ p, then the alternative discriminant function (5.17) is used with W miz,a = 
[Wp- 1 Pa-pH], where Pa-pH is the first a - p + 1 columns of the PCA1 
loading matrix when PCA is applied to R. This method for diagnosing faults 
will be referred to as the FDA/PCA2 method. 

5.5 Comparison of PCA and FDA 

Here the PCA and FDA dimensionality reduction techniques are compared 
via theoretical and graphical analyses for the case where PCA is applied to all 
the data in all the classes together (PCA1 in Section 4.6). This highlights the 
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geometric differences between the two dimensionality reduction procedures. 
The way in which FDA can result in superior fault diagnosis to that achieved 
by PCA is also shown. 

The optimization problems for PCA and FDA have been stated math­
ematically in (4.1) and (5.8), respectively. It can be shown that the PCA 
loading vectors and FDA vectors can also be calculated by computing the 
stationary points of the optimization problems 

and 

VTSt V 

max TS ' v¥O v wV 

(5.19) 

(5.20) 

respectively. Equations 5.19 and 5.20 indicate that the PCA and FDA vectors 
are identical for the case when Sw = (j I where (j > O. One case in which this 
situation occurs if the data in each class can be described by a uniformly 
distributed ball (i. e., circle in 2-D space and sphere in 3-D space), even if the 
balls are of distinct sizes. Differences between the two techniques can occur 
only if there is elongation in the data used to describe anyone of the classes. 
These elongated shapes occur for highly correlated data sets (see Figure 4.3), 
typical for data collected from industrial processes. Therefore, when PCA 
and FDA are applied in the same manner to process data, the PCA loading 
vectors and FDA vectors are expected to be significantly different, and the 
differing objectives, (5.19) and (5.20), suggest that FDA will be significantly 
better for discriminating among classes of faults. 

Figure 5.1 illustrates a difference between PCA and FDA that can occur 
when the distribution of the data in the classes is somewhat elongated. The 
first FDA vector and PCA loading vector are nearly perpendicular, and the 
linear transformation of the data onto the first FDA vector is much better 
able to separate the data in the two classes than the linear transformation of 
the data onto the first PCA loading vector. 

The linear transformations of Fisher's data (introduced in Chapter 4) onto 
the first two PCA and FDA loading vectors are shown in Figure 5.2. The 
within-class-scatter matrix and between-class-scatter matrix are calculated 
as 

[56.8 37.3 16.4 9.17] 
S = 37.3 88.4 10.1 17.1 

(5.21) 
w 16.4 10.1 8.75 4.64 

9.17 17.1 4.64 22.8 

and 
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Fig. 5.1. A comparison of PCA and FDA for the linear transformation of the data 
in classes 'x' and '0' onto the first FDA vector and PCA loading vector 

[ 
92.2 -55.7 113 108] 

S = -55.7 60.6 -75.3 -65.6 
b 113 -75.2 140 133 ' 

108 -65.6 132 126 

(5.22) 

respectively. Solving (5.9), we have p - 1 = 2 eigenvectors associated with 
non-zero eigenvalues, which are 

[ 
0.15] 0.12 

Wl = -0.96 
-0.18 

(5.23) 

and 
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Fig. 5.2. The linear transformations of Fisher's data [45, 82] for three classes onto 
the first two FDA and peA loading vectors, respectively 

[
-0,13] 
-0.70 

W2 = -0.15 ' 
0.68 

(5.24) 

and the corresponding eigenvalues are Al = 27 and A2 = 0.24, respectively. 
The large Al value indicates that there is a large separation of the class means 
relative to the class variances on Zl (see Figure 5.2). Indeed the average values 
of Zl for the 3 classes are -1.0, -0.37, and 1.42. The small A2 value indicates 
that the overall separation of the class means relative to the class variances 
is small in the Z2 direction. The average values of Z2 for the 3 classes are 0.30, 
-0.43, and 0.12. 

The 95% elliptical confidence region for each class can be approximated 
by solving (3.8) with Tl set to 6.64. The Tl threshold is the same as in 
the example we showed in Chapter 4. Data falling in the intersection of the 
two elliptical confidence regions can result in misclassification. The degree of 
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overlap between the confidence regions for Classes 1 and 2 is greater for PCA 
than for FDA (49 points vs. 17 points), indicating that the misclassification 
rates for PCA would be higher. 

While the elliptical confidence region can be used to illustrate the qual­
itative classification performance for FDA, the discriminant function (5.16) 
can be used to determine the exact misclassification rates for the experiment 
data [82, 45). The results are illustrated in Table 5.1 for different FDA reduc­
tion orders. Although Class 1 and Class 2 data overlap to some extent (see 
Figure 5.2), the discriminant function (5.16) is able to classify almost all of 
the data points correctly. Indeed, no more than 3 out of 50 data points are 
misclassified regardless of the order selection (see Table 5.1). 

Table 5.1. The misclassification rates for the training data [45, 82] for FDA 

Order (a) 1 2 3 4 
Class 1 Misclassifications 0.06 0.02 0.02 0.02 
Class 2 Misclassifications 0.06 0.06 0.04 0.06 
Class 3 Misclassifications 0 0 0 0 
Overall Misclassifications 0.04 0.027 l 0.02 J 0.027 

This example is effective at illustrating the difference in the objectives be­
tween PCA and FDA. By comparing the limits of the horizontal and vertical 
axes and visually inspecting the data, it is clear that the span of the PCA 
linear transformation is larger than the FDA linear transformation. While 
PCA is better able to separate the data as a whole, FDA is better able to 
separate the data among the classes (*,0, x). This is evident in the degree of 
overlap between ,*, and '0' data regions in the two plots, in which the data 
points '*' and '0' barely overlap for the FDA linear transformation, while 
there is a clear intermingling of data for the PCA linear transformation. 

All of Fisher's data was used for training the FDA and PCA models in the 
previous example. A much more accurate comparison of PCA and FDA is to 
train the techniques with one data set (the training data), then apply them 
to a new data set (the testing data). In this example two fifth of Fisher's data 
(20 observations for each class, for a total of 60 observations) were used for 
training, while the rest of the data (30 observations for each class, for a total 
of 90 observations) were used for testing. The overall misclassification rates 
of the training data and testing data using the data-driven fault diagnosis 
methods are shown in Table 5.2 and 5.3, respectively. 

The overall misclassification rates for FDA, FDA/PCA1, and FDA/PCA2 
were the same at a given reduction order (Section 10.8 has an example where 
FDA/PCA1 and FDA/PCA2 produce lower overall misclassification rates). 
The FDA vectors corresponding to the two non-zero eigenvalues are very 
effective in discriminating the three classes. At a = 2, the overall misclassi-
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Table 5.2. Overall misclassification rates for the training data [45, 82] using several 
data-driven fault diagnosis methods (60 observations in the training set) 

Order (a) 1 2 3 4 
FDA 0 0 0 0 

FDA/PCAI 0 0 0 0 
FDA/PCA2 0 0 0 0 

PCAI 0.083 0.033 0.020 0 
PCAm 0.28 0.20 0.15 0.13 

MS - - - 0 

Table 5.3. Overall misclassification rates of the testing data [45, 82] using several 
data-driven fault diagnosis methods (60 observations in the training set) 

Order (a) 1 2 3 4 
FDA 0.067 0.067 0.078 0.033 

FDA/PCAI 0.067 0.067 0.078 0.033 
FDA/PCA2 0.067 0.067 0.078 0.033 

PCAI 0.10 0.10 0.044 0.033 
PCAm 0.17 0.18 0.11 0.11 

MS - - - 0.033 

fication rate for the testing set is 0.0667 (i. e., 84 out of 90 data points were 
correctly classified). 

For a < p, the FDA methods had a lower overall misclassification rate than 
either PCA method. This agrees with earlier comments that FDA can do a 
much better job at diagnosing faults than PCA, especially at lower reduction 
orders. At any reduction order, PCA1 gave lower overall misclassification 
rates than PCAm. This supports our discussion in Section 4.6 that PCA1 will 
usually produce a better PCA representation for diagnosing faults. For a = 4, 
all of the methods, except for PCAm, gave the same overall misclassification 
rates. As discussed in Section 4.6, MS is the same as PCA1 when all orders 
are included. This does not always hold for the FDA methods. 

To illustrate the dependence of the number of data points used in the 
training set on the proficiency of classification, another example was run 
using 120 observations in the training set and 30 observations in the testing 
set. The overall misclassification rates for the training data and testing data 
are shown in Table 5.4 and 5.5, respectively. 

This example shows that, with more data points in the training set, the 
overall misclassification rates in the testing set for all methods are signifi­
cantly lower. This example shows the same trends that all of the FDA meth­
ods outperforms the PCA methods, and that PCA1 outperforms PCAm. 

Note that this data set is a relatively small-scale example, in which dimen­
sionality reduction was not necessary for providing low misclassification rates. 
The benefit of dimensionality reduction is most apparent for the classification 
of new data from large-scale systems, in which training data are insufficient 
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Table 5.4. Overall misclassification rates for the training data [45, 82] using several 
data-driven fault diagnosis methods (120 observations in the training set) 

Order (a) 1 2 3 4 
FDA 0.05 0.033 0.033 0.033 

FDA/POA1 0.05 0.033 0.033 0.033 
FDA/POA2 0.05 0.033 0.033 0.033 

POA1 0.092 0.10 0.050 0.033 
POAm 0.20 0.19 0.067 0.067 

MS - - - 0.033 

Table 5.5. Overall misclassification rates for the testing data [45, 82] using several 
data-driven fault diagnosis methods (120 observations in the training set) 

Order (a) 1 2 3 4 
FDA 0 0 0 0 

FDA/POA1 0 0 0 0 
FDA/POA2 0 0 0 0 

POA1 0.033 0.033 0 0 
POAm 0.067 0.067 0.067 0.067 

MS - - - 0 

(practical case in industry). Applications of the methods to simulated plant 
data in Chapter 10 illustrate this point. 

5.6 Dynamic FDA 

As mentioned in Section 4.8, CUSUM and EWMA charts can be used to cap­
ture the serial correlations in the data for PCA. CUSUM and EWMA charts 
can also be generalized for FDA. The pattern classification method for fault 
diagnosis discussed in Chapter 3 and Section 5.4 can be extended to take 
into account the serial (temporal) correlations in the data, by augmenting 
the observation vector and stacking the data matrix in the same manner as 
(4.44). This method will be referred to as dynamic FDA (DFDA). This en­
ables the pattern classification system to use more information in classifying 
the observations. Since the information contained in the augmented observa­
tion vector is a superset of the information contained in a single observation 
vector, it is expected from a theoretical point of view that the augmented 
vector approach can result in better performance. However, the dimensional­
ity of the problem is increased by stacking the data, where the magnitude of 
the increase depends on the number of lags h. This implies that more data 
may be required to determine the mean vector and covariance matrix to the 
same level of accuracy for each class. In practice, augmenting the observation 
vector is expected to perform better when there is both significant serial cor­
relation and there are enough data to justify the larger dimensionality. Since 
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the amount of data n is usually fixed, performing dimensionality reduction 
using FDA becomes even more critical to the pattern classification system 
when the number of lags h is large. The application of FDA/PCA1 to (4.44) 
will be referred to as DFDA/DPCA1, and the developments in this chapter 
for FDA readily apply to DFDA and DFDA/DPCA1. 

5.7 Homework Problems 

1. An unknown fault is a fault that is not represented in the training set. 
Assume that the known fault classes are augmented with an additional 
class which contains normal operating data (see Section 5.4). It is possible 
that using (5.16) by itself can be unable to detect a fault which can be 
detected by the joint application of the PCA T2 and Q statistics discussed 
in Chapter 4. Construct data sets (in which you apply both PCA and 
FDA) to illustrate the key reasoning underlying this conclusion. 

2. Define a residual-based statistic for FDA similar to the Q statistic used 
in PCA. Would the FDA-based Q statistic be expected to outperform the 
PCA-based Q statistic for fault detection? Construct data sets (in which 
you apply both PCA and FDA) to illustrate the key reasoning underlying 
your conclusions. How does this answer depend on the reduction order 
for FDA? 

3. Derive Equations 5.19 and 5.20. 
4. Describe in detail how to blend FDA with CUSUM and EWMA, includ­

ing the equations for the thresholds. 
5. Write a one page technical summary of the classic paper by Fisher on 

discriminant analysis [82]. Compare the equations derived by Fisher to 
the equations in this chapter. Explain any significant differences. 

6. Peterson and Mattson [256] consider more general criteria for dimension­
ality reduction. Compare their criteria to the Fisher criterion. What are 
the advantages and disadvantages of each? For what types of data would 
you expect one criterion to be preferable over the others? 

7. Show that the FDA vectors are not necessarily orthogonal (hint: the 
easiest way to show this is by example). Compare FDA with PLS and 
PCA in this respect. 
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6.1 Introduction 

Partial least squares (PLS), also known as projection to latent struc­
tures, is a dimensionality reduction technique for maximizing the covariance 
between the predictor (independent) matrix X and the predicted (depen­
dent) matrix Y for each component of the reduced space [98, 350]. A popular 
application of PLS is to select the matrix Y to contain only product qual­
ity data which can even include off-line measurement data, and the matrix 
X to contain all other process variables [207]. Such inferential models (also 
known as soft sensors) can be used for the on-line prediction of the product 
quality data [215, 222, 223], for incorporation into process control algorithms 
[158,259,260], as well as for process monitoring [207, 259, 260]. Discriminant 
PLS selects the matrix X to contain all process variables and selects the Y 
matrix to focus PLS on the task of fault diagnosis [46]. 

PLS computes loading and score vectors that are correlated with the pre­
dicted block while describing a large amount of the variation in the predictor 
block [343]. If the predicted block has only one variable, the PLS dimension­
ality reduction method is known as PLSIj if the predicted block has multiple 
variables, the dimensionality reduction method is known as PLS2. PLS re­
quires calibration and prediction steps. The most popular algorithm used in 
PLS to compute the parameters in the calibration step is known as non­
iterative partial least squares (NIPALS) [98, 343]. Another algorithm, 
known as SIMPLS, can also be used [62]. As mentioned, the predicted blocks 
used in discriminant PLS and in other applications of PLS are different. In 
chemometrics and process control applications, where PLS is most commonly 
applied, the predicted variables are usually measurements of product quality 
variables. In pattern classification, where discriminant PLS is used, the pre­
dicted variables are dummy variables (lor 0) where '1' indicates an in-class 
member while '0' indicates a non-class member [9, 64, 244]. In the predic­
tion step of discriminant PLS, discriminant analysis is used to determine the 
predicted class [244]. 

Section 6.2 defines the PLSI and PLS2 algorithms in enough detail to 
allow the reader to implement these techniques. Section 6.3 discusses the se­
lection of the reduction order. Section 6.4 discusses fault detection, identifica­
tion, and diagnosis using PLS. The PLS and peA techniques are compared in 
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© Springer-Verlag London Limited 2001



72 6. Partial Least Squares 

Section 6.5. Section 6.6 summarizes several variations of the PLS algorithms 
for process monitoring. 

6.2 PLS Algorithms 

PLS requires a matrix X E Rnxm and a matrix Y E Rnxp, where m is the 
number of predictor variables (the number of measurements in each observa­
tion), n is the total number of observations in the training set, and p is the 
number of observation variables in Y. When Y is selected to contain only the 
product quality variables, then p is the number of product quality variables. 
When Y is selected as in discriminant PLS, p is the number of fault classes. 

In discriminant PLS, diagnosed data are needed in the calibration. To aid 
in the description of discriminant PLS, the data in X will be ordered in a 
particular way. With p fault classes, suppose that there are nl, n2, ... , np 
observations for each variable in Classes 1, 2, ... , p respectively. Collect the 
training set data into the matrix X E Rnxm, as shown in (2.5), so that the 
first nl rows contain data from Fault 1, the second n2 rows contain data from 
Fault 2, and so on. Altogether, there are nl + n2 + ... + np = n rows. There 
are two methods, known as PLSI and PLS2, to model the predicted block. 
In PLSl, each of the p predicted variables is modeled separately, resulting 
in one model for each class. In PLS2, all predicted variables are modeled 
simultaneously [217]. 

In PLS2, the predicted block Y E Rnxp contains p product quality vari­
ables; in discriminant PLS2, the predicted block Y E Rnxp is 

1 0 0 0 

1 0 0 0 
o 1 0 0 

Y = 0 1 0 o (6.1) 

o 0 0 1 

o 0 0 1 
'--...... "'----" 

p columns 

where each column in Y corresponds to a class. Each element of Y is filled 
with either one or zero. The first nl elements of Column 1 are filled with 
a '1', which indicates that the first nl rows of X are data from Fault 1. In 
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discriminant PLS1, the algorithm is run p times, each with the same X, but 
for each individual column of Y in (6.1). 

As mentioned in Section 2.2, data pretreatment is applied first, so that 
X and Yare mean-centered and scaled. The matrix X is decomposed into a 
score matrix T E nnxa and a loading matrix P E n mxa , where a is the PLS 
component (reduction order), plus a residual matrix E E nnxm: 

X=TpT +E. (6.2) 

The matrix product T pT can be expressed as the sum of the product of the 
score vectors tj (the lh column of T) and the loading vectors Pj (the 
lh column of P) [98, 157, 343J: 

a 

X = 2:tjpT + E. (6.3) 
j=l 

Similarly, Y is decomposed into a score matrix U E nnxa, a loading 
matrix Q E n pxa , plus a residual matrix F E nnxp: 

T -Y=UQ +F. (6.4) 

The matrix product UQT can be expressed as the sum of the product of the 
score vectors Uj (the lh column of U) and the loading vectors qj (the lh 
column of Q): 

a 

" T -Y = L...J Ujqj + F. (6.5) 
j=l 

The decompositions in (6.3) and (6.5) have the same form as that used in 
peA (see (4.5)). The matrices X and Yare represented as the sum of a series 
of rank one matrices. If a is set equal to min( m, n), then E and F are zero and 
PLS reduces to ordinary least squares. Setting a less than min( m, n) reduces 
noise and collinearity. The goal of PLS is to determine the loading and score 
vectors which are correlated with Y while describing a large amount of the 
variation in X. 

PLS regresses the estimated Y score vector Uj to the X score vector tj by 

(6.6) 

where bj is the regression coefficient. In matrix form, this relationship can be 
written 

~ 

U=TB (6.7) 

where B E n axa is the diagonal regression matrix with B jj = bj, and (; has 
Uj as its columns. Substituting fJ from (6.7) in for U in (6.4), and taking into 
account that this will modify the residual matrix, gives 
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(6.8) 

where F is the prediction error matrix. The matrix B is selected such that 
the induced 2-norm of F (the maximum singular value of F [104]), 11F112' 
is minimized [157]. The score vectors tj and Uj are calculated for each PLS 
factor (j = 1,2, ... , a) such that the covariance between X and Y is maximized 
at each factor. In PLS1, similar steps are performed, resulting in 

(6.9) 

where Yi E Rn is the ith column of Y, Ti E R nxa is the score matrix, 
Bi E Raxa is the regression matrix, qi E R a is the loading vector, and fi 
E Rn is the prediction error vector. Since there are p columns in Y, the range 
of i is from 1 to p. 

Now if the score and loadings matrices for X and Y were calculated 
separately, then their successive score vectors could be weakly related to each 
other, so that the regression (6.6) which relates X and Y would result in a 
poor reduced dimension relationship. The NIPALS algorithm is an iterative 
approach to computing modified score vectors so that rotated components 
result which lead to an improved regression in (6.6). It does this by using the 
score vectors from Y in the calculation of the score vectors for X, and vice 
versa. 

For the case of PLS2, the NIPALS algorithm computes the parameters 
using (6.10) to (6.20) [98, 157, 343]. The first step is the cross regression of 
X and Y, which are scaled so as to have zero mean and unit variance for 
each variable. Initialize the NIPALS algorithm using Eo = X and Fo = Y, 
j = 1, and Uj equal to any column of Fj - 1. Equations 6.10-6.13 are iteratively 
computed until convergence, which is determined by comparing tj with its 
value from a previous iteration (the nomenclature II . II refers to the vector 
2-norm, also known as the Euclidean norm). 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

Proceed to (6.14) if convergence; return to (6.10) if not. Mathematically, de­
termining tt, UI, and WI from (6.10) to (6.13) is the same as iteratively 
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determining the eigenvectors of X XTyyT, yyT X X T, and XTyyT X as­
sociated with the largest eigenvalue, respectively [266, 344]. 

In the second step, Pj is calculated as 

E/:_ 1 tj 
Pj = t.Tt. 

J J 

The final values for Pj, tj, and Wj are scaled by the norm of Pj,old: 

Pj,old 
Pj,new = II. II PJ,old 

Wj,new = wj,oldllpj,oldll 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

Although it is common to apply the scalings (6.15) to (6.17) in the algorithm 
[98, 343, 344], the scalings are not absolutely necessary [215]. In particular, 
the score vectors tj used to relate X to Y in (6.6) are orthogonal in either 
case. 

Now that Uj and tj are computed using the above expressions, the regres­
sion coefficient bj that relates the two vectors can be computed from 

b. _ UjTtj 
J - t.Tt. 

J J 

(6.18) 

The residual matrices Ej and Pj needed for the next iteration are calculated 
from 

(6.19) 

and 

(6.20) 

This removes the variance associated with the already calculated score and 
loading vectors before computing the score and loading vectors for the next 
iteration. The entire procedure is repeated for the next factor (commonly 
called as latent variable [343, 344]) (j + 1) starting from (6.10) until j = 
min(m, n). 

As discussed in the next section, predictions based on the PLS model can 
be computed directly from the observation vector and Pj, qj, Wj, and bj for 
j = 1, 2, ... , min(m, n). We will also see an alternative approach where the 
predictions are obtained from the regression matrix B2 j [217, 344] 

(6.21) 
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where the matrices P j E nmin(m,n)x j , T j E nnx j , and Wj E nmin(m,n)xj 

are formed by stacking the vectors Pj, t j, and Wj, respectively. This matrix 
is saved for j = 1,2, ... , min(m, n). 

The NIPALS algorithm for PLSI is calculated using (6.22) to (6.27). Ini­
tialize the NIPALS algorithm using Eo = X, j = 1, and set i = 1. The 
following equations are used: 

(6.22) 

(6.23) 

(6.24) 

After rescaling ofpi,j, ti,j, and Wi,j in a manner similar to that used in (6.15) 
to (6.17), the regression coefficient bi, j is computed from 

b . . _ YiTti,j t, - T 
' ti,j ti,j 

The residuals for the next iteration are calculated as follows 

E- = E- 1 - t· .pT. 3 3- 1,J 1,J 

(6.25) 

(6.26) 

(6.27) 

where fo,i = Yi and qi, j = 1. The entire procedure is repeated for the next 
latent variable (j + 1) starting from (6.22) until j = min(m, n). After all 
the parameters for i = 1 are calculated, the algorithm is repeated for i = 
2,3, ... ,p. 

As discussed in the next section, predictions based on the PLS model can 
be computed directly from the observation vector and the Pi,j, Wi,j, and bi,j' 
Alternatively, the predictions are obtained from the regression matrix Blj 

[9,217] 

(6.28) 

where 

( T )-1( T )-1 T £. hi j = Wi " p. . Wi " T· . Ti " T·· 0 J' , , t.,J' '&,3' 1,3' (6.29) 

the matrices R . E nmin(m,n)xj W; . . E nmin(m,n)xj and T, . . E nnxj are 
t, , , t,J 't,J 

formed by stacking the vectors Pi,j, Wi,j, and ti,j, respectively. 
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6.3 Reduction Order and PLS Prediction 

It is important to have a proper number a of PLS factors selected in order to 
obtain a good prediction, since too high a number (the maximum theoretical 
value for a is the rank of X) will cause a magnification of noise and poor 
process monitoring performance. A standard way to determine the proper 
reduction order, denoted as c, is to apply cross-validation using the predic­
tion residual sum of squares (PRESS). The order c is set to be the order 
at which PRESS is minimum [98]. As discussed previously, the weakness of 
this approach is that it requires that the data be split into two parts (the 
training and the testing sets), with the PLS vectors computed based only on 
the data from the testing set. 

In the case of fault diagnosis, an alternative approach is to select the value 
of c which minimizes the information criterion (5.12). To determine c, the 
PLS vectors are constructed using all of the data, and then the PLS vectors 
are applied to all of the data to calculate the misclassification rates for each 
choice of the reduction order, where the misclassification rate is defined to be 
the ratio of the number of incorrectly assigned classes to the total number of 
classifications made (the number of observations in the training set). 

For each factor j = 1,2, ... , min(m, n), the estimated score vector tj and 
matrix residual Ej are 

(6.30) 

(6.31) 

where Eo = X. To compute a prediction of the predicted block Yirain2,a of 
the training set using PLS2 with a PLS components: 

a 

"" ~ T Yirain2,a = Pj = L...J bjtjqj . 
j=1 

(6.32) 

For PLS1, the prediction of the predicted block Yirain1,a of the training set 
using PLS1 with a PLS components is computed by 

Yirain1,a = [Ytralnl,a Ytraln2,a •.. Ytralnp,a] 

where 
a 

Ytraini,a = fi,j = L bi,jti,J qi, j 
j=1 

(6.33) 

(6.34) 

Alternatively, a prediction of PLS2 with a PLS components is given by 
the regression equation [9]: 

Yirain2,a = X B2a (6.35) 

The above equation is also used for the alternative prediction of PLS1 by 
replacing B2a with B1a. 
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6.4 Fault Detection, Identification, and Diagnosis 

One common approach to using PLS is to apply it in the same manner as 
peA, selecting the Y matrix to be the product quality variables. Monitoring 
the PLS scores in this way has the advantage over the peA scores in that the 
PLS scores will only monitor variations in X which are known to be related 
to the product quality variables. All the fault detection, identification, and 
diagnosis techniques for peA can be applied in exactly the same way for PLS 
(e.g., including the Q and T2 statistics, contribution plots, and discriminant 
analysis) [171,343]. 

The use of discriminant PLS for fault diagnosis requires significantly more 
explanation. In discriminant PLS, the rows of ¥train will not have the form 
[0,0,0, ... , 1, ... ,0,0], which requires a method for assigning the class Ck to 
each observation k. One method is to assign Ck to correspond to the column 
index whose element is the closest to one [244]. A second method is to assign 
Ck to correspond to the column whose element has the maximum value. 

The term overestimation refers to the case where the element of ¥train 

for an in-class member > 1 or the element of ¥train for a non-class member 
> O. Underestimation is where the element of ¥train for an in-class member 
< 1 or the element of ¥train for a non-class member < O. Both assignment 
methods give accurate classifications in the ideal case, that is, when none of 
the elements of ¥train are overestimated nor underestimated, and in the case 
where all of the elements of ¥train are underestimated. If all of the elements 
of ¥train are overestimated, then the first assignment method can give high 
misclassification rates, while the second assignment method will still tend to 
give good classifications [244]. The second assignment method is preferred 
because of this wider usefulness. 

If some of the elements of ¥train are underestimated while others are 
overestimated, either of the above assignment methods can perform poorly. 
A method to resolve this problem is to take account of the underestimation 
and overestimation of Y into a second cycle of PLS algorithm [244]. The 
NIPALS algorithm is run for the second time for PLSI and PLS2 by replacing 
Yi by Ytrainl,i and Y by ¥train2, respectively. To distinguish between the 
normal PLS method and this adjusted method, PLSI and PLS2 are denoted as 
PLS ladj and PLS2adj, respectively. The predicted Y of the training set using 
PLSladj and PLS2adj, denoted as ¥trainl,adj and ¥train2,adj, are obtained in 
similar fashion as PLSI and PLS2, respectively. 

The effectiveness of the algorithm can be determined by applying it to a 
testing set X test E nrxm. The predicted block ¥testl of the testing set using 
PLSI is calculated using (6.30) to (6.31) and (6.33) to (6.34) by replacing X 
with X test while the predicted block ¥test2 of the testing set using PLS2 is 
calculated using (6.30) to (6.32) by replacing X with X test . The predicted 
blocks ¥test1,adj and ¥test2,adj using PLSladj and PLS2adj, respectively, are 
obtained similarly. 
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To illustrate the application of discriminant PLS2, the same experimental 
data set [82, 45] is used as in Chapter 4. The predictor matrix X is formed by 
using data from all three classes, where n = 150 and m = 4; the corresponding 
predicted matrix Y is formed as in (6.1), where p = 3. The matrices X and 
Yare first autoscaled. The NIPALS algorithm is initialized using Eo = X, 
Po = Y, and UI arbitrarily set to the third column ofY. After 12 iterations of 
(6.10)-(6.13), the score vector tl converges with an error of less than 10-10. 

The following vectors are then obtained: 

WI = [0.48 -0.32 0.60 0.56] T, 

PI = [0.52 -0.29 0.58 0.56] T. 

The same procedure is done for El and PI, which results in 

W2 = [-0.28 -0.930.023 -0.28]T, 
P2 = [-0.37 -0.91 -0.045 -0.16]T. 

(6.36) 

(6.37) 

Since the rank of X is four, the procedure can be repeated until j = 4. 
Since only two factors are retained in the example as shown in Chapter 4, we 
will stop the calibration here and form the regression matrix B22 as 

[ 
-0.21 -0.051 0.26] 

B22 = 0.36 -0.46 0.096 . 
-0.33 0.078 0.25 
-0.26 -0.038 0.30 

(6.38) 

The matrix Yirain2,2 is formed using (6.35). With the ith column of 
Yirain2,2 denoted by Vi, the three-dimensional plot of Yl vs. Y2 vs. Y3 is illus­
trated in Figure 6.1. The data are reasonably well separated. Notice that all 
the 'x' points have large Y3 values and small Y2 and Yl values, so all Class 
3 data would be correctly assigned. Some of the '0' and ,*, points overlap, 
which indicates that a small portion of the Class 2 data may be misclassified 
as Class 1 and vice versa. 

The way to diagnose faults, based on the rows of Y, was discussed above. 
An alternative fault diagnosis approach based on discriminant PLS is to apply 
discriminant analysis to the PLS scores for classification [160]. In the termi­
nology introduced in Chapter 5, for classifying p classes, the p - 1 PLS direc­
tions can have substantially non-zero between-groups variance. This method 
can also provide substantially improved fault diagnosis over PCA [160]. 

6.5 Comparison of PCA and PLS 

For fault diagnosis, a predicted block Y is not used in PCA, instead a linear 
transformation is performed in X such that the highest ranked PCA vectors 
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Fig. 6.1. The discriminant PLS predicted matrix plot for the data from [82,45] 

retain most of the variation in X. As described in Chapter 4, the retained 
scores can be used with discriminant analysis for classification. The disad­
vantage of the PCA approach is that the highest ranked PCA vectors may 
not contain the discriminatory power needed to diagnose faults. 

PCA maximizes the variance in X while PLS maximizes the covariance 
between X and Y. By specifying Y to include the fault information as in 
discriminant PLS, the PLS vectors are computed so as to provide a lower­
dimensional representation which is correlated with differences in fault class. 
Thus, fewer of the discriminant PLS vectors should be required and lower 
misclassification rates obtained. As discriminant PLS exploits fault informa­
tion when constructing its lower-dimensional model, it would be expected 
that discriminant PLS can provide better fault diagnosis than PCA. How­
ever, this is not always true, as will be demonstrated in application in Chapter 
10. 

The projection of the experimental data taken from [82, 45] onto the 
first two PCA and discriminant PLS loading vectors is shown in Figure 6.2. 
Recall that the PCA model is built based on the data from all three classes. 
The two plots look similar indicating that PCA and discriminant PLS give 
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similar separability of the data when two score vectors are used. For data of 
high dimension, our experience is that similarity between the first few peA 
and PLS score vectors is often observed [157]. For score vectors of higher 
orders, the difference between peA and discriminant PLS usually becomes 
more apparent. In this example, the loading matrices corresponding to all 
four loading vectors for peA and discriminant PLS are 

[ 
0.5255 -0.3634 0.6686 -0.3804] 

p _ -0.2695 -0.9266 -0.1869 0.1842 
peA - 0.5837 -0.0081 -0.0013 0.8119 

0.5572 -0.0969 -0.7197 -0.4027 

(6.39) 

and 

[ 
0.5167 -0.3709 0.7510 -0.2896] 

P _ -0.2885 -0.9136 -0.0275 0.2084 
PLS - 0.5836 -0.0449 0.0024 0.8001 ' 

0.5561 -0.1607 -0.6597 -0.4823 

(6.40) 

respectively. 
Note that the first peA and discriminant PLS loading vectors are very 

closely aligned and the fourth loading vectors are much less so. Recall that the 
loading vectors for peA are orthogonal. In PLS, the loading vectors are ro­
tated slightly in order to capture a better relationship between the predicted 
and predictor blocks (i.e., maximize the covariance between X and Y) [157]. 
As a result of this rotation, the PLS loading vectors are rarely orthogonal. 
In general, the rotation for the first PLS loading vector is usually small. As 
the order increases, the deviation from orthogonality for the discriminant 
PLS loading vectors usually increases. Although the discriminant PLS load­
ing vectors are not orthogonal, their score vectors are indeed orthogonal (see 
Homework Problem 4). 

6.6 Other PLS Methods 

The PLS methods described in this chapter can be extended to take into 
account the serial correlations in the data, by augmenting the observation 
vector and stacking the data matrix in the same manner as (4.44). The matrix 
Y has to be changed correspondingly. Implementation of this approach is left 
as an exercise for the readers (see Homework Problem 5). 

The PLS approaches can be generalized to nonlinear systems using non­
linear partial least squares (NPLS) algorithms [83, 213, 349]. In NPLS, 
the relationship between Uj and tj in (6.6) is replaced by 

(6.41) 
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Fig. 6.2. The projections of experimental data [82, 45] for three classes onto the 
first two discriminant PLS and peA loading vectors, respectively 

where f(tj) is a nonlinear, continuous, and differentiable function in tj. The 
simplest nonlinear relationship for NPLS is a quadratic function 

(6.42) 

andf(tj) = [J(tj,l) f(tj ,2) ... f(tj,n)jT. This NPLS modelis commonly known 
as quadratic partial least squares (QPLS). At each iteration of QPLS, the 
ordinary PLS steps are applied to tj, qj, and Uj, and ordinary least squares 
are used to estimate the coefficients aj, bj, and Cj (see [349] for the detailed 
procedure). The nonlinearities can also be based on sigmoidal functions as 
used in artificial neural networks [122, 268]. 

For systems with mild nonlinearities, the same degree of fit can usually 
be obtained by a linear model with several factors, or by a nonlinear model 
with fewer dimensions [349]. In cases where the systems display strong non­
linearities (i. e., if the nonlinearities have maxima, minima, or have significant 
curvature), a nonlinear model is appropriate and NPLS can perform better 
than linear PLS especially when the systems are well-determined and with 
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high observation/variable ratio. However, for an underdetermined system, 
the models cannot be fitted with acceptable variance using NPLS because of 
the small number of degrees of freedom in the data sets [83]. 

Other PLS methods in the literature that have been applied to either sim­
ulations or actual process applications are recursive partial least squares 
(RPLS) [266], multiblock partial least squares [208, 343], and multiway par­
tialleast squares [243, 343]. The multiway technique is especially useful for 
the monitoring of batch processes, in which the predictor X is usually selected 
to be a three-dimensional array (i x j x k). A straightforward generalization 
of the PLS technique to the multiway technique provides a strategy for the 
detection and diagnosis of faults in batch processes. 

6.7 Homework Problems 

1. Describe in some detail how to formulate the Q and T2 statistics for 
detecting faults using PLS, where Y is the matrix of product quality 
variables. Compare and contrast this fault detection approach with the 
PCA-based Q and T2 statistics. Describe in detail how to generalize 
the discriminant-based PCA methods for fault diagnosis to PLS, where 
Y is the matrix of product quality variables. How would you expect 
the performance of this approach to compare with the performance of 
discriminant PLS? 

