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Preface

Nowadays, stem cells have a crucial role in tissue engineering and regenerative 
medicine. Also, basic researches in this field and its clinical applications are grow-
ing rapidly. Therefore, investigators, clinicians, and other relevant professionals 
have focused on regenerative medicine as a multidisciplinary area of interest.

Because of the unique biological characteristics and therapeutic potentials of peri-
natal tissue-derived stem cells, they are frequently suggested as an invaluable source 
for cellular therapy and regenerative medicine. In this volume, we address different 
types and properties of perinatal stem cells and also ethical considerations of their 
use in regenerative medicine. Furthermore, a brief review of their multi- or pluripo-
tent and immunomodulatory properties, regenerative capacity, and therapeutic poten-
tials is presented in this work. Additionally, we talk about the cGMP facility design 
and GMP-compliant manufacturing of perinatal stem cells for clinical translation.

It is my pleasure having the collaboration of prominent contributors in this vol-
ume, which could be valuable to both basic and clinical investigators who are inter-
ested in regenerative medicine.

I would like to acknowledge Dr. Kursad Turksen, Editor in Chief of the Stem 
Cell Biology and Regenerative Medicine, for his advice and support.

I also thank Aleta Kalkstein, Senior Editor, Hard Sciences, Cell Biology Stem 
Cell Research, and Joseph Quatela, Production Coordinator, at Springer for their 
continuous help and kind support to get the volume to the print stage.

Tehran, Iran� Babak Arjmand 
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      Functional Dualism of Perinatal Stem Cells                     

     Toshio     Miki       and     Fabio     Triolo   

1           Introduction 

  Stem cell-based therapies   hold the potential of alleviating the burden of many seri-
ous diseases. These promising stem cell-based approaches for patients with unmet 
medical needs rely mainly on two unique properties of stem cells: their differentia-
tion capability to all three germ layers (pluripotency) and their immunomodulatory 
function. The pluripotency makes the stem cells able to generate desired types of 
cells for cell replacement therapies. The immunomodulatory properties can be uti-
lized to control immunoreaction and subsequent pathological events. Traditionally, 
pluripotency has been considered a character of embryonic stem cells, and immuno-
modulatory properties one of mesenchymal stem cells from adult somatic tissues. 
During the last decade, however, many studies revealed that some  perinatal stem 
cells   represent a novel class of stem cells with intermediate characteristics of both 
pluripotent/embryonic and adult stem cells, as they possess the pluripotent stem cell-
like differentiation potential and immunomodulatory effects similar to mesenchymal 
stem cells in vitro and in vivo. In addition, these  perinatal stem cells   are as geneti-
cally stable as adult stem cells. These unique characteristics, together with the 
absence of ethical issues concerning their procurement, attract many researchers in 
search of practical stem cells for prompt clinical translation. 

 In this chapter, we describe two types of  perinatal stem cells  :  amniotic epithelial 
stem cells   and  Wharton’s Jelly-derived stem cells  , both of which possess embryonic 
cell-like differentiation properties and adult stem cell-like immunomodulatory 
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properties. Unlike other types of placental stem cells, both of these cell types share 
a unique developmental origin. First, we outline various  perinatal stem cells  , their 
origin, and discuss their classifi cation and advantages over other types of stem cells 
when considering the clinical application. Studies that indicate the benefi cial prop-
erties of these cells are discussed in the following section. Lastly, preclinical studies 
with these placental stem cells are summarized to determine a strategic approach to 
translating the fi ndings into clinical therapies.  

2     Defi nition and Advantages of  Perinatal Stem Cells   

 The placenta is the very fi rst organ developed in our life, protecting the fetus by 
providing a stable environment and absorbing physical shocks throughout the gesta-
tion period (Donnelly and Campling  2014 ). All eutherian placenta provide common 
functions to their fetus with variations in the shape and microscopic structure 
between species. Human placenta consists of the umbilical cord, placental mem-
brane, and a discoid shape placental body approximately 15–20 cm in diameter and 
2–3 cm in thickness. Anatomically, the membrane and the discoid tissue are com-
posed of three parts: the amnion, the chorion, and the decidua. 

 Although the placenta is normally considered postdelivery waste, it has been 
used as a nutrient source (placentophagy) or for medical purposes since ancient 
times. Over the last decade, there has been a growing interest in the placenta for its 
unique and rich source of  perinatal stem cells  . A number of studies have been con-
ducted in order to identify and characterize  perinatal stem cells   from placenta tissue. 
The research publication trend from 1969 to 2014 reveals an emerging interest in 
stem cells isolated from placenta (Fig.  1 ). However, the generic placental/perinatal 
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  Fig. 1    The number of scientifi c papers published by year from 1969 to 2014 was searched in 
PubMed using the keywords “ Placental Stem Cell  .” The publication trend reveals an emerging 
interest in stem cells isolated from placenta       
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stem cell terms do not specify the cell types and their use often generates confusion. 
Here, we clarify the type of stem cells isolated from human placenta and discuss the 
common and unique advantages of these cells.

   Stem cells are traditionally classifi ed as either embryonic or adult, based on the 
developmental stage they belong to. To this extent, placental stem cells are catego-
rized as “perinatal” (i.e., around the time of birth), despite technically encompassing 
the time period ranging from the twentieth week of gestation through the fi rst 28 
days of  life   (neonatal period) (Cetrulo and Cetrulo  2009 ). Therefore,  perinatal stem 
cells   include cells isolated from amniotic fl uid, umbilical cord blood, and postgesta-
tional maternal peripheral blood, as well as cells from the placenta (Fig.  2 ).

   Regardless of the type of placental stem cells, there are common advantages over 
other types of stem cells. 

 First, placenta tissues are often discarded in the clinic, therefore, they are a readily 
available cell source, and the cells could be harvested with relatively simple proce-
dures in a noninvasive manner. In addition, there are fewer limitations and ethical 
concerns compared to the use of other types of stem cells. Second, the placenta is a 
neonatal organ, thus the derived cells have less age- and  environment- acquired DNA 
damage compared to stem cells from adult tissues and long-term cultured pluripotent 
stem cells. 

 It must be noted that  perinatal stem cells   are divided into two groups: placental and 
nonplacental stem cells. The cord blood is commonly obtained by irrigating a placenta 
via the umbilical vein. Although isolated from the placenta, neonatal hematopoietic 
stem cells in the cord blood are considered nonplacental stem cells. Fetal hematopoi-
etic and mesenchymal stem cells have been identifi ed in postgestational maternal 
peripheral blood and are also considered nonplacental stem cells (Khosrotehrani and 
Bianchi  2005 ; Nguyen Huu et al.  2006 ; O’Donoghue et al.  2003 ). The regenerative 
contribution of postgestational maternal peripheral blood- derived stem cells has been 
reported. The fetal cells in the maternal circulation system selectively home onto 
injured maternal hearts and undergo differentiation into diverse cardiac lineages in a 
fusion-independent manner (Kara et al.  2012 ). However, due to the rarity of these 
cells, postgestational maternal peripheral blood- derived stem cells are not ideal for 
future therapeutic applications.  Amniotic fl uid (AF) cells   are a mixed population from 
multiple fetal tissues including the epithelium of the fetal skin, respiratory organs, and 
gastrointestinal tract. The heterogeneous nature of AF cells requires a defi nition of 
amniotic fl uid stem cells and a standardized protocol for its isolation. Although some 
research only  relied   on the mesenchymal stem cell-like characteristics, most reliable 
studies were conducted with a subpopulation of AF cells, which express specifi c cell 
surface markers (e.g., c-kit). Based on their origin, AF stem cells are classifi ed as 
nonplacental. 

 On the other hand, the cells isolated from placenta tissue are considered placental 
stem cells (Fig.  3 ) and are further classifi ed based on their tissue of origin. As previ-
ously mentioned, the placental tissue includes both a discoid and a membranous 
component. The former consists of a fetal component known as the chorionic plate, 
which is derived from the trophoblast and the extraembryonic mesoderm. The cho-
rionic plate/villi contains mesenchyme-derived cells, known as chorionic stem cells, 
which possess mesenchymal stem cell-like characteristics (Igura et al.  2004 ; 
Castrechini et al.  2010 ; Kim et al.  2011 ). Recently, Farmer’s group successfully 
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demonstrated the therapeutic effi cacy of chorionic villus-derived cells on myelome-
ningocele in a large animal (fetal sheep) model (Wang et al.  2015 ). The therapeutic 
effect was  mediated by neurotrophic factors that were secreted from the chorionic 
villus-derived cells.

   The membranous component of the placenta includes the amnion, the chorion, 
and the decidua capsularis. The amnion contains the epithelial, compact, amniotic 
mesoderm, and spongy layer cells. Beneath the amniotic epithelium is a connective 
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tissue (amniotic mesoderm layer) consisting of fetal fi broblasts, named amniotic 
mesenchymal stromal cells ( AMSCs  ). These mesenchymal cells can be isolated by 
sequential trypsin-collagenase enzymatic digestion (Marongiu et al.  2010 ) and pres-
ent mesenchymal cell characteristics, including specifi c cell surface marker (e.g., 
CD105, CD72, CD90) expression. Compared to mesenchymal stem cells derived 
from adult tissues, human  AMSCs   possess a greater expansion capacity (Lange- 
Consiglio et al.  2013 ). Furthermore, previous studies have shown the potential dif-
ferentiation of human  AMSCs   into not only adipogenic, osteogenic, and chondrogenic 
lineages, but also cardiomyogenic (Zhao et al.  2005 ), angiogenic, neurogenic 
(Tamagawa et al.  2008 ), and pancreatic (Tamagawa et al.  2009 ) lineages. 

 The amniotic epithelium is the innermost extraembryonic layer facing the fetus 
and is uniquely derived from the epiblast before gastrulation. At day 8–9 after fertil-
ization, the inner cell mass differentiates into two layers: the epiblast and the hypo-
blast. Subsequently, small cells ( amnioblasts  ) appear from the epiblast cluster and 
migrate into the space between the trophoblast and the embryonic disc that will become 
the amniotic cavity. As the cavity grows, spatial segregation isolates  amnioblasts   

  Fig. 3    Anatomical illustration of human placenta and the composition of stem cells       
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from the epicenter of organogenesis, the embryo. It is therefore  speculated   that some 
epiblast-like stem cell characteristics are retained in human amnioblast- derived cells 
( hAECs  ), through the gestation period (Miki  2011 ). Some of the isolated hAECs 
have been found to express stem cell-specifi c surface markers similar to those of 
human embryonic stem cells (hESCs) including stage-specifi c embryonic antigens 
(SSEAs) 3 and 4, as well as tumor rejection antigens 1–60 and 1–81. Along with 
surface markers, hAECs express molecular markers of pluripotent stem cells, includ-
ing OCT-4, NANOG, SOX-2, Lefty-A, FGF-4, REX-1, and TDGF-1 (Miki et al. 
 2005 ). Although pluripotency of a single AE cell has not yet been identifi ed, expo-
sure of hAEC cultures to various growth factors and chemicals in vitro yield mor-
phological changes, demonstrating plasticity. Under appropriate culture conditions, 
hAECs exhibit the capability of differentiating into all three germ layers (Miki et al. 
 2005 ; Ilancheran et al.  2007 ). Reports have indicated the potential for hAECs to dif-
ferentiate into various cell types including neurogenic, cardiomyogenic, hepatic, and 
pancreatic cell lineages (Miki and Strom  2006 ). 

 It has been reported that a potent stem cell population exists within the Wharton’s 
Jelly of the human umbilical cord (Taghizadeh et al.  2011 ; Troyer and Weiss  2008 ; 
Wang et al.  2004 ). Interestingly, Wharton’s Jelly mesenchymal stem cells ( WJMSC  ) 
not only possess mesenchymal stem cell properties but also properties attributed to 
ESCs (Fong et al.  2007 ,  2011 ). It is speculated that WJMSCs are trapped within the 
mucous connective tissue of the umbilical cord (Wharton’s Jelly) between day 4 and 
12 of embryonic development during the process of hematopoietic and mesenchymal 
cell migration, and reside there for the duration of gestation (Taghizadeh et al.  2011 ). 

 In summary, various types of  perinatal stem cells   can be isolated from the pla-
centa tissue: placental and nonplacental stem cells. Among the former, amniotic 
epithelial stem cells and Wharton’s Jelly-derived stem cells both maintain embry-
onic or  early   fetal cell-like characteristics along with mesenchymal stem cell-like 
properties.  

3     The Bifacial Properties of Amniotic Epithelial Stem  Cells   

  hAECs   possess bifacial properties: embryonic stem cell-like plasticity (differentia-
tion capability) and mesenchymal stem cell-like immunomodulatory properties. 
This unique characteristic provides hAECs with a wider range of clinical applica-
tions when compared to other types of stem cells. In addition, hAECs possess low 
immunogenicity and are rich in lysosomes. Based on these four therapeutically 
advantageous properties, different strategic approaches can be envisioned for clini-
cal cell therapy use (Miki  2016 ). One such approach takes advantage of the differ-
entiation potential of hAECs to generate the desired types of functional cells for use 
in replacing injured or defective cells in order to restore organ function. The mesen-
chymal stem cell-like properties allow us to utilize the hAECs for: (1) modulating 
immunological confl ict and easing the recipient’s immunoreaction and (2) secreting 
appropriate trophic factors which encourage the recovery of the patient’s damaged 
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cells. It must be noted that hAECs are genetically stable (nontumorigenic) unlike 
other pluripotent stem cells. This nontumorigenic property allows to consider trans-
planting primary AECs with minimal concerns regarding tumor development. 

3.1      In Vivo Differentiation Potential   

 The differentiation potential of AECs for several tissue types has been demonstrated 
in various in vivo models. Classically, the AEC is designated as an extraembryonic 
ectoderm lineage cell, and as such, the ectodermal characteristics of the primary 
AEC might lead researchers to induce neural and neuronal differentiation. Okawa 
et al. demonstrated that rat AECs are neural stem cell marker (neurofi lament 
microtubule- associated protein 2 and nestin) positive and differentiate into neuron- 
like cells upon transplantation into the ischemic hippocampus of adult gerbils. The 
engrafted rat AE-derived neural cells survived for more than 5 weeks (Okawa et al. 
 2001 ). Similar neural differentiation and therapeutic effi cacy of AECs were demon-
strated in a stroke model in which intravenously transplanted  hAECs   migrated to the 
intracerebral ischemic area, reduced infarct volume, and improved behavioral func-
tion (Kranz et al.  2010 ). When rat AECs were transplanted into telencephalic ven-
tricles of the developing rat brain at embryonic day (ED) 15.5, the transplanted cells 
migrated out from the injection site and integrated into the recipients’ brain struc-
tures. The postnatal brain samples showed clear neural differentiation of rat AECs 
to neuronal cells (Marcus et al.  2008 ). Human AECs are not only able to differenti-
ate into neural  cells   in the rodent brain, but also restore memory function in a trans-
genic mouse model of Alzheimer’s disease (Xue et al.  2012 ). It is speculated that the 
signals and mechanisms which induce neural differentiation are provided from the 
microenvironment surrounding the engrafted hAEC. These data suggest the poten-
tial for clinical applications using hAECs as a source for cell replacement therapies 
aimed at neurodegenerative diseases. 

 The capability of AECs to differentiate into hepatocytes has also been demon-
strated. LacZ-labeled rat AECs were engrafted in syngeneic rat liver, survived for 
more than 30 days after transplantation and integrated into the native liver plate 
structure (Nakajima et al.  2001 ). Likewise, lacZ-labeled rat AECs transplanted into 
fetal rat liver formed a hepatocyte-like cellular mass and survived for up to 14 days 
after birth (Takahashi et al.  2002 ). Marongiu et al. transplanted wild-type rat AECs 
into DPPIV- F344 rat livers and demonstrated that the transplanted cells integrated 
and formed clusters of mature hepatocytes in the recipients’ livers (Marongiu et al. 
 2011 ). Human AECs demonstrated in vitro albumin production, glycogen storage, 
and albumin secretion, consistent with the hepatocyte gene expression profi le. When 
human amnion tissue was implanted into the abdominal cavity of SCID mice, human 
albumin was detected in the mouse serum. The data indicated that the human amnion 
tissue survived and possessed hepatocyte-related functions in the peritoneal cavity 
of recipient mice (Takashima et al.  2004 ). Transcriptional analysis of  hAECs   trans-
planted SCID/Beige mouse livers indicated that transplanted hAECs terminally 
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differentiated into mature hepatocytes in mouse liver and expressed functional 
marker genes including  cytochrome   P450 genes at equivalent levels to primaryhu-
man hepatocytes (Marongiu et al.  2011 ). 

 These data indicate that rodent and human AECs are able to differentiate into 
endoderm lineage tissues. It has been shown that  hAECs   express PDX-1, insulin, and 
glucagon mRNA after 2 weeks of culture under pancreatic differentiation conditions 
(Miki et al.  2005 ). Moreover, in vivo experiments demonstrated that nicotinamide- 
stimulated hAECs normalized the recipients’ blood glucose levels for up to 4 weeks 
after being transplanted into the spleen or under the kidney capsule of streptozotocin-
induced diabetic mice (Wei et al.  2003 ). 

 Human AECs also formed 3D “alveoli-like” structures when cultured in the small 
airway epithelial cell-specifi c medium, demonstrating differentiation potential into 
lung alveolar cells. The hAEC-derived alveoli-like cells expressed functional cystic 
fi brosis transmembrane conductance regulator ( CFTR  ) and iodide/chloride (I2/Cl2) 
ion channels on the luminal side of those structures (Murphy et al.  2012 ). When 
 hAECs   were injected into bleomycin-induced mouse lung injury model lungs, the 
AECs produced surfactant proteins and remained engrafted for over 4 weeks 
(Moodley et al.  2013 ). The study also suggested that hAECs exert a wide range of 
anti-infl ammatory effects by several possible mechanisms including reduced TGF- 
b, increased MMP-9 activity, GM-CSF secretion, and induction of IL-1RA.  

3.2      Immunomodulatory Effect   

 It must be emphasized that, in general, hypoimmunogenicity and immunomodula-
tion are different properties. In hAEC, however, these properties synergistically 
interact. It has been shown that  hAECs   express low MHC class I antigens and do not 
express MHC class II antigens on their cell surface. An immunotype mismatched 
human amniotic membrane, when transplanted under volunteers’ skin, showed no 
rejection for more than 7 weeks (Akle et al.  1981 ). Low or no HLA antigen expres-
sion and the secretion of soluble HLA-G explained the immunotolerance of hAECs. 
It is known that HLA-G protects the fetus from being rejected by the maternal 
immune system (Hunt et al.  2005 ). The soluble HLA-G triggers maternal NK and T 
cells apoptosis through binding to the CD8 receptors/immunoglobulin-like tran-
script receptors ( ILTR  ) (Banas et al.  2008 ). Levels of HLA-G on cultured AECs are 
upregulated by exposure to IFN-γ. The available data indicate that HLA-G molecule 
expression on the cell surface plays a major role in conferring low  immunogenicity 
  to hAECs. The secreted soluble HLA-G form also contributes to the immunomodu-
latory properties of hAECs. 

 Secreting immunomodulatory proteins is one of the mechanisms of AEC- mediated 
immunomodulation. It has been shown that AECs produce high levels of the Th2-
related cytokines CCL2, CXCL8, and interleukin 6 (IL-6), which inhibit CD34+ 
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cells and monocyte differentiation to DCs (Magatti et al.  2008 ). Additionally, AECs 
block the production of infl ammatory cytokines TNF-α, CXCL10, CXCL9, and 
CCL5 in DC differentiation cultures (Magatti et al.  2009 ). These factors contribute to 
immunomodulatory effects of  hAECs   through (1) the suppression of proinfl amma-
tory cytokines, (2) the regulation of macrophage recruitment, and (3) the secretion of 
factors that inhibit the chemotactic activity of neutrophils and macrophages. 

 Immunomodulatory effects have also been demonstrated to function through dif-
ferent mechanisms. It has been shown that human AECs increased engraftment in a 
murine bone marrow transplantation model by facilitating microchimerism and 
research data suggest that the immunotolerant effect was mediated by direct cell-to- 
cell contact mechanisms. It is hypothesized that the direct interaction of membrane 
CD152 (CTLA4) with CD80 and CD86 on  hAECs   may activate Indoleamine 2,3-diox-
ygenase (IDO)-induced T cell suppression (Anam et al.  2013 ). Wolbank et al. dem-
onstrated a dose-dependent inhibition of peripheral blood mononuclear cell ( PBMC  ) 
immune responses in mixed lymphocyte reactions (up to 66–93 % inhibition) and 
phytohemagglutinin activation assays (up to 67–96 % inhibition). Due to the lack of 
the suppression effect in a transwell system, the investigators concluded that the 
AEC-mediated inhibition mechanism is dependent on cell-to-cell  contact  . 

 Based on these in vitro data, a number of preclinical studies were conducted to 
evaluate the immunomodulatory effects of AECs in different organs, including 
spinal cord, liver, and lung. After transplanting  hAECs   into damaged spinal cords 
in rat or monkey models, the AECs survived over 8 weeks and provided neuro-
trophic factors to induce axon growth and new collateral sprouting (Sankar and 
Muthusamy  2003 ; Wu et al.  2006 ). Transplantation of hAECs also exerts benefi -
cial effects in a rat stroke model (Liu et al.  2008 ). McDonald et al. reported that 
intraperitoneal injection of hAECs suppressed symptoms of multiple sclerosis and 
decreased central nervous system infl ammation, demyelination, and axonal degen-
eration in the mouse brain (McDonald et al.  2011 ). Systemic transplantation of 
hAECs in a carbon tetrachloride (CCl4)-induced liver fi brosis murine model 
induced reduction of hepatocyte apoptosis and decrease of infl ammation and fi bro-
sis (Manuelpillai et al.  2010 ). 

 These results suggest that  hAECs   have the capacity to strongly suppress immune 
responses, potentially induce peripheral tolerance, and reverse the ongoing infl am-
matory damage. It seems that in these cell transplantation studies the hAECs tran-
siently engrafted but did not transdifferentiate in the targeted cell types and it is 
believed that the therapeutic effects of AECs depend on the release of trophic and 
anti-infl ammatory molecules. However, as mentioned earlier, these cells possess 
differentiation potential. Due to the limitation of using animal disease models, xeno-
geneic incompatibility or rejection might cause transient engraftment of hAECs. 
Although further research is required to identify the therapeutic mechanisms of AEC 
transplantation, there is a possibility that future clinical applications may benefi t 
from a synergistic effect from both immunomodulation and differentiation capabili-
ties of hAECs.   
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4     The Properties of  Wharton’s Jelly-Derived Stem Cells   

 During gestation, the fetus is connected to the placenta through the umbilical cord, a 
tubular structure covered by amniotic epithelium that protects a vein and two arteries 
from compression, torsion, and bending during pregnancy and delivery by embed-
ding them in a viscoelastic mucoid tissue matrix, called Wharton’s Jelly (WJ) 
(Wharton  1656 ). WJ is composed of hyaluronic acid and proteoglycans in an aque-
ous solution of salts, metabolites, and plasma proteins distributed in a fi ne homoge-
neous network of microfi brils formed by various collagen isoforms. It is also a rich 
source of  perinatal stem cells  , a bridge between embryonic and adult stem cells with-
out the limitations of either. Since WJ is typically discarded as postdelivery medical 
waste, the use of its cells does not pose ethical concerns. In addition, it provides an 
ample supply of stem cells, with up to 10 6  cells per cm/g of umbilical cord (Lu et al. 
 2006 ; Seshareddy et al.  2008 ; Schugar et al.  2009 ; Tong et al.  2011 ; Li and Cai  2012 ; 
Christodoulou et al.  2013 ; Koliakos et al.  2011 ) having been isolated from various 
regions of the cord. Among them,  WJMSC  —Wharton’s Jelly Mesenchymal Stem 
Cells (also reported as UCMSCs—Umbilical Cord Matrix Stem Cells) contained in 
the subamniotic and intervascular matrix (McElreavey et al.  1991 ) are particularly 
appealing for cell-based therapeutic use as they are safe (Matsuzuka et al.  2010 ), 
easy to isolate and expand, and they exhibit high plasticity and proliferative ability 
as well as immune-evasion and -regulation capacities and antitumoral properties. 

4.1      Differentiation and Clinical Potential   

 WJMSCs meet the minimal criteria of MSCs according to the International Society 
for Cellular Therapy (Dominici et al.  2006 ) in terms of plastic adhesion, phenotype, 
and tri-lineage differentiation potential. They also express several pluripotency 
markers such as Oct-3/4, SSEA1, SSEA3, SSEA4, nucleostemin, SOX-2, KLF4, 
c-MYC, LIN28, POUF1, CRYPTO, REX1, and NANOG (Fong et al.  2011 ; Greco 
et al.  2007 ; Conconi et al.  2011 ; Hsieh et al.  2010 ; Gao et al.  2013 ), albeit at a much 
lower level compared to ESCs, which together with high expression of several tumor 
suppressor genes, might explain why they are not tumorigenic. Compared to stem 
cells from other regions of the umbilical cord and to adult MSCs, WJMSCs show 
greater differentiation potential and have been shown to differentiate into osteocytes, 
chondrocytes, adipocytes, endothelial cells, retinal cells, skeletal and cardiac muscle 
cells, neurons, glia, oligodendrocytes, hepatocytes, insulin- producing cells, and 
germ cells (Conconi et al.  2006 ,  2011 ; Mitchell et al.  2003 ; Zhang et al.  2010 ; 
Campard et al.  2008 ; Amidi et al.  2015 ; Bhandari et al.  2011 ). 

 Thanks to properties such as low immunogenicity and particularly, chondrogenic 
and osteogenic differentiation potential, WJMSCs promise to be an interesting cell 
source for cartilage, bone, and osteochondral tissue  engineering  . Wang et al. 
described an elegant  WJMSC  -based method to fabricate an integrated construct 
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successfully mimicking native osteochondral tissue by sandwiching a layer of 
undifferentiated WJMSCs between two  WJMSC  -derived chondrogenic and osteo-
genic constructs (Wang et al.  2011 ). More recently, transplantation of WJMSCs in 
a canine model of intervertebral disc (IVD) degeneration signifi cantly increased the 
expression of disc ECM components such as aggrecan and type II collagen, decel-
erating progressive IVD degeneration (Zhang et al.  2015 ). Given that WJMSCs can 
differentiate into nucleus pulposus (NP)-like cells by coculturing them with the disc 
NP cells in vitro (Ruan et al.  2012 ), it is likely that the transplanted WJMSCs dif-
ferentiated into NP-like cells in the stromal microenvironment of discs in vivo. 
Furthermore, the hypoimmunogenic and immunomodulatory nature of WJMSCs 
makes them an attractive cell source to test in the treatment of degenerative or auto-
immune joint diseases such as osteoarthritis and rheumatoid arthritis (Saulnier et al. 
 2015 ; Paz-Rodriguez  2016 ). 

 WJMSCs are also of great interest for the development of regenerative approaches 
to liver disease. They express liver-specifi c markers such as albumin, alpha- 
fetoprotein, and glucose-6-phosphatase, as well as liver progenitor markers (e.g., 
DKK1, DPP4, DSG2, CX43, and CK19) and transcription factors involved in liver 
development (e.g., GATA4, GATA6, SOX9, and SOX17) (Buyl et al.  2014 ; 
Khodabandeh et al.  2016 ). WJMSCs can be differentiated in vitro into hepatocyte-
like cells and retain their hypoimmunogenicity, as the differentiative process doesn’t 
change the immunological features of the cells (Zhao et al.  2009 ). Transplantation of 
undifferentiated WJMSCs in the liver of SCID mice with partial hepatectomy induces 
the engrafted cells to express albumin and alpha-fetoprotein after transplantation 
(Campard et al.  2008 ). Moreover, administration of undifferentiated WJMSCs in 
murine models of liver fi brosis can  rescue   the injured livers through transdifferentia-
tion of WJMSCs in liver-like cells, as well as through the secretion of bioactive fac-
tors and/or cytokines by undifferentiated WJMSCs to support liver repair (Tsai et al. 
 2009 ; Hammam et al.  2016 ). The initial reports of the clinical application of WJMSCs 
to liver disease appear very promising and show that the use of these cells is safe and 
clinically feasible. In particular,  WJMSC   transfusion in patients with primary biliary 
cirrhosis with an incomplete response to ursodeoxycholic acid improves liver func-
tion, clinical symptoms, and the quality of life of patients (Wang et al.  2013 ). 
Furthermore,  WJMSC   treatment improves hepatic function and ascites in decompen-
sated liver cirrhosis patients (Zhang et al.  2012 ) and enhances liver function, decreases 
MELD score, and increases survival rates in HBV-associated acute-on-chronic liver 
failure patients (Shi et al.  2012 ). 

 WJMSCs are very interesting candidates for use in cardiovascular disease treat-
ment, as well. They exhibit high expression of early cardiac transcription factors, 
such as Flk-1, Isl-1, and Nkx2.5 (Gao et al.  2013 ), they can differentiate in vitro into 
connexin 43-, α-cardiac actin- and Troponin T-expressing cardiomyocyte-like cells 
(Nartprayut et al.  2013 ; Lupu et al.  2011 ) and are able to integrate into cardiac tissue 
(Lin et al.  2016 ). Undifferentiated WJMSCs transplanted in a porcine model of 
acute myocardial infarction (AMI) support cardiac regeneration by transdifferenti-
ating in cardiomyocytes and vascular endothelial cells, as well as promoting recruit-
ment and differentiation of resident cardiac stem cells in neonatal cardiomyocytes, 
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reducing fi brosis and apoptosis and improving ventricular remodeling and function 
(Zhang et al.  2013 ). Intracoronary administration of allogeneic WJMSCs in humans 
with AMI within 7 days of reperfusion therapy reduces infarct size, improves heart 
function, and prevents left ventricular remodeling, with no signs of immune response 
or tumor formation caused by the transplanted cells (Gao et al.  2015 ; Musialek et al. 
 2015 ). Furthermore, successful  WJMSC  -based heart valve leafl et fabrication was 
achieved and validated in large animal models (Semenov and Breymann  2011 ; 
Lanuti et al.  2015 ), confi rming that WJMSCs have great  potential   for cardiovascular 
tissue engineering applications. 

 Perhaps, one of the most promising applications of WJMSCs is diabetes treat-
ment. WJMSCs are able to differentiate into insulin producing islet-like clusters 
in vitro that lead to the functional recovery in diabetic rats (Chao et al.  2008 ; Yu 
et al.  2015 ). Undifferentiated WJMSCs achieve normoglycemia within 1 week of 
injection in NOD mice and are also able to prevent or delay the onset of diabetes 
(Hu et al.  2014 ). Most importantly, in addition to controlling hyperglycemia, the 
immunoregulatory properties of WJMSCs are able to suppress T-cell mediated auto-
immune attacks on the pancreas, allowing the regeneration of the islets (Hu et al. 
 2014 ; Tsai et al.  2015 ). It has been shown that the use of WJMSCs for the treatment 
of Type 1 and Type 2 Diabetes in humans is safe, effective, and can restore islet 
function (Hu et al.  2013 ; Liu et al.  2014 ). Interestingly, WJMSCs also enhance heal-
ing of excisional and diabetic wounds via differentiation into keratinocytes and 
release of important wound healing molecules (Fong et al.  2014 ). 

 Importantly, WJMSCs have a spontaneous tendency toward a neural lineage dif-
ferentiation commitment, are able to differentiate into neural and glial-like cell types 
in vitro, and their potential use for nerve repair in clinical applications is currently 
being investigated. For example, when WJMSCs were tested in vivo in the treatment 
of sciatic nerve axonotmesis and neurotmesis injuries using the rat model, the exper-
iments revealed that both undifferentiated and glial-like differentiated WJMSCs 
boosted the recovery of sensory and motor function of the rat sciatic nerve, indicat-
ing that Wharton’s Jelly may be a valuable cell source for the repair of peripheral 
nerve damage (Ribeiro et al.  2013 ). Furthermore, intrathecal injection of WJMSCs 
has been shown to be safe and able to delay the progression of neurologic defi cits for 
spinocerebellar ataxia and multiple system atrophy-cerebellar type in humans, indi-
cating their potential for the treatment of neurodegenerative disorders (Dongmei 
et al.  2011 ). 

 Taken together, the available data show that WJMSCs are primitive stem cells 
with properties bridging those of adult MSCs and ESCs, without the technical and 
biological limitations of the former, as well as the ethical and tumorigenic limitations 
of the latter. Furthermore, their ample accessibility, with over 130 million annual 
births worldwide, coupled with their noninvasive isolation, high expansion potential, 
great plasticity, nontumorigenic  nature  , and potent immune-privileged status, make 
them an ideal source for both autologous and allogeneic use in regenerative medicine 
applications.  
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4.2      Immune Properties   

 WJMSCs express low levels of normal (HLA-A,B and C) as well as noncanonical 
(HLA-E, F, and G) MHC class I antigens, and lack MHC class II (HLA-DR, DP, and 
DQ) as well as CD40/CD40L, CD80, CD86, and B7-DC costimulatory antigens 
implicated in the activation of T and B cell responses (Chen et al.  2012 ). Lack of 
expression of these molecules is probably responsible for the nonimmunogenic 
nature of these cells, while the expression of B7-H1, a negative regulatory molecule, 
contributes to suppressing T-cell proliferation. WJMSCs also suppress monocyte to 
dendritic cell differentiation and maturation in a contact-dependent manner, as well 
as induction of regulatory T cell generation, confi rming the strong immunomodula-
tory functions of these cells (Tipnis et al.  2010 ). Nonclassical HLA molecules such 
as HLA-E and HLA-G have been associated with the induction of tolerance of 
NK-cells toward self-cells, as well as with the maternal tolerance to the semialloge-
neic embryo. In particular, HLA-G can inhibit T-cell activation and is one of the 
main molecules responsible for the immune-avoidance mechanisms during embryo 
implantation and fetus development (Rouas-Freiss et al.  1997 ; Fanchin et al.  2007 ). 
Furthermore, HLA-E can inhibit NK cells and when expressed by pig cells, can alle-
viate human NK cell-mediated rejection of porcine xenografts (Crew et al.  2005 ). 
Mixed lymphocyte reaction experiments showed that WJMSCs do not induce, but 
inhibit, the proliferation of stimulated immune cells and that the inhibitory effect is 
dose dependent, showing that these cells have an immune suppression function. 
Furthermore, WJMSCs express several immunomodulatory genes, such as VEGF, 
TGFβ1, HGF, HMOX1, IL1β, IL-6, LIF, LGALS-1/3/8, Cox1/2, and PTGE at high 
levels (Chen et al.  2012 ). WJMSCs have more robust immunomodulatory properties 
than adult MSCs. For example, WJMSCs strongly attenuate mitogen- driven T-cell 
responses at a much lower dose  range   than bone marrow-derived MSCs (BMMSCs), 
and suppress alloantigen-driven T-cells to a greater extent compared to BMMSCs or 
adipose tissue-derived MSCs (Prasanna and Jahnavi  2011 ). WJMSCs don’t elicit any 
immune response under xeno-transplant settings even in the absence of immune sup-
pression. For example, human WJMSCs survived for 4 months after being trans-
planted in an immune competent rat model of spinal cord injury in the absence of 
immune suppression (Yang et al.  2008 ). Despite being an extremely promising cel-
lular source for the development of allogeneic clinical applications, under certain 
circumstances, such as injection in an infl amed region, repeated injections in the 
same region, or stimulation with IFN-gamma prior to injection, WJMSCs can elicit an 
immune response (Cho et al.  2008 ), so these aspects must be carefully evaluated 
when considering a therapeutic application. 

 The ability to modulate immunological responses ranks WJMSCs as an impor-
tant stem cell source for allogeneic applications, possibly not requiring HLA match-
ing before transplantation. However,what sets these cells apart from other promising 
sources is their ability to maintain a sort of positional memory that allows them to 
continue expressing molecules with immune-modulating activity after they are 
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extracted from WJ and expanded ex vivo (La Rocca et al.  2012 ). Most importantly, 
they are able to pass on this ability to their differentiated progeny. In fact, by con-
trast with BMMSCs, the immunogenicity of which increases upon differentiation, 
cells differentiated from WJMSCs not only retain their hypoimmunogenic status, 
but have been shown to express high levels of potent inhibitors of the immune 
response, such as IDO, HLA-G, and PGE2. Taken together, these data indicate that 
the immunoprivileged status of WJMSCs remains stable even after multidirectional 
 differentiation   (Zhao et al.  2009 ; Kalaszczynska and Ferdyn  2015 ).   

5     Conclusion 

  Placenta-derived stem cells   are easily accessible and do not have the limitations and 
ethical concerns associated with the clinical use of other pluripotent stem cells. In 
this chapter, we classifi ed placenta-derived stem cells into placental and nonplacen-
tal stem cells. Among them, we focused on amniotic epithelial stem cells and 
Wharton’s Jelly-derived stem cells and discussed their unique functional dualism. 

 The abundance of human placenta and the multiple therapeutic capabilities of 
placental stem cells make them one of the best cell sources for practical clinical 
translation.     
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Immunomodulatory Properties of Perinatal 
Tissue-Derived Mesenchymal Stem Cells

Seyed Mahmoud Hashemi and Sara Soudi

1  �Immunogenicity and Immunomodulatory Properties 
of Wharton’s Jelly-Derived Mesenchymal Stem Cells 
(WJ-MSCs)

The umbilical cord contains two arteries and a vein and a mucilaginous proteoglycan-
rich connective tissue known as Wharton’s Jelly that surrounds the umbilical ves-
sels and covered by amniotic epithelium (Taghizadeh et al. 2011). MSCs can be 
isolated from the different compartments of the umbilical cord (Karahuseyinoglu 
et al. 2007; Troyer and Weiss 2008). Stem cells have been reported in umbilical cord 
blood, the Wharton’s jelly, subendothelial layer of the umbilical vein, and in other 
layers of umbilical vessels’ perivascular region (Fong et al. 2007). WJ-MSCs are 
primitive mesenchymal cells that trapped in the connective tissue matrix through 
the developing cord, during embryogenesis (Taghizadeh et  al. 2011). WJ-MSCs 
have been isolated from different regions: the perivascular compartment surround-
ing the blood vessels, the intervascular zone, and the subamnion (Bongso and Fong 
2013). However, derivation protocol for WJ-MSCs has not been standardized.

The phenotype of WJ-MSCs appears to be similar to bone marrow stromal and other 
MSCs. WJ-MSCs are negative for CD34, CD45, CD14, CD33, CD56, CD31, and 
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human leukocyte antigen (HLA) class II and positive for CD73, CD90, CD105, CD10, 
CD13, CD29, CD44, CD146, CD271, and HLA-class I (Wang et al. 2004; Weiss et al. 
2008; Subramanian et al. 2015). Immunogenicity WJ-MSCs have been characterized 
both in  vitro and in  vivo. Human UC-MSCs as well as WJ-MSCs do not express 
(HLA)-DR and the co-stimulatory molecules, CD40, CD80, and CD86 that are required 
for T cell activation (Weiss et  al. 2008; Tipnis et  al. 2010). HLA-DR expression 
increased after in vitro interferon-γ (IFN-γ) treatment. However, no significant change 
in the expression of co-stimulatory molecules was observed (Tipnis et  al. 2010). 
Immunogenicity of human WJ-MSCs has been assessed by in vitro assays including 
mixed lymphocyte reaction (MLR). The results of Weiss et al. who assessed the effect 
of WJ-MSCs on one- and two-way MLR assays showed that they do not stimulate T 
cell proliferation in a one-way MLR, and that they inhibit the proliferation of stimulated 
T cells in a two-way MLR (Weiss et al. 2008). The immunogenicity of human WJ-MSCs 
has been reported to be lower than human BM-MSCs. In vitro activation of allogeneic 
lymphocytes or peripheral blood by human BM-MSCs was significantly stronger than 
WJ-MSCs (Prasanna et  al. 2010; Deuse et  al. 2011). In vivo immunogenicity of 
WJ-MSCs has been assessed by allogeneic and xenogeneic transplantation. WJ-MSCs 
has been reported to survive in vivo after xenogeneic and allogeneic transplantation.

It has been reported that xenogeneic in vivo immune activation of BM-MSCs was 
significantly stronger than WJ-MSCs. Although both BM-MSCs and umbilical cord 
lining MSCs are recognized by allogeneic and xenogeneic lymphocytes, umbilical 
cord lining MSCs are less immunogenic and were more slowly rejected in immuno-
competent mice (Deuse et al. 2011).

After xenotransplantation of pig umbilical cord matrix MSCs into rat brain the 
cells engraft and proliferate without requiring immune suppression (Medicetty et al. 
2004). In another study, human WJ-MSCs survived for 16 weeks in the spinal cord of 
immune competent rats in the absence of any immune suppressive drugs (Yang et al. 
2008). In a recent study, the effects of intra-hippocampal transplantation of human 
WJ-MSCs on rat pilocarpine-induced epilepsy was evaluated (Huang et al. 2015). In 
addition to their effects in the central nervous system, xenotransplantation of human 
WJ-MSCs was reported in rat models of peritoneal fibrosis (Fan et  al. 2016) and 
carbon tetrachloride (CCl4)-induced liver fibrosis (Tsai et  al. 2009). These results 
indicate that human WJ-MSCs are a good stem cell source for xenotransplantation.

WJ-MSCs are also capable of immune suppression and immune avoidance 
similar to other types of MSCs. Immunomodulatory properties of WJ-MSCs are 
mediated by soluble factors such as cytokines and immunosuppressive molecules. 
It has been shown that WJ-MSCs secreted a number of soluble suppressive cyto-
kines such as transforming growth factor-beta (TGF-β), insulin like growth factor 
(IGF), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), 
hepatocyte growth factor (HGF), leukemia inhibitory factor (LIF), and interleukin 
(IL)-10 (Liu et al. 2012; Wang et al. 2010a; Choi et al. 2013a). WJ-MSCs com-
pared with MSC from other sources produce large amounts of IL-10, higher levels 
of TGF-β and HLA-G.

In addition, PGE2, indoleamine 2, 3-dioxygenase (IDO), and NO have been 
reported to have immunoregulative functions in different types of MSCs. However, 
blocking experiment indicated that PGE2 was more effective than TGF-β, IDO, and 
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NO in immunosuppressive effects of WJ-MSCs (Chen et al. 2010; Wang et al. 2010b; 
Choi et al. 2013b; Donders et al. 2015). In addition to immunomodulatory agents, 
WJ-MSCs have been reported to secrete angiogenic and wound healing promoting 
factors such as TGF-β, vascular endothelial growth factor (VEGF), PDGF, IGF, IL-6, 
and IL-8 (Choi et al. 2013b). Furthermore, WJ-MSCs express vascular endothelial 
growth factor (VEGF) and IL-6, which have been shown to modulate differentiation 
of lymphoid precursors and differentiation of monocytes to dendritic cells (Weiss 
et al. 2008). Recent studies suggest that immunomodulatory properties of WJ-MSCs 
were enhanced upon stimulation with proinflammatory cytokines, IFN-γ, TNF-α, 
and IL-1b (Donders et al. 2015; Prasanna et al. 2010; Tipnis et al. 2010). Moreover, 
IFN-γ and IL-1β produced by activated peripheral blood mononuclear cell (PBMC) 
upregulated the expression of cyclooxygenase-2 (COX-2) and the production of 
PGE2 by human umbilical cord mesenchymal stem cells (hUCMSCs) (Chen et al. 
2010). WJ-MSCs has suppressive effects on differentiation, proliferation, and func-
tion of immune cells such as T cells, dendritic cells (DC), and NK cells via contact-
dependent mechanisms as well as through soluble molecules. WJ-MSCs are able to 
inhibit polyclonal T cell proliferation. They can functionally inhibit IFN-γ produc-
tion by activated T cells and induce IL-10 secretion as well as induction of regulatory 
T cell (Treg) generation (Donders et al. 2015; Tipnis et al. 2010; Chen et al. 2010; 
Zhou et al. 2011).

It has been reported that MSCs induced CD4+ CD25+ FOXP3+ regulatory  
T cells after in vitro coculture with naïve T cells (Yousefi et al. 2016) and cell con-
tact is more effective than soluble mediators.

Moreover, in vivo studies reveal that WJ-MSCs increasing the frequency of Treg 
cells (Tregs) and reestablishing the balance between Th1/Th2 and Th17/Treg-
related cytokines (Alunno et al. 2014; Sun et al. 2010). Several studies reported that 
WJ-MSCs inhibit differentiation, maturation, and functionality of DCs. WJ-MSCs 
reduce the expression of HLA-DR, CD80, and CD83 and resulted in impaired allo-
stimulatory ability of DCs (Donders et  al. 2015; Saeidi et  al. 2013; Tipnis et  al. 
2010). In several experimental models, such as type 1 diabetes, myocardial infarc-
tion, and Parkinson’s disease, severe and refractory systemic lupus erythematosus, 
in vivo immunomodulatory, and anti-inflammatory effects of WJ-MSCs have been 
investigated (Chao et al. 2008; López et al. 2013; Wu et al. 2007; Sun et al. 2010). 
Low immunogenicity and immunomodulatory properties of WJ-MSCs make it 
promising to use in allogeneic clinical applications in inflammatory and autoim-
mune diseases (Fig. 1).

2  �Immunomodulatory Properties of Umbilical Cord Blood-
Derived Mesenchymal Stem Cells (UCB-MSCs)

Umbilical cord blood has been accepted as a well-established source for hematopoi-
etic stem cells. However, it is still controversial whether MSCs can be isolated from 
cord blood.
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The presence of MSCs in UCB has been reported in some studies (Lee et al. 2004; 
Bieback et al. 2004; Heo et al. 2016) whereas others have suggested that the UCB is 
not a rich source of MSCs due to very low frequency and MSC isolation protocol 
(Flynn et al. 2007; Secco et al. 2008; Mareschi et al. 2001; Wexler et al. 2003).

The cells were positive for CD29, CD44, CD73, CD90, and CD10 whereas 
MSCs were negative for CD14, CD31, CD34, CD45, and CD106, which are known 
markers of hematopoietic and endothelial cells (Lee et al. 2004; Bieback et al. 2004; 
Liu and Hwang 2005; Heo et al. 2016).

The cytokine expression profile of UCB-MSCs has been reported to be similar to 
that of BM-MSCs, except that UCB-MSCs expressed IL-12 but not G-CSF (Liu and 
Hwang 2005).

Using cytokine protein array Liu and Hwang et  al. reported that UCB-MSCs 
produced cytokines including proinflammatory: IL-1b, IL-6; anti-inflammatory: 
TGF-β2, TGF-β3, MIF, LIF; growth factor: GM-CSF, VEGF, FGF-4, FGF-7, FGF-
9, PIGF, oncostatin M; growth factor receptor: IGFBP-1, IGFBP-2, IGFBP-3, 
IGFBP-4; chemokines: GRO, IL-8, MCP-1, MIP-3a, PARC, IP10, ENA-78, GCP-2, 
osteoprotegerin; TIMP-1, TIMP-2 the natural inhibitors of matrix metalloprotein-
ases (Liu and Hwang 2005). IL-6, IL-8 and TIMP-1, TIMP-2 are abundant CB-MSCs 
cytokines (Hwang et al. 2009; Flynn et al. 2007).

3  �Immunogenicity and Immunomodulatory Properties 
of Amniotic Membrane-Derived MSCs (AM-MSCs)

The innermost layer that surrounded the embryo is amniotic membrane (AM) that is 
a fetal component of extra embryonic membranes. This multilayer membrane with 
0.02–0.5 mm thickness has diverse clinical application because of both its physical 
and cellular structure. The physical aspect of AM application is related to an inte-
grated translucent avascular membrane which provides a permeable barrier with 
high elasticity that resists against proteolytic factors and fractional forces. Basement 
membrane proteoglycans, laminins, different types of collagens, and cytoskeletal 
proteins are responsible for these physical properties. With regards to these charac-
teristics AM is used in general surgery for treatment of corneal, conjunctival and 
limbal lesions, reconstitution of burned skins, and wound healing. The second 
aspect of AM application is its cellular component composed of two main cellular 
compartments which are separated by basement membrane. The inner layer adja-
cent to amniotic fluid (Rennie et al. 2012a; Mamede et al. 2012; Danforth and Hull 
1958) is amniotic epithelial cells (AEC) and the outer layer of AM is amniotic mes-
enchymal stromal cells that according to agreement of “International Placenta Stem 
Cell Society” called amniotic mesenchymal stem cell (AMSC) (Parolini et al. 2008, 
2009). Both of them are categorized as stem cells because of their ability to self-
renewal and differentiation to other lineages (Insausti et al. 2010). Amniotic epithe-
lial cells express pluripotency transcription factors such as Oct-4, Sox-2, Nanog, 
and Rex-1 (Parolini et al. 2008; Insausti et al. 2010) and can differentiate to the three 
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germinal layers: ectoderm, mesoderm, and endoderm (Tamagawa et al. 2004; Miki 
and Strom 2006). In addition, AEC show pluripotent cell surface markers such as 
SSEA-3 and SSEA-4 (stage-specific embryonic antigen 3 and 4), TRA 1-60 and 
TRA 1-81 (tumor rejection antigen 1-60 and 1-81) that is associated with embryonic 
stem cells. They also express cell–cell interaction molecules such as E-Cadherin, 
CD9, CD29, CD104, CD49e, CD49f, CD49d, and CD44 (Roubelakis et al. 2012; 
Insausti et al. 2010). Amniotic mesenchymal stem cells have adipogenic, chondro-
genic, osteogenic, and angiogenic differentiation potential (Ilancheran et al. 2009; 
Alviano et al. 2007; Ilancheran et al. 2007; In’t Anker et al. 2004) although hepatic, 
neurogenic, and myogenic differentiated lines have been reported too (Portmann-
Lanz et al. 2006). Similar to bone marrow and other adult tissue isolated mesenchy-
mal cells, they highly express CD90, CD73, CD105, and CD29 cell surface markers 
and do not express hematopoietic cell surface markers such as CD45, CD34, CD14, 
CD11b, and CD19 (Ilancheran et al. 2007; Roubelakis et al. 2012; Parolini et al. 
2008). Human amniotic epithelial cells (hAEC) are separated by trypsin digestion of 
amniotic membrane which is mechanically separated from chorion. More enzymatic 
digestion with collagenase will terminate to complete isolation of AM-MSCs (In’t 
Anker et al. 2004; Miki and Strom 2006; Wei et al. 2009; Bilic et al. 2004; Soncini 
et  al. 2007). AM isolated stem cells are cultured in DMEM or α-MEM medium 
supplemented with fetal bovine serum (FBS) and epidermal growth factor (EGF) 
with or without leukemia inhibitory factor (LIF) according to the laboratory setup 
(Manochantr et al. 2010; Lisi et al. 2012; Tamagawa et al. 2007). The significant 
high ratio of stem cell to naïve population of AM (5–50 %) compared to others 
somatic tissues (0.01–0.1 %) is one of the main feature of AM for clinical applica-
tion, as an average of 5 × 108 AM-MSCs (Bilic et al. 2008; Parolini et al. 2008) and 
100 × 106 hAECs are obtained from one AM (Lagasse et al. 2000; Miki 2011).

