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Preface

This book is concerned with the use of statistics in an area of study
known as clinical pharmacology. With the increasing size, duration, and
cost of drug development, increased attention is being paid to this topic
of clinical research with a corresponding increase in attention to the use
of statistics.

This book reflects those areas of statistics which we regard as most im-
portant from a practical perspective in day-to-day clinical pharmacology
work. It is not intended to be comprehensive but to provide a starting
point for those engaged in research. In writing this book we have taken
from our own experiences of working in the pharmaceutical industry. To
emphasize this, each chapter begins with a brief vignette from Scott’s
experiences in the clinical pharmacology workplace. All the sets of data
in the book are taken from real trials.

Following a chapter devoted to drug development and clinical pharma-
cology, describing the general role of statistics, we start with six chapters
wholly devoted to the study of bioequivalence – a topic where success-
ful studies are required for regulatory approval. The aim was that this
should be, to a large extent, self-contained and mostly at a level that
was accessible to those with some statistical background and experience.

The statistical tools developed here are useful for other topics of
clinical pharmacology – namely general safety testing, testing for pro-
arrythmic potential, population pharmacokinetics and dose selection.
These topics are covered in the last four chapters of the book.

We are indebted to those who helped with their advice and discus-
sions, over many years, on the topics of this book: Névine Zariffa, Kate
Howland, Ken Waltham, Lynda Waltham, Frank Rockhold, Mike Ty-
deman, Darryl Downing, Lynne Collins, Dan Patterson, Vicky Patter-
son, Matt Huber, Andy Huber, Todd Patterson, John Whitehead, Bob
Harris, Bernie Ilson, Stephen Senn, Mike Kenward, John Matthews,
Dieter Hauschke, Vern Chinchilli, Frank Harrell, Lloyd Fisher, Dallas
Johnson, Laszlo Endrenyi, Val Fedorov, Andy Grieve, Gary Koch, Lutz
Harnisch, Vlad Dragalin, Sergei Leonov, Peter Lane, Steven Julious,
Ashwini Mathur, Nick Bird, Duane Boyle, Marty Hyneck, John Finkle,
Phil Sager, Delyth Jones, Paul Stober, Annabel Mortimer, Lisa Benin-
cosa, Marty Freed, Dave Tenero, Dawn Webber, Mick Ireson, Jeff Bar-

xi



xii PREFACE

rett, Klaus Hinkelmann, Carl Peck, Lewis Sheiner, Nick Holford, Terry
Hyslop, Walter Hauck, Marilyn Agin, Rich Anziano, Tracy Burgess,
Christy Chuang-Stein, Alex Dmitrienko, Georg Ferber, Margarida Ger-
aldes, Kalyan Ghosh, Ron Menton, Rob Muirhead, Jaya Natarajan, Walt
Offen, Jay Saoud, Brian Smith, and Ram Suresh; and to those who
helped us to find relevant data: Venkat Sethuraman, Ruwei Zhi, Tim
Montague, Alka Preston, and Steven Kathman. We are also grateful to
our employers, GlaxoSmithKline and Pfizer, for their support and per-
mission to publish this book. Some of the plots in Chapters 3 and 4 use
Splus code based on examples in [305]. SAS code to calculate the power
of the test for average bioequivalence was provided by Klem Phillips.
The description of the nonparametric method for estimating confidence
intervals for stratified data, given at the end of Chapter 4, was based on
notes written by Gunter Heimann.

This book has been typeset using the pdfLaTeX system, and we are
grateful to the staff at Chapman & Hall/CRC Press for their help with
this and to Rob Calver for all his assistance.

We take full responsibility for any errors or omissions in the text.

Computer software used in the text

GenStat - Sixth Edition: Lawes Agricultural Trust. Supplied by VSN
International, Wilkinson House, Jordan Hill Road, Oxford, UK.

SAS: SAS Institute Inc., SAS Campus Drive, Cary, North Carolina
27513, USA.

Splus 6.2 for Windows: Insightful Corporation, 1700 Westlake
Avenue N, Suite 500, Seattle, Washington 98109, USA.

StatXact: Cytel Software Corporation, 675 Massachusetts Avenue, Cam-
bridge, Massachusetts 02139, USA.

WinBUGS: MRC Biostatistics Unit, Institute of Public Health, Uni-
versity Forvie Site, Robinson Way, Cambridge CB2 2SR, UK.
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CHAPTER 1

Drug Development and Clinical
Pharmacology

Introducing Drug Development
It was the depths of winter, and I drove up to Philadelphia to begin

working in the clinical pharmacology unit for SmithKlineBeecham Phar-
maceuticals Research and Development as a brand-new biostatistician,
only four days out of school. The unit is gone now, and the name of the
company has changed. The folks working in ClinPharm at my company
still do the same thing though – studies to bring new drug products to
market and to optimise the use of drugs which are already there.

It was pretty confusing when I walked into our offices. Fresh from
school, I thought the toughest part of my day was finding a parking space
in West Philadelphia, but little did I know that much more fun was soon
to come. Clinicians were wandering around doing clinical things, and
scientists and nurses were rushing around with findings, lab samples,
and dosing schedules. In the midst of all this, subjects were showing up
for their studies, and getting their physical exams and being dosed.

We (the clinical pharmacology statistics group) consisted of three peo-
ple then (me, my boss, and another statistician). My boss had been there
for two years, and the other statistician had joined a month or two be-
fore. We were located right alongside the clinical staff, the subjects in
the trials, and the laboratory personnel. It was nice to start out as a new
statistician co-located with the people whom I’d work with on studies as
it gave me a very practical understanding of the implications of what
‘really happens’ in the clinic, and we hope to convey that experience in
this book.

After a couple years, though, you will prefer an office in another build-
ing. Distance makes the heart grow fonder.

My boss showed me my desk, my computer, and handed me a data set
analysed by a statistician at a contract research organisation (the data
set is reproduced in Chapter 3). These contract research organisations
are businesses hired by drug companies to do research and/or analyses
for them (i.e., on contract).

It was a collection of times in a cross-over study (see Chapters 2 and
3). She asked that I verify their findings from a nonparametric analysis

1
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(because nobody else could, the thought was the contract research organ-
isation had done it wrong).

This brought several issues to mind: To what do these times corre-
spond? What is this for? What treatments were these subjects on? Where
is the rest of the study data and the protocol? What is a cross-over study
(we had studied those in school, but not like this)? What is a nonpara-
metric analysis, and which one did they use? When is lunch?

Statistically speaking, I probably should have asked the last question
first. That is the first thing you need to sort out in drug development.
If I had it to do over again, I would have taken a longer break before
starting work too.

More important, however, is asking how such data fit into drug de-
velopment, what are we trying to do with them, and what depends on
the outcome. By the end of this book, you will be able to analyse these
data, design studies to generate such data, know the ins and outs of drug
development, and know their implications.

1.1 Aims of This Book

The purpose of this book is to provide statisticians (and other person-
nel in clinical pharmacology and drug development) with the methods
needed to design, analyse, and interpret bioequivalence trials; when, how,
and why these studies are performed as part of drug development; and
to motivate the proposed methods using real world examples. The topic
is a vast one and encompasses ethics, recruitment, administration, clin-
ical operations, and regulatory issues. Some of these aspects will have
a statistical component but it must be borne in mind throughout this
book that the statistical features of the design and analysis are but one
aspect of the role of clinical pharmacology.

Once the foundations of clinical pharmacology drug development, reg-
ulatory applications, and the design and analysis of bioequivalence trials
are established, we will move to related topics in clinical pharmacology
involving the use of cross-over designs. These include (but are not lim-
ited to) safety studies in Phase I, dose-response trials, drug interaction
trials, food-effect and combination trials, QTc and other pharmacody-
namic equivalence trials, and dose-proportionality trials.

We have tried to maintain a practical perspective and to avoid those
topics that are of largely academic interest. Throughout the book we
have included examples of SAS code [368] so that the analyses we de-
scribe can be immediately implemented using the SAS statistical analy-
sis system. In particular we have made extensive use of the proc mixed
procedure in SAS [265].

In each chapter, we will begin with the practical utility, objectives, and



DRUG DEVELOPMENT 3

real-world examples of the topic under discussion. This will be followed
by statistical theory and applications to support development of the
area under study. Technical theory (where extensive) will be included
in technical appendices to each chapter. Each topic will include worked
examples to illustrate applications of the statistical techniques, their
interpretation, and to serve as problems for those situations where this
book serves as the basis for course-work.

1.2 Drug Development

Drug development is the process of changing someone’s mind. To clarify,
industrialised nations today have (pretty much uniformly) created gov-
ernmental ‘watch-dog’ bureaucracies to regulate the use of drugs in hu-
man beings. These groups were created in response to historical events
in a variety of settings where drugs which were unsafe, ineffective, or
poorly made were used in human populations. Such regulatory agencies
are meant to protect public health by ensuring that marketed drug prod-
ucts are safe, benefit the patients taking them, and are manufactured to
standards of high quality (so when one takes one pill, it is the same as
the next, and the next, etc).

The regulatory agencies one will frequently hear about when working
in drug development are listed in Table 1.1:

Table 1.1 Regulatory Authorities

Nation Agency

Australia Therapeutic Goods Administration (TGA)

Canada Therapeutic Products Directorate (TPD)

European Union European Agency for the
Evaluation of Medical Products (EMEA)

China State Drug Administration (SDA)

Japan Ministry of Health and Welfare (MHW)

United States of America Food and Drug Administration (FDA)

These regulatory agencies are, in general, gigantic in size and scope
of their activities. They employ hundreds if not thousands of people
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worldwide - clinicians, physicians, nurses, epidemiologists, statisticians,
and a variety of other personnel. Regulatory agencies are charged with
specific roles to protect the public health. Under the assumptions that
all drugs are unsafe, all drugs will not benefit the patients taking them,
and all drugs cannot be manufactured to high quality standards, these
folks are charged with finding the few drugs that are safe, will benefit
patients, and are manufactured to high quality.

No problem right? What is usually not mentioned in the charters
and laws establishing these agencies are that they are also to do this
as quickly as possible (folks who are sick do not like to wait) without
sacrificing safety on a shoestring budget. It is a challenging job.

Drugs are chemicals or other agents (for example complex biological
molecules) that have been shown to be of some benefit to public health,
can be safely administered, and can be manufactured to high quality.
The job of any sponsor (or drug company) is to show regulators that
these three things can be done and to get their drug to patients needing
it as soon as possible thereafter. In essence, drug companies are charged
with changing the regulators’ minds (i.e., proving them wrong). They
must show that their product is safe, effective, and made to high-quality
standards.

Sponsors (e.g., drug companies) develop drugs on what has been termed
the critical path [137], see Figure 1.1.

A drug is generally discovered in the context of basic science - in
that it causes a biological response in vitro (in a lab setting) which is
thought to have the potential to provide benefit. Following an extensive
battery of in vitro, animal, and manufacturing testing, and following
regulatory review, it is administered to humans (a first-time-in-humans
study) in a clinic. Clinical pharmacology work begins then, and extensive
human and animal testing follows to evaluate safety and medical utility
in parallel with scale-up of manufacturing to provide large amounts of
drug substance. If all this is successful, a data package is filed with the
regulatory agency where a sponsor wishes to market the product.

Generally, from the time a drug enters the clinic to the time it is ap-
proved by regulators and ready to market, 10.4 years on average elapse
[90]. The cost is also substantial with estimates ranging from 0.8 to 1.7
billion dollars being spent in research and development to bring one
new product to market [137]. Of the molecules which clear the various
hurdles to human testing, only one in ten will be approved for the mar-
ketplace, failing for reasons of lack of efficacy (benefit), lack of safety,
poor manufacturing, or lack of economic benefit.

What is done over this 10-plus years and a billion dollars? In a nut-
shell, a drug is developed by finding a dose or set of doses which produce
the desired beneficial response (like lowering blood pressure: a surrogate
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Figure 1.1 The Critical Path in Drug Development

marker or predictor of cardiac benefit) without producing an undesir-
able response (e.g., nausea, emesis). One also has to be able to make
the product (manufacture it) to a standard of high quality, and in a
consistent manner.

Sounds easy right? Just wait.

1.3 Clinical Pharmacology

Clinical pharmacology is the study of drugs in humans [12]. It blends
the science of laboratory assessment of chemicals with the clinical and
medicinal art of their application. Many textbooks are devoted to the
proper study of clinical pharmacology, and we shall dwell only on those
aspects which will be important for the subsequent chapters of this book.

First, some concepts. The study of pharmacokinetics (PK) is defined
as ‘movements of drugs within biological systems, as affected by up-
take, distribution, binding, elimination and biotransformation; particu-
larly the rates of such movements.’ [413] In layman’s terms, PK is what
the body does to a drug (as opposed to what a drug does to the body,
which we’ll cover later).

When a tablet of drug is taken orally, in general, it reaches the stom-
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ach and begins to disintegrate and is absorbed (A) (Figure 1.2). When
dissolved into solution in the stomach acid, the drug is passed on to the
small intestine [366]. In the small intestine, many things can happen.
Some of the drug will pass right on through and be eliminated (E) from
the body. Some will be metabolised (M) into a different substance right
in the intestine, and some drug will be picked up by the body and dis-
tributed (D) into the body through the portal circulation. This last bit
of drug substance passes through the liver first, where it is often me-
tabolized (M). The remainder passes through the liver and reaches the
bloodstream where it is circulated throughout the body.

Tablet

Liver D

M

Bloodstream for 
Systemic Circulation

Stomach

Disintegration

Intestines

A

Dissolution
D
M

E

Bile
E

Feces

Figure 1.2 What Happens to the Drug After it is Taken

Following oral administration, the drug is held to undergo four ‘stages’
prior to being completely eliminated from the body, known as ADME:
Absorption (uptake by the body through the mouth, throat, stomach,
and small/large intestine), Distribution (how the drug substance is car-
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ried by the body through the blood to its site of action), Metabolism
(how the body breaks the drug substance into by-products), and Elimination
(how the body disperses the drug product). Pharmacokinetics is thus the
study of ADME [12].

This process, however, is difficult to measure. Modern technology pro-
vides many options (e.g., one might tag a molecule using a radio-label
and follow the progress of the molecule using X-ray imaging and similar
techniques); however the most common means is to measure how much
drug substance is put into the body (i.e., dose) and how much drug
reaches the systemic circulation by means of blood sampling. Figure 1.3
provides a typical plasma concentration profile (vertical axis) versus time
(horizontal axis) for a dose of drug given to an individual at 0 hours.
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Figure 1.3 Plasma Concentration (ng/mL) versus Time (h)

As the drug is absorbed and distributed, the plasma concentration
rises and reaches a maximum (called the Cmax or maximum concentra-
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tion). Plasma levels then decline until the body completely eliminates
the drug from the body. The overall exposure to drug is measured by
computing the area under the plasma concentration curve (AUC). AUC
is derived in general by computing the area under each time interval and
adding them up.

Summary measures [366] for the plasma concentration versus time
curve are derived as:

• AUC(0-t) (i.e., Area under the curve from time zero to t where t is
the time of last quantifiable concentration),

• Cmax (maximum concentration),

• Tmax (time of maximum concentration),

• T 1
2

(half-life of drug substance), and

AUC(0−∞) = AUC(0− t) +
Ct

λ
(1.1)

where Ct is the concentration at time t and λ is -2.303 times the slope
of the terminal phase of the loge-concentration time curve. See [417]
for other summary measures. More details of techniques used in the
derivation of AUC may be found in [467]. We could also fit a model to
summarize a plasma concentration curve and will develop the methods
used for doing so in a later chapter.

Once a drug is ingested, the substance (or active metabolite) passes
through the blood and hopefully reaches a site of action; thereupon pro-
voking what is termed a pharmacodynamic (PD) response in the body.
This response is measured by looking at a biomarker or a surrogate
marker.

Biomarkers are ‘a characteristic that is objectively measured and eval-
uated as an indicator of normal biological processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention’, [32]. In con-
trast, a surrogate marker is ‘a biomarker that is intended to substitute
for a clinical endpoint. A surrogate endpoint is expected to predict clin-
ical benefit (or harm or lack of benefit or harm) based on epidemiologic,
therapeutic, pathophysiologic, or scientific evidence’ [32]. Alternative de-
finitions exist, for example, ‘a laboratory measurement or physical sign
that is used in therapeutic trials as a substitute for a clinically meaning-
ful endpoint that is a direct measure of how a patient feels, functions,
or survives and is expected to predict the effect of therapy’, [425].

For example, blood pressure [425] can be considered as a surrogate
marker for clinical benefit as numerous studies have shown that lower-
ing blood pressure improves patient survival (i.e., decreases the rate of
mortality seen in patients with high blood pressure). HDL (high density
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lipoprotein) cholesterol is a biomarker as increasing it is thought to have
therapeutic cardiac benefit [411], but people are not quite entirely sure
about it yet.

Large numbers of biomarkers are used in early-phase clinical develop-
ment to characterize the pharmacodynamic and clinical effects of drug
treatment. The purpose of clinical development at this early stage is to
provide a safe and potentially effective range of doses to be fully evalu-
ated for safety and efficacy to regulatory standards in later-phase trials
(Phases IIb-IV). Generally, biomarkers are qualitatively evaluated for
their predictive value in supporting later-phase development. However,
recent developments highlight the need to apply quantitative tools to
biomarker data to enhance their utility in support of company decisions
regarding the prediction of subsequent surrogate marker and clinical
outcome measures [262].

Surrogate markers have been used to support successful regulatory
applications in drug development [425]. Criteria for demonstrating that
an endpoint is a surrogate marker for clinical outcome are not well estab-
lished [425], [262], [32]; however, some qualitative principles have been
repeatedly discussed based on a publication by Temple [425]: ‘Biological
Plausibility, Success in Clinical Trials, Risk-Benefit, and Public Health
Considerations’.

It should be noted, however, that, at the same time as a drug is giving
a ‘good’ PD response, the drug (or a metabolic by-product) may attach
itself to a different site of action thereby provoking unwanted side effects.
The study of pharmacodynamics is in layman’s terms ‘what the drug
does to the body’.

In combination, dose, PK, and PD relationships contain the necessary
and sufficient information we need to begin convincing people that use of
a drug is worthwhile and to learn about the behavior of a drug product.
This is sometimes also referred to as the dose-exposure-response (DER)
relationship [225], [134], [399].

How do we go about developing drugs under this approach to clin-
ical pharmacology? Early-stage development should focus on learning
about the compound, understanding its safety and efficacy in patients
by means of varying dose and measuring PK and PD. Once sufficient
confidence is reached that the compound does what is beneficial and is
safe enough to dose, sponsors begin conducting large confirmatory tri-
als. These are trials designed to convince regulatory authorities that the
drug is safe to use in the marketplace and will be of public benefit. A
more comprehensive review may be found in [402].

Let us revisit our earlier discussion of drug development (Figure 1.1)
in light of what we now know about clinical pharmacology and to break
down the critical path of clinical drug development in more detail. Prior
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to the first-in-human study in clinic, in vitro and animal preclinical ex-
perimentation should establish a range of safe doses for study in humans.
Doses are then selected for introduction into clinical studies in humans
[356].

Clinical development of a drug product, with the exception of only the
most toxic products targeted for the treatment of cancer, then initiates
with the study of the drug product in normal healthy male volunteers
in what is known as Phase I. These studies are typically small, well-
controlled, data-intensive, dose escalating, and placebo-controlled (we
will get into this in a later chapter).

In this stage of human drug development, the primary objective of a
clinical study is to determine a safe range of doses and dosing regimens
(e.g., once-a-day or twice-a-day) for later dosing in studies involving
patients with the disease state under study. Dose and dosing regimen
are examined with respect to their impact on the pharmacokinetics of
the drug product. Additionally, should biomarker or surrogate markers
be present to characterize the activity of the drug in normal healthy
volunteers, these data are characterized relative to dose and PK.

By the end of Phase I, dose-finding studies in normal healthy volun-
teers or patient studies (e.g., for oncology compounds) should provide: a
range of safe (and potentially efficacious) doses for further study in pa-
tients, an initial description of pharmacokinetic exposure levels and/or
biomarker/surrogate marker levels at each dose to facilitate choice of
dose, dose titration, dosing intervals for Phase II studies, and the devel-
opment of initial models for use in pharmacokinetic-pharmacodynamic
modelling for both desirable and undesirable effects.

Subsequent Phase II clinical studies in patients establish the minimum
starting and maximum effective dose as well as the maximum tolerated
dose in patients with the disease state using pharmacodynamic endpoints
or surrogate markers of therapeutic response. Dose titration and the
length of time needed to see an effect (desirable or undesirable) are also
established. In these studies, models relating dose to PK and to PD
are developed to understand the mechanism of the drug’s action and to
search for relevant covariates (e.g., age or gender) to control later Phase
II or Phase III confirmatory trial designs [225].

Dose-finding studies in Phase II in the target population should estab-
lish the therapeutic window by identifying a minimum effective starting
dose (the lowest dose yielding a desirable effect), a maximum effective
dose (the dose beyond which further escalation lacks further desirable
benefit), and a maximum tolerated dose (the dose beyond which there
is an unacceptable increase in undesirable effects) in the target popula-
tion. In addition, these studies should identify the time interval needed
to see an effect (desirable and/or undesirable) and reasonable, response-



STATISTICS IN CLINICAL PHARMACOLOGY 11

guided, titration steps along with the time intervals at which to dose
titrate, to develop updated pharmacokinetic-pharmacodynamic models
for both desirable and undesirable effects in the population of interest,
and to identify potential covariates to be studied for dose adjustment in
Phase III (e.g., age, gender).

Once a dose or set of efficacious doses are chosen from Phase II tri-
als and the characteristics of Figure 1.4 are mapped out, confirmatory
Phase III trials are performed to support regulatory acceptance. These
trials, in large numbers of patients with the disease under study, should
characterize the risk relative to benefit in clinical use of the compound.
These studies in Phase III should be used to establish the risk:benefit
ratio and pharmacokinetic-pharmacodynamic relationship (if any) for
doses chosen to be in the therapeutic window established in Phase II.

Additional clinical pharmacology studies will also be conducted in
Phase III to determine how to dose the drug in patients with particular
health problems (like kidney disease) and for patients taking a variety
of concomitant medications. Additionally, clinical pharmacology stud-
ies will be done to confirm that new formulations of drug product are
equivalent to those used in clinical development when scale-up of the
manufacturing process for mass production occurs. These are bioequiv-
alence studies and will be the subject of Chapters 2-6.

1.4 Statistics in Clinical Pharmacology

What is a statistic? It is numerical information about a given object or
event. This information is derived from a sample (a study or trial) of a
population (as it would often be impossible to collect information from
an entire large population, that is too numerous for exhaustive measure-
ment). On its own, a statistic is just a number. However, decisions are
made based on statistics, and that is where the statistician’s skill and
art come into play.

James Bernoulli described nine ‘general rules dictated by common
sense’ [175] (see Chapter 15 on Bernoulli’s Ars Conjectandi, 1713) for
making decisions based on statistics, and most statisticians follow these
(in principle):
1. One must not use conjecture (i.e., use statistics) in cases where com-

plete certainty is obtainable.
2. One must search for all possible arguments or evidence concerning

the case (i.e., show due diligence).
3. One must take into account both arguments for and against the case.
4. For a judgment about general events, general arguments are sufficient;

for individual events, however, special and individual arguments have
to be taken into account.
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5. In case of uncertainty, action should be suspended until more informa-
tion is at hand; however, if circumstances permit no delay, the action
that is most suitable, safe, wise, and probable should be chosen.

6. That which can be useful on some occasion and harmful on no oc-
casion is to be preferred to that which is useful and harmful on no
occasion.

7. The value of human actions must not be judged by their outcome.

8. In our judgments we must be wary of attributing more weight to a
thing than its due and of considering something that is more probable
than another to be absolutely certain.

9. Absolute certainty occurs only when the probability nearly equals the
whole certainty (i.e., when the probability of some event is equal to
one, such that we know it will occur).
Statisticians are applied mathematicians. In drug development, these

people are responsible for quantifying the uncertainty inherent in the
scientific and regulatory process of developing new drug products. The
focus of our discussion will be on the techniques statisticians apply to the
design and analysis of clinical pharmacology trials, but statisticians are
involved in a variety of other topics associated with drug development
(see [151] for more details.)

As any statistic is derived from a sample, there is always uncertainty
involved in its use. There is always a chance that the sample and the
statistic derived from it got something ‘wrong’ relative to the truth of the
situation. Statisticians and the art of statistics are therefore employed
in drug development to ensure that the probability of a ‘wrong-answer’
is quantified and understood so that the implications can be considered.

Consider the main topic of this book, bioequivalence. At certain times
in drug development, drug companies must show that a new formulation
of drug (i.e., a new capsule or tablet) is equivalent to an old formulation.
It is assumed (i.e., the hypothesis) that the formulations are not equiva-
lent, and a study must be performed to generate data to show that they
are. Chapters 2, 3, and 4 will go into more detail.

Obviously it is completely impossible to assess every new tablet and
compare each one to each and every old tablet to ensure high quality
is present. It would take forever and be too time consuming to even
contemplate, and even if we could devise a test to ensure that each and
every tablet is exactly the same as each and every old one, we are more
interested in if the two formulations will give us the same results when
patients take them anyway. So it may not matter if they are not exactly
the same.

Therefore, a clinical study is used to do the job. Data are generated
in the study, and statistics are derived to compare the results of the new
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The Truth

Formulations are Formulations
NOT equivalent ARE equivalent

Statistics Formulations are Right answer! Wrong answer
from study NOT equivalent (Type 2 error)

show that Formulations Wrong answer Right answer!
ARE equivalent (Type 1 error)

Table 1.2 Potential Errors when Interpreting Bioequivalence Data

formulation to the old formulation. When the data come in, we use them
to decide if we have sufficient evidence to throw out our hypothesis (that
the formulations are not equivalent) and that we have sufficient data to
conclude they are.

We approach this topic like a regulator would - i.e., assume that they
are not equivalent until data shows that they are. The two formulations
may in fact (i.e., in truth) be equivalent, but until we have conclusive
data to show that, it is best to err on the side of caution.

When the data come in, they will give us information to conclude
whether the drugs are equivalent or not. We can make two errors in
this situation (see Table 1.2). We can conclude from the data that they
are equivalent, when in fact they are not (a Type 1 error), or we could
conclude that the formulations are not equivalent when in fact they are
(a Type 2 error). Bernoulli’s second and third principles are applied in
this manner, and we will get into the application of the other Bernoulli
principles in this setting later in the book.

Statisticians use tools to design and analyse studies to ensure that the
probabilities of a Type 1 or 2 error are controlled and held at a quantified
rate of occurrence. These tools are randomisation, replication, blocking,
blinding, and modelling, and their definition and specific application
will be discussed in great detail in later chapters. Application of these
tools enables those using the statistics (i.e., the drug companies and
regulators) to know the implications of their decision on whether the
two formulations are equivalent or not and to make a reasoned decision
on whether to provide the new formulation to the patients who need it.

Not much is 100% certain, and studies like those described above are
no exception. It is not unusual for studies to give misleading (i.e., Type
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1 or 2 error) results when one considers that thousands of clinical trials
are performed worldwide each year. Even as small an error rate as 5%
can result in five Type 1 errors when a hundred studies are run. Clinical
trials are only a sample of the truth, and it is unusual for Bernoulli’s
ninth principle to ever have application in drug development.

However, this sort of approach is used often in clinical pharmacology
when looking at data from which one wants to make a regulatory claim
of some sort - i.e., to convince a regulator that there is sufficient basis
to grant approval to market for reasons of quality, safety, or efficacy.

In other, more experimental studies, dose is varied in different patient
and volunteer populations to estimate the PK and PD properties of the
drug to evaluate its potential safety and efficacy attributes. The focus
here is on unbiased and precise estimation, and less on Type 1 and 2
errors and their impact on decision making.

To quantify this, we will call Θ the set of PK and PD properties we
wish to estimate. Before we conduct clinical trials to characterize Θ, we
will have only a rough idea (from previous experiments) or at worst,
no idea, about what Θ is. Once the study or set of studies is complete,
statistics will be used to quantify Θ based on the data and give the
clinical pharmacologists an understanding of how the various factors
involved in Θ behave.

The statistical tools of randomisation, replication, blocking, blinding,
and modelling are also used in this situation, but for a different purpose.
Here they are applied to ensure that the statistics give a clear idea
about what Θ is (i.e., is not confounded or biased by other factors) and
to meet the desired level of precision in understanding the behavior of
Θ. These sorts of studies are conducted to enhance the drug company’s
and regulators’ knowledge of the compound’s properties in preparation
for confirmatory trials. They do not (except in unusual circumstances)
constitute sufficient evidence to permit regulators to grant market access.

1.5 Structure of the Book

Now that drug development, clinical pharmacology, and the role of sta-
tistics have been discussed, we now turn to bioequivalence. We will begin
with the history of bioequivalence and an in-depth discussion of current
regulatory requirements (Chapter 2). This will be followed by a lengthy
chapter on the design and analysis of bioequivalence trials using 2 × 2
cross-over designs, and following this we will devote Chapter 4 to al-
ternative designs for demonstrating bioequivalence. This is followed by
Chapter 5, devoted to challenges encountered in bioequivalence studies.
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There follows a brief discussion of recent proposals on alternative means
of assessing bioequivalence in Chapter 6.

In subsequent chapters, we consider statistical approaches to the de-
sign and analysis of clinical pharmacology experiments to study safety
(Chapter 7), QTc prolongation (Chapter 8), efficacy (Chapter 9), and
population pharmacokinetics (Chapter 10).

Readers not interested with in-depth discussions of statistical theory
and applications will find Chapters 1-2 and 6 most useful for their re-
search on bioequivalence and statistics in clinical pharmacology.



CHAPTER 2

History and Regulation of
Bioequivalence

Introducing Bioequivalence
It was a rainy day, and I was looking forward to another day at the

Clinical Pharmacology Unit. We called it ‘The Unit’ for some reason. I
think it was a sign of the times in the 1990s. We worked at ‘The Unit’;
people from FDA worked at ‘The Center’; people in the CIA probably
worked for ‘The Agency’. You get the idea. It is good that times have
changed.

It had been about a year and a half since I started working in statistics
in Clinical Pharmacology, and I was starting to feel like I knew what was
going on when working with the teams which were making the potential
drugs and designing and performing the clinical pharmacology trials. By
this time, I had worked on a couple of submissions to regulatory agencies
(under supervision), had been through a regulatory audit by the FDA
(they come in occasionally to check all the paperwork - as long as you
follow your standard operating procedures and document what you have,
this is no problem and nothing to worry about), and had figured out when
lunch was.

I felt like I had it made until a ClinPharm physician and scientist
came into my office that morning while I was drinking my coffee. We
will call them Lenny and Denny, and they both looked like they were
having a bad day. They were characters. Both of them talked a lot and
at great velocity most of the time, but today they were pretty quiet. They
had both been at work since 6 a.m. (clinical staff usually come in early
- I think it gives them more time to make mischief) and both looked like
they would rather be out in the Pennsylvania thunderstorm that was now
cutting loose.

Over the monsoon, Denny filled me in on what the problem was. Lenny
just nodded and groaned occasionally and looked like he wanted to go
home and go back to bed. I figured he brought it on himself coming to
work at 6.

In brief, one of our drugs was in the late stages of drug development.
The confirmatory trials were close to finishing, and the scale-up of man-
ufacturing to make sufficient drug to supply the marketplace had been

17
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completed about three months ago. Everything looked pretty good - the
drug was safe and well tolerated in addition to being efficacious, and we
expected the Regulators to approve it once we submitted it in about six
to eight months.

The company had spent a lot of money to buy this product (we had
bought it from whomever had invented it) and to develop it (estimates
were in the range of what was discussed in Chapter 1) in addition to
spending about five years in clinical development. It was a tremendous
effort.

The problem was that the new formulation we wanted to mass pro-
duce and prepare to market clearly did not demonstrate bioequivalence
to the formulation being used in the confirmatory clinical trials in a re-
cent study. It was close, but the study did not fully meet the regulatory
standard. Lenny groaned here, but I just kept drinking my coffee. I was
still too new to know how bad this was. We had a quality issue in the
manufacture of the drug.

This essentially meant that even if the regulators at the FDA approved
the product for safety and efficacy, the company would not be able to
market it. We could not (at that time) confirm that the new formula
was of a sufficiently high quality to deliver the same safety and efficacy
results when used in the marketplace as achieved in the confirmatory
clinical trials. When Denny explained that, suddenly my coffee did not
taste as good (it was always pretty bad, actually - it was free, though).

After reminding myself that I knew when lunch was supposed to be and
had gotten more sleep the night before than Lenny and Denny combined
(both positive factors in my view in this situation), I got a crash course
in the history of bioequivalence. We then started working through the
issue of how to get the quality assessment for this drug product back on
track.

Biopharmaceutical statistics traditionally has focused on differentiat-
ing between products (or placebo) to provide new and enhanced treat-
ments for the public’s benefit [384]. However, this is generally expensive
and time consuming (see Chapter 1) and over time steps have been taken
to reduce costs and to increase supply of pharmaceutical products while
maintaining the potential for innovation. One such example pertains to
bioequivalence.

To call something equivalent implies a context or set of criteria for the
determination of equivalence. There are several stakeholders who have
say in choosing such criteria:
• Regulatory and public-health considerations: The approach used must

protect public health in that the risk of a false positive (Type 1 error)
market access must be controlled at a predetermined rate.

• Statistical considerations: The approach should be quantifiable, accu-
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rate, precise, well understood, and should be transparent in interpre-
tation.

• Sponsor considerations: Using a well-designed, controlled, and reason-
ably sized study (or set of studies) the sponsor should be able to show
the criteria have been met with a quantified chance of success.
Various approaches to the problem of bioequivalence were considered in

the 1980s through to the early 1990s, and were discarded as they failed
to address one or more of the above considerations. These approaches
will be considered in the remainder of this chapter.

2.1 When and How BE Studies Are Performed

Bioequivalence (BE) studies are performed to demonstrate that different
formulations or regimens of drug product are similar to each other in
terms of their therapeutic benefit (efficacy) and nontherapeutic side-
effects (safety). They play a key and pivotal role in the drug development
process by ensuring that when a patient switches to a new formulation
in the marketplace, safety and efficacy will be maintained. Primarily,
these studies are used in the study of solid oral dosage forms (i.e., drugs
administered as a tablet or capsule when ingested), and this chapter will
confine itself to discussion of this type of drug product.

When the new and old formulations use exactly the same substance
(i.e., are pharmaceutically equivalent [27]) why do these studies need to
be done? It is a known fact that rate and extent of bioavailability (i.e.,
how much drug gets into the bloodstream and is available at the site of
action after one takes a dose - see Chapter 1) can be affected by very
small changes in formulation. Factors like the constituent content of the
formula, small changes to the lining of the formula, and by compaction
into tablet (versus administration as a capsule), for example, may result
in big changes in bioavailability. See [264] and [15] for examples.

Many changes are made to the formulation while Phases I to II of
drug development are ongoing in clinic prior to it being approved for
market access. Prior to submission to regulatory agencies and while the
trials are ongoing, drug companies commonly check that these changes in
formulation do not drastically change bioavailability by what are known
as relative bioavailability (rel-bio) studies. These studies are primarily
used by pharmaceutical sponsors of new drug entities to ensure that
the formulation to be used in Phase II or in later confirmatory trials is
sufficiently similar to that used in Phase I drug development and are not
performed to the high requirements of true bioequivalence trials. When
one wants access to the marketplace for a new formulation, a higher
standard is to be met. The bioequivalence study is used to demonstrate
that the formulation used in Phase III confirmatory clinical trials is
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sufficiently similar to the final commercial formulation to be marketed
following approval.

Bioequivalence studies are primarily used by pharmaceutical spon-
sors of new drug entities who have conducted pivotal confirmatory trials
with a specific formulation of a drug therapy but need market access for
a more commercially suitable formulation (i.e., that can be mass pro-
duced). BE studies can be viewed as providing necessary and sufficient
reassurance to regulators that the formulation to be marketed is the
same as that used in the clinical confirmatory trials without the need to
repeat the development program or to perform a therapeutic equivalence
study in patients with clinical endpoints [218]. Obviously, it is impossible
to repeat a drug development program with a new formulation when it
is expected to last over 10 years and cost approximately a billion dollars.
Such an effort is not sustainable even with modern industrial power.

Bioequivalence studies must also be performed following substantial
postmarketing formulation alteration. They are also used by what is
termed the ‘generic’ pharmaceutical industry to gain market access for
formulations of established drug therapies when the patent of the origi-
nal sponsor’s formulation expires. When the original sponsors themselves
perform a formulation change (for instance, change the site of manufac-
ture) following approval, they often also must do a bioequivalence study
to convince regulators that the new formula is safe and effective to mar-
ket.

Multiple companies may produce and market similar formulations to
the original marketed product following patent expiration, provided they
can demonstrate bioequivalence to the original product. Generic substi-
tution has thus provided a means of supplying the market with inexpen-
sive, efficacious, and safe drug products without the need to repeat an
entire clinical and clinical pharmacology development package following
patent expiration.

We have now addressed when these studies are done, and we now turn
to how the studies are performed. Bioequivalence studies are conducted
to meet documented, legislated regulatory standards, and cross-over s-
tudy designs [237], [388] are typically used to study bioequivalence. The
design and application of such studies will be discussed at length in
Chapter 3 but are summarized briefly here.

Bioequivalence studies are usually conducted in male and female healthy
volunteer subjects. Each individual subject is administered two formu-
lations (T=Test or R=Reference) in one of two sequences of treatments
(e.g., RT and TR), see Table 2.1. R is the ‘standard’ and T is the ‘new’
formulation.

Each administration is separated by a washout period appropriate to
the drug under study, see Table 2.2. This washout period consists of five
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Table 2.1 Schematic Plan of a 2× 2 Cross-over Study

Sequence Period Number of
Group Subjects

1 Washout 2

1(RT) R — T n/2
2(TR) T — R n/2

R=Reference, T=Test

half-lives between administrations. Half-life is determined by looking at
the elimination (after Cmax) part of the PK concentration versus time
curve (see Figure 1.3) and is simply the length of time it takes the body
to eliminate one-half of the amount of whatever drug is in the body at
any given time. In general, if five half-lives go by, little to no drug should
be left in the systemic circulation.

Table 2.2 Example of a Random Allocation of Sequences to Subject in a 2× 2
Cross-over Design

Washout period
Subject Sequence Period 1 of 5 half-lives Period 2

1 TR T — R
2 RT R — T
3 RT R — T
. . . ... .
. . . ... .
. . . ... .
n TR T — R

Such a design is termed a 2 × 2 cross-over [237] and is a type of
design typically applied in bioequivalence trials. Of the potential list
of designs (alternatives are discussed in Chapter 4) for application in
bioequivalence trials, by far the most common is the 2 × 2 cross-over
design (with sequences RT, TR). A potential complication for this design
is that the effect of a formulation given in the first period may last
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into the second period, i.e., the washout period is inadequate. In the
presence of such carry-over effects the interpretation of the statistics from
such trials are known to be complicated [389]-[390]. When an adequate
washout period is included, carry-over effects are generally considered
to be negligible ([472], [473], [87], [390]). Let’s go through the 2× 2 BE
design in a bit more detail.

The dose of drug substance in each formulation is pharmaceutical-
ly equivalent, and typically the formulations are not blinded (i.e., not
disguised to the patient or investigator). It obviously would be difficult
for a subject or clinician to bias or influence a subject’s PK levels by
knowing what treatment the subject received (one presumably can not
change one’s PK by just thinking about it).

Random allocation of subject to sequence is done here to ensure that
time-related effects (i.e., period to period differences in blood sampling
timings or laboratory handling of the samples, for example) can be ac-
counted for in the analysis and are not confound with the estimate for
the difference between formulations. This is an example of the practice of
randomisation, and is one of the tools used to ensure bias does not creep
into the study. Blood samples will be collected at predetermined, regular
intervals prior to and following each dose of formulation to generate the
concentration versus time curves described in Chapter 1.

Each subject serves as their own control (i.e., we can compare T to
R on each subject). This is referred to as blocking and ensures that a
precise measurement of the difference in formulations can be made. We
will develop the model used for doing this in Chapter 3.

Replication (i.e., the number of patients assigned to each sequence) is
chosen to ensure that the regulatory standards for demonstrating bioe-
quivalence can be met. This will be a topic discussed in Chapters 3 and
4. To demonstrate equivalence in plasma concentration profiles, rate and
extent of bioavailability of the drug substance in plasma must be suffi-
ciently similar so as to meet the regulatory standard for showing that
exposure of the body to the drug substance is the same between formula-
tions [27]. For this purpose, Cmax (rate) and AUC (extent) are typically
used as summary measures for the plasma concentration curves and are
required to be demonstrated as equivalent under preset decision rules to
achieve regulatory approval. The other pharmacokinetic endpoints dis-
cussed in Chapter 1 provide supporting information but do not directly
impact approvability of the new formulation.

AUC and Cmax are looked at in this situation as surrogate markers
[32] for clinical safety and efficacy. For example, if Cmax increases too
much with the new formulation, this could lead to unwanted side effects.
On the other hand, if it decreases too much, the drug may not be effec-
tive in treating the illness. Similar arguments apply to AUC. Hence the
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quality of manufacturing assessment focuses on ensuring these do not
change ‘too much’ in the new formulation. The definition of ‘too much’
is quite involved and will be the subject of the next section.

Looking more closely at the endpoints we are concerned with, the
pharmacokinetic endpoints AUC and Cmax are generally assumed to
be, what is referred to as, log-normally distributed. A distribution is a
mathematical description of the state of nature from which individual
observations (like AUC and Cmax collected in our BE studies) arise.
What follows is a nontechnical description of distribution theory relat-
ing to bioequivalence. Those interested in the specifics of distributional
theory in this setting should review [85].

An example of a normal distribution is plotted in Figure 2.1. The
density of the distribution is on the vertical axis and the corresponding
AUC values are on the horizontal axis. For a given interval on the hori-
zontal axis, the area under the curve is the probability of observing the
AUC values in that interval. The larger the area of the density, the more
likely are we to observe the values in the given interval. The frequency
of occurrence of a lot of data in nature are well described by such a
distribution. The bulk of the distribution is centered around a parame-
ter known as the mean (µ, the measure of centrality) and is spread out
to a certain extent described by the standard deviation (σ, a measure
of spread). Half of the distribution falls above µ, and half falls below.
Obviously, we do not know a priori what the values of µ and σ are, so
we collect data and estimate them using statistics.

The role of a statistician is to use randomisation, replication, blocking,
and blinding [206] in study design and proper application of models to
ensure that the statistics for the parameters we are interested in are
accurate and precise.

A great variety of statistical tools have been developed over the last
100 to 200 years [175]-[176] to precisely model the behavior of such nor-
mally distributed data. However, it is not uncommon for actual data not
to behave themselves! AUC and Cmax data are two such examples.

Let us look at Figure 2.1 again to determine why we cannot use it
directly here. Note that negative AUC or Cmax values are allowed to
occur! Obviously, it doesn’t make sense to use this distribution directly to
describe AUC or Cmax data. One cannot physiologically have a negative
blood concentration level, nor therefore a negative AUC. This situation
is just not possible. The lowest they can go is 0.

There is no reason to panic, however. Statisticians (e.g., [38]) have
devised a variety of ways to mathematically ‘transform’ non-normal data
such that they can be modelled using the plethora of powerful tools
involving the normal distribution which are available [258].

Westlake [452] determined that AUC and Cmax data were consistent
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Figure 2.1 A Normal Distribution (Mean=1, SD=1)

with a log-normal distribution (see [302], [257], [241] for more details).
This essentially means that the data are skewed such that AUC and
Cmax observations must always be greater than or equal to 0. See Figure
2.2.

Mathematically, this is useful and quite convenient. If AUC and Cmax
are log-normal in distribution, by taking the natural-logarithm of AUC
and Cmax (i.e., by taking a mathematical transformation) the resulting
log-transformed AUC and Cmax are normally distributed. Hence the
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Figure 2.2 A Log-Normal Distribution

name - if one takes the log of a log-normal variable like AUC or Cmax,
the resulting log-variable is normal in distribution.

To clarify, we take AUC as described in Figure 2.2 and recognize that
the distribution is skewed and log-normally distributed. We then take
the natural logarithm of the AUC values, and we get the distribution of
logAUC plotted in Figure 2.3. Note that in Figure 2.3, the horizontal axis
denotes the natural-logarithm of AUC (which is denoted mathematically
as ln- or loge-transformed AUC), which we refer to as logAUC (not AUC
as in Figures 2.1 and 2.2). It is permissible for logAUC or logCmax data
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to have a negative value as we can always transform their value (by
exponentiating) back to their original distribution where the data are
always greater than or equal to 0.

Figure 2.3 The Normal Distribution arising from Log-Transformation for
AUC Data of Figure 2.2

To be specific for those who are interested, if AUC is log-normally dis-
tributed with mean exp(µ+(1/2)σ2) and variance exp(2µ+σ2)(exp(σ2)-
1), then logAUC is normally distributed with mean µ and variance σ2

[85], [84]. This will become important later in the book as we begin
modelling AUC and Cmax data.
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There have been debates centered around whether AUC and Cmax
are the best endpoints to use for the assessment of bioequivalence. Some
findings indicate that AUC and Cmax are not always sufficient to com-
pletely demonstrate bioequivalence [359], [417], [256]; however, interna-
tional regulatory authorities have depended on these endpoints since the
early 1990s. Pharmacodynamic data or safety data may be required for
some drug products (for an example, see [292]).

Recall that AUC is held by international regulators [61], [204], [99] to
be a standard measure for extent of bioavailability. Cmax as a measure
of rate of bioavailability has been found to be confounded with extent of
bioavailability in studies [19] and is known to not characterize the rate
of bioavailability particularly well in some situations [61].

Cmax is obviously dependent on the a priori choice of blood sampling
scheme. It is known to be generally more variable than AUC and is
sometimes problematic in the assessment of bioequivalence [433], [51].
Regardless of this however, Cmax has been held to be more reliable in
the eyes of regulators than several alternatives [36].

Other measures of rate of absorption have been proposed in the lit-
erature such as Direct Curve Metrics [291] and Cmax/AUC [102], and
indirect metrics [362]. However, simulation based assessment of alter-
natives has demonstrated such measures to be less desirable than the
use of Cmax to date [431], [432]. Recent work in alternative measures
of absorption rate such as Partial AUCs [105] is ongoing in response to
workshop and regulatory considerations [393], [325] but have yet to be
accepted as useful measures in bioequivalence assessment [17].

Cmax thus seems to be held as the least undesirable measure available
at present for rate of bioavailability [99].

Why did something this complex ever come about? We’ll go into that
now.

2.2 Why Are BE Studies Performed?

In the late 1960s and 1970s, advances in chemical engineering increased
the capability to create inexpensive copies of patented drug products
(since termed generics). Following patent expiration, such new formula-
tions could potentially be marketed [421].

This was desirable from a governmental perspective for public health.
Such a practice would be expected to increase the supply of the products
in demand in the marketplace, and thereby reduce prices for consumers.
This offered substantive benefit to public health (lower costs).

However, when some pharmaceutically equivalent copies of drug prod-
ucts were produced, reports of therapeutic failure received a great deal
of public attention in the United States. These failures included lack of



28 HISTORY AND REGULATION OF BIOEQUIVALENCE

desired effect (Amitriptyline, Carbamazepine, Glibenclamide, Oxytetra-
cycline) and undesirable side effects like intoxication (Carbamazepine,
Digoxin, Phenytoin). Development of a set of regulated standards for
market access was necessary [360],[11]. The FDA was authorized under
the 1984 Drug Price Competition and Patent Term Restoration Act to
create an approval process for generic drug products.

The years following revealed increasing trends in market access for
generic products [421]. For approval to market, the FDA decided to re-
quire a bioequivalence study for market access with prespecified decision
rules for acceptability based on the data collected. Such studies were al-
so required for extension of patent protection for innovators seeking to
maintain market exclusivity [217].

2.3 Deciding When Formulations Are Bioequivalent

The FDA initially proposed Decision Rules (sometimes referred to as
uniformity requirements) to assess bioequivalence such as the 80/20 and
75/75 rule. The 75/75 rule was defined such that 75% of subjects’ indi-
vidual ratios of Test to Reference, AUC or Cmax, values must be greater
than or equal to the value of 0.75 for bioequivalence to be demonstrated.

While the 75/75 rule would protect against a lack of efficacy associat-
ed with decreased plasma concentrations, it obviously would not protect
against undesirable side-effects potentially brought about by increased
concentrations from a new formulation. Additionally, Haynes [202] es-
tablished using simulation studies that the proposed 75/75 uniformity
requirement was highly dependent on the magnitude of within-subject
variation. Lastly, individual ratios are confounded with period effects. As
these effects are known to frequently appear as significant in cross-over
studies in normal healthy volunteers [376], due for example to changes
in assay procedures between periods, use of the 75/75 rule criteria for
bioequivalence assessment was quickly observed to be inappropriate for
a large variety of drug products and was dismissed from regulatory prac-
tice.

Another idea proposed for testing bioequivalence was to simply test
to see whether the formulations were different, and if the test did not
demonstrate a significant difference of 20%, then one would accept bioe-
quivalence. This was the 80/20 rule. Let µT (µR) denote the mean value
of logAUC or logCmax, for T (R). Under these criteria, the study first
must not have rejected the hypothesis H0 that

H0 : µT = µR (2.1)
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versus

H1 : µT 6= µR. (2.2)

The estimator, µ̂T − µ̂R, of µT − µR, has certain statistical properties
(described in the next chapter). These may be used to derive a test-
statistic and p-value to assess the above null-hypothesis H0.

A p-value is a statistic measuring how convincing is the evidence in
the data in favor of H0. Traditionally, if its value is less than 0.05, the
hypothesis H0 is rejected in favor of its alternative H1.

Additionally the study must have had a sufficient number of subjects
to rule out the occurrence of a Type 2 error at the rate of 20% when
planned to detect a clinically important difference. The use of such a
procedure (known as post hoc power calculation, where power equals 1
minus the probability of a Type 2 error) is inappropriate in this context
for a variety of reasons [208]. However, the clinically relevant difference
was determined to be ln 1.25 = 0.2231 on the loge-scale (a 20% difference
on the natural scale). See [17] for details on how this value was chosen
by the FDA.

Criticisms of the 80/20 approach to bioequivalence are obvious. Ab-
sence of evidence of a significant difference does not imply evidence of
absence (for more discussion see [238]). The goal of a bioequivalence s-
tudy is to generate data to confirm that a difference is not present, not
to confirm there is one. One could presumably demonstrate BE under
the 80/20 rule by running a poorly conducted trial!

The statistical community had been aware, for some time, of better
methods to test the hypothesis of equivalence of two treatments relative
to a preset, clinically relevant goalpost. Cox [83] related Fieller’s theorem
[142], for the ratio of two normally distributed means, to the conditional
distributions used to obtain similar regions based on traditional Neyman-
Pearson theory (for the testing of hypotheses; see also [281]). Alteration
of the traditional hypothesis tested in clinical trials (equations (2.1) and
(2.2), above), to a framework appropriate for equivalence testing, was
introduced in [95]. In this paper, Dunnett and Gent [95] compared two
binomial samples relative to a prespecified goalpost ∆ to assess equiva-
lence of the responses to treatment. Westlake ([451]-[452]; for summary
of work performed in the 1970s see [453]) applied similar concepts to the
analysis of bioequivalence trials.

In brief, when a bioequivalence study is conducted, the confidence in-
terval for the difference in µT −µR is derived using a model appropriate
to the data and the study design. If the confidence interval falls within
prespecified goalposts, the formulations are declared bioequivalent. Im-
plementation of the approaches proposed by Westlake [451]-[452] to the
question of bioequivalence were initially assessed by Schuirmann [374]
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at the FDA and were subsequently adopted as the regulatory standard
of choice.

This procedure was designated the ‘two one-sided testing procedure’
(TOST). To clarify, one hypotheses that the AUC and Cmax data in the
new formulation are ‘too low’ (H01) relative to the new formulation or
also that they are ‘too high’ (H02). If both hypotheses are rejected by the
data in favor of their alternatives (H11 , H12), then the new formulation
is deemed be bioequivalent to the reference formulation.

To be specific, under this approach to inference, the usual null hy-
pothesis was reformulated to correspond to the structure of testing the
question of bioequivalence:

H01 : µT − µR≤−∆ (2.3)

versus the alternative

H11 : µT − µR>−∆

and
H02 : µT − µR≥∆ (2.4)

versus the alternative

H12 : µT − µR<∆

Inference was based on the use of the central t-distribution using a
model in a randomized, two-period cross-over design. Summaries of the
implementation of such a TOST procedure may be found in [322] and
[415].

The goalpost ∆ was again chosen to be equal to ln 1.25 = 0.2231
(corresponding to a 20% range on the natural scale). Schuirmann sub-
sequently refined his work in a publication in 1987 [375]. For each of
the hypotheses H01 and H02 it was determined that the FDA wanted
no more than a 5% chance of a Type 1 error. Recall that this means
that the FDA wanted no more than a 5% chance that a study would
demonstrate bioequivalence when in truth, the formulations were not
bioequivalent. Examples of the application of the TOST procedure are
given in Chapter 3.

Operationally, the TOST corresponds to showing that a 90% con-
fidence interval for µT − µR, is contained in the interval − ln 1.25 to
ln 1.25.

Blackwelder [33] and Anderson and Hauck [8] published similar work.
These ideas were further developed in [186] and [363], and general ap-
proaches to the question of statistical inference were subsequently sum-
marized under the framework of fiducial probability and inference in
[319]. Practical considerations in the design and Type 2 error properties
and sample size of such studies were further developed in [376].
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The two one-sided testing procedure was easy to implement for n-
early any cross-over study design and had the benefit of being easily
interpretable in practice. As described in the last section, its regulato-
ry and public health, statistical, and sponsor considerations were well
understood.

The confidence interval provides a plausible range of values within
which the true difference in formulation means can be expected to fall
[187]. Note that often the results are exponentiated to the natural-scale
following analysis. On the natural scale, the interval 0.80-1.25 is used to
assess whether the formulations are bioequivalent for AUC and Cmax.

The ranges of plausible values as expressed by the confidence intervals
were used to assess the degree of equivalence or comparability. Type 1
error was termed ‘consumer’ or ‘regulator’ risk - i.e., the risk to the regu-
lator and consumer in making an incorrect decision, i.e., allowing market
access when the application in fact should not be approved. Though of-
ten the subject of debate, the choice of ∆ = ln 1.25 gave regulators an
easy standard under which to assess the results of such studies.

Randomisation to sequence and definition of a washout period suffi-
cient to negate potential residual (i.e. carry-over) effects from the pre-
vious period were established as desirable properties in bioequivalence
study design. The times at which blood samples were taken was noted
as being very important for proper consideration and definition of C-
max, and period effects were noted as being a ‘recurrent phenomenon’
in cross-over designs (due to changes in sample storage, environmental
conditions, or assay bias between periods - although not significant in
the example provided). The use of prospectively designed, randomized
cross-over designs were established as the norm for bioequivalence as-
sessment.

Regulatory agencies have little direct interest in the Type 2 error
properties of bioequivalence studies under the TOST procedure (this is
typically referred to as ‘sponsor’s risk’ in this context). The Regulator’s
primary concern is with the significance level at which bioequivalence
can be concluded and with ensuring that the design of such studies
ensures an unbiased comparison of formulations. Under Schuirmann’s
TOST procedure, the confidence level (α) was set at 5% per test for an
overall study-wise Type 1 error rate of up to 5% [116].

The FDA recommended this in the 1992 guidance [116] and thus spec-
ified that subjects must be randomized to sequence. A general linear
model (see Chapter 3) would be fitted to the loge-transformed AUC and
Cmax for demonstration of bioequivalence in a two-period cross-over
design. Between- and within-subject variances were assumed to be ho-
mogeneous across formulations, and AUC and Cmax data were assumed
to be log-normally distributed. In practical terms, under the 1992 FDA
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Guidance, equivalence was demonstrated if the 90% confidence interval
(calculated using a linear model appropriate to the study design) for
exp(µT −µR) was contained in the interval (0.80-1.25). Different models
should be applied if the study design differs from a two-period cross-over
design (see Chapter 4) to construct the confidence intervals for µT −µR.

The FDA encouraged those conducting bioequivalence studies to con-
duct single dose studies at the maximal dose to be marketed in healthy
normal subjects and to ensure an adequate washout period between s-
tudy periods. AUC and Cmax were designated as the primary endpoints
of interest to assess extent and rate of absorption, respectively in the
1992 FDA Guidance.

2.4 Potential Issues with TOST Bioequivalence

This average bioequivalence approach (so-called as it pertains to the e-
quivalence of the means of the test and reference formulations) has safe-
guarded public health since its adoption [17]. However, it was not without
issues.

For narrow therapeutic index drugs (for which a slight change in dose
or exposure can cause a large alteration in response to treatment), bioe-
quivalence is regarded as particularly problematic under the average
bioequivalence approach [26]. Such drugs, e.g., digoxin and warfarin [78],
generally exhibit low within-subject variability (i.e., within-subject coef-
ficients of variation less than 10%). Under the average bioequivalence ap-
proach, it is possible [341] to demonstrate bioequivalence of means even
in the presence of small but statistically significant changes in means -
i.e., as the limits of the confidence interval for the ratio of formulation
means falls within 0.80 to 1.25, bioequivalence is demonstrated; howev-
er, some confidence intervals will not contain the value 1 and thus are
slightly (but significantly) different while still being bioequivalent. Such
small changes in mean test to reference rate and extent of exposure are
potentially clinically meaningful in a small proportion of patients [17],
and some have advocated [11] special equivalence definitions for nar-
row therapeutic index products whereby such drugs would be held to a
stricter regulatory standard (e.g., equivalence limits corresponding to a
10% range on the loge-scale, 0.90 to 1.11).

When issues with average bioequivalence are found for a particular
product (e.g., [236]), FDA typically issues a special biopharmaceutical
guidance on demonstrating bioequivalence for that particular produc-
t to safeguard patients. For example, reports of therapeutic failure for
the product Clozapine, an antipsychotic, were published [111]. Clozapine
was granted market access following ’non-standard’ bioequivalence stud-
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ies mandated by FDA under biowaivers applied for by the manufacturers
due to the fact that normal healthy volunteers may not be safely exposed
to any dose but the lowest of Clozapine. Reports of therapeutic failure
followed in the United States where uncontrolled switching in-clinic was
allowed, resulting in significant costs as this condition requires hospi-
talization. FDA subsequently required the manufacturers of the gener-
ic formulations to perform a better bioequivalence study to maintain
market access and are preparing a drug specific guidance on the top-
ic of Clozapine bioequivalence. Examples of such drug-specific guidance
include Potassium-Chloride [114], Metaproterenol and Albuterol [115],
Cholestyramine [117], Phenytoin [118], Clozapine [121], and Topical Der-
matologics [119].

High-variability products (with within-subject standard deviations in
excess of 0.30 [34]), require sample sizes in excess of 30 subjects in or-
der to have less than a 10% to 20% chance of a Type 2 error. Some
have argued [303]-[304] that small changes in rate and extent of expo-
sure for such products are not clinically meaningful and have advocated
allowance of a less strict regulatory standard - e.g., equivalence limits
corresponding to a 30% equivalence range on the loge-scale, i.e. 0.70 to
1.43 on the natural scale. As an alternative, equivalence limits could be
widened based upon the within-subject variability observed in the study
[35], [372], [303]-[304] allowing such drug products easier market access.

The concept of switchability of formulations for the individual patient
is not addressed by the average bioequivalence criterion [222]. Popula-
tion means are compared, and variation between individual subjects (or
patients) is factored out of the variation used to assess the distance be-
tween population means as described above. Peace [337], Anderson and
Hauck [9], Hauck and Anderson [188], and Welleck [444] introduced the
concept of individual bioequivalence. Under this approach, the question,
asked is ‘Can I safely and effectively switch my patient from their current
formulation to another?’

Average bioequivalence is a special case of what [188] is termed popula-
tion bioequivalence. This type of bioequivalence addresses the question,
‘Can I safely and effectively start my patient on the currently approved
formulation or another?’ Differences in variation between formulations
should also be considered when determining whether a formulation will
be equally effective and safe when administering the commercial formu-
lation of a new drug product relative to that used in clinical trials in
Phase III. It is not clear in this context whether comparison of within-
subject variances or total variances (so termed as the sum of between-
and within-subject variance for a given formulation) is the appropri-
ate variance for comparison between formulations, and arguments [189],
[168] have been offered for both in this context.
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Techniques for comparing within-subject variances in a two-period
cross-over (under the assumption that between-subject variances across
formulations are homogeneous) had been developed in [342] and [308].
Alternatively the total variances between formulations (between- plus
within-subject variance) can be compared using a similar procedure.

Most techniques for assessment of the equality of variances assume
that variance components are independent [50], [14], a condition not
met in the correlated data encountered in cross-over trials. Bristol [43]-
[44] developed practical maximum likelihood techniques for comparing
within-subject variances in this context based on techniques discussed
in [287]. Cornell [82] derived nonparametric tests of dispersion for the
two-period cross-over design. Chow and Liu [74] described similar pro-
cedures, and [441] and [173]-[174] described similar procedures in pub-
lications. These techniques reduce to different transformations to assess
unequal marginal scales in a bivariate normal population [247], and such
comparisons were also addressed in work in [30], [97], [295], and [21].
More recent work is published in [260].

Comparisons of total- or within-subject variance between formulations
can be accomplished using such procedures; however, it is known [472]-
[473] that variance components are ill-characterized in cross-over studies
of the size usually performed. Increasing sample size [473] can improve
the precision of estimated variance components; however, it is unusual
for such studies to be performed except in the case of highly variable
drug products [472].

Moreover, while such procedures are theoretically and statistically vi-
able, they are highly dependent [435] on the choice of estimation pro-
cedure. Estimates for between-subject variance can be negative under a
method-of-moments based procedure or maximum-likelihood procedure
[44]. Such estimates may be positively biased [109] when using restricted-
maximum-likelihood based estimation procedure as would be expected
in a procedure constrained in the likelihood to only permit estimates
greater than or equal to zero for between-subject variances and correla-
tion constrained to lie in the range [-1, 1] [327], [237], [88], [435].

We will not discuss the comparison of variances further in this book
as such techniques are not applied in the regulatory assessment of bioe-
quivalence. Those interested in further information on the topic should
read information on this topic in [74] and the publications noted above.

Consideration of these individual and population bioequivalence ideas
(and sundry others) led the FDA to form a bioequivalence working group
in the mid-1990s. This body (composed of FDA representatives from
clinical, scientific, and statistical disciplines) was tasked with determin-
ing whether a public health risk under the average bioequivalence ap-
proach could exist [299] and if so to determine a method or methods
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to evaluate bioequivalence in a manner to protect the public health. A
description of the ideas under discussion may be found in [6], [189], [7],
[10], [324], [166], [66], [67], and [68] but will not be discussed further
here.

After considering the public comments on the preliminary draft 1997
guidance [122], the FDA reissued two draft guidances on the topic of
bioequivalence in August 1999 ([125]-[126] replacing the draft guidance
issued in 1997). These two guidances described when to perform a rela-
tive bioavailability, population, or individual bioequivalence study [125]
for drug products in solution, suspensions, aerosols and for topical ad-
ministration and for the more usual immediate-release and modified-
release orally administered drug products. General guidance for study
design (discussed earlier in this chapter) were provided.

The FDA acknowledged in the new draft guidance [125] that narrow
therapeutic index drugs should be held to a stricter equivalence criteria
than the usual 20% range required in the existing FDA guidance [116].
For these drug products, a 10% range on the loge-scale (corresponding
to an equivalence range of 0.90–1.11 on the natural scale) was required.
However, this requirement was removed in the final revised FDA guid-
ance [135].

The second draft guidance from the FDA [126] described in more de-
tail the study design, model, and approach to statistical inference for
average, population, and individual bioequivalence relative to the 1997
draft guidance, but departed from the original approach only in minor
respects. Requirements for power and sample size were described in more
detail in this draft guidance relative to the original 1997 draft guidance;
however, the main departure was in the model used for statistical infer-
ence.

The FDA followed up in 2000 [129] with the introduction of the ‘Bio-
pharmaceutical Classification System’. Orally administered drug prod-
ucts are categorized based upon in vitro testing into classes I, II, III, or
IV. Class I compounds, known as highly soluble and permeable in that
they are quick to dissolve when ingested and are absorbed directly into
the body quickly, are exempt from the requirements of demonstrating
bioequivalence in a clinical study and only must demonstrate that in
vitro dissolution profiles for the formulations under study are equivalen-
t. The choice of reference product is of importance in this setting [410].
Under the BCS guidance, only Class II, III, and IV drugs are required to
demonstrate in vivo bioequivalence before being granted market access.

The FDA guidance [130] finalized in October 2000 indicated that the
agency would adopt the 2000 guidances [129]-[130] as final. However,
following additional discussion at the 2001 Pharmaceutical Sciences Ad-
visory Committee, the FDA provided revised final guidance [135] which
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removed the potential for using population and individual bioequivalence
for market access. It is possible that in future the use of these criteria
will be reinvestigated if the FDA determines that there is a need for
such based upon observations of the marketplace. We will consider the
statistical properties of alternative methods of assessing bioequivalence
in a subsequent chapter.

2.5 Current International Regulation

To summarise, the debate on how to do bioequivalence trials culminated
in 1987 [375] when Schuirmann’s two one-sided testing method for a reg-
ulatory set goalpost of ln 1.25 was introduced using the pharmacokinetic
measures of AUC and Cmax as surrogate markers for efficacy and safety
by the FDA.

In general, the AUC and Cmax refer to the parent compound being
administered (not any metabolites produced in the body). However, un-
der unusual circumstances, it may be important to measure metabolite
AUC and Cmax also for the assessment of average bioequivalence. See
[230] and [231] for more details.

The design of choice was determined to be a randomized, 2× 2, two-
period cross-over in normal healthy volunteers to isolate and quantify
any differences in formulation, and regulatory risk was set at 5% per
test. The design and analysis of cross-over studies had been extensive-
ly developed by this time [237], [388], and statistical considerations in
power and sample size were described in [89].

This approach was formalized in the 1992 FDA Guidance [116] and
applied to both pre- and post-marketing approvals for changes in formu-
lation. Average bioequivalence quickly became an international standard
with most nations utilizing the FDA’s 1992 guidance or slight modifica-
tions to the approach.

This procedure was adopted as the standard method by European
[100] and Canadian [57]-[58] regulatory authorities subsequent to final-
ization of the US FDA guidance in 1992 [61], [418].

Japan [232], China [70], and Australia [13] also follow this procedure
(with minor changes in study design or decision rules) for the assessment
of bioequivalence.

To date, the vast majority of products which have utilised this ap-
proach have not been observed to have marketplace failures in terms of
their safety and efficacy profiles (see [17] for more details). Average bioe-
quivalence testing of δ = µT − µR has thus been established de facto as
a surrogate marker for public safety based primarily upon observation,
consistency of knowledge, and replication of findings of the application
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of the FDA guidance [116] and less upon quantified, scientific assessment
of biological plausibility and strength of association.

Average bioequivalence did, however, have the potential for issues in
implementation with regard to the regulatory, statistical, and sponsor
considerations discussed earlier in this chapter. One potential difficulty
was regulatory in nature. The approach was concerned with testing only
the formulation means and did not contain any explicit criteria pertain-
ing to individual subjects, and it was felt that the inclusion of criteria
relating to variation might address such points. Another potential area
of difficulty involved both regulatory and sponsor considerations. The
regulatory limits of 20% were also questioned as they might be too large
for low variability products with a narrow therapeutic index, and the
20% acceptance limits created a practical difficulty for sponsors due to
the large sample sizes needed to ensure a high probability of success for
high variability products.

The FDA addressed this second issue presented by low variability
drugs by tightening the range in some instances (e.g., for vaccines), and
it was known alternative designs [435] and mixed modelling approaches
[246] could be used to demonstrate average bioequivalence to address
sponsor’s considerations for highly variable drug products, though the
statistical and regulatory considerations of such an approach were not
precisely defined.

The FDA opened the discussion on the resolution of these issues with
the publishing of the 1997 preliminary draft guidance [122] and signif-
icant international debate followed. This debate resolved in 2003 [135]
with a final decision to continue using average bioequivalence.

Bioequivalence in practice has thus been ‘harmonized’ to assess the
difference in means between formulations in a standard fashion through-
out most of the world today.



CHAPTER 3

Testing for Average Bioequivalence

Introduction
There is nothing like a little pressure to brighten up one’s day, and this

one was no exception. I had arrived as usual at the clinical pharmacology
unit and was at work preparing a study design proposal when my boss
walked into my office.

She had run up the stairs. My office by this time (about two years
after I had hired on) was one floor up and well away from my clinical
colleagues who tended to be a bit noisy and nosy. The first was no problem
(get some earplugs), but the second is irritating for a working statistician.
They were always stopping by for just a ‘peek’ at the data, but they were
full of questions. Answer one and a dozen more pop out. After about two
years, one figures out that a little distance is not a bad thing.

After she had got her breath back, she told me that one of my col-
leagues from Pharmacokinetics had a bioequivalence data set that needed
to be looked at ‘Stat’ (an expression the clinicians used all the time).
I’m guessing that ‘Stat’ in clinician-speak means ‘run the Statistics as
soon as humanly possible’. I guess they like to think that we sit around
twiddling our thumbs unless they shout ‘Stat’ repeatedly.

There is one certainty in drug development and statistics that one
can depend on: the data are always late. There are always reasons that
someone wanted to know the findings yesterday. Sometimes it is even a
good reason!

Like the art of Statistics itself, after you get used to it, it does not
bother you too much.

In any event, it was 10:30, and the results were needed by lunchtime.
After making sure she meant a late lunch (she did not), I hastily pulled
the code you will see later in this chapter, grabbed the data, and went to
work.

We did have a late lunch that day, by the way. Analysis of bioequiva-
lence data is not as simple as pressing a button.

3.1 Background

In the previous chapter we briefly introduced the 2 × 2 cross-over trial
and the TOST (two one-sided testing) procedure. In this chapter we will

39



40 TESTING FOR AVERAGE BIOEQUIVALENCE

describe in some detail how data obtained from a 2× 2 trial can be used
to test for Average Bioequivalence (ABE). To illustrate the analyses,
we will use the data given in Table 3.1. It can be seen that data were
collected on 32 subjects; 17 received the formulations in the order RT
and 15 in the order TR. The original design of the trial planned for an
equal number of subjects in each group. However, it is usual for such
studies to overenroll to ensure that an adequate number complete the
trial (without having to go to the trouble of replacing dropouts). In this
case, some of the subjects did not turn up to participate in the trial.
We will discuss other such practical issues of the planning of trials in
Chapter 5.