2. Generalize PLS as described in Problem 1 to EWMA and CUSUM ver­
sions, and to dynamic PLS. 

3. Show that the PCA loading vectors for the experimental data from 
[45,82] are orthogonal (hint: compute PfoCAPPCA using PPCA in (6.39)). 
Show that the PLS loading vectors for the data are not orthogonal. Cal­
culate the angle between the lh PCA and jth PLS loading vector for the 
data for j = 1, ... ,4. How does the angle change as a function of j? 

4. Show that the discriminant PLS loading vectors are not orthogonal, and 
their score vectors are orthogonal for the experimental data from [45, 82]. 

5. Generalize discriminant PLS to dynamic discriminant PLS. 
6. Provide a detailed comparison of FDA and discriminant PLS. Which 

method would be expected to do a better job diagnosing faults? Why? 
7. Read an article on the use of multiway PLS (e.g., [170,243]) and write a 

report describing in detail how the technique is implemented and applied. 
Describe how the computations are performed and how the statistics are 
computed. Formulate a discriminant multiway PLS algorithm. For what 
types of processes are these algorithms suited? Provide some hypothetical 
examples. 

8. Read an article on the application of multiblock PLS (e.g., [84, 208]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
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statistics are computed. Formulate a discriminant multiblock PLS algo­
rithm. For what types of processes are these algorithms suited? Provide 
some hypothetical examples. 

9. Read an article on the application of nonlinear PLS (e.g., [83, 213, 349]) 
and write a report describing in detail how the technique is implemented 
and applied. Describe how the computations are performed and how the 
statistics are computed. For what types of processes are these algorithms 
suited? Provide some hypothetical examples. 



7. Canonical Variate Analysis 

7.1 Introduction 

In Section 4.7, it was shown how DPCA can be applied to develop an au­
toregressive with input ARX model and to monitor the process using the 
ARX model. The weakness of this approach is the inflexibility of the ARX 
model for representing linear dynamical systems. For instance, a low order 
autoregressive moving average ARMA (or autoregressive moving av­
erage with input ARMAX) model with relatively few estimated parameters 
can accurately represent a high order ARX model containing a large number 
of parameters [199]. For a single-input-single-output (SISO) process, an 
ARMAX( h) model is: 

h h h 

Yt = L aiYt-i + L /3iUt-i + L "{iet-i + et (7.1) 
i=l i=O i=l 

where Yt and Ut are the output and input at time t, respectively, al,.'" ah, 

/31,"" /3h, and "{I, ••• , "(h are constant coefficients, and et is a white noise pro­
cess with zero mean [336]. For an invertible process, the ARMAX(h) model 
can be written as an infinite-order ARX model [336]: 

00 00 

Yt = L 7riYt-i + L PiUt-i + et· (7.2) 
i=l i=O 

The constant coefficients 7rt, 7r2,' .• and PI, P2,." are determined from the 
coefficients in (7.1) via the backshift and division operations [336]. 

The classical approach to identifying ARMAX processes requires the a 
priori parameterization of the ARMAX model and the subsequent estima­
tion of the parameters via the solution of a least squares problem [199]. To 
avoid over-parameterization and identifiability problems, the structure of the 
ARMAX model needs to be properly specified; this is especially important 
for multivariable systems with a large number of inputs and outputs. This 
structure specification for ARMAX models is analogous to specifying the 
observability (or controllability) indices and the state order for state-space 
models, and is not trivial for higher-order multivariable systems [317]. An­
other problem with the classical approach is that the least squares problem 
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requires the solution of a nonlinear optimization problem. The solution of 
the nonlinear optimization problem is iterative, can suffer from convergence 
problems, can be overly sensitive to small data fluctuations, and the required 
amount of computation to solve the optimization problem cannot be bounded 
[189]. 

To avoid the problems of the classical approach, a class of system iden­
tification methods for generating state-space models called subspace algo­
rithms has been developed in the past few years. The class of state-space 
models is equivalent to the class of ARMAX models [12, 199]. That is, given 
a state-space model, an ARMAX model with an identical input-output map­
ping can be determined, and vice versa. The subspace algorithms avoid a 
priori parameterization of the state-space model by determining the states of 
the system directly from the data, and the states along with the input-output 
data allow the state-space and covariance matrices to be solved directly via 
linear least squares [317] (see Figure 7.1). These algorithms rely mostly on 
the singular value decomposition (SVD) for the computations, and there­
fore do not suffer from the numerical difficulties associated with the classical 
approach. 

Input-ouput 
Data {ut• ytl 

Orth ogonal or Oblique Projections I Classical Identification 

- - - - - - -~ - - - - - - -I - - - - - - -~ - - - - - -
1 
1 State Space and 

Kalman States 
1 
1 Covariance Matrices 
1 
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Multiple 
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Kalman 1 

Linear 1 Filter 
Regression 

1 
1 
1 

I I 
State Space and 

1 
1 

Covariance Matrices 1 Kalman States 
1 
1 

1 
----------------

Subspace Algorithm Approach Classical Approach 

Fig. 7.1. A comparison of the subspace algorithm approach to the classical ap­
proach for identifying the state-space model and extracting the Kalman states [318] 
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Three popular subspace algorithms are numerical algorithms for 
subspace state space system identification (N4SID), multivariable 
output-error state space (MOESP), and canonical variate analysis 
(eVA) [318). Although the subspace algorithm based on eVA is often re­
ferred to as "eVA", eVA is actually a dimensionality reduction technique in 
multivariate statistical analysis involving the selection of pairs of variables 
from the inputs and outputs that maximize a correlation measure [189). For 
clarity of presentation, "eVA" in this book refers to the dimensionality reduc­
tion technique, and the subspace algorithm based on eVA is called the eVA 
algorithm. The philosophy of eVA shares many common features to peA, 
FDA, and PLS (see Section 7.2), which makes it a natural subspace iden­
tification technique for use in developing process monitoring statistics. The 
eVA-based statistics described in in this chapter can be readily generalized 
to the other subspace identification algorithms. 

To fully understand all aspects of eVA requires knowledge associated 
with materials outside of the scope of this book. Enough information is given 
in this chapter for the readers to gain some intuitive understanding of how 
eVA works and to implement the process monitoring techniques. Section 7.2 
describes the eVA Theorem and an interpretation of the theorem indicating 
the optimality of eVA for dimensionality reduction. Section 7.3 describes the 
eVA algorithm with a statistical emphasis. Determination of the state-space 
model and the issues of system identifiability are discussed in Section 7.4. 
Section 7.5 addresses the computational issues of eVA. A procedure for au­
tomatically and optimally selecting the state order of the state-space model 
is presented in Section 7.6. Section 7.7 presents a systems theory interpreta­
tion for the eVA algorithm and the other subspace algorithms. Section 7.8 
discusses the process monitoring measures developed for the states extracted 
by the eVA algorithm. 

7.2 eVA Theorem 

eVA is a linear dimensionality reduction technique, optimal in terms of max­
imizing a correlation measure between two sets of variables. The eVA The­
orem states that given a vector of variables x E nm and another vector of 
variables y E nn with covariance matrices Exx and E yy , respectively, and 
cross covariance matrix E xy , there exist matrices J E Rmxm and L E Rnxn 
such that 

(7.3) 

and 

JExyLT = D = diag('Yl,'" ,'/'nO,'" ,0), (7.4) 

where '/'1 ~ '" ~ '/'n in = rank(Exx), n = rank(Eyy), D contains the 
canonical correlations '/'i, 1m E Rmxm is a diagonal matrix containing 
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the first in diagonal elements as one and the rest of the diagonal elements as 
zero, and In E nnxn is the diagonal matrix containing the first n diagonal 
elements as one and the rest of the diagonal elements as zero [189]. The 
vector of canonical variables c = Jx contains a set of uncorrelated random 
variables and has the covariance matrix 

(7.5) 

and the vector of canonical variables d = Ly contains a set of uncorrelated 
random variables and has the covariance matrix 

The cross covariance matrix between c and d is diagonal 

Eed = J EzyLT = D = diagbt. ... ,'Yr. 0, ... ,0), 

(7.6) 

(7.7) 

which indicates that the two vectors are only pairwise correlated. The degree 
of the pairwise correlations is indicated and can be ordered by the canonical 
correlations 'Yi. 

CVA is equivalent to a generalized singular value decomposition 
(GSVD) [184, 189]. When Ezz and Eyy are invertible, the projection matrices 
J and L and the matrix of canonical correlations D can be computed by 
solving the SVD 

(7.8) 

where J = UT g;zl/2, L = VT E;yl/2, and D = E [185]. It is easy to verify that 
J, L, and D computed from (7.8) satisfy (7.3) and (7.4). The weightings E;;zl/2 

and E;yl/2 ensure that the canonical variables are uncorrelated and have unit 
variance, and the matrices UT and VT rotate the canonical variables so that 
c and d are only pairwise correlated. The degree of the pairwise correlations 
is indicated by the diagonal elements of E. Note that the GSVD mentioned 
above is not the same as the GSVD described in most of the mathematics 
literature [104, 316]. 

A CVA-related approach in the multivariate statistics literature [67, 180, 
193, 234, 300] is known as canonical correlation analysis (CCA), which 
can be generalized into the CVA Theorem [180, 234]. While both CCA and 
CVA are suitable for correlating two sets of variables, CVA has been ap­
plied on time series data (see Section 7.3). To emphasize the application of 
the process monitoring algorithm on time series data, we prefer to use the 
terminology CVA over CCA. 

Several dimensionality reduction techniques have been interpreted in the 
framework of the GSVD [193, 189]. For example, consider the case where the 
left hand side of (7.8) is replaced by E!~2. Then 

(7.9) 
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Using the fact that U = V (Since E!'2 is symmetric), squaring both sides 
give 

The corresponding equation (4.3) for peA is 

Ezz = UAVT. 

(7.10) 

(7.11) 

We see that the diagonal elements of E in (7.9) are equal to the diagonal 
elements of E in (4.2). 

eVA can be reduced to FDA. The generalized eigenvalue problem for 
FDA (5.9) can be written as a function of x and y as defined in (7.3), where 
x contains the measurement variables and y contains dummy variables which 
represent class membership similarly to (6.1) [193]. 

PLS is also related with eVA, where both methods are equivalent to a 
GSVD on the covariance matrix. The difference is that eVA uses a weighting 
so as to maximize correlation, whereas PLS maximizes covariance [283]. eVA 
simultaneously obtains all components (J, L, and D) in one GSVD, whereas 
the PLS algorithm is sequential in selecting the important components, work­
ing with the residuals from the previous step. 

7.3 eVA Algorithm 

In Section 7.2, the optimality and the structure abstraction of eVA were 
presented via the eVA Theorem. While the eVA concept for multivariate 
statistical analysis was developed by Hotelling [125], it was not applied to 
system identification until Akaike's work on the ARMA model [3, 4, 5, 189]. 
Larimore developed eVA for state-space models [184, 185, 189]. This section 
describes the linear state-space model and the eVA algorithm for identifying 
state space models directly from the data. 

Given time series input data Ut E nmu and output data Yt E nm ", the 
linear state-space model is given by [187] 

(7.12) 

(7.13) 

where Xt E nk is a k-order state vector and Wt and Vt are white noise pro­
cesses that are independent with covariance matrices Q and R, respectively. 
The state-space matrices~, G, H, A, and B along with the covariance ma­
trices Q and R specify the state-space model. It is assumed here that the 
state-space matrices are constant (time-invariance) and the covariance ma­
trices are constant (weakly stationary). The term BWt in (7.13) allows the 
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noise in the output equation (7.13) to be correlated with the noise in the state 
equation (7.12). Omitting the term Bwt, typically done for many state-space 
models, may result in a state order that is not minimal [185]. Time-varying 
trends in the data can be fitted by augmenting polynomial functions of time 
to the state-space model; a software package that implements this is ADAPTx 
Version 3.03 [187]. 

An important aspect of the CVA algorithm is the separation of past and 
future. At a particular time instant t E (1, ... , n) the vector containing the 
information from the past is 

[ T T T T ]T Pt= Yt-l,Yt-2,"',ut - 1 ,ut - 2,'" , (7.14) 

and the vector containing the output information in the present and future 
is 

[ T T ] T f t = Y t , Y t+ 1, . . . . (7.15) 

Assuming the data is generated from a linear state space model with a finite 
number of states k, the elements of the state vector Xt is equal to a set of k 
linear combinations of the past, 

(7.16) 

where Jk E Rkxmp is a constant matrix with mp < 00. The state vector Xt has 
the property that the conditional probability of the future f t conditioned on 
the past Pt is equal to the conditional probability of the future f t conditioned 
on the state Xt 

(7.17) 

In other words, the state provides as much information as past data do as to 
the future values of the output. This also indicates that only a finite number 
of linear combinations of the past affects the future outputs. This property 
of the state vector can be extended to include future inputs [187] 

(7.18) 

where qt = [ui, uiH , ... ] T. In the process identification literature, a process 
satisfying (7.18) is said to be a controlled Markov process of order k. 

Let the k-order memory, mt E Rk, be a set of k linear combinations of 
the past Pt 

(7.19) 

where Ck E Rkxmp. The term "memory" is used here instead of "state" 
because the vector mt may not necessarily contain all the information in the 
past (for instance, the dimensionality of k may not be sufficient to capture all 
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the information in the past). The goal of process identification is to provide 
the optimal prediction of the future outputs based on the past and current 
state. Now in a real process the true state order k is unknown, so instead the 
future outputs are predicted based on the current memory: 

(7.20) 

where ft(mt) is the optimal linear prediction of the future ft based on the 
memory mt [187]. The eVA algorithm computes the optimal matrix for Ok 
in (7.19), that is, the matrix Ok which minimizes the average prediction error: 

(7.21) 

where E is the expectation operator and At is the pseudo inverse of A, which 
is a positive semidefinite symmetric matrix used to weigh the relative impor­
tance of the output variables over time. The choice A = E f f results in nearly 
maximum likelihood estimates [184, 283]. 

The optimal value for Ok in (7.19) is computed via the GSVD by substi­
tuting the matrix Exx with E pp , Eyy with Eff, and Exy with Epf in (7.3) 
and (7.4) [187]. The optimal estimate for matrix Ok is equal to Jk, where Jk 
is the first k rows of the matrix J in (7.3) [189]. The optimal k-order memory 
is 

opt J mt = kPt· (7.22) 

The structure of the solution indicates that the optimal memory for order k 
is a subset of the optimal memory for order k + 1. The optimal memory for a 
given order k corresponds to the first k states of the system [187], and these 
states are referred to as the eVA states. 

7.4 State Space Model and System Identifiability 

The process monitoring statistics described in Section 7.8 are based on the 
matrix J which is used to construct the eVA states, and do not require the 
construction of an explicit state-space model (7.12)-(7.13). The calculation of 
the state space matrices in (7.12)-(7.13) is described here for completeness. 

Assuming the order of the state space model, k, is chosen to be greater 
than or equal to the order of the minimal state space realization of the actual 
system, the state vectors Xt in (7.12) and (7.13) can be replaced by the state 
estimate mt: 

(7.23) 

Since Ut and Yt are known, and mt can be computed once Jk in (7.22) is 
known, this equation's only unknowns (tP, G, H, A, and B) are linear in the 
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parameters. The state space matrices can be estimated by multiple linear 
regression (see Figure 7.1) 

[ $ G] A A_I 
iI A = L'mll.muL'mu.mu (7.24) 

where 

(7.25) 

and t i .; represents the sample covariance matrix for variables i and j. The 
error of the multiple regression has the covariance matrix 

[8u 812 ] A A A_I AT 
8 21 8 22 = E mll•mll - L'mll.muEmu.muL'mll.mu, (7.26) 

A t A A t 
and the matrices B = 8 21 8 11 , Q = 8 11 , and R = 8 22 - 821811812 where 
t signifies the pseudo-inverse [104]. With the matrices A, h, iI, G, $, Q, 
and it estimated, the state space model as shown in (7.12) and (7.13) can be 
used for various applications such as multistep predictions and forecasts, for 
example, as needed in model predictive control [159, 283]. 

There is a significant advantage in terms of identifiability of state space 
identification approaches over classical identification based on polynomial 
transfer functions. For polynomial transfer functions, it is always possible 
to find particular values of the parameters that produce arbitrarily poor 
conditioning [102, 187], and hence a loss in identifiability of the model [264, 
325]. The simplest example of this is when a process pole nearly cancels a 
process zero. 

The state space model estimated using (7.24) and (7.26) is globally iden­
tifiable, so that the method is statistically well-conditioned [189]. The eVA 
algorithm guarantees the choice of a well-conditioned parameterization. 

7.5 Lag Order Selection and Computation 

The discussion in Section 7.3 assumes that an infinite amount of data is 
available. For the computational problem, there is a finite amount of data 
available, and the vectors Pt, ft, and qt are truncated as 

_[ T T T T T T ]T 
Pt - Yt-l,Yt-2"" 'Yt-h,tJt-l,tJt-2"" ,tJt-h , (7.27) 

[ T T T]T ft = Yt ,Yt+l'" ,Yt+l-l , (7.28) 
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[ T T T]T qt = ut, ut+l' ... ,ut+l-l (7.29) 

where h and l are the number oflags included in the vectors. Note that Pt with 
h lags directly corresponds to the observation vector for (4.44) with h -1 lags. 
Theoretically, the eVA algorithm does not suffer when h = l > k, where k is 
the state order of the system generating the data (actually, h and l just need 
to be larger than the largest observability index [318]). However, the state 
order of the system is not known a priori. The first step of computing of eVA 
is to determine the number of lags h. Assuming there are n observations in 
the training set and the maximum number for the lag order is max, Larimore 
suggests fitting autoregressive models with several different numbers of lags 
to the training data: 

where the predicted matrix Y E 'R.(mu+m,,) x (n-maz) is given as: 

Y = [Ymax+l Ymax+2 ... Yn] 
Umax+l Umax+2 ..• Un 

(7.30) 

(7.31) 

and the predictor matrix Xj E 'R.j(mu+mll)x(n-maz) with j lags is given as 
the first j (mu + my) rows of 

Ymax Ymax+l •.. Yn-l 
Umax Umax+l ... Un-l 

Ymax-l Ymax Yn-2 

X= Umax-l Umax Un -2 (7.32) 

YI Y2 ... Yn-max 

UI U2 ... Un-max 

and Eh E 'R.(mu+mll)x(n-maz) is the residual matrix for lag order j. The 
regression matrix for Cj is determined via least squares: 

(7.33) 

where the covariance matrix Ey Xi is equal to n-:naz Y XJ. The residual 
matrix Ej is calculated for j = 1,2, ... , max. The lag order h is selected 
to be the lag minimizing the small sample Ale criterion (7.37) discussed in 
Section 7.6. This ensures that large enough lags are used to capture all the 
statistically significant information in the data. The selection of the state 
order k is described in the next section. 

The computational requirements are known a priori for the GSVD compu­
tation. The number of flop counts grows by order (nh+h3 ), and the required 
storage space is on the order (n + h2 ) [189]. 
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The near optimality of the state-space model produced by the CVA 
algorithm has been observed in Monte Carlo simulations. The estimated 
Kullback-Leibler information distances (see Section 7.6) for both open­
and closed-loop simulations were close to the information distances, related 
to the Cramer-Rao bound, corresponding to the minimum possible parame­
ter estimation error for any unbiased estimation procedure [189]. Simulations 
have also verified the robustness of the CVA algorithm for systems involving 
feedback [189]. 

7.6 State Order Selection and Akaike's Information 
Criterion 

The selection of the state order is an important step in identifying a state­
space model. The existence of a true state order is highly suspect when dealing 
with real process data; however, the state order can be utilized as a trade-off 
parameter for the model complexity, similar to the order of model reduction, 
a, described for PCA, FDA, and PLS in Chapters 4, 5, and 6, respectively. For 
instance, choosing the state order too large results in the model overfitting the 
data, and choosing the state order too small results in the model underfitting 
the data. This section presents a method for state order selection based on 
Akaike's information criterion (AIC). 

The agreement between two probability density functions can be mea­
sured in terms of the Kullback-Leibler information distance (KLID) 
[199] 

I(P.(x),p(x)) = J P.(x) In ~(~i dx (7.34) 

where x contains the random variables, P.(x) is the true probability density 
function, and p(x) is the estimated probability density function. The KLID 
is based on the statistical principles of sufficiency and repeated sampling in 
a predictive inference setting, and is invariant to model reparameterization 
[188]. If the true probability density function of the process data is known, 
then the information distance (7.34) could be computed for various state 
orders and the optimal state order would correspond to the minimum infor­
mation distance. 

For large samples, the optimal estimator of the information distance (7.34) 
for a given order k is the AIC, 

(7.35) 

where p is the likelihood function [13], the vectors un and yn contain n ob­
servations for the input and output variables, respectively, and Ok are the Mk 
independent parameters estimated for state order k. The order k is selected 
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such that the AIC criterion (7.35) is minimized. The number of independent 
parameters in the state-space model (7.12) and (7.13) is 

) my(my + 1) 
Mk = k(2my + mu + mumy + 2 . (7.36) 

The number of independent parameters is far less than the actual number of 
parameters in the state-space model [199], and the result (7.36) was developed 
by considering the size of the equivalence class of state-space models having 
the same input-output and noise characteristics [187]. 

For small samples, the AIC can be an inaccurate estimate of the KLID. 
This has led to the development of the small sample correction to the Ale 
[187] 

(7.37) 

where the correction factor for small samples is 

/= n 
_ (Mk mu + my + 1) n - + --==-----''---

mu+my 2 

(7.38) 

where n is the number of one-step ahead predictions used to develop the 
model. The small sample correction to the Ale approaches the Ale (f -+ 1) 
as the sample size increases (n -+ 00). It has been reported to produce state 
order selections that are close to the optimal prescribed by the KLID [189]. 
Within the context of Section 3.3, the selection of the optimal state order 
results in an optimal tradeoff between the bias and variance effects on the 
model error. 

7.7 Subspace Algorithm Interpretations 

The book Subspace Identification of Linear Systems by Van Overschee and 
De Moor [318] presents a unified approach to the subspace algorithms. It 
shows that the three subspace algorithms (N4SID, MOESP, and eVA) can 
be computed with essentially the same algorithm, differing only in the choice 
of weights. Larimore [189] states that the other algorithms differ from the 
eVA algorithm only in the choice of the matrices Erx;rx; and Eyy used in (7.3), 
and claims accordingly that the other algorithms are statistically suboptimal. 

It has been proven under certain assumptions that the subspace algo­
rithms can be used to produce asymptotically unbiased estimates of the 
state-space matrices [318]. However, the state-space matrices estimated by 
the three algorithms can be significantly different when the amount of input 
and output data is relatively small. 

Van Overschee and De Moor also show that the state sequences generated 
by the subspace algorithms are the outputs of non-steady-state Kalman filter 
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banks. The basis for the states is determined by the weights used by the var­
ious algorithms, and the state-space realizations produced by the algorithms 
are balanced realizations under certain frequency-weightings. Therefore, re­
ducing the dimensionality of the memory in the subspace algorithms can be 
interpreted in the framework of the frequency-weighted balanced truncation 
techniques developed by Enns [79], with the exception that the subspace al­
gorithms truncate the state-space model before the model is estimated (see 
Figure 7.2). The amount of model error introduced by reducing the order is 
minimized by eliminating only those states with the smallest effect on the 
input-output mapping, and for the eVA algorithm, the amount of model er­
ror is proportional to the canonical correlations [187]. The model reduction 
approach of the eVA algorithm has the advantage in that truncating the 
memory vector prior to the estimation of the state-space model instead of 
truncating the state vector based on a full order state-space model is much 
more computationally and numerically robust (see Figures 7.1 and 7.2). The 
degree of model reduction, or equivalently the selection of the state order, 
is an important step in the identification process, and a statistically optimal 
method was discussed in Section 7.6. 
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Fig. 1.2. A comparison of the approaches to model reduction using Enns' model 
reduction technique and the subspace algorithm (318J 
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7.8 Process Monitoring Statistics 

The GSVD for the CVA algorithm produces a set of canonical variables, c = 
JPt (where c E nh(mu+m tl »), that are uncorrelated and have unit variance. 
The T2 statistic for the canonical variables is 

(7.39) 

The T2 statistic (7.39), however, may contain a large amount of noise and 
may not be very robust for monitoring the process. Reducing the order a 
for DPCA can increase the effectiveness of the T2 statistic, and allows the 
process noise to be monitored separately via the Q statistic. An analogous 
approach is taken here for monitoring the process using the CVA states: 

(7.40) 

where Uk contains the first k columns of U in (7.8) 
A process monitoring statistic based on quantifying the variations of the 

CVA states has been applied by Negiz and Cinar to a milk pasteurization 
process [240, 241]. The measure is the T; statistic 

T; = pi J[ JkPt, (7.41) 

and assuming normality, the T; statistic follows the distribution 

(7.42) 

where n is the number of observations (see 2.11). The T; statistic measures 
the variations inside the state space, and the process faults can be detected, 
as shown in Section 2.4, by choosing a level of significance and solving the 
appropriate threshold using T; o. 

The variations outside the ;tate space can be measured using the statistic 
[279] 

(7.43) 

where Jq contains the last q = h{mu + my) - k rows of J in (7.8). Assuming 
normality, the T2 statistic (7.43) follows the distribution 

2 q(n2 - 1) 
Tro = ( ) Fo(q,n - q). , nn-q 

(7.44) 

A weakness of this approach is that T; can be overly sensitive because of 
the inversion of the small values of Exx in (7.8) [145, 279]. This can result 
in a high false alarm rate. To address this concern, the threshold should be 
readjusted before applying the statistics for process monitoring (see Section 
10.6 for an example). 
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The residual vector of the state-space model in terms of the past Pt can 
be calculated 

(7.45) 

and the variation in the residual space can be monitored using the Q statistic 
similar to the (D)PCA approaches 

(7.46) 

The statistics of T; and Q essentially measure the noise of the process. 
The T2 statistic (7.39) is equal to T; + T;, and by extracting the CVA states 
from the data, the variations in the state and measurement noise space can be 
decoupled and measured separately using T; and T; , respectively. A violation 
of the T; statistic indicates that the states are out of control, and a violation 
of the T; statistic indicates that the characteristic of the measurement noise 
has changed and/or new states have been created in the process. This is 
similar to the PCA approach to fault detection outlined in Section 4.4, with 
the exception that the states of the system are extracted in a different manner. 
The flexibility of the state-space model and the near optimality of the CVA 
approach suggest that the CVA states more accurately represent the status 
of the operations compared to the scores using PCA or DPCA. Other CVA­
based fault detection statistics are reported in the literature [190, 328]. 

The correlation structure of the CVA states allows the PCA-based statis­
tics in Chapter 4 for fault identification and diagnosis to be applicable to 
the CVA model. It is straightforward to extend the PCA-based statistics to 
CVA. The total contribution statistic (4.25) can be computed for the CVA 
model by replacing the scores with the CVA estimated states, mt = JkPt. 
The statistic (4.32) can be applied for fault identification using the residual 
vector in (7.45). A pattern classification system for fault diagnosis can be 
employed using the discriminant function (3.6) based on (T;)i' (T;)i' or Qi 
for each class i. These discriminant functions can improve the classification 
system upon using the discriminant function (3.6) based on the entire obser­
vation space, Pt, when most of the discriminatory power is contained in the 
state space or the residual space. 

7.9 Homework Problems 

1. Verify that the matrices J, L, and D computed from (7.8) satisfy (7.3) 
and (7.4). 

2. Describe in some detail how to formulate the CONT and RES statistics 
for identifying faults using CVA. Name advantages and disadvantages of 
this approach to alternative methods for identifying faults. Would CONT 
or RES expected to perform better? Why? 
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3. Describe in detail how to formulate OVA for fault diagnosis. Name ad­
vantages and disadvantages of this approach to alternative methods for 
diagnosing faults. 

4. Oompare and contrast the OVA-based Q and T; statistics. Which statis­
tic would you expect to perform better for fault detection? Why? 

5. Read the following materials [189, 193, 283] and formulate POA, PLS, 
FDA, and OVA in the framework of the generalized singular value decom­
position. Based on the differences between the methods as represented in 
this framework, state the strengths and weaknesses of each method for 
applying process monitoring statistics. 

6. Read a chapter in a book on the application of canonical correlation 
analysis (OOA) [67, 193, 234]. Oompare and contrast OOA with FDA 
and OVA. 

7. Oompare and contrast the OVA-based statistics described in this chap­
ter with the OVA-based process monitoring statistics reported in these 
papers [190, 328]. 

8. Read an article on the application of nonlinear OVA (e.g., [186]) and 
write a report describing in detail how the technique is implemented and 
applied. Describe how the computations are performed and how process 
monitoring statistics can be computed. For what types of processes are 
these algorithms suited? Provide some hypothetical examples. 



Part IV 

Application 



8. Tennessee Eastman Process 

8.1 Introduction 

In Part IV the various data-driven process monitoring statistics are compared 
through application to a simulation of an industrial plant. The methods would 
ideally be illustrated on data collected during specific known faults from an 
actual industrial process, but this type of data is not publicly available for any 
large-scale industrial plant. Instead, many academics in process monitoring 
perform studies based on data collected from computer simulations of an 
industrial process. The process monitoring methods in this book are tested on 
the data collected from the process simulation for the Tennessee Eastman 
process (TEP). The TEP has been widely used by the process monitoring 
community as a source of data for comparing various approaches [16, 39, 40, 
46, 99, 100, 113, 117, 183, 191, 270, 272, 271, 278, 279]. 

The TEP was created by the Eastman Chemical Company to provide 
a realistic industrial process for evaluating process control and monitoring 
methods [72]. The test process is based on a simulation of an actual industrial 
process where the components, kinetics, and operating conditions have been 
modified for proprietary reasons. The process consists of five major units: a 
reactor, condenser, compressor, separator, and stripper; and, it contains eight 
components: A, B, C, D, E, F, G, and H. 

Chapter 8 describes the TEP in enough detail to interpret the application 
of the process monitoring statistics in Chapters 9 and 10. Sections 8.2 to 8.6 
describe the process flowsheet, variables, faults, and simulation program. In 
reality, processes are operated under closed-loop control. To simulate real­
istic conditions, the second plant-wide control structure described in [205] 
was implemented to generate the data for demonstrating and comparing the 
various process monitoring methods. The control structure is described in 
Section 8.6. Detailed discussions on control structures for the TEP are avail­
able [219, 218, 237, 321]. 

L. H. Chiang et al., Fault Detection and Diagnosis  in Industrial  Systems
© Springer-Verlag London Limited 2001
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8.2 Process Flowsheet 

Figure 8.1 is a Howsheet for the industrial plant. The gaseous reactants A, 
C, D, and E and the inert B are fed to the reactor where the liquid products 
G and H are formed. The reactions in the reactor are: 

A(g) + C(g) + D(g) --+ G(liq), 
A(g) + C(g) + E(g) --+ H(liq), 

A(g) + E(g) --+ F(liq), 
3D (g) --+ 2F(liq). 

(8.1) 

The species F is a by-product of the reactions. The reactions are irreversible, 
exothermic, and approximately first-order with respect to the reactant con­
centrations. The reaction rates are Arrhenius functions of temperature where 
the reaction for G has a higher activation energy than the reaction for H, re­
sulting in a higher sensitivity to temperature. 

The reactor product stream is cooled through a condenser and then fed 
to a vapor-liquid separator. The vapor exiting the separator is recycled to 
the reactor feed through a compressor. A portion of the recycle stream is 
purged to keep the inert and byproduct from accumulating in the process. 
The condensed components from the separator (Stream 10) is pumped to a 
stripper. Stream 4 is used to strip the remaining reactants from Stream 10, 
which are combined with the recycle stream via Stream 5. The products G 
and H exiting the base of the stripper are sent to a downstream process which 
is not included in the diagram. 

8.3 Process Variables 

The process contains 41 measured and 12 manipulated variables. The manip­
ulated variables are listed in Table 8.1. The 22 measured variables which are 
sampled every 3 minutes, XMEAS(l) through XMEAS(22), are listed in Ta­
ble 8.2. The 19 composition measurements, XMEAS(23) through XMEAS( 41), 
are described in Table 8.3. The composition measurements are taken from 
Streams 6, 9, and 11. The sampling interval and time delay for Streams 6 
and 9 are both equal to 6 minutes, and for Stream 11 are equal to 15 minutes. 
All the process measurements include Gaussian noise. 

8.4 Process Faults 

The Tennessee Eastman process simulation contains 21 preprogrammed faults 
(see Table 8.4). Sixteen of these faults are known, and five are unknown. 
Faults 1-7 are associated with a step change in a process variable, e.g., in 
the cooling water inlet temperature or in feed composition. Faults 8-12 are 
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106 8. Tennessee Eastman Process 

Table 8.1. Manipulated variables 

Variable Description 

XM~~~) 
XMV(2) 

D Feed Flow ~~tream 2} 
E Feed Flow (Stream 3) 

XMV(3) A Feed Flow (Stream 1) 
XMV(4) Total Feed Flow (Stream 4) 
XMV(5) Compressor Recycle Valve 
XMV(6) Purge Valve (Stream 9) 
XMV(7) Separator Pot Liquid Flow (Stream 10) 
XMV(8) Stripper Liquid Product Flow (Stream 11) 
XMV(9) Stripper Steam Valve 

XMV(10) Reactor Cooling Water Flow 
XMV(l1) Condenser Cooling Water Flow 
XMV(12) Agitator Speed 

Table 8.2. Process measurements (3 minute sampling interval) 

Variable Description Units 

XMEA~~l) A Feed ~Stream 1) kscmh 
XMEAS(2) D Feed (Stream 2) kg/hr 
XMEAS(3) E Feed (Stream 3) kg/hr 
XMEAS(4) Total Feed (Stream 4) kscmh 
XMEAS(5) Recycle Flow (Stream 8) kscmh 
XMEAS(6) Reactor Feed Rate (Stream 6) kscmh 
XMEAS(7) Reactor Pressure kPa gauge 
XMEAS(8) Reactor Level % 
XMEAS(9) Reactor Temperature Deg C 
XMEAS(lO) Purge Rate (Stream 9) kscmh 
XMEAS(ll) Product Sep Temp Deg C 
XMEAS(12) Product Sep Level % 
XMEAS(13) Prod Sep Pressure kPa gauge 
XMEAS(14) Prod Sep Underflow (Stream 10) m3/hr 
XMEAS(15) Stripper Level % 
XMEAS(16) Stripper Pressure kPa gauge 
XMEAS(17) Stripper Underflow (Stream 11) m3/hr 
XMEAS(18) Stripper Temperature Deg C 
XMEAS(19) Stripper Steam Flow kg/hr 
XMEAS(20) Compressor Work kW 
XMEAS(21) Reactor Cooling Water Outlet Temp Deg C 
XMEAS(22) Separator Cooling Water Outlet Temp Deg C 
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Table 8.3. Composition measurements 

Variable Description Stream Sampling Interval (min.) 
XMEA~~2~~ Component A 6 6 
XMEAS(24) Component B 6 6 
XMEAS(25) Component C 6 6 
XMEAS(26) Component D 6 6 
XMEAS(27) Component E 6 6 
XMEAS(28) Component F 6 6 
XMEA~~2~~ Component A 9 6 
XMEAS(30) Component B 9 6 
XMEAS(31) Component C 9 6 
XMEAS(32) Component D 9 6 
XMEAS(33) Component E 9 6 
XMEAS(34) Component F 9 6 
XMEAS(35) Component G 9 6 
XMEAS(36) Component H 9 6 
XMEA~~3~~ Component D 11 15 
XMEAS(38) Component E 11 15 
XMEAS(39) Component F 11 15 
XMEAS(40) Component G 11 15 
XMEAS(41) Component H 11 15 

Units are mole %. Dead time is equal to the sampling interval 

associated with an increase in the variability of some process variables. Fault 
13 is a slow drift in the reaction kinetics, and Faults 14, 15, and 21 are 
associated with sticking valves. 