To behave as an immunomodulatory agent, isolated cells should express and 
secrete immunoregulatory molecules, sense inflammatory and anti-inflammatory 
conditions, and interact with immune cells. AM-derived stem cells do not express 
polymorphic HLA-A, B, C, and DR antigens that demonstrated their low immunoge-
nicity after allo- or xeno-transplantation (Li et al. 2005). Transplantation of a mono-
layer of human amniotic epithelial cells can survive for a long time without induction 
of any acute immune responses against transplant (Akle et al. 1981). Xenograft amni-
otic membranes transplanted to the limbal area, intracorneal space, and under the 
kidney capsule show no or low host cell infiltration and few host vessels formation 
(Kubo et al. 2001). Amnion-derived MSCs not only are low immunogenic but also 
are immunosuppressive. According to this feature, co-transplantation in conjunction 
with umbilical cord blood-derived hematopoietic stem cells reduces potential of 
graft-versus-host disease in recipients (Li et al. 2007). Although we do not know the 
complete immunosuppressive mechanisms of AM-MSCs, following inhibitory mol-
ecules are suggested as important ones. AM-MSCs express high level of IL-10 and 
IL-1 receptor agonists at transcriptional level and release the proteins to amnion 
where counteracts with inflammatory cytokine products such as TNF-α, IL-1, IL-8, 
and IL-6 and suppress their more production by immune cells. In addition, AM-MSCs 
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exert their inhibitory effect on T lymphocyte proliferation through self-secreted 
IL-10 or induction of IL-10 producing immune cells by its other inhibitory molecules 
like (Indoleamine 2,3-dioxygenase) IDO (Yang et al. 2009). (IDO) enzyme which 
catalyzes essential amino acid tryptophan through kynurenine pathway works as an 
immunoregulatory molecule through inhibition of T lymphocyte and NK cell popula-
tions’ growth and activity (Kang et al. 2012; Spaggiari et al. 2008). Co-culturing of 
AM-MSCs with PBMC and other inhibitory molecules like Prostaglandin E (PGE) 
augmented IDO production (Kang et al. 2012). Prostaglandin E2 (PGE2) is an anti-
inflammatory lipid mediator that is produced by arachidonic acid processing by 
COX-1 and COX-2 enzyme (Smith et al. 1996). PGE2 constitutively produced by 
AM-MSCs and increased when AM-MSCs were co-cultured with PBMCs (Kang 
et  al. 2012). PGE2 are dominant immunosuppressive molecule of AM-MSCs, 
because it enhances its own production that result in complete suppression of sur-
rounded inflammatory molecules (Kalinski 2012) PGE2 use different ways to play its 
immunosuppressive role on T lymphocytes. T lymphocyte proliferation and activa-
tion were suppressed by inhibition of IL-2 production and induction of cAMP pro-
duction by PGE2, respectively (Walker et al. 1983). PGE2 promoted FOXP3+CD4+CD25+ 
regulatory T cell differentiation and affected T helper cell polarization to the benefit 
of Th2 subtype through induction of IL-10 and IL-4 cytokine production and inhibi-
tion of IL-12 and IL-2 production (Mahic et al. 2006; Demeure et al. 1997). PGE2 
inhibit inflammatory cell migration and induce regulatory cell maintenance by modu-
lation of chemokine production. In addition, it interacts with dendritic cells and sup-
pressed DC-mediated T cell activation by suppression of antigen presentation and 
can inhibit activation of macrophages and NK cells (Yañez et al. 2010; Sreeramkumar 
et al. 2012).

Transforming growth factor beta (TGF-β) family are consisted from highly simi-
lar three isoforms (TGF-β 1, TGF-β 2, and TGF-β 3) that secreted in the inactive 
latent form to extracellular matrix. Activation of TGF-β will be primed by proteo-
lytic function of matrix metalloproteases and reactive oxygen species (Barcellos-
Hoff and Dix 1996; Yu and Stamenkovic 2000). Activated TGF-β interacts with 
TGF-β receptors on immune cells and triggers both anti-inflammatory and proin-
flammatory functions in the context-dependent manner. TGF-β is abundantly 
secreted by all types of MSCs like AM-MSCs. Amnion-derived MSCs exerted the 
most parts of its immunomodulatory effects through TGF-β that was abrogated with 
anti-TGF-β antibody. Different studies show increased level of TGF-β expression in 
AM-MSCs at both mRNA and protein level after co-culturing with immune cells 
(Kang et al. 2012; Chen et al. 2011a). Secreted TGF-β will suppress immune cell 
proliferation through cell cycle blocking. It ligates to TGF-β receptors on B lym-
phocytes and induces apoptosis (Spender et  al. 2009). In addition, TGF-β sup-
pressed B cell activation by inhibition of NF-kB and cytokine production and 
interfere with antibody production (Cazac and Roes 2000). AM-MSCs can direct T 
helper cell differentiation to regulatory T cells or Th17 subtype through TGF-β1. 
This induction suppresses Th1 or Th2 differentiation of helper T cells (Li and 
Flavell 2008), inhibit T cell proliferation, and suppress cytotoxic T cell activity by 
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inhibition of expression of cytolytic gene products. TGF-B production by AM-MSCs 
suppressed inflammatory cytokine production by classical macrophages and pro-
motes alternative macrophage activation which secretes anti-inflammatory cyto-
kines and help to tissue repair (Gong et al. 2012).

Beside the soluble factors, AM-MSCs express cell membrane bond suppressive 
molecules. Induction of nonclassical class I HLA-G molecules on the surface of 
AM-MSCs is among the immunosuppressive mechanisms. Physiological expres-
sion of HLA-G is restricted to AM and thymus in the body (Lefebvre et al. 2000). 
HLA-G transcripts can be alternatively spliced to membrane bound and soluble pro-
teins. Cell bond HLA-G induces tolerance in natural killer cells especially through 
activation of killing inhibitory receptor ILT (Ig-like transcript) pathway. Soluble 
HLA-G interaction with CD8+ marker on T and NK cells upregulate FasL expres-
sion and induce apoptosis (Contini et al. 2003). In addition, soluble HLA-G redirect 
helper T lymphocyte to regulatory phenotype (Lila et al. 2001) and exerts immuno-
suppressive effect on DC maturation that in consequence terminated to less activa-
tion of NK cells and T lymphocytes (Gros et al. 2008). Increase in immunosuppressive 
cytokine production by mononuclear cells is another effect of soluble HLA-G on 
immune cells (Hunt et al. 2006).

Programmed death-ligand 1 (PD-L1) or B7 homolog 1 (B7-H1) is another trans-
membrane protein expressed on the AM-MSCs. This regulatory molecule interacts 
with PD-1 on T lymphocyte and disturbs TCR signaling pathway through attenua-
tion of NF-Kb and AP-1 activation (Sheppard et al. 2004). This attenuation results 
in IL-2 reduction and suppression of T lymphocyte proliferation.

Fas ligand as a member of the tumor necrosis factor (TNF) family are located in 
transmembrane part of AM-MSCs and interacts with Fas(CD95) receptors on immune 
cells. Induction of apoptosis in Fas-expressing T lymphocytes is an immunoregula-
tory way that suppresses cytotoxic T cell function (Mazar et  al. 2009). Uptake of 
apoptotic T cell particles by macrophages turn them to alternatively activated macro-
phages with high TGF-β production and tolerogenic function (Akiyama et al. 2012).

Although there is no doubt on immunoregulatory function of AM-MSCs that 
exerted by its membrane bond or soluble factors, different studies demonstrated that 
they are not spontaneous suppressors and should be excited under inflammatory 
condition (Shi et al. 2012). Inflammation may provide MSCs migration and homing 
to injured site. MSCs produce growth factors, chemokines, chemokine receptors, 
and other cell adhesion molecules in response to TNF-α, IL-1β, and other inflamma-
tory cytokines secreted by immune cells at inflammation site (Ullah et al. 2015). 
There are also reports that show the production of immunosuppressive molecules of 
AM-MSCs needs stimulation especially by IFN-γ or microbial ligands (Chang et al. 
2006) (Nurmenniemi et al. 2010). Matrix metallo-proteases (MMPs) and chemokine 
receptors, chemokine receptor type 4 (CXCR4), are the main factors for MSCs 
migration to and homing in injured site (Ries et al. 2007). After migration, resident 
MSCs secrete chemokines (CCL2, CXCL9, CXCL10, and CXCL11) and express 
cell adhesion molecules like intercellular adhesion molecules (ICAM)-1 and vascu-
lar cell adhesion molecules (VCAM)-1 which attracted immune cells and facilitate 
close contact with them at inflammation site (Ren et  al. 2010; Shi et  al. 2012). 
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AM-MSCs apply all mentioned inhibitory mechanisms in direct interaction with 
innate and adaptive immune cells, to suppress their function (Insausti et al. 2014). 
According to Magatti et al. reports, AM-MSCs block DC maturation and differentia-
tion from monocytes through inhibition of CD80, CD86, and HLA-DR expression 
and induction of cell cycle arrest at G0 phase (Magatti et al. 2009) AM-MSCs induce 
tolerogenic dendritic cells and macrophages by their soluble factors and direct trans-
membrane HLA-G interaction with ILT receptors which terminated to differentia-
tion of regulatory T cells (LeMaoult et  al. 2007). Natural killer cells are innate 
lymphoid cells that patrol the body and screen tumor, microbial infected or foreign 
cells ligands that interacted with activating NK receptors. Following activation, NK 
cells release the content of cytolytic granules including perforins and granzymes and 
kill involved cells (Vivier et al. 2008). However, NK cells express killing inhibitory 
receptors including KIR, NKG2A/CD94, ILT2, and so on, that recognize MHC class 
I (HLA-A, -B or -C) molecules on every normal cells in the body and tolerate them 
(Campbell and Purdy 2011). Because of the absence of MHC class I molecules on 
AM-MSCs, they can be killed by active NK cells while inhibiting their cytotoxic 
effect on other cells. PGE2 and IDO) production by AM-MSCs downregulate NK 
cell killer activating receptors and inhibit their proliferation (Spaggiari et al. 2008). 
AM-MSCs interrupt NK cell communication with other immune cells via soluble or 
membrane bond HLA-G which ligated to the killing inhibitory receptors on den-
dritic cells, T and B lymphocytes and affected their cytokine production and ligand-
receptor engagement with NK cells (Gros et al. 2008). T lymphocytes as the main 
player of adaptive immunity, respond to environmental stimulus after antigen recog-
nition by their antigen-specific T cell receptors. Antigen-specific T lymphocytes are 
divided to two main categories according to how they act; 1) cytotoxic T lymphocyte 
which destroy and kill the cells who introduced antigens by class I MHC molecules 
in the cell–cell contact manner, and 2) helper T lymphocyte which recognize anti-
gens on class II MHC molecules and produced the wide range of cytokines from 
regulatory to inflammatory and anti-inflammatory properties. AM-MSCs do not 
express MHC molecules and escape from T lymphocytes recognition system, how-
ever have reciprocal effect on each other. Kang et al. showed that AM-MSCs pro-
duce increased level of IL-10, TGF-β, hepatic growth factor (HGF), IDO), and 
COX-2 in co-culture with PBMCs or in the presence of PBMC supernatant (Kang 
et al. 2012). In the reciprocal interaction, AM-MSCs secreted factors that inhibit T 
cell proliferation in response to phytohemagglutinin or allogeneic stimulation in the 
dose-dependent manner (Li et al. 2007) (Banas et al. 2008). Researchers demon-
strated that cytokine production of mitogen-stimulated T lymphocytes will be 
affected in the presence of AM-MSCs in the culture. According to analysis of cyto-
kine level in the supernatant of AM-MSCs – PBMC co-culture, changes in level of 
IL-2, IL-4, IL-7, IL-10, IL-15, TGF-β, and IFN-γ production were observed while 
IL-10 and TGF-β had the significant increased level and IFN-γ showed the decreased 
level compared to PBMC culture alone (Li et  al. 2007; Roelen et  al. 2009). 
Differentiation to different subtypes of helper T lymphocytes is dependent on sur-
rounded cytokines, so AM-MSCs can trigger TH2 and regulatory subtypes and sup-
press TH1 differentiation, because of augmentation of IL-10 and TGF-β production. 
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Different reports confirmed that placental MSCs support FOXP3+ regulatory T cell 
induction and proliferation through induction of tolerogenic antigen-presenting cells 
or regulatory cytokines (LeMaoult et al. 2007; Chen et al. 2011b).

4  �Immunomodulatory Properties of Amniotic Fluid 
Mesenchymal Stem Cells (AF-Mscs)

Amniotic fluid (AF) is the secretion of chorio-amniotic membrane and fetal skin that 
provide water and nutrients in the amniotic bag to create a safe environment for 
embryo development (Ganatra 2003). Amniotic fluid volume increases during preg-
nancy as a result of active transport of sodium and chloride that induces water trans-
port across membrane. Electrolytes, protein, lipid, carbohydrate, and embryo 
produced urine and respiratory fluid are soluble components of amniotic fluid (Zhao 
2015; Westgren et  al. 1995). Most of these soluble components are secreted by 
diverse cell population that separated from different tissues of developing embryo 
and immersed in amniotic fluid. The cells are derived from placenta, skin, digestive, 
urinary, and respiratory tracts of embryo and are used for prenatal genetic diagnosis 
by amniocentesis (Siegel et al. 2007). However, they have pluripotent and multipo-
tent stem cell characteristics and are considered in clinics for their tissue regenera-
tion and immunomodulatory properties (Rennie et al. 2012b).

Human amniotic fluid-derived MSCs (AF-MSCs) can be isolated from amnion 
fluid of pregnant woman at 16–20 weeks of gestation. This adherent fibroblastic-like 
cells is expanded in culture media containing 89 % DMEM-High Glucose or α-MEM, 
10 %FBS, 1 % penicillin–streptomycin supplemented with/without 4–10  ng/ml 
bFGF (Liu et al. 2009; Li et al. 2015). AF-MSCs are not tumorigenic after injection 
to nude mice, however well growing AF-MSCs can be cultured up to more than 20 
passages. The population doubling time will increase from 36 h at first passage to 48, 
55, and 97 h for P5, P10, and P20, respectively (Li et al. 2015), so usually the cells 
are used up to 4–8 passages for experimental use. Immunophenotype analysis 
showed that AF-MSCs represented high expression of CD73, CD105, CD90, CD166, 
and HLA-ABC, while are negative for CD45,CD34, CD14, and HLA-DR cell sur-
face markers (Parolini et al. 2009; Li et al. 2015). AF-MSCs express pluripotency 
markers of Oct-4, Nanog, Sox-2, and Rex-1 in different gestational age (Tsai et al. 
2004). Although AF-MSCs have diverse differentiation potential to different cells 
like alveolar epithelial cells and hepatocytes (Li et al. 2014; Zheng et al. 2008), they 
are characterized by differentiation to adipogenic, chondrogenic, and osteogenic 
cells after in vitro culture in the presence of specific differentiation promoting media 
(Li et al. 2015). AF-MSCs create an immunoprivileged status in the amniotic cavity 
to protect fetus from rejection by mother immune system because of their low immu-
nogenicity and immunosuppressive activity. Low immunogenicity of AF-MSCs is 
related to the absence of HLA-DR and positive co-stimulatory molecules of CD40, 
CD80, and CD86. In addition, they express high level of negative co-stimulatory 
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molecules of B7H1, B7H2, B7H3, B7H4, and BTLA in the cell surface (Moorefield 
et al. 2011). Low immunogenicity of AF-MSCs introduced them as a source of allo-
geneic MSC transplantation, while cell surface expression of HLA-ABC and prob-
able low level expression of class II HLA molecules promoted allo-antibody 
production (Schu et al. 2012). So it seems that they are suitable for autologous not 
allogeneic transplantation. AF-MSCs like other MSCs take part in immunosuppres-
sive processes through secretion of anti-inflammatory molecules that are one of the 
main soluble components of amniotic fluid. IL-10, IL-1 receptor agonists, and other 
inhibitory secretions counteract with inflammatory functions of immune cells that 
causes inhibition of neutrophil infiltration to damaged site (Cargnoni et al. 2009) or 
production of proinflammatory cytokines of TNF-α and C-X-C motif chemokine 
ligand 10 (CXCL10) by activated dendritic cells (Magatti et al. 2009). AF-MSCs can 
suppress T lymphocyte proliferation and activation by PGE2 and IDO) as discussed 
earlier (Kang et al. 2012). AF-MSCs are one of the complex components of amniotic 
fluid contributed to wound healing and tissue regeneration (Silini et  al. 2013). 
Fibroblast proliferation and differentiation to myofibroblasts are the primary step of 
wound repair that terminated to regeneration of epithelium, connective tissue, and 
vasculature. AF-MSCs have paracrine role by secretion of different growth factors 
containing vascular endothelial growth factor (VEGF), epithelial growth factor 
(EGF), basic fibroblasts growth factors (bFGF), members of the insulin growth fac-
tor-binding protein (IGFBP) superfamily, and transforming growth factor beta (TGF-
ß) in wound repair (Skardal 2014; Sorrell and Caplan 2010). In addition, MSCs can 
differentiate directly to myofibroblasts and augment vascularization (Yamaguchi 
et al. 2005). AF-MSCs are also involved in the last step of wound repair that was 
accompanied by increase in matrix metalloproteases (MMPs) and decrease in TGF-β 
that terminated to collagen degradation, fibroblast apoptosis, and tissue-specific cell 
proliferation (Darby and Hewitson 2007). MSCs can bound MMPs at the cell surface 
and activate exogenous pro-MMPs which may further participate in extracellular 
matrix degradation and tissue remodeling (Lozito et al. 2014).

5  �Immunomodulatory Properties of Chorion-Derived 
Mesenchymal Stem Cells (CMSCs)

Chorion is the outer layer of fetal part extraembryonic membrane that is connected 
to decidua as maternal part of placenta. Both decidua and chorion form the placenta 
membrane that separates maternal from fetal blood (Witkowska-Zimny and Wrobel 
2011). Chorion is composed of chorionic plate and chorionic villi that are a rich 
source of mesenchymal stem cells that is known as CP-MSC and CV-CMSCs, 
respectively (Soncini et al. 2007; Jones et al. 2002). These fetal tissue-isolated MSCs 
are primitive than adult MSCs and have greater life span and self-renewal capacity. 
However, different studies demonstrated that maternal part isolated MSCs like 
decidua (D-MSC) have a greater life span than CP-MSC and CV-MSC (Soncini et al. 
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2007; Fukuchi et al. 2004). They showed an intermediate phenotype of adult MSCs 
and pluripotent stem cells and can differentiate into cells developed from three germ 
layers (Wang et al. 2014; Abumaree et al. 2013; Chang et al. 2007). Although pre-
term-isolated chorion-derived mesenchymal stem cells (CMSCs) show higher stem-
ness and expression level of NANOG, SOX2, c-MYC, and KLF4 and generates 
better embryoid body rather than term-isolated CMSCs, their application technically 
are impossible because of ethical problem (Jones et  al. 2012). Although MSCs 
obtained from different fetal or adult tissues contribute the same phenotype and 
immunomodulatory properties, they have differences in magnitude and quality of 
these characteristics according to species origin, tissue source, and localization (Hass 
et al. 2011; Hashemi et al. 2013). CP-MSC and CV-MSC are negative for hematopoi-
etic cell surface markers and express MSC-specific markers of CD105, CD73, CD90, 
and CD29. Their low immunogenicity and immunoprivileged phenotype are related 
to low or negative expression of HLA-DR that may be converted to immunogenic 
after differentiation or stimulation with IFN-γ (Huang et al. 2010; Chan et al. 2008). 
Expression of HLA-ABC and HLA-G is higher in CP-MSC and CV-MSC compared 
to adult MSCs. Strongly HLA-G positive CMSCs reflected their immunosuppressive 
role in pregnancy and their potential in graft tolerance (Hunt et al. 2005; Menier et al. 
2010). As Bailo et al. demonstrated that engraftment of chorion-derived cells can be 
successfully transplanted into neonatal swine and rats and create tissues with human 
microchimerism (Bailo et  al. 2004). Moreover, higher expression of HLA-G on 
human placenta-derived MSCs (hP-MSC) compared to adult MSCs makes them 
resistant to NK cytotoxicity and suppressed NK cells efficiently. Different studies 
demonstrated that hP-MSC suppress allogeneic T cell proliferation and activation 
through IL-10 and TGF-β production (Li et  al. 2007) and induction of Treg cell 
increase (Chang et al. 2006). Recent study showed that CV-MSC have two subpopu-
lation according to CD106 (VCAM-1) expression on the cell surface that affected 
their immunomodulatory capacity and biological activity. CD106+CV-MSC demon-
strated low colony forming capacity and proliferation potential compared to 
CD106−CV-MSC, while exerts higher immunosuppressive activity (Yang et al. 2013). 
CD106+CV-MSC have augmented inhibitory activity on T cell function through com-
plete suppression of IFN-γ secretion by PHA-activated T lymphocyte and suppres-
sion of Tbet expression that directed Th1 polarization (Yang et al. 2013). Moreover, 
increased expression of COX-2, IL-1a, IL-1b, IL-6, and IL-8 appeared in CD106+CV-
MSC compared to CD106−CV-MSC (Yang et al. 2013). CP-MSCs are also the active 
immuromodulator of T cell responses, as they suppress IFN-γ production and induce 
IL-4, IL-13, IL-2, and GM-CSF production if co-cultured with activated T cells in 
the dose-dependent manner (Lee et al. 2012). Like AF-MSC, CP-MSC has antifi-
brotic effect. They counteract with TGF-β in wound healing process and suppress 
collagen formation by production and activation of MMPs (Lee et  al. 2010). 
However, different comparative studies on immunomodulatory function of F-MSCs 
and adult MSCs demonstrated the superior immunoregulatory function of F-MSCs 
beside their low immunogenicity (Lee et al. 2012; Chen et al. 2011a). In addition, 
F-MSCs function is different from adult MSCs in response to IFN-γ and TNF-α 
stimulation. IFN-γ stimulation will turn adult MSCs to active antigen-presenting 

S.M. Hashemi and S. Soudi



33

cells (APCs) by upregulation of MHC class II molecules while F-MSCs behave as 
poor APCs (Chang et al. 2006; Chan et al. 2008; Stagg et al. 2006). Finally, because 
of F-MSCs isolation has no ethical problem; they are an available source for thera-
peutic use in tissue regeneration and immunosuppression aspects.
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      Umbilical Cord Tissue and Wharton’s Jelly 
Mesenchymal Stem Cells Properties 
and Therapeutic Potentials                     

     Erdal     Karaöz       and     Çiğdem     İnci     

1           Umbilical Cord  Tissue   

 Umbilical cord (UC) tissue is composed of connective tissue (Wharton’s jelly), 
amniotic epithelium, two umbilical arteries, and an umbilical vein (Can and Kara-
huseyinoglu  2007 ). During pregnancy, UC transfers all the necessary nutrition and 
oxygen from mother’s blood to the fetus through placenta.  Wharton’s jelly (WJ)   
supports and protects structure of umbilical arteries by covering them and provides 
good blood circulation (Nagamura-Inoue and He  2014 ). 

 It has long been known that UC, which is thrown away after birth, contains  stem 
cells  . The presence of hematopoietic stem cells in human cord blood was fi rst 
reported in 1974 (Knudtzon  1974 ). It was followed by the fi rst successful cord blood 
transplantation to the patient with Fanconi anemia (Broxmeyer et al.  1989 ). Since 
then, other clinical trials with cord blood-derived hematopoietic stem cells also 
reported with encouraging results (Gluckman and Rocha  2005 ). 

 UC  tissue   is also one of the most promising sources of  mesenchymal stem cells 
(MSCs)   with several advantages. The unusual fi broblasts in UC were reported for 
the fi rst time in 1970 (Parry  1970 ). According to electron microscope observations, 
 WJ   cells were different from smooth muscle cells with their poor mitochondrial 
content and lack of regimented plasmalemmal vesicles. Then, McElreavey et al. iso-
lated and cultured the fi broblast-like cells from WJ in 1991 (McElreavey et al.  1991 ). 
In the next years, MSCs isolated from different regions of UC such as amnion, peri-
vascular area, arteries, vein, and WJ (Mennan et al.  2013 ; Subramanian et al.  2015 ). 
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 Large numbers of MSCs can be isolated from WJ because cord matrix has a wider 
surface area than other compartments of UC. Even though  immunophenotypic prop-
erties of cells isolated from different regions do not show signifi cant difference, 
WJ-derived cells have much lesser CD40+ cells which demonstrate non-MSCs con-
taminants (Wetzig et al.  2013 ). The telomerase levels of the cells are higher in 
WJ-MSCs at late passages, suggesting that WJ-MSCs could retain their immature 
phenotype during long-term ex vivo culture (Fig.  1 ). It has been also shown that 
WJ-MSCs do not show genetic instability or oncogene activation and retain their dif-
ferentiation and proliferation abilities for long periods of time in culture conditions 
(Scheers et al.  2013 ). Although there is no signifi cant difference between adipogenic 
differentiation potential of  stem cells   from different compartments of UC, WJ-MSCs 
show better osteogenic and chondrogenic differentiation potential (Subramanian 
et al.  2015 ).

   Although  embryonic stem cells (ESC)   have high self-renewal capacity and ability 
to differentiate into three  germ layers  , they have limited clinical applications because 
of ethical considerations and technical diffi culties. In contrast, UC-derived  MSCs   
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  Fig 1    ( a ) Real-time PCR analyses of WJ-MSCs to evaluate the expressions of stemness genes, 
including octamer-binding transcription factor 4 (OCT-4), SRY box-2 (SOX2), telomerase reverse 
transcriptase (TERT), and reduced expression 1 (REX-1) in relation to the expression of a house-
keeping gene GAPDH. ( b ) Relative telomerase activities of WJ-MSCs at passage 2 (WJ-MSC P2), 
passage 3 (WJ-MSC P3), passage 4 (WJ-MSC P4), passage 5 (WJ-MSC-P5), and MCF7 breast 
cancer cell line. ( c ) Cell cycle analysis of WJ-MSCs at P3, WJ-MSCs are under proliferative 
status. ( d ) Senescence assay results of WJ-MSCs at P3. β-Gal positive senescent cell rate is less 
than 1 % (Unpublished Data)       
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possess self-renewal and multipotency properties between adult and embryonic stem 
cells and collection procedure of  UC   is considered ethical (Fong et al.  2011 ). UC has 
been described as the preferential source of stem cells due to their large donor pool 
and reduced immunogenicity (Kalaszczynska and Ferdyn  2015 ). Another advantage 
of UC as a stem cell source, UC-derived stem cells do not form benign tumors 
(teratoma) in vivo in contrast to pluripotent stem cells (Hentze et al.  2009 ).  

2     Wharton’s Jelly-Derived Mesenchymal Stem  Cells   

2.1     Isolation Methods of WJ- MSCs   

  Cell culture techniques   have an effect on the quality and quantity of the cells. There 
are various different techniques for isolation of adult stem cells from WJ. After 
removing vessels, WJ could be separated from the cord and for the next step there 
are two main procedures for isolation of WJ-MSCs: enzymatic and explant methods. 
Collagenase, hyaluronidase, dispase, and trypsin could be used for enzymatic diges-
tion (Salehinejad et al.  2012 ; Nagamura-Inoue and He  2014 ). In the  explant method  , 
cord is minced into small pieces which are then placed into the bottom of the culture 
dishes and MSCs migrate from tissue fragments. But, commonly the cell recovery 
rate is poor because the cord fragments often fl oat in the medium because of 
mechanical forces applied to the tissue fragments during culture processes. 

 Similarly to the conventional culture methods, which are involving the use of 
animal-derived supplements like  fetal bovine serum (FBS)  , WJ-MSCs can also 
expand in large scales in  xeno -free culture conditions (Corotchi et al.  2013 ). 
Therefore, isolation and production methods of WJ-MSCs can be adapted to 
clinical/ good manufacturing practice (GMP)   grade conditions. For instance,  xeno -
free culture media or  human platelet lysates (HPL)   can be alternatives to  FBS  , to be 
used as culture supplements for clinical applications. According to our laboratory 
experiences and (unpublished data) other researcher’s reports, culture media supple-
mented with HPL enhances the proliferation and differentiation rate of WJ-MSCs 
(Jonsdottir-Buch et al.  2013 ; Antoninus et al.  2015 ) (Fig.  2 ).

2.2        Characterization of WJ- MSCs   

 Referring to the Mesenchymal and Tissue Stem Cell Committee of the International 
Society for Cellular Therapy,  MSCs   are plastic adherent when maintained in stan-
dard culture conditions and express CD73, CD90, and CD105, lack expression of 
CD45, CD34, CD14, CD79, and HLA-DR (Dominici et al.  2006 ). MSCs have 
capacity to differentiate in vitro toward osteoblasts, adipocytes, and chondrocytes. 
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 WJ-MSCs express surface markers that are common in MSCs and do not express 
hematopoietic stem cell markers (Figs.  3 ,  4 , and  5 ). They have trilineage—osteoblasts, 
adipocytes, and chondrocytes—differentiation capacity (Fong et al.  2007 ; Wang et al. 
 2009 ). WJ-MSCs also differentiate into hepatocyte-like cells (Borhani-Haghighi et al. 
 2015 ; Mortezaee et al.  2015 ; Zheng et al.  2015 ), insulin-producing cells (Kao et al.  2015 ), 
cardiomyocytes (Wang et al.  2004 ), neuron-like cells (Zhuang et al.  2015 ; Leite et al. 
 2014 ), muscle cells (Trivanović et al.  2013 ), fi broblasts (Han et al.  2011 ) in vitro.

     WJ- MSCs   have a higher telomerase enzyme activity level than somatic cells, 
while it is lower than cancer cell lines and ESCs. Moreover, their telomerase enzyme 
activity level stays stable for long times in vitro (Fig.  1 ). WJ-MSCs also maintain 
expression of  pluripotency markers   such as Sox2, Nanog, and Oct4 at low levels 
relative to ESCs (Carlin et al.  2006 ; Nekanti et al.  2010 ) (Fig.  1 ). During develop-
ment, these factors regulate the expression levels of other genes. This situation sug-
gests that WJ-MSCs are more immature than other sources of adult stem cells and 
their potential is closer to the ESCs. Expression of pluripotency markers at low lev-
els and telomerase activity rates could be an explanation for why WJ-MSCs do not 
form teratomas.  

  Fig. 2    Alizarin Red S Staining of WJ-MSCs cultured with  fetal bovine serum (FBS)   and  human 
platelet lysates (HPL)   after incubation in osteogenic differentiation medium (Unpublished Data). 
WJ-MSCs which cultured with HPL have more potential for differentiation to osteogenic 
lineages       
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2.3     Immunomodulatory Properties of  WJ-MSCs      

 Use of allogeneic  MSCs   in clinical applications is considered safe and effective 
because of their immunomodulatory properties. Many researchers explain MSCs’ 
immunomodulatory function by the lack of costimulatory molecules which are 
essential for T cell activation such as CD40, CD80, and CD86 expression and secre-
tion of  indoleamine-2,3-dioxygenase (IDO)  , transforming growth factor β (TGF-β), 
 hepatocyte growth factor (HGF)   and  prostaglandin E2 (PGE2)  ,  nitric oxide (NO)  , 

  Fig. 3    Flow cytometric analysis of cell surface markers of WJ-MSCs at P3 (Unpublished Data)       
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 interleukin-6 (IL-6)  , and  human leukocyte antigen-G (HLA-G)   at high levels (Weiss 
et al.  2008 ; Kalaszczynska and Ferdyn  2015 ). IDO, PGE2, TGF-β, HGF, NO, IL-6, 
and HLA-G have been reported to be involved in T cell suppression (Nicola et al. 
 2002 ; Ren et al.  2008 ). It has been shown that retroviral transduction of MSCs with 
CD80 or  CD86   did not result in lymphoproliferation (Klyushnenkova et al.  2005 ). 
Regarding MSCs’ immunosuppressive effects on T  cells  , when they are separated 
by a semipermeable membrane, soluble factors play a crucial role in their low 
immunogenicity (Jacobs et al.  2013 , Sarıboyacı et al.  2014 ). In contrast, some 
researchers suggested that cell–cell contact is more important and effi cient than 

  Fig. 4    Immunofl uorescent staining for  glial fi brillary acidic protein (GFAP)  ,  alpha smooth muscle 
actin (ASMA)  , Fibronectin (FN), Tenascin, CD 34, and CD 45. Nuclei were labeled with DAPI 
( blue ) (Unpublished Data). The cells were negative for CD 34 and CD45; positive for GFAP, 
ASMA, FN, and Tenascin       

  Fig. 5    Immunophenotype of WJ-MSCs. Staining patterns are shown for Asma, Desmin, 
Fibronectin, Glial fi brillary acidic protein (GFAP), Nestin, and Vimentin. Scale bars: 50 μm 
(Unpublished Data)       
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soluble factors in the immunosuppressive ability of  MSCs   (Xu et al.  2007 ; He et al. 
 2015 ). Whether because of  cell–cell contact   or through paracrine mechanisms, it 
can easily be said that WJ-MSCs possess high immunosuppressive properties. 

 Similar to other sources of MSCs, WJ-MSCs also express MHC class-I antigens 
at low levels but not class-II antigens and costimulatory antigens that are involved in 
activation of T and B cell responses (Weiss et al.  2008 ; Conconi et al.  2011 ; Nagamura-
Inoue and He  2014 ; Kalaszczynska and Ferdyn  2015 ). Distinctly, WJ-MSCs express 
higher levels of  HLA-G   which plays an important role in avoiding maternal immu-
nity against the fetus during pregnancy (Fig.  6 ) (Conconi et al.  2011 ).  HLA-G   exerts 
an immunosuppressive effect by inhibiting  natural killer (NK) cells   and  T cell  -medi-
ated cytolysis through interactions with inhibitory receptors and inducing regulatory 
immunosuppressive cells (Nasef et al.  2007 ; Ding et al.  2015 ). HLA-G secretion is 
also associated with a better graft acceptance (Lila et al.  2000 ). HLA-G expression 
properties of  WJ-MSCs   make them natural inhibitors against cell rejection, creating 
a very suitable cell source for third party or  allogeneic   applications.

  Fig. 6    Flow cytometric analysis of cell surface marker HLA-G of BM-MSC and WJ-MSC 
(Unpublished Data)       
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2.4         Homing   

 After WJ-MSCs are infused and joined to the circulation process, they tend to 
migrate and home toward tumor tissues or damaged areas mostly but not toward 
healthy tissues (Rachakatla et al.  2007 ; Doi et al.  2010 ). Similar to the migration of 
 leukocytes   to sites of infl ammation, homing ability arises from the interaction 
between chemokines and receptor expression in stem cells (Matsuzuka et al.  2010 ; 
Kholodenko et al.  2013 ).  MSCs   migrate into the damaged tissues in response to the 
signals from injured areas. It has been shown that tumor-conditioned medium 
induced CXCR4 expression, which is involved in the migration mechanism of stem 
cells on bone marrow-derived MSCs (Song and Li  2011 ). These chemokine receptor 
expression profi les vary between different sources of the cells, age, isolation meth-
ods, and passage number of the cells (Kholodenko et al.  2013 ; Sohni and Verfaillie 
 2013 ). WJ-MSCs express  stromal cell-derived factor-1 (SDF1)  ,  transforming 
growth factor beta receptor III (TGFBR3)  , and  fi broblast growth factor receptor 2 
(FGFR2)   as chemokine receptors (Matsuzuka et al.  2010 ). SDF1 and its receptor 
CXCR4 are the most studied chemotactic factor pair in cell migration. SDF1 also 
plays role in hematopoietic cell homing, migration of mature lymphocytes, and pri-
mordial germ cells (Horuk and Peiper  1996 ; Doitsidou et al.  2002 ). 

 The homing ability of  stem cells   toward infl ammatory tissues/tumor areas would 
make them important vehicles for targeted cell therapy. Ren et al. showed that  MSCs   
can be genetically modifi ed to express IFN-α, which has antitumor characteristics. 
Systemic administration of this modifi ed stem cells increased apoptosis of cancer 
cells and decreased  vasculature   of tumor areas in a mouse melanoma lung metastasis 
model (Ren et al.  2008 ). A similar approach used for showing the antitumor and 
antimetastatic effect of NK-4 gene transduced MSCs in vivo. NK-4 expressing MSCs 
selectively migrated to the tumor tissues of the lung when they are injected intrave-
nously and the  cell therapy   prolonged survival of the lung metastasis model (Kanehira 
et al.  2007 ). Nakamizo et al. engineered stem cells to release  IFN-β   to demonstrate 
that MSCs have a strong tropism for brain tumors. IFN-β expressing MSCs increased 
survival of the intracranial human glioma xenografts (Nakamizo et al.  2005 ). It has 
been documented that WJ-MSCs were localized in the periphery of tumor tissues 
after transplantation (Ayuzawa et al.  2009 ). As a result, WJ-MSCs may also serve as 
a vehicle for selective delivery of therapeutic  reagents   in tumors.  

2.5     Antitumor Activity of WJ- MSCs   

 It has been shown that MSCs attenuate tumor cells (Khakoo et al.  2006 ; Qiao et al. 
 2008 ). Human WJ-MSCs inhibited MDA 231 cancer cell’s proliferation by stimu-
lating the intrinsic apoptosis pathway in vitro (Ayuzawa et al.  2009 ). Also  xeno- 
 transplantation of human WJ-MSCs intravenously or intratumorally attenuated 
metastatic tumor growth in breast carcinoma-induced SCID mice (Ayuzawa et al. 
 2009 ). In recent years, a lot of studies demonstrate that un-engineered WJ-MSCs 
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can inhibit tumor growth of various types of cancers both in vivo and in vitro 
(Ayuzawa et al.  2009 ; Doi et al.  2010 ; Gauthaman et al.  2012 ). In contrast, there are 
also reports that MSCs can also form a cancer stem cell niche and support cancer 
cells’  growth   (Ramasamy et al.  2006 ; Patel et al.  2010 ). Although some in vitro and 
in vivo studies have reported a positive relationship between MSCs and cancer, 
there aren’t any studies reporting certain evidences of cancer formation and progres-
sion after MSC infusion to human until today. 

 On the other hand, WJ-MSCs can be engineered to suppress tumorigenicity. 
Wang et al. showed that artifi cial fusion of human WJ-MSCs with esophageal carci-
noma cells induced apoptosis of cancer cells (Wang et al.  2011 ).  IFN-β   which is a 
potent inhibitor of proliferation of cancer cell lines, transfected WJ-MSCs could 
cause death of bronchioloalveolar carcinoma cells both in vivo and in vitro 
(Matsuzuka et al.  2010 ). WJ- MSCs   can potentially be used for targeted delivery of 
cancer therapeutics through their migration ability to tumor area.   

3     In Vitro Studies 

 There are several  in vitro  studies to examine the potential impact of WJ-MSCs on 
different disorders such as  Alzheimer’s disease (AD)  , bone, and cartilage defects. 

 WJ-MSCs have a potential to improve neurological function. Lee et al. investi-
gated the effect of WJ-MSCs on AD by coculturing stem cells with hippocampal 
neurons induced with  beta amyloid peptide (Aβ)   (Lee et al.  2010 ). Incubation of 
hippocampal neurons with Aβ induced apoptosis whereas coculturing with WJ-MSCs 
ameliorated the apoptosis rates. According to these data, researchers experienced 
WJ-MSC transplantation to AD mouse model, fi nalized with promising results sup-
porting in vitro studies. 

 Using matrices/scaffolds with cells is one of the  tissue engineering   strategies 
which hold the potential to be a successful therapy for incurable end-stage diseases. 
The procedure involves harvesting cells from donor biopsy, expanding these cells on 
scaffolds in vitro, and implantation of scaffolds with cells to damaged area. Different 
cell sources are used for tissue engineering experiments such as chondrocytes and 
keratinocytes (Bailey et al.  2007 ; Killat et al.  2013 ).  MSCs   could also be used in 
rebuilding damaged or diseased tissues through their regenerative capacity. 

 Allogeneic use of  MSCs   is a signifi cant alternative for end‐stage organ failure 
that a tissue biopsy may not yield enough cells for seeding or the cases that could not 
get a biopsy such as myocardium, cartilage. The viability of using umbilical cord-
derived cells for the engineering of cardiovascular constructs has been described in 
previous studies (Hoerstrup et al.  2002 ; Schmidt et al.  2006a ). Living blood vessels 
generated from umbilical cord-derived progenitor cells involving WJ-MSCs, with a 
three-layered tissue architecture that is similar to native blood vessels (Schmidt et al. 
 2006b ). Specifi c cell phenotypes of each layer could be explained by transdifferen-
tiation of WJ-MSCs due to the applied fl ow and shear stress or growth factors in the 
medium. 
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 Bailey et al. reported that WJ-MSCs’ expansion on  polyglycolic acid (PGA)   
scaffolds and secretion levels of collagen and  glycosaminoglycan (GAG)   is higher 
than  temporomandibular joint (TMJ)   condylar chondrocytes in vitro (Bailey et al. 
 2007 ). Collagen and GAG secretions are markers of chondrogenic differentiation. 
Likewise, demonstrating differentiation of WJ-MSCs into chondrogenic/osteogenic 
lineages on PGA scaffolds represents a new cell source for bone  tissue engineering   
(Wang et al.  2009 ,  2010 ).  

4     Preclinical Studies in Animal Models 

 WJ-MSCs have been tested in many disease models both in vitro and in vivo due to 
their proliferation, differentiation capacity, anti-infl ammatory, antiapoptotic, and 
immunomodulatory properties. 

  Liver diseases   are one of the potential uses for  stem cell therapy  . Limited liver 
donors and complications of liver transplantations make stem cells a better option 
for curing these diseases. A previous study has shown that xeno-transplantation of 
WJ- MSCs   could reduce liver fi brosis in rat models. According to the results, 
WJ-MSCs engrafted in hepatic connective tissue did not differentiate into hepatocyte- 
like cells. Stem cells restored the liver function by releasing bioactive cytokines 
(Tsai et al.  2009 ). In another in vivo study, transplanted WJ-MSCs differentiated 
into  hepatocyte growth factor (HGF)  , metalloproteinase expressing hepatocyte-like 
cells and stimulated regeneration of damaged liver (Lin et al.  2010 ). The following 
three mechanisms can be suggested for the regenerative effect of WJ-MSCs on liver 
damages. First, transplanted WJ-MSCs differentiate into hepatocyte- like cells in the 
environment of host liver cells. By this way, reduced number of hepatocytes can be 
improved after hepatic commitment of stem cells. The other suggested mechanism 
is that WJ-MSCs can induce liver regeneration by secreting cytokines such as HGF, 
IL-6, IL-10 (Li et al.  2013a ,  b ,  c ). These cytokines suppress hepatic stellate cells that 
play a key role in hepatic fi brosis by producing matrix components. Lastly, WJ-MSCs 
can produce matrix metalloproteinase which can degrade extracellular matrix 
directly, reducing fi brosis (Tsai et al.  2009 ). 

 Considering the limited regenerative potential of human cardiovascular system, 
 MSCs   can be an attractive candidate for cardiovascular tissue repair. WJ-MSCs 
could differentiate into cardiomyocyte-like cells after 5-azacytidine or oxytocin 
treatment (Hollweck et al.  2011 ; Kaveh et al.  2013 ). Kaveh et al. have reported that 
intramyocardial administration of differentiated WJ-MSCs combined with  vascular 
endothelial growth factor (VEGF)   improved cardiac function, enhanced angiogen-
esis, and reduced fi brosis tissue formation after  myocardial infarction (MI)  . VEGF 
is an inducer of angiogenesis and promotes the proliferation of cardiomyocytes 
(Hoeben et al.  2004 ). The combination of differentiated WJ-MSCs and VEGF dupli-
cated the effect of stem cells on MI-induced rabbit models (Kaveh et al.  2013 ). 
Transplantation of either differentiated or undifferentiated WJ-MSCs improved left 
ventricular function 30 days post-MI (Latifpour et al.  2011 ). There are three possi-
ble explanations for the benefi cial infl uence of stem cells in cardiac regeneration: (a) 
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differentiation of WJ-MSCs into myocyte-like cells due to the interaction with the 
myocardial microenvironment, (b) fusion of engrafted cells with cardiomyocytes, 
and (c) secretion of growth factors and cytokines by transplanted cells. 

  Cell therapy   strategies have become an increasingly attractive option to develop 
new treatment techniques for neurodegenerative disorders since the migration ability 
of  MSCs   to brain has been demonstrated (Walczak et al.  2008 ). Transplantation of 
WJ-MSCs into the brains of hemiparkinsonian rats decreased apomorphine- induced 
rotations which represent the hypersensitivity of lesioned striatum in the model rats 
(Weiss et al.  2006 ). Agah et al. demonstrated that WJ-MSCs could be induced to dif-
ferentiate into oligodendrocyte-like cells by a combination of trophic factors in vitro. 
Transplantation of these  oligodendrocytes   differentiated from WJ-MSCs into the 
brain ventricles reduced tissue damage in the central nervous system in the animal 
model of multiple sclerosis (Agah et al.  2013 ). WJ-MSC- derived oligodendrocyte 
precursor cells also promote the regeneration of spinal axons and myelin sheaths in 
animal model of spinal cord injury (Chen et al.  2013 ). Transplanted WJ-MSCs with-
out any differentiation commitment could survive for 16 weeks and prevent improve-
ments in locomotion in rat spinal cord injury models (Yang et al.  2008 ). 

 The capacity of articular cartilage for growth and repair is slow because cartilage 
does not contain the blood vessels and chondrocytes are fed by diffusion through the 
synovial fl uid.  Autologous chondrocyte   implantation is used for the treatment of 
cartilage defects prevalently and has been shown to have some reparative effect on 
the damaged tissue (Falah et al.  2010 ). But autologous chondrocyte implantation is a 
surgical option for young persons and isolation of appropriate number of autologous 
chondrocytes has technical challenges (Falah et al.  2010 ; Dahlin et al.  2014 ). The use 
of  stem cells   instead of autologous chondrocytes is an option that would be easier 
and effective because of their differentiation abilities toward osteogenic and chon-
drogenic lineages (Wang et al.  2009 ; Arufe et al.  2011 ). WJ-MSCs can be considered 
as candidates for  stem cell therapy  , based on their expression profi le which is posi-
tive for cartilage-specifi c genes, Sox-9 and type II collagen and they can form a 
cartilage-like tissue in vitro due to the secretion of  glycosaminoglycans (GAGs)   and 
type II collagen (Wang et al.  2009 ; Liu et al.  2014a ). 

 Large skin defects and nonhealing chronic wounds could be life threatening and 
it has been demonstrated that  MSCs   enhance wound healing by transdifferentiation 
and angiogenesis (Wu et al.  2007 ).  Chronic wounds   are commonly seen in patients 
with diabetes mellitus as a consequence of vascular defects.  Diabetic wounds   have a 
huge impact on patients’ quality of life with a risk of amputation of lower extremi-
ties. WJ-MSC infusion could be a curative option for chronic wounds. Transplantation 
of WJ-MSCs and their conditioned media to animal models showed benefi cial thera-
peutic effects on diabetic wound healing (Shrestha et al.  2013 ). Enhanced capillary 
density, increased  keratinocyte growth factor (KGF)  , and  platelet-derived growth 
factor (PDGF)   secretion are detected in stem cell transplanted groups. The skin fl ap 
is another technique that is used for treating large skin defects. But skin fl ap necrosis 
is a common problem in clinical experiments. Injection of WJ-MSCs increased fl ap 
survival rate with higher vascular density and improved  fi broblast growth factor 
(FGF)   and  VEGF   levels in a mouse model (Leng et al.  2012 ).  
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5     Clinical Applications of WJ-MSCs 

5.1     Acute  Graft Versus Host Disease (GVHD)   

 Allogeneic  hematopoietic stem cell transplantation (HSCT)   is a  curative therapy   
option for a variety of serious malignant and benign diseases such as leukemia, 
aplastic anemia, and autoimmune diseases. As an immunologically mediated pro-
cess, involving activation of host antigen-presenting cells and presentation host 
antigens to donor T cells,  GVHD   is one of the complications of this treatment pro-
cedure (Amorin et al.  2014 ). Alloactivation of  T cells   is followed by infl ammatory 
cytokine release and migration of T cells to target tissues such as skin, liver, gut, etc. 
Alloreactive T cells cause tissue destruction by cytotoxic activity (Sung and Chao  2013 ). 

 The immune attack against the patient’s own tissues is a major cause of morbid-
ity and mortality of HSCT patients (Sung and Chao  2013 ). Glucocorticoids are the 
primary therapy of grade II–IV acute GVHD (Qian et al.  2013 ). But 60 % of patients 
have minimal or no responses to corticosteroids which could be defi ned as steroid- 
resistant acute GVHD (Magenau and Reddy  2014 ). Although there is no standard 
treatment protocol for steroid-resistant acute GVHD, some agents such as antithy-
mocyte globulin,  methotrexate (MTX)  , and  mycophenolatemofetil (MMF)   are used 
clinically with low effi ciency. Properties of MSCs suggest their potential use for 
suppressing GVHD without impairing graft versus leukemia effects. Promising 
treatments for steroid-resistant acute GVHD involve infusion of third-party mesen-
chymal stem cells. Third-party  bone marrow-derived MSCs (BM-MSCs)   have been 
studied for treating GVHD prevalently since Blanc et al. treated a patient with 
severe treatment-resistant grade IV acute GVHD by infusion of BM-MSCs for the 
fi rst time (Blanc et al.  2004 ). Clinical outcomes suggested that BM-MSCs are safe 
and effective treatment option for GVHD (Prasad et al.  2011 ; Kurtzberg et al.  2014 ). 
But in comparison with cord matrix, bone marrow has more invasive and painful 
procedure for aspiration and BM-MSCs as adult-derived stem cells have limited 
expansion potential (Baksh et al.  2007 ). WJ-MSCs could be substituted for 
BM-MSCs for treatment of GVHD based on safety, low cost and noninvasive har-
vesting procedure, quicker expansion ability, being suitable for ready-to-use cell 
banking, and similar immunomodulatory properties (Baksh et al.  2007 ; Yoo et al. 
 2009 ). First clinical application of WJ-MSCs treatment for  GVHD   patients was 
reported in 2011 (Wu et al.  2011 ). Third-party WJ-MSCs intravenously infused to 
two patients with severe steroid-resistant acute GVHD and researchers found that 
these cells had superior proliferative potential and more suppressive effects on 
peripheral blood mononuclear cell proliferation when compared with BM- MSCs  . 
Both patients had no adverse effects and acute GVHD improved dramatically after 
four doses of WJ-MSCs infusion. Since then, WJ-MSCs became an alternative to 
BM-MSCs for treatment of GVHD.Considering our results (unpublished data), 
37 % of the patients had complete response and 40 % of the patients had partial 
response to WJ-MSC injection (Fig.  7 ).
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5.2         Liver Cirrhosis (LC)   

 Nearly 350 million people are chronically infected with  hepatitis B virus (HBV)   and 
the infection is the tenth leading cause of death (Trépo et al.  2014 ). The major cause 
of morbidity and mortality patients with chronic HBV infection is liver fi brosis 
which is characterized by accumulation of extracellular matrix proteins (Jieanu et al. 
 2015 ). If chronic infl ammation persists, liver fi brosis results in cirrhosis and liver 
failure. The most common antifi brotic therapies are treating or removing the under-
lying stimulus-like infection, metabolic diseases that cause fi brogenesis (Rockey 
and Friedman  2006 ). Anti-infl ammatory  therapies   are one of the strategies to abro-
gate fi brogenesis. Because it is known that persistent infl ammation almost always 
drives the fi brogenic cascade (Lee and Friedman  2011 ). Liver transplantation is also 
an option to treat patients with especially end-stage liver cirrhosis. Complications of 
 liver transplantation   and limited organ donations forced scientists to focus on alter-
native therapeutic approaches. MSCs infusion is one of these strategies and it has 
been shown that BM-MSCs could improve the liver function in patients with  LC   
(Terai et al.  2006 ; Mohamadnejad et al.  2007 ). Zhang et al. examined the safety and 
effi cacy of WJ-MSC infusion in patients with LC. According to the study results, 
WJ-MSC infusion decreased the levels of serum LC markers and improved liver 
functions (Zhang et al.  2012 ). Therapeutic effects of WJ-MSCs can be explained as: 
Stem cells might exert antifi brotic or fi brolytic effects via overexpression of  matrix 
metalloproteinases (MMP)   and induction of  hepatic stellate cell (HSC)   apoptosis.  