Table 3.1: Example 3.1

Sequence RT
AUC Cmax
Period Period

Subject 1 2 1 2
1 2849 2230 499 436
4 2790 2864 733 416
5 2112 1744 344 48
8 1736 1882 342 437
9 1356 1175 357 240
11 1775 1585 442 286
16 2997 2237 425 332
17 1973 1778 423 407
19 1454 1297 256 348
21 2469 2023 392 480
24 1584 1855 316 373
25 4004 2449 465 625
28 1944 1593 502 326
29 1175 1147 248 221
31 1696 1801 390 350
34 1737 1655 425 319
36 2040 2199 464 384

Sequence TR
Subject 1 2 1 2

2 2025 2000 438 361
3 2090 1826 535 558
6 2006 1881 443 681
7 2202 1935 446 481
10 1838 1602 310 340

R=Reference, T=Test



BACKGROUND 41

Table 3.1: Example 3.1

Sequence RT
AUC Cmax
Period Period

Subject 1 2 1 2
12 1898 2504 323 331
15 1129 1036 308 243
18 2014 1938 552 427
20 1900 1730 355 401
22 1763 1472 213 177
23 1678 1336 487 412
26 2271 2389 422 731
27 1986 1857 560 461
30 2519 1941 537 400
35 1560 1629 463 372

R=Reference, T=Test

Before we proceed to test for ABE we will explore the data graphical-
ly. The main reason for using a cross-over design is to make comparisons
between the two formulations ‘within’ each subject and as a result to
eliminate any between-subject variability. Figure 3.1 is a subject-profiles
plot ([237], Ch. 2) and displays the between-subject variability and the
difference in response between the two formulations within each subjec-
t. The left panel displays the logAUC values and the right panel the
logCmax values.

As explained in the previous chapter, the analysis is done on the log-
transformed data; hence, most of the figures in this chapter will use
that scale of measurement. The subject-profiles plot is constructed for
each sequence by first plotting on the vertical axis, for each subject, the
Period 1 and Period 2 responses against the values 1 and 2, respectively,
and then joining the two responses with a line. In our plot we have
replaced the axis labels for Period 1 and Period 2 with the corresponding
treatment labels, so that the treatment ordering within each sequence
is evident. The distance between the periods (i.e., between the R and T
labels) on the horizontal axis is a matter of taste.

The expected large variation over the subjects is very evident from
the vertical spread of the points in the plot. If the two formulations were
identical and there was no variation in the two responses from a subject,
then the plot would consist of parallel lines in a ‘ladder-like’ pattern. If,
in addition, there was no period effect, the lines would be horizontal:
if there was a period effect, all the lines would either slope upward or
all the lines would slope downward. In Figure 3.1, within a sequence,
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Figure 3.1 Example 3.1: Subject Profiles Plot

some lines go up as the formulation changes within a subject and other
lines go down. It is not possible at this preliminary stage of analysis to
determine whether the within-patient variability is just random noise or
due to a true difference between the two formulations or between the
two periods.

Another useful plot is the paired-agreement plot (see [171]). Here the
Test response is plotted against the Reference response for each subject.
Figure 3.2 shows, for simulated sets of data, the patterns that might be
see in such a plot. These patterns correspond to (i) no difference be-
tween the two responses on a subject (Identity), (ii) a period difference
in the absence of a formulation difference (Period difference), (iii) a for-
mulation difference in the absence of a period difference (Formulation
difference), and finally (iv) when there is both a period difference and
a formulation difference. To emphasise the underlying pattern in each
plot, we have removed the within-subject variability. For Example 3.1,
the paired-agreement plots for logAUC and logCmax are shown in Figure
3.3. The patterns in the plots suggests there is a period difference but no
formulation difference. In addition we can see larger within-subject vari-
ation in the logCmax values. In order to make a proper determination of
any differences in response between formulations, we need to specify a
statistical linear model that will allow for any systematic effects that we
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Figure 3.2 Examples of Patterns in a Paired-agreement Plot

believe are present in the data a priori. These systematic (fixed) effects
are identified during the design phase of the trial and in our case are
the sequence, formulation, and period effects. In the previous chapter
reference was briefly made to so-called carry-over effects. If the effect of
the formulation given in the first period is still present at the start of the
second period, then we refer to that effect as the (first-order) carry-over
effect of that formulation. If a long enough washout period is used to
separate the two active periods (5 half-lives is recommended) then there
should not be any pharmacological carry-over from the first period to
the second.

Models will now be developed to generate summary statistics which
account for these factors, characterize the distribution of the difference
in formulation means, and to allow us to better assess the noise in the
data. The essential feature of the TOST procedure is the calculation
of a 90% confidence interval for µT − µR, the mean difference between
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Figure 3.3 Example 3.1: Paired-agreement Plots

the formulations on the log scale. To calculate this confidence interval
we need an estimate of µT − µR, and this can be done by specifying a
statistical (linear) model for the logAUC and logCmax values observed
on the subjects.

3.2 Linear Model for 2× 2 Data

In order to define the linear model let yijk denote the response (i.e.,
logAUC or logCmax) in period j on subject k in sequence group i, where
i = 1, 2, j = 1, 2, k = 1, 2, . . . , ni, and ni is the number of subjects in
group i. The total number of subjects in the trial is n = n1 + n2. The
systematic effects we anticipate are due to the periods and formulations.
As the subjects are allocated randomly to the two groups, there should be
no sequence effect (i.e., a significant difference in mean response between
the two sequence groups). However, it is traditional to include such an
effect and we will do so here. The notation we will use is that µ denotes
the overall mean response, τR and τT are the formulation effects, π1

and π2 are the period effects and γ1 and γ2 are the sequence effects.
The fixed effects model (i.e., the systematic effects) for each of the four
group-by-period response combinations is displayed in Table 3.2. As
we will explain later, the difference in carry-over effects, if any, between
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Table 3.2 Fixed Effects in the Linear Model for the 2× 2 Design

Group Period 1 Period 2

1(RT) µ + τR + π1 + γ1 µ + τT + π2 + γ1

2(TR) µ + τT + π1 + γ2 µ + τR + π2 + γ2

Table 3.3 Fixed Effects: Alternative Parametrization for the 2× 2 Design

Group Period 1 Period 2

1(RT) µR + π1 + γ1 µT + π2 + γ1

2(TR) µT + π1 + γ2 µR + π2 + γ2

the formulations is aliased with (i.e., completely mixed up with) any
difference between the sequence effects, so including sequence effects in
our model does have some potential benefits which we will explore later.
As regards the parameters themselves, they are all defined with reference
to an overall mean response parameter µ. The result of moving from R to
T, for example, is to cause an increase or a decrease in response relative
to the overall mean. Consequently, as it is only the size of the increase
or decrease that needs to be accounted for, two different formulation
parameters, τR and τT , are not needed. To remove this redundancy a
constraint is typically applied such as τR + τT = 0. The result of this
is that we can refer to µR = µ + τR and µT = µ + τT as the means
for formulation R and T, respectively. This alternative parametrization
is displayed in Table 3.3. For exactly the same reasons a constraint is
also placed on the period and sequence parameters, e.g., π1 + π2 = 0
and γ1 + γ2 = 0. The choice of constraint is not unique and we could
have chosen τR = 0 and π1 = 0, for example. What is important to
remember is that, although the choice of constraint is arbitrary, the
difference µT − µR is uniquely identified.

Coming now to the ‘random-effects’ part of our model, we need to al-
low for the variation between patients that was so evident in Figures 3.1
and 3.3 and for any ‘residual’ random variation that is unexplained by
the rest of the terms in the model. This is done by introducing two ran-
dom variables: ξk(i), to allow for variation between subjects and εijk to
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Table 3.4 Random Effects in the Linear Model for the 2× 2 Design

Group Period 1 Period 2

1(RT) ξk(1) + ε11k ξk(1) + ε12k

2(TR) ξk′(2) + ε21k′ ξk′(2) + ε22k′

allow for unexplained variation between the two responses on the same
subject. The random effects are displayed in Table 3.4 for a typical sub-
ject k in Group 1(RT) and for a typical subject k′ in Group 2(TR). Drop-
ping the distinction between k and k′, we assume that ξk(i) and εijk are
independent random variables such that E(ξk(i)) = 0, Var(ξk(i)) = σ2

B ,
E(εijk) = 0 and Var(εijk) = σ2

W , where σ2
B is the between-subject vari-

ance and σ2
W is the within-subject variance. E denotes the expected-value

(i.e., population mean) for a given parameter, and Var denotes its vari-
ance. We also assume that the ξk(i) are independent among themselves
and that the εijk are independent among themselves. The complete mod-
el for yijk is then:

yijk = µd[i,j] + πj + γi + ξk(i) + εijk, (3.1)

where d[i, j] = R or T and identifies the formulation in period j of
sequence i.

We note that the variance of a response on subject k in group i in
period j is:

σ2 = Var(yijk) = Var(ξk(i) + εijk) = σ2
B + σ2

W . (3.2)

The covariance between two responses on the same subject is

Cov(yi1k, yi2k) = Cov(ξk(i) + εi1k, ξk(i) + εi2k) =

Cov(ξk(i), ξk(i)) = Var(ξk(i)) = σ2
B .

Hence, the correlation between two responses on the same subject is:

ρ = Corr(yi1k, yi2k) =
σ2

B

σ2
B + σ2

W

. (3.3)

Returning now to the estimation of µT − µR, let ȳij. = 1
nij

∑nij

k=1 yijk

denote the mean response of the subjects in period j in sequence group
i.

For Group 1: E(ȳ11. − ȳ12.) = π1 − π2 + µR − µT .

For Group 2: E(ȳ21. − ȳ22.) = π1 − π2 + µT − µR.
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Table 3.5 Example 3.1: Groups-by-Periods Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Mean

1(RT) ȳ11. = 7.60(17) ȳ12. = 7.50(17) ȳ1.. = 7.55
2(TR) ȳ21. = 7.55(15) ȳ22. = 7.48(15) ȳ2.. = 7.51

Mean ȳ.1. = 7.58 ȳ.2. = 7.49 ȳ... = 7.53

logCmax

1(RT) ȳ11. = 5.99(17) ȳ12. = 5.91(17) ȳ1.. = 5.95
2(TR) ȳ21. = 6.02(15) ȳ22. = 5.99(15) ȳ2.. = 6.01

Mean ȳ.1. = 6.01 ȳ.2. = 5.95 ȳ... = 5.98

Hence,

E
{

1
2

[(ȳ21. − ȳ22.)− (ȳ11. − ȳ12.)]
}

= µT − µR.

That is,

µ̂T − µ̂R =
1
2
(ȳ21. − ȳ22. − ȳ11. + ȳ12.) (3.4)

and

Var(µ̂T − µ̂R) =
1
4

[
σ2

W

n1
+

σ2
W

n1
+

σ2
W

n2
+

σ2
W

n2

]
=

σ2
W

2

[
1
n1

+
1
n2

]
. (3.5)

If n1 = n2 = n/2, then

Var(µ̂T − µ̂R) =
σ2

W

2

[
2
n

+
2
n

]
=

2σ2
W

n
. (3.6)

If σ̂2
W is an estimate of σ2

W on n−2 degrees of freedom (d.f.) and t0.95(n−
2) is the upper 95% percentile of the t−distribution on n − 2 d.f., the
90% confidence interval for µT − µR is

µ̂T − µ̂R ± t0.95(n− 2)

√
σ̂2

W

2

[
1
n1

+
1
n2

]
. (3.7)

The groups-by-periods means for Example 3.1 are given in Table 3.5.
Finally, we display a plot that is directly linked to the linear model and

displays information on both the formulation difference within subjects
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Figure 3.4 Example 3.1: Mean Differences versus Totals Plot

and their variability. In this ‘Mean Differences versus Totals’ plot we plot
for each subject k in Group i, the mean difference dik = (yi1k − yi2k)/2
against the total tik = yi1k + yi2k (see [237] and [171]). The resulting
plot is given in Figure 3.4, where open symbols are used for the subjects
in Group 1. The two large diamonds on each plot indicate the position
of the centroids [(t̄1., d̄1.), (t̄2., d̄2.)]. The vertical difference between the
centroids within a plot is the value of µ̂T − µ̂R. We can see that for
both logAUC and logCmax the centroids are close together, suggesting
that T and R might be ABE. The solid and dashed lines in each plot
give the positions of the convex hulls, one for each group. The convex
hull connects the ‘outermost’ points in a group, and is a useful way of
displaying the variation in the dik and tik. There is an impression that
variability is higher in Group 1 for both logAUC and logCmax. The
usefulness of plotting the subject totals is that the difference t̄1. − t̄2.

is an estimate of the difference in the carry-effects of T and R (see
[237], Chapter 2). For BE trials with an adequate washout period this
difference should be zero. Testing for a difference in carry-over effects in
the RT/TR design is problematic and we do not recommend it. We say
more on carry-over effects in Section 3.4.
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3.3 Applying the TOST Procedure

The SAS code to fit Model (3.1) and calculate the 90% confidence in-
terval is given in the following boxes. An edited version of the output
produced is given in the boxes immediately following the SAS code. The
results of applying the TOST procedure are given in Table 3.6.

The ABE limits are (-0.2231, 0.2231) on the log scale and (0.8,1.25)
on the original scale. Clearly the confidence intervals for both AUC and
Cmax are well with the ABE limits and so T and R an be declared
equivalent based on the ABE criterion.

A graphical representation of the results is given in Figure 3.5, where
the density of the normal distribution based on the fitted mean and
standard error for each of logAUC and logCmax are plotted along with
the ABE limits. Both densities are well within the limits indicating that
T and R are average bioequivalent. It is also apparent that the density
for logCmax is wider than that for logAUC indicating that Cmax is a
more variable metric than AUC in this particular trial.

We note that the estimated correlation between the two responses on
the same subject can be estimated from the SAS output. For logAUC
σ̂2

B = 0.052 and appears under the output heading of ‘Covariance Pa-
rameter Estimates’ in the row labelled as ‘SUBJECT(SEQUENCE)’.
For logAUC, σ̂2

W = 0.011 and appears in the row labelled ‘Residu-
al’. The estimated correlation coefficient for logAUC is then ρ̂logAUC =
0.052/(0.052 + 0.011) = 0.83. For logCmax the corresponding value is
ρ̂logCmax = 0.045/(0.045 + 0.038) = 0.54. There is a higher level of total
variability for logCmax as compared to logAUC, as was already conclud-
ed from Figures 3.3 and 3.4.

ABE Example 3.1 - SAS proc mixed Code:

data ABEexample1;
input subject sequence$
formulation$ period AUC CMAX;
logauc=log(AUC);
logcmax=log(CMAX);
datalines;
1 RT R 1 2849 499
1 RT T 2 2230 436
. . . . . .
. . . . . .
. . . . . .
35 TR R 2 1629 372
35 TR T 1 1560 463
;
run;



50 TESTING FOR AVERAGE BIOEQUIVALENCE

ABE Example 3.1 - SAS proc mixed Code, continued:

proc mixed data=ABEexample1;
class sequence subject period
formulation;
model logauc=sequence period
formulation/ddfm=kenwardroger;
random subject(sequence);
lsmeans formulation/pdiff cl alpha=0.1;
estimate ’ABE for logAUC’ formulation -1 1;
run;

proc mixed data=ABEexample1;
class sequence subject period formulation;
model logcmax=sequence period formulation/
ddfm=kenwardroger;
random subject(sequence);
lsmeans formulation/pdiff cl alpha=0.1;
estimate ’ABE for logCmax’ formulation -1 1;
run;

ABE Example 3.1 - Edited SAS Output:

Log AUC
Covariance Parameter Estimates
Cov Parm Estimate
SUBJECT(SEQUENCE) 0.0516
Residual 0.0110

Standard
Effect Estimate Error DF
T-R -0.0166 0.0263 30
Alpha Lower Upper
0.1 -0.0612 0.0280

ABE Example 3.1 - Edited SAS Output:

Log Cmax
Covariance Parameter Estimates
Estimate SUBJECT(SEQUENCE) 0.04528
Residual 0.03835

Standard
Effect Estimate Error DF
T-R -0.0269 0.0490 30
Alpha Lower Upper
0.1 -0.1102 0.0563

As a final summary we display the confidence intervals on the natural
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Table 3.6 Example 3.1: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval

AUC -0.0166 (-0.0612, 0.0280)
Cmax -0.0269 (-0.1102, 0.0563)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 0.98 (0.94, 1.03)
Cmax 0.97 (0.90, 1.06)

scale alongside a plot of the ratios T:R for each of AUC and Cmax in
Figure 3.6. We note that, for Cmax especially, there are many subjects
that have ratios outside the ABE limits of (0.8, 1.25). This example
highlights that fact that to be equivalent on the ABE criterion it is only
necessary to show that the means of T and R do not differ to a significant
extent.

Before leaving this section, we demonstrate that the confidence inter-
val testing approach we have used is equivalent to the alternative version
of the TOST procedure that requires the testing of two, one-sided hy-
potheses:

H01 : µT − µR≤−∆ (3.8)

versus the alternative

H11 : µT − µR>−∆

and

H02 : µT − µR≥ ∆ (3.9)

versus the alternative

H12 : µT − µR< ∆.

Here, it will be recalled, ∆ = ln(1.25) = 0.2231.
We first consider logAUC. The value of the t-statistic for testing (3.8)

is t01 = (−0.0166+∆)/0.0263 = 7.85 on 30 d.f. and the value for testing
(3.9) is t02 = (−0.0166 −∆)/0.0263 = −9.11 on 30 d.f. Clearly both of
these null hypotheses would be rejected at the 5% level on a one-sided
test. For logCmax, the story is similar with a value of 4.00 for testing
(3.8) and a value of -5.10 for testing (3.9), both on 30 df.
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Figure 3.5 Example 3.1: Fitted Normal Densities for µ̂T − µ̂R

3.4 Carry-over, Sequence, and Interaction Effects

We now return to consider the other potential effects that might be
present in our data, namely carry-over and formulation-by-period inter-
action. The nature of the carry-over effects was described in the Intro-
duction, so we do not repeat that here. The interaction effect, however,
is something we have not yet considered. Our current Model (3.1) as-
sumes that the difference between µT and µR is the same in Period 2
as it is in Period 1. This is the situation when there is no formulation-
by-period interaction. The presence of such an interaction implies that
the size of the formulation difference in Period 1 is not the same as
its size in Period 2. Figure 3.7 contains four examples of a groups-by-
periods plot ([237], Ch. 2) which displays the four group-by-period means
ȳ11., ȳ12., ȳ21., and ȳ22.. They are given in two versions and each for the
cases of no-interaction and interaction. Let us look first at the Version
1 plots. If we assume for the moment that there is no random variation,
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Figure 3.6 Example 3.1: 90% Confidence Intervals for exp(µ̂T − µ̂R).

i.e., the plotted points refer to the true mean values, then the upper left-
hand plot is a case where there is no interaction and as a consequence
the lines cross at a point midway between Period 1 and Period 2. The
lower left-hand plot is a case where there is interaction, and the lines
cross at a position that is not midway between the two period labels.
Deciding quickly if the crossing point is midway or not may not be easy
and so Version 2 offers an alternative. Here the points are in the same
positions, but an alternative way of connecting them has been used. If
the lines are parallel then there is no interaction. The reader can decide
which version, if any, they find useful. In all the upper plots a period
effect is evident that gives a lower response in Period 2. In the presence
of random variation, we will not see parallel lines even in the absence
of any interaction: a statistical test of significance will be required to
determine if there is any evidence of an interaction. If this is the case,
then the fixed effects part of our model, as displayed in Table 3.2, needs
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Figure 3.7 Groups-by-Periods Plot

to be enlarged to that given in Table 3.7, where there are four new (in-
teraction) parameters (τπ)d[i,j],j , i = 1, 2, j = 1, 2 and where d[i, j] = R
or T . (Note, we have omitted the sequence parameters for reasons which
will be explained shortly.) The inclusion of these parameters implies that
a response observed in Group i, Period j under formulation R or T is
not just the sum of the individual effects of formulation d[i, j] and pe-
riod j. However, as already mentioned in Section 3.2, our linear model
is over-parameterized and we need to apply constraints to remove the
redundancy. The constraints on the formulation and period parameters
have already been described. For the interaction parameters we assume:
(τπ)R1 = (τπ) = −(τπ)R2 = −(τπ)T1 = (τπ)T2. The model containing
the interaction parameters is displayed in Table 3.8. From this table it
is also clear that the sequence parameter for Sequence 1(−γ) and the
interaction parameter (τπ) are interchangeable in Group 1 and (γ) and
−(τπ) are interchangeable in Group 2. Hence, the statistical test for
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Table 3.7 Fixed Effects Model Including Interactions for a 2× 2 Design

Group Period 1 Period 2

1(RT) µR + π1 + (τπ)R1 µT + π2 + (τπ)T2

2(TR) µT + π1 + (τπ)T1 µR + π2 + (τπ)R2

Table 3.8 Fixed Effects Model Including Interactions for a 2×2 Design: After
Applying Constraints

Group Period 1 Period 2

1(RT) µR − π + (τπ) µT + π + (τπ)

2(TR) µT − π − (τπ) µR + π − (τπ)

a group difference is identical to the test for a non-zero formulation-
by-period interaction. In this situation we say that the sequence and
interaction effects are aliased. The same can be said about the carry-
over difference. To see this we need to apply a different constraint to
the four interaction parameters (recall the choice of constraint is arbi-
trary). Table 3.9 displays the model with carry-over effects. There is no
carry-over effect in Period 1 and λR(λT ) denotes the carry-over effect of
formulation R(T ). If we apply the constraint λR = −λ = −λT , then the
model is as displayed in Table 3.10. If we return to Table 3.7 and apply
the constraints: (τπ)R1 = (τπ)T1 = 0, (τπ)R2 = −λ and (τπ)T2 = λ, we
will reproduce Table 3.10. In other words the carry-over effects and the
interaction effects are aliased.

We may now be tempted to test for a nonzero formulation-by-period
interaction (or carry-over difference or group difference). However, such
a test is pointless and has undesirable side effects. The reasons why
this is the case were first given by [150] and subsequently described and
discussed thoroughly by Senn (see [383], [384], [389], [390]), for example)
and [237]. We therefore do not consider or recommend such testing for
trials that use the RT/TR design.

For completeness we show, in Figure 3.8, the groups-by-periods plots
for Example 3.1, where the style of Version 1 has been used. Although
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Table 3.9 Fixed Effects Model Including Carry-over Effects for a 2× 2 Design

Group Period 1 Period 2

1(RT) µR + π1 µT + π2 + λR

2(TR) µT + π1 µR + π2 + λT

Table 3.10 Fixed Effects Model Including Carry-over for a 2×2 Design: After
Applying Constraints

Group Period 1 Period 2

1(RT) µ− τ − π µ + τ + π − λ

2(TR) µ + τ − π µ− τ + π + λ

there is a suggestion of an interaction, it is unlikely that such a small
effect, if in fact it is present, could be detected against a background of
large between-subject variability. In addition, we have already cautioned
against testing for such an interaction. In terms of ABE, although the
logCmax means in Period 2 show more of a difference between R and T
than the other comparisons, this difference is itself not large.

3.5 Checking Assumptions Made about the Linear Model

No statistical analysis of data is complete without some checks on the
assumptions that were made when the model was specified. Our model,
it will be recalled is as defined in (3.1). The main assumptions were
that after allowing for the systematic (i.e., fixed) effects, the between-
subject variability and the within-subject variability can be modelled
by normal distributions. A simple graphical test of whether a set of
values is a sample from a normal distribution is the normal probability
(or Q-Q) plot. The values of most interest to us are the within-subject
residuals, i.e., the estimates of the εijk. We will denote the residual
for the kth subject in sequence i and period j as rijk. It is defined as
rijk = yijk − ŷijk, where ŷijk is the value our model predicts (using our
given data) for the response of the kth subject in sequence i and period j.
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Figure 3.8 Example 3.1: Groups-by-Periods Plot

Because our model measures everything relative to the grand mean (µ),
the two residuals on the same subject add to zero, i.e., (ri1k + ri2k = 0).
Hence, when testing the residuals for normality, we need only use the
residuals from one of the periods.

Figure 3.9 displays the Q-Q plots for the studentized residuals corre-
sponding to logAUC and logCmax. Identified on the plots are the two
most extreme residuals in each plot. The studentized residuals are the
raw residuals (rijk) divided by their estimated standard error. The s-
tandardization is necessary because Var(rijk) is not a constant. If the
plotted data are truly normally distributed, the plotted points should
lie on or close to a straight line. We can see that this is mostly true in
Figure 3.9, except for the logAUC values of two subjects (12 and 25).
A more formal test of normality is one due to Shapiro and Wilk [397].
For logAUC the p-value for this test is 0.497 and for logCmax is 0.314.
There is no evidence to suggest the studentized residuals are not nor-
mally distributed. The responses with the largest studentized residuals
(in absolute value) may be outliers. These are values that are typically
greater than 3 in value. There is no evidence that our extreme residuals
are outliers.
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Figure 3.9 Example 3.1: Normal Probability Plots

3.6 Power and Sample Size for ABE in the 2× 2 Design

In order for an ABE trial to meet its objectives, it should have a good
chance of deciding that T and R are average bioequivalent when that
is, in fact, the true state of nature. Expressed in statistical terminology,
the trial must have sufficient power to reject the two null hypotheses of
non-equivalence, when T and R are average bioequivalent. Power is the
probability of rejecting the two null hypotheses, when they are false, and
is usually chosen to be 0.90. Mathematically, power equals 1 minus the
probability of a Type 2 error.

No adjustment is made for multiplicity [191] and the larger variance
of logAUC or logCmax is used in the power sample size calculations.
It is generally the case that logCmax is more variable than logAUC, as
illustrated in the previous example. Such practical issues in determining
the sample size of ABE trials are considered in more detail in Chapter
5.

As already explained, when using the TOST procedure to determine
ABE we test each of the following two null hypotheses at a significance
level of α, where ∆ = ln 1.25. If both are rejected we conclude that for
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the metric being used (logAUC or logCmax) that T and R are ABE.

H01 :µT − µR ≤ −∆
H02 :µT − µR ≥ ∆.

In practice it is convenient to do this using a 100(1−2α)% two-sided con-
fidence interval. However, in order to calculate the power of the TOST
procedure, we will stay within the hypothesis testing framework. The
power will be calculated for a 2 × 2 cross-over trial with n subjects in
total and n/2 in each sequence group. In this case, if δ = µT − µR,
Var(δ̂) = 2σ2

W /n. The t−statistics for testing each of H01 and H02 are,
respectively, tL = (δ̂ + ∆)/

√
2σ̂2

W /n and tU = (δ̂ − ∆)/
√

2σ̂2
W /n, and

each has (n − 2) degrees of freedom. Both hypotheses are rejected if
tL ≤ −t1−α,n−2 and tU ≥ t1−α,n−2, where t1−α,n−2 is the upper (1− α)
percentile of the central t-distribution on n − 2 degrees of freedom. To
calculate power we need to consider the joint distribution of tL and tU on
the alternative hypothesis set of values for δ, where δ 6= 0. This joint dis-
tribution is the bivariate noncentral t−distribution, with noncentrality
parameters ncL and ncU , where

ncL =
µT − µR + ∆√

2σ2
W /n

and ncU =
µT − µR −∆√

2σ2
W /n

. (3.10)

The power of the TOST procedure is:

power(δ, α, n, σW ) = Pr(tL ≤ −t1−α,n−2 and tU ≥ t1−α,n−2) (3.11)

and is a function of δ for given n, α and σW . The function can be
calculated by making use of the results given by [321], as done by [341].
Figure 3.9 shows some plots of the power function for two different values
of σW and a selection of values of n. In all cases α = 0.05. The values
of the power were calculated using SAS programs kindly supplied by
Dr. Klem Phillips. The values of δ and σW have been expressed relative
to µR, i.e., δ = 100(µT − µR)/µR and σW is a fraction of µR. So, for
example, a value of 0.1 implies σW = 0.1µR. The curves have been
drawn for n = 10, 20, 40, and 60. Grid lines have been added in the
horizontal direction to indicate where the power is 0.05, 0.50, 0.80, and
0.90, respectively, from the bottom up. The vertical grid line on the
right of each plot indicates the value of ∆ = ln(1.25). We can see that
the power is a maximum when δ = 0 and declines as δ increases. The
power is 0.05 at δ = ∆, by definition, and consequently we see that all
the curves pass through the point (∆, 0.05).

Using the SAS program supplied by Dr. Phillips we have, by trial and
error, calculated the samples sizes needed to achieve a power of 80% or
90% for a range of values of δ = 100(µT−µR)/µR and σW . As before, the
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Figure 3.10 Examples of Power Curves for the TOST Procedure. Left panel:
σW = 0.1. Right panel: σW = 0.2.

Table 3.11 Samples Sizes for a 2×2 Cross-over Trial to Detect ABE

f(for σW ) δ 80% Power 90% Power

0 6 (86.32) 8 (97.58)
0.1 5 8 (91.77) 8 (91.77)

10 10 (80.67) 14 (92.25)
15 26 (82.04) 34 (90.43)

0 16 (82.39) 20 (91.92)
0.2 5 20 (83.22) 26 (91.64)

10 36 (81.99) 48 (90.77)
15 48 (80.06) 130 (90.11)

value of σW is expressed as a fraction of µR, i.e., σW = f ∗µR, for f = 0.1
and 0.2. These are given in Table 3.11, where, for convenience µR = 1 and
we have also included in parentheses the actual value of the power given
be the calculations. A simple formula that gives an approximation to the
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power of the TOST procedure is given in equation (3.12). This uses the
univariate noncentral t-distribution instead of the bivariate noncentral
t-distribution. CDF (x, df, nc) = P (t ≤ x), where t has the noncentral
t-distribution on df degrees of freedom and noncentrality parameter nc.
Direct calculation shows this is a good approximation. For example, as a
comparison with two of the values in Table 3.11, the formula gives power
values of 81.96 and 90.75 for δ = 10 and f = 0.20 for n = 36 and 48,
respectively.

1− β = CDF (t1−α,n−2, df, ncL)− CDF (t1−α,n−2, df, ncU ). (3.12)

3.7 Example Where Test and Reference Are Not ABE

You may recall in the Introduction to Chapter 2 that Lenny and Denny,
the ClinPharm physician and scientist, were concerned about a partic-
ular set of data from a BE trial. These data are given in Table 3.12.

Table 3.12: Example 3.2

Sequence RT
AUC Cmax
Period Period

Subject 1 2 1 2
1 58.160 79.340 2.589 2.827
3 69.680 85.590 2.480 4.407
5 121.840 . 5.319 .
8 208.330 377.150 9.634 11.808
10 17.220 14.230 1.855 1.121
11 1407.900 750.790 13.615 6.877
13 20.810 21.270 1.210 1.055
15 . 8.670 0.995 1.084
18 203.220 269.400 7.496 9.618
20 386.930 412.420 16.106 12.536
21 47.960 33.890 2.679 2.129
24 22.700 32.590 1.727 1.853
26 44.020 72.360 3.156 4.546
27 285.780 423.050 8.422 11.167
31 40.600 20.330 1.900 1.247
32 19.430 17.750 1.185 0.910
36 1048.600 1160.530 18.976 17.374
37 107.660 82.700 5.031 6.024
39 469.730 928.050 6.962 14.829

R=Reference, T=Test
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Table 3.12: Example 3.2

Sequence RT
AUC Cmax
Period Period

Subject 1 2 1 2
43 14.950 20.090 0.987 2.278
44 28.570 28.470 1.105 1.773
45 379.900 411.720 12.615 13.810
47 126.090 46.880 6.977 2.339
50 75.430 106.430 4.925 4.771

Sequence TR
Subject 1 2 1 2

2 150.120 142.290 5.145 3.216
4 36.950 5.000 2.442 0.498
6 24.530 26.050 1.442 2.728
7 22.110 34.640 2.007 3.309
9 703.830 476.560 15.133 11.155
12 217.060 176.020 9.433 8.446
14 40.750 152.400 1.787 6.231
16 52.760 51.570 3.570 2.445
17 101.520 23.490 4.476 1.255
19 37.140 30.540 2.169 2.613
22 143.450 42.690 5.182 3.031
23 29.800 29.550 1.714 1.804
25 63.030 92.940 3.201 5.645
28 . . 0.531 0.891
29 56.700 21.030 2.203 1.514
30 61.180 66.410 3.617 2.130
33 1376.020 1200.280 27.312 22.068
34 115.330 135.550 4.688 7.358
38 17.340 40.350 1.072 2.150
40 62.230 64.920 3.025 3.041
41 48.990 61.740 2.706 2.808
42 53.180 17.510 3.240 1.702
46 . . 1.680 .
48 98.030 236.170 3.434 7.378
49 1070.980 1016.520 21.517 20.116

R=Reference, T=Test

We can see that data has been collected on 49 subjects. Some subjects
have missing data points (see Subjects 28 and 46, for example). Before
modelling the data we should understand why these subjects did not
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Figure 3.11 Example 3.2: Subject Profiles Plot

produce PK data. In the case of Subject 28, the PK concentrations were
too low to produce a quality AUC value, and Subject 46 similarly did not
get much drug on board after taking each dose. Subject 35 decided not
to participate in the trial, and thus had no data. These things happen
in bioequivalence trials and will be discussed in more detail in Chapter
5.

The subject profiles plots for these data are given in Figure 3.11,
where we have included only those subjects that had two data points
for either logAUC or logCmax. We can see clearly that for one subject
(4 in sequence TR) there is a dramatic change from T to R for both
logAUC and logCmax. This subject had particularly low AUC and Cmax
values in Period 1, which though unusual were quite genuine. We will
therefore leave the data for this subject in the set to be analyzed. The
paired-agreement plots are given in Figure 3.12 and do not suggest that
there is a significant difference between T and R, although there may
be a period difference. Before we can continue to fit a linear model to
the (log-transformed) data, we must decide what to do with the data
from those subjects who did not provide a value in both periods. The
most precise comparison of T and R is based on the difference of two
values on the same subject. Such a comparison is not possible for those
subjects with only a single value. If however, there are two such subjects
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Figure 3.12 Example 3.2: Paired-agreement Plots

and one has a value only on T and the other has a value only on R,
then a between-subject comparison of T and R is possible by taking the
difference of these two single values. However, the precision of such a
comparison will be low because the between-subject variation, as we can
see from Figure 3.11, is much higher than the within-subject variability.
Because we have assumed the subject effects ξik are random variables,
these between-subject comparisons can be recovered in the analysis if
we fit what is known as a mixed model. A full explanation of mixed
models is beyond the scope of the present chapter and so we will proceed
to analyse the subset of data from those subjects that provided values
on both T and R. We will consider mixed models in more detail in
Chapter 5. However, the recovery of between-subject information on the
comparison of T and R is unlikely to make much difference to the results,
and so nothing of significance will be lost by ignoring the data on those
subjects that provided only a single value. To justify this assertion, we
will also report the results of fitting the mixed model to the complete
data set, but as already mentioned a full explanation of how this was
done will have to wait until Chapter 5.

The groups-by-periods means for Example 3.2 are given in Table 3.13
and plotted in Figure 3.13. The pattern is similar for both logAUC and
logCmax, although there is a larger difference between T and R in the
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Figure 3.13 Example 3.2: Groups-by-Periods Plot

second period for logAUC. The mean differences versus totals plot is
given in Figure 3.14. For logAUC there is a noticeable vertical separation
of the centroids suggesting a possible lack of ABE.

The results of applying the TOST procedure are given in Table 3.14.
We can see that the upper limit of the 90% confidence interval for lo-
gAUC (and of course AUC) is above the upper boundary for ABE. There-
fore, even though ABE is not contradicted when the logCmax data are
used, T and R are judged to have failed the FDA criteria for ABE. The
fitted normal densities corresponding to the TOST results are given in
Figure 3.15. We can see a large part of the density for logAUC extends
to the right of the ABE limit and is consistent with the lack of ABE
found by the TOST procedure. As with out previous example, we look
at the normal probability plots to check on our assumptions. These are
given in Figure 3.16. There is very strong evidence that the studentized
residuals from the model for logAUC are not normally distributed. The
p-value from the Shapiro-Wilk test is 0.012 for logAUC and 0.407 for
logCmax. This confirms the visual indication that studentized residuals
for logAUC are not normally distributed. The largest studentized resid-
ual for logAUC is 3.341, from subject 4. This is unusually large in a
sample of size 45 from the standard normal distribution and the data
value corresponding to this residual is an ‘outlier’ - i.e., a value that is
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Table 3.13 Example 3.2: Groups-by-Periods Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Mean

1(RT) ȳ11. = 4.55(22) ȳ12. = 4.60(22) ȳ1.. = 4.57
2(TR) ȳ21. = 4.43(22) ȳ22. = 4.28(22) ȳ2.. = 4.35

Mean ȳ.1. = 4.49 ȳ.2. = 4.43 ȳ... = 4.46

logCmax

1(RT) ȳ11. = 1.33(23) ȳ12. = 1.36(23) ȳ1.. = 1.34
2(TR) ȳ21. = 1.27(23) ȳ22. = 1.19(23) ȳ2.. = 1.23

Mean ȳ.1. = 1.30 ȳ.2. = 1.27 ȳ... = 1.29

Figure 3.14 Example 3.2: Mean Differences versus Totals Plot
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Table 3.14 Example 3.2: TOST Procedure Results – Log Scale

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC (45 subjects) 0.0970 (-0.0610, 0.2550)
logCmax (47 subjects) 0.0508 (-0.0871, 0.1887)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC (45 subjects) 1.10 (0.94, 1.29)
Cmax (47 subjects) 1.05 (0.92, 1.21)

unusual relative to the fitted model. As already noted, this is a subjec-
t with a very large drop in value for both logAUC and logCmax over
the two periods. Subject 14 has a large increase in both logAUC and
logCmax between the periods.

An alternative analysis that does not depend on the assumption that
the data are normally distributed is available and we will illustrate this
(nonparametric analysis) in the next section. It should be noted, how-
ever, that regulatory approval may not be obtained if nonparametric
methods are used.

To end this chapter we report the results that are obtained by fitting
a mixed model to the complete data set. These are displayed in Table
3.15 and lead to the same conclusions as were obtained from the data
using only those subjects with values in both Period 1 and Period 2.

Table 3.15 Example 3.2: TOST Procedure Results (all subjects) – Log Scale

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC 0.0940 (-0.0678, 0.2482)
logCmax 0.0468 (-0.0907, 0.1843)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.09 (0.93, 1.28)
Cmax 1.05 (0.91, 1.20)
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Figure 3.15 Example 3.2: Fitted Normal Densities for µ̂T − µ̂R

3.8 Nonparametric Analysis

On occasion, in bioequivalence or relative bioavailability studies, there
may be a need to analyse unusual endpoints beyond those usually as-
sessed such as logAUC and logCmax. Examples of such endpoints are:
1. The ratio Cmax/AUC [102] - an alternative measure of the rate of

exposure

2. Partial AUC [105] - an alternative measure of absorption

3. λ (see Equation 1.1, Chapter 1) - a measure of excretion.
Endpoints like these are difficult to assess using models like those in-

troduced up to now as they are unlikely to be normally distributed. For
example, the ratio Cmax/AUC is the ratio of two log-normally distribut-
ed variables. Even though it may be possible to derive approximate or
exact formulae for the distributions of such endpoints, it is unclear how
this would directly benefit the sponsors of such studies or patients. These
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Figure 3.16 Example 3.2: Normal Probability Plots

endpoints are currently viewed as supportive only, and exact quantifica-
tion of their Type 1 or 2 error rates are not of immediate concern in a
regulatory filing.

However, there are statistical procedures available to analyse such
(non-normal) data. These procedures are termed ‘nonparametric’ in that
they do not assume a particular parametric form (e.g., normal or log-
normal) for the endpoint of interest. The nonparametric analysis for the
2× 2 cross-over was first described by [253] and later illustrated by [81]
in the context of evaluating bioavailability data. An excellent review
of nonparametric methods for the analysis of cross-over trials is given
by [434]. See also [414] and [198]. For a more extensive coverage of the
methods covered in this section see [420].

Such nonparametric analyses should only be utilised when (i) an end-
point is grossly non-normal or (ii) cannot be transformed to an endpoint
that is normally distributed or (iii) sample size does not permit the ap-
plication of the central-limit theorem. Such an endpoint is Tmax, which
is often used to support parametric analysis findings from the analysis
of logAUC and logCmax. Discussion is included here for completeness.

Obviously, the interpretation of nonparametric analysis from a regula-
tory perspective is overshadowed by global regulatory recommendations
(see Chapter 2) on provision of adequate sample size to support para-
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metric interpretation. Such nonparametric techniques are generally of
interest to sponsors only when small sample sizes are employed and,
even then, only when analysing Tmax or unusual endpoints. If there is
evidence that the log-transformed data from an ABE trial are such that
it would be unreasonable to assume that they are normally distributed,
then the usual two one-sided t-tests (as used in the TOST procedure),
can be replaced by Wilcoxon rank-sum tests, or equivalently by Mann-
Whitney U-tests. As with normal data these nonparametric tests are
based on within-subject differences.

To illustrate the nonparametric tests we will use the Tmax values
recorded on the subjects in Example 3.1. These are given in Table 3.16.

In order to make a comparison between the parametric and nonpara-
metric procedures we will first analyse the logTmax values as if they
were normally distributed (i.e., on the assumption the Tmax values are
log-normally distributed). Although there are no regulatory guidelines
on what must be done to determine if T and R are ABE, we will ap-
ply the same regulatory hurdles that apply to logAUC and logCmax.
In other words we will apply the usual TOST procedure to logTmax.
The results of doing this, along with the back-transformed values, are
given in Table 3.17. Applying the familiar regulatory guidelines, T and
R cannot be deemed to be ABE, as the upper 90% confidence limit for
µT −µR, on the logTmax scale, exceeds 0.2231 (and, of course, the upper
90% confidence limit on the Tmax scale exceeds 1.25).

However, we need to check that the assumption that the residuals from
our usual linear model (3.1) for logTmax are normally distributed is rea-
sonable. Figure 3.17 displays the histogram of the studentized residuals
and a normal probability plot. The studentized residuals look like they
can be assumed to be normally distributed. The p-value for the Shapiro-
Wilk test for normality is 0.7044, which also gives some assurance that
the studentized residuals have a normal distribution. However, a closer
inspection of the normal probability plot in Figure 3.10 reveals horizon-
tal bands of residuals; a feature most unlikely to occur if the residuals
were normally distributed. Also, of course, the nature of the Tmax vari-
able itself indicates that logTmax will not be normally distributed. The
concentrations are only taken at a set of predetermined times, and so
Tmax is an inherently discrete random variable.

A further warning sign is that when Model (3.1) was fitted using
PROC MIXED, the estimate of σ̂2

B (not shown) was zero, indicating
some instability in the REML fitting procedure for these data. The values
in Table 3.18 were therefore calculated using the results of fitting Model
(3.1) under the assumption that the subject parameters were fixed rather
than random effects. Of course, for a complete data set like that in Table
3.16, with two values of Tmax for every subject, we should get the same
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TOST results irrespective of whether the subject parameters are fixed
or random. The fact that we do not is another indication that a more
robust analysis procedure should be used for these data.

When data are log-normal or normal in distribution, it is known that,
in most cases, the probability of a Type 2 error is increased when using a
nonparametric procedure relative to the parametric procedures discussed
in earlier sections [193].

Table 3.16: Example 3.1: Tmax

Subject Sequence Period Formulation Tmax LogTmax
1 RT 1 R 0.50 -0.693
1 RT 2 T 0.50 -0.693
4 RT 1 R 0.50 -0.693
4 RT 2 T 1.00 0.000
5 RT 1 R 1.50 0.405
5 RT 2 T 0.25 -1.386
8 RT 1 R 1.00 0.000
8 RT 2 T 0.50 -0.693
9 RT 1 R 0.25 -1.386
9 RT 2 T 1.50 0.405
11 RT 1 R 0.50 -0.693
11 RT 2 T 1.00 0.000
16 RT 1 R 1.50 0.405
16 RT 2 T 2.00 0.693
17 RT 1 R 1.50 0.405
17 RT 2 T 1.00 0.000
19 RT 1 R 1.50 0.405
19 RT 2 T 0.50 -0.693
21 RT 1 R 0.50 -0.693
21 RT 2 T 0.50 -0.693
24 RT 1 R 1.00 0.000
24 RT 2 T 0.50 -0.693
25 RT 1 R 1.00 0.000
25 RT 2 T 0.25 -1.386
28 RT 1 R 1.00 0.000
28 RT 2 T 1.50 0.405
29 RT 1 R 1.00 0.000
29 RT 2 T 1.50 0.405
31 RT 1 R 0.50 -0.693
31 RT 2 T 1.50 0.405
34 RT 1 R 0.50 -0.693

R=Reference, T=Test
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Table 3.16: Example 3.1: Tmax

Subject Sequence Period Formulation Tmax LogTmax
34 RT 2 T 1.50 0.405
36 RT 1 R 0.50 -0.693
36 RT 2 T 1.00 0.000
2 TR 1 T 1.00 0.000
2 TR 2 R 1.00 0.000
3 TR 1 T 0.50 -0.693
3 TR 2 R 0.50 -0.693
6 TR 1 T 1.00 0.000
6 TR 2 R 0.50 -0.693
7 TR 1 T 1.00 0.000
7 TR 2 R 0.25 -1.386
10 TR 1 T 1.50 0.405
10 TR 2 R 1.00 0.000
12 TR 1 T 1.00 0.000
12 TR 2 R 1.00 0.000
15 TR 1 T 0.50 -0.693
15 TR 2 R 1.50 0.405
18 TR 1 T 1.00 0.000
18 TR 2 R 0.50 -0.693
20 TR 1 T 1.00 0.000
20 TR 2 R 0.50 -0.693
22 TR 1 T 2.00 0.693
22 TR 2 R 4.02 1.391
23 TR 1 T 0.50 -0.693
23 TR 2 R 0.50 -0.693
26 TR 1 T 0.50 -0.693
26 TR 2 R 0.25 -1.386
27 TR 1 T 0.50 -0.693
27 TR 2 R 1.00 0.000
30 TR 1 T 0.50 -0.693
30 TR 2 R 1.00 0.000
35 TR 1 T 0.50 -0.693
35 TR 2 R 1.00 0.000

R=Reference, T=Test

To derive the equivalent of the TOST procedure based on a non-
parametric approach we use the Hodges-Lehmann point estimate and
confidence interval for µT − µR [207]. These can be calculated using
tables, by asymptotic approximation or from software for exact testing
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Table 3.17 Example 3.1: TOST Procedure Results for Tmax

Endpoint µ̂T − µ̂R 90% Confidence Interval

logTmax 0.0553 (-0.2021, 0.3126)
Tmax 1.0569 ( 0.8170, 1.3670)

Figure 3.17 Example 3.1: Studentized Residuals for Tmax

such as StatXact [86]. Here we will illustrate the approach that uses the
asymptotic approximation.

It will be recalled that the estimate of δ = µT −µR was obtained pre-
viously by comparing the mean period difference from sequence Group
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2 with the mean period difference from sequence Group 1:

δ̂ = µ̂T − µ̂R =
1
2
([ȳ21. − ȳ22.]− [ȳ11. − ȳ12.]).

The robust estimate of δ is based on similar reasoning, but uses the
median rather than the mean.

In order to construct a robust equivalent of the 90% confidence interval
used in the TOST procedure, we first calculate for each subject the
difference between the logTmax values in Periods 1 and 2, (i.e., yi1k −
yi2k, for i = 1, 2 and k = 1, 2, . . . , ni).

Let us label the period differences, y11k − y12k, in sequence Group 1
as Xi, i = 1, 2, . . . , n1 and the differences, y21k−y22k in sequence Group
2 as Yj , j = 1, 2, . . . , n2. In Example 3.1, n1 = 17 and n2 = 15.

To calculate the point estimate we first form the n1 × n2 differences
Yj − Xi, for i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2. The point estimate
δ̂ is then half the value of the median of these differences. To obtain
the median, the differences are ordered from smallest to largest. To save
space, we do not give the list of these ordered differences here. If n1×n2 is
odd and equals 2p+1, say, the median is the (p+1)th ordered difference.
If n1 × n2 is even and equals 2p, say, the median is the average of the
pth and (p + 1)th ordered differences. For Example 3.1, n1n2 = 255 and
therefore median is the 128th ordered difference, which is 0, i.e., δ̂ = 0/2.

To obtain a symmetric two-sided confidence interval for δ, with con-
fidence coefficient 1 − α, we must first obtain an integer, which we will
denote by Cα. To get this we use the critical values of the distribution
of the Wilcoxon rank-sum test statistic [212], which can be obtained by
approximation when n1 and n2 are large (i.e., larger than 12) or from
Table A.6 of [212] when n1 and n2 are small. The Wilcoxon rank-sum
test can be considered as a nonparametric form of the usual t−test for
comparing two independent samples. The rank-sum test uses the ranks
of the data rather than the data themselves. We will say more about
this test after describing and illustrating the nonparametric form of the
TOST procedure.

To obtain Cα when n1 and n2 are small (i.e., ≤ 12) we first obtain
the value w(α/2, n1, n2) from Table A.6. This value is such that, on
the null hypothesis of no difference in central location between the two
samples under consideration, P[W ≥ w(α/2, n1, n2)] = α/2, where W is
the rank-sum statistic. The value of Cα is then obtained by noting that
[n2(2n1 + n2 + 1)/2]−Cα + 1 = w(α/2, n1, n2). On the null hypothesis,
Cα is the largest integer such that

P
[(

n2(n2 + 1)
2

+ Cα

)
≤ W ≤

(
n2(2n1 + n2 + 1)

2
− Cα

)]
≥ 1− α,
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where n1 > n2.
For large n1 and n2, the integer Cα may, according to Hollander and

Wolfe, be approximated by

Cα =
n1n2

2
− zα/2

[
n1n2(n1 + n2 + 1)

12

] 1
2

,

where zα/2 is the upper (1− α/2) point of the standard normal
distribution.

The (1−α) confidence interval is the 1
2 (δL, δU ), where δL is the Cαth

ordered difference and δU is the (n1n2 + 1− Cα)th ordered difference.
Taking z0.05 = 1.645, we get Cα = 84. That is, the 90% confidence

interval is obtained by taking δL as the 84th ordered difference and δU

as the 172nd ordered difference. The resulting 90% confidence interval
for δ is (−0.2027, 0.3466). The back-transformed interval is (0.82, 1.41).
These are quite similar to those obtained previously, (-0.2021, 0.3126)
and (0.82, 1.37), respectively, indicating some robustness of the para-
metric approach when the sample sizes are relatively large.

The Wilcoxon rank-sum test assumes that the endpoint (logTmax in
our case) is expressed on an interval (or metric) scale, so that the same
shift on the scale has the same interpretation regardless of its location.
Further assumptions made in using this test include randomisation of
subjects to the groups with random sampling from the same family of
distributions with differences between groups only being for location.

To calculate the test statistic, the period differences are ranked, where
the ranking is done in terms of the total number of subjects, not sepa-
rately for each group. Let Ri = [the sum of the ranks of group i], i = 1, 2.
Under the null hypothesis that µT = µR,

E[R1] = n1(n1 + n2 + 1)/2 ,

E[R2] = n2(n1 + n2 + 1)/2

and
Var[R1] = Var[R2] = n1n2(n1 + n2 + 1− T )/12 ,

where T is a correction for ties.
If there are no ties then T = 0. If there are v tied sets, with ts ties in

the sth set, where s = 1, 2, . . . , v, then

T =
∑v

s=1 ts(t2s − 1)
[(n1 + n2)(n1 + n2 − 1)]

.

An asymptotic test of the null hypothesis can be based on either R1 or
R2. For R1 we calculate

z =
R1 − E[R1]
(Var[R1])

1
2
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and compare it with the standard normal distribution. Statistical soft-
ware, such as proc npar1way in SAS will do the necessary calculations
for this test and produce exact P-values for small n1 and n2.

In order to apply the nonparametric equivalent of the TOST proce-
dure, we use the mean difference, (Period 1 - Period 2)/2, for each sub-
ject. In the analysis we (i) add log(1.25) to the mean differences in Group
2 and apply the Wilcoxon rank sum test and (ii) subtract log(1.25) from
the mean differences in Group 2 and apply the test. The P-values from
the exact and asymptotic tests are very similar (0.021 when adding and
0.120 when subtracting, for the exact test) and are not very different
from the t−test (0.038 and 0.138). Indeed the conclusions are the same;
based on logTmax T and R are not ABE.

3.9 Some Practical Issues

In some cases, multiple AUC endpoints are derived in bioequivalence
data sets. In general, if half-life (T 1

2
, see Chapter 1) is estimable, it will

be used to calculate AUC(0-∞) as described in Equation (1.1). However,
if insufficient concentration data are captured during elimination of the
drug, half-life may not be estimable, and therefore AUC(0-t) will be
used in statistical evaluation. Recall that in this context t denotes the
last quantifiable concentration during the period in which samples are
captured. FDA guidance [135] notes that if over 20% of the value of
AUC(0-∞) is attributable to calculation with T 1

2
then AUC(0-t) should

be used in bioequivalence assessment.
The ‘t’ in AUC(0-t) may differ across periods for any given subject.

For example, in Example 3.1, subject 15’s last quantifiable concentration
occurred in the first period at 12 hours and in the second at approximate-
ly 16 hours post dose. In data sets where marked differences between
the last quantifiable time are present between periods and half-life is
inestimable, it may be preferable to consider an endpoint like AUC(0-
t′). Here, t′ denotes the last quantifiable concentration time in common
across periods for a given subject.

The decision about which AUC endpoint is primary and which will
provide supportive information should be made prior to analysis to pre-
vent the introduction of bias into interpretation of the data [388]. In
the authors’ experience, AUC(0-∞) is most often used, with AUC(0-t)
used in those cases where half-life is not estimable for a large number
of subjects. It is unusual for AUC(0-t′) to be used as most BE studies
are designed to ensure sufficient samples are taken during elimination to
ensure half-life is estimable. FDA guidance [135] recommends that both
AUC(0-t) and AUC(0-∞) be provided in submissions.

In cases where multiple ‘peaks’ in blood concentration are observed,
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it is common practice for the first [131] to be chosen as Cmax, with the
corresponding time relative to dose being Tmax. The value of Tmax is
highly dependent on the choice of sampling times. Its use in bioequiv-
alence studies is that of an endpoint providing supportive information.
Some nations [57]-[58] require that Tmax be analyzed as if it were nor-
mally distributed.



CHAPTER 4

BE Studies with More Than Two
Periods

Introduction
Denny walked into my office one day after the reports for Example

3.2 came out looking like he had been run over by a bus and dragged
over hot coals. He had been (figuratively) when he reviewed the findings
with senior management. They obviously did not like the implications
for getting together a marketable formulation in time for filing with the
FDA.

Nobody ever comes to see you when you release findings they like. That
annoyed me when I first started on the job, but after a while I realized it
gave one more time to enjoy the moment.

Do take time out to enjoy the good moments on the job. Given the suc-
cess rate of drugs in clinical development (see Chapter 1), statisticians
should expect to be the bearer of bad news on the majority of occasions
in their working life. This is ok if you are in an organization that recog-
nizes that failure is far more common in drug development than success,
but if you are not, grow a thick skin about such matters, or think about
changing jobs. Be careful not to get cynical, though. It is an easy trap to
fall into and causes one to not enjoy anything (because you always think
about the bad thing that is probably right around the corner and guard
against keeping your hopes up). Probabilistically speaking, there will be
good moments on the job, and one should maintain one’s equanimity so
that one can enjoy them.

The question Denny posed to me was simple on the surface - can
we explore these data to see if there was any possibility of a follow-up
bioequivalence trial being successful?

Note the careful use of the word ‘we’. When a clinician uses ‘we’
with a statistician, it is the royal ‘we’ which can be usually translated as
meaning ‘you’.

I told him that yes, I could, but given the findings of Example 3.2, my
intuition told me that it was going to be pretty unlikely and that he had
better prepare his folks for that message. I would run some programs and
get back to him with a quantitative assessment next week. He wanted it
sooner, but I told him no.

79
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I got through to Denny on three of four points here (which is pretty
good all things considered). He recognized that I would do the work by
next week and that the success of a follow-up study was going to be low,
but the idea that he should warn his folks went in one ear and out the
other. Maybe clinicians like surprises - I gave up on trying to figure that
one out long ago.

Statisticians should also recognize one other truth in drug development
which people tend not to mention when they are hiring you. One would
think that statisticians would recognize this fact (i.e., we are trained to
count), but it seems like it gets by a lot of us. The fact is statisticians
are outnumbered in drug development! There are a lot more scientists,
clinicians, etc., who need our expertise than there are time or personnel
to deliver it.

Hence, an option one sometimes considers as a biostatistician is to go
with one’s intuition and not spend the time quantifying precisely ques-
tions like that posed by Denny. We encourage people not to make the
choice to opt out of applying statistical expertise in such situations. It is
important to the patients who will be using such medications that we get
it right. If worse comes to worse, we recommend taking the time to train
the scientists and clinicians to do such work themselves.

4.1 Background

Although the RT/TR design is often the design of choice when testing
for ABE, there are situations where a design with more than two periods
is needed. These include
• The drugs to be compared are highly variable;
• Carry-over effects cannot be entirely ruled out due to long half-life,

poor metabolism, or other factors inhibiting elimination.
By definition, a drug that is highly variable has a large within-subject

variance σ2
W (for logAUC or logCmax). Typically this is taken to mean

that σ2
W ≥ 0.09 for R. Consequently, the estimate of µT − µR will also

have a large variance unless many subjects are enrolled. As large ABE
trials are unattractive for ethical, statistical, and financial reasons, a
better alternative is needed. If more than two periods can be used then
suitable alternative designs are available. The regulatory guidance rec-
ommends using four-period, two-sequence designs such as RTRT/TRTR
when highly variable drugs are compared. Such four-period designs are
also needed when individual bioequivalence is considered, as we shall see
in Chapter 6.

However, if the time available for the trial does not permit four periods
to be used then a three-period design, with sequences such as RTT/TRR,
can be used. We will review and compare these designs in the next
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section. In Section 4.3 we will review and compare the various four-
period designs. In each of these sections we will illustrate the analysis of
data and give an example of at least one such trial.

ABE trials are not confined to comparing Test and Reference. Some-
times two alternative versions of Test or Reference are included, leading
to the need for designs for three or four formulations. For example, in a
confirmatory trial a 300 mg Test tablet was given either (i) as 3×100 mg
tablets or (ii) as a 200 mg tablet plus a 100 mg tablet. This was because
in the early stages of the confirmatory trial only the 3×100 mg version
was available. Later, a 200 mg tablet became available. The commercial
formulation of the drug was to be a single 300 mg tablet, and this had
to be shown to be ABE to the versions used in the confirmatory trial.
A trial with four formulations might arise when both a high and a low
dose of Test are to be compared to a high and low dose of Reference.
Examples of both of these types of design will be given in Section 4.6.
The data sets for each example are given in Section 4.8.

4.2 Three-period Designs

As already discussed, the need for extra periods usually arises when the
drugs being compared are highly variable. Adding an extra period to
the RT/TR design is a simple way of increasing the number of responses
collected from each subject. In addition, as we shall see, a suitably chosen
three-period design can give some protection against the occurrence of
(unequal) carry-over effects of T and R.

Here we will only consider designs with two-sequences and the only
three choices worth considering (see [237], Ch. 3) are the following, where
the rows are the sequences and the columns are the periods. We assume
that there are n/2 subjects assigned to each sequence:

1. R T T 2. R T R 3. R R T
T R R T R T T T R

The question now arises as to which one of these should be used. If
there are no (differential) carry-over effects then the three designs are
equivalent and any one may be used; the regulatory guidelines express
a preference for the RTR/TRT design. However, if differential carry-
over effects (i.e., λT 6= λR) cannot be ruled out, then the first design
RTT/TRR is to be preferred, as we will shortly demonstrate.

However, before doing this let us consider the estimation of δ = µT −
µR. As an illustration we will do this for the first design given above,
RTT/TRR.

Let ȳij. denote the mean of the response (logAUC or logCmax) in
period j of sequence group i, where, as already stated, there are n/2
subjects in each group. Using an obvious extension of the notation used
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Table 4.1 The Expectations of ȳij. for Design 1

Group Period

1 2 3

1 RTT γ1 + π1 + τR γ1 + π2 + τT + λR γ1 + π3 + τT + λT

2 TRR γ2 + π1 + τT γ2 + π2 + τR + λT γ2 + π3 + τR + λR

in Chapter 3, the expectations of the six group-by-period means are
given in Table 4.1.

For our illustrative design, the estimator of δ is:

δ̂ = (−2ȳ11. + ȳ12. + ȳ13. + 2ȳ21. − ȳ22. − ȳ23.)/4 (4.1)

and Var[δ̂] = 3σ2
W /(2n). It is easily confirmed that this is an unbiased

estimator:

E[−2ȳ11. + ȳ12. + ȳ13.] = −2(γ1 + π1 + τR) + (γ1 + π2 + τT + λR)
+ (γ1 + π3 + τT + λT )
= −2π1 + π2 + π3 − 2τR + 2τT + λR + λT

and

E[−2ȳ21. + ȳ22. + ȳ23.] = −2π1 + π2 + π3 − 2τT + 2τR + λR + λT .

Taking the second expression away from the first leaves 4(µT − µR).
The unbiased estimator of λT − λR is:

̂λT − λR = (−ȳ12. + ȳ13. + ȳ22. − ȳ23.)/2, (4.2)

which again can be easily confirmed. The variance of this estimator is
2σ2

W /n.
An interesting and important property of the these two estimators

is that they have a covariance of zero, which for normally distributed
data implies they are independent. In other words, if we were to drop
the carry-over parameters from the above model, we would get the same
estimator of δ as given in (4.1).

We now return to answer the question of which design out of the three
possibilities given above is to be preferred. To compare the designs it is
useful to use the concept of efficiency, which is more fully explained in
Section 4.8, the Technical Appendix. Defining δ = µT − µR, as before,
efficiency is the ratio of Var(δ̂) in the design under consideration to the
value this variance would take in an ‘ideal’ design. In the ideal design
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the effects of subjects, periods and carry-over effects can be removed
from the estimate of δ. Therefore, in the ideal design, the estimate of
δ, using logAUC, for example, would simply be the difference ȳT − ȳR,
where ȳT (ȳR) is the mean of all the logAUC values of T (R). If T and
R each occurred r times in the design then Var(ȳT − ȳR) = 2σ2

W /r =
4σ2

W /(3n), as r = 3n/2. Such a design may not exist, and its use is
merely to provide a lower bound on Var(δ̂) that may be used as a point
of reference when comparing designs. Efficiency is usually expressed as
a percentage, and so a fully efficient design has a value of 100%. In
the presence of differential carry-over effects, the efficiency of the first
design is (4σ2

W /3n)/(3σ2
W /2n) × 100 = 88.9%. The efficiencies of the

other designs can be calculated similarly (see Section 4.8) and are 22.2%
and 66.7%, respectively. In addition, as already noted, the correlation
between δ̂ and ̂λT − λR in the first design is zero, whereas in the second
and third designs it is 0.87 and 0.50, respectively. In other words, the first
design is not only highly efficient in the presence of differential carry-over
effects, but is such that the estimator of δ is the same whether or not
carry-over effects are entered into the model for the data. Consequently,
there is no disadvantage in using this design even if differential carry-over
effects are anticipated or cannot be avoided.

4.2.1 Examples of the Analysis of BE Trials with Three-Periods

Example 4.1
The data in Tables 4.25 and 4.26 are from a trial that used the se-
quences RTT and TRR. Figure 4.1 shows the corresponding subject pro-
files plots. The most noteworthy feature in these plots is that, although
the between-subject variability is high for both metrics it is much lower
for logCmax compared to logAUC. In addition, the maximum value in
each period for logCmax is much lower the corresponding maximum for
logAUC. There is a suggestion for Sequence 2 that the values of R are
higher on average than those of T, but this feature is not so evident
in Sequence 1. We can also identify a subject in Sequence 2 that only
provided two logAUC values.

The group-by-period means are given in Table 4.2, where because of
the missing data, we have indicated the number of subjects that provided
data for each mean. These are plotted in Figure 4.2, where the lower
line in each plot refers to Sequence RTT and the upper line to Sequence
TRR. Despite the difference in absolute size of the logAUC and logCmax
means, there is a similar pattern of formulation differences within each
period for both metrics. The only other notable feature is that the means
for Sequence 2 are consistently higher than the corresponding means for
Sequence 1.
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Figure 4.1 Example 4.1: Subject Profiles Plot

Table 4.2 Example 4.1: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RTT) ȳ11. = 4.35(46) ȳ12. = 4.36(45) ȳ13. = 4.60(43) ȳ1.. = 4.43
2(TRR) ȳ21. = 4.66(47) ȳ22. = 4.88(47) ȳ23. = 4.92(47) ȳ2.. = 4.82

Mean ȳ.1. = 4.51 ȳ.2. = 4.63 ȳ.3. = 4.77 ȳ... = 4.63

logCmax

1(RTT) ȳ11. = 1.18(47) ȳ12. = 1.10(47) ȳ13. = 1.46(45) ȳ1.. = 1.24
2(TRR) ȳ21. = 1.39(48) ȳ22. = 1.60(48) ȳ23. = 1.64(48) ȳ2.. = 1.54

Mean ȳ.1. = 1.29 ȳ.2. = 1.35 ȳ.3. = 1.55 ȳ... = 1.40
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Figure 4.2 Example 4.1: Groups-by-periods Plot

To get a graphical impression of the similarity or otherwise of the
means of R and T, we can use a version of the mean differences versus
totals plot that was used in Chapter 3 for the RT/TR design. In this
alternative version of the plot we replace the within-subject mean dif-
ference with a within-subject contrast for the kth subject in sequence
group i: dik = −(2yi1k − yi2k − yi3k)/4. From Equation (4.1), we can
see that δ̂ = d̄1. − d̄2.. Instead of the subject totals, we arbitrarily, use
the mean of each subject, so that we can plot the subject contrasts a-
gainst the subject means. If the contrasts are plotted on the vertical
axis, any separation of the groups along this axis is indicative of a lack
of equivalence. The resulting plots are given in Figure 4.3. It should be
noted that only subjects that have a complete set of three values are
included in the plots. As in Chapter 3, we also include the centroids and
the convex hulls. From this plot there appears to be little separation of
the centroids in the vertical direction. It seems likely that T and R are
average bioequivalent.

Of course to determine if T and R are sufficiently similar to each other
to be declared ABE, we must apply the TOST procedure. The results
are given in Tables 4.3, where subjects have been fitted as fixed effects.
We can see that T and R are clearly average bioequivalent.

Example 4.2
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Figure 4.3 Example 4.1: Subject Contrasts versus Means Plot

The data in Tables 4.27 and 4.28 are from a trial that also used the
sequences RTT and TRR. The corresponding subject profiles are given
in Figure 4.4. Relatively large between-subject variation is evident, with
perhaps a higher variance on the logAUC scale. It is not clear if, on
average, T is giving higher or lower values than R. The group-by-period
means are given in Table 4.4, where because of the missing data, we have
again indicated the number of subjects that provided data for each mean.
These are plotted in Figure 4.5, where the upper line in each plot refers
to Sequence RTT. Even allowing for the difference in absolute size of the
logAUC and logCmax means, there is a different pattern of formulation
differences within each period for the two metrics. There appears to
be more of a difference between the formulations on the logAUC scale.
The only other notable feature is that the means for Sequence 1 are
consistently higher than the corresponding means for Sequence 2.

A better impression of the difference, if any, between T and R is ob-
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Table 4.3 Example 4.1: TOST Procedure Results

log scale

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC -0.0270 (-0.1395, 0.0855)
logCmax -0.0557 (-0.1697, 0.0583)

back-transformed

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 0.97 (0.87, 1.09)
Cmax 0.95 (0.84, 1.06)

tained from a plot of the subject contrasts against the subject means.
For Example 4.2, this is given as Figure 4.6. There is a clear separation
of the convex hulls for both metrics suggesting a lack of bioequivalence.
In addition, there is clearly more variability in the plotted points from
Sequence 2 as compared to Sequence 1.

The results of applying the TOST procedure to these data are given
in Table 4.5. Insufficient evidence were present to conclude that T and
R are ABE.

4.3 Within-subject Variability

It is clear that each of our possible designs for three periods has T
repeated in one sequence and R repeated in the other. It is therefore
possible to separately estimate the within-subject variance of T and
the within-subject variance of R. We will denote these by σ2

WT and
σ2

WR, respectively. Let us concentrate on the design that has sequences
RTT and TRR. Suppose we want an estimate of σ2

WT for the logAUC
values. A simple method of estimation uses only the subjects that have a
logAUC value on both occurrences of T. Suppose we denote these values
by y12k and y13k, for such a subject k in the first sequence group. Then
Var(y12k − y13k) = 2σ2

WT . To estimate this variance we first construct
the set of differences y12k − y13k and then estimate the variance of the
differences. The estimate so obtained, and divided by 2, gives σ̂2

WT .
A similar process can be used to calculate σ̂2

WR using the appropriate
subjects in the second sequence group. In a 2 × 2 cross-over a similar
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Figure 4.4 Example 4.2: Subject Profiles Plot

Figure 4.5 Example 4.2: Groups-by-periods Plot
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Table 4.4 Example 4.2: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RTT) ȳ11. = 4.30(37) ȳ12. = 4.11(38) ȳ13. = 4.21(38) ȳ1.. = 4.21
2(TRR) ȳ21. = 3.67(33) ȳ22. = 3.83(34) ȳ23. = 3.95(35) ȳ2.. = 3.82

Mean ȳ.1. = 4.01 ȳ.2. = 3.98 ȳ.3. = 4.08 ȳ... = 4.02

logCmax

1(RTT) ȳ11. = 1.13(39) ȳ12. = 1.03(39) ȳ13. = 1.05(39) ȳ1.. = 1.07
2(TRR) ȳ21. = 0.77(35) ȳ22. = 0.88(35) ȳ23. = 1.02(35) ȳ2.. = 0.89

Mean ȳ.1. = 0.96 ȳ.2. = 0.96 ȳ.3. = 1.04 ȳ... = 0.98

Table 4.5 Example 4.2: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC -0.1719 (-0.2630, -0.0809)
logCmax -0.1299 (-0.2271, -0.0327)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 0.84 (0.77, 0.92)
Cmax 0.88 (0.80, 0.97)

procedure is used to calculate σ̂2
W under the assumption that σ2

WT =
σ2

WR = σ2
W [237].

Doing this for Example 4.1, we get, for logAUC: σ̂2
WR = 0.168 and

σ̂2
WT = 0.396, and for logCmax: σ̂2

WR = 0.214 and σ̂2
WT = 0.347.

For Example 4.2, the corresponding values for logAUC are σ̂2
WR =

0.168, σ̂2
WT = 0.065, and for logCmax are σ̂2

WR = 0.201 and σ̂2
WT =

0.087.
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Figure 4.6 Example 4.2: Subject Contrasts versus Means Plot

In both examples, σ̂2
WR > 0.09 for each metric, indicating that the

Reference formulations are highly variable.
In Chapter 5 we will give an alternative method of estimation.

4.4 Robust Analyses for Three Period Designs

The model assumed for our data (logAUC or logCmax) is as given in
(3.1) in Chapter 3:

yijk = µd[i,j] + πj + γi + ξk(i) + εijk.

This makes some strong assumptions about the variance and covariance
structure of the repeated measurements on each subject. In particular,
it assumes that the variance of each repeated measurement is the same
and that the covariance between any two repeated measurements is the
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same, i.e.,Var(yijk) = σ2
B + σ2

W and

Cov(yi1k, yi2k) = Cov(yi1k, yi3k) = Cov(yi2k, yi3k) = σ2
B .