The sensitivity and robustness of the various process monitoring methods 
will be investigated in Chapter 10 by simulating the process under various 
fault conditions. The simulation program allows the faults to be implemented 
either individually or in combination with one another. 

8.5 Simulation Program 

The simulation code for the process is available in FORTRAN, and a detailed 
description ofthe process and simulation is available [72]. There are six modes 
to the process operation corresponding to various G /H mass ratios and pro­
duction rates of Stream 11. Only the base case will be used here. The program 
is implemented with 50 states in open loop and a 1 second interval for integra­
tion. This integration interval is reasonable since the largest negative eigen­
value of the process is about 1.8 seconds. The simulation code for the process 
in open loop can be downloaded from http://brahms . ses . uiue . edu. 
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8.6 Control Structure 

The simulation of the TEP is made available by the Eastman Chemical Com­
pany in open-loop operation. Since the process is open-loop unstable and 
industrial processes in reality are operated under closed loop, a plant-wide 
control scheme was employed when applying the process monitoring methods 
in Chapter 10. In [205, 206], four different plant-wide control structures using 
only Proportional (P) and Proportional-Integral (PI) controllers were inves­
tigated for the TEP. The second control structure listed in [205, 206] was 
chosen for this book because this structure provided the best performance 
according to the authors. 

The control structure implemented to obtain the results in Chapter 10 
is shown schematically in Figure 8.1. The control structure consists of nine­
teen loops, and the values of the control parameters and other details of 
the control structure are listed in Table 8.5. The exact values for the con­
troller gains implemented by the author of [205] could not be determined 
because the controller gains were scaled to be dimensionless and the scalings 
on the controller inputs and outputs were not presented. However, we esti­
mated the controller parameters based on the values from [205], and these 
parameters are reported in Table 8.5 with units consistent with the manip­
ulated and measurement variables [72]. Some closed-loop simulations with 
the control parameters from Table 8.5 are shown in Figures 8.2 and 8.3. A 
comparison of these plots with those in [205] indicates that relatively similar 
values for the control parameters were employed for both sets of simulations. 
The simulation code for the process in closed loop can be downloaded from 
http://brahms.scs.uiuc.edu. 

8.7 Homework Problems 

1. Plot the manipulated and measured variables over time for one of the 
process faults in Table 8.4 using the closed-loop controllers (the code 
can be downloaded from http://brahms.scs.uiuc.edu). Explain how 
the effect of the process fault propagates through the plant, as indicated 
by the process variables. What is the physical mechanism for each of 
the process variable changes? Does each variable change in the way you 
would expect? Explain. For each variable, explain how its time history 
is affected by the closed-loop controllers. Which controllers mask the 
effect of the fault on the process variables? [Note to instructor: consider 
assigning a different fault to each student in the class.] 

2. Describe the step-by-step procedure used to arrive at the plant-wide con­
trol structure used in this chapter (hint: read [206]). 
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Fig. 8.2. Closed-loop simulation for the steady state case with no faults. The solid 
and dotted lines in the lower right plot represent the compositions of G and H, 
respectively. 
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Fig. 8.3. Closed-loop simulation for a step change in the composition of the inert 
B (IDV(2) in Table 8.4) 



9. Application Description 

9.1 Introduction 

Chapter 8 describes the process, the control system, and the type of faults for 
the Tennessee Eastman plant simulator. In Chapter 10, this simulator will be 
used to demonstrate and compare the various process monitoring methods 
presented in Part III. The process monitoring methods are tested on data 
generated by the TEP simulation code, operating under closed loop with the 
plant-wide control structure discussed in Section 8.6. The original simulation 
code allows 20 preprogrammed faults to be selectively introduced to the pro­
cess [72]. We have added an additional fault simulation, which results in a 
total of 21 faults as shown in Table 8.4. In addition to the aforementioned 
aspects of the process, the process monitoring performance is dependent on 
the way in which the data are collected, such as the sampling interval and 
the size of the data sets. 

The purpose of this chapter is to describe the data sets and to present the 
process monitoring measures employed for comparing the process monitoring 
methods. Section 9.2 describes how the data in the training and testing sets 
were generated by the TEP. A discussion on how the selection of the sam­
pling interval and sample size of the data sets affects the process monitoring 
methods follows in Sections 9.3 and 9.4, respectively. Section 9.5 discusses 
the selection of the lag and order for each method. Sections 9.6, 9.7, and 
9.8 present the measures investigated for fault detection, identification, and 
diagnosis, respectively. The process monitoring methods (covered in Parts II 
and III) used for these purpose are collected into Tables 9.2-9.4 which show 
how the methods are related. 

9.2 Data Sets 

The data in the training and testing sets included all the manipulated and 
measured variables (see Tables 8.1-8.3), except the agitation speed of the 
reactor's stirrer for a total of m = 52 observation variables. (The agitation 
speed was not included because it was not manipulated.) An observation 
vector at a particular time instant is given by 
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x = [XMEAS(l),··· , XMEAS(41),XMV(l), '" ,XMV(ll)] T. (9.1) 

The observations were simulated with an integration step size of 1 second, 
and this did not produce any numerical inaccuracies. Although some of the 
observations are sampled continuously while other variables contain time de­
lays (see Section 8.3), it simplifies the implementation to employ the same 
sampling interval for each variable when the data are collected for calculating 
multivariate process monitoring measures. A sampling interval of 3 minutes 
was used to collect the simulated data for the training and testing sets. 

The data in the training set consisted of 22 different simulation runs, 
where the random seed was changed between each run. One simulation run 
(Fault 0) was generated with no faults; another simulation run (Fault 21) 
was generated by fixing the position of the valve for Stream 4 at the steady 
state position; and, each of the other 20 simulation runs (Faults 1-20) was 
generated under a different fault, each corresponding to a fault listed in Table 
8.4. The simulation time for each run was 25 hours. The simulations started 
with no faults, and the faults were introduced 1 simulation hour into the run. 
The total number of observations generated for each run was n = 500, but 
only 480 observations were collected after the introduction of the fault. It is 
only these 480 observations actually used to construct the process monitoring 
measures. 

The data in the testing set also consisted of 22 different simulation runs, 
where the random seed was changed between each run. These simulation 
runs directly correspond to the runs in the training set (Faults 0-21). The 
simulation time for each run was 48 hours. The simulation started with no 
faults, and the faults were introduced 8 simulation hours into the run. The 
total number of observations generated for each run was n = 960. 

9.3 Sampling Interval 

The amount of time in which quality data are collected from industrial pro­
cesses during either in-control or out-of-control operations is usually limited 
in practice. Typically, only a small portion of the operation time exists where 
it can be determined with confidence that the data were not somehow cor­
rupted and no faults occurred in the process. Also, the process supervisors 
do not generally allow faults to remain in the process for long periods of time 
for the purpose of producing data used in fault diagnosis algorithms. 

Typically data collected during faulty operations are stored in historical 
databases in which engineers or operators diagnose the faults sometime after 
the fault occurs, and then enter that information into the historical database. 
The amount of such data available in the historical database is typically fixed 
and the sampling interval for the process monitoring methods needs to be 
determined. 
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It is desirable to detect, identify, and diagnose faults as soon as possible. 
This suggests a high sampling rate. Also, given a fixed time T = nLlt, it 
is beneficial from an information point-of-view to sample as fast as possible 
(Llt -+ 0, n -+ 00). In terms of process monitoring, however, there are three 
possible problems with sampling as fast as possible. For the amount of data 
produced, the computational requirements may exceed the computational 
power available. Additionally, the model fit may be concentrated to the higher 
frequencies, where measurement noise is predominant. When identifying an 
ARX model via a least-squares approach, Ljung [199] shows how the bias 
is shifted when sampling with higher frequencies. This bias shift for fast 
sampling rates may be undesirable, especially if the faults primarily affect 
the lower frequency dynamics of the process. Finally, statistics that ignore 
serial correlation will generally perform more poorly for short sampling times. 

The choice of the sampling interval for process monitoring is usually se­
lected based on engineering judgment. For system identification, a rule of 
thumb is to set the sampling interval to one-tenth the time constant of the 
process [199]. Considering that many of the time constants of the Tennessee 
Eastman problem under closed loop appear to be about 2 hours (see Figure 
8.2), it is advisable from a system identification point of view to sample at 
an interval of 12 minutes. This does not, however, take advantage of the in­
strumentation of the process, which allows much faster sampling rates (see 
Section 8.3). A sampling interval of 3 minutes was selected here to allow fast 
fault detection, identification, and diagnosis, and to allow a good comparison 
between techniques that either take into account or ignore serial correlations. 
In addition, the same sampling interval has been used in other applications 
of process monitoring to the TEP [46, 113, 183, 279]. 

An alternative approach would be to average each measurement over a 
period of time before using the data in the process monitoring algorithms. 
This and similar "moving window" techniques will generally reduce normal 
process variability and hence produce a more sensitive process monitoring 
method. However, this comes at a cost of delaying fault detection. Wise and 
co-workers [345] pointed out that the width of the windows (i. e., the number 
of data points used to compute the average) had an important effect on the 
performance. In general, a "wide" window allows the detection of smaller 
changes, but does not respond as quickly to changes as "narrow" windows. 

9.4 Sample Size 

As mentioned in the previous section, the total time spanned by the training 
set is generally limited. In the cases where the total time T = nLlt is fixed, 
the selection of the sampling interval Llt and the sample size n cannot be 
decoupled. Therefore, the effect of the sampling interval on the sample size 
should be considered when selecting the sampling interval, and vice versa. 
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An important consideration for the sample size is the total number of inde­
pendent parameters contained in the model being identified. It is desirable to 
have the number of model parameters be much smaller than the total number 
of process variables m multiplied by the total number of observations n. 

Because the data for this book are simulated by the TEP, the sample 
size is not limited by T and can be considered separately from the sampling 
interval. Downs and Vogel [72] recommend a simulation time between 24 
and 48 hours to realize the full effect of the faults. With a sampling interval 
equal to 3 minutes, 24 to 48 hours of simulation time contain n = 480 to 
960 observations. Simulations (see Figure 8.3) suggest that a run containing 
24 simulation hours sufficiently captures the significant shifts in the data 
produced by the fault. 

The sufficiency of the sample size for the training set n = 480 can be 
determined by examining the total number of independent parameters asso­
ciated with the orders of the various process monitoring methods (see Table 
9.1). The total number of states in the closed-loop process is k = 61; 50 states 
from the open-loop process plus 11 states from the PI controllers. For a state­
space model of state order k = 61 with 11 inputs and 41 outputs, the number 
of independent parameters Mk is equal to 6985 according to (7.36). For fault 
detection using the PeA-based T2 statistic (4.12), the number of estimated 
parameters Ma is equal to the number of independent degrees of freedom of 
the matrix product of PE;;2pT in (4.12), which is calculated from 

Ma = a + 2am - a2 

2 
(9.2) 

For a = 51, the number of independent parameters is 1377. For fault detection 
using the eVA-based T; statistic (7.41), the number of estimated parameters 
Mk is equal to the number of independent degrees of freedom of f[ Jk in 
(7.41), which is calculated from 

Mk = k + 2kmh - k 2 

2 
(9.3) 

For h = 2 and k = 61, the number of independent parameters is 4029. The 
total number of data points in the training set is equal to nm = (480) (52) = 
24,960. The absolute minimum requirement to apply the peA, eVA, or state­
space model at a given order is that the number of data points is greater 
than the number of independent parameters in the model. The ratio of the 
number of data points to the number of independent parameters is nm / M k = 
(480)(52)/6985 = 3.57 for the state-space model, nm/Ma = 18.1 for the 
PeA-based model, and nm/Mk = 5.53 for the eVA-based model. With all 
other variables being equal (e.g., the noise level), the larger the ratio is greater 
than one, the higher the accuracy of the model. For this data set, all ratios 
are greater than one, indicating that the size of the training set (n = 480) 
is sufficient to apply the peA, eVA, and state-space model. Reducing the 
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order may still result in a higher quality model, depending on the noise level. 
As shown in Table 9.1, the state-space model requires the largest number 
of independent parameters, followed by CVA, and PCA. A PCA model of a 
given order has significantly less independent parameters, but does not take 
into account serial correlations. 

Table 9.1. The number of independent parameters estimated for the various mod­
els and orders 

Orderl Inputs Outputs Parameters Parameters Parameters 
State Spacett PCAttt CVAtttt 

1 11 41 1405 52 104 
11 11 41 2335 517 1089 
21 11 41 3265 882 1974 
31 11 41 4195 1147 2759 
41 11 41 5125 1312 3444 
51 11 41 6055 1377 4029 
61 11 41 6985 - 4514 

t The order is equal to a for PCA and the state order k for the state-space model and CVA 
tt The number of parameters is based on (7.36) 
ttt The number of parameters is based on (9.2) 
tttt The number of parameters is based on (9.3), using h = 2 lags 

9.5 Lag and Order Selection 

The number of lags included in the DPCA, DFDA, and CVA process mon­
itoring methods can substantially affect the monitoring performance. It is 
best to choose the number of lags as the minimum needed to capture the 
dynamics of the process accurately. Choosing the number of lags larger than 
necessary may significantly decrease the robustness of the process monitor­
ing measures, since the extra dimensionality captures additional noise, which 
may be difficult to characterize with limited data. The procedure used for 
this book follows Larimore's suggestion of selecting the number of lags h as 
that minimizing the small sample AIC criterion using an ARX model (see 
Section 7.5). This ensures that the number of lags is large enough to capture 
all the statistically significant information in the data. 

As described in Part III, the selection of the reduction order is critical 
to developing efficient measures for process monitoring. The order selection 
methods described in Part III will be used. The parallel analysis method 
(see Section 4.3) is applied to select a in PCA and DPCA. The information 
criterion (5.12) is used to determine a for FDA and DFDA. The small sample 
AIC (7.37) is applied to CVA to determine the state order k. 

Although it is popularly referred to in the literature, the cross-validation 
method is not used here for any of the process monitoring methods. Cross-
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validation is computationally expensive when dealing with several large data 
sets. More importantly, there can be problems with cross-validation when 
serial correlations in the data exist [183]. 

9.6 Fault Detection 

The proficiencies of PCA, DPCA, and CVA for detecting faults were investi­
gated on the TEP. The measures applied for each method, the corresponding 
equation numbers, and the distributions used to determine the thresholds for 
the measures are listed in Table 9.2. For instance, the first row indicates that 
PCA is used to generate the T2 statistic according to (4.12) and the threshold 
is calculated according to (4.14). The distribution listed as "TR" means that 
the threshold is set to be the tenth highest value for Fault 0 of the testing set, 
in which the number of observations n = 960. The threshold corresponds to 
a level of significance a = 0.01 by considering the probability distribution of 
the statistics for Fault O. A thorough discussion of the measures is available 
in the respective chapters, and more information related to applying these 
measures to the TEP is contained in Section 10.6. 

Table 9.2. The measures employed for fault detection 

Method Basis Equation Distribution 

PCA T2 4.12 4.14 
PCA Q 4.21 4.22 

DPCA T2 4.12t 4.14t 
DPCA Q 4.21t 4.22t 

CVA r2 
s 7.41 7.42 

CVA r2 
r 7.43 7.41 

CVA Q 7.46 TRtt 

t Applied to the data matrix with lags 
ttTR - Threshold set based on testing data for Fault 0 

There exist techniques to increase the sensitivity and robustness of the 
PCA and DPCA process monitoring measures as described in Section 4.8, for 
example, through the use of the CUSUM or EWMA version of the measures. 
However, these techniques compromise the response time of the measures. 
Although such techniques can be highly useful in practice, the process moni­
toring methods applied in Chapter 10 do not employ them because it would 
complicate the comparison of the process monitoring methods. The mea­
sures investigated for each process monitoring method are designed to detect 
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and diagnose the faults with the smallest delay. Applying the CUSUM and 
EWMA versions of PCA and DPCA is left as a homework problem. 

9.7 Fault Identification 

The proficiencies of PCA, DPCA, and CVA for identifying faults were inves­
tigated on the TEP. The measures applied for each method and the corre­
sponding equation numbers are presented in Table 9.3. A discussion on how 
to apply the measures based on PCA, DPCA, and CVA can be found in Sec­
tions 4.5,4.7, and 7.8, respectively. A thorough discussion of the measures is 
available in the respective chapters, and more information related to applying 
these measures to the TEP is contained in Section 10.7. 

Table 9.3. The measures employed for fault identification 

Method Basis Equation 
PCA CONT 4.25 
PCA RES 4.32 

DPCA CONT 4.25 with 4.44 
DPCA RES 4.32 with 4.44 
eVA CONT 4.25 with 7.22 
eVA RES 4.32 with 7.45 

9.8 Fault Diagnosis 

The proficiencies of the fault diagnosis methods described in Part III were 
investigated on the TEP. Fault diagnosis measures based on discriminant 
analysis that use no dimensionality reduction are given in (3.7). When this 
multivariate statistic (MS) is applied to data with no lags, it will be referred 
to as the T6 statistic. When the multivariate statistic is applied to data with 1 
lag, it will be referred to as the Tf statistic. These are considered in Chapter 
10 to serve as a benchmark for the other measures, as the dimensionality 
should only be reduced if it decreases the misclassification rate for a testing 
set. The fault diagnosis measures and the corresponding equation or section 
numbers are presented in Table 9.4. The statistic(s) upon which each measure 
is based is also listed in the table. A thorough discussion of the measures is 
available in the respective chapters, and more information related to applying 
these measures to the TEP is contained in Section 10.8. 



120 9. Application Description 

Table 9.4. The measures employed for fault diagnosis 

Method Basis 

PCAm T2 
PCA1 T2 
PCAm Q 
PCAm T2 &Q 

DPCAm T2 
DPCAm Q 
DPCAm T2 & Q 

FDA T2 
FDA/PCA1 T2 
FDA/PCA2 T2 

DFDA/DPCA1 T2 

CVA T2 
8 

CVA T? r 

CVA Q 

PLS1 -
PLS2 -

PLS1adj -
PLS2adj -

MS Tg 
MS Tf 

t Applied to the score space only 
ttci = 0.5 and at = 0.01 

Equation/Section 

Equation 4.35t 
Equation 4.33t 
Equation 4.37 

Equation 4.3Stt 

Equations 4.35t and 4.44 
Equations 4.37 and 4.44 

Equations 4.3Stt and 4.44 

Equation 5.16t 
Equations 5.17t and 5.16 
Equations 5.17t and 5.16 

Equations 5.17t , 5.16, and 4.44 

Equations 4.35t and 7.41 
Equations 4.35 and 7.43 
Equations 4.37 and 7.46 

Section 6.3 
Section 6.3 
Section 6.4 
Section 6.4 

Equation 3.7 
Equation 3.7 



10. Results and Discussion 

10.1 Introduction 

In this chapter, the process monitoring methods in Part III are compared 
and contrasted through application to the Tennessee Eastman process 
(TEP). The proficiencies of the process monitoring statistics listed in Tables 
9.2-9.4 are investigated for fault detection, identification, and diagnosis. The 
evaluation and comparison of the statistics are based on criteria that quantify 
the process monitoring performance. To illustrate the strengths and weak­
nesses of each statistic, Faults 1, 4, 5, and 11 are selected as specific case 
studies in Sections 10.2, 10.3, 10.4, and 10.5, respectively. Sections 10.6, 10.7, 
and 10.8 present and apply the quantitative criteria for evaluating the fault 
detection, identification, and diagnosis statistics, respectively. The overall re­
sults of the statistics are evaluated and compared. Results corresponding to 
the case studies are highlighted in boldface in Tables 10.6 to 10.20. 

10.2 Case Study on Fault 1 

In the normal operating condition (Fault 0), Stream 4 in Figure 8.1 contains 
0.485,0.005, and 0.510 mole fraction of A, B, and C, respectively [72]. When 
Fault 1 occurs, a step change is induced in the A/C feed ratio in Stream 4, 
which results in an increase in the C feed and a decrease in the A feed in 
Stream 4. This results in a decrease in the A feed in the recycle Stream 5 and 
a control loop reacts to increase the A feed in Stream 1 (see Figure 10.1). 
These two effects counteract each other over time, which results in a constant 
A feed composition in Stream 6 after enough time (see Figure 10.2). 

The variations in the flow rates and compositions of Stream 6 to the 
reactor causes variations in the reactor level (see Figure 8.1), which affects 
the flow rate in Stream 4 through a cascade control loop (see Figure 10.3). 
The flow rate of Stream 4 eventually settles to a steady-state value lower 
than its value at the normal operating conditions. 

Since the ratio of the reactants A and C changes, the distribution of the 
variables associated with material balances (i. e., level, pressure, composition) 
changes correspondingly. Since more than half of the variables monitored de­
viate significantly from their normal operating behavior, this fault is expected 
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to be easily detected. Process monitoring statistics that show poor perfor­
mance on Fault 1 are likely to perform poorly on other faults as well. 
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Fig. 10.1. Comparison of XMEAS(l) for Faults 0 and 1 

The (D)PCA-based and CVA-based statistics for fault detection are 
shown in Figures 10.4 and 10.5, respectively. The dotted line in each figure is 
the threshold for the statistic, the statistic above its threshold indicates that 
a fault is detected (the statistic is shown as a solid line). The first eight hours 
were operated under normal operating conditions. Thus, all statistics are ex­
pected to fall below the thresholds for the first eight hours, which they did. 
The quantitative fault detection results are shown in Table 10.1. All of the 
statistics produced nearly zero missed detection rates. For a fault that signifi­
cantly changes the distribution of the variables monitored, all fault detection 
statistics perform very well. 

Assuming that process data collected during a fault are represented by a 
previous fault class, the objective of the fault diagnosis statistics in Table 9.4 
is to classify the data to the correct fault class. That is, a highly proficient 
fault diagnosis statistic produces small misclassification rates when applied 
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Fig. 10.2. Comparison of XMEAS(23) for Faults 0 and 1 

Table 10.1. Missed detection rates for Faults 1, 4, 5, and 11 

Fault 1 4 5 11 
Method Basis 

PCA T2 0.008 0.956 0.775 0.794 
PCA Q 0.003 0.038 0.746 0.356 

DPCA T2 0.006 0.939 0.756 0.801 
DPCA Q 0.005 @] 0.748 \ 0.193\ -
CVA T2 

s 0.001 0.688 0 0.515 -
CVA T? @] @] 0 0.195 r 

0-CVA Q 0.003 0.975 0.669 
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Fig. 10.3. Comparison of XMEAS(4) for Faults 0 and 1 

to data independent of the training set. As shown in Table 10.2, most of 
the fault diagnosis statistics performed very well (Fault 1 being correctly 
diagnosed> 96% of the time). 

10.3 Case Study on Fault 4 

Fault 4 involves a step change in the reactor cooling water inlet temperature 
(see Figure 8.1). A significant effect of Fault 4 is to induce a step change in the 
reactor cooling water flow rate (see Figure 10.6). When the fault occurs, there 
is a sudden temperature increase in the reactor (see Figure 10.7 at time = 8 
hr), which is compensated by the control loops. The other 50 measurement 
and manipulated variables remain steady after the fault occurs; the mean 
and standard deviation of each variable differ less than 2% between Fault 
4 and the normal operating condition. This makes the fault detection and 
diagnosis tasks more challenging than for Fault 1. 
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Table 10.2. The overall rnisclassification rates for Faults 1, 4, 5, and 11 

Fault 1 4 5 11 
Method Basis 

PCArn T2 0.680 0.810 0.956 0.989 
PCA1 T2 0.024 0.163 0.021 0.234 
PCArn Q 0.028 0.951 0.913 0.859 
PCArn T2&Q 0.041 1.000 0.973 0.968 

DPCArn T2 0.880 0.720 0.874 0.948 
DPCArn Q 0.035 0.964 0.856 0.843 
DPCArn T2&Q 0.038 1.000 1.000 0.983 

PLS1 -
1
0

.
013

1 

0.170 10.0061 0.989 

PLS2 - 0.013 10.1191 0.008 0.979 
PLS1adj - 0.019 0.364 0.044 0.859 
PLS2adj - 0.019 0.320 0.043 0.886 

CVA T2 • 0.028 0.981 0.061 0.904 
CVA T? r 0.026 0.358 0.040 0.139 
CVA Q 0.245 0.890 0.174 0.901 

FDA T2 0.025 0.176 0.020 0.245 
FDA/PCA1 T2 0.024 0.163 0.020 0.244 
FDA/PCA2 T2 0.025 0.176 0.020 0.245 

DFDA/DPCA1 T2 0.026 0.159 0.023 [D.llsJ 

MS T5 0.025 0.178 0.020 0.245 
MS Tf 0.035 0.427 0.040 0.121 

The extent to which the (D)PCA-based and CVA-based statistics are sen­
sitive to Fault 4 can be examined in Figure 10.8 and Figure 10.9 respectively. 
The quantitative fault detection results are shown in Table 10.1. The vari­
ation in the residual space was captured by T;, but not by the CVA-based 
Q statistic. The potential advantage of applying T; to capture variation in 
the residual space is clearly shown. It is interesting to see that the PCA and 
DPCA-based Q statistics were able to detect Fault 4, but the CVA-based Q 
statistic did not. The CVA-based T; statistic passes the threshold much of 
time after the fault occurs, but does not have the persistence of the CVA­
based T; statistic (see Figure 10.9). Although the PCA and DPCA-based 
Q statistics both are able to detect the fault, the DPCA-based Q statistic 
outperformed the PCA-based statistic in terms of exceeding the threshold 
by a greater degree. This indicates the potential advantage of taking serial 
correlation into account when developing fault detection procedures. 

For this fault the PCA and DPCA-based Q statistics were more sensi­
tive than the PCA and DPCA-based T2 statistics, and the CVA-based T; 
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Fig. 10.4. The (D)PCA multivariate statistics for fault detection for Fault 1 

statistic was more sensitive than the eVA-based T; statistic (see Table 10.1). 
These statistics quantifying variations in the residual space were overall more 
sensitive to Fault 4 than the statistics quantifying the variations in the score 
or state space. In other words, the fault created new states in the process 
rather than magnifying the states based on in-control operations. Although 
this conclusion does not hold for all faults, it certainly is true for a large 
portion of them. 

Recall that Fault 4 is associated with a step change in the reactor cooling 
water inlet temperature (see Table 8.4), which is unmeasured. Engineering 
judgment and an examination of Figure 8.1 and Tables 8.1-8.3 indicate that 
the most closely related observation variable is the reactor cooling water flow 
rate. The fault identification statistics in Table 9.3 provide a rank ordering 
of the observation variables from most relevant to least relevant in terms of 
being associated with the fault. For Fault 4, the third column of Table 10.3 
lists where the reactor cooling water flow rate was ranked by the various 
fault identification methods. All of the methods correctly ranked the reactor 
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Fig. 10.5. The CVA multivariate statistics for fault detection for Fault 1 

cooling water flow rate as most closely related to Fault 4 except for the eVA-
based CONT statistic. 

Table 10.3. The overall rankings for Faults 4 and 11 

Fault 4 11 
Method Basis 

PCA CONT 1 1 
PCA RES 1 1 

DPCA CONT 1 1 
DPCA RES 1 1 
CVA CONT 11 13 
CVA RES 1 1 

The eVA-based CONT statistic did not perform well because the inverse 
of the matrix Epp in (7.40) allowed certain observation variables to dominate 
the statistic. In particular, the maximum values of the Jk matrix correspond­
ing to the observation variables X12, X15, X17, X48, X49, and X52 are above 50 
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Fig. 10.6. Comparison of XMV(10) for Faults 0 and 4 

while the elements of Jk corresponding to all the other variables are less than 
3 (see Figure 10.10). The dominance of the observation variables X12, X15, X17, 

X48, X49, and X52 in Jk was observed for all of the other faults investigated 
as well. 

For fault diagnosis, many of the statistics performed poorly for Fault 4 
(see Table 10.2). PLS2 gave the lowest misclassification rates. This indicates 
that discriminant PLS can outperform FDA for some faults although it would 
be expected theoretically that FDA should be better in most cases. PLSl had 
a similar misclassification rate as all the FDA-based statistics, PCAl, and 
MS TJ. PLSl and PLS2 gave significantly lower misclassification rates than 
PLSladj and PLS2adj. This makes the point that the adjustment procedure 
described in Section 6.4 does not always improve fault diagnosis. 

DFDA/DPCAl produced similar misclassification rates as the static FDA 
methods. However, including lagged variables actually degraded the perfor­
mance of the MS statistic. 
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Fig. 10.7. Comparison of XMEAS(9) for Faults 0 and 4 

10.4 Case Study on Fault 5 

Fault 5 involves a step change in the condenser cooling water inlet temper­
ature (see Figure 8.1). The significant effect of the fault is to induce a step 
change in the condenser cooling water flow rate (see Figure 10.11). When 
the fault occurs, the flow rate of the outlet stream from the condenser to 
the vapor/liquid separator also increases, which results in an increase in tem­
perature in the vapor/liquid separator, and thus the separator cooling water 
outlet temperature (see Figure 10.12). Similar to Fault 4, the control loops 
are able to compensate for the change and the temperature in the separa­
tor returns to its set-point. The time it takes to reach the steady state is 
about 10 hours. For the rest of the 50 variables that are being monitored, 32 
variables have similar transients that settle in about 10 hours. Detecting and 
diagnosing such a fault should not be a challenging task. 

The (D)PCA-based and CVA-based statistics for fault detection are 
shown in Figures 10.13 and 10.14, respectively. The quantitative fault detec­
tion results are shown in Table 10.1, where it is seen that the (D)PCA-based 
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Fig. 10.8. The (D)PCA multivariate statistics for fault detection for Fault 4 

statistics had a high missed detection rate, and all the CVA statistics had a 
zero missed detection rate. The reason for the apparent poor behavior of the 
(D)PCA-based statistics is clear from plotting the observation variables over 
time. Most variables behaved similarly to Figure 1O.12-they returned to 
their set-points 10 hours after the fault occurred. The (D)PCA-based statis­
tics fail to indicate a fault 10 hours after the fault occurs (see Figure 10.13). 
On the other hand, all the CVA statistics stayed above their thresholds (see 
Figure 10.14). 

The persistence of a fault detection statistic (the CVA statistic in this 
case) is important in practice. At any given time a plant operator has several 
simultaneous tasks to perform and typically does not focus on all tasks with 
the same degree of attentiveness. Also, it usually takes a certain amount 
of time to track down the cause of abnormal process operation. When the 
time to locate the source of a fault is longer than the persistence of the 
fault detection statistic, a plant operator may conclude that the fault has 
"corrected itself" and assume that the process is again operating in normal 
operating conditions. In contrast, a persistent fault detection statistic will 
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Fig. 10.9. The eVA multivariate statistics for fault detection for Fault 4 

continue to inform the operator of a process abnormality although all the 
process variables will appear to have returned to their normal values. 

It is somewhat interesting that examination of the canonical variables 
(JPt) for Fault 5 reveals that the canonical variable corresponding to the 
99th generalized singular value is solely responsible for the out-of-control T; 
values between 10-40 hours after the fault occurred. 

10.5 Case Study on Fault 11 

Similar to Fault 4, Fault 11 induces a fault in the reactor cooling water inlet 
temperature. The fault in this case is a random variation. As seen in Figure 
10.15, the fault induces large oscillations in the reactor cooling water How 
rate, which results in a fluctuation of reactor temperature (see Figure 10.16). 
The other 50 variables are able to remain around the set-points and behave 
similarly as in the normal operating conditions. 

The extent to which the (D)POA-based and OVA-based statistics are 
sensitive to Fault 11 can be examined in Figure 10.17 and Figure 10.18, 
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respectively. The quantitative fault detection results are shown in Table 10.1. 
The (D)PCA-based Q statistics performed better than the (D)PCA-based T2 
statistics. Similarly to Fault 4, the variation in residual space was captured 
better by T; than the CVA-based Q statistic. Overall, the DPCA-based Q 
statistic gave the lowest missed detection rate (see Table 10.1). 

As Fault 11 and Fault 4 affect the same process variable, the fault was 
expected to influence the reactor cooling water flow the most. Similarly to 
Fault 4, the CVA-based RES and the (D)PCA-based statistics gave superior 
results, in terms of correctly identifying the reactor cooling water flow as the 
variable responsible for this fault (see Table 10.3). The improper dominance of 
the observation variables X12, X15, X17, X48, X49, and X52 was again responsible 
for the poor performance of the CVA-based CONT (see Figure 10.19). 

Some fault diagnosis techniques more easily diagnosed Fault 4 while others 
did better diagnosing Fault 11 (see Table 10.2). The lowest misclassification 
rates were provided by the MS Tl, DFDAjDPCA1 T2, and CVA T; statistics, 
all of which take serial correlation into account. It is interesting that 'dynamic' 
versions of PCA which are designed to take serial correlation into account did 
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Fig. 10.11. Comparison of XMV(ll) for Faults 0 and 5 

not provide significantly improved fault diagnosis over their static versions 
for Fault 11. 

10.6 Fault Detection 

The objectives of a fault detection statistic are to be robust to data inde­
pendent of the training set, sensitive to all the possible faults of the process, 
and prompt to the detection of the faults. The robustness of each statistic 
in Table 9.2 is determined by calculating the false alarm rate for the normal 
operating condition of the testing set and comparing it against the level of 
significance upon which the threshold is based. The sensitivity of the statis­
tics is quantified by calculating the missed detection rates for Faults 1-21 of 
the testing set. The promptness of the statistics is based on the detection 
delays for Faults 1-21 of the testing set. 

Prior to applying each of the statistics to the testing set, the parameter 
values associated with each statistic need to be specified. The orders deter-
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45 50 

mined for PCA, DPCA, PLS, and CVA and the number oflags h determined 
for DPCA and CVA are listed in Table 10.4. The orders and the number of 
lags were determined by applying the procedures described in Section 9.5 to 
the pretreated data for the normal operating condition of the training set. 

The probability distributions used to determine the threshold for each 
statistic are listed in Table 9.2. Using a level of significance Q = 0.01, the 
false alarm rates of the training and testing sets were computed and tabu­
lated in Table 10.5. The false alarm rates for the PCA and DPCA-based T2 
statistics are comparable in magnitude to Q = 0.01. The CVA-based statis­
tics and the DPCA-based Q statistic resulted in relatively high false alarm 
rates for the testing set compared to the other multivariate statistics. The 
lack of robustness for T; and T; can be explained by the inversion of Epp 
in (7.40). The high false alarm rate for the DPCA-based Q statistic may be 
due to a violation of the assumptions used to derive the threshold (4.22) (see 
Homework Problem 12 for a further exploration of this issue). 

It would not be fair to directly compare the fault detection statistics in 
terms of missed detection rates when they have such widely varying false 
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Fig. 10.13. The (D)PCA multivariate statistics for fault detection for Fault 5 

Table 10.5. False alarm rates for the training and testing sets 

Method Measures Training Set Testing Set 

PCA T2 0.002 0.014 
PCA Q 0.004 0.016 

DPCA T2 0.002 0.006 
DPCA Q 0.004 0.281 

CVA T2 
8 0.027 0.083 

CVA T.2 r 0 0.126 
CVA Q 0.009 0.087 
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Fig. 10.14. The eVA multivariate statistics for fault detection for Fault 5 

alarm rates. In computing the missed detection rates for Faults 1-21 of the 
testing set, the threshold for each statistic was adjusted to the tenth high­
est value for the normal operating condition of the testing set. The adjusted 
thresholds correspond to a level of significance a = 0.01 by considering the 
probability distributions of the statistics for the normal operating condition. 
For statistics which showed low false alarm rates, the adjustment only shifted 
the thresholds slightly. For each statistic which showed a high false alarm 
rate, the adjustment increased the threshold by approximately 50%. Numer­
ous simulation runs for the normal operating conditions confirmed that the 
adjusted thresholds indeed corresponded to a level of significance a = 0.01. 
It was felt that this adjustment of thresholds provides a fairer basis for the 
comparison of the sensitivities of the statistics. For each statistic, the missed 
detection rates for all 21 faults were computed and tabulated in Table 10.6. 