5.3      Systemic Lupus Erythematosus (SLE)   

 SLE is a chronic autoimmune disorder characterized by irreversible break in immu-
nological tolerance and the presence of autoreactive immune cells (Ghodke-puranik 
and Niewold  2015 ). Combinations of symptoms vary between different patients. 
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  Fig. 7    The response rates to WJ-MSCs infusion of patients with  GVHD   (Unpublished Data)       
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Photosensitivity, arthritis, pleuritis, pericarditis, nephritis, proteinuria, neuropsychi-
atric disorders, and hematological disorders are common complications of SLE. 
 Lupus nephritis   is one of the major complications and cause of morbidity and mor-
tality in SLE patients (Balow  2005 ). Conventional immunosuppressive therapies 
cannot control this disease in all of patients with SLE. In 2010, Sun et al. determined 
the therapeutic effect of WJ-MSCs in refractory  SLE   patients (Sun et al.  2010 ). 
Researchers chose 16 patients with refractory SLE and WJ-MSCs administered 
intravenously for a single dose. Patients had no adverse effects and had improvement 
in disease activity for long term. Therapeutic effect could be explained by immuno-
modulation abilities of MSCs. In this study, it has been observed that WJ-MSCs 
could up-regulate the percentage of regulatory  T cells (Treg)   by increasing levels of 
TGF-β and IL-10. On the other hand, IL-4 levels in the patient’s serum were de creased 
which may cause inhibition of humoral immunity. In another clinical application, 
a 19-year-old girl who was diagnosed with  SLE   underwent transplantation of 
WJ-MSCs for diffuse alveolar hemorrhage (Liang et al  2010 ). After single dose 
infusion, this patient showed improvements in her clinical condition, oxygenation 
level, radiographic and hematological status.  

5.4     Spinal Cord  Injury   

 Spinal cord injuries (SCIs) cause disruption of the communication between the 
brain and parts of the body which are innervated at the lesion area. Two types of SCI 
are demonstrated: 

 Complete injuries that patient lose all the ability to feel and move; incomplete 
injuries that one or more nerve fi bers are preserved and patient has some degree of 
sensation (Crewe and Krause  2002 ).  Corticosteroids   and surgeries to stabilize the 
injury site are common treatment strategies for patients with SCI. Besides, cellular 
therapy-based clinical trials and researches on the treatment of SCI are still ongoing 
in recent years. Treatment of spinal cord injuries with  MSCs   is a new approach 
promising clinical improvements. Liu et al. transplanted WJ-MSCs intrathecally 
into 22 patients with SCI (Lv et al.  2013 ). Referring to experimental results, 81.25 % 
of patients with incomplete SCI responded to therapy and showed improvements in 
neurologic functions. But WJ-MSCs transplantation to patients with complete SCI 
had no effect. Researchers confi rmed that intrathecally injection of WJ-MSCs is safe 
and could improve quality of life of patients with incomplete  SCI  .  

5.5      Cerebellar Ataxia   

  Spinocerebellar ataxia (SCA)   and  multiple system atrophy-cerebellar type (MSA- C)   
are neurodegenerative diseases that are characterized by progressive cerebellarataxia. 
 Astasia  , movement disorders, peripheral neuropathy, cognitive dysfunction, and 
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fi nally losing self-care ability are some of other clinical manifestations. Although 
preclinical animal studies or clinical trials with sulfamethoxazole and trimethoprim 
have shown encouraging results, there isn’t any effective treatment protocol for con-
trolling the disease (Underwood and Rubinsztein  2008 ). In 2011, 24 patients with 
SCA or MSA-C treated with intrathecal injection of WJ-MSC (Dongmei et al. 
 2011 ). Based on these results, intrathecal injection of WJ-MSC is safe and 23 
patients have shown improvement by  International Cooperative Ataxia Rating Scale 
(ICARS)   and Activity of Daily Living Scale (ADL). In another clinical experiment, 
Improved Berg Balance Scale (BBS) and ICARS were found in majority of 16 
patients with SCA who received intravenous and intrathecal injections of WJ-MSCs 
and these improved scores persisted at least 6 months after transplantation (Jin et al. 
 2013 ).  

5.6      Stevens–Johnson Syndrome (SJS)   

 SJS which is an acute skin and mucosal membranes infl ammatory syndrome was 
fi rst described in 1922 (Stevens and Johnson  1922 ). SJS characterized by keratino-
cyte death and epidermal necrosis resulting in skin damage, ocular involvement, 
malaise, cough, rhinorrhea, and anorexia. SJS carries a signifi cant risk of mortality 
ranging from 1 to 5 %. Some case reports have shown benefi ts of high-dose intrave-
nous corticosteroids, intravenous immunoglobulin, plasmapheresis, and TNFα 
inhibitors (Kohanim et al.  2016 ). Due to immunomodulatory properties of  MSCs  , 
the effects of MSC transplantation to SJS patients are being investigated recently. 
Three female SJS patients ranging in age from 42 to 62 years recovered after 
WJ-MSC transplantation (Li et al.  2013b ) while three patients, who did not respond 
to treatments with antibiotics, showed improvement in their general condition and in 
laboratory index due to cell therapy.  

5.7      Autism Spectrum Disorders (ASD)   

 Autism is a neurodevelopmental disorder which is characterized by repetitive behav-
ior patterns, social, and communication defi cits. However, although etiology of 
ASD is not clear, abnormal brain development and rapid head growth could be early 
signals for diagnosis. Therapeutic approaches involve special educational program-
ming, communication training, and complementary medicine interventions (Myers 
and Johnson  2007 ). According to the phase I/II study, infusion of MSCs could be a 
promising alternative therapy for treating autism (Lv Y-T et al.  2013 ). Transplantation 
of the combination of cord blood mononuclear cells (CBMN) and WJ- MSCs   is 
more effi cacious comparing the CBMN groups. Synergetic effects between CBMN 
and WJ-MSCs improved some behavioral symptoms and showed larger therapeutic 
effects in patients with autism.  
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5.8      Diabetes Mellitus (DM)   

 DM is defi ned as a metabolic disorder resulting from the deterioration of glucose 
and fat metabolism of body. Type-I and type-II diabetes are the most common forms 
of DM. Type-I diabetes develops by formation of autoimmune response against beta 
cells which are responsible for insulin secretion in islets of Langerhans. Inadequate 
insulin secretion by beta cells, in the setting of insulin resistance, leads to the devel-
opment of type-II diabetes. Although, diet control, physical exercise, and antidia-
betic drugs can decrease hyperglycemia in patients with type-II diabetes, beta cells 
are also degenerated in time, and their number also declines steadily causing ele-
vated blood sugars. Curative therapies for DM involve replacement of the destroyed 
beta cells and restoring self-tolerance. Pancreas and islet transplantations have been 
performed to several patients with benefi cial results. Limited donors and technical 
diffi culties forced the researchers to explore new treatment strategies. WJ-MSC 
transplantation could become an alternative therapy for the patients with type-I and 
type-II diabetes. Hu et al. reported that implantation of WJ-MSCs is safe and restore 
beta cell function in newly diagnosed patients with type-I diabetes (Hu et al.  2013 ). 
Patients were followed up for the 21 months and HbA1c and C-peptide levels which 
give an opinion about blood levels of insulin were better. WJ- MSC   transplantation is 
also effective for the treatment of type-II diabetes. In 2014, 22 patients with type- II 
diabetes received a single dose of WJ-MSC transplantation (Liu et al.  2014b ). These 
results show evidence of improved metabolic control and beta cell function with no 
adverse reactions.   

6     Stem Cell-Derived Exosomes/Microvesicles (MV)       

 Paracrine effect of MSCs plays an important role in effi ciency of regenerative thera-
pies. MSCs could modulate the microenvironment by secreting variety of cytokines, 
chemokines, and growth factors but these small molecules are secreted at low levels. 
It has been documented that MSCs also release extracellular vesicles (exosomes/
microvesicles, ectosomes, membrane particles, etc.) which are taking part to the para-
crine activity of the cells (Yeo et al.  2013 ). 

 Exosomes/MVs which are derived from intracellular compartments are around 
40–100 nm in diameter. The MVs can be purifi ed from conditioned media of stem 
cells by ultracentrifugation or density gradient centrifugation. According to pro-
teomic studies, MSC-derived MVs include cell adhesion (CD29, CD44, and CD73) 
and MSC-associated antigens (CD9, CD63, CD81, CD109, CD151, CD248, and 
CD276), surface receptors, signaling molecules that have a role in differentiation and 
self-renewal mechanisms (Kim et al.  2012 ; Yu et al.  2014 ). It could be considered 
that MSC-MVs are alternative sources for regenerative therapies through their simi-
lar characteristics to  MSCs  . 
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 A variety of preclinical studies showed that MSC-MVs have benefi cial effects on 
animal models with kidney injury, intervertebral disc (IVD) degeneration, cardio-
vascular, and liver diseases (Lai et al.  2011 ; Bruno et al.  2012 ; Strassburg et al.  2012 ; 
Zhou et al.  2013 ). Transplantation of MV derived from WJ-MSCs reduced hepatic 
infl ammation and collagen deposition in the liver fi brosis (Li et al.  2013c ). It has 
been also reported that MV derived from WJ-MSCs could protect against cisplatin-
induced nephrotoxicity (Zhou et al.  2013 ). Therefore,  MVs      derived from  MSCs   can 
be an opportunity to cell-free regenerative therapy approaches in the future.  

7     Future Applications 

 MSCs’  properties   such as homing, chemoattraction, survival, multilineage differen-
tiation potential, immunomodulation, antiapoptotic, and anti-infl ammatory effects 
make them an ideal option for possible future cellular therapies. Although BM- and 
AT-MSCs have been the most commonly used sources of MSCs for clinical applica-
tions, WJ-MSCs became an alternative source due to their characteristics mentioned 
earlier and as a result of their effi cient stem cell potency and noninvasive collection 
procedure. 

 WJ- MSCs   can be used as a vehicle for targeted-cancer therapy due to their tumor 
tropism. Systematically administration of engineered WJ-MSCs could enable the 
transport of antitumor agents (anti-VEGF, oncolytic factors, etc.) directly to the 
tumor area. Therapeutic gene delivery with WJ-MSCs is an option to overcome 
adverse effects of cytotoxic cytokines and gene therapy with viral vectors which are 
potentially pathogenic. 

 WJ-MSCs provide potential for treating autoimmune disorders due to their 
immunomodulation ability. They are used in an increasing number of clinical trials 
for the treatment of  GVHD   and hold the potential for other diseases such as diabe-
tes,  SLE  . WJ-MSCs offer valuable opportunities for regenerative therapies, as they 
have minimal ethical concerns and they are suitable for use as third-party stem cell 
source especially for  GVHD   treatment. WJ-MSCs are thought to become an impor-
tant cell source for tissue engineering applications in the future due to their charac-
teristics making them possible to be used in allogeneic applications.     
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1           Introduction 

  Vascularization   is an essential physiological process that occurs during tissue 
development or disease. Traditionally,  blood vessels   were considered as channels which 
were essential for growth, feeding the developing tissue with nutrients and removing 
metabolic waste; but  endothelial cells (EC)   also stimulate organ morphogenesis in the 
embryo and maintain tissue homeostasis in adults by providing instructive trophic 
factors (Red-Horse et al.  2007 ). This highlights the importance of the vascular system 
integrity in growth as well as tissue homeostasis. So far, the association of abnormal 
vascularization with more than 20 diseases including infl ammatory disorders such as 
psoriasis, age-related macular degeneration and cancer has been revealed. Literally, 
normal blood vessel formation is regulated by signals which induce or inhibit vascular-
ization and any imbalance in the vascular system function results in pathogenesis of 
various vascular disorders (Carmeliet  2005 ). 

 Developmentally, blood vessel formation is initiated by the de novo formation of 
vessels (vasculogenesis) and followed by expansion of preexisting vessels 
(angiogenesis). Although, it was previously believed that vasculogenesis was limited 
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to embryonic development, in 1997 Asahara et al. changed this paradigm by reporting 
the differentiation potential of circulating  bone marrow (BM)   derived cells into 
EC. Therefore, they showed neovascularization in adults (Asahara et al.  1997 ) and 
called this specifi c population “endothelial progenitor cells” (EPC)   . Furthermore, 
participation of EPC in regeneration of ischemic diseases by homing to the damaged 
site and forming new vessels was demonstrated (Asahara et al.  1999 ). Since then, 
EPC were rapidly used as crude preparations in several clinical trials, which dem-
onstrated enhancement of myocardial tissue functions in patients with ischemic 
heart disease (ClinicalTrials.gov). Levels of engraftment and biological causes and 
potential activity of the grafted cells and the benefi t of EPC therapy remained unex-
plained (Kalka et al.  2000 ; Kawamoto et al.  2001 ,  2003 ). In this chapter, we will 
summarize evidence suggesting the existence of fetal EPC in human prenatal 
tissues, with a special focus on the placenta.  

2     Angioblasts Contribute in Early  Human Vascular 
Development      

 Cardiovascular formation begins very early in the growing embryo. While during 
embryonic and fetal development, simple diffusion provides oxygen and nutrients 
for the small developing conceptus, it does not fulfi l the needs of the fast growing 
fetus. Blood vessel formation is therefore a fundamental step in the successful 
mammalian embryonic development to facilitate this need. Both angiogenesis and 
vasculogenesis participate in fulfi lling this essential demand in the human embryo. 

  Vasculogenesis  , by using unique endothelial precursors called  angioblasts  , orga-
nizes vascularization of the dorsal aorta as well as the tissues of endodermal origin 
including the spleen, liver, pancreas (Red-Horse et al.  2007 ). On the other hand, in 
organs with smaller vascular networks such as the brain and kidneys, angiogenesis is 
the main process of vascularization (Baldwin  1996 ; Beck and D’Amore  1997 ) (Fig.  1 ).

   Developmentally, the fi rst sign of vessel formation occurs at Day 17 of human 
embryonic development. Cells of extraembryonic splanchnic mesoderm form the 
yolk sac wall, proliferate and form hemangioblast aggregates or blood islands 
adjunct to the endoderm. This is the fi rst step where a mesodermal precursor gives 
rise to cells that will form an endothelium (Fig.  2 ). In humans, apart from the yolk 
sac (Yoder et al.  1997 ), aorta-gonado-mesonephros (AGM) region (Jaffredo et al. 
 1998 ), and umbilical arteries, the placenta (Rhodes et al.  2008 ) also harbors this 
 hemogenic endothelium (HE)  . These aggregates are the common precursors for 
primitive hematopoietic  stem cells   (HSC)    and angioblasts (Eichmann et al.  2002 ). 
As demonstrated in Fig.  2 , progenitors which are situated in the center of islands 
are the primitive HSC and the surrounding cells are the angioblasts representing the 
endothelial precursors that, through this process, vascularize the chorionic villi, 
yolk sac and connecting stalk within 3 weeks. Angioblasts migrate into adjunct 
locations and organize small vascular structures, confi guring the primitive 
 embryonic vascular system and spreading to the entire developing embryo body. 
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Angioblasts therefore work as the leading cells initiating vascular tube and branch 
formation and are able to migrate to distant secondary sites and participate in the 
formation of new vessels.

    Angiogenesis   and vascular intussusceptions, the generation of new vessels by 
the splitting of existing vessels, contribute to the  growth     , expansion and remodeling 
of this primitive vasculature. Perfusion of vessels after the initiation of the heart 
beat is a key regulator of both vasculogenesis and angiogenesis, and such hemody-
namic forces induce vessels’ remodeling (Lucitti et al.  2007 ). 

 The  nascent vessels   are immature and the actual vessels require participation 
of other trailing cells which follow the leading endothelial cells and stabilize the 
growing vessels to form the tubes entity (Ghabrial and Krasnow  2006 ).     

 Overall, distinct areas of the embryo and extraembryonic structures undergo a 
process of vasculogenesis involving progenitors that develop to form the endothelial 

Vascularization 
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Prenatal 
Yolk Sac, Lung

Postnatal
Circulating Endothelial Cells, 
Endothelial Progenitor Cells (EPC),
Tumor  
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A) Sprouting (Kidney and Brain)  

B) Intussusception (Lung) 

Postnatal 
A) Physiological  Female 
Genital Tract) 
B) Pathological (Wound, 
Tumor)

  Fig. 1     Vasculogenesis   (de novo formation of vessels) and angiogenesis (expansion of preexisting 
vessels) contribute in vascularization of tissues. Although, it was previously believed that vasculo-
genesis is limited to embryonic development, recent studies confi rmed the existence of vasculo-
genesis in adult life by using unique endothelial precursor cells. Vasculogenesis organizes 
vascularization of the dorsal aorta as well as the tissues of endodermal origin including the spleen, 
liver and pancreas. On the other hand, in organs with smaller vascular networks such as the brain 
and kidneys, angiogenesis is the main process of vascularization.       

  Fig. 2    During human development,  mesodermic cells   form the yolk sac wall, aorta-gonado- 
mesonephros region, umbilical arteries and the placenta proliferate and form hemangioblast clus-
ters adjunct to the endoderm. These aggregates are the common precursors for primitive 
 hematopoietic stem cells (HSC)   and angioblasts. Progenitors which are situated in the center of 
islands are the primitive HSC and the surrounding cells are endothelial precursors which migrate 
into adjunct locations and organize small vascular structures. HSC proliferate and differentiate to 
hematopoietic cells       
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system. It was thought that this process was limited to the embryonic and fetal devel-
opment. In the next chapter, we will provide evidence of its existence in adult age.  

3      Postnatal Vasculogenesis   in Humans 

 Initially, it was believed that vasculogenesis was limited to embryonic development, 
while angiogenesis occurred both in embryogenesis and postnatal life. However, the 
distinction between these two mechanisms is not quite clear and they overlap, since 
in both processes  EC   form new blood vessels by proliferation, differentiation and 
remodeling. Moreover, the relative contribution of each mechanism in vascularizing 
the ischemic tissues depends on the existence of angioblasts in the target tissue 
(Ribatti et al.  2001 ). In postnatal life, vasculogenesis has been observed in both 
physiological and pathological situations. In 1997, Asahara et al., for the fi rst time, 
reported the differentiation potential of circulating BM-derived cells into EC and 
showed vasculogenesis in adult age (Asahara et al.  1997 ). 

 The earlier concept was supported by the coexistence of both mature  EC   and 
EPC in postnatal life. Moreover, the recruitment of EPC to ischemic sites and the 
revascularization of damaged tissues were reported (Asahara et al.  1997 ). Further 
studies have verifi ed that EPC has some resemblance to embryonic angioblasts, 
with a critical role in regeneration. In therapy, several clinical and preclinical studies 
have shown the formation of new vessels and small enhancement of myocardial tis-
sue functions after EPC delivery (Kalka et al.  2000 ; Kawamoto et al.  2001 ,  2003 ). 
Moreover, although initially the BM was considered its main source, soon after EPC 
isolated from other tissues (Ingram et al.  2004 ; Murohara et al.  2000 ; Nagano et al. 
 2007 ; Patel et al.  2013 ).  

4     Characteristics of Human  EPC   

 In the fi rst report by Asahara et al. they used CD34 magnetic sorting to isolate EPC 
from BM. But, EPC have been isolated, using several different method, from dis-
tinct tissues (Rafi i and Lyden  2003 ; Kalka et al.  2000 ; Kawamoto et al.  2001 ; Hristov 
et al.  2003 ). EPC’s isolation has been performed based on some biological charac-
teristics such as their colony-forming capacity on collagen or fi bronectin (known as 
colony formation  assay  , CFU) (Hill et al.  2003 ; Kalka et al.  2000 ; Kawamoto et al. 
 2001 ). It also relies on the detection of endothelial characteristics such as  acetylated 
low-density lipoprotein (Ac-LDL)   uptake and lectin binding (Tanaka et al.  2008 ; 
Masuda et al.  2011 ), and fi nally characterization based on expression of some 
cell-surface antigens mainly CD133, CD34 and VEGFR-2 (Rafi i and Lyden  2003 ; 
Hristov et al.  2003 ). 

 According to current knowledge, EPC are categorized into two different popula-
tions. A growing body of evidence suggested the existence of a shared progenitor for 
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both endothelial and hematopoietic cells during embryonic development. Many 
attempts have been made to identify similar EPC populations with hemogenic poten-
tial using both endothelial (CD31, CD34, VEGFR2 (also called Kinase insert domain 
receptors KDR or Fetal Liver Kinase 1 Flk-1)) and hematopoietic (CD34, CD133, 
CD45) markers (Pelosi et al.  2002 ; Grant et al.  2002 ; Bailey et al.  2004 ). But, these 
methods were proven to result in signifi cant hematopoietic (in particular myeloid) 
contamination (Case et al.  2007 ). Additionally, it is believed that these EPC which 
are expressing hematopoietic markers are able to migrate into periphery areas after 
vascular injury and secrete certain cytokines in circulation (Grant et al.  2002 ). More 
recently, the concept of  EPC   origin has been shifted, and the exclusion of hematopoi-
etic cells restricts the progenitors to the endothelial lineage. Although briefl y debated, 
human EPC are believed to express CD34, VEGFR-2, CXCR4 and CD105 and to be 
negative for hematopoietic markers, CD45 in particular (Sukmawati and Tanaka 
 2015 ; Timmermans et al.  2009 ); this is slightly different from mouse EPC expressing 
c-Kit, Sca-1 and CD34 and VEGFR2 (Sukmawati and Tanaka  2015 ; Timmermans 
et al.  2009 ). Moreover, human EPC are organ or tissue specifi c (Rafi i et al.  2016 ) and 
are also called  endothelial outgrowth cells (EOC)  . In vitro studies have confi rmed 
that these cells appear after about 7 days of culture; have a cobblestone-like morphol-
ogy and express CD144, VEGFR-2, CD31, CD34, CD105 and CD146, but not any 
of hematopoietic surface markers such as CD45 and CD133 in humans (Timmermans 
et al.  2009 ; Yoder et al.  2007 ). Additionally, EPC are able to form capillary-like 
structures on Matrigel™ and produce nitric oxide in vitro. EOC showed clinical 
advantages upon transplantation and enhanced the neovascularization in ischemic 
sites. EPC also could form de novo vessels upon transplantation (Sukmawati and 
Tanaka  2015 ). In 2004, Ingram et al. introduced a new hierarchy of EC in human 
peripheral and umbilical cord blood (UCB) (Ingram et al.  2004 ) in accordance with 
differences in the clonogenic and proliferative potential of the endothelial lineage. 
They identifi ed a new ex vivo,  highly proliferative population (HPP)   of “ endothelial 
colony-forming cells (ECFC)  ” in human cord blood (Ingram et al.  2004 ). 

 As discussed earlier, the fi eld of EPC is controversial and there are different 
descriptions for EPC; therefore, we defi ne human  EPC   as endothelial cells with the 
characteristics as presented in Table  1 .

5         Placenta   

5.1     Placental  Tissue   

 The placenta is a fetal organ that grows with the developing fetus in the gravid 
maternal uterus and acts as an interface between the mother and the fetus. The pla-
centa originates from the embryo and the fetus, but the very intricate interconnec-
tion with the maternal uterus through the decidua results in a sizable maternal 
fraction. The healthy term placenta is round or oval in shape and dark reddish-blue 
in color and normally weighs about 500 g. The main roles of the placenta are to 
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provide oxygen and nutrients and to remove the waste material from the fetus (Joe 
et al.  2010 ). But, placenta also acts as an endocrine organ and produces some impor-
tant growth factors and hormones such as  Insulin Growth Factors 1 and 2 (IGF1and 
-2)  ,  Placental Growth Factor (PlGF)  ,  Human Chorionic Gonadotropin (hCG)   and 
Human Placental Lactogen ( hPL   [Human Chorionic Somatomammotropin]). From 
developmental point of view, placental formation starts at the implantation of the 
blastocyst: the outer layer of blastocyst forms a two-layer cover, the cytotrophoblast 
(inner layer and actively proliferating) and the syncytiotrophoblast (outer layer 
which erodes uterine tissue).  Cytotrophoblast cells   start mitotic division and invade 
the outer layer and form multinucleated cells (Huppertz and Peeters  2005 ). At Days 
11–12 of development in humans, the syncytiotrophoblast invades the maternal 
capillaries and forms “sinusoids” that consequently become continuous and form 
lacunae that receive the maternal blood (Schoenwolf  2009 ). 

 In subsequent days,  trophoblast cells   proliferate locally and penetrate the mater-
nal tissues and uteroplacental circulation starts by the end of the second week 

   Table 1    Characteristics of human  endothelial progenitor cells     

 Context  Characteristics  Reference 

 In vivo   EPC   express endothelial markers including CD144, 
VEGFR-2, CD31, CD34, CD105 and CD146, but 
not any of hematopoietic surface markers such as 
CD45 and CD133 

 Timmermans et al. ( 2009 ) 

 EPC could form de novo vessels upon 
transplantation 

 Yoder et al. ( 2007 ) 

 EPC have clinical advantage and improve 
neovascularization in ischemic sites 

 Reinisch et al. ( 2009 ) 

 EPC derived vessels may be perfused with host 
blood cells, anastomose with the surrounding host 
vasculature and form donor–host chimeric vessels 

 Yoder et al. ( 2007 ); Reinisch 
et al. (2009) 

 EPC are different from “endothelial cell colony- 
forming units” (CFU-ECs) which are derived from 
the hematopoietic  progenitors   

 Yoder et al. ( 2007 ) 

 In vitro  EPC appear about 7 days after cell seeding  Yoder et al. ( 2007 ) 
 Cobblestone shaped with differentiation potential 
into mature EC 

 Hur et al. ( 2004 ) 

 Clonogenic with potential to give rise to more than 
10,000 progeny in 2-week culture period 

 Yoder et al. ( 2007 ) 

 Highly proliferative cells with high levels of 
telomerase activity and more than 30 population 
doublings before entering senescence phase 

 Yoder et al. ( 2007 ); Reinisch 
et al. ( 2009 ); Hofmann et al. 
(2009) 

 Expression of only endothelial and not 
hematopoietic cell surface markers such as CD14, 
CD45 

 Yoder et al. ( 2007 ) 

 EPC could be cryopreserved and maintain their 
 phenotype  , proliferation potential, differentiation and 
functionality upon defrosting 

 Reinisch et al. (2009) 
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(Huppertz and Peeters  2005 ). At this time, the blastocyst has completely penetrated 
the uterine wall and cytotrophoblasts form primary villi which are surrounded by the 
syncytium (Schoenwolf  2009 ). Next,  mesodermal cells   come through the villi and 
form the secondary villi which start differentiation into blood and endothelial cells 
at the center of the villus and form the tertiary villus ready to provide nutrients for 
the fetus. These mesodermal cells probably constitute a progenitor population able 
to give rise to both endothelial progenitors and  mesenchymal/stromal stem cells 
(MSC)  . 

 As the fetus develops the need for nutrients increases and causes a substantial 
adjustment to the placental size that, at term, covers about 15–30 % of the uterus. 
During the second trimester, maternal decidual cells migrate into the chorionic tis-
sue and are covered by a layer of syncytial cells formed septa that divide the placenta 
into sections named “ cotyledons  ”. In the following weeks the placenta’s size signifi -
cantly increases, predominantly during the last third of the  pregnancy   (Huppertz and 
Peeters  2005 ).  

5.2     Placental  Vascular Development   

 During pregnancy, the gravid uterus is highly vascular, receiving a large blood fl ow. 
Similarly, the placenta, formed essentially by fetal cells, is the major vascular link 
between the mother and the fetus. A third of the placental cells have been reported 
to be endothelial, making this an accessible model of fetal vascular biology (Robin 
et al.  2009 ). 

 The implantation of the embryo in the uterus is associated with massive angio-
genesis, which involves the growth and remodeling of the surrounding maternal 
 blood vessels  . Impaired or insuffi cient vascularization causes altered fetal growth or 
early embryonic abortion. Fetal and maternal vascular systems individually contrib-
ute to the placental vascularization and there is a close relationship between the 
uterine and umbilical blood fl ows and placental size in human normal pregnancies 
(Reynolds and Redmer  2001 ; Reynolds et al.  2002 ). The cellular apparatus of the 
maternal vasculature is beyond the scope of the current study. In regards to fetal 
vascular system, the fi rst trimester is associated with massive vascularization in pla-
centa. Although no signifi cant vascularization occurs in the second trimester, but the 
third trimester is accompanied by considerable increase in fetal growth, which 
comes with substantial vascularization in the placenta (Reynolds and Redmer  2001 ). 

 At 12–15 days of gestation, the villous trophoblast forms a small cavity and 
envelops the mesenchymal tissue containing the pluripotent  mesenchymal cells   that 
are the main component of the placental vasculogenesis. At 21 days postgestation, 
these mesenchymal cells, surrounded by the trophoblast layer, differentiate into 
hemangioblastic precursors. The hemangiogenic cells maintain a close connection 
with the trophoblastic peripheral cells and form hemangioblastic cell cords that 
connect surrounding villi and form the fi rst vessels (Charnock-Jones et al.  2004 ; 
Huppertz and Peeters  2005 ).  Hemangiogenic stem cells   express distinct proteins, 
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and in the following phase are stimulated to become angioblastic and hematopoietic 
cells (Demir et al.  2007 ; Charnock-Jones et al.  2004 ). At the following stages, vas-
culogenesis continues and fetoplacental angiogenesis starts to establish mature vil-
lous structure. The villi maturation is associated with progress in the vasculogenesis 
and angiogenesis which establishes the blood fl ow in the placental villi and the 
intervillous  lumen  . 

 As our understanding of placental tissue formation and development increases, 
the functional capacities of placental progenitors and their potential to be used as 
alternative cell sources in clinical cell-based therapy trials appear more feasible 
(Shafi ee et al.  2015 ). Human term placenta harbors several kinds of progenitors with 
translational potential. Although  HSC   and  MSC   obtained from prenatal tissues are 
routinely used in transplantation, the benefi t of  EPC   population is less investigated.  

5.3     Placenta as a Robust Source of  EPC      

  Microchimerism studies   support the notion that the placenta harbors populations of 
fetal stem cells that in the situation of natural transfer, migrate to the mother’s tis-
sues, these cells have the capacity to integrate and contribute to many tissues, and 
most importantly to the endothelium (Kara et al.  2012 ; Beck et al.  1995 ). Derivation 
of fetal or maternal  stem cells   from term placental villi has been established using 
several methods including: the explant method (Abumaree et al.  2013 ; Igura et al. 
2004), expression of specifi c cell surface markers on fetal cells and cultures in spe-
cifi c media (Patel et al. 2014), and selective adhesion of stem cells (Mathews et al. 
 2015 ). Beyond trophoblasts and their stem cells, most efforts have focused on MSC 
(Golos  2011 ; Castrechini et al.  2010 ; Ulrich et al.  2013 ) and hematopoietic progeni-
tors (Robin et al.  2009 ), but also on endothelial progenitors (Rapp et al.  2012 ; Patel 
et al.  2014 ), given their translational potential. Here, we review EPC as the most 
common stem cell/progenitor derived from placenta. 

 Rapp et al., recently isolated resident high proliferative endothelial progenitors 
from placental culture based on their CD146 expression in vitro (Rapp et al.  2012 ), 
and compared their potential to  circulating ECFC from cord blood (CB-ECFC)  ; 
both of them were positive for CD31, CD105, CD144 and KDR and negative for 
CD14 and  CD45  , in line with previously reported CD markers for ECFC (Ingram 
et al.  2004 ).  Placental-ECFCs (P-ECFC)   had reduced cell proliferation capacity 
before senescence, but the number of  high proliferative potential (HPP)   colonies in 
P-ECFC was similar to control. To assess the in vivo vessel formation capacity, col-
lagen/fi bronectin plugs loaded with ECFC were implanted into Nude mice and the 
number of vessels/mm 2  in the P-ECFC group was about threefold that of CB- ECFC  . 
In vivo experiments have also confi rmed de novo vessel formation upon P-ECFC 
transplantation and enhanced blood perfusion in the defect areas (Rapp et al.  2012 ; 
Patel et al.  2013 ). This suggests that while both populations have similar phenotypes 
and kinetics, P-ECFC have better vasculogenic potential (Rapp et al.  2012 ). 

 Recently, we introduced an innovative sorting-based strategy and could success-
fully isolate P-ECFC in clinical relevant quantities (Patel et al.  2013 ,  2016 ). Term 
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placental tissue was enzymatically digested and sorted based on expression of 
hematopoietic (CD45) and endothelial (CD34 and CD31) key surface markers. 
 Fluorescence in situ hybridization (FISH)   analysis showed the CD45−CD34+CD31+ 
population is fetal in origin. Since the placenta is a highly vascular tissue and almost 
30 % of placental cells are CD31+, so placenta can be considered as a major source 
of EPC. Moreover, our results showed that not only the amount of ECFC residing in 
the placenta was signifi cantly higher than in donor-matched UCB, but in terms of 
functionality and phenotypical aspects, including gene expression, CB and placen-
tal ECFC were similar, and P-ECFC could be used as a potent alternative for EPC 
and cardiovascular cell-based therapies (Patel et al.  2013 ). 

 Moreover, application of placental cells obtained at the term of  pregnancy   is less 
challenged compared to other fetal sources which often come from abortion prod-
ucts (Shafi ee et al.  2015 ). Therefore, the human term placenta could be used as a 
promising cell source for ameliorating disease and promoting tissue  regeneration  .   

6      EPC   Application in Regenerative Medicine and Clinical 
Setting 

  Vascularization   is an emerging fi eld which could revolutionize tissue regeneration 
approaches. To date, a variety of strategies have been conducted to improve tissue 
vascularization. In this regards, coadministration of mesenchymal and endothelial 
cells to improve vessel growth has been proposed (Choong et al.  2006 ; Santos et al. 
 2009 ; Grellier et al.  2009 ).  Cotransplantation   of osteoprogenitors with EC resulted 
in enhanced bone tissue formation (Choong et al.  2006 ; Santos et al.  2009 ; Grellier 
et al.  2009 ). Similar results have been reported by coadministration of EC for skin 
(Shepherd et al.  2006 ), lung (Mondrinos et al.  2008 ), skeletal (Levenberg et al.  2005 ) 
and cardiac muscle (Caspi et al.  2007 ) (reviewed in Rouwkema et al. ( 2008 )). 
Cotransplanted EC usually contribute in vascularization of implanted tissues and 
boundaries and results in proper tissue regeneration (Tremblay et al.  2005 ). However, 
current researches have been shifted from using differentiated EC (Hofmann et al. 
 2008 ; Choong et al.  2006 ) to application of EPC (Duttenhoefer et al.  2013 ; Liu et al. 
 2012 ). In comparison to differentiated EC, EPC can be harvested from the patient’s 
own blood and BM, and even from cord blood and placenta bio-banks with greater 
regenerative potential. To date, application of EPC in enhancement of vasculariza-
tion of ischemic sites and tissue perfusion improvement has been established in a 
wide variety of animal models (Kalka et al.  2000 ; Hirata et al.  2003 ; He et al.  2004 ). 
In situ delivery of a BM CD34+ population to  hind limb ischemia (HLI)   in a diabetic 
mice model improved wound healing and enhanced vascular growth (Awad et al. 
 2006 ; Yang et al.  2011 ), indicating their potential in acute clinical settings. 
Mechanistically this positive impact was explained by increased sensitivity to  VEGF   
and possibly vascularization modulation through angiopoietins (Awad et al.  2006 ). 
In addition, the CD34+ population showed higher recruitment toward injured sites 
upon implantation of fresh BM-derived CD34+ (Yang et al.  2011 ). Local delivery of 
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fresh CD34+ also improved vessel function through enhancement of blood perfu-
sion in damaged areas (Schatteman et al.  2000 ). 

 Promising results in animal models have attracted much interest in clinical appli-
cations of EPC. EPC administration has demonstrated promising results in patients 
with ischemia diseases who do not respond to drugs and where surgical therapy is 
not applicable (Kawamoto et al.  2009 ; Matoba et al.  2008 ; Tanaka et al.  2014 ). To 
date, more than 200 interventional studies have been registered at ClinicalTrials.gov. 
In overall, EPC clinical application can be categorized into two subsets: (1) isolation 
and injection of EPC from  BM  , and CB into ischemic tissues; (2) application of 
capture stents which selectively attach to EPC in circulation and induce endothelial-
ization. EPC local injection in periphery artery injuries resulted in improved leg pain 
scale, increased vascular perfusion and free walking distance (Tanaka et al.  2014 ). 
Of note, clinical improvements lasted for at least 2 years (Tanaka et al.  2014 ). A 
similar outcome was reported in patients with chronic limb ischemia (Matoba et al. 
 2008 ). In addition EPC therapy also has been used for acute myocardial infarctions 
(MI) (Tateishi-Yuyama et al.  2002 ; Dimmeler and Zeiher  2009 ). Leistner et al. dem-
onstrated the reduced functional infarct size and positive effects of intracoronary 
infusion of circulating or BM-derived EPC in patients with acute MI (Leistner et al. 
 2011 ). However, long-term effi cacy of EPC for MI remains to be determined. 

 Apart from direct injection, several clinical trials were conducted to capture 
stents in patients with coronary artery disease (Sethi and LEE  2012 ; Aoki et al. 
 2005 ).  HEALING-II registry   manufactured a bioengineered stent with potential to 
attract circulating EPC using coating of stainless steel stents with antihuman CD34 
antibodies (Aoki et al.  2005 ). Only at 1 h after implantation the coated stent showed 
more than 90 % cell coverage with minimal infl ammation. This newly formed endo-
thelial layer suggested reducing the risk of restenosis and stent thrombosis (Sethi 
and LEE  2012 ). In addition, platelets have less adhesion to capture stents and there 
is no need for administration of anticoagulative medicines (Sethi and LEE  2012 ). 
However, CD34 antibody is not specifi c for EPC and only a small portion of the 
CD34-positive cells are true  EPC  , so other antibodies against KDR or CD144 also 
applied with increased effi ciency of capture and accelerated endothelialization over 
stents in vitro (Markway et al.  2008 ) and in experimental animal models (Lee et al. 
 2012 ). In contrast to CD34, CD144 supposed to be expressed exclusively on the late 
EPC and CD144 coated stents capture circulating late EPC and not the early or 
myeloid EPC (Lim et al.  2011 ) however the clinical application is still uncertain.  

7     Remaining Challenges in  EPC   Application 
for Cardiovascular Repair 

 Due to signifi cant increase in vascular repair using EPC, EPC therapy is rapidly 
moving toward clinical applications, but further studies are needed to defi ne the 
mechanism behind the advantageous application of EPC. There is much variability 
upon EPC treatment which might be due to our incomplete knowledge on EPC 
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preparations. This can potentially affect the quality and quantity of tissue repair. 
However, the essential limitation of EPC therapy is the low quantity of cells recov-
ered from circulating blood, which is even lower in patients with  cardiovascular 
disease (CVD)   (Vasa et al.  2001 ; Hill et al.  2003 ), certain health conditions, includ-
ing diabetes (Tepper et al.  2010 ), and advanced age (Scheubel et al.  2003 ). In addi-
tion, patients with CVD are reported to have impaired EPC function (Fadini et al. 
 2012 ). Moreover, EPC proved to have the dose-dependent effects for vasculogenesis 
and cardiomyogenesis (Iwasaki et al.  2006 ). Accordingly, application of EPC may 
result in few or even no clinical benefi ts. Therefore, autologous EPC therapy is chal-
lenged by low cell quantity and impaired function. Lately, enhancement of cell sur-
vival as well as cell proliferation and inducement of EPC migration and differentiation 
toward tissue of interest have been introduced as new methods to overcome current 
limitations. For instance, allogeneic EPC application could improve the cell number 
limitations by proving clinical cell dosage. In this regard, early allogeneic cell ther-
apy has demonstrated benefi ts in patients with ischemic or cardiomyopathic dis-
eases (Leeper et al.  2010 ). Allogeneic cell application also comes with some 
limitations. The long-term cell expansion step is necessary to provide enough cell 
number, which is a burden for emergency  patients   (Leeper et al.  2010 ). Some 
marker-based EPC isolation strategies are associated with isolation of heteroge-
neous population and since there is not a defi nite marker for EPC, so application of 
heterogeneous EPC is challenging and EPC isolation based on markers which are 
not overlapped with other cell populations is recommended. 

 In regards to clinical application, the in vitro expansion step for bulking up the 
EPC is inevitable and makes these cells more challenging to use for clinical applica-
tion. BM- and peripheral blood-derived EPC are being exclusively used for EPC 
therapy in  CVD   and despite of signifi cant enthusiasm on  ECFC  , their application is 
limited to experimental animals. This limitation might be due to lack of thorough 
ECFC characterization, in vivo biology and limited survival upon ECFC transplan-
tation which have not being addressed yet. 

 Although EPC application for CVD is promising, it is associated with some limi-
tations which need to be improved before worldwide clinical usage. Limitations 
include: (1) low cell numbers; (2) impaired cell function, particularly in the elderly 
and people affected with CVD or diabetes; (3) nonunique EPC isolation strategy.  

8     Perspectives 

 The limited or absence of blood fl ow to the ischemic sites is the most common reason 
for CVD death. It is well established that EPC participate in regeneration of  ischemic 
disease   by homing to the damaged site and forming new vessels. The human term 
placenta is a highly vascularized tissue and contains great numbers of EPC. Fetal 
EPC at clinically relevant quantities were isolated from placenta, and donor-matched 
comparison with UCB has demonstrated that placenta harbors 27 times more EPC 
than UCB. In vivo functional assay and gene expression analysis confi rmed the 
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similarity between placenta- and UCB-derived EPC. Altogether, placental EPC can 
be considered as a signifi cant source for future clinical EPC therapy.     
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Source for Regenerative Medicine                     
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1             Introduction 

 The properties of  amniotic membrane   to promote wound healing have been known 
for over 70 years. Amniotic membrane was shown to have several benefi cial effects: 
it promotes epithelialization, has antimicrobial effects, and decreases infl ammation 
and fi brosis. The discovery of cell populations in amniotic membrane which are 
capable of differentiating into a variety of cell types has stimulated the research 
aimed for characterizing the cells and evaluating their potential utility in 
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regenerative medicine. While a major focus of research has been the use of amniotic 
membrane in tissue engineering and cell replacement, also for repair of injured 
tissues via paracrine actions to treat injury and diseases. 

 Every year, more and more of the world’s population suffer from organ failure 
and tissue loss due to different pathologies and traumas. Therefore, we expect to be 
faced with an increased number of patients requiring organ or tissue replacement 
therapies.  Tissue engineering (TE)   or regenerative medicine is a multidisciplinary 
and rapidly developing area of science that has opened a new frontier to solve the 
shortage of transplantable tissues or organs. The aim of tissue engineering is to 
design and fabricate a biological replacement and thereby restore the structure and 
functionality of injured tissues by a triplet of scaffolds, growth factors, and cells, 
including  stem cells  . To date, many synthetic (Azami et al.  2012 ) and natural (Mobini 
et al.  2013a ) scaffolds have been developed for regeneration of various tissues such 
as bone (Saki et al.  2009 ; Mobini et al.  2013b ), skin (Jafari et al.  2011 ), etc. As a 
natural scaffold, human amniotic membrane ( HAM  ) has been found to be a promis-
ing biological scaffold for regeneration of damaged soft tissue ( Gholipourmalekabadi 
et al. 2015a ). In this chapter, we describe the basic structure and properties of  HAM   
that makes it an excellent source for TE applications.  

2     Structure 

2.1     The Matrix 

 The  HAM   consists of three main layers including an epithelial monolayer, basement 
membrane, and avascular stroma. The  epithelial layer   is composed of a single layer 
of epithelial cells that are uniformly arranged on the  basement membrane  . Amniotic 
epithelial cells exhibit quite characteristic morphological features. They have a rela-
tively small number of intracytoplasmic organelles, microvilli on the apical surface, 
abundant cytoplasmic processes to the lateral and basal sides, and loose intercellular 
connections between each other. The epithelial basement membrane has positive 
immunoreactivity for collagen type IV (α1, α2, α5, and α6 chains); laminin (α3, ß1, 
γ1, and γ2 chains); laminin-1 and -5; perlecan; nidogen-1 and -2; agrin; fi bronectin; 
collagen types VII, XV, XVI, and XVII; matrilin-4; and tenascin- C. On the other 
hand, it has negative immunoreactivity for collagen type IV (α3 and α4 chains), lam-
inin (α4, ß2, ß3, and γ3 chains), and collagen type V (Dietrich- Ntoukas et al.  2012 ). 

 The main fi brous skeleton is formed from the densely compacted collagen fi bers 
that are bounded with each other and also basement layer by fi bronectin (glycopro-
tein). The main collagens type of this layer are interstitial collagens (types I and III) 
that are formed in parallel bundles in order to maintain the mechanical integrity of 
 HAM  . It has been reported that such collagens are secreted by  mesenchymal stem 
cells   and fi broblasts present in avascular stroma layer. The fi lamentous connections 
between interstitial collagen and epithelial basement membrane are formed by 
 collagens type V and VI. The nearest layer to chorionic membrane is known as 
 intermediate layer  . This layer seems spongy in histological observations due to its 
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nonfi brillar meshwork structure and also presence of a large content of glycopro-
teins and proteoglycans. The connection between spongy layer and chorionic mem-
brane is weak, so that it can be simply disconnected via blunt dissection (Epstein 
et al.  1998 ). 

 It has been well documented that presence of some biological active sub-
stances such as different cytokines and signaling molecules including the  Tumor 
Necrosis Factor (TNF)  , Transforming Growth Factor alpha (TGF-a) and beta 
(TGF-b), Interferon, basic Fibroblastic Growth Factor ( bFGF  ),  Epidermal Growth 
Factor (EGF)  ,  Hepatic Growth Factor (HGF)  , keratinocyte growth factor (Yu 
et al.  2009 ), interleukin-4 (IL-4) (Jones et al.  1995 ), IL-6, IL-8 (Keelan et al. 
 1997 ), natural inhibitors of metalloproteases, β-defensins, and prostaglandins, 
etc. (Insausti et al.  2010 ; Koizumi et al.  2000b ; Parolini et al.  2008 ) endow such 
promising properties to  HAM  . Some highlighted properties of  HAM   are described 
later in some details.  

2.2     Amniotic Membrane- Derived Stem Cells      

  Cell therapy   is an inseparable part of regenerative medicine. A reliable, available, 
and safe cell source should be considered to provide the cells needed for cell replace-
ment therapies. Therefore, many investigations have been conducted to fi nd out the 
most appropriate cell source in the context. Although many types of cells such as 
 pluripotent stem cells   (Samadikuchaksaraei and Bishop  2007 ; Van Vranken et al. 
 2007 ) and bone marrow-derived  mesenchymal stem cells   (Eftekharzadeh et al.  2015 ) 
have been considered for cell therapy and tissue engineering applications (Siti-
Ismail et al.  2012 ; Samadikuchaksaraei and Bishop  2006 ; Shoae-Hassani et al. 
 2015 ), none of them showed the features of an ideal cell source for clinical applica-
tions. Therefore, many investigations are ongoing to fi nd a suitable cell source for 
cell therapy.  Amniotic mesenchymal stem cells (AMSCs)   and  amniotic epithelial 
cells (AECs)  , which are derived from  AM  , have excellent self-renewal and differen-
tiation properties. The  AMSCs   express the mesenchymal-specifi c markers including 
CD44, CD73, CD29, CD105, and CD90 and also are negative for hematopoietic 
markers and human leukocyte antigen including CD34, CD45, CD11b, CD19, HLA-
A, HLA-B, and DR antigens (Kim et al.  2007 ). Human  AECs   have some favorable 
properties that make them a suitable cell source for cell therapy. For example, these 
cells suppress local immune response, show low  immunogenicity     , and thereby mini-
mize transplant rejection rate (Bilic et al.  2008 ). 

 AFSCs express embryonic stem cell-specifi c markers and are morphologically 
similar to fi broblast cells. These cells also express MSC markers such as CD105, 
CD73, CD44, CD166, CD29, CD58, CD90, CD117. It has been reported that the 
AFSCs express MHC I molecular antigen, while do not or weakly express MHC 
class II antigen (HLA-DR) (Moschidou et al.  2013 ). Also, these cells do not express 
CK-19 gene, the gene responsible for teratoma formation in pluripotent stem cells 
(Bilic et al.  2008 ). 
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 AMSCs and AEC have been utilized as a therapeutic cell source in different exper-
imental models of diseases such as myocardial infarction (Fang et al.  2012 ), neuronal 
regeneration (Sankar and Muthusamy  2003 ; Roh et al.  2013 ), kidney disease (Perin 
et al.  2010 ; Chang et al.  2011 ; Baulier et al.  2014 ), liver disease (Zheng et al.  2008 , 
 2012 ; Hodge et al.  2014 ), skin and burn wounds (Yoon et al.  2009 ; Skardal et al. 
 2012 ), and so on.   

3     Properties 

3.1      Angiogenic Property   

 Several studies have been conducted to survey the angiogenic properties of  HAM  , 
although their results were controversial in the context. Accumulating evidence has 
revealed that the  HAM   possesses both angiogenesis and antiangiogenesis proper-
ties. The angiogenic factors including  Vascular Endothelial Growth Factor (VEGF)  , 
 Interleukin-8 (IL-8)  , angiogenin, interferon-γ,  Interleukin-6 (IL-6)  , basic Fibroblast 
Growth Factor ( bFGF  ),  Epidermal Growth Factor (EGF)   and  Platelet-Derived 
Growth Factor (PDGF)      (Burgos  1986 ; Wolbank et al.  2009 ) and antiangiogenic fac-
tors such as IL-1 receptor antagonist, TIMP3 and TIMP4 are secreted by amniotic 
epithelial cells (Hao et al.  2000 ).  