If there is any doubt that these assumptions are unlikely to be true, an al-
ternative, robust, analysis is possible. The analysis is robust in the sense
that the only assumptions made are that: the responses from different
subjects are independent, the two groups of subjects are a random sam-
ple from the same statistical population, and that the period, treatment,
and other effects act additively. The analysis, for the sequences RTT and
TRR uses the same subject contrasts that were used to construct the
subject contrasts versus means plot: dik = −(2yi1k−yi2k−yi3k)/4, where
it will be recalled that δ̂ = d̄1.− d̄2.. The assumptions made in the anal-
ysis are then those referring to dik: the values from different subjects
are independent, the values in each group are a random sample from
the same statistical population and finally the only difference, if any,
between the groups is a shift the value of the mean (or median).

Having calculated the values of dik (for those patients that provided
three repeated measurements), the TOST analysis uses the 90% confi-
dence interval based on the t-distribution or, if the data are very non-
normal, the Hodges-Lehmann version of the confidence interval.

For the kth subject in Group 1, k = 1, 2, . . . , n1, we define d1k =
−(2y11k − y12k − y13k)/4 in Group 1 and d2k = −(2y21k − y22k − y23k)/4
in Group 2. If σd

2 = Var[d1k] = Var[d2k], then

Var[δ̂] = σ2
d

[
1
n1

+
1
n2

]
.

To estimate σd
2 we use the usual pooled estimator

sp
2 =

(n1 − 1)s2
1 + (n2 − 1)s2

2

(n1 + n2 − 2)
,

where s2
1 is the sample variance of d1k and s2

2 is the sample variance of
d2k. To construct the 90% confidence interval for δ we use that fact that
when δ = 0,

t =
d̄1. − d̄2.[

s2
p(

1
n1

+ 1
n2

)
] 1

2

has the t-distribution with (n1 + n2 − 2) degrees of freedom. It will be
noted that the degrees of freedom for the usual TOST interval, based
on subjects with all three repeated measurements is 2(n1 + n2) − 3, as
compared to (n1 + n2 − 2) for the robust method. Even so, this loss of
degrees of freedom rarely has a major effect on the conclusions.

For the data in Example 4.1, n1 = 42, n2 = 46 for logAUC, and
d̄1. = −0.0850, d̄2. = −0.1215 and δ̂ = −0.0365. Further, s2

1 = 0.1191,
s2
2 = 0.0917, and s2

p = 0.1048. Based on the t-distribution with 86 degrees
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of freedom, the TOST 90% confidence is (-0.1514, 0.0783). If the usual
analysis (of yijk) is done, the corresponding interval is (-0.1516, 0.0785),
based on the t-distribution with 173 degrees of freedom. The robust
interval is a little wider but, in this case at least, the conclusions are the
same. For logCmax the robust confidence interval is (-0.1712, 0.0651),
on 91 degrees of freedom, as compared to the usual interval of (-0.1685,
0.0623) on 183 degrees of freedom.

For the data in Example 4.2, n1 = 35, n2 = 32 for logAUC and the
robust interval is (−0.2880,−0.0897) on 65 df and the usual interval
is (−0.2800,−0.0977) on 131 df. For logCmax, n1 = 39, n2 = 35 and
the robust interval is (-0.2359, -0.0239) on 72 df and the usual inter-
val is (−0.2271,−0.0327) on 145 df. Again, the conclusions from both
approaches are the same.

An alternative confidence interval that does not rely on the
t-distribution is the Hodges-Lehmann point confidence interval described
in Chapter 3. In the notation of that chapter, we let Xk = d2k and Yk =
d1k. The resulting confidence intervals for Example 4.1 are (−0.1196,−0.0731)
for logAUC and (−0.1679, 0.0394) for logCmax. For Example 4.2, the
corresponding intervals are (−0.2635,−0.0771) for logAUC and
(−0.2042,−0.0071) for logCmax. The conclusions obtained above are
not changed for either example. The Hodges-Lehmann confidence in-
tervals can also be constructed using StatXact. For Example 4.1 these
are (-0.1199, 0.0734) for logAUC and (-0.1683, 0.0410) for logCmax. For
Example 4.2 these are (-0.2635, -0.0771) and (-0.2049, -0.0070), respec-
tively.

4.5 Four-period Designs

4.5.1 Choice of Design

As already mentioned, four-period designs are recommended by the FDA
when the reference drug is highly variable (i.e., σ2

W > 0.09). If we discard
the sequences RRRR and TTTT then there are seven different two-
sequence designs and they are given below:

1. R R T T 2. R T R T 3. R T T R
T T R R T R T R T R R T

4. R T R R 5. R R T R 6. R T T T
T R T T T T R T T R R R

and
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7. R R R T
T T T R

The efficiencies of these designs are given in Table 4.6. In the presence
of unequal carry-over effects, only Designs 1 and 3 are worth considera-
tion [237]. It is worthy of note that the design recommended by the FDA
is Design 2. In the absence of a difference in carry-over effects Design 1,
2 and 3 are equally, and fully, efficient.

Table 4.6 Efficiencies of Designs 1 through 7

Design Adjusted for Carry-over Unadjusted for Carry-over

1 90.91 100.00
2 18.18 100.00
3 90.91 100.00
4 54.55 75.00
5 54.55 75.00
6 72.73 75.00
7 66.67 75.00

4.5.2 Examples of Data Analysis for Four-period Designs

Example 4.3
The data in Table 4.29 are from a trial with four periods that used the
sequences RTTR and TRRT. This trial was quite small with 8 subjects
in Group 1 and 9 in Group 2. The subject profiles plots for logAUC and
logCmax are given in Figure 4.7. From this plot it is difficult to discern
if T and R are ABE. The group-by-period means are given in Table 4.7
and are plotted in Figure 4.8. These seem to indicate that T and R are
ABE.

The subject contrasts plots are given in Figure 4.9 and reveal a dif-
ference in the centroids, particularly for logCmax, although the actual
size of the difference is relatively small. There is also some evidence that
there is more variability in the logAUC contrasts for the subjects on
sequence TRRT. To clarify matters regarding ABE we refer to the re-
sults of the TOSTs given in Table 4.8, where the fixed-subjects models
have been fitted. The evidence is in favor of concluding that T and R
are ABE, although for logCmax the lower end of the confidence interval
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Table 4.7 Example 4.3: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Period 3 Period 4 Mean

1(RTTR) ȳ11. = 8.94(8) ȳ12. = 8.99(8) ȳ13. = 8.96(8) ȳ14. = 8.91(8) ȳ1.. = 8.95
2(TRRT) ȳ21. = 8.83(9) ȳ22. = 8.80(9) ȳ23. = 8.85(9) ȳ24. = 8.89(8) ȳ2.. = 8.84

Mean ȳ.1. = 8.88 ȳ.2. = 8.89 ȳ.3. = 8.91 ȳ.4. = 8.90 ȳ... = 8.89

logCmax

1(RTTR) ȳ11. = 7.02(8) ȳ12. = 7.00(8) ȳ13. = 6.98(8) ȳ14. = 7.08(8) ȳ1.. = 7.02
2(TRRT) ȳ21. = 6.83(9) ȳ22. = 7.02(9) ȳ23. = 7.06(9) ȳ24. = 7.02(8) ȳ2.. = 6.98

Mean ȳ.1. = 6.92 ȳ.2. = 7.01 ȳ.3. = 7.02 ȳ.4. = 7.05 ȳ... = 7.00

Figure 4.7 Example 4.3: Subject Profiles Plot

is close to the lower boundary of -0.2231 (on the log scale). The robust
and Hodges-Lehmann exact confidence intervals are (-0.0080, 0.0811)
and (−0.0148, 0.0834), respectively, for logAUC and are (-0.1786, 0.0038)
and (-0.2001, 0.0073), respectively, for logCmax.

Example 4.4
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Figure 4.8 Example 4.3: Groups-by-periods Plot

Table 4.8 Example 4.3: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC 0.0352 (-0.0044, 0.0748)
logCmax -0.0963 (-0.1881, 0.0045)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.04 (1.00, 1.08)
Cmax 0.91 (0.83, 1.00)

The data in Tables 4.30 and 4.31 are from another four-period design,
but this time the sequences used were RTRT and TRTR. The subject
profiles plots are given in Figure 4.10. The large number of subjects per
group makes it difficult to discern much from this plot, other than the
relatively large between-subject variation. The group-by-period means
are given in Table 4.9 and plotted in Figure 4.11. The picture is clearer
now, with a suggestion that for logCmax that T and R might not be
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Figure 4.9 Example 4.3: Subject Contrasts versus Means Plot

ABE. The subject contrasts versus means plot is given in Figure 4.12,
where it is clear there is a relatively large vertical gap in the centroids
for logCmax. This is confirmed from the TOST results given in Table
4.10, where the lower bound of the 90% confidence interval for logCmax
is a long way above 0.2231, upper the regulatory limit. The robust and
Hodges-Lehmann confidence intervals for logAUC are (0.0311, 1758) and
(0.0256, 0.1630), respectively. The corresponding intervals for logCmax
are (0.2685, 0.5623) and (0.2681, 0.5626). There is very strong evidence
that T and R are not ABE.

4.6 Designs with More Than Two Treatments

As already mentioned in the Introduction, designs for more than two
treatments may be used to show bioequivalence, but these are less com-
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Figure 4.10 Example 4.4: Subject Profiles Plot

Figure 4.11 Example 4.4: Groups-by-periods Plot
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Table 4.9 Example 4.4: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 2 3 4 Mean

1 ȳ11. = 5.80(27) ȳ12. = 6.00(27) ȳ13. = 5.80(26) ȳ14. = 5.85(26) ȳ1.. = 5.86
2 ȳ21. = 5.84(27) ȳ22. = 5.81(27) ȳ23. = 6.04(26) ȳ24. = 5.91(26) ȳ2.. = 5.90

Mean ȳ.1. = 5.82 ȳ.2. = 5.91 ȳ.3. = 5.92 ȳ.4. = 5.88 ȳ... = 5.88

logCmax

1 ȳ11. = 3.63(27) ȳ12. = 4.26(27) ȳ13. = 3.69(26) ȳ14. = 4.09(26) ȳ1.. = 3.91
2 ȳ21. = 3.96(27) ȳ22. = 3.82(27) ȳ23. = 4.26(26) ȳ24. = 3.76(26) ȳ2.. = 3.95

Mean ȳ.1. = 3.79 ȳ.2. = 4.04 ȳ.3. = 3.97 ȳ.4. = 3.93 ȳ... = 3.93

Group 1=RTRT; 2=TRTR

Table 4.10 Example 4.4: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC 0.1002 (0.0289, 0.1715)
logCmax 0.4140 (0.2890, 0.5389)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.11 (1.03, 1.19)
Cmax 1.51 (1.34, 1.71)

mon than those for two treatments. Examples 4.5 and 4.6, below are
examples where three and four treatments, respectively, were used.

Example 4.5. Trial with Three Treatments.
In this trial there were two ‘reference’ formulations, R and S, where R
was a dose made up of three 100 mg tablets and S was a dose made up of
a 200 mg tablet and a 100 mg tablet. The test formulation was a single
300 mg tablet. Two reference formulations were used because the 200
mg tablet was not available in the early stages of the confirmatory trial
when the 3×100 mg dose was used. The aim of the trial was to show that
T and R were ABE and T and S were ABE. The subjects in the trial
were randomly allocated to the six sequences: RST, RTS, SRT, STR,
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Figure 4.12 Example 4.4: Subject Contrasts versus Means Plot

TRS and TSR. The data from this trial are given in Tables 4.32, 4.33,
and 4.34. This design is known as a Williams design (see [237], Chapter
4) and is balanced for carry-over effects. In the presence of carry-over
effects the variance of any pairwise difference between the formulations
is (5σ2

W )/(12r), where r is the number of replications of the complete
set of six sequences. In the absence of carry-over effects this variance
is (σ2

W )/(3r), which is also the variance in an ideal design. Hence, the
efficiency of the Williams design for three formulations is 80% in the
presence of carry-over effects and is 100% in the absence of carry-over
effects. Of course, we do not expect to see any differential carry-over
effects and, as we shall see, there is no suggestion from the data that
such effects need concern us.

The subject profiles plots are given in Figures 4.13, 4.14, and 4.15.
Large between-subject variation is evident and there is a suggestion that
S gives a higher response than R or T. The group-by-period means are
given in Table 4.11 and are plotted in Figure 4.16. There is a clear
ordering within all but one of the periods with S giving the highest
mean response and R the lowest. To determine if each of T and R and T
and S are ABE, we use the TOST procedure for each difference and the
results are given in Table 4.12. Note that we do not adjust for multiple
testing as we require both pairs to be ABE. We can conclude that T is
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Figure 4.13 Example 4.5: Subject Profiles Plot: Sequences 1 and 2

not ABE to R and S. The ordering of the formulation means is, as noted
from the previous plots, that S gives a significantly higher response than
T, which in turn is significantly higher than R.

Example 4.6. Trial with Four Treatments
In this trial the test formulation could be given as a low or a high dose.
Hence, it was necessary to compare these with low and high doses, respec-
tively, of the reference formulation. The four formulations were labelled
as A, B, C, and D, where A is the Reference, Low dose, B is the Test, Low
dose, C is the Reference, High dose, and D is the Test, High dose. The
comparisons of interest were therefore B-A and D-C. A Williams design
for four periods was used in the trial with sequences ADBC, BADC, CB-
DA and DCAB. The efficiency of this design is 90.91% in the presence
of differential carry-over effects and is 100% in their absence.

The data from this trial are given in Tables 4.35 to 4.38 and the subject
profiles plots are given in Figures 4.17 and 4.18. The large changes in
the plots occur when moving from a low to a high dose and vice versa.
Within a dose there seems relatively good agreement between T and R.
The group-by-period means are given in Table 4.13 and are plotted in
Figure 4.19, where it will be noted that the symbols for A and C are the
circle and triangle, respectively, and the symbols for B and D are the
vertical and diagonal crosses, respectively. The large difference between
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Figure 4.14 Example 4.5: Subject Profiles Plot: Sequences 3 and 4

Figure 4.15 Example 4.5: Subject Profiles Plot: Sequences 5 and 6
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Table 4.11 Example 4.5: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RST) ȳ11. = 8.14(8) ȳ12. = 8.61(8) ȳ13. = 8.27(8) ȳ1.. = 8.34
2(RTS) ȳ21. = 8.23(11) ȳ22. = 8.45(11) ȳ23. = 8.51(11) ȳ2.. = 8.40
3(SRT) ȳ31. = 8.69(11) ȳ32. = 8.37(11) ȳ33. = 8.50(11) ȳ3.. = 8.52
4(STR) ȳ41. = 8.49(10) ȳ42. = 8.25(10) ȳ43. = 8.00(10) ȳ4.. = 8.25
5(TRS) ȳ51. = 8.42(10) ȳ52. = 8.50(10) ȳ53. = 8.75(10) ȳ5.. = 8.55
6(TSR) ȳ61. = 8.43(10) ȳ62. = 8.54(10) ȳ63. = 8.23(10) ȳ6.. = 8.40

Mean ȳ.1. = 8.41 ȳ.2. = 8.45 ȳ.3. = 8.38 ȳ... = 8.41

logCmax

1(RST) ȳ11. = 6.55(9) ȳ12. = 7.23(9) ȳ13. = 6.94(8) ȳ1.. = 6.91
2(RTS) ȳ21. = 6.74(11) ȳ22. = 7.07(11) ȳ23. = 7.16(11) ȳ2.. = 6.99
3(SRT) ȳ31. = 7.29(11) ȳ32. = 6.82(11) ȳ33. = 7.13(11) ȳ3.. = 7.08
4(STR) ȳ41. = 6.99(10) ȳ42. = 6.85(10) ȳ43. = 6.46(10) ȳ4.. = 6.77
5(TRS) ȳ51. = 6.91(11) ȳ52. = 6.97(11) ȳ53. = 7.37(10) ȳ5.. = 7.07
6(TSR) ȳ61. = 6.97(10) ȳ62. = 7.17(10) ȳ63. = 6.79(10) ȳ6.. = 6.98

Mean ȳ.1. = 6.92 ȳ.2. = 7.01 ȳ.3. = 6.98 ȳ... = 6.97

the means values for the two doses (circle and triangle versus vertical and
diagonal cross) is clearly displayed, as is the relatively small difference
between T and R within doses (circle versus triangle and vertical versus
diagonal cross). At first sight, at least, it appears the T and R are ABE
at each dose. The results of the TOST procedure are given in Table 4.14,
and these confirm the conclusions made from the plots.

4.7 Nonparametric Analyses of Tmax

There are a number of alternative approaches to developing a distribution-
free or nonparametric analysis of data from cross-over trials with three or
more treatments. The simplest and most familiar is an extension of the
nonparametric analysis of the design with two treatments and sequences:
TR/RT. This can only be applied to a subset of designs and is based on
a stratified analysis for two treatments, resulting in the Van Elteren test
(see [388] for example). The particular designs to which this approach is
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Figure 4.16 Example 4.5: Groups-by-periods Plot

Figure 4.17 Example 4.6: Subject Profiles Plot: Sequences 1 and 2



104 BE STUDIES WITH MORE THAN TWO PERIODS

Figure 4.18 Example 4.6: Subject Profiles Plot: Sequences 3 and 4

Figure 4.19 Example 4.6: Groups-by-periods Plot



NONPARAMETRIC ANALYSES OF TMAX 105

Table 4.12 Example 4.5: TOST Procedure Results

T-R
Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC 0.1505 (0.0865, 0.2145)
logCmax 0.2618 (0.1747, 0.3489)

T-S
Endpoint µ̂T − µ̂S 90% Confidence Interval

logAUC -0.1888 (-0.2532, -0.1243)
logCmax -0.2044 (-0.2921, -0.1167)

T-R
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.16 (1.09, 1.24)
Cmax 1.30 (1.19, 1.42)

T-S
Endpoint exp(µ̂T − µ̂S) 90% Confidence Interval

AUC 0.83 (0.78, 0.88)
Cmax 0.82 (0.75, 0.89)

applicable are those that have embedded within them a suitable set of
RT/TR designs. We will illustrate such sets for three treatments in the
following subsections. For arbitrary designs, confidence intervals can be
derived using bootstrap sampling.

The most common need for a nonparametric analysis of bioequivalence
data is in the analysis of Tmax. In the following subsections we will
analyse Tmax data collected in the trials described in Examples 4.5 and
4.6.

4.7.1 Three Treatments

The data in Tables 4.15, 4.16, and 4.17 are the Tmax values collected in
the trial described in Example 4.5. The design is displayed again in Table
4.18. It can be seen that the six sequences have been arranged into three
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Table 4.13 Example 4.6: Group-by-Period Means (sample size in brackets)

logAUC

Group Period 1 Period 2 Period 3 Period 4 Mean

1(ADBC) ȳ11. = 6.19(7) ȳ12. = 8.17(7) ȳ13. = 6.01(7) ȳ14. = 8.17(7) ȳ1.. = 7.14
2(BACD) ȳ21. = 6.10(7) ȳ22. = 5.89(7) ȳ23. = 7.95(7) ȳ24. = 7.84(7) ȳ2.. = 6.95
1(CBDA) ȳ11. = 7.99(7) ȳ12. = 5.76(7) ȳ13. = 7.87(7) ȳ14. = 5.81(7) ȳ1.. = 6.86
2(DCAB) ȳ21. = 7.98(7) ȳ22. = 7.89(7) ȳ23. = 5.74(7) ȳ24. = 5.78(7) ȳ2.. = 6.85

Mean ȳ.1. = 7.06 ȳ.2. = 6.93 ȳ.3. = 6.90 ȳ.4. = 6.90 ȳ... = 6.95

logCmax

1(ADBC) ȳ11. = 4.54(7) ȳ12. = 6.61(7) ȳ13. = 4.39(7) ȳ14. = 6.64(7) ȳ1.. = 5.54
2(BACD) ȳ21. = 4.41(7) ȳ22. = 4.24(7) ȳ23. = 6.37(7) ȳ24. = 6.29(7) ȳ2.. = 5.33
1(CBDA) ȳ11. = 6.42(7) ȳ12. = 4.20(7) ȳ13. = 6.41(7) ȳ14. = 4.26(7) ȳ1.. = 5.32
2(DCAB) ȳ21. = 6.39(7) ȳ22. = 6.39(7) ȳ23. = 4.13(7) ȳ24. = 4.03(7) ȳ2.. = 5.23

Mean ȳ.1. = 5.44 ȳ.2. = 5.36 ȳ.3. = 5.33 ȳ.4. = 5.30 ȳ... = 5.36

strata. Stratum I includes the two sequences that contain the TR/RT
design in Periods 1 and 2, stratum II includes the two sequences that
contain the TR/RT design in Periods 1 and 3, and finally stratum III
includes the two sequences that contain the TR/RT design in Periods
2 and 3. Within each stratum, T and R can be compared using the
Wilcoxon rank sum test, as described in Section 3.8 of Chapter 3. In
particular, the Wilcoxon rank sum and its variance for each stratum can
be calculated. An overall test of T versus R can then be obtained by
taking a weighted average of the three rank sums and dividing it by
the square root of an estimate of the variances of the weighted average
to produce a test statistic. This will be illustrated shortly. A defining
characteristic of the parent design is that the pair of sequences in each
stratum have T and R in matching periods: 1 and 2 in stratum I, 1 and
3 in stratum II and 2 and 3 in stratum III. This is so that the period
effect can be eliminated from the treatment comparison.

To compare T and S a different arrangement of the design will be
needed, as shown in Table 4.19. It can be seen that the sequences in
each stratum are a different selection to those used when comparing
T and R. At once we can see some disadvantages of this approach: a
design containing the appropriate stratification must be available and a
new arrangement of sequences is needed for each individual treatment
comparison. A general approach applicable to an arbitrary design will
be described later.
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Table 4.14 Example 4.6: TOST Procedure Results

B-A
Endpoint µ̂B − µ̂A 90% Confidence Interval

logAUC 0.0047 (-0.0544, 0.0638)
logCmax -0.0355 (-0.1171, 0.0461)

D-C
Endpoint µ̂D − µ̂C 90% Confidence Interval

logAUC -0.0362 (-0.0953, 0.0230)
logCmax -0.0301 (-0.1117, 0.0515)

B-A
Endpoint exp(µ̂B − µ̂A) 90% Confidence Interval

AUC 1.00 (0.95, 1.07)
Cmax 0.97 (0.89, 1.05)

D-C
Endpoint exp(µ̂D − µ̂C) 90% Confidence Interval

AUC 0.96 (0.91, 1.02)
Cmax 0.97 (0.89, 1.05)

Table 4.15: Example 4.5: Tmax, Williams Design for 3 Treatments

Sequence TRS Sequence RTS
Period Period

Subject 1 2 3 Subject 1 2 3
6 4.00 4.00 2.65 2 3.00 3.00 3.00
12 4.00 4.02 3.02 11 2.97 2.00 2.98
17 2.98 3.98 3.98 16 4.00 3.00 3.00
19 3.98 1.50 2.50 20 3.00 2.02 2.50
29 3.02 3.98 4.00 27 2.00 3.98 2.50
32 2.00 1.98 3.00 31 2.48 1.50 1.48
42 3.00 4.00 2.02 40 1.97 1.50 1.53
46 3.00 3.98 2.98 43 4.02 3.98 3.03

R=3× 100mg, S=200mg + 100mg, T=Test
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Table 4.15: Example 4.5: Tmax, Williams Design for 3 Treatments

Sequence TRS Sequence RTS
Period Period

Subject 1 2 3 Subject 1 2 3
49 1.98 2.50 1.52 53 2.50 3.98 3.00
60 1.50 3.98 3.00 59 3.00 3.00 3.98

61 4.00 2.00 4.00
R=3× 100mg, S=200mg + 100mg, T=Test

Table 4.16: Example 4.5: Tmax, Williams Design for 3 Treatments

Sequence TSR Sequence RST
Period Period

Subject 1 2 3 Subject 1 2 3
4 2.50 2.98 3.02 9 2.98 2.50 2.50
7 2.48 2.50 3.97 13 2.00 2.98 1.50
14 2.98 3.00 3.00 21 2.52 2.50 1.55
23 1.00 2.98 3.00 28 2.50 2.98 2.97
26 4.05 2.98 6.00 33 2.97 1.52 1.02
36 2.98 3.98 3.00 44 4.00 4.00 3.97
39 4.08 4.00 3.98 50 3.98 4.00 4.00
48 1.03 2.00 2.02 58 3.00 4.00 2.48
54 2.48 2.50 2.50
56 1.50 1.98 2.48

R=3× 100mg, S=200mg + 100mg, T=Test

Table 4.17: Example 4.5: Tmax, Williams Design for 3 Treatments

Sequence STR Sequence SRT
Period Period

Subject 1 2 3 Subject 1 2 3
5 2.50 1.98 2.55 1 2.50 4.02 3.00
10 1.48 1.50 2.50 8 1.98 1.98 4.00
18 3.00 2.50 2.50 15 1.48 2.50 3.98
22 4.02 3.02 4.02 24 3.00 4.00 4.02
30 4.10 3.02 3.98 25 2.48 3.00 2.98
34 4.12 4.00 3.98 35 2.97 3.98 2.50
37 2.98 1.48 4.02 41 3.03 3.05 3.98
47 2.50 3.00 4.00 45 1.53 4.03 3.03

R=3× 100mg, S=200mg + 100mg, T=Test



NONPARAMETRIC ANALYSES OF TMAX 109

Table 4.17: Example 4.5: Tmax, Williams Design for 3 Treatments

Sequence STR Sequence SRT
Period Period

Subject 1 2 3 Subject 1 2 3
52 3.00 4.00 2.52 51 3.02 6.00 2.52
55 3.00 3.98 2.48 57 3.00 3.98 3.00

62 2.98 4.00 2.50
R=3× 100mg, S=200mg + 100mg, T=Test

Bioequivalence testing is based on the 90% confidence for the Test
versus Reference comparison (on the log scale). However, to motivate
and explain the construction of the confidence interval we first start
with the construction of the statistic for testing the null hypothesis that
the mean treatment difference is zero. We will do this first for a single
stratum and then give the generalization.

Table 4.18 Williams Design for Three Treatments: Stratified for Comparing T
and R

Stratum Group Period 1 Period 2 Period 3

I 1 T R S
I 2 R T S

II 3 T S R
II 4 R S T

III 5 S T R
III 6 S R T

Single Stratum

The test statistic is Q, as used by Tudor and Koch [434] for stratified
samples and where the variate is the within-stratum ranks of the re-
sponses. We first define Q for a single stratum and show its equivalence
to the Wilcoxon rank-sum test. In the process we will also show how the
Wilcoxon rank-sum can be expressed in terms of U-statistics; this will
be useful when we consider the calculation a confidence interval for the
difference of T and R.

For a single stratum we assume that there are two sequences TR and
RT with T and R in corresponding periods in the two sequences. In
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Table 4.19 Williams Design for Three Treatments: Stratified for Comparing T
and S

Stratum Group Period 1 Period 2 Period 3

I 1 T R S
I 6 S R T

II 5 S T R
II 3 T S R

III 2 R T S
III 4 R S T

addition, we assume that the period 1 - period 2 differences have been
calculated and ranked (over the total set of differences). Then:

Q =
[R̄1 − R̄2]2

V̂ar(R̄1 − R̄2)
=

n1n2
n1+n2

(R̄1 − R̄2)2

σ2
R

, (4.3)

where R̄i =
∑ni

k=1 Rik/ni, ni is the number of ranks in sequence i, i =
1, 2, Rik, k = 1, 2, . . . , ni are the ranks for that sequence and

σ2
R =

∑2
i=1

∑ni

k=1(Rik − R̄)2

(n1 + n2 − 1)
.

On the null hypothesis that the distributions of T and R are equal, Q
has an asymptotic chi-squared distribution on 1 degree of freedom.

Let W1 =
∑n1

k=1 R1k denote the rank-sum in the first sequence. We
will now show that (4.3) is the square of the Wilcoxon rank-sum test
statistic. The numerator of this statistic is

W1 − E(W1) = W1 −
n1(n2 + n1 + 1)

2
=

n1R̄1 −
n1(n2 + n1 + 1)

2
= n1(R̄1 − R̄),

where R̄ = (
∑2

i=1

∑ni

k=1 Rik)/(n1 + n2) = (n1 + n2 + 1)/2. In addition,
as R̄1 − R̄ = R̄1 − (n1R̄1+n2R̄2)

n1+n2
, we have

W1 −
n1(n2 + n1 + 1)

2
=

n1n2(R̄1 − R̄2)
n1 + n2

.

In the absence of ties

Var(W1) =
n1n2(n1 + n2 + 1)

12
.
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Returning now to Equation (4.3),

σ2
R =

(n1 + n2)(n1 + n2 + 1)
12

=
n1 + n2

n1n2
Var(W1) .

Hence,

Q =
[W1 − E(W1)]

2

Var(W1)
. (4.4)

To illustrate this we consider the first stratum in Table 4.18 and first
calculate the test statistic in more conventional ways. The calculation-
s are done on the log-scale. Using StatXact, for example, and using
asymptotic inference, the Wilcoxon rank-sum test statistic is -1.6922,
which is asymptotically N(0, 1) on the null hypothesis. Using SAS PROC
FREQ to calculate the corresponding Cochran-Mantel-Haenszel statistic
with modified ridit scores, the test statistic is 2.8636 (= 1.69222), which
is asymptotically chi-squared on 1 d.f. under the null hypothesis. The
corresponding two-sided P-value is 0.0906.

To calculate Q, as defined in (4.4), we note that R̄1 = 8.6, R̄2 =
13.1818, n1 = 10, n2 = 11 and σ2

R = 38.40. Hence, Q = [(10×11)(8.60−
13.1818)2]/38.40 = 2.8636. In the following we will use the form of the
test-statistic defined in Equation (4.3).

Before moving on, it is useful to demonstrate one further way of cal-
culating the numerator of the test statistic. Let dik denote the kth pe-
riod difference in sequence i, i = 1, 2. The n1n2 differences defined as
w{k,k′} = d1k − d2k′ , where k = 1, 2, . . . , n1 and k′ = 1, 2, . . . , n2, are
known as the Walsh differences. Let sj denote a weight for stratum j,
where j = 1, 2, 3. For the moment we are dealing with only one stratum,
so we set s1 = 1. For comparison with later equations we will keep s1 in
the following formulae, even though it is unnecessary for the case of a
single stratum. We will use d to denote the shift difference between the
distributions of d1k and d2k′ .

The rank sum for group i can be written as:

Ui =
∑

{wk,k′> d}

s1 + 0.5
∑

{wk,k′= d}

s1. (4.5)

Further, as U1 + U2 = n1n2 and Ui = Wi − ni(ni + 1)/2,√
n1n2

n1 + n2
(R̄1 − R̄2) =

U1 − U2

2
,

where R̄i = Wi/ni. Finally,

U1 − U2

2
=

∑
{wk,k′>d}

s1 + 0.5
∑

{wk,k′= d}

s1 − 0.5n1n2s1.
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The Wilcoxon rank-sum test statistic can then be expressed as:

W (d) =

∑
{wk,k′> d} s1 + 0.5

∑
{wk,k′= d} s1 − 0.5 n1n2 s1√

n1n2
(n1+n2)

σR

. (4.6)

Rearranging Equation (4.6) gives

W (d)
√

n1n2

(n1 + n2)
σR + 0.5n1n2s1 =

∑
{wk,k′> d}

s1 + 0.5
∑

{wk,k′= d}

s1.

(4.7)
Solving Equation (4.7) with W (d) = 0 gives the median of the Walsh
differences (-0.293), and this is (twice) the estimate of δ.

Solving Equation (4.7) with W (δ) = ±1.645 gives the positions of the
Walsh differences that correspond to (twice) the lower and upper 90%
confidence bounds for δ.

For the first stratum,

1.645
√

n1n2

(n1 + n2)
σR + 0.5n1n2s1 = 23.33 + 55 = 78.3.

The 79th value in the ordered set of Walsh differences (not shown) is
0.0. For the lower bound we take the −23.33 + 55 = 31.67, i.e., the 31st
ordered difference which is -0.629. The 90% confidence interval for δ is
therefore (−0.314, 0.000). If we take the limits for bioequivalence to be
(−0.223, 0.223) as for AUC and Cmax, then there is clear evidence that
T and R are not bioequivalent when Tmax is used as the metric.

For the remaining two strata the estimate and confidence intervals
for δ are, respectively, [-0.463, -0.247, -0.098] and [-0.289, -0.143, 0.007].
Again there is strong evidence of a lack of equivalence.

Multiple Strata

The extension of the Wilcoxon rank-sum test statistic to multiple strata
is:

W =
∑q

i=1 siWi√∑q
i=1 s2

i Var(Wi)
=

∑q
i=1 siWi√∑q

i=1 s2
i

ni1ni2
ni1+ni2

σ2
iR

, (4.8)

where Wi is the rank-sum statistic for the ith single stratum, Var(Wi) is
its variance, si is the weight for the ith stratum, σ2

iR is the variance of
the ranks in the ith stratum, and nij is the number of ranks in sequence
group j in stratum i. We will use the weights suggested by Lehmann
[261]: si = 1/(ni1 + ni2 + 1), which give the Van-Elteren test statistic.
However, for our purposes we require the corresponding 90% confidence
interval. In a way similar to that described for a single stratum we can
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Table 4.20 Period Differences for Comparing T and R: Stratum I
Subject Difference Difference (log scale) Stratum Group Rank

6 0.00 0.000 I 1 11
12 -0.02 -0.005 I 1 9
17 -1.00 -0.289 I 1 4
19 2.48 0.976 I 1 21
29 -0.96 -0.276 I 1 7
32 0.02 0.010 I 1 14
42 -1.00 -0.288 I 1 5
46 -0.98 -0.283 I 1 6
49 -0.52 -0.233 I 1 8
60 -2.48 -0.976 I 1 1

2 0.00 0.000 I 2 11
11 0.97 0.395 I 2 17
16 1.00 0.288 I 2 16
20 0.98 0.396 I 2 18
27 -1.98 -0.688 I 2 2
31 0.98 0.503 I 2 19
40 0.47 0.273 I 2 15
43 0.04 0.010 I 2 13
53 -1.48 -0.465 I 2 3
59 0.00 0.000 I 2 11
61 2.00 0.693 I 2 20

write the numerator of (4.8) as:

q∑
i=1

∑
{wik,ik′> d}

si + 0.5
q∑

i=1

∑
{wik,ik′= d}

si − 0.5
q∑

i=1

ni1ni2si. (4.9)

Rearranging Equation (4.8), we get

W (d)

√√√√ q∑
i=1

s2
i

ni1ni2

ni1 + ni2
σ2

iR + 0.5
q∑

i=1

ni1ni2si

=
q∑

i=1

∑
{wik,ik′> d}

si + 0.5
q∑

i=1

∑
{wik,ik′= d}

si . (4.10)

As before, we set W (d) = 0 and solve to get the estimator of 2d.
Setting W (d) = ±1.645 gives the positions of the Walsh differences that
correspond to (twice) the lower and upper 90% confidence bounds for
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Table 4.21 Period Differences for Comparing T and R: Stratum II
Subject Difference Difference (log scale) Stratum Group Rank

4 -0.52 -0.190 II 1 6.0
7 -1.49 -0.470 II 1 4.0
14 -0.02 -0.007 II 1 9.5
23 -2.00 -1.099 II 1 1.0
26 -1.95 -0.393 II 1 5.0
36 -0.02 -0.007 II 1 9.5
39 0.10 0.025 II 1 13.0
48 -0.99 -0.674 II 1 2.0
54 -0.02 -0.008 II 1 8.0
56 -0.98 -0.503 II 1 3.0

9 0.48 0.176 II 2 14.0
13 0.50 0.288 II 2 16.0
21 0.97 0.486 II 2 17.0
28 -0.47 -0.172 II 2 7.0
33 1.95 1.069 II 2 18.0
44 0.03 0.008 II 2 12.0
50 -0.02 -0.005 II 2 11.0
58 0.52 0.190 II 2 15.0

δ. For T versus R, δ̂ = 0.192 with confidence interval (0.136, 0.279) and
for T versus S δ̂ = 0.054 with confidence interval (-0.005, 0.145).

In summary, there is evidence is that T and R are not equivalent but
T is equivalent to S.

Bootstrap estimation of confidence intervals
An alternative method of getting a nonparametric estimate of the 90%
confidence interval for µT − µR is to use bootstrapping. (See Chapter
5 for a more detailed explanation of the bootstrap.) The method as
applied here is to resample with replication from the 60 sets of triples
(the three repeated measurements on each subject) and to calculate an
estimate of µT − µR from each resample. If this is done a large number
of times, say 1000 times, a distribution of the estimator is generated.
The 5% and 95% quantiles of this distribution provide a 90% confidence
interval for µT − µR. The median of this distribution is an estimate of
µT −µR. There will usually be a choice of estimator to use. Here we have
taken the least squares estimator obtained by fitting a linear model with
terms for subjects, period, and treatments. The distributions for µT−µR

and µT −µS obtained from 1000 resamples are given in Figure 4.20. The
quantiles and medians obtained are: (0.0889, 0.1811, 0.2670) for µT −µR
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Table 4.22 Period Differences for Comparing T and R: Stratum III
Subject Difference Difference (log scale) Stratum Group Rank

5 -0.57 -0.253 III 1 9
10 -1.00 -0.511 III 1 3
18 0.00 0.000 III 1 11
22 -1.00 -0.286 III 1 6
44 -0.96 -0.276 III 1 7
34 0.02 0.005 III 1 12
37 -2.54 -0.999 III 1 1
47 -1.00 -0.288 III 1 5
52 1.48 0.462 III 1 17
55 1.50 0.473 III 1 20

1 1.02 0.293 III 2 16
8 -2.02 -0.703 III 2 2
15 -1.48 -0.465 III 2 4
24 -0.02 -0.005 III 2 10
25 0.02 0.007 III 2 13
35 1.48 0.465 III 2 18
41 -0.93 -0.266 III 2 8
45 1.00 0.285 III 2 15
51 3.48 0.867 III 2 21
57 0.98 0.283 III 2 14
62 1.50 0.470 III 2 19

and (-0.0363, 0.0481, 0.1253) for µT − µR. The conclusions obtained
are consistent with those obtained from the nonparametric method. The
only difference of note is that the lower limits of the bootstrap confidence
intervals differ a little from those obtained earlier.

4.7.2 Four Treatments

The data in Table 4.39 are the Tmax values obtained in the trial de-
scribed in Example 4.6. The comparisons of interest were B versus A and
D versus C. It is clear from the design of this trial that the sequences can-
not be grouped in a way that would allow the nonparametric approach
described in the last subsection to be applied. However, we can use the
bootstrapping approach. The 90% confidence intervals and medians so
obtained are: (-0.2724, -0.0628, 0.1604) for µB−µA and (-0.1062, 0.0703,
0.2554) for µD − µC . There is clear evidence of a lack of equivalence for
both sets of treatments.
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Table 4.23 Components of the Stratified Test for Comparing T and R
Statistic Stratum I Stratum II Stratum III

Patients in (10,11) (10,8) (10,11)
Each Sequence

Rank Sum in each (86, 145) (61, 110) (91, 140)
Sequence(W )

E(W ) (110,121) (95,76) (110,121)

W − E(W ) (-24,24) (-34,34) (-19,19)
Estimated
Variance 38.40 28.471 38.50

of Test Statistic

Weight 0.045 0.053 0.045

Rank-Sum Statistic -1.692 -3.022 -1.338

4.8 Technical Appendix: Efficiency

4.8.1 Theory and Illustration

We assume that our model for the response includes terms for a general
mean, fixed subject effects, periods, formulations, and carry-over effects.
Let the responses, e.g., logAUC, be stored in a random vector y which is
assumed to have mean vector Xβ and variance-covariance matrix σ2

W I.
Here X is a design matrix with elements that are either 0 or 1, β is a
vector of unknown subject, period, formulation, and carry-over param-
eters and I is the identity matrix with row and column dimension equal
to that of y. The parameters are estimated by ordinary least squares:

β̂ = (XT X)−1XT Y,

with
V(β̂) = σ2

W (XT X)−1.

We assume that any redundant parameters have been removed and XT X
is of full rank. This can be achieved, for example, by removing one subject
parameter, one period parameter, one formulation parameter and one
carry-over parameter. If the design is for n subjects with n of them
randomly allocated to each of the two sequences RTT and TRR, there
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Figure 4.20 Example 4.5: Histograms of Bootstrap Distribution of Estimates

will be (1 + n− 1 + 1 + 1 + 1 = n + 3) parameters. However, we do not
need to work with this many parameters to calculate the efficiency. Jones
and Kenward [237] show that this can be done using the corresponding
design with one subject allocated to each sequence. In other words, we
put parameters in the model for sequences instead of subjects. We will
illustrate this in the following.

The efficiency of a design compares (1) the variance of the estimat-
ed difference between two formulations in the given design to (2) the
corresponding variance in an ideal design with the same formulation
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replication and same within-subject variance σ2
W . The ideal design is

such that it would completely eliminate the effects of subjects, periods,
and carry-over effects from the estimation of the formulation compari-
son. For example, suppose that T and R each occur r times in the ideal
design. The estimate of the formulation difference is ȳT − ȳR and its vari-
ance is VI = 2σ2

W /r. This is used as the benchmark for other designs.

For the particular cross-over design under consideration, e.g., one with
sequences RTT and TRR, and using the particular parametrization giv-
en above, the treatment parameter, τ2 corresponds to the difference be-
tween T and R. The variance of this difference is the diagonal element
of σ2

W (XT X)−1 that occurs in the position corresponding to τ2 in the
vector of parameters. We will give an example of locating this element
below. Let us call this element VC = σ2aC .

The efficiency of the cross-over design for the T-R difference is then
the percentage:

E = 100× VI

VC
= 100× 2

r × aC
.

Efficiency cannot exceed 100%.
As an example consider the design with sequences RTT and TRR and

n/2 subjects per sequence. Suppose we want to allow for a difference in
carry-over effects and put these into our model. For the basic calcula-
tions we assume n = 2, then scale down the variances and covariances
according to the true value of n. The design matrix for the model with
sequence, period, formulation, and carry-over effects is as follows, where
redundant parameters have been removed:

X =


1 0 0 0 0 0
1 0 1 0 1 0
1 0 0 1 1 1
1 1 0 0 1 0
1 1 1 0 0 1
1 1 0 1 0 0

.

The columns in this matrix refer to the general mean, Sequence 2, Pe-
riods 2 and 3, Formulation T, and the carry-over of T, respectively.
Although there is no carry-over effect in the first period, we must in-
clude a ‘dummy’ parameter to represent this missing effect if we are to
construct the X matrix. Our way of doing this is to let the carry-over
parameter for T do ‘double-duty’ by also taking on the role of this dum-
my parameter. As long as there are period effects in the model, there is
no confusion because the dummy parameter is aliased with parameter
for Period 1 and effectively gets removed correctly in the analysis. The



TECHNICAL APPENDIX: EFFICIENCY 119

inverse matrix, from which the variances are taken or calculated, is:

σ2
W (XT X)−1 =

σ2
W

4


4 −2 2 −2 −2 0

−2 3 0 0 1 0
−2 0 5 3 0 −2
−2 0 3 5 0 −2
−2 1 0 0 3 0

0 0 −2 −2 0 4

.

This inverse is for a design with one subject per sequence. To get the cor-
rect value of a variance of a comparison of means we divide the elements
of this inverse by the number of responses used in calculating the mean-
s. For example, when there are n/2 subjects per sequence the variance
of the estimate of T-R, adjusted for carry-over, is (3σ2

W /4)/(n/2), i.e.,
aC = (3/4)/(n/2) = 3/(2n) and the variance of the corresponding esti-
mated carry-over difference is σ2

W /(n/2), i.e., aC = 2/n. The required
elements of σ2

W (XT X)−1 are those in the fifth and sixth positions along
the diagonal because the parameters that refer to T-R and the carry-over
difference are in these positions, respectively, in the vector β. Because
the (5,6)th element of σ2

W (XT X)−1 is zero, these two estimates are un-
correlated. We are now in a position to calculate the efficiency of the
T-R comparison. As each formulation occurs 3n/2 times in the design,
VI = 4/3n and hence:

E = 100× 2
r × aC

= 100× 2
(3n/2)(3/2n)

= 100× 8
9

= 88.9%.

Although we are not usually interested in the efficiency of the carry-
over comparison, we will calculate it for completeness and as a further
illustration. Traditionally, the replication for each carry-over effect is
taken to be that of the corresponding formulation, e.g., 3n/2 in the
above design. However, as there are no carry-over effects in the first
period, this replication is strictly too large. However, we will stick with
the traditional approach. Hence, the efficiency of the comparison of the
carry-over effects of T and R is:

E = 100× 2
r × aC

= 100× 2
(3n/2)(2/n)

= 100× 2
3

= 66.7

We note that the efficiencies for an arbitrary cross-over design can be cal-
culated using the GenStat statistical analysis system via the procedure
XOEFFICIENCY [239].

4.8.2 Comparison of Three Alternative Designs for Three Periods

Here we compare three alternative designs that could be used to com-
pare T and R in a bioequivalence trial. These are listed below:



120 BE STUDIES WITH MORE THAN TWO PERIODS

1. R T T 2. R T R 3. R R T
T R R T R T T T R .

The efficiencies of the formulation and carry-over comparisons are giv-
en in Table 4.24, where we have also included the correlation between
the estimators of the formulation and carry-over differences. A major
advantage of the first design is that the estimator of the formulation
difference does not change if the carry-over parameter is left out of the
model, as the correlation is zero. Hence, this design provides some ro-
bustness against the presence of a carry-over difference, which, although
unexpected, cannot always be ruled out entirely.

Table 4.24 Efficiencies of Three Alternative Designs

Design Formulation Carry-over Correlation
T-R T-R (Formulation, Carry-over)

1. RTT/TRR 88.9 66.7 0.00
2. RTR/TRT 22.2 16.7 0.87
3. RRT/TTR 66.7 16.7 0.50

4.9 Tables of Data

Table 4.25: Example 4.1: Sequence RTT

Sequence RTT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
104 37.27 62.18 44.09 2.207 2.901 2.073
105 82.870 24.780 24.700 6.123 1.462 1.468
106 47.800 32.880 124.310 2.586 1.203 6.972
107 88.390 30.850 192.450 4.326 1.589 8.687
108 180.50 108.71 200.57 8.459 5.011 9.104
111 50.59 33.53 100.58 3.133 1.814 7.159
113 634.140 914.900 - 7.154 12.354 8.207
115 420.300 205.740 - 20.221 11.746 -
117 582.260 736.820 784.960 9.819 12.035 17.973
118 45.420 - 70.690 1.636 0.852 1.895

R=Reference, T=Test
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Table 4.25: Example 4.1: Sequence RTT

Sequence RTT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
120 437.610 586.470 405.950 9.111 11.708 10.539
121 22.830 13.720 15.750 1.167 0.506 0.756
123 64.58 35.54 65.11 2.949 1.831 2.989
126 15.15 22.35 21.71 0.902 1.234 1.495
128 30.220 27.400 33.190 1.632 0.921 1.221
130 12.420 71.380 62.270 0.636 4.433 4.408
133 39.010 89.410 59.890 1.854 4.091 2.235
136 24.470 42.660 42.390 1.441 2.997 3.070
137 13.840 21.730 41.690 0.846 1.202 2.380
138 28.040 10.970 42.720 1.045 0.629 2.337
139 264.890 243.660 276.540 13.913 9.160 10.632
141 - - - 0.355 0.237 0.444
142 227.010 8.080 521.640 11.638 0.655 23.115
147 71.100 16.770 44.080 3.489 1.013 2.434
150 29.660 76.030 60.120 1.439 5.327 4.626
153 1737.430 1416.780 1336.790 21.715 22.405 16.726
154 440.830 163.920 282.290 25.232 6.205 11.416
155 53.830 48.090 78.280 1.715 1.239 2.470
160 41.580 259.550 113.840 2.087 11.067 4.379
161 327.530 210.820 453.230 6.741 3.742 10.083
162 45.570 30.130 83.960 1.876 1.230 6.274
164 142.000 146.630 124.380 5.982 5.288 5.456
168 15.230 31.890 71.680 1.020 1.459 4.637
170 76.490 82.700 114.290 4.224 4.131 6.619
173 87.330 51.370 96.460 5.726 2.431 4.939
174 787.890 737.740 338.520 31.224 23.271 12.711
175 1239.480 1819.440 2232.290 24.013 30.484 43.224
177 29.190 36.580 79.590 1.971 2.296 4.243
179 10.130 16.990 9.820 1.029 1.371 0.718
181 257.590 423.890 224.070 9.964 15.005 6.776
182 51.770 27.630 26.090 3.797 2.312 1.741
184 73.750 90.810 - 2.555 3.242 -
185 49.320 124.000 85.710 1.471 4.079 4.743
186 6.060 28.820 87.630 0.311 1.651 4.870
190 82.780 164.560 213.980 3.889 7.376 7.012
191 98.860 99.020 75.480 4.599 2.969 2.388

R=Reference, T=Test
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Table 4.25: Example 4.1: Sequence RTT

Sequence RTT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
194 21.290 46.300 15.410 1.513 2.741 1.411

R=Reference, T=Test

Table 4.26: Example 4.1: Sequence TRR

Sequence TRR
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
101 12.260 16.190 11.340 0.511 0.688 0.533
102 397.980 267.630 487.550 13.270 7.933 12.952
103 243.810 141.700 198.440 16.771 6.926 9.257
109 182.520 112.340 225.940 8.816 4.921 6.911
110 559.640 533.980 867.750 21.398 19.728 19.909
112 40.020 89.490 20.350 2.568 5.222 0.992
114 - - 34.810 0.872 0.337 1.558
116 69.380 214.200 193.620 3.543 8.911 5.900
119 68.080 47.190 84.590 2.673 1.501 4.187
122 181.950 259.400 396.260 5.841 10.642 19.245
124 5.820 17.260 25.720 0.347 1.241 1.175
125 39.310 35.660 40.430 2.288 1.786 2.589
127 146.870 319.910 141.860 5.772 10.780 6.768
129 712.110 549.520 459.260 16.116 13.171 10.648
131 2277.520 3726.580 3808.790 18.448 34.145 41.876
132 1278.060 1103.460 1012.040 18.779 17.086 13.170
134 103.320 138.780 170.440 4.974 5.349 8.128
135 21.930 75.290 42.300 1.622 4.791 3.228
140 77.990 104.080 66.860 3.043 5.210 2.625
143 27.210 47.190 25.340 1.170 2.405 1.698
144 296.090 163.310 387.490 10.730 6.443 13.790
145 82.600 247.710 92.940 3.363 9.128 5.311
146 18.010 241.700 205.390 1.011 10.183 9.865
148 123.270 268.090 128.170 4.985 8.893 5.880
149 52.460 201.680 421.550 2.457 6.945 32.983
151 29.830 20.660 24.550 1.691 1.186 1.313

R=Reference, T=Test
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Table 4.26: Example 4.1: Sequence TRR

Sequence TRR
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
152 414.990 247.580 419.530 14.735 9.851 12.724
156 213.240 87.550 178.660 7.510 2.793 5.323
157 13.580 7.160 10.940 0.496 0.459 0.756
158 172.250 211.290 206.990 7.330 5.667 9.804
159 1161.730 2280.790 1552.490 27.604 45.495 27.220
163 57.260 48.650 89.010 2.691 2.877 6.631
165 350.950 755.270 711.180 7.034 13.040 11.002
166 36.79 41.75 35.39 1.861 2.75 2.784
167 11.57 3.31 - 1.055 0.326 0.296
171 28.440 61.400 25.500 1.246 3.146 1.016
172 1150.280 759.030 1105.080 15.677 15.215 20.192
176 69.630 24.020 26.110 3.971 1.234 0.948
178 179.76 190.89 299.5 4.909 5.374 10.014
180 14.23 22.44 23.70 1.088 1.783 1.733
183 295.690 304.030 277.670 11.125 9.916 10.649
187 34.180 45.140 58.670 1.870 3.055 4.654
188 50.380 87.620 16.460 2.317 4.658 0.719
189 104.08 123.08 129.00 3.73 4.109 6.018
192 17.19 40.01 55.36 1.994 2.786 3.716
193 131.570 156.120 130.480 7.191 12.207 7.532
195 1323.070 1305.500 2464.820 12.897 24.767 27.650
196 654.320 783.530 444.440 12.347 26.041 18.975

R=Reference, T=Test

Table 4.27: Example 4.2: Sequence RTT

Sequence RTT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
1 1158.06 1073.74 748.58 15.44 11.93 14.12
4 520.75 410.53 437.96 13.59 9.17 8.85
5 11.44 13.29 14.31 0.70 0.80 0.92
6 - 28.87 19.44 0.68 1.19 1.44
9 51.76 23.75 35.23 2.48 1.20 1.97

R=Reference, T=Test
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Table 4.27: Example 4.2: Sequence RTT

Sequence RTT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
10 - 8.93 5.85 0.35 0.79 0.46
15 25.80 27.91 51.47 1.42 1.78 3.24
16 1633.77 1127.82 1267.52 20.18 35.76 16.24
18 105.03 15.61 18.03 5.87 0.81 0.93
19 1635.06 1562.78 1936.28 20.91 18.53 17.17
22 168.29 337.16 227.49 5.82 10.45 5.45
23 3.23 7.84 4.86 0.28 0.64 0.54
25 44.81 12.22 24.56 2.73 0.78 1.53
28 15.54 24.71 29.74 0.91 1.01 1.33
29 48.69 17.61 35.34 3.66 1.22 1.71
32 134.01 204.85 81.73 5.26 7.51 2.91
34 48.15 17.59 20.08 3.60 1.21 1.15
35 39.22 13.58 19.21 5.27 0.99 1.57
36 805.16 602.79 698.12 20.15 12.13 13.05
37 52.97 55.85 44.97 3.46 4.31 2.70
38 23.07 - 39.34 1.02 2.09 1.31
42 46.99 59.85 60.41 2.33 3.54 2.90
47 43.37 50.40 85.98 2.06 2.73 4.02
48 12.25 9.59 11.70 0.72 0.80 0.39
49 15.47 13.90 19.09 0.80 1.04 0.94
50 54.21 93.00 121.17 1.71 3.90 4.77
53 38.92 32.07 61.57 2.78 1.94 3.05
55 947.92 707.40 696.01 11.72 9.97 9.34
57 37.40 78.42 85.38 1.91 4.13 3.55
62 64.95 66.42 91.42 2.74 3.78 5.06
63 9.38 10.95 18.37 1.16 0.77 1.32
67 132.73 128.11 135.28 10.58 5.92 5.56
68 140.46 97.09 153.54 8.52 6.03 7.50
70 366.38 300.67 275.54 13.50 13.41 11.15
71 48.65 40.87 - 2.96 3.08 3.02
73 544.33 617.22 554.04 11.07 13.69 13.11
75 16.69 9.65 13.68 1.90 0.57 1.16
79 60.85 41.24 39.05 2.25 1.76 2.91
80 38.90 61.10 40.88 2.24 3.68 2.50

R=Reference, T=Test
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Table 4.28: Example 4.2: Sequence TRR

Sequence TRR
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
2 17.28 30.30 83.53 1.20 2.23 5.25
3 11.63 16.20 18.23 0.75 1.34 1.27
7 78.03 42.64 148.29 3.80 1.28 5.11
8 6.61 19.83 7.18 0.64 1.22 1.06
11 14.68 16.74 25.73 1.06 1.74 2.89
12 119.77 211.51 148.04 5.07 9.11 4.78
13 36.26 34.02 50.11 2.59 2.29 2.93
14 59.06 94.61 54.46 4.84 5.79 3.03
17 17.47 39.47 31.08 1.41 2.94 2.49
20 1082.90 1497.28 2011.67 21.62 29.04 29.89
24 47.84 46.22 68.04 3.10 3.16 4.48
26 - 19.24 20.01 0.59 1.08 1.54
27 26.30 15.45 88.92 2.15 1.20 4.78
30 23.94 54.15 55.25 1.47 3.07 2.09
31 21.90 18.72 15.20 1.02 1.08 1.02
33 20.20 28.40 44.84 1.52 1.44 2.59
39 59.06 87.12 148.31 2.93 3.50 6.57
40 79.04 31.79 64.29 4.87 1.65 2.93
41 139.30 74.26 92.94 6.96 4.53 5.36
43 503.28 389.44 547.82 10.86 9.53 10.44
45 50.24 52.74 57.02 2.15 2.66 2.32
46 29.35 41.32 33.12 2.02 2.14 1.79
51 - 20.66 8.13 1.25 2.67 0.53
52 26.95 50.10 26.56 1.67 2.74 1.37
54 19.48 12.62 18.78 1.32 0.64 1.30
56 20.27 - 10.64 1.71 0.65 0.94
61 14.57 49.60 58.36 1.06 2.34 2.97
64 56.74 61.83 97.05 3.62 3.12 4.82
65 103.19 187.82 188.43 5.65 8.45 8.41
69 13.12 32.13 18.02 0.94 2.11 0.99
72 14.90 16.00 11.85 1.17 0.94 0.66
74 24.60 39.14 53.98 1.31 2.42 3.63
76 7.50 4.80 12.06 0.52 0.44 1.50
77 828.00 565.73 1085.51 13.37 7.32 14.84
78 33.99 47.96 35.15 2.65 3.17 2.04

R=Reference, T=Test
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Table 4.29: Example 4.3

Sequence RTTR
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
1 10671 12772 13151 11206 817 1439 1310 1502
4 7588 8980 8408 7654 823 1133 1065 1095
6 8389 7949 7735 7616 1347 691 949 1153
7 5161 6601 5479 4764 1278 991 1124 1040
9 7399 7873 8153 7211 1547 1361 1380 1485
10 5660 4858 5347 5076 1088 982 995 796
15 6937 7905 6550 7515 953 1065 830 1247
16 11473 9698 10355 10365 1368 1281 1083 1418

Sequence TRRT
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
2 6518 6068 5996 5844 1393 1372 1056 1310
3 4939 5728 5760 6313 1481 1377 1529 781
5 7653 8022 10721 8043 709 1035 1571 1342
8 8864 8026 6776 6995 1516 1242 1090 1048
11 8503 7730 8228 8032 999 908 1183 1129
12 7043 6007 7737 6262 679 1220 776 1258
13 5701 5767 5942 7757 822 869 921 947
14 8684 7858 7924 9219 615 1451 1389 1279
18 5210 5120 5420 - 668 842 1176 -

R=Reference, T=Test

Table 4.30: Example 4.4

Sequence RTRT
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4
1 812.60 1173.70 889.10 620.10 99.85 204.09 170.94 112.78
3 545.10 542.90 - - 67.69 41.73 - -
5 400.00 223.80 173.70 289.70 40.05 25.17 24.48 86.49
6 102.10 185.30 42.00 88.30 28.76 24.83 9.27 10.89
10 304.50 351.50 520.20 335.70 34.35 52.26 142.92 58.48
12 176.10 710.70 409.50 645.50 18.94 161.34 118.89 246.57
15 562.40 490.40 504.70 675.90 28.35 98.50 78.22 140.54
17 207.50 271.60 173.70 240.50 19.18 94.92 21.39 65.45
18 571.30 705.20 619.00 633.60 66.63 134.69 78.10 78.51
21 536.10 595.20 445.50 521.50 42.11 37.82 39.87 116.79
24 449.90 860.40 606.80 577.20 32.53 276.86 118.65 156.33
25 192.50 220.10 233.10 227.00 21.96 38.97 22.26 54.16
28 568.10 321.10 338.30 403.60 110.87 55.64 50.06 84.60
29 735.60 634.50 1244.20 641.90 50.08 58.79 181.53 144.26
31 307.40 481.80 346.60 369.70 87.21 88.75 90.07 132.92
34 292.90 431.00 448.50 267.80 18.07 33.37 21.48 20.87
35 217.20 332.20 103.00 127.50 18.69 174.55 17.06 32.01
39 368.30 292.60 446.10 222.30 52.59 57.88 48.58 47.24
40 193.70 202.80 255.20 244.30 29.30 78.33 21.72 49.27

R=Reference, T=Test



TABLES OF DATA 127
Table 4.30: Example 4.4

Sequence RTRT
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4
44 102.00 282.50 245.60 286.20 22.14 63.50 9.38 16.30
46 223.60 645.40 349.00 507.40 27.02 167.28 20.35 121.92
48 615.80 732.10 620.90 665.20 60.94 100.47 26.17 98.08
49 898.40 924.90 398.30 828.30 164.01 180.01 25.21 97.02
50 410.40 329.20 449.40 442.10 59.70 43.65 102.47 40.00
53 332.40 273.60 525.30 293.30 39.96 56.47 42.11 38.75
54 185.20 222.90 182.10 194.10 18.34 16.09 21.50 9.57
57 180.60 174.70 102.90 117.00 9.10 58.44 12.74 18.33

R=Reference, T=Test

Table 4.31: Example 4.4

Sequence TRTR
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4
Sub 1 2 3 4 1 2 3 4
2 216.30 338.00 502.80 398.60 29.06 50.48 35.15 55.71
4 632.60 520.00 716.70 860.40 91.25 43.86 168.78 61.04
7 596.00 659.30 543.80 662.90 257.10 79.04 127.92 81.80
8 402.40 359.80 590.80 444.30 136.27 158.86 148.97 82.41
9 456.70 378.40 477.50 407.90 65.48 87.84 64.57 58.01
11 500.70 323.00 416.30 525.10 31.49 37.07 80.90 33.62
13 160.60 218.00 170.10 124.60 29.61 43.15 27.71 13.11
16 756.00 606.80 477.40 626.80 168.76 174.94 117.31 52.18
19 511.90 549.70 388.20 141.00 32.23 70.06 32.15 43.11
20 124.00 91.90 113.30 59.50 9.34 11.74 49.23 18.42
22 239.70 265.10 445.90 433.20 38.02 16.79 38.58 83.82
23 609.60 371.60 511.30 432.70 199.07 52.14 118.47 72.04
26 764.40 508.80 757.80 449.40 74.24 35.76 39.27 36.28
27 151.90 194.80 - - 19.00 20.61 - -
30 429.10 391.80 316.90 335.10 31.85 74.88 54.88 19.18
32 409.00 514.60 763.10 406.50 30.86 70.84 208.20 65.25
33 271.00 221.00 296.50 463.70 86.01 41.85 67.86 79.81
36 290.80 208.60 243.70 489.80 38.27 40.31 31.56 20.64
37 297.20 502.00 320.40 334.30 49.81 66.64 17.80 25.94
38 163.80 232.10 636.90 434.90 34.56 16.37 114.30 29.58
42 534.10 243.10 418.40 441.90 136.00 33.75 104.12 35.03
43 355.10 415.20 382.70 334.00 64.55 34.04 52.37 41.67
45 320.50 233.90 331.70 260.50 26.35 37.20 76.26 24.60
47 504.50 289.90 550.70 244.20 118.91 49.27 166.61 35.86
52 237.00 505.00 496.30 580.60 30.55 63.90 39.17 40.75
55 246.90 620.90 678.30 752.20 42.20 106.69 150.52 115.15
56 235.40 190.40 318.30 248.40 39.15 13.79 122.03 62.32

R=Reference, T=Test

Table 4.32: Example 4.5: Williams Design for 3 Treatments

Sequence RST
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
9 4089 7411 5513 906 1711 1510
13 2077 3684 2920 504 845 930
21 2665 3113 2263 506 809 543
28 3029 5157 4190 563 1263 759
33 4941 4502 3014 1095 1253 1015
44 2173 4571 3350 366 1341 779
50 - - 3900 602 1291 1314

R=3× 100mg, S=200mg + 100mg, T=Test
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Table 4.32: Example 4.5: Williams Design for 3 Treatments

Sequence RST
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
58 6555 11351 8895 1229 2138 2144
67 4045 7865 - 1025 2668 -

Sequence RTS
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
2 3457 6556 4081 776 2387 1355
11 5560 4558 4396 1801 1440 1327
16 3676 5385 5358 544 1556 1776
20 8636 9750 9892 2238 2256 2277
27 2753 2736 3955 572 593 1142
31 4782 4812 4024 1078 1224 1010
40 2636 2791 2394 546 587 442
43 3011 4544 6587 558 998 1418
53 2685 5335 7454 530 1160 1764
59 4841 5934 6624 1416 1302 1517
61 2392 2947 3779 644 744 1144

R=3× 100mg, S=200mg + 100mg, T=Test

Table 4.33: Example 4.5: Williams Design for 3 Treatments

Sequence SRT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
1 7260 6463 8759 1633 1366 2141
8 3504 3011 2501 959 557 697
15 6641 1987 3233 1586 364 633
24 4368 4327 2966 991 748 1001
25 8016 7146 9154 2045 1891 2545
35 7749 4188 3425 1855 757 758
41 8961 8737 11312 1722 1313 2705
45 4537 2633 3723 999 604 1075
51 5658 4904 5077 1539 1227 1490
57 5194 2432 4472 1810 686 1149

R=3× 100mg, S=200mg + 100mg, T=Test
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Table 4.33: Example 4.5: Williams Design for 3 Treatments

Sequence SRT
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
62 5787 7069 6530 1461 1995 1236

Sequence STR
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
5 4250 3487 2891 945 1041 788
10 4839 3064 2582 1051 991 782
18 6317 5175 3123 1432 1184 647
22 3527 3484 2580 656 734 531
30 2717 2743 1625 637 760 463
34 4709 3212 3840 1022 661 609
37 5256 4070 2505 1194 974 432
47 5840 5213 5213 1329 1477 1039
52 4622 2889 2692 1027 562 422
55 8671 6814 4260 2251 1561 1045

R=3× 100mg, S=200mg + 100mg, T=Test

Table 4.34: Example 4.5: Williams Design for 3 Treatments

Sequence TRS
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
6 6709 5893 5346 1292 1154 1098
12 7026 6134 9520 1417 1207 2312
17 9249 5535 9965 2232 913 2887
19 4664 2998 6592 1103 547 2113
29 5547 7319 8331 1288 1506 1884
32 3500 5611 5394 852 1259 1308
42 4367 5827 8863 736 1135 2288
46 3020 3989 3739 643 660 841
49 - - 6092 1556 1895 1854
60 3125 4728 3199 594 1317 731
63 2204 2927 - 495 770 -

Sequence TSR
R=3× 100mg, S=200mg + 100mg, T=Test
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Table 4.34: Example 4.5: Williams Design for 3 Treatments

Sequence TRS
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
AUC Cmax
Period Period

Subject 1 2 3 1 2 3
4 4006 4879 3817 1326 1028 1052
7 6924 4674 4183 1475 994 1142
14 6027 6497 5048 1106 1914 1358
23 2642 3178 2496 461 589 561
26 3064 3534 2302 754 1508 419
36 9882 13881 6881 2054 3042 1207
39 1422 2375 1559 316 555 427
48 6029 4114 3625 2261 1097 1038
54 5429 7513 4589 1369 2068 1384
56 6779 7447 6504 1279 1994 1091

R=3× 100mg, S=200mg + 100mg, T=Test

Table 4.35: Example 4.6: Williams Design for 4 Treatments

Sequence ADBC
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
2 484 4190 509 4055 108.4 818.0 105.2 914.4
4 584 4134 450 3520 115.0 848.3 90.4 929.8
10 475 3596 350 2809 85.4 550.4 68.0 588.7
15 419 3430 454 3527 66.7 851.1 87.3 772.8
19 504 3635 429 4286 89.1 622.7 67.7 696.3
20 549 2727 314 3565 97.5 729.9 66.0 933.5
25 428 3174 389 3246 101.9 839.9 89.1 589.9

A=Reference Low, B=Test Low, C=Reference High, D=Test High
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Table 4.36: Example 4.6: Williams Design for 4 Treatments

Sequence BACD
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
3 454 409 3571 3167 62.5 65.5 568.2 567.6
7 944 382 2830 2784 93.3 103.4 796.1 730.1
11 370 397 2399 1550 101.6 55.8 586.0 327.5
12 412 346 3010 2848 117.1 69.1 444.4 567.5
17 405 328 2574 2264 70.8 70.2 518.4 495.4
21 354 349 3249 2942 50.6 57.5 572.9 567.4
26 371 329 2427 2667 105.4 72.4 681.9 600.5

A=Reference Low, B=Test Low, C=Reference High, D=Test High

Table 4.37: Example 4.6: Williams Design for 4 Treatments

Sequence CBDA
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
6 3163 413 3069 345 689.1 94.6 652.1 58.2
8 3410 307 3009 370 554.6 61.5 675.1 87.2
9 3417 352 2975 376 686.6 56.8 606.0 59.8
14 3327 332 2826 350 629.1 86.0 718.8 87.1
18 2223 208 1759 232 563.2 67.7 584.1 74.0
22 2368 257 2104 274 540.2 50.5 464.1 59.2
28 3020 414 3022 419 652.7 59.3 607.2 79.1

A=Reference Low, B=Test Low, C=Reference High, D=Test High

Table 4.38: Example 4.6: Williams Design for 4 Treatments

Sequence DCAB
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
1 2942 2525 278 359 563.6 658.1 55.6 73.0
5 2740 2634 338 306 565.7 580.3 71.7 53.7
13 2897 2538 313 331 833.4 562.5 96.6 78.6
16 4513 4058 484 434 859.4 745.2 88.9 70.0

A=Reference Low, B=Test Low, C=Reference High, D=Test High
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Table 4.38: Example 4.6: Williams Design for 4 Treatments

Sequence DCAB
AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
23 2095 1987 233 199 388.1 471.6 54.2 25.2
24 3218 2705 365 367 635.6 643.3 66.3 62.1
27 2525 2672 238 316 471.2 557.0 29.4 51.4

A=Reference Low, B=Test Low, C=Reference High, D=Test High

Table 4.39: Example 4.6: Tmax, Williams Design for 4 Treatments

ADBC BACD
Period Period

Sub 1 2 3 4 Sub 1 2 3 4
2 1.00 1.98 1.05 1.52 3 1.00 0.50 0.52 0.52
4 1.02 1.00 0.57 0.55 7 1.48 0.45 0.53 0.53
10 0.50 1.95 1.02 1.02 11 0.52 1.98 1.45 1.48
15 1.00 0.48 0.48 0.50 12 0.50 0.60 1.47 1.50
19 0.50 1.00 1.45 1.00 17 0.98 1.03 1.00 1.00
20 0.97 0.95 0.48 0.48 21 0.50 1.50 0.48 1.48
25 0.53 0.48 0.47 1.47 26 0.50 0.98 0.50 1.00

CBDA DCAB
Period Period

Sub 1 2 3 4 Sub 1 2 3 4
6 0.57 0.50 1.02 0.98 1 0.98 0.48 1.03 0.50
8 1.03 1.02 1.00 0.55 5 0.48 0.48 0.50 0.50
9 0.50 0.48 0.55 1.45 13 0.52 1.02 0.50 0.48
14 0.98 0.48 0.52 0.53 16 0.48 1.00 1.02 0.98
18 0.95 0.97 0.48 1.00 23 0.97 0.95 0.98 3.97
22 0.47 0.95 0.48 1.00 24 1.00 0.97 1.00 1.50
28 1.00 0.48 0.52 0.53 27 3.00 1.50 1.48 1.98

A=Reference Low, B=Test Low, C=Reference High, D=Test High



CHAPTER 5

Dealing with Unexpected BE
Challenges

or What one can do when some things that can go wrong, do
go wrong....