The missed detection rates for Faults 3, 9, and 15 are very high for all the 
fault detection statistics. No observable change in the mean or the variance 
can be detected by visually comparing the plots of each observation variable 
associated with Faults 3, 9, and 15 to the plots associated with the normal 
operating condition (Fault 0). It is conjectured that any statistic will result 
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Fig. 10.15. Comparison of XMV(lO) for Faults 0 and 11 

in high missed detection rates for those faults, in other words, Faults 3, 9, 
and 15 are unobservable from the data. Including the missed detection rates 
for these faults would skew the comparison of the statistics, and therefore 
these faults are not analyzed when comparing the overall performance of the 
statistics. 

The minimum missed detection rate achieved for each fault except Faults 
3, 9, and 15 is contained in a box in Table 10.6. The T: statistic with the 
threshold rescaled as described above had the lowest missed detection rate 
except for the unobservable Faults 3 and 9. The conclusion that the T: statis­
tic with a scaled threshold will always give lower missed detection rates than 
the other statistics would be incorrect, since another method may be better 
for a different amount of data or a different process. In particular, a fault that 
does not affect the states in the T: statistic will be invisible to this statistic. 
Since many of the statistics have comparable missed detection rates for many 
of the faults, it seems to have an advantage to incorporate the T: statistics 
with other statistics for fault detection. 
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Fig. 10.16. Comparison of XMEAS(9) for Faults 0 and 11 

The eVA-based Q statistic gave missed detection rates similar to those 
from the T; statistic for some faults, but performed more poorly for others. 
Other results, not shown here for brevity, showed that a slight shift in the lag 
order h or state order k can result in a large variation of the eVA-based Q 
statistic. Tweaking these parameters may improve the eVA-based Q statistic 
enough to give fault detection performance more similar to the T; statistic. 

The number of minimums achieved with the residual-based statistics is 
far more than the number of minimums achieved with state- or score-based 
statistics. Residual-based multivariate statistics tended to be more sensitive 
to the faults of the TEP than the state or score-based statistics. The better 
performance of residual-based statistics supports the claims in the literature, 
based on either theoretical analysis [345] or case studies [183], that residual­
based statistics tend to be more sensitive to faults. A comparison of all the 
fault detection statistics revealed that the residual-based T; statistic was 
overall the most sensitive to the faults of the TEP. However, the T; statistic 
was found not to be very robust compared to most of the other statistics, due 
to the inversion of the matrix Epp in (7.40). Also, recall that the threshold 
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Fig. 10.17. The (D)PCA multivariate statistics for fault detection for Fault 11 

used here was rescaled based on the testing set to give a false alarm rate of 
0.01, as described in Section 10.6. The behavior of the T; statistic with the 
threshold (7.44) can give large false alarm rates, as was discussed earlier. 

On average, the DPCA-based statistics were somewhat more sensitive 
to the faults than the PCA-based statistics, although the overall difference 
was not very large. The high false alarm rates found for the DPCA-based Q 
statistic (see Table 10.5) indicate that the threshold (4.22) may need to be 
rescaled based on an additional set of data as was done here. 

Most statistics performed well for the faults that affect a significant num­
ber of observation variables (Faults 1, 2, 6, 7, 8, 14, and 18). In these cases, 
most variables deviated significantly from their distribution in the normal op­
erating conditions. The other faults had a limited number of the observation 
variables deviate from their distribution in the normal operating conditions. 
Detecting such faults is relatively more challenging. 

Since false alarms are inevitable, it is often difficult to determine whether 
the out-of-control value of a statistic is the result of a fault or of a false 
alarm. In order to decrease the rate of false alarms, it is common to show an 
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Fig. 10.18. The eVA multivariate statistics for fault detection for Fault 11 

alarm only when several consecutive values of a statistic have exceeded the 
threshold. In computing the detection delays for the statistics in Table 10.7, 
a fault is indicated only when six consecutive measure values have exceeded 
the threshold, and the detection delay is recorded as the first time instant 
in which the threshold was exceeded. Assuming independent observations 
and Q = 0.01, this corresponds to a false alarm rate of 0.016 = 1 X 10-12 • 

The detection delays for all 21 faults listed in Table 10.7 were obtained by 
applying the same thresholds as used to determine the missed detection rates. 

For the multivariate statistics, a close examination of Tables 10.6 and 10.7 
reveals that the statistics exhibiting small detection delays tend to exhibit 
small missed detection rates and vice versa. Since the detection delay results 
correlate well with the missed detection rate results, all of the conclusions for 
missed detection rates apply here. 
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Fig. 10.19. The average contribution plot for Fault 11 for the eVA-based CONT 

10.7 Fault Identification 

The objective of a fault identification statistic is to identify the observation 
variable(s) most closely related to the fault. The challenge in developing a 
good criterion for comparing the different statistics is choosing which obser­
vation variable(s) is most relevant to diagnosing the fault. This, of course, 
depends on the knowledge and expertise of the plant operators and engineers. 
The only faults investigated here for fault identification are those in which 
a direct and clear link between the fault and an observation variable could 
be determined. The faults investigated in this section for fault identification 
and the observation variables directly related to each fault are listed in Table 
10.8. The ranking of these observation variables for each fault is the criterion 
used to compare the different statistics listed in Table 9.3. 

The statistics investigated in this section are listed in Table 9.3, and the 
parameter values associated with the statistics are listed in Table lOA. The 
rankings of the observation variables listed in Table 10.8 for each statistic 
and fault are contained in Tables 10.9, 10.10, and 10.11. These tables list the 
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Table 10.6. Missed detection rates for the testing set 

Fault PCA PCA DPCA DPCA CVA CVA CVA 
r2 Q r2 Q T2 • r? r Q 

1 0.008 0.003 0.006 0.005 0.001 8 0.003 

2 0.020 0.014 0.019 0.015 0.011 0.026 
3 0.998 0.991 0.991 0.990 0.981 0.986 0.985 

@] -
4 0.956 0.038 0.939 0.688 0 0.975 

~ 
-

~ 5 0.775 0.746 0.758 0.748 0 

6 0.011 

~ 
0.013 ~ 0" 

f-
7 0.085 0.159 0.386 0 0.486 

8 0.034 0.024 0.028 0.025 0.021 om6 0.486 
9 0.994 0.981 0.995 0.994 0.986 0.993 0.993 

10 0.666 0.659 0.580 0.665 0.166 10.0991 0.599 

11 0.794 0.356 0.801 10.1931 0.515 0.195 0.669 

12 0.029 0.025 0.010 0.024 @] 
10&1 

0.021 

13 0.060 0.045 0.049 0.049 0.047 0.055 

14 0.158 @] 0.061 @] @] 0.122 
15 0.988 0.973 0.964 0.976 0.928 0.903 0.979 -
16 0.834 0.755 0.783 0.708 0.166 0.084 0.429 

17 0.259 0.108 0.240 0.053 0.104 D.024 0.138 -
18 0.113 0.101 0.111 0.100 0.094 0.092 0.102 -19 0.996 0.873 0.993 0.735 0.849 0.019 0.923 

20 0.701 0.550 0.644 0.490 0.248 7W87 0.354 
f--

21 0.736 0.570 0.644 0.558 0.440 0.342 0.547 

rankings for the average statistic values over the time periods 0-5 hours, 5-24 
hours, and 24-40 hours, after the fault occurred. A ranking of 1 in the tables 
indicates that the observation variable listed in Table 10.8 had the largest 
average statistic value, and a ranking of 52 indicates that the observation 
variable listed in Table 10.8 had the smallest average statistic value. The 
best ranking for each fault is contained in a box. The results are divided 
into three tables because it is useful to analyze how the proficiencies of the 
statistics change with time. It is best to identify the fault properly as soon as 
it occurs, and therefore the results during the time period 0-5 hours after the 
fault are tabulated separately. The results for the time period between 5-24 
and 24-40 hours after the fault occurred were tabulated separately, because 
this is useful in determining the robustness of the statistics. 

As shown in Tables 10.9-10.11, the (D)PCA-based CONT performed well. 
The better performance of the (D)PCA-based CONT to the (D)PCA-based 
RES suggests that the abstraction of structure provided by peA was even 
more critical to fault identification than fault detection. For the faults where 
fault propagation occurred, the performance of the data-driven statistics de-
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Table 10.7. Detection delays (minutes) for the testing set 

Fault PCA PCA DPCA DPCA CVA CVA CVA 
T2 Q T2 Q T2 s 

T2 
r Q 

1 21 9 18 15 ~ 9 ~ 
2 51 ~ 48 39 39 45 75 
3 - - - - - - -

4 - 9 453 @] 1386 @] -

5 48 3 6 6 3 3 

m 6 30 3 33 3 3 3 
7 3 3 3 3 3 3 
8 69 ~ 69 63 ~ ~ 63 
9 - - - - - - -

10 288 147 303 150 75 ~ 132 
11 912 33 585 [ill 876 33 81 
12 66 24 9 24 6 6 [QJ 
13 147 I Wi 135 120 126 117 129 
14 12 18 [II 6 [II [II 
15 - 2220 - - 2031 - -

16 936 591 597 588 42 27 33 
r---! 

17 87 75 84 72 81 60 69 
18 279 252 279 252 249 Gill 252 
19 - - - 246 - 33 -

20 261 261 267 252 246 am 216 
21 1689 855 1566 858 f8i9l 1533 906 

Table 10.8. The variables assumed to be most closely related to each disturbance 

Fault Process Variable Data Variable Variable Description 
2 XMV,(6J X47 Purge Valve (stream ~~ 
4 XMV(10) XSI Reactor Cooling Water Flow 
5 XMEAS(22) X22 Sep. Cooling Water Outlet Temp 
6 XMV(3) X44 A Feed Flow (stream 1) 
11 XMV(lO) XSI Reactor Cooling Water Flow 
12 XMEAS(22) X22 Sep. Cooling Water Outlet Temp 
14 XMV(lO) X51 Reactor Cooling Water Flow 
21 XMV(4) X45 A, B, and C Feed Flow (stream 4) 
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Table 10.9. The rankings for the time period 0-5 hours after the fault occurred 

Fault PCA PCA DPCA DPCA CVA CVA 
CaNT RES caNT RES caNT RES 

2 m 4 m 5 10 m 4 [!] ~ 10 
5 12 21 11 15 11 

6 

~ 
6 3 2 6 6 

11 [!] 

~ 
[!] 10 [!] 

12 6 3 10 14 
14 2 2 2 11 m 
21 52 40 48 48 52 52 

Table 10.10. The rankings for the time period 5-24 hours after the fault occurred 

Fault PCA PCA DPCA DPCA CVA CVA 
CaNT RES caNT RES caNT RES 

2 m 5 m 7 10 3 
4 [!] [!] 12 [!] 
5 31 34 30 31 [m 14 
6 5 52 8 45 8 rn 11 rn [!] 

~ 
[!] 13 

12 12 3 13 24 
14 2 2 2 10 m 
21 52 46 51 51 52 52 

Table 10.11. The rankings for the time period 24-40 hours after the fault occurred 

Fault PCA PCA DPCA DPCA CVA CVA 
CaNT RES caNT RES caNT RES 

2 2 5 3 12 10 4 
'--

[!] [!] [!] [!] 4 1 11 
5 g- 35 14 30 16 16 

- m 6 7 51 11 45 3 
11 [!] [!] 

ill 
[!] 13 [!] 

12 10 21 36 17 26 
14 2 2 2 11 m 
21 52 48 52 52 52 50 
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teriorated as the effect of the fault evolved. Robustness may be achieved by 
applying model-based fault identification statistics that are able to take into 
account the propagation of the fault (see Chapter II). 

All fault identification statistics performed poorly for Fault 21 (see Tables 
10.9-1O.11). The AlBIC feed flow valve for Stream 4 was fixed at the steady 
state position (see Figure 8.1). The valve was stuck, indicating that the sig­
nals from this valve were constant, which corresponds to zero variance. The 
RES and CO NT-based statistics had great difficulty identifying the AlBIC 
feed flow as the variable associated with the fault because these statistics are 
designed to detect positive shift in variance only. This illustrates the impor­
tance in such cases of implementing statistics such as Equation 4.29 which 
can detect a negative shift in variance. This type of statistic implemented in 
the appropriate manner would have detected Fault 21 rather easily. In gen­
eral it is suggested that such a statistic should be applied to each process 
variable, with the 0: level set to keep the false alarm rate low. 

The performance of a fault identification statistic can significantly de­
teriorate over time for faults whose effects on the process variables change 
over time. For instance, the effect of Fault 12 propagates over the interval 5 
to 40 hours after the fault occurred. As a result, there is only one statistic 
producing a ranking below 10 in Table 10.11 while all but one statistic pro­
duced a ranking at or above 10 in Table 10.9. For Fault 6, the performance of 
the (D}PCA-based fault identification statistics substantially degraded over 
time, while the performance of the eVA-based statistics actually improved. 

10.8 Fault Diagnosis 

Assuming that process data collected during a fault are represented by a 
previous fault class, the objective of the fault diagnosis statistics in Table 9.4 
is to classify the data to the correct fault class. That is, a highly proficient 
fault diagnosis statistic produces small misclassification rates when applied to 
data independent of the training set. Such a statistic usually has an accurate 
representation of each class, more importantly such a statistic separates each 
class from the others very well. Recall that all the methods listed in Table 
9.4 are based on supervised classification. For the discriminant PLS, PCA1, 
MS, and FDA methods, one model is built for all fault classes. For the other 
methods listed in Table 9.4, a separate model is built for each fault class. The 
proficiencies of the statistics in Table 9.4 are investigated in this section based 
on the misclassification rates for Faults 1-21 of the testing set. The parameters 
for each statistic were determined from Faults 1-21 of the training set. The 
lags and orders associated with the statistics are listed in Table 10.4. 

The overall misclassification rate for each statistic when applied to Faults 
1-21 of the testing set is listed in Table 10.12. For each statistic, the mis­
classification rates for all 21 faults were computed and tabulated in Tables 
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10.13-10.20. The minimum misclassification rate achieved for each fault ex­
cept Faults 3, 9, and 15 is contained in a box. 

Table 10.12. The overall rnisclassification rates 
Method Basis Misclassification 

Rate 

PCArn T2 0.742 
PCAI T2 0.212 
PCArn Q 0.609 
PCArn T2 &Q 0.667 

DPCArn T2 0.724 
DPCArn Q 0.583 
DPCArn T2&Q 0.662 

PLSI - 0.565 
PLS2 - 0.567 

PLSla dj - 0.576 
PLS2adj - 0.574 

CVA T; 0.501 
CVA T.2 r 0.213 
CVA Q 0.621 

FDA T2 0.195 
FDA/PCA1 T2 0.206 
FDA/PCA2 T2 0.195 

DFDA/DPCA1 T2 0.192 

MS T6 0.214 
MS Tt 0.208 

When applying the fault diagnosis statistics, it was assumed that the a 
priori probability for each class i was equal to P(Wi) = l/p where p = 21 
is the number of fault classes. DFDAjDPCAl produced the lowest overall 
misclassification rate (0.192), followed by the rest of the FDA-based meth­
ods, as shown in Table 10.12. The CVA-based T;, PCA1, and MS statistics 
produced comparable overall misclassification rates. 

To compare the FDA/PCA1 and FDA/PCA2 methods for diagnosing 
faults, the overall misclassification rates for the training and testing sets and 
the information criterion (5.12) are plotted for various orders using FDA, 
FDA/PCA1, and FDA/PCA2 (see Figures 10.20, 10.21, and 10.22), respec­
tively. The overall misclassification rates for the testing set using FDA/PCA1 
and FDA/PCA2 was lower than that of the FDA for most orders a ~ p. The 
performance of FDA/PC Al and FDA/PCA2 was very similar, indicating that 



T
a

b
le

 1
0

.1
3

. 
T

h
e 

rn
is

cl
as

si
fi

ca
ti

on
 r

at
es

 f
or

 0
-4

0 
ho

ur
s 

af
te

r 
th

e 
F

au
lt

s 
1-

21
 o

cc
ur

re
d 

F
au

lt
 

P
C

A
rn

 
P

C
A

1
 

P
C

A
rn

 
P

C
A

rn
 

D
P

C
A

rn
 

D
P

C
A

rn
 

D
P

C
A

rn
 

C
V

A
 

C
V

A
 

T
2 

T
2 

Q
 

T
2

&
Q

 
T

2 
Q

 
T

2
&

Q
 

T
2 s 

r2
 

r 

1 
0

.6
8

0
 

0
.0

2
4

 
0

.0
2

8
 

0
.0

4
1

 
0

.8
8

0
 

0
.0

3
5

 
0

.0
3

8
 

0
.0

2
8

 
0

.0
2

6
 

2 
0.

41
0 

0.
Q

18
 

0.
02

4 
0.

03
5 

0.
44

1 
0.

06
0 

0.
03

4 
10

.0
10

1 
0.

09
0 

3 
0.

93
9 

0.
78

3 
0.

99
1 

1.
00

0 
0.

70
1 

0.
99

5 
1.

00
0 

0.
94

0 
0.

82
1 

4 
0

.8
1

0
 

0
.1

6
3

 
0

.9
5

1
 

1
.0

0
0

 
0

.7
2

0
 

0
.9

6
4

 
1

.0
0

0
 

0
.9

8
1

 
0

.3
5

8
 

5 
0

.9
5

6
 

0
.0

2
1

 
0

.9
1

3
 

0
.9

7
3

 
0

.8
7

4
 

0
.8

5
6

 
1

.0
0

0
 

0
.0

6
1

 
0

.0
4

0
 

6 
0.

10
0 

~ 
0.

05
0 

0.
07

6 
0.

04
9 

0.
06

3 
0.

08
9 

0.
00

1 
0.

00
1 

7 
0.

97
8 

0.
40

5 
0.

49
6 

0.
86

8 
0.

33
6 

0.
63

3 
0.

63
8 

0.
00

1 
8 

0.
99

8 
0.

03
0 

0.
27

0 
0.

40
9 

1.
00

0 
0.

17
0 

0.
39

8 
0.

51
8 

0.
05

5 
9 

0.
99

3 
0.

77
9 

0.
99

5 
1.

00
0 

0.
98

8 
0.

99
8 

1.
00

0 
0.

96
9 

0.
84

8 
10

 
0.

84
9 

0.
12

6 
0.

98
8 

1.
00

0 
0.

74
3 

0.
99

5 
1.

00
0 

0.
74

5 
0.

09
8 

1
1

 
0

.9
8

9
 

0
.2

3
4

 
0

.8
5

9
 

0
.9

6
8

 
0

.9
4

8
 

0
.8

4
3

 
0

.9
8

3
 

0
.9

0
4

 
0

.1
3

9
 

12
 

0.
85

0 
0.

02
1 

0.
21

6 
0.

20
4 

0.
70

0 
0.

20
3 

0.
21

5 
0.

00
9 

0.
02

0 
13

 
1.

00
0 

0.
23

5 
0.

50
1 

0.
75

4 
1.

00
0 

0.
44

1 
0.

72
1 

0.
49

5 
0.

32
8 

14
 

0.
24

4 
0.

03
6 

0.
27

3 
0.

43
8 

0.
56

4 
0.

11
0 

0.
15

3 
0.

20
3 

0.
00

1 
15

 
0.

96
3 

0.
76

8 
0.

99
4 

1.
00

0 
0.

96
4 

0.
99

6 
1.

00
0 

0.
96

4 
0.

66
6 

16
 

0.
84

1 
0.

20
0 

0.
98

4 
1.

00
0 

0.
80

1 
0.

98
9 

1.
00

0 
0.

56
8 

10
.1

45
1 

17
 

0.
56

3 
0.

19
3 

0.
41

5 
0.

41
3 

0.
64

8 
0.

32
0 

0.
40

3 
0.

21
8 

0.
63

8 
18

 
0.

36
0 

0.
41

0 
0.

39
3 

0.
32

4 
0.

29
4 

0.
39

5 
0.

29
8 

0.
54

0 
10

.1
34

1 
19

 
0.

40
1 

0.
12

4 
0.

65
1 

0.
87

6 
0.

78
9 

0.
56

4 
0.

95
6 

0.
47

0 
0.

00
5 

20
 

0.
76

1 
0.

14
3 

0.
91

6 
1.

00
0 

0.
70

8 
0.

94
8 

1.
00

0 
0.

30
6 

10
.0

90
1 

21
 

0.
89

9 
0.

13
8 

0.
97

9 
1.

00
0 

0.
52

9 
0.

95
3 

1.
00

0 
0.

94
8 

0.
61

1 
ov

er
al

l 
0.

74
2 

0.
21

2 
0.

60
9 

0.
66

7 
-
-
-
-
-
-
-
-
~
-

0.
72

4 
0.

58
3 

0.
66

2 
0.

50
1 

0.
21

3 

C
V

A
 

Q
 

0
.2

4
5

 
0.

15
5 

0.
97

8 
0

.8
9

0
 

0
.1

7
4

 
0.

01
4 

0.
57

8 
0.

67
0 

0.
96

9 
0.

81
6 

0
.9

0
1

 
0.

29
4 

0.
59

1 
0.

45
0 

0.
98

4 
0.

85
9 

0.
21

7 
0.

82
9 

0.
92

9 
0.

58
8 

0.
92

4 
0.

62
1 

.....
. 
~
 

0
0

 

.....
. 
~
 

~
 '" g. '"'" '" 8. t:J
 

~.
 

>::
 '" '" o· ::s 



T
a
b

le
 1

0
.1

4
. 

T
h

e 
m

is
cl

as
si

fi
ca

ti
on

 r
at

es
 f

or
 0

-4
0 

ho
ur

s 
af

te
r 

th
e 

F
au

lt
s 

1-
21

 o
cc

ur
re

d 

F
au

lt
 

P
L

S
1 

P
L

S
2 

P
L

S
1"

dj
 

P
L

S
2"

dj
 

F
E

A
 

F
E

A
jP

C
A

1
 

F
E

A
7

p
C

A
2

 
D

F
E

A
jD

P
C

A
1

 
-

-
-

-
T2

 
T2

 
T2

 
T2

 

1 
10

•0
1

31
 

10
.0

13
1 

0
.0

1
9

 
0

.0
1

9
 

0
.0

2
5

 
0

.0
2

4
 

0
.0

2
5

 
0

.0
2

6
 

2 
0.

01
4 

0.
02

4 
0.

02
4 

0.
02

4 
0.

01
9 

0.
01

9 
0.

01
9 

0.
01

9 
3 

0.
96

1 
0.

97
0 

0.
86

9 
0.

87
6 

0.
78

0 
0.

73
4 

0.
78

0 
0.

73
5 

4 
0

.1
7

0
 

10
.1

1
9

1 
0

.3
6

4
 

0
.3

2
0

 
0

.1
7

6
 

0
.1

6
3

 
0

.1
7

6
 

0
.1

5
9

 

5 
10

.0
0

6
1 

0
.0

0
8

 
0

.0
4

4
 

0
.0

4
3

 
0

.0
2

0
 

0
.0

2
0

 
0

.0
2

0
 

0
.0

2
3

 

6 
0.

43
5 

0.
77

8 
0.

83
4 

0.
83

1 

I of
fia 

I 
~ 

loW
al 

~ 
7 

@
] 

@
] 

@
] 

0.
00

1 

8 
0.

85
1 

0.
78

9 
0.

84
8 

0.
85

0 
0.

00
4 

0.
02

6 
9 

0.
98

1 
0.

98
1 

0.
89

9 
0.

91
5 

0.
77

3 
0.

78
0 

0.
77

3 
0.

80
1 

10
 

0.
66

1 
0.

59
1 

0.
58

6 
0.

56
9 

0.
13

1 
0.

15
8 

0.
13

1 
0.

10
1 

1
1

 
0

.9
8

9
 

0
.9

7
9

 
0

.8
5

9
 

0
.8

8
6

 
0

.2
4

5
 

0
.2

4
4

 
0

.2
4

5
 

1
0

.1
1

8
 
I 

12
 

0.
98

8 
0.

95
3 

0.
86

9 
0.

86
6 

0.
01

8 
0.

01
6 

0.
01

8 
0.

03
0 

13
 

0.
64

6 
0.

62
5 

0.
75

1 
0.

73
8 

0.
23

9 
0.

24
6 

0.
23

9 
0.

22
9 

14
 

0.
99

5 
0.

99
8 

0.
93

1 
0.

93
0 

0.
01

3 
0.

01
3 

0.
01

3 
0.

00
4 

15
 

0.
98

8 
0.

98
1 

0.
92

6 
0.

92
5 

0.
76

4 
0.

78
0 

0.
76

4 
0.

78
4 

16
 

0.
89

4 
0.

66
0 

0.
65

8 
0.

55
8 

0.
19

3 
0.

18
4 

0.
19

3 
0.

21
8 

17
 

0.
14

6 
0.

16
4 

0.
38

8 
0.

37
8 

0.
15

0 
0.

14
5 

0.
15

0 
0.

04
3 

18
 

0.
77

5 
0.

84
3 

0.
83

9 
0.

79
6 

0.
31

5 
0.

39
9 

0.
31

5 
0.

15
4 

19
 

0.
91

3 
0.

94
5 

0.
80

0 
0.

77
8 

0.
03

9 
0.

05
5 

0.
03

9 
0.

14
2 

20
 

0.
33

4 
0.

27
4 

0.
50

9 
0.

52
5 

0.
12

6 
0.

12
5 

0.
12

6 
0.

17
6 

21
 

0.
09

8 
0.

09
6 

0.
06

8 
0.

06
6 

0.
04

4 
0.

19
8 

0.
03

0 
0.

26
1 

ov
er

al
l 

0.
56

5 
0.

56
8 

0.
57

6 
0.

57
4 

0.
19

5 
0

.2
0

£
_

 
0.

19
5 

0.
19

2 

M
S

 
T~

 
0

.0
2

5
 

0.
01

9 
0.

78
0 

0
.1

7
6

 

0
.0

2
0

 

~ 0.
03

0 
0.

77
3 

0.
13

1 
0

.2
4

5
 

0.
01

8 
0.

23
9 

0.
01

3 
0.

76
4 

0.
19

3 
0.

15
0 

0.
75

0 
0.

03
9 

0.
12

6 
0.

00
4 

0.
21

4 

M
S

 
T{

 
0

.0
3

5
 

0.
03

3 
0.

88
6 

0
.4

2
7

 

0
.0

4
0

 

~ 0.
01

9 
0.

87
2 

10
.0

98
1 

0
.1

2
1

 
Q

.O
o5

 
1
0

. 2
08

 
1
0

. 0
01

 
'0.

72
5 

0.
25

5 

10
.0

38
1 

0.
43

1 

10
.0

03
1 

0.
15

8 

ro.
Oo

3l 
0.

20
8 

.....
. 

o 00
 

~
 =
 

:;+
 

tJ
 i· fA

· 

.....
. ~
 



150 10. Results and Discussion 

0.6 

'" 1ii a: 
50.5 

~ 
~ 
Xl 0.4 
}i 
::; 

0.3 

0.2 

0.1 

" 

FDA 

- - Training Set 
- Ale 

- Testing Set 

OL-___ -L ____ L-___ -L ____ L-___ -L ___ ~ 

o 10 20 30 
Order 

40 50 60 

Fig. 10.20. The overall misclassification rates for the training and testing sets and 
the information criterion (Ale) for various orders using FDA 

using PCA1 to rank the m - p + 1 eigenvectors corresponding to the zero 
eigenvalues in FDA is a reasonable approach. A close comparison of Figures 
10.21 and 10.22 indicates that for 20 ::; a ::; 48, the overall misclassification 
rate for the testing set using FDA/PCA1 is lower than FDA/PCA2. Because 
of this advantage of using FDA/PCA1 over FDA for this problem, lag vari­
ables will be included only on the data for FDA/PCA1 when investigating 
the proficiency of the methods for removing serial correlations of the data. 

To evaluate the potential advantage of including lagged variables in 
FDA/PCA1 to capture correlations, the overall misclassification rates for the 
training and testing sets and the information criterion (5.12) are plotted for 
various orders using FDA/PCA1 and DFDA/DPCA1 (see Figures 10.21 and 
10.23), respectively. FDA/PCA1 and DFDA/DPCA1 select excellent vectors 
for projecting to a lower-dimensional space for small a. Figures 10.21 and 
10.23 show that most of the separation between the fault classes occurs in 
the space provided by the first 13 generalized eigenvectors. The misclassifi­
cation rate with a = 13 for FDA/peAl is 0.33 and DFDA/DPCA1 is 0.34. 
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Fig. 10.21. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using FDA/PCA1 

The FDA/PCA and DFDA/DPCAl-based statistics were able to separate 
the fault classes well for the space spanned by the first p - 1 generalized 
eigenvectors. The proficiency was slightly increased as the dimensionality 
was increased further for FDA/PCAI and DFDA/DPCAl. DFDA/DPCAI 
produced the lowest overall misclassification rate among all of the fault di­
agnosis methods investigated in this chapter. Including lagged variables in 
FDA/PCAI can give better fault diagnosis performance. The advantage be­
comes especially clear when DFDA/DPCAI is applied to a system with a 
short sampling time (see Homework Problem 11). 

The information criterion performed relatively well, as the slope of the 
misclassification rate of the testing set is fairly equivalent to the slope of the 
information criterion for a = 15 to 50 in Figures 10.20-10.23. The AIC cap­
tures the shape and slope of the misclassification rate curve for the testing 
data. The AIC weighs the prediction error term and the model complexity 
term fairly. If one desires to have a lower-dimensional FDA model for diag-
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Fig. 10.22. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using FDA/PCA2 

nosing faults, the model complexity term can be weighed more heavily (see 
Homework Problem 5). 

Figure 10.24 plots the overall misclassification rates for the training and 
testing sets and the information criterion (5.12) for various orders using PLS1 
and PLS2. The reduction order c is the point at which the information crite­
rion is minimized. The reduction order for each class in PLS1 is Cl = 13 and 
the reduction order for PLS2 C2 = 45. In general, the overall misclassification 
rate of PLS1 is lower than that of PLS2 for a fixed order, especially when 
a < Cl' Also, the performance of PLS 1 is less sensitive to order selection than 
PLS2. The misclassification rate on average is the same for the best reduction 
orders for PLS1 and PLS2, as shown in Table 10.12. 

Figure 10.25 plots the overall misclassification rates for the training and 
testing sets and the information criterion (5.12) for various orders using 
PLS1adj and PLS2adj. Figures 10.24 and 10.25 show similar trends. Regard­
less of order selected, PLS1adj performs better than PLS2adj in terms of lower 
overall misclassification rates. The reduction orders that minimize the Ale 
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Fig. 10.23. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using DFDA/DPCA1 

(5.12) for PLS1adj and PLS2a dj are 16 and 41, respectively, which are close 
to the orders for PLS1 and PLS2 (Cl and C2), respectively. In terms of over­
all misclassification rates, PLS1adj and PLS2adj have similar performance to 
PLS1 and PLS2, respectively. For a fixed model order, the PLS1 methods 
almost always gave better fault diagnosis than the PLS2 methods. The per­
formance of the PLS1 methods was also less sensitive to order selection than 
the PLS2 methods, and with the AIC resulting in lower model orders (see 
Table 10.4). 

The information criterion worked fairly well for all discriminant PLS 
methods. The overall misclassification rate for the testing set with the re­
duction order using the information criterion for PLS1adj is 0.58 while that 
for the other three PLS methods is 0.57. The minimum overall misclassifica­
tion rate for the testing set is 0.56 for PLS1a dj and PLS2a dj and 0.55 for PLS1 
and PLS2. The AIC curves (see Figures 10.24 and 10.25) nearly overlap the 
misclassification rate curves for PLS2 and adjusted PLS2, which indicates 
that the AIC will give similar model orders as cross-validation in these cases. 
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Fig. 10.24. The overall misclassification rates for the training and testing sets and 
the information criterion (Ale) for various orders using PLS1 and PLS2 

For PLS1 and adjusted PLS1, the AlC does not overlap with the classification 
rate curves, but does have a minimum at approximately the same order as 
where the misclassification rate curves for the testing data flatten out. This 
indicates that the AlC provided good model orders for the PLS1 methods. 

Figure 10.26 plots the overall standard deviation of misclassification rates 
for the testing sets for various orders using PLS1, PLS2, PLS1adj, and 
PLS2adj . The standard deviations for PLS1adj and PLS2adj were 10-25% lower 
than that of PLS1 and PLS2 (respectively) for most orders. This indicates 
that PLS1adj and PLS2adj provided a more consistent prediction quality than 
PLS1 and PLS2. For example, 7 of 21 classes had misclassification rates be­
tween 0.90 to 1.00 using PLS1 and PLS2, respectively (see Table 10.14). 
However, only 2 of 21 classes were between 0.90 and 1.00 using PLS1adj 
and PLS2adj and the highest misclassification rate was 0.93. This also means 
that when PLS1 and PLS2 produced low misclassification rates, PLS1adj 
and PLS2adj tended to produce higher misclassification rates. There was an 
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Fig. 10.25. The overall misclassification rates for the training and testing sets and 
the information criterion (Ale) for various orders using PLS1adj and PLS2adj 

advantage to apply PLSladj and PLS2adj when PLSI and PLS2 performed 
poorly. 

Although PLSI was able to capture a large amount of variance using 
only a few factors, it does require more computation time. Recall that in the 
calibration steps, PLSI needs to run the NIPALS p times whereas PLS2 only 
needs to run the NIPALS one time, and that NIPALS runs from (6.10) to 
(6.20) for each PLS component. Since iteration from (6.10) to (6.13) is needed 
for PLS2, NIPALS requires a longer computation time in PLS2. Assume that 
it takes tl computation time to run from (6.22) to (6.27) for PLSl, and that 
it takes PLS2 tl + E computation time. The total computation time ttrain 
in the calibration steps is equal to patl and a(tl + E) for PLSI and PLS2, 
respectively, where a = min(m, n). In the prediction steps, assume it takes 
t2 computation time unit to run from (6.30) to (6.32), and that the total 
computation time ttest in the prediction step is equal to pc1t2 and C2t2 for 
PLSI and PLS2, respectively. The ratio Tt of the total computation time 
between PLSI and PLS2 is 
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Fig. 10.26. The standard deviation of misclassification rates for the testing set for 
various orders using PLS1, PLS2, PLS1adj, and PLS2adj 

(10.1) 

This ratio is much greater than 1 when p is large. 
The overall misclassification rates for the training and testing sets and 

the information criterion (5.12) for various orders using peAl are plotted in 
Figure 10.27. At a = 52, the overall misclassification rates for the T2 statistics 
based on peAl and MS were the same (0.214). This verifies the discussion 
in Section 4.6 that peAl reduces to MS when a = m. Regardless of order 
selected, all FDA methods always gave a lower overall misclassification rate 
than peAl (see Figure 10.20, 10.21, and 10.27). This suggests that FDA 
model has an advantage over peA model for diagnosing faults. 

It is interesting to see that when all of the factors are included in the 
FDA methods, the overall misclassification rates were about 0.20, which were 
different from the overall misclassification rate produced by MS. This is be­
cause, when a = m, the matrices Wa in (5.16) and Wmiz,a in (5.17) are not 
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necessarily orthogonal, and so may not project the data into an orthogonal 
space. 
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Fig. 10.27. The overall misclassification rates for the training and testing sets and 
the information criterion (AIC) for various orders using PCA1 

The PCAm-based and DPCAm-based statistics produced high overall 
misclassification rates (see Table 10.12). A weakness of the PCAm-based 
statistics is that PCAm reduces the dimensionality of each class by using the 
information in only one class but not the information from all the classes. 
As shown in Table 10.13, the T2 statistic based on PCA1 gave a much lower 
misclassification rate than the statistic based on PCAm for almost all faults. 