3.2      Antiscarring Effects   

 The  HAM   bio-scaffold modulates the wound healing process by promoting tissue 
reconstruction. This membrane also prevents scar formation through down- 
regulation of TGF-b and its receptor in the remaining living cells of damaged skin 
tissue (Lee et al.  2000 ; Tseng et al.  1998 ). Late or low reepithelialization as well as 
prolonged infl ammatory response cause chronic wound, resulting in scar formation. 
Therefore, prevention of infection and stimulation of epithelialization may pro-
foundly minimize formation of scar. The anti-infl ammation potential of  HAM   has 
been well documented in several studies. The  HAM   down-regulate the expression of 
proinfl ammatory cytokines such as IL-1α and IL-1β in the injured tissue (Solomon 
et al.  2001 ).  

3.3      Cell Adhesion Property   

 The infl ammatory cells such as lymphocytes can be attached to hyaluronic acid (a 
ligand for CD44) which exists largely in  HAM   via their CD44. In addition, fi bronec-
tin, laminin, and various types of collagens and proteoglycans that exist in basement 
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layer of  HAM   can act as a ligand for integrin receptors. Such cell adhesion proper-
ties in  HAM   make it a promising biological membrane and create a favorable condi-
tion for overlying cell growth, expansion, and eventually tissue regeneration (Higa 
et al.  2005 ). In our previously published study (Gholipourmalekabadi et al.  2015c , 
 2016 ), favorable cell adhesion and growth support of both fresh and decellularized 
 HAM   for mesenchymal stem cells and fi broblasts have been shown by  SEM    micro-
graphs   (Fig.  1 ).

3.4         Antibacterial Activity   

 As mentioned earlier in this chapter,  HAM   has a broad-spectrum antibacterial activ-
ity. It has been shown that existence of a low-molecular-mass group of proteins 
including defensins,  secretory leukocyte proteinase inhibitor (SLPI)  , and elafi n 
within the  HAM   matrix are responsible for its antimicrobial properties. The major-
ity of defensins which are expressed by amniotic epithelial cells are β3-defensin. 
This protein is a member of β-defensins family that is secreted by epithelial cells of 

  Fig. 1     SEM   micrographs of the fi broblast NIH 3T3 and bone marrow-derived mesenchymal stem 
cells on both fresh and decellularized  HAM   after 72 h incubation time.  White and black arrows  
indicate fi broblast and  mesenchymal stem cells  , respectively, grown on the membrane 
(Gholipourmalekabadi et al.  2015a ,  b )       
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mucosal surface and also considered as an important part of the innate immune 
system (Harder et al.  2000 ; Higa et al.  2005 ). The innate immune system is the fi rst 
line of defense against the entrance of microorganism and infections into the body 
(King et al.  2003 ). Several studies have investigated the antibacterial activity of 
 HAM   against various strains of bacteria (Inge et al.  1991 ; Lo and Pope  2009 ; 
Tehrani et al.  2013 ). For example, Mohammadi and coworkers  ( Mohammadi et al. 
 2013  )  showed that the fresh human  amniotic   membrane grafted in patients with 
chronic infected burn wounds profoundly decreased the rate of infections. This is an 
interesting property that helps to decrease the dosage of routinely used antibiotics in 
the condition that leads to application of amniotic membrane. Some of these antibi-
otics negatively affect the behavior of stem cells (Cohen et al.  2006 ).   

4     Decellularization of Human  Amniotic Membrane      

 It has been reported that there are some complications such as graft rejection regard-
ing the implantation of  HAM   as an allograph. At least three types of cells, epithelial, 
fi broblast, and mesenchymal stem cells, exist within the  HAM   that may evoke recip-
ient body immune responses. Denudation of  HAM   profoundly decreases its graft 
rejection rate (Zhang et al.  2013 ; Riau et al.  2010 ). On the other hand, it is generally 
accepted that the collection and preservation conditions of tissue engineered con-
structs before surgery remarkably affect the success in any implantation (Riau et al. 
 2010 ; Sutherland et al.  2015 ; Thibault et al.  2013 ). Therefore, several attempts have 
been made to develop an effi cient method for decellularization and preservation of 
 HAM  . It has been well defi ned that denudation of  HAM   will make it a better sup-
porter and less  immunogenic      (Zhang et al.  2013 ; Riau et al.  2010 ). Several studies 
have been conducted for development of an effi cient method for decellularization 
and preservation of  HAM   with various rates of success. The majority of these meth-
ods are based on the detergent and enzyme-based techniques (He et al.  2002 ; 
Mligiliche et al.  2002 ; Wilshaw et al.  2006 ). 

 In a study, Wilshaw et al. ( 2006 ) used various detergent-based materials such as 
protease inhibitors,  sodium dodecyl sulfate (SDS)  ,  tris-buffered saline (TBS)  , apro-
tinin, DNase, and RNase to present an effi cient protocol for  HAM   denudation. 
Although the protocol was time consuming and expensive, the results obtained from 
their study confi rmed the full removal of the cells from  HAM   matrix without any 
detectable effects on biomechanical and cytotoxicity behaviors of the membrane. In 
another study, Luo et al. ( 2004 ) prepared a decellularized  HAM   by chemical 
detergent- enzymatic agents. Such protocols have been widely used for many years 
for the decellularization of  HAM   worldwide. Recently, we have developed a simple, 
reproducible, and cost-effective method for decellularization and preservation of 
 HAM   without using any enzymatic agent. After confi rmation of full removal of the 
cells, we showed that the basement membrane proteins of  HAM   such as collagen 
types I, III, and IV remained intact after decellularization process (Fig.  2 ) 
( Gholipourmalekabadi et al. 2015c ). We also found that the number of  lymphocytes 
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  Fig. 2    H&E and IHC stained samples for both fresh and decellularized  HAM  . IHC was performed 
for collagen types I, III, and IV ( Gholipourmalekabadi et al. 2015c )       
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(LC)   recruited to the subcutaneously implanted fresh  HAM   area was higher than 
those in decellularized  HAM   implanted group by day 7, the difference was insignifi -
cant after 28 days postsurgery. Unlike LC, the number of macrophage (MQ)      , plasma 
cell (PC), and even cellularity in the implanted site did not change between the 
experimental groups (Fig.  3 ) ( Gholipourmalekabadi et al. 2015c ).

5         Collection and Preservation of  HAM   

 As generally accepted, the collection and preservation conditions of tissue before 
surgery can profoundly affect the effectiveness of grafting and success in transplan-
tation. Therefore, many attempts have been made to optimize the best condition for 
collection and preservation of  HAM   (Riau et al.  2010 ; Sutherland et al.  2015 ; 
Thibault et al.  2013 ). In using  AM  , donors should be tested for infecting organisms. 
In addition, the AM samples should be collected under sterile conditions and stored 
in frozen state (John and Oommen  2010 ; Loeffelbein et al.  2014 ). On the other hand, 
fresh  HAM   may not always be available when needed due to its short shelf life. 
Therefore, various preservation techniques have been developed to collect and pre-
serve the  HAM  , among which cryopreservation of  HAM   in liquid nitrogen (Bravo 
et al.  2000 ; Bujang-Safawi et al.  2010 ), silver nitrate (Bujang-Safawi et al.  2010 ; 
Haberal et al.  1987 ), preservation in antibiotics solution, glycerol-preserved sheets, 
gamma-irradiated sheets, and dried sheets (Bujang-Safawi et al.  2010 ) are notable. 

 The dried irradiated AM (Bujang-Safawi et al.  2010 ) seems to be more comfort-
able than glycerol-preserved  HAM   (Bravo et al.  2000 ; Kesting et al.  2008 ) and its 
application is quick, easy, and also greatly relives pain compared with the mem-
brane prepared through other preservation methods (Bujang-Safawi et al.  2010 ). 
Additionally, the dried irradiated  AM   sheets are free of microbial contaminations 
and also can be stored at room temperature for 5 years (Bujang-Safawi et al.  2010 ).  
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  Fig. 3    Average cell number of  lymphocytes (LC)  ,  macrophages (MQ)  , and  plasma cells (PC)   after 
7 and 28 days postimplantation as well as cellularity in the implanted site. An  asterisk  indicates 
signifi cant differences ( Gholipourmalekabadi et al. 2015c )       
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6     Applications in  Tissue Engineering   

 In view of the unique characteristics of  HAM  , it has been widely used in surgical 
interventions and tissue engineering such as wound dressing (Stern  1913 ; Davis  1910 ), 
neurosurgery (Trelford and Trelford-Sauder  1979 ), ophthalmic surgery (Shimazaki 
et al.  1997 ), and vagina  surgery   (Bleggi-Torres et al.  1997 ). In addition, this membrane 
is easily available and cost effective. Here, some applications of  HAM   in tissue regen-
eration are described. 

6.1      Ocular Surface   

 The outermost layer of the eye is composed of the cornea and conjunctive parts. The 
cornea may have been infl uenced and damaged by different environmental factors 
and diseases such as chemical or thermal burns, Stevens–Johnson syndrome, severe 
keratitis, etc. These can lead to  limbal stem cell defi ciency (LSCD)   and eventually 
cause corneal opacifi cation and blindness (Dua and Forrester  1990 ; Shapiro et al. 
 1981 ). Despite of the efforts in the context of corneal transplantation, the techniques 
which are commonly used often fail and even cause persistent epithelial defects and 
secondary infection. However, the conventional therapies show no effect on the res-
toration of the limbal stem cell population (Kuckelkorn et al.  2001 ). In addition to 
corneal surface reconstruction, there is a major therapeutic challenge in conjunctival 
reconstruction and LSCD. In the case of LSCD treatment, despite of the  limbal epi-
thelial stem cells (LESCs)   transplantation method that is used routinely for treating 
the patients with severe LSCD, a limited success has been achieved. Using of autol-
ogous LESC transplantation is associated with increased risk of inducing OS disease 
in the donor eye due to a large requirement of limbal graft (Chen and Tseng  1991 ; 
Dua and Azuara-Blanco  2000 ; Holland  1996 ). In another hand, in allogeneic LESCs 
transplantation, long-term systemic immunosuppressant treatment may lead to irre-
versible damages (Daya et al.  2000 ; Tchah et al.  2003 ). 

 The fi rst use of fetal membrane for ocular treatment was published in the 1940. 
In that study, a full-thickness fetal membrane including both amnion and chorion 
was implanted for the reconstruction of the conjunctiva defects and repair of sym-
blepharon (Trelford and Trelford-Sauder  1979 ). The results were not promising, 
presumably because of presence of the chorion. Further studies date back to the 
1946 and 1947 when a chemically modifi ed amniotic membrane called amnioplastin 
was used for ocular burns as a temporary patch (Sorsby et al.  1947 ; Sorsby and 
Symons  1946 ). Although some favorable results such as reduced scar formation, 
improved comfort, and shorted hospitalization stays (Sorsby et al.  1947 ; Sorsby and 
Symons  1946 ) were achieved in that study, further studies in the context were not 
pursued for a long period of time. The resumption of studies on use of preserved 
human amniotic membrane for ocular surface reconstruction was carried out by Kim 
and Tseng in 1995 in a rabbit model (Kim and Tseng  1995 ). A model of  limbal stem 
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cell      defi ciency was created where the lack of corneal epithelial progenitor cells 
resulted in the corneal conjunctivalization. The notable success in that investigation 
for reconstruction of the cornea encouraged the other researchers for utilizing the 
amniotic membrane as a therapeutic biomaterial for various ophthalmic problems 
such as corneal burns, corneal ulcerations, and also as a support surface for growth 
and expansion of epithelial cells (Chen et al.  2000 ; Choi et al.  1998 ; Heiligenhaus 
et al.  2008 ; Koizumi et al.  2000a ; Kruse et al.  1999 ; Lee and Tseng  1997 ; Meller and 
Tseng  1999 ; Shimazaki et al.  1997 ; Tsai et al.  2000 ; Tseng et al.  1998 ). Structural 
similarity between amniotic basement membrane and conjunctiva that is composed 
of a tensile reticular fi bers network and also some other special characteristics such 
as transparency, elasticity, structural integrity, and its positive effects on epithelial 
cell migration and proliferation have made  HAM   an ideal substitution for ocular 
reconstruction (Shimazaki et al.  1997 ; Niknejad et al.  2008 ; Fukuda et al.  1999 ; Dua 
et al.  2004 ). 

 The structural similarity of  HAM   with corneal and conjunctival layers such as 
existing type V, IV, VII collagen, fi bronectin, laminin I and V provide a suitable 
surface for attachment and anchorage of corneal epithelial cells (Heiligenhaus et al. 
 2008 ; Sangwan et al.  2007 ). 

 Indeed,  HAM   can play the role of a feeder layer for growth and proliferation of 
epithelial cells and their progenitors and also keep their normal morphology. In addi-
tion to the aforementioned effects of amniotic membrane on epithelial cells, it has 
been found to have a great impact on differentiation and clonogenicity of progenitor 
cells (Niknejad et al.  2008 ). The  HAM   has also been used for remediation of limbal 
stem cell defi ciencies in ophthalmology (Azuara-Blanco et al.  1999 ; Heiligenhaus 
et al.  2008 ; Kim and Tseng  1995 ; KIM et al.  2000 ). 

 In a study conducted by Lee and Tseng (Lee and Tseng  1997 ), amniotic mem-
brane was applied in treatment of patients with persistent epithelial defects. In 
another study, Augusto Azuara-Blanco et al. (Azuara-Blanco et al.  1999 ) evaluated 
the effi cacy of the  amniotic membrane transplantation (AMT)   in ocular surface 
reconstruction. It has been showed that the AMT was helpful in patients with 
 persistent epithelial defect and also had a great inhibitory effect on corneo conjunc-
tival adhesion after surgery. 

 The positive effectiveness of amniotic membrane transplantation in decrease of 
stromal scarring and ocular surface infl ammation has been well documented 
(Azuara-Blanco et al.  1999 ; Heiligenhaus et al.  2008 ; Niknejad et al.  2008 ; Sangwan 
et al.  2007 ). 

 Shimmura and colleagues implanted  HAM   to 20 patients with persistent corneal 
epithelial defects to study its anti-infl ammatory effects in vivo. The local body 
immune response to the membrane was evaluated by histopathological examina-
tions at 1 week postsurgery. According to their results, the majority of the infi ltrated 
infl ammatory cells were stained positively with anti-CD14 antibodies, indicating 
that these cells were originated from monocyte/macrophage lineage. Also, various 
subsets of T cells, including CD4(+) and CD8(+) cells and also CD20(+) cells were 
observed sporadically. Anti-infl ammatory properties of the amniotic membrane can 
be explained by its high adhesion property for infl ammatory cells and also the 

M. Gholipourmalekabadi et al.



91

pro- apoptotic agents exist within it. TUNEL assays showed that the infl ammatory 
cells cultured on the  HAM   surface represented morphological and molecular char-
acteristics of the cells undergoing apoptosis (Shimmura et al.  2001 ). Although such 
evidences clearly explain anti-infl ammatory properties of the  HAM  , some other 
factors may also be involved in the context. For instance, the  HAM   can reduce the 
secretion of some cytokines involved in infl ammatory process from ocular epithelial 
cells (Sangwan et al.  2007 ). In a study conducted by Solomon et al. ( 2001 ), it has 
been shown that the  HAM   stromal matrix suppressed IL-1α and IL-1β, two critical 
pro- infl ammatory cytokines, at both protein and mRNA levels, while caused an up- 
regulated expression of the anti-infl ammatory cytokines such as  interleukin-1 
receptor antagonist (IL 1 RA)  . 

 On the other hand, it is important to be noted that the conventional methods for 
isolation and expansion of corneal limbal epithelial cells have been failed. Therefore, 
there is an urgent need in development of a reliable technique for ex vivo expansion 
of corneal limbal epithelial cells as a therapeutic method for patients with severe 
 ocular surface diseases (OSD)      (Pellegrini et al.  1997 ). In 2000, the possible applica-
tion of amniotic membrane as a carrier for autologous corneal limbal epithelial cells 
was investigated by researchers. They showed that the implantation of the  HAM   
seeded with autologous corneal limbal epithelial cells had a positive effect on recon-
struction of corneal surface of patients with unilateral OSD (Schwab et al.  2000 ). 

  Limbal stem cells (LSC)   defi ciency is a visually disabling condition in which the 
corneal surface epithelium is not able to heal spontaneously. Therefore, autologous 
transplantation of limbal epithelial cells (HLECs) has been considered as an effi -
cient method for treatment of such patients. Grueterich et al. ( 2003 ) reported that 
the  HAM   can be considered as a niche for the limbal epithelial stem cells. These 
cells can be easily isolated from limbal biopsy using enzyme treatment and seeded 
onto  HAM   (Nakamura et al.  2006 ). 

 In a study conducted by Esther et al. (Rendal-Vázquez et al.  2012 ), a thin layer of 
(1–2 cell layer) of epithelium was formed over the  HAM  . According to their results, 
the epithelial cells cultured on basal layer (the epithelial side) of  HAM   showed a 
remarkable expression of LSC markers such as p63 and ABCG2, while similar 
results were not found on the chorionic side. 

 Implantation of the  HAM   loaded with ex vivo cultured LSCs has opened a new 
window of hope to treatment of patients with the defi ciencies or destruction of LSC 
population. The successes achieved in this treatment strategy have caused a growing 
interest in utilizing of ex vivo LSC-loaded  HAM      for patients with LSC.  

6.2     Skin 

  Skin   is largest organ in body and plays a key role in protecting body against damag-
ing sunlight, harmful chemicals, pathogens, and water loss. Skin functions also as an 
insulation, temperature regulation, sensation, and protection of D folates. Therefore, 
damage of skin tissue can cause many health problems.  Mammalian skin      consists of 
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two major layers: (1)  Epidermis   provides waterproofi ng and also protect body from 
microorganisms and, (2)  dermis   containing blood vessels and skin appendices.  Skin   
is damaged in various conditions such as diabetic, cancer, accident, microbial infec-
tions, burning, etc. (Alibardi  2003 ; Madison  2003 ; Proksch et al.  2008 ). The nature 
of wound healing process includes a delicate balance of infl ammatory, vascular, 
connective tissue, and epithelial cells activities (Baskovich et al.  2008 ) that proceed 
via three overlapping phases: infl ammation, proliferation, and remodeling. 

 Upon skin injury, platelet cells activate clot formation and then secrete some 
cytokines and growth factor such as PDGF to promote wound healing. The  infl am-
matory cells   migrate to the defect site for phagocytosis of dead cells as well as 
microorganisms.  Epithelial cells   proliferate and migrate from margins to the middle 
of wound to avoid water evaporation (reepithelialization). Infl ammatory cells such 
as macrophage secrete some cytokines to mediate various aspects of wound healing. 
The fi broblasts proliferate, migrate, and synthesize collagens to form ECM. Finally, 
the newly formed tissue in the defect site is remodeled through some proteases to 
restore the ECM contents and structure of natural skin (Yildirimer et al.  2012 ; 
Kondo and Ishida  2010 ). In large-surface and full-thickness wounds, reepithelial-
ization cannot completely proceed (Baskovich et al.  2008 ; Bello and Phillips  2000 ). 
There is an increased risk of scar formation in the wounds that not heal by 10 days 
(DEITCH et al.  1983 ). 

 Success in the  wound healing process   depends on depth, size, and location of 
damaged area. Superfi cial wounds can heal spontaneously, while several studies 
have shown that full-thickness wounds require to be covered with skin substitutes. 

 According to the reports in literatures, an ideal skin substitute should improve 
healing, reduce water loss and infections, minimize scar formation, relieve pain and 
be fl exible in thickness, readily available, easily applicable, and cost effective 
(Bujang-Safawi et al.  2010 ; Eaglstein  1985 ; Halim et al.  2010 ; Shores et al.  2007 ). 

  Autologous skin grafting      is considered as a standard strategy in severe skin wounds 
tissue engineering. However, there are some complications regarding the use of such 
grafts including long time hospitalization and donor site morbidity (Bello and Phillips 
 2000 ).  Xenotransplant      has also been reported to be effective in skin wound regenera-
tion. Despite of favorable results in using allotransplant and xenotransplant, some 
limitations have been reported in such strategies, especially if tissue banks do not 
exist. For instance, there is an urgent need for skin graft, about 6000 square centime-
ters, in 50 % of patients with full thickness burn. It is obvious that preparation of 
donor area in such cases is a serious problem. Therefore, the importance of tempo-
rary skin substitute, at least until donor area could be used again, is undeniable 
(Robson and Krizek  1973 ). There is still no ideal skin scaffold available that fulfi lls 
all the features mentioned earlier. During the past two decades, various commercial 
products such as Integra TM , Biobrane TM , Alloderm TM , Trans Cyte TM / dermagraft-
TC TM , Apligraft TM , and Epicel TM  have been applied for treatment of skin wound in 
clinic with various rates of advantages and disadvantages (Meyer et al.  2009 ). 

  Tissue engineering   scaffolds provide a suitable environment for normal cellular 
growth, differentiation, and angiogenesis through mimicking the target tissue that 
guarantee long-term viability of implanted graft (Epstein et al.  1999 ; Bello and 
Phillips  2000 ; Atiyeh et al.  2005 ; Bujang-Safawi et al.  2010 ; Halim et al.  2010 ). 
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 Skin  tissue engineering      scaffolds have often made from two major biomaterials: 
synthetic biodegradable polymers such as hyaluronic acid-based polymers, poly 
(glycolic) acid and  Poly Tetra Fluoro Ethylene (PTFE)  , and naturally derived from 
mammalian tissue sources, well known as naturally occurring biopolymers 
(Bromberg et al.  1965 ; Ghalambor et al.  2000 ; Bujang-Safawi et al.  2010 ; Halim 
et al.  2010 ;  Gholipourmalekabadi et al. 2015c ). Synthetic biodegradable polymers 
used in wound healing have some disadvantages. For example, such scaffolds are 
unable to fully restore the normal structure and function of injured vascular tissues 
(Chen et al.  1997 ; Hodde  2002 ), lead to tissue deposition that is less than optimal 
(Cao et al.  1998 ; Hodde  2002 ), and result in the formation of excessive scar tissue 
or infection (Mendelsohn and Dunlop  1998 ; Ghalambor et al.  2000 ; Hodde  2002 ). 

 Naturally occurring  biopolymers   include cadaveric fascia, small intestinal submu-
cosa, acellular dermis (e.g., Pig skin containing Collagen types: I, IV, VII (Hodde 
 2002 ; Gholipourmalekabadi et al.  2015a ,  2015c ), proteins: elastin, glycosaminogly-
cans, and growth factors), bladder acellular matrix graft, and amniotic membrane 
(containing Collagen types: I, III, IV (Aplin et al.  1985 ; Lei et al.  1999 ; Koizumi et al. 
 2000b ; Meinert et al.  2001 ; Hodde  2002 ), proteins: decorin, glycosaminoglycans: 
hyaluronic acid and Growth factors: EGF, TGF-b, TGF-a, FGF-2, KGF, HGF/SF). 

 Nevertheless, some complications and variable success rates (Ghalambor et al. 
 2000 ) have been reported regarding the use of naturally occurring biopolymers and 
none of these scaffolds have served as an ideal artifi cial skin substitute (Ghalambor 
et al.  2000 ). Taken together, amniotic membrane (AM) seems preferable over other 
skin dressing due to its promising characteristics, as mentioned earlier in this paper. 
Several studies have reported various advantages of amnion membrane skin wound 
healing (Modesti et al.  1989 ; Stern  1989 ; Wolf et al.  1991 ; Barret et al.  2000 ; 
Ghalambor et al.  2000 ; Mermet et al.  2007 ; Kim et al.  2008 ; Halim et al.  2010 ). 
 Amniotic membrane   has been widely used as a biological skin dressing for decades, 
dated back to 1910 (Davis  1910 ). In addition to many promising properties of  HAM   
as a skin substitute, no human leukocyte antigen (HLA-A, -B, or -DR) has been 
detected on AM. This unique feature of AM eliminates the possibility of graft rejec-
tion (Shimazaki et al.  1998 ). Furthermore, AM is a cost-effective and easy access 
wound dressing (Bose  1979 ; Lynch and Blocker  1979 ). 

 In a study conducted by Loeffelbein et al. ( 2012 ), 40 experimental full-thickness 
skin wounds were implanted with an autologous  split-thickness skin graft (STSG)   
solely or in combination with a monolayer or multilayer of human amniotic mem-
brane. Subsequently, on days 5, 7, 10, 20, 40, and 60 postsurgery, the biopsy samples 
were obtained for both clinical examinations and immunohistochemical staining for 
smooth muscle actin (aSMA), laminin,  von-Willebrand-factor (vWF)  , and Ki-67. 
According to their results, multilayered  HAM   improved reepithelialization and min-
imized scar formation. In another study, Fijan et al. ( 2014 ) implanted the  HAM   to 
30 patients with full-thickness fi ngertip injuries and have found promising results 
when compared to its treatment effi cacy with commercial skin graft dressing. 

 Poor vascularization of skin grafts has also been an unsolved problem in wound 
healing (Eppler et al.  2002 ).  Neovascularization   is a critical step in healing process 
of partial-thickness thermal injury (Pan et al.  2010 ). Angiogenesis or neovasculariza-
tion phenomenon is identifi ed by capillary formation from preexisting microvessels 
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(Carmeliet  2003 ). In the recent years, the potency of therapeutic angiogenesis in 
treatment of some special diseases such as ischemic heart disease, cerebrovascular 
disease, and delayed wound healing has been well cleared. A variety of biological 
agents and bioactive materials have been investigated for promoting the angiogen-
esis within damaged area (Höckel et al.  1993 ; Thompson et al.  2000 ). 

 As described earlier in this chapter, angiogenic or antiangiogenic characteristics 
of amniotic membrane are controversial and results have been different in the related 
studies. Niknejad et al. ( 2013 ) showed that two sides of  HAM  , epithelial and mesen-
chymal sides, had different angiogenic properties. According to their fi ndings, the 
angiogenic and antiangiogenic properties were attributed with the mesenchymal and 
epithelial sides of the  HAM  , respectively. Therefore, such unique feature of  HAM   
gives an excellent opportunity to be applied in various diseases. As wound dressing, 
the mesenchymal side of amniotic membrane can be utilized for improving the 
angiogenesis process and decreasing the healing time of full-thickness wounds.  

6.3      Burn Wounds   

 Thermal trauma is one of the most common causes of severe skin defect. The  kera-
tin layers   of  skin   and its lipid content play a critical role in keeping the water content 
of body at a normal level. In fact, skin provides a natural barrier to prevent excessive 
evaporation of body fl uids. The lipids are thermosensitive and easily destroyed by 
heat (Jelenko  1967 ). It has been reported that the effective vapor pressure gradient 
increases 15–20 times (normal 1.5 + 0.08 mm above atmospheric pressure) when 
this natural barrier is destroyed by heat. 

 Complications in treatment of deep burn wounds have remained challenging, so 
that threatens the health of burn patients, especially those with low socioeconomic 
class (Mohammadi et al.  2015 ). In the burn wound area, the body loses a large 
amount of water and electrolytes, which is lethal for burn patients, and provides a 
suitable culture medium for growth of infectious agents. Therefore, replacing the 
body fl uids should be considered as a fi rst step during 24 h after burning. Also, 
appropriate measures should be taken to avoid high water loss through lost epider-
mal layer (Moncrief and Mason  1964 ). 

 The main goals of treatment in the burn patients are as follows: promoting the 
healing, control of pain, prevention or treatment of postburn infections, and decreas-
ing the repeated trauma (Ghalambor et al.  2000 ; Halim et al.  2010 ).  Healing of skin   
contains a complicated event that begins in the moment the skin is injured 
(Diegelmann and Evans  2004 ; Midwood et al.  2004 ; Groeber et al.  2011 ). It has 
been shown that superfi cial partial-thickness burns (second A degree) often heal 
spontaneously in 3 weeks, whereas healing of deep partial-thickness burns (second 
B degree) and full-thickness burns (third degree) takes several weeks (Barret et al. 
 2000 ). According to the literatures, early dermabrasion, or escharectomy, followed 
by coverage with  skin grafts   is the most effective way to treat second and third 
degree burn wounds (Barret et al.  2000 ). As reported, wound healing in patients 
with third degree  burn   has remained challenging. Full-thickness burn wounds with 
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more than 1 cm in diameter require skin grafting to prevent cosmic deformities, scar 
formation, and resulting in an impaired mobility (Herndon et al.  1989 ; Papini  2004 ; 
Shevchenko et al.  2010 ; Groeber et al.  2011 ). 

 1 %  silver sulfadiazine (SSD)   and topical silver cream have widely been used as 
a treatment method for patients with burns and chronic wounds. Although silver has 
a broad spectrum of antimicrobial activity and low development of bacterial resis-
tance, such strategies require frequent application, are care intensive to apply and 
remove, and is sometimes painful (Barret et al.  2000 ). On the other hand, toxicity of 
silver for human cells is controversial. Indeed, cytotoxicity effect of silver is silver 
dose dependent and could have an irreversible toxicity effect on human cells in high 
concentrations (Gholipourmalekabadi et al.  2015b ,  d ; Nezafati et al.  2012 ). 

 Unfortunately, nowadays many patients with deep partial-thickness burns (sec-
ond degree) are treated by daily washing and  SSD   dressing in many burns centers, 
especially in developing countries. Although potential of biological dressings in 
treatment of severe skin wounds has been confi rmed by many studies, their applica-
tions in developing and Islamic countries are still not common. Many skin wound 
dressing have been developed during last decades, among which the  HAM   was the 
most promising skin substitute for treatment of burn wounds due to its favorable 
characteristics in wound healing and preventing bacterial infections. As mentioned 
before, there are some growth factors and cytokines such as TGF-a, TGF-b,  bFGF  , 
EGF within the matrix of  HAM  . These factors are also secreted by the cells around 
the damaged skin and mediate process of wound healing in normal situation. For 
example, epidermal growth factor plays a key role in reconstruction of epithermal 
layer of damaged skin. This growth factor exists abundantly in wound fl uid and its 
mitogenic activity on epithelial, endothelial, and mesothelial cells has been well 
documented (Cribbs et al.  1998 ; Jahovic et al.  2004 ; Werner and Grose  2003 ).  EGF   
has been found to improve reepithelialization of damaged skin and also accelerate 
proliferation and tensile strength of dermis (Alemdaroğlu et al.  2006 ,  2008 ; Brown 
et al.  1989 ; Greenhalgh  1996 ). TGF-α is another example that affect proliferation of 
keratinocytes (Cribbs et al.  2002 ; McCarthy et al.  1996 ; Werner and Grose  2003 ). In 
this direction, Houng and colleagues (Gu et al.  2011 ) showed a signifi cantly 
increased level of  EGF   expression in rat alkali-burned corneas 2 weeks after implan-
tation with  HAM  . 

 Infection, especially caused by bacterial  sepsis  , is believed to be the primary 
cause of mortality among burn patients. It has been revealed that two gram negative 
strains of bacteria,   Pseudomonas aeruginosa    ( P. aeruginosa ) and   Escherichia coli    
( E. coli ), and a gram positive strain of bacteria,   Staphylococcus aureus    ( S. aureus ) 
are the most common infectious agents after burn injuries (Ghalambor et al.  2000 ; 
Gholipourmalekabadi et al.  2015a ,  d ,  e ; Nezafati et al.  2012 ). Infections also nega-
tively affect the healing process of wounds, especially burn wound. Therefore, con-
trol of infection during the treatment period without doubt would have a great 
infl uence on the healing effi ciency (Atiyeh et al.  2007 ). In a study conducted by 
Robson and Krizek ( 1973 ), burn wound created in rat skin was fi rst inoculated with 
 Pseudomonas aeruginosa . The wounds were then separately implanted with human 
skin and  HAM  . According to their reports,  HAM   grafting was more effective in 
decreasing bacterial population than human skin. 
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 On the other hand, overuse of antibiotics caused an increased prevalence of 
antibiotic- resistant bacteria. Development of  multidrug-resistant (MDR)   strains has 
remained as a major concern in the healthcare community (Abbasi-Montazeri et al. 
 2013 ; Kardas et al.  2005 ; Toomey et al.  2009 ). In our previously published study, 
MDR strains of bacteria were isolated from exudate of patients with burn. The anti-
bacterial activity of  HAM   against both standard and MDR strains of bacteria was 
tested. According to the results, neither fresh nor decellularized  HAM   showed a 
strong antibacterial activity against MDR, which had a broad-spectrum  antibacterial 
activity for bacterial standard strains (ATCC)   (Fig.  4 ). In that study, it has been 
concluded that the  HAM   cannot protect burn wounds against the infections caused 
by  MDR   and an alternative strategy is required to fully treat such infections 
( Gholipourmalekabadi et al. 2015a ).

6.4         Diabetic Ulcers   

 Diabetes type 2 (diabetes mellitus) is a common clinical disorder which globally 
affect 5–10 % of the general population. Diabetes mellitus is associated with cardio-
vascular diseases, peripheral neuropathy, deformity, and trauma which more often 
result in  diabetic foot ulcers (DFU)   (Huang et al.  2009 ). Approximately 15–25 % of 
diabetic patients are in high risk of developing foot ulcers. Due to prolonged healing 
time in diabetic patients, there is an increased risk of infection, severe morbidity, and 
amputation; about 15 % of DFU cases lead to lower extremity amputation. In fact, it 
has been reported that healing rates in such cases were 24.2 % and 30.9 % after 12 
and 20 weeks, respectively. Therefore, rapid wound healing is the main purpose of 
DFU management (Boulton et al.  2004 ; Margolis et al.  1999 ; Snyder et al.  2010 ). 
Although control of infection, off-loading, and hyperbaric oxygen therapy are not 
effective and should be replaced with a new therapeutic method, such strategies are 
still offered for treatment of diabetic ulcers. Recently, researchers showed that the 
 HAM   is a promising dressing material for treatment of DFU. In a clinical study 

  Fig. 4    Growth inhibition zone of standard strains of   Staphylococcus aureus    and Pseudomonas 
around both fresh and decellularized  HAM   ( Gholipourmalekabadi et al. 2015d )       
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conducted by Alap P et al. (Shah  2014 ), amniotic membrane patches were applied 
as a novel therapeutic method for patients with nonhealing DFU. Their fi ndings 
strongly suggested the potential of  HAM   as an excellent dressing and an alternative 
treatment strategy for patients with  DFU     .   

7     Future Perspective 

 The regenerative properties of amniotic membrane make it a good biological source 
of cells and matrices for regenerative medicine applications. More studies on prepa-
ration and preservation of this membrane are needed to optimize its commercial use.     
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1  �Introduction

Stem cells are found in all multicellular organisms that can renew themselves and 
differentiate into a range of specialized cell types, making them interesting to 
research and cell therapy (Weissman et al. 2001). There are generally three major 
types of stem cells based on their time of isolation during development: embryonic 
stem cells (ESCs), fetal stem cells (FSCs), and adult (somatic) stem cells (Weissman 
et al. 2001). Embryonic stem cells (ESCs) can be derived from the blastocyst stage 
of early embryonic period. ESCs from the inner cell mass are pluripotent cells that 
are distinguished by their ability to differentiate into multiple cell types and by their 
ability to propagate (Fritsch and Singer 2008). The first mouse and human embry-
onic stem cells were isolated in 1953 at the Jackson Laboratory in Bar Harbor, 
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Maine that lead to start the many researches in this field (Bongso et  al. 1994; 
Thomson et  al. 1998). Embryonic stem cells have several distinctive properties 
include having a normal karyotype, maintaining high telomerase activity, and high 
proliferation rate. The pluripotent property of ESC presents a significant potential in 
clinical applications, but the use of these cells in clinic is limited by ethical, politi-
cal, biological, and regulatory hurdles (Henningson et al. 2003). Other stem cells 
can be found in several tissues, such as bone marrow (BM), skin, ovary, sperm, 
adipose tissue, endometrium and pregnant products of umbilical cord blood (UCB), 
amniotic fluid, and placenta (Pappa and Anagnou 2009; Ebrahimi-Barough et al. 
2013, 2015). FSCs can be derived from fetus proper, such as blood, liver, bone mar-
row, pancreas, spleen, and kidney, and supportive extraembryonic tissues, such as 
chorionic villus, amniotic fluid, placenta, or umbilical cord (Pappa and Anagnou 
2009; Niknamasl et al., 2014). The extraembryonic stem cells are valuable due to 
their potential clinical utility. Extraembryonic stem cells are obtained from 
Umbilical cord Wharton’s jelly, amniotic fluid (AF), amnion, and placenta (Ballen 
2010) (Fig. 1). The first population of stem cells was identified in adult mouse bone 
marrow by McCulloch and Till in the early 1960s (Friedenstein et al. 1966). After 
20 years, the first report of a successful cord blood transplant was reported in a child 
with Fanconi’s anemia (Gluckman et al. 1989). The first isolated fetal stem cells 
were hematopoietic, derived from human umbilical cord blood (Broxmeyer et al. 
1989). The isolated cells were capable of long-term self-renewal and differentiation 
to multiple hematopoietic lineages. In some countries banking of the cord blood 
routinely was done for newborns against the advent of childhood hematological 
maladies (Broxmeyer et  al. 1989). The utility of UCB-derived stem cells in the 
medical field is expanded owing to the facts that UCB is easy to obtain from discard 

Fig. 1  (a) Extra-embryonic stem cell sources. (b) Cross-sectional diagram of human umbilical 
cord showing the compartments from which stem cells have been isolated (amnion, subamnion, 
Whartons jelly, perivascular, adventiatia, endothelium, and umbilical cord blood)
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tissues without risk to the donor, and more tolerant to human leukocyte antigen 
(HLA) mismatches for lowering the risk of graft-versus-host disease (GVHD) and 
these source of cells are younger than adult BM. Due to the earlier properties, UCB 
are considered as a new treatment option and therapeutic agent in regenerative med-
icine. Today, there are over 400,000 cord blood units donated with dramatic growth 
and stored worldwide for unrelated use (Ballen 2010; Welte et al. 2010).

2  �Umbilical Cord Mesenchymal Stem Cell

In placental mammals, the embryo or fetus and placenta is connected by the umbili-
cal cord (also called the navel string, birth cord, or funiculus umbilicalis) which avoid 
umbilical vessels from collapse, compression, and torsion and provide a good blood 
circulation between the maternal circulation and the fetal circulation (Kalaszczynska 
and Ferdyn 2015). Anatomically and histologically, the umbilical cord (UC) consists 
of the amniotic membrane—made up of one or several layers of cuboidal and squa-
mous epithelia and known as the umbilical epithelium, which is thought to derive 
from the amniotic epithelium; the umbilical blood vessels, namely, two arteries and 
one vein which are surrounded by mucoid connective tissue rich in proteoglycans 
and mucopolysaccharides, known as Wharton’s jelly (WJ), that can be subdivided 
into the subamniotic zone, the intervascular zone, and the perivascular zone (Batsali 
et  al. 2013). The umbilical vein supplies the fetus with oxygenated, nutrient-rich 
blood from the placenta. Contrasting, the fetal heart pumps deoxygenated, nutrient-
depleted blood through the umbilical arteries back to the placenta (Wang et al. 2004). 
WJ is a mucous connective tissue which contains specialized cells such as multipo-
tent fibroblast-like MSC population and also some mast cells, imbedded in an amor-
phous substance rich in collagen (type III collagen) and in glycosaminoglycans, 
especially hyaluronic acid (Batsali et al. 2013). More than 10 years ago, fibroblast-
like MSC population were first obtained and these cells have been isolated from three 
compartments of umbilical cord: MSCs isolated from UC blood (UCB-MSCs), the 
subendothelium of the umbilical vein, and MSCs in WJ were named as umbilical 
cord matrix stem cells (UCMSCs) originating from extraembryonic mesoderm at day 
13 of embryonic development (Wang et al. 2004). This population of MSCs which 
derives from the Wharton’s jelly cells displays MSC characteristics as defined by the 
ISCT (International Society for Cellular Therapy) that they adhere to plastic surfaces 
when proliferating and multiplying; they have self-renewal capabilities just like mes-
enchymal cells; they display the surface markers of mesenchymal stem cells, such as 
CD44, CD73, CD90, CD105, CD117; and they have the capacity to differentiate into 
different cell lines when exposed to suitable growth media, giving rise to bone tissue 
cells, cartilage cells, adipose tissue cells, muscle tissue cells, and neuronal cells 
(Batsali et al. 2013; Wang et al. 2004; Kim et al. 2013). Therefore, this source of 
MSCs can be used as a potential tool for allogeneic transplants, especially in regen-
erative medicine. There are two possible theories on how stem cells arrived and exist 
in the WJ. According to Wang et al. studies first, in early human development, there 
were two waves of migration of fetal MSCs. In the first wave, MSCs migrated via the 
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UC to the placenta from the yolk sac and aorta-gonadal mesonephros (AGM) and in 
a second migration MSCs reverse migrated from the placenta via the UC to home in 
the fetal liver and bone marrow. During this migration some of these MSCs got 
trapped and stayed in gelatinous WJ of the UC (Kim et al. 2013; Bongso and Fong 
2013). Due to their new environment, their stemness characteristics appear to get 
modified and make them different from bone marrow MSCs (hBMMSCs). Second 
hypothesis is that the cells in the WJ are really primitive mesenchymal stromal cells 
originating from mesenchyme that was already there within the UC matrix. The role 
of these cells may be to produce the various glycoproteins, mucopolysaccharides, 
glycosaminoglycans, and extracellular matrix proteins to form a gelatinous ground 
substance (Prasanna and Jahnavi 2011). Stem cells in WJ can be different from other 
UC compartments stem cells because the WJ is rich in mucopolysaccharides and 
possess a network of glycoprotein and collagen microfibrils and environment can 
influence stemness characteristics of cells. There are several bioactive molecules 
such as interferons, growth factors, interleukins, GAGs, cell adhesion molecules in 
the secretions released by hWJSCs (Kim et al. 2013) and these features seem to be 
the building blocks for immunomodulatory mechanisms and tissue repair (Weiss 
et al. 2008a). As previously mentioned, stem cells have been identified in the amni-
otic compartment (outer epithelial layer and inner subamniotic mesenchymal layer), 
the perivascular compartment surrounding the vessels, the WJ compartment, the 
media and adventitia compartment of the walls of UC blood vessels, the endothelial 
compartment (inner lining of the vein), and the vascular compartment (blood lying 
within the UC blood vessels) (Can and Karahuseyinoglu 2007). In vitro experimental 
analysis shows differences in the number and nature of cells among these regions and 
it has been demonstrated that they have different properties (Kim et al. 2013) and 
these led to this hypothesis that these regions might be originating from different 
preexisting structures (Can and Karahuseyinoglu 2007). Umbilical cord blood (UCB) 
is a rich source of hematopoietic stem cells and studies showed that hematopoietic 
stem cells (HSCs), such as erythroid (BFU-E), multipotential (CFU-GEMM), and 
granulocyte-macrophage (CFU-GM) progenitor cells exist in human cord blood 
(Marcus and Woodbury 2008a). UCB stem cells can be obtained easily and noninva-
sively without harm to the mother or infant, and enough stem cells can be easily 
cryopreserved and stored without significant loss of the features. Unlike adult bone 
morrow, UCB stem cells are not exposed to the environment toxins or radiation (Kim 
et al. 2013; Marcus and Woodbury 2008a). Some scientists also succeed for isolation 
of MSCs from UCB that were able to self-renew with a high proliferative capacity 
and possessed differentiation potential to many lineages such as osteoblasts, muscle 
cells, chondrocytes, adipocytes, insulin-producing cells, vascular endothelial cells, 
cardiomyocytes, hepatocyte-like cells, and hematopoietic cell-supporting stroma 
(Batsali et al. 2013). Plasticity, homing, and engraftment are three important func-
tions of UCB stem cells. There are three indistinct regions of the WJ for the stem 
cells derived from the Wharton’s jelly of human umbilical cords (hWJSCs) including 
the perivascular, the intervascular, and the subamnion zones (Fig.  1) (Kim et  al. 
2013). Moreover, these cells have a fibroblast-like morphology with high prolifera-
tive rate and multipotent differentiation capacity and retain their stemness properties 
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for a long time in vitro (9–10 passages). Recently, it has thus been demonstrated that 
at least two apparently distinct progenitor cell populations exist in the umbilical cord 
matrix. Based on morphological feature, these type 1 and type 2 cells can be further 
identified by their differential expression of vimentin and cytokeratins (Marcus and 
Woodbury 2008a; Karahuseyinoglu et al. 2007). Type 1 cells obtained from perivas-
cular region stain strongly for pancytokeratin and give rise in vitro to flat, wide cyto-
plasmic cells. Intervascular and subamniotic regions generate type 2 cells with 
fibroblast-like morphology persisting throughout culture. Based on this finding, it has 
shown that UC-MSCs are actually type 2 cells and after exposing to inductive media, 
these cells have adipogenic, chondrogenic, osteogenic, and neuronal differentiation 
capacity (Batsali et al. 2013; Karahuseyinoglu et al. 2007). There is an important dif-
ference between adult bone marrow stromal cells (MSCs) and UCMSCs in differen-
tiation capacity to adipocyte and chondrocyte. In vitro studies showed that adult 
MSCs more differentiate to adipocytes, whereas UCMSCs were more capable of 
chondrogenic differentiation than adult MSCs and because of these findings we can 
suggest that UCMSCs may be used as a good candidate for cartilage repair in future 
clinical applications (Baksh et al. 2007). Also, it is shown type 1 and type 2 UCMSCs 
had different ability to generate nonmesodermal derivatives. When these two types of 
cells were exposed to neural induction media, type 2 differentiated to putative neu-
rons and expressed beta-III-tubulin, neurofilament-M (NF-M), and NeuN, while type 
1 cells remained unaltered, with no significant morphological changes apparent and 
did not express neural cell markers (Batsali et al. 2013; Karahuseyinoglu et al. 2007; 
Baksh et al. 2007). UC perivascular zone-derived MSCs named as Human Umbilical 
Cord Perivascular Cells (HUCPVCs) differ in their growth characteristics from 
UC-MSCs and have a colony forming unit (CFU) frequency of 1:333 (Batsali et al. 
2013; Kim et al. 2013) and exhibit higher proliferative rate and osteogenic potential 
as compared to BM-MSCs (Batsali et al. 2013). The phenotype of HUCPVCs is simi-
lar with WJ-derived MSCs but these cells express the high level of CD146 that absent 
or weakly expressed by MSCs derived from other regions of WJ (Batsali et al. 2013).

3  �The Immunomodulatory Properties of UC-MSCs

Low immunogenicity of cells is a more important factor for allogeneic transplanta-
tion. MSCs possess the immune properties because of low MHC-I level and absence 
of MHC-II expression that protect them from Natural killer cell-mediated lysis. 
Also, MSCs downregulate the interleukin (IL2) and CD38 on phytohemagglutinin-
activated lymphocytes (Wang et al. 2009; Zhou et al. 2011). MSCs escape from the 
immune system by modulation of host dendritic and T-cell function and enhance-
ment of regulatory T-cell induction (Weiss et al. 2008a). Low immunogenicity in 
MSCs is suggested to be due to secretion of the soluble factors such as transforming 
growth factor -1, hepatocyte growth factor, interleukin-6, prostaglandin E2, 
indoleamine2,3-dioxygenase-mediated tryptophan depletion, or nitric oxide (Weiss 
et al. 2008a). UC-MSCs similar to other sources of mesenchymal stem cells express 
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MHC class I (HLA-ABC) at low levels but not class II (HLA-DR); costimulatory 
antigens such as CD40, CD80, CD86 implicated in activation of both T and B cell 
responses; and high levels of inhibitors of immune response including indoleamine-
2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2) (Batsali et al. 2013; Kim et al. 
2013). The most important fact related to UC-MSCs is that these cells express high 
levels of leukocyte antigen G6 (HLA-G6) which is produced by trophoblast and 
plays important role in the immune tolerance during pregnancy by inducing the 
expansion of regulatory T cells and protects the embryo from maternal immune 
response (Kim et al. 2013; Weiss et al. 2008a; Barry et al. 2005). There are six or 
seven splice variants of HLA-G that HLA-G1, HLA-G2, HLA-G3, and HLA-G4 are 
membrane-bound isoforms; HLA-G5 and HLA-G6 are soluble forms (Weiss et al. 
2008a). The soluble forms of HLA-G inhibit T-cell activation and have immuno-
regulatory functions (Riteau et al. 2001). The UCB only needs to be matched at four 
of six HLA class I and II molecules between the donor and patient on other hand, 
bone marrow generally requires a high degree of HLA match (Weiss et al. 2008a). 
This provides advantages for graft-versus-host disease (Wang et al. 2009). In com-
parison to BM-MSCs derived from aged donors, lower levels of HLA-I expressed in 
UC-MSCs and immunorejection of WJ-MSC seems not to pose a threat and HLA 
matching may not be required before MSC transplantation (Riteau et  al. 2001). 
Therefore, administration of immunosuppressive drugs is not required; thereby the 
patient is protected against drug side effects. However, another study suggests that 
UC-MSCs may not be as immune-privileged as thought, as they can trigger weak 
allogeneic immune activation in vitro and will eventually undergo rejection follow-
ing xenogeneic transplantation (Wang et  al. 2009; Zhou et  al. 2011; Barry et  al. 
2005). Several studies have been published on the immunosuppressive potential of 
UC-MSCs on T lymphocytes. One group reported that UC-MSCs target CD4+ and 
CD8+ T subpopulation equally and are able to inhibit T-cell proliferation regardless 
of the stimulus used to activate T cells (Barry et al. 2005). Some studies reported 
that immune characteristics of UC-MSCs can be changed by inflammatory cyto-
kines treatment. For example, it has been shown that UC-MSCs immunogenicity 
increases when these cells expose to low doses of INF-γ (below 50 ng/mL) because 
this dose leads to upregulation of HLA-DR and HLA-I expression and following 
this event the immunogenicity of UC-MSC increases (Barry et al. 2005). The stud-
ies on immunomodulatory effects of UC-MSCs show that these cells can inhibit B 
cell proliferation, differentiation by soluble factors with downregulation of Blimp-1 
and upregulation of PAX-5 and inhibition of Akt and p38 MAPK phosphorylation as 
essential master regulators and signal transduction pathways involved in the regula-
tion of B cell proliferation and differentiation (Che et  al. 2012). In addition to, 
recently has been shown WJ-MSCs express IL-6 and VEGF, which is more impor-
tant in the immunosuppressive capability of MSCs (Weiss et al. 2008a). WJ-MSCs 
are less immunogenic than other sources of MSCs but under certain circumstances, 
UCMSCs can be immunogenic. It happens when cells are injected in an inflamed 
region or stimulated with IFN-γ prior to injection (Cho et al. 2008). Therefore, after 
cell therapy care must be taken to avoid sensitization against the injected cells, espe-
cially if these cells are used for repairing damaged, inflamed tissue that needs 
repeated injection into the same location (Kim et al. 2013).
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The main outstanding issue relating to cell-based therapy remains whether 
immune-privilege of allogeneic WJ-MSC transplantation upon differentiation is 
maintained or subsequently faded out. Despite to secure use of allogeneic MSCs in 
clinical approaches from different source of tissues, there have been however some 
reports of significant reduction in survival and long-term engraftment, peculiarly dur-
ing endothelial and myogenic differentiation of MSCs in  vivo milieu (Kim et  al. 
2013). Noticeably, a shift of expression pattern of immune antigens MHC-I and 
MHC-II made BMSCs vulnerable to immune rejection in a rat model of myocardial 
infarction or osteogenic differentiation of hydroxyapatite composite containing allo-
geneic BMSC while application of immunosuppressant agents, FK506 for example, 
improved dramatically the level of transplantation efficiency (Carlin et al. 2006). In 
contrary, the past and present research trends unveiled some encouraging results for 
WJ-MSCs with preserving its immune-modulatory capabilities upon multidirectional 
differentiation. Interestingly, a minor amount of gene expression increase in the level 
of MHC class I was reported for chondrogenic differentiation of human WJ-MSC 
that coincide with lack of expression of MHC costimulatory molecules, although 
some authorities proved a different potent inhibitor of immune response factors 
including IDO, HLA-G, and PGE2 through WJ-MSC committed differentiation into 
tissues (Fong et al. 2011). In other work, tyrosine hydroxylase-positive catecholamin-
ergic cells derived from porcine WJ-MSC were emerged in rat model of brain injury 
with of necessity of immunosuppressive treatment (Cho et al. 2008). Collectively, it 
seems that immune-modulatory effects of WJ-MSCs exert by either upregulation of 
negative costimulatory ligands, downregulation of immunosuppressive agents, and 
establishment of different anergy and tolerance activities (Kim et al. 2013).