In business, there is always a lot of talk about challenges and oppor-
tunities. These are really the same thing - a demanding task that re-
quires a greater than normal commitment to see through to completion.
In ‘business-speak’, when something goes wrong and has to be fixed or
changed, this type of thing is typically viewed as a ‘challenge’. A chal-
lenge is an opportunity that one does not want to work on as it has some
sort of negative connotation associated with it. In contrast, an opportu-
nity is a challenge that one does want to work on, as it has some sort of
positive connotation. It is all a matter of one’s perspective on the even-
t in question. Either way, however, statistically speaking, it is probably
going to require a lot of work.

When the FDA denies a claim of bioequivalence, there is a great deal of
consternation at any given sponsoring company. Everyone usually knows
such an event is coming, but it is like getting a big bill requiring imme-
diate payment in the mail - if it came in tomorrow (or even better next
week or next month), that would be preferable. My company was no ex-
ception, and our senior executives met quickly in one such instance to
determine what to do. It was decided to repeat the study ‘right away’
(with some design enhancements). This was definitely referred to from
the get-go as a ‘challenge to the organization’.

On top of the dismay among the staff working on the project associated
with not having our bioequivalence claim approved, this ‘right away’ ac-
tion by senior executives generally represents an even greater challenge
(and caused even more tangible consternation) among the staff who ac-
tually have to do this job. It is advisable not to tell a senior executive
that something is impossible (if one values one’s job), but often things
like this can be very difficult if not impossible.

A human clinical trial of a drug product must have a written protocol
(plan for the study) which must be unconditionally approved following
review by an independent ethics review committee prior to any subject
or patient being screened or dosed. If it involves a new chemical or bi-
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ologic entity, this entity must be appropriately registered with the local
regulatory agency of the appropriate government(s) if required; there is
a lot of paperwork involved with these things. In addition, any human
volunteer or patient involved in a trial must read and sign an informed
consent before being enrolled in a trial and must be screened to ensure
they are physically and mentally capable of taking part in the clinical
trial. There are contracts with the site that must be reviewed by procure-
ment and legal functions within the sponsoring company prior to signoff,
and usually someone who is completely critical to at least one step in
this process is on vacation, blissfully unaware of what is going on.

Thus, when something like the above study is to be done ‘right away’,
that means the protocol, paperwork, and trial facilities for the study have
to have been written and assembled and submitted several days or weeks
ago in order to get the study started as soon as possible. No one can
reasonably be deemed a fortune teller and do such a thing in advance;
hence, long hours and long days are the usual result of a challenge to try
to have such a trial up and running ‘Stat.’

Senior executives are also the people responsible for resources at most
companies and are often very surprised when they find out how long
things really take. The good ones come down and lend a hand until the
crisis is past, and we received a lot of senior-level attention on this oc-
casion. Everything that could be done was done (in the space of three
weeks), and the trial was good to go on the following Monday. However,
we were all so busy working that we forgot to look out the window, an
important omission on this occasion.

We finalized the protocol following ethics board review, completed al-
l the regulatory paperwork, and finalized all the contracts. Then we all
took a long deep breath and went home for the weekend to recover. Un-
fortunately, it rained all weekend as a hurricane was passing through the
Caribbean and eastern USA.

We returned to work Monday morning to discover that despite our best
efforts, the trial would not start as desired by our senior executive team.
The hurricane had disrupted the shipping of supplies to the site, and we
would have to reschedule. We had to delay the trial and resulting regu-
latory file dates. Some things just cannot be designed into or accounted
for in models of bioequivalence trials.

Many other matters, however, can be controlled in design or modelled
afterward to assess impact using technologies developed in the 20th cen-
tury. In this chapter, we describe several such topics and methods for
doing so. First, concepts behind failure to demonstrate bioequivalence
are developed, followed by a brief discussion on the use of simulation for
products failing to demonstrate bioequivalence. Next we turn to the use of
restricted maximum likelihood models to explore the structure of variance



RESTRICTED MAXIMUM LIKELIHOOD MODELLING 135

components and discuss techniques to assess the impact of carry-over in
bioequivalence trials.

5.1 Restricted Maximum Likelihood Modelling

The likelihood is the probability of observing the sample of data obtained
in the trial, and is, given these data, a function of a set of specified pa-
rameters. For BE testing, the parameters of interest are the formulation,
period, and sequences effects and any within- or between-subject vari-
ances. In trials where subjects get repeated exposure to a formulation,
i.e., where the design includes sequences such as RTTR and TRRT, it is
possible to estimate σ2

BT , σ2
BR, the between-subject variances of T and

R, respectively, and the within-subject variances of T and R, σ2
WT , σ2

WR,
respectively. The method of maximum likelihood (ML) determines the
parameter estimates to be those values of the parameters that give the
maximum of the likelihood. Restricted maximum likelihood estimation
(REML) is a form of ML estimation that uses an iterative procedure
where within each iteration there are two steps. A simplified description
of REML is as follows. Using a first guess or estimate of the parameter
values, the procedure keeps the values of the variance parameters fixed
and estimates the formulation, period, and sequence effects. This is the
first step. The residuals from this model are then calculated and used
to reestimate the variance parameters. This is the second step. These
steps are repeated until the values of the parameters do not change from
one iteration to the next. The ‘Restricted’ in the name of the method
arises because within each step, one set of parameters is fixed while the
other set is estimated by maximizing the likelihood under the restriction
imposed by the fixed set of parameters.

The usefulness of REML is that it can be used to estimate the between-
and within-subject variances. The estimates, so obtained, are informa-
tive for the interpretation of the data, particularly when bioequivalence
between T and R is not demonstrated. A second, and less important,
property of REML is that it can be used when the data set is incom-
plete, i.e., when a complete set of logAUC or logCmax is not obtained
from each subject. We illustrated such an analysis in Chapter 3. There,
it will be recalled, the REML results were very similar to the results ob-
tained from an analysis that used just those subjects that had a complete
set of values. For more information on the properties of REML when the
trial has a relatively small number of subjects, see [237] Chapter 6.

When a trial fails to show bioequivalence it is of interest to determine
which factors (i.e., a difference in formulation means, unexpectedly high
variability, or both) led to such a circumstance, and REML models may
be used to explore data in such a context and in the presence of missing
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data. The use of REML models is also important in the context of indi-
vidual and population bioequivalence, and we review the application of
such methods in the next chapter.

REML has quite a long history [327], [181], [259], [47] and has been
particulary useful for the analysis of repeated measurements [237], [307],
[435], [250]. Readers interested in application in the bioequivalence set-
ting should see [332], [335], and [457].

Obviously REML estimation cannot be done by hand. SAS code to
perform these analyses is given in the following box.

For standard two, three, and four-period designs such as those found
in Examples 3.1, 3.2, 4.5, and 4.6 (i.e., those where no formulation ad-
minstration is replicated), analysis code may be found on the website in
exam1.sas - exam4.sas, respectively. Some proc mixed code for Ex-
ample 4.5 exam3.sd2 is included here for illustration purposes:

proc mixed data=my.exam3
method=reml ITDETAILS maxiter=200;
class sequence subject period formula;
model lnauct=sequence period formula
/ddfm=KENWARDROGER;
random subject(sequence);
estimate ’T-R’ formula -1 0 1
/cl alpha=0.10;
estimate ’T-S’ formula 0 -1 1
/cl alpha=0.10;

run;

Kenward and Roger’s [246] denominator degrees of freedom are spec-
ified to ensure the correct degrees of freedom are used and that a good
estimate of the standard error of µ̂T − µ̂R is obtained.

Estimates relevant to ABE testing may be found in Table 5.1 for AUC,
Cmax, and T 1

2
on the log scale. Note that Tmax was not analyzed using

a log-transformation; thus differences expressed for Tmax are on the
original scale in hours.

It will be recalled that while Example 3.1 demonstrated bioequiva-
lence, Example 3.2 did not (see Chapter 3) due to reasons discussed
later in this chapter. In Example 4.5, formulation T was not equivalent
to R nor S with results indicative of a potentially bioinequivalent new
formulation. In Example 4.6, bioequivalence was demonstrated at both
high and low doses of drug product.

We have provided two additional data sets exam5.sd2 and exam6.sd2
on the website, that were obtained from trials that used the sequences
(RTTR/TRRT) and (RTRT/TRTR), respectively. FDA-recommended
code to analyse these [131] may be found in exam5.sas and exam6.sas,
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respectively. The proc mixed code for exam5 is given in the box below.
The AUC and Cmax data for exam6 are given in Table 5.4, where we
consider other interesting features of these data.

proc mixed data=my.exam5
method=reml ITDETAILS maxiter=200;
class sequence subject period formula;
model lnauct=sequence period formula
/ddfm=KENWARDROGER;
random formula/type=FA0(2) subject=subject;
repeated/group=formula subject=subject;
estimate ’T-R’ formula -1 1/CL ALPHA=0.1;

run;

Here, as before, the procedure mixed is called in SAS and estimates
of the test and reference formulations differences are again computed
using the estimate statement. Note, however, that different specifica-
tions are included for the random and repeated statements (cf., [131]).
These are used as the replication of treatments within each subject per-
mits the estimation of between- and within-subject variances for each
formulation.

The random statement specifies that a particular choice for the vari-
ance structure should be assumed for σ2

BT and σ2
BR (Factor Analytic

[368]) and that the variance associated with subject-by-formulation in-
teraction,

σ2
D = σ2

BT + σ2
BR − 2ρσBT σBR,

should be derived, where ρ is the between-subject correlation between
the formulations. Estimates of these may be found in Table 5.2. Further
discussion on σ2

D and its use may be found in Chapter 6.
The repeated statement specifies that within-subject variance esti-

mates should be derived for T and R formulations separately.
Average bioequivalence was demonstrated for exam5 with no evidence

of a subject-by-formulation interaction (σ̂D of 0.03 for AUC and 0 for C-
max). Test and reference formulations were equivalent for AUC in exam6
with no evidence of a subject-by-formulation interaction. Note that for
Cmax in data set exam6, however, in addition to a large increase in mean
rate of exposure for the test formulation (0.4120, definitely indicative of
bioinequivalence), there was evidence of a subject-by-formulation inter-
action as indicated by σ̂D = 0.197 (making it even more difficult to
demonstrate bioequivalence as the confidence intervals will be wider by
a factor directly proportional to this value). The data in exam6 had other
aspects making it interesting statistically, and we will consider this data
set in more detail later in the chapter.
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Table 5.1 REML Results from PROC MIXED for Standard Bioequivalence
Designs

Example Data Set Endpoint µ̂T − µ̂R 90% CI σ̂2
W

3.1 exam2 logAUC(0-∞) -0.0166 -0.0612, 0.0280 0.0110
logAUC(0-t) -0.0167 -0.0589, 0.0256 0.0099

logCmax -0.0269 -0.1102, 0.0563 0.0384
logThalf 0.0108 -0.0630, 0.0846 0.0301
Tmax 0.0008 -0.2191, 0.2208 0.2676

3.2 exam1 logAUC(0-∞) 0.0940 -0.0678, 0.2482 0.1991
logCmax 0.0468 -0.0907, 0.1843 0.1580

4.5 exam3 logAUC(0-t) T − R=0.1497 0.0859, 0.2136 0.0440
T − S=-0.1912 -0.2554, -0.1270

logCmax T − R=0.2597 0.1726, 0.3468 0.0846
T − S=-0.2088 -0.2964, -0.1212

Tmax T − R=-0.5060 -0.7223, -0.2897 0.5220
T − S=-0.0713 -0.2888, 0.1462

4.6 exam4 logAUC(0-∞) B − A=0.0047 -0.0545, 0.0638 0.0177
D − C=-0.0362 -0.0953, 0.0230

logCmax B − A=-0.0355 -0.1171, 0.0461 0.0336
D − C=-0.0301 -0.1117, 0.0515

logThalf B − A=0.0590 0.0019, 0.1160 0.0164
D − C=0.0258 -0.0313, 0.0828

Tmax B − A=0.0243 -0.1855, 0.2341 0.2223
D − C=0.1057 -0.1041, 0.3155

B, D, T = Test Formulations
A, C, R, S = Reference Formulations

5.2 Failing BE and the DER Assessment

For some drug products, even if one tries time and time again to demon-
strate bioequivalence, it may be that it just cannot be done. A common
misconception is that this means the test and reference formulations are
‘bioinequivalent,’ in that they deliver different pharmacokinetic profiles
causing different pharmacodynamic response. This is not necessarily the
case.

An example of a potentially bioinequivalent test product is presented
in Figure 5.1. The important thing to note is that the measure of central-
ity in addition to the bulk of the distribution falls outside the average
bioequivalence confidence limit for logAUC. Implicitly, for a product
to demonstrate bioequivalence, its true measure of centrality must fall
within the limits. Otherwise, it will be next to impossible (or a Type
1 error) for such a product to demonstrate bioequivalence. In this case,
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Table 5.2 REML Results from PROC MIXED for Chapter 5 Examples of
Replicate Designs

Data Set Endpoint µ̂T − µ̂R 90% CI σ̂D σ̂2
W i

exam5 logAUC(0-∞) 0.0357 0.0096, 0.0617 0.026 R = 0.0065

T = 0.0117
RTTR/TRRT logCmax -0.0918 -0.1766, -0.0070 0 R = 0.0404

T = 0.0587

exam6 logAUC(0-t) 0.1004 0.0294, 0.1714 0 R = 0.1202

T = 0.0756
RTRT/TRTR logAUC(0-t′) 0.1043 0.0326, 0.1760 0 R = 0.1212

T = 0.0818
logCmax 0.4120 0.2895, 0.5346 0.197 R = 0.3063

T = 0.2689
Tmax -0.1716 -0.5765, 0.2334 0 R = 0.9417

T = 3.8484

T = Test Formulations
R = Reference Formulation

the estimated µT − µR tells us that it is most unlikely we will ever be
able to demonstrate bioequivalence.

Contrast this with the fitted normal densities of Example 3.2 in Chap-
ter 3. Here the measure of centrality lies within the average bioequiv-
alence acceptance limits, but slightly too much of the distribution lies
outside to conclude the test and reference formulations are bioequivalen-
t. These formulations are not bioinequivalent, but insufficient evidence
has been provided to show that they are.

Formulations may fail to show bioequivalence for several reasons:
1. The estimated µT − µR lies too far from zero,
2. Variation is greater than expected, resulting in too wide a confidence

interval for µT − µR,
3. Insufficient sample size is used (also yielding too wide a confidence

interval for µT − µR),
4. Or some combination of these.

In Example 3.2 of Chapter 3, all three factors combine to contribute
to the failure to demonstrate bioequivalence. The difference in formula-
tion means, µ̂T − µ̂R, was estimated to be approximately 0.1 for logAUC
(on the natural scale, 1.1) while the study had been designed under the
assumption that µT − µR would be no greater than ±0.05. Also, σ̂W

was estimated to be approximately 0.45 while the sample size had been
chosen in expectation of a σW of 0.3. The combination of these two
factors in combination with the a priori choice of sample size resulted
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Figure 5.1 A Potentially Bioinequivalent Test and Reference Product: Fitted
Normal Densities for µ̂T − µ̂R

in a failure to demonstrate bioequivalence. However, given the observed
magnitude of these factors a better designed follow-up study might be
able to show bioequivalence successfully. Some might refer to the study
as having been ‘underpowered’ implying that insufficient sample size was
utilised; however, all three factors contributed to the failure to demon-
strate bioequivalence.

Insufficient sample size can result in confidence intervals that are wide
in bioequivalence trials, making it difficult to demonstrate bioequiva-
lence. Note, however, that in such failed trials the confidence interval
is quite informative [187]. In the case of a failed bioequivalence trial,
the confidence interval may be regarded as expressing a plausible range
of values for the true µT − µR. In the case of Example 3.2, the confi-
dence interval for AUC (recall this is exp(µ̂T − µ̂R)) was (0.94-1.29) with
the probability of any given value of exp(µT − µR) decreasing as it be-
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comes further away from 1.1. It is possible therefore that if we repeated
the trial using the same design and sample size that we would observe
exp(µ̂T − µ̂R) of as low as 0.94 and as high as 1.29! Indeed in a previous
relative bioavailability study (of similar design but lower sample size) an
estimate of 0.95 for exp(µ̂T − µ̂R) had been observed.

Note that in Example 3.2, as a 2×2 cross-over design was used, hence
σWT = σWR = σW . These variances are confounded in this design, and
we can neither test nor estimate whether σWT = σWR = σW . If a repli-
cate design had been used, it would be possible to separately model the
magnitude of intra-subject and inter-subject variation for each formu-
lation. Such a design and analysis might be desirable if we suspected,
for instance, that the new formulation resulted in more intra-subject
variation than the reference formulation.

Failure to demonstrate bioequivalence is therefore different but relat-
ed to bioinequivalence. Only in cases where sample size is very large and
point estimates for δ lie outside the acceptance bounds would one defi-
nitely conclude bioinequivalence was observed. Bioinequivalence is thus
quite rare, but failure to demonstrate bioequivalence can occur quite
often. In the latter case, it is generally possible to repeat the study or
use a more powerful design to attempt to successfully demonstrate bioe-
quivalence.

Turning now to the implications of failure to demonstrate bioequiv-
alence, successful demonstration is not always necessary in regulatory
science to secure approval of a new product. For certain new agents,
rate and extent of exposure can change in a new formulation relative to
that used in clinical trials. For a new product’s first regulatory applica-
tion (i.e., a product invented by the sponsor representing a new chemical
or biological entity’s first New Drug Application at the FDA, for exam-
ple), a drug might not need to clearly demonstrate bioequivalence to the
full regulatory standard. The FDA’s guidance on this follows:

Where the test product generates plasma levels that are substantially above
those of the reference product, the regulatory concern is not therapeutic
failure, but the adequacy of the safety database from the test product.
Where the test product has levels that are substantially below those of
the reference product, the regulatory concern becomes therapeutic efficacy.
When the variability of the test product rises, the regulatory concern relates
to both safety and efficacy, because it may suggest that the test product
does not perform as well as the reference product, and the test product
may be too variable to be clinically useful.

Proper mapping of individual dose-response or concentration-response
curves is useful in situations where the drug product has plasma levels that
are either higher or lower than the reference product and are outside usual
BE limits. In the absence of individual data, population dose-response or
concentration-response data acquired over a range of doses, including doses
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above the recommended therapeutic doses, may be sufficient to demonstrate
that the increase in plasma levels would not be accompanied by additional
risk. Similarly, population dose- or concentration-response relationships ob-
served over a lower range of doses, including doses below the recommended
therapeutic doses, may be able to demonstrate that reduced levels of the
test product compared to the reference product are associated with ade-
quate efficacy. In either event, the burden is on the sponsor to demonstrate
the adequacy of the clinical trial dose-response or concentration-response
data to provide evidence of therapeutic equivalence. In the absence of this
evidence, failure to document BE may suggest the product should be re-
formulated, the method of manufacture for the test product be changed,
and/or the BE study be repeated. [135]

If bioequivalence has not been demonstrated for a new product, the
task then is to model exposure’s (AUC, Cmax) relationship to effica-
cy and safety in patients using the reference formulation’s clinical data.
If therapeutic equivalence can be shown for such an exercise, then ap-
proval may be obtained. In the knowledge of the extent to which the
test formulation changes exposure (measured in a bioequivalence study
or studies), one may simulate what a change of the magnitude observed
for AUC and Cmax for the test formulation would be produced in terms
of patient response in clinical use.

We refer to this type of modelling and simulation procedure as the
DER (Dose-Exposure-Response) assessment. Modelling of bioequivalence
data was covered in Chapters 3 and 4. We will develop the basic ideas
behind simulation in the next section, and modelling for the DER as-
sessment will be developed in detail in Chapters 7 through 10.

This simulation-based procedure provides regulators with a technique
to assess whether the issue in manufacturing poses a risk to the patients
using the new product. Note, however, that the DER assessment is lim-
ited in scope of application to only new (i.e., innovative) products.
Existing marketed products may not apply such a procedure and must
demonstrate average bioequivalence to have access to market (in most
cases). There are always exceptions to such a rule, but such exceptions
are very rare.

Bear in mind that regulators use average bioequivalence testing as a
tool for measuring manufacturing quality. It is not the only tool which
may be applied (see Chapter 2), and the extent of its rigor in its appli-
cation is dependent on how many people are using the product in the
marketplace.

For a new innovator product, relatively few numbers of patients (only
those volunteering for clinical trials, see Chapter 2) will have received
the drug. However, when a drug is allowed marketplace access by regu-
lators, the number of patients exposed to drug increases exponentially.
Small changes in the PK for a new innovator product may not result in
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increased risk to patients in the marketplace using the drug for the first
time, and this is studied using the DER assessment. Regulators therefore
are free to use their informed judgment in permitting market access for
these innovative products.

When a manufacturer makes changes to a marketed formulation or
multiple companies begin to market new formulations (at the innovator’s
patent expiration), there is little room for such judgment. Many people
are presumed to be at risk, and the regulators must ensure that when the
patients use the new formulations their safety and efficacy are protected.
When millions of people are using a drug, even a very small change in
exposure for a small percentage of patients may result in many people
being placed at risk.

Conservative application of the average bioequivalence standard is
therefore the rule once an approved drug is on the market, and regu-
lators have little to no freedom to change bioequivalence limits. With
few exceptions [17], rigorous application of the 0.80-1.25 limits has pro-
tected public health and individual patients using new formulations.

The rationale for this regulatory conservatism is well documented.
Hauck et al. [197] showed that allowing wider than the usual acceptance
limits (0.80-1.25) allowed larger changes in rate of exposure. This change
could result in a less acceptable safety profile for a new formulation (i.e.,
more undesirable side effects) than the reference formulation. Anderson
and Hauck [10] showed that rigorous application of the ABE acceptance
criteria protects public health when multiple new formulations enter the
marketplace at patent expiration.

Application of the DER assessment is therefore limited in scope to
innovator products entering the market for the first time. We now turn
to the topic of simulation in order to develop how one goes about a DER
assessment.

5.3 Simulation

We introduce simulation here to develop the concepts behind its use and
application in clinical pharmacology research. In practice in bioequiva-
lence trials, it is not often needed. Most modern companies have man-
ufacturing well under control by the time of a regulatory application.
Bioinequivalence is quite infrequent, and failed bioequivalence studies
are becoming rare with the advent of customization and automation in
drug development manufacturing.

Simulation is simply defined as ‘a means of creating data using the
computer without going to the trouble of actually doing a study and
collecting observations.’

This approach assumes we know the truth about the parameters in
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which we are interested. In bioequivalence, for example, we assume we
know the true values of µT , µR, σ2

B , σ2
W , and the magnitude of any

period and sequence effects. A random data generator can then be used
in SAS, for example, to simulate PK data.

For example purposes, assume a bioequivalence study has failed, show-
ing a 10% decrease in the new formulation AUC relative to the reference
formulation. A logAUC of 175 is needed for the product to be effica-
cious in killing bacteria, and concern might exist that if a patient were
switched from the reference to the new formulation in the course of a
trial that the product might fail to demonstrate efficacy. The reference
product had an average logAUC of 200 (µR = 200), and the new for-
mulation was observed to have an average logAUC of 180 (µT = 180).
We know from previous experience that between-subject variance for
logAUC is 0.18 with a within-subject variance of 0.09.

SAS code (see the Technical Appendix) can then be used to generate
simulated PK data for a cross-over study. Here we set µT = ln 180,
µR = ln 200, σ2

B = 0.18, σ2
W = 0.09, and set period effects to null.

Sequence effects are also set to null. LogAUC data for 2500 simulated
subjects switched from the reference to the new product and vice versa
in a 2×2 cross-over are output in the SAS data set simulate. This data
may then be modelled using REML or the approaches of Chapter 3 to
assess the statistical properties of such data.

In statistics, such simulations are used often in working practice. Sim-
ulated data are generated, and plugged into various methods of analysis
under consideration to assess the properties of the statistics being con-
sidered. Statisticians may use such techniques to assess the degree of
bias (the degree to which δ̂ 6= δ for example) and precision ((δ̂ − δ)2

for example). Statisticians also use such techniques to evaluate ‘what if’
scenarios. For example, the presence of two or three subjects with very
unusual data points may easily be included in a simulation to assess their
impact on the probability of demonstrating average bioequivalence.

Other branches of clinical pharmacology use simulation for other pur-
poses - e.g., the DER assessment described in the last section. Response
data are collected and used to develop models to relate exposure to re-
sponse (see Chapter 9). In our example, we would evaluate the number
of subjects achieving an efficacious response (logAUC> 175) on the ref-
erence formulation and of these subjects assess how many subsequently
showed an efficacious response on the test formulation. Note that these
findings might also lead one to wish to increase the dose! However, one
might be constrained in that a logAUC greater than 300 (for example)
might be associated with an undesirable side-effect. Consideration of
such is left to the reader.

This is a simplistic modelling and simulation example, but the con-
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cepts may be applied in more complex situations. We will develop the
concepts supporting such tools in Chapters 7-10.

Clinical pharmacologists work with statisticians to develop such mod-
els and use simulations to predict what might be observed in future
trials. This is a powerful tool; however, we need to have a care to moni-
tor the assumptions being made in such an exercise. Results are highly
dependent on the chosen model parameters, and life has a way of being
more complex than any simple model can hope to describe.

5.4 Data-based Simulation

The first data exploration technique we will consider is a technique some
attribute to R.A. Fisher [176] and developed in great detail in an excel-
lent book by Efron and Tibshirani [96]. We encourage readers interested
in application of this technique to explore these and other books [394]
and publications (e.g., [395]-[396]) on the topic.

In this section, we will dwell on the application of the bootstrap in
bioequivalence. The reader will note its utility as a general data explo-
ration tool, and it will become very handy in our exploration of other
clinical pharmacology data in Chapters 7-10.

The bootstrap is ‘a computer based method for assigning measures
of accuracy to statistical estimates’ [96]. Essentially, we recognize that
the sample of data from our trial is only a sample from a far larger
population (which we obviously cannot sample exhaustively - it is too
big, see Chapter 1). The data from each subject is simply a sample of
what we would see if we studied that subject again and again. We could
even drill down further and look at each individual period’s results for
each subject as a sample of what we would see if we repeated each period
within each subject again and again. However, for this section, we will
choose to apply the bootstrap at the subject level, maintaining the actual
number of subjects observed within each sequence in accordance with
recent draft guidance on the topic [122].

Bootstrapping is accomplished by randomly sampling, with replica-
tion, from the original data set of n subjects. One picks a subject at
random from the data set, includes that data in the analysis data set,
replaces the subject, picks again, replaces the subject, etc., until one has
a new data set with n subjects. The same subject may appear in the
bootstrap data set more than once.

One does this a large number of times to accumulate a set of r boot-
strap data sets. The number r is arbitrary but should be pretty large,
in general, at least r ≥ 1000. The chosen method of analysis is then
applied to each of the r bootstrap data sets, and a record of each of the
r fitted sets of parameters is kept. For any given parameter, the r sets of
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estimates may be used to estimate moments of the parameter of interest
such as its mean and variance.

Obviously, one cannot bootstrap this set of r data sets by hand, and
application of this technique was constrained until modern computing
power became available in the 1980s-1990s. Some modern software pack-
ages (e.g., SPLUS) offer automated bootstrapping routines, and boot-
strapping is easily accomplished in SAS via use of the MACRO SAS lan-
guage.

A SAS macro used for this purpose may be found on the website
accompanying this book. Bootstrap samples are generated calling the
SAS macro bootstrp from a chosen data set. Note that a seed value
is input. This is a random number chosen to tell SAS where to begin
sampling and allows one to reproduce the results if the program needs to
be rerun. If a seed is not provided, SAS uses the clock to automatically
determine where to start. The bootstrp macro then samples from the
data set in the manner described above and outputs data sets r = 1 to
nrep where nrep is the number of r bootstrap data sets desired. The
number chosen in the examples is r=nrep=2000.

One then derives the statistic of interest for each bootstrap data set.
For exam1 - 6 we will estimate the 90% confidence interval for µT −µR

for the purposes of providing an example, though any statistic may be
treated in this manner. For this exercise, we will be interested in esti-
mating the proportion of cases among the bootstraps where a conclusion
of BE may be made.

Following some data manipulations, the output bootstrap data sets
are then each used to estimate a 90% confidence interval for µT − µR

using proc mixed as shown in Chapter 3. If the confidence interval falls
within ∓ ln 1.25 for both lnAUC and lnCmax then an overall ’success’
is registered for that bootstrap data set.

We can see that it is unlikely a repeat of study in Example 3.2 (exam1.sd2)
would be successful. See Table 5.3. Overall only 38% of bootstrapped da-
ta sets resulted in a conclusion of bioequivalence. While the percentage
of Cmax data sets being bioequivalent was relatively high (at 67%), only
41% of bootstrapped data sets were successful for AUC.

One could also use this tool to evaluate ‘what if’ scenarios - e.g., what
if we changed the sample size to n = 20 subjects? One could also run the
bootstrap procedure repeatedly to obtain a confidence interval for the
odds of a successful repeat of a bioequivalence trial. This sort of exercise
is left to the reader.

As a caution, we advise that when using complex models like those
currently employed in a bioequivalence testing, users of the bootstrap
should take care to ensure that their findings are robust to the incidence
of non-convergence in the bootstrapped data sets. Note that the REML
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Table 5.3 Number of Successful BE Trials

Data Set Comparison AUC Cmax Overall

exam1.sd2 T-R 41% 67% 38%
exam2.sd2 T-R 100% 99% 99%
exam3.sd2 T-R 61% 0% 0%
exam3.sd2 T-S 16% 5% 4%
exam3.sd2 S-R 0% 0% 0%
exam4.sd2 B-A 100% 98% 98%
exam4.sd2 D-C 100% 100% 100%
exam6.sd2 T-R 88% 0% 0%

model used to examine exam5.sd2 failed to converge in SAS when boot-
strapped on a very large number of occasions due to the issues involving
the magnitude of variances described in [332]. Therefore, results should
be interpreted with caution and are not presented in Table 5.3. The
analysis for exam6.sd2 also failed to converge on a very limited number
of occasions (less than 4% of the bootstraps for AUC, and less than 1%
for Cmax). Modification to SAS code (see �bootstrap exam1 - 4.sas) may
be necessary to ensure enough computer memory is available to run the
model repeatedly or to ensure the model converges adequately.

We note that, while the bootstrap is a nice, easy to implement da-
ta exploration tool given modern computing power, it is important to
note that the bootstrap sampling introduces randomness in to the re-
sults This randomness has implications. In some cases [335], coverage
probability of confidence intervals generated using the bootstrap may
be lower than expected, leading to an increased possibility of a Type
1 error (see Chapter 1). Therefore, while it is a useful tool for explor-
ing data, caution should be applied when using any findings for making
claims in regulatory submissions. Those doing so should be prepared to
ensure regulators that the risk of a Type 1 error is maintained at a level
acceptable to their public’s health.

Although not utilised here, we further note that the bootstrap is a
very powerful tool for model validation [179].

5.5 Carry-over

When carry-over is mentioned in bioequivalence studies, it refers to the
occurrence of a nonzero plasma concentration of drug in a sample prior
to dosing. As such it complicates the analysis of bioequivalence data, by
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aliasing or biasing the assessment of changes between formulations. To
prevent this, a washout period (of at least five half-lives) is employed to
prevent such occurrences.

Carry-over is very unusual but not unknown in bioequivalence studies
and can arise from a variety of factors. Some are:

1. Long-half life drugs (with inadequate, too short, washout duration),

2. Serendipitous inclusion in the trial of subjects who poorly metabolize
or eliminate the drug,

3. Random occurrences (possibly due to assay problems).

Statistical tests are available to test for carry-over and to evaluate its
impact on these changes in formulation means [237]; however, in keeping
with comments made in Chapter 3, and previous findings [388], we do not
recommend that those analysing data from bioequivalence studies carry
out statistical tests for the presence of carry-over [237], [389]-[390]. We
will therefore confine discussion to practical issues and analyses that may
be considered when pre-dose concentrations are detected. This would
signal that carry-over was present in the bioequivalence design, and we
assume that statistical tests will not be used to assess its impact in
keeping with [389]-[390] and [237].

As a practical matter, even if a more than adequate washout is used,
there will be instances where pre-dose concentrations in periods after the
first are non-null. The example to be considered was a drug that had been
on the market for so long that its development predated pharmacokinetic
assessment! The plant where the formulation had been manufactured (for
many, many years) was closing, and the machinery that made the drug
was packed and shipped to another site to continue manufacture, and
the people who ran the machines at the old site retired. Therefore, the
job was to prove that manufacturing at the new site with the new people
but old equipment was to the same quality as the old (closed) site by
use of a bioequivalence test.

In designing this bioequivalence study, the complete lack of pharma-
cokinetic data was problematic on this occasion as we had no basis on
which to decide the length of a sufficient washout period, and there
was insufficient time to run a pilot study In the end, the study was
designed based on an educated guess about what washout was needed
from pharmacodynamic action of the product, but it turned out our
guess undershot the needed duration. The example represents a worst-
case scenario in that 48 pharmacokinetic profiles (for 27 subjects of 54
participating) were identified as having pre-dose concentrations in excess
of the pharmacokinetic assay’s lower limit of detection. AUC and Cmax
data are listed below for this replicate design. AUC and Cmax values
marked with a ‘C’ denote those where a pre-dose plasma concentration
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was non-zero and in excess of the pharmacokinetic assay’s lower limit of
quantification.

Table 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-over Study Design with Test and Reference Formulations
and Carry-over (C)

Subject Seq Period 1 Period 2 Period 3 Period 4
AUC

1 RTRT 812.6 1173.7C 889.1 620.1
2 TRTR 216.3 338 502.8C 398.6
3 RTRT 545.1 542.9C . .
4 TRTR 632.6 520C 716.7C 860.4C
5 RTRT 400 223.8C 173.7 289.7C
6 RTRT 102.1 185.3 42 88.3
7 TRTR 596 659.3 543.8 662.9
8 TRTR 402.4 359.8 590.8 444.3
9 TRTR 456.7 378.4 477.5 407.9C
10 RTRT 304.5 351.5C 520.2C 335.7C
11 TRTR 500.7 323C 416.3C 525.1C
12 RTRT 176.1 710.7 409.5 645.5
13 TRTR 160.6 218 170.1 124.6
15 RTRT 562.4 490.4C 504.7 675.9
16 TRTR 756 606.8 477.4 626.8
17 RTRT 207.5 271.6 173.7 240.5
18 RTRT 571.3 705.2 619 633.6
19 TRTR 511.9 549.7 388.2 141
20 TRTR 124 91.9 113.3 59.5
21 RTRT 536.1 595.2 445.5 521.5C
22 TRTR 239.7 265.1C 445.9 433.2
23 TRTR 609.6 371.6C 511.3 432.7C
24 RTRT 449.9 860.4C 606.8 577.2C
25 RTRT 192.5 220.1 233.1 227
26 TRTR 764.4 508.8 757.8 449.4
27 TRTR 151.9 194.8 . .
28 RTRT 568.1 321.1 338.3 403.6C
29 RTRT 735.6 634.5C 1244.2C 641.9
30 TRTR 429.1 391.8C 316.9 335.1C
31 RTRT 307.4 481.8 346.6C 369.7C
32 TRTR 409 514.6C 763.1C 406.5C
33 TRTR 271 221 296.5 463.7

R=Reference, T=Test
C=Carry-over Concentration at Baseline
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Table 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-over Study Design with Test and Reference Formulations
and Carry-over (C)

Subject Seq Period 1 Period 2 Period 3 Period 4
34 RTRT 292.9 431C 448.5 267.8C
35 RTRT 217.2 332.2 103 127.5
36 TRTR 290.8 208.6 243.7 489.8
37 TRTR 297.2 502 320.4 334.3
38 TRTR 163.8 232.1 636.9 434.9
39 RTRT 368.3 292.6C 446.1 222.3C
40 RTRT 193.7 202.8 255.2 244.3
42 TRTR 534.1 243.1 418.4 441.9
43 TRTR 355.1 415.2 382.7 334
44 RTRT 102 282.5C 245.6 286.2C
45 TRTR 320.5 233.9 331.7 260.5
46 RTRT 223.6 645.4 349 507.4C
47 TRTR 504.5 289.9 550.7C 244.2
48 RTRT 615.8 732.1C 620.9 665.2C
49 RTRT 898.4 924.9C 398.3 828.3C
50 RTRT 410.4 329.2 449.4 442.1
52 TRTR 237 505C 496.3 580.6C
53 RTRT 332.4 273.6 525.3 293.3
54 RTRT 185.2 222.9 182.1 194.1
55 TRTR 246.9 620.9C 678.3 752.2C
56 TRTR 235.4 190.4 318.3 248.4
57 RTRT 180.6 174.7 102.9 117

Cmax
1 RTRT 99.85 204.09C 170.94 112.78
2 TRTR 29.06 50.48 35.15C 55.71
3 RTRT 67.69 41.73C . .
4 TRTR 91.25 43.86C 168.78C 61.04C
5 RTRT 40.05 25.17C 24.48 86.49C
6 RTRT 28.76 24.83 9.27 10.89
7 TRTR 257.1 79.04 127.92 81.8
8 TRTR 136.27 158.86 148.97 82.41
9 TRTR 65.48 87.84 64.57 58.01C
10 RTRT 34.35 52.26C 142.92C 58.48C
11 TRTR 31.49 37.07C 80.9C 33.62C
12 RTRT 18.94 161.34 118.89 246.57
13 TRTR 29.61 43.15 27.71 13.11

R=Reference, T=Test
C=Carry-over Concentration at Baseline
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Table 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-over Study Design with Test and Reference Formulations
and Carry-over (C)

Subject Seq Period 1 Period 2 Period 3 Period 4
15 RTRT 28.35 98.5C 78.22 140.54
16 TRTR 168.76 174.94 117.31 52.18
17 RTRT 19.18 94.92 21.39 65.45
18 RTRT 66.63 134.69 78.1 78.51
19 TRTR 32.23 70.06 32.15 43.11
20 TRTR 9.34 11.74 49.23 18.42
21 RTRT 42.11 37.82 39.87 116.79C
22 TRTR 38.02 16.79C 38.58 83.82
23 TRTR 199.07 52.14C 118.47 72.04C
24 RTRT 32.53 276.86C 118.65 156.33C
25 RTRT 21.96 38.97 22.26 54.16
26 TRTR 74.24 35.76 39.27 36.28
27 TRTR 19 20.61 . .
28 RTRT 110.87 55.64 50.06 84.6C
29 RTRT 50.08 58.79C 181.53C 144.26
30 TRTR 31.85 74.88C 54.88 19.18C
31 RTRT 87.21 88.75 90.07C 132.92C
32 TRTR 30.86 70.84C 208.2C 65.25C
33 TRTR 86.01 41.85 67.86 79.81
34 RTRT 18.07 33.37C 21.48 20.87C
35 RTRT 18.69 174.55 17.06 32.01
36 TRTR 38.27 40.31 31.56 20.64
37 TRTR 49.81 66.64 17.8 25.94
38 TRTR 34.56 16.37 114.3 29.58
39 RTRT 52.59 57.88C 48.58 47.24C
40 RTRT 29.3 78.33 21.72 49.27
42 TRTR 136 33.75 104.12 35.03
43 TRTR 64.55 34.04 52.37 41.67
44 RTRT 22.14 63.5C 9.38 16.3C
45 TRTR 26.35 37.2 76.26 24.6
46 RTRT 27.02 167.28 20.35 121.92C
47 TRTR 118.91 49.27 166.61C 35.86
48 RTRT 60.94 100.47C 26.17 98.08C
49 RTRT 164.01 180.01C 25.21 97.02C
50 RTRT 59.7 43.65 102.47 40
52 TRTR 30.55 63.9C 39.17 40.75C

R=Reference, T=Test
C=Carry-over Concentration at Baseline
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Table 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-over Study Design with Test and Reference Formulations
and Carry-over (C)

Subject Seq Period 1 Period 2 Period 3 Period 4
53 RTRT 39.96 56.47 42.11 38.75
54 RTRT 18.34 16.09 21.5 9.57
55 TRTR 42.2 106.69C 150.52 115.15C
56 TRTR 39.15 13.79 122.03 62.32
57 RTRT 9.1 58.44 12.74 18.33

R=Reference, T=Test
C=Carry-over Concentration at Baseline

The average contribution of the nonzero pre-dose concentrations in
these subjects relative to the magnitude of Cmax observed in that period
was only 1.5%. Thus, for the majority of subjects the presence of carry-
over could be deemed negligible as a practical matter. However, two
subjects had concentrations of approximately 5.25% and 5.05% relative
to the Cmax observed in that period. For the purpose of this example,
Subject 1 (Period 2, pre-dose concentration of 10.7) and Subject 10
(Period 3, pre-dose concentration of 7.2) will be deemed to have had
such observed data. Results of such magnitude would lead one to consider
whether this could have an impact on inference.

One regulatory guidance is quite clear on how to handle such data.
The FDA guidance [135] recommends that:

If the pre-dose concentration is less than or equal to 5 percent of Cmax value
in that subject, the subject’s data without any adjustments can be included
in all pharmacokinetic measurements and calculations. If the predose value
is greater than 5 percent of Cmax, the subject should be dropped from all
BE study evaluations. [135]

This guidance [135] tacitly assumes that the occurrence of carry-over
of sufficient magnitude to impact inference is random in line with recent
publications on the topic [389]-[390], [237]. Indeed, even in the worst-case
scenario of carry-over described above, only two subjects had concentra-
tions of such magnitude, and exclusion of subjects 1 and 10 does not
materially effect statistical inference. Confirmation of this finding is left
to the reader using the SAS code introduced earlier.

This approach has the benefit of simplicity, and given the sparsity of
the occurrence of relevant carry-over, it is expected that its application
will suit most circumstances. We will dwell on an alternative approach
for (rare) situations when such might not be suitable. Additionally, the
handling of such data by non-FDA regulatory bodies, for example, is
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not standardized in guidance, and other agencies might request other
approaches to analysis.

We will consider adjustment of data for pre-dose concentrations where
the magnitude is of sufficient magnitude to warrant concern. Consider
subjects 1 and 10 in the example. As the pre-dose concentration has
been assayed, it is reasonable to presume that the effect on subsequent
observed plasma concentrations is additive relative to the dose received
in the period under study as drug on board pre-dose is simply in the
process of being eliminated from the body. One could ‘slice’ a portion of
the concentration data from the pharmacokinetic concentration versus
time profile and estimate an adjusted Cmax and AUC for use in analysis.
For Example 5.1, these data are presented in Table 5.5.

Table 5.5 Example 5.1: Adjusted Cmax and AUC Data for Subjects 1 and 10

Subject Period Adj. AUC(0-t) Adj. Cmax

1 2 1045.3 193.39
10 3 433.8 135.72

These adjusted data were derived by subtracting the pre-dose concen-
tration from Cmax and by removing an estimated area from the AUC.
For the purposes of this example, the t in AUC(0-t) was defined as oc-
curring at 24 hours post dose, and the area ‘sliced’ from the full AUC
was derived according to the equations of Chapter 1 consistent with a
half-life of 24 hours. In more complex pharmacokinetic profiles, other cal-
culations might be more appropriate. The changes in the data introduced
by ‘slicing’ adjustment did not impact statistical inference (confirmation
of this is left to the reader) relative to statistical analysis including their
original data.

Data manipulation in such a manner may have two unintended effects
on bioequivalence testing. It certainly introduces more variation into
our model, as adjustment using ‘slicing’ does not take into account the
error implicit to pharmacokinetic measurement (due to assay and within-
subject variability).

Additionally, data manipulation may introduce bias as only some da-
ta for subjects in certain periods were adjusted. Note in the example
above, subjects with very low pre-dose concentrations were present but
were neglected as their values were minimal (around 1.5% of Cmax),
and only data for certain periods were adjusted (see Subject 10). As av-
erage bioequivalence is a within-subject assessment (each subject serves
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as their own control), if a subject experiences carry-over sufficient to
warrant adjustment in one session, it is more appropriate to adjust al-
l sessions for any relevant pre-dose concentrations for a given subject
regardless of magnitude. In the case of the above example, one should
consider adjusting data for Subject 10 in Periods 2 and 4 even though
pre-dose concentrations in those sessions were only approximately 1.5%
of Cmax. Alternatively, if the FDA ‘data-reduction’ approach [135] is
used, all of the subject pharmacokinetic data should be excluded from
analysis to avoid the introduction of bias or increased variation.

Those using such adjustment techniques should be explicit about what
adjustments were made and the process followed. Regulatory acceptance
of such a procedure is unknown and falls outside the scope of current
international guidance (other than the FDA’s, cf., [135], where an alter-
native procedure described above is recommended).

Note also that while not recommended in bioequivalence testing, sta-
tistical models for the assessment of differential carry-over in bioequiva-
lence testing in cross-over designs [237] may detect such ‘slicing’ of the
data as a factor consistent with the statistical detection of carry-over
from such data. Therefore, further care is recommended if such models
and data manipulation are applied.

5.6 Optional Designs

The most common study design applied to bioequivalence testing is the
2×2 design, already described in great detail. In cases where one dosing
regimen is to be marketed relative to the multiple formulations used
in confirmatory trials (e.g., a 300 mg dose is to be marketed but must
be confirmed as bioequivalent to a 200 mg tablet with a 100 mg tablet
and to three 100 mg tablets), it may be necessary to extend this design
to consider more than two regimens in a BE trial. Other trials might
include four periods if bioequivalence was to be evaluated between two
formulations at a low and at a higher dose, for example. Such is required
by certain nations [58] when dose-proportionality (see Chapter 7) is not
demonstrated.

Such designs are simply an extension of the 2×2 design introduced in
Chapter 2 and may be analyzed in straightforward fashion as described
in Chapters 3 and 4 and [237] and [388]. We will refer to them as stan-
dard bioequivalence cross-over designs. For bioequivalence testing, the
same model in SAS is typically utilised to analyse the data as that in-
troduced in Chapter 3 with appropriate modifications for the number of
sequences (s = 1, 2, 3...), periods (p = 1, 2, 3...), and treatments. In SAS,
the call to proc mixed, the class statement, the model statement, and
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the random statement are all the same. The estimate statement changes
to accommodate the comparisons of interest.

An additional alternative design has already been mentioned, the repli-
cate design. It is particularly useful for studying bioequivalence of high-
ly variable drugs. A highly variable drug is defined as a drug with a
within-subject CVW (coefficient of variation) of greater than 30%. The
coefficient of variation of a variate is the ratio, expressed as a percentage,
of the standard deviation of the variate to its mean. For BE testing we
note that σ2

W = ln(CV 2
W + 1), i.e.,

CVW =
√

eσ2
W − 1.

In a replicate cross-over design (see Chapter 4), each subject receives
each formulation twice. Eligible subjects are randomized to one of two
treatment sequences, e.g., TRTR or RTRT. Thus, each subject is studied
in four periods and receives each formulation twice over the course of the
study. Similar to the two-period cross-over design described previously, a
washout period adequate to the drug under study (at least five half-lives)
separates each of the four treatment periods.

Formulation means are estimated with measurement and sampling er-
ror in cross-over designs. Replication of measurement within each subject
reduces sampling error by a factor equivalent to the number of replica-
tions. For example, in a standard cross-over design, the variance of an
individual’s mean response on i =T (or R) is σ2

Bi +σ2
Wi where σ2

Bi is the
inter-subject variance and σ2

Wi is the intra-subject (i.e., sampling error)
variance. In a replicate design, the variance of an individual’s mean re-
sponse is σ2

Bi + (σ2
Wi/2). Therefore, where high intra-subject variability

is of concern, the replicate design will provide more precise estimates of
the true individual response.

For a low-variability product, replication does not improve precision
dramatically as σ2

Wi contributes little to the magnitude of the above ex-
pression; however, for a high variability product, replication more pre-
cisely defines the range over which an individual’s mean response may
vary. Such measurement is also more accurate as replicate measurement
and the derivation of corresponding means converges to the true (and
unknown) mean under the central-limit theorem with increasing repli-
cation [439]. Such measurement may thus allow for better scrutiny of
outliers [458]-[459], but as the comparison of formulation means is of
direct concern in the success of average bioequivalence studies, the de-
sirability of such improvement in accuracy and precision is immediately
apparent as a practical matter.

The number of subjects required to demonstrate average bioequiva-
lence can be reduced by up to 50% using a replicate design relative to
the sample size of a 2×2 cross-over trial. Note that the overall number of
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doses studied, however, remains similar to a 2×2 cross-over and that the
study will be of about twice the duration with twice the blood sampling
for each individual subject.

Experience indicates that, although it is theoretically possible to per-
form a bioequivalence trial with more than four periods, such is rarely
utilised. Application of such a trial is not generally limited by logistics
(how many subjects can be brought in, length of stay, etc.) but by how
much blood can be drawn from a human volunteer in a given time in-
terval! FDA guidance [135] recommends that 12-18 blood samples per
subject per period be taken to characterize the PK versus time profile
and to derive appropriate estimates of AUC, Cmax, and the other end-
points of interest. A blood collection of 500 mL across the length of a
study is the usual limit applied to blood sampling for a human volunteer,
and subjects should not have donated blood or plasma for approximately
two months prior to being in a study.

Bioequivalence trials must also collect blood samples for purposes oth-
er than PK assessment. Such blood sampling for safety assessment (lab-
oratory assessment of liver function, for example) from each volunteer
at screening, during the trial, and follow-up in addition to PK sampling
limits how much blood can ethically be taken without compromising the
safety of volunteers in a given time interval. If this amount is exceeded,
this could not only pose a danger to volunteers but also would change
the amount of blood available in the circulation and potentially impact
the ADME properties of PK measurement (defeating the purpose of
collecting it).

We now have an extensive range of options for deciding what type of
study design can be applied in a bioequivalence study. These options are
applied depending on how many subjects are required to have a good
chance of success in demonstrating bioequivalence and the extent of clin-
ical resources. A general algorithm for designing average bioequivalence
trials is described below.

Algorithm 5.1: Planning a Bioequivalence Study [331]

1. Determine the number of formulations (and doses) to be studied for
bioequivalence.
2. Calculate the sample size for a standard cross-over (i.e., a non-replicate
2 × 2, three or four-period) design. The details of how to perform sample
size calculations will be discussed in the next section.
3. Consider available clinical resources.
4. For products with low to moderate intra-subject variation (CVW < 30%)
where adequate resources are available, use the standard cross-over design.
5. For highly variable products, where sample size exceeds available re-
sources, consider a replicate cross-over design and reassess sample size. If
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resources are adequate, use the replicate design.
6. For situations where resources are still too limited to achieve desired pow-
er, or in situations where one is very uncertain of the magnitude of intra-
subject variation (or other critical assumptions), apply a group-sequential
design.

Group sequential designs are a further extension of the designs already
discussed. These offer the potential for additional resource savings in
bioequivalence designs [165], [195]. A group sequential design consists of
one or more interim analyses, at which point the sponsor can decide to
stop the trial with concrete evidence of success or failure or to carry on.
Well known in the statistics community [338], such designs are easy and
straightforward to implement in practice in this setting.

A group sequential design approach could be used in cases where there
is significant uncertainty about estimates of variability. That is, based
on previous data there is a fairly wide range of estimates, such that
choosing a lower estimate might result in an underpowered study and
choosing a higher estimate might result in an overpowered study, which
in either case is a waste of resources. As such, the group sequential design
allows one to conduct an interim look with a sample size that provides
reasonable power based on a lower (or optimistic) estimate of variability
and the final sample size based on a higher (or less optimistic) estimate
of variability. Similarly, if uncertainty in the true ratio of bioavailability
is of concern, an interim look might be planned based upon sample size
required to provide bioequivalence based on the optimistic estimate, with
the final look providing conclusive results should this not be the case.

Lastly, a group-sequential design may be applied if it is undesirable
to complete a large study due to resource constraints. Some choice of
samples for interim analysis may be chosen (based on clinical feasibility)
to facilitate an interim look. The probability of success may be quantified
at that stage, and if results are inconclusive, the study can continue to
completion.

The two aspects of a group sequential design that help determine the
probability of stopping early are the alpha-spending function to control
the overall Type 1 error rate of the study and the decision rule(s) for
stopping at an interim analysis. There are many Type 1 error spending
functions and decision rules to chose from, but only those relevant to two-
stage group sequential design for a bioequivalence trial will be discussed
in this chapter.

The Type 1 error rate as previously discussed was set by regulators at
5% per test for bioequivalence studies and is defined as the probability of
a false-positive outcome, or in the case of bioequivalence trails, declaring
two formulations are bioequivalent when they are not in truth. Unlike a
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fixed sample size trial where there is only one analysis, a group sequential
trial may have multiple analyses. When data from a fixed sample size
trial are analyzed repeatedly during the trial, the overall Type 1 error
rate becomes inflated if each look is conducted at the same test level.
For example, if two bioequivalence test procedures are conducted (each
at the usual 5% level), the overall Type 1 error rate, the probability of
a false positive on the first or second test, is 8% (instead of 5%); if three
are conducted, the overall rate is 11%; and so on [454].

As such, to control the overall Type 1 error rate of the study, the Type
1 error rate at each analysis must be some value less than the desired
overall Type 1 error rate. In a two-stage group sequential bioequivalence
trial, the Type 1 error is typically divided equally between the two anal-
yses. A simple, but conservative, method is the Bonferroni adjustment,
which results in an error rate of 2.5% per two one-sided test (i.e., 95%
CI) at each look, but the resulting overall error rate slightly less than
5%. Another alternative suggested in [343], is to set the error rate at
the two analyses at 2.94% (i.e., approximately 94% CI) at each look,
resulting in an overall error rate of approximately 5%.

Note that application of such a group-sequential design in bioequiva-
lence testing is not the norm and is in fact discouraged by some guid-
ance [13]. If it is applied, it is expected that most regulators will prefer
the position expressed in [13] such that a conservative adjustment (i.e.,
the Bonferroni procedure) should be applied. For a standard cross-over
design with two looks at the data, 95% confidence intervals would be
derived at each look.

The decision rule for stopping early (at the first look) should contain
both a rule for stopping early when bioequivalence is clearly demon-
strated and a rule for futility when bioequivalence is not expected to be
demonstrated. For example, one might define the following rule:

1. If the test formulation is demonstrated to be BE at the interim look
(i.e., the 95% CIs for AUC and Cmax are contained in (0.80-1.25)),
then success has been achieved. Stop the study.

2. If exp(µ̂T − µ̂R) for AUC or Cmax are not in the range 0.80-1.25, then
further study is likely to be futile, and the study should be stopped.

3. Otherwise, continue to the final look.

In the next section, we will consider the calculations which go into
deriving a sample size in more detail, and discuss several practical issues
impacting the choice of sample size. In the remainder of this section,
two other important issues will be discussed: derivation of the variance
estimates to be used in bioequivalence sample size calculation, and the
length of the washout period.

As discussed in Chapter 1, from the time Phase I starts with the first-
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time-in-humans study to the time in drug development when one would
need to do a bioequivalence study, there is extensive study of pharma-
cokinetics. In general, AUC, Cmax, and the other PK endpoints are
derived in multiple clinical pharmacology studies resulting in a plethora
of estimates for σ2

W of AUC and Cmax. Each of these study-specific es-
timates for σ2

W may be regarded as independent under the assumption
that subjects participating in a given trial do not participate in the other
trials.

When independent variability estimates are available across several
studies (here studies are denoted i = 1, 2, ....), based on the properties of
the chi-squared distribution, a method of pooling data across studies is
readily available. In brief, a pooled estimate of within-subject variation
(σ̂2

PW ) for σ2
W is derived as:

σ̂2
PW =

∑
i(ni − si)σ̂2

Wi∑
i(ni − si)

,

where ni−si is the respective df (equal to the sample size ni less the num-
ber of sequences si in trial i) for the within-subject variability estimate
σ̂2

Wi from trial i based on the properties of the chi-squared distribution.
These pooled estimates of variation for AUC and Cmax will be utilised
in the sample size calculations performed in the next section.

Drugs where no such variability estimates exist for use in calculations
are very unusual in the modern pharmaceutical industry, especially for
those sponsors who conduct the confirmatory clinical trials and clinical
pharmacology programs themselves. Even for drug products where no
such in-house data are available, there are a variety of other sources of
information (e.g., Physician’s Desk Reference, Summary Basis for Ap-
proval, etc.) which likely will contain some information on PK variability
for use in study design. In the rare event that data are not available, the
FDA guidance [135] does make mention of running a pilot study of 6-12
subjects in a cross-over design to estimate variability. Those applying
such a technique should ensure that AUC and Cmax data from the pilot
study are not pooled with the subsequent confirmatory bioequivalence
trial to avoid impacting the Type 1 error rate. Alternatively, a group-
sequential analysis plan as described above could be applied.

Estimates of mean and variance for half-life T 1
2

should also be available
across the i trials and can be regarded as independent from one another
across trials under the same set of assumptions. One could also pool these
estimates to determine an overall mean half-life to define the length of
washout period; however, we recommend against such a practice given
the importance of an adequate washout in the design of such trials and
the interpretation of resulting data.

A key assumption in a cross-over design is that all else being equal,
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pharmacology and physiology is stable throughout the length of the tri-
al in any given volunteer. This is why normal healthy volunteers are
dosed in bioequivalence trials - to prevent the occurrence of or poten-
tial for changing disease state from confounding the assessment of any
difference in formulations. Therefore, after giving drug and altering (ac-
tually causing) PK to be measurable by means of our endpoints AUC
and the rest, the washout is utilised to bring back blood concentrations
to basal (i.e., null) level, ensure any impact of the drug on the body is
negligible, and allow the normal healthy volunteers’ bodies to return to
‘normal’ with respect to blood lost to sampling. They then receive the
next formulation in the next period, and so on.

As we have seen in Chapter 3, if concentrations do carry-over through
the washout period and into the next period (checked via collection of
a blood sample prior to dosing), these carry-over effects confound to
some extent the interpretation of differences between formulations. We
therefore encourage readers to be over-cautious in the choice of washout
period duration in bioequivalence. It should be at least five times the
average mean half-life (across studies) and should be extended longer if
significant within-subject variation is observed in T 1

2
. Readers interested

in a more quantitative definition of the upper limit of mean T 1
2

may wish
to consider the application of a prediction interval (see, for example,
Chapter 2 of [314] for more details), but we will not dwell further on
this issue here.

For drugs with extremely long half-lives, a parallel group design [135]
may be employed. In a parallel group design, subjects are randomized to
receive either formulation T (Test) or R (Reference) in a single period
and are not crossed over. Such studies are quite unusual in bioequivalence
testing and will not be discussed further here. Readers interested in such
an approach should see [74] and [447]. Another design in the statistical
literature that is sometimes considered is the ‘partial’-replicate design.
This is simply a replicate design with the fourth period removed (e.g.,
Examples 3.1.and 3.2). This type of design is seldom applied in average
bioequivalence testing; readers interested in using such a design should
see [224] and [76] for more information.

5.7 Determining Trial Size

Anyone can run a computer program to calculate how many subjects are
needed for a BE study. The actual calculation for determining a sample
size is the easiest part of what a statistician does in helping a team
design a bioequivalence trial. The calculation itself is straightforward
(see Chapter 3, [341], [89], [74], [388], and [237] for background). The
more complex part of the job is to ensure that an adequate interface
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occurs between Statistics and Clinical to ensure the design and sample
size are appropriate to the needs of the study.

The first question one should ask Clinical in designing a bioequivalence
trial is, ‘How many formulations and doses need to be involved?’ This
will help determine the number of periods (2, 3, or 4) to be applied in
the study, and thereafter the number of sequences of treatment admin-
istration. This number of sequences is critical as it (with n, the number
of subjects) will define the degrees of freedom associated with the com-
parison between formulation means. As sample size is generally small in
bioequivalence studies (n ≤ 30 subjects), an imprecise understanding of
the degrees of freedom can lead to an imprecise understanding of the
power of a trial and its probability of success.

It is assumed for the purposes of this discussion that within-subject
variability estimates are available, for both AUC and Cmax, to determine
the trial size. For this purpose the larger of the two pooled estimates is
used in calculations, for obvious reasons (i.e., power will be greater, or
alternatively the probability of a Type 2 error will be lower, for the
endpoint with smaller variation).

The next question to ask Clinical is, ‘How many beds does clinical
have, and how many subjects can be scheduled?’ (also known as, ‘How
many spots are available?’). Once the extent of those clinical resources
has been determined (see Algorithm 5.1), the calculation may be carried
out using the SAS code given below to determine power (recall this
is 1 minus the probability of a Type 2 error) for the given potential
sample size range. Note that this code is general and apples to any
standard bioequivalence design, while the code of Chapter 3 is specific
in application for only 2× 2 bioequivalence designs.
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data a;
* total number of subjects
(needs to be a multiple of number
of sequences, seq);

n=30; seq=6;
* significance level;
a=0.05;
* variance of difference of two observations
on the log scale;

* sigmaW = within-subjects standard deviation;
sigmaW=0.2; s=sqrt(2)*sigmaW;
* error degrees of freedom for cross-over
with n subjects in total
assigned equally to seq sequences;

n2=n-seq;
* ratio = mu_T/mu_R;
ratio=1.00; run;

data b; set a;
* calculate power;
t1=tinv(1-a,n2); t2=-t1;
nc1=(sqrt(n))*((log(ratio)-log(0.8))/s);
nc2=(sqrt(n))*((log(ratio)-log(1.25))/s); df=n2;
prob1=probt(t1,df,nc1); prob2=probt(t2,df,nc2);
answer=prob2-prob1; power=answer*100; run;

proc print data=b; run;

For a two-stage group-sequential design (i.e., two looks), the Type 1
error rate (the parameter a in the above code) should be reset to 0.025
for the Bonferroni adjustment to determine power for the first look. At
the second look, the estimate of the variance (parameter s) should also be
adjusted for having assessed the variance at the first look in accordance
with the findings of [233]. Essentially the variance at the end of the trial
is weighted for the relative contribution of degrees of freedom at each
look.

We now have a determination of power (probability of success) for
our trial for a range of potential sample sizes. However, note that we are
NOT DONE YET! It is important that a sensitivity assessment be
carried out to ensure that the power of the trial is not overly influenced
by any of our assumptions regarding certain parameters. Additionally,
the sample size should ensure that power is sufficient relative to a pre-
specified level of random dropouts.
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Sensitivity of study outcome to random increases in variability should
always be considered by the statistician when providing a sample size
estimate. Variation greater than expected will result in less precision
(wider than expected confidence intervals) and a drop in power for the
study. Some authors [165] recommend derivation of a confidence interval
for σ2

W for use in sample size calculations with regard to sensitivity
analysis, and the authors have found this to be a valuable approach to
this issue.

Residual estimates of variability derived from our i studies on the
natural logarithmic scale may be considered to be distributed as a chi-
squared distribution with degrees of freedom equal to the sum of degrees
of freedom associated with the estimates of variability such that∑

i

(ni − si)σ̂2
PW

σ2
W

∼ χ2∑
i ni−si

.

Then a (1-α)100% upper confidence bound for σ2
W across trials is

σ̂2
PW

∑
i(ni − si)

χ2∑
i ni−si

(α)

where χ2∑
i ni−si

(α) is the α quartile of a chi-squared distribution with∑
i ni − si degrees of freedom.
The next important factor to consider is whether the true bioavail-

ability of the test formulation is the same as the reference formulation.
Often this (parameter ratio in our code) will randomly differ slightly
from unity. Indeed, for highly variable drugs, it is possible for the es-
timate of the ratio to randomly fall above unity in one trial, and in a
follow-up trial of the same formulations to randomly fall below unity!
As such, it is not a bad idea to allow for some wobble in the ratio of
bioavailability, and FDA guidance generally recommends that sensitivity
analyses consider ratios between 0.95 and 1.05.

It is not unusual for subjects to randomly drop out of a trial due
to a variety of issues. Food poisoning-induced emesis, the flu, and a
family outing are all examples of random reasons why a subject may not
participate in a given session of a trial. As the term ‘volunteer’ implies,
subjects have the option to withdraw their consent to participate at any
time and are not required to give a reason should they choose not to
do so. Such missingness at random in data is easily accommodated by
REML modelling but does represent a potential loss in power to the trial
as information of such subjects (sometimes termed ‘lost to follow up’)
will not be collected in that period. To compensate, a random dropout
rate of 5-10% is generally assumed, and the bioequivalence trial over-
enrolls to ensure a sufficient number of subjects complete the trial.

Dosing of subjects at the maximum tolerated dose may also result in
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dropouts over the course of the study; however it is important to differ-
entiate the ‘random’ dropouts described above from such a potentially
systematic dropout rate related to formulation. If a new formulation is
less well tolerated than the reference formulation, this may appear in
the data set as an increase in the dropout rate or in adverse event rate
on that formulation relative to the reference formulation. Bioequivalence
trials are generally not powered to assess the potential for such effect-
s, and we will consider how to assess safety in clinical pharmacology
cross-over designs in a later chapter.

One example of this is emesis. Handling of data under this event is
treated as a special case in guidance, and may result in data from a
subject experiencing this event not being used at all. FDA guidance
calls for the following assessment when emesis occurs:

We recommend that data from subjects who experience emesis during the
course of a BE study for immediate-release products be deleted from statis-
tical analysis if vomiting occurs at or before 2 times median Tmax. In the
case of modified-release products, the data from subjects who experience
emesis any time during the labeled dosing interval can be deleted. [135]

We now turn to an example of determining a sample size. It was
required that two new formulations (S and T) be demonstrated as bioe-
quivalent to the clinical trials formulation (denoted R). We planned to
use a three-period, six-sequence bioequivalence design and 30-50 spots
were expected to be available in the clinical pharmacology unit.

Table 5.6 lists the estimates of within-subject variability available, at
that time from previous studies, for use in sample size calculations.

Table 5.6 Example: Variability Estimates for Use in Designing a Bioequiva-
lence Study

Study df σ̂W

1 14 0.23
2 10 0.28
3 10 0.35
4 8 0.15
5 14 0.2
6 24 0.22

Our overall pooled estimate of within-subject standard deviation (σW )
across studies is σ̂PW = 0.24 with an upper 50% confidence bound of
0.28. We have at least 30 spots available and as many as 50, and will
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run the calculations for n = 30 and n = 48 (recall n must be a multiple
of the number of sequences, 6).

Our power for n = 30 is 94% and for n = 48 is 99%, and under
Algorithm 5.1, we conclude that this design will be adequate.

For the sensitivity analysis, we first assess the impact of increased
variation up to 0.28 standard deviations. Power for n = 30 is 82% and
for n = 48 is 97%. The authors’ rule of thumb is that at least 80% power
should be maintained under random changes in assumptions.

Second we assess the impact of a change in relative bioavailability to
0.95 instead of unity. Power for n = 30 is 85% and for n = 48 is 96%.

We assess the impact on power if we are very unlucky and varia-
tion increases to 0.28 standard deviations along with a decrease in true
bioavailability to 0.95. Power for n = 30 is 73% and for n = 48 is 90%.
This last scenario is pretty unlikely, but it does not hurt to check.

Last, the drug was well tolerated at the maximum dose, so over-
enrollment on the order of 5% is likely called for, so we would over-
enroll one or two subjects to ensure that the minimum desired number
complete the study.

In this situation, n of 30-36 subjects should provide at least 90% power
(most likely) and probably at least 80% power if the assumptions are not
too grossly violated.

5.8 What Outliers Are and How to Handle Their Data

Although not explicitly stated in regulatory bioequivalence guidance (see
Chapter 2), there is a very great distinction between an outlier in a
statistical sense and in a regulatory sense.

In statistical training, outliers are generally introduced as a topic re-
lated to assessment of model fit (see for example, [314] Chapters 2 and
5). An outlier is defined as a residual that has large value - i.e., the model
does not fit the data point well. Various statistical procedures and tests
have been devised over the years to identify such outliers. In general, if
the absolute residual value corrected for variation (termed ‘studentised
residual’) is greater than 2 or 3 (depending on how conservative one is),
then a data point may be termed a statistical outlier.

In terms of statistical impact, an outlier (or set of outliers) may im-
pact the estimate δ̂ (by influencing its position relative to 0) and inflate
the estimate of within-subject variance σ̂2

W (resulting in a wider than ex-
pected confidence interval) or both. Impacting either of these parameters
implicitly makes it more difficult to demonstrate average bioequivalence.
The previous section provides a quantitative means of determining the
potential impact on power (the probability of a successful BE trial).

This statistical assessment is a purely quantitative approach - provid-
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ing an objective assessment of whether or not a data point is unusual.
Statistical science rarely goes further - i.e., to describe what should be
done with such data points. In reporting of BE trials, it is usual for statis-
tical results to be presented with and without the outlying data points
to determine if the outlier is influential on the results. This, however,
leaves one in a practical quandary - which analysis is to be believed?

Outliers may not be excluded from a bioequivalence data set on sta-
tistical grounds alone. From a regulatory review perspective, handling
of such data is very difficult, and the FDA and other regulatory agencies
require that such data be looked at quite carefully.

If an outlier is the result of a protocol deviation (for example the
subject drank far too much water or chewed up the pill instead of just
swallowing it), then deleting the outlier from the data set may be justi-
fied [135]. However, if evidence of such a deviation does not exist, reg-
ulators assume that the cause of the outlier is either product failure
(maybe the tablet dissolved in some strange manner) or due to a subject-
by-formulation interaction (for example, the new formulation might be
more bioavailable than the reference formulation in certain subjects).
Admittedly, it may also just be a random event, and there is generally
no way to differentiate between which of the three categories a given
outlier belongs. Average bioequivalence studies are not designed to as-
sess individual product differences but only to compare the formulations
means.

In this context, whether an outlier is a product failure, a subject-
by-formulation interaction, or a random event is immaterial. These are
confounded, and final inference with regard to bioequivalence (and regu-
latory approval) is based on the full data set (i.e., including the outliers).
If observations are deleted, it is the sponsor’s responsibility to provide a
rationale to convince the regulators that such is appropriate.

On a practical level, this essentially means in practice that there is no
such thing as an outlier in a bioequivalence data set, and while we rec-
ommend that statisticians always check the assumptions of their model,
in this context there is little utility in spending too much time worry-
ing about outliers’ impact on the findings. The authors have never seen
an instance where a protocol violation has resulted in regulators deem-
ing the deletion of a data point as acceptable; however, the authors have
seen many instances where outliers from one to two subjects have result-
ed in a conclusion that bioequivalence was not demonstrated. Example
3.2 (Chapter 3) could be viewed as an example of this. From the data it
was impossible to rule out that product failure, a subject-by-formulation
interaction, or just a random occurrence of an outlying data point were
involved. This generally results in a follow-up BE trial (of similar design)
being done as was described in the prologue to this chapter.
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As the impact of outliers cannot be controlled after the study com-
pletes, the best way to deal with them is to acknowledge that they can
happen at random and to protect the study’s power for random appear-
ance of outliers at the design stage. To do so, it is recommended that
bioequivalence studies be powered at 90% and that such trials have at
least 80% power under potential inflation of the variability estimate and
for potential changes in δ of up to 5%.

5.9 Bayesian BE Assessment

The approach to statistics thus far described is deductive in that we
collect data to test a specific hypothesis or set of hypotheses. We use
observed data to derive statistics to test specific facts in which we are
interested. Statistics are used to quantify the probability that the data
collected are consistent with our predetermined hypotheses.