Now let us consider the PCA, DPCA, and CVA fault diagnosis statistics, 
all of which separate the dimensionality into a state or score space, and a 
residual space. For some faults the state or score space version of the statistic 
gave lower misclassification rates; in other cases the residual space statistics 
gave lower misclassification rates. Hence, a complete fault diagnosis approach 
should contain score/state space and residual statistics. 
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The misclassification rates for the 21 faults were separated into three 
time periods after the occurrence of the fault (0-5, 5-24, and 24-40 hours), 
and have been tabulated in Tables 10.15 to 10.20. These tables indicate that 
each fault diagnosis statistic gives the lowest misclassification rate for some 
choice of fault and time period. There is no single fault diagnosis statistic 
that is optimal for all faults or all time periods. 

Fault 6 is one of the more interesting faults, so it will be investigated 
in more detail here. For the time period 0-5 hours after the fault occurred, 
only the (D)PCAm-based statistics had high misclassification rates (see Table 
10.15). For the time period 5-24 hours after the fault occurred, the (D)PCAm­
based statistics have low misclassification rates, while the discriminant PLS 
methods have high misclassification rates (see Table 10.17). For the time 
period 24-40 hours after the fault occurred, each fault diagnosis technique 
has a zero misclassification rate except for the discriminant PLS methods, 
which have nearly 100% misclassification. 

The very poor behavior of the discriminant PLS method for Fault 6 af­
ter t = 5 hours is somewhat surprising when studying the extreme process 
behavior caused by the fault. For Fault 6, there is a feed loss of A in Stream 
1 at t = 8 hours (see Figures 8.1 and 10.28), the control loop on Stream 1 
reacts to fully open the A feed valve. Since there is no reactant A in the feed, 
the reaction will eventually stop. This causes the gaseous reactants D and E 
build up in the reactor, and hence the reactor pressure increases. The reactor 
pressure continues to increase until it reaches the safety limit of 2950 kPa, at 
this point the valve for Control Loop 6 is fully open. Clearly, it is very impor­
tant to detect this fault promptly before the fault upsets the whole process. 
While the discriminant PLS methods were able to correctly diagnose Fault 
6 shortly after the fault, its diagnostic ability degraded nearly to zero once 
the effects of the fault worked their way through the system (which occurs 
approximately at t = 8 + 5 = 13 hours, see Figure 10.28). 

For these data sets it was found that the FDA-based methods gave the 
lowest misclassification rates averaged over all fault classes (see Table 10.12), 
and that the MS, PCA1, and CVA T; statistics gave comparable overall mis­
classification rates as the FDA methods. Based only on this information, one 
might hypothesize that dimensionality reduction techniques are not useful 
for fault diagnosis as their performance is very similar to MS. However, this 
conclusion would be incorrect, even for this particular application. For partic­
ular faults and particular time periods, substantially lower misclassification 
rates were provided by the statistics that used dimensionality reduction (see 
Tables 10.15 to 10.20). For example, 24-40 hours after Fault 18 occurred, two 
dimensionality reduction statistics resulted in a zero misclassification rate 
while one MS statistic had a 70% misclassification rate and the other had a 
100% misclassification rate (see Table 10.20). 

There are several general reasons that fault diagnosis statistics based on 
dimensionality reduction are useful in practice. First, there are inherent lim-
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Fig. 10.2S. Closed loop simulation for a step change of A feed loss in Stream 1 
(Fault 6) 

itations due to round-off errors that usually prevent the construction of full­
dimensional models for large-scale systems such as industrial plants. Second, 
there can be limitations on the size of the models used by process monitoring 
methods that can be implemented in real time on the computer hardware 
connected to a particular process. While this limitation is becoming less of 
an issue over time, the authors are aware of industrial control systems still 
using older control computers. 

The main reason for dimensionality reduction is based on the amount 
of data usually available in practice that has been sufficiently characterized 
for use in process monitoring. This data, for example, should be cleaned 
of all outliers caused by computer or database programming errors [255]. 
For the application of fault diagnosis methods it is required to label each 
observation as being associated with normal operating conditions or with 
a particular fault class. These requirements can limit the available training 
data, especially for the purposes of computing fault diagnosis statistics, to 
less than what was used in this chapter. 
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To illustrate the relationship between data dimensionality and the size 
of the training set, 100 data points were collected for each fault class in the 
training set (for all other simulations shown in this chapter, 500 data points 
were collected in the training sets). The overall misclassification rates for 
the training and testing sets and the information criterion (AIC) for various 
orders using PCAI are plotted in Figure 10.29. Although the misclassification 
rates reduced nearly to zero as a goes to 52 for the training set, the overall 
misclassification rates for the testing set were very high as compared to Figure 
10.27. Recall that PCAI reduces to the MS statistic when a = 52, this shows 
that the MS statistic gives a higher overall misclassification rate for many 
reduction orders (a = 20 to 45, as seen in Figure 10.29). In the case where 
the number of data points in the training set is insufficient (the usual case in 
practice), errors in the sample covariance matrix will be significant. In such 
cases there is an advantage to using dimensionality reduction techniques. The 
relationship between reduction order and the size of the training set is further 
investigated in Homework Problem 11. 

The purpose of dimensionality reduction techniques (PCA, FDA, PLS, 
and CVA) is to reduce the dimensions of the data while retaining the 
most useful information for process monitoring. In most cases, the lower­
dimensional representations of the data will improve the proficiency of de­
tecting and diagnosing faults. 

10.9 Homework Problems 

1. A co-worker at a major company suggested that false alarms were not an 
issue with fault identification and that it may be useful to apply all the 
scores (not just the first a scores) for the PCA, DPCA, and CVA-based 
CONT as shown in Section 4.5. Evaluate the merits of the proposal. 
Apply this idea to the data collected from the Tennessee Eastman plant 
simulator (http://brahms . ses. uiue. edu). What are your conclusions? 

2. Apply the similarity index (4.41) and mean overlap (4.42) to the data 
collected from the Tennessee Eastman plant simulator. Relate your re­
sults with these two measures with the misclassification rates of the fault 
diagnosis statistics as reported in this chapter. Do the similarity index 
and mean overlap assess the likelihood of successful diagnosis? Explain 
in detail why one measure performs better than the other. 

3. As discussed in Chapter 5, (D )FDA only ranks the eigenvectors associ­
ated with the non-zero eigenvalues. Propose a method other than PCAI 
to rank the eigenvectors associated with the zero eigenvalues. Evaluate 
your proposal using the data collected from the Tennessee Eastman plant 
simulator. 

4. In addition to the original 21 faults for the TEP, simulate 39 additional 
multiple faults (combination of two faults) of your choice. Apply FDA, 
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the information criterion (AIC) for various orders using PCA1 with 100 data points 
in the training set 

FDA/PCA1, FDA/PCA2, and their corresponding dynamic version to 
diagnose these 60 faults and comment on your findings. 

5. A co-worker at a major company proposed to modify the model complex­
ity term in the information criterion (5.12) to 1.5a/ii. Based only on the 
performance as given by Figure 10.23 which was obtained by an applica­
tion of the original information criterion (5.12) to a simulated industrial 
plant, evaluate the relative merits of the co-worker's proposal. Another 
co-worker suggested to modify the model complexity term in the infor­
mation criterion (5.l2) to a/no Evaluate the relative merits of the second 
proposal. Based on Figure 10.23, propose a modification of the model 
complexity term which will give the best results for the simulated indus­
trial plant. How well does your modified model complexity term perform? 
[Note that designing the best information criterion for one specific pro­
cess application does not necessarily give the best possible information 
criterion for other process applications.] 
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6. Formulate dynamic discriminant PLS for diagnosing faults. Apply this 
approach to the data collected from the Tennessee Eastman plant sim­
ulator. Compare the results with the discriminant PLS results as shown 
in this chapter. Does dynamic discriminant PLS perform better? 

7. Discuss the effect of lag order h and state order k selection on the fault 
detection performance using all the CVA statistics. Apply the Q, T;, and 
T; statistics for fault detection to the data collected from the Tennessee 
Eastman plant simulator. Now, perturb hand k from their optimal val­
ues. Report on your results. Which statistic deviates the most? Why? 

8. Describe in detail how to formulate CVA for fault diagnosis. Apply these 
techniques to the data collected from the Tennessee Eastman plant sim­
ulator. How do these fault diagnosis results compared with the results 
reported in this chapter? 

9. Write a report describing in detail how to implement PCA and PLS with 
EWMA and CUSUM charts to detect faults. Apply this technique to the 
data collected from the Tennessee Eastman plant simulator. Compare the 
results with the DPCA results as shown in this chapter. Which technique 
seems to capture the serial correlations of the data better? Justify your 
findings. List an advantage and disadvantage of using each technique. 

10. A co-worker proposed to average each measurement over a period of time 
before applying the data to the process monitoring algorithms. Evaluate 
the merits of this "moving window" proposal and apply the approach 
to PCA, DPCA, and CVA for fault detection using the data collected 
from the Tennessee Eastman plant simulator. Investigate the effect of the 
number of data points used in the averaging on the process monitoring 
performance. Was it possible to improve on DPCA and CVA using this 
approach? Justify your answers. 

11. Evaluate the effects of the size of training set and the sampling interval 
on the reduction order and process monitoring performance. Construct 
training and testing data sets for the TEP using (i) 150 points with a 
sampling interval of 10 minutes, (ii) 1500 points with a sampling interval 
of 1 minute, and (iii) 1500 points with a sampling interval of 10 minutes. 
Implement all process monitoring statistics described in this book. How 
is the relative performance of each process monitoring statistic affected? 
Why? How is the reduction order affected? Compare the techniques in 
terms of the sensitivity of their performance to changes in the size of the 
training set and the sampling interval. 

12. While the threshold for the Q statistic (Equation 4.22) is widely used in 
practice, its derivation relies on certain assumptions that are not always 
true (as mentioned in Section 10.6). Write a report on the exact distri­
bution for Q and how to compute the exact threshold for the Q statistic. 
Under what conditions is Equation 4.22 a valid approximation? Would 
these conditions be expected to hold for most applications to process 
data collected from large-scale industrial plants? (Hint: Several papers 
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that describe the exact distribution for Q are cited at the end of the 
paper by Jackson and Mudholkar [145].) 



Part V 

Analytical and Knowledge-based Methods 



11. Analytical Methods 

11.1 Introduction 

As discussed in Section 1.2, process monitoring measures can be character­
ized as being data-driven, analytical, or knowledge-based. Part III focused 
mostly on the data-driven methods, which include control charts (Shewhart, 
CUSUM, and EWMA charts) and dimensionality reduction techniques (PCA, 
PLS, FDA, and CVA). A well-trained engineer should also have some famil­
iarity with the analytical and knowledge-based approaches since they have 
advantages for some process monitoring problems. Also, many measures can 
be associated with more than one approach. For example, the CVA method, 
while being entirely data driven, can also be characterized as being an analyt­
ical method since a state-space model can be constructed from the Kalman 
states (see Chapter 7). Other measures at the intersection of more than one 
approach are discussed in Chapter 12. 

Based on the measured input u and output y, the analytical methods gen­
erate features using detailed mathematical models. Commonly used features 
include residuals r, parameter estimates p, and state estimates x. Faults are 
detected or diagnosed by comparing the observed features with the features 
associated with normal operating conditions either directly or after some 
transformation. 

Analytical methods that use residuals as features are commonly referred 
to as analytical redundancy methods. The residuals are the outcomes of 
consistency checks between the plant observations and a mathematical model. 
The residuals will be non-zero due to faults, disturbances, noise, and/or mod­
eling errors. As we will see, part of the challenge in designing a process 
monitoring system based on analytical redundancy is distinguishing between 
residuals caused by faults, and residuals caused by the other variations. In 
the preferred situation, the residuals or transformations of the residuals will 
be relatively large when faults are present, and small in the presence of dis­
turbances, noise, and/or modeling errors. In this case the presence of faults 
can be detected by defining appropriate thresholds. In any case, an analytical 
redundancy method will arrive at a diagnostic decision based on the residuals 
[87, 101, 221J. 

The three main ways to generate residuals are parameter estimation, 
observers, and parity relations [94J. 

L. H. Chiang et al., Fault Detection and Diagnosis  in Industrial  Systems
© Springer-Verlag London Limited 2001
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1. Parameter estimation. For parameter estimation, the residuals are 
the difference between the nominal model parameters and the estimated 
model parameters. Deviations in the model parameters serve as the basis 
for detecting and isolating faults [20, 135, 136, 163J. 

2. Observers. The observer-based method reconstructs the output of the 
system from the measurements or a subset of the measurements with the 
aid of observers. The difference between the measured outputs and the 
estimated outputs is used as the vector of residuals [54, 68, 86J. 

3. Parity relations. This method checks the consistency of the mathemat­
ical equations of the system with the measurements. The parity relations 
are subjected to a linear dynamic transformation, with the transformed 
residuals used for detecting and isolating faults [63, 101, 226, 227J. 

When an accurate first-principles or other mathematical model is avail-
able, the analytical approach can provide improved process monitoring com­
pared to data-driven or knowledge-based approaches. Analytical approaches 
can also incorporate process Howsheet information in a straightforward way. 

As mentioned in Section 1.1, process monitoring terminology varies across 
disciplines. The definition of fault detection is fairly consistent, while a variety 
of overlapping definitions is used for fault identification and fault diagnosis. 
A term not defined in Section 1.1 is fault isolation, which is commonly 
defined as determining the exact location of the fault or faulty component, 
that is, to determine which component is faulty [101J. Fault isolation provides 
more information than a fault identification procedure as defined in Section 
1.1, in which only the observation variables associated with the fault are 
determined. Fault isolation does not provide as much information as a fault 
diagnosis procedure as defined in Section 1.1, in which the type, magnitude, 
and time of the fault are determined. More specifically, a single component 
may have a variety of different types of faults associated with it (e.g., a valve 
may be stuck closed, or may just have occasional sticking). A fault isolation 
procedure may locate the component (e.g., the valve), but a fault diagnosis 
procedure would be needed to determine the type of fault associated with the 
component (e.g., "stuck closed" versus "occasional sticking"). A commonly 
used term in the literature is the FDI system, which is a process monitoring 
method that contains both fault detection and isolation stages. 

Most of the analytical methods described in this chapter can be char­
acterized as being FDI systems. Enough background is provided on each 
method so that the reader can determine which approach is likely to be most 
promising in a particular application. Plenty of references are given for the 
reader to learn more about implementation. The chapter begins in Section 
11.2 by defining additive and multiplicative faults, and describing how these 
faults affect the process dynamics. Analytical approaches based on parameter 
estimation, state estimators/observers, and parity relations are discussed in 
Sections 11.3, 11.4, and 11.5, respectively. 
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11.2 Fault Descriptions 

For a plant with input u E R m" and output y E Rmy, the discrete-time 
linear state-space model (without faults, disturbance, and noise) is 

x(t + 1) = Ax(t) + Bu(t) (11.1) 

y(t) = Cx(t) + Du(t) (11.2) 

where x E Ra is the state vector, t is the discrete-time index, and the state­
space matrices A, B, C, and D specify the state-space model. 

Faults that can be modeled as unknown changes in signals in the system 
are called additive faults. Additive faults include 

• actuator faults Llu(t), 
• sensor faults Lly ( t), 
• some plant faults (such as, leaks) Llup(t). 

An example of an actuator fault is a sticking valve or a burnt-out motor. 
A Sensor fault is a corroded thermocouple, or a leak in the pressure line to 
a differential pressure gauge. An example of a plant fault that acts as an 
additive fault is a leak in a pipe containing process fluid. 

Now consider the effect of additive faults on the observed values of the 
inputs and outputs. As shown in Figure 11.1, the observed values of the input 
u(t) and output y(t) are related to the true values (those acting on or arising 
from the plant) UO(t) and yO(t) as 

UO(t) = u(t) + Llu(t), (11.3) 

and 

yO(t) = y(t) + Lly(t). (11.4) 

The plant faults affect both the true output and the observed output. 
Now the above equations are augmented to include additive noise and dis­

turbances. Consider additive plant disturbance d( t) and the following noise 
signals: 

• actuator noise 8u(t), 
• sensor noise 8y(t), 
• plant noise 8up ( t). 

The observed and true values for the plant input u and output yare related 
to the additive faults and noise signals by 

U°(t) = u(t) + Llu(t) + 8u(t), (11.5) 

and 
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Fig. 11.1. Relationship between the additive faults and the plant variables 

yO( t) = y( t) + Lly( t) + 8y( t). (11.6) 

Define the combined vector of additive faults as 

[ 
Llu(t) 1 

f(t) = Llup(t) 
Lly(t) 

(11. 7) 

and the combined vector of additive noise as 

[ 
8u(t) 1 

n(t) = 8up(t) . 
8y(t) 

(11.8) 

Extending the state equations (11.1) and (11.2) to include the additive 
noise, disturbances, and faults gives 

x(t + 1) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) + Bnn(t) (11.9) 

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t) + Dnn(t) (11.10) 

where the subscript f is for matrices associated with faults, d is for matrices 
associated with disturbances, and n is for matrices associated with noise. 
The state-space matrices are usually highly structured, especially for the 
matrices associated with the faults (Bj, Dj) and disturbances (Bd' Dd) in 
which entire rows or columns of zeros are common. For example, the column 
of B j associated with a sensor fault in f is commonly equal to zero, since a 
sensor fault may affect the output equation without affecting the states. 

By introducing the shift operator [19) 

qx(t) = x(t+l), (11.11) 

the state equations (11.9) and (11.10) can be rewritten in terms of transfer 
functions: 
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y(t) = P(q)u(t) + Pf(q)f(t) + Pd(q)d(t) + pn(q)n(t) (11.12) 

with the transfer functions being described by 

P(q) = C(qJ - A)-l B + D, 

Pf(q) = C(qJ - A)-l Bf + Df, 

Pd(q) = C(qJ - A)-l Bd + Dd, 

Pn(q) = C(qJ - A)-l Bn + Dn. 

(11.13) 

Equation 11.12 describes the effects of additive faults, disturbances, and noise 
on the plant output. Each effect enters the output equation only as changes 
in signals, not as changes in the transfer functions (the state-space matrices 
are assumed fixed). 

Alternatively, some faults are best modeled as being multiplicative 
faults, which are written in state-space form as 

x(t + 1) = (A + LlA)x(t) + (B + LlB)u(t) (11.14) 

y(t) = (C + LlC)x(t) + (D + LlD)u(t). (11.15) 

Using the shift operator, the state equations can be written in transfer func­
tion form 

y(t) = PO(q)u(t) (11.16) 

where 

PO(q) = (C + LlC)(qJ - A - LlA)-l(B + LlB) + D + LlD (11.17) 

where PO(q) is the true transfer function for the physical system. 
The discrepancy LlP(q) between the model and the true system is defined 

by 

PO(q) = P(q) + LlP(q). (11.18) 

Introducing the expression for the process model P(q) from (11.13) and re­
arranging gives 

LlP(q) = PO(q) _ P(q) 

= (C + LlC)(qJ - A - LlA)-l(B + LlB) + D + LlD 

- (C(qJ - A)-l B + D). 
(11.19) 

The discrepancy may be due to parametric faults, where the plant has de­
viated from its earlier normal behavior, which was properly represented by 
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the model. Instead, the discrepancy could be due to modeling error, which 
may be present since the implementation of the algorithm. The modeling 
error may be due to inaccuracy in some of the physical parameters, or due 
to unmodeled dynamics caused by simplifying a higher-order model with a 
lower-order model. Another common source of modeling error is from ap­
proximating a nonlinear model with a linear model, or by making simplifying 
assumptions in the derivation of a first-principles model for the plant. 

In the absence of the additive faults, disturbances, or noise, the plant 
output would be 

y(t) = (P(q) + LlP(q))u(t) = P(q)u(t) + LlP(q)u(t}. (11.20) 

This equation shows why the discrepancy in (11.18) is said to be multiplica­
tive rather than additive. By comparing (11.20) with (11.12), we see that 
multiplicative faults and additive faults affect the plant output in a differ­
ent manner. Additive faults and disturbances are signals that are related 
to the output through time-invariant transfer functions. On the other hand, 
parametric faults and model errors cause a discrepancy in the input-output 
transfer function. This discrepancy is multiplied by the plant input. 

Let us consider a specific case, where the plant input u is doubled in size. 
For an additive fault (11.12), this doubling would not affect the mapping 
between the faults and the plant output. For a multiplicative fault (11.20), 
doubling the magnitude of the plant input u doubles the magnitude of the 
effect of the discrepancy on the plant output. This example is useful to keep 
in mind when classifying a particular type of fault as being additive or mul­
tiplicative. 

In the above presentation, the state-space model (11.9) and (11.10) was 
written in discrete-time form and the transfer function form of the input­
output relationship (11.12) was derived using the shift operator. An alterna­
tive approach is to use a continuous-time state-space model: 

d~~t) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) + Bnn(t) 

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t) + Dnn(t). 

(11.21) 

(11.22) 

Applying the Laplace transform on (11.21) and (11.22) and rearranging re­
sults in the transfer function form for the input-output relationship: 

y(s) = P(s)u(s) + Pf(s)f(s) + Pd(s)d(s) + Pn(s)n(s) 

where 

P(s) = C(sI - A)-l B + D, 

Pf(s) = C(sI - A)-lEf + Df, 

Pd(S) = C(sI - A)-lEd + Dd, 

Pn(s) = C(sI - A)-lEn + Dn. 

(11.23) 

(11.24) 
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Similarly, multiplicative faults can be written as 

y(s) = PO(s)u(s) 

where 

PO(s) = P(s) + .dP(s) 

and the model discrepancy .dP(s) is defined by 

.dP(s) = PO(s) - P(s) 

= (C + .dC)(sI - A - .dA)-1(B + .dB) + D +.dD 

- (C(sI - A)-1 B + D) 

(11.25) 

(11.26) 

(11.27) 

and .dA, .dB, .dC, and .dD are the perturbations in the state-space matrices 
for the continuous-time system. 

The next three sections describe how additive and multiplicative faults 
can be detected and isolated using parameter estimation, observers, and par­
ity relations. As we will see, parameter estimation is especially suited for 
handling multiplicative faults, whereas additive faults are more naturally ad­
dressed using observers or parity relations. 

11.3 Parameter Estimation 

The parameter estimation method is appropriate if the process faults are as­
sociated with changes in model parameters (i.e., multiplicative faults), and 
appropriate mathematical models are available. The model parameters are 
generally unmeasured, but can be estimated using standard parameter esti­
mation techniques [25, 199], which can be implemented recursively to reduce 
computational requirements. Constructing the models from first-principles 
facilitates relating the model parameters directly to parameters that have 
physical meaning in the process. Thresholds can be placed on the individual 
differences between the nominal model parameters and the parameter esti­
mates, or on some combination of these differences. Many papers based on 
the parameter estimation method are available [58, 135, 263]. 

The parameter estimation method consists of the following steps: 

1. Write the process equations for the measurable input variables u( t) and 
output variables y(t) using conservation equations and phenomenological 
relationships (e.g., phase equilibria, fluid constitutive equations). The 
process equations relate the input variables u( t) and the physical model 
parameters Pj to the output variables y( t). 
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2. If necessary, make simplifying assumptions or lump the physical model 
parameters Pj together so the parameter estimation problem for the new 
parameters ()j is observable, that is, so that the new parameters can be 
uniquely determined. During this step, it is also useful to re-define vari­
ables so that the new variables ()j enter linearly in the process equations, 
as this will simplify the parameter estimation problem. 

3. Estimate the model parameters ()j from the current and recent past 
measurements of the input variables u(t) and output variables y(t) 
[22, 25, 199]. If the ()j appear linearly in the process equations, then 
it is possible to stack the equations so that 

z = l}i() + e (11.28) 

where z is a vector the elements of which are known functions of the 
measured variables, l}i is a matrix of measured variables, () is the vector 
of parameters to be estimated, and e is the vector of the equation errors. 
If the measurement noise is relatively small, then the vector of estimated 
parameters 0 can be obtained by minimizing the sum-of-squared-errors 
function e T e by least squares: 

(11.29) 

These parameter estimates will be biased if there is significant measure­
ment noise. If there is significant measurement noise or the ()j appear non­
linearly, then more sophisticated parameter estimation algorithms should 
be used [25, 199, 355]. 

4. Calculate estimates of the physical parameters Pj from the estimated 
model parameters OJ. If lumping was used, then in some cases only com­
binations of the physical parameters pj can be determined. 

5. Faults are indicated if changes in the physical parameters are larger than 
those observed in training data. Isolate faults by comparing changes in 
the physical parameters with observations stored in historical databases. 

In the parameter estimation method, it is required that the signals have 
sufficiently high persistent excitation. This motivates keeping the number of 
independent parameters as small as possible, by simplifying the model or by 
lumping several parameters together (Step 2). 

For fault detection and isolation, Step 5 compares the parameter estimates 
to their nominal values by computing the differences 

(11.30) 

where Pj is the nominal value for the physical parameter. Even if no faults 
are occurring in the plant, the Llpj will not be equal to zero due to process 
disturbances and noise. In other words, the Llpj will be stochastic variables, 
and a threshold must be used to indicate whether a fault has occurred. A fault 
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is detected when a single Llpj is larger than some threshold, or some com­
bination of Llpj is greater than some threshold. The parameters associated 
with the threshold violation are those associated with the fault. Thresholds 
can be defined using the T2 statistics with training data as discussed in Parts 
II and III, or by more sophisticated statistics [141]. The process monitoring 
procedure can be made more sensitive to slow drifts by applying exponential 
moving averages or cumulative sums on the parameter differences (11.30), in 
a way similar to that in univariate or multivariate control charts (see Chapter 
2). 

The procedure of detecting faults using the parameter estimation method 
is illustrated using a gravity flow tank (see Figure 11.2) [245]. The single­
input-single-output system is governed by the material balance equation: 

dh 
A -=F.--ch edt ' (11.31) 

where Ae is the cross-sectional area of the tank, h is the liquid level, c is a 
constant which depends on the valve, and Fi is the measured inlet flow rate. 
The outlet flow rate Fo is measured, and is nominally equal to ch. Equation 
11.31 can be written in terms of the state-space equations 

dx 
dt = Ax(t) + Bu(t) (11.32) 

y(t) = Cx(t) (11.33) 

where u = Fi, Y = Fo , x = h, A = -c/Ae , B = 1/Ae , and C = c. All 
measured signals are assumed to have additive normally distributed noise 
with zero mean and variance with magnitude of 10-4 • 

Stream 0 Stream 1 
FTJ------. 

Stream 3 

Fig. 11.2. A gravity flow tank system with one measured input Fi, one measured 
output Fo, and one measured state h. The FT is standard nomenclature for a flow 
transmitter [134]. 
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Fig. 11.3. The measured input (inlet flow rate), the measured state (liquid height), 
and the measured output (outlet flow rate) of the gravity tank during normal 
operating conditions 

Assuming c = 0.3 and Ac = 1, Figure 11.3 plots the measured input u, the 
measured output y, and the measured state x for a step change in inlet flow 
rate. The state x and output y follow first-order responses. Now consider the 
case where a leak (a 30% drop of magnitude in Stream 1) occurs in Stream 
1 for t ;::: 14.5 (see Figure 11.2 for definition of Stream 1). Figure 11.4 plots 
the measured input u, the measured output y, and the measured state x for 
a step change in inlet flow rate. Although a leak in Stream 1 does not affect 
the measured input Fi , the fault does affect the true input flow rate to the 
tank, which is unmeasured. Because the true input flow rate to the tank drops 
at t = 14.5, the measured state h and measured output Fo also drop. This 
fault corresponds to a change in the parameter B in the state-space equation 
(11.32), so it would be expected that changes in an on-line estimate of B can 
be used to detect the leak. 

To estimate the parameter B in (11.32), the process model equation is 
written in the form: 

z(t) = 1jJT(t}6+e(t) (11.34) 
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Fig. 11.4. The measured input (inlet flow rate), the measured state (liquid height), 
and the measured output (outlet flow rate) of the gravity tank when a leak in Stream 
1 occurs at t = 14.5 

where z(t) = dx/dt, 'l/JT(t) = [x, u], (J = [A, BV, and e(t) is the equation er­
ror. The derivative of the state can be numerically approximated by backward 
difference applied to the measured state 

dx(t) x(t) - x(t - To) 
--;It ~ To (11.35) 

where To = 0.5 was the sampling interval. 
Better parameter estimates are obtained by using consecutive time inter­

vals. To put this system into the standard form for parameter estimation, 
stack the elements of z(t) and 'l/JT(t) into vectors 

z = [z(O), z(l), ... , z(n)]T (11.36) 

and 
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(11.37) 

Then 

z = wO + e (11.38) 

where 

e = [e(O), e(l),··· ,e(n)f (11.39) 

is the vector of the equation errors. Here it is assumed that the process 
is monitored during startup, in which case it is reasonable to compute the 
parameter estimates using all sampling instances from t = 0 to the current 
sampling instance t = n. 

The estimated parameter vector () was determined by least squares, with 
the results shown in Figure 11.5. In the noise-free and fault-free case, the 
estimated parameter iJ would be equal to 1. Because of the measurement 
noise, the estimated parameter iJ is actually approximately 0.88 in the fault­
free case (see top plot in Figure 11.5). The middle plot in Figure 11.5 is 
the parameter estimate iJ for the case where the fault occurs at t = 14.5. 
The bottom plot in Figure 11.5 is the residual LlB, which is the difference 
between the estimated parameter iJ in the normal operating conditions (0.88) 
and the parameter in the case where the fault occurs at t = 14.5. The residual 
significantly deviates from zero at t = 21, indicating that a fault is detected. 
The detection delay is 13 sampling intervals. The fact that the estimated 
model parameter iJ is decreasing with time suggests that the fault is due to 
a leak in Stream 1. 

This example illustrates the fact that least-squares estimation can give bi­
ased estimates of the parameters. This is why the estimated model parameter 
during normal operating conditions (0.88) was used to compute the residual, 
rather than the true model parameter (I). With the properly defined residual, 
this bias in the parameter estimate did not affect the ability of the param­
eter estimation method to correctly detect the fault. An FDI system based 
on parameter estimation should always include model validation, where the 
parameters are estimated using normal operating conditions. Beyond just 
ensuring that the parameter estimation algorithm is correctly implemented, 
this allows the determination of consistent biases in the parameter estimates, 
so that the residuals can be redefined to avoid false alarms. If the biases are 
too large, then an unbiased parameter estimation algorithm should be used 
[25,199]. 

Let us further illustrate the parameter estimation method with a multi­
input-multi-output example. Consider a process consisting of a centrifugal 
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Fig. 11.5. The estimated parameter iJ during normal operating conditions (top 
plot), the estimated parameter when a leak in Stream 1 occurs at t = 14.5 (middle 
plot), and the associated residual for the gravity tank (bottom plot) 

pump with a water circulation system, driven by a speed-controlled direct­
current (DC) motor [96, 135]. The physical process coefficients are listed in 
Table 11.1. Because these coefficients are not measurable, changes in their 
values are determined by parameter estimation. 

The first step of parameter estimation is to model the input-output re­
lationship of the system to satisfy phenomenological relationships and the 
underlying physical laws such as the material, momentum, and energy bal­
ance equations. The first-principles model for this system is [135]: 

• Armature circuit 

dlt (t) 
Ll ----;It = -R1lt{t) -lliw{t) + Ul{t) (11.40) 

• Mechanics of motor and pump 

dw{t) . 
(1M + Ip)a,t = llilt{t) - (9w + CFl)W(t) - 9MM (t) (11.41) 
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Table 11.1. Physical process coefficients for a centrifugal pump with a water cir­
culation system, driven by a speed-controlled DC motor 

armature inductance Ll 
armature resistance Rl 
flux linkage 1jF 

moment of inertia of the pump Ip 
moment of inertia of the motor 1M 
sum of the friction coefficients for the motor and pump CFl 

torque coefficient for the pump g", 
torque coefficient for the motor gM 
first coefficient of the momentum equation aac 

second coefficient of the momentum equation aR 

first coefficient of the specific energy of the pump h", 
second coefficient of the specific energy of the pump hM 

• Pipe system 

(11.42) 

• Pump specific energy 

yet) = hww(t) + hMM(t). (11.43) 

Many of the variables are written in terms of deviations about steady-state 
operating conditions, and the signal variables are defined in Table 11.2. 

Table 11.2. Input, state, and output variables for the centrifugal pump with a 
water circulation system, driven by a speed-controlled DC motor. All the variables 
are measurable. 

armature voltage of the motor Ul 
armature current of the motor h 
angular velocity of the motor w 
mass flow rate of the pump if 
specific energy of the pump Y 

The state-space equations for the system are 

dx 
dt = Ax(t) + Bu(t) 

yet) = Cx(t), 

with the manipulated variable 

u(t) = Ul(t), 

input 
state 
state 
state 

output 

(11.44) 

(11.45) 

(11.46) 



the state vector 

[Il(t)] 
X(t) = ",:,(t) , 

M(t) 

and the plant output vector 

W(t) 
y(t) = M(t) . [

Il(t)] 

Y(t) 

The state-space matrices are 

010 [1 0 0] 
c= 0 0 1 ' 

Ohw hM 

where 

CFl + 9w 
a22 = - 1M +Ip 

9M 
a23 = - 1M +Ip 
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(11.47) 

(11.48) 

(11.49) 

(11.50) 

(11.51) 

(11.52) 
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The state-space matrices A and B are nonlinear in the physical model param­
eters (see Equation 11.52), the new model parameters aij and b1 are defined 
so that A and B are linear in these parameters. This results in a parameter 
estimation problem that is linear in the parameters. 

To estimate the aij and b1 in (11.49) and (11.50), the process model 
equations for the measurable input and output signals are written in the 
form: 

j = 1,2,3,4 (11.53) 

where 

() _dIt(t). () dw(t) () dM(t) () () 
Zl t - ~' Z2 t = ----;It; Z3 t = ~; Z4 t = Y t 

(11.54) 

1/Jf(t) = [It(t),W(t),Ul(t)]; (h = [au, a12, bdT (11.55) 

1/Jf (t) = [It (t), w(t), M(t)]; (}2 = [a21,a22,a23]T (11.56) 

1/JI (t) = [w(t), M(t)]; (}3 = [a32, a33]T (11.57) 

1/J1' (t) = [w(t), M(t)]; (}4 = [hw , hM]T (11.58) 

The functions 1/J{ ( t) are measured variables. If the measurement of Y (t) is 
less noisy than the measurement of w(t), then (11.57) can be replaced by 

(11.59) 

where 

(11.60) 

and 
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, aR 
a33 = --. (11.61) 

aac 

The Zj{t) are determined by differentiating the measurements. The deriva­
tives can be numerically approximated such as by backward differences, for 
example, 

(11.62) 

where To is the sampling interval. However, this method can give poor re­
sults when the measurements are noisy, which is the usual case. Filtering 
approaches can give better results [355). 

Obtaining accurate parameter estimates for a system of this complexity 
requires using multiple consecutive measurements to obtain the estimates. 
Since the measurements of the input and output signals are made at discrete 
sampling instances t, (11.53) can be written as 

j = 1,2,3,4; t =0,1, ... , n (11.63) 

To put this system into the standard form for parameter estimation, stack 
the elements of Zj{t) and ,¢{{t) into vectors 

and 

Then 

where 

'¢{{O) 

,¢{(1) 

,¢{{n) 

is the vector of the equation errors. 

(11.64) 

(11.65) 

(11.66) 

(11.67) 

For each j, the estimated model parameter OJ is obtained by minimizing 
the sum-of-squared-errors e{ ej. The estimated model parameters are com­
puted by least squares: 

(11.68) 
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Alternatively, the model parameters could be estimated simultaneously using 
(11.29). 