4  �Advantages of UC-MSCs over Embryonic  
and Adult Stem Cells

Research on ESCs and ASCs has shown that UC-MSCs have also attracted great inter-
est because of their advantages over embryonic and adult counterparts. It is already 
well known that UC-MSCs show a phenotype closely resembling that of embryonic 
stem cells (ESC) and have a broad spectrum of differentiation potential beyond meso-
dermal origin (Hoynowski et al. 2007). Biochemical and immunohistochemical stud-
ies show that UC-MSCs express low levels of some transcriptional factors belong to 
embryonic stem cells such as the members of the OCT family, cell-surface markers for 
ESCs (SSEA-1 (stagespecific embryonic antigen-1), SSEA-4, Tra-1-60 and Tra-1-
81), alkaline phosphatase (ALP), DNMT3B and GABRB3 and the genomic markers 
(SOX2, NANOG, REX2) (Hoynowski et al. 2007; Carlin et al. 2006).

A low expression of the aforementioned pluripotency markers would suggest, 
although UC-MSCs are not as pluripotent as ESCs, however, they are highly 
multipotent. UC-MSCs retain to express many of these pluripotent stem cell mark-
ers at least nine passages during ex vivo expansion (Batsali et  al. 2013). Unlike 
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hESCs, UC-MSCs do not produce teratomas when transplanted as undifferentiated 
cells (Fong et  al. 2007). Modest expression of pluripotency genes and the high 
expression level of several tumor suppressor genes may explain the reason 
(Rachakatla et al. 2007). In addition, since the UC-MSCs do not produce teratomas, 
it is possible suggesting perhaps that UC-derived stem cells unlike embryonic stem 
cells and tumorigenic cells have a certain limit of telomerase activity (TA) (Greider 
1998). In fact, UC-MSCs display several features of ESC, while the use of them 
does not raise ethical or legal issues and they do not produce teratomas upon trans-
plantation (Marcus and Woodbury 2008b). Moreover, the UC-MSCs are immune 
privileged cells, which make them ideal for both autologous and allogeneic use in 
regenerative medicine applications (Gotherstrom et al. 2003; Le 2003; Hoogduijn 
et al. 2010). All these features set UC-MSCs apart from ESCs and make them as a 
promising stem cell source for treating various diseases in the clinics.

Among the adult stem cells, BMSCs are still considered as the gold standard in 
most research and clinical applications but the number of mesenchymal stem cell 
derived from bone marrow is a very rare population (0.001–0.01 % of mononuclear 
cells) (Castro-Malaspina et al. 1980). To obtain sufficient numbers of the cells for 
therapeutic purposes an extensive in  vitro expansion of cells is usually required, 
thereby enhancing the risk of loss of stemness properties and contaminations (Bongso 
and Fong 2013; Pittenger et al. 1999). In comparison, 1 cm of umbilical cord yields 
approximately 5 × 104 stem cells, which is 5000-fold greater than the number of 
MSCs (Weiss et al. 2006). So, it is quickly and easily to get a substantial amount of 
cells after several passages compared to BMSCs.

Comparative gene expression profiling between UC-MSCs and BM-MSCs dem-
onstrated that the production of Nanog, Dnmt3b, and Gabrb3 and expression of the 
pluripotent stem cell markers Brix, CD9, Gal, Kit, and Rex1 were significantly 
higher in UC-MSCs compared with BM-MSCs (Nekanti et al. 2010a). UC-MSCs 
also released significantly higher levels of genes implicated in the phosphoinositide 
3-kinase (PI3K)-AKT survival/proliferation pathway (Hsieh et  al. 2010). Their 
expression of UC-MSCs reflects that they are more primitive and have a shorter dou-
bling time and a broader pluripotency than BMMSCs (Karahuseyinoglu et al. 2007; 
Troyer and Weiss 2008).

There is growing evidence showing that donor age affects several properties of 
mesenchymal stem cells. Exposure to environmental stress can lead to DNA dam-
age, cellular senescence, or loss of regenerative function (Stolzing et al. 2008). It has 
been demonstrated that reactive oxygen species (ROS) levels which maintain health 
span of mesenchymal stem cells can rise dramatically with age. This can promote 
MSC aging through significant damage to cell structures (Liang et al. 2014). In addi-
tion, during normal aging of an animal or in cell culture, cells divide and telomeres 
length is commonly shortened. Telomeres length in UC-MSCs is significantly higher 
compared with adult MSC to maintain the stability of genomes (Batsali et al. 2013). 
It is also shown that expression of genes related to inflammatory response and also 
proteins which have beneficial effects on aging-related diseases decreased with 
aging MSC (Bustos et  al. 2014). Further studies demonstrate that the expression 
levels of genes related to senescence increase while proapoptotic regulators levels 
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decreased in MSC with age (Alt et  al. 2012). The potential applications of adult 
MSC therapies can be also greatly impacted by the donor’s variables such as lifestyle 
and health status at the time of collection. For example, nonsteroidal anti-inflamma-
tory drugs (NSAIDs) which commonly used to treat chronic pain, inflammation, and 
fever can alter therapeutic potential of MSC (Pountos et al. 2011). Metabolic dis-
eases such as diabetes and obesity may also change MSC microenvironment and 
reduced effectiveness regeneration properties of MSC (Phadnis et  al. 2009). 
Therefore, the application of autologous stem cell therapy may not be satisfactory 
for metabolic disorders. In a recent study, the investigators found the impairment of 
adipose stem cell (derived from diabetics patient) to establish a vascular network in 
wound healing mouse model (Rennert et al. 2014).

So, an alternative source of stem cells for treatment of aged patients may be 
required when considering decreased growth and differential capacities of the adult 
stem cells as well as invasive and painful harvesting procedures (Roobrouck et al. 
2008). Thanks to the younger origin, UC-MSCs exhibit relatively high levels of 
telomerase activity, short population doubling times, and long times to senescence, 
without loss of stem cell potency compared to adult MSC which makes them more 
unique and useful for therapeutic applications of aged patients (Troyer and Weiss 
2008; Nekanti et al. 2010b).

Side-by-side comparison of adult MSC with UC-MSCs demonstrated that MSC 
from umbilical cord has unique properties for clinical implication. They have a 
broader multipotent plasticity, and proliferate faster than adult MSCs with the fewer 
ethical concerns and the fact that they are from healthy, young donors make them 
more valuable therapeutic cell for the treatment of various diseases or tissue damage 
(Taghizadeh et al. 2011). This factor, coupled with the ease of collection with great 
expansion capabilities and immunomodulatory ability represents UC-MSCs as a 
unique source of stem cells to be employed for both autologous and allogeneic cel-
lular therapies and regenerative medicine (Stefano et al. 2015). It seems reasonable 
to conclude that UC-MSCs have advantages over ESCs and adult MSCs and explain 
the rapidly growing interest of these cells for therapeutic use.

5  �Isolation and Characteristics Features of UC-MSCs

According to the various research groups, different stem cell populations with var-
ied stemness properties can be detected from the various parts of cord. MSCs are 
present in the Wharton’s jelly (WJ), perivascular (PV), subendothelium (SE), 
umbilical cord lining (UCL), and whole umbilical cord (wUC) (Conconi et  al. 
2011; Subramanian et al. 2015). It should be noted that MSCs have also been iso-
lated in small numbers and with very low proliferation rates from the umbilical cord 
blood (Wexler et al. 2003; Perdikogianni et al. 2008). Indeed, comparing MSCs 
obtained from the various parts is difficult as the heterogeneity of extraction, cul-
ture media, and analysis procedures is high. Overall, MSCs from all of these regions 
fit the classical criteria for MSCs. They all share a fibroblast-like morphology with 
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multipotent differentiation capacity and high proliferation rate. In addition, they 
express human leukocyte antigen (HLA) class I but not HLA class II and also do 
not express hematopoietic markers (Dominici et al. 2006). In this section, the phe-
notypic characterization of different parts of the UC with respect to extraction 
methods and differentiation potential has been described.

5.1  �MSCs from the Wharton’s Jelly

The conventional method to obtain MSC from the umbilical cord involves explant or 
enzymatic digestion methods, or a combination of both (Seshareddy et al. 2008). 
Although, the enzyme method produces more homogenous cell populations and 
large cell number in shorter period than the explant method the enzymatic digestion 
followed by centrifugation is a time consuming and stressful process and may induce 
cellular damage. More simply, instead of enzymatic digestion, the cord mechani-
cally dissociated into very small pieces and the segments which are used as explants 
transferred in tissue culture plates until the cells will migrate to the plastic bottom. 
The explant method is simple and cost-effective method for isolating and culturing 
umbilical cord-derived mesenchymal stem cells and as it does not involve enzymatic 
treatment the cell damage is minimized (Salehinejad et al. 2012; Yoon et al. 2013).

There is several in vitro and in vivo evidence that reveals Wharton’s jelly as the 
best compartment of umbilical cord to obtained MSCs (Can and Karahuseyinoglu 
2007; Ding et al. 2015). To obtain MSCs from Wharton’s jelly, vessels should be 
removed and then the tissue can be treated by enzymatic or explant or both methods 
(Ishige et al. 2009; Tong et al. 2011). In addition to method, types of collagenase, 
enzyme concentration, incubation times, and culture media haven’t been standard-
ized thus far.

The mesenchymal features of cell populations derived from all regions of the UC 
were positive for the MSC signature markers such as CD44, CD73, CD90, and 
HLA-I and negative for CD31 and HLA-DR (Wetzig et al. 2013). The mesenchymal 
features of Wharton’s jelly cells have also been confirmed by the expression of 
CD13. They did not express B lymphocyte antigen (CD19), hematopoietic markers 
(CD34) and contradictory results have been obtained on the expression of CD105 
(SH2 or endoglin) and CD45 (leukocyte common antigen) (Conconi et  al. 2011; 
Bakhshi et al. 2008; Kadam et al. 2009; Hamad et al. 2015). Furthermore, embryonic 
stem cell markers, such as Oct-4, SSEA4, nucleostemin, SOX-2, and Nanog have 
also been expressed (Le 2003). WJMSCs are negative for the expression of CD80 
and CD86, which are costimulatory molecules in T-cell activation and are positive 
for HLA-G, which has been related to immune tolerance in pregnancy or allograft 
transplantation, suggesting that these cells could be used in clinic without the risk of 
acute rejection (Weiss et al. 2008b; Friedman et al. 2007). MSCs from Wharton’s 
jelly seem to have a great differentiation potential. They differentiated not only into 
cells of the mesodermal lineage but also able to differentiate into cells of ecto- and 
endodermic origin which makes them an attractive tool for the use in cell therapy 
(Bagher et al. 2015, 2016a; Borhani-Haghighi et al. 2015).
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5.2  �MSCs from the Perivascular Zone

To collect UC perivascular stem cells (UCPVCs), the vessels are extracted from UC 
and the ends of the vessels are tied together with a suture creating loops and then 
placed the vessel into enzymatic solution for isolating cells from the perivascular 
tissue (Sarugaser et al. 2005). Along with the other common marker between the 
umbilical cord compartment, UCPVCs expressed CD105 and did not express CD45 
and CD34 (Conconi et al. 2011). Contradictory results have been obtained on the 
expression of CD14, CD106, and CD117 (Sarugaser et  al. 2009; Martin-Rendon 
et al. 2008a). Furthermore, a high expression of CD10 has been reported in the peri-
vascular region of umbilical cord (Farias et al. 2011). Moreover, UCPV cells were 
negative to the presence of embryonic stem cell markers such as Oct-4 and SSEA-4 
suggesting that UCPV cells are more differentiated and mature than the other region 
of umbilical cord and this may explain why perivascular cells are not able to dif-
ferentiate into neurons. Furthermore, the ability to differentiate in vitro into osteo-
blastic, adipogenic, chondrogenic, myogenic, and fibroblastic lineages without 
expression of both HLA class I and II, representing a wide range of clinical applica-
tions for these cells (Sarugaser et al. 2005).

5.3  �MSCs from the Subendothelial Layer

To obtain the subendothelial layer cells, umbilical vein removed and then passing 
through an enzymatic solution to digest and remove the MSC from endothelial layer 
(Covas et  al. 2003). This cell population was found to be positive for the CD29 
(integrin β-1), CD13, CD44, CD49e, CD54, CD166, CD73, CD90, CD105, CD166 
and HLA-class I markers and negative for CD45, CD31, CD14, CD34, CD117(c-
kit), CD133, HLA-DR, vWf (Covas et  al. 2003; Panepucci et  al. 2004). Taken 
together, it appears that MSCs from the subendothelial zone are more resemble, at 
least in part to the phenotypic profile of the perivascular layer. Furthermore, MSCs 
of this region expressed pluripotent markers, such as Nanog and Oct-4. In addition, 
these cells express markers of neural precursor cells such as nestin and PAX6, but 
they failed to differentiate into functional neurons. Also, the cells can be differenti-
ated to adipoblast, osteoblast, chondroblast (Koh et al. 2008). These findings indi-
cate that MSCs from the subendothelial layer are an important source of mesenchymal 
stem cells that could be used in cell therapy.

5.4  �MSCs from the UC Lining (UCL)

After removing the other compartment of umbilical cord using razor blades, the 
subamnion region of UC lining membrane chopped into small pieces. These frag-
ments placed in a cell culture dish containing growth media until MSCs migrate out 
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of the tissue (explant method) (Gonzalez et al. 2010). In addition to common mark-
ers among different compartment of UC, cell populations derived from umbilical 
cord lining membrane were positive for the markers such as CD105 and negative for 
CD19 (Conconi et  al. 2011). Some authors have reported that the cord lining or 
subamnion MSCs were positive for CD34, CD45 while others reported that they 
were negative (Gonzalez et al. 2010; Reza et al. 2011). Surprisingly the CD14 and 
CD106 expression which have role in immune response observed in UCLMSCs but 
not in other regions of UC. Furthermore, these cells expressed embryonic stem cell 
markers, such as Oct-4, SSEA4, and Nanog, but contradictory results were obtained 
about the presence of SOX-2. They were able to differentiate into osteogenic, adipo-
genic, chondrogenic, cardiogenic, and neurogenic lineages which are opening up 
promising perspectives in the cell therapy (Reza et al. 2011; Kita et al. 2010).

5.5  �MSCs from Whole Umbilical Cord

In order to increase the yield of cell population, several researches have used whole 
UC instead of using compartments of UC as a source of MSCs (Tsagias et al. 2011). 
Entire UC with intact umbilical blood vessels was cut open followed by either an 
explant procedure or enzyme digestion. Indeed, these cells were positive to several 
markers detected in the other compartment of UC. The CD49a, CD80, CD133, and 
CD235a (glycophorin A) are the markers which were detected in the whole UC but 
not in other regions (Majore et al. 2011). Some discrepancies exist about CD106 and 
CD117 markers. Some authors have reported that MSCs isolated from whole UC 
were positive for CD106 and CD117 (Jo et al. 2008) while others reported that they 
were negative (Secco et al. 2009). Furthermore, cells were positive to several embry-
onic stem cell markers, such as Oct-4, SSEA-3, SSEA-4, Tra-1–60, and Tra-1–81, 
as both mRNA and protein (Jo et al. 2008). In addition to mesodermal lineage, these 
cells can differentiate into neuroectodermal and endodermal lineage under adequate 
stimulation. Their neural differentiation capacity supported by the expression of 
marker which have a role in neurite outgrowth such as nestin, nerve growth factor 
receptor (NGF), and CD56 (La et al. 2009; Yan et al. 2009). Furthermore, whole UC 
cells lack the expression of carcino-embryonic antigen (CEA), Eras which known as 
embryonic form of the RAS oncogene and CD86. Interestingly, these cells also 
expressed HLA-G which makes them an attractive candidate for clinical application 
(Fuks et al. 1975; Yasuda et al. 2007).

6  �Clinical Application of UC-MSCs

Through the raise in the quality and quantity of experimental researches based on 
different stem cell (SC) lines (Rahbarghazi et  al. 2012; Tehrani et  al. 2014; 
Mohammadi et al. 2015; Ebrahimi-Barough et al. 2015; Geranmayeh et al. 2015), it 
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seems that clinical application of SCs is optimistically becoming more functional. 
With the advances in clinical and experimental use of umbilical cord, this year faces 
27th anniversary of the umbilical cord blood transplantation done first in France in 
a child with Fanconi anemia (Ballen et al. 2013). Since that time, multiple types of 
both related and unrelated UC transplant have been established in pediatric and adult 
patients, in which over 600, 000 UC blood units stored globally and >30, 000 UC 
blood transplantation have been performed (Appelbaum 2012). Additionally, promi-
nent therapeutic effects of UC-MSCs have being increasingly proved in a number of 
diseases (Sun et al. 2010). Due to numerous disadvantages of invasive sampling and 
isolation, limited cell numbers and ethical constraints related with MSCs from bone 
marrow, adult organs, and fetus origin, stem cells from birth-associated tissues par-
ticularly UC-MSCs have been at the center of attention for a while (Bongso and 
Fong 2013). On the other hand, embryonic stem cells (ESCs) and newly found type 
of stem cell, induced pluripotent stem cells (iPSCs), encounter major impediments 
to clinical therapeutic trials (Bongso and Fong 2013). Enormous breadth of informa-
tion, by in vivo or in vitro experiments, increased uncertainty and showed absence 
of useful safety indicator in clinical application by means of immunogenic and 
tumorigenic properties of either ESCs or iPSCs, although oftentimes human ESCs 
and majority of iPSCs line tested resulted efficiently for experimental tissue recon-
stitution (Zhao et al. 2011; Okita et al. 2011; Yamashita et al. 2013). In support of 
this uncertainty, study in chimeric mice by Yamashita et  al. showed that certain 
human iPSCs displayed a pro-oncogenic status during cartilage differentiation 
(Yamashita et al. 2013). They also unveiled abnormality in five out of 21 iPSCs cell 
lines, originated by five different reprogramming methods, using three cellular 
sources. One key bottleneck to realize this discrepancy is related to nonabsolutely 
predictable target differentiation entity of both iPSCs and ESCs presumably due to 
their pro-oncogenic entity based on global gene expression patterns and epigenetic 
state (Guenther et al. 2010; Newman and Cooper 2010). In contrary, UC-MSCs do 
not trigger tumorigenesis (Weiss and Troyer 2006; Wang et al. 2013) or provoke 
immune responses (Weiss et al. 2006; Shawki et al. 2015), considered as a promis-
ing alternative source for stem cell. These cells could be collected painlessly in a 
very large quantity while having greater proliferation ability and long-lasting activ-
ity of stemness properties for numerous subsequent cell passages (Chen et al. 2014).

Of note, the initial step in appropriate UC associate cell therapy is to augment 
umbilical cord bio-bank to be collected. The term “bio-banks” stands for long-term 
repository storage of biological specimens for supporting and ascertaining of future 
scientific research (Artene et  al. 2013). Two main components regarding on bio-
banking system includes a: biologic material processing, consisting of sample 
collection, processing with long-time storing and b: database managing system. 
Database managing system per se relates with demographic and clinical data of each 
sample and bank stock (see Fig. 1) (Artene et al. 2013).

Over the past decades, both private and public cell banking systems have been 
established to provide a repository of either allergenic and autologous transplanting 
based on private and nonprivate use, geographical area, and investors (Gonzalez-
Sanchez et al. 2013). It is accepted that different bio-banking production process of 
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life-saving cells must be done by virtue of diversity of biological samples which 
ensued in-depth knowledge of costs, for example, fee-per-service, and banking 
facilities (Gonzalez-Sanchez et al. 2013). Although, plenty of bio-banks in industri-
alized countries, for example, USA and UK Stem Cell Banks, has also tight collabo-
ration with academia and industry via active program of precompetitive research.

By August-20-2015, the public clinical trial database https://clinicaltrials.gov/
ct2/results?term=umbilical+cord+mesenchymal+stem+cell&pg=1 displayed near 
to 100 clinical trials using UC-MSCs for a wide range of clinical applications (see 
Table 1). Most of the records show that the majority of clinical trials are in phase I, 
II, and a combined I/II studies while a small number of above-mentioned trials clas-
sified in phase 0, III, a mixture of II/III and IV studies (see Figs. 2 and 3). In addi-
tion, a survey on geographical distribution unveiled that East Asian countries, 
especially China, are pioneers in the field of UC-MSC clinical trials (see Table 2).

6.1  �Immune-Modulatory and Reconstitution Effect 
of UC-MSCs

It is believed that GVHD, as an immunologic complication, occurred in large num-
ber of survivors (more than 60 %) from allogeneic hematopoietic cell transplantation 
(Ratanatharathorn et al. 2001). Corticosteroids are currently perceived as gold stan-
dard to relieve relative symptoms (Wang et al. 2012). The first experience of using 
MSCs for GVHD was the study by Le Blanc et  al. who examined the immune-
modulatory effects of haploidentical bone marrow MSCs transplant, an HLA-A, 
HLA-B, HLA-DRβ1 identical, on 9-year-old boy with grade IV GVHD of liver and 
gastrointestinal apparatus (Le Blanc et al. 2004). In alignment with this study, admin-
istration of adult bone marrow MSCs to eight patients resulted in amelioration of six 

Table 1  Clinical trial of UC-MSCs sorted by disease types by August-20-2015

Disease type Number of clinical trials

Heart disease 6

Diabetes and related complications 8

Liver disease 12

Ulcerative colitis 2

Duchene muscular dystrophy 4

Spinal cord injury 4

Brain disease 10

Lung disease 10

Bone and cartilage disease 9

Skin disease 3

Graft versus host and cancer disease 6

Multiple sclerosis 3

Auto-immune disease 4

Other 19

Total 100

S. Ebrahimi-Barough et al.
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Fig. 2  Representative image of bio-banking main components

Table 2  The number of 
conducted clinical trials using 
UC-MSCs in the world based 
on geographic region

Region name Number of studies

World 100

Africa 1

Central 
America

8

East Asia 71

Europe 1

Middle East 4

North America 9

United States 9

South America 1

South Asia 1

Southeast Asia 2

Fig. 3  An illustration of the UC-MSC clinical trials based on phase
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people with GVHD-derived gastrointestinal symptoms (Ringdén et al. 2006). Based 
on public clinical trial database, we found that five out of one hundred clinical trials 
recorded for UC-MSCs were applied in immune-mediate complication. Noticeably, 
other relevant clinical trials pertained to immune-mediated issues included rheuma-
toid arthritis (two cases), immune reconstitution in HIV-infected patients (one case), 
autoimmune abnormalities (one case), and lupus nephritis (one case). All these 
experiments performed at different clinical phages with varying number of UC-MSCs 
dosage and in patients in different stages of the disease which resulted in various 
vital response rates. Regarding to comfort and plentiful access to birth associate tis-
sues, it put them practical use and in the spotlight of biomedical research.

6.2  �UC-MSCs and Cardiovascular Recovery

Despite overall outstanding progress of treatment strategies, cardiovascular prob-
lems, especially ischemic heart failure, remain extremely challenging and skeptical 
yet. According to the animal model of myocardial infarction generated by the liga-
tion of the left anterior descending artery, many authorities confirmed improvement 
of autologous, allogeneic, xenogeneic transplantation on postinfarct myocardium 
function, although different degree of responses were, of course, reported with 
regarding to some recognized limitations of heart failure treatments (Rahbarghazi 
et al. 2014; Lim et al. 2006; Toma et al. 2002). Despite ostensible, shortcomings, 
multilineage differentiation potential of MSCs from different species to into func-
tional cardiac tissue cells has been previously acclaimed as paramount milestone in 
this field. In initial step of preclinical experimental models of ischemic heart failure, 
many authorities discovered a potent high tendency of human UC-MSCs to prefer-
entially home to damaged myocardium either systemic administration and local 
microinjection including intracoronary injection or direct implantation (Rahbarghazi 
et al. 2014; Erices et al. 2003). Although, UC-MSC-seeded implants and scaffolds 
have been newly investigated by different research groups (Murry et al. 2005). Up 
to now, two most preliminary prominent waves of clinical trials by different authori-
ties were entered in clinical arena followed as application of skeletal myoblast and 
bone marrow trials in acute or chronic ischemic disease, respectively (Murry et al. 
2005). They reported that phase II skeletal myoblast clinical trials are warranted. In 
addition, improvement in angina score, wall thickening, trends toward improved 
end diastolic volume, maximal oxygen consumption, and treadmill time (Murry 
et al. 2005). Through to August 2007, in a systematic review by Martin-Rendon 
et  al. 13 trials with 14 comparisons, including a total of 811 participants, were 
included on evidence-based searching in MEDLINE, EMBASE, the Cochrane 
Library, and Current Controlled Trials Register databases (Martin-Rendon et  al. 
2008b). Regarding to random effects model analysis, they concluded that bone mar-
row autologous transplantation resulted in an improved left ventricular ejection 
fraction, marked reduction in left ventricular end-systolic volume and myocardial 
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lesion area. Recently, Roura and colleagues showed that administration of UC-MSCs 
in afflicted people with idiopathic dilated cardiomyopathy could ameliorate endo-
thelial dysfunction-related vascular complications of heart tissue (Roura et  al. 
2012). Of six cases registered for cardiovascular diseases regarding to public clini-
cal trial database, UC-MSCs administration was subjected to following abnormali-
ties including ischemic cardiomyopathy (five cases) and idiopathic dilated 
cardiopathy (one case). Despite fundamental issues remaining to be resolved for 
SC-based cardiac regeneration, for example, appropriate functional integration of 
introduced SCs into local myocardial milieu (Pijnappels et al. 2008); however, it 
seems that UC-MSCs are good candidate for different cell-based therapeutic pur-
poses according to advantageous specifications described in earlier paragraphs.

6.3  �Therapeutic Effects of UC-MSCs on Diabetes Mellitus 1 
and 2

Many already up to date attempts have been focused to resuscitate endocrine pancre-
atic insufficiency due to β cell dysfunction peculiarly in diabetes mellitus type 1 and 
2. A brief review on literature enunciated that the first milestone in cell-based thera-
pies on diabetes has been accomplished with the use of islet transplantation from 
cadaveric donors (Shapiro et al. 2000). Current data from several SC-based in vitro 
and preclinical studies showed that various tissue-derived SCs, particularly UC-MSCs, 
could easily transdifferentiate into insulin-producing islet-like cells (Jiang et al. 2007; 
Mehrabi et al. 2015; Si et al. 2012). It was commonly perceived multiple mechanisms 
participated in in vivo animal models (Si et al. 2012). For example, MSC to β-cell 
differentiation, activation of β-cell function juxtaposed to MSCs, improvement of 
insulin sensitivity by an upregulated GLUT4 expression, promotion of phosphory-
lated IRS-1 and Akt content in insulin-dependent tissues are noteworthy (Si et al. 
2012). Other underlying mechanisms MSCs exert their therapeutic effects during dia-
betic condition are MSC-derived exosome intercellular crosstalk with β cells, inhibi-
tion of immune responses, and acceleration of endogenous regeneration of pancreatic 
β cell (Tolar et al. 2010; Rahman et al. 2014; Aali et al. 2014; Berezin 2014). In eight 
projects of public clinical trial database, Phase I and II clinical trials by using 
UC-MSCs were conducted both on type 1, 2 diabetic patients and relevant complica-
tions, including diabetic foot root and peripheral arterial disease (Table 1). In other 
study by Li et  al., a number of 15 diabetic patients with foot disease underwent 
UC-MSCs transplantation in which cells were injected quadriceps thigh muscles (Li 
et al. 2013). Four weeks posttransplantation, they found that diabetic immune defi-
ciency was extenuated by a marked increase in number of CD4+CD25hiFoxP3+ Treg/
Th17 and CD4+CD25hiFoxP3+ Treg/Th1 cell populations coincided with blood glu-
cose reduction and required insulin injection. It seems logically that UC-MSCs could 
accelerate abrogating autoimmunity toward pancreatic β-cells.
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6.4  �UC-MSCs for Liver and Gastrointestinal Disorders

To date, different types of SCs have been eligibly exploited for gut and liver dis-
eases. Intriguingly, we realized that the utmost number of UC-MSCs clinical trial 
was assigned to alimentary tract especially liver abnormalities (n = 12), although 
two cases were registered for gastrointestinal disease in public clinical trial database 
(Table 1). Decompensated primary biliary and liver cirrhosis, liver failure, autoim-
mune and HBV afflicted hepatitis, induction of liver transplant toleration, and active 
ulcerative colitis were included. One of the most challenging debates for liver cell-
based therapy is cell-repopulating capacity of posttransplanted host liver (Wu and 
Tao 2012). It was found that hepatocyte-like cells differentiation of MSCs initiated 
under conditions favoring hepatocyte differentiation by virtue of albumin, alpha 
fetoprotein and urea production, cytochrome P450 enzyme, glycogen, and carbamo-
ylphosphate synthetase activity (Wu and Tao 2012; Sarvandi et al. 2015). In addi-
tion, in some experiments the protective effect of MSCs secretome was evident on 
sinusoidal endothelial cells of radiation-induced hepatopathy (Chen et  al. 2015). 
The locally direct injection of UC-MSC in carbon tetrachloride-induced rat hepatic 
cirrhosis model resulted in a marked reduction of liver fibrosis evidenced by total 
collagen deposition Sirius red stain (Tsai et  al. 2009). While the upregulation of 
hepatic mesenchymal epithelial transition factor-phosphorylated type and hepato-
cyte growth factor was initiated postcell transplantation the content of levels of 
serum glutamic oxaloacetic transaminase, glutamic pyruvate transaminase, alpha-
smooth muscle actin, and transforming growth factor-β1 in the liver milieu (Tsai 
et  al. 2009). Noticeably, the transplantation of exosomes derived from human 
UC-MSCs as adjuvant tool versus cell direct injection alone into mouse model of 
carbon tetrachloride-induced liver fibrosis in addition to an alleviated hepatic inflam-
mation and collagen type I and III deposition, serum aspartate aminotransferase 
transforming growth factor-β1, and phosphorylation Smad2 expression resulted in 
an increase of E-cadherin- and cytokeratin 18 positive cells concurrently with an 
reduced number of N-cadherin- and vimentin-positive cells (Li et al. 2012; Zhou 
et al. 2014). In human, long-term follow-up (near to a year) of 30 chronic hepatitis 
B patients with decompensated liver cirrhosis received UC-MSC transfusion con-
tributed to an elimination of liver failure symptoms in comparison of 15 patients 
receiving saline alone (Zhang et al. 2012). In detail, Zhang et al. showed a greater 
level of improvement in the serum albumin and in total serum bilirubin levels. 
Totally, the therapeutic actions of MSCs, peculiarly UC-MSCs, on functional and 
structural aspects have been confirmed.

6.5  �Neural Tissue Regeneration by UC-MSCs

Although not many encouraging experimental studies already been undertaken and 
are in primary stage, but both neuroprotective and neuroregenerative properties of 
different types of MSCs have been proved in multiple disorders affecting the brain, 
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spinal cord, and even peripheral nervous system (Dalous et al. 2012; Phinney and 
Isakova 2005). Interestingly, it has become apparent that an innate neuroglial dif-
ferentiation potential of UC-MSC samples confirmed by upregulation of Oct4, 
Nanog, Sox2, ABCG2, neuro-ectodermal marker nestin, glial fibrillary acidic pro-
tein (GFAP), and microtubule-associated protein-2 (MAP-2) represented by refrac-
tile cell body with extended neurite-like structures cell morphology in in  vitro 
condition (Divya et al. 2012; Lee et al. 2004). Promising results have been already 
gained in numerous preclinical studies (Bauder and Ferguson 2012; Vogelaar et al. 
2004). For example, xenogeneic administration of UC-MSC contributed into nerve 
regeneration evidenced by an upregulation of brain-derived neurotrophic factor and 
tyrosine kinase receptor B at the lesion site of a rat model of peripheral sciatic nerve 
crush injury (Sung et al. 2012). On the other hand, the severity of Wallerian degen-
eration was alleviated which simultaneously coincide with an increase in the number 
of regenerated fibers and thickness of myelin sheath (Gärtner et al. 2014). Because 
of autologous cell-based therapy would necessitate a proper nerve biopsy and a long 
period of culture times, therefore exploiting an array of different SC types, which 
supply a more accessible, suitable and off-the-shelf source, is plausible (Faroni et al. 
2015; Mobarakeh et al. 2012). Of total 100 cases, 17 projects of public clinical trial 
database were allocated to nervous system associate diseases and abnormalities 
which mainly enrolled in brain diseases (n = 10), spinal cord injury (n = 4), and mul-
tiple sclerosis (n = 3) in different clinical trial phases. Therefore, a multiple number 
of allogeneic, particularly in human and xenogeneic have been designed so far in 
in vivo condition (Cheng et al. 2014). Importantly, different methods of cell admin-
istration have been seen into target sites in nervous system with a possibly different 
degree of complications (Fransson et al. 2014; Guan et al. 2013). In a phase 1 clini-
cal trial in nine patients with Alzheimer’s disease, for instance, stereotactic accurate 
positioning of UC-MSCs in bilateral hippocampi and right precuneus regions 
showed highly feasible, safe, and well tolerated (Kim et al. 2015). Surprisingly, Hou 
et al. reported a fewer of unwanted adverse effects in allogeneic UC-MSC-treated 
individuals with multiple sclerosis as compared to autologous transplanted patient 
by bone marrow MSCs (Hou et al. 2013). Based on clinical trials undertaken, the 
rate of response to cell-based treatment seems to be dramatically different in accor-
dance to the severity of the injury and the period of treatment. Intrathecal injection 
of 1 × 106/kg body weight in 22 patients with incomplete spinal cord injury attained 
81.25 % while no hopeful response to treatment observed in six patients with com-
plete spinal cord injury (Liu et al. 2013). In other study, among the eight cases with 
secondary progressive multiple scleroses, approximately six improved after intrathe-
cal intravenous injections of UC-MSCs (Lu et  al. 2013). In other type of central 
nervous system disorders, beneficial effects of UC-MSCs, with acceleration in heal-
ing process of the infarct cortex with subsequent functional recovery, have been 
elucidated in ischemic region of rat model of stroke (Lin et al. 2011). Of note, clini-
cal trials based on different MSCs, peculiarly UC-MSC, transplantation for stroke is 
currently ongoing, although preliminary experiments on autologous intravenous 
administration of bone MSCs in patients with ischemic stroke revealed no stroke 
recurrence, adverse events near up to 1 year posttransplantation (Honmou et  al. 
2011). Even, 5-year-follow up showed no signs of venous thromboembolism, 
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systemic malignancy, or systemic infection in stroke-afflicted people (Lee et  al. 
2010). Prior to define a routinely applied clinical treatment, it is logical that more 
preclinical and clinical studies are however essential.

6.6  �UC-MSCs and Musculoskeletal Regeneration

In multiple preclinical experiments the regenerative capacity of MSCs has been 
proved (Ha et al. 2015). For instance, xenogeneic composite of human UC-MSCs 
juxtaposed with a hyaluronic acid hydrogel resulted in marked therapeutic effects in 
both rat and rabbit models (Ha et al. 2015; Gupta et al. 2012). A high degree of 
hyaline cartilage synthesis and regeneration was, 12 weeks posttransplantation, 
observed in pig that underwent interventional full-thickness chondral injury (Ha 
et  al. 2015). The state of the art on UC-MSCs clinical trial and musculoskeletal 
regeneration, including cartilage and bone reconstitution was evident in public clin-
ical trial database by nine patients with bone and cartilage and four with Duchene 
muscular dystrophy diseases received UC-MSC transplants. The most of experi-
ments on animal models for bone regeneration focused on loading of different SC 
types and particularly UC-MSCs on scaffolds (Rosa and BacklyRania 2015). Rosa 
et al. recently acclaimed that the transplanted UC-MSCs triggered the bone healing 
procedure by stimulation of angiogenesis and bone formation at calvarial defects in 
bone defect mouse model (Rosa and BacklyRania 2015). Like the results of pre-
clinical or clinical trials of other kind of disease or abnormalities, many further 
investigation must be undertaken to illuminate the safety and efficiency of different 
MSCs, especially UC-derived MSCs, on cartilage or bone healing. In accordance to 
cartilage and bone tissues consistency and inevitable effect of required matrix and 
scaffolds, it is essential to better know the possible key role and regenerative proper-
ties of environment enclosed by the MSCs.

6.7  �UC-MSCs Versus Malignant Abnormalities

It is going without saying that both immunosuppressive and hematopoiesis capabil-
ity of transplanted MSCs have been seen close together in many experiments (Zhi-
Gang et  al. 2008; Maitra et  al. 2004). However, contradictory reports showed 
two-sided edge effects by both promotion and inhibition of cancer progression 
driven by MSCs (Zhang et al. 2013). The juxtaposition of UC-MSCs with normal 
lymphocytes or Jurkat leukemia cells induced the inhibition of cell proliferation and 
cell cycle progression in both cells and downregulated the HES-1 especially in can-
cer cells, nominated as classic transcriptional target of Notch signaling (Yuan et al. 
2014; Xu et  al. 2014). Some authorities reported the effective impact of human 
MSCs on immune cells by diminishing of tumor necrosis factor alpha, interferon 
gamma, and increasing interleukin-10 (Aggarwal and Pittenger 2005). In line with 
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these statements, coinfusion of human MSCs with UC blood cells into sublethal 
irradiated nude mice suppresses alloantigen-specific activated T cells (Maitra et al. 
2004). An in vitro study revealed that modulation of JNK and PI3K/AKT signaling, 
governed by UC-MSC, contributed to cell apoptosis in prostate cancer cell line (Han 
et al. 2014). Jing et al. demonstrated that the interleukin-15 production activity of 
UC-MSCs in with help of NK and CD8+ T cells exerted antitumor activity on pan-
creatic tumor cells in syngeneic murine model (Jing et al. 2014). In contrary, breast 
cancer metastasis was mediated by UC-MSCs interleukin-8 and -6 which induced 
CD44+/CD24− cell population (Ma et al. 2015). In our survey on public clinical trial 
database, two projects in patient with hematologic malignancies were found. Both 
cotransplantation of UC-MSCs with MPCs or UC-MSCs alone have been done in 
patients. Because of uncertainty on UC-MSCs behavior against different tumors, 
their application in cancerous-related niche is in its infancy.

7  �Conclusion

UCMSCs are very valuable sources of stem cells that can be considered as an effec-
tive treatment in variety of clinical aspects. These cells are accessible source with 
fewer ethical concerns, lake of immunogenic rejection, high proliferation capacity 
without tumorigenicity properties, and placticity developmental flexibility. These 
characteristics make them a valuable source of stem cells for clinical application and 
cell-based therapies.
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Therapy                     
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1           Introduction 

 The  stem cells   are characterized by their capacity of self-renewal and transdifferen-
tiation to various cell types if guided appropriately. These interesting properties 
have made stem cells an important component of tissue regeneration and  regenera-
tive medicine  .  Mesenchymal stem cells (MSCs)   have been harvested successfully 
from a wide range of tissues such as  bone marrow  , adipose tissue, umbilical cord 
blood, menstrual blood, etc. (Phinney  2008 ; Lu et al.  2006 ; Gimble and Guilak 
 2003 ; Kazemnejad et al.  2012 ; Khanmohammadi et al.  2014 ). However, problems 
such as less availability, invasive methods for sample collection, and lower prolif-
eration capacity in comparison with embryonic stem cells reduce the possibility to 
collect a large amount of cells, in an inexpensive and noninvasive way, and without 
being risky for the donor (Parolini et al.  2009 ). As such, amniotic membrane as 
postlabor medical waste has been recently recognized as appealing candidates for 
the derivation of MSCs. 

 The evidence delineates that presumptive adult stem cells derived from amniotic 
membrane retain highest proliferation capacity, longest telomere length, broadest 
differentiation, and extensive proliferative potential when compared with cells 
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obtained from adult tissues (Kern et al.  2006 ; Kögler et al.  2004 ). MSCs obtained 
from human amnion have been shown to retain immunomodulatory properties as 
well as to strongly inhibit  T lymphocyte   proliferation (Magatti et al.  2008 ) and to 
survive when transplanted in immunocompetent animals without inducing any 
tumorigenic effect in vivo (Kubo et al.  2001 ). 

 The immunomodulatory capacity exerted by mesenchymal stem cells derived 
from human  amniotic membrane   is even greater than other cells population located 
in amniotic membrane named amniotic epithelial cells. Therefore,  amniotic 
membrane- derived mesenchymal stem cells (AMSCs)   might be useful in the clinic 
for autologous transplantation for fetuses and newborns, and after banking in later 
stages of life. In addition, due to immunosuppressive functions, these cells might be 
used for allogenic transplantation and in treatment of some autoimmune diseases 
(Kim et al.  2013a ; Kang et al.  2012a ; Rossi et al.  2012 a). In this chapter, we will 
discuss characteristics and potential of AMSCs in terms of critical points for cell 
therapy like accessibility, proliferation and differentiation ability, ethical concern, 
tumorigenesis, and immunological consideration. Furthermore, the precise state of 
progressions in cell therapy of AMSCs for treatment of different disorders will be 
realized.  

2     Main Issues Should Be Considered for Clinical Potential 
of  Stem Cells   

 For clinical  stem cell therapy  , some challenges should be solved (Brooke et al. 
 2009 ): (1) Stem cell density in retrieved samples, (2) proliferation ability of stem 
cells in laboratory to dissolve demand of clinic, (3) differentiation potential of stem 
cell to the desired cell phenotype, (4) the bioreactive molecules such as cytokines or 
growth factors that can support the formation of the desired tissue, (5) the best bio-
markers to characterize stem cells, (6) biosafety and tumorigenesis ability, (7) eth-
ics, (8) immunological consideration, (9) the safety evaluation in preclinical and 
clinical studies, (10) the translation from laboratory to clinics by using good labora-
tory practice and good manufacturing practice. 

 For  bone marrow   and  umbilical cord blood   that are well-known stem cell sources 
and have longest histories compared to other sources, there are different regulation 
laws describing the procedure of authorization related to preparation, storage, and 
clinical use. Although these regulations help policy makers in cell therapy to defi ne 
procedures and criteria for other newfound stem cells, before clinical application of 
these stem cells like AMSCs more researches are necessary to understand their 
properties and behavior upon transplantation. However, to investigate the applica-
tion potential of  AMSCs   for cell therapy and  regenerative medicine  , here we have 
discussed the characteristics of these cells especially in comparison with other stem 
cells in terms of critical points for cell therapy.  
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3     Location of  Amniotic Membrane Mesenchymal Stem Cells 
(AMSCs)   

 Human placenta plays an essential role in fetal development, nourishment, and 
immunological privilege. Two regions in the  placental tissue   can be distinguished: 
a maternal component, termed the decidua, which is derived from the endometrium, 
and a fetal component, which includes the amniotic membrane, the chorionic mem-
brane, and the chorionic plate, from which villi extend and make intimate contact 
with the uterine decidua during pregnancy. These  fetal membranes   facilitate 
exchange of gases and wastes, provide a defense barrier, and support pregnancy and 
parturition.  Amniotic membrane   is the innermost layer of placenta and consists of a 
thin epithelial layer, a basement membrane, and an avascular stroma. This thin, 
avascular membrane, which lines the amniotic cavity and is bathed in amniotic 
fl uid, is adjacent over the umbilical cord with the fetal skin (Benirschke and 
Kaufman  2000 ; Rennie et al.  2012 ; Toda et al.  2007 a). 

 AMSCs are dispersed in an extracellular matrix in basement membrane largely 
composed of collagen and laminin, and a network of fi broblast-like  mesenchymal 
cells   (Ilancheran et al.  2009 ). These cells mostly originate from mesoderm layer and 
were developed from epiblast during the pregastrulation stages of embryogenesis 
(Ilancheran et al.  2009 ; Parolini et al.  2008 ) (Fig.  1 ).

4         Proliferation Potential of AMSCs   Relative to Clinical 
Demand 

 The fi rst report about AMSCs goes back to 2004, the year that In ‘t Anker et al. 
isolated and established the differentiation potential of these stem cells into osteo-
genic and adipogenic cells (In ‘t Anker et al.  2004 ). Nowadays, effi cient protocols 
have been established for AMSCs isolation from term placenta and are generally 
based on the separation of the amniotic membrane from the chorionic membrane 
and subsequent enzymatic digestion (Parolini et al.  2008 ; In ‘t Anker et al.  2004 ; 
Marongiu et al.  2010 ). 

 Based on the reports, a typical human term amniotic membrane yields between 
20 and 50 × 10 6   stem cells   that are clonogenic and have great expansion potential in 
culture fl ask (Manuelpillai et al.  2011 ). It was found that human  AMSCs   could be 
expanded for at least 15 passages in culture (Soncini et al.  2007 ; Ilancheran et al. 
 2007 ). In a similar pattern with umbilical cord-MSCs, these cells exhibited a higher 
proliferation rate compared to  MSCs   derived from adult sources like bone marrow 
that their proliferative potential decrease as the donor’s age increases (Alviano et al. 
 2007 ). Therefore, it has been suggested that human AMSCs be more primitive mes-
enchymal stem cells than those found in bone marrow (Taghizadeh et al.  2011 ). 
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 Interestingly, epithelial layer of amniotic membrane is composed of  amniotic 
epithelial cells (AECs)   that change from the cuboidal epithelial shape into 
 elongated stromal-like cells after a few passages. The reason for these changes 
remains uncertain, but could be attributed to senescence, epigenetic modifi cations, 
and to the autocrine/paracrine effects of growth factors that induce an epithelial to 
mesenchymal transition. According to the studies, AECs express markers associ-
ated with mesenchymal and fi broblast cells and show low proliferation and differ-
entiation potential (Stadler et al.  2008 ; Bilic et al.  2008 a). It has been reported that 
proliferation ability and population doublings of AECs is signifi cantly less than 
AMSCs. AECs can only proliferate for less than fi ve population doublings during 
2 months while human AMSCs expand more than 70 passages with higher popula-
tion doublings compared to human AECs (Kim et al.  2013b ; Kimura et al.  2012 ). 
This prolonged in vitro proliferation capacity of  AMSCs   is a notable point to obtain 
adequate cell numbers for manipulation in biology and medicine and their implant 
into the patient.  

  Fig. 1    Schematic illustration of the  fetal membrane   structure at term. The components of each 
layer and location of amniotic membrane stem cells have been shown       
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5     The  Defi ned Biomarkers for Characterization of AMSCs   

 Human AMSCs express a repertoire of the surface and intracellular stem/progenitor 
markers (Fig.  2 ), suggesting that they could act as progenitors and differentiate into 
various cell types from each of the three germ layers (Manuelpillai et al.  2011 ). 
Considerable variation in percentages of different marker expression implies the 
dependence of levels and pattern of markers expression to the isolation protocol and 
passage number in culture (Díaz-Prado et al.  2010 ).

   AMSCs share similar phenotypic characteristics with the stem cells derived from 
bone marrow ( BMSCs  ) (Roubelakis et al.  2012 a). These cells present characteristic 

  Fig. 2    The different characterized biomarkers expressing by  amniotic membrane    mesenchymal 
stem cells         
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fi broblast-like or spindle-shaped cells that express cell surface antigens markers 
associated to BMSCs such as adhesion and mesenchymal markers (STRO-1, CD13, 
CD73, CD90, CD29, CD44, CD49d, CD49e, CD56, CD166, CD105, and Vimentin) 
(Kmiecik et al.  2013 ), while they are negative for endothelial cell (CD31), hemato-
poietic (CD34, CD45), and monocyte (CD14) markers (Parolini et al.  2009 ; Kmiecik 
et al.  2013 ; Kamadjaja et al.  2014 ). In addition, these fetal cells express low levels 
of  human leukocyte antigen class I (HLA-I)  , but do not express HLA-II, suggesting 
that these cells are proper candidate for cell therapy targets (Parolini et al.  2009 ; 
Kmiecik et al.  2013 ); a matter will be discussed in the following issues. 

 Some fi ndings suggest that AMSCs have unique immunophenotypic characteristics 
that distinguish these cells from  BMSCs  . Since the amniotic membrane is derived 
from fetal origin, it is expected that amniotic cells contain pluripotent stem cells. 
In this line, several reports demonstrated that AMSCs express some pluripotency 
markers such as L-alkaline phosphatase or TRA-2-39, OCT-4, Nanog, SOX- 2, and 
Rex-1 which is specifi cally expressed in embryonic stem cells and germ cells; 
GATA-4, which is a marker of defi nitive embryonic and visceral (extra- embryonic) 
endoderm;  hepatocyte nuclear factor-3β (HNF-3β)  , which is a marker of defi nitive 
endoderm; nestin and musashi as a neural stem cell-specifi c marker. However, posi-
tivity for the SSEA-3 or SSEA-4 in these cells is still debated (Parolini et al.  2009 ; 
Kang et al.  2012b ; Toda et al.  2007 b). 

 According to the reports, the expression levels of embryonic  markers   including 
OCT3/4, SOX2, Klf4, c-Myc, Nanog, and Lin28 in AMSCs are much higher than 
those of  BMSCs  . On the other hand, the mean expression of Klf4 by AMSCs is high 
as much as  induced pluripotent stem cells (iPSCs)   suggesting that these stem cells 
are more similar to iPSCs compared to BMSC (Koike et al.  2014 ). These facts 
suggest that amniotic membrane cells possess pluripotency, and thus they would be 
a good candidate for an alternative cell source for cellular transplantation therapy.  