For bioequivalence testing, one could denote the probability of ob-
served data given the hypotheses conditions as:

p(y|H01,H02). (5.1)

where y denotes the observed data, and H01,H02 refer to the two one-
sided hypotheses of interest for the difference between formulation means
(see Equations (2.3) and (2.4)). This direct, deductive approach to statis-
tics enjoys a very long history [176], and is the most often referred to
approach in biopharmaceutical statistics. It is referred to as direct prob-
ability assessment as it deals ‘directly’ with the observed data to draw
conclusions.

However, this is not the only way to consider looking at data. One
might approach data in an inductive manner. In this case, we have a
predetermined (rough) idea of the state of nature, and we collect data
to give us a more precise idea of this state. This approach is inductive in
that we assume we know what is happening or will happen, and data are
collected to reinforce the point. This approach to statistics also enjoys a
long history and was developed in the late 1700s and early 1800s by Bayes
and Laplace [176]. It is referred to as indirect probability assessment as
it deals ‘indirectly’ with the observed data to draw conclusions about
the unknown parameters of interest. In average bioequivalence testing,
for example, δ = µT − µR, the true (unknown) difference in formulation
means is the parameter of most interest.

In biopharmaceutical statistics, indirect probability assessment is not
employed as often as direct probability assessment. The reason is quite
obvious, given a brief rereading of Chapter 1. When making regulato-
ry claims, it is the sponsor’s burden to prove to a regulator’s satisfac-
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tion that the drug is safe, efficacious, and can be manufactured to good
quality. The regulator’s presumption is that it is not safe, efficacious,
nor of good quality until sufficient data are provided to prove otherwise.
Therefore, the application of indirect probability assessment is of limited
practical utility in regulated bioequivalence testing. Indirect probability
assessment is also deemed subjective in that one must make assumptions
regarding the conditions being studied.

Note, however, that when one is not working in a confirmatory setting
but is exploring clinical development of a compound (as described in
Chapter 1), an inductive approach to statistics adds much value. Under
such circumstances, the sponsor is working under the assumption that
a drug is reasonably safe, efficacious, and of good quality and wishes
to collect data to design and study the drug in confirmatory clinical
trials. For example, one might perform trials in clinical development
to determine the best tolerated and effective dose to subsequently be
used in a confirmatory trial. In such a setting, it is not necessary to
demonstrate to regulators that such is the case, but only to provide
sufficient evidence to satisfy internal decision makers in the sponsoring
company. Use of Bayesian inference offers substantial benefit in terms of
data exploration (see [42]). Such an inductive approach will be discussed
further in Chapters 7 and 8. Here we will include a brief discussion on
indirect probability assessment in bioequivalence for completeness and
to introduce concepts to be used later.

In mathematical terms, we first acknowledge we have some idea of
what is happening or will happen with the difference in formulation
means (expressed as p(δ)). We again collect data from the BE study and
calculate a probability; however, here we are interested in the probability
of the conditions for δ given the observed data, which we denote as:

p(δ|y)

rather than the probability of observing the data given a hypothetical
set of conditions. Note there is no explicitly stated hypothesis in this
indirect probability setting.

The derivation of an indirect probability may be extremely complex
mathematically, and this was a practical bar to the implementation of
such approaches to data analysis until recently. Modern computing soft-
ware has rendered this complexity manageable. Recent developments in
Markov-Chain-Monte-Carlo-based methods known as Gibbs sampling
(e.g.,WINBUGS at http://www.mrc-bsu.cam.ac.uk/bugs/) were devel-
oped in the late 1980s and 1990s [161] to implement indirect probability
assessment in a straightforward fashion. We will now consider an exam-
ple in bioequivalence to illustrate the concepts; further illustration of
these methods for normal data models may be found in [156].

http://www.mrc-bsu.cam.ac.uk
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One first assumes a functional form for p(δ) and then derives

p(δ|y) =
p(y|δ)p(δ)

p(y)
. (5.2)

This expression indicates that the probability in which we are inter-
ested (p(δ|y)) is equal to the probability of the data given the possible
values of µT −µR = δ multiplied by our initial idea about the properties
of the situation (p(δ)) divided by the overall probability that one would
observe the data (p(y)). Note that the expression p(y|δ) is very similar to
Equation (5.1). Under certain conditions, inductive and deductive rea-
soning will yield similar findings statistically, and we will observe such
in this example.

We now turn to the example utilizing the AUC and Cmax data found
in Example 3.1. WINBUGS code for this analysis is provided in the
Technical Appendix.

This model assumes we know very little about the true values of the
unknown parameters of interest (here, µT − µR). Here, for example,
the WINBUGS parameter delta (δ in our mathematical notation) is
assumed to be normally distributed with mean 0 and an very wide s-
tandard deviation of 1000. This is termed a noninformative (i.e., flat)
prior distribution. WINBUGS then uses a Gibbs sampler (100,000 it-
erations were performed for this example) according to the procedure
developed in [156] to integrate the data and derive the probability dis-
tribution for p(δ|y) and p(σ2

W |y). From the estimated distribution, we
can derive various statistics. In Table 5.7 we choose to present medians
and 90% confidence intervals. The median is a statistic derived by taking
the value in the distribution where 50% of data falls above and 50% of
data falls below the value. In keeping with the findings of Laplace [176],
the posterior median is the most appropriate measure of centrality for a
distribution when using indirect probability assessment.

The findings of Table 5.7 should seem very familiar. If we review these
findings relative to the analyses of Chapter 3, one will find that they are
very similar. This is generally the case if one uses a noninformative prior
distribution as the weight introduced by this term into Equation (5.2)
is minor.

The key problem with the regulatory application of indirect proba-
bility assessment in this setting is this dependence on the assumptions
of the prior distributions. For example, if one makes a minor change to
the model (assumes, for example, that delta has a distribution with
different moments, such as a standard deviation of 1) the distribution of
p(δ|y) may sometimes change dramatically. The extent of such a change
depends upon the weight of this term in Equation (5.2) relative to the
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Table 5.7 Statistics for δ and σ2
W Inverse Probabilities Given AUC and Cmax

Data Observed in Example 3.1

Parameter Median δ (90% BCI) median σ2
W

AUC -0.0166 (-0.0614, 0.0286) 0.0114
Cmax -0.0270 (-0.1121, 0.0588) 0.0410

BCI = Bayesian Confidence Interval
5th and 95th Quartiles of p given observed data

weight of the observed data. In this example, such is not the case, but
changes in the assumptions for smaller data sets can result in a differ-
ent inference, complicating regulatory interpretation when using such a
method [329]-[330]. We leave sensitivity analysis to assess this potential
to the reader. Code for the examination of data in Example 3.2 may be
found on the website accompanying this book.

5.10 Technical Appendix

5.10.1 SAS Code for Simulating BE Designs

The following SAS code may be used to create 5000 simulated logAUC
data for 5000 subjects, for a randomized cross-over trial where subjects
are switched from the reference formulation to the test formulation and
vice-versa.

The first data statement sets the parameters to be used in the simu-
lations, and then derives variance-covariance estimates for the data (see
Chapter 3 for details). The code then selects random numbers for a ran-
dom variable t based on the seed value 123. Unless a seed is specified,
SAS will use the clock time to derive the random number. A similar pro-
cedure is followed for the random variable r accounting for the fact that
r will be correlated to t in line with the findings of Chapter 3. These
random numbers are combined with the parameter values to create the
‘Monte Carlo’ observations.
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SAS Simulation Code:

data simtr simrt;
keep subject t_pk r_pk;
mut=180;*mean of test;
mur=200;*mean of reference;
varb=0.18;*between-subject variance;
varw=0.09;*within-subject variance;
per1=0;*period effect in period 1;
per2=0;*period effect in period 2;
seqtr=0;*sequence effect in TR;
seqrt=0;*sequence effect in RT;

var=varb+varw; rho=varb/var;
std=sqrt(var);
c=sqrt(1-rho**2);

do i = 1 to 4999 by 2;
t = rannor(123);
r = rho*t+c*rannor(123);
t_pk = seqtr + per1 + mut + std*t;
r_pk = seqtr + per2 + mur + std*r;
subject=i;
output simtr;end;

do i = 2 to 5000 by 2;
t = rannor(456);
r = rho*t+c*rannor(456);
t_pk = seqrt + per2 + mut + std*t;
r_pk = seqrt + per1 + mur + std*r;
subject=i;
output simrt;end;

run;

data simtr;set simtr;sequence=’TR’;run;

data simrt;set simrt;sequence=’RT’;run;

data simulate;set simtr simrt; run;



172 DEALING WITH UNEXPECTED BE CHALLENGES

5.10.2 Bayesian Statistical Theory in BE

Consideration of methods for BE decision making in the early 1980s fo-
cused on the use of Bayesian posterior probabilities for the construction
of comparisons for µT :µR. Rodda and Davis [364] and Mandallaz and
Mau [289] evaluated the decision rules introduced in [451]-[452] and in-
troduced consideration of this distribution relative to a predetermined
goalpost interval of (-∆, ∆); bioequivalence was concluded if the posteri-
or probability of falling in this interval was higher than a predetermined
probability level, e.g. 0.9.

This idea was further developed in [148] which introduced graphical
methods to accompany the consideration of the posterior probability
and recommended that ∆ be altered according to the drug under study.
Selwyn et al. [381] and Grieve [170] developed methods for the Bayesian
analysis of the randomized, two-period cross-over and evaluated the im-
pact of various other factors (carry-over, choice of prior distributions)
on inference. Reisner and Guttman [357] developed similar ideas in the
engineering field, and Yee [466] developed a non-Bayesian method for
deriving the upper and lower bounds of the probabilities for rejecting
bioequivalence.

In summary, these methods used the normal and gamma distributions
and the models of Chapter 3 to derive probabilistic statements using
Bayes’ rule on the posterior probability for the difference of µT -µR given
the data observed to assess the degree of average bioequivalence. Between
and within-subject variances were assumed to be independent, and fixed
effects were assumed to be normally distributed with mean and nested
variance appropriate to the model.

Prior distributions have to be specified for all model parameters. Nui-
sance effects (period effects) are integrated out of the log-likelihood func-
tion using an appropriate method based on Bayes’ function (full details
may be found in [381] and [170]). The posterior distribution for µT −µR

is based on the prior distributions, model, and data which is calculated
using Bayes’ rule [273].

Numerical integration or approximate methods [381]-[382] were ini-
tially proposed for use in implementing these techniques; however, these
were known to be subject to various problems (e.g., impact of starting
values and sensitivity to numerical assumptions, computer intensive),
and while the techniques offered substantial benefit in the practical as-
sessment of bioequivalence, their use was not encouraged by regulators
within industry applications [329]-[330].

Use of a Bayesian procedure was known to be potentially sensitive
to the choice of prior distribution - a classic topic of debate between
Bayesians (those in favor of indirect probability assessment) and Fre-
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quentists (those in favor of direct probability assessment). This led to
questionable validity in implementation in public health. Whether this
situation will hold true in the future (as such methods become more and
more used in drug development) is open to debate.

It should be noted that a Bayesian analysis naturally facilitates the
use of sequential experimentation to assess bioequivalence. Extensions to
the Bayesian approach by first conducting a pilot relative bioavailability
study to estimate within-subject variability in a two-step procedure were
discussed in [351]. A small pilot study (sample size of six subjects) is first
conducted under this approach for the purpose of deriving prior beliefs
(or distributions). A full-size bioequivalence study is then conducted
based on this information to assess bioequivalence under predetermined
Regulatory standards. Other Bayesian approaches to the assessment of
ratios of means are described in [16]. More recent developments may be
found in [159].

Example 3.1 AUC and Cmax data were separately analyzed in WIN-
BUGS using the following computer code (based on the code from [237]
Chapter 2):
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model;
{
for( k in 1 : P )
{
for( j in 1 : N )
{
Y[j , k] ∼ dnorm(m[j , k], precw)
m[j , k] < − mu + subject[j]
+ equals(k,1)*((pi/2) + seq[j]*delta/2)
+ equals(k,2)*(-(pi/2) - seq[j]*delta/2)
} }
for( j in 1 : N )
{
subject[j] ∼ dnorm(0.0, precb)
}
precb ∼ dgamma(0.001, 0.001)
precw ∼ dgamma(0.001, 0.001)
mu ∼ dnorm(0.0, 1.0E-6)
pi ∼ dnorm(0.0, 1.0E-6)
delta ∼ dnorm(0.0, 1.0E-6)
sigma2w < − 1 / precw
sigma2b < − 1 / precb
theta < − exp(delta)
}

Subjects’ (j = 1 to N) log-transformed observations (in periods k=1
or 2) are deemed to be normally distributed with mean (m[j , k]) and
inverse within subject variance (precw). The mean m[j , k] is a func-
tion of the overall mean (mu, included to center the model on the over-
all average between and within subjects), each subject as their own
control (subject[j] assumed to have inverse variance precb), and pe-
riod (pi) and formulation (delta). In the first period, m[j , 1] = mu
+ subject[j] + (pi/2) + (seq[j]*delta/2) where seq[j] indicates to
WINBUGS whether the subject (j) received the Test or Reference for-
mulation in the first period based on the sequence of treatments to which
each subject j was randomized. In the second period, m[j , 2] = mu +
subject[j] -(pi/2) - (seq[j]*delta/2).

Note the change in sign (+ to −) associated with the terms for period
and formulation effects. This indicates that the period and formulation
effects in period 2 should be the opposite of period 1, and as the model
is centered on the overall mean we must divide pi and delta by two to
indicate to WINBUGS that for any given subject the distance between



TECHNICAL APPENDIX 175

an individual subject’s two observations due to period and formulation
effects should equal pi and delta, respectively.



CHAPTER 6

The Future and Recent Past of BE
Testing

Introduction
A few years later, I was asked to attend a meeting in Hilton Head,

South Carolina, where bioequivalence was one of the topics of discus-
sion. There were presentations by several statisticians from the FDA,
academia, and industry on the topic. I regarded this as somewhat of a
pain - there was a lot of work to do, I had a date that weekend, and I
could not see where flying off to Hilton Head was going to be helpful to
anyone at all.

My boss, however, vetoed my not going. It was expected that I would
attend (and eventually participate in) such conferences as a matter of
professional development, representing the company and the discipline
of statistics (etc., etc.). Also, she did not have time to go. So I dutifully
packed my bags and headed down. One of the reasons I had gone to work
was that I was tired of sitting through lectures, but I left secure in the
knowledge that at least maybe I could possibly play golf while down there.

When the conference was over, I came back and reported on the upcom-
ing new FDA proposals about assessing bioequivalence (to be discussed
later in this chapter). I was still pretty new to the company and industry
at this point, so how bioequivalence testing was done did not really bother
me one way or the other. As long as I knew what to do with the data
and how to design the studies, I was holding up my end. The FDA was
planning to issue a draft guidance on the topic later that year.

The reaction I received was kind of like the reaction one gets when
accidently knocking over a bees’ nest - the bees are very surprised, kind
of annoyed, do not like it, and may be less than friendly. My boss was
very surprised by the information I brought back, and to be blunt, did not
believe me. I argued about it with her for a while, showed her my notes,
and pointed out that if she did not like the message, it was her fault as
she was the one who had made me go. That was not helpful in resolving
the argument. In the end, I had her invite one of the local academic
statisticians who had given a talk at the meeting to come to ‘the Unit’
to discuss the upcoming FDA proposals.

If she did not believe me, I figured she would believe him. Either way, it
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was fine by me. I had work to do, and it was windy and rained the whole
time, so I had not gotten to play golf. My going to the conference had
been a disappointment to everyone as far as I could tell, and I resolved
to do so as little as possible in future (little did I know....).

It is amazing how often this type of thing happens in industry (not the
arguments - that happens every day - the inviting of external people to
make a point). I have had to do this type of thing several times since then.
You may know exactly what is going on for a particular issue, but very
often people at the company want to hear it themselves from someone
else external to the company before they will believe that they really have
to do anything about it. It has been pointed out that we have to pay these
people to come talk to us (i.e., this approach is not really cost-effective),
but that is how business is often done.

After the external academician came in and spoke with us, my boss
believed me, and there was a great deal of discussion at the company
about the possible implications of this proposal (nobody knew) and when
it would come into effect (no one knew that either). In the end, my boss
asked that I go down to Washington, DC, with her the following winter
after the draft guidance was issued [122] for a special FDA Advisory
Board meeting on the topic. These are meetings of experts (external to
the FDA) on a particular topic who advise the FDA on how to protect
public health.

In the end, this resulted in my spending the next approximately five
years working on this area of bioequivalence, doing extensive research
and presenting at various meetings here, there, and everywhere on the
topic and its implications for public health. It was important and also
interesting research, and I saw most of the airports in North America
(and beyond).

The lesson of this experience is:
1. Conference attendance is actually important. It keeps one on the cut-

ting edge at work.
2. In the modern world, it is not enough to just do your day job. Working

folks should engage in research that benefits them professionally at
their company and also externally.

3. All that said, five years of research is a long time and a lot of research.
Be careful what conferences you choose to attend, and never go to
Washington, DC, for an FDA meeting with your boss if you can help
it.

6.1 Brief History

The FDA proposed the use of individual (IBE) and population (PBE)
bioequivalence as a method for ensuring bioequivalence of new formula-
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tions in 1997 [122]. These methods (defined later in this chapter) were
to replace the use of average bioequivalence (ABE) already discussed in
previous chapters.

This generated a great deal of discussion and public debate, and the
IBE and PBE proposals were amended in 1999, [125]-[126], and finalized
in 2000-2001, [130]-[131]. After FDA reviewed data from application of
such techniques in practice, the IBE and PBE methods were removed
from their guidance in 2003 [135].

We discuss the IBE and PBE history and application here for com-
pleteness; however, these approaches to bioequivalence should not be
used in regulatory submissions. We will discuss the difficulties in imple-
mentation of these approaches later in the chapter.

First, some background. Sheiner [401], Schall and Luus [371], and
Schall [370] introduced an alternative method for bioequivalence as-
sessment based on models of dose-response [399], risk assessment, and
different combinations of estimates of means and variances from mod-
els. Under such a moment-based approach to bioequivalence assessment,
differences in means and variances are combined into one aggregate sta-
tistic for the assessment of population and individual bioequivalence. If
the upper 95% bound on the aggregate statistic falls below a pre-set
equivalence margin, bioequivalence was demonstrated. Such a procedure
implicitly would allow for widening (or narrowing) of the equivalence
margin based upon variation observed in the study.

Bootstrap [370] or Bayesian [401] (see Chapter 5) based assessment of
the quartiles of the aggregate endpoint were initially proposed; however,
estimation procedures for such a statistic using approximation proce-
dures involving the Cornish-Fisher Expansion [31] and methods for the
linear combination of independently Chi-squared distributed variables
([216]; [144]; [214]; [180]; [53]; [169]; [284]; [428]; [440]; [52]) were devel-
oped in more detail in [209]-[210].

Practical strategies for population and individual bioequivalence as-
sessment under this approach were developed in [372], and the appli-
cation to the moment-based criterion of most interest to the FDA was
developed in greater detail by Hyslop et al., [223]-[224]. Alternative para-
metric procedures were described in [194], [249], [76] and [350].

It should be noted that many other statistical approaches were con-
sidered during the debate on bioequivalence. Testing procedures for as-
sessing differences in means and variances simultaneously (though not
as a composite endpoint) were developed in [21], [22], [65], and [158].
Stepwise procedures (testing for equivalence in means between formula-
tions followed by testing for equivalence in variances) were described in
[103],[104], [437], [436], [173], [174], and [167]. Unbiased, optimal tests
for bioequivalence assessment were described in [312], [215], [48], [441],
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[442] and multivariate, optimal assessment of bioequivalence (e.g, for
AUC and Cmax simultaneously) were described in [28], [29], [72], and
[313]. Testing for differences in profiles was described in [294].

The US Food and Drug Administration’s decision following the de-
bate on whether population and individual bioequivalence were needed
to protect public health and the approach chosen for assessment were an-
nounced in draft guidance released in 1997 [122] based on the principles
discussed in [372]. Previously discussed approaches to moment-based as-
sessment of population and individual bioequivalence were established
as described in later paragraphs for studies conducted prior to approval
and following approval of new chemical entities.

Average bioequivalence was deemed insufficient to protect the public
health as it assessed only the difference in formulation means, did not
adjust for the variance of narrow therapeutic drug products and highly
variable drug products, and did not account for assessment of subject-
by-formulation interaction. However, no evidence of therapeutic failure
had been established over the five years in which the 1992 FDA guidance
had been in effect [17].

Conventional two-period, randomized, well-controlled, cross-over de-
signs were established as the design to be performed in the assessment
of population bioequivalence for approval of bioequivalence in formula-
tion changes prior to approval of the new drug product [122]. However,
two-sequence, four-period (RTRT, TRTR), randomized, well-controlled,
replicate cross-over designs (described in Chapter 4) were chosen as the
design to be performed in the assessment of individual bioequivalence for
approval of new formulations following approval of the new drug product
for both generic manufacturers and those manufacturers wishing to make
formulation changes following approval. Replicate designs were required
for the assessment of individual bioequivalence so that within-subject es-
timates of variance were estimable along with the subject-by-formulation
interaction [122].

Overall, the FDA preliminary draft guidance [122] involved little change
in study design for sponsors conducting trials to establish bioequivalence
of a new commercial formulation relative to that used in clinical trials
under the population bioequivalence approach to inference, though dif-
ferent analyses were recommended for data analysis and decision making.

The new draft FDA guidance, however, required replicate designs for
changes in formulations following approval - a more complex design for
the majority of drug products. Under this approach to inference, logAUC
and logCmax were to be analyzed separately using a two-stage (REML)
linear model including terms for sequence, period, and formulation in the
model for a replicate design. Within-subject variability estimates were
to be derived for each formulation, and subject-by-formulation interac-
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tion was to be used to assess whether there were subgroups of subjects
responding differently to the new formulation.

We now turn to the statistics used for this purpose by the FDA. Fol-
lowing this discussion, we turn to a topic currently being debated - scaled
average bioequivalence.

6.2 Individual and Population BE

Population bioequivalence was to be assessed using the following aggre-
gate statistic [122]:

(µT − µR)2 + σ2
T − σ2

R

max(0.04, σ2
R)

, (6.1)

where σ2
T = σ2

WT +σ2
BT and σ2

R = σ2
WR +σ2

BR. Note that this aggregate
statistic can be constructed using a mixed model from a two-period
cross-over design or a parallel group design and does not require the use
of a replicate design.

Individual bioequivalence was to be assessed using the following ag-
gregate statistic [122]:

(µT − µR)2 + σ2
D + σ2

WT − σ2
WR

max(0.04, σ2
WR)

. (6.2)

Because the within-subject variance of each formulation cannot be sep-
arately estimated from between-subject variance estimates in most two-
period cross-over designs of the form (TR, RT), a replicate design is
generally required.

The goalpost for population bioequivalence assessment assumed a
total-subject variance for the reference formulation of 0.04 and was set
to approximately 1.74 as follows:

(ln(1.25))2 + (0.02)
0.04

, (6.3)

allowing for a mean difference of 20% on the loge-scale and a variance
allowance of 0.02 in the numerator under the procedure proposed by the
FDA [122]. If the upper 95% percent bound on the FDA metric fell below
this value, population bioequivalence was demonstrated for the endpoint
under study. The goalpost for individual bioequivalence assessment as-
sumed a within-subject variance for the reference formulation of 0.04
and was set to approximately 2.49 as follows:

(ln(1.25))2 + (0.03) + (0.02)
0.04

, (6.4)

allowing for a mean difference of 20% and a variance allowance of 0.03
in the numerator for subject-by-formulation interaction and 0.02 for the
difference in within-subject variance under the procedure proposed by
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the FDA [122]. If the upper 95% bound on the FDA metric fell below
this value of 2.49, individual bioequivalence was demonstrated for the
endpoint under study.

To undertake these assessments at least 1500 (2000 bootstrap samples
were recommended in [122] and [96]), while preserving the number of
subjects in each sequence and a mixed model appropriate to the design
was to be fitted to each bootstrap sample (see Chapter 5). The appropri-
ate aggregate statistic, either (6.1) or (6.2), was then to be derived based
on the model estimates for each bootstrap sample; note that the denom-
inator for each bootstrap’s aggregate statistic was to be chosen based on
the point estimate from the model estimates of the original data set. The
nonparametric percentile method [96] was then to be used to calculate
an upper 95% bound for the quantity of interest. It was required that
the upper 95% bound for the metric of interest fall below predetermined
regulatory bounds (1.74 and 2.49 for population and individual bioe-
quivalence, respectively) for both AUC and Cmax for bioequivalence to
have been demonstrated.

Bootstrap-based inference was deemed undesirable as it introduces
randomness (see Chapter 5) and because the coverage probability of the
nonparametric percentile method was observed to fall below regulatory
standards [335]. Hyslop et al., [223]-[224], developed a parametric ap-
proach to inference using method-of-moments estimates which was later
supplemented by an asymptotic testing procedure for situations where
missing data were present [237]. We will confine discussion of the sta-
tistics involved to IBE for the purposes of this chapter. Information on
PBE may be found in [332], [335], and [237].

Hyslop et al.’s [223]-[224] method first calls for the linearization of
the statistic of interest. This simplifies the approach to hypothesis test-
ing and is simply a matter of mathematical convenience. Under this
approach, the hypotheses of interest for IBE become:

H0R : δ2 + σ2
D + σ2

WT − (3.49)σ2
WR ≥ 0 (6.5)

if σ̂WR ≥ 0.2. This is referred to as the reference (product variation)
metric, and

H0C : δ2 + σ2
D + σ2

WT − σ2
WR − (0.996) ≥ 0 (6.6)

if σ̂WR < 0.2 (a constant scaled metric).
Note that the hypotheses H0R and H0C are not continuous at the

break-point σ̂WR = 0.2, and this led to issues with conflicting findings
in certain settings [473]. FDA guidance suggests using both constant and
reference scaled metrics under certain circumstances:

VII. D. Discontinuity: The mixed-scaling approach has a discontinuity at
the changeover point, sW0 (individual BE criterion) or sT0 (population BE
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criterion), from constant- to reference-scaling. For example, if the estimate
of the within-subject standard deviation of the reference is just above the
changeover point, the confidence interval will be wider than just below. In
this context, the confidence interval could pass the predetermined BE limit
if the estimate is just below the boundary and could fail if just above. This
guidance recommends that sponsors applying the individual BE approach
may use either reference-scaling or constant-scaling at either side of the
changeover point. With this approach, the multiple testing inflates the type
I error rate slightly, to approximately 6.5%, but only over a small interval
of sWR (about 0.18-0.20).[131]

In practice, therefore, those testing for IBE were to derive both tests,
and if σ̂WR was near 0.2 could use rejection of either test as sufficient
evidence to demonstrate IBE.

Method-of-moments estimates for the moments of interest may be
placed in this expression and the Cornish-Fisher expansion [235] may be
applied to calculate an approximate upper bound [223]-[224] for complete
data sets using confidence bounds for each of the parameters as follows.

For the linearized version of the FDA’s IBE metric, a procedure is
described in the FDA guidance [131] based on [223]-[224] that is ap-
propriate for replicate cross-over designs with no missing data and is
summarized as follows. In this situation, the estimates δ̂, σ̂2

I , σ̂2
WT , and

σ̂2
WR are derived for δ = µT −µR, σ2

I = σ2
D + σ2

W T +σ2
W R

2 , σ2
WT , and σ2

WR

based on method-of-moment estimates and utilised as follows:
1. Derive unbiased, independent method-of-moments estimators δ̂, σ̂2

I ,
σ̂2

WT and σ̂2
WR.

2. Let Hδ be the square of the absolute value of the larger of the lower
and upper 90% bounds on δ derived using the t-distribution and us-
ing the Satterthwaite approximation [369] for the degrees of freedom,
HI = ν(σ̂2

I )
χ2

ν(0.05) , HT = ν(σ̂2
W T )

2χ2
ν(0.05) HR = −(3.99)ν(σ̂2

W R)
χ2

ν(0.95) where χ2
ν(α) is the

αth-percentile point of the chi-squared distribution with ν degrees of
freedom.

3. Then
(δ̂2 + σ̂2

I +
σ̂2

WT

2
− (3.99)σ̂2

WR)

∓[(Hδ − δ̂2)2 + (HI − σ̂2
I )2 + (HT −

σ̂2
T

2
)2 + (HR − (−3.99σ̂2

WR))2]
1
2

is an approximate, 90% confidence interval for the FDA’s IBE metric.
Appropriate modifications to this approach were to be made when the
metric is scaled to a constant variance and for population bioequivalence
assessment (see [131]).

Alternatively, one may have used an asymptotic test, [332], [335], as
described in [237] or use a modified bootstrap procedure, [395]-[396], to
perform these tests.
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Table 6.1 IBE Derived Upper 95% Bounds for Chapter 5 Replicate Design
Examples

Endpoint σ̂W R REF Hys CST Hys REF Asy REF Asy REF Bot CST Bot

exam5.sd2

AUC 0.080 0.008 -0.079 0.006 -0.084 0.008 -0.085
Cmax 0.209 0.012 -0.003 0.009 -0.035 0.003 -0.034

exam6.sd2

AUC 0.344 -0.195 -0.065 -0.179 -0.067 -0.009 0.020
Cmax 0.557 -0.223 0.306 -0.169 0.290 -0.065 0.345

REF: Reference-Scaled Hypothesis
CST: Constant-Scaled Hypothesis

Hys=Hyslop; Asy=Asymptotic; Bot=Bootstrap

These calculations are quite complex. Given the limited utility of ap-
plication of these procedures in regulatory application, we conclude dis-
cussion of the statistics here and will only note (for interested readers)
the following results for examples of replicate designs with data in Chap-
ter 5.

Both data sets would have been deemed IBE as the upper bound of
interest falls below zero. Note the discontinuity findings for exam5.sd2,
Cmax. As one of the tests falls below zero and the σ̂WR lies very near
0.20, IBE was demonstrated. Also note that the test formulation is IBE
to the test formulation for Cmax of exam6.sd2. As we know from Chap-
ter 5, this test failed to demonstrate ABE due to a dramatic, statisti-
cally significant increase in mean exposure for the test relative to the
reference formulation. In this case, within-subject variation is so large
(σ̂WR=0.557) as to overwhelm the difference in means in the test for IBE.
In this instance, a formulation that was not ABE could be declared IBE
and presumably allowed access to market.

To call something equivalent implies a context or criteria for the deter-
mination. There are several stakeholders in determining such a criteria:

1. Statistical considerations: the approach should be quantifiable, accu-
rate, precise, well understood, and should be transparent in interpre-
tation.

2. Sponsor considerations: Using a well-designed, controlled, and rea-
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sonably sized study (or set of studies), the sponsor should be able to
show the criteria have been met with a quantified chance of success.

3. Regulatory and public-health considerations: The approach used must
protect public health (in that the risk of false positive market access
must be controlled at a predetermined rate).
Statistically, the IBE approach could be accommodated. The Hyslop

et al., [223]-[224], asymptotic [237], and bootstrap tests, [122], [395]-[396],
were available to perform the tests of interest.

The interests of sponsors were also addressed in the FDA’s [131] final
statistical guidance. The procedures could be carried out using small,
well-controlled cross-over designs.

However, the regulatory application of these techniques was found not
to protect public health for several reasons:
1. The property of the IBE procedure to allow more than a 20% change

in average relative bioavailability for highly variable drugs was deemed
unacceptable. Hauck et al. [197] demonstrated that a widening from
the traditional average bioequivalence 0.80-1.25 acceptance criteria
could lead to therapeutic failure in the marketplace.

2. The weighting of the IBE findings to observed reference product vari-
ation was thought to be unacceptable. The more variable this finding,
the easier it was to demonstrate bioequivalence under the IBE and
PBE approaches. Inflation of this variance by running a poorly con-
trolled design could improve the chances of successfully demonstrating
bioequivalence.

3. The interpretation of variance estimates being plugged-into the IBE
statistic was questionable. The variance estimates could become bi-
ased by their estimation method, [109]-[110], and in the presence of
missing data [335]. Variance estimates from such small studies are
poorly characterized statistically; however, these variances play a key
role in the success or failure of an individual bioequivalence trial,
having far greater weight than the difference in formulations means,
[472]-[473].

4. While reasons 1 to 3 above might have been sufficient to prevent any
new formulation from entering the market using such approaches, the
issue was exacerbated when multiple new formulations entered the
marketplace at patent expiration under the IBE approach to testing.
IBE did not protect public health in that dramatic changes in average
exposure were possible when multiple formulations entered the market
at patent expiration [335]. As patients would be switching from for-
mulation in an uncontrolled manner, dependent on which formulation
they picked up at the pharmacy, the potential for widespread thera-
peutic failure was too great to allow for this potential application. The
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traditional ABE testing prevents this possibility and protects public
health [10].

In the end, FDA guidance [135] withdrew the possibility of application
of IBE and PBE due to these and other reasons. The problem remains as
to how to demonstrate average bioequivalence for highly variable drugs,
though as we have seen previously, replicate and group-sequential designs
may be used for this purpose. Another alternative, sometimes debated for
highly variable drugs, is a statistical procedure known as Scaled Average
Bioequivalence (SABE), and we briefly develop the properties of such a
procedure in the next section.

6.3 Scaled Average BE

Highly variable drugs, and also narrow therapeutic index drugs (see
Chapter 2), have been the subject of debate at various times as it was
felt that the 0.80–1.25 acceptance range might not protect public health
(in the latter case) and was too stringent (in the former case), requiring
large trials.

Tothfalusi and Endrenyi [430] provide an excellent review of the topic,
expanding on their consideration of the topic in [429]. In essence, scaled
average bioequivalence may be viewed as a special case of individual
bioequivalence where σ2

WT = σ2
WR = σ2

W and σ2
D = 0.

As such, the statistic of interest becomes:

(µT − µR)2

σ2
W

. (6.7)

Note that in the denominator of this expression, max(0.04) is not
included, as in IBE and PBE testing. This is in keeping with the de-
scription of [430]. In recognition of the FDA’s determination that narrow
therapeutic index drugs need not be held to a strict standard of bioequiv-
alence [135], we include here the fixed scaling parameter 0.04 to protect
narrow therapeutic index drugs from an overly stringent bioequivalence
standard.

For drugs with low variability (σ2
W ≤ 0.04), the traditional average

bioequivalence tests (see previous chapters) are used [430]. For larger
variation, the two one-sided tests become:

H01 :
µT − µR

σW
≤− η (6.8)

versus the alternative

H11 :
µT − µR

σW
>− η
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and
H02 :

µT − µR

σW
≥η (6.9)

versus the alternative

H12 :
µT − µR

σW
<η.

As with ABE, in a 2× 2 cross-over, this two one-sided test procedure
may be assessed using a confidence interval. Tothfalusi and Endrenyi
[430] stated that:

[t0.05(λ, n− 2), t0.95(λ, n− 2)]

is a 90% confidence interval for µT−µR

σW
where tα denotes the α quar-

tile of a noncentral t distribution with noncentrality parameter λ =
(µ̂T−µ̂R)

√
n/2

σ̂W
with n− 2 degrees of freedom.

If these limits lie between −η
√

n/2 and η
√

n/2, then scaled average
bioequivalence is demonstrated.

Consider Example 3.1 from Chapter 3. The statistics of interest may
be derived by entering the appropriate values into the following SAS
code. We utilize η = 0.795 for the purposes of this example as discussed
in [430].

data sabeauc;
eta=0.795;n=32;d=-0.01655; s2=0.01100;
lambda=d/(s2**0.5);
t 05=TINV(0.05,30,lambda); t 95=TINV(0.95,30,lambda);
ll=-eta*((n/2)**(0.5)); ul=eta*((n/2)**(0.5)); run;

proc print data=sabeauc noobs;
var ll t 05 t 95 ul;run;

data sabecmax;
eta=0.795;n=32;d=-0.02694; s2=0.03835;
lambda=d/(s2**0.5);
t 05=TINV(0.05,30,lambda);t 95=TINV(0.95,30,lambda);
ll=-eta*((n/2)**(0.5));ul=eta*((n/2)**(0.5)); run;

proc print data=sabecamx noobs;
var ll t 05 t 95 ul;run;

In this analysis of Example 3.1, the lower limits of interest are -1.86
and -1.84, and the upper limits are 1.53 and 1.55 for AUC and Cmax
respectively, indicating that scaled average bioequivalence was demon-
strated as these fall within the limits (-3.18 and 3.18).
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Code is not provided for Example 3.2; however, interested readers
may use the findings of Chapter 3 and code similar to the above to
determine that, in Example 3.2, scaled average bioequivalence was also
demonstrated. Note that in Example 3.2, average bioequivalence (the
traditional approach) was not demonstrated.

As an exact procedure is available, extension of the Hyslop et al. [223]-
[224] procedure and the application of asymptotic and bootstrap testing
are not considered here. Interested readers should see [429] for more
information on extension of the Hyslop et al., [223]-[224] procedure as
applied to scaled average bioequivalence testing.

Values of η discussed in the literature range from ±0.7 to ±1.1 versus
the traditional average bioequivalence limits of ± ln 1.25 = ±0.223. Reg-
ulatory agencies have yet to define an appropriate value of η in relevant
guidance, and it is unlikely that they will do so.

The reasons for this follow from the debate around IBE and PBE.
Expansion of the acceptance limits is unacceptable from a regulatory
perspective as such a procedure would not protect public health [197].
As with IBE and PBE, acceptance criteria as described above would to
some extent still be design dependent - in that running a ‘poor’ study
(i.e., a poorly controlled study) would yield high variability making it
easier to demonstrate scaled average bioequivalence.

Regulatory acceptance of scaled average bioequivalence is unknown at
present but unlikely in the future, and this scaled average bioequivalence
procedure should not be used in regulatory applications at the present
time. Given the extensive debate around bioequivalence testing in the
recent past, average bioequivalence may be expected to be the standard
procedure for some time to come.



CHAPTER 7

Clinical Pharmacology Safety
Studies

Introduction
One day, out of seemingly nowhere, I received a very strange request

from a clinical scientist. We will call her Betty, and she asked if I could
round off a confidence interval? My immediate response was, ‘No. Why
would anyone want to do that?’

In essence, we had derived an upper bound in a drug interaction trial
of 1.2538 for AUC. Evaluation of this value relative to the acceptance
level of 1.25 showed that it was higher than 1.25. We could not conclude
the two treatments were equivalent. Pretty elementary. Betty wanted to
round it off, so she could claim equivalence had been demonstrated.

I told her no, and left it at that. Such would misrepresent the data, and
the statistics underlying the upper bound could not support ‘rounding it
off’. Clearly as the value was higher than 1.25, the null hypothesis had
not been rejected, and it was out of the realm of possibility. To my mind
it was also a matter of professional integrity, and I was a bit surprised
that anyone would ask such a thing. The less I said, the better off we
would both be.

However, I was still new on the job, and did not know that some people
will not take no for an answer, even if it is a matter of professional in-
tegrity. So began one of my most important ‘learning experiences’ on the
job. ‘Learning experiences’ are a business euphemism for an experience
no one in their right mind wants any part of, but you are stuck with it
because you work there.

Rounding off turned out to be really, very important to Betty and the
physician for whom she worked, and a major disagreement at the com-
pany developed. Peoples’ egos became involved, and everyone who had
even only a nebulous stake in this (or a potentially related) issue felt
compelled to comment. Academic experts were paid and consulted. Opin-
ions were sought from the FDA on the topic. Many internal meetings
on the topic were held, and (despite their best efforts to avoid it) several
senior vice presidents had to be consulted and in the end backed us up,
‘No rounding’.

Years later FDA guidance [135] was issued saying the same thing, but

189
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as is often the case, such business precedes regulatory guidance by many
years.

Guess who was at the center of this argument? It was a rough expe-
rience (for what I still feel was a ridiculous request), but I learned a lot
from interacting with such people on such a thing and from watching how
they and many other people behaved. If had it to do over again, I would
have followed a different approach to dealing with such people. I call it
the ‘Nurse’ approach in honor of the people whom I saw do it.

We had a drug intended for the treatment of hypertension (high blood
pressure) which caused migraines if given at high doses. We discovered
this in the first study in man (which is designed for this purpose, see
Section 7.1), and carefully worked out at which dose the problem started.
These were bad migraines - the throwing-up kind. The study team wanted
to stop the study, but a chief medic said to continue. The rationale was
that they wanted to explore more doses before going to the next study.

There was no point in continuing. The study had defined the maximum
tolerated dose, completing its objective. We were at an impasse with the
medic involved. We discussed the ethical issue of continuing (i.e., not),
but were told headache and emesis were not a serious enough side effect
to warrant not exploring further. Egos began to become involved. Senior
vice presidents were again getting phone calls.

This came to an abrupt stop, and the nurses put a stop to it. I am
told that they told chief medic that if he wanted to continue, he’d have
to come down and clean up the vomit himself. The study ended the next
day. That was not the official reason logged in the study file, and it is
hearsay, but I think it is probably true.

The moral of the story is that when you are asked to do something
you consider inappropriate, put the person who is asking in your shoes.
When they will actually have to get their own hands (or shoes) dirty
to do such a thing and take personal accountability for it, you will be
surprised at how the pressure to do so suddenly lets up. If not, then try
‘No’.

When exploring safety, it is important that we get it right for the
sake of each and every patient who will take the product. Everyone has
a stake in this assessment. Even the people who develop and sell drugs
may themselves have to take them one day! All drugs have side-effects
and should be presumed to be unsafe if used incorrectly. Some side-effects
can be very serious and life-threatening.

The role of clinical pharmacology safety studies is to define how the
body handles the drug such that side-effects can be predicted in a ratio-
nal, scientific manner. This assessment determines how the drug should
be used correctly to treat the condition under study. Every decimal point
matters. Do not cut any corners which would compromise patients’ safety,
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and ensure your findings represent the data accurately, so that the people
using the drug can make a fully informed decision.

7.1 Background

All other things considered, it is comparatively easy to tell when a drug
is efficacious. The drug should change something about the body or its
characteristics for the better, making people live longer or healthier or
both. A drug that does not offer such benefit (referred to as medical
utility or efficacy, see Chapter 2) would presumably not be approved
for sale to a human population. The problem in drug development is to
detect, observe, and ensure that the change is to the benefit of patients.

Drugs that are unsafe, producing unwanted, nonbeneficial side-effects
presumably should not be approved. This, however, constitutes a more
complex issue (and one that is still evolving). The difficulty is how to
deduce how and when a drug is safe. In contrast to efficacy assessment,
in safety assessment the problem is to assess and ensure that no clinically
relevant change in the health status of patients results from use of the
drug beyond the decreased health status associated with natural factors
(like aging, for example).

This problem initially seems similar to bioequivalence testing in that
the desired outcome is to test for no change in the potential for hazard
relative to control agent (say another drug in the same class) or placebo.
The problem is different in that in bioequivalence testing, we understand
and have a historical basis for the assessment of the potential for hazard
using pharmacokinetics as a biomarker - i.e., if AUC goes down too
much in a new formulation, efficacy may be lost, and if Cmax goes up
too much, side-effects may appear.

In safety testing for new drugs, though, we do not know what the po-
tential for hazard actually is in a human population! The relationship of
rate and extent of exposure needs to be established relative to unknown
(but presumably present) side-effects before such an assessment is valid
scientifically.

Our working assumption is initially that the drug is not safe when
given at any dose in any formulation under any circumstances to any hu-
man population. As a practical matter, it is also important to recognize
that we will never be able to demonstrate the alternative to this assump-
tion - i.e., that the drug is safe at any dose in any formulation under all
circumstances when given to any person. All drugs are potentially toxic
if used incorrectly; however, some may be used at appropriate, carefully
selected, and studied doses in controlled circumstances to treat diseases
in particular populations.
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Following preclinical safety assessment to ensure that the new drug is
not toxic at low doses (discussed in greater detail in the next section),
clinical pharmacology safety assessment of a new drug product usually
starts with giving the drug in very low doses and placebo to a robust,
healthy population - normal healthy volunteers. The rationale for doing
so is that is that if the new drug causes unexpected side-effects, healthy
people are most likely to recover. It is relatively easy to monitor them
closely, and any side effects identified will not be confounded with dis-
ease (as normal healthy volunteers should not have any). Some patients
may eventually be willing to tolerate side-effects if their underlying dis-
ease is treatable, but one cannot really assess that potential until one
knows what the side-effects are! Sometimes, however, it is impossible to
dose normal healthy volunteers (e.g., it is unethical to give a cytotoxic
oncology agent to a normal healthy person). For such drugs, clinical
pharmacology safety assessment begins in patients with the condition
under study.

Dosing starts with very low doses, well under the no adverse effect
level (NOAEL) seen in the most sensitive preclinical species, and slowly
the dose is increased in these initial safety studies until:
1. Side-effects are observed (e.g., nausea, headache, changes in labora-

tory values), or
2. Rate (Cmax) or extent (AUC) of exposure approach the NOAEL.

The intent of these small (generally cross-over [293]), well-controlled,
cautious designs is to carefully assess evidence of the potential of the
drug to cause a hazard to people taking the drug. Note, however, that
absence of evidence is NOT evidence of absence [238]. If side-effects are
not observed and dosing is halted with exposures near the NOAEL, the
potential for significant hazard still exists (even if remote). If a side-effect
is observed, its relationship to exposure and dose may then be quantified.
Additionally, once a potential hazard is identified, safety may be assessed
relative to other agents used for treating the population for which the
drug is intended.

The role of statistics in this setting is different from bioequivalence
testing. Here, statistics are used to quantify the unknown relationship
of unwanted side-effects to dose and exposure while dose is varied over
the course of the study. A non-null relationship of dose or exposure to a
safety endpoint demonstrates the statistical potential for hazard [225].
Note however that statistical potential does not necessarily imply that
the drug is unsafe and should not be used or developed. Its benefits
(efficacy) may outweigh the presence of these side-effects, but that is
up to the clinicians, regulators, and patients who will be using the drug
to determine. Statistics provide an impartial assessment in this setting
to aid them in making this determination. All drugs are unsafe; some
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are useful under carefully controlled circumstances (to limit the risks
involved).

Once the relationship of dose and exposure to safety is understood,
clinical pharmacology studies are then performed to assess under what
circumstances it is safe to administer the drug. For example, one would
study what happens when the drug is given with and without food or
with and without another drug.

In this chapter, we will explore commonly used statistical methods
for clinical pharmacology assessment of dose and assessments of certain
circumstances to determine if and when the drug can be dosed with a
reasonable expectation of safety while treating a disease. Such studies
limit but do NOT eliminate the potential for hazard when using a drug.
Such cannot be eliminated with 100% certainty as we know from Chapter
1.

Note that ‘reasonable expectation’ is not well defined in regulatory
guidance. Safety is currently an emerging scientific topic (e.g., [229]).
Whether a drug is safe (or not) is subjective. Physicians, patients, reg-
ulators, and drug-makers all have different opinions on the topic.

Operationally, and usually, statistics are derived posthoc - after the
study has ended. Decisions about what dose to give in these studies
and how to dose titrate are made by clinical personnel. The role of
statistics is to assess and precisely quantify the relationship of dose to
pharmacokinetics and dose to safety endpoints once the study completes.

In some situations [399], [402], [403], [320], [328], quantitative inter-
active models may be used to assist clinical personnel in selecting doses
‘on-line’, and we will consider an example in next section. This is by no
means an exhaustive list of work on this topic, and readers may wish
to examine recent publications on the topic (e.g., [427], [94], and [456]).
These procedures use models to predict what effects will be observed
at different doses to aid in clinical decision making. However, the final
decision about what dose is used is the physician’s responsibility and the
subject’s or patient’s responsibility before taking a drug.

Safety assessment in clinical pharmacology and drug development is
a rapidly evolving science. It has not always done well in the rush to
get drugs to needy patient populations. Historically, [426] over-dosing
is common as a result, and there have been numerous circumstances
where the approved dose of drug has been reduced once the drug has
been on the market for a time. It has been said [339] that in the 20th
century drugs were presumed to be safe until shown otherwise (this is
hard to believe in a litigious society). However, increasing attention from
regulatory agencies is being applied to this area in light of recent safety
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risks, and major refinements and improvements in how we test for safety
in clinical studies may be expected in the coming years.

7.2 First-time-in-humans

The administration of a drug to humans for the first time generates a
great deal of excitement in the sponsoring organization and is an excit-
ing time for everyone involved. New therapies offer potential benefit to
numerous patients. Before such a drug can be administered, however,
it must undergo an extensive battery of in vitro and in vivo preclini-
cal testing. In certain nations (e.g., USA, Europe), first-time-in-humans
study protocols and their supporting preclinical information must also
be submitted to and approved by the relevant regulatory authorities (see
[120] for an example).

Regulators will, in general, desire to review the following items prior
to administration of a new drug to humans [120]:
1. The First-time-in-humans (FTiH) study protocol,

2. Information on the chemistry, manufacturing, and control/stability of
the drug manufacturing process,

3. information on preclinical Pharmacology and Toxicology in vitro and
in vivo studies (containing, at a minimum, an integrated summary of
animal toxicology study findings and the study protocols), and

4. Any human experience with the investigational drug (e.g., if studies
were carried out in a different nation).

We now turn to consideration of the FTiH trial design, conduct, and
analysis and will not discuss these regulatory requirements further here.

In contrast to bioequivalence trials (the objective of which is to confirm
equivalence of different formulations), the objective of FTiH and other
Phase I trials is to learn [402] about the safety, pharmacokinetic, and
pharmacodynamic properties of the drug being studied. The application
of statistics to this topic of drug development is fundamentally different
from that used in the confirmatory setting of bioequivalence, though the
study designs, conduct, and models used in such studies are similar.

The approach to data analysis and interpretation is typically induc-
tive (see Chapter 5) in that those performing FTiH and Phase 1 studies
have a ‘rough’ idea of how the drug will behave (from the preclinical
testing described previously). Studies are performed and data are col-
lected to reinforce this ‘rough’ idea. The role of statistics in this setting
is to employ the tools discussed previously (Chapter 1: randomisation,
replication, blinding, blocking, and modelling) to ensure the estimates
provided by such studies are accurate and precise.

It would be desirable if the preclinical findings were perfectly predic-
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tive of what one would observe in humans for a new drug, but this is
not always the case. There are interspecies differences which preclude
such a possibility (for example, see Chapter 31 [12]). George Box stated
that, ‘To find out what happens to a system when you interfere with it
you have to interfere with it (not just observe it).’ [39], and the assump-
tion made for any new drug is that it will cause undesirable side-effects
(hereafter referred to as adverse events, AEs) that are dose and exposure
dependent, in that the higher the dose or exposure, the more likely such
an AE will occur.

An adverse experience (AE) is any untoward medical occurrence in a
patient or clinical investigation subject, temporally associated with the
use of a medicinal product, whether or not considered related to the
medicinal product. Such events are frequently characterized as:

1. Mild: An event that is easily tolerated by the subject, causing minimal
discomfort and not interfering with everyday activities.

2. Moderate: An event that is sufficiently discomforting to interfere with
normal everyday activities.

3. Severe: An event that prevents normal everyday activities.

A Severe AE is an AE that is noticed and alarming (e.g., severe nausea
or emesis), but does not necessarily require cessation of treatment (the
disease under study, like cancer, might make such an event tolerable
though undesirable).

In contrast, a Serious AE (SAE) is ‘an event that is fatal, life-
threatening, requires in-patient hospitalization or prolongs hospitaliza-
tion, results in persistent or significant disability, or results in congenital
anomaly or birth defect’ (Chapter 14 [37]). Observation of such an SAE
in a FTiH study would generally halt dosing for all subjects being stud-
ied and must be reported quickly to relevant regulatory authorities.

In FTiH trials, dose is increased as knowledge is gained of the drug’s
properties until a ‘potential for hazard’ is observed. ‘Potential for haz-
ard’ in this context denotes the observation of conditions where it is
possible for an adverse reaction to drug treatment to occur or the actual
observation of a serious or severe AE. A dose just lower than this dose
is defined as the maximum tolerated dose (MTD) [225].

Statistical proof of hazard (i.e., a p-value less than 0.05 for a compari-
son of H0 : µD−µP ≤ 0 where µD denotes the mean effect at a dose and
µP denotes the mean effect on placebo [199]) may or may not be obtained
in such studies. Determination of the MTD is often driven more by clin-
ical judgment and less by statistical analysis given the limited numbers
of subjects exposed to drug in such studies. If the drug-induced rate of
an adverse experience in the population is p for particular dose, then the
chance one sees at least one such event in n subjects exposed to a dose
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of drug in a study is 1− (1−p)n. As FTiH trials typically involve only a
small number of patients or subjects (sample sizes per dose ranging from
n = 6 to 10), p must be relatively large in order to observe an AE in the
trial. For example, if p = 0.1 (the proportion of subjects experiencing
for example a headache caused by drug at a dose) and n = 6 subjects
are studied at this dose, the probability of observing at least one subject
with a headache in the trial is only 0.47 at this dose.

For a rare side-effect (drug-induced neutropenia, for example), with a
p = 0.01, the probability of observing such an event in a FTiH trial is
only 0.06 with n = 6. Thus FTiH trials are geared toward detection of
non-rare side-effects. If the drug causes a side-effect in less than 5% to
10% of people at a given dose, it is most unlikely that such trials will
observe such an event.

Cross-over designs are generally employed for the purposes of infor-
mative dose-escalation in FTiH and Phase I studies as such designs are
known to be more informative and provide better information than al-
ternative designs [399] and expose only a limited number of subjects to
the (potentially) harmful agent. See Table 7.1, for example. Dosing is
conducted in separate cohorts, sequentially, with results from each dose
being reviewed prior to the next dose being administered in the next
period. Periods are separated by a washout sufficient to ensure no drug
is on board when the next dose is given (generally at least one week to
allow for pharmacokinetic washout and review of data).

Placebo is administered to serve as a control for evaluation of any AEs
observed, and subjects are randomly assigned to the period in which they
receive it. Subjects are generally kept blinded as to whether they have
received drug or placebo in order to ensure this assessment is unbiased
by knowledge of treatment.

Depending on the NOAEL and properties of the drug under study,
shorter cross-over designs (i.e., two-period or three-period designs) may
be employed. For particularly toxic drugs, oncology trials of cytotoxic
agents are generally conducted using a parallel group design where co-
horts of patients are randomized to increasing doses of drug (Chapter 1
[37]). We will consider an example later in this chapter but will first fo-
cus attention on how to model data from a typical trial. Such techniques
also apply to the shorter cross-over designs described above.

Preclinical pharmacology and toxicology data are used to choose the
FTiH starting doses. The preclinical pharmacology and toxicology stud-
ies should identify a no-effect dose and a no-adverse-effect exposure level
in multiple pre-clinical species. Allometric scaling ([356]; [133]; Chapter
8 [37]) is then applied to estimate a safe starting dose. In essence, allo-
metric scaling uses the NOAEL and accounts for differences in weight
and physiology between species to yield a range of doses expected to
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Table 7.1 Schematic Plan of a First-time-in-humans Cross-over Study

Subject Period Period Period Period
1 2 3 4

Cohort 1
1 P D1 D2 D3
2 D1 P D2 D3
3 D1 D2 P D3
4 D1 D2 D3 P

Cohort 2
5 P D4 D5 D6
6 D4 P D5 D6
7 D4 D5 P D6
8 D4 D5 D6 P

Cohort 3
9 P D7 D8 D9

......

P=Placebo; D1=Lowest Dose
D2=2nd lowest dose; etc.

be safe in humans. The NOAEL in the most sensitive species (i.e., the
lowest NOAEL) is defined as the upper limit of human exposure (AUC
and Cmax, as previously).

Once a presumed safe range of doses is estimated, an algebraic dose
escalation scheme (1x, 2x, 3x, 4x, etc.), geometric dose escalation scheme
(1x, 2x, 4x, 8x, etc.), or Fibonacci scheme (Chapter 1 [37] and Chapter
31 [12]) are used to determine the next dose to administer in the next
period or cohort of subjects. The choice of dose escalation scheme is pre-
specified in the study protocol. The choice of next dose may be reduced
(but not increased) relative to the intended, protocol-specified, scheme
dependent on the results from the previous dose.

Subjects or patients participating in FTiH studies are monitored very
closely for the occurrence of AEs. Subjects are generally required to stay
in bed for at least 4 hours following a dose, and continuous monitoring of
vital signs is not unusual for a period of at least 24 hours following each
dose. The population enrolled into a FTiH study is generally composed
of male healthy volunteers as females are known to be more prone to
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drug-induced toxicity [306]. Full discussion on inclusion and exclusion
criteria for subjects enrolled in FTiH trials may be found in Chapter 1
[37] and Chapter 31 [12] and will not be discussed further here.

Operationally, each cohort of subjects is brought into a clinic on a
weekly basis. Following an overnight fast, the dose chosen (or placebo)
is administered at roughly 8 a.m., and safety, pharmacokinetic, and phar-
macodynamic (if any) measurements are taken prior to dosing and at
regular intervals thereafter. These data are then used by the study team
(composed at minimum of a physician, nurse, statistician, and phar-
macokineticist) to support the decision on which dose to give next (or
whether to halt or delay the next administration). The key responsibility
for determination of which dose to administer next (if any) is a medical
purview, and the statistician and pharmacokineticist are expected to
provide analyses and simulations to support this medical determination
if required. The statistical and pharmacostatistical approach to data
analysis in this setting is exploratory (see Chapter 14 [37]). Data are
modelled, periodically during the study, to provide an accurate and pre-
cise description of what observations have been collected to date and are
used to predict which effects may be observed at future doses ([177]; [1];
chapter 18 [12]).

We first consider pharmacokinetic data generated in a typical FTiH
trial. One property of such log-normal pharmacokinetic data is that vari-
ation increases with exposure [453]. To model this behavior, a ‘power’
model is generally utilised [408]. Doses are increased until average expo-
sure (AUC and/or Cmax) is observed to approach the NOAEL or some
multiple of the NOAEL’s value (e.g., one-tenth). For this type of design,
the power model is:

yik = (α + ξk) + β(ld) + εik,

where α is the overall mean pharmacokinetic response at a unit dose
(logDose, ld = 0) known in statistics as the population intercept, ξk is the
random-intercept accounting for each subject (k) as their own control,
β is the slope parameter of interest regressed on logDose (parameter ld),
and εik denotes within-subject error as described in Chapter 3 for each
log-transformed AUC or Cmax (yik) in period i. Note that period effects
are assumed to be minor relative to the magnitude of effect of logDose
in this analysis and are confounded with dose. Typical data arising from
such a design are listed in Table 7.2 and plotted in Figure 7.1.

Table 7.2: Example 7.2.1: AUC and Cmax Data from a Cross-over
First-time-in-humans Study Design

Subject Period Dose AUC Cmax
1 2 15 666.06 307.1
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Table 7.2: Example 7.2.1: AUC and Cmax Data from a Cross-over
First-time-in-humans Study Design

Subject Period Dose AUC Cmax
1 3 45 1701.49 524.2
1 4 100 4291.86 1684.2
2 1 5 144.63 70.1
2 3 45 956.84 390.9
2 4 100 2121.55 522.0
3 1 5 187.88 55.6
3 2 15 406.06 210.1
3 4 100 2712.69 864.6
4 1 5 111.12 53.7
4 2 15 313.21 155.8
4 3 45 1006.57 548.7
6 1 5 152.64 96.3
6 3 45 1164.88 520.7
6 4 100 3025.78 1509.1
7 2 15 641.89 233.6
7 3 45 2582.20 713.0
7 4 100 4836.58 1583.7
8 1 5 420.42 212.7
8 2 15 908.93 339.3
8 4 100 8194.40 2767.2
9 1 100 3544.28 947.0
9 2 150 5298.14 778.9
9 3 200 6936.13 1424.4
10 1 100 5051.23 1713.3
10 3 200 11881.12 3543.8
10 4 250 16409.81 4610.1
12 2 150 7460.82 2143.2
12 3 200 8995.97 3708.4
12 4 250 10479.14 2604.0
14 1 100 2134.17 1664.5
14 2 150 3294.38 932.4
14 4 250 5332.19 1276.3
15 2 150 3189.74 976.2
15 3 200 4643.52 1300.7
15 4 250 4652.96 810.1
16 1 100 3357.67 1134.8
16 2 150 4305.17 856.8
16 3 200 8886.62 1914.2
17 1 5 378.75 155.1
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Table 7.2: Example 7.2.1: AUC and Cmax Data from a Cross-over
First-time-in-humans Study Design

Subject Period Dose AUC Cmax
17 2 15 915.95 307.2
17 3 45 2830.42 532.8
18 1 100 1912.93 596.3
18 2 150 2684.00 602.6
18 4 250 3971.27 1792.2
19 1 100 8446.20 2110.6
19 3 200 17004.51 2766.3
19 4 250 21097.81 7313.4
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attach(pk1.ftih) 
logdose<-log(dose) 
logauc<-log(auc) 
plot(logdose,logauc,type=’p’,pch=18,xlab=’logDose’,ylab=’logAUC’) 
detach() 
d<-seq(1,300,10) 
ld<-log(d) 
a<- 3.7488 + 0.9634*ld 
points(ld,a,type=”l”,lty=1) 
 

Figure 7.1 Estimated logDose versus logAUC Curve with Individual Data
Points from Example 7.2.1

Note that variation at the 150 mg dose in Example 7.2.1 (see Figure
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7.1) appears to decrease relative to the 100 mg dose. This is a feature
of the cross-over nature of the design and is observed due to the fact
that the subjects administered the 150 mg dose are not always the same
ones administered the 100 mg dose. To account for each subject as their
own control, the power model is utilised to provide a population dose to
pharmacokinetic response curve. This statistical relationship provides
an estimate of the magnitude of a typical individual’s exposure when
administered a dose. Once a subject’s exposure has been measured for
a given dose, this individual’s dose to pharmacokinetic relationship may
be quantified to provide an individual assessment of potential hazard
relative to the NOAEL, and we will consider how to do so later in this
chapter. SAS code to model AUC and Cmax data from such trials is
below. Doses are increased until the population dose to pharmacokinetic
curve approaches the NOAEL or until a severe or serious AE is observed.

First-time-in-humans PK SAS proc mixed Analysis Code Example
7.2.1 and 7.2.2

proc mixed method=reml data=pk1_ftih;
class subject;
model lnauc=lndose/
s ddfm=kenwardroger cl alpha=.1;
random intercept/subject=subject;
run;

SAS proc mixed output provides the estimates required to derive the
dose to AUC or Cmax curve plotted in Figure 7.1. SAS output (not
shown) estimates of parameters are given in Table 7.3.

Table 7.3 Parameter Estimates from Example 7.2.1

Endpoint α̂ β̂ σ̂2
W

AUC 3.75 0.96 0.01
Cmax 3.20 0.83 0.09

The parameter α in this example is the estimated logAUC (or logC-
max) associated with a dose of 1 mg (ld = 0). The estimated population
dose to pharmacokinetic response curve is calculated as:

AUC = eα̂+β̂(ld).

To solve for the dose expected to yield exposure at the NOAEL (the
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MTD), one exponentiates the above equation at AUC = NOAEL after
solving for ld:

MTD = e
ln(NOAEL)−α̂

β̂ .

The bootstrap (see Chapter 5 and [179]) may be used to derive a confi-
dence interval for the MTD if desired.

In our second example (Example 7.2.2, see Table 7.4) we consider a
PK data set where exposure relative to a predetermined NOAEL was
of concern. Dosing was to be halted if mean AUC was in excess of 2400
ng.h/mL or Cmax exceeded 880 ng/mL (the NOAEL).

Table 7.4: Example 7.2.2: AUC and Cmax Data from a Cross-over
First-time-in-humans Study Design

Subject Dose AUC Cmax
1 1 611 80.3
1 5 842 103.1
1 10 1600 167.3
2 1 1052 112.7
2 5 1584 164.7
2 10 2809 273.8
3 1 1139 98.0
3 5 1896 162.6
3 10 2531 167.9
4 1 989 89.0
4 5 1604 177.6
4 10 1817 212.8
5 1 1275 114.2
5 5 2282 173.7
6 1 947 77.7
6 5 1698 138.0
6 10 2278 240.5
7 1 603 92.3
7 5 1289 149.5
7 10 1987 225.5
8 1 867 86.4
8 5 1263 130.7
8 10 2494 276.3

Estimates of the parameters of interest may be found in Table 7.5.
Here it was observed that exposure approached the NOAEL for AUC at
the 10 mg dose and dosing was halted accordingly. See Figure 7.2.

Individual fitted means at each dose with 90% confidence intervals
may be derived easily in SAS proc mixed. A statement outp=pred is
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Table 7.5 Parameter Estimates from Example 7.2.2

Endpoint β̂ σ̂2
W

AUC 0.38 0.02
Cmax 0.36 0.03
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d<-seq(1,10,1) 
ld<-log(d) 
a<- exp(6.7846 + 0.3806*ld) 
plot(d,a,type=”l”,lty=1,xlab=’Dose (mg)’,ylab=’Geometric Mean AUC (90% CI) and 
Indiv Data’,xlim=c(0,10),ylim=c(500,2550)) 
x<-c(0,10) 
y<-c(2400,2400) 
lines(x,y,type=’l’,lty=8) 
x<-c(1,1) 
y<-c(6.57107,6.99808) 
ey<-exp(y) 
lines(x,ey,type=’l’,lty=1) 
x<-c(5,5) 
y<-c(7.19051,7.60371) 
ey<-exp(y) 
lines(x,ey,type=’l’,lty=1) 
x<-c(10,10) 
y<-c(7.44979,7.87205) 
ey<-exp(y) 
lines(x,ey,type=’l’,lty=1) 
attach(pk2.ftih) 

Figure 7.2 Estimated Dose versus AUC Curve (90% CI) with Individual Data
Points from Example 7.2.2

added to the model statement after the / to output the data set pred
containing the relevant values. Estimated responses at other doses may
be obtained by entering a missing value for the observation desired for
that subject. Code to perform such analyses are provided on the web-
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site accompanying this book, and consideration is left as an exercise for
interested readers.

In normal healthy volunteer studies, severe AEs are unusual, and SAEs
are very unusual. Observation of an SAE should halt all dosing in a study
and requires regulatory scrutiny of the event. Dose escalation is halted if
severe AEs are observed. However, it is unusual for either SAEs or severe
AEs to be observed in such trials. Most often dose escalation is halted
when mean exposure approaches the NOAEL (as seen in the example
above). Dosing for any given individual is halted if their exposure data
approaches a higher than expected factor of the NOAEL.

In contrast, FTiH studies for cytotoxic agents are performed in re-
fractory patient populations, and the goal of the study is to identify a
dose causing a dose-limiting toxicity (DLT, an SAE) with X% frequency
(often 30%). This is referred to as the dose expected to cause an X%
response, abbreviated EDX . The assumption is that for such an agent
to be efficacious, it must approach toxic levels. Three patients are dosed
with a low dose, and their responses to treatment are observed. If no
DLTs are observed, another group of three patients receive the next
higher dose, and their responses are observed. If one DLT is observed,
another three patients are dosed at the same dose to provide reassurance
that the DLT was dose-related. If so, the dose is reduced is subsequent
patients to refine the definition of the MTD. Once at least one DLT
is observed in a group of patients and confirmed in a second cohort of
three patients, the dose is reduced in subsequent patients to identify a
well-tolerated dose producing DLTs in approximately the desired per-
centage of patients. See Table 7.6. Note that one patient did not report
for dosing in the third dose group, so only two patients were dosed.

Table 7.6: Example 7.2.3: Dose Limiting Toxicity Data from a First-
time-in-humans Trial

Subject Dose(mg) DLT
1 1 0

101 1 0
2 1 0
3 2 0

102 2 0
4 2 0

103 4 0
5 4 0
6 6 0

DLT=1 DLT Observed
DLT=0 DLT not Observed
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Table 7.6: Example 7.2.3: Dose Limiting Toxicity Data from a First-
time-in-humans Trial

Subject Dose(mg) DLT
104 6 0
7 6 0
8 8 0

105 8 1
106 8 0
107 8 0
9 8 0
10 8 0
108 10 0
11 10 0
12 10 0
109 12.5 0
110 12.5 0
13 12.5 0
111 16 0
112 16 0
14 16 0
15 16 0
113 21 1
114 21 1
16 21 1
17 18 0
18 18 0
19 18 0
115 18 0
20 18 0
116 18 0
21 18 1
22 18 0
23 18 1
117 18 0
118 18 0
24 18 1
25 18 1
26 18 0
119 18 0
DLT=1 DLT Observed

DLT=0 DLT not Observed
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DLTs are denoted as occurring (1) or not occurring (0) for each in-
dividual patient in Table 7.6. Note that these studies are not placebo
controlled, and are generally conducted open-label or with only the pa-
tients blinded to treatment. Such DLT data is considered as ‘Binomial’
data (denoting a 0 or 1 response), and the proportion of DLTs as a
function of dose may be modelled using a technique known as logistic
regression.

To do so, the proportion (P ) is defined such that

P =
1

1 + e−(α+β(ld))

where β is the slope of a regression of ln(P/1−P ) = L (known as a logit-
transformation) on logDose such that L = α + β(ld). The parameter α
is the intercept at ld = 0.

Analysis is straightforward using proc genmod in SAS as follows (see
code below). One calls the data set (specifying in a DESCENDING state-
ment that SAS should model the probability that DLT is 1) and instructs
SAS to model the DLTs as a function of logDose. The statement dist=b
informs SAS that DLT is a binomial endpoint, and link=logit specifies
that a logit transformation should be used.

First-time-in-humans DLT SAS proc genmod Analysis Code Example
7.2.3

proc genmod data=dlt1 DESCENDING;
model dlt=lndose/dist=b
link=logit cl alpha=0.1;
run;

SAS output (not listed) yielded an estimate of -10.5083 for α and
3.3846 for β for Example 7.2.3. This yields the dose-response curve for
the proportion of DLTs of Figure 7.3.

We can see that the EDX is approximately

e
ln(X/1−X)−α̂

β̂

For example, the estimated ED30 is 17.4 mg in this analysis.
Note that variation is not taken into account (though it could be) in

the calculation of the EDX . A simple means to do so is to bootstrap
the data set (see Chapter 5), and derive the EDX in each bootstrapped
data set. The 5th and 95th quartiles of the bootstrapped data sets for
EDX serve as a 90% confidence interval for our estimate of EDX , in this
case the estimated confidence interval from 1000 bootstraps was 14.1 to
25.4 mg. SAS code to perform this analysis is provided on the website
accompanying this book.

Similar procedures my be used to model adverse events in cross-over
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x<-seq(1,100,0.5) 
lnx<-log(x) 
p<-1/(1+exp(-(-10.5083+(3.3846*lnx)))) 
plot(lnx,p,type='l',xlab=’Log(Dose)’,ylab=’Est. Proportion of DLTs’) 
 

Figure 7.3 Estimated Proportion of DLTs versus logDose from Example 7.2.3

trials. See Chapter 6 of [237] for additional details on such techniques.
However, given the relative infrequency of AEs in normal healthy volun-
teer FTiH studies, we do not discuss such application further here.

Intuitively, the use of interactive modelling techniques would seem to
add value for such studies. Such techniques utilize data as they are col-
lected, and the models described above, to provide clinicians with an
assessment of the safety profile for their choice of future doses. Several
techniques have been developed (see Section 7.1) but are infrequently
utilised in FTiH studies as experience with them is limited (Chapter 1
[37]). An overview of techniques to aid in decision making in this setting
may be found in [456]. See the Technical Appendix for code to perform
interactive assessments of PK data in FTiH studies. Those using such
interactive techniques are cautioned that ‘All models are wrong, but
some are useful.’ [40] and should note that the use of such techniques
supplements, but in no way should substitute for, clinical conduct,
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experience, and expertise. Choice of dose is ultimately a clinical respon-
sibility.