The relationships between the estimated model parameters OJ and the es­
timated physical parameters p are determined by rearranging (11.52), which 
gives 

(11.69) 

(11. 70) 

(11.71) 

(11.72) 

(11. 73) 

While all of the coefficients that describe the linearized dynamic behavior can 
be determined by least squares, several of the parameters had to be lumped 
together so that there are only ten unique combinations of parameters. For 
example, the moments of inertia of the pump and the motor show up only as 
the sum of the two terms. While the sum of the moments of inertia can be 
determined by parameter estimation, their individual values could not. This 
lumping is usually needed in practice to result in an identifiable parameter 
estimation problem. Thus, a significant change in the sum of the moments 
of inertia of the motor and the pump (iM + i p ) may be due to a fault in 
either the motor or the pump. A significant change in most of the other 
physical parameters can be isolated to a particular component. For example, 
a significant change in the torque coefficient for the motor 9M indicates that 
a fault has occurred in the motor. Some faults are associated with significant 
changes in multiple physical parameters, in which case a historical database 
of parameter changes that occurred during past faults can be used to isolate 
the faults. 

11.4 Observer-based Method 

The observer-based method is appropriate if the faults are associated with 
changes in actuators, sensors, or unmeasurable state variables, that is, it is 



11.4 Observer-based Method 191 

especially appropriate for detecting and isolating additive faults. A detailed 
mathematical model for the plant is required, preferably derived from first 
principles so that the states in the state-space equations have a physical 
interpretation. The unmeasured states are reconstructed from the measurable 
input and output variables using a Luenberger observer or Kalman filter 
[31, 38, 54, 153]. The observer-based method is in sharp contrast to the 
CVA-based method for process monitoring described in Chapter 7, in which 
the states are directly constructed from the process data, rather than through 
the use of a known process model and an observer. 

For the states that are measured, a residual can be defined as the differ­
ence between the estimated state and the measured state. For states that are 
unmeasurable (the usual case), the residual is defined based on the difference 
in the estimated plant output and the measured plant output, or by some 
linear transformation of this difference. Based on thresholds on the residu­
als of the state variables or output variables, abrupt changes can be detected 
[341]. The main reason for preferring first-principles models is that such mod­
els add significant structure to the state-space equations, which is especially 
useful for modeling the effect of faults on the states and plant outputs. Also, 
physically-meaningful states greatly aid in isolating and diagnosing faults 
once thresholds on the residuals have been violated. 

It is also possible to design an observer-based FDI scheme purely from 
an input-output point of view, which allows a frequency-based design based 
on the transfer functions (11.12) or (11.23) [90]. A drawback of such an 
approach is that relationships to any physically-meaningful states are lost. 
An advantage of a frequency-domain method is that model uncertainties, one 
of the main concerns in an FDI system, is often more conveniently modeled 
in the frequency domain [232, 291]. Hence a frequency-domain method can 
be more natural for designing FDI systems that simultaneously optimize 
sensitivity to faults, while minimizing sensitivity to model uncertainties. 

This section focuses on state-space methods, because it is useful for 
both linear and nonlinear plants, and it provides a connection between the 
FDI system and any physically-meaningful states. Readers interested in the 
frequency-based design of observer-based FDI systems are referred to a rather 
detailed review [41]. Several more general reviews describing process monitor­
ing methods based on the observer-based method are available [86,135,140]. 
Several papers have been published using these methods, especially in recent 
years [136, 137, 141, 162, 182, 220, 233, 367]. 

11.4.1 Full-order State Estimator 

This section describes the basic idea of the observer-based method, illustrat­
ing the concepts with a simple process example. 

The state vectors can be reconstructed from the measurable plant input 
u and plant output y using an observer. Consider a linear process with the 
state-space equations (11.9) and (11.10), in which the disturbance d(t) is 
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lumped together with the noise term n(t), and the matrix D is assumed to 
be zero: 

x(t + 1) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) (11.74) 

y(t) = Cx(t) + Dff(t) + Ddd(t). (11.75) 

The state x(t) and output y(t) estimated by a linear full-order observer is 
described by the equations: 

x(t + 1) = Ax(t) + Bu(t) + H[y(t) - y(t)J (11.76) 

y(t) = Cx(t). (11.77) 

The observer gain H is selected to satisfy design specifications such as sta­
bility, fault sensitivity, and robustness. 

With (11.74)-(11.77), the relations for the state estimation error Llx(t) = 
x(t) - x(t) and the output estimation error Lly(t) = y(t) - y(t) are 

Llx(t + 1) = [A - HClLlx(t) + [Bf - HDfJf(t) + [Bd - HDdJd(t) 
(11.78) 

Lly(t) = CLlx(t) + Dff(t) + Ddd(t). (11.79) 

The state estimation error Llx(t) and the output estimation error Lly(t) 
are functions of the disturbances d(t) and the faults f(t), but do not depend 
on the input u(t). If the states were measured, then Llx(t) could be used to 
detect and diagnose faults. Usually the states are not measured, and Lly(t) 
is used as the residual which forms the basis for the observer-based FDI 
system. This residual is usually transformed so as to increase the effect of 
faults and decrease the effect of disturbances on the transformed residuals. 
Before describing these transformations, let us first illustrate the procedure of 
using the full-order observer method for detecting faults on the gravity tank 
example introduced in Section 11.2. When Stream 1 has a leak, the measured 
input u(t) is related to the true input UO(t) by 

UO(t) = u(t) + Llu(t), (11.80) 

where Llu(t) = f(t) is a negative value representing the magnitude of the 
leak. The state-space equations (11.32) and (11.33) become 

dx 
dt = Ax(t) + Bu(t) + Bff(t) (11.81) 

y(t) = Cx(t) (11.82) 
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where Bf = 1/Ac• The estimated state x(t) is obtained using (11.76). In this 
particular example, the state is the height of the liquid which is measurable. 
Hence in this case the state estimation error Llx( t) could be used as the 
residual. Since the states are unmeasurable in most practical problems, we 
will use the output estimation error Lly(t) from (11.79) as the residual. The 
measured output, the estimated output, and the associated residual during 
normal operating conditions are plotted in Figure 11.6, where the observer 
matrix H = 0.01. The estimated output matches fairly well with the mea-
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Fig. 11.6. The measured output, the estimated output, and their associated resid-
ual obtained from the full-order observer in the normal operating conditions of the 
gravity tank 

sured output, with a fairly small residual (-0.05 < Lly < 0.05 for almost all 
t). The measured output, the estimated output, and the associated residual 
in the case where a leak occurs at t = 14.5 are shown in Figure 11.7. The 
residual deviates from zero significantly at t = 15.5, indicating that the fault 
is detected in two sampling intervals. The full-order observer was much more 
prompt in detecting the fault than the parameter estimation method shown 
in the last section. 
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This example illustrates the point that some faults can be modeled equally 
well as being additive or multiplicative. The best approach for such faults 
depends on performance and convenience. For this particular example, the 
observer-based method (which modeled the fault as being additive) had a 
much shorter detection delay than the parameter estimation method (Which 
modeled the fault as being multiplicative). IT all the faults are best modeled 
as being parametric faults except for a few faults that can be modeled as 
being either additive or multiplicative, then it is more convenient to model 
all of the faults as being multiplicative, so that the FDI system only depends 
on a single method. 
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Fig. 11.7. The measured output, the estimated output, and the associated residual 
obtained from the full-order observer when a leak occurs in Stream 1 at t = 14.5, 
for the gravity tank 

In this example disturbances were not considered and the residual was 
driven only by the fault and zero-mean white noise in the measured vari­
ables. In practice the output estimation error L1y(t) is driven by significant 
disturbances d(t). Also, model errors can result in an imperfect cancella­
tion of the effect of the control inputs u(t) on the output estimation error. 



11.4 Observer-based Method 195 

The potential sensitivity of the output estimation error to disturbances and 
model errors motivates the use of a transformed output estimation error as 
the residual: 

r(t) = W Lly(t). (11.83) 

The design problem is to select the matrix W so that the residual r( t) is 
sensitive to faults while being relatively insensitive or even invariant to dis­
turbance and model errors. Various procedures have been proposed for the 
design of the observer gain H and the transformation matrix W to satisfy 
these goals [139}. One procedure is known as eigenstructure assignment, in 
which the matrices are designed to zero out the effect of the disturbances on 
the residual r(t) [249,253]. A related method is to use an unknown input ob­
server to decouple the disturbances from the state estimation error [42, 331}. 
This method is described below. 

11.4.2 Reduced-order Unknown Input Observer 

This section derives the design equations for an unknown input observer 
(UIO), which is a fairly general method for the design of an observer-based 
FDI system. 

As in the last section, consider a plant described by the state-space equa­
tions: 

x(t + 1) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) (11.84) 

y(t) = Cx(t) + Dff(t) + Ddd(t) (11.85) 

A generalized reduced-order observer for this system is: 

z(t + 1) = Fz(t) + Gy(t) + Ju(t) (11.86) 

(11.87) 

The observer estimates a linear transformation of the state, Tx(t), where T 
is a constant matrix. For a reduced-order observer, the number of rows of T 
is less than the number of columns. The design matrices are F, G, J, L1> and 

L 2 • 

The estimation error is defined by 

e(t) = z(t) - Tx(t). (11.88) 

Inserting the observer equations and the state-space equations for the plant, 
and grouping terms gives 
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e(t + 1) = Fz(t) + [GG - TAlx(t) + [J - TBlu(t) 

+ [GDf - TBflf(t) + [GDd - TBdld(t) 

and the residual 

(11.89) 

(11.90) 

In the unknown input observer, the observer matrices are designed so 
that the residual r( t) and estimation error e( t) are independent of the plant 
inputs u( t) and the disturbances d ( t) (the "unknown inputs"). This implies 
that 

J=TB (11.91 ) 

(11.92) 

(11.93) 

This gives the simplified equations 

e(t + 1) = Fz(t) + [GG - TAJx(t) + [GDf - TBfJf(t) (11.94) 

and the residual 

(11.95) 

For fault detection, it is also desired for the estimation error and the 
residual to be independent of the plant states x( t). This is achieved by setting 

GC-TA= -FT (11.96) 

and 

(11.97) 

which results in 

e(t + 1) = Fe(t) + [GDf - TBfJf(t) (11.98) 

and the residual 

(11.99) 

The estimation error and the residual depend solely on the faults and are 
independent of the process state x(t), input u(t), and disturbances d(t). 
For stability of the estimation error, the matrix F must have its eigenvalues 
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within the unit circle. To maximize the effect of the faults on the residual, 
the matrices G, T, and L2 should be selected so that the matrix 

[ GDf -TBf] 
L 2Df 

(11.100) 

has a high rank. Maximizing the rank of L2 Df is especially useful, since this 
term is a direct mapping of the faults to the residual, without being filtered 
by the observer dynamics (see Equation 11.99). 

In the UIO method, the matrices F, G, J, L1, and L2 are designed so that 
F is stable and Equations 11.91, 11.92, 11.93, 11.96, and 11.97 are satisfied. 
Extra degrees of freedom are used to maximize the rank of the matrices 
(11.100). The extra degrees of freedom can also be used to decouple the 
effect of each fault on the residual. Necessary and sufficient conditions for 
the existence of solutions to these types of equations are available, as well as 
methods for computing the design matrices [41, 352]. 

11.5 Parity Relations 

It was shown in the last section how observers can be used to generate resid­
uals. Another popular method to generate the residuals is to use parity rela­
tions. 

11.5.1 Residual Generation 

The residual must be generated solely from the observations. A general equa­
tion for the residual is 

r(t) = V(q)u(t) + W(q)y(t) (11.101) 

where r(t) is the residual vector, and V(q) and W(q) are transfer function 
matrices. The residual should be zero when the unknown inputs (the faults 
f(t), disturbances d(t), and noise n(t)) are zero. Substituting the system 
equation (11.12) into (11.101) and setting the unknown inputs to zero gives 

V(q)u(t) + W(q)P(q)u(t) = o. (11.102) 

For this to hold for all inputs u(t), we must have 

V(q) = -W(q)P(q) (11.103) 

Inserting this into (11.101) gives 

r(t) = W(q)[y(t) - P(q)u(t)], (11.104) 

The transfer function P(q) (or matrices A, B, C, and D in (11.1) and (11.2)) 
is assumed to be known either from first principles or from prior identification 
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of the plant. Specifying the transfer function W(q) is the main focus of the 
design of the FDI system. 

Substituting (11.12) into (11.104) gives the residual r(t) in terms ofthe 
unknown inputs: 

r(t) = W(q)[Pj(q)f(t) + Pd(q)d(t) + Pn(q)n(t)J. (11.105) 

This equation gives the dependence of the residual on the faults, disturbances, 
and noise. Before going into details on how W ( q) is designed, let us first 
illustrate the use of the parity relation (11.105) for detecting faults. Recall 
the gravity tank example in which there is a single potential fault (see Figure 
11.2). Since there are no significant disturbances in this example, the design 
matrix W ( q) can be set to one. 

The residual (11.104) was computed both during normal operating con­
ditions and in the case where there is a fault (a leak in Stream 1 at t = 14.5). 
The residuals are plotted in Figure 11.8. In the normal operating conditions, 
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Fig. 11.S. The residual obtained from the parity relations in the normal operating 
conditions and the faulty condition (a leak in Stream 1 at t = 14.5) of the gravity 
tank 
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the residual remains close to zero, indicating that a threshold can be defined 
so that there is a low false alarm rate. When the fault occurs, the residual 
deviates from zero significantly at t = 15, indicating that a fault is detected. 
Similarly to the full-order observer, the parity relation method promptly de­
tected the fault. 

A general equation for the residual r( t) in terms of the unknown in­
puts can also be derived directly from the state-space equations (11.9) and 
(11.10) [47, 101). To simplify the algebra, the presentation will neglect the 
disturbance and noise terms, and insert them later. 

With a time delay a, (11.9) and (11.10) become 

x(t - a + 1) = Ax(t - a) + Bu(t - a) + Bff(t - a) 

yet - a) = Cx(t - a) + Du(t - a) + Dff(t - a). 

Inserting (11.106) into (11.107) gives the expression: 

yet - a + 1) = CAx(t - a) + CBu(t - a) + CBff(t - a) 

+Du(t - a + 1) + Dff(t - a + 1). 

Recursively, the following extended state equation is obtained: 

[y(~~:; 1)[ [u(:~:; 1) 
· =Jx(t-a)+K . · . · . 

yet) u(t) 
~---Vv----~' '~---Vv----~ 

y(t) 6(t) 

v 

l( t) 

where 

(11.106) 

(11.107) 

(11.108) 

(11.109) 

(11.110) 
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D 0 0 0 

CB D 0 

K= CAB CB (11.111) 

0 

CAu-1B CAu-2B .. ·CB D 

and 

Df 0 0 0 

CBf Df 0 

Lf = CABf CBf (11.112) 

0 

CAu-1Bf CAu-2 Bf ... CBf Df 

Then the residual can be written as: 

r(t) = W[y(t) - Ku(t)] (11.113) 

where W E RPx(u+1)my is the transformation matrix, and p is the dimension 
of the residual vector. This equation can be used to compute the residual 
from the measured inputs and outputs of the plant. Inserting (11.109) into 
this equation gives 

r(t) = W[Jx(t - 0-) + Lff(t)]. (11.114) 

The dependence of the state vector x( t - 0-) can be eliminated by choosing 
a transformation W such that 

WJ=O. (11.115) 

For an appropriately large 0-, it follows from the Cayley-Hamilton theorem 
[153] that the solution for W always exists [47]. Then the residual is only a 
function of the faults 

r(t) = WLff(t). (11.116) 

For a particular fault to be detectable, W must be selected so that the ap­
propriate columns of WLf are not equal to the zero vector. For a residual 
to be affected by at least one fault, W must be selected so that none of the 
rows of WLf are equal to the zero vector. 

The length of the data window, 0-, is a design parameter. A sufficiently 
large 0- guarantees that there is a large number of degrees of freedom in W 
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for satisfying the above detectability conditions. However, a low value of 0' 

is preferred to simplify the design and implementation of the FDI system. 
The smallest value of 0' such that (11.115) can be satisfied is given by the 
inequalities [41, 226, 227]: 

rank(O) 
rank( C) ~ 0' min ~ rank( 0) - rank ( C) + 1 (11.117) 

where 0 is the observability matrix [153] (which is closely related to J) 

[ C 1 CA 
0= 

c~a 
(11.118) 

and a is the number of states. If the system is observable and the rows of the 
matrix C are linearly independent, then the inequality can be written as 

a 
- ~ O'min ~ a - my + 1 
my 

(11.119) 

To consider additive noise and disturbances in the system, the vector n(t) 
and d(t) are defined similarly to f(t), and its accompanying matrices Ln and 
Ld can be computed. This more general form of the residual (11.116) is 

(11.120) 

While this state-space form for the transformation matrix can be used, more 
insights can be obtained by using the transfer function W(q) in (11.104). 
Hence the rest of this chapter will use the transfer function form. 

11.5.2 Detection Properties of the Residual 

Ideally, the transformation matrix W(q) is designed so that non-zero residuals 
occur only when faults occur. However, the residuals can also be affected 
by measurement noise, model uncertainty, and disturbances. The simplest 
approach to reduce the effect of noise is low-pass filtering of the measured 
signals. More sophisticated Kalman filtering can be used for more complicated 
noise signals [12]. Quantifying the contribution of the measurement noise on 
the residuals based on (11.105) is rather straightforward provided that the 
noise is modeled stochastically. The noise will continue to have some effect 
on the residuals, so a threshold must be used to determine whether a fault 
has occurred. 

Characterizing the model uncertainties and quantifying their effect on 
the residuals are more difficult. The larger the model uncertainty, the more 
difficult it is to detect and diagnose faults using residuals. Much attention has 
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been focused on improving the robustness of analytical redundancy methods 
to model uncertainty. Two of the more popular methods in the literature 
include robust residual generators [88, 108,322], and structured residuals with 
an unknown input observer [91, 248, 286]. The simplest approach is to model 
the uncertainties as additional disturbances. Then, when the transformation 
matrix W(q) is designed so that the residual is insensitive to this larger 
set of disturbances, the residual is also insensitive to the uncertainties. This 
approach is possible when the total number of disturbances and uncertainties 
is small [101]. 

An ideal residual would be sensitive to each fault in the system. The 
triggering limit is a useful measure of the sensitivity of the residual with 
respect to faults [101]. Recall the general equation for the residual (11.105) 
as a function of the faults, disturbances, and noise: 

r(t) = W(q)[Pf(q)f(t) + Pd(q)d(t) + pn(q)n(t)]. (11.121) 

The relationship between the lh fault I; (t) and the ith residual induced by 
the fault is 

(11.122) 

where W(q) is the ith row of W(q) and pfj(q) is the lh column of Pf(q). 
The time response of the ith residual depends on the time response of the 
lh fault, which is not usually precisely known. H the time response I;(t) 
is not known, then it is simplest to assume that it is a unit step function 
H(t) [245, 296]. Then the absolute value of the steady-state value for the ith 
residual is 

lim Iri(tIH(t»1 = IWf{q)pfj(q)I -1 
t--+oo q-

(11.123) 

from the final value theorem for discrete-time systems (a similar equation 
holds for continuous-time systems). The triggering limit is defined as 

(11.124) 

where ki is the threshold for ri(t). A small triggering limit indicates a high 
fault sensitivity. 

If the nominal magnitude, 1;0' of the lh fault is known, then it is useful 
to define a normalized triggering limit 

(11.125) 

A normalized triggering limit TLNij greater than one indicates that the fault 
does not bring the residual to its threshold at steady-state, clearly an undesir­
able situation. A normalized triggering limit TLNij less than one is desired. 
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Alternative definitions of the triggering limits can be useful in certain 
applications. If the time response of the lh fault /j ( t) is known, then the 
time response can be used to define the triggering limit instead of the unit 
step function. Also, the maximum of the ith residual can be used instead of 
the steady-state value. 

11.5.3 Specification of the Residuals 

Recall that the main design consideration for an FDI system based on par­
ity relations is the design of the transformation matrix W(q) in (11.121). 
The approach to the design of W (q) is similar to the design of feedforward 
controllers as taught in an undergraduate process control course [245]. This 
approach is to specify the desired transfer functions between the inputs and 
outputs, and then compute W(q) that gives the desired transfer functions. 
The inputs are the disturbances and faults, and the outputs are the residuals. 

Denote the response of the ith element of the residual to the fault /j(t) 
as Ti(tl/j) and its response to the disturbance dj(t) as Ti(tldj ). For additive 
faults and disturbances, the response specifications are given in the form of 
transfer functions that incorporate all the desired behavior: 

(11.126) 

and 

(11.127) 

where Zfij(q) and Zdij(q) are scalar transfer functions. The response speci­
fication for a scalar residual Ti(t) can be written in terms of the vector of 
additive faults f( t) and the vector of additive disturbances d( t): 

(11.128) 

where zj; ( q) = [Zfil Zfi2 ... Zfimj j and z~ ( q) = [Zdil Zdi2 Zdimd] are vec­
tors of the individual transfer functions and mf and md are the numbers of 
faults and disturbances, respectively. The response of the full residual vector 
r( t) can be written in terms of the vector of additive faults f( t) and the 
vector of additive disturbances d( t): 

r(t) = Zf(q)f(t) + Zd(q)d(t) (11.129) 

where Zf = [Zf1 Zf2 ... zfpF and Zd = [Zdl Zd2 ... zdpjT are transfer 
function matrices, and p is the number of residuals. 

For disturbance decoupling, the response to the disturbances is specified 
as zero (that is, Ti(tldj ) = 0 or Zdij(q) = 0 in Equation 11.127). For the faults, 
either zero or specific non-zero responses are specified for each Zfij(q). 
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11.5.4 Implementation of the Residuals 

Ignoring noise (which is assumed to be addressed by filtering as discussed in 
Section 11.5.2), the single residual ri(t) from (11.105) is 

Comparing (11.130) with the specification (11.128) reveals that 

Wt{q)Pfd(q) = zT(q) 

where 

and 

(11.130) 

(11.131) 

(11.132) 

(11.133) 

The transfer function Pfd(q) is governed by the plant, and is assumed known. 
The zT(q) are specifications on the residuals, which are set by the engineer. 
Equation 11.131 relates the rows of the transformation matrix W(q) with the 
specifications. If a transformation matrix W (q) can be computed that satisfies 
(11.131), then the desired specifications on the residuals will be achieved. 

One objective of the design is to obtain an appropriate transformation 
Wi ( q) such that its elements are rational functions or polynomials in the 
shift operator. The transformation Wi ( q) also needs to be causal and stable. 
Actually, both W(q) and W(q)P(q) must be stable and implementable in 
(11.104). This implies that W(q) must cancel any unstable poles of the plant 
P(q). It is also desired for W(q) to be of low complexity. 

If Pfd(q) is a square matrix and it has a stable inverse, then setting the 
ith row of W as 

(11.134) 

satisfies (11.131). If the inverse of Pfd(q) exists but is not stable, then the 
specifications in z( ( q) can be modified so that W ( ( q) consists of stable trans­
fer functions. If there are multiple solutions to (11.131), then some elements 
of wT (q) can be fixed so that the resulting system has a unique solution. The 
transformation matrix W (q) is constructed by stacking up its rows w ( ( q). 

The above procedure looks at each residual ri(t) individually. Alterna­
tively, the equations can be written in terms of the vector residual r( t). 
Stacking the equations (11.131) gives the design condition on the transfor­
mation matrix W (q): 

(11.135) 

If Pfd(q) is a square matrix and it has a stable inverse, then 
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(11.136) 

satisfies the specifications on the residuals. 
An alternative method to design W(q) is to use an observer. This rela­

tionship between the observer-based method and parity equations is made 
clear in the next section. But first, let us consider an example. 

Stream 0 Stream 1 
---( FT )------, 

Stream 6 

Stream 2 

Stream 5 

Fig. 11.9. Two non-interacting flow tanks in series. The system has one measured 
input F" two measured outputs Fol and Fo2, and two measured states hI and h2. 
The FT is standard nomenclature for a flow transmitter [134]. 

A system consisting of two non-interacting flow tanks in series is used 
to illustrate the use of parity relation for disturbance decoupling (see Figure 
11.9) [245]. The system in the disturbance-free and fault-free case is governed 
by the material balance equations: 

dhl 
AcI dt = Fi - clhl (11.137) 

and 

(11.138) 

where Ac1 and Ac2 are the cross-sectional areas of Tanks 1 and 2, hI and 
h2 are the liquid levels for Tanks 1 and 2, CI and C2 are constants which 
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depend on the valves, and Fi is the measured inlet flow rate. The outlet flow 
rates Fol and Fo2 are measured, and are nominally equal to clhl and C2h2, 

respectively. Equations 11.137 and 11.138 can be written in state-space form 

dx 
dt = Ax(t) + Bu(t) (11.139) 

y(t) = Cx(t) (11.140) 

where 

[
.=.£l 0 1 A - ACl - , 
--fL .::.£2. 
Ac2 Ac2 (11.141 ) 

u = F i , yT = [Fol F o2 ], and x T = [hI h 2}. All measured signals are assumed 
to have additive normally distributed noise with zero mean and variance with 
magnitude of 10-4 . Assuming CI = 0.3, C2 = 0.2, Ac1 = 1, and Ac2 = 1, 
Figure 11.10 plots the measured input u, the measured output y, and the 
measured state x for a step change in inlet flow rate. The state Xl and output 
YI follow first-order responses and the state X2 and output Y2 follow second­
order responses. 

Consider the case where a step disturbance stream (Stream 6 in Figure 
11.9) of 0.2 flow units is introduced into Tank 2 for t ;:::: O. The state-space 
form (11.139) and (11.140) becomes 

dx dt = Ax(t) + Bu(t) + Bdd(t) (11.142) 

y(t) = Cx(t) (11.143) 

where d = d represents the disturbance stream, and BI = [0 I/Ad. Figure 
11.11 plots the measured input u, the measured output y, and the measured 
state x for a step change in inlet flow rate. Comparison between Figures 
11.10 and 11.11 indicates that the disturbance stream increases X2 and Y2 by 
roughly 20% and that it does not affect Xl and YI. 

Now consider the case where a leak (a 30% drop in Stream 1) occurs in 
Stream 1 for t ;:::: 14.5 (see Figure 11.9 for definition of Stream 1), in addition 
to the disturbance stream introduced into Tank 2 for t ;:::: O. The state-space 
form (11.142) and (11.143) becomes 

dx 
- = Ax(t) + Bu(t) + Bdd(t) + Bff(t) 
dt 

y(t) = Cx(t) 

(11.144) 

(11.145) 



1.05 

"S 
Q. 
.E 
"C 
I!? 
:::J 
gj 
CD 
:!! 

0.95 

8 
CD 

S6 
en 
"C 
I!? 4 
:::J 

m2 
:!! 

_ 1.5 
:::J 

~ 
0 1 
"C 
I!? 
:::J 
gj 0.5 
CD 
:!! 

0 

0 

.' 

0 

5 

5 

.... 
.' 

5 

11.5 Parity Relations 207 

10 15 20 25 30 35 40 45 50 

.............................................................................. 

10 15 

.................. 

10 15 

20 

20 

25 

25 
Time 

30 35 40 45 50 

30 35 40 45 50 

Fig. 11.10. The measured input (inlet flow rate), the measured state (liquid 
height), and the measured output (outlet flow rate) of two non-interacting flow 
tanks in series during normal operating conditions 

where f = f represents the leak in Stream 1, and Bj = [IIAc1 0). Figure 
11.12 plots the measured input u, the measured output y, and the measured 
state x for a step change in inlet flow rate. Comparison between Figures 11.11 
and 11.12 shows that the leak in Stream 1 caused a decrease in Xl, X2, Yb 
and Y2. 

The residual (11.104) was computed during normal operating conditions, 
in the case where there is a disturbance, and in the case where there are 
a disturbance and a fault (a leak in Stream 1 at t = 14.5). For illustration 
purposes, first use the transformation w( s) = [1 IV where the residuals are 
plotted in Figure 11.13. Similarly to Figure 11.8, the residual remains close 
to zero in the normal operating conditions, indicating that a threshold can be 
defined so that there is a low false alarm rate. With the chosen transforma­
tion w(s), the disturbance and the fault both cause the residual to deviate 
significantly from zero. 

To determine the appropriate transformation such that the disturbance 
is decoupled from the residual, (11.134) is used in the discrete-time case. In 
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Fig. 11.11. The measured input (inlet Bow rate), the measured state (liquid 
height), and the measured output (outlet Bow rate) of two non-interacting Bow 
tanks in series when a step disturbance is introduced into Tank 2 at t = 0 

the continuous-time case, the equation becomes 

(11.146) 

In this example, we have 

(11.147) 

With the specification z T (s) = [Cl : .. Ls OJ, the transformation w T (s) = [1 OJ. 
With the proper choice of transformation, the residual is decoupled from the 
disturbance, but remains driven by the fault (see Figure 11.14). 

11.5.5 Connection Between the Observer and Parity Relations 

Recall the equations for a full-order observer: 
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Fig. 11.12. The measured input (inlet flow rate), the measured state (liquid 
height), and the measured output (outlet flow rate) of two non-interacting flow 
tanks in series when a leak in Stream 1 occurs at t = 14.5 and a step disturbance 
is introduced into Tank 2 at t = 0 

x(t + 1) = Ax(t) + Bu(t) + H[y(t) - y(t)] (11.148) 

y(t) = Cx(t) + Du(t). (11.149) 

Inserting (11.149) into (11.148), introducing the shift operator, and solving 
for the state estimates gives 

x(t) = (qI - A + HC)-l[Hy(t) - HDu(t) + Bu(t)]. (11.150) 

Inserting this into (11.149) gives the output estimates 

y(t) = C(qI - A + HC)-l[Hy(t) - HDu(t) + Bu(t)] + Du(t). 
(11.151) 

Recall the definition of the output estimation error: 
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Fip. 11.13. The residual obtained from the parity relations with the weight 
w (s) = [1 1] in the normal operating conditions, the disturbance case, and the 
faulty condition of the two non-interacting tanks in series 

.1y(t) = y(t) - Y(t). (11.152) 

Inserting (11.151) gives the transfer function relationship for the output es­
timation error 

.1y(t) = [I - C(ql - A + HC)-l H]y(t) 

+ [( C(ql - A + HC)-l(HD - B) - D]u(t). 
(11.153) 

Some matrix algebra simplifies this to 

.1y(t) = [I - C(ql - A + HC)-l H][y(t) - (C(ql - A)-l B + D)u(t)]. 
(11.154) 

Since P(q) = C(ql - A)-l B + D, we have 

.1y(t) = [I - C(ql - A + HC)-l H][y(t) - P(q)u(t)J. (11.155) 

In the observer-based method, the output estimation error is multiplied by a 
transformation matrix 
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Fi,. 11.14. The residual obtained from the parity relations with weight 
w (8) = [1 0] (determined using Equation 11.134) in the normal operating con­
ditions, the disturbance case, and the faulty condition of the two non-interacting 
tanks in series 

r( t) = W Lly( t). (11.156) 

Equation 11.156 can be written in terms of the generic form for the resid­
ual (11.104), by setting 

W(q) = W[J - C(qJ - A + HC)-l H]. (11.157) 

Hence any observer implementation can be replaced by a direct implemen­
tation using parity relations in accordance with (11.157). The residuals ob­
tained from the direct implementation are identical. More detailed discussions 
of the connections between the observer-based method and parity relations 
are available [101]. 

11.5.6 Isolation Properties of the Residual 

A vector of residuals is required for isolating faults. To distinguish among 
faults, it is desirable for the residuals corresponding to a given fault to be 
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unique for that fault. Since the dynamics of a particular fault are not precisely 
known, it is useful to characterize the residuals in terms of the direction of 
the residual vector, or in the pattern of its elements that violate thresholds 
placed on each element [101]. Here we focus on the latter method, which is 
called structured residuals. 

Structured residuals are designed so that each residual is sensitive to 
a particular subset of faults, but insensitive to the other faults. When a 
particular fault occurs, some of the residuals respond, while others do not. 
The pattern of the response set, known as the fault code or fault signature, 
is characteristic of the fault. To state this mathematically, the outcome of 
comparing the residual ri(t) to its threshold ki is a binary variable 1"i(t): 

if h(t)1 < ki' 
if Iri(t)1 ~ ki . 

The vector 1" = bl1"2 ... 1"p] T is the fault code. 

(11.158) 

The fault codes are determined by the structure of the transfer function 
matrix W(q)Pf(q) between the faults and the transformed residuals. A re­
quirement for the isolation of single faults is that the fault code for each fault 
be different and non-zero. 

The structure matrix S describes the causal relationship between the 
faults and residuals. Each column of the matrix represents a fault and each 
row represents a binary result. A value of Sij = 1 indicates that the lh fault 
caused the ith residual to violate its threshold, whereas Sij = 0 indicates that 
the ith residual is relatively insensitive to the occurrence of the lh fault. The 
structure matrix is defined by the residual specifications (see Section 11.5.3). 
The columns of S must be distinct to be able to distinguish among all the 
faults. 

For fault isolation, the fault code 1"( t) is computed from the observations 
and compared with the columns of the structure matrix S. If the observed 
fault code satisfies 

(11.159) 

where Sj is the lh column of the structure matrix S, then the lh fault 
is indicated as having occurred. For simple implementation, the number of 
residuals p should be kept low while the number of "0" elements in each 
column should be made high. 

To illustrate the procedure of designing structured residuals for isolating 
faults, the non-interacting tanks system is used (see Figure 11.9). To simplify 
the algebra, this example will neglect the disturbance and consider only two 
faulty cases, where there is a leak in Stream 1 for t ~ 14.5 (denoted as Fault 
1) and that the flow transmitter for Fo2 gives a biased reading for t ~ 7 
(denoted as Fault 2). When the faults occur, the state-space equations are 

dx 
dt = Ax(t) + Bu(t) + Bff(t) (11.160) 
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y(t) = Cx(t) + D/f(t) (11.161) 

where 

A= [
_1 0] 

B/ = A~l 0 ' 

(11.162) 

c ~ [ ~ ~ 1, Df ~ [~~ 1 ' 
u = Fi , yT = [Fo1 Fo2 j, x T = [h1 h2j, fT = [11 hj, 11 represents the leak in 
Stream 1, and h represents the bias in the Fo2 measurement. 

All measured signals are assumed to have additive normally distributed 
noise with zero mean and variance with magnitude of 10-4 • Assuming C1 = 
0.3, C2 = 0.2, Ac1 = 1, and Ac2 = 1, the measured input u, the measured 
output y, and the measured state x are plotted in Figures 11.15 and 11.16 
during occurrences of Faults 1 and 2. Using (11.24), we have 

(11.163) 

The dimension of the residual vector r(t) is set to 2, so that there is enough 
dimensionality to distinguish between the faults based on the structure of 
the residuals. For convenience, the structure matrix S is set to the identity 
matrix. In other words, the residuals T1(t) and T2(t) are driven by Faults 1 
and 2, respectively. This suggests that the transfer function matrix Z / (s) for 
the residual specification should have the form: 

Z (s) = [Z/l1(S) 0 ]. 
/ o. Z/22(S) 

(11.164) 

Equation 11.136 can be used to determine the transformation W(q) in the 
discrete-time case. In the continuous-time and disturbance-free case, the 
equation becomes 

(11.165) 

Therefore, the transformation matrix W(s) can be determined as 

( [
Z/l1(S)(l + ~s) 0 1 W s) = 1 • 

Z/22(S) C2+~:28 Z/22(S) 
(11.166) 

The design parameter Z/l1(S) was set as Cl+c1.18 and Z/22(S) was set as one 
and the transformation matrix becomes 
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Fig. 11.15. The measured input (inlet flow rate), the measured state (liquid 
height), and the measured output (outlet flow rate) of two non-interacting flow 
tanks in series when Fault 1 (a leak in Stream 1) occurs at t = 14.5 

(11.167) 

The residuals Tl (t) and T2(t) are plotted in Figures 11.17 and 11.18, respec­
tively. The residual Tl(t) remains close to zero in the normal operating 
conditions and in the case when Fault 2 occurs. As suggested by the de­
sign specification, Tl(t) is driven only by Fault 1. The residual T2(t) remains 
close to zero in the normal operating conditions and in the case when Fault 
1 occurs. As suggested by the design specification, T2(t) is driven only by 
Fault 2. These indicate that the transformation matrix W(s) was robust and 
sensitive. 