6     Ethical and Legal Considerations 

  Amniotic membrane   as a medical waste and part of the placenta routinely discarded 
postpartum with a rich source of  MSCs  , therefore, the ethical and legal consider-
ation with this source is negligible. It does not require embryos destruction or intru-
sive procedures for MSCs recovery. Furthermore, harvesting of MSCs from the 
amniotic membrane is without the requirement for invasive procedures like bone 
marrow or adipose tissue aspiration and is completely safe (Koike et al.  2014 ; Díaz- 
Prado et al.  2011 ; Li et al.  2014 ). 

 These cells are immune privileged, thus have no prominent ethical concerns 
associated with human  embryonic stem cells (ESCs)   in  cell therapy   (Kim et al. 
 2012 ,  2013a ; Paracchini et al.  2012 ). Indeed, the availability and high-yield in stem 
cell recovery from amniotic membrane makes this tissue as a truly exciting alterna-
tive source, and one that reveals new prospects of increasing the number of clinical 
application and its widespread use (Alviano et al.  2007 ). Moreover, this tissue offers 
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an abundant source for bank development (Paracchini et al.  2012 ; Pianta et al. 
 2015 ). However, it is still in the ownership of the mother, therefore the use of human 
amniotic membrane in every research center must be approved by the ethics commit-
tee and written informed consents obtained from the mothers (Koike et al.  2014 ).  

7      Biosafety of AMSCs   (Tumor Formation, Genome Stability 
During In Vitro Culture) 

 Obtaining  stem cell   source should be done under sterile circumstances to avoid pos-
sibility of microbial contamination. Amniotic membrane has been retrieved from 
women who had cesarean section under sterilized condition in operation room. 
Therefore, the possibility of fungal, viral, or bacterial contamination in the primary 
culture of procured samples is lower than some stem cell sources like menstrual 
blood. 

 Another criterion to judge about biosafety of stem cell source is genome stability 
during in vitro culture. The evidence narrates that the AMSCs maintain genome 
stability and normal karyotype during multiple passages (Seo et al.  2013 ; Ghosh 
et al.  2015 ). Seo et al. indicated that isolated equine AMSCs at passage 5 have a 
normal karyotype with 64 chromosomes (Seo et al.  2013 ). Moreover, chromosomal 
spreads at passage 5 and passage 10 of buffalo AMSCs revealed normal number of 
chromosomes (2 n  = 50) and no apparent changes in ploidy during culture (Ghosh 
et al.  2015 ). In another study, the karyotype of human AMSCs was analyzed at 
different culture passages (4 and 20) to monitor the occurrence of spontaneous 
chromosomal alterations during expansion. They indicated the chromosome num-
ber of human AMSCs was 46 and the G band karyotype analysis was normal type 
(Kang et al.  2012b ; Tamagawa et al.  2004 ). 

  Tumorigenicity   can be a main concern and a key obstacle in using stem cells as 
therapeutic purposes. Among various types of stem cells, the tumorigenicity is 
closely linked with the pluripotent stem cells like  ESCs  . Therefore, ESCs have a 
major hurdle to overcome before clinical translation, such their great potential for 
 regenerative medicine   along with the ethical concerns (Lee et al.  2009 ). 

 While some investigators have regarded AMSCs like pluripotent stem cells, 
there is no report about tumor induction of  AMSCs  . Amniotic membrane stem cells 
have never shown signs of aging and tumorigenicity even after propagation for more 
than 2 years in culture (Walther et al.  2009 ). Cat AMSCs at passage 4 were admin-
istered by intramuscular, subcutaneous, and intraperitoneal injection in immunode-
fi cient (BALB/c-Nu) mice. No teratomas were observed by 45 days postinjection, 
and the transplanted animals survived without diffi culty (Vidane et al.  2009 ). 
Moreover, in vivo teratoma formation and tumorigenicity of AMSCs have not been 
reported posttransplantation into human volunteers (Toda et al.  2007 a). The low risk 
of tumor formation of these cells could be attributed to limited lifespan and no 
expression of telomerase. Some others have attributed these properties to DNA 
damage or shortened telomerase (Bilic et al.  2008 b; Teng et al.  2013 ). 
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 Some studies have demonstrated that AMSCs can inhibit the growth, proliferation, 
and invasion of tumor cells and promote their apoptosis with the release of the 
 tumor necrosis factor-a (TNF-α)  ,  transforming growth factor-b (TGF-b)  ,  interleu-
kins (ILs)   or  interferons (IFNs)  ,  granulocyte macrophage colony-stimulating factor 
(GM-CSF)  , neurotrophin 3, CCL18 (a chemokine),  brain-derived neutrophic factor 
(BDNF)  ,  granulocyte chemotactic protein (GCP-2)  , and conserved dopamine neu-
trophic factors (Kang et al.  2012b ; Li et al.  2011 ). In addition, these cells have anti- 
infl ammatory functions and consequently potential antitumor effects. Therefore, 
their low risk of tumorigenicity and antitumor effects of  AMSCs   has great advan-
tage for eventual therapeutic applications on account of their safety property (Kang 
et al.  2012b ; Toda et al.  2007 b).  

8      Transdifferentiation Predisposition of AMSCs   
into Specialized Germinal Lineages 

 Already, a cocktail of growth factors, hormones, and/or other additives has been 
used to stimulate transdifferentiation of AMSCs in vitro. The differentiation poten-
tial of  AMSCs   into different lineages has been evaluated by assessment of morpho-
logical changes, expression of various lineage-specifi c genes, and tissue-specifi c 
functions. According to the reports (Table  1 ), AMSCs have a multilineage differen-
tiation potential into cells derived from the three germinal cells lines (endodermal, 
mesodermal, and ectodermal lineages). However, there are inconsistent data about 
the levels and pattern of genes expression in terminally differentiated cells derived 
from AMSCs. This could be attributed to differences in procedures and stimulating 
factors in the induction media, utilization of extracellular matrices in culture condi-
tion, and/or donor age (Manuelpillai et al.  2011 ).

   The fi rst report about transdifferentiation ability of AMSCs was presented by In 
‘t Anker et al. in 2004 that generated osteogenic and adipogenic lineages from these 
cells (In ‘t Anker et al.  2004 ). Later, other researchers confi rmed the osteogenic and 
adipogenic differentiation capacity of AMSCs (Lindenmair et al.  2010 ; Chen et al. 
 2011 ; Kim et al.  2007 ; Tsai et al.  2007 ). In 2010, Lindenmair et al., by relying on 
osteogenic differentiation capability of AMSCs presented an interesting protocol 
substitute to current bone tissue engineering protocols. They differentiated AMSCs 
that were trapped in amniotic membrane matrix into the osteogenic lineage without 
prior stem cell isolation. Direct differentiation of trapped stem cells in  amniotic 
membrane   drawbacks the limitations of in vitro isolation and expansion of AMSCs 
for clinical use (Lindenmair et al.  2010 ). In other study, AMSCs were loaded in 
porcine gelatin microcarriers and cultured in osteogenic medium for bone tissue 
engineering purposes. The generated bone-like tissues were used as building blocks 
to fabricate a macroscopic bone construct in a cylindrical perfusion culture cham-
ber. As a result a short-term perfusion culture (7 days) could effectively  generate a 
macroscopic bone construct with high cell viability and uniform distribution of 
bone characteristic  extracellular matrix (ECM)   (Chen et al.  2011 ). 
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 Chondrogenic differentiation of AMSCs was carried out in different culture 
conditions such as micro pellet or two   dimensional (2D    ) culture in presence of 
different growth factors and cytokines and demonstrated by the presence of gly-
coseaminoglycans and collagen in the extracellular matrix using histological, 
molecular, and biochemical assays (Soncini et al.  2007 ; Díaz-Prado et al.  2010 ). 
While the best strategies to utilization of stem cells for cartilage regeneration are 
incorporation of the cells into suitable three-dimensional (3D) scaffolds, cartilage 
tissue engineering using AMSCs and 3D matrix such as fi brous structures, porous 
sponges, woven or nonwoven meshes, and hydrogels has been remained to work. 

  AMSCs   are also able to differentiate toward the skeletal myogenic lineage under 
physiological culture conditions without the addition of demethylating drugs 
(Alviano et al.  2007 ). This ability has been shown by expression of myogenic tran-
scription factors such as  Myo D   and  Myogenin   and the protein expression of desmin 
(Portmann-Lanz et al.  2006 ). Alviano et al. ( 2007 ) confi rmed these results and also 
was the fi rst to demonstrate the angiogenic differentiation potential of these cells 
(Alviano et al.  2007 ). This latter study revealed that human AMSCs after culture in 
induction media with  vascular endothelial growth factor (VEGF)   expressed endo-
thelial-specifi c markers such as the receptors of the VEGF 1 and 2 (FLT-1, KDR), 
 intercellular adhesion molecule 1 (ICAM-1)  , as well as the appearance of CD34 and 
 von Willebrand Factor (vWF)   positive cells. It is notable that AMSCs spontane-
ously form capillary-like structures when cultured in semisolid medium (Matrigel 
system), however, this characteristic will be improved by exposure to angiogenic 
factor VEGF (Alviano et al.  2007 ). In 2013, Maruyama et al. demonstrated culture 
under hypoxic condition reinforces the endothelial differentiation of AMSCs 
through VEGF. They indicated upregulation of endothelial genes such as KDR,  vas-
cular cell adhesion molecule (VCAM)  , FLT-1, and vWF in differentiated cells by 
VEGF under hypoxic conditions as compared to the cells induced with VEGF under 
normoxic (Pirjali et al.  2013 ). 

 One main target of researches on AMSCs is future utilization of these cells for 
curing of cardiac diseases. Therefore, there are some reports about differentiation 
potential of these cells into cardiomyocytes. Some growth factors like  basic fi bro-
blast growth factor (bFGF)   or activin A are required to stimulate differentiation of 
AMSCs into cardiomyocytes. The human AMSCs without stimulation did not 
express cardiac markers such as Nkx2.5, ANP, and or α-MHC, while AMSCs stim-
ulation with  bFGF   or activin A led to expression of these markers (Zhao et al.  2005 ). 
The effi ciency of 3D culture system in development of  AMSCs   into cardiomyocytes 
has been shown by higher expression levels of cardiac markers in differentiated 
cells in 3D culture compared to those in 2D culture. In this line, Lin et al. developed 
fi brin scaffold for differentiation of AMSCs into cardiomyocyte-like cells in the 
presence of porcine cardiac lysate. The results of AMSCs culture in the presence of 
porcine cardiac lysate indicated a signifi cantly higher expression of cardiac markers 
in these cells compared to AMSCs culture without cardiac lysate. Specifi cally, 
AMSCs cultured in 3D supplemented medium with cardiac lysates displayed more 
upregulation levels of Mef2c, GATA-4, and HCN-2 mRNA as compared with cells 
grown under adherent conditions or cells grown in 3D culture with bovine serum 
(Lin et al.  2013 ). 

Characteristics of Mesenchymal Stem Cells Derived from Amniotic Membrane…

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj7lvWinITKAhVJkCwKHefZAxEQFggcMAA&url=http://www.microtissues.com/three_dimensional_3d_cell_culture_versus_two_dimensional_2d_cell_culture.htm&usg=AFQjCNFFamfKOwtqoth47CidCIkO9_nGCw&bvm=bv.110151844,d.bGQ
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 A tendency of AMSCs to neuronal differentiation has been established by the 
observation that these cells express neuronal and glial markers such as  Nestin 
(NES)  , Musashi1, Tuj1, NF-M,  glial fi brillary acidic protein (GFAP)  ,  Neural cell 
adhesion molecule (NCAM)  , neuron-specifi c enolase, neurofi lament medium, 
microtubule-associated protein (MAP)-2, Neu-N. The expression of some of 
these markers enhanced after culture of AMSCs in specifi c neural-induction 
media (Parolini et al.  2009 ). One group investigated differentiation of human 
AMSCs into motor neuron precursor cells by combination of  ECM   and multicell 
factors in a multistep induction process. After stimulation, the cells connected 
with adjacent cells to form oriented net. Besides the morphological changes, 
expression levels of  neuron-specifi c enolase (NSE)   and  synaptophysin (SYN)   
increased and GFAP expression decreased. In the group without ECM, NSE 
expression increased, while the expression of Nestin and SYN did not change 
implying that ECM enhanced the effectiveness of used growth factors and cyto-
kines (Hu et al.  2013 ). Other researchers confi rmed differentiation ability of 
AMSCs into neuronal-like cells, which was identifi ed by neuronal-specifi c mark-
ers and their ability to secrete dopamine. Based on their results, the developed 
neuronal-like cells expressed Tuj1, MAP-2 (both neuron markers), NeuN (neuron 
nuclear marker), and GFAP (astroglial marker). These cells were also positive for 
the dopamine neuron marker tyrosine hydroxylase (TH). Moreover compared to 
undifferentiated cells, nestin expression was downregulated, and the expression 
of Tuj1, MAP-2, and  GFAP   was upregulated. So far, there is no knowledge about 
comparative differentiation potential of these cells with other stem cells; how-
ever, it seems that AMSCs could be a great candidate for future cell therapy of 
neuronal degenerative disorders (Chang et al.  2010 ). 

  AMSCs   could also differentiate into endoderm-derived cells, such as hepato-
cytes. In this regard, Tamagawa et al. showed that AMSCs culture on type I collagen- 
coated dishes in differentiation medium causes signifi cant expression of hepatic 
markers including albumin, CK18, α1 antitrypsin, and HNF 4α. Furthermore, the 
storage of glycogen was clearly detected in the cells following the induction of 
hepatocyte differentiation (Tamagawa et al.  2007 ). 

 These studies suggested that AMSCs possess some characteristics that intro-
duce them as a proper cell population for  cell therapy  , although molecular mecha-
nisms governing on transdifferentiation ability of these cells are remained to be 
clarifi ed. Nonetheless, the multilineage differentiation potential is not exclusive 
to AMSCs, such that MSCs derived from other sources like bone marrow (Chivu 
et al.  2009 ), umbilical cord blood (Sanberg et al.  2011 ), adipose tissue (Choi et al. 
 2010 ), and menstrual blood (Khanjani et al.  2015 ) exhibit this potency in appro-
priate inductive condition. While the differences in transdifferentiation capability 
of other newfound stem cell sources like menstrual blood in reference to bone 
marrow have been well established (Khanjani et al.  2014 ; Darzi et al.  2012 ; 
Rahimi et al.  2014 ), comparative studies about transdifferentiation ability of 
AMSCs in comparison with well- known MSCs such as bone marrow have been 
kept to settle.  

S. Kazemnejad et al.
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9      Immunomodulatory Features of AMSCs   

 One hallmark of the cells derived from amniotic membranes is their ability to 
engraft different tissues following allogeneic (Marcus et al.  2008 ) and xenogeneic 
(Bailo et al.  2004 ) transplantation indicating the presence of potent in situ immuno-
modulatory properties and low immunogenicity of these cell populations. It has 
been shown that transplantation of human amnion-derived cells in neonatal swine 
and rats resulted in cell  microchimerism   in various organs and tissues without 
inducing lymphocyte proliferation responses (Bailo et al.  2004 ). In line with pre-
clinical settings, there are plenty of reports taking advantages of immunomodula-
tory properties of amniotic-derived cells in clinical practice. It is for several years 
that human amniotic membrane is successfully utilized as an immune tolorable bio-
material for surgical dressing, burn treatment (Singh and Chacharkar  2011 ; Ghieh 
et al.  2015 ), and tissue grafting in surface ocular diseases (Palamar et al.  2014 ). 

 Mechanisms involved in maternal tolerance toward  semiallogeneic fetus   have 
been the center of many researches during the past half century (Erlebacher  2013 ; 
Jeddi-Tehrani et al.  2009 ; Zarnani et al.  2008 ; Shojaeian et al.  2007 ) and  mesenchy-
mal cells   resident within the  fetal membranes   may be considered as functionally 
effective immunomodulatory cells for establishment of immune tolerance at the 
feto-maternal interface. Such assumption is supported by high expression levels of 
HLA-G, a molecule actively involved in immune suppression of local T and  natural 
killer (NK) cell   populations (Lynge Nilsson et al.  2014 ), experiments showing 
active suppression of  T cell   proliferation by cells isolated from amniotic and chori-
onic membranes (Wolbank et al.  2007 ) and also long-term survival of engrafted 
allogeneic and xenogeneic amniotic membrane cells (Khanjani et al.  2014 ). 

 Such observations have been the basis for elucidation of different immunomodula-
tory aspects of AMSCs with this hope that these fi ndings could dramatically expand 
their therapeutic potential clinical applications and in this context those immunomodu-
latory properties directly relevant to the mechanisms of graft immunologic tolerance 
have been the main focus of recent researches (Insausti et al.  2014 ). Although there is 
a considerable body of evidence on immunomodulatory effects of either placental or 
amniotic fl uid-derived stem cells, data on immunomodulation by  MSCs   directly 
derived from mesenchymal layer of the amniotic membrane is relatively scarce. In the 
following part, we will try to have a general overview on immunomodulatory effects of 
AMSCs on components of adaptive and innate immune system. 

 One important feature of  AMSCs   directly relevant to their immunomodulatory 
properties is their immunophenotype explained earlier. Besides expression of sur-
face markers of mesenchymal origin (Parolini et al.  2008 ; In ‘t Anker et al.  2004 ; 
Marongiu et al.  2010 ; Manuelpillai et al.  2011 ; Soncini et al.  2007 ; Roubelakis et al. 
 2012 b), a feature that these cells share with human amniotic epithelial stem cells 
(Parolini et al.  2008 ; Tabatabaei et al.  2014 ), AMSCs lack MHC-II and costimula-
tory molecules CD80, CD86, CD40, and CD40 ligand pointing to the inability of 
these cells to act as antigen-presenting cells (Parolini et al.  2008 ; Wu et al.  2014 ). 
Moreover, AMSCs express very low levels of MHC-I and high levels of HLA-G 
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indicating their tolerogenic property and low propensity to induce allogeneic 
immune responses (Parolini et al.  2008 ; Ge et al.  2012 ).  HLA-G   is mainly recog-
nized by T lymphocytes, NK cells, and abolish their responsiveness to activating 
signals (Shojaeian et al.  2007 ; Favier et al.  2010 ). Indeed, interaction of this mole-
cule with its cognate receptors on dendritic cells leads to induction of tolerogenic 
phenotype in this cells type suggesting that this might be a key mechanism through 
which tolerance to allogeneic AMSCs is established. More importantly, the level of 
HLA-G expression in AMSCs is increased following exposure to  IFN-γ   treatment 
(Chang et al.  2006 ). If such fi nding is found to be the case in vivo, it may be consid-
ered as an added benefi t when expression of HLA-G in transplanted AMSCs is 
increased following homing of these cells to the damaged tissue of interest, where 
high concentration of proinfl ammatory cytokines exists. More importantly, AMSCs 
express ligands for programmed cell death receptor, PD-L1 and PD-L2 after IFN-γ 
stimulation (Kronsteiner et al.  2011 ;  Kang et al. 2012c ). This phenomenon could 
potentially result in inhibition of activated T cells which are positive PD1 (Carter 
et al.  2002 ; Parry et al.  2005 ). The immunophenotypic features of AMSCs pre-
sented earlier clearly imply that this cell type might exert negative regulatory action 
on different subsets of the  immune cells  . 

 In a comprehensive study by Pianta et al., it was demonstrated that  conditioned 
medium (CM)   of human  AMSCs   markedly suppressed proliferation of effector/
memory CD4+ and CD8+ T cells stimulated either with allogeneic  mixed lympho-
cyte reaction (MLR)   or by  T cell receptor (TCR)   stimulation using anti-CD3/CD28 
(Pianta et al.  2015 ). These fi ndings reinforce on the concept that soluble factors 
released by these cells could potentially suppress T cell proliferation (Kronsteiner 
et al.  2011 ). Importantly, no effect on proliferation of naïve T cells was observed 
(Pianta et al.  2015 ), a fi nding which is in sharp contrast with antiproliferative effects 
of  bone marrow (BM)  -derived MSCs (Krampera et al.  2003 ). Inhibitory effect of 
unfractionated AMSCs and their CM on proliferation of TCR- or allogeneic MLR- 
stimulated peripheral blood mononuclear cells has also been reported earlier 
(Magatti et al.  2008 ). Such inhibitory effect is exerted in both cell contact- dependent 
and independent manner (Magatti et al.  2008 ; Kronsteiner et al.  2011 ). Such antip-
roliferative capacity is not restricted to AMSCs as  MSCs   derived from menstrual 
blood (Nikoo et al.  2012 ), bone marrow (Krampera et al.  2003 ), placenta (Chang 
et al.  2006 ; Li et al.  2007 ), adipose (Wolbank et al.  2007 ), and fetal tissues (Weiss 
et al.  2008 ) have been shown to possess the same inhibitory function. Notably and 
in contrast to BMSCs which attain antiproliferative ability after stimulation with 
activating substances such as IL-1β, TNF-α, or  IFN-γ  , antiproliferative effect of 
AMSCs has an intrinsic nature without need for prior stimulation with aforesaid 
activating mediators (Kamadjaja et al.  2014 ). Such difference may point to the het-
erogeneity of MSCs with respect to their functionality. Nonetheless, it has been 
observed that pretreatment of AMSCs with IFN-γ could enhance their antiprolifera-
tive effects on stimulated  Peripheral Blood Mononuclear Cells (PBMCs)   and  T cells   
in conjunction with upregulation of inhibitory costimulatory molecules PD-L1 and 
PD-L2 (Kronsteiner et al.  2011 ). 
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 In an attempt to delineate the factors and mechanisms responsible for the immu-
noregulatory activities of human AMSCs, Rossi et al. recently showed that nonpro-
teinaceous small compounds with chemical–physical nature of prostaglandins are 
mainly responsible for antiproliferative property of AMSCs, since protease treat-
ment of CM of AMSCs did not signifi cantly reduce the antiproliferative capacity of 
these cells on CD3-stimulated T cells (Rossi et al.  2012 b). Indeed, these small  mol-
ecules   were involved neither directly nor indirectly in the production of other inhibi-
tory molecules such as  indoleamine 2,3-dioxygenase (IDO)   and  nitric oxide (NO)   
synthase (Rossi et al.  2012 b). Nonetheless, upregulation of IDO and NO in AMSCs 
following coculture with stimulated PBMCs is a matter of debate as it was also 
reported that production of  hepatocyte growth factor (HGF)  , TGF-b,  prostaglandin 
E2 (PGE2)  , and IDO increased signifi cantly in human AMSCs cocultured with 
 PBMCs   ( Kang et al. 2012c ). Such discrepancy may in part be attributed to the dif-
ferent stimulation strategy employed in these two reports (Kronsteiner et al.  2011 ). 

 Besides inhibitory activity on  T cell   proliferation, AMSCs were also found to 
skew development of T cell subsets and related cytokine profi le. It has been recently 
reported that CM of human AMSCs signifi cantly reduced the expression of TH1 
(T-bet+CD119+) and TH17 (RORγt+CD161+) markers, while had no effect on 
TH2 cells (GATA3+CD193+/GATA3+CD294+cells). Such inhibitory effect was 
concomitant with a signifi cant decrease of TH17 (IL-17A, IL-22) and TH1-related 
(TNFα,γ, IL-1β) (Pianta et al.  2015 ) Surprisingly, they also found that such inhibi-
tory action on cytokine production by T cells is not restricted to TH1 or TH17 cells 
and cytokines related to the TH2 (IL-5, IL-6) and TH9 (IL-9) are also negatively 
affected by culture supernatant of human AMSCs. Nonetheless, it increased pro-
duction of IL-10 and IL-13 (Pianta et al.  2015 ). An increase in production of 
IL-10 in secondary MLR by fetal  MSCs   (derived from either amniotic membrane or 
amniotic fl uid) has been also reported by Rolelen et al., where they observed that 
inhibition of  MLR   response is restored by anti-IL-10 indicating that inhibitory 
effect of AMSCs is in part mediated through IL-10 (Roelen et al.  2009 ). By con-
trast, it was reported that coculturing  PBMCs   and  IFN-γ  -treated human AMSCs 
caused downregulation of IL-13 and IL-10 (Kronsteiner et al.  2011 ). Whether or not 
such discrepancy could be attributed to the differential action of AMSCs in cell–cell 
contact-dependent or -independent conditions and also whether pretreatment with 
IFN-γ is a prerequisite for induction of IL-10 and IL-13 by AMSCs need to be 
elucidated. 

 Regulatory  T cells   ( Tregs  ) have a potent immunomodulatory activity and main-
tain immunological tolerance to self-antigens and transplanted tissues (Josefowicz 
et al.  2012 ). One hallmark of AMSCs is their ability to induce Tregs. In line with 
this notion, it was observed that CM from human AMSCs markedly induced Tregs 
as shown by proliferation of CD25+FOXP3+ cells in the CD4+ population. Indeed, 
induction of Tregs was documented by increased secretion of TGF- b   and IL-13 in 
the coculture of allogeneic-activated T cells with CM-human AMSCs (Pianta et al. 
 2015 ). Similar effect has also been attributed to placental-derived  MSCs   showing 
that these cells are able to threefold increase in the proportion of Tregs in PHA- 
stimulated T cells (Chang et al.  2006 ). 
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 Besides fundamental  immunoregulatory effects   that AMSCs exert on adaptive 
arm of immune system, these cells also have profound regulatory activity on innate 
immune system and in this context  dendritic cells (DCs)   as the most important 
immune cells linking the innate and adaptive immune systems have drawn much 
attention due to their central regulatory role in induction of immunity or tolerance 
(Albert et al.  2001 ). The latter is basically infl uenced by maturation and activation 
state of DCs and also the nature of microenvironment (Lutz and Schuler  2002 ; 
Steinman et al.  2003 ). Therefore, factors controlling DCs maturation state and/or 
cytokine microenvironment affect the outcome of a graft after transplantation. In a 
study by Magatti et al., it was reported that mesenchymal cells derived from amni-
otic membrane cause G0 arrest and inhibit differentiation and maturation of periph-
eral blood monocytes as judged by downregulation of CD1a, MHC-II, CD83, and 
CD80. Such effect resulted in diminished allostimulatory potential of these cells on 
allogeneic  T cells   and impaired production of such proinfl ammatory cytokines and 
chemokines and TNF-α, CXCL10, CXCL9, and CCL5 (Magatti et al.  2009 ). 
Interestingly, AMSCs predominantly exerted their inhibitory effect in the course of 
monocyte to immature DCs differentiation, while had only minimal effect of transi-
tion of immature DCs to mature DCs (Magatti et al.  2009 ). Such differential effect 
has also been reported for  MSCs   derived from menstrual blood (Bozorgmehr et al. 
 2014 ). Obviously, AMSCs share this impairing activity on DCs generation and mat-
uration with MSCs originated from other sources including menstrual blood 
(Bozorgmehr et al.  2014 ), bone marrow (Beyth et al.  2005 ; Chen et al.  2007 ; 
Ramasamy et al.  2007 ; Li et al.  2008a ), fetal lung and bone morrow (Nauta et al. 
 2006 ), and amniotic epithelial cells (Banas et al.  2014 ). AMSCs were also found to 
produce high levels of TH2-related cytokines, CCL2, CXCL8, and IL-6, the latter is 
known to inhibit differentiation of monocytes to  DCs   (Menetrier-Caux et al.  1998 ). 
One other mechanism through which AMSCs induce generation of tolerogenic  DCs   
stems from their high expression levels of  HLA-G   which is a well-established path-
way known to arrest maturation and activation of DCs (Ristich et al.  2005 ). The 
tolerized DCs could in turn induce  Tregs   leading to control of ongoing immune 
responses. 

  NK cells  , as effector cells of innate immune system responsible for cytolysis of 
virally infected or cancer-modifi ed cells have also been studied for their being 
affected by modulatory action of AMSCs. In terms of transplantation, NK cells are 
involved in both graft tolerance and rejection depending on their activation status 
(Murphy et al.  2011 ). Such opposing effects are mainly dictated by fi ne tuning of 
cell surface receptors signaling in an either activatory or inhibitory manner (Vivier 
et al.  2008 ). It was reported that AMSCs could signifi cantly inhibit NK-mediated 
cytolysis of K562 cells through downregulation of NKp30, NKp44, NKp46, 
NKG2D, and CD69, which are involved in the NK cytotoxicity. In parallel coculture 
of AMSCs with NK cells resulted in an increased expression levels of IL-10 and 
PGE2 (Li et al.  2015 ), two known mediators responsible for immunoregulatory 
function of MSCs derived from other sources (Kyurkchiev et al.  2014 ). Interestingly, 
the same authors showed that reduced NK cytotoxicity following interaction with 
AMSCs is reversible implying that decreased NK cytotoxicity is not due to damage 
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of NK cells treated with AMSCs (Li et al.  2015 ). These results are in accordance 
with those published earlier showing that BMSCs inhibit cytokine-induced prolif-
eration and effectors function of freshly isolated NK through inhibitory activity of 
 IDO   and  PGE2   and downregulation of activating signals (Spaggiari et al.  2008 ). 

 Although there are a limited number of publications on immunomodulatory 
effects of AMSCs, the published data confi rm the concept that this cell type as with 
MSCs from other sources exhibit strong immunomodulation on different arms of 
immune system. Taken together, the present data suggest that AMSCs exert immu-
nomodulatory effects through inhibition of  T cell   proliferation, skewing cytokine 
profi le toward TH2 immunity, inhibition of generation, and maturation of  DCs   and 
NK cells. Such features along with their low immunogenic profi le make AMSCs an 
attractive source for cell transplantation approaches, controlling graft rejection and 
modulation of infl ammatory processes in autoimmune  diseases  .  

10     Regenerative Properties of AMSCs:  Preclinical Studies      

  Regenerative medicine   is a novel fi eld based on the cell therapy approach to gener-
ate biological substitutes and improve tissue functions (Toda et al.  2007 a). As we 
described here, AMSCs are an attractive and accessible  stem cell   source with the 
immunomodulatory characteristics, anti-infl ammatory and nontumorigenicity 
effect, thus introduce them as suitable candidate for cell therapy and regenerative 
medicine application (Maruyama et al.  2013 ; Resca et al.  2015 ). For cell adminis-
tration into the patient, it is required that clinically high cell numbers with appropri-
ate quality be achieved within a very limited time (Pirjali et al.  2013 ). This 
circumstance will be fulfi lled via the prolonged capacity for proliferation of AMSCs 
in vitro. Preclinical studies in small animal models have provoked great promise to 
restore functions of injured tissues in spinal cord injury, lung and liver fi brosis, 
severe colitis, cerebral ischemia, diabetes, and myocardial infarction posttransplan-
tation of  AMSCs  . The most studies on therapeutic potential of AMSCs were carried 
out in treatment of neurological disorders (Table  2 ). In particular, stroke has been a 
major target disease for testing the effi ciency of transplantation of AMSCs. In a 
study, EGFP (enhanced green fl uorescence  protein  )-labeled and BDNF overex-
pressing human  AMSCs   were transplanted into the ischemic rat brain after middle 
cerebral artery occlusion. It was observed that the graft integrated and migrated in 
the rat brain and could express MAP-2 protein after transplantation. In addition, the 
graft signifi cantly decreases behavioral dysfunction and infarct size (Tao et al. 
 2012 ). Signifi cant recovery in neurological behavior was also detected in the focal 
cerebral ischemia model treated with BrdU-labeled AMSCs transplantation com-
pared with the controls (Li et al.  2012 ).

   In another study, effects of intravenous administration of human AMSCs into a 
SOD1 mouse G93A models for treatment of  Amyotrophic lateral sclerosis (ALS)   
between 12 and 16 weeks were investigated. Human AMSCs transplantation 
through systemic delivery can ameliorate the phenotype and prolong the lifespan of 
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ALS mice. These cells delay disease progression, extend survival, and improve 
motor behavior. In addition, transplanted cells prevent motor neuron loss and 
decrease neuroinfl ammation (Sun et al.  2014 ). 

 Spinal cord injury is one of the common destructive injuries that could take prof-
its from stem cell therapy using AMSCs. One study in 2014 was undertaken to 
assess the combinatory therapy of administering clinical dose of  methylpredniso-
lone (MP)   and grafting AMSCs after rat spinal cord injury. According to data, 
AMSCs or MP treatment alone was not effective to inhibit the endogenous cells and 
the grafted cells apoptosis, while, the numbers of apoptotic cells and the levels of 
the bax and caspase-3 were typically reduced in the combination therapy group. 
Therefore, the combination therapy sounds to be a potential strategy for reducing 
secondary damage and promoting functional recovery following spinal cord injury 
(Gao et al.  2014 ). 

 Furthermore, it has demonstrated that AMSCs transplantation is a promising 
alternative therapeutic option to treat peripheral neuropathy. In this line, the higher 
expression of angiogenic factors was detected after AMSCs transplantation into the 
mice with sciatic nerve injury. In addition, AMSCs increase blood perfusion and 
vascularization of nerves (Li et al.  2014 ). 

 Besides neurological disorders, effi ciency of AMSCs in treatment of cardiovas-
cular diseases has been documented. Some studies reported that  AMSCs   possess 
high angio-vasulogenic properties. The  angiogenic   potential of the human AMSCs 
was fi rst assessed in a mouse hind limb  ischemia model  . The mice that received the 
AMSCs had normal hind limb appearance with no autoamputation compared to 
mice that received  phosphate-buffered saline (PBS)   after severe ischemic damage. 
Additionally the analysis showed that the cutaneous blood fl ow and vascular den-
sity were increased in the intramuscular injection of cultured  AMSCs   compared to 
PBS group (Kim and Choi  2011 ). 

 Furthermore, the effectiveness of AMSCs transplantation in improvement of 
cardiac function and angiogenesis after myocardial infarction has been indicated. 
In the study by Kim et al., in 2013, AMSCs were directly transplanted into the bor-
der sections of ischemic heart tissue postmyocardial infarction in NOD/SCID mice 
that resulted to ameliorate left ventricular function, capillary density, angiogenic 
cytokine levels, angiopoietin (Ang)-1, and VEGF-A levels in affected tissue. They 
suggested that AMSCs contain chemotactic capabilities that can improve ischemic 
heart through enhanced paracrine and engraftment factors (Kim et al.  2013b ). 

 In addition,  angio-vasculogenic effect   of AMSCs has been shown in ischemic 
hind limbs of mice. It has been suggested that AMSCs posttransplantation sponta-
neously differentiate into vascular-like structures and express endothelial-specifi c 
genes and proteins including Ang-1 and VEGF-A involve in neovascularization 
(Kim et al.  2012 ). Likewise, the safety and effi cacy of porcine AMSCs transplanta-
tion in a swine model of chronic myocardial ischemia was reported by Kimura et al. 
Based on the results of echocardiography and histology, left ventricular ejection 
fraction was signifi cantly improved and left ventricular dilatation was well attenuated 
and also percentage of fi brosis tissue in impaired myocardial reduced in animals after 
AMSCs administration compared to normal saline injection (Kimura et al.  2012 ). 
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Moreover, it has been indicated that AMSCs regenerate heart tissue, improve 
impaired left ventricular fractional shortening, and decrease myocardial fi brosis 
area after ischemic injury in rat model. It was suggested that the in vivo niche 
induces the cardiac differentiation of transplanted PKH26-labeled human  AMSCs   
in scar tissue of infracted heart (Zhao et al.  2005 ). These results open the possibility 
that AMSCs could be a highly promising cell population for cell therapy of human 
ischemic cardiovascular diseases. 

 There are some reports implying effi ciency of  AMSCs   administration in treat-
ment of different diseases related to digestive tract. AMSCs transplantation signifi -
cantly ameliorated the disease activity index score, weight loss, colon shortening, 
and the histological colitis score in rats with severe colitis. Moreover, the AMSCs 
transplantation signifi cantly decreased expression levels of TNF-α, IL-1β, and mac-
rophage  migration inhibitory factor (MIF)   in the rectums as well as the infi ltration 
of monocytes/macrophages and serum levels of  monocyte chemoattractant protein-
 1 (MCP-1)   (Onishi et al.  2015 ). 

 Human AMSCs have also been evaluated as a treatment for liver fi brosis. Zhang 
et al. have reported that the transplantation of AMSCs signifi cantly decreased 
hepatic fi brosis and progression of CCL4-induced cirrhosis, thereby providing a 
new approach for the treatment of fi brotic liver disease (Zhang et al.  2011 ). 
Furthermore, AMSCs are able to restore normoglycemic experimental diabetic 
mice. In one study, AMSCs were differentiated into functional pancreatic lineage 
and encapsulated in polyurethane–polyvinylpyrrolidone macrocapsules. 
Transplantation of these structures into diabetic mice could regulate insulin secre-
tion and give back glucose level (Kadam et al.  2010 ). 

 In addition, these cells are applicable for the restoration of tissue damage 
associated with infl ammatory and fi brotic degeneration. In this line, a clear 
decrease in neutrophil infi ltration and a signifi cant reduction in the severity of 
bleomycin- induced  lung fi brosis   in mice treated with AMSCs were reported 
(Cargnoni et al.  2009 ). 

 Therefore, the current fi ndings support the feasibility of AMSCs in clinical  cell 
therapy   of various diseases especially neurological and cardiovascular disorders, 
and hold promise in application of these cells as an “off-the-shelf” product. While 
low immunogenicity, ethical restrictions, and pluripotency of AMSCs make these 
cells suitable for clinical application, already, there are no reports about clinical cell 
therapy using AMSCs. Maybe to exert benefi cial effects of  AMSCs  , more evalua-
tion in larger animal models especially in comparison with other conventional stem 
cells such as  BMSCs   is required. Nevertheless, molecular mechanisms of AMSCs 
effectiveness in improvement and regeneration of injured tissues have been remained 
to investigate. However, these cells may produce progenitor cells to generate dif-
ferentiated cells in vivo. On the other hand, the in vivo regenerative ability of these 
cells might be attributed to paracrine signaling impact of growth factors, cytokines, 
and other trophic and anti-infl ammatory factors secreted by  AMSCs   on injured or 
damaged tissues.  
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11     Conclusion and Remarks 

 In this chapter, we have delineated that mesenchymal stem cells isolated from 
human amniotic membrane have characteristics that would introduce them as a suit-
able candidate for  cell therapy   goals. Unlimited availability of  fetal membranes   and 
their easy procurement, which are routinely discarded postpartum, allows isolating 
large number of stem cells from this tissue with short population doubling time. In 
addition, nonteratogenicity, anti-infl ammatory and antifi brotic effects and immuno-
modulatory properties, less ethical controversy, and great multipotency make 
AMSCs extremely attractive and useful for stem cells therapy even in allogeneic 
cellular therapies and open a wide perspective of potential clinical applications 
(Fig.  3 ). Although, there is no report about clinical trial of AMSCs administration 
for treatment of different diseases, the fi ndings of animal studies indicate that human 
AMSCs can survive in grafts and may produce progenitor cells to generate adult 
cells. The molecular mechanisms responsible for their regenerative and immuno-
modulatory effects have been remained to investigate. However, the most probable 
mechanism may be through the release of  cytokines   and other growth-promoting 
factors. Furthermore, to translate the results of animal studies into clinical phase, 
further long-term researches in large animal models of diverse diseases are required 

  Fig. 3    A comprehensive diagram about past, present, and future works on AMSCs. By having a 
glance look at this descriptive image, perspective of studies on AMSCs application in the fi eld of 
regenerative medicine will be assigned       
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to assure safety of AMSCs administration in clinical step. Along with stem cell 
therapy, one application of these cells could be tissue engineering that have been  
scantly proceed. In a comprehensive view, gathered information about characteristics 
of AMSCs in terms of critical points for cell therapy would allow researchers and 
clinicians to get better insights for choosing suitable cell source for cell therapy 
purposes.
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  Tra-1-60     Tumor-rejection antigens-1-60   
  Tra-1-81     Tumor-rejection antigens-1-81   
  VEGF     Vascular endothelial growth factor   

1         Amniotic Fluid: Novel Source of Stem Cell 
with Therapeutic Application 

  Amniotic fl uid (AF)   that is delimited by a membrane called amnion is constituted 
by around 98 % of water. This fl uid is produced between day 7 and 14 postfertiliza-
tion and its volume elevates by different mechanisms including fetal urine produc-
tion, and oral, nasal, tracheal and pulmonary fl uid secretions, and fetal swallowing. 
Amniotic fl uid mediates a dynamic environment, which allows the fetus to grow 
and move inside the uterus and prevents the fetus from attachment to the developing 
fetal membranes. In addition, it acts as a vehicle for the exchange of proteins, car-
bohydrates, lipids, electrolytes, enzymes, hormones, and growth factors between 
the mother and embryo, and is vital for the development of some organs such as 
lungs (Pozzobon et al.  2014 ). 

 Due to contact of amniotic fl uid to the fetus during development and its impor-
tant roles, this fl uid has been applied in order to detect fetal abnormalities since 
6 decades ago (Gholizadeh-Ghalehaziz et al.  2015 ). Although in humans adequate 
DNA can be extracted from amniotic fl uid from 8 weeks’ gestation onward and 
these samples are suitable for prenatal diagnosis, amniocentesis is usually per-
formed after 15 weeks of gestation since earlier sampling is associated with abnor-
malities of limb development (Odibo et al.  2008 ). 

 Human amniotic fl uid samples are readily available, noncontroversial, and rou-
tinely obtained during the second trimester of pregnancy by scheduled amniocente-
ses under ultrasonographic guidance with a less than 1 % rate of fetal loss together 
with facile storage at minimum cost and use in the standard evaluation of fetal pul-
monary maturity, metabolic diseases, fetal infections, and intrauterine infections. 
These tests have recently been complemented by applying chromosomal microarray 
as a more effi cient prenatal genetic screening tool to detect fetal abnormalities 
(Rennie et al.  2012 ). 

 It is noticeable that AF cells procured after prenatal diagnostic testing provide 
clinically important information about the fetus (Kim et al.  2014 ). These cells could 
be stored in cell banks and used in disease research, drug screening, and genetic 
disorders (Gholizadeh-Ghalehaziz et al.  2015 ). 

 The AF  cells   are mainly composed of subpopulations of adherent cells that vary 
in proportion according to gestational age and calcifi ed based on their growth, mor-
phology, behavior, and biochemical characteristics that are derived from the three 
germ layers. About 33.7 % of AF cells are composed of epithelioid (E-type) cells 
that are cuboidal to columnar and are derived from the fetal skin and urine. Amniotic 
fl uid (AF-type) cells are originating from the membranes and trophoblast (60.8 % 
of AF cells), and fi broblastic (F-type) cells are generated mainly from fi brous 
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connective tissue and dermal fi broblasts (5.5 %) (Pozzobon et al.  2014 ; 
 Gholizadeh- Ghalehaziz et al.  2015 ; Loukogeorgakis and De Coppi  2016 ). During 
the early days of amniotic fl uid cell culture, both E-and AF-type cells appear. 
AF-type cells are the dominant cell type and coexpress keratins and vimentins and 
have a fi broblastoid morphology that remain throughout the culture period, while 
E-type cells soon disappear. F-type cells usually appear during late primary culture 
and possess fi broblastoid morphology, phenotypic, and differentiation characteris-
tics similar to bone marrow mesenchymal stem cells ( BMSCs  ) (Eslaminejad and 
Jahangir  2012 ; Roubelakis et al.  2012 ). 

 Amniotic fl uid stem cells ( AFSCs  ) can be easily obtained from a small amount 
of second trimester AF without destroying a human embryo, thus eliminating many 
ethical controversies associated with the application of human embryonic stem cells 
( ESCs  ) and necessity for application of invasive methods for bone marrow aspira-
tion (Roubelakis et al.  2012 ; Koike et al.  2014 ; Iordache et al.  2016 ). Isolation and 
identifi cation of AF cells goes back to the early 1990s (Streubel et al.  1995 ). 
However, fi rst progenitor cells derived from amniotic fl uid were reported in 1993 
(Torricelli et al.  1992 ). Later, the scientists could indicate the existence of a small 
population of expanding cells in human amniotic fl uid expressing pluripotent stem 
cells and/or mesenchymal stem cells ( MSCs  ) markers with multilineage differentia-
tion capacity (De Coppi et al.  2007 ). The isolation and culture of amniotic fl uid 
 MSCs   from weeks 16 to 20 of pregnancy was a great achievement in 2004 that made 
human amniotic fl uid stem cells fascinating for future application to replace dys-
functional cells in myriad of diseases, including Parkinson’s and Alzheimer’s dis-
eases, heart diseases, diabetes, stroke, spinal cord  injuries  , and burns (Kim et al. 
 2014 ; Eslaminejad and Jahangir  2012 ).  

2        Characteristics of Stem Cell Population in Amniotic Fluid 

 The great self-renewal potential of  AFSCs   mediates a great opportunity for expan-
sion of these cells appropriate for clinical demand. According to the reports, in each 
milliliter of AF, there is an average of 100,000 cells with 60–90 % viability 
(Dziadosz et al.  2016 ) that generate a large number of cells (2–4 × 10 8 ) from a single 
cell clone after only nine passages (Rennie et al.  2013 ).  AFSCs   divide and double 
in an average of 36 h with high proliferative capacity without feeder layers 
(Loukogeorgakis and De Coppi  2016 ; Dziadosz et al.  2016 ; Edwards and Hollands 
 2007 ). These cells maintain their karyotypic stability and long telomeres and remain 
diploid after 250–300 generations and have normal G1 and G2 cell cycle check-
points (Rennie et al.  2012 ; Kim et al.  2014 ). In addition, there is no report about 
tumor formation or malignant change or other abnormalities after implantation of 
these cells to animal models (Pozzobon et al.  2014 ; Martinelli et al.  2016 ; Sessarego 
et al.  2008 ). These data imply the safety of these cells for clinical application. 

  AFSCs   are a stem cell population with intermediate characteristics between embry-
onic and adult stem cells (ASCs). Human  AFSCs   were identifi ed for expressing of 
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pluripotency markers such as OCT-4, alkaline phosphatase, c-kit, SOX-2, Nanog, 
KLF-4, WDR-5 (a key factor that interact with OCT-4), c-MYC, Rex-1, cyclin A, and 
 SSEA-4   (stage-specifi c embryonic antigens-4). In addition, there are some controver-
sial reports about expression of SSEA-3, SSEA-1 (stage-specifi c embryonic antigens), 
Tra-1-60, and Tra-1-81 (tumor-rejection antigens) (Eslaminejad and Jahangir  2012 ; 
Iordache et al.  2016 ; Dziadosz et al.  2016 ). Moreover, they present typical cell surface 
mesenchymal markers such as CD15, CD44, CD29, CD9, CD73, CD90, CD105, 
CD166, CD49e, CD58, CD133, vimentin, intercellular adhesion molecule-1 (ICAM-
1), and the histocompatibility protein HLA-class I. However, they do not express 
markers of the hematopoietic lineage such as CD45, CD34, CD14, CD11b, CD79, 
T-cell coreceptors markers of CD8, and CD4, the endothelial marker such as CD31, 
CD144, von Willebrand, KDR, the epithelial marker of CD326 (Eslaminejad and 
Jahangir  2012 ; Iordache et al.  2016 ; Dziadosz et al.  2016 ; Edwards and Hollands 
 2007 ; Martinelli et al.  2016 ; Mareschi et al.  2009 ), and cell surface markers associated 
with rejection including the  histocompatibility   protein HLA-class II, CD80, CD86, 
and CD40 (Fig.  1 ). This result suggests that they lie somewhere between  ESCs   and 
ASCs on the developmental continuum and could reduce the risk of rejection and graft 
versus host disease (GVDH) (Sessarego et al.  2008 ; Chun et al.  2015 ).

   In addition, costaining of more than 75 % of  AFSCs   with at least two of the sur-
face proteins such as SOX-17 endodermal marker, SM 22a  mesodermal marker 
(smooth muscle), and Tubb-3 ectodermal marker (neuronal) refl ect their broad dif-
ferentiation potency (Pozzobon et al.  2014 ). 

 Another important feature of these cells is that they express markers of neural 
lineage, such as Nestin (an intermediate fi lament protein expressed by neural stem 
or progenitor cells), TUBB3 (a neuronal cytoskeletal dimer), NEFH (a marker of 
neurofi lament located primarily in the cytoplasm of mature neurons), GFAP (a 
structure element of fi brillary astrocytes), NEUNA60 (a marker for early neurons), 
GALC (a marker for oligodendrocytes), Brn-2 (pou3f2), and Neurofi lament, sug-
gesting that distinct populations of  AFSCs   may have capacity to differentiate into 
neural lineage (Rennie et al.  2012 ; Tsai et al.  2006 ). 

 However, they did not express C-MET or hepatocyte growth factor receptor 
( HGFR  ), ABCG2 or CDw338, neural cell adhesion molecule ( NCAM  ) or CD56, 
cytokeratin, and bone morphogenetic protein-4 (BMP-4) (Joo et al.  2012 ). 

 Therefore,  AFSCs   are an attractive cell source due to a number of fascinating 
features, including no legal considerations associated with their collection, reduced 
donor damage, lack of ethical concerns and restrictions, capacity of in vitro expan-
sion and self-renewal in culture, lack of immune reactions when administered 
in vivo due to the absence of MHC-II surface antigens and immunosuppressive and 
immunomodulatory activities, absence of teratocarcinomas formation when 
implanted into recipients, lack of karyotypic abnormalities and maintenance of long 
telomeres despite the high  proliferative   potential, broad differentiation potency, and 
high tolerating cryopreservation (Chun et al.  2015 ; Joo et al.  2012 ). These charac-
terizations represent a great alternative source to embryonic and adult stem cells for 
use in regenerative medicine and clinical applications.  
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3      Amniotic Fluid Stem Cells   As a Candidate Source 
for Regenerative Medicine 

 Regenerative medicine involves the use of living cells to repair and restore normal 
function to damaged tissues. Due to stem cells capacities for self-renewal and dif-
ferentiation into diverse mature progeny, they are viewed as promising candidates 
for use in cell-based therapies over the past few years. However, the source of stem 
cells, in order to maximize the safety and effi cacy of tissue engineering and cell- 
based therapies, is clearly of great importance (Sessarego et al.  2008 ). 

  Fig. 1    The expression pattern of pluripotent, mesenchymal, hematopoietic, and immunologic 
markers in  AFSCs         
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 Characterizations, including high proliferation rate and multilineage differentia-
tion capacity into adipogenic, osteogenic, chondrogenic, myogenic, neurogenic, 
epithelial, hepatocyte, insulin secreting pancreatic β-cells, and endothelial cell lin-
eages, have raised  AFSCs   as a promising alternative source of cells for use in regen-
erative therapies. The major advantage of  AFSCs   is that potential cells can be 
obtained as early as the second trimester of gestation, providing a chance/time win-
dow for autologous transplantation back into the same fetus as a cell or cell-based 
gene therapy. In addition,  AFSCs   can be stored for further postnatal use with autolo-
gous stem cell origin, pre- and postnatal autologous transplantation (Shaw  2014 ). 

 Several studies indicated that  AFSCs   exhibit signifi cant plasticity and can be dif-
ferentiated in vitro toward different lineages, including adipogenic, osteogenic, 
chondrogenic, skeletal muscle, endothelial, neurogenic, and hepatogenic lineages 
(Iordache et al.  2016 ; Martinelli et al.  2016 ; Joo et al.  2012 ). 