At the end of the FTiH study, the single dose MTD [225] should have
been defined. This MTD will possibly be based on observed nonserious
AEs, but most likely will be based upon on observed human exposure
levels relative to the NOAEL defined in preclinical studies. These studies
should definitely provide data to reinforce ideas on the properties of the
drug’s pharmacokinetics with dose in relation to the NOAEL. In some
cases, evidence of pharmacodynamic activity will also be observed, and
we will consider methods for modelling of such data in Chapter 9.

Note that the MTD, once defined in this study, is not a constant.
As knowledge about the drug accumulates while drug development pro-
gresses, it can (and most likely will) change, as can the NOAEL. We now
turn to the next study which typically occurs in Phase I.

7.3 Sub-chronic Dosing Studies

Following the FTiH study, a sub-chronic (sometimes referred to as a
‘repeat’-dosing) study is performed. The main intent of this trial is to
confirm that the MTD defined in the FTiH trial holds true upon repeated
administration. In this study again, pharmacokinetic and safety data
are most of interest though pharmacodynamic data may be collected if
appropriate. Level of blinding (open-label, single-blind, etc.) and choice
of population are generally the same as in the FTiH trial. It is unusual for
such trials to involve the dosing of patients with the disease for which the
treatment is intended. Most often, normal healthy volunteers are dosed
for this purpose as in the FTiH trial.

Eligible subjects are randomized to receive either placebo or a dose of
drug up to the MTD defined in the FTiH trial. Each dose is administered
to 9 to 12 subjects in a cross-over fashion. In the first period, a single
dose is given, and pharmacokinetic measurements are collected out to at
least five half-lives. Following this, in the second period, subjects receive
the same dose at regular, repeated intervals for at least five half-lives,
and pharmacokinetic measurements are taken following the last dose
over the sampling interval. Following an evaluation of the data collected
in the first cohort of 9 to 12 subjects (see Table 7.7), the next highest
dose is administered for the next cohort up to the MTD identified in the
FTiH trial. The placebo treatment is included to provide a control group
for the purposes of safety assessment comparisons, and we will consider
an example later where effects were observed in liver function.

The first order of analysis is to assess whether clearance is the same
after the single dose and after repeated doses. The dose of drug divided
by AUC defines a pharmacokinetic parameter known as Clearance (Cl).
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Table 7.7 Schematic Plan of a Sub-chronic Dosing Cross-over Study

Subject Period Period
1 2

Cohort 1
1 D1 RD1
2 P RP
3 D1 RD1
4 D1 RD1
5 P RP
6 D1 RD1
7 D1 RD1
8 P RP
9 D1 D1

Cohort 2
11 MTD RMTD
12 MTD RMTD
13 P RP
14 MTD RMTD
15 P RP
16 MTD RMTD
17 MTD RMTD
18 P RP
19 MTD RMTD

P=Single Dose of Placebo
RP=Repeated Doses of Placebo

D1=Single Dose of Well-Tolerated Dose from FTiH
RD1=Repeated Doses to Steady State
MTD=Single Dose of MTD from FTiH

RMTD=Repeated Doses of MTD from FTiH to Steady State

More precisely, for an orally dosed drug,

Cls =
F (dose)

AUC(0−∞)
,

following a single dose of drug (subscript s), denoting the volume of
blood cleared of drug in a unit of time for a single dose. The parameter
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F is absolute bioavailability (discussed in Chapter 10). When such a drug
is dosed repeatedly to steady state, the pharmacokinetic collections on
the final dosing day provide an estimate for

Clss =
F (dose)

AUC(0− τ)
,

where τ is the frequency of dosing (24 h if dosed once a day, 12 h if
dosed twice a day) and subscript ss denotes steady state. Steady state
concentrations are achieved when the rate of drug being eliminated from
the body equals the amount of drug dosed (e.g., dose/hour). In general,
this occurs when the drug is dosed repeatedly for at least five half-lives at
regular intervals (see Chapters 1 and 2 for a definition of pharmacokinetic
half-life).

If Cls = CLss or equivalently in this setting AUC(0− τ) = AUC(0−
∞) for all doses, then the drug has the property of stationarity of clear-
ance. This is desirable as it makes the drug very easy to dose if the drug
has this property. All else being equal, one can be started on a dose
estimated to achieve safe and effective drug concentrations, and these
concentrations may be maintained by simply taking the same dose at
regular intervals. In contrast if AUC(0− τ) is larger than AUC(0−∞)
then the starting dose might need to be reduced to maintain safe con-
centrations relative to the NOAEL over time when dosing repeatedly.

Our first example (7.3.1 in Table 7.8) consists of AUC and Cmax data
from a sub-chronic dosing study where nine subjects received a dose of
either 5, 10, or 20 mg in the first period (accompanying placebo treated
subjects are omitted from this discussion as they did not contribute
pharmacokinetic data). In the second period, these subjects received the
same dose of drug once a day for seven days. On day seven, pharmacoki-
netic measurements were taken just prior to last the last dose and over
the next 24 hours.

Table 7.8: Example 7.3.1: AUC and Cmax Data from a Sub-chronic
Dosing Cross-over Study Design

Subject Dose AUC(0− inf) AUC(0− τ) Cmax Cmax
S SS S SS

47 5 2.81 5.11 0.267 0.423
48 5 6.31 8.13 0.415 0.620
49 5 7.26 8.01 0.468 0.627
50 5 3.60 6.67 0.410 0.480
52 5 6.82 7.38 0.356 0.591
53 5 1.76 5.17 0.225 0.390

S=Single Dose, SS=Steady State
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Table 7.8: Example 7.3.1: AUC and Cmax Data from a Sub-chronic
Dosing Cross-over Study Design

Subject Dose AUC(0− inf) AUC(0− τ) Cmax Cmax
S SS S SS

54 5 6.11 8.16 0.471 0.569
55 5 6.09 6.23 0.409 0.483
57 5 2.10 3.36 0.316 0.316
60 10 9.33 11.22 0.820 0.962
61 10 7.31 8.21 0.624 0.723
62 10 9.57 20.85 0.625 1.861
64 10 15.62 16.48 0.798 1.169
65 10 5.56 6.79 0.493 0.574
66 10 11.81 18.08 0.576 1.303
69 10 7.23 10.51 0.723 0.883
71 10 8.35 13.97 0.583 1.056
72 10 5.70 13.80 0.585 1.157
95 20 12.92 30.35 1.514 2.220
99 20 26.05 53.11 2.009 3.902
102 20 23.12 38.61 1.562 2.517
104 20 12.32 29.33 1.002 2.219
105 20 16.35 26.20 1.181 1.844
106 20 20.21 29.47 1.360 1.893
107 20 13.53 27.55 0.970 1.965
108 20 7.70 19.97 0.744 1.447
110 20 14.22 35.91 0.988 2.322

S=Single Dose, SS=Steady State

For this type of design, the power model is:

yjk = (α + ξk) + β1(ld) + φj + β2(ld(φj)) + εjk,

where β1 is the slope parameter of interest regressed on logDose (para-
meter ld), α and ξk are defined as in Section 7.2, φj denotes the day
being studied (j denotes repeat or single dose), β2 is the slope regressed
on logDose on each study day (to account for potential heterogeneity
between days within-subjects), and εjk denotes within-subject error as
described in Chapter 3 for each logAUC or logCmax (yjk). If repeat dos-
ing does not impact logAUC or logCmax, then φ and β2 should be zero.
Under those circumstances, the model reduces to the same form used in
Section 7.2.

Implementation in SAS is straightforward. proc mixed is called, and
subject and day are specified as classifications. Each endpoint (logAUC
or logCmax) is then modelled as a function of logDose, day, and the in-
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teraction between logDose and day. Subject is specified as the random-
intercept as was done previously using the random statement, and desired
estimated for the mean effect at each day are output using the lsmeans
statement. Note that an at statement is included in each lsmeans state-
ment to instruct SAS to derive estimates at the appropriate choices of
logDose (corresponding to doses of 5, 10, and 20) and compare these
between days.
Sub-chronic Pharmacokinetic Data Analysis 7.3.1 - SAS proc mixed

code:

proc mixed data=pk method=reml;
class subject day;
model lnauc=lndose day lndose*day
/ddfm=kenwardroger s cl alpha=0.1;
random intercept/subject=subject;
lsmeans day/at lndose=1.6094 diff cl alpha=0.1;
lsmeans day/at lndose=2.3026 diff cl alpha=0.1;
lsmeans day/at lndose=2.9957 diff cl alpha=0.1;
run;

proc mixed data=pk method=reml;
class subject day;
model lncmax=lndose day lndose*day
/ddfm=kenwardroger s cl alpha=0.1;
random intercept/subject=subject;
lsmeans day/at lndose=1.6094 diff cl alpha=0.1;
lsmeans day/at lndose=2.3026 diff cl alpha=0.1;
lsmeans day/at lndose=2.9957 diff cl alpha=0.1;
run;

SAS output (not shown) estimates of parameters may be found in
Table 7.9. The parameters α̂ are the common intercept (response at
logDose of zero following repeated dosing), and φ̂ is adjustment to this
response following a single dose. The sum of α̂+ φ̂ should approximately
coincide with the intercept obtained from the FTiH trial, all else being
equal (i.e., if formulation or other factors like the pharmacokinetic assay
have not changed between trials). The MTD relative to the NOAEL for
repeat dosing may be derived as:

e
ln NOAEL−α̂

β̂1+β̂2

in this design. Confidence intervals for the MTD may again be derived
using the bootstrap.

The assessment of stationarity of clearance is accomplished using the
findings of the lsmeans statements, and relevant outputs may be found



SUB-CHRONIC DOSING STUDIES 213

Table 7.9 Parameter Estimates from Example 7.3.1

Endpoint α̂ β̂1 φ̂ β̂2 σ̂2
W

AUC -0.035 0.93 -0.035 0.23 0.04
Cmax -2.43 0.87 -0.02 0.21 0.03

in Table 7.10 for logAUC. It was observed that clearance was clearly
not stationary for this drug as AUC(0− τ) was significantly larger than
AUC(0−∞), and accumulation appears to increase with increasing dose.
Results on the natural scale may be obtained by exponentiating the be-
low findings. The assessment for Cmax is left as an exercise for interested
readers.

Table 7.10 Stationarity of Clearance Assessment from Example 7.3.1

Dose logDose logAUC(0-τ)-logAUC(0-∞) 90% CI

5 1.61 0.34 (0.19, 0.49)
10 2.30 0.50 (0.40, 0.59)
20 3.00 0.66 (0.51, 0.81)

In our second example, we turn to modelling of the properties of the
pharmacokinetic concentration versus time curve. In this study, mod-
elling of this curve generally initiates as the data are rich compared to
that collected in later patient studies (where sparse sampling schemes
may be employed, see [128]). To clarify, subsequent studies in patients
may not be able to employ an extensive pharmacokinetic data collection,
as done in Phase I, as it is not convenient to keep patients in-clinic for
the lengthy period needed to collect a full pharmacokinetic profile. The
profile is modelled in the sub-chronic dosing studies so that a profile can
be simulate for a patient population when sparse collections are obtained
in subsequent studies.

In the sub-chronic dosing study, each subject receiving an active dose
of drug (not placebo) should contribute a drug concentration in plasma
versus time profile, as shown in Table 7.11 for Subject 47. Additional
data from this study may be found in conc.sd2 on the website accom-
panying this book.

We will choose here to utilize SAS for the nonlinear mixed effect mod-
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Table 7.11 Pharmacokinetic Concentration Data from Subject 47 of conc.sd2
following a Single Dose of 5 mg

Subject Dose Time Conc.
ng/mL

47 5 0 .
47 5 0.25 0.117
47 5 0.5 0.221
47 5 0.75 0.266
47 5 1 0.267
47 5 1.5 0.232
47 5 2 0.19
47 5 4 0.178
47 5 6 0.125
47 5 8 0.138
47 5 10 0.145
47 5 12 0.126
47 5 16 0.079
47 5 24 0.051
47 5 36 .
47 5 48 .
47 5 72 .
47 5 96 .

elling of such data; however, several other statistical packages are readily
available (SPLUS, NONMEM, WINNONLIN, PKBUGS, etc., [365]) and
may be used for this purpose. The models employed are non-linear (as
obviously the concentration over time is not linear) and mixed effect in
that each subject has an individual profile. Readers interested in more
details should see [468] and [435].

For this type of design, we will model the available pharmacokinetic
data using what is known as a one-compartment (Chapter 10, [12]) non-
linear mixed effect model for the purposes of illustration based on the
SAS procedure described in [368] for proc nlmixed. Interested readers
may use the data in conc.sd2 on the website accompanying this book to
evaluate alternative models. This model assumes that drug is absorbed
into the body according to rate kai (where i denotes subject) and is elim-
inated from the body according to rate kei. Concentration cit at time t
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for subject i is modelled as follows:

cit = (e−keit − e−kait)
keikai(Dose)
Cli(kai − kei)

+ εit,

where εit represents within-subject residual-error, Cli is the clearance for
subject i assumed to be of the form eβ1+b1i with β1 being an unknown
constant adjusted for each subject as appropriate to b1i. Similarly, kai

is considered to be a function of the form eβ2+b2i , and kei is considered
to be a function of the form eβ3+b3i . The parameters b1i, b2i, and b3i are
considered to be independent random normal variables with null mean
and some nonzero variance in similar fashion to the REML methods
described for bioequivalence in Chapter 5.

Implementation in SAS is straightforward. First the data should be
sorted by subject to accommodate SAS requirements. The SAS pro-
cedure proc nlmixed is then called, and following the specification of
starting values, the equation described above is specified. Note that here
we have assumed concentration is normally distributed. It may be more
appropriate to model concentration as log-normally distributed, and this
can be accomplished by a log-transformation in a data step. Similarly,
instead of modelling concentration as a function of dose, logDose may
be more appropriate.

Nonlinear Mixed Effect Pharmacokinetic Data Analysis of Phase 1
Concentration Data in conc.sd2 - SAS proc nlmixed code:

proc sort data=my.conc;
by subject dose time;run;

proc nlmixed data=my.conc;
parms beta1=0.4 beta2=1.5 beta3=-2 s2b1=0.04
s2b2=0.02 s2b3=0.01 s2=0.25;
cl = exp(beta1+b1);
ka = exp(beta2+b2);
ke = exp(beta3+b3);
pred=dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/
(cl*(ka-ke));
model conc ~ normal(pred,s2);
random b1 b2 b3 ~ normal([0,0,0],[s2b1,0,
s2b2,0,0,s2b3]) subject=subject;
predict pred out=pred;
run;

In this code, s2b1, s2b2, and s2b3 are the variances associated with
bi1, bi2, and bi3, respectively. The parameter s2 is the estimate of within-
subject variance. Estimated parameters may be found in Table 7.12, and
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a plot of the estimated concentrations for each dose versus time may be
found in Figure 7.4.
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t <- seq(0,96,1) 
beta1 <- 0.35 
cl <- exp(beta1) 
beta2 <- 1.46 
ka <- exp(beta2) 
beta3 <- -2.47 
ke <- exp(beta3) 
d1 <- 5 
d2 <- 10 
d3 <- 20 
pred5 <- d1*ke*ka*(exp(-ke*t)-exp(-ka*t))/(cl*(ka-ke)) 
pred10 <- d2*ke*ka*(exp(-ke*t)-exp(-ka*t))/(cl*(ka-ke)) 
pred20 <- d3*ke*ka*(exp(-ke*t)-exp(-ka*t))/(cl*(ka-ke)) 
 
plot(t,pred20,type=’l’,lty=1,xlab=’Time (h), Dosing at Time = 0 h’,ylab=’Estimated 
Concentration (ng/mL)’) 
lines(t,pred10,type=’l’,lty=2) 
lines(t,pred5,type=’l’,lty=3) 
legend(locator(1),lty=c(1,2,3),legend=c(‘Dose=20’,’Dose=10’,’Dose=5’) 
 
 
 
 

Figure 7.4 Estimated Concentration versus Time (h) Profile from Phase 1
Concentration Data in conc.sd2

Predicted concentrations from the model are output to a data set pred
using the statement predict pred out=pred; in the above code. These
values may be used to construct residual plots for each subject and across
subjects to assess model fit using the following SAS code. Some evidence
of poor model fit is evident at low concentrations; however overall, the
model appears to provide an adequate description of the data.
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Table 7.12 Estimated PK Model Parameters from Phase 1 Concentration Data
in conc.sd2

Parameter Estimate 95% CI

β1 0.35 0.23,0.47
β2 1.46 1.30,1.63
β3 -2.47 -2.58,-2.36

s2b1 0.04 0.01,0.08
s2b2 0.03 -0.02,0.09
s2b3 0.01 -0.01,0.02
s2 0.011 0.009,0.013

Nonlinear PK Analysis Model Diagnostic Code:

proc sort data=pred;
by subject dose time;run;

data pred;set pred;
st_resid=(conc-Pred)/StdErrPred;
run;

proc rank data=pred normal=blom out=nscore;
var st_resid;
ranks nscore;

data nscore;
set nscore;
label nscore="Normal Score";
label stres="Residual";
label pred="Predicted Value";
run;

proc plot vpercent=50 data=nscore;
plot st_resid*pred/vref=0;
plot st_resid*nscore;
run;

In subsequent studies, when limited concentration data are collected
from patients at a given time on a given dose, these data can be used
with the model findings above to simulate a population pharmacoki-
netic profile. This can then be used to assess the exposure levels in that
patient population relative the NOAEL, and we will discuss how such
assessments may be done in Chapter 10. Similar models are used to
characterize the concentrations after repeat dosing. Clearance is differ-
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entiated between single and repeat dosing as appropriate to the findings
of the stationarity of clearance assessment.

We now consider findings of ALT elevation which were observed in a
repeat dose trial. ALT elevations are potentially indicative of liver injury,
and were monitored each day in this study. Such elevations can occur
spontaneously and unpredictably, in response to strenuous exercise, for
instance. Of concern here, however, was that these elevations were pre-
sumed to be drug induced. Although the ALT returned to baseline upon
cessation of treatment (data not shown), it was of interest to model the
behavior of ALT with dose over time to provide clinical with a means of
designing a monitoring plan in subsequent studies. For this assessment,
we will treat ALT as being log-normally distributed and model it as a
function of logDose.

Data from Subject 4 (who received 50 mg) may be found in Table
7.13. The data for the remaining subjects may be found in the data set
liver.sd2 on the website accompanying this book. For this subject we
see little indication of a response to drug treatment until day 5 where-
upon the ALT begins to increase.

Table 7.13 ALT Data from Subject 4 of liver.sd2

Subject Period Dose Day ALT

4 2 50 1 13
2 13
3 16
4 15
5 18
6 24
7 25
8 29
9 34
10 36
11 34
12 33
13 45
14 43

For this type of design, the power model for ALT is an extension of
the model used for pharmacokinetic data earlier in this section:

yjk = α + φj + β1(ld) + β2(ld(φj)) + εjk,
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where φj denotes the day being studied (j denotes days 1 to 14) for
each logALT (yjk). If dosing does not impact logALT, then β1 and β2

should be zero. We presume that ALT responses from day to day within
a subject are related to each other, with the degree of correlation de-
creasing with increasing time between days, and will partition this aspect
of variance associated with φj from the within-subject variation εjk in
our model.

Here, proc mixed is called, and subject and day are specified as class
variables. The endpoint of interest (logALT) is then modelled as a func-
tion of logDose, day, and the interaction between logDose and day. The
correlation between days is partitioned from the within-subject variance
using a repeated statement specifying that the correlation occurs within
each subject. The desired estimates for the mean effect at each day are
output using the lsmeans statement. Note that an at statement is again
included in each lsmeans statement to instruct SAS to derive estimates
at the appropriate choices of logDose (corresponding to doses of approx-
imately zero to 3000).
Sub-chronic ALT Data Analysis of liver.sd2 - SAS proc mixed code:

proc mixed data=liver;
class subject day;
model lnalt=day lndose day*lndose
/DDFM=KENWARDROGER S outp=out;
repeated day/type=AR(1) subject=subject;
lsmeans day/at lndose=-11.5129 CL alpha=0.01;
lsmeans day/at lndose=3.91 CL alpha=0.01;
lsmeans day/at lndose=4.61 CL alpha=0.01;
lsmeans day/at lndose=5.01 CL alpha=0.01;
lsmeans day/at lndose=5.52 CL alpha=0.01;
lsmeans day/at lndose=6.21 CL alpha=0.01;
lsmeans day/at lndose=6.62 CL alpha=0.01;
lsmeans day/at lndose=6.91 CL alpha=0.01;
lsmeans day/at lndose=7.60 CL alpha=0.01;
lsmeans day/at lndose=8.01 CL alpha=0.01;
ods output LSMeans=my.means1;
run;

In this data set, for this population (recall these are normal healthy
volunteers), statistically significant logDose related (p = 0.0415) in-
creases in ln-ALT were observed, and these changes increased with in-
creasing dose (p = 0.0024). The estimates of ALT elevation for the 50 mg
(logDose of 3.91) and the 3000 mg dose (logDose of 8.01) are presented
in the following table, exponentiated back to the original scale.



220 CLINICAL PHARMACOLOGY SAFETY STUDIES

Table 7.14: Estimated ALT Data (based on liver.sd2) from the
Sub-chronic Dosing Study Design

Dose Day Est. ALT 90% CI
50 1 15.5 12.9,18.5
50 2 14.9 12.5,17.9
50 3 15.2 12.7,18.2
50 4 17.1 14.3,20.5
50 5 20.9 17.5,25.1
50 6 25.4 21.2,30.5
50 7 28.3 23.6,33.9
50 8 29.4 24.5,35.2
50 9 30.1 25.1,36.1
50 10 31.1 26.0,37.3
50 11 31.1 26.0,37.3
50 12 29.5 24.6,35.3
50 13 30.6 25.5,36.6
50 14 31.5 26.2,37.7

3000 1 15.4 12.3,19.2
3000 2 14.9 11.9,18.6
3000 3 15.2 12.1,18.9
3000 4 17.3 13.9,21.7
3000 5 22.1 17.7,27.7
3000 6 27.9 22.3,34.8
3000 7 31.8 25.5,39.8
3000 8 33.3 26.6,41.6
3000 9 34.4 27.5,43.1
3000 10 35.4 28.3,44.2
3000 11 34.9 27.9,43.7
3000 12 32.6 26.1,40.8
3000 13 33.5 26.8,41.9
3000 14 34.5 27.5,43.2
Upper Limit of Normal ALT=34

For the 50 mg dose, we see ALT elevations beginning on day 4 and con-
tinuing throughout the dosing interval. Potentially hazardous elevations
may be expected seven days after beginning dosing (when the 90% upper
bound crosses the upper limit of normal). ALT elevations were slightly
greater as dose was increased to 3000 mg and potentially hazardous ALT
elevations were encountered a day sooner.

Models similar to these may be used to test for proof of safety (see
Chapter 8) and to model the behavior of pharmacodynamic effects (see
Chapter 9). We now turn to another safety topic.
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7.4 Food-Effect Assessment and DDIs

Following the studies described in the previous two sections, the max-
imum tolerated dose should have been identified when a single dose of
drug has been given and when a dose of drug is given repeatedly. By that
point, drug developers should have a good handle on what the body does
to the drug in isolation.

Note that what has not been done at this point is as important as what
has been learned. Drug development at this stage should have confirmed
that the potential for hazard when taking the drug is low when given
at certain doses over a period of limited duration. If a potential hazard
with dose has been identified, it may be necessary to explicitly study
the drug to provide ‘proof of safety’ under a variety of potential clinical
uses - see Chapter 8 for one such example.

Other preclinical and clinical studies later in development will be
needed if the drug is to be given chronically for longer intervals. Ad-
ditionally, the behavior of the drug in people with disease and different
ethnicity (Chapter 10) has not yet been established.

However, no one actually takes a drug in isolation. Patients are ex-
pected to take the drug with food on occasion and may be expected to
take it while taking other agents (whether or not the label precludes
such [426]). In this context, alcohol is an agent; over-the-counter vita-
mins and pharmaceuticals are other examples of agents, etc. How the
body handles the drug when coadministered under such circumstances
is the subject of this section.

As we know (Chapter 2), when a drug is taken it undergoes absorp-
tion, distribution, and metabolism and is eventually eliminated from the
body (ADME). Dosing a drug with food may impact how the drug is
absorbed. Dosing of a drug with other agents can impact distribution
and, more frequently, metabolism. This can slow down or speed up elim-
ination of the drug substance from the body. If elimination is decreased,
exposure to drug may increase to the point where it is not well tolerated.
Alternatively, if elimination is enhanced, the dose of drug may not be
sufficient to cause an efficacious response.

Lack of a meaningful pharmacokinetic difference when a drug product
is administered with and without food or with and without a concomi-
tantly administered agent or medication can often be assessed using the
results of small cross-over studies and applying a TOST approach [416].
Rate of bioavailability as measured by Cmax is held, under this approach,
to be a surrogate marker for safety for drugs in the marketplace. Compa-
rable or decreased mean Cmax following administration with or without
food or a concomitantly administered medication are indicative of sim-
ilar safety hazards to that when dosed alone. Increases in mean Cmax
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are potentially suggestive of a less acceptable safety profile for the drug
under study. Similarly, comparable mean AUC following administration
with or without food or a concomitantly administered medication are
indicative of safety and efficacy in that condition. The magnitude of de-
crease or increase in exposure can be used to adjust the dosing strategy
for the drug product under study.

As with bioequivalence, pharmacokinetics serve as a tool for assessing
safety in this context. Such a assessment limits the potential for hazard
established in the First-time-in-humans and sub-chronic dosing studies,
but does not eliminate it entirely.

We first consider an example of a cross-over study assessing the po-
tential for dosing with a meal to impact exposure (food effect). This is
followed by two examples of drug interaction trials.

Dosing of a drug product with a meal can change absorption of the
drug substance by [132]:

1. Delaying gastric emptying,

2. Stimulating bile flow,

3. Changing gastrointestinal PH,

4. Increasing splanchnic blood flow,

5. Changing luminal metabolism,

6. Causing physical or chemical interactions with the formulation or drug
substance

The effect of food on absorption is typically studied using an open-
label, randomized, 2 × 2 cross-over trial in normal healthy volunteers.
See Chapter 3 and [132] for details. Subjects (normal healthy volunteers)
are randomized to receive one of two sequences of treatment regimens.
Subjects receive a dose of drug following an overnight fast, are washed
out for five half-lives, and then receive the same dose of drug following
a meal, or vice-versa.

Note the change in terminology in this section to regimen instead of
formulation. In a food effect study, the formulation is the same, only
the conditions of dosing (with or without a meal) are changed. The use
of the descriptor regimen denotes that the dose of drug under study is
the same, but study conditions are altered to study the ADME proper-
ties. In Example 7.4.1 (below), regimens A and B denote dosing without
(regimen A) and with (regimen B) a meal. As with bioequivalence test-
ing, absence of a food effect is concluded if the 90% confidence intervals
for AUC and Cmax µB − µA fall within the standard bioequivalence
acceptance limits of − ln 1.25, ln 1.25 [132].

We now turn to an example of such testing for food effect. In this trial
(Example 7.4.1), 20 normal healthy volunteers were randomly assigned
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to sequences AB and BA, and AUC and Cmax were measured following
dosing in each period.

Table 7.15: Example 7.4.1: AUC and Cmax Data from a 2×2 Food
Effect Cross-over Study Design

Subject Seq AUC AUC Cmax Cmax
A B A B

1 AB 5836 8215 1953 1869
2 BA 9196 9895 1769 2446
3 AB 7809 7222 3409 1501
4 BA 6443 18864 1916 4232
5 BA 5875 5911 1884 2087
6 AB 9937 6186 2807 1743
7 BA 10275 9135 2532 2736
8 AB 4798 6211 1912 1541
9 BA 8940 9810 1939 2216
10 AB 10739 14734 1908 3645
11 AB 10549 10937 4042 2120
12 BA 8374 10853 3702 2001
13 BA 16510 13205 3411 2840
14 AB 7534 5648 2119 1684
15 AB 9473 13407 4194 3074
16 BA 5118 9399 2294 1538
17 AB 4686 7504 1487 1839
18 BA 6122 11027 1857 2063
19 AB 14059 15765 3142 3120
20 BA 6841 8104 1883 1954

A=Fasted Dose, B=Fed Dose

Data were analyzed using the procedures of Chapter 3 based on the
following proc mixed code.
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Food Effect Example 7.4.1 - SAS proc mixed code:

proc mixed data=pk_food;
class sequence subject period regimen;
model logauc=sequence period regimen/
ddfm=kenwardroger;
random subject(sequence);
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’Food Effect for logAUC’ regimen -1 1;
run;

proc mixed data=pk_food;
class sequence subject period regimen;
model logcmax=sequence period regimen/
ddfm=kenwardroger;
random subject(sequence);
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’Food Effect for logCmax’ regimen -1 1;
run;

proc mixed data=pk_food;
class sequence subject period regimen;
model tmax=sequence period regimen/
ddfm=kenwardroger;
random subject(sequence);
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’Food Effect for Tmax’ regimen -1 1;
run;

Dosing with food significantly (p = 0.0363) increased the extent of
exposure (AUC) to this drug product by approximately 20% with an
estimate of food effect (µB − µA) of 0.1788 (90% confidence interval
0.0417, 0.3158) on the log-scale. Although rate of exposure (Cmax) was
not significantly changed (p = 0.4142), lack of food effect could not be
concluded as the estimate of food effect was -0.0758 (90% confidence
interval -0.2330, 0.0814) on the log-scale. Tmax was significantly pro-
longed following dosing with a meal (data may be found on the website
accompanying this book) with food effect estimated to be 1.7h (90%
confidence interval 1.28h, 2.11h).

From these data, it is possible to conclude that dosing with food affects
the absorption of this drug product, increasing the overall exposure to
drug (AUC) and delaying its maximal concentration. These changes do
not likely present a hazard to patients using the drug as Cmax was not
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increased following a meal, and the increase in AUC was not deemed
clinically relevant (requiring a change in dose to correct).

We now turn to the statistical assessment of drug interactions. Drugs
can interact with each other in a number of ways involving the ADME
properties ([37] Chapter 2, [12] Chapter 14). As with food effects, ab-
sorption may be impacted; however, the most common interaction relates
to how the liver metabolizes the drug substances. Metabolic inhibition
denotes that one drug prevents the metabolism of the other, usually re-
sulting in increased exposure to the substance. Alternatively, drugs may
have no effect on each other or a drug might induce the metabolism of
the other indicating that metabolism activity is enhanced in the body
likely leading to decreased exposure to drug.

Note that metabolism is only one way that drugs can interact. Other
examples include protein binding interactions, transporter interaction,
etc. See [37] Chapter 2 and [12] Chapter 14 for more details. In this
section, we will discuss the topic of drug interactions focusing on those
introduced by the CYP450 liver enzyme system for simplicity; however,
the clinical and statistical assessments used are similar for these other
interaction types.

The CYP450 (cytochrome P450) enzyme family is responsible for the
majority of metabolic drug interactions known to occur [127]. This type
of drug metabolism is focused in the body’s liver, and the liver uses mul-
tiple subfamily enzyme systems to metabolize drug products after they
are ingested and as they circulate through the blood. The subfamilies
include, in decreasing order of importance and frequency [37]:

1. 3A4,

2. 2C9,

3. 2A6,

4. 2C8, 2E1,

5. 1A2,

6. 2B6,

7. 2D6, 2C19, etc.

Inhibition or induction of drugs metabolized by these systems may re-
sult in changed exposure levels, presumably and potentially putting the
safety of patients at risk. Clinical studies are used to assess this potential.

In vitro testing [123] may preclude or enhance the need to do such a
study. The predictive value of such in vitro testing for drug metabolism
by the CYP450 family has become increasingly accurate and reliable in
recent years, and generally, clinical drug interaction trials are only con-
ducted when an in vitro system identifies a particular subfamily as being
of potential concern. Such concern may arise if the new drug inhibits or
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induces the metabolism of other drugs by a certain subfamily or if the
new drug is itself metabolized by a particular subfamily - the route for
which may be inhibited or induced by another product.

To assess the potential changes in exposure, a steady state randomized
or non-randomized cross-over design are most often used. In general,
subjects are dosed to steady state with one product alone (Regimen A
in the following examples), and in the alternative regimen are dosed to
steady state with the potential metabolic inhibitor or inducer in tandem
(Regimen B). AUC, Cmax, and other pharmacokinetic endpoints are
derived at appropriate times following dosing to evaluate the potential
changes in exposure [127].

Non-randomized cross-over designs (see Example 7.4.3 below) may
be used if washout of the probe drug (i.e., the drug being probed for a
potential interaction) is long or if an extended dosing period is necessary
to achieve steady state exposure. It should be noted that it is possible
to administer several probe drugs at the same time to evaluate multiple
pathways of metabolism at once. These are known a ‘cocktail’ drug-
interaction trials. See [398] for a recent example.

Our first drug interaction example is a randomized cross-over study
in 20 normal healthy volunteers where a probe drug’s metabolism was
inhibited when given with a new drug at steady state. The increase in
exposure was studied to determine whether coadministration represented
a risk to patients using the probe drug. SAS code to analyse such data
are the same as that applied in Chapter 3 and may be found below.

Table 7.16: Example 7.4.2: AUC and Cmax Data from a 2×2 Drug
Interaction Cross-over Study Design for Metabolic Inhibition

Subject Seq AUC AUC Cmax Cmax
A B A B

1 BA 21.9 28.1 2.16 2.27
2 AB 17.9 14.8 1.63 1.39
3 BA 14.8 22.2 1.21 2.38
4 AB 19.4 17.0 1.59 1.64
6 AB 28.2 28.2 2.77 2.84
7 AB 25.3 17.1 1.98 1.84
8 BA 24.0 25.4 1.71 1.90
10 AB 27.8 33.2 2.68 2.57
11 BA 17.0 20.6 1.98 2.49
12 AB 19.3 23.6 2.37 3.29
14 AB 29.9 27.5 2.43 2.22

A=Probe Drug
B=Probe Drug Plus a Metabolic Inhibitor
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Table 7.16: Example 7.4.2: AUC and Cmax Data from a 2×2 Drug
Interaction Cross-over Study Design for Metabolic Inhibition

Subject Seq AUC AUC Cmax Cmax
A B A B

15 AB 20.5 22.3 1.92 2.04
16 BA 24.3 29.9 2.26 2.83
17 BA 27.5 32.5 1.92 2.27
18 AB 16.9 17.4 1.66 1.91
19 AB 33.1 39.0 3.39 2.88
20 BA 14.7 22.1 1.63 2.66
21 BA 29.3 43.2 2.46 3.79
22 AB 23.3 31.6 3.06 2.57
23 BA 23.1 24.3 2.66 2.56

A=Probe Drug
B=Probe Drug Plus a Metabolic Inhibitor

Inhibitor Drug Interaction Example 7.4.2 - SAS proc mixed code:

proc mixed data=pk_inhi;
class sequence subject period regimen;
model logauc=sequence period regimen/
ddfm=kenwardroger;
random subject(sequence);
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’DDI Effect for logAUC’ regimen -1 1;
run;

proc mixed data=pk_inhi;
class sequence subject period regimen;
model logcmax=sequence period regimen/
ddfm=kenwardroger;
random subject(sequence);
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’DDI Effect for logCmax’ regimen -1 1;
run;

Dosing with the metabolic inhibitor significantly changed AUC and
Cmax of the probe drug (p = 0.0056 and 0.0094, respectively). Admin-
stration with the metabolic inhibitor increased the extent of exposure
(AUC) to this drug product by approximately 13% with an estimate of
interaction (µB−µA) of 0.1254 (90% confidence interval 0.0563, 0.1946)
on the log-scale. The maximal concentration (Cmax) was also increased
by 13% with effect size of 0.1245 (90% confidence interval 0.0503, 0.1987)
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on the log-scale. Other data (Tmax, etc.) measured in this study may be
found on the website accompanying this book. Interested readers should
note that C24 (the concentration of probe drug 24 hours following dos-
ing) and renal clearance (CLR) were significantly altered by combination
dosing; however, Tmax was not.

Our second drug interaction example is a non-randomized cross-over
study in 20 normal healthy volunteers where a probe drug’s metabolism
was induced when given with a new drug at steady state. The decrease in
exposure was studied to determine whether coadministration represented
a risk to patients using the probe drug. SAS code to analyse such data are
similar to that applied in Chapter 3 and may be found below. Note, this
was a non-randomized cross-over study, so period and sequence effects
are confounded with regimen (and were not fitted in the model). This
type of design is acceptable [127] when period effects can be expected to
be small relative to the effect of regimen.

Table 7.17: Example 7.4.3: AUC and Cmax Data from a Drug
Interaction Cross-over Study Design for Metabolic Induction

Subject Seq AUC AUC Cmax Cmax
A B A B

1 AB 37.73 9.38 3.84 2.75
2 AB 18.22 5.07 2.74 0.97
3 AB 10.30 5.75 1.87 1.98
4 AB 22.11 4.32 4.32 1.15
5 AB 16.31 5.83 3.24 1.15
6 AB 20.47 6.80 3.23 1.32
7 AB 16.02 3.32 1.71 0.72
8 AB 10.73 3.38 1.99 1.07
9 AB 13.93 3.72 1.92 0.97
10 AB 24.32 4.25 2.99 0.59
11 AB 31.67 6.82 3.03 1.01
12 AB 10.97 3.40 2.03 0.48
13 AB 55.49 7.72 4.90 2.20
14 AB 13.65 4.16 1.73 0.65
15 AB 23.97 6.13 3.27 1.78
16 AB 14.07 2.65 2.65 0.50
17 AB 6.51 2.59 1.32 0.91
18 AB 19.60 3.32 3.07 0.56
19 AB 18.80 2.96 2.83 0.66
20 AB 28.25 3.32 3.11 0.69

A=Probe Drug
B=Probe Drug Plus a Metabolic Inducer
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Inducer Drug Interaction Example 7.4.3 - SAS proc mixed code:

proc mixed data=pk_indu;
class subject regimen;
model logauc=regimen/ddfm=kenwardroger;
random subject;
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’DDI Effect for logAUC’ regimen -1 1;
run;

proc mixed data=pk_indu;
class subject regimen;
model logcmax=regimen/ddfm=kenwardroger;
random subject;
lsmeans regimen/pdiff cl alpha=0.1;
estimate ’DDI Effect for logCmax’ regimen -1 1;
run;

Dosing with the metabolic inducer significantly changed AUC and
Cmax of the probe drug (p < 0.0001 for both endpoints). Adminstration
with the metabolic inducer decreased the extent of exposure (AUC) to
this drug product by approximately 75% with an estimate of interaction
(µB − µA) of -1.4199 (90% confidence interval -1.5686, -1.2713) on the
log-scale. The maximal concentration (Cmax) was also decreased by 63%
with effect size of -0.9996 (90% confidence interval -1.1883, -0.8109) on
the log-scale. Other data (half-life, Tmax, etc.) measured in this study
may be found on the website accompanying this book. Interested readers
should note that half-life was significantly altered by combination dosing;
however, Tmax was not.

While combination of dosing with these products may be presumed to
be safe (as exposure was decreased), it may not be desirable. Changes
of this magnitude in exposure might lead to the probe drug being in-
efficacious, and alternative dosing strategies might need to be employed
to ensure adequate probe drug is available in the body to succeed in
establishing an effective treatment.

The sample size required to have sufficient power for food effect de-
signs and TOST assessment [132] are derived according to the procedures
developed in Chapter 3. However, in drug interaction trials, regulatory
guidance generally does not call for TOST assessment relative to the
traditional bioequivalence acceptance limits of − ln1.25 to ln1.25. More
commonly, no-effect boundaries are predetermined by means of assess-
ing how much change in exposure would necessitate a change in dose
for the probe drug to be safe and efficacious. These limits need not be
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symmetric, and SAS code is provided below to perform such a derivation
of sample size.

Sample Size Code for TOST in DDI Studies:

data a;
* total number of subjects
(needs to be a multiple of number
of sequences, seq);

n=20; seq=2;
* significance level;

a=0.05;
* variance of difference of two observations
on the log scale;
* sigmaW = within-subjects standard deviation;

sigmaW=0.2; s=sqrt(2)*sigmaW;
* error degrees of freedom for cross-over
with n subjects in total
assigned equally to seq sequences;

n2=n-seq;
* ratio = mu_T/mu_R;
ratio=1.00;

lal=0.8;
*lower acceptance limit;

ul=1.25;
*upper acceptance limit;
run;

data b; set a;
* calculate power;

t1=tinv(1-a,n2); t2=-t1;
nc1=(sqrt(n))*((log(ratio)-log(lal))/s);
nc2=(sqrt(n))*((log(ratio)-log(ual))/s);
df=n2;
prob1=probt(t1,df,nc1);
prob2=probt(t2,df,nc2);
answer=prob2-prob1;
power=answer*100; run;

proc print data=b; run;

Lower and upper acceptance limits are not always available from the
literature, and even if they are, regulators may not agree with whatever
the sponsor defines. Under such circumstances, an estimation approach
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[242] can be useful when the magnitude of no-effect boundaries are not
known and the main study objective is to provide evidence of what the
potential value, or range of values, may be, or when the sample size is
in part set by feasibility, and we wish to provide an idea of the precision
the trial is likely to provide for the drug interaction effect of interest.

In such cases, the intent is to provide an estimate of the expected
width or precision of the plausible range of values as expressed by a
confidence interval. This will help satisfy our expectation with regard
to acceptability and applicability of study results in the knowledge that,
‘The confidence interval can be thought of as the set of true but unknown
differences that are statistically compatible with the observed difference.’
[164]

Then, as described in Chapter 3, Equation (3.7), a 90% confidence
interval for µT − µR is:

µ̂T − µ̂R ± t0.95(n− 2)

√
2σ̂2

W

n
,

when sample size in each sequence is equal and n is the overall sample
size. For the purposes of this discussion, we presume a standard 2 × 2
cross-over is used, but alteration for alternative designs is easily accom-
plished and is left as an exercise for the interested reader. Consider

wδ = t0.95(n− 2)

√
2σ̂2

W

n
.

This function provides a precision estimate for the true mean difference.
Goodman [164] notes that use of a method like that proposed above
should be exercised with caution as, in a situation where the study de-
sign is truly intended to support a test of hypothesis, the approach cor-
responds to a test using only 50% power when precision is equal to the
difference of interest. Similarly, in situations where a TOST equivalence
approach is intended, the method presented in this equation corresponds
to a two one-sided hypothesis test with 50% power when precision is
equal to the equivalence range of interest.
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Sample Size Code for Precision in DDI Studies:

data a;
* total number of subjects
(needs to be a multiple of number
of sequences, seq);

n=20; seq=2;
* significance level;

a=0.05;
* variance of difference of two observations
on the log scale;
* sigmaW = within-subjects standard deviation;

sigmaW=0.2; s=sqrt(2)*sigmaW;
* error degrees of freedom for cross-over
with n subjects in total
assigned equally to seq sequences;

n2=n-seq;
run;

data b; set a;
* calculate precision;

t=tinv(1-a,n2);
SE=s/(sqrt(n));

* precision on log-scale;
w=t*SE;

* precision on natural-scale;
exp_w=(exp(t*SE)-1)*100;
run;

proc print data=b; run;

In this case, the precision on the natural scale would be calculated as
12%, indicating that the confidence limits will lie about that far from
the point estimate for the difference in means. If greater precision is
desired, the sample size may be increased, or decreased if lesser precision
is needed.

In some cases, such pharmacokinetic safety assessment will not suffice,
and a more rigorous assessment of safety may be called for to protect
patients using the drug. Under such circumstances, often a specific bio-
marker is of interest. Such an example - QTc - will be considered in the
next chapter.
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7.5 Dose-Proportionality

In developing drugs, sponsoring companies spend a great deal of time
and energy mapping pharmacokinetic exposure to drug (concentration
in blood, AUC, Cmax, etc.) with clinical outcomes relating to safety
and efficacy. When working in a clinical setting, physicians do not often
have access to pharmacokinetic data from their patients. In practice,
therefore, they vary dose in their patients to cause clinical benefit, and
limit dosing to ensure undesirable side-effects (e.g., nausea, emesis) do
not occur. Consider a situation where one administers a dose sure to
be efficacious, but observes an unacceptable side effect (e.g., nausea).
Dose-proportionality, the subject of this section, helps one determine
which lower dose should next be tried to improve tolerability while still
attaining efficacy.

In the previous studies discussed in this chapter, an understanding of
the dose to exposure to safety relationship will have been established.
One of the things prescribers need to know is how much exposure changes
when the dose is changed, so that in changing doses for a given patient,
they can balance a change in dose with desirable outcomes (see Chapter
9) and undesirable side-effects.

When one increases the dose of a drug product, this does not neces-
sarily result in a proportional change in exposure. There are physiologic,
biologic, and chemical limits to how much drug substance the body will
absorb, distribute, metabolize, and excrete. However, over the thera-
peutic dose range (the maximum effective and tolerated dose less the
minimum effective dose), it is important to know that if one, say, dou-
bles the dose, then double the rate and extent of exposure results - and
vice versa. [408].

The assessments of rate and extent of exposure in the first-time-in-
humans and sub-chronic dosing studies will yield a good practical under-
standing of the shape of the dose-to-exposure relationship (as described
in previous sections). However, assessments of dose-proportionality in
the first-time-in-humans study are confounded with period effects. These
effects are known to occur in pharmacokinetic studies and may impact
inference [376]. Assessments of dose-proportionality in the sub-chronic
dosing study are generally underpowered for robust statistical assess-
ment as the study is parallel group. While knowledge gained from these
studies, in general, is adequate for clinical development, for approval at
regulatory agencies (in preparation for giving the drug to large popula-
tions), a more robust study is generally done to confirm that the shape
of the dose-to-exposure relationship is well understood.

In some situations, therefore, a confirmatory dose-proportionality study
is performed just prior to regulatory filing with the final to-be-marketed
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formulation. Many different models may be used to examine dose propor-
tionality [408]. This section will focus on the application of the power
model (described in Section 7.2) for this assessment. In this setting,
we will assume a randomized cross-over design is used to assess dose-
proportionality with at least three doses in the therapeutic range being
considered. Normal healthy volunteers receive a dose of drug after an
overnight fast, with administration of each dose separated by a washout
period of at least five half-lives using a Williams square design (see Chap-
ter 4).

For this type of design, the model is:

yijk = α + β(ld) + πj + γi + ξk(i) + εijk,

where α, β, and logDose (ld) are as previously described, πj and γi iden-
tify the period j of sequence i, ξk(i) is the random-intercept accounting
for each subject within sequence as their own control, and εijk denotes
within-subject error as described in Chapter 3 for each log-transformed
AUC or Cmax (yijk).

When one exponentiates both sides of this equation, AUC or Cmax =
c(dβ) where c is a value composed of the exponentiated sum of estimates
of sequence, subject, and period fixed effects and d is dose. When β = 1,
the drug is dose proportional as AUC or Cmax = cd. When one wishes
to change the dose, it is easy to predict what AUC or Cmax will result. If
β 6= 1, one can still predict what AUC or Cmax will result from changing
the dose, but the calculation is more complex (as the relationship of dose
to the exposure endpoint, AUC or Cmax, is nonlinear).

Consider the possible shape of the resulting dose to exposure curves
in Figure 7.5.

For β = 1, a truly dose-proportional relationship is observed. For any
unit change in dose, a unit change in AUC results - i.e., doubling the
dose results in twice the AUC. If β > 1, a greater than dose-proportional
response is seen (doubling the dose results in a greater than doubling in
AUC), and if β < 1, a less than dose-proportional response in exposure
is observed (doubling the dose results in less than a doubling in AUC).

Smith et al. [406] showed that it is obvious to think of dose propor-
tionality as an equivalence problem. This implies that the structure for
testing dose proportionality is:

H01 : β ≤ 1− t

versus

H11 : β > 1− t

and

H02 : β ≥ 1 + t
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x<-seq(0.5,20,0.25) 
e0.25<-exp(5.7+(0.25*log(x))) 
e0.5<-exp(5.7+(0.5*log(x))) 
e0.805<-exp(5.7+(0.805*log(x))) 
e1<-exp(5.7+(1*log(x))) 
e1.195<-exp(5.7+(1.195*log(x))) 
e1.5<-exp(5.7+(1.5*log(x))) 
e2<-exp(5.7+(2*log(x))) 
 
plot(x,e1,type='l',lty=1,xlab='Dose (mg)', ylab='Exposure Endpoint') 
lines(x,e1.195,type='l',lty=5) 
lines(x,e0.805,type='l',lty=8) 
 
legend(locator(1),lty=c(1,5,8),legend=c('Slope=1','=1.195','=0.805')) 
 
 

Figure 7.5 Dose to Exposure (AUC or Cmax) Relationship for β from 0.8 to
1.2

versus
H12 : β < 1 + t.

similar to the TOST used in bioequivalence testing.
However, there is currently no set regulatory standard for the equiv-

alence region. Smith et al. [406] recommends that t be defined as

t = ln θ/ ln r

where θ is the minimal change in exposure beyond which one may want
to adjust to maintain safe exposure levels, and r is the ratio of the
maximum tolerated or effective dose to be used in the study to the
minimum effective dose.

In the following example θ = 1.5, as it was felt for this drug that
a 50% increase in exposure might necessitate a decrease in dose. The
therapeutic dose range was 1 - 8 mg, and r = 8 accordingly. Therefore
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t = 0.195, and the hypotheses to be tested were:

H01 : β ≤ 0.805

versus
H11 : β > 0.805

and
H02 : β ≥ 1.195

versus
H12 : β < 1.195.

When the parameter β lies between 0.805 and 1.195 (with sufficient
confidence), this procedure judges the data adequate to support a claim
of dose-proportionality.

As with bioequivalence testing, a mixed model is used to assess the
magnitude of β and to derive 90% confidence intervals. If the 90% con-
fidence interval for β lies within 1− t to 1 + t, for both AUC and Cmax,
dose-proportionality is demonstrated.

In Example 7.6.1, a randomized cross-over study in 28 normal healthy
volunteers was performed to assess dose-proportionality and the effect
of food. SAS code to analyse such data are similar to that applied in
Chapter 3 and may be found below.

Table 7.18: Example 7.5.1: AUC and Cmax Data from a Random-
ized Dose-Proportionality Cross-over Study

Subject Seq AUC AUC AUC Cmax Cmax Cmax
A B C A B C

1 DCAB 352 746 3408 66.6 208.4 687.2
4 BACD 440 842 2560 88.9 162.6 504.0
5 CBDA 249 552 2856 66.7 124.0 601.6
6 DCAB 318 628 2560 68.9 114.4 495.2
7 ADBC 528 814 3888 98.5 177.8 826.4
8 BACD 512 1122 4680 82.8 204.8 684.8
9 DCAB 329 750 2720 67.0 180.0 510.4
10 ADBC 374 688 2432 65.7 142.8 448.0
11 CBDA 282 994 4680 76.4 191.0 586.4
13 BACD 324 674 2584 82.1 168.8 610.4
14 CBDA 284 636 3176 61.5 108.0 532.0
15 ADBC 372 666 3200 82.8 169.4 792.0
16 DCAB 304 578 2272 67.1 123.8 440.8
17 CBDA 171 400 1696 48.0 90.2 463.2
18 DCAB 489 1054 3752 91.5 190.6 735.2
20 ADBC 267 526 1896 59.9 141.0 540.8

A=1mg; B=2mg; C=8mg; D=8mg with a meal
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Table 7.18: Example 7.5.1: AUC and Cmax Data from a Random-
ized Dose-Proportionality Cross-over Study

Subject Seq AUC AUC AUC Cmax Cmax Cmax
A B C A B C

21 ADBC 292 620 2392 65.6 107.6 332.8
22 BACD 299 580 2488 79.2 126.8 649.6
23 DCAB 392 918 3152 64.1 291.0 615.2
24 CBDA 363 646 3448 87.3 177.2 715.2
25 ADBC 728 896 3232 75.2 130.6 571.2
27 CBDA 348 806 3360 75.5 131.0 560.8
28 DCAB 287 568 2440 69.7 146.2 578.4
29 BACD 283 620 2320 79.4 151.2 502.4
30 CBDA 246 590 2472 78.2 87.6 637.6
31 ADBC 429 786 3264 114.1 186.0 785.6
32 BACD 308 704 2616 81.0 155.2 671.2
33 BACD 462 1132 3656 85.7 174.4 656.8

A=1mg; B=2mg; C=8mg; D=8mg with a meal

Dose-Proportionality Assessment Example 7.5.1 - SAS proc mixed
code:

proc mixed method=reml data=pk_dp;
class subject sequence period;
model lnauc=sequence period lndose/
s ddfm=kenwardroger cl alpha=.1;
random intercept/subject=subject(sequence);
run;

proc mixed method=reml data=pk_dp;
class subject sequence period;
model lncmax=sequence period lndose/
s ddfm=kenwardroger cl alpha=.1;
random intercept/subject=subject(sequence);
run;

The estimates for β were 1.0218 and 0.9879 for logAUC and Cmax,
respectively, with 90% confidence intervals contained well within 0.805
to 1.195. Therefore, dose-proportionality was demonstrated. Interested
readers may find data for Tmax from this study and AUC and Cmax
data for the assessment of food effects (Regimen D compared to Regimen
C) on the website accompanying this book. Tmax was not significantly
changed by altering the dose of drug, and food did not affect the AUC
and Cmax of this drug.
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Determination of sample size for such a cross-over study is similar to
the procedure used in bioequivalence testing. It is known that the esti-
mate β̂ is normally distributed with mean β and variance σ2

W

n
P

m(ldm−l̄d)2
,

where n is the sample size and
∑

m(ldm − l̄d)2 is the corrected (for the
mean logDose, l̄d) sum of squared logDoses corresponding to the de-
sign matrix of the study. Construction of the TOST procedure in this
setting follows from these well-known findings. For the purposes of this
calculation, we assume that a design has been selected such that period
effects are not related to dose (i.e., that the study is fully randomized)
for simplicity.
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Sample Size Code for TOST in Dose-Proportionality Studies:

data a;
* total number of subjects
(needs to be a multiple of number
of sequences, seq);
* p is the number of periods;

n=12; seq=3; p=3;
* significance level;

a=0.05;
* true dose proportionality;

beta=1;
* sigmaW = within-subject standard deviation;

sigmaW=0.25;
* css is the corrected sum of squares of doses;
* s assumes period effects are orthogonal to dose;

css=CSS(log(1),log(2),log(8));
s=sigmaW/sqrt(n*css);
* error degrees of freedom for cross-over

with n subjects in total
assigned equally to seq sequences;

n2=(n*p)-(n+p-1)-1;
* t = acceptance limit;
theta=1.25;
r=8/1;
t=log(theta)/log(r);
run;

data b; set a;
* calculate power;

t1=tinv(1-a,n2); t2=-t1;
nc1=(sqrt(n))*((beta-(1-t))/s);
nc2=(sqrt(n))*((beta-(1+t))/s);
df=n2;
prob1=probt(t1,df,nc1);
prob2=probt(t2,df,nc2);
answer=prob2-prob1;
power=answer*100; run;

proc print data=b; run;

These are typically very powerful designs for the assessment of dose-
proportionality, and interested readers will find that power for the above
design approaches 100%. Although as few as six normal healthy volun-
teers will serve to provide a very robust dose-proportionality assessment
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in most settings, it is recommended that cross-over studies supporting a
regulatory file include at least 10 to 12 subjects to ensure application of
the central-limit theorem is appropriate.

7.6 Technical Appendix

This technical appendix provides an example of interactive Bayesian
modelling of pharmacokinetic data in a first-time-in-humans trial. In
Table 7.19, mean AUC and Cmax estimates from a preclinical species
are presented.

Table 7.19 Exposure Estimates from a Preclinical Species

Dose Estimated AUC Estimated Cmax

5 mg/kg 2790 880
100 mg/kg 29,600 7600

Techniques to use these values to predict human AUC and Cmax are
discussed in Chapter 30 [12] and will not be discussed further here. For
the purposes of illustration, here it is assumed that only human weight
needs be taken into account in predicting human exposure levels, and
these estimates (assuming a 50 kg human) are provided in Table 7.20.

Table 7.20 Exposure Estimates for a 50 kg Human from a Preclinical Species

Dose Estimated AUC Estimated Cmax

5 mg 139,500 44,000
100 mg 1,480,000 380,000

We wish to use these data to derive estimates for α and β as dis-
cussed in Section 7.2; however, at this stage we have these two unknown
parameters and only two data points. For pharmacokinetic data, it is
possible to make the assumption that when dose is very small (0.0001)
the resulting AUC or Cmax will be very small (0.0001). This yields three
data points for two unknown parameters, and a simple regression may be
performed to provide prior distributions for α and β. SAS code to per-
form this analysis may be found on the website accompanying this book.
Other means (e.g., expert elicitation) may also be used to derive such
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estimates for α and β, and we refer interested readers to an excellent
review in [154].

In this case, it is estimated that α̂ ∼ N(3.43, 0.52) and
β̂ ∼ N(1.36, 0.0081) where N denotes the normal distribution with
(mean, variance) from a regression of logAUC on logDose. We utilize
the mean estimates for these parameters in the code below, but assume
that the variance associated with them is very wide (reflecting the un-
certainty inherent to allometric scaling calculations).

Example 7.2.2 AUC data were analyzed in WINBUGS using the fol-
lowing computer code (based on the code from the RATS WINBUGS
example):

Interactive Bayesian First-time-in-humans WINBUGS Analysis Code
for Example 7.2.2

model
{for( i in 1 : N )
{
for( j in 1 : T )
{
Y[i , j] ~ dnorm(mu[i , j],tau.c)
mu[i , j] <- alpha[i] + beta[i] * x[j]
}
alpha[i] ~ dnorm(alpha.c,alpha.tau)
beta[i] ~ dnorm(beta.c,beta.tau)
}
tau.c ~ dgamma(0.001,0.001)
sigma <- 1 / sqrt(tau.c)
alpha.c ~ dnorm(3.43,1.0E-6)
alpha.tau ~ dgamma(0.001,0.001)
beta.c ~ dnorm(1.36,1.0E-6)
beta.tau ~ dgamma(0.001,0.001)
lnmtd <- (7.78-alpha.c)/(beta.c)
mtd <- exp(lnmtd)
}

This model may be used interactively as data are collected to estimate
individual responses (monitoring mu[i , j]) and the MTD. Data and initial
values to run this program in WINBUGS may be found on the website
accompanying this book.

As with the original analysis, attention is focused on the MTD rela-
tive to the NOAEL (2400 for illustration purposes). The MTD in this
analysis is estimated as 13.8 mg (using the median posterior density of
100,000 iterations after a burn-in of 1000 iterations). A Bayesian 90%
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confidence interval for the MTD is 8.4 to 25.7 mg. Similar analyses may
be performed for Cmax, and this is left as an exercise for the reader.



CHAPTER 8

QTc

Introduction
No one can be expected to pay 100% attention to 100% of the issues

and data encountered in clinical pharmacology 100% of the time, so one
should be forgiven for not recognizing immediately that QTc is a critical
issue in drug development.

My boss stepped in one day to alert me to the fact that I now had a
new project. We were developing a drug for anti-arrythmia. There were
a number of ongoing clinical pharmacology trials that were delivering
data, and results would be needed ‘Stat’ to enable the company to make
an investment decision.

I was used to this by this time. No one ever came by and said we
had plenty of time to get a job done, with no rush, and that senior
management was happy to wait as long as we needed to get the job done
at our convenience. I was hopeful at that time that maybe one day I
would get a project like that, but now I have given up hope that such an
event will ever happen.

In any event, arrythmia denotes an irregular heartbeat. Some are be-
nign, but some are fatal, and the drug we were developing was intended
to prevent its occurrence. To do so, my boss informed me that the drug
would impact the ECG. I nodded sagely, and after she left I looked it up
in my trusty medical dictionary. ECG denotes an electrocardiogram - a
tracing of the electrical activity of the heart over time (we will see a typ-
ical one later in this chapter). What I was expecting when the data came
in, therefore, was a lot of ECG tracings from which I would measure am-
plitude, trough to trough time intervals, and other summary measures to
statistically describe the activity following dosing with our drug relative
to placebo. These would obviously be related to the aortas and ventricles
I remembered from 8th grade anatomy, so this should not have been too
bad.

What I received, however, was a data set of alphabet soup with num-
bers. There were measurements taken for PR, QRS, QT, RR, QTc,
QTcB, QTcF, QTcI (to name a few) in addition to text fields describing
T-wave morphology. All of these were measured in triplicate following
dosing with placebo and our drug in a pretty large number of patients at
many times over the course of a day. There was not an ECG to be seen,
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nor any ventricles. It was a completely unidentifiable mass of unbeliev-
able gobbledygook seemingly produced by a team of junior medics with
slide rules, protractors, and way too much time on their hands. I found
out later it was done by senior medics and had been done this way since
the 1920s.

My guess (which turned out later to be correct) was that these end-
points (PR, etc.) were measuring time relative to the voltage of the heart.
But in this instance my medical dictionary let me down. QTc was not
in there.

This left me with three options to try to figure out what was going on:

1. Ask my statistical colleagues (they did not know, or said they did not).

2. Go downstairs and talk to Denny about what this stuff was (since the
report was needed yesterday), but the problem with talking to Denny
was that he would want to know about the data for a couple other
projects I was working on, and I did not want to field twenty questions
when all I needed was one answer.

3. Go to lunch.

After lunch, I talked to Denny and got a crash course on the heart and
electrocardiology. QTc turned out to be very important, not only for this
drug, but also as a general issue in drug development. We will devote
this chapter to QTc as it is now an important issue assessed in clinical
pharmacology assessments of drug safety for all drug products.

8.1 Background

An electrocardiogram (ECG) measures the electrical activity of the heart
over time. Usually, eight ‘leads’ or electrical monitors are placed on a
patient’s upper torso and back along certain predetermined vectors out
from the heart. These leads then monitor the electrical output of the
heart to construct a graph of the polarization and depolarization of dif-
ferent parts of the heart during a beat. See Figure 8.1. This pattern is
repeated over and over again while the heart beats.

The different parts of the ECG are denoted by letters and referred to
as ‘waves’ and ‘complexes’. For instance, the first ‘bump’ is referred to as
the P-wave. The nadir of the first dip begins the QRS-complex, and the
wave immediately following this complex is the T-wave. In some ECGs,
there is a following wave known as the U-wave, but this is unusual in
normal healthy volunteers.

On the ECG tracing, the QT interval is defined as the amount of
time between the initiation of the QRS complex and the conclusion of
the T-wave. QT interval duration is measured in milliseconds (msec),
by computer algorithm, and measures of how long it takes the heart to
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Figure 8.1 A Typical 12-Lead ECG Interval

repolarise and prepare for its next beat. The longer it takes to repolarise,
the more time between beats, and the less oxygen gets to cells.

QT duration is dependent upon gender, age, health status, menstrual
cycle, and a great number of other factors. QT changes naturally over
the course of the day, and QT duration can be prolonged by food and is
changed by exercise. Some drugs prolong the QT interval (i.e., delay the
heart’s ability to repolarise). If QT is prolonged sufficiently in humans,
potentially fatal cardiac arrhythmias can result. Torsades de Pointes,
most often referred to in connection with QT as these are known to
be related, is a malignant ventricular arrhythmia known to occur infre-
quently in individuals who are genetically predisposed to this condition
and sometimes in response to drug therapy [349].

Prolongation of the QTc interval has been observed to be related to
increased risk of Torsades de Pointes in an exponential fashion [310].
The QT interval is highly correlated with how fast the heart is beating
overall (measured by determining RR, the length of time between one R
on the ECG and the next R). Therefore in measuring QT, the interval is
usually corrected to derive a QTc (QT interval corrected for heart rate).
Common corrections were developed by Fridericia [149] and Bazett [23],
and many authors have published on better ways to correct for heart
rate in recent years, e.g., [91]. Bazett’s correction has been observed to
overcorrect QTc at some heart rates [353], [422], [336] and is not gener-
ally used for the purposes of safety assessment described in this chapter.
We will not dwell further here on the application of correction factors
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in this setting, and will utilize Fridericia’s correction (QT is corrected
by division of the cube-root of RR such that QTcF = QT

RR1/3 ) in subse-
quent discussion as it appears unrelated to heart rate according to recent
reports [353], [422].

QTc prolongation is a necessary but not sufficient condition for oc-
currence of and has a qualitative relationship to clinical arrhythmias
[229]. One must, by definition, have a prolonged QTc just prior to the
occurrence of Torsades de Pointes, but a prolonged QTc can occur with-
out the occurrence of Torsades de Pointes. In general, a prolonged QTc
in a patient with several other risk factors [5] may result in Torsades
de Pointes. Prolongation from baseline (usually taken first thing in the
morning) in an individual greater than 60 msec or an absolute value of
QTc beyond 500 msec is deemed a clinical safety signal [229].

Drugs known to prolong the QTc interval have been responsible for
killing people. This potential was observed for Terfenadine [213], [346]-
[347], Cisapride [462], and other examples [426]. Terfenadine and Cis-
apride were approved and marketed compounds when the deaths due to
drug occurred. The potential for this effect was identified only after the
drug was marketed to a large number of patients, and these and several
other drugs were withdrawn from the market to protect patient safety
[426]. This highlighted the need for thorough assessment of the potential
for QTc prolongation prior to approval.

New drugs, and potentially existing drugs seeking new indications,
must study and rule out the potential for prolongation of QTc [229]. This
thorough study will rule out the presence of a QT/QTc prolongation,
or inform how much monitoring for QTc potential will be necessary to
establish safety to market in confirmatory trials. Mean prolongation of
QTc in excess of 5 to 8 msec will merit greater scrutiny in confirmatory
trials. Prolongation greater than 20 msec will likely result in refusal to
market unless the benefit of the drug product far outweighs the risk of
QTc prolongation and clinical arrythmia (e.g., for an oncology agent).

Even if such a product were approved, it would likely have stringent
warnings and requirements limiting its use to patients where benefit
clearly outweighs risk. However, such labelling has been observed to be
ineffective in the past at protecting patients in the marketplace [426].

Now that the reasons behind assessment of QTc prolongation have
been developed, we turn to discussion of how to model data from a
thorough QTc study. This will be followed by a section on design of
thorough QTc studies, and last we will consider how to interpret the
results of such trials.
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8.2 Modelling of QTc Data

To illustrate an approach to the modelling of QTc data, we will consider
some data from previous trials. Three cross-over data sets were selected
for use as examples in this chapter. These example data sets were selected
to provide a range of example effect sizes in QTc prolongation relative to
changes in ECG sampling procedures and sample sizes. Normal healthy
volunteers are generally [229] the population dosed in such studies as it
is felt that QTc prolongation observed in that population does not pose
a great risk, and findings are readily applicable to patient populations.

Fridericia’s correction to the QT interval was used in all analyses, and
all studies were fully randomized cross-over designs in normal healthy
volunteers. In all cases, the objective of the trial was to detect changes
in QTc induced by study drug over and above those introduced by a
control agent, and ECGs were manually over-read by a qualified, blinded
cardiologist.

In our first example data set (Example 8.1, SAS data set exam8 1),
three single-dose regimens (C, D, E) were studied relative to placebo
control (Regimen F). Regimen E was a known mild prolonger of the
QTc interval (included to serve as a positive control), and regimens C
and D were a therapeutic and supra-therapeutic dose of a moderate
QTc prolonging agent. Forty-one subjects were included in the example
data set, and QTc was measured in triplicate at baseline (time 0) and
over the course of the day at set times following dosing. Triplicate (three
ECGs) measurements were averaged at each time of ECG sampling (i.e.,
0, 0.5,1, 1.5, 2.4, 4, etc.) for inclusion in analysis, and samples out to
four hours post dose were included in the example data set for ease of
presentation and discussion.

In the second example data set (Example 8.2, SAS data set exam8 2),
two seven-day, repeat-dose regimens were studied (Regimens A and C)
relative to a seven-day, repeat-dose regimen of placebo (Regimen F).
Regimen A was a known severe prolonger of the QTc interval, and it
was of interest to study whether this drug in combination with another
(a metabolic inhibitor of the drug of interest, denoted Regimen C) would
result in even greater prolongation. Twenty-three subjects were included
in this example.

In the last data set (Example 8.3, SAS data set exam8 3), a seven-day,
repeat-dose regimen of the combination of Terfenadine with a potential
metabolic inhibitor (Regimen B) was studied relative to Terfenadine
alone (F). Eleven subjects were included in this example.

Consider some of the first subject’s QTc data as listed in Table 8.1 of
Example 8.1 below.

Unlike bioequivalence, where only one AUC or Cmax observation was
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Table 8.1 First Subject’s Data in Example 8.1

Subject Regimen Time(h) QTc(msec)

1 C 0.0 358
1 C 0.5 356
1 C 1.0 361
1 C 1.5 362
1 C 2.5 354
1 C 4.0 355
1 D 0.0 373
1 D 0.5 381
1 D 1.0 389

......

of interest in each period, as with the safety data discussed in Chapter
7, in this setting the pattern of QTc response within and across periods
is of interest. Such repeated-measures, time-series data are inherently
more complex to model. However, many methods are available to do so.

The analysis of such repeated measures data arising in cross-over stud-
ies with baseline control is described in Jones and Kenward, Ch5 [237].
This analysis accounts for each subject as their own control, the corre-
lation between measurements within-period, and accounts for baseline,
period, and regimen effects. The SAS code one may use to do so follows.

proc mixed data=for_an method=reml
CL scoring=50 maxiter=200;
class subject period rel_time regimen;
model qtcf=qtcfb period regimen rel_time
period*rel_time regimen*rel_time
/DDFM=KENWARDROGER S outp=out;
random subject;
repeated rel_time/type=AR(1)
subject=subject*period;
lsmeans rel_time*regimen/corr cov;
ods output LSMeans=means; run;

As in the earlier examples, proc mixed is called in SAS, and told to use
REML modelling, and to do a maximum of 200 iterations (the maxiter
statement). The class statement describes the descriptor variables of
the data set appropriate to the cross-over design, and rel time denotes
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the time of ECG sampling from which QTc was measured relative to
dosing at time 0 hours.

The model statement indicates that baseline QTc (qtcfb), period, reg-
imen, and time of measurement (along with appropriate interactions of
these terms) should be assessed for impact on fitted model. The random
statement indicates that each subject should be treated as their own con-
trol, and the repeated statement specifies that the values of rel time
should be regarded as correlated within each subject’s period with the
correlation decreasing with increasing duration between times of ECG
sampling.

To describe the pattern of overall response to treatment, the model-
adjusted means are output (along with their correlation and variance-
covariance matrix) in the lsmeans and ODS statements.

The mixed procedure accounts for effects as described above, and pro-
vides adjusted mean estimates for use in describing the average effect
of treatment. These are plotted for Examples 8.1-3 in Figures 8.2 to 8.4
below.

The adjusted mean estimates derived from the mixed model are known
as ‘BLUP’ in that they are denoted as Best Linear Unbiased Predictors.
They are asymptotically unbiased estimators for the behavior of mean
QTc in the population being studied, and as with bioequivalence, will
serve to compare the properties of the different treatments.