11.5.7 Residual Evaluation 

After the residuals are computed, the resulting residual is used as feature 
inputs to fault detection and diagnosis through logical, causal, or pattern 
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Fig. 11.16. The measured input (inlet flow rate), the measured state (liquid 
height), and the measured output (outlet flow rate) of two non-interacting flow 
tanks in series when Fault 2 (Fo2 gives a biased reading) occurs at t = 7 

recognition techniques. When the disturbances and model uncertainty are 
decoupled from the residuals (see Section 11.5.2), then only the noise and 
the faults contribute to the residuals: 

r(t) = rr(t) + rn(t) (11.168) 

where rr( t) = W( q)Pf (q)f( t) is the fault-induced part of the residual, while 
rn(t) = W(q)Pn(q)n(t) is the noise-induced part of the residuals. Although 
unknown, the faults are assumed to be deterministic. With the assumption 
that the noise has zero mean, the residual has a time-varying mean con­
tributed entirely by the faults 

ILr(t) = rr(t). (11.169) 

The noise is assumed to be stochastic. If the faults are not stochastic, then 
the covariance of the residual is entirely due to the noise: 

Cov(r(t),r(t - T)) = Cov(rn(t),rn(t - T)). (11.170) 
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Fig. 11.17. The residual rl(t) obtained from the parity relations with the weight 
wl'(s) = [1 0] in the normal operating conditions and in the cases when Faults 1 
and 2 occur 

For fault detection, the null hypothesis is that the residual has zero mean. 
The T2 statistics in Chapter 2 can be used to define thresholds on the resid­
uals used for determining whether a fault has occurred. Each residual can be 
tested separately, as done in univariate control charts, or the residual vector 
can be tested using a single threshold defined by multivariate statistics. The 
process monitoring procedure can be made more sensitive to slow drifts by 
taking window averages, by applying exponential moving averages, or by us­
ing cumulative sums on the residuals. The methods of dealing with temporal 
correlation discussed in Part III, such as time histories, can also be applied. 
These methods also apply to fault isolation. 

One way to diagnose faults is to apply pattern classification techniques, as 
discussed in Chapter 3, on the residuals. Discriminant analysis can be used to 
select the fault class which maximizes the a posteriori probability. This allows 
the direct incorporation of prior fault probabilities to improve fault diagnosis. 
A closely related approach is the generalized likelihood ratio technique. 
In this approach, conditional estimates of the residual means are computed 
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Fig. 11.18. The residual T2(t) obtained from the parity relations with the weight 
wi'{s) = [C2+~:2. 1] in the normal operating conditions and in the cases when 
Faults 1 and 2 occur 

with the various fault hypotheses, under the geometric constraints posed by 
the respective structure, and the likelihood functions obtained with those 
means are compared [101]. This allows the directionality and structuring of 
residuals to be included rather explicitly. 

Gomez et al. [105] suggested using operating point computation, Schef­
fee's statistic, and Hotelling's statistic to detect the normality of the residuals. 
The results are then formulated as a fuzzy logic rule for detecting and diag­
nosing faults. Frank and Kiupel [92] evaluated the residual based on fuzzy 
logic incorporated with either adaptive thresholds or fuzzy inference with the 
assistance of a human operator. Garcia and Frank [94] proposed a method 
to integrate the observer-based method with the parameter estimation ap­
proach. The observer-based residual is used for fault detection; when the 
signals are sufficiently rich, the parameter identification residual is then used 
for fault diagnosis. Ding and Guo [68] suggested that integrating the gener­
ation of the residual with its evaluation may improve the ability to detect 
and diagnose faults. They proposed a frequency domain method to design 
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an integrated fault detection system. Many other recent papers on analytical 
redundancy methods are available (27, 36, 69, 197, 242, 251, 252]. 

11.6 Homework Problems 

1. Derive (11.29). Hint: Set the derivative of the objective (eTe) with re­
spect to () equal to zero, and solve for (). 

2. A weighting matrix a is usually used in parameter estimation to take 
into account the relative accuracy of the measurements. Derive the model 
parameter vector 0 that minimizes the weighted sum of equation errors 
e T aT ae. Describe an approach to defining the weighting matrix a based 
on the relative accuracy of the measurements (hint: see [22, 25]). Thor­
oughly justify the approach. 

3. Repeat the parameter estimation study for the gravity flow tank system 
in Section 11.3, for various amounts of measurement noise. Produce plots 
such as Figures 11.3-11.5 for each case. Report the parameter estimates 
iJ obtained during normal operating conditions in each case, and plot as 
a function of the amount of measurement noise. Under what conditions 
are the parameter estimates obtained by least squares acceptable for fault 
detection? 

4. Repeat the parameter estimation study for the gravity flow tank system 
in Section 11.3, except with an unbiased parameter estimation algorithm 
[25, 199, 355J replacing the least-squares estimates. How do the results 
change when the measurement noise is increased by a factor of 5? 

5. Repeat the parameter estimation study for the gravity flow tank system 
in Section 11.3, except with the parameters estimated using only the past 
10 consecutive time intervals. Comment on the accuracy of the parameter 
estimates obtained after the process dynamics have settled out. Discuss 
the importance of having persistent excitation when applying the param­
eter estimation method. Change the operating conditions for the process 
so that there is persistent excitation, and reapply the parameter esti­
mation method. Comment on the accuracy of the parameter estimates, 
and discuss how this affects the ability to detect and diagnose faults. 
Using the same change in operating conditions, reapply the parameter 
estimation method using 30 consecutive time intervals. Comment on the 
relationships between the number of consecutive time intervals used in 
the parameter estimation method, the time it takes to detect the fault, 
and the accuracy of the parameter estimates. 

6. Repeat the parameter estimation study for the gravity flow tank system 
in Section 11.3, except with the leak occurring immediately after the 
valve at the exit of the tank. 

7. Repeat the parameter estimation study for the gravity flow tank system 
in Section 11.3, except where leaks at four locations are considered: (i) 
Stream 1, (ii) the tank, (iii) Stream 2, and (iv) between the valve and 
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the second flow transmitter. Can the parameter estimation algorithm 
distinguish between leaks at the four locations? Thoroughly justify your 
answer. 

8. Consider the pump example in Section 11.3, except where only a steady­
state model for the process is used. Formulate the parameter estimation 
problem. Specify the model parameters OJ. How many model parameters 
are there? Derive the relationship between the OJ and the Pj. How many 
physical parameters can be estimated? Which of the physical parameters 
can be estimated uniquely, and which physical parameters are lumped? 

9. Consider the pump example in Section 11.3, but with the valve closed, so 
that M{t) = O. The measured variables are Ul{t), h{t), and w{t). Formu­
late the parameter estimation problem. Specify the model parameters OJ. 
How many model parameters are there? Derive the relationship between 
the OJ and the Pj. How many physical parameters can be estimated? 
Which of the physical parameters can be estimated uniquely, and which 
physical parameters are lumped? 

10. For Problem 8, how would the answers change if only a steady-state 
model for the process was used? 

11. Consider the pump example in Section 11.3, except with Y{t) not mea­
surable. Formulate the parameter estimation problem. Specify the model 
parameters OJ. How many model parameters are there? Derive the re­
lationship between the OJ and the Pj. How many physical parameters 
can be estimated? Which of the physical parameters can be estimated 
uniquely, and which physical parameters are lumped? 

12. For Problem 10, how would the answers change if only a steady-state 
model for the process was used? 

13. Consider the pump example in Section 11.3, except with M(t) not mea­
surable. Formulate the parameter estimation problem. Specify the model 
parameters OJ. How many model parameters are there? Derive the re­
lationship between the OJ and the Pj. How many physical parameters 
can be estimated? Which of the physical parameters can be estimated 
uniquely, and which physical parameters are lumped? 

14. For Problem 12, how would the answers change if only a steady-state 
model for the process was used? Note: Problems 7-13 are patterned after 
an experimental study [96, 137]. 

15. Consider a chemical reaction where the reactant A forms products B and 
G on a catalyst surface. Consider the estimation of the kinetic rate con­
stant k in the rate law, r A = kG A, where G A is the molar concentration 
of species A. Assume that the experiments are carried out in a well-mixed 
batch reactor with initial concentration GAO, and that the volume and 
temperature remain constant throughout the reaction. Assume that the 
concentration of A can be measured once a minute. 
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a) Solve for C A as a function of the initial concentration of A, the kinetic 
rate constant k, and time t. [Hint: the molar balance equation for 
species A is d~l = -kCA .] 

b) Write out the least-squares objective function for the estimation of 
the kinetic rate constant k. Clearly define each variable and its di­
mensions. Simplify as much as possible. Explain in words how to 
compute the best fit model parameter k. Is it possible to derive an 
analytical expression for the best fit k? 

c) Write out the least-squares objective function for the estimation of 
the kinetic rate constant k as above, except with the assumption that 
the logarithm of the concentration of A can be measured directly (this 
happens, for example, when a pH probe is used to measure hydrogen 
ion concentration). Derive an analytical expression for the best fit 
kinetic rate constant k as a function of the time at the sampling 
instances and the measurement of the logarithm of the concentration 
of A at each sampling instant. 

d) During a batch run, changes in the kinetic rate constant can occur 
due to deactivation of the catalyst used in the reaction. Explain how 
you would determine the threshold on the change in the kinetic rate 
constant which would signal when catalyst deactivation has occurred. 

16. Repeat the full-order observer study for the gravity flow tank system 
in Section 11.4.1, for various amounts of measurement noise, where the 
initial estimated state is O. Plot the state and output estimates obtained 
during normal operating conditions and during fault conditions in each 
case. How does the tuning of H depend on the noise level? Repeat the 
problem for the case where the initial estimated state is 0.3. Discuss 
how to tune H depending on the noise level and the accuracy of the 
initial estimated state. Repeat the problem for the case where the values 
for A and B in the observer equations are 20% larger than the A and 
B in the state-space equations for the process (this represents model 
uncertainties). Discuss how to tune H depending on the level of model 
uncertainty. 

17. Repeat the full-order observer study for the gravity flow tank system in 
Section 11.4.1, except with the leak occurring immediately after the valve 
at the exit of the tank. 

18. Repeat the full-order observer study for the gravity flow tank system in 
Section 11.4.1, except where leaks at four locations are considered: (i) 
Stream 1, (ii) the tank, (iii) Stream 2, and (iv) between the valve and 
the second flow transmitter. Can the fault detection algorithm distinguish 
between leaks at the four locations? Thoroughly justify your answer. 

19. Propose a method to blend the observer-based method with canonical 
variate analysis (CVA) as described in Chapter 7. Thoroughly justify 
your method, while listing both its advantages and disadvantages over the 
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CVA-based measures in Chapter 7 and the pure observer-based method 
discussed in this chapter. 

20. Rederive the equations in Section 11.4.2 for continuous-time systems. 
Compare with a published derivation [89]. Which derivation is more gen­
eral? Note: there is a typographical error in Equation 23 of [89]. 

21. It is stated in Section 11.5.1 that (11.115) can always be satisfied for 
sufficiently large (1'. Prove this statement. 

22. Derive (11.117). Hint: see [226, 227]. 
23. Derive (11.119) from (11.117). 
24. Derive the expressions for n(t), d(t}, Ln. and Ld in (11.120). Comment on 

the design of W Ld so that the disturbances do not affect the transformed 
residuals. 

25. Derive (11.154) from (11.153). 
26. Recall the full-order observer study for the gravity flow tank system in 

Section 11.4.1. Compute the transformation matrix W(q} for the equiva­
lent fault detection system based on parity relations. Then compute the 
associated specification on the residual Zf(q). Are the dynamics in these 
transfer functions what you would expect? Does this provide some in­
sight into the suitability of the observer design? Thoroughly justify your 
answers. Hint: derive Pf(q), and use (11.135) and (11.157). 

27. Read one of the following papers: [53, 88, 139, 151, 154, 155, 178, 238, 
249, 311, 312, 331, 332]. Write a summary report. Compare the method 
described in the paper with the methods described in this chapter. Which 
methods are more general? Which types of faults are best handled by each 
method? Thoroughly justify your answers. 

28. A technique that has been applied in the process industries is data rec­
onciliation. Read one of the following papers on data reconciliation: 
[6, 43, 57, 121, 214, 275, 276, 306, 337]. Write a summary report. Com­
pare the method described in the paper with the methods described in 
this chapter. Which approaches are more general? Which types of faults 
are best handled by each method? Thoroughly justify your answers. 

29. In the generalized observer scheme, an observer dedicated to a certain 
sensor is driven by all outputs except that of the respective sensor. This 
allows the detection and isolation of a single fault in any sensor [85]. Write 
a summary report based on [85]. Would such an method be expected 
to give better results for faults in single sensors than the observer-based 
methods described in this chapter? Does this answer depend on the char­
acteristics of the plant? Thoroughly justify your answers. 

30. In contrast to a single observer, a bank of observers can also be used, 
in which each observer is excited by all outputs [54]. For fault isolation, 
multiple hypotheses testing can be applied, in which each of the esti­
mators is designed for a different fault hypothesis. The hypotheses are 
tested in terms of likelihood functions (e.g., Bayesian decision theory) 
[341]. Read the papers [54, 341] which describe this method, and write a 
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report describing the method in some detail. Compare and contrast with 
the single observer method. What are the advantages and disadvantages 
of each method? Thoroughly justify your answers. 

31. For a stochastic process, the innovations (prediction errors) of a Kalman 
filter can be used to detect faults. In the fault-free case, the innovations 
are white noise with zero mean and known covariance matrix. A fault 
is detected when the character of zero mean white noise with known 
covariance has changed. Read the papers [221, 341, 342] which describe 
this method, and write a report describing the method in some detail. 
Compare and contrast with the observer-based method described in this 
chapter. What are the advantages and disadvantages of each method? 
Thoroughly justify your answers. 

32. For nonlinear processes, nonlinear observers can be used to estimate the 
state [1, 18, 86, 88, 89]. Write a report based on [89], which discusses 
the differences between the unknown input observer design for linear and 
nonlinear systems. 



12. Knowledge-based Methods 

12.1 Introduction 

As discussed in Chapter 11, the analytical approach requires a detailed quan­
titative mathematical model in order to be effective. For large-scale sys­
tems, such information may not be available or may be too costly and time­
consuming to obtain. An alternative method for process monitoring is to use 
knowledge-based methods such as causal analysis, expert systems, and pat­
tern recognition. These techniques are based on qualitative models, which can 
be obtained through causal modeling of the system, expert knowledge, a de­
tailed description of the system, or fault-symptom examples. Causal analysis 
techniques are based on the causal modeling of fault-symptom relationships. 
Qualitative and semi-quantitative relationships in these causal models can be 
obtained without using first principles. Causal analysis techniques including 
signed directed graphs and symptom trees are primarily used for diagnosing 
faults. These techniques are described in Section 12.2. 

Expert systems are used to imitate the reasoning of human experts when 
diagnosing faults. The experience from a domain expert can be formulated 
in terms of rules, which can be combined with the knowledge from first prin­
ciples or a structural description of the system for diagnosing faults. Expert 
systems are able to capture human diagnostic associations that are not read­
ily translated into mathematical or causal models. A description of expert 
systems is provided in Section 12.3. 

Pattern recognition techniques use associations between data patterns and 
fault classes without explicit modeling of internal process states or structure. 
Examples include artificial neural networks and self-organizing maps. These 
techniques are related to the data-driven techniques (PCA, PLS, FDA, and 
CVA) described in Chapters 4 to 7 in terms of modeling the relationships 
between data patterns and fault classes. The data-driven techniques are di­
mensionality reduction techniques based on rigorous multivariate statistics, 
whereas neural networks and self-organizing maps are black box methods 
that learn the patterns based entirely from training sessions. Section 12.4 
provides a description of these pattern recognition techniques. 

Each of the data-driven, analytical, and knowledge-based approaches have 
strengths and limitations. Incorporating several techniques for process moni­
toring can be beneficial in many applications. Many of these approaches can 
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be combined with fuzzy logic. Section 12.5 discusses various combinations of 
process monitoring techniques. 

12.2 Causal Analysis 

Approaches based on causal analysis use the concept of causal modeling 
of fault-symptom relationships. Causal analysis is primarily used for di­
agnosing faults. Several recent papers that use causal analysis are available 
[127, 196, 228, 229, 303, 304, 320]. 

12.2.1 Signed Directed Graph 

The signed directed graph (SDG) is a qualitative model-based approach 
for fault diagnosis that incorporates causal analysis [133, 287, 310]. It is a 
map showing the relationship of the process variables and it also reflects 
the behavior of the equipment involved as well as general system topology. 
A SDG for the gravity flow tank system in Figure 11.2 is shown in Figure 
12.1. Nodes can depict process variables, sensors, system faults, component 

Leak in Stream 0 Leak in Stream 1 Stuck Valve 

Leak in Tank 

Fig. 12.1. A signed directed graph for the gravity tank system 

failures, or subsystem failures. To use a SDG for diagnosing faults, high and 
low thresholds for each variable are first defined. A node takes the value of 
o when its measure variable is normal. A node takes a value of + when its 
measured variable is larger than the high threshold or the event as indicated 
by the node occurs. A node takes a value of - when its measured variable 
is smaller than the low threshold. Relationships between the cause nodes to 
effect nodes are embodied in the direct arcs between the nodes. These arcs 
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may be conditional upon other events. Arc signs associated with each directed 
arc can take values of + and - representing whether the cause and effect 
change in the same direction or the opposite direction, respectively. A - sign 
can also be taken when the occurrence of an event in the cause node causes 
the negative deviation in the event in the effect node. For example, when 
"Leak in Stream I" occurs, it will decrease the liquid height h. Therefore, a 
- sign is taken. Similarly, a + sign can also be taken when the occurrence 
of an event in the cause node causes the positive deviation in the event in 
the effect node. The goal of utilizing a SDG for diagnosing faults is to locate 
the possible root nodes representing the system faults based on the observed 
symptoms. To achieve this, the measured node deviations are propagated 
from effect nodes to cause nodes via consistent arcs until the root nodes are 
identified. An arc is consistent if the sign of the cause node times the sign 
of the arc times the sign of the effect node is positive. 

Assuming that a single fault affects only a single root node and that 
the fault does not change other causal pathways in the SDG, the causal 
linkages will connect the fault origin to the observed symptoms of the fault. 
The gravity flow tank (see Figure 11.2) is used to illustrate the procedure 
of diagnosing faults using a SDG. The first step of developing a SDG is 
to connect the nodes in the fault-free case. The second step is the fault 
modeling step, which determines the initial effects of the fault on the SDG. 
The following faults are considered in this example: (i) leak in Stream 0, 
(ii) leak in Stream 1, (iii) leak in tank, and (iv) valve is stuck in the closed 
position. The corresponding SDG is shown in Figure 12.1. 

Leak in Stream 0 Leak in Stream 1 Stuck Valve 

Leak in Tank 

Fig. 12.2. A signed directed graph for the gravity tank system with the symptoms 
"h is increasing, while Fo is decreasing" 

Consider the case where the observed symptoms are that the liquid level 
h is increasing, while the output flow rate Fo is decreasing. These symptoms 
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indicate that the nodes Pi, h, and Po take the values of 0, +, and -, re­
spectively. Based on a consistent path check (see Figure 12.2), the fault is 
determined uniquely as "the valve is stuck in the closed position". A + sign 
in any of the other unmarked nodes in Figure 12.2 results in an inconsistent 
arc. 

Now consider the case where the observed symptoms are that h and Po are 
decreasing. The nodes h and Po now take values of -, while the node Pi takes 
a value of O. Based on a consistent path check (see Figure 12.3), the possible 
root nodes responsible for the symptoms are identified as "Leak in Tank" and 
"Leak in Stream 1". Simulations of these two faults are shown in Figures 11.4 
and 12.4, respectively. The simulations indicate that these two faults share 
the same symptoms. The SDG narrows down the search for the possible 
faults, but it can produce more than one fault candidate. To determine the 
exact cause of the symptoms, expert knowledge is often needed. Alternatively, 
taking additional measurements of the process at different locations may 
reveal different symptoms for the faults "Leak in Tank" and "Leak in Stream 
I". 

Leak in Stream 0 Leak in Stream 1 Stuck Valve 

root node 

Leak in Tank 

Fig. 12.3. A signed directed graph for the gravity tank system with the symptoms 
"k and Fo are decreasing" 

The SDG shown in Figure 12.1 was developed based on knowledge from 
observation and analysis of the system. For complex and large-scale systems, a 
SDG for the process can be developed from the model equations of individual 
units in the process [235]. Alternatively, the SDG can also be developed based 
on the knowledge of the process from a domain expert or historical data. The 
SDG is able to provide a list of possible fault candidates. Expert knowledge 
is often needed to deduce the most likely fault candidates from the list. 

There are some drawbacks of using this basic version of the SDG. These 
include the lack of resolution, potentially long computing times, and the single 
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Fig. 12.4. The measured input (inlet flow rate), measured state (liquid height), 
and measured output (outlet flow rate) of a gravity tank in faulty case (Tank is 
leaking) 

fault assumption. The resolution of a SnG has been improved by using extra 
information on the reliability of equipment, the infeasibility of certain root 
nodes, and equipment maintenance schedules [319). This knowledge base is 
used to eliminate physically improbable nodes. 

The computing time required for using the SnG can be reduced by compil­
ing the SnG into rules [173). The SnG has been extended to handle variables 
with compensatory response and inverse response [81, 247). A digraph-based 
diagnosis reasoning approach known as the possible cause-effect graph 
can reduce the search space [339, 340). The SnG has also been extended to 
multiple fault diagnosis by assuming that the probability of occurrence of a 
multiple fault decreases with an increasing number of faults [319). 

12.2.2 Symptom Tree Model 

A closely related representation to the SnG that can be used in causal anal­
ysis is the symptom tree model (STM). The STM is a real-time version 
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of a fault tree model that relates the faults and symptoms [354, 362, 363]. 
In STM, the root cause of a fault is determined by taking the intersection 
of causes attached to observed symptoms. It is highly likely that this pro­
cedure will result in more than one candidate fault, and it is impossible to 
determine the most probable cause among the suggested candidates. The 
weighted symptom tree model (WSTM) resolves the problem by at­
taching a weight to each symptom-fault pair, with the weight obtained by 
training the WSTM. With the WSTM, the proposed candidate faults are 
ranked according to their probability. In the next step, a pattern matching 
algorithm is used which matches the observed fault propagation trends with 
standard fault propagation trends based on training set [246]. The fault that 
best matches the observed process variable changes is selected as the most 
probable candidate among the proposed ones. 

12.3 Expert Systems 

Many fault diagnosis applications in the areas of engineering have made use 
of expert systems. Expert systems are knowledge-based techniques which 
are closer in style to human problem solving. A well-developed expert sys­
tem is able to represent existing expert knowledge, accommodate existing 
databases, accumulate new knowledge, make logical inferences, make recom­
mendations, and make decisions with reasoning. The main advantage of using 
expert systems is that experts need not be present for a consultation. 

The basic components of an expert system include a knowledge base, 
an inference engine, and a human/expert system interface. The knowledge 
base can be obtained via shallow knowledge (based on heuristics and ex­
pert testimony) and/or deep knowledge (based on structural, behavioral, 
or mathematical models) [257, 366]. Various types of knowledge representa­
tion schemes can be used including production rules, frames, and semantic 
networks. The correctness and completeness of the information stored in the 
knowledge base specifies the performance achievable by the expert system. To 
benefit from new experience and knowledge, the knowledge base also needs 
to be updated periodically. The inference engine directs the use of the knowl­
edge base. Inference mechanisms include forward-backward chaining, hypoth­
esis/test methods, heuristic search, meta-rules, and artificial neural networks 
[23]. The human/expert system interface must translate user input into com­
puter language and presents conclusions and explanations to the user in an 
easy-to-understand form. 

Early work on expert systems was focused primary on medical diagnostic 
systems [32, 52]. Efforts have been made to expand the applications to equip­
ment maintenance and diagnostics, science, engineering, agriculture, busi­
ness, and finance [34, 175, 198, 211, 284, 314J. Here we provide an introduc­
tion to expert systems. Many references provide a more detailed description 
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[37, 107, 131, 161, 335]. Several recent papers describing applications of ex­
pert systems are available [14, 33, 35, 265, 359]. 

12.3.1 Shallow-Knowledge Expert System 

An experienced engineer or domain expert is capable of diagnosing faults 
in a much shorter time than an inexperienced operator because the experi­
enced personnel have accumulated knowledge and experience. To assist the 
personnel to diagnose faults, expert experience can be formulated as a set 
of IF-THEN rules, which can be used to build an expert system. This is 
referred to as a shallow-knowledge expert system (also known as expe­
riential knowledge and empirical reasoning expert systems) [174, 198]. The 
method does not depend on a functional understanding of the mechanism or 
physics of the system. 

Advantages of shallow-knowledge expert systems are that they are flexible 
and their conclusions can be easily verified and explained. Shallow-knowledge 
expert systems map the observations to conclusions directly; therefore, shal­
low knowledge can also be applied to areas where fundamental principles or 
complete descriptions of the systems are lacking, but heuristic solutions are 
available. For example in medical diagnosis where detailed and reliable mod­
els of the subjects are lacking, rules have been formulated to relate sets of 
symptoms to possible diseases [32, 52]. 

The results from a shallow-knowledge expert system depend strongly on 
the adequacy of the knowledge incorporated into the expert system. However, 
heuristics do not guarantee any solution to the fault diagnosis problems, 
especially for situations in which the domain experts have not encountered 
before (i.e., knowledge outside of the domain of expertise). At a minimum, 
a well-developed shallow-knowledge expert system should be able to offer 
solutions which are good enough most of the time [60]. 

The main difficulty of applying shallow-knowledge expert systems is in 
the knowledge acquisition step, which is the step of collecting adequate 
knowledge from domain experts and translating it into computer programs. 
First, domain experts may not be available for unique operating scenarios 
and for new or retrofitted plants. Second, when domain experts are available, 
they may not understand or be able to explain clearly how they solve a 
problem [115, 174, 293, 309, 327]. Each expert system is application specific. 
Developing an effective expert system from scratch can be time-consuming 
and costly for a large-scale system. 

12.3.2 Deep-Knowledge Expert Systems 

In contrast to shallow-knowledge expert systems, deep-knowledge expert sys­
tems are based on a model such as engineering fundamentals, a structural de­
scription of a system, or a complete behavioral description of its components 
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in faulty and normal cases. Deep-knowledge expert systems are also known 
as model-based, functional reasoning, or diagnosis-from-first-principles expert 
systems. For novel or unique situations, deep-knowledge expert systems of­
ten provide useful information for diagnosing faults. Deep knowledge is often 
needed when a particularly difficult problem is confronted or an explanation 
to the diagnostic process is required [273]. 

Deep knowledge involves using reasoning on causal and functional infor­
mation. Knowledge of the principles which govern the process can be used 
in a deep-knowledge expert system. Governing equations based on physical 
laws provide a set of constraints on the values of process variables. Signifi­
cant violations of these constraints are an indication of process faults. Each 
constraint is associated with the set of faults which cause violation of the 
constraint [174]. 

Another method to develop a deep-knowledge expert system is to use 
causal reasoning via a SDG [173, 174, 301, 356]. One rule can be produced 
for each possible fault origin in the SDGj combining these rules produces all 
viable fault candidates [174]. 

Similarly to the analytical techniques which rely heavily on first principles, 
a deep-knowledge expert system is also hard to develop for a complex large­
scale system whose mathematical model may not be available. 

12.3.3 Combination of Shallow-Knowledge and Deep-Knowledge 
Expert Systems 

An experienced engineer uses a combination of techniques for diagnosis, in­
cluding a familiarity with the system documentation, a functional under­
standing of the system components, an understanding of the system interrela­
tionships, knowledge of the failure history of the device, along with numerous 
heuristics [254]. This suggests that shallow knowledge and deep knowledge 
should be combined in an expert system. Deep knowledge reasoning is often 
needed to supplement the shallow knowledge. 

Although it is costly to obtain a first-principles model for a large-scale 
system, models of individual components are usually available [216]. Such 
information can be combined with shallow knowledge in order to effectively 
diagnose faults. One method to combine shallow and deep knowledge is to 
convert the deep knowledge into production rules [174]. 

12.3.4 Machine Learning Techniques 

As mentioned in Section 12.3.1, the main difficulty of using shallow knowl­
edge is in knowledge acquisition. Experts are usually better at collecting and 
archiving cases than in expressing the experience and cases explicitly into 
production rules [293, 327]. 
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One way to solve this problem is to use machine learning techniques, in 
which knowledge is automatically extracted from data [21, 200, 201]. Sym­
bolic information can be integrated into an artificial neural network learning 
algorithm [156, 298]. Such a learning system allows for knowledge extraction 
and background knowledge encoded in the form of rules. Fuzzy rules can also 
be used to extract knowledge from the data [156, 327]. 

12.3.5 Knowledge Representation 

The simplest form of knowledge representation in an expert system is to use 
a series of IF-THEN rules to represent the expert knowledge in the system. 
The majority of industrial expert systems use a rule-based system, which 
is composed of a rule base, a working memory, and a rule interpreter [107, 
309]. The rule base is often partitioned into groups of rules, called rule 
clusters. Each rule cluster encodes the knowledge required to perform a 
certain task. A working memory is a database holding input data, inferred 
hypotheses, and internal information about the program. A rule interpreter 
is the mechanism to select rules and evaluate rules. Advantages of rule-based 
systems are that they enforce a homogeneous representation of knowledge, 
allow incremental knowledge growth through the addition of rules, and allow 
unplanned but useful interactions [107, 293]. 

In addition to the rule-based systems to represent expert knowledge, a 
semantic network can also be used. A semantic network is a method of knowl­
edge representation in which concepts are represented as nodes in the network 
and relations are represented as directed arcs (see Figure 12.5). There must 
be a way of associating meaning with the network. One way to do this is to 
associate a set of programs that operate on descriptions in the representation 
[293,294]. 

Flow Transmitter 

Fig. 12.5. A semantic network representing the knowledge "FT is a Bow transmit­
ter with a Bow rate of 10 m3 /hr" 

Alternatively, frames can be used for knowledge representation. A frame 
is a collection of semantic net nodes that together provides a structured 
representation of an object, act, or event [293]. Frames may be linked in 
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hierarchies to show the relationships between domain objects, while rules can 
only indirectly describe the objects which comprise the domain [174, 293]. 

12.3.6 Inference Engine 

An inference engine uses an inference mechanism to gather the information 
needed (from the knowledge base or the user) to draw inferences or conclu­
sions for the processes involved, and presents these inferences or conclusions 
with explanations or bases. The most common approach used in an infer­
ence mechanism is backward/forward chaining. In backward chaining, the 
system works backward from tentative conclusions or goals to find support­
ing evidence. Backward chaining starts with selecting a particular hypothesis, 
the rules are examined to see if the hypothesis is a consequence. If so, the 
premise (also called a condition, pattern, or antecedent) forms the next set 
of hypotheses. The procedure is continued until some hypotheses are false or 
all hypotheses are true based on the data. 

In forward chaining the system reasons forward from a set of known facts 
to infer the conclusions [293,309]. System design is a forward-chaining appli­
cation where the expert system starts with the known requirements, inves­
tigates the possible arrangements, and makes a recommendation. A combi­
nation of forward and backward chaining are common in many applications 
[309]. 

The hypothesis/test method is patterned closely to human diagnostic rea­
soning. This method first generates a hypothesis based on observations. The 
effects of the hypothetical fault on the process are determined and compared 
with the actual measurements. If the hypothesis cannot be verified, another 
hypothesis is checked. The procedure is repeated until all hypotheses are 
exhausted. 

12.4 Pattern Recognition 

Many data-driven, analytical, and knowledge-based methods incorporate pat­
tern recognition techniques to some extent. For example, Fisher discriminant 
analysis is a data-driven process monitoring method based on pattern clas­
sification theory. Numerous fault diagnosis approaches described in Part III 
combined dimensionality reduction (via PCA, PLS, FDA, or CVA) with dis­
criminant analysis, which is a general approach from the pattern recognition 
literature. Other uses of pattern recognition in process monitoring are dis­
cussed in Section 12.2. 

Some pattern recognition methods for process monitoring use the rela­
tionship between the data patterns and fault classes without modeling the 
internal process states or structure explicitly. These approaches include arti­
ficial neural networks (ANN), and self-organizing maps. Since pattern 
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recognition approaches are based on inductive reasoning through general­
ization from a set of stored or learned examples of process behaviors, these 
techniques are useful when data are abundant, but when expert knowledge 
is lacking. Recent reviews of pattern recognition approaches are available 
[192, 224, 282]. The goal here is to describe artificial neural networks and 
self-organizing maps, as these are two of the most popular pattern recogni­
tion approaches, and they are representative of other approaches. 

12.4.1 Artificial Neural Networks 

The artificial neural network (ANN) was motivated from the study of the 
human brain, which is made up of millions of interconnected neurons. These 
interconnections allow humans to implement pattern recognition computa­
tions. The ANN was developed in an attempt to mimic the computational 
structures of the human brain. 

An ANN is a nonlinear mapping between input and output which consists 
of interconnected "neurons" arranged in layers. The layers are connected 
such that the signals at the input of the neural net are propagated through 
the network. The choice of the neuron nonlinearity, network topology, and 
the weights of connections between neurons specifies the overall nonlinear 
behavior of the neural network. Many books are available that provide an 
introduction to neural networks [24, 28, 61, 156, 309, 358]. Numerous papers 
are available which apply ANNs to fault detection and diagnosis; many of 
these techniques were derived from the pattern recognition perspective [17, 
26, 50, 49, 106, 118, 119, 124, 210, 250, 297, 313, 333, 334, 361, 365]. 

Of all the configurations of ANNs, the three-layer feedforward ANN is the 
most popular (see Figure 12.6). The network consists ofthree components: an 
input layer, a hidden layer, and an output layer. Each layer contains neurons 
(also called nodes). The input layer neurons correspond to input variables 
and the output layer neurons correspond to output variables. Each neuron 
in the hidden layer is connected to all input layer neurons and output layer 
neurons. No connection is allowed within its own layer and the information 
flow is in one direction only. 

One common way to use a neural network for fault diagnosis is to assign 
the input neurons to process variables and the output neurons to fault in­
dicators. The number of output neurons is equal to the number of different 
fault classes in the training data. The jth output neuron is assigned to '1' if 
the input neurons are associated with fault j, and '0' otherwise. 

Each neuron j in the hidden and output layers receives a signal from 
the neurons of the previous layer v T = [VI V2 ••• Vr ], scaled by the weight 
w{ = [WIj W2j ... Wrj]. The strength of connection between two linked neu­
rons is represented in the weights, which are determined via the training 
process. The ph neuron computes the following value: 

(12.1) 
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Input Layer Hidden Layer Output Layer 

Fig. 12.6. Basic structure of a three-layer feedforward artificial neural network 

where bj is the optional bias term of the /h neuron. Adding a bias term 
provides an offset to the origin of the activation function and hence selectively 
inhibits the activity of certain neurons [282, 309, 353]. The bias term bj can be 
regarded as an extra weight term WOj with the input fixed at one. Therefore, 
the weight becomes w{ = [WOj WIj W2j .•. wril. The input layer neuron uses 
a linear activation function and each input layer neuron j receives only one 
input signal x j • 

The quantity Sj is passed through an activation function resulting in an 
output OJ. The most popular choice of the activation function is to use a 
sigmoid function, which satisfies the following properties: 

1. The function is bounded, usually in the range [0,1] or [-1,1]. 
2. The function is monotonically nondecreasing. 
3. The function is smooth and continuous (i. e., differentiable everywhere in 

its domain). 

A common choice of sigmoid function is the logistic function: 

1 
o· = . 