 In addition,  AFSCs   have been extensively examined in a variety of experimental 
models of injuries and diseases in preclinical  studies   over the past decade (Rennie 
et al.  2013 ). However, there is no report about clinical trial of  AFSCs   administration 
for treatment of diseases. Hereby, to get insights about therapeutic applications of 
 AFSCs   for regenerative medicine, we reviewed the studies on  AFSCs   in preclinical 
disease models such as musculoskeletal, neurological, respiratory system, cardio-
vascular, and urinary system disorders, and diaphragmatic hernia repair in neonates 
or adults. 

3.1     Musculoskeletal System 

 Bone regeneration using stem  cells      is a developing technology that has been inves-
tigated by different groups. Already, the ability of human  AFSCs   to produce miner-
alized matrix in conditioned porous scaffolds holds promise for generation of an 
applicable artifi cial construct for bone regeneration (Edwards and Hollands  2007 ; 
Martinelli et al.  2016 ; Mareschi et al.  2009 ). In this regard, it has been shown that 
three-dimensional scaffolds containing  AFSCs   could produce highly mineralized 
bone tissue 8 weeks following transplantation into mice (Murphy and Atala  2013 ). 
In addition, Maraldi et al. demonstrated the capacity of these cells in repairing of 
critical size femoral rat defect after seeding preconditioned  AFSCs   in starch-poly-(e 
caprolactone) ( SPCL  ) scaffolds. Moreover,  AFSCs   could restore critical size cranial 
bone defects in immunocompromised rats after implantation of silk fi broin scaf-
folds seeded with predifferentiated  AFSCs   (Maraldi et al.  2011 ; Riccio et al.  2012 ). 
On the other hand, several studies presented evidence about this matter that mesen-
chymal cells derived from amniotic fl uid could be used for repair of cartilage defects 
and tendon injuries (Rodrigues et al.  2012 ; Kunisaki et al.  2006 ). Kunisaki et al. 
studied the potential of ovine  AFSCs  /GFP + -seeded polyglycolic acid polymer mesh 
(PGA) to repair either partial or full circumferential tracheal defects in allogeneic 
fetal lambs. They concluded that engineered cartilaginous grafts containing  AFSCs   
may become a viable alternative for tracheal reconstruction (Kunisaki et al.  2006 ). 
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These  reports   demonstrate that  AFSCs   are a valuable stem cell population for future 
therapies of osteochondral defects. Moreover, the ability of  AFSCs   to differentiate 
into skeletal myogenic cells persuaded several preclinical studies to evaluate the 
therapeutic potential of xenogeneic and allogeneic  AFSCs   in vivo as a tool for the 
treatment of degenerative skeletal muscle disorders such as Duchenne muscular 
dystrophy and trauma. The incorporation of differentiated AF type of human  AFSCs   
into skeletal myogenic cells in regeneration of irradiated tibialis anterior muscle of 
mice has been reported by a group of Chinese researchers. Moreover, tail vein trans-
plantation of allogeneic  AFSCs   in mouse muscular dystrophies model enhanced the 
muscle strength and animals’ survival rate (Piccoli et al.  2012 ). In addition, it has 
been demonstrated that GFP-labeled allogeneic  AFSCs   could represent a valuable 
tool for preclinical studies, shown by 1-month survival within the host tissue and 
enhancement of early phase tendon healing in ovine Achilles tendon defect 
(Colosimo et al.  2013 ).  

3.2      Neural System   

 A major goal of regenerative medicine is to ameliorate irreversible destruction of 
brain tissue by utilizing stem cells to control the process of neurogenesis. Aside 
from the common mesenchymal lineages, cultured  AFSCs   have also been success-
fully differentiated into neuron-like cells (Tsai et al.  2006 ; Cheng et al.  2010 ; Pan 
et al.  2007 ; Prasongchean et al.  2011 ). 

 Animal models with human  AFSCs   have been used to study neurodegenerative 
diseases. In fact, the transplanted stem cells migrated toward areas of damaged neu-
ral tissue and resulted in symptomatic improvement (Dziadosz et al.  2016 ). In this 
line, when  AFSCs   injected into lateral cerebral ventricles of newborn mice, cells 
participated in the growth of the central nervous system by 1-month postinjection 
(Edwards and Hollands  2007 ). In addition, when  AFSCs   induced to neural lineage 
in presence of specifi c growth factor and implanted in rat, cells contributed to heal-
ing of neuronal degenerative (Eslaminejad and Jahangir  2012 ). Pan et al. showed 
that injection of embedding rat  AFSCs   in fi brin glue to the crushed sciatic nerve of 
rat model could regenerate nerve injury (Pan et al.  2007 ). Likewise, transplantation 
of matrigel containing induced human  AFSCs   with glia cell line-derived neuro-
trophic factor (GDNF) into the injured sciatic nerve of rats promoted nerve regen-
eration (Cheng et al.  2010 ). It has been indicated that 70 % of grafted  AFSCs   into 
the lateral cerebral of mice model with neurodegeneration could  survive  ; therefore 
 AFSCs   are recommended for novel therapies in diseases of the central nervous sys-
tem (Joo et al.  2012 ). Some authors suggested that regenerative effect of AMSCs is 
associated with the secretion of paracrine factors rather than the ability of  AFSCs   to 
fully differentiate into neuronal cells. In this line, it has been indicated that grafting 
of differentiated rat GFP + c-kit +   AFSCs   into neuronal cells at the site of an extensive 
thoracic crush injury in E2.5 Chick embryos caused signifi cant hemorrhage reduc-
tion and survival increase (Prasongchean et al.  2011 ). Furthermore,  AFSCs   have the 
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potency to heal ischemic stroke. It has been shown that intracerebroventricular 
administration of  AFSCs   had a signifi cant neuroprotective effect and reduced 
behavioral brain disorders in mouse model of ischemic stroke (Murphy and Atala 
 2013 ). Therefore, it is hoped that the benefi cial effects of  AFSCs   gradually transit 
into clinical application and pave the way for potential treatments of diseases such 
as stroke, Parkinson, Alzheimer disease, and spinal injuries.  

3.3      Urinary System   

 Stem cell-based therapy is a promising avenue for curing kidney injury; however, 
the investigations for fi nding out the most suitable stem cell source have been con-
tinued.  AFSCs   may represent a promising candidate to treat kidney injury as they 
demonstrate renoprotective effects postinjury via the secretion of promitotic, anti-
apoptotic, anti-infl ammatory, and immunomodulatory factors. These cells could 
stimulate the proliferation of tubular cells via the local release of factors, including 
interleukin-6, VEGF, and stromal cell-derived factor-1. It is demonstrated that infu-
sion of human  AFSCs   in cisplatin-treated mice improves renal function and limited 
tubular damage. In addition, human  AFSCs   provide a protective effect by decreas-
ing creatinine and BUN blood levels (Perin et al.  2010 ). The mechanisms governing 
the curing and protective effects of  AFSCs   are remained to clarify, however, it is 
indicated that  AFSCs   pretreatment with glial cell line-derived neurotrophic factor 
(GDNF) could enhance stem cell homing to the tubule interstitial compartment and 
ameliorate renal function and tubular injury (Rota et al.  2012 ). Moreover, it has 
been reported that  AFSCs   provide a protective effect through inhibition of the renin–
angiotensin system, ameliorating acute tubular necrosis in mouse model (Sedrakyan 
et al.  2012 ). Furthermore, the antiapoptotic activity of  AFSCs   against renal tubular 
cells has been reported more potent in comparison with  BMSCs  , but stimulatory 
activity for the proliferation of renal tubular cells is more dominant in  BMSCs  . In 
fact,  AFSCs   and  BMSCs   express distinct sets of paracrine factors, impressing their 
 activities   in vivo (Hauser et al.  2010 ). 

 Recently, a three-dimensional chimeric organoid composed of  AFSCs   and mouse 
embryonic kidney cells was developed that could generate vascularized glomeruli 
and tubular structures after engraftment (Xinaris et al.  2016 ). Generating kidney 
organoids using these cells could offer promising prospects for therapeutic purposes 
of kidney injury. 

 Urinary incontinence, which is characterized by involuntary leakage of urine and 
has profound effects on quality of life (Corcos et al.  2002 ), might occur as a result 
of the damage of the external urethral sphincter and associated nerves after vaginal 
delivery, weight gain, diagnosis with diabetes, or other conditions which stretch the 
pelvic fl oor muscles (Rortveit et al.  2001 ; Deng  2011 ). Muscle-derived stem cells 
(MDSC) exhibit therapeutic potential for regeneration of striated muscle (Cannon 
et al.  2003 ; Yokoyama et al.  2000 ); however, its usage is restricted by complications 
associated with biopsy (Chun et al.  2012 ). Application of stem cells from amniotic 
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fl uid eliminates some limitations associated with the application of MDSCs. 
Preclinical studies demonstrated the safety and effi cacy of  AFSCs   in urinary incon-
tinence mouse model by cells injection to external urethral sphincter (Chun et al. 
 2012 ,  2014 ; Choi et al.  2015 ; Kim et al.  2012 ). Considering the signifi cant role of 
innervation and angiogenesis in regeneration of urethral sphincter, a research group 
proposed that combined cell therapy might be more effective (Chun et al.  2014 ). 
Triple cell combination of early differentiated  AFSCs   into muscle, neuron, and 
endothelial progenitor cells showed synergistic effects in mice urethral sphincter 
regeneration and improved urodynamic function and formation of new striated mus-
cle fi bers and neuromuscular junctions at the cell injection site compared to single- 
 cell   or double-cell combinations.  

3.4      Cardiovascular System   

 Nowadays, stem cell therapies have been fascinated as a possible treatment approach 
for fatal cardiovascular disease that does not respond to current medical therapies. 
There are some preclinical studies on cell therapy of ischemic and nonischemic 
cardiomyopathy using  AFSCs  . Chiavegato et al. ( 2007 ) was the fi rst group investi-
gating the ability of  AFSCs   to differentiate into cardiomyocytes (Chiavegato et al. 
 2007 ). It is demonstrated that systemic injection of human  AFSCs   diminishes the 
skeletal muscle atrophy in damaged cardiac rat by ameliorating apoptosis and 
expression of pro-infl ammatory cytokines (Castellani et al.  2013 ). In addition, sys-
temic injection of human  AFSCs   has therapeutic potential in acute myocardial 
infarction, which may be mediated through paracrine effectors such as the actin 
monomer-binding protein thymosin b4 (Tb4) that previously shown to be both car-
dioprotective and proangiogenic (Bollini et al.  2011 ). In this regard, direct cocul-
tures of  AFSCs   and neonatal rat ventricular myocytes (NRVM) have been a good 
strategy for in vitro pretreatment of  AFSCs   for further in vivo myocardial improve-
ment (Yeh et al.  2010 ; Guan et al.  2011 ). 

 Amniotic fl uid represents an attractive fetal cell source for pediatric cardiovascu-
lar tissue engineering. In this line, a heart valve leafl et construct composed of 
CD133 +   AFSCs   and a biodegradable polymer was developed, which showed near- 
native behavior under low-pressure conditions (Schmidt et al.  2007 ). 

 Furthermore,  AFSCs   have previously shown angiogenic potential and could be 
used in the prevascularization of engineered constructs and the treatment of isch-
emic disease. Besides the studies demonstrating endothelial differentiation  ability   
of  AFSCs   (Piccoli et al.  2012 ; Colosimo et al.  2013 ), AFSC-derived ECs ( AFSCs  - 
ECs) have been regarded as a cell source for therapeutic angiogenesis in a mouse 
hind limb ischemia model. It is suggested that matrix metalloproteinase of MMP-3 
and MMP-9 might activate angiogenesis by regulating vascular endothelial growth 
factor (VEGF) expressions, which are signifi cantly higher in  AFSCs  -ECs in com-
parison with control groups (Liu et al.  2013 ).  
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3.5     Skin 

 Evidence has  emerged   that  AFSCs   hold great potential in skin regeneration and the 
stem cell-based therapy of chronic wounds. Beside some reports about epithelial 
commitment of  AFSCs  , there is some evidence about effectiveness of  AFSCs   in 
wound healing. Yoon et al. ( 2010 ) provided the fi rst evidence on the potential of 
cultured  AFSCs   under the conditioned medium in wound healing. It is supposed 
that  AFSCs   signifi cantly enhanced wound healing by improving dermal fi broblasts 
proliferation and migration via the TGF-β/SMAD2 pathway (Yoon et al.  2010 ). 
Recently, Sun et al. showed that  AFSCs   provide considerable advantages in epider-
mal regeneration via secretion of B7H4 that creates a moderate infl ammation micro-
environment to promote intentional excisional wounds (Sun et al.  2015 ).  

3.6     Respiratory System 

 Respiratory  diseases   occur due to varied reasons with similar resultant of chronic 
infl ammation, fi brosis, scaring, and consequently loss of functional lung tissue. In 
an attempt to investigate the potential applications of  AFSCs   in patients with con-
genital diaphragmatic hernia or prematurity, it is demonstrated that early prenatal 
administration of  AFSCs   in a rat nitrofen model of pulmonary hypoplasia improves 
lung growth, bronchial motility, and innervations (Pederiva et al.  2013 ). Moreover, 
upon intravascular injection of  AFSCs   into the nude mice with hyperoxia-induced 
pulmonary injury, these cells migrated to the lung and expressed the human pulmo-
nary epithelial differentiation markers (Carraro et al.  2008 ). Recently, proof of 
 AFSCs   effi cacy in improvement of pulmonary injury impelled studies in engineer-
ing of respiratory tissues by integrating  AFSCs   with synthetic scaffolds or decellu-
larized  tissues   including lung (Vadasz et al.  2014 ).   

4      Modeling of Human Genetic Diseases   Using  AFSCs   

 Despite continuous increase in our knowledge about the genetic basis of a number 
of congenital and late-onset human diseases, so far a large majority of these condi-
tions still remain untreatable. This is largely due to the lack of information about the 
precise sequence of early molecular events occurring during tissue development and 
underlying the pathogenesis of the disease. The use of animal models for the study 
of the consequences of gene mutations during development, although able to pro-
vide useful information, does not produce results which can be entirely translated to 
humans. Indeed, due to the anatomical and physiological differences between the 
two species, animal models often are not able to completely represent the pathologi-
cal mechanisms underlying human diseases. Additionally, the differences in specifi c 
molecular pathways connecting genotype to phenotype between human and animal 
models raise another challenge. In this regard, the use of alternative models to study 
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human genetic diseases is more appreciated. In recent years, great interest has been 
devoted to the use of human cells for disease modeling and the best ones are so far 
the human pluripotent stem cells;  ESCs   and induced Pluripotent Stem cells (iPS), 
harboring naturally occurring disease-causing mutations and genomic aberration 
(Kobold et al.  2015 ). Since  ESCs   are obtained by the destruction of embryos, there 
are serious ethical objections that have yet to be resolved. On the other hand, despite 
major advances in iPS technology, reprogrammed cells often have an imperfectly 
cleared epigenetic memory of the source cells and are vulnerable to genomic insta-
bility (Ohi et al.  2011 ). Moreover, the protocol of iPS generation still suffers from 
technical limitations, low effi ciency, high costs, and lengthy procedure. Due to the 
limitations associated with  ESCs   and iPS cells, much effort has been directed at 
fi nding an alternative source of cells that are able to bypass the aforementioned criti-
cisms for use in regenerative medicine.  AFSCs   represent a potential alternative 
novel source of stem cells for modeling of human genetic diseases that rule out the 
above-mentioned drawbacks. In fact, by means of prenatal diagnosis using amnio-
centesis, the amniotic fl uid collected for genetic testing can be used for the isolation, 
culture, and differentiation of  AFSCs  . Additionally, banking of clonal  AFSCs   lines 
derived from  pregnancies   with specifi c genetic aberrations might be considered as a 
promising tool to model in vitro pathogenic phenotypes (Rosner et al.  2014 ). 
However, gene modeling by AFS cells would involve only genetic diseases cur-
rently investigated in prenatal diagnosis, such as chromosomal abnormalities or 
monogenic disease in at-risk families, but not multifactorial disease or late onset 
monogenic diseases. To drawback this limitation, the novel emerging technology 
for genome editing, also known as CRISPR (Clustered Regularly Interspaced Short 
Palindromic Repeats)/Cas9 system, is developing that could generate disease mod-
els for both monogenic and complex genetic disorders, enabling creation of knock-
out cells in vitro. This technology mediates the procurement of AFS clones with 
induced mutations for testing the modes of action and the effi cacy of various drug 
candidates (Antonucci et al.  2016 ). The potential ways for utilization of  AFSCs   in 
modeling of genetic diseases have been demonstrated in Fig.  2 .

5        In Utero Therapy of Congenital Disorders Using  AFSCs   

 Over a third of all  pediatric   hospital admissions are related to congenital diseases. 
Progressions in prenatal screening and molecular diagnosis have mediated the 
determination of life-threatening genetic diseases early in gestation. In utero trans-
plantation with stem cells could cure affected human fetuses using allogeneic hema-
topoietic stem cells or  MSCs   transplantation. However, it has been limited to fetuses 
with severe immunologic defects and more recently osteogenesis imperfecta. The in 
utero treatment of congenital diseases using stem cell or gene therapy may over-
come the necessity of postnatal treatment and reduce future costs and therefore 
impress the attitude of congenital diseases.  AFSCs   have a great potency for prenatal 
or postnatal treatment of disorders. Recently, preclinical autologous transplantation 
of transduced  AFSCs   has been achieved in fetal sheep using minimally invasive 
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ultrasound-guided injection techniques (Ramachandra et al.  2014 ). Clinically rele-
vant levels of transgenic protein were expressed in the blood of transplanted lambs 
for at least 6 months. These results bring hope and hold  promise   for prenatal treat-
ment of genetic disorders in near future.  

6     Potential of  AFSCs   for Future Basic Science 

 At present,  AFSCs   are widely accepted as a new powerful tool for basic research as 
well as for the establishment of new stem cell-based therapy concepts. It is possible 
to generate monoclonal genomically stable  AFSCs   lines harboring high proliferative 
potential without raising ethical issues. Stem cells are very useful tools to study the 
molecular and cellular regulation of differentiation processes (Gundacker et al. 

  Fig. 2    Schematic diagram of potential benefi ts of  AFSCs   in regenerative medicine and the model-
ing of human genetic diseases (Adopted from Antonucci et al. ( 2016 ) with modifi cation)       
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 2012 ). One approach to learn more about the role of a specifi c gene for a certain dif-
ferentiation process is to knockdown the endogenous expression of the gene of inter-
est. Such an approach allows clarifying the role of modulated gene expression for 
the cell potential to differentiate into a specifi c lineage. Application of siRNA- 
mediated gene silencing in  AFSCs   has already been tested for a variety of different 
genes (Rosner et al.  2010 ). Another very interesting aspect for future basic research 
is the banking of  AFSCs   lines carrying naturally occurring mutations, which are of 
relevance for certain human pathological phenotypes. In medical genetics, the future 
development of new prophylactic and therapeutic strategies directly depend on a 
better understanding of the mechanisms by which naturally occurring genetic varia-
tion contributes to a disease (Zhu et al.  2011 ). Moreover,  AFSCs  , with their potential 
proliferation, differentiation, and 3D organoid formation, could represent an inter-
esting source to produce physiologically relevant systems to adequately test pharma-
ceutical agents before their administration to patients (Fig.  2 ). Taken together, it 
seems that generation and banking of normal human  AFSCs   lines,  AFSCs   lines with 
chromosomal aberrations, and  AFSCs   lines with specifi c monogenic disease muta-
tions can provide very powerful tools for disease modeling in future research.  

7      Limitations and Challenges   

 Despite relative advantages of  AFSCs   over other types of stem cells in basic research 
and regenerative medicine, the diverse subpopulations of multipotent cells in amni-
otic fl uid which differ in marker expression, morphology, and growth kinetics might 
introduce a bias toward producing particular subpopulations of cells during culture 
and isolation. The lack of agreement on isolation and culture method in directing 
 AFSCs   differentiation toward particular cell fates is one limit on  AFSCs   application 
as the differences in isolation and culture method make it uncertain if the same popu-
lations of cells are being compared across experiments. The low rate of differentia-
tion toward a desired phenotype prior to  AFSCs   transplantation may decrease the 
chance of engraftment in some tissues. Additionally, the gestational stage at which 
AF is collected and the passage number of the cultured cells exacerbate this situa-
tion. On the other hand, although  AFSCs   reportedly possess low immunogenicity 
which can survive transplantation into xenogeneic or allogeneic hosts, there is evi-
dence indicating that AF cells were rejected upon transplantation into immunocom-
petent animals due to the recruitment of host immune system (Rennie et al.  2012 ).  

8     Conclusion and Future Remarks 

 Since the identifi cation of  AFSCs  , the knowledge about these cells has increased 
dramatically so that they are widely accepted as a new powerful tool for basic 
research as well as for the establishment of new stem cell-based therapy concepts. 
Generation of monoclonal genomically stable  AFSCs   lines possessing high 
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proliferative potential and establishment of international registries of cell lines 
derived from amniotic fl uid are promising approaches in basic and clinical studies. 
Aside from the proposed approach reducing methodological variations, the creation 
of a library of information pertaining to the research and preclinical study on  AFSCs   
would allow researchers to choose the most appropriate cell line for a particular 
application in regenerative therapies. Additionally, in order to study the role of sig-
naling pathways in human, as a hallmark in many human cancers studies, applica-
tion of siRNA-mediated prolonged gene silenced  AFSCs   may be an effi cient 
approach. In this regard one of the most important pathways involved in different 
cellular function is mTOR pathway so that the mutations in the mTOR pathway 
component genes trigger the development of many human genetic syndromes. It is 
strongly believed that the approach of siRNA-mediated knockdown of endogenous 
gene expression in monoclonal human  AFSCs   lines is a very powerful tool for 
future projects dealing with the molecular regulation of differentiation (Rosner 
et al.  2012 ). Another interesting aspect for future basic research is the banking of 
AFS cell lines carrying naturally occurring mutations, which are of relevance for 
certain human pathological phenotypes (Rosner et al.  2012 ). In modeling human 
diseases,  AFSCs   might be useful in generating disease-specifi c stem cell lines and 
can replace human pluripotent stem cells like  ESCs   and iPS cells and eliminate the 
concerns associated with their shortage. Furthermore, since  AFSCs   can be easily 
reprogrammed, they are able to erase the epigenetic memory after reprogramming 
and can be easily differentiated into different cell types (Antonucci et al.  2016 ). 
 AFSCs   may also represent an alternative to iPS for drug discovery and safety assays. 
In drug development and toxicity drug screening, the poor predictability of the pre-
clinical studies carried out on animal models, which are mined by signifi cant 
species- specifi c differences, justifi es the application of in vitro cell culture systems 
including  AFSCs   which provides an effi cient assay to individuate a selected list of 
promising drug candidates for further studies (Antonucci et al.  2016 ). Large-scale 
amplifi cation of  AFSCs   in three-dimensional (3D) chimeric organoids (Antonucci 
et al.  2016 ), which enables the 3D growth of cells, can represent a very interesting 
physiologically relevant novel system to adequately test pharmaceutical agents. 
 AFSCs   may also be applicable as a model of germ cell precursors which allow 
investigating the mechanisms underlying drug-induced effects in gametogenesis 
and screening either natural or synthetic compounds potentially useful in fertility 
preservation. As recently demonstrated,  AFSCs   have some features of primordial 
germ cells and thus may be useful as an effi cient in vitro model to study human 
gametogenesis and help to get insight on germ-line diseases and diseases caused by 
epigenetic alterations (Antonucci et al.  2016 ). Furthermore, since  AFSCs   are highly 
proliferative and less differentiated, they are good candidate for gene therapy and 
have great potential in cell therapies and regenerative medicine. However, to transit 
from bench to beside and clinical application of  AFSCs  , safety of AMSCs adminis-
tration should be assessed in long-term preclinical and clinical studies.     
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1           Introduction 

  Regenerative medicine   is a new fi eld which uses biological substitutes like stem cell-
based therapies to repair, replace, and enhance the lost function of an organ or tissue 
(Riazi et al.  2009 ; Baghbaderani et al.  2015 ). Based on potential abilities of stem 
cells, they have a crucial role in regenerative medicine (Preynat-Seauve and Krause 
 2011 ; Ding and Schultz  2004 ). Accordingly, various sources of stem cells have been 
used for cell therapy, tissue engineering, and regenerative medicine including adult, 
embryonic, fetal, and perinatal tissue-derived stem cells. In recent years, perinatal 
stem cells as a promising cell source have been suggested for regenerative medicine. 
In comparison to other counterparts, these cells have great advantages such as 
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convenient accessibility, low immunogenicity, high proliferation capacity, and mini-
mal ethical limitations. On the other hand, they have some pluripotency properties 
like to embryonic stem cells (Witkowska-Zimny and Wrobel  2011b ). However, 
good manufacturing practice (GMP) is needed to provide cells with defi ned quality, 
safety, and effi cacy for clinical application (Unger et al.  2008 ). Today, producing of 
 GMP-compliant stem cells   is feasible and available for therapeutic uses. Like 
other types of stem cells, perinatal stem cells manufacturing in accordance with 
GMP regulations and standards could provide a valuable source of stem cells for cell 
therapy and regenerative medicine (Brooke et al.  2009 ; Barlow et al.  2008 ).  

2     Sources of  Stem Cells for Cell Therapy      

2.1     Adult Stem Cells 

 Adult stem cells are undifferentiated cells from various tissues (Crisan et al.  2008 ). 
 Mesenchymal stem cells   (MSCs)    are multipotent stromal cells which are the most 
common stem cells used for clinical cell transplantation trials. They can be differen-
tiated into mesodermal as well as nonmesodermal cell types (Pittenger et al.  1999 ; 
Da Silva Meirelles et al.  2006 ; Ferrari et al.  1998 ; Makino et al.  1999 ; Zhao et al. 
 2011 ). Regarding to the immunomodulatory characteristics of MSCs they have been 
candidate  as      an immunosuppressive adjuvant therapy (Engela et al.  2012 ; Rojewski 
et al.  2008 ; Bieback  2008 ; Schafer and Northoff  2008 ; Abdi et al.  2008 ; Rasmusson 
 2006 ). First time, isolation of MSCs was reported from human bone marrow (BM) 
which is the common source for clinical trials (Pittenger et al.  1999 ; Mackay et al. 
 1998 ; Lennon and Caplan  2006 ). Although, BM is the most common source the 
number of its MSCs and their differentiation potential decrease with age and also 
isolation of MSCs from BM is invasive and painful. Therefore, scientists tried to 
fi nd and develop an alternative source of MSCs. Therefore, researchers try to fi nd 
other sources for MSCs (Bieback et al.  2008b ; Aghayan et al.  2015 ). Accordingly, 
some other tissues have been introduced including adipose tissue, the gut, peripheral 
blood, the lung, perinatal tissues, etc. (Kern et al.  2006 ; Rotter et al.  2008 ; Lanzoni 
et al.  2009 ; Cao et al.  2005 ; Griffi ths et al.  2005 ; Beltrami et al.  2003 ).  

2.2     Human Embryonic Stem Cells 

 Embryonic stem cells (ESCs)       were fi rst isolated from mouse embryos in 1981 and 
then were isolated from inner cell mass (ICM) of human blastocysts that resulted in 
successful establishment of hESCs in 1998 by Thomson’s group (Moon et al.  2006 ). 
Although ESCs with high proliferative capacity appeared as a suitable alternative for 
adult MSCs, their use in cellular therapy has raised some concerns which limit the 
application of hESCs in clinical trials (Jung  2009 ). According to pluripotent nature 
of hESCs, they are prone to form teratoma after transplantation (Moon et al.  2006 ). 
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From a clinical aspect, the potential of teratoma formation of hESCs should be tested 
before their therapeutic applications. This is considered as a safety assay which 
determines the effi cacy of hESCs transplantation (Prokhorova et al.  2009 ). Moreover, 
it has been demonstrated that transplanted cells need long-term survival to regener-
ate injured tissues (Wingard et al.  2011 ; Hagell and Brundin  2001 ). In other words, 
immune privileged cells such as hESCs can be used for regenerative medicine with-
out any immune rejection concerns (Charron et al.  2009 ; Saric et al.  2008 ). But, their 
use is still arguable because of their tumorigenicity potential and also some ethical 
 concerns      (Grinnemo et al.  2006 ,  2008 ; Drukker et al.  2006 ; Moon et al.  2006 ).  

2.3     Perinatal and Fetal Tissue-Derived Stem Cells 

 Trying to fi nd an  alternative      for hESCs has led to the use of perinatal tissues such as 
umbilical cord and placenta for cellular therapy since 1989 (Gluckman et al.  1989 ). 
Perinatal tissue-derived stem cells were isolated from human cord blood (Prindull 
et al.  1978 ). Since then, some other perinatal tissues such as placenta, cord blood tis-
sue, chorion villi, fetal membranes, and amniotic fl uid were introduced as alternative 
sources for cellular therapy and regenerative medicine (Bieback et al.  2004 ; Parolini 
et al.  2008 ; Guillot et al.  2008 ; Piskorska-Jasiulewicz and Witkowska- Zimny  2015 ; 
Witkowska-Zimny and Wrobel  2011a ). Additionally, human fetal tissues including 
liver, lung, and brain were used to harvest different types of stem cells (Larijani et al. 
 2015a ; Ghodsi et al.  2012 ). In spite of several advantages, fetal tissue-derived stem 
cells have raised signifi cant ethical concerns. Therefore, perinatal tissue-derived stem 
cells have been increasingly suggested to use in regenerative medicine. One of the 
most common perinatal tissues used for cell therapy is umbilical cord tissue (Troyer 
and Weiss  2008 ). In addition, MSCs could be isolated from Wharton’s jelly as well 
as the perivascular region (Seshareddy et al.  2008 ). The perinatal stem cell collection 
and processing is easy and convenient, with no risk for both mother and newborn. 
Perinatal tissues could provide a large number of stem cells (Bieback and Brinkmann 
 2010 ). Furthermore, in comparison with adult stem cells, perinatal tissue-derived 
stem cells exhibit more telomerase activity and more expression of the pluripotency 
genes which makes them more effective source with immune  privileged      and nontu-
morigenic properties (Bieback and Brinkmann  2010 ). It has been indicated that pla-
centa-derived MSCs have a greater proliferative potential than other counterparts. 
Moreover, placenta-derived MSCs represented more immunosuppressive effect on T 
cell in comparison with BM-derived MSCs which makes them one of the most prom-
ising source for clinical applications (Heazlewood and Atkinson  2013 ).   

3     Stem Cells and Good Manufacturing Practice 

 The main step in  stem cells manufacturing   is the isolation and in vitro culture and 
expansion which performs usually under research-grade conditions (Wang et al. 
 2012b ). Clinical applications of stem cells need cell manufacturing according to 
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current regulations, including good tissue practice (GTP) and GMP (Bieback et al. 
 2008b ). These regulations include all steps and components involved in cell produc-
tion in order to ensure the safety and quality of fi nal cell products. Although in a 
cell-based manufacturing system, conversion of cell production under research- 
grade conditions to the GMP grade one is necessary, the majority of cellular therapy 
centers are not GMP certifi ed. Since there are no quality control standard and a 
worldwide uniform procedure for in vitro culture and expansion of cells, fi ndings 
are not in accordance with the international standards and principles (Wang et al. 
 2012b ). According to current reports, there are various protocols for preparation of 
(stem) cells due to different methods used for cell preparation including culture 
method, growth factors, supplements, cell seeding density, subculture, cryopreser-
vation, route of transplantation, and injection vehicle. These parameters have dra-
matic effects on the quality and safety of the fi nal cell-based products (Ikebe and 
Suzuki  2014 ). So, the most appropriate and valid protocols must be standardized and 
developed in order to clinical- and GMP-compliant processes. Accordingly, devel-
opment of a quality assurance system is required to avoid deviations from applicable 
regulations and current standards for cellular therapy (Wang et al.  2012b ). Therefore, 
using GMP-grade strategies in cell-based  products   manufacturing enhances the effi -
cacy and safety of perinatal stem cells.  

4      GMP-Grade Raw Materials   

 According to regulation No. [EC] 1394/2007 of the European Parliament estab-
lished by the European Medicines Agency (EMA), MSCs are included as  advanced 
therapy medicinal products (ATMPs)  . Therefore, producing MSCs adhering GMP 
standards is necessary to ensure the safety, quality, sterility, and reproducibility of 
fi nal product (Fekete et al.  2012b ). The quality and safety of raw materials is critical 
to ensure GMP-compliant stem  cell  s. Accordingly, clinical-grade materials should 
be replaced with research grade one, if possible (Bieback et al.  2011 ). A number of 
important research-grade and animal-derived reagents currently used in cellular 
therapy centers are discussed here. 

4.1      Serum Supplements   

4.1.1     Fetal Bovine Serum and Human Serum 

 Among various available protocols for isolation and expansion of stem cells, the 
most commonly used culture media is Dulbecco’s Modifi ed Eagle’s Medium 
( DMEM  ) or alpha-minimum essential medium (alpha-MEM) supplemented with 
serum, often fetal bovine serum ( FBS  ) (Bieback et al.  2011 ). FBS as the most widely 
used serum supplement in cell culture methods is a complex mixture of a variety of 
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biomolecules which is used for stimulating and accelerating cell growth and prolif-
eration (Rauch et al.  2011 ; Herrera and Inman  2009 ; Muramatsu et al.  1995 ; 
Gstraunthaler  2003 ). As FBS is an animal origin reagent and rich in uncharacterized 
components, its use is a major limitation of clinical-grade cell manufacturing 
(Lindroos et al.  2011 ; Larijani et al.  2015a ). FBS contains xenogeneic proteins with 
potential risk for viral and prion  diseases   transmission and also immunological reac-
tions that raised concerns about its use in cell manufacturing (Bieback et al.  2009 , 
 2010 ; Kocaoemer et al.  2007 ; Lepperdinger et al.  2008 ; Martin et al.  2005 ). The etiol-
ogy of transmissible spongiform encephalopathy as a fatal neurodegenerative disease 
is a prion which can be transmitted using animal origin materials such as FBS. It has 
been reported that some countries, notably Australia and New Zealand, are free 
of bovine spongiform encephalitis. Therefore, the Australian Therapeutic Goods 
Authority which has a position equal to FDA in the USA has no problem to allow 
FBS obtained from cattle of these countries and its use in clinic (Brooke et al.  2009 ). 
However, FBS is not a xeno-free supplement and includes xenogeneic reagents such 
as ruminant proteins that may cause immunogenic response and serious adverse reac-
tions in recipients. Accordingly, the availability of clinical-grade FBS does not com-
pletely eliminate concerns about the risk for zoonotic diseases and reactions (Bieback 
et al.  2008b ; Horwitz et al.  2002 ; Sundin et al.  2007 ). Therefore, to avoid any nega-
tive effect of FBS, it is strongly recommended to replace it with a safer xeno-free 
supplement. For instance, the use of human serum has been suggested as an alterna-
tive to FBS with its own advantages and disadvantages compared to FBS (Kocaoemer 
et al.  2007 ; Bieback et al.  2009 ,  2012 ; Fekete et al.  2014 ; Tateishi et al.  2008 ; Aghayan 
et al.  2012 ). According to current reports, the use of autologous human serum has led 
to elimination of negative effects of FBS. This replacement sounds a highly contro-
versial topic regarding to both proliferative and differentiation capacity (Stute et al. 
 2004 ; Goodarzi et al.  2014 ). There are several studies demonstrating an increased 
proliferative capacity of MSCs using autologous human serum (Shahdadfar et al. 
 2005 ; Shigeno and Ashton  1995 ; Koller et al.  1998 ; Nimura et al.  2008 ; Dahl et al. 
 2008 ; Stute et al.  2004 ), whereas some other reports depicted no signifi cant differ-
ence between autologous human serum and FBS in terms of proliferation rate (Spees 
et al.  2004 ; Anselme et al.  2002 ; Yamamoto et al.  2003 ). Moreover, there are some 
reports on positive effects of autologous human serum including stability in long-
term culture, ability to differentiate into multilineage cells, high cell motility and 
variability in DNA methylation, antiapoptotic activity, and angiogenic effects 
(Shahdadfar et al.  2005 ; Heiskanen et al.  2007 ). But, comparative  studies   have dem-
onstrated confl icting results regarding to osteogenesis and adipogenesis potential of 
MSCs (Yamamoto et al.  2003 ; Oreffo and Triffi tt  1999 ). On the other hand, due to 
variability observed in different batches of autologous human serum, isolated serum 
from different patients was pooled to solve this problem. Pooling of sera resulted in 
reduced colony formation and proliferation with swift senescence in cell culture 
(Shahdadfar et al.  2005 ). These limitations of autologous human serum have been 
considered as a serious problem to develop the clinical applications of human serum 
(Nimura et al.  2008 ; Brinchmann  2008 ; Bieback et al.  2009 ; Stute et al.  2004 ).  
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4.1.2      Platelet Lysate   

 Other reports have revealed that human platelet lysate ( HPL  ) can be a safe and effec-
tive substitute for  FBS   (Schallmoser et al.  2007 ,  2009 ; Schallmoser and Strunk  2013 ; 
Fekete et al.  2012a ; Iudicone et al.  2014 ).  HPL   is a xeno-free serum substitute which 
contains a large amount of growth factors (Bernardi et al.  2013 ).  HPL   can increase 
expansion capacity, differentiation potential, and immunomodulatory effects of 
MSCs (Muller et al.  2006 ; Gottipamula et al.  2012 ; Doucet et al.  2005 ). The same as 
autologous human serum,  HPL   is a variable supplement and to reduce this variabil-
ity, it is obtained from different donors after pooling (Bieback  2013 ; Wuchter et al. 
 2015 ). Moreover, its storage at −20 °C for a long  period   of time is possible with no 
effect on the growth factor content (Kocaoemer et al.  2007 ; Fekete et al.  2012a ; 
Rauch et al.  2011 ). Obviously,  HPL   could be added to the media until the end of its 
shelf life which is around 4–6 days following blood donation (Bieback  2013 ). Body 
of literature has revealed that  HPL   could be used as a GMP-compliant substitute for 
FBS (Avanzini et al.  2009 ; Bernardo et al.  2007 ; Bieback et al.  2009 ; Crespo-Diaz 
et al.  2011 ; Lange et al.  2007 ; Schallmoser et al.  2007 ,  2009 ; Griffi ths et al.  2013 ; 
Castiglia et al.  2014 ). According to microarray analyses, it has been demonstrated 
that cell culture conditions have profound effects on the gene expression profi le in 
terms of differentiation, development, the interaction between cells, adhesion to the 
extracellular matrix, TGF-β signaling, apoptosis, cell cycle, DNA replication, and 
purine metabolism (Lange et al.  2007 ; Bieback et al.  2010 ). Fekete et al. indicated 
that both blood-derived pooled and apheresis-derived platelet concentrates could be 
used as the clinical-grade supplement for isolation and expansion of MSCs (Fekete 
et al.  2012a ). Both kinds of  HPL   included the same cytokines such as basic fi broblast 
growth factor (bFGF), sCD40L, platelet-derived growth factor AA (PDGF-AA), 
PDGF-AB/AA, sVCAM-1, sICAM-1, RANTES, and TGF-β1 which led to increased 
proliferation of MSCs (Kinzebach and Bieback  2013 ). GMP certifi ed alternatives for 
FBS including  HPL   have represented different characteristics regarding to prolifera-
tive capacity and gene expression profi le. The comparative studies intended to clar-
ify effects of human serum on cell culture system, demonstrated that  HPL   have 
resulted in accelerated proliferative activity without any effect on chromosomal sta-
bility compared to traditional FBS (Crespo-Diaz et al.  2011 ; Dahl et al.  2008 ). From 
a clinical point of view, care should be taken to assess the potential effects of these 
changes on cell culture system in order to reduce the risk for using  HPL   in clinical 
applications. Because of using serum in cell culture gives rise to high lot-to-lot vari-
ability in cellular growth rate and the probability of disease transmission, another 
alternative including human serum called serum-free (SF) media  was   represented 
(Tonti and Mannello  2008 ).  

4.1.3     Serum-Free Medium 

 Novel serum substitutes as serum-free media proposed to decrease the risks and limi-
tations of conventional serum supplemented media (Koller et al.  1998 ; Parker et al. 
 2007 ; Lian et al.  2007 ; Meuleman et al.  2006 ; Chase et al.  2010 ). There is promising 
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evidence for replacement of autologous human serum added media by serum-free 
media indicating higher proliferative capacity and multipotent state maintenance 
(Lindroos et al.  2009 ; Rajala et al.  2010 ; Parker et al.  2007 ). Hartmann et al. has suc-
cessfully reported the isolation and expansion of umbilical cord tissue- derived MSCs 
in a serum- and xeno-free medium {Hartmann, 2010 #44}. Although they used fi rst 
StemPro MSC serum-free media supplemented with 2 % GMP-grade human serum, 
they succeeded to develop their protocol to a completely serum- and xeno-free con-
ditions. Additionally, they have demonstrated signifi cant increase in proliferative 
capacity and viability of MSCs cultured in xeno-free and serum-free GMP-compliant 
manner (Hartmann et al.  2010 ). There are various studies demonstrating MSCs iso-
lation and expansion in xeno- and serum-free culture system as an essential require-
ment for translation from the basic to the clinic (Patrikoski et al.  2013 ). Swamynathan 
et al. have reported the isolation and large-scale expansion of MSCs derived from 
Wharton jelly in a xeno-free and serum-free condition (Swamynathan et al.  2014 ). 
Therefore, the optimizing of serum-free media could be considered as a safer and 
more effi cient method for manufacturing of MSCs for clinical applications (Chase 
et al.  2010 ; Gottipamula et al.  2013 ). Despite several advantages of this newly intro-
duced method, it needs to be optimized for large-scale expansion of perinatal tissue-
derived stem cells in accordance with GMP regulations.   

4.2     Enzymes 

 From the clinical  perspective  , optimal GMP compliance needs a completely xeno- 
free condition for the isolation, expansion, and cryopreservation of cells (Hartmann 
et al.  2010 ). Some studies have revealed adverse reactions including anaphylaxis and 
immune reactions caused by cell processing by animal origin reagents and supple-
ments (Mackensen et al.  2000 ; Selvaggi et al.  1997 ). Furthermore, the potential risk 
for transmission of viral and bacterial infections, prions, and other types of transmis-
sible diseases between animals and humans should not be neglected (Selvaggi et al. 
 1997 ; Will et al.  1996 ). Ficoll and animal origin reagents and enzymes such as col-
lagenase, dispase, and trypsin, which are commonly used in research-based cell cul-
ture, are not GMP or clinical grade and therefore not appropriate for therapeutic use. 
Thus, safer alternatives should be used in clinical intended uses (Bergstrom et al. 
 2011 ; Swamynathan et al.  2014 ; Arjmand and Aghayan  2014 ; Ilic et al.  2011 ). 
Enzymatic dissociation is an important step in stem cell isolation and the most com-
mon used enzymes such as collagenase contains animal origin components, there-
fore it should be replaced by a GMP-compliant alternative in clinical trials. A 
number of GMP approved collagenase including CLSAFA (Worthington, Lakewood, 
NJ), NB-6 GMP grade (Serva, Heidelberg, Germany), and Liberase MTF-S GMP 
grade (Roche Diagnostics, Basel, Switzerland) are available (Crook et al.  2007 ; Szot 
et al.  2009 ; Aghayan et al.  2015 ; Arjmand and Aghayan  2014 ; Carvalho et al.  2013 ). 
Carvalho et al. have identifi ed that the use of animal origin free and also GMP-grade 
collagenase have been led to the same differentiation potential and expression of cell 
surface markers of adipose-derived stem cells. Moreover, the use of clinical-grade 
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collagenase had no negative effect on the yield and functional properties of human 
adipose-derived stem cells and it could be considered as a safe alternative (Carvalho 
et al.  2013 ). The most commonly available trypsin is derived from porcine that 
should be substituted by its xeno-free counterparts such as TrypLE Select (Invitrogen, 
Carlsbad, CA) and TrypZean (Sigma- Aldrich, St. Louis, MO) (Arjmand and 
Aghayan  2014 ). TrypLESelect has been represented as a recombinant animal and 
human component-free trypsin. This proteolytic enzyme is a safe clinical-grade 
enzyme that could be used in clinical trials (Bergstrom et al.  2011 ; Swamynathan 
et al.  2014 ; Chen et al.  2013 ; Larijani et al.  2015b ). Additionally, GMP-grade Ficoll-
Paque PREMIUM (GE Healthcare Life Sciences, USA), as a substitute for routinely 
used Ficoll, has been producing as a high-performance, animal-origin-free reagent 
(Arjmand and Aghayan  2014 ; Ilic et al.  2011 ; Arjmand et al.  2012 ). Recent  advance-
ments   in regenerative medicine give rise to commercially available xeno-free 
reagents which are compatible with GMP regulations.   

5      Long Storage and Cryopreservation   

 It has been demonstrated that clinical use of manufactured MSCs needs their long- 
term storage (Cooper and Viswanathan  2011 ; Gong et al.  2012 ; Thirumala et al. 
 2009 ). Thus, the fi nal cell-based product should be cryopreserved for long-term 
storage. According to various reports, MSCs maintain their properties and functions 
after freezing and thawing (Todorov et al.  2010 ; Gordon et al.  2001 ; Pal et al.  2008 ; 
Bruder et al.  1997 ). Additionally, due to the complexity and low probability of 
human leukocyte antigen (HLA) matching process, cryopreservation and storage of 
perinatal stem cells from different tissues such as cord blood, placenta, and umbili-
cal cord could be a potential valuable source for treatment of different disorders 
(Wang et al.  2012b ). Therefore, cryopreservation and long storage of MSCs accord-
ing to GMP conditions is an important issue in clinical-grade manufacturing of peri-
natal tissue-derived stem cells. Cryopreservation makes it possible to transport 
cell-based products across international borders (Wang et al.  2012b ). In order to 
long term storage, liquid nitrogen or the gas phase above the liquid phase is used 
(Mccullough et al.  2010 ). 

5.1      Cross-contamination   

 Since stored products in liquid nitrogen are prone to cross-contamination, it is sug-
gested to use a secondary system which protects the primary cryovials containing 
cellular product if possible. The potential risk for contamination of stored cells in 
gas phase of liquid nitrogen is not considerable (Hunt  2011 ). Contrary to the GMP 
regulations, the most commonly used cryovials could not be properly sealed leading 
to a leakage of liquid nitrogen into the cryovials during immersion, over time. The 
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use of heat-sealable membrane to cover the cap of vials has been employed to pre-
vent liquid nitrogen infi ltration into the  cryovials   with no effect on the viability of 
postthawed cells (Chen et al.  2006a ). More recently, another type of cryovials suit-
able for pharmaceutical applications has been developed to cryopreserve stem cells 
manufactured for clinical applications (Woods et al.  2010 ). Therefore, implement-
ing an effi cient quality management system ensures the safety and quality of fi nal 
product avoiding possible cross-contamination.  

5.2      Cryoprotectants   

 During freezing and thawing processes, moving between −15 and −60 °C is the 
most critical point which contributes to cellular damage (Mazur  1988 ). Both slow 
and rapid cooling of cells has their own destructive effects. Slow cooling leads to 
increased osmolality in the cell’s extracellular environment due to ice crystal forma-
tion. This state results in passing of water from the cell membrane and dehydration, 
in order to equalize osmolality. Rapid cooling has been shown to cause the ice for-
mation inside the cells (Li and Ma  2012 ). Since all present freezing and thawing 
protocols destroy the cell structure, it is essential to use safer cryoprotectants (Fuller 
 2004 ; Janz Fde et al.  2012 ). A variety of cryoprotectants including low molecular 
weight compounds such as dimethylsulfoxide ( DMSO  ), ethylene glycol (EG), and 
propylene glycol (PG) permeate the cells and prevent intracellular ice formation. 
Sugars such as sucrose and trehalose, and high molecular weight polymers like 
polyvinylpyrrolidone (PVP) and hydroxyl-ethyl starch (HES) with different func-
tions are also available (Fuller  2004 ; Meryman  2007 ). The most routinely used 
cryopreservation medium for MSCs generally contains  FBS   and DMSO (Liu et al. 
 2010 ). In accordance with GMP-compliant protocols, the use of FBS and DMSO 
should be limited. Toxicity of DMSO is infl uenced by different factors such as time, 
temperature, concentration, and cell type. Some clinical trials have reported the 
adverse reactions related to DMSO in patients (Berz et al.  2007 ; Galvao et al.  2014 ). 
To eliminate toxic effects of DMSO, washout process using Dextran, as an osmotic 
buffer, compensates imbalance osmolality after removal of DMSO. Also, some 
automated cell washing methods have been developed (Berz et al.  2007 ; Rodriguez 
et al.  2004 ). Another way to decrease toxicity and side effects of DMSO is using of 
reduced concentration of  DMSO   for cryopreservation. It has been revealed that the 
use of 5 % DMSO (instead of 10 %) can reduce adverse reactions (Rubinstein et al. 
 1995 ; Woods et al.  2003 ; Morris et al.  2014 ). Berz et al. have reported the successful 
use of 2 % DMSO (Berz et al.  2007 ). The reduced concentration of DMSO from 2 
to 0 % had lethal effects on adipose-derived stem cells that highlighted the critical 
concentration of DMSO for cell cryopreservation (Thirumala et al.  2009 ). However, 
since DMSO is a toxic agent, it is highly recommended to replace it with a safer 
cryoprotectant with similar effi cacy. Using of hydroxyethyl starch and trehalose as 
alternatives for DMSO needs further clarifi cation and optimization (Hayakawa et al. 
 2010 ; Mccullough et al.  2010 ; Buchanan et al.  2004 ; Stolzing et al.  2012 ; Motta 
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et al.  2014 ). There is a variety of cryoprotectants which achieved European Conformity 
(CE) certifi cation. CE-marked cryoprotectants are introduced as GMP- compliant 
agents and are available for therapeutic applications (Hunt  2011 ). Thus, the use of 
commercially available cryoprotectants with validation for sterility and bacterial 
endotoxin test is infi nitely preferable to the homemade one. Furthermore, in order to 
manufacturing of hESCs and induced pluripotent stem ( iPS  ) cells, successful use of 
commercially produced cryopreservation media and wash solutions has been 
reported (Holm et al.  2010 ). Although, the components of commercially available 
cryoprotectant are disclosed as a combination of DMSO, glucose, and a high molec-
ular weight polymer in  phosphate-buffered saline (PBS)  , the characteristic of high 
molecular weight polymer is not revealed. These solutions show high effi ciency 
recovery of cryopreserved stem cells, which represent an appropriate postthawing 
method. On the other hand, there are some concerns about uncharacterized proper-
ties and potential effects of high molecular  weight   polymer used in cryoprotectants 
which should not be ignored (Hunt  2011 ).   