In Figure 8.2, mild (Regimen E) and moderate degrees of prolongation
(Regimen C) relative to Regimen F (placebo) are observed with slightly
greater prolongation being observed at the supra-therapeutic dose of the
drug being studied (Regimen D). In this context, we denote ‘mild’ as re-
ferring to a QTc prolongation that does not begin until some time after
a dose of drug is administered and which rapidly dissipates over time.
‘Moderate’ QTc prolongation in contrast denotes a QTc prolongation
that begins rapidly after a dose is administered and is maintained over
a substantial part of the dosing interval. Both mild and moderate pro-
longation refer to effect sizes greater than zero but less than the ICH
E14 [229] level of probable concern for causing Torsades de Pointes of
20 msec [426].

In Example 8.2, plotted in Figure 8.3, severe QTc prolongation is ob-
served in response to treatment in Regimens A and C. Some evidence of
a synergistic effect (Regimen C) appears present, and we will evaluate
whether this effect is statistically differentiable later in the chapter. ‘Se-
vere’ QTc prolongation in this example denotes mean QTc prolongation
that is equal to or in excess of the ICH E14’s [229] stated level of clinical
concern as probably leading to Torsades de Pointes (20 msec) at any
time following a dose of drug as compared to placebo.
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attach(means1) 
plot(rel.time[regimen=='F'], estimate[regimen=='F'], 
 xlab="Time (h) following a Single Dose", 
 ylab="Adjusted Mean QTc", 
 type="o",pch=1,lty=1,ylim=c(360,430)) 
lines(rel.time[regimen=='C'], estimate [regimen=='C'], 
 type="o",pch=15,lty=1) 
lines(rel.time[regimen=='D'], estimate [regimen=='D'], 
 type="o",pch=18,lty=1) 
lines(rel.time[regimen=='E'], estimate [regimen=='E'], 
 type="o",pch=16,lty=1) 
legend(locator(1),marks=c(15,18,16,1), 
  legend=c(’C’,’D’,’E’,’Placebo’)) 
detach() 
 
 

Figure 8.2 Mild and Moderate QTc Prolongation (n = 41) in Example 8.1

In Example 8.3, however, plotted in Figure 8.4, no clear evidence of
QTc prolongation is observed in response to treatment in Regimen B.

As we begin considering statistical methods to compare these re-
sponses, we should consider one other important issue in the modelling of
repeated measures data. That is, that the mean responses within a regi-
men and across regimens are correlated given the nature of the cross-over
study design and repeated measures ECG data. For example, consider
the model-adjusted means for Regimen F (placebo, accounting for all
other model parameters) in Example 8.1 (see Table 8.2). In Table 8.2,
the entries of ρi denote the estimated correlation between the adjusted
mean at time i and the other means at times j 6= i.

For example, the adjusted mean QTc at time 0.5 is perfectly correlated
with itself (ρ0.5 = 1, as one would expect) but is correlated to a lesser
extent with the adjusted mean at time 1 (ρ1 = 0.53), and is correlated to
an even lesser extent with the adjusted mean at time 1.5 (ρ1.5 = 0.34).
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attach(means2) 
plot(rel.time[regimen=='F'], estimate[regimen=='F'], 
 xlab="Time (h) after 7 Days Dosing", 
 ylab="Adjusted Mean QTc", 
 type="o",pch=1,lty=1,ylim=c(360,430)) 
lines(rel.time[regimen=='A'], estimate [regimen=='A'], 
 type="o",pch=15,lty=1) 
lines(rel.time[regimen=='C'], estimate [regimen=='C'], 
 type="o",pch=18,lty=1) 
legend(locator(1),marks=c(15,18, 1), 
  legend=c(’A’,’C’,’Placebo’)) 
detach() 
 

Figure 8.3 Severe QTc Prolongation (n = 23) in Example 8.2

This indicates that if we know the response at time 0.5, we have some
indication (as measured by ρ) of what the response at 1 hour will be (and
vice versa). As the time interval increases between ECG collections, the
correlation decreases.

If these means were independent, the estimated ρ would be close to
null. As these adjusted means are derived from a cross-over trial, the
adjusted means between regimens are also correlated. Therefore, when
we begin comparing treatments we can account for the fact that adjusted
means between treatments are correlated and that adjusted means are
also correlated across time.

This has implications for statistical testing as when we test for dif-
ferences between regimens at one particular time of ECG sampling, this
gives us an indication of what we will find at other times of sampling.
Ignoring this relationship in statistical calculations leads to narrower
confidence intervals. This makes the control of Type 1 and 2 error in
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attach(means3) 
plot(rel.time[regimen=='F'], estimate[regimen=='F'], 
 xlab="Time (h) after 7 Days Dosing", 
 ylab="Adjusted Mean QTc", 
 type="o",pch=1,lty=1,ylim=c(360,430)) 
lines(rel.time[regimen=='B'], estimate [regimen=='B'], 
 type="o",pch=15,lty=1) 
legend(locator(1),marks=c(15, 1), 
  legend=c(’B’,’Control’)) 
detach() 
 

Figure 8.4 No QTc Prolongation (n = 11) in Example 8.3

statistical testing somewhat more complicated, and we will discuss some
of the implications of this later in this chapter.

SAS proc mixed computes comparisons between treatments quite
simply. In the mixed code above, the lsmeans statement is replaced with

lsmeans regimen*rel time/DIFF CL ALPHA=0.1;

to construct all possible differences between each adjusted mean QTc
(with 90% confidence intervals from the options ALPHA=0.1 and CL.
These may be output to a data set diffs by the addition of Diffs=diffs
to the ods statement.

As we are most interested in the comparison between treatments at
each time of ECG collection, the non-relevant comparisons may be elim-
inated by means of a data step where the comparisons where times differ
are eliminated by:
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Table 8.2 Adjusted Mean QTc (msec) and Estimated Correlation Matrix for
Regimen F of Example 8.1

Regimen Time(h) AM.QTc ρ0.5 ρ1 ρ1.5 ρ2.5 ρ4

F 0.5 386.05 1.0000 0.5342 0.3383 0.2559 0.2213
F 1 385.09 0.5342 1.0000 0.5342 0.3383 0.2559
F 1.5 387.09 0.3383 0.5342 1.0000 0.5342 0.3383
F 2.5 387.09 0.2559 0.3383 0.5342 1.0000 0.5342
F 4 385.63 0.2213 0.2559 0.3383 0.5342 1.0000

F = Placebo

if REL TIME ne REL TIME then delete;

These comparisons account for the correlation between regimens at
each individual time (i.e., that Regimen C is correlated with Regimen F
at time 0.5 for example); however, they do not account for the correlation
between means across the time interval of ECG sampling (that the means
at time 0.5 h are correlated with the means at time 1 h, etc.). It is up to
the user, however, to determine which means of controlling the Type 1
and 2 error rates should be employed, and SAS does not automatically
do so. To begin discussion on this topic, we first consider the results (not
adjusted for correlation across time) as presented in Tables 8.3 to 8.5.

In Example 8.1, it is observed that moderate and statistically signifi-
cant (note lower 90% confidence bounds exceed zero) QTc prolongation
is observed in Regimens C and D within a half-hour of dosing and re-
mains prolonged out to four hours post dosing. Significant prolongation
for regimen E is not observed until after a half-hour following dosing
and returns to parity with Regimen F immediately after four hours post
dose (data not shown).

Following seven days of dosing in Example 8.2, significant and severe
prolongation begins within a half-hour of a dose of Regimen A relative
to control. This continues throughout the day and returns to parity with
control 24 hours later. In contrast, when the drug of interest is given with
a metabolic inhibitor (Regimen C), significant prolongation is observed
prior to the last dose on day seven being given (comparison C-F at time
0h), and QTc continues to be prolonged even 24 hours later.

In the last Example 8.3, however, no statistically significant changes in
Regimen B were detected relative to control after seven days of dosing.

Now that models and simple statistical procedures to compare data
between regimens have been developed, we now discuss statistical pro-
cedures to control the Type 1 and 2 error rates in testing for QTc pro-
longation.
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Table 8.3 Mean Changes (90% CI) Between Regimens Following a Single Dose
in Example 8.1 (n = 41)

Comparison Time Difference 90%CI

C-F 0.5 4.4923 (2.1997,6.7848)
1 8.1830 (5.8904,10.4755)

1.5 6.0120 (3.7195,8.3045)
2.5 3.7444 (1.4518,6.0369)
4 5.2944 (3.0018,7.5869)

D-F 0.5 6.6868 (4.4035,8.9701)
1 10.4591 (8.1758,12.7425)

1.5 7.4421 (5.1588,9.7255)
2.5 6.2212 (3.9379,8.5046)
4 5.7591 (3.4757,8.0424)

E-F 0.5 2.0069 (-0.2778,4.2915)
1 7.5171 (5.2324,9.8017)

1.5 6.2216 (3.9369,8.5062)
2.5 6.9994 (4.7147,9.2840)
4 8.4446 (6.1599,10.7292)

C = Therapeutic Dose
D = Supra-therapeutic Dose
E = Dose of Positive Control

F = Placebo

8.3 Interpreting the QTc Modelling Findings

As with bioequivalence testing, in the context of QTc testing we are
interested in confirming that a difference in treatments is not present.
It is presumed that the drug of interest does prolong QTc until it is
demonstrated not to be the case. The hypotheses of interest are therefore
similar to bioequivalence testing, and the burden of proof remains on
the sponsor of the study to demonstrate that QTc prolongation does
not occur.

Here we are generally interested in confirming that QTc is not pro-
longed following dosing over an appropriate period of time when the
drug could cause such an effect. The model estimates described in the
last section will be used to test for an effect over the appropriate ECG
sampling interval. In this setting the null hypothesis for comparison of
the test drug (T, at either the therapeutic or supra-therapeutic dose)
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Table 8.4 Mean Changes (90% CI) Between Regimens Following Seven Days
of Dosing in Example 8.2 (n = 23)

Comparison Time Difference 90%CI

A-F 0 4.5452 (-1.2812,10.3716)
0.5 11.9137 (6.0873,17.7401)
1 13.8814 (8.0550,19.7078)
2 31.1529 (25.3265,36.9793)
3 43.3057 (37.4793,49.1321)
4 44.5157 (38.6893,50.3421)
6 36.6313 (30.8049,42.4577)
10 19.9793 (14.1529,25.8057)
12 13.2215 (7.3951,19.0479)
14 9.2482 (3.4218,15.0746)
18 12.2382 (6.4118,18.0646)
24 0.3131 (-5.5133,6.1395)

C-F 0 10.2451 (4.4200,16.0703)
0.5 12.2385 (6.4133,18.0637)
1 14.1211 (8.2959,19.9463)
2 36.3119 (30.4867,42.137)
3 48.1345 (42.3093,53.9597)
4 55.7178 (49.8926,61.5430)
6 46.0229 (40.1977,51.8480)
10 28.4315 (22.6063,34.2566)
12 21.6648 (15.8396,27.4900)
14 17.9892 (12.1640,23.8143)
18 20.6361 (14.8109,26.4613)
24 8.3007 (2.4756,14.1259)

A = Severe Prolonger
C = Severe Pro. with Metabolic Inhibitor

F = Placebo

relative to placebo (P) is:

H0 : µTi − µPi ≥ ∆ (8.1)

for at least one i where i denotes ECG samples collected over the rele-
vant times of sampling and ∆ is a predetermined, reasonable no-effect
goalpost (defined in [229]). This hypothesis is to be tested versus the
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Table 8.5 Mean Changes (90% CI) Between Regimens Following Seven Days
of Dosing in Example 8.3 (n = 11)

Comparison Time Difference 90%CI

B-F 0 -0.8319 (-7.5455,5.8817)
1 2.3494 (-4.3642,9.0630)
2 4.2809 (-2.4327,10.9945)
3 1.7183 (-4.9953,8.4319)
4 1.7070 (-5.0066,8.4206)
5 -0.9137 (-7.6273,5.7999)
6 1.0656 (-5.6480,7.7792)
8 -2.0849 (-8.7985,4.6287)
10 -0.5964 (-7.3100,6.1172)
12 0.3033 (-6.4103,7.0170)
24 1.4409 (-5.2727,8.1545)

B = Terfenadine with Metabolic Inhibitor
F = Terfenadine alone

alternative hypothesis:

H1 : µTi − µPi < ∆ (8.2)

for all i in the sampling interval. This type of testing procedure is not
new. It is sometimes referred to as an intersection-union test and is
described in detail in Wellek (Chapter 7) [447].

Performing this test is simple and straightforward. One simply derives
the comparisons of interest between treatments using SAS as described
in the last section (Tables 8.3 to 8.5) and evaluates the magnitude of the
upper bound of the 90% confidence intervals over the relevant interval of
sampling relative to the chosen ∆. The level of ∆ in [229] was a subject
of much debate when [229] was being developed; however, if we choose
either 10 msec for discussion purposes, we see that the null hypothesis is
not rejected for the mild and moderate QTc prolongers of Example 8.1,
is clearly not rejected for the severe prolonging treatments of Example
8.2, and is not rejected for Regimen B of Example 8.3.

This last finding is surprising on the surface, but is not terribly un-
expected given the nature [447] of the testing procedure being used. As
we know from bioequivalence testing, Type 1 and 2 errors can occur in
testing of such situations.
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The Truth

Trt is NOT Safe Trt IS Safe

Statistics Eqn (8.1) NOT Right answer! Wrong answer
from study Rejected (Type 2 error)
show that (Trt NOT Safe)

Eqn (8.1) IS Wrong answer Right answer!
Rejected (Type 1 error)
(Trt IS Safe)

The findings of Example 8.3 are an example of a Type 2 error driven by
the limited sample size (n = 11). To prove that a treatment is safe under
this approach, it must be shown that it is safe over the entire sampling
interval. The intersection-union test is known to protect against Type 1
errors at a very conservative level (i.e., less than or equal to the desired
level of 5%). This makes the occurrence of a Type 1 error infrequent, a
desirable property of such a testing procedure. The risks associated with
admitting a drug to the marketplace that prolongs QTc were discussed
in Section 8.1, and it is clear that regulators should be concerned (and
conservative) with control of the Type 1 error rate.

The potential for a Type 2 error is best controlled in design. Tech-
niques for doing so are:

1. Increase the sample size (n),

2. Increase the number of ECGs collected at each time point (r),

Both these actions result in smaller confidence intervals about the model
estimates of effect, increasing the precision of the study, yielding more
confidence in the understanding of the exact properties of the treatment.

In practice a combination of both is done as appropriate to the treat-
ment under study. In Example 8.3, we could most likely prevent the
occurrence of a Type 2 error by increasing the sample size to n=30 to
40 subjects or equivalently by increasing the number of ECGs collected
at each timepoint from r=1 (as was done in the example) to r=3 to 4
ECGs (working to reject Equation (8.1) with a ∆ = 10msec). In working
practice, sponsors of such trials get very depressed when a Type 2 error
occurs, so they generally do both. More details pertaining to sample size
selection and Type 1 and 2 error rates may be found in the Technical
Appendix to this chapter.

Note that sample sizes and ECG sampling under this approach also
detect even mild and moderate degrees of QTc prolongation as shown
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in Example 8.1. Severe QTc prolongation may be detected with smaller
sample sizes and less stringent ECG sampling as seen in Example 8.2.

ICH E14 [229] goes into a great deal of complex detail on how to
demonstrate that a drug does not affect QTc. To rule out that QTc
prolongation occurs for a particular treatment, it must be shown that in
comparing study drug to placebo at therapeutic and supra-therapeutic
doses:

the largest time-matched mean difference (baseline-subtracted) for the QTc
interval is around 5 msec or less, with a one-sided 95% confidence interval
that excludes an effect > 10 msec [229].

To perform this procedure one would inspect Tables 8.3 to 8.5 for
the maximum difference in adjusted means and then use an appropriate
statistical procedure to construct a confidence interval on this quantity,
accounting for its correlation to all the other comparisons at other ECG
sampling times. Mathematically, this procedure is quite complex. In
practice, however, it turns out to be equivalent [447] to the intersection-
union test when using the SAS repeated-measures cross-over model de-
scribed in Section 8.2.

The high degree of correlation in QTc data over time also suggests
that the intersection-union testing procedure is not terribly conservative.
Estimates of auto-regressive correlation (a measure of how related data
are across time for individual subjects) were 0.9 and 0.8 in the Placebo
data of Examples 8.1 and 8.2, respectively (a value of 1 would indicate
perfect correlation). Correlation was still high (0.7) in the Terfenadine
control arm of Example 8.3 - a drug known to prolong QTc. So although
slightly conservative in its control of Type 1 errors, intersection-union
testing will likely meet regulatory, sponsor, and statistical considerations
for testing of safety for the issue of QTc prolongation.

Up to now, we have discussed comparisons of a given treatment with
a control. However, in trials performing thorough QTc assessments, it
is not unusual for multiple doses and a positive control treatment to
be employed [229]. See Example 8.1 where supra-therapeutic and ther-
apeutic doses were employed. As the number of doses increases, so too
does the possibility of a Type 1 or 2 error. To control these probabilities,
one should follow the principles of proof of safety testing described by
Hauschke and Hothorn [199] for this setting [336]. A predefined testing
procedure should be used to logically order of statistical tests to mitigate
the probability of a Type 1 error. One (step-up) procedure is as follows:
1. Compare the therapeutic dose to placebo. If Equation (8.1) is rejected

in favor of Equation 8.2, then the therapeutic dose is acceptable (proof
of safety has been demonstrated) and proceed to Step 2; otherwise,
stop and conclude that safety has not been demonstrated at the ther-
apeutic dose and the supra-therapeutic dose.



DESIGN OF A THOROUGH QTC STUDY IN THE FUTURE 259

2. Compare the supra-therapeutic dose to placebo. If Equation (8.1) is
rejected in favor of Equation (8.2) for the supra-therapeutic dose,
then the supra-therapeutic dose is acceptable (proof of safety has
been demonstrated); otherwise, stop and conclude that safety has
not been demonstrated at the supra-therapeutic dose but was at the
therapeutic dose.

Another (step-down) procedure is as follows:

1. Compare the supra-therapeutic dose to placebo. If Equation (8.1) is
rejected in favor of Equation (8.2) for the supra-therapeutic dose, then
the supra-therapeutic dose and the therapeutic doses are acceptable
(proof of safety has been demonstrated); otherwise, conclude that
safety has not been demonstrated at the supra-therapeutic dose but
conduct additional testing at the therapeutic dose by proceeding to
Step 2.

2. Compare the therapeutic dose to placebo. If Equation (8.1) is rejected
in favor of Equation (8.2), then the therapeutic dose is acceptable
(proof of safety has been demonstrated); otherwise, stop and conclude
that safety has not been demonstrated at the therapeutic dose and
the supra-therapeutic dose.

A sequentially rejecting procedure [199] is appropriate for application
under the assumption that QTc prolongation increases with dose. This
relationship has been observed for most drugs known to prolong the QTc
interval [426]. The role of the positive control (if any) is discussed in the
next section.

Alternatives to the intersection-union test are available. Such statis-
tical testing procedures control Type 1 error at the precise level of 5%
while minimizing the probability of a Type 2 error based upon corre-
lations observed in the data. The Technical Appendix to this chapter
describes application of one such technique (Westfall’s SimIntervals ap-
proach [449] based upon [392] and [80]) using a SAS program available
in [450] applied to Example 8.1. As the regulatory acceptance of such an
approach is unknown, however, we do not discuss it further here.

8.4 Design of a Thorough QTc Study in the Future

The objectives of thorough QTc studies in the future will be to:

1. Confirm that the new drug does not prolong QTc to a clinically rele-
vant extent (Equation (8.1)), or

2. To measure the extent to which a drug prolongs QTc.

Given the potential risks induced when QTc is prolonged, it is expected
that such compounds will likely be screened out of consideration early
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in drug development, and that in most cases the first objective will be
the primary objective of most trials.

In either case, however, QTc will be measured at baseline and over
a 24-hour sampling period following dosing with the therapeutic dose
of study drug, a supra-therapeutic dose of study drug, placebo, and
possibly a positive control (e.g., Moxifloxacin, an antibiotic known to
prolong QTc.) As with bioequivalence testing, normal healthy volunteers
will generally be used as the study population [229].

When selecting a design to assess Equation (8.1), a cross-over design
will likely be the most sensitive and efficient in providing data to assess
the null hypothesis. If a drug truly has no effect on QTc, then one would
not expect carry-over effects to be an issue in the use of cross-over designs
for the trial. If however, there is suspicion that the drug may prolong
QTc and the drug has a long-half life, then a parallel group trial may
also be used to test Equation (8.1) to avoid the potential for carry-over
to confound interpretation of the results.

When using cross-over designs, it should be noted that period effects
occur in such thorough QTc assessments, and treatments should be fully
randomized throughout the study periods to ensure that period effects
are not confounded with treatment effects. Period effects can be induced
by small period-to-period differences when using a manual over-reader
for the ECGs, and it is expected that computer algorithmic measurement
is less prone to such effects.

Computer algorithmic measurement is not perfect, however. It is known
to be conservative in its assessment of the end of the T-wave, erring on
the side of caution to ensure that individual QTc values of potential
concern (QTc > 500 msec) are captured. Computer algorithmic mea-
surement is held [229] to be biased in such assessment individual value
assessment; however, as the analyses conducted as described in Sections
8.2 to 8.3 account for baseline QTc and each subject as their own control,
it would not be expected that such measurement bias introduced by us-
ing computer algorithm would impact statistical inference for Equation
(8.1).

Thorough QTc evaluations will generally be conducted in late Phase II
or in parallel with the confirmatory trials for regulatory submission. Such
trials cannot be conducted unless one has a good idea of the therapeutic
and supra-therapeutic doses for the drug of interest, and firm knowledge
of these is generally not available until one has demonstrated proof-of-
concept and done some work in dose-finding in patients (see Chapter
9).

The choice of ∆ has been noted as worthy of further discussion in the
draft ICH E14 guidance [229] and has been defined as 8 msec for the
purposes of opening discussion. It was originally proposed as 5 msec,
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then changed to 7.5 in ICH discussions, before taking on the value of 8
msec. Dependence on choice of endpoint was highlighted in [336]. In the
final Step 4 guidance [229], 10 msec was defined as the ∆.

Throughout this chapter we have used 90% confidence intervals to
describe the QTc data. However, readers will note that Section 8.3’s
assessment of proof of safety is primarily driven by inspection of only
the upper bound of the confidence interval. We have chosen to employ
these confidence intervals to recognize that regulation [229] on this topic
is imperfect. As discussed previously, the choice of ∆ is ill-defined, and
QTc is a necessary but not sufficient condition for the development of
Torsades de Pointes. As discussed in Chapter 1 (Bernoulli’s Principle
8), we should not attribute more weight to such a matter than its due
and should view the safety assessments made from the statistics for QTc
with some level of caution. ICH E14 [229] is simply a tool being used to
protect the public. It is thought that had this been done people would not
have died. The reader should recall that as per discussion in Chapter 1,
in reality, complete certainty of safety cannot be achieved by such safety
testing.

In such a context, the 90% confidence intervals serve a dual purpose.
They provide the basis for the QTc safety assessment (using the upper
bound), but should mild or moderate prolongation be observed, the lower
confidence bound and point estimate serve to place this effect size in
context and to evaluate its statistical significance and probability of
hazard [199].

A positive control does not add value in a thorough QTc evaluation
when testing for a new treatment’s safety at therapeutic and supra-
therapeutic doses relative to placebo. However, its inclusion does add
value if a statistically significant prolongation is observed (i.e., the lower
bound of the CI is nonnegative). In drugs known to prolong QTc, the
positive control’s inclusion in a thorough assessment serves as a method
to construct ‘no worse than’ statistical tests.

Consider the comparison of regimens C and D to E in Example 8.1
and regimen A to C in Example 8.2, as described in Tables 8.6 and 8.7.

In Table 8.6, we see that QTc was prolonged greater than the positive
control at the therapeutic and supra-therapeutic doses early in the sam-
pling, appeared similar in the middle of the sampling, and was lower than
the positive control at 4 hours post dose. Though we cannot conclude
that the new drug poses no risk of QTc prolongation, the statistically
significant hazard introduced by dosing with the new drug at supra-
therapeutic and therapeutic doses (2 to 5 msec immediately following
dosing) does not appear markedly dissimilar to that produced by the
positive control later in the day.
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Table 8.6 Mean Changes (90% CI) Between Test Drug and Positive Control
Following a Single Dose in Example 8.1 (n = 41)

Comparison Time Difference 90%CI

C-E 0.5 2.4854 (0.1957,4.7751)
1 0.6659 (-1.6237,2.9556)

1.5 -0.2096 (-2.4992,2.0801)
2.5 -3.2550 (-5.5447,-0.9653)
4 -3.1502 (-5.4399,-0.8605)

D-E 0.5 4.6799 (2.3953,6.9646)
1 2.9421 (0.6574,5.2267)

1.5 1.2206 (-1.0641,3.5052)
2.5 -0.7781 (-3.0628,1.5065)
4 -2.6855 (-4.9701,-0.4009)

C = Therapeutic Dose
D = Supra-therapeutic Dose
E = Dose of Positive Control

In Table 8.7, we see that statistically significant evidence of increased
hazard (8 to 11 msec) was observed for the combination of the test drug
with a metabolic inhibitor beginning approximately 4 hours after the
combination was administered. As dosing of the test drug was already
hazardous [229] (see previous section), administration of these two drugs
in combination should be viewed with even enhanced caution.

As techniques in clinical pharmacology safety assessment have now
been reviewed, we now turn to the assessment of efficacy and mechanism
of action for drug products.

8.5 Technical Appendix

8.5.1 Intersection-Union Test (IUT) for No-Effect on QTc

To study the properties of the IUT with regard to assessment of effect
on QTc, a data set from a cross-over study was utilised. In this study,
normal healthy subjects received placebo repeatedly over 6 weeks, and
their QTcF was measured (in triplicate) at baseline (time= 0 hours)
and following dosing at 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours post
dose. This is a standard clinical pharmacology sampling scheme, and it is
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Table 8.7 Mean Changes (90% CI) Between Severe QTc Prolonger with and
without a Metabolic Inhibitor Following Seven Days of Dosing in Example 8.2
(n = 23)

Comparison Time Difference 90%CI

C-A 0 5.7000 (-0.2377,11.6376)
0.5 0.3248 (-5.6128,6.2625)
1 0.2397 (-5.6979,6.1774)
2 5.1589 (-0.7787,11.0966)
3 4.8288 (-1.1089,10.7664)
4 11.2021 (5.2645,17.1398)
6 9.3916 (3.4539,15.3292)
10 8.4521 (2.5145,14.3898)
12 8.4433 (2.5057,14.3810)
14 8.7410 (2.8033,14.6786)
18 8.3979 (2.4602,14.3355)
24 7.9877 (2.0500,13.9253)

A = Severe Prolonger
C = Severe Pro. with Metabolic Inhibitor

expected that such a scheme will be utilised in the majority of thorough
QTc trials.

The bootstrap was used to generate 2000 bootstrap data sets of size
n = 10 to 60, and each subject in each bootstrap study was randomly
assigned (using proc plan) to a sequence of dummy treatments to mimic
randomisation which will take place in clinical trials. The model of Jones
and Kenward [237] was utilised to model the data in each bootstrap data
set as previously described in this chapter.

ICH E14 [229] terms a ‘Negative’ thorough QTc trial to be one in
which the IUT null-hypothesis, Equation (8.1), is successfully rejected.
A ‘Positive’ study is a study in which the IUT null-hypothesis, Equation
(8.1), is not successfully rejected. We will adopt this terminology for
this technical appendix. The inclusion of apostrophes about these terms
serves to denote this ICH-E14 based interpretation (to differentiate it
from false positive and negative rates traditionally used in statistical
testing relating to Type 1 and 2 error rates). This study was conducted
in support of discussions during the [229] generation, and discussion of
∆ of 8 msec are included for completeness.
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Several properties of the IUT are of interest with regard to testing of
Equation (8.1):

1. The rate at which false ‘positive’ studies occur for choices of 8 and 10
msec for the acceptance boundary ∆,

2. The bias present in the maximum observed mean across the post-dose
sampling interval.

The identification of hazard (using the lower bound of the 90% confi-
dence interval) is of statistical interest in this procedure (as described in
the previous section), and we also tabulate findings related to this rate
of occurrence.

As Table 8.8 shows, the IUT is a biased test in that at the 8 msec
(∆ = 8) acceptance boundary greater than 95% of the studies resulted
in a ‘positive’ assessment of the IUT Equation 8.1. However, this bias is
in favor of patient safety and is thus conservative in a regulatory sense.
When the true difference in treatments is null (the assumption in most
cases where Equation (8.1) will be tested), n = 30 to 40 subjects provides
at least 85% power to successfully reject Equation (8.1). However, when
the true difference between treatments is 4 msec, 46-61% of studies will
result in false ‘positive’ findings (n = 30 to 40). When the true difference
between treatments is 5 msec (a level of clinical concern as described in
[229]), only 20-30% of data sets will be deemed ‘negative’ (n = 30 to
40).

Table 8.8 Rate of ‘Positive’ [229] Findings in 2000 Bootstrap Data Sets for
Assessment of Equation (8.1) with Acceptance Boundary ∆ = 8 msec

True n = 10 n = 20 n = 25 n = 30 n = 40 n = 50 n = 60
Mean
Diff.

0 msec 78 41 28 15 6 2 1
4 msec 92 78 70 61 46 34 25
5 msec 95 89 83 80 70 61 52
8 msec 99.6 99.3 99.3 99.2 99.4 99.2 99.5

Table 8.9 shows the IUT findings when (∆ = 10 msec) in keeping with
the [229] criteria.

The maximums among the 10 post-dose adjusted mean differences
between treatments are positively biased in thorough QTc trials. See
Table 8.10. In data sets with n = 30 to 40, positive bias was observed
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Table 8.9 Rate of ‘Positive’ [229] Findings in 2000 Bootstrap Data Sets for
Assessment of Equation (8.1) with Acceptance Boundary ∆ = 10 msec

True n = 10 n = 20 n = 25 n = 30 n = 40 n = 50 n = 60
Mean
Diff.

0 msec 56 15 8 4 1 0 0
4 msec 77 45 32 20 11 4 2
5 msec 84 61 48 37 24 14 8
8 msec 97 94 92 91 87 84 81
10 msec 99.6 99.2 99.2 99.2 99.3 99.2 99.5

to be approximately 2 to 3 msec; however, as with the IUT findings
previously described, this bias is in favour of patient safety, and is not
likely to be of regulatory concern. The bias decreases with increasing
sample size and was observed to be negligible (less than 1 msec) when
the true mean difference between treatments was greater than 4 msec
(n ≥ 30).

Table 8.10 Estimated Difference in Maximum Means (msec) Between Treat-
ments [229] in 2000 Bootstrap Data Sets Relating to Assessment of Equation
(8.1)

True n = 10 n = 20 n = 25 n = 30 n = 40 n = 50 n = 60
Mean
Diff.

0 msec 4.5 3.2 2.9 2.7 2.3 2.0 1.8
4 msec 6.3 5.4 5.2 5.0 4.8 4.7 4.6
5 msec 7.0 6.2 6.0 5.9 5.8 5.6 5.6
8 msec 9.6 9.0 8.9 8.8 8.7 8.6 8.6

To conclude, the bootstrap simulations indicate that the IUT test is
quite conservative with respect to the identification of potential hazard
(i.e., the lower bound of any of the 10 post-dose comparisons between
treatments exceeding 0), see Table 8.11. In cases where there is truly no
difference between treatments, the lower bound of at least one compar-
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ison in post-dose means should be expected to exceed 0 approximately
25% of the time. In keeping with Examples 8.1 and 8.2 however, when
mild to severe QTc prolongation is present following a treatment, it is
very likely to be detected by such comparisons even in studies as small
as n = 10− 20.

Table 8.11 Rate of Potential Hazard Findings in 2000 Bootstrap Data Sets
(Lower Bound of at Least One Post-dose Comparison Exceeds Null)

True n = 10 n = 20 n = 25 n = 30 n = 40 n = 50 n = 60
Mean
Diff.

0 msec 27 27 28 27 28 27 26
4 msec 49 66 71 77 85 90 95
5 msec 58 79 84 89 95 98 99
8 msec 83 97 99 99 100 100 100

8.5.2 Comparing QTc between Treatments Accounting for Correlation

Here we briefly consider an alternative to the intersection-union test
which constrains the probability of a Type 1 error to precisely 5% and
accounts for the correlation across time due to the repeated measures.
Westfall’s SimIntervals approach [449] is one such readily available pro-
cedure, and a copy of the SAS program is available in [450]. We will
utilize Examples 8.1 to 8.3 to describe typical results from such testing,
and the SAS code to do so may be found on the website.

Application of such a technique is useful if one wishes to ensure that
autocorrelation in QTc data across the times of ECG sampling does not
impact inference relative to the ICH E14 [229] intersection-union test-
ing approach discussed in previous sections. The Westfall SimIntervals
procedure uses the multivariate t-distribution among a set of finite com-
parisons of interest to simulate the appropriate confidence level for each
time in the sampling interval (i). This ensures that the upper and lower
confidence bounds provide exactly the desired level of confidence for all
i for each comparison.

Application of this would be of value when one observes that proof
of safety has not been provided by the intersection-union test, and one
wishes to precisely evaluate when the potential for hazard exists among
the i times of ECG sampling. As we will see, QTc data are so highly
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correlated that the Westfall adjustment does not significantly alter our
inference relative to the unadjusted procedures shown in Tables 8.3 to
8.5.

Table 8.12 Mean Changes (90% CI) Between Regimens Following a Single
Dose in Example 8.1 (n = 41) Corrected for Correlation

Comparison Time Adj. Lower 90% Bound Adj. Upper 90% Bound

C-F 0.5 1.3018 7.6827
1 4.9926 11.3734

1.5 2.8216 9.2024
2.5 0.5540 6.9348
4 2.1040 8.4848

Estimated 90% Quartile = 2.2935 (C-F)
C = Therapeutic Dose

F = Placebo

In Table 8.12, it is observed that significant QTc prolongation is again
observed at all times of ECG sampling (as assessed by the lower bounds).
Note that the confidence intervals are slightly wider that those presented
in Table 8.3; however, the potential for statistically significant hazard is
still present even when adjusting for the correlations in QTc over time.
Findings for potential hazard relative to placebo in Regimens D and E
are also similar to the unadjusted analyses of Table 8.3, and we leave
inspection of such results to the reader using the available code. As
inference for hazard is also not impacted by adjustment for correlation
in Examples 8.2 and 8.3, we leave such an exercise to the reader.

8.5.3 Accounting for Replication in Thorough QTc Assessments

In the sections of this chapter the averages across any subsamples (r) at
any time of ECG collection i were used in modelling.

Although this is common practice in the industry, it is easy to use
these values themselves in the model for QTc [206] using the follow-
ing code. The replicates (r) are nested within each time interval (i) in
a manner chosen at the time of experimental design. Statistically, we
will treat them as a fixed effect denoted r in the SAS code with levels
1, 2, . . . , r where r is the number of such subsamples at each time of ECG
assessment. The value r need not be equal across times.
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proc mixed data=for_an method=reml
ITDETAILS CL scoring=50
maxiter=200;
class subject period rel_time regimen r;
model qtcf=qtcfb period regimen rel_time
period*rel_time regimen*rel_time
/DDFM=KENWARDROGER S outp=out;
random intercept r/subject=subject;
repeated rel_time/type=CS
subject=subject*period;
lsmeans rel_time*regimen/corr cov;
ods output LSMeans=means; run;

Note that r is now included in the random statement of the model.
This commands SAS to partition the observational error (associated
with the replicated measurements) from the variation between-subjects
(the intercept), across time (the repeated statement), and from within-
subject variation in QTc (the residual).

Also note that in this code, the type=CS is specified instead of the
auto-regressive time-series structure specified previously. The more com-
plex the variance-covariance structure (and this one is pretty complex),
the more often SAS proc mixed will fail to converge in REML mod-
elling.

In the interests of parsimony, here a compound-symmetric variance-
covariance structure [368] was specified for the purposes of providing
an example which will converge rapidly in SAS; however, other variance
structures are more appropriate to the data, and by careful specification
of starting values, SAS may be made to converge. Interested readers may
experiment with data to be found on the website (SAS data set, exam r)
for this purpose.



CHAPTER 9

Clinical Pharmacology Efficacy
Studies

Introduction
In the later years of my career in clinical pharmacology, I was trans-

ferred to a strategic job on a committee which oversaw early clinical de-
velopment of drugs in humans. A big part of this job was managing the
interactions of the biostatistics and data management organization with
a bunch of ‘data-happy’ clinicians. This adjective ‘data-happy’ refers to
medics who love to collect data and want someone to analyse it until,
as they say, the data pleads for mercy. Most often it is the statistician
involved who ends up pleading for an end to the analysis. Data seldom
speaks for themselves; someone usually has to interpret them. It is benefi-
cial when working with such ‘data-happy’ people to train them to perform
such exploratory statistical analyses themselves. Such an action tends to
cure their state of ‘data-happiness’ quite effectively.

To clarify, clinical pharmacologists are paid, and in many cases earn
their higher educational degree, developing new markers of clinical activ-
ity. As with QTc (described in Chapter 8), these take on the attributes
of alphabet soup, in most cases, with the addition of numbers where the
pharmacologists run out of letters - for example, CRP, IL8, IL5, LDL,
VLDL, VLDL1, VLDL2, etc. Unlike statisticians, in general, they do
not seem to have thought to introduce Greek letters, instead they just
add more letters and numbers. My personal belief is that this is because
the word-processing software packages they most use make it difficult to
use Greek letters....

In any event, the point of measuring such markers in humans, and
describing their behavior over time and relative to dose, is to detect the
clinical effect of drugs on the body. This obviously is of great potential
benefit. If one can measure such activity in the body, and if such activity
is predictive of clinical outcomes (like stroke or myocardial infarction),
then one could, in theory, predict the efficacy of drugs early in drug
development! Even if it is not directly predictive, such knowledge should,
in theory, allow one to improve understanding of how a drug works. Such
knowledge of method of action is hoped to be beneficial.

My ‘data-happy’ clinicians were always excited about such endpoints,
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and often wondered why I was not. They usually put it down to, ‘Statis-
ticians are just not interested in the science of such matters....’ In truth,
I was interested, but after many years in clinical pharmacology, I had
made a conscious decision not to get excited about (or too involved in)
such ‘data-happy’ clinical things because:
1. There is a lot more involved in predicting clinical outcomes than just

showing that a marker is correlated to clinical outcome, and
2. One comes to realize that efficacy is all well and good, but safety comes

first (and, as we saw in Chapter 8, is an evolving topic).
If one cannot find a safe and well-tolerated dose range (which is what
early phase development is all about), then it really does not matter how
efficacious the drug is. In my experience, most drugs fail in drug devel-
opment because one cannot achieve a dose that is high enough such that
the drug works without untoward side-effects, not because the drug does
not work.

All this said, evaluation of drug efficacy and method of action data is
an important part of clinical pharmacology, and this chapter will cover
some methods for modelling the behavior of such data. We first briefly
review some topics related to nomenclature, assumptions, and the sta-
tistics employed for this purpose.

9.1 Background

Traditional statisticians often fail to recognize the ‘learning’ nature of
clinical pharmacology drug development. Some have suggested that this
is due to the traditional techniques inherent to how statistical science
is taught at many universities. Students are taught by rote to test pre-
determined hypotheses using direct, confirmatory methods (like those
employed in bioequivalence testing). Few assumptions about the data
are made, and one in essence achieves a positive or negative outcome.

Clinical pharmacology assessments of efficacy, however, focus on learn-
ing about a compound and its properties in humans, not confirming that
it has or does not have activity. In the eyes of a drug developer, a com-
pound may be presumed to have some level of efficacy in humans. The
effect may not be clinically relevant, but that is another separate issue
to be determined and studied later in drug development.

First, a drug developer should learn whether the compound does
roughly what one expects in humans. This approach lends itself to in-
direct statistical assessment (see Bayesian discussion in Chapter 5). In
this chapter, we will use commonly applied traditional modelling meth-
ods and supplement them with a basic Bayesian program to illustrate
the use of such procedures.

As described in Chapter 2, in drug development, one should first define
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a safe and well-tolerated dose range in normal healthy volunteers [225],
[402] (see also Chapters 7 and 8). Traditionally, ad hoc assessment of
drug activity occurs in Phase I sub-chronic dosing studies. One presumes
that dose and exposure have some relationship to outcome, and applies
models to quantify this expectation.

Lack of a quantified relationship in markers of human activity in
Phase I is not unexpected. This can occur for many reasons, such as
low sample size, lack of relevant markers of pharmacodynamic activity
in a normal healthy population, or lower exposures in normal healthy
volunteers relative to that to be applied in patients with the disease to
be treated. As described in Chapter 7, cross-over designs (randomized
or non-randomized) are traditionally applied to enhance the information
gained from such trials.

Once a safe and well-tolerated dose range has been defined in Phase I
studies (see Chapter 7), a pilot study is usually conducted with the new
drug in a small group of patients (Phase IIa). This study is sometimes
referred to as providing ‘Proof-of-Concept’ [402] in that it is expected to
provide drug developers with some confidence in their notion that the
drug will work. Again, one presumes that dose and exposure have some
relationship to pharmacologic markers of drug activity (like blood pres-
sure for example), and models are applied to quantify this relationship.
Unless the disease state is markedly unstable over the length of dosing
(usually limited to a month in Phase IIa due to the toxicology coverage),
randomized or non-randomized cross-over designs are again the design
of choice in this setting as they provide better information [399]-[400] to
build the models under consideration. Sample size is limited so that if
the drug proves to be unsafe in the patient population, dosing and the
drug’s development can be halted in a timely fashion.

ICH [225] and FDA [134] guidance on the topic calls for parallel group
trials to assess such information in light of concerns with carry-over
effects confounding the assessment of treatment [237]. However, such a
position is logically inconsistent from a drug developer’s perspective. In
Phase IIa, developers work on the assumption that drug has some level
of activity. Detection of a carry-over effect in a placebo-controlled cross-
over trial would constitute a positive finding as the drug would have
some pharmacodynamic activity to be ‘carried-over’ !

The information desired at this stage of development is not confir-
matory, and those seeking a yes or no solution to questions relating to
developing a drug (sometimes known as a go or no-go decision in busi-
ness) are likely to be disappointed. Limited scientific evidence of clinical
efficacy and understanding of method of action are generated. This in-
formation serves to modify the level of confidence a sponsor has in the
likely success of a compound, hopefully (but not necessarily) in a posi-
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tive manner. Often, due in part to the small sample sizes in Phase IIa,
many proof of concept studies are inconclusive in a traditional statistical
sense [228]. Expert judgment is usually called for in interpretation of the
results.

In terms of statistics, one should establish a quantitative relationship
between dose or exposure with a pharmacologic effect using a model.
Many assumptions are made. For example:
1. That dose and exposure are related to the marker.

2. That the relationship between dose and exposure with the marker of
interest can be expressed in a mathematical model.

3. That markers of pharmacologic activity in patients substitute for as-
sessments of longer term clinical benefit.

4. That pharmacokinetics in plasma can predict the concentrations at
the site of pharmacodynamic action.

The model(s) to be explored need not be prespecified in such exploratory,
learning trials. One generally would choose to dose a limited number
of patients (in the interest of their safety) with a range of doses and
placebo, measure the marker of pharmacodynamic activity, and apply
models to the data in a systematic, parsimonious manner to quantify
the relationship of dose to the marker of interest with some degree of
desired precision.

As with the study of pharmacokinetics (as we will see in Chapter 10),
such models are developed over the course of drug development to help
with the dosing of subsequent larger numbers of patients. Of interest is
maintaining the exposure levels in a safe and well-tolerated range while
achieving exposure levels of drug sufficient to treat or cure the disease
condition.

Clinical pharmacologists can (and some do) overestimate the value of
such exploratory data. These data are NOT confirmatory of efficacy
in a regulatory, market-access sense [225]. As discussed in Chapter 2,
regulators in general presume that a drug is not efficacious until shown
otherwise. Such findings as those described above are interesting and aid
regulators in determining which dose is most appropriate for initiating
and treating patients [225], [134], [162]; however, a confirmatory trial
is one in which the hypotheses to be tested are stated in advance and
intended to provide firm, conclusive evidence of safety and efficacy [228]
for a dose and dosing regimen [225]. The statistical procedures to test for
success or failure of the drug to provide benefit are prespecified [228], and
a determination of a positive (or negative) outcome is straightforward.
Readers interested in more details around the design and analysis of
confirmatory clinical trials should see [151] for an excellent summary.

The benefits of applying exploratory clinical pharmacology techniques
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are tangible [296], [355] improving the information gained from drug de-
velopment for drug labelling and marketing while speeding study com-
pletion and subsequently (presumably) regulatory approval. Shortfalls
of these procedures result from lack of education, validation, and an-
alytic tools and procedures for their application [340], [177]. One key
shortcoming, highlighted in [355], pertains to lack of knowledge of the
predictive value of the pharmacodynamic marker for clinical effect (in
future studies), and we now turn to further discussions on the charac-
terization on pharmacodynamic response prior to discussing the data,
models, and statistics used in such techniques.

As discussed in Chapter 2, ‘biomarkers’ or biological markers are end-
points which are ‘a physical sign or laboratory measurement that occurs
in association with a pathological process and that has a putative diag-
nostic and/or prognostic utility’ [263], [32]. This essentially means that a
biomarker is an endpoint we can measure in clinical pharmacology trials
(like those described in Phases I and IIa) and presumably has something
to do with the disease we are studying and are hoping will be impacted
(for the better) by the drug being developed.

In contrast, surrogate markers [263], [32] are a subset of the biomarkers
that can serve as a substitute [425] for a clinically meaningful endpoint.
These clinical endpoints (also sometimes called outcomes) are a measure
of how a patient with the disease to be treated ‘feels, functions, or sur-
vives’ [263]. Lesko and Atkinson [263] further subdivide the category of
clinical endpoints into:
1. Ultimate outcome - a clinical endpoint such as survival, survival time,

onset of serious morbidity, or symptomatic response that captures the
benefits and risks of therapeutic intervention.

2. Intermediate endpoints - a clinical endpoint that is not the ultimate
outcome but is nonetheless of real clinical benefit.
Clinical pharmacology assessments of efficacy focus mainly on bio-

marker assessment with some limited assessments of surrogate markers
in relation to dose and concentration in plasma. Where possible, the
concentration of drug at the site of action may be probed if possible.
Measurement of clinical endpoints usually requires lengthy studies and
significant investment. Therefore, such studies are generally not under-
taken in modern drug development until sufficient confidence is gener-
ated by biomarker and surrogate marker data to reassure sponsors that
the investment is worth the risk. Clinical pharmacology studies there-
fore do not provide direct assurance of safety and efficacy in clinical
endpoints.

Establishing a biomarker as a surrogate marker is not a simple process.
Temple [425] describes several criteria that must be assessed, studied,
and validated before such can occur:
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1. Biological plausibility including (but not limited to) consistent, exten-
sive, and quantitative epidemiologic evidence, credible animal models,
well-understood disease pathogenesis, drug mechanism of action, and
surrogacy relatively late on the biological path.

2. Success in clinical trials including (but not limited to) showing that
the effect on the surrogate has predicted outcomes with other drugs
of the same pharmacologic class and in several other classes of drug.

3. Risk benefit and public health considerations including (but not lim-
ited to) serious or life-threatening illness with no alternative therapies.
Few endpoints would be expected to fulfill such criteria for surrogacy

[147], but one thing that is very clear from the above criteria is that ‘A
correlate does not a surrogate make.’ [147] Beware of such claims.

Some elements of defining a biomarker as a surrogate endpoint are
statistical, and we refer interested readers to Prentice’s classical work on
the topic in [348] and an excellent comprehensive summary in [55].

For the purposes of further discussion in this chapter, we will assume
that the drug of interest has been shown to impact biomarkers in an-
imal models and that there is reason to believe dosing with drug will
translate into similar pharmacodynamic effects on relevant human bio-
markers. Further discussion will therefore focus on modelling of the drug,
concentration, and biomarker relationship. As in previous chapters, we
will focus on the application of commonly used techniques using clinical
data from previous trials. We first consider data generated in Phase I
sub-chronic dosing studies (see Chapter 7 for the definition and design
of such trials) followed by consideration of data from patients in Phase
IIa. The chapter concludes with consideration of methodology studies to
elucidate method of action.

9.2 Sub-chronic Dosing

The design of sub-chronic dosing studies is described in Chapter 7. In ad-
dition to the safety assessments conducted during such trials, a plethora
of data on pharmacodynamic endpoints is sometime collected to eluci-
date the mechanism of action of the drug being studied. These data may
consist of laboratory, gene expression, or protein expression endpoints,
for example.

All these pharmacodynamic data are presumably correlated with each
other in one way or another. Their interrelationship may be defined in a
cascade manner, in that drug treatment impacts one biological mecha-
nism, which impacts another, which impacts another causing responses
along the way. Responses may also result from parallel biological process-
ing of drug, in that drug treatment impacts multiple mechanisms of ac-
tion in parallel, e.g., one in the heart and one in the liver at roughly the



SUB-CHRONIC DOSING 275

same time perhaps. Several techniques are available to assess whether
treatment has an effect in such large data sets [309], [311], and we will
utilize one commonly used technique (see Ch. 31 of [307]) in this section
to test for treatment effects over time in sub-chronic dosing trials using
a data set of gene expression data before and after treatment with drug
or with Placebo.

See Table 9.1. Here subjects were randomly assigned to regimen (placebo
or drug treatment), had their biomarker endpoints measured on day -3,
and were then dosed for 14 days with the regimen to which they were
assigned with another biomarker assessment occurring on the last day
of dosing (day 12).

This was a very simple sub-chronic dosing study, and looked at only
one dose and placebo. In general, more doses are included in such studies
allowing for more sophisticated assessment of dose-response [225]. For
this data set, a simple model may be used to describe the data:

Yijk = Γj + Υk + Ωjk + Σijk

where Yijk is the matrix (data arranged in columns by endpoint) of obser-
vations for the endpoints of interest, Γj is a matrix which denotes day -3
or 12, Υk is placebo or drug treatment, and Ωjk denotes day-by-regimen
interaction (see Chapter 3), with Σijk denoting residual variability. Here
we are interested in the significance of the Ωjk as this would signal that
the regimens are behaving differently across time in some manner for at
least one endpoint.

The element of Ωjk (and the other matrices) are arranged to corre-
spond to the endpoint to which they relate. For example, for the data
in Table 9.1,

Ωjk =
ωL11 ωL12 ωL21 ωL22

ωM11 ωM12 ωM21 ωM22

ωN11 ωN12 ωN21 ωN22

ωO11 ωO12 ωO21 ωO22

ωP11 ωP12 ωP21 ωP22


for endpoint L, M, N, O, and P in each row, respectively, where, for
example, ωL11 denotes the mean effect of treatment with drug on day
-3 and ωL12 denotes the mean effect of treatment with drug on day 12,
and so on.

We are interested in testing the null hypothesis:

ωL11 = ωL12 = ωL21 = ωL22,

ωM11 = ωM12 = ωM21 = ωM22,

ωN11 = ωN12 = ωN21 = ωN22,
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Table 9.1 Example 9.2.1: Pharmacodynamic Biomarker Data from an Ex-
ploratory Sub-chronic Dosing Study

Subject Day Regimen L M N O P

102 -3 P 7.67 7.95 9.47 10.17 4.65
102 12 P 6.77 7.50 8.89 9.60 4.47
103 -3 D 7.60 7.69 9.60 9.41 5.04
103 12 D 7.33 7.91 9.39 9.39 5.11
104 -3 D 7.61 7.58 9.60 8.93 5.32
104 12 D 7.36 8.02 9.86 9.70 5.46
201 -3 P 6.00 7.24 8.56 8.99 3.87
201 12 P 6.66 7.52 8.88 9.60 4.38
202 -3 D 8.04 8.35 9.46 9.75 5.26
202 12 D 7.32 7.74 9.36 9.10 4.85
204 -3 D 6.83 7.53 8.75 8.82 4.67
204 12 D 6.79 7.54 8.75 8.74 4.84
205 -3 P 7.33 7.81 9.27 9.52 5.15
205 12 P 7.06 7.49 8.98 8.96 4.32
208 -3 P 7.36 7.71 9.29 9.81 5.23
208 12 P 7.43 7.86 9.48 9.32 5.23
209 -3 D 7.60 7.83 9.70 9.68 5.23
209 12 D 6.70 7.64 8.90 9.07 4.44
210 -3 D 6.76 7.69 8.86 9.05 5.12
210 12 D 6.65 7.66 8.61 9.32 4.91
211 -3 P 7.15 7.91 9.73 10.22 5.26
211 12 P 7.29 7.98 9.20 10.17 5.11
213 -3 P 6.76 7.82 9.41 9.44 5.03
213 12 P 7.50 7.95 9.37 9.38 5.18

P=Placebo; D=Dose of Drug for 14 Days

ωO11 = ωO12 = ωO21 = ωO22,

ωP11 = ωP12 = ωP21 = ωP22

versus the alternative that at least one of the ωjk differs from the others
for at least one of the endpoints.

Computation of estimates for the elements of the various matrices
(like Ωjk) is a complex topic beyond the scope of this book. See [309]
and [311] for a description. SAS automatically performs some of these
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calculations [368] using a procedure similar to proc mixed known as
proc glm. Code to so for this study is as follows.
Sub-chronic Exploratory Multivariate Data Analysis 9.2.1 - SAS proc

glm code:

proc glm data=my.sc1a;
class day regimen;
model L M N O P = day
regimen regimen*day;
MANOVA h=day regimen regimen*day;
run;

Here proc glm is called and directed to assess data from the per-
manent data set my.sc1a (available on the website accompanying this
book). The class statement again specifies the descriptive variables of
the model, and the model statement specifies that endpoints L, M, N,
O, and P (a subset of those available, included here for simplicity) be
modelled as a function of day, regimen, and day-by-regimen interaction.
The MANOVA statement specifies that SAS should construct tests to assess
whether the study days are different (pooling across regimens), whether
the regimens are different (pooling across study days), and (most of in-
terest) whether response to treatment is different between regimens over
time, testing the null hypothesis described above for these endpoints
simultaneously.

Selected SAS outputs appear as follows:
Sub-chronic Exploratory Multivariate Data Analysis 9.2.1 - Selected

SAS proc glm output:

MANOVA Test Criteria and Exact F Statistics for
the Hypothesis of No Overall DAY*REGIMEN Effect
H = Type III SSCP Matrix for DAY*REGIMEN
E = Error SSCP Matrix

Statistic F Value Num DF Den DF Pr > F
Wilks’Lambda 0.94 5 16 0.4801

Based on the p-value for day-by-regimen interaction (p = 0.4801),
there is very little evidence to suggest that treatment with drug impacts
the biomarkers considered here (endpoints L, M, N, O, and P) over the
course of 14 days of treatment. This is not unexpected in Phase I drug
development as described in the previous section. At worst, such data
are valuable in that they provide variability estimates for use in better
sizing subsequent trials. At best, one may see some evidence of treatment
effects that would also aid in designing more definitive trials later in drug
development.
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The downside of utilization of a multivariate statistical procedure as
described above is that it is known [307] to be less powerful (prone to
false negatives) than univariate methods (which we will now discuss).
However, such an approach serves as a handy tool for rapid assessment
of whether there is value in extensive data mining of a large pharmaco-
dynamic data set. Interested readers may use the data from other bio-
marker endpoints contained in my.sc1a and another data set, my.sc1b,
on the website that accompanies this book, to explore such multivariate
methods and alternative statistical procedures.

A more powerful approach, a dose-response analysis, will now be dis-
cussed. Here, low density lipoprotein, LDL, was measured (decreasing
this surrogate marker results in clinical benefit [101]), before and after
sub-chronic treatment with a randomly assigned dose of drug or placebo
in each normal healthy volunteer subject. The objective of modelling in
this case was to assess whether there was evidence of a response to dose
in this population (normal healthy volunteers).

Table 9.2: Example 9.2.2: Dose, Pharmacokinetic, and Low Density
Lipoprotein Data from a Sub-chronic Dosing Study

Subject Dose Baseline Post-Trt
AUC Cmax LDL LDL

56 0 0.00 0.000 2.18 2.22
63 0 0.00 0.000 3.53 4.47
67 0 0.00 0.000 2.85 3.01
73 0 0.00 0.000 1.37 1.74
74 0 0.00 0.000 2.71 2.26
86 0 0.00 0.000 2.93 2.78
87 0 0.00 0.000 2.80 3.09
91 0 0.00 0.000 2.40 2.59
94 0 0.00 0.000 5.33 5.36
100 0 0.00 0.000 2.04 2.32
103 0 0.00 0.000 3.31 3.21
112 0 0.00 0.000 1.92 2.05
47 5 5.11 0.423 3.03 2.89
48 5 8.13 0.620 2.59 1.95
49 5 8.01 0.627 2.05 1.72
50 5 6.67 0.480 3.06 2.66
52 5 7.38 0.591 4.01 2.80
53 5 5.17 0.390 3.27 3.52
54 5 8.16 0.569 3.25 3.35
55 5 6.23 0.483 2.52 2.38

AUC and Cmax assumed 0 if Dose was 0
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Table 9.2: Example 9.2.2: Dose, Pharmacokinetic, and Low Density
Lipoprotein Data from a Sub-chronic Dosing Study

Subject Dose Baseline Post-Trt
AUC Cmax LDL LDL

57 5 3.36 0.316 2.14 2.14
60 10 11.22 0.962 3.98 3.13
61 10 8.21 0.723 1.70 1.78
62 10 20.85 1.861 2.96 2.05
64 10 16.48 1.169 2.28 2.54
65 10 6.79 0.574 3.09 3.64
66 10 18.08 1.303 2.13 1.77
69 10 10.51 0.883 2.15 1.78
71 10 13.97 1.056 3.45 2.98
72 10 13.80 1.157 2.77 2.25
95 20 30.35 2.220 2.47 1.88
99 20 53.11 3.902 2.31 1.88
102 20 38.61 2.517 3.13 2.93
104 20 29.33 2.219 3.68 4.27
105 20 26.20 1.844 3.20 3.10
106 20 29.47 1.893 3.16 3.40
107 20 27.55 1.965 3.35 3.18
108 20 19.97 1.447 1.84 1.98
110 20 35.91 2.322 3.44 3.36

AUC and Cmax assumed 0 if Dose was 0

Previous experience indicated that LDL was log-normally distributed
in normal healthy volunteers, so in a manner similar to pharmacokinetic
analysis this endpoint was log-transformed for analysis following correc-
tion for baseline (in this case, simply by taking the ratio of posttreatment
LDL to baseline LDL). Only a limited response was expected in normal
healthy volunteers, and for the purposes of this example, a power model
(see Chapter 7) was utilised of the form:

yk = α + β(ld) + εk

where β is the slope parameter of interest regressed on logDose (parame-
ter ld) for the log-transformed ratio of posttreatment LDL to baseline
LDL for each subject k. Note that we do not have repeated measure-
ments within a subject, so there is no term denoting each subject as their
own control nor denoting the repeated measures. This is often the case
in Phase I designs as such pharmacodynamic assessment are (relatively)
expensive and are of limited value due to the normal healthy population
being studied and the expected portfolio attrition rates.
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In this case, the power model was selected for use as normal healthy
volunteers in general do not have high LDL values, and therefore may
be expected to show only a limited response to treatment (if at all).
To include the placebo data (null dose) in the power model, the dose
needs to be set to a value greater than 0 prior to log-transform such as
0.000001 using SAS statements such as those following in a data step
(see also dose response.sas on the website accompanying this book):

if dose=0 then dose=0.000001;

In general, one would build such a nonlinear dose-response model after
first investigating the fit of a linear dose response model [314], [179],
[384], [307]. In this case, the fit of a linear model is poor and indicative
of heterogeneous variance. We leave confirmation of this point to the
reader and encourage readers interested in more details of model building
to investigate the above references. SAS code for this analysis is:

Sub-chronic Dose Response Data Analysis 9.2.2 - SAS proc mixed
code:

title ’Log-Ratio Power Model’;run;
proc mixed data=sc2a;

class subject;
model ldlchg=lndose/s cl ddfm=kenwardroger
outp=out outpm=predmean;
run;

proc print noobs data=predmean;
where subject<10;
var dose alpha pred lower upper;
run;

Here the log-transformed ratio of posttreatment to baseline LDL is
fitted versus logDose. Residuals are output to SAS data set out for use
in assessing model fit (not shown), and predicted mean values are output
to a SAS data set predmean. To derive estimates of dose response one
includes ‘dummy’ subjects (in this case, subjects 1 to 9 corresponding to
doses of 0 to 80 mg, see dose response.sas) with dosing information
in the analysis data set but with no data on LDL response. As no LDL
data are available for these ‘dummy’ subjects, they are not included in
model fitting, but SAS provides estimates of effect for these subjects in
the predmean data set. Selected SAS output is as follows.
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Sub-chronic Dose Response Data Analysis 9.2.2 - Selected SAS proc
mixed output:

The Mixed Procedure
Solution for Fixed Effects

Effect Estimate Pr > |t|
Intercept -0.06567 0.0104
lndose -0.00854 0.0086

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
lndose 1 37 7.71 0.0086

DOSE Alpha Pred Lower Upper
0 0.05 0.05226 -0.03131 0.13584
5 0.05 -0.07941 -0.13290 -0.02592
10 0.05 -0.08533 -0.14109 -0.02957
20 0.05 -0.09125 -0.14951 -0.03299
30 0.05 -0.09471 -0.15453 -0.03489
40 0.05 -0.09716 -0.15813 -0.03620
60 0.05 -0.10062 -0.16326 -0.03799
80 0.05 -0.10308 -0.16693 -0.03923

In this case, we observed that LDL (adjusted for baseline) decreases
with increasing logDose (estimate of -0.00854 for β with p = 0.0086). The
values Pred, Lower, and Upper may be exponentiated to estimate dose-
response in LDL (adjusted for baseline) on the original scale resulting
in the findings of Table 9.3.

Here we observe that dosing in normal healthy volunteers resulted in
decreases of 8 to 10% in LDL (adjusted for baseline). This is promising
data (in terms of effect on a surrogate marker in Phase I). However,
overinterpretation of such data is not recommended. Data from normal
healthy volunteers can only predict clinical outcomes under carefully
controlled circumstances (see Chapter 8 for an example).

Here, these findings should increase confidence in the drug’s potential
to be useful in the clinic, but such data are not definitive (as patients
with disease have not yet been assessed). Pairwise testing between mean
responses (for example direct comparison of 5, 10, and 20 mg to placebo)
as is often done in Phase II-III dose-response testing [254] is not recom-
mended here as such analyses are typically misleading in trials of such
limited sample size.

Note that sample size selection is driven by safety considerations in



282 CLINICAL PHARMACOLOGY EFFICACY STUDIES

Table 9.3 LDL Dose-Response (Ratio relative to Baseline LDL) with 95% Con-
fidence Intervals in Sub-chronic Dosing Study Example 9.2.2

Dose Estimated Effect 95% CI

0 1.05 0.97-1.15
5 0.92 0.88-0.97
10 0.92 0.87-0.97
20 0.91 0.86-0.97
40 0.91 0.85-0.96
60 0.90 0.85-0.96
80 0.90 0.85-0.96

such designs (see Chapter 7). Precision in statistical study results may be
evaluated at the design stage using techniques similar to those described
in Chapter 10 and is not discussed further here.

Models such as the above may also be useful to provide a preliminary
check for association between pharmacokinetic and pharmacodynamic
responses. In this case, steady state AUC and Cmax did not appear to
be related to baseline-adjusted LDL changes (p = 0.8026 and p = 0.6549
for logAUC and logCmax, respectively). Absence of a significant relation-
ship may not preclude that such an association exists [238]. As described
previously, such an observation may occur due to low sample size and
may be related to not having a model accounting for all relevant biologic
information. In this particular case, for example, it was thought that the
drug worked in the liver such that plasma pharmacokinetics were not
predictive of concentrations at the site of action. Plasma concentrations
in the liver may be modelled by extending the findings of Chapter 10 to
allow for another compartment. As shown in Chapters 7 and 10, dose
and AUC are to some extent confounded and their use in a model simul-
taneously is therefore of questionable validity [354], potentially leading
to model over-specification [314].

We now turn to modelling and interpretation of data in clinical phar-
macology studies of patient populations.

9.3 Phase IIa and the Proof of Concept

For purposes of illustration, assume that a proof-of-concept trial was
desired to test whether the LDL response in normal healthy volunteers
described in the last section would result in clinical benefit when given
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to patients. LDL was again to be used as a surrogate marker of clinical
benefit for the purposes of this trial.

Recall that about a 10% decrease LDL was observed in normal healthy
volunteers. When dosing in patients, it might be expected that approx-
imately twice this magnitude would be observed as:
1. Patients with disease would be recruited with higher LDL (than the

subjects in Phase I) allowing more of an effect of drug to be observed,
2. Dosing in patients was planned to be of at least twice the duration of

Phase I, and
3. Animal efficacy data indicated that drug would be more effective than

observed in the Phase I sub-chronic dosing study.
The proof-of-concept Phase IIa trial was designed in a standard [228]

pessimistic fashion under the assumption (null hypothesis) that drug
would have no effect on LDL. The alternative to be tested was that
treatment with drug would result in a 20% decrease (accounting for
baseline) relative to placebo.

Patients with high LDL (who are not already taking some form of
medication) are not easy to find. This resulted in a lengthy trial duration
to recruit only 15 patients in a 2 × 2 cross-over design. LDL data from
this trial may be found in Table 9.4. After a baseline LDL assessment
in each session, patients were dosed with a drug expected to lower LDL
level (or placebo) for 6 weeks.

Table 9.4: Example 9.3.1: Low Density Lipoprotein Data from a
Proof-of-Concept Study

Subject Sequence Per Reg Post-Trt Baseline Analysis
LDL LDL Endpoint

2472 PA 1 P 101 98 0.031
2472 PA 2 A 89 110 -0.212
2530 AP 1 A 140 159 -0.132
2530 AP 2 P 146 151 -0.034
2535 PA 1 P 100 86 0.150
2535 PA 2 A 106 82 0.257
2540 PA 1 P 163 135 0.182
2540 PA 2 A 139 143 -0.027
2544 PA 1 P 160 147 0.086
2544 PA 2 A 99 123 -0.220
2546 AP 1 A 85 103 -0.186
2546 AP 2 P 81 92 -0.126

A=Drug Treatment; P=Placebo
Endpoint=Natural-log of Post-Trt LDL to Baseline LDL
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Table 9.4: Example 9.3.1: Low Density Lipoprotein Data from a
Proof-of-Concept Study

Subject Sequence Per Reg Post-Trt Baseline Analysis
LDL LDL Endpoint

2548 AP 1 A 106 115 -0.077
2548 AP 2 P 96 111 -0.139
2549 PA 1 P 125 142 -0.128
2549 PA 2 A 116 126 -0.083
2560 PA 1 P 155 178 -0.140
2560 PA 2 A 108 151 -0.331
2562 PA 1 P 104 124 -0.170
2562 PA 2 A 97 104 -0.077
2650 AP 1 A 128 139 -0.087
2650 AP 2 P 132 124 0.061
2659 PA 1 P 120 108 0.102
2659 PA 2 A 101 116 -0.143
2668 PA 1 P 151 128 0.167
2668 PA 2 A 128 163 -0.241
2712 AP 1 A 120 124 -0.032
2712 AP 2 P 108 139 -0.251
2755 PA 1 P 132 147 -0.111
2755 PA 2 A 132 151 -0.137

A=Drug Treatment; P=Placebo
Endpoint=Natural-log of Post-Trt LDL to Baseline LDL

The SAS code used to analyse the analysis endpoint of Table 9.4 is
the same as that used to analyse 2 × 2 cross-over studies in Chapter 3,
and is not reproduced here. Readers interested in the code may find it
on the website accompanying this book.

The findings (n = 15) indicated that treatment with drug lowered
LDL by only approximately 7% relative to placebo (the effect size on
the log-scale was -0.07177 with 90% confidence interval of -0.1544 to
0.01090). As the upper bound of the 90% confidence interval exceeded
zero, the null hypothesis (that drug does not significantly change LDL
relative to placebo) was not rejected. This would therefore be regarded
as a ‘failed’ study.

However, the findings provide some useful information [187], [245]:
1. The bulk of the confidence interval falls to the left of null; therefore,

while we cannot conclude that this dose of drug is effective, it suggests
the potential for increased doses of drug to provide significant benefit.

2. The maximum expected mean effect of this dose of drug is a 14%
decrease in LDL (corresponding to the exponentiated lower confidence
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limit) with the effect size most likely falling around 7%. Such a small
decrease might be desirable (and clinically relevant) in some patient
population.

Thus while failing to reject the null hypotheses, the study has provided
some degree of useful information.

The above approach is a traditional one, and should it be successful
(as this example was not), it clearly increases confidence that the drug
will be efficacious even against a pessimistic level of opinion concerning
the drug’s merits. Such studies need not be designed to provide such
a yes-or-no answer however. Moreover, planning a traditional hypothe-
sis testing approach, like that described here, requires a long time. One
would probably wait to analyse the data until the full (n = 15) comple-
ment of patients complete the study.

A Bayesian analysis (described in Chapter 5) provides a ready alter-
native to the traditional analysis described above. Here, we may take
explicit account that an effect size of approximately 10% is our expec-
tation and express it as a prior distribution for delta (the effect size of
treatment with drug relative to placebo). WINBUGS code to perform
a Bayesian analysis on the first eight patients (approximately halfway
through the study) is provided on the website accompanying this book
and is the same as that utilised for bioequivalence testing in Chapter 5.

With data from only eight patients, the Bayesian analysis (see Table
9.5) provides the following expectations regarding the effect size on the
log-transformed scale and original scale.

Table 9.5 LDL Effect Size (Ratio relative to Baseline LDL) from a Bayesian
Statistical Analysis of a Proof-of-Concept Study Example 9.3.1 (n = 8)

Trt:Pbo 2.5 QTL 5 QTL Median 90 QTL 97.5 QTL
Baseline

Adj
Effect Size

ln-Scale -.2141 -0.1878 -0.07697 0.006284 0.05994
Original-Scale 0.8073 0.8288 0.9259 1.006 1.062

QTL=Quartile of the Bayesian Posterior Distribution

From this Bayesian analysis, (based on the 90th percentile) we can
conclude (with only n = 8) that the drug has approximately a 90%
probability of reducing LDL relative to placebo. Conversely, there is a
lesser chance (approximately 10%) that the drug treatment is the same
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or worse than placebo. The effect size with this dose of drug is unlikely
(less than a 5% chance, based on the 5th percentile) to be greater than
a 17% decrease and is most unlikely (less than a 2.5% chance, based
on the 2.5th percentile) to reach the desired decrease level of 20% in
posttreatment LDL relative to placebo.

If one looks closely, this is about the same amount of information one
could glean from the traditional analysis and design described above,
except that this Bayesian analysis approach, if used, only takes half as
many patients and half the time as the original study. Bayesian design
and analysis plans such as these can be very useful tools to increase a
sponsor’s confidence in the properties of a compound without requiring
long resource-intensive studies. Such an approach is useful for internal
decision making; however, use in a regulatory setting when wishing to
make a claim about the properties of a drug (for the reasons discussed
in Chapter 2) is of questionable validity.