J 1 + e-Sj 
(12.2) 

The logistic function has been a popular choice of activation function because 
many ANN training algorithms use the derivative of the activation function, 
and the logistic function has a simple derivative, ~ = oj(1 - OJ). Another 

3 

choice of sigmoid function is the bipolar logistic function: 

1 - e-Sj 

0·---­
J - 1 + e-Sj 

(12.3) 

which has a range of [-1,1]. Another common sigmoid function is the hyper­
bolic tangent: 
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e Sj - e-Sj 

OJ = e Sj + e-Sj • (12.4) 

Also, radial basis functions (Gaussian, bell-shaped functions) can be used in 
place of or in addition to sigmoid functions [44, 130, 231, 262]. 

The training session of the network uses the error in the output values to 
update the weights Wj of the neural network, until the accuracy is within the 
tolerance level. An error quantity based on the difference between the correct 
decision made by the domain expert and the one made by the neural network 
is generated, and used to adjust the neural network's internal parameters to 
produce a more accurate output decision. This type of learning is known as 
supervised learning. Mathematically, the objective of the training session is 
to minimize the total mean square error (MSE) for all the output neurons 
in the network and all the training data: 

M my 

E = _1_ " ,,(Y~m) _ y~m))2 
Mm ~~ J J 

Y m=lj=l 

(12.5) 

where M is the number of training data patterns, my is the number of neurons 

in the output layer, yjm) is the prediction for the jth output neuron for the 

given mth training sample, and yjm) is the target value of the ph output 

neuron for the given mth training sample. 
The backpropagation training algorithm is a commonly used steepest de­

scent method which searches for optimal solutions for the input layer-hidden 
layer weights w~ and hidden layer-output layer weights wj for (12.5). The 
general procedure for training a three-layer feedforward ANN is [156, 353]: 

1. Initialize the weights (this is iteration t = 0). 
2. Compute the output Yj(t) for an input x from the training data. Ad­

just the weights between the ith hidden layer neuron and the ph output 
neuron using the delta rule [156] 

(12.6) 

where 

(12.7) 

'fJ is the learning rate, 0: is the coefficient of momentum term, of(t) 
is the output value of the ith hidden layer neuron at iteration t, and 
Dj(t) = Yj - Yj(t) is the output error signal between the desired output 
value Yj and the value Yj(t) produced by the ph neuron at iteration t. 
Alternatively, the generalized delta rule can be used: 

(12.8) 
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where oj(sj) is the activation function, and 

(12.9) 

is the combined input value from all of the hidden layer neurons to the lh 
output neuron. When the activation function oj is the logistic function 
(12.2), the derivative becomes 

doj(sj) 0(1 0) A (1 A) 
ds~ = OJ - OJ = Yj - Yj . 

J 

(12.10) 

3. Calculate the error ei for the ith hidden layer neuron: 

(12.11 ) 

4. Adjust the weights between the kth input layer neuron and the ith hidden 
neuron: 

(12.12) 

When the delta rule (12.7) is used in Step 2, L1wZi (t + 1) is calculated as 

(12.13) 

where Xk is the kth input variable. When the generalized delta rule (12.8) 
is used in Step 2, L1wZi (t + 1) is calculated as 

(12.14) 

where 

(12.15) 

is the combined input value from all of the input layer neurons to the ith 

hidden neuron. 

Steps 2 to 4 are repeated for an additional training cycle (also called an 
iteration or epoch) with the same training samples until the error E in 
(12.5) is sufficiently small, or the error no longer diminishes significantly. 

The backpropagation algorithm is a gradient descent algorithm, indicat­
ing that the algorithm can stop at a local minimum instead of the global 
minimum. In order to overcome this problem, two methods are suggested 
[156]. One method is to randomize the initial weights with small numbers in 
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an interval [-l/n, l/n], where n is the number of the neuronal inputs. An­
other method is to introduce noise in the training patterns, synaptic weights, 
and output values. 

The training of the feedforward neural networks requires the determina­
tion of the network topology (the number of hidden neurons), the learning 
rate 'f/, the momentum factor a, the error tolerance (the number ofiterations), 
and the initial values of weights. It has been shown that the proficiency of 
neural networks depends strongly on the selection of the training samples 
[50]. 

The learning rate 'f/ sets the step size during gradient descent. If 0 < 'f/ < 1 
is chosen to be too high (e.g., 0.9), the weights oscillate with a large ampli­
tude, whereas a small 'f/ results in slow convergence. The optimal learning 
rate has been shown to be inversely proportional to the number of hidden 
neurons [156]. A typical value for the learning rate is taken to be 0.35 for 
many applications [327]. The learning rate 'f/ is usually taken to be the same 
for all neurons. Alternatively, each connection weight can have its individual 
learning rate (known as the delta-bar-delta rule [146]). The learning rate 
should be decreased when the weight changes alternate in sign and it should 
be increased when the weight change is slow. 

The degree to which the weight change ..:1wii (t + 1) depends on the previ­
ous weight change ..:1wii (t) is indicated by the coefficient of momentum term 
a. The term can accelerate learning when 'f/ is small and suppress oscilla­
tions of the weights when 'f/ is big. A typical value of a is taken to be 0.7 
(0 < a < 1). 

The number of hidden neurons depends on the nonlinearity of the problem 
and the error tolerance. The number of hidden neurons must be large enough 
to form a decision region that is as complex as required by a given prob­
lem. However, the number of hidden neurons must not be so large that the 
weights cannot be reliably estimated from available training data patterns. 
A practical method is to start with a small number of neurons and gradually 
increase the number. It has been suggested that the minimum number should 
be greater than (M - l)/(mz + 2) where mz is the number of inputs of the 
network, and M is the number of training samples [156]. 

In [156] a (4,4,3) feedforward neural network (i.e., 4 input neurons, 4 
hidden neurons, and 3 output neurons) was used to classify Fisher's data 
set (see Figure 4.2 and Table 4.1) into the three classes. The network was 
trained based on 120 samples (80% of Fisher's data). The rest of the data 
was used for testing. A mean square error (MSE) of 0.0001 was obtained for 
the training process and all of the testing data were classified correctly. 

To compare the classification performance of neural networks with the 
peA and FDA methods, 40% of Fisher's data (60 samples) were used for 
training, while the rest of the data was used for testing. The MATLAB Neural 
Network Toolbox [65] was used to train the network to obtain a MSE of 
0.0001 using the backpropagation algorithm. The input layer-hidden layer 
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weights W~i and the hidden layer-output layer weights wfj are listed in Table 
12.1. The hidden neuron biases bf and the output neuron biases bj are listed 
in Table 12.2. For example, W21 is 1.783 according to Table 12.1. This means 
that the weight between the second input neuron and the first hidden neuron 
is 1.783. 

Table 12.1. The weights of the neural network for Fisher's data [45, 82] 

WZi 1 2 3 4 wf; 1 2 3 
1 3.714 -0.2953 1.253 0.0536 1 0.0001 1.698 -1.726 
2 1.783 2.178 0.656 -0.0421 2 2.206 -2.811 -0.0002 
3 -18.89 -3.908 -3.261 0.0187 3 0 1.112 0.0002 
4 -9.644 -1.767 -1.513 0.2086 4 3.031 0.120 1.834 

Table 12.2. The bias weights of the neural network for Fisher's data [45, 82] 

b~ b~ 

1 15.04 -0.8244 
2 -3.252 -0.1191 
3 0.0059 -0.1069 
4 4.368 -

The misclassification rates for Fisher's data are shown in Table 12.3. The 
overall misclassification rate for the testing set is 0.033, which is the same 
as the best classification performance using the PCA or FDA methods (see 
Table 5.3). This suggests that using a neural network is a reasonable approach 
for this classification problem. 

Table 12.3. Misclassification rate of Fisher's data from [45, 82] using the neural 
network method 

Class 1 Class 2 Class3 Overall 
Training 0 0 0 0 
Testing 0 0.10 0 0.033 

The training time for a neural network using one of the variations of 
backpropagation can be substantial (hours or days). For a simple 2-input 
2-output system with 50 training samples, 100,000 iterations are not uncom­
mon [50]. In the Fisher's data example, the computation time required to 
train the neural network is noticeably longer than the time required by the 
data-driven methods (PCA and FDA). For a large-scale system, the memory 
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and computation time required for training a neural network can exceed the 
hardware limit. Training a neural network for a large-scale system can be a 
bottleneck in developing a fault diagnosis algorithm. 

To investigate the dependence of the size of the training set on the pro­
ficiency of classification, 120 observations (instead of 60 observations) were 
used for training and the rest of Fisher's data were used for testing. A MSE 
of 0.002 was obtained and the network correctly classified all the observations 
in the testing set, which is consistent with the performance obtained by the 
peA and FDA methods (see Table 5.5). 

Recall that the training of neural networks is based entirely on the avail­
able data. Neural networks can only recall an output when presented with 
an input consistent with the training data. This suggests that the neural 
networks need to be retrained when there is a slight change of the normal 
operating conditions (e.g., a grade change in a paper machine). 

Neural networks can represent complex nonlinear relationships and are 
good at classifying phenomena into preselected categories used in the train­
ing process. However, their reasoning ability is limited. This has motivated 
research on using expert systems or fuzzy logic to improve the performance 
of neural networks (this is discussed in Section 12.5). 

12.4.2 Self-Organizing Map 

Neural network models can also be used for unsupervised learning using a 
self-organizing map (SOM) (also known as a Kohonen self-organizing 
map), in which the neural network learns some internal features of the input 
vectors x [156, 164, 165, 166]. A SOM maps the nonlinear statistical depen­
dencies between high-dimensional data into simple geometric relationships, 
which preserve the most important topological and metric relationships of 
the original data. This allows the data to be clustered without knowing the 
class memberships of the input data. 

As shown in Figure 12.7, a SOM consists of two layers; an input layer 
and an output layer. The output layer is also known as the feature map, 
which represents the output vectors of the output space. The feature map 
can be n-dimensional, but the most popular choice of the feature map is 
two-dimensional. The topology in the feature map can be organized in a 
rectangular grid, a hexagonal grid, or a random grid. The number of the 
neurons in the feature map depends on the complexity of the problem. The 
number of neurons must be chosen large enough to capture the complexity 
of the problem, but the number must not be so large that too much training 
time is required. 

The weight Wj connects all the mx input neurons to the ph output neuron. 
The input values may be continuous or discrete, but the output values are 
binary. A particular implementation of a SOM training algorithm is outlined 
below [7, 156]: 



240 12. Knowledge-based Methods 

, \ I I .... V ,,\. ,'I 
, \ II /" -"', ',- ~ I 

, \11 /,.. ........ ,,', , ,,// .... ,,', 
cY" "6 

Feature map 
in a rectangular 
arrangement 

Input space 

Fig. 12.7. A self-organizing map with two inputs and a two-dimensional output 
map 

1. Assign small random numbers to the initial weight vector Wj for each 
neuron j from the output map (this is iteration t = 0). 

2. Retrieve an input vector x from the training data, and calculate the 
Euclidean distance between x and each weight vector Wj: 

(12.16) 

3. The neuron closest to x is declared as the best matching unit (BMU). 
Denote this as neuron k. 

4. Each weight vector is updated so that the BMU and its topological neigh­
bors are moved closer to the input vector in the input space. The update 
rule for neuron j is: 

(12.17) 

where Nk(d) is the neighborhood function around the winning neuron k 
and 0 < a(t) < 1 is the learning coefficient. Both the neighborhood func­
tion and learning coefficient are decreasing functions of iteration number 
t. In general, the neighborhood function Nk (d) can be defined to contain 
the indices for all of the neurons that lie within a radius d of the winning 
neuron k. 

Steps 2 to 4 are repeated for all the training samples until convergence. 
The final accuracy of the SOM depends on the number of the iterations. A 
"rule of thumb" is that the number of iterations should be at least 500 times 
the number of network units; over 100,000 iterations are not uncommon in 
applications [166J. 

To illustrate the principle of the SOM, Fisher's data set (see Table 4.1 
and Figure 4.2) is used. The MATLAB Neural Network Toolbox [65J was used 
to train the SOM, in which 60 observations are used and 15 by 15 neurons 
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in a rectangular arrangement are defined in the feature map. The feature 
map of the training set after 2,000 iterations is shown in Figure 12.8. Each 
marked neuron ('x', '0', and '*') represents the BMU of an observation in the 
training set. The activated neurons form three clusters. The SOM organizes 
the neurons in the feature map such that observations from the three classes 
can be separated. 
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Fig. 12.8. The feature map (15 by 15 grid format) of Fisher's training data [45, 82] 

The feature map of a testing set is shown in Figure 12.9. The positions of 
the 'x', '0', and ,*, occupy the same regions as in Figure 12.8. This suggests 
that the SOM has a fairly good recall ability when applied to new data. 
An increase in the number of neurons and the number of iterations would 
improve the clustering of the three classes. 

The SOM has been successfully applied in fault diagnosis [289, 290]. For 
fault detection, a SOM is trained to form a mapping of the input space 
during normal operating conditions; a fault can be detected by monitoring 
the distance between the observation vector and the BMU [7]. 
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Fig. 12.9. The feature map (15 by 15 grid format) of Fisher's testing data [45, 82] 

12.5 Combinations of Various Techniques 

Each process monitoring technique has its strengths and limitations. Efforts 
have been made to develop process monitoring schemes based on combina­
tions of techniques from knowledge-based, analytical, and data-driven ap­
proaches [51, 78, 95, 236, 323, 324]. Results show that combining multiple 
approaches can result in better process monitoring performance for many 
applications. 

12.5.1 Neural Networks and Expert Systems 

Most of the knowledge-based methods can be used in conjunction with each 
other. For example, neural networks and expert systems have been combined 
and used in industrial applications [329, 330]. As shown in Section 12.3, the 
strength of expert systems is their ability to mimic human reasoning on solv­
ing fault diagnosis problems and the weakness is the knowledge acquisition 
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bottleneck. As shown in Section 12.4, the strength of neural networks is their 
ability to recognize patterns based on training examples and the weakness is 
their lack of ability to explain the results. 

The most direct application to using neural networks for improving ex­
pert systems is to have a neural network serve as the knowledge base for 
an expert system. This allows the expert system to acquire knowledge from 
data. The training may be on line or performed during an initialization pe­
riod. Knowledge bases may also contain models of systems which produce 
real-time results or certain learning systems via neural networks to provide 
new knowledge. 

Expert systems can be used to improve neural networks as well. One ap­
plication is to use an expert system as an interpreter of neural networks to 
execute fault diagnosis and evaluate the results [309, 366]. An expert system 
can also be used to retrain the neural network to adapt to challenging sit­
uations. A combined neural network and expert system tool was developed 
for transformer fault diagnosis [329, 330]. Results were that a tool which 
combines an artificial neural network and an expert system provided better 
performance than using either of the individual components. 

12.5.2 Fuzzy Logic 

Fuzzy logic was first developed in the mid-1960s for representing uncertain 
and imprecise knowledge [357]. Fuzzy logic provides an approximate but ef­
fective means of describing complex ill-defined systems by using graded state­
ments rather than ones that are strictly true or false. Fuzzy logic has been 
widely applied to many areas of engineering in recent years [2, 11, 48, 149, 
148,323]. There are many books on fuzzy logic (e.g., [156, 309, 364]). 

Descriptions commonly used in engineering systems such as "big or small" 
or "high or low" are inherently fuzzy. The fuzzy description is a conceptualiza­
tion of numerical values that can be qualitative and meaningful to operators. 
A process variable can be translated to fuzzy concepts via a membership 
function /LA(X), which maps every element x of the set X to the interval 
[0,1]. Mathematically, it can be defined as: 

/LA(X) : X ---t [0,1] (12.18) 

where A is a fuzzy subset of X. Each value of the membership function 
is called a membership degree. A membership degree of 0 indicates no 
membership, while a membership degree of 1 indicates full membership in 
the set A. A set defined in classic logic (commonly referred to as a crisp set) 
is a special case of fuzzy set, in which only two membership degrees 0 and 
1 are allowed. A fuzzy set A defined on X may be written as a collection of 
ordered pairs 

A = U (X,/L(X)) (12.19) 
"'EX 
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where each pair (X,IL(X)) is called a singleton. If the set X is discrete, a 
membership function can be defined by a finite set: 

A = U (Xk, IL(Xk)). 
k 

Low 
1f-------.... 

0.92 - - - - - - - - - -

0.08 

o 94 

(12.20) 

Nonnal High 

98 99 102 

Body Temperature T(oF) 

Fig. 12.10. Membership functions representing three fuzzy sets for the linguistic 
variable "body temperature" 

Fuzzy logic allows the representation of variables and relationships in lin­
guistic terms. A linguistic variable is a variable which takes fuzzy values 
and has a linguistic meaning. Linguistic variables can be based on quantitative 
variables in the process, for example, the linguistic variable body temperature, 
which can take the fuzzy values of "Low", "Normal", and "High". Each fuzzy 
value may be modeled as shown in Figure 12.10. For example, a body tem­
perature of 99°F takes a fuzzy value of "Normal" and a membership degree of 
0.92 via ILNormal(T). It also takes a fuzzy value of "High" and a membership 
degree of 0.08 via ILHigh(T). Linguistic variables can also be qualitative, for 
example, the linguistic variable certainty which can take fuzzy values such 
as "Highly Certain" or "Not Very Certain". The process of representing a 
linguistic variable into a set of fuzzy values is called fuzzy quantization. 

The membership functions shown in Figure 12.10 are defined based on sta­
tistical data. The membership functions for "Low", "Normal", and "High" 
are represented by a Z-function (which is 1 minus a sigmoid function), bell­
shaped function, and sigmoid function, respectively. Other types of member­
ship functions including the trapezoidal, triangular, and single-valued func­
tions can also be used [156]. 
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Fuzzy logic systems address the imprecision of the input and output vari­
ables directly by defining them with fuzzy numbers and fuzzy sets that can 
be expressed in linguistic terms. Complex process behavior can be described 
in general terms without precisely defining the complex phenomena involved. 
However, it is difficult and time consuming to determine the correct set of 
rules and membership functions for a reasonably complex system. Fine tun­
ing a fuzzy solution takes a large amount of time. To resolve some of the 
issues, neural networks can be used to learn the best membership function 
through training. 

12.5.3 Fuzzy Expert Systems 

It has been observed that the number of IF-THEN rules required to define an 
expert system tends to grow exponentially as the complexity of the system 
increases. As the number of IF-THEN rules becomes larger than 200, it is 
virtually impossible to write a meaningful rule that does not conflict with 
the existing rules [309]. This has motivated recent research in incorporating 
fuzzy logic into expert systems in an attempt to reduce the number of rules 
required. Several recent papers based on fuzzy expert systems are available 
[35, 152, 323]. 

A fuzzy expert system (also known as a fuzzy system) is defined 
in the same way as an ordinary expert system as described in Section 12.3, 
except that fuzzy logic is used. Fuzzy expert systems use fuzzy data, fuzzy 
rules, and a fuzzy inference mechanism which may include fuzzification and 
defuzzification. Input and output data can be fuzzy (as described in Section 
12.5.2) or exact (crisp). 

When the input data and output values are crisp, then the "fuzzification, 
fuzzy rule, and defuzzification" inference method is applied. Fuzzification 
is the process of finding the membership function J.tA (x) so that input data x 
belong to the fuzzy set A. Rule evaluation deals with single values of the 
membership function J.tA(X) and produces the output membership function. 
Defuzzification is the process of calculating single-output numerical values 
for a fuzzy output variable on the basis of the inferred membership function 
for this variable. 

The fuzzy rules and the membership functions form the system knowledge 
base. Fuzzy rules deal with fuzzy values. The most popular rule is the IF­
THEN rule. Fuzzy IF-THEN rules are conditional statements that describe 
the dependence of one or more linguistic variable on another. The number of 
different implication relations is over 40 [194, 195]. The simplest form is the 
Zadeh-Mamdani's fuzzy rule: 

IF ("x is A"), THEN("y isB") (12.21) 

where x and yare fuzzy variables, A and B are fuzzy sets and ("x is A") 
and ("y is B") are fuzzy propositions. The fuzzy rules can be generated 



246 12. Knowledge-based Methods 

based on clustering of data into groups [156, 326, 327J. To illustrate this idea, 
Fisher's data (see Table 4.1 and Figure 4.2) is used to generate the fuzzy 
rules [156, 326, 327J: 

1. As shown in Section 4.2, Fisher's data set contains 3 groups, with each 
group containing four measurements and 50 observations. The sepal 
length, sepal weight, petal length, and petal width, are fuzzified into 
4, 3, 6, and 3 fuzzy regions, respectively. Each region is represented by 
a membership function (see Figure 12.11). Triangular functions are used 
for intermediate intervals with the center of a triangular membership 
function placed at the center of the interval and the other two vertexes 
placed at the middle points of the neighboring intervals. Trapezoidal 
membership functions are used for the end intervals. 

2. The four measurement variables are fuzzified. For example, the first ob­
servation of Class 3 is (8L = 5.1, 8W = 3.5, P L = 1.4, and PW = 0.2), 
the variables can be fuzzy-quantized using the membership functions (see 
Equation 12.11) and the results are shown in Table 12.4. 

Table 12.4. Fuzzy-quantizing of an observation of Fisher's data [45, 82) 

Measurement Fuzzy Value Membership I>egree 
Sepal Length ,~SL) 5.1 M1 0.6 
Sepal Width (SW) 3.5 M 1 
Petal Length (PL) 1.4 S1 1 
Petal Width (PW) 0.2 S 1 

Iris Setosa (Class 3) - - 0.6 

3. Each observation is represented by one fuzzy rule attached with a de­
gree of confidence, which is calculated by multiplying the membership 
degrees of the condition elements by one another. For example, the first 
observation of Class 3 results in the following fuzzy rule: 

IF ("8L is M1") AND ("8W is M") AND ("PL is 81") 
AND ("PW is 8"), THEN ("Class 3") 

with a degree of confidence of 0.6 (0.6 x 1 x 1 x 1 = 0.6). 

(12.22) 

One weakness of the fuzzy approach shown above is the relatively large 
number of fuzzy rules generated. To reduce the number of rules required to 
describe a complex system, a genetic algorithm optimization can be used [156, 
309J. Alternatively, a statistical-based processor can analyze the situation and 
give the contribution of each rule to the solution [309J. 

Fuzzy inference takes inputs, applies fuzzy rules, and produces outputs. 
Fuzzy inference is an inference method that uses fuzzy implication relations 
(e.g., the IF-THEN rule), fuzzy composition operators (e.g, MIN, MAX), and 
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Fig. 12.11. Divisions of the input spaces into fuzzy regions for variables a) Sepal 
Length, b) Sepal Width, e) Petal Length, and d) Petal Width 
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an operator (e.g., AND, OR) to link the fuzzy rules. The inference process re­
sults in inferring new facts based on the fuzzy rules and the input information 
supplied [156]. 

In general, the larger the number of fuzzy rules, the higher the chance to 
generate conflicting rules (i.e., rules that have the same IF part but different 
THEN parts). To resolve this problem, the rule with the higher degree of 
confidence is retained and the rule with the lower degree of confidence is 
discarded. The maximum number of fuzzy rules generated in the training 
sets is equal to the number of the observations in the training set (60 in this 
example). Discarding the conflicting rules with lower degree of confidence, 
the number of fuzzy rules becomes 58. The observations of Fisher's data in 
the testing set are fuzzified and the results are shown in Table 12.5. 

Table 12.5. Misc1assification rate of Fisher's data [45, 82] using the fuzzy set 
method 

Class 1 Class 2 Class3 Overall 
Training 0.10 0 0 0.033 
Testing 0.30 0.23 0 0.18 

The overall misclassification rates for Fisher's data are higher than the 
data-driven methods (peA, PLS, and FDA). The proficiency of the fuzzy 
rules depends on the selection of the membership functions and the num­
ber of fuzzy values. Fine tuning of the parameters would result in better 
classification results. 

12.5.4 Fuzzy Neural Networks 

Fuzzy logic can be used with neural networks. A fuzzy neuron has the 
same basic structure as the artificial neuron, except that some or all of its 
components and parameters may be described through fuzzy logic. A fuzzy 
neural network is built on fuzzy neurons or on standard neurons but dealing 
with fuzzy data. A fuzzy neural network is a connectionist model for the 
implementation and inference of fuzzy rules. There are many different ways 
to fuzzify an artificial neuron, which results in a variety of fuzzy neurons and 
fuzzy networks in the literature [2, 11, 15, 48, 59, 156, 327, 364]. One common 
configuration of a fuzzy network is illustrated in Figure 12.12, which contains 
two fuzzy input variables Xl and X2 and one fuzzy output variable y [327]. 

Inside the dashed box of Figure 12.12 is a normal three-layer feedforward 
neural network as discussed in Section 12.4.1. Suppose each fuzzy variable 
takes three fuzzy values: "High", "Normal", and "Low", then the membership 
degrees of the fuzzy values corresponding to the variables Xl and X2 are the 
input layer neurons, and the membership degrees of the fuzzy values corre­
sponding to the variable yare the output layer neurons. The configuration of 
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Fig. 12.12. A fuzzy three-layer feedforward neural network [327] 

this fuzzy neural network increases the size of the network dramatically and 
increases the computational load. An alternative approach is to split each 
input layer neuron into two; one for describing the fuzzy value and the other 
for representing the membership value [327]. 

12.5.5 Fuzzy Signed Directed Graph 

As shown in Section 12.2.1, the traditional signed directed graph (SDG) can 
take one of three values (-, +, 0) for each node or branch. This can give 
ambiguous solutions in complicated fault diagnosis problems. Fuzzy logic 
can be combined with the signed directed graph [128, 302, 304, 327]. A fuzzy 
set can be defined for a finite set of nodes and the relationship between two 
nodes can be represented by a fuzzy relationship [128, 327]. 

Each node in the fuzzy SDG takes a fuzzy variable with its fuzzy value 
determined by a membership function. Unlike the arcs in a traditional SDG 
that only have + or - sign, the arcs in a fuzzy SDG also have a weight 
representing the strength of the connection. The weight can be calculated 
based on the value range and the sensitivity of the connecting nodes. A more 
sophisticated method to represent the effect between two nodes is to use a 
single layer perceptron [327]. 
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12.5.6 Fuzzy Logic and the Analytical Approach 

Fuzzy logic can be used in accord with analytical approaches as described 
in Chapter 11 for residual evaluation. Fuzzy residual evaluation transforms 
quantitative knowledge (residuals) into qualitative knowledge (fault indica­
tions) using a three-step process: (i) fuzzification, (ii) inference, and (iii) 
defuzzification (presentation of the fault indication) [90, 168]. 

Because of measurement noise and uncertainty, the residual threshold is 
greater than zero. Further increasing the threshold will decrease the false 
alarm rate, at the cost of increasing the missed detection rate. The tradeoff 
between these two effects can be balanced via fuzzification on the residual 
threshold [90]. The residual can be fuzzified via the membership functions for 
fuzzy sets "Normal" and "Not Normal". The membership functions /1Normal 

and /1Not Normal are shown in Figure 12.13. The parameter ao has to be 
assigned proportional to the noise amplitude and the effects of modeling un­
certainties. The parameter 8 can be chosen as the variance of the noise process 
due to disturbances and the influences of time-varying modeling errors. With 
the fuzzification procedure, a small change of the thresholds in the fuzzy do­
main [ao, ao + 8] has a small effect on the false alarm and missed detection 
rate. 

I-'Not Normal 
11------{ 

o ao ao + /j r 

Fig. 12.13. Composition of the fuzzy set "Normal" and "Not Normal" 

Similarly to the analytical approaches, the faults of interest are first de­
fined. In the fuzzification step, each residual Ti is fuzzified into the fuzzy sets 
"Normal" and "Not Normal". Mathematically, it is described by 

(12.23) 
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where 0 is the fuzzy composition operator, TiO describes the fuzzy set "Nor­
mal" of the ith residual, and Til describes the fuzzy set "Not Normal" of the 
ith residual. 

The inference phase is to determine the indication signals for the faults 
from the given rule base. The inference mechanism uses a series of IF-THEN 
rules to map the residual (defined by their fuzzy sets) onto the faults, for 
example 

IF (effect = riO) AND (effect = rid ... 
THEN (cause = Ik) 

(12.24) 

where Ik represents the kth fault of the system. 
Two faults are distinguishable if they have at least one different definition 

in the premise of the rule. If all premises of two fault descriptions !k and Il 
have the same fuzzy values, a distinction is not possible. To resolve such an 
inconsistency, one or more fuzzy sets have to be subdivided into at least two 
fuzzy sets [168]. For example, the fuzzy set "Fault" can be subdivided into 
"Strongly deviating" and "Slightly deviating" such that the residuals of these 
two fuzzy sets are different for faults !k and j,. From the definition of the 
fuzzy sets and the faults defined, the number of rules is determined. 

12.5.7 Neural Networks and the Analytical Approach 

The neural network can replace the analytical model (e.g., observer, par­
ity relations) describing the process under normal operating conditions. The 
residual is taken as the difference between the actual output and the esti­
mated output from the neural network. It is useful to apply this approach 
when no exact or complete analytical or knowledge-based model can be pro­
duced, but a large amount of measurement data is available [90]. 

For residual evaluation, a residual database and a corresponding fault 
signature database can be used to train the neural networks. The residual 
database can be generated from another neural and/or other analytical meth­
ods such as parity relations or an observer. One difficulty of applying this 
approach is the lack of analytical information on the performance, stability, 
and robustness of the neural network; on-line approximators and learning 
algorithms have been proposed to resolve this problem [261]. 

12.5.8 Data-driven, Analytical, and Knowledge-based Approaches 

The previous sections describe some efforts to combine ideas from more 
than one approach to process monitoring. Many of the knowledge-based 
approaches (e.g., the SDG, expert systems) are well suited for diagnosing 
faults because of their ability to incorporate reasoning. On the other hand, 
data-driven approaches are based on rigorous statistical development that 
is able to capture the most important information onto a lower-dimensional 
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space. As such, data-driven techniques are well suited for detecting faults 
for large-scale industrial applications. When a detailed first-principles and 
other mathematical model is available, the analytical approach can incorpo­
rate physical understanding into the process monitoring scheme. For these 
reasons, a combined data-driven, analytical, and knowledge-based process 
monitoring scheme will play an important role in industrial systems for de­
tecting, isolating, and diagnosing faults in upcoming years. 

12.6 Homework Problems 

1. Compare and contrast the SDG and the symptom tree model. Which 
method is expected to perform better for fault diagnosis? Justify your 
answers. 

2. Read an article on the use of the SDG for diagnosing multiple faults (e.g., 
[196, 319]) and write a report describing in detail how the technique is 
implemented and applied. What are the strengths and weaknesses of the 
technique? 

3. Which of the following expert systems (deep knowledge, shallow knowl­
edge, or a combination of shallow knowledge and deep knowledge) is 
more popular in industrial applications? Why? Justify your answers, and 
support them with at least ten journal articles from a literature search. 

4. Read the article [34] on the use of meta-knowledge architecture to ac­
commodate both shallow and deep reasoning mechanisms in an expert 
system. Write a report describing in detail how the method is imple­
mented and applied. How does the meta-knowledge architecture place in 
the context with methods described in Section 12.3.6? 

5. Read one of the following articles [103, 280, 281, 288] on the use of 
discrete-event models for fault diagnosis. Write a report describing in 
detail how the method is implemented and applied. How do the discrete­
event models compare with the methods described in Section 12.3? 

6. Investigate the effects of (i) the number of hidden layer neurons, (ii) the 
learning rate, (iii) the coefficient of the momentum term, (iv) different 
types of sigmoid functions, and (e) the bias terms on the proficiency of 
classification using Fisher's data set. Comment on your findings. 

7. Compare and contrast [156, 224, 285, 309]: (i) feedforward neural net­
works, (ii) adaptive neural networks, (iii) radial basis function neural 
networks, (iv) time-delay neural networks, (v) recurrent neural networks, 
and (vi) autoassociative neural networks. Find an industrial application 
of each type of neural network in the literature, and write a few sentences 
summarizing the results of each application. 

8. Compare and contrast the following algorithms [65, 156, 309]: (i) variable 
learning rate, (ii) Rprop, (iii) scaled conjugate gradient, (iv) Fletcher­
Powell conjugate gradient, (v) Polak-Ribiere conjugate gradient, (vi) 
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Powell-Beale conjugate gradient, (vii) one-step-secant, (viii) BFGS quasi­
newton, and (ix) Levenberg-Marquardt. Run Fisher's data set on a three­
layer feedforward neural network using all of the training algorithms and 
compare the computation speeds. Discuss your results. 

9. Derive the generalized delta rule (12.8) and (12.14) based on the method 
of gradient descent. Hint: Write the error for a single observation x as 

Gradient descent sets the changes in weights by 

..1w~. = -'11 dE 
tJ ·f dw'? 

tJ 

h dE 
..1wki = -T/-h­

dWki 

(12.25) 

(12.26) 

(12.27) 

The expressions for dE / dW'!j and dE / dW~i can be derived using the chain 
rule. 

10. Describe in detail the idea of learning vector quantization when used 
with the SOM [166, 167]. Apply the technique using Fisher's data set and 
compare with results shown in this book. Comment on your findings. 

11. Re-run Fisher's data set using a self-organizing map with the following 
changes: (i) use a 25 x 25 rectangular map, (ii) use 150 observations 
in the training set and 30 observations in the test set, (iii) use a 15 x 
15 hexagonal map instead of rectangular map, (iv) set the number of 
iterations to 100. Comment on your findings. 

12. Write a summary report that reviews a book on the use of fuzzy logic in 
engineering applications (e.g., [156, 309, 364]). What are the strengths 
and weaknesses of fuzzy logic? Find three industrial applications which 
use fuzzy logic in the literature, and discuss the application results. 

13. Re-run Fisher's data set using the fuzzy rules with the following changes: 
(i) use different membership functions for each fuzzy variable, (ii) use 
150 observations for training and 30 observations for testing, (iii) use 
different fuzzy values for each fuzzy variable, and (iv) use the fuzzy rules 
as suggested on page 219 of [156]. Comment on your findings. 

14. Compare and contrast different types of fuzzy neural networks [2, 11,48, 
59, 156, 327, 364]. Pick two fuzzy neural networks and apply them to 
Fisher's data set. Compare your results with the results shown in this 
book. Comment on your findings. 

15. Compare and contrast different types of fuzzy SDGs [128, 302, 304, 327]. 
What are the advantages and disadvantages of the fuzzy SDG compared 
to the traditional SDG? 
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16. Read an article on the use of SDG with peA (e.g., [320]) and write 
a report describing in detail how the technique is implemented and ap­
plied. What are the advantages and disadvantages of using this technique 
compared to using peA and SDG alone? Justify your answers. 

17. Read an article on the use of parity equations with peA (e.g., [100]) 
and write a report describing in detail how the technique is implemented 
and applied. What are the advantages and disadvantages of using this 
technique compared to using peA and parity equation alone? Justify 
your answers. 
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NIPALS 
- PLS1, 76 
- PLS2, 74 
Non-iterative partial least squares, see 
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- application, 35 
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SVD 
- eVA,88 
- peA, 36 
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- eigenvalue decomposition, 21 
- MS,21 
- peA,42 
- threshold, 22 
Tennessee Eastman process, see TEP 
TEP 
- controller parameters, 109 
- faults, 104 
- manipulated variables, 104 
- process variables, 104 
Threshold 
- Q statistic, 44 
- T2 statistic, 22, 43, 97 
- univariate statistic, 17 
Total-scatter matrix, 58 
Triggering limit, 201 



Type I error, 18 
Type II error, 18 

Univariate statistic, 17 
- CUSUM, 19 
- EWMA, 19 
- fault identification, 45 

Index 279 

- Shewhart chart, 17 
- threshold, 17 
Unknown input observer, 194, 195 
Unsupervised learning, 239 

Weighted symptom tree model, 228 
Within-elass-scatter matrix, 58 