6      GMP Facility and Staff Training   

 As in GMP certifi ed cell manufacturing centers all procedures should be performed 
in accordance with GMP regulations, the processes lead to the reproducible results 
with the highest standards of safety and quality for fi nal product (Unger et al.  2008 ). 
Prolonged cell culture may cause contamination and since the sterilization of cell- 
based products inevitably leads to a reduction of their biological functions, the fi nal 
products of a cell manufacturing process should be a sterilized product resulted 
from aseptic processing. Furthermore, due to the lack of a specifi c test for detecting 
all probable contaminations, it is essential to use sterile raw materials and adhere to 
the aseptic techniques during cell manufacturing. Therefore, controlling the envi-
ronment of cell manufacturing facility in addition to adhering to all components of 
GMP guideline can provide a condition to avoid exogenous contaminations of cell-
based products (Arjmand et al.  2012 ). 

6.1     GMP Facility 

 A GMP facility should be designed by a group of highly experienced architects and 
also GMP experts with a compliance to the GMP regulations (Burger  2000 ; Arjmand 
et al.  2012 ). In international standard organization (ISO) 14644-1, a GMP facility 
(clean room) is described as “a room in which the concentration of airborne parti-
cles is controlled, and which is constructed and used in a manner to minimize the 
introduction, generation, and retention of particles inside the room, and in which 
other relevant parameters, e.g., temperature, humidity, and pressure, are controlled 
as necessary” (Arjmand et al.  2012 ). Some noteworthy elements in GMP facility are 
controlled temperature and humidity, easily cleanable work surfaces and walls and 
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ceilings,  high effi ciency particulate air (HEPA) fi ltration system   under positive pres-
sure, airborne particle monitoring in clean room environments (Fig.  1 ), routine 
cleaning, and disinfection and decontamination solutions (Burger  2003 ). In order to 
clean room validation, it is essential to qualify and test procedures performing in 
clean room. Three main stages of testing a clean room are as-built (phase I), at-rest 
(phase II), and operational (phase II) testing. Phase I testing is intended for installa-
tion qualifi cation after fully installed equipment to validate the correct installation 
of equipment. Phase II should be done for operational qualifi cation during produc-
tion to confi rm that all equipments operate as desired. And fi nally, operational test-
ing is performed when the personnel are working in accordance to prove that the 
whole process of cell manufacturing is  performed   according to GMP regulations at 
the presence of the staff who are involved in cellular manufacturing (O’Donoghue 
 2011 ). In addition, the location of a GMP facility is very important. An ideal situa-
tion would be the proximity of hospitals to the clinical-grade cell manufacturing 
centers. All GMP facilities need initial budget evaluation by a GMP specialist to 
improve and ensure the quality and safety of fi nal product as the main objective of 
GMP guidelines (Burger  2000 ).

6.2        Staff Training 

 Development of a GMP facility will be achieved by the GMP experts in cooperation 
with the quality assurance (QA) personnel. All staff working in GMP areas should 
pass GMP training courses which are in accordance with QMS standards. A 

  Fig. 1     GMP-compliant cell manufacturing facility         
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combined QMS and GMP approach could give rise to a translation to GMP adher-
ent laboratory (Ilic et al.  2011 ). It is noteworthy that application of QMSs such as 
ISO 9001 and ISO 13485 will help the GMP facility performance and improvement 
(Arjmand et al.  2012 ). The personnel who are involved in GMP-grade cell-based 
manufacturing process should be aware of guidelines and specifi c regulations rele-
vant to laboratory procedures intended for therapeutic applications. In addition to 
the needs for trained staff in GMP cell engineering skills, a GMP facility requires 
support staff who developed skills beyond those acquired at the bench (Burger 
 2000 ). Therefore, the presence of trained and expert staff in well-engineered clean 
rooms is considered as key points for cell manufacturing in GMP-compliant cell 
production  centers  .   

7      Large-Scale Expansion   

 The fast growing advancement in regenerative medicine leads to commercial manu-
facturing of stem cells in recent years. A high level of quantity of stem cells is 
required for cellular therapy which highlights the necessity for large-scale manufac-
turing of cell-based products. It should be considered that successful commercial-
ization of cell-based products requires a high level of compliance to the GMP 
regulations. The prevalent approach to stem cell culture is the use of cell culture 
fl asks and containers that compared to newly introduced bioreactors is a time- and 
money-consuming method for mass production (Schallmoser et al.  2008 ; Sensebe 
 2008 ; Chen et al.  2006b ; Gastens et al.  2007 ). As GMP-compliant cell manufactur-
ing requires safe and viable cells under controlled conditions, implementation of 
bioreactors will facilitate the large-scale and well-controlled stem cell production. 
The disposable bioreactor systems could provide a safe and time-effi cient tool with 
the elimination of possible risk of cross-contamination (Schallmoser et al.  2008 ; 
Sensebe  2008 ; dos Santos et al.  2014 ; Elseberg et al.  2015 ). Besides the limitations 
of available bioreactors their suppliers and manufacturers try to do their best for 
development of better defi ned conditions of effective bioreactors for stem cell 
expansion in accordance with GMP regulations. Since stem cell therapies need a 
large number of safe and effi cient stem cells manufactured under GMP-compliant 
culture systems, the use of bioreactors is considered as a cost-effective tool to 
respond clinical-grade stem cell market demand (dos Santos et al.  2013 ,  2014 ; 
Elseberg et al.  2015 ). The large-scale production of stem cells requires the replace-
ment of conventional cell culture system with automated devices (Eibes et al.  2010 ; 
Thomas et al.  2009a ,  b ). Recently, scale-up expansion of hESCs in a stirred micro 
carrier system was reported as a method to improve the yield of cell-based product. 
This improvement is probably resulted from improved oxygen and nutrient diffusion 
rates and advanced mass transport of metabolites parallel to reduced toxic effects 
(Fernandes et al.  2009 ). In this system adherent cells could be cultivated in suspen-
sion leading to larger amount of manufactured cells in comparison with conven-
tional methods (Nie et al.  2009 ). Although all bioreactor systems as a cost- effective 
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method with increased postthawing recovery are not GMP certifi ed, scientist try to 
develop micro carrier system for large-scale expansion of different types of cells in 
accordance with GMP regulations for therapeutic  applications   (Carmelo et al. 
 2015a ,  b ; Eibes et al.  2010 ; Nie et al.  2009 ; Thomas et al.  2009b ).  

8     Discussion and Conclusion 

 The recent advancement in regenerative medicine is offering novel promising clini-
cal applications for stem cells from different tissues. Therapeutic applications 
require the compliance of cell manufacturing to GMP standards in order to optimum 
assurance of produced cells for clinical applications (George  2011 ). In recent years, 
among different types of stem cells, MSCs are the most commonly used cells for 
cellular therapy due to their regenerative potential (Lazarus et al.  1995 ; Horwitz 
et al.  2002 ; Garcia-Olmo et al.  2005 ; Le Blanc et al.  2004 ; Wei et al.  2013 ; Lewis 
and Suzuki  2014 ; Wang et al.  2012a ). MSCs have been used for treatment of a vari-
ety of diseases such as blood disease, acute respiratory distress syndrome, spinal 
cord injury, liver injury, autoimmune diseases, bone disorders, chronic myocardial 
infarction, critical limb ischemia, etc. (Hayes et al.  2012 ; Ishikane et al.  2008 ; 
Nakajima et al.  2012 ; Puglisi et al.  2011 ; Hass et al.  2011 ; Wang et al.  2012a ). The 
considerable advantages of MSCs which make them an interesting candidate for cell 
therapy is easy accessibility, availability in different adult tissues such as BM, adi-
pose tissue, and even fetal tissues, as well as perinatal tissues (Kern et al.  2006 ; 
Bieback et al.  2008a ; Bartmann et al.  2007 ; Reinisch et al.  2007 ; Piskorska- 
Jasiulewicz and Witkowska-Zimny  2015 ; Wouters et al.  2007 ). Perinatal tissues are 
often discarded as medical wastes, while they can solve the ethical problems related 
to fetal tissues as an alternative source for cell therapy and regenerative medicine. 
Although regenerative medicine has revealed the amazing versatility of stem cells, 
in the majority of cellular therapy centers cell manufacturing process is not per-
formed in accordance with GMP guidelines (Bieback et al.  2008b ). GMP guidelines 
cover quality and safety standards for manufacturing cell-based products for clinical 
transplantation. GMP regulations include all aspects of cell manufacturing process 
including donor eligibility, ethical concerns, controlled environment, equipments, 
staff training, raw material and reagents, storage conditions, and all steps of manu-
facturing processes to ensure the quality, purity, reproducibility, and safety of fi nal 
products. Since the progress in regenerative medicine happen rapidly, worldwide 
development of GMP facilities should be accelerated. In terms of raw materials 
required for cell processing, an ideal condition would be the use of xeno- free or 
serum-free reagents. One of the problems caused by xenogeneic reagents in clinical 
trials is the probability of transferring animal derivatives into the patient’s body 
resulting in immune reaction as a consequence of cell transplantation (Spees et al. 
 2004 ; Heiskanen et al.  2007 ; Martin et al.  2005 ; Lepperdinger et al.  2008 ). Moreover, 
the strong possibility of viral or bacterial infections transmission to the recipients is 
another serious concern (Selvaggi et al.  1997 ; Will et al.  1996 ; Lepperdinger et al. 
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 2008 ). Serum proteins deliver important nutrients and attachment factors to cells, 
therefore it is essential for cell culture procedure. The most commonly used serum 
supplement is animal-derived  FBS   that according to GMP regulations should be 
replaced by a xeno-free substitute. Autologous or allogeneic human serum or plate-
let-derived factors contain a mixture of required factors—including some unknown 
molecules—for stem cell culture that should be considered as an appropriate and 
safe alternative for FBS (Bieback et al.  2008b ,  2009 ; Mannello and Tonti  2007 ; 
Kocaoemer et al.  2007 ; Bieback  2013 ). On the other hand, human serum shows high 
variability and negative effects on proliferative capacity of cells have limited its use 
in regenerative medicine (Tapp et al.  2009 ; Herrera and Inman  2009 ; Gstraunthaler 
 2003 ; Nimura et al.  2008 ; Su et al.  2009 ; Luttun et al.  2006 ; Caterson et al.  2002 ; 
Frechette et al.  2005 ; Johansson et al.  2003 ; Salvade et al.  2010 ; Witzeneder et al. 
 2013 ). Moreover, disease transmission possibility adding to human serum limita-
tions and problems have strongly proposed the development of serum-free or xeno-
free cell manufacturing methods to eliminate adverse effects of serum (Tonti and 
Mannello  2008 ). There is promising evidences for replacement of serum-based 
media by serum-free or xeno-free media (Lindroos et al.  2009 ; Rajala et al.  2010 ; 
Parker et al.  2007 ; Chase et al.  2010 ; Gottipamula et al.  2013 ). Development of 
serum-free media with greater proliferation effects represents a potential GMP 
grade alternative for traditional serum supplemented media. Since the use of serum-
free media is a growing area of stem cell research, it requires further investigations 
to clarify the possible effects of this media on the safety and quality of cell-based 
products. In order to achieve a high level of compliance to the GMP standards, other 
animal-derived reagents like trypsin and collagenase should be replaced by clinical-
grade alternatives such as TrypLE Select and GMP grade collagenase, respectively 
(Aghayan et al.  2015 ; Carvalho et al.  2013 ). Moreover, cryoprotectant agents have 
an important role in cryopreservation effi cacy and postthawing viability of cells. 
Cryopreservation of human stem cells is one of the critical steps required to provide 
stocks of stored cells (Li and Ma  2012 ). The current reagent used for laboratory 
cryopreservation is 10 %  DMSO   whose toxicity limits its clinical applications 
(Wang et al.  2012b ; Hunt  2011 ). To alleviate the problems caused by DMSO, the 
use of reduced concentrations of DMSO (2 %), CE-marked DMSO, and commer-
cially available hydroxy ethyl starch and trehalose are suggested (Hunt  2011 ). 
According to GMP guidelines, all operational process should be performed in a 
GMP facility (clean room) with controlled temperature, air fi ltration, and sterility by 
qualifi ed staff with a comprehensive understanding of GMP regulations and guide-
lines. Clean rooms should be engineered by expert architects in collaboration with 
biologists and GMP experts following regular validation tests to ensure adherence 
of staff, facility, equipments, and procedures to GMP principles. Today GMP-
compliant stem  cell  s including perinatal tissue- derived stem cells can be manufac-
tured in accordance with GMP regulations to provide a valuable source for cell 
therapy and regenerative medicine (Brooke et al.  2009 ; Barlow et al.  2008 ). In sum-
mary, the use of stem cells for cellular therapy and regenerative medicine needs to 
be guaranteed for safety and quality. Accordingly, all aspects of the cell-based prod-
ucts manufacturing from the donor to the recipient should be compatible with GMP 
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regulations to ensure the safety and effi cacy of fi nal product. Therefore, cellular 
therapy centers should not only obtain general quality assurance programs including 
ISO 9001 and ISO 13485 but also should meet GMP requirements.     
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      GMP Facilities for Clinical Cell Therapy 
Product Manufacturing: A Brief Review 
of Requirements and Design Considerations                     
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1           Introduction 

 The fi eld of  cell therapy   is evolving quickly, with potentially transformational new 
treatment modalities generating great excitement in the scientifi c and clinical com-
munities, among patients, and in the biopharmaceutical industry (Dawson et al. 
 2003 ). In the decade 2000–2010,  cell therapy   products accounted for over 2700 
clinical trials (Culme-Seymour et al.  2012 ) with the aim of addressing unmet medi-
cal needs (Hampson et al.  2008 ). Approved, marketed  cell therapy   products include 
expanded autologous chondrocytes, fi broblasts, keratinocytes, dendritic cells, lim-
bal stem cells, and tissue-engineered skin substitutes (Bersenev  2011 ,  2012 ). 

 Cell therapy products present numerous challenges, including complex manu-
facturing processes involving a high degree of manual operations that require rigor-
ous control, manufacturing environments in which multiple products are processed 
simultaneously, complex raw materials that may or may not be part of the fi nal 
product, and products that cannot be fully characterized (US Pharmacopoeia  2012 ). 
Major risks associated with  cell therapy   products include microbiological contami-
nation, loss of cell function, cell transformation malignancies, immunogenicity, and 
ectopic engraftment (Giancola et al.  2012 ). 
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 Regulatory agencies have responded to these concerns by establishing risk-based 
regulatory structures, in which more rigorous controls are required for products that 
have been more extensively manipulated or are thought to pose increased risk in 
other respects (Burger  2003 ). In recent years, numerous regulations, standards, and 
guidance documents about  cell therapy   product manufacturing have been published, 
but current Good Manufacturing Practices (cGMPs, often abbreviated GMPs) are 
the most fundamental. 

 The defi nition of GMPs is similar worldwide. The European Medicines  Agency   
(EMA), for example, describes  GMP   is “part of quality assurance which ensures 
that products are consistently produced and controlled to the quality standards 
appropriate to their intended use.” The International Society for Pharmaceutical 
Engineering (ISPE) defi nes GMP as: “A system for ensuring that products are con-
sistently produced and controlled according to quality standards. It is designed to 
minimize the risks involved in any pharmaceutical production that cannot be elimi-
nated through testing the fi nal product.” 

 GMPs are composed of multiple elements covering all aspects of production. 
Although each element is equally important, the  GMP   facility is the most obvious 
and tangible aspect (Arjmand et al.  2012 ; Burger  2003 ). A GMP facility represents 
a large capital cost and fi xed investment, and design and construction must be rigor-
ously planned, with input from multiple disciplines and much technical information 
(Signore and Jacobs  2005 ). This chapter summarizes basic requirements for  cell 
therapy   GMP facilities and provides an overview of facility planning and design, 
 cleanroom   classifi cations, and operating procedures.  

2     Regulation of Cell Therapy Product  Manufacturing   

 Manufacturing  cell therapy   products often requires complex procedures, such as 
cell isolation/selection, ex vivo expansion, differentiation, activation, gene modifi -
cation, and encapsulation. Since the fi nal product is living cells, terminal steriliza-
tion or removal/inactivation of microbial contaminants is not possible. Rigorously 
controlled manufacturing, including qualifi ed starting materials, validated aseptic 
manufacturing processes, and appropriate testing are critical factors to ensure safety 
and consistency of the product (Giancola et al.  2012 ; Brandenberger et al.  2011 ; 
Bosse et al.  2000 ). For these reasons, current regulations require  GMP  -compliant 
manufacturing of advanced  cell therapy   products used in clinical studies (Arjmand 
and Aghayan  2014 ). 

 Regulatory requirements for  cell therapy   products follow a risk-based, data- 
driven approach (Burger  2003 ). These regulations are codifi ed in the United States 
by the U.S. Food and Drug Administration (FDA), and by The European Medicines 
 Agency   (EMA) in the European Union (Ährlund-Richter et al.  2009 ). Complex, 
extensive manufacturing procedures involve greater risk than simple, brief pro-
cesses, and so cell-based products that are extensively processed are assigned a 
higher risk  category  . To classify the associated risks and to defi ne the level of over-
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sight, the FDA describes these types of products as “more-than-minimally manipu-
lated,” and the EMA as “substantial manipulation.” Nearly all advanced cell 
therapies would be considered more-than-minimally manipulated, and hence require 
a higher degree of process control and laboratory sophistication. Manufacturing 
processes involving only minimal manipulation, such as cryopreservation of autolo-
gous peripheral blood progenitor cells, are required to comply only with Good 
Tissue Practices (GTPs), rather than the more stringent and extensive GMPs (Burger 
 2000 ,  2003 ).  

3      GMP   Facilities 

 Annex 1 of the Pharmaceutical Inspection Co-operation Scheme (PIC/S) guide to 
 GMP   states, “The manufacture of sterile products is subject to special requirements 
in order to minimize risks of microbiological contamination, and of particulate and 
pyrogen contamination.” According to this guide, “The manufacture of sterile prod-
ucts should be carried out in clean areas entry to which should be through airlocks 
for personnel and/or for equipment and materials. Clean areas should be maintained 
to an appropriate cleanliness standard and supplied with air which has passed 
through fi lters of an appropriate effi ciency” (PIC/S Secretariat  2015 ). This facility 
must be capable of supporting the manufacturing process, as well as characteriza-
tion testing, and must incorporate the quality systems and infrastructure required for 
GMP compliance (Burger  2009 ). 

 Manufacturing areas, designated Class A, B, C, or D depending on air quality 
(Table  1 ), cover the processing requirements of a  GMP   facility (Arjmand et al. 
 2012 ; Giancola et al.  2012 ). Although the roots of  cleanroom   design and manage-
ment go back more than 100 years, when they were used within the hospital envi-
ronment to decrease the risk of spreading infection, the need for a clean environment 
for industrial manufacturing is a requirement of modern society (Whyte  2001 ). The 
controlled environment of a carefully designed, constructed, validated, and main-
tained  cleanroom   minimizes the risks of environmental contamination during  asep-
tic processing   and decreases the possibility of cross-contamination between 
patient-specifi c products (US Pharmacopoeia  2008 ). Cleanroom areas have special 

    Table 1    Cleanroom  classifi cation based on GMP guidelines     

 Cleanroom 
grade  Maximum number of particles/m 3  equal to or greater than the tabulated size 

 At rest  In operation 
 0.5 μm  5 μm  0.5 μm  5 μm 

 A  3520  20  3520  20 
 B  3520  29  352,000  2900 
 C  352,000  2900  3,520,000  29,000 
 D  3,520,000  29,000  Not classifi ed 

GMP Facilities for Clinical Cell Therapy Product Manufacturing: A Brief Review…



218

meaning that goes beyond simply clean space. The Federal Standard 209E defi nes 
it as “A room in which the concentration of airborne particles is controlled and 
which contains one or more clean zones.” In ISO 14644-1 defi nition, a  cleanroom   is 
“A room in which the concentration of airborne particles is controlled, and which is 
constructed and used in a manner to minimize the introduction, generation, and 
retention of particles inside the room and in which other relevant parameters, e.g. 
temperature, humidity, and pressure, are controlled as necessary” (Whyte  2001 ; 
ISO  1999 ). The Federal Standard 209E cleanliness classifi cation is convenient but 
generally inadequate by itself to describe a facility used for biopharmaceutical man-
ufacturing. The presence of viable particles, which are not considered in this stan-
dard, may affect operations of these cleanrooms. A measure of both viable and 
nonviable particles is required to provide suffi cient information regarding the suit-
ability of the  cleanroom   for its intended purpose. GMP guidelines emphasize that 
cleanrooms and clean air devices should be classifi ed in accordance with ISO 
14644-1. The maximum permitted airborne particle concentration for each grade is 
shown in Table  1 . Since the particle concentration is dependent on the particle- 
generating activities going on in the room,  cleanroom   classifi cation should be car-
ried out when the room is as build, at rest, and operational (Whyte  1999 ). Almost all 
emerging  cell therapy   manufacturing processes start as research laboratory proce-
dures in which controlling, monitoring, and evaluating impact of key parameters on 
target cells is diffi cult (Kirouac and Zandstra  2008 ). These types of procedures typi-
cally involve open process steps, which can expose cells to the external environ-
ment, rather than enclosed, sterile process systems which incorporate aseptic access 
ports. Based on the GMP guideline, open procedures for aseptically prepared cell- 
based products must be performed in a Class A environment—usually a biological 
safety cabinet housed within a Class B process room (Sensebé et al.  2010 ).

4         GMP   Facility Design 

 Given their cost and complexity,  cell therapy    GMP   facilities must be designed with 
fl exibility and varied applications in mind because the more adaptable the labora-
tory, the longer it is likely to remain useful. There is no a single “right” way to 
construct a GMP facility or  cleanroom  , as each should be designed to address end- 
user requirements. Centers looking to establish or expand facilities would benefi t 
from discussions with regulatory experts and persons with experience setting up  cell 
therapy   GMP facilities. Active communication, both formal and informal, with reg-
ulatory bodies is also invaluable in the planning phase. Preventing design and con-
struction mistakes likely will far outweigh the costs obtaining consultations and 
visiting other centers. 

  GMP   guidelines for  cell therapy   manufacturing are still evolving, but are based 
principally on existing regulations for medicinal products. Considering GMP require-
ments from the outset of facility design ensure compliance with regulatory require-
ments. Facility designs that poorly address GMP requirements can be expected to 
encounter regulatory diffi culties and may not be licensed without signifi cant changes 
(Signore and Jacobs  2005 ). 
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 Several guidance documents address aspects of facility and  cleanroom   design 
apart from GMPs and are listed in Table  2 . These guidelines use very general terms, 
which must be interpreted with regard to specifi c applications, but do describe how 
a facility can enhance process control. For example, 21 CFR 211 Part C states that 
“Any such building shall have adequate space for the orderly placement of equip-
ment and materials to prevent mix-ups between different components, drug product 
containers, closures, labeling, in-process materials, or drug products, and to prevent 
contamination.”

   Establishing a new  GMP   facility can be divided into several phases including 
planning, design, construction, commissioning, operation, and qualifi cation.

•     Planning Phase : As a fi rst  step  , it is important to assemble a project team whose 
responsibility will be to identify the scope of manufacturing and its related pro-
cess maps. The number of people, their backgrounds and expertise, their avail-
ability, and their responsibilities play a very important role in project execution 
and success (Odum  2004 ). Although some  GMP   cell manufacturing knowledge 
and skills may be available within the institution, in most cases outside help is 
required. In addition to architects, engineers, and project managers—with exten-
sive experience in GMP facility design—persons with knowledge and experi-
ence in GMP  cell therapy   manufacturing, regulatory requirements, development 
and execution of validation programs, and standard operating procedure (SOP) 
development will be needed (Burger  2000 ). This project team should defi ne the 
user requirements specifi cations (URS) for the equipment, utilities, and rooms. 

   Table 2    Guidance documents for  cleanroom   design   

 Document  Title 
 Publication 
date 

 ISO 14644-4  Cleanrooms and associated controlled 
environments—design, construction, and startup 

 2015 

 PIC/S  GMP   guide  Annex 1 (Manufacture of sterile medicinal 
products) 

 2015 

 21 CFR Part 211  Current good manufacturing practice for 
fi nished pharmaceuticals—subpart c: buildings 
and facilities 

 2015 

 United States 
Pharmacopoeia 

 Chapter <1116> Microbiological control and 
monitoring of  aseptic processing   environments 

 2015 

 ISPE Baseline Guide  Biopharmaceutical manufacturing facilities  2013 
 ISPE Baseline Guide  Sterile product manufacturing facilities  2011 
 WHO Technical Report 
Series, No. 961 

 Annex 6—WHO good manufacturing practices 
for sterile pharmaceutical products 

 2011 

 ISPE Good Practice Guide  Heating, Ventilation, and Air Conditioning (HVAC)  2009 
 EU  GMP    Annex 1 (Manufacture of sterile medicinal 

products) 
 2008 

 FDA Guidance for 
industry 

 Sterile drug products produced by  aseptic 
processing  —current good manufacturing 
practice 

 2004 

 ISO 14698-1  Biocontamination control—general principles 
and methods 

 2003 
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•  A comprehensive review of the preliminary design should be performed to 
ensure that the user requirements are met, and that the design complies with 
 GMP   requirements. ISO Standard 14644-4 is also a useful reference for prelimi-
nary design review (White  2009 ; Dietz et al.  2007 ). 

•  The project team is also responsible for fi nding the appropriate location for build-
ing the facility. Few projects begin as a “greenfi eld” site with unlimited building 
area. The limitations of the project site should be thoroughly understood, and 
reasonable decisions in fi tting the process and operational requirements into the 
existing site should be made. If the facility will be located in an existing building, 
the project team must determine whether the proposed location is feasible for 
renovation to house a  GMP   facility. For example, ceiling space available in a 
conventionally constructed building may not be adequate to accommodate the 
large air-handling systems necessary for  aseptic processing   areas (Burger  2000 ). 
In this scenario, modular cleanrooms or other temporary structures might be bet-
ter design options. These options operationally provide  aseptic processing   clean-
rooms within a conventional room. These arrangements are often temporary and 
limited in size, suitable only for early phase clinical trials (Dietz et al.  2007 ). 

•  In the  planning phase  , the role of the facility in the commercialization process 
should be defi ned. As  cell therapy   clinical trials move from early (Phase I/II) to 
late-stage clinical development (Phase III), the level of process control will be 
intensifi ed. A facility designed for early phase clinical trials may not be adequate 
for late clinical development or licensed  cell therapy   manufacturing. For facili-
ties which support Phase I/II clinical trials at a single center, validation, though 
still rigorous, will not be as stringent as for facilities involved in Phase III trials. 

•  People are the main source of  cleanroom   contamination. It is therefore useful to 
know the number of people expected to work in the cleanrooms during planning 
phase. This parameter infl uences calculations on the quantity of supplied air in 
each room, and consequently the specifi cations of  HVAC system  . Air handling 
units should be designed, constructed, and maintained to minimize the risk of 
cross-contamination between different manufacturing areas and may need to be 
specifi c for an area. Some general areas such as offi ces, rest room, conference 
room, fi le storage, central supply room (CSR), quality control laboratory, and 
support rooms should be in mind. The space limitations could be compensated by 
outsourcing of some services. For example, it is wise to purchase sterile supplies 
and reagents rather than providing in-house sterilization services (Gee  2009a ).  

•    Design Phase : This  phase   begins with evaluation of predefi ned processes and 
product requirements. The designer should fi rst gain an understanding of product 
and process requirements and use this information to develop a conceptual  layout. 
This layout should be appraised by the project team and subsequently enhanced 
and refi ned to produce fi nal layout of facility and equipment. Thinking about con-
tamination and mix-up prevention starts with drawing the layout of work areas 
and fl ow diagrams. Process fl ow diagrams are used to plan movements of materi-
als, equipment, personnel, products, and wastes into the cleanrooms. These fl ow 
diagrams are also applied in developing the site Validation Master Plan ( VMP  ), 
regulatory submissions, and SOPs. Whenever possible, fl ow should be unidirec-
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tional, to prevent cross-contamination of different areas within the facility. Some 
 GMP   facilities employ single-pass patterns in which the cleanrooms are situated 
between clean and dirty corridors. Staff, materials, and  reagents   move in a unidi-
rectional pattern from the clean corridor, to the manufacturing areas and from 
there through the dirty corridor to de-gowning area. In single-corridor design, 
there is multidirectional traffi c, but differential pressures are set to protect the 
manufacturing areas from the corridors or general areas. The unidirectional pat-
tern provides the highest degree of stringency but is expensive to maintain and 
requires the largest footprint due to the double-corridor design (Gee  2009b ). The 
layout of cleanrooms should facilitate maintenance, pressure differentials, and 
temperature/humidity control by isolating critical spaces and by excluding non-
clean operations (Burger  2000 ; ISPE Baseline Guide  2011 ). An example of mate-
rials, waste, and personnel fl ows is shown in Fig.  1 .
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  Fig. 1    An example of materials, waste, and personnel fl ows in unidirectional ( a ) and single- 
corridor ( b ) cleanrooms       
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•    Cleanroom  monitoring  , and mechanisms to maintain facility integrity in the case 
of power failures or other emergencies, should be considered. Examples include 
easily observed monitoring systems (for air pressure, temperatures, particle 
counts, and humidity) and backup power supply for critical equipment (Dietz 
et al.  2007 ; Larijani et al.  2015a ). 

•  The origin of cells can also infl uence facility design.  Allogeneic stem cells   (SCs) 
have been successfully isolated from different adult, fetal, and perinatal tissues. 
These cells have been used in different clinical trials and recent studies have sug-
gested that allogeneic SCs from healthy donor could be a more suitable source to 
trigger tissue regeneration (Zhang et al.  2015 ; Larijani et al.  2015b ). If a facility 
aims to prepare the therapeutic batches of allogeneic SCs, a scale-up approach 
should be considered, in which multiple doses of cell-based products are manu-
factured from a single donor. Therefore, a few large cleanrooms could be appro-
priate for this. By contrast, autologous (patient-specifi c) cells are not amenable 
to a scale-up approach. In this case, the facility should be suitable for scale-out 
manufacturing process, which involves concurrent manufacturing of multiple 
products at a one product per patient scale. A facility with  multiple  , smaller 
cleanrooms would be more suitable for this type of manufacturing (Hampson 
et al.  2008 ; Eaker et al.  2013 ). 

•  When using open systems, each  cleanroom   generally must be dedicated to manu-
facturing a single cell product. Closed-system processing permits effi cient use of 
manufacturing space because it provides process and product isolation, and thus 
can eliminate the need to dedicate a room to one product for one patient (Burger 
 2002 ). 

•  The air pressure of  cleanroom   should be positive to all surrounding zones of lower 
classifi cation. It is normal practice to “cascade” air quality from higher to lower 
quality levels. It means that the critical zone should be surrounded by areas of 
lower classifi cations, which eventually lead to a controlled not classifi ed (CNC) 
area (Fig.  2 ). The minimum value of differential pressure should be 10–15 Pa 
(ISPE Baseline Guide  2011 ).

•       Construction Phase : All  components   used in the construction of a  cleanroom   
should comply with the relevant local regulations and national laws. 

•  General principles of design should be followed in building cleanrooms or an 
 aseptic processing   facility. Many points to consider can be found in ISO 14644- 4, 
the FDA  aseptic processing   guideline, and in EU Annex 1. For example, in the 
EU- GMP   the requirements for the quality of surface have been described as: “sur-
faces to be smooth, impervious and without sharp edges, free of pores, abrasion 
resistant, unbroken, easy to clean, as well as resistant to cleaning agents and dis-
infectants.” In general, fl oors, walls, and ceilings should be fi nished with smooth, 
nonporous surfaces. Resin-based wall- and fl oor-coverings with sealed seams 
often are used. To increase the workspace fl exibility and to facilitate the cleaning 
procedure, it is wise to avoid installing permanent equipment (Burger  2000 ). 

•  The  air-handling system   may recirculate air, but single-pass (fully exhausted) air 
is preferable when there is a potential source of contamination or active biologics 
in the room. If recirculated air is  used  , potential sources of cross-contamination 
should be considered. 
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•  Airlocks or anterooms help maintain pressurization differentials between spaces 
of different classifi cations. The at-rest grade of an airlock should be the same 
grade as the area into which it leads. It provides physical barrier to people, mate-
rials, and air. This barrier is logical location to enforce gowning requirements for 
controlled area. When the risk of cross-contamination within the cleanrooms is 
high, the use of separate changing rooms for entering and leaving clean areas is 
desirable. Certain airlocks may be designated as an equipment or material air-
lock and provide a space to remove clean equipment or materials before they are 
introduced into the  cleanroom  . Pass-through chambers should be installed to 
allow the fl ow of small articles, raw materials, test objects, and products through 
the clean zones without requiring personnel to exit higher controlled areas. 

•  Sinks and drains are not recommended in cleanrooms and should be prohibited 
in grade A/B areas used for aseptic manufacturing. Windows are recommended 
in cleanrooms to facilitate supervision and for safety, unless prohibited by the 
facility protocol for security reasons (Dietz et al.  2007 ). Use of  closed-circuit 
television cameras (CCTVs)   is an effective  tool   for surveillance system. The 
CCTVs should be strategically placed to cover all critical areas. It is better to 
consider high resolution, low light/night vision camera with recording capabili-
ties. Access to the manufacturing facility must be restricted to authorized per-
sons only, using some form of personal identifi cation badges (Odum  2004 ).  

•    Commissioning Phase : In this  phase  , the equipment, utilities, and facility are 
tested to ensure they meet design specifi cations and user requirements. 
Commissioning ensures that any system operates properly and all necessary pro-
cedures are in place to ensure consistent operation. In the commissioning phase, 

Ancillary area(s)
Cleanroom(s)

Clean zone(s)

Ancillary area(s)

Critical zone(s)

Class A 

Class B

Class CClass D

Airflow direction

  Fig. 2    Cleanroom  cleanliness cascade   (adapted from ISO 14644-4). In this confi guration, the 
clean zone would be regarded as a more stringently controlled area       
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a less formal change management system is in place, allowing changes to be 
made and documented with lower levels of approval than would be necessary 
during the qualifi cation phase (White  2009 ; Odum  2004 ).  

•    Qualifi cation Phase : The  qualifi cation phase   begins through aseptic process sim-
ulations and process validation runs. Process simulation should be performed as 
initial validation with three consecutive satisfactory simulations per shift. Process 
simulation should be repeated at defi ned intervals and after any signifi cant modi-
fi cation to the  HVAC system  , equipment, and process. Some installation qualifi -
cation (IQ) activities may begin in the commissioning phase or even in the 
construction phase, continuing into the qualifi cation phase. This phase includes 
operational qualifi cation (OQ) and performance qualifi cation (PQ) activities. If 
no changes are made to the equipment, some OQ activities may be performed 
during commissioning. Cleanroom certifi cation activities are typically performed 
in the qualifi cation phase (White  2009 ; Sharp  2005 ).     

5      GMP   Facility Maintenance and Operations 

 Professional standards and regulatory documents require that the facility and equip-
ment be maintained in a clean condition. Therefore, the organization should develop 
and implement effective cleaning methods, procedures to monitor cleaning effi -
ciency, and documentation of cleaning procedures. In addition to normal cleaning 
requirements, a program of environmental monitoring should be in place to assure 
that the facility is consistently meeting its classifi cation. The facility must have writ-
ten SOPs for cleaning procedure and its monitoring. The SOPs should be simple and 
easy to understand because it may be read and used by staff who are not scientists. 
It should contain clear instructions on cleaning agent selection, preparation and use, 
the areas that should be cleaned, the cleaning intervals in each zone, and the docu-
mentation and record keeping of the cleaning procedure. Frequency of cleaning and 
environmental monitoring is determined by a number of factors including the types 
and number of products, cleanliness classifi cation, and changeover procedures 
(Lindblad  2009 ). Cleaning processes can be classifi ed in various ways, such as rou-
tine cleaning in which the fl oor and benches are cleaned, versus complete cleaning, 
which also includes walls, windows, and ceilings. Personnel working in a  clean-
room   may also carry out cleaning resulting from the process (Ramstorp  2008 ). 

 To prevent cross-contamination between products, cleaning should ensure that 
all traces of a product are removed from a manufacturing site before a different 
product is introduced (Gee and Lyon  2009 ). US Pharmacopeia recommendations on 
sampling frequency for each  cleanroom   grade are shown in Table  3 .

   Most academic cell manufacturing facilities are not in continuous operation, 
hence each facility need to develop a monitoring plan that refl ects the manufactur-
ing environmental conditions over a specifi ed period. Appropriate microbial moni-
toring should include quantitation of the microbial content of room air, surfaces, 
equipment, fl oors, walls, and personnel garments (US Pharmacopeia  2008 ). 
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 Access to the manufacturing site should be via a gowning area and should be 
restricted to authorized personnel. To eliminate particle shedding from the person-
nel, use of special clothing, known as  cleanroom   garments, is necessary. Gowning 
may take place in up to three incrementally classifi ed areas (Alici and Blomberg 
 2010 ). Cleanroom  garments   act as fi lters and retain any generated particles until the 
clothing is removed in an area where this poses no risk to the production process. 
Depending on the nature of the manufacturing environment, different types of gown-
ing practices (from laboratory coats to full sterile gowning) might be used (Gee 
 2009a ). The ambient temperature and humidity should not be uncomfortably high 
because of the nature of the  garments  .  

6     Summary 

 The essential concept of  GMP   is to ensure that a production process is reliable, 
reproducible, and transferrable (Ährlund-Richter et al.  2009 ). The facility is not the 
sole component of GMP and GMP-compliant cell manufacturing would not be 
achieved by transfer of current methodology to cleanrooms (Arjmand et al.  2012 ). 
Naturally, moving to cleanrooms will decrease the risk of contaminations but more 
importantly, GMP implementation will lead to development of validated SOPs for 
the entire process. It is a misconception that implementing GMP by itself will yield 
products of the highest quality, and which are most effi cient for a certain applica-
tion. The biggest benefi t of GMP is actually the reproducible manufacturing of 
products, which will ensure traceability of the process and clinical safety (Alici and 
Blomberg  2010 ). The integration of GMP into a  cell therapy   manufacturing facility 
is challenging, but it should be remembered that most of the GMP elements (SOPs, 
laboratory controls, training, and documentation) already exist in some form in 
most cell-processing laboratories (Davis-Sproul  1999 ). Based on our previous expe-
riences, the implementation of general quality management systems (such as ISO 
9001 and ISO 13485) could facilitate this transition (Arjmand et al.  2012 ). 
Appropriate regulation of  cell therapy   products is essential to ensure public safety 
and trust while minimizing unnecessary barriers to product development (von 
Tigerstrom  2008 ). Regulatory requirements should be considered when planning 

   Table 3    Suggested frequency of sampling on the basis of criticality of controlled environment   

 Sampling area 
 Frequency of 
sampling 

 ISO 5 (formerly Class 100) or better room designations  Each operating shift 
 Supporting areas immediately adjacent to ISO 5 (e.g., ISO 7, formerly 
Class 10,000) 

 Each operating shift 

 Other support areas (ISO 8, formerly Class 100,000)  Twice per week 
 Potential product/container contact areas  Twice per week 
 Other support areas to  aseptic processing   areas but nonproduct contact 
(ISO 8 or lower) 

 Once per week 
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and building a GMP facility for  cell therapy   manufacturing. Long-term planning is 
crucial to facilitate suitability of the facility for future use (Alici and Blomberg 
 2010 ). It is far too easy to decide to construct a GMP facility based on the percep-
tion that any advanced academic center should have one. Some centers undoubtedly 
do require on-site facilities. Others, however, may fi nd it more cost effective to col-
laborate with an existing GMP facility. It could be benefi cial for small centers with 
early stage clinical development to use the services of contract manufacturing orga-
nizations ( CMOs  ), which can facilitate clinical trial operations by outsourcing the 
actual manufacturing steps, managing regulatory requirements, conserving capital, 
and speeding up the development cycle (Fitzpatrick  2008 ).     
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      Ethical Issues in Perinatal Tissue Derivation 
and Regenerative Medicine                     

     Leila     Afshar     

1           Introduction 

  Regenerative medicine and Tissue Engineering   are fi elds of research which are rap-
idly developing in every different branches of medicine. The methods and tech-
niques that are involved in  tissue engineering   are multitude. And so the scope of 
 regenerative medicine   could not be described easily. Some commentators defi ne 
 tissue engineering   as “an interdisciplinary fi eld that applies the principles of engi-
neering and life sciences toward the development of biological substitutes that 
restore, maintain or improve tissue function or a whole organ” (Langer and Vacanti 
 1993 ). 

 This defi nition includes different scientifi c and therapeutic purposes in  regen-
erative medicine  ; from developing a cell line in laboratory to construction of whole 
autologous organs that could be a solution for scare donor organs, and also an 
answer to the problem of adverse host response and minimize the risk of rejection. 
This wide scope and fi eld of area means that the ethical aspect of  tissue engineering   
and  regenerative medicine   is complex and multidimensional. Based on the tech-
niques, kind and source of the subjects, and the goal of the procedures, there would 
be different ethical considerations. Furthermore, the issue of social justice is a 
major challenge in this regard. In some cases such as  embryonic stem cell research   
or enhancement, the discussions are highly controversial. This article try to present 
the most important ethical aspects of the issue in order to identify the good and 
the worthwhile and to guide the direction process of this new fi eld in order to fi nd 
the most acceptable means and ways.  
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2     Criteria for Ethical  Judgment   

 Every human action is characterized by two aspects, each of which is important for 
its ethical evaluation. Teleologically an action could be regarded in terms of its 
externality ( what  the agent does) and its internality ( why  he/she is doing it) 
(Schockenhoff  2009 ; Veatch  2012 ). Although the intention of the agent and the 
justifi cation of the objectives and goals play important role for ethical judgment of 
actions these are not suffi cient. Rather, the ethical evaluation of actions must also 
include a judgment of the means by which we wish to attain our goals. In addition, 
good motivation and the intent to achieve high-ranking goals relate only to one 
aspect of our actions, which needs to be supplemented by another one. 

 In ethical assessment of actions what we do in pursuing our goals, it is important, 
because the others’ rights will not be nullifi ed by our high desirable goals. In this 
regard, besides justifying our goals, we need to legitimate the mean or our selected 
method to exclude those ones that violate the human dignity or fundamental human 
rights. One aspect of violating the dignity of a human being is to utilize him/her as a 
mere object of someone else’s will and to use him/her solely for achieving extraneous 
purposes irrelative to his/her existence that is a form of instrumentalization. In rela-
tion to the  regenerative medicine  , the question must accordingly be raised of whether 
the various forms of obtaining human stem cells make an embryo into a mere object 
at any phase of the production process and reduce its existence to an  instrument  ? 

 In addition to justifi cation of the goals and the scrutiny of the means, the third 
criterion of ethical judgment is to take required responsibility for the foreseeable 
consequences of an action, especially not intended and perhaps harmful effects that 
should be incorporated in the overall judgment of an action. 

 This model of comprehensive ethical evaluation could be applied for both indi-
vidual actions in the interpersonal relationship and for the collective actions of 
social institutions and therefore could be used for the activities of the scientifi c com-
munity and also in the fi eld of stem cell and  regenerative medicine  . 

 It is scientists’ task to justify the goals of their actions, scrutinize the appropriate 
means for achieving them, and take responsibility on the consequences of their 
actions. 

 Application of this approach to research projects and therapeutic models of the 
 tissue engineering   and  regenerative medicine   leads to a comprehensive analysis of 
the ethical aspect of the issue.  

3     Main Ethical Challenges 

3.1     The Kind and the Origin of the Subject 

 For some  tissue engineering   projects human embryonic cells are demanding 
resources for new biotechnological developments. Their pluripotential characteris-
tics make them desirable to use. But the human embryo is a special and precious 
entity. These cases stimulate ethical controversies in human embryonic experiments 
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and also in  regenerative medicine  . The ontological controversy about the nature of 
the human embryo (is it a person, a thing, or an entity with certain moral standing) 
and the ambivalent moral status of it makes it diffi cult to justify destroying an 
embryo for use as a source of the raw materials for  tissue engineering   and  regenera-
tive medicine   (Afshar  2015 ). 

 On the other hand, because of the limitation of the embryonic stem cell resources 
and the ethical challenges of their use we can obtain usable pluripotential cells for 
 tissue engineering   from other sources besides the fetus, these postembryonic, peri-
natal sources including the amniotic fl uid and membrane, placenta, Wharton’s jelly, 
and umbilical cord blood. Since these tissues are discarded at the time of birth, 
could be a simple and safe means for stem cell deprivation. In addition, peripheral 
maternal blood can be a source of fetal cells (Si et al.  2015 ). 

 Because of their least invasiveness, the amniotic fl uid and the placenta are clini-
cally most appealing ones. And most importantly, these cells effectively avoid ethi-
cal issue involving the moral status of the embryo.  

3.2     The Intended Goal of  Regenerative Medicine  , Its Means 
and Methods 

 The ethical discussions about the use of bioengineering and  regenerative medicine   
begin with questioning the therapeutic goals of medicine versus cosmetic and enhance-
ment ones. The justifying arguments for the use of these techniques are mainly based 
on its goal, the treatment. If the goal is to cure or treat human disease, then the benefi ts 
will outweigh the burdens, the cost, and diffi culty. In this regard,  tissue engineering   
ought not to be used in a wasteful manner (Geron Ethics Advisory Board  1999 ). 
Indeed, the question is can we mean the therapeutic purpose of  regenerative medicine   
in terms of restoring the normal function of the tissues, organs, and humans as a whole? 
And concluding that it is necessary and also possible to restrict the technique based on 
it? In this regard, for example, using neurons of another person for a Parkinson patient 
may raise the question of identity and its nature. This means that drawing a distinctive 
line between different goals of  regenerative medicine   would be diffi cult. Yet it is more 
unclear that who should decide or evaluate the issue? 

 One may say that the utilizing therapeutic options of  regenerative medicine   are 
still not available, but there are many researches in this area that may lead to new 
treatments. This may generate a basic question; is it possible that the  regenerative 
medicine   alter the defi nition of health? And therefore the enhancement therapies 
one day became part of the medicine. And may be this change will impact on the 
medical profession’s self-image, focusing on optimizing the human nature or on the 
antiaging  medici  ne than on  healing   the diseases? 

 One of the main ethical challenges in using new techniques is that everything 
which is technically feasible may not be ethically acceptable. This notes the poten-
tially harmful consequences of the new scientifi c achievements and also their unde-
sirable methods and means. Overcoming this obstacle needs to draw distinctive 
lines between ethically permissible, still acceptable, and unacceptable methods. In 
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 tissue engineering   and  regenerative medicine  , this question can be translated to dif-
ferent questions. Whether the cellular biology and tissue development researches 
should be performed only on adult stem cells or it may also have recourse to  embry-
onic stem cells  ? Whether we can use the cloned embryo for depriving their stem 
cells? These are philosophical questions of value judgment which the scientifi c cri-
teria may not apply to assess it. 

 And by setting aside these ontological questions, there are still ethical consider-
ations in  tissue engineering   researches that also presented in other areas of clinical 
research. For example, do we have a favorable balance of risks and benefi ts? However, 
in the context of  regenerative medicine   issues are more problematic because of the 
high degree of uncertainty. These uncertainties are about the nature of the risks, the 
probability of them, and the absence of an acceptable standard for the assessment. 
Therefore, a simple and general risk assessment is not possible and also favorable. 

 One of the risk indicators of the  tissue engineering   is the degree of invasiveness 
of the methods. An in vitro experiment on cells is nearly riskless, but the implanta-
tion of a cultivated cluster of cells implies the risks of contamination, incompatibil-
ity, and errors. The more modifi cation in cells will increase the risk of side effects 
and more surgical procedures add the risk of invasive surgery. Furthermore, there is 
risk due to the applied substances and their interactions. If the rationale of the  tissue 
engineering   and  regenerative medicine   is to get nearer to physiological process of 
the body, the risks of the methods should be evaluated based on their effect on the 
body’s own physiological process. 

 Another factor that should be mentioned in assessing the risk–benefi t ratio is the 
intended function of the engineered tissue. As much as the underlying disease be 
serious, the producing risks would be acceptable. However, a life-threatening disease 
does not necessarily justify any kind of dangerous therapy. This means that “any-
thing is better than this state” is not a careful and suffi cient way of risk assessment. 

 Other risks due to the  tissue engineering   are associated to the scientifi c risks of 
different methods that are impossible to rule out them. However, there are important 
source of risk that should be considered such as infection, modifi cation of the cells, 
mistaken identity of the cells and delivery of unwanted cells (Sutherland and Mayer 
 2003 ), and also the risk of induced cancer. Evaluation of risk–benefi t ratio needs a 
careful analysis of possible alternative treatments, which are usually neglected. It is 
somehow different from situations that there is a gold standard of therapy and there-
fore needs an individualistic approach for each patient based on her medical and per-
sonal preferences. Finally, there are unexpected risks in any new experimental 
therapies, the important issue is to not ignore them and general considerations of these 
risks should be mentioned as one of the important aspects of the informed consent.  

3.3     The Issue of Social Justice 

  Tissue engineering   is a complex procedure still in experimental stages. Yet to be an 
ethical technology, it must be directed toward accessibility, just distribution, and 
effi cacy (Zoloth  2014 ). In the context of widespread healthcare disparity, justice is 
a problem which will raise some ethical questions. 
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 First, in a world that the majority of the people suffer from easily preventable or 
treatable infectious diseases such as tuberculosis, malaria, diarrhea, and AIDS, can 
 tissue engineering   and  regenerative medicine   be justly a promotion in the face of the 
health? 

 If we consider the widespread use of  tissue engineering   as its goal, which surely 
needs careful support and monitoring, we can justify the procedure. However, the 
question of how to achieve this goal has not yet been solved. 

 This perspective needs a careful attention to how the market may drive technol-
ogy toward specifi c research goals (framed by value of profi t) rather than the human-
istic ones such as healing, and solidarity, which itself create the possibility for serious 
confl icts of interest.   

4     Conclusion 

 Like any other fi eld of scientifi c activities in modern medicine, the stem cell biology 
and  regenerative medicine   should be valued only within established ethical frame-
works (Zacharias et al.  2012 ). By reviewing the ethical challenges of  tissue engineer-
ing   and  regenerative medicine   we fi nd that like any other new technologies and 
scientifi c achievements, this fi eld is also facing some important issues, from onto-
logical to methodological and social ones. The controversy surrounding human 
embryo destruction to generate stem cells could be bypassed by using the  perinatal 
stem cells  . However, some other important challenges such as safety, and appropri-
ate clinical application, still remain. Confronting these challenges need a regulatory 
system. To have an effective regulatory system for prohibiting these ethical consid-
erations we need set of standards, for safety, for effi cacy, and for fair and just use of 
 regenerative medicine  , in addition to guidelines for clinical trials and clinical use, 
and protocols for tissue stability and purity. All these require a regulatory structure 
including local committees, institutional, and national reviewing boards. 
Constitutions that play a great role in policy writing, addressing the issues involving 
the process of  tissue engineering  , applying in clinical level for regenerative pur-
poses, in order to protect humanistic values of medicine and science. 

 However, it is also important to remember that ethics is not a barrier to restrict 
the scientifi c progress. The function of ethics is to lead the scientifi c progress in 
accepted directions and to emphasize the most acceptable means on this way.     
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