An unstated reason why one often does not utilize such an approach to
design and analysis is the wish to publish data from such studies. Akin to
the approach to data interpretation taken by regulators, most scientific
journals would question the application of such a Bayesian approach
closely as such techniques are only now becoming widely used and have
been the matter of some historical debate. A group-sequential approach
(described in Chapter 5; and code for the interim and final analyses may
be found on the website) may be used if a journal-acceptable approach is
desired. Here, interested readers will observe that such a group-sequential
approach provides approximately the same information as the Bayesian
analysis.

We now turn to consideration of extensions of dose-response modelling
involving pharmacokinetic-pharmacodynamic modelling [403]. With the
publication of [225] and [134], applications of such techniques are be-
coming more frequent in drug development. Typically, what is done is
to develop nonlinear mixed effect models [274] for pharmacokinetics in
an effect compartment ([403], a hypothesized part of the body where
pharmacodynamic effect is thought to be induced by drug treatment)
and then relate that to a model of pharmacodynamic activity using a
statistical model [286].

Specialized software is generally needed for such an activity. Several
packages are described in [407]. See also [365] for a review of some data
comparisons between available software packages. Many software pack-
ages are available - see http://www.boomer.org/pkin/soft.html for a list.
For the purposes of illustrating the principles involved, we will make use
of a data set involving dose, pharmacokinetics, and some data on QTc
(see Chapter 8) using SAS from a longitudinal, repeated-measures proof-
of-concept study. Other software programs may also be used to model

http://www.boomer.org
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this data (e.g., SPLUS, PKBUGS, NONMEM, NONLINMIX), and we
invite interested readers to make use of the data available on the website
accompanying this book to do so.

The data used in the following examples for PK-PD modelling are
quite extensive. Measurement of QTc was taken over a period of eight
days to assess the properties of the compound under study (utilizing
doses up to 120 mg) with pharmacokinetic assessment to measure plasma
concentration taken at regular intervals. See Tables 9.6 and 9.7. The full
data sets may be found on the website accompanying this book.

Table 9.6: Example 9.3.2: QTc Data from One Subject in a Proof-
of-Concept Study

Subject Dose(mg) Day Time(h) QTc(msec)
1 80 1 0 393
1 80 1 0.5 394
1 80 1 1 399
1 80 1 1.5 400
1 80 1 2 416
1 80 1 3 418
1 80 1 4 396
1 80 1 6 402
1 80 1 8 405
1 80 1 10 393
1 80 1 12 390
1 80 1 18 388
1 80 2 0 406
1 80 2 3 413
1 80 2 12 386
1 80 2 15 421
1 80 3 0 421
1 80 3 3 425
1 80 3 12 394
1 80 3 15 420
1 80 4 0 427
1 80 4 3 430
1 80 4 12 384
1 80 4 15 417
1 80 5 0 425
1 80 5 3 435
1 80 5 12 398
1 80 5 15 415
1 80 6 0 409
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Table 9.6: Example 9.3.2: QTc Data from One Subject in a Proof-
of-Concept Study

Subject Dose(mg) Day Time(h) QTc(msec)
1 80 6 3 434
1 80 6 12 388
1 80 6 15 418
1 80 7 0 420
1 80 7 3 409
1 80 7 12 398
1 80 7 15 410
1 80 8 0 407
1 80 8 0.5 411
1 80 8 1 432
1 80 8 1.5 443
1 80 8 2 455
1 80 8 3 460
1 80 8 4 428
1 80 8 6 419
1 80 8 8 382
1 80 8 10 404
1 80 8 12 388
1 80 8 18 384
1 80 8 24 409
1 80 8 36 384
1 80 8 48 388

Table 9.7: Example 9.3.2: Plasma Pharmacokinetic-
Pharmacodynamic Data from One Subject in a Proof-of-Concept
Study

Subject Day Time(h) QTc(msec) Conc.(ng/mL)
1 1 0 393 .
1 1 0.5 394 .
1 1 1 399 8.15
1 1 1.5 400 7.89
1 1 2 416 7.56
1 1 3 418 5.43
1 1 4 396 3.58
1 1 6 402 .
1 1 8 405 .
1 1 10 393 .
1 1 12 390 .



PHASE IIA AND THE PROOF OF CONCEPT 289

Table 9.7: Example 9.3.2: Plasma Pharmacokinetic-
Pharmacodynamic Data from One Subject in a Proof-of-Concept
Study

Subject Day Time(h) QTc(msec) Conc.(ng/mL)
1 1 18 388 .
1 1 24 . .
1 8 0 407 2.53
1 8 0.5 411 5.26
1 8 1 432 13.9
1 8 1.5 443 14.72
1 8 2 455 17.12
1 8 3 460 12.81
1 8 4 428 9.39
1 8 6 419 5.83
1 8 8 382 3.09
1 8 10 404 .
1 8 12 388 .
1 8 18 384 .
1 8 24 409 .
1 8 36 384 .
1 8 48 388 .

We will first build a dose-response model for these data and then will
supplement it with a discussion of how to build a PK-PD model for the
data to illustrate the concepts involved.

Readers familiar with Chapters 7 and 8 will recognize the data in Table
9.6 as being of the general form consistent with repeated-measures data.
As such, it can be modelled simply using a model of the form:

yijk = α + φj + τk + (interactions) + β1(dose) + εijk,

where α is the common-intercept, φj adjusts for study day j, τk adjusts
for each time k, β1 denotes the slope of dose-response. The terms of the
error-term εijk are constructed recognizing that QTc responses (yijk) are
correlated across time within each day for each subject (i). The interac-
tions (not described here) are combinations of the dose, day, and time
information to study whether response to a dose of drug is dependent on
the day and time of sampling. In SAS such a model can be implemented
in proc mixed as:
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Dose-Response Repeated Measures Data Analysis of Example 9.3.2 -
SAS proc mixed code:

proc mixed data=my.poc2 method=reml;
class subject day time;
model qtc=dose day time
day*time dose*day dose*time
/DDFM=KENWARDROGER outp=out;
repeated time/type=AR(1) subject=subject*day;
lsmeans day*time/at dose=0 CL ALPHA=0.1;
lsmeans day*time/at dose=25 CL ALPHA=0.1;
lsmeans day*time/at dose=80 CL ALPHA=0.1;
lsmeans day*time/at dose=120 CL ALPHA=0.1;
lsmeans day*time/at dose=200 CL ALPHA=0.1;
ods output LSMeans=my.lsmeans;
run;

This model indicates (outputs not shown) that a significant, linear
dose-response relationship was observed for QTc (p < 0.0001) and that
the response changes over the course of eight days (p < 0.0001) and over
times of ECG sampling (p < 0.0001). The lsmeans statements output
the expected responses at various doses to a data set called my.lsmeans
for further assessment, and the data set out may be used to assess model
fit as described in previous chapters. Here the model fit as assessed by
residuals appeared adequate, and Table 9.8 gives the expected responses
on placebo (dose of 0 mg) on day 1 and day 8 for example.

Table 9.8: QTc Response on Placebo on Days 1 and 8 in a Proof-
of-Concept Study from Modelling of Dose-QTc data in Example
9.3.2

Day Time(h) Dose Mean QTc 95% CI
1 0 0 398 (390,405)
1 0.5 0 396 (388,405)
1 1 0 392 (384,400)
1 1.5 0 398 (390,406)
1 2 0 397 (389,405)
1 3 0 400 (392,407)
1 4 0 398 (390,406)
1 6 0 395 (387,403)
1 8 0 399 (391,407)
1 10 0 398 (390,407)
1 12 0 401 (394,409)
1 18 0 409 (401,418)
8 0 0 394 (386,402)
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Table 9.8: QTc Response on Placebo on Days 1 and 8 in a Proof-
of-Concept Study from Modelling of Dose-QTc data in Example
9.3.2

Day Time(h) Dose Mean QTc 95% CI
8 0.5 0 391 (382,399)
8 1 0 398 (389,406)
8 1.5 0 398 (390,406)
8 2 0 396 (388,405)
8 3 0 395 (388,403)
8 4 0 394 (386,402)
8 6 0 392 (383,400)
8 8 0 386 (378,395)
8 10 0 390 (381,398)
8 12 0 392 (384,400)
8 18 0 394 (385,402)
8 24 0 391 (382,400)
8 36 0 389 (380,398)
8 48 0 393 (384,403)

In addition to confirming that a dose-response is evident, providing
overall positive evidence of efficacy for the compound [225], (though we
do not yet know which dose is best in terms of safety), the importance of
the model’s findings in terms of response on placebo are very important.
These will figure prominently as we develop models for concentration to
QTc response relationships. For the purposes of this example, we neglect
the development of a pharmacokinetic compartment model. Readers in-
terested in doing so should see Chapters 7 and 10 for more details. In
this example, plasma concentration is therefore assumed to be the effect
compartment where pharmacodynamic effect is caused by drug action.

The first step taken in modelling such data (see Chapter 4 of [41]) is
to assess whether a linear relationship exists between concentration and
response. This can easily be accommodated using the above SAS code
(replacing dose with concentration). Eliminating nonsignificant terms,
we use the following SAS model to examine the relationship of concen-
tration to QTc where the term pt denotes subject and the term pkp c
is concentration.
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Concentration Response Repeated Measures Data Analysis - SAS proc
mixed code:

proc mixed data=poc2pkpd method=reml;
class pt_ day time;
model qtc=pkp_c time
/DDFM=KENWARDROGER outp=out S;
repeated time/type=AR(1) subject=pt_*day;
run;

Model fit may again be examined using the data set out and was
observed to be adequate (not shown). Concentration was a significant
(p < 0.0001) linear predictor of QTc with a slope of 0.38. This indicates
that as drug concentration in blood increases, so too does QTc.

If the fit was not adequate, any number of other potential nonlinear
models may be fitted [314]. However, by far the favorite model used in
PK-PD research is the Emax model (named for one of the parameters
used in the model). Boxtel et al. [41] described these models in great
detail, and we shall dwell only on simple examination of Day 8 QTc and
concentration data using such a model. Interested readers may apply
other models using the data on the website and may find Chapter 15 of
[41] helpful for additional background materials on PK-PD modelling in
cardiac repolarisation.

The Emax model is described as [41]:

E =
Emax(C)
EC50 + C

+ E0,

where E is the effect being modelled, E0 is the effect observed without
any drug present, C is the concentration of drug in the effect compart-
ment, EC50 is the concentration needed to cause a 50% response, and
Emax is the maximum effect that can occur with drug treatment. This
is a nonlinear (in concentration) additive model. If concentration is not
related to effect, Emax and EC50 would be zero.

Here, we are interested in assessing the following model:

QTcij(Effect) =
Emaxi ∗ C

EC50i + C
+ E0 + εij ,

on Day 8, where the subscript i denotes subject, j denotes time, and εij

is the usual term for residual error. Such a model is easily implemented
in proc nlmixed in SAS as:
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Emax Concentration Response Data Analysis Example 9.3.2 - SAS
proc nlmixed code:

proc nlmixed data=pkpd2;
parms beta1=4.6 beta2=5.57 s2b1=1
s2b2=1 s2=400;
emax = exp(beta1+b1);
ec50 = exp(beta2+b2);
pred=((emax*pkp_c)/(pkp_c+ec50))+e0;
model qtc ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,0,
s2b2]) subject=pt_;
predict pred out=pred;
run;

*Model fit assessment;
data pred;set pred;

st_resid=(qtc-Pred)/StdErrPred;
run;

proc rank data=pred normal=blom out=nscore;
var st_resid;
ranks nscore;

data nscore;
set nscore;
label nscore="Normal Score";
label stres="Residual";
label pred="Predicted Value";
run;

proc plot vpercent=50 data=nscore;
plot st_resid*pred/vref=0;
plot st_resid*nscore;
run;

Here proc nlmixed is called and applied to a data set denoted as
pkpd2 where the placebo modelling results of the dose-response model
(Table 9.8) have been used to describe E0. In general, it is more desirable
for each subject to provide such an assessment so that more informative
models may be fitted [399], but such is obviously not possible with this
data as subjects were not crossed over to Placebo. As in the nonlinear
mixed effect examples of Chapters 7 and 10, starting values must be
specified for the parameters of interest (beta1 and beta2, their vari-
ances, and the residual variance). As both Emax and EC50 must be
positive, the exponential function is used to allow their estimated values
to be such and to accommodate subject-specific adjustment, as appro-
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priate to the data, for each parameter. The predicted values pred are
output as in Chapter 7 for assessment of model fit using residual plots
using the above code (results not shown) which appeared adequate.

The model indicated that both Emax (p < 0.0001) and EC50 (p <
0.0001) were important in describing the QTc response. The estimates
of Emax and ED50 were 86.8 (95% CI of 74.7-101) and 26.7 (95% CI of
12.6-56.2), respectively.

One should be careful with the interpretation of such a model in early
phase trials. If we assume a basal QTc of approximately 400 msec in
keeping with Table 9.8, one might be tempted to interpret this model
as indicative that the maximum prolongation in QTc possible with this
drug would be approximately 500 msec by looking at the magnitude
of the upper bound of Emax. However, Emax is in this case design
dependent. Dosing was terminated at the 120 mg dose in this study as
prolongation was approaching a QTc of 500 msec (known, see Chapter
8, to be a level associated with a potentially fatal cardiac arrythmia).
Note that the linear model predicts no such plateau in effect. Models
such as these should be interpreted in tandem and developed further as
drug development progresses from Phase II to file and beyond.

9.4 Methodology Studies

Methodology studies are conducted for a variety of reasons. For example:
1. To develop a new biomarker assay (an assay is a technique for mea-

suring a biological effect in this setting),
2. To validate a biomarker’s assay (to confirm that a technique is useful

in practice for measuring an effect), or
3. To measure whether a drug impacts a biomarker measured by an

assay.
Assay development and validation are neglected, but essential, parts of

drug development, and we will not attempt to correct that situation here.
Developing a new assay is primarily a matter for subject-area scientists.
Statistics are used in its validation, to quantify, for example, an assay’s
(see Chapter 12 of [12] and [226] for more details and definitions):
1. Limits of detection and quantification,
2. Sensitivity,
3. Selectivity,
4. Accuracy,
5. Precision,
6. Reproducibility, and
7. Repeatability.
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For the purposes of this section, we will assume that a validated assay
has been produced and is to be utilised in the assessment of whether a
drug has an effect on some biomarker. Often, given time constraints in
drug development, assay development, validation, and measurement of
whether a new drug has an effect are combined into one trial. We recom-
mend against this as trials designed for such multiple purposes, under
reasonably pessimistic assumptions, often are doomed to fail before they
start due to overwhelming complexity.

Pessimism is usually warranted about new biomarkers and their as-
says. As indicated, novelty is how science and medicine develop. It is
an art; however, the practical utility of such approaches in drug devel-
opment takes time, experience, and accumulation of data and opinion.
This does not happen overnight.

In the following example, we consider a new assay being applied to
measure a new biomarker. The purpose of the trial was to assess whether
drug treatment changed a biomarker thought to be related to the disease
under study when assessed using a drug known (i.e., marketed) to im-
prove the disease state. Such a study would be utilized to confirm that
the known efficacious drug treatment significantly impacts a biomarker
following treatment. If successful, in subsequent trials, new drugs for the
same disease might be studied using the same study design and assay
to assess their utility in treating the disease state, under the assumption
that a statistically significant effect in this biomarker would therefore be
somewhat predictive of a clinically relevant effect on outcomes in later,
larger clinical trials.

In this particular study, patients with the disease condition were ran-
domized to receive regimen D or P (drug or placebo), and the biomarker
of interest r was measured across time on Day 1 (a baseline day) and
just prior to and after dosing with drug or placebo at time 0 hours on
Day 2. Data for the first subject (102) may be found in Table 9.9. The
remainder of the data set may be found on the website accompanying
this book. Note that dosing in this setting was conducted double blind
(neither the patients, medics, or personnel conducting the assay knew to
which treatment the patients were assigned). This prevents the poten-
tial introduction of bias, and such a procedure is recommended for such
methodology experiments.
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Table 9.9 Example 9.4.1: Biomarker Data from a Methodology Study for Sub-
ject 102

Subject Day Time Regimen R

102 1 -1 D 10.1
102 1 -0.5 D 10.1
102 1 0 D 8.2
102 1 0.5 D 30.6
102 1 1 D 22.8
102 1 1.5 D 13.8
102 1 2 D 19.9
102 1 2.5 D 20.3
102 1 3 D 14.4
102 1 3.5 D 12.8
102 1 4 D 18.6
102 1 4.5 D 10.6
102 1 5 D 8.4
102 1 5.5 D 8.4
102 1 6 D 42.2
102 2 -1 D 9.0
102 2 -0.5 D 9.1
102 2 0 D 9.1
102 2 0.5 D 24.3
102 2 1 D 19.6
102 2 1.5 D 15.4
102 2 2 D 22.3
102 2 2.5 D 16.4
102 2 3 D 30.1
102 2 3.5 D 10.1
102 2 4 D 14.4
102 2 4.5 D 13.5
102 2 5 D 6.8
102 2 5.5 D 7.2
102 2 6 D 7.7

D=Dose of Drug on Study Day 2
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Our approach to data analysis in this setting is similar to that used
in Chapter 8 for testing on QTc. Here, there are repeated measures
responses over time with a corresponding baseline assessment in each
subject. Our assumption (null hypothesis) is that drug does not affect
the biomarker, i.e. that,

H0 : µTi − µPi = 0 (9.1)

for all i where i denotes biomarker samples collected over the relevant
times of sampling. This hypothesis is to be tested versus the alternative
hypothesis:

H1 : µTi − µPi < 0 (9.2)
for at least one i in the sampling interval.

As we know from Chapter 8 (see Technical Appendix), the false pos-
itive rate of such a test is relatively high (certainly in excess of the 5%
chance we desire). Therefore, we will employ the Westfall SimIntervals
procedure [449] to constrain the occurrence of false rejection of the null
hypothesis to 5%.

The SAS code one may use to model such data is as follows.

proc mixed data=method
method=reml ITDETAILS CL
scoring=50 maxiter=200;

class subject time regimen;
model r=rb regimen time regimen*time

/DDFM=KENWARDROGER S outp=out;
repeated time/type=AR(1) subject=subject;

lsmeans time*regimen/corr cov;
ods output LSMeans=LSmeans; run;

As in the earlier examples, here the procedure mixed is called in SAS,
and told to use REML modelling, to print the iterations (ITDETAILS),
and to do a maximum of 200 iterations (the maxiter statement). The
class describes the descriptor variables of the data set appropriate to
the design, and time denotes the time of biomarker sampling relative to
dosing at time 0 hours on Day 2. The endpoint rb denotes the baseline
assessment of r on Day 1. The findings are then output to a data set
called LSmeans which are then utilised in the Westfall SimIntervals pro-
cedure [449] to construct comparisons between treatments at each sam-
pling time. If one of the adjusted 90% upper bounds does not include
zero, the null hypothesis is rejected, and the biomarker may be useful
in future assessments of treatment effect. The results may be found in
Table 9.10.

Treatment with drug caused a significant effect on the biomarker r
only at the 1 hour post-dose time point. Such a finding would indicate
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Table 9.10 Example 9.4.1: Mean Changes (Simultaneous 90% Confidence In-
tervals) between Regimens Following a Drug Administration in a Methodology
Study Corrected for Correlation

Comparison,Time h Estimate Adj. 90% CI

D-P,-1 -1.72 (-9.25,5.80)
D-P,-0.5 -2.77 (-10.30,4.76)
D-P,0 -3.26 (-10.79,4.26)

D-P,0.5 -2.28 (-9.80,5.25)
D-P,1 -13.39 (-20.92,-5.87)

D-P,1.5 -3.29 (-10.97,4.40)
D-P,2 -5.22 (-12.90,2.46)

D-P,2.5 -1.86 (-9.51,5.79)
D-P,3 -3.16 (-10.92,4.59)

D-P,3.5 -2.35 (-10.13,5.43)
D-P,4 -5.23 (-13.01,2.55)

D-P,4.5 -2.38 (-10.16,5.39)
D-P,5 -5.82 (-13.74,2.11)

D-P,5.5 -4.56 (-12.49,3.36)
D-P,6 -4.00 (-11.79,3.79)

D = Drug Treatment
P = Placebo

that while the biomarker has the potential to be used in drug devel-
opment, the assay may need to be improved to provide more precision
before utilizing this approach on other drugs.

We encourage readers interested in further application of these meth-
ods to explore this data set method.sd2 on the website accompanying
this book. Complete code for the analysis described above is provided in
method.sas.



CHAPTER 10

Population Pharmacokinetics

Introduction
I was sitting in my office one day minding my own business (i.e.,

staring out the window) when I received a call from one of our clinical
research scientists. I refer to it as resting one’s eyes - staring out the
window, that is. After staring at statistical outputs of a computer screen
all day, it is good to dwell on distance for just a moment or two - if for
no other reason than to keep your eyes from going bad.

If anyone gives you a hard time about it, hand them a stack of sta-
tistical outputs needing sorting out, review, and interpretation, and ask
them to come back to you in two to three hours if they still really have
a problem with it. They will not likely come back, and it is possible you
will never see them again.

The scientist had received a message from one of our company’s offices
in the Far East (South Korea), requesting assistance with a statistical
issue. It related to one of our key drug projects and was, to paraphrase,
‘How does one go about statistically analysing pharmacokinetic data? We
just did a study and do not know what to do with the data.’

I was tempted to tell her I did not know either (and to call someone
else), but I knew I could not get away with that.... It was my drug project;
I did know how to analyse pharmacokinetic data; and even if I referred
her to someone else in the company, eventually the question would make
its way back to me. I was the one with the Western pharmacokinetic
data to which they would wish (even though they did not know it yet) to
compare these new data. I must admit I was tempted, though.

What started off as a seeming annoyance, turned into a very inter-
esting project as we began looking at the data that had been generated
in South Korea, and we will discuss the statistical assessment of popula-
tion pharmacokinetics at some length in this chapter. This information
is generally used in the label of new drug products to ensure they are
used safely and effectively in different populations. Some aspects also
may impact regulatory approval of drugs.

299
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10.1 Population and Pharmacokinetics

Beginning in the latter half of the 20th century (as computational tools
became available to support its development), study of extent and rate
of exposure began and, has since, become the norm in drug development.
This study is targeted toward achieving an understanding of the differ-
ences in the way disease-bearing patients’ bodies handle drug once a dose
is taken. It is hoped that this understanding will aid in the determination
and control of safe and effective dosage regimens. Most pharmacokinetic
methods applied in pharmaceutical development are non-compartmental
(see Chapter 2) in that the concentration of drug in plasma or blood over
time is expressed as a summary measure (e.g., AUC or Cmax).

The model-based study of population pharmacokinetics is, however, a
relatively recent innovation in drug development and is more of an art
than a science at this time. Such techniques apply models to describe
the population-specific behavior of concentration in plasma or blood
as a function of dose over time. The relationship of concentration to
population-specific factors is observational.

Dose is varied among populations, and the resulting pharmacokinetic
measurements are quantified using models. Except in selected studies
(discussed later in this chapter for the purposes of model validation),
control of population specific factors is not all that robust. Such studies
are designed for other purposes (e.g., safety evaluation), and pharma-
cokinetic data are collected in case this can help explain any findings of
concern (or benefit). While dose is controlled, and can therefore be con-
sidered to affect or cause study outcomes, population and demographic
factors are not as robustly controlled and can be termed to be associat-
ed with or related to study outcomes, not a direct cause. The purpose
of this chapter is to describe procedures used to study this association
between population and pharmacokinetics.

We will not review this topic in great detail and refer interested read-
ers to summaries of this topic in [12], [37], [128], and [286]. Instead we
will utilize the pharmacokinetic concentration data from Section 7.3 to
review concepts in population pharmacokinetic modelling to enable an
understanding of the statistical issues involved in this topic of drug de-
velopment. We will continue to use the first-order compartmental model
introduced in Section 7.3 as its properties lend itself to transparent inter-
pretation. More complex models, however, are likely to improve model
fit, and we encourage interested readers to examine conc.sd2 (found on
the website accompanying this book) to do so.

Statistically, the study of population pharmacokinetics may be viewed
as a modelling exercise. Pharmacostatistical modelling follows several
stages in this setting:
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1. Model building based on the rich concentration data obtained from
limited numbers of subjects in Phase I,

2. Statistical and practical model assessment,
3. Model application as sparse concentration data are obtained in large

numbers of patients in Phases II and III,
4. Utilization of model estimates for labelling purposes.

We will briefly review the building and statistical assessment of an
example model as illustrated in Section 7.3. Recall the concentration
data for Subject 47 presented in Table 7.11 (Section 7.3). These data
(and data from the other 26 subjects in conc.sd2) were used to develop
a pharmacostatistical model to describe the concentration versus time
profile (see Figure 7.4 and Table 7.12). Readers will recall that model
diagnostics revealed that concentrations appeared to be underestimat-
ed at low and high concentrations in this model. We now examine the
practical implications of this in more detail.

From the first-order model, it is easy to derive model-based estimates
for Tmax, Cmax, and AUC with accompanying confidence intervals and
to compare them to the non-compartmental estimates derived using the
standard techniques described in Chapter 2. SAS code for doing so in
this model may be found below. Details of the derivations may be found
in the Technical Appendix to this chapter. For the purposes of this ex-
ample, we will examine how the model-estimated AUC differs from the
non-compartmental derived AUC. Similar procedures may be used to
examine Cmax, and we encourage interested readers to use the code
found on the website accompanying this book to do so. Intuitively, if
the model is accurate, the estimates of AUC and Cmax from the model
should approximate those found using non-compartmental methods of
derivation.

The SAS code below utilizes the model of Section 7.3 to derive esti-
mates of AUC. The code then outputs these AUC values (with confi-
dence intervals) and compares them to the non-compartmental derived
AUCs (see Table 10.1). It was found that the estimated AUCs from
the model were approximately 20% lower than those derived using the
non-compartmental analysis (based on the findings for the ratio of non-
compartmental AUC to model-based AUC).
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Derivation of Tmax, Cmax, and AUC from Nonlinear Mixed Effect
Pharmacokinetic Data Analysis of conc.sd2 - SAS proc nlmixed

code:

proc sort data=my.conc;
by subject dose time;run;

proc nlmixed data=my.conc;
parms beta1=0.4 beta2=1.5 beta3=-2 s2b1=0.04
s2b2=0.02 s2b3=0.01 s2=0.25;
cl = exp(beta1+b1);
ka = exp(beta2+b2);
ke = exp(beta3+b3);
auc=dose/cl;
tmax=(log(ka)-log(ke))/(ka-ke);
pred=dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/
(cl*(ka-ke));
cmax=dose*ke*ka*(exp(-ke*tmax)-exp(-ka*tmax))/
(cl*(ka-ke));
model conc ~ normal(pred,s2);
random b1 b2 b3 ~ normal([0,0,0],[s2b1,0,
s2b2,0,0,s2b3]) subject=subject;
predict auc out=auc;
predict cmax out=cmax;
predict tmax out=tmax;
run;

data auc;set auc;if time=1;run;
proc sort;by subject;run;

data auc_nc(keep=subject auc_nc); set my.pk;
if day=’single’;auc_nc=auc; run;
proc sort;by subject;run;

data auc;merge auc auc_nc;by subject;
diff=pred-auc_nc;
ratio=auc_nc/pred; run;

title ’Difference in AUC Comp versus NC’;
proc print data=auc;
var subject dose pred lower auc_nc upper diff ratio;
run;
proc univariate data=auc;var diff ratio;run;

The explanation for this discrepancy in estimates, in this manufac-
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Table 10.1 Estimated AUC Parameters from conc.sd2

Subject Dose Model Model Non-Comp Model Diff. Ratio
AUC Low B. AUC Upper B.

47 5 3.24 2.29 2.81 4.18 0.43 0.87
48 5 4.36 3.24 6.31 5.48 -1.95 1.45
49 5 4.80 3.59 7.26 6.00 -2.46 1.51
50 5 3.51 2.54 3.60 4.48 -0.09 1.03
52 5 4.23 3.10 6.82 5.37 -2.59 1.61
53 5 2.85 1.96 1.76 3.75 1.09 0.62
54 5 4.83 3.62 6.11 6.05 -1.28 1.26
55 5 3.93 2.87 6.09 5.00 -2.16 1.55
57 5 3.24 2.30 2.10 4.18 1.14 0.65
60 10 7.63 6.16 9.33 9.11 -1.70 1.22
61 10 6.45 5.12 7.31 7.78 -0.86 1.13
62 10 7.16 5.71 9.57 8.60 -2.41 1.34
64 10 8.45 6.83 15.62 10.07 -7.17 1.85
65 10 5.58 4.25 5.56 6.91 0.02 1.00
66 10 6.34 4.90 11.81 7.78 -5.47 1.86
69 10 7.36 5.93 7.23 8.80 0.13 0.98
71 10 6.68 5.30 8.35 8.07 -1.67 1.25
72 10 6.02 4.74 5.70 7.31 0.32 0.95
95 20 13.65 11.44 12.92 15.86 0.73 0.95
99 20 19.56 16.45 26.05 22.67 -6.49 1.33
102 20 18.32 15.60 23.12 21.05 -4.80 1.26
104 20 11.91 9.94 12.32 13.87 -0.41 1.03
105 20 13.16 11.05 16.35 15.27 -3.19 1.24
106 20 15.43 13.03 20.21 17.83 -4.78 1.31
107 20 11.12 9.19 13.53 13.05 -2.41 1.22
108 20 9.53 7.64 7.70 11.42 1.83 0.81
110 20 12.22 10.19 14.22 14.25 -2.00 1.16

tured example, is as follows. Interested readers will recall that in theory
(see Section 7.3)

AUC =
F (Dose)

Cl
,

where F denotes the ratio of absolute bioavailability (see Section 10.3).
No basis for the derivation of this F is present in this data set (as no
intravenous route of administration was included in the study). In sci-
ence, such ‘fudge-factors’ are often employed while learning about the
science to account for differences in model estimates to actual observa-
tions (e.g., Einstein’s cosmological constant [54]), and we will utilize this
procedure here for the purposes of illustration. In practice, input from
a pharmacokineticist should be sought to determine what procedure for
adjustment should be used or if another model should be built and as-
sessed. For the purpose of illustration, we adjust the model estimated
AUC by a factor of 1.2 using the following SAS code accordingly:

auc=1.2*dose/cl;.

Based on the model parameters, and our rough estimate for F , we
now have a model-based means of constructing accurate AUC estimates
from concentration data (for illustration purposes). Subsequent Phase I
studies collect more concentration data to enhance the understanding of
the model, and at the end of Phase I, a more robust model should have
been developed relating clearance (etc.) and dose to AUC and Cmax.
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It should be expected that the building of a model and statistical and
practical assessment of its properties is an iterative and collegial process.
Such models are built by statisticians and pharmacokineticists in con-
sultation with disease area experts and their medical colleagues. Those
building and assessing such models should bear in mind George Box’s
statement ‘All models are wrong, but some are useful.’ [40] The idea is to
build and assess a parsimonious model describing the data adequately.
Adequacy of model fit and performance is to some extent subjective.

Turning now from these topics, we now consider the application of a
model to emerging clinical pharmacokinetic data obtained in Phase II
and III patient studies. Such data are generally more sparse than Phase
I data (in that a full pharmacokinetic profile sufficient for estimation of
AUC and Cmax is not obtained); however, these sparse collections are
generally obtained in a far larger number of patients than were exposed
to drug in Phase I. Selected data for three subjects may be found in
Table 10.2. The full simulated data set may be found in simulate.sd2
on the website accompanying this book.

Table 10.2 Selected Sparse Concentration Data from Patient Studies

Subject Dose Time Concentration

1 5 1 0.21
1 5 3 0.18
1 5 6 0.13
1 5 14 0.05
40 10 1 1.10
40 10 3 0.95
40 10 6 0.74
40 10 14 0.38
90 20 2 0.79
90 20 5 0.62
90 20 8 0.48
90 20 18 0.20

These data are concentrations from three of 100 simulated patients.
Note that the number of concentrations obtained are limited relative
to the normal healthy volunteer data (Table 7.11). Using the model
developed in Phase I, we use the above SAS code to derive parameter
and AUC estimates for each subject. The same code as above is used
except that the starting values are based on the findings from the Phase
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I model in Table 7.12 using a PARMS statement of: parms beta1=0.35
beta2=1.46 beta3=-2.47 s2b1=0.04
s2b2=0.03 s2b3=0.007 s2=0.01;

Code for this purpose may be found in poppk.sas on the website
accompanying this book. Model diagnostics may be applied (although
not done for the purposes of this example), and if model fit is poor,
alternative models may be built and assessed. Parameter estimates may
be found in Table 10.3 (note slight differences from the Phase I estimated
parameters in Table 7.12), and resulting AUC estimates for selected
patients may be found in Table 10.4.

Table 10.3 Estimated Population PK Parameters from Sparse Population Data

Parameter Estimate 95% CI

β1 0.45 0.39,0.52
β2 1.47 1.11,1.83
β3 -2.44 -2.48,-2.39

s2b1 0.10 0.08,0.11
s2b2 0 .,.
s2b3 0.03 0.02,0.04
s2 0.0003 0.0002,0.0004

As shown in Table 10.4, the estimates of AUC (and the other param-
eters) have uncertainty (error) associated with their estimation. In SAS,
a Bayesian algorithm [368] is applied to characterize this uncertainty. In
theory, the bootstrap may also be applied (in addition to its use as a
model diagnostic to assess model performance) to provide an estimate
for the uncertainty of the estimate; however, this is generally not done
given constraints on modern computing power. Nonlinear mixed effects
models of the type described often take several minutes or hours to run,
and if 1000 bootstrap runs (see Chapter 5) are performed, very lengthy
computation time can result.

We turn now to the utilization of these estimates from the model.
Estimates of AUC and clearance for our 100 simulated patients may
be found in pop auc.sd2 and pop cl.sd2 on the website accompanying
this book. The first goal is to use the estimated AUC to confirm their
position relative to the NOAEL in this population. The estimated AUCs
are plotted versus dose in Figure 10.1.

Similar procedures may be done for the estimated Cmax, and we leave
this as an exercise for interested readers.
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Table 10.4 Selected Estimates for AUC from Sparse Concentration Data Ob-
tained in Patient Studies

Subject Dose AUC 95% CI

1 5 3.00 2.37,3.63
40 10 17.10 16.03,18.17
90 20 13.09 12.17,14.01

The second goal of population pharmacokinetic analysis is to assess
the estimated parameters (in this case we will use clearance) relative
to factors which may influence their magnitude. Examples include dose
and demographic factors such as age, gender, weight, body-mass-index,
ethnicity, and creatinine clearance (a measure of renal function). Basic
statistical tools are often used to enable assessment of whether changes
in these factors influence the magnitude of the estimated population
pharmacokinetic parameters, see Figure 10.2.

Figure 10.2 is a plot of the estimated clearance (from the model) versus
dose expressed using a standard descriptive statistical procedure known
as a box-plot. The box encloses the 75th and 25th quartiles of the ob-
served data, and the line in the box is the median of the observed data.
The upper and lower lines extend to the 90th and 10th quartiles, respec-
tively, with data outside these indicated using points so their status as
outliers can be assessed.

In Figure 10.2, we observe that clearance appears related to dose. This
relationship may be further quantified by regressing the estimated clear-
ance on dose to assess whether the relationship is linear or nonlinear.
Multiple linear regression may be performed to assess the simultane-
ous relationship of other (i.e., demographic) factors [314]. We will not
dwell further on such assessments here and refer interested readers to
discussion in Chapter 11 of [37] for more details.

Such model-based population pharmacokinetic assessments are used
to guide dosing in patients where well-controlled clinical designs are not
possible (e.g., [138]) due to ethical or practical constraints. Additionally,
this information will be used in labelling for the drug product [128]
to ensure dosing of patients in the marketplace is appropriate to their
demography and concurrent-disease states.

Exposure levels above the NOAEL or exposure levels related to a de-
mographic factor which may be impacted by a concurrent-disease state
may be the subject of specific clinical pharmacology studies to assess the
relationship of exposure to disease or demography. Following a brief dis-
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Figure 10.1 Estimated AUCs versus Dose from a Simulated Population Phar-
macokinetic Study

cussion of the determination and estimation of absolute bioavailability,
we turn to several examples of such studies.

10.2 Absolute and Relative Bioavailability

As described in Chapter 1, when a drug is taken orally, it is absorbed
and distributed into the body, metabolized at various sites within the
body, and eventually eliminated from systemic circulation. This process
is termed ‘ADME,’ and the availability of drug at the site of action within
the body is presumably mediated by the rates at which the various facets
of ADME are performed by the body.

Consider, however, a drug that is injected or administered intravenous-
ly. Once administered, the drug is distributed to the systemic circulation
from the site of entry and does not undergo first-pass metabolism as do



308 POPULATION PHARMACOKINETICS

Figure 10.2 Box-plot of Estimated Clearance versus Dose from a Simulated
Population Pharmacokinetic Study

drugs which are ingested when they are absorbed through the intestinal
tract through the liver. As the injected drug product circulates through-
out the body, it is metabolized and eliminated. Equation (10.1) is appro-
priate for such a product (see Technical Appendix). This is termed 100%
bioavailable as an injected product by definition reaches the circulation
intact at the time of dosing. Most oral products have different levels of
bioavailability as some drugs pass straight through the intestinal tract
and are eliminated, and some drugs (like the example of the previous
section) can be very rapidly absorbed in the intestinal tract. To account
for this in equations like (10.1), parameters such as F can be introduced
to account for the differential mode of administration (Chapter 7, [37]).

Description of absorption pharmacokinetics is a lengthy topic, and we
will not discuss all aspects of its assessment. Instead, we will discuss a
commonly used method to assess absolute bioavailability F using data
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from a cross-over clinical pharmacology trial. Such a trial need not always
be performed in drug development. In certain circumstances, F can be
determined by other means (see Chapter 7, [37]).

Absolute bioavailability F is a measure of the percentage of drug ab-
sorbed after oral administration relative to that in the body after ad-
ministration by an intravenous route (hereafter denoted IV ). This pa-
rameter F can be estimated by giving an IV dose and an oral dose of
drug in a cross-over study to normal healthy volunteers and comparing
their resulting AUCs.

The same approach to study design is used as in the typical bioequiv-
alence study; however, here we do not desire to demonstrate equivalence
in AUC but only to estimate F to a given degree of precision. Usu-
ally, the dose of drug administered IV and orally in such trials will
differ depending on the properties of the compound to ensure that ex-
posure levels remain safe. For example, a drug poorly absorbed after
oral adminstration might have a reduced dose when administered IV to
ensure concentrations remain below the NOAEL. Therefore, the AUCs
are dose-normalized (i.e., divided by dose) prior to analysis to ensure
that an appropriate basis for comparison is obtained. A SAS program
to determine precision in F , for a given sample size, in 2× 2 cross-over
designs is provided in the Technical Appendix.

Table 10.5 contains data from a typical cross-over trial to estimate
absolute bioavailability. In this case, 2 mg of drug was administered
intravenously over an hour or 4 mg of drug was administered orally in a
cross-over trial in n = 12 normal healthy subjects, and dose-normalized
AUC values were derived following each administration.

The dose-normalized data of Table 10.5 were analyzed according to the
methods of Chapter 3 (SAS code may be found on the website accom-
panying this book), and an estimate of µO −µIV with a 90% confidence
interval was constructed (where µO and µIV denote the adjusted mean
logAUC following oral and IV administration, respectively). As with
bioequivalence, these are exponentiated to provide an estimate of F . In
this case F̂ was 0.99 with 90% confidence bounds of 0.91 to 1.07.

Information provided by the models of this and the previous section
and Chapter 7 are necessary but not always sufficient for complete un-
derstanding of the ADME properties of a drug. To complete the scien-
tific understanding of ADME properties, a single dose, cross-over mass-
balance (see Chapter 5, [37]) study is often performed in an extremely
small number of normal healthy volunteers (n = 2 to 4 total). In such
trials, subjects are administered a radio-labelled dose of drug, and blood
and other bodily excretions (urine, feces) are collected and assessed for
the presence of a radio-labelled substance. In the other session, a stan-
dard dose of drug is given to serve as a control for the amount of drug
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Table 10.5 Dose-Normalized (DN) AUC from an Absolute Bioavailability
Cross-over Trial

Subject DN-AUC DN-AUC
IV Oral

1 751 818
2 897 694
3 900 954
4 537 469
5 656 665
6 665 681
7 772 578
8 930 869
9 884 1055
10 556 506
11 1029 1078
12 727 946

(and radio-label) found in blood in the other session. Pharmacokinetic
data from such a trial are generally not analyzed statistically (given the
low sample size) but are used qualitatively to confirm the scientific un-
derstanding of the ADME properties of drug products. As such, we do
not consider their statistical properties here.

During the early stages of drug development, many changes are made
to formulation. These may be minor (changing the color) but can be ma-
jor (e.g., changing from a capsule to a tablet). Guidance [135] does not
require that a bioequivalence trial be performed, but sponsoring com-
panies will wish to confirm that AUC is similar in the new formulation
to ensure that the understanding of absolute bioavailability gained in
previous experimentation is robust to the change in formulation.

As with absolute bioavailability studies, bioequivalence need not be
demonstrated, and such relative bioavailability trials are performed to
provide the desired level of precision in the ratio of AUC in the new
formulation to the old. Study design and data analysis follow the same
principles of those used in bioequivalence testing as described in Chap-
ter 3 and will not be discussed further here. SAS code to support the
assessment of the desired level of precision for given sample sizes may
be found in the Technical Appendix.
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10.3 Age and Gender Pharmacokinetic Studies

As described in Section 10.1, population pharmacokinetic models will
be used to relate clearance and other pharmacokinetic parameters rel-
ative to age and gender. Such models, however, are handicapped with
decreasing confidence as findings are extrapolated beyond the observed
data [314].

For example, clinical trials of a new drug product may only be done in
adults (ages 18 years to 50 years, perhaps). The models of Section 10.1
will allow for extrapolation to lower and higher ages (down to zero and
up to, say, 100+ years perhaps); however, the confidence in the model
predictions decreases as distance from the observed age range increases.
Of interest, then, would be how exposure will actually behave in very
young people or perhaps very old people? Age pharmacokinetic stud-
ies are designed to go and check. As noted, estimates will be available
from the population pharmacokinetic model, and often a limited phar-
macokinetic study is performed to assess whether these model estimates
are dependable. These small age (and gender) studies are, in essence,
model-validation tools.

Consider the data in Table 10.6 from a study where pediatric patient
pharmacokinetics were assessed for such a purpose. Ten pediatric and ten
adult subjects received a single dose of drug, their plasma concentrations
were measured in the usual fashion over time.

Note that age, weight, and height were expected to differ between the
two age groups, but these were not related to clearance and concentration
in the population pharmacokinetic models (data not shown). Weight,
height, kidney, and liver function all differ also (hopefully for the better
in the younger people).

The study was performed to assess whether exposure in juveniles was
consistent with this finding. The resulting findings are observational.
Demographic characteristics will differ between groups, and the adult
subjects are included, not for purposes of direct comparison, but to serve
as a control back to the model used in the population pharmacokinetic
modelling population. Their inclusion serves as a control if unexpected
findings are observed to determine if the model or some facet of the
study (e.g., assay) explains the observed difference.

The objective of statistical analysis in such a setting is to estimate ex-
posure levels with desired level of precision and compare to the NOAEL,
calibrating back to estimates from the population pharmacokinetic mod-
els. SAS code commonly used to do so follows.
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Table 10.6 AUC and Cmax Data from a Pediatric (PED) and Adult (ADT)
Bioavailability Trial

Subject Age AUC Cmax

201 PED 1510 88.6
202 PED 883 52.5
203 PED 1650 92.0
204 PED 1015 56.0
205 PED 1556 84.0
206 PED 1412 84.8
207 PED 1353 83.0
208 PED 1443 96.4
209 PED 1299 68.1
210 PED 560 33.5
101 ADT 1284 70.3
102 ADT 1391 73.5
103 ADT 873 50.2
104 ADT 1211 62.2
105 ADT 1233 74.1
106 ADT 1172 60.4
108 ADT 1172 60.4
109 ADT 1336 75.3
110 ADT 1348 76.8
112 ADT 1419 82.9

Age AUC Assessment Example - SAS proc mixed code:

proc mixed method=reml data=age;
class subject age;
model lnauc=age/
s ddfm=kenwardroger cl alpha=.1;
lsmeans age/cl alpha=0.1;
repeated /group=age subject=subject;
ods output LSMeans=auc;
run;

As previously, a REML model is used to characterize the mean AUC
and Cmax of such data. As this is a parallel group trial, the model simply
calls for characterization of logAUC relative to age, with mean effect in
each age group output in the lsmeans and ods statements. The repeated
statement specifies that a variance estimate should be provided for each
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age group separately as it may be unrealistic to expect variation to be
the same in the pediatric population relative to the adult population.

Exponentiating the estimated means and 90% confidence intervals
back to the natural-scale, it was found that mean AUC in the adult
subjects was 1234 (1138-1338) and in the pediatric subjects was 1214
(1000-1474). These estimates were as expected from the population phar-
macokinetic modelling and served to reassure those using the drug that
the choice of dose in this population was safe relative to the NOAEL.

Similar to pediatric subjects, for elderly people, it will often be of
interest to assess the findings of population pharmacokinetic models in
this manner. As before, weight, height, kidney, and liver function all
differ too (probably for the worse in the older people). We omit further
discussion on this topic here as the principles and analyses are similar
to those used in the pediatric population.

A particularly important facet of the application of population phar-
macokinetic data pertains to assessment of the relationship of gender
to exposure levels. As discussed in Chapter 8, females are more likely
to experience undesired side effects than males. In population pharma-
cokinetic models, interpretation of gender’s relationship to exposure is
often not straightforward. Confounding with other demographic factors
is significant - i.e., weight and height. In general, to obtain a good handle
on whether exposure is gender related, a single-dose study of exposure
levels relative to NOAEL is done early in drug development (usually just
after the sub-chronic dosing study, see Section 7.3, completes) in Phase I.
Inclusion of females of child-bearing potential in drug development stud-
ies is contingent on genotoxicology findings and protocol contraceptive
procedures as fetal development can be impaired or terminated by such
products. Effort is made to weight match male and female volunteers
from the different populations where possible.

Consider the AUC and Cmax data from a gender trial in Table 10.7.
Here 18 males and females (six per dose) were given a single dose of
drug, and their pharmacokinetics were measured in the usual fashion.
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Table 10.7 AUC and Cmax Data from a Gender Bioavailability Trial

Subject Dose Gender AUC Cmax

1 1 M 354 68.4
2 1 M 219 50.5
3 1 M 228 36.5
4 1 M 216 55.6
5 1 M 405 74.6
6 1 M 306 55.5
13 1 F 704 90.0
14 1 F 375 52.3
15 1 F 534 83.7
16 1 F 434 59.2
17 1 F 565 59.8
18 1 F 484 84.0
25 2 M 602 151.5
26 2 M 762 165.6
27 2 M 728 134.6
28 2 M 934 116.6
29 2 M 560 121.2
30 2 M 408 86.9
38 2 F 871 196.3
39 2 F 1104 216.0
40 2 F 777 80.1
41 2 F 592 109.7
42 2 F 728 122.5
49 5 M 2295 553.5
50 5 M 1743 307.8
51 5 M 1646 483.4
52 5 M 1523 281.4
53 5 M 1782 534.4
54 5 M 1906 375.0
61 5 F 1676 211.8
62 5 F 1493 266.7
63 5 F 2597 328.1
64 5 F 2396 242.3
65 5 F 1656 455.4
66 5 F 1355 288.8
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As with the pediatric trial described above, statistical analysis of the
pharmacokinetic data is geared toward providing estimates which may
be used to calibrate the population pharmacokinetic findings. SAS code
for this purpose follows.

Gender AUC Assessment Example - SAS proc mixed code:

proc mixed method=reml data=gender;
class subject dose gender;
model lnauc=dose gender dose*gender/
s ddfm=kenwardroger cl alpha=.1;
lsmeans dose*gender/cl alpha=0.1;
repeated /group=gender subject=subject;
ods output LSMeans=auc;
run;

Again, variability is allowed to differ between genders using a repeated
statement, and mean logAUC is output from the lsmeans and ods s-
tatements. Exponentiating these findings back to the normal-scale, the
estimates given in Table 10.8 were found.

Table 10.8 Mean AUC Findings from a Gender Bioavailability Trial

Dose Gender Mean AUC 90% CI

1 Female 506 426-600
2 Female 797 661-962
5 Female 1808 1523-2146
1 Male 279 235-332
2 Male 644 541-766
5 Male 1800 1514-2142

Relative to the population pharmacokinetic model findings (based up
to this time on data from male subjects only), we see in Table 10.8 that
while mean AUC in females still falls below the NOAEL (greater than
2000 ng.h/mL for this drug at this time), average exposure in females
was dramatically greater in this data set at lower doses than would be
expected from the models of male data.

Findings such as these would prompt the sponsor to reinterrogate the
population pharmacokinetic model building and assessment procedures
(of Sections 7.3 and 10.1), and the concentration data of the gender trial
would be utilised for this purpose. Using such techniques, it was de-
termined that, unexpectedly, clearance was related to weight (data not
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shown). This enabled the team to adapt their population pharmacoki-
netic model to take this into account. For example, in the SAS code of
Section 10.1, beta1 might be defined as a function of weight where rel-
evant parameters are determined from model-based regression of weight
on estimated clearance.

Assessment of Cmax in age and gender trials are left as an exercise
for interested readers, and SAS code to perform such analysis may be
found on the website accompanying this book. SAS code to aid in the
determination of sample size for age and gender pharmacokinetic trials
may be found in the Technical Appendix.

10.4 Ethnicity

Consideration of ethnicity’s impact upon pharmacokinetics has long
been a topic of discussion and was recently commented on in internation-
al regulatory guidance [227]. This ICH-E5 guidance [227] was intended
to provide a framework for evaluating ethnic factors on a drug’s efficacy
and safety profile in drug development. At this time, however, the guid-
ance has yet to be fully implemented in the local ICH regions (USA,
Europe, and Japan), and there is still a great deal of question about
how to interpret the guidance (e.g., [139], [315]).

ICH-E5 [227] makes the implicit assumption that registration of a
drug in a new region involves new registration for a new ethnic popu-
lation, and we will follow this convention in this section. As described
in ICH-E5, the first of two primary requirements for a submission pack-
age is that the data requirements for registration in the new region be
met - i.e., that clinical trial methodology, recordkeeping, protocol com-
pliance and drug accountability, and informed patient consent must be
acceptable in the new region [227]. The minimal data package, consist-
ing of either data from the original region and/or data from the new
region, should include an adequate characterization of the pharmacoki-
netics (PK), pharmacodynamics (PD), dose response, efficacy and safety
of the drug (see Chapter 1 for more details). At least pharmacokinetics
[316], and preferably pharmacodynamics and dose response, should al-
so be characterized in an ethnic population that is relevant to the new
region [227] but not necessarily resident in the new region [317] (i.e., if
one wants to market a drug in Japan, one has to study its properties in
Japanese patients or in patients of Japanese descent).

The second requirement is the demonstration of the ability to extrap-
olate findings from any data from the original region to the population
of the new region. It is easier to extrapolate from one region to another
if the new medication is ‘ethnically insensitive,’ i.e., unlikely to behave
differently in different populations. Ethnic sensitivity can be categorized
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into two components, intrinsic (genetic) and extrinsic (environmental),
either or both of which may impact bioavailability and hence the ap-
propriate dose and response relationship. These are described in greater
detail in Figure 10.3.

Figure 10.3 Intrinsic and Extrinsic Population Factors Impacting the Dose-
PK-PD Response Relationship [227]

A ‘bridging’ study, as its name implies, is designed to allow one to
bridge from the original region’s data in the original population to the
new region with its new population. It is a [227]:

....supplemental study performed in the new region to provide pharmaco-
dynamic or clinical data on efficacy, safety, dosage, and dose regimen in the
new region that will allow extrapolation of the foreign clinical data to the
new region...

The degree of ethnic sensitivity will determine whether a study is
necessary and the design of such a study (e.g. PK only, PK/PD only, in
what population, etc.). ICH-E5 [227] describes several characteristics of
drug products which would make such a product ‘ethnically insensitive.’
These are [227]:

1. Linear pharmacokinetics
2. A flat response curve for both efficacy and safety in the range of the
recommended dosage and dose regimen (this may mean the medicine is
well tolerated)
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3. A wide therapeutic dose range (again an indicator of good tolerability)
4. Minimal metabolism or metabolism distributed among multiple pathways
5. High bioavailability, thus less susceptibility to dietary absorption effects
6. Low potential for protein binding
7. Little potential for drug-drug, drug-diet, and drug-disease interactions
8. Nonsystemic mode of action
9. Little potential for inappropriate use

It is rare for a drug to meet all nine conditions which would make
it ethnically insensitive and result in only minimal data requirements
to enter new regions and markets (e.g., such as Asia). In any event,
ethical and cultural considerations regarding drug use in Asia are slightly
different than other international regions, and consideration should first
be given to such matters (regardless of the outcome of this checklist)
when designing a bridging program [424].

Statistical approaches to bridging are in early stages of development,
and no international consensus is yet available on how ethnicity bridg-
ing programs should be designed and data analyzed. See [244], [404],
[367], [278], [77], [279], [334], and [280] for a description of some meth-
ods which are publicly available. We will not discuss these approaches
further here as they are, in general, intended for application to bridging
study data to confirm these are sufficient to permit market access. We
turn to practical pharmacology-based ethnicity assessment in popula-
tion pharmacokinetics and the statistics involved. These pharmacology
assessments are usually carried out in drug development prior to the
initiation of a bridging program and should constitute the major basis
for the approach to its design.

We assume as in previous sections of this chapter that a population
pharmacokinetic model has been developed (as in Section 10.1) describ-
ing concentration as a function of time and physiologic parameters (e.g.,
clearance, absorption constant(s), elimination constant(s), etc.) As de-
scribed in Section 10.1, some of these physiologic parameters may be
related to demography (e.g., weight, height, gender, etc).

When dosing a new population, it is to be expected that demographic
factors may be different. As with the population pharmacokinetic as-
sessment of gender, significant confounding with ethnicity can often be
expected. For example, in the data set which follows, Western subjects
were on average heavier than South Korean subjects. The working as-
sumption, in the absence of information, made in the early stages of
model development is that the functional form of the model is the same
for both populations; however, in reality the magnitude of parameters
(e.g., clearance) may be dependent upon ethnicity in some, as yet un-
known, way.

Once a population pharmacokinetic model is proposed and estimates
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are available for differences in pharmacokinetics between populations
related to demographic factors, the logical next step is to conduct a
validation exercise via a small focused pharmacokinetic study. Selected
data from such a study in South Korean subjects are presented below
along with corresponding data (at the same doses) observed in Western
subjects. The full data set may be found on the website accompanying
this book.

Table 10.9: AUC and Cmax Data from a Population Pharmacokinetic Assessment of South Korean
and Western Subjects

Dose Ethnicity Subject AUC Cmax Weight Height Age
(mg) (ng.h/mL) (ng/mL) (kg) (cm) (yrs.)

2 K A01 1228 195.2 65.0 170 20
2 K A02 1003 193.9 65.0 172 20
2 K A03 1063 165.8 75.0 175 27
2 K A04 906 215.2 64.0 172 22
2 K A07 811 215.6 76.0 177 21
2 K A08 928 167.5 82.0 187 21
2 K A09 1401 136.4 65.0 178 29
2 K A11 1099 206.1 59.0 168 26
2 W 1 746 208.4 73.7 177 28
2 W 1 734 137.7 71.7 175 28
2 W 11 994 190.9 58.7 180 20
2 W 12 552 125.7 87.6 179 38
2 W 13 675 168.7 59.5 163 36
2 W 13 566 104.9 63.6 175 26
2 W 14 637 108.0 91.7 180 28
2 W 15 666 169.4 70.7 162 30
2 W 15 728 167.2 78.0 176 32
2 W 16 578 123.8 76.2 173 36

.......
4 K B01 1763 345.6 64.0 174 21
4 K B02 1638 302.4 68.0 178 25
4 K B03 1894 345.8 66.0 171 25
4 K B06 2125 373.2 69.0 182 26
4 K B07 2289 466.4 63.0 170 26
4 K B08 1380 336.9 68.0 181 25
4 K B10 1557 257.2 80.0 180 23
4 K B11 3035 335.2 57.0 169 24
4 W 1 1637 362.0 76.3 180 27
4 W 10 2109 371.0 71.3 181 30
4 W 104 1468 308.0 76.1 185 51
4 W 109 999 249.0 85.0 178 56
4 W 11 1012 174.0 109.0 200 25
4 W 115 1273 275.0 69.4 175 31
4 W 116 1322 302.0 74.6 168 22
4 W 2 1388 319.0 68.3 175 26
4 W 391 989 174.1 91.1 176 27

.......
8 K C01 4890 709.2 64.0 176 19
8 K C02 3641 737.7 65.0 167 28
8 K C04 7211 981.7 63.0 175 22
8 K C06 3382 421.4 68.0 182 21
8 K C07 5459 1009.0 59.0 171 28
8 K C08 3077 769.6 71.0 179 28
8 K C11 4144 820.0 73.0 177 24
8 K C12 4263 673.0 61.0 180 21
8 W 1 3404 687.1 73.7 177 28
8 W 1 2942 563.6 80.5 184 26
8 W 10 3596 550.4 79.5 173 26
8 W 10 2148 462.0 76.3 182 32
8 W 100 2572 718.0 73.2 175 54
8 W 106 1997 428.0 96.8 186 43
8 W 11 4677 586.1 58.7 180 20
8 W 11 1278 320.0 96.1 178 29
8 W 112 3023 467.0 80.9 173 49
8 W 113 2959 575.0 69.8 170 53

.......
K= South Korean; W = Western

The code used to analyse such data is similar to that used in the
previous section. In this setting, it may be desirable to conduct a model-
building assessment (see Chapter 2 of [314] and Chapters 2 and 4 of
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[179]) to determine which factors are significantly related to the endpoint
under study. Accordingly, in the example that follows, weight (wt) was
included as a covariate.

Ethnicity AUC Assessment Example - SAS proc mixed code:

proc mixed data=pk method=reml maxiter=200 scoring=50;
class subject race;
model lnauc=race lndose wt
/s ddfm=kenwardroger cl alpha=.1 outp=out;
lsmeans race/CL ALPHA=0.1 DIFF=CONTROL("W");
repeated /group=race subject=subject;
ods output LSMeans=auc;

run;

For logAUC, the resulting model estimates are presented in Table
10.10. AUC was observed to be significantly related to ethnicity and
weight, and was linearly related to dose. In terms of the impact of eth-
nicity, we can conclude from these data that weight, by itself, does not
explain all of the differences in pharmacokinetics between Koreans and
Westerners. The concentration data supporting this assessment would
be used to rebuild the population pharmacokinetic model allowing for
other parameters to be related to ethnicity.

Table 10.10 Estimated Population Parameters from Evaluation of logAUC as
a Function of Ethnicity, logDose, and Weight

Parameter Estimate 95% CI

Ethnicity 0.28 0.19, 0.36
logDose 1.00 0.94, 1.05
Weight -0.01 -0.02, -0.00

In this case, it was determined that South Koreans metabolized the
drug slightly differently than Westerners (via a different CYP450 path-
way, see Chapter 7). Alteration of the elimination rate constant to ac-
count for this ethnicity-related difference resulted in adequate model fit
(data not shown).

Cmax was also observed to be higher in South Koreans than the West-
ern population. The analysis of these data is left as an exercise for inter-
ested readers and may be done using code on the website accompanying
this book.

In combination with the full data package from the original region,
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data such as the above can serve as the basis for approval in some nations.
However, several nations also require that the concentration to effect
relationship (see Chapter 9) be studied and be shown to be not related
to ethnicity. In theory, the model-based approach used should be similar,
but this is a still evolving topic, and we will not discuss it further here.

Code to determine precision in pharmacokinetic findings for given
sample sizes in ethnicity studies is the same as that used in age and
gender studies and is omitted here.

10.5 Liver Disease

Liver disease or hepatic impairment can be caused by a number of fac-
tors. Diseases like hepatitis can cause injury to the liver and impair its
function. Injury may also be chemically induced (cirrhosis via alcohol)
and drug induced. In this section, we consider the pharmacokinetics of
a drug in the body when patients have liver disease.

Severity of liver disease is typically measured by the Child-Pugh score
[136], and subsequently categorized as healthy, mild, moderate, or severe
liver function impairment, depending on extent of damage to the liver
and impairment of its function. If a drug is eliminated (in the ADME
sense) by metabolism or excretion (into bile) in the liver, drug would be
expected to accumulate in the plasma. Decreased clearance of drug by
the liver [12] implies increased AUC and Cmax, and as these increase
the likelihood of adverse events associated with exposure (relative to the
NOAEL) would also be expected to increase. Therefore, it is important
to understand the magnitude of increased exposure in patients with im-
paired hepatic function to determine [12] if it is necessary to reduce dose
in such patients or potentially to contraindicate the use of the drug.

We again assume that a population pharmacokinetic model has been
developed from Phase I data. In tandem with this, the mass-balance
radio-label ADME trial (see Section 10.2) will generate information on
the role of the liver in excretion and metabolism of the drug in plasma.
If the liver plays only a minor role in elimination of the drug from the
body [136], [12], then regulatory guidance suggests that study in patients
with hepatic impairment is not required. However, if the role of the liver
cannot be precisely determined, then a small pharmacokinetic study is
generally performed to confirm the validity of the model’s findings. In
practice, the radio-label ADME study is expensive and takes a long
time, so it is general practice to perform a small pharmacokinetic trial
as described in the following.

Patients with hepatic impairment are enrolled and administered a sin-
gle dose of drug in the standard clinical pharmacology sampling paradig-
m, and their plasma concentrations are summarized as AUC, Cmax, etc.
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[136]. In tandem, depending on the results of population pharmacokinet-
ic assessment for the demographic factors involved, race, age, and weight
range-matched volunteers are enrolled as a control group, administered
the same single dose, and pharmacokinetics are measured. As with pre-
vious population pharmacokinetic modelling exercises, the objective of
the trial is to estimate the pharmacokinetics in each group to assess
the performance of the population pharmacokinetic model, not to com-
pare the groups (‘normal’ and ‘hepatic impaired’). Code to determine
precision in pharmacokinetic findings for given sample sizes in hepatic
impairment pharmacokinetic studies is the same as that used in age and
gender studies and is omitted here.

AUC and Cmax data from such a trial may be found in the following
table. In this case, population pharmacokinetic modelling of the impact
of reduced clearance due to hepatic impairment led the team working
on this drug to be confident that increased extent of exposure would
occur in hepatic impaired patients. The model, however, was imprecise in
terms of the extent to which exposure would be increased with estimates
ranging from little effect to approximately eight to ten times the exposure
in normal healthy volunteers. The study was performed using a low
dose to enhance the understanding of the impact of moderate hepatic
impairment. The lower dose was used to ensure exposure levels would
remain well below the NOAEL.

Table 10.11: Pharmacokinetic Data from a Clinical Pharmacology
Hepatic Impairment Trial

Subject Group AUC Cmax
(ng.h/mL) (ng/mL)

100 HEALTHY 2572 718
101 HEPATIC 2862 374
102 HEPATIC 5225 302
103 HEPATIC 3709 441
104 HEPATIC 3866 258
105 HEPATIC 2675 382
106 HEALTHY 2911 504
107 HEPATIC 4321 439
108 HEPATIC 5801 434
109 HEALTHY 2701 466
110 HEALTHY 2374 606
111 HEPATIC 3023 409
112 HEALTHY 3023 467

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)
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Table 10.11: Pharmacokinetic Data from a Clinical Pharmacology
Hepatic Impairment Trial

Subject Group AUC Cmax
(ng.h/mL) (ng/mL)

113 HEALTHY 2344 449
114 HEALTHY 2544 386
115 HEPATIC 3352 343
116 HEALTHY 2802 422
117 HEPATIC 2768 422
118 HEPATIC 2489 554
119 HEALTHY 3715 385
120 HEPATIC 3740 488
121 HEALTHY 2088 487
122 HEALTHY 2038 474
123 HEALTHY 1703 592
124 HEPATIC 2711 301
201 HEPATIC 3164 349
202 HEPATIC 1998 303
203 HEPATIC 4270 316
204 HEPATIC 5501 773
205 HEALTHY 1983 553
206 HEALTHY 3494 728
207 HEALTHY 3962 478
208 HEALTHY 3106 493
209 HEPATIC 2897 432
210 HEALTHY 1598 392

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)

Code to analyse such data is provided below and is very similar to that
used in previous model validity exercises. In cases where data are collect-
ed from mild and severe liver impairment patients, the groupings may
be changed to accommodate this, or the Child-Pugh scores themselves
can be used to examine the correlation between scores and the pharma-
cokinetics. We will consider such an approach in the next section, using
renal impairment data.
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Hepatic Impairment AUC Assessment Example - SAS proc mixed
code:

proc mixed method=reml data=liver;
class subject group;
model lnauc=group/s
ddfm=kenwardroger cl alpha=.1;
lsmeans group/cl alpha=0.1;
repeated /group=group subject=subject;
ods output LSMeans=auc;
run;

For logAUC, the resulting back-transformed model estimates are pre-
sented in Table 10.12. AUC was increased (as expected) in the hepatic
impaired patients. Assessment of Cmax is left as an exercise for inter-
ested readers, and may be performed using code on the website accom-
panying this book.

Table 10.12 Estimated Population Parameters from Evaluation of logAUC as
a Function of Group

Group Estimated Mean AUC 90% CI

HEALTHY 2653 2296, 2861
HEPATIC 3433 3045, 3869

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)

According to the suggestion in regulatory guidance [136], if a doubling
in extent of exposure is observed relative to the levels used to achieve effi-
cacy while maintaining safety in the normal patient population, the dose
in hepatic-impaired patients should be adjusted downward. If exposures
cannot be kept clear of the NOAEL, one would presumably not wish
to expose patients to such a risk and might contraindicate. If desired,
a no-effect claim may be established if a two one-sided test (similar to
that used for average bioequivalence) with a clinically relevant threshold
is set up a priori in the protocol [136], but we omit discussion of such
an approach here as inference and labelling based on such trials most
often utilizes expert clinical assessment of estimated model parameters
without such formal statistical testing.
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10.6 Kidney Disease

Most drugs are eliminated unchanged by the kidney or by metabolism
in the liver [124]. As with hepatic impairment, renal impairment can be
caused by a variety of factors, and we will not discuss these further here.
As age increases, this also results in impaired functioning of the kidney.

For drugs which are eliminated from circulation by the kidney, im-
paired function is expected to result in decreased clearance [12]. De-
creased clearance would be expected to result in increased exposure,
and as with hepatic impairment, this may result in increased likelihood
of adverse experiences.

Creatinine clearance (CLcr) is a parameter often used to describe renal
function [124]. This endpoint may be derived as [124]:

CLcr =
(140− age(yrs))weight(kg)

72(serum− creatinine(mg/dL))
.

This formula is multiplied by 0.85 for female subjects and represents
steady-state renal function. Severity of impairment is typically charac-
terized using these values as [124]:
1. Healthy (CLcr > 80 mL/min),
2. Mild (CLcr from 50-80 mL/min),
3. Moderate (CLcr from 30-50 mL/min),
4. Severe (CLcr < 30 mL/min), and
5. ESRD (requiring dialysis).

While building a population pharmacokinetic model (see Section 10.1),
the impact of renal function (assessed using creatinine clearance) on es-
timated parameters for plasma clearance will generally be assessed. As
with hepatic impairment if there is good scientific evidence to support
this being minor (i.e., renal clearance plays only a small role in elimi-
nation and metabolism of the drug), then one need not study the issue
further in drug development [124]. Note that this involves some degree
of subjectivity; hence, in practice, a study is generally done to validate
the understanding from the population pharmacokinetic model.

Design of such a trial is similar to the other validation exercises dis-
cussed in this chapter. Sample size is selected to provide appropriate
precision in study findings in similar fashion to the approach used for
age, gender, ethnicity, and hepatic trials, and further discussion (and
code) is omitted here. Roughly equal numbers of subjects in each renal
impairment severity class are recruited and given a single dose of drug
with a typical clinical pharmacology pharmacokinetic sampling scheme
performed. One may also study the ends of the impairment spectrum
(severe versus healthy) before enrolling mild and moderates [124].

Often mentioned in the context of renal impairment is the importance
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of protein binding and consideration of (and derivation of) unbound con-
centrations and estimates of rate and extent of exposure. Drug molecules
bound to protein in plasma are not active, and are often removed from
circulation by the kidney. Drug not bound to protein is typically the ac-
tive component which, reaching the site of action, is presumed to elicit a
pharmacodynamic response in the body (see Chapters 1 and 2). As pro-
tein binding may be impacted by kidney function, typically one blood
sample is collected in such studies for each subject to estimate the degree
of drug protein binding. If the degree of binding is pronounced (greater
than 80%), the unbound concentration is used to derive an estimate of
unbound AUC (AUCu) and unbound Cmax (Cmaxu) by straightforward
multiplication. An example data set may be found in Table 10.13. Note
that in this experiment, 60 mL/min was used as the cut-off between mild
and moderate renal impairment as it pre-dated the [124] guidance.

Table 10.13: Pharmacokinetic Data from a Clinical Pharmacology Renal Impairment Trial

Group Subject CLcr AUC Cmax AUCu Cmaxu
(ng.h/mL) (ng/mL) (ng.h/mL) (ng/mL)

HEALTHY 107 105 1523 407 1.68 0.448
HEALTHY 116 87 2426 409 3.40 0.573
HEALTHY 117 92 3919 341 . .
HEALTHY 126 105 3351 606 . .
HEALTHY 127 90 1851 474 2.78 0.711
HEALTHY 128 101 3487 444 5.23 0.666
HEALTHY 130 84 3719 592 7.44 1.184
HEALTHY 131 82 3046 400 4.87 0.640
HEALTHY 138 96 3282 474 4.59 0.664
HEALTHY 215 94 2823 424 4.80 0.721
HEALTHY 218 81 2765 584 3.59 0.759
HEALTHY 219 100 1860 377 3.91 0.792

MILD 102 67 2635 392 4.48 0.666
MILD 110 72 2321 320 . .
MILD 113 68 4498 440 7.65 0.748
MILD 115 68 2727 460 4.09 0.690
MILD 118 67 3226 681 4.52 0.953
MILD 121 66 2653 401 4.51 0.682
MILD 122 73 6710 458 11.41 0.779
MILD 123 69 3991 507 6.39 0.811
MILD 124 65 2304 347 3.23 0.486
MILD 207 64 3254 455 4.88 0.683
MILD 208 71 3364 670 4.37 0.871
MILD 210 61 2271 476 3.18 0.666
MILD 212 74 3137 500 6.59 1.050
MILD 216 64 1560 323 2.18 0.452
MILD 217 71 2235 374 3.80 0.636

MODERATE 105 33 2375 495 3.80 0.792
MODERATE 106 49 3658 389 5.85 0.622
MODERATE 108 44 6638 710 13.28 1.420
MODERATE 111 53 2167 427 3.03 0.598
MODERATE 112 48 3445 517 4.82 0.724
MODERATE 114 46 3670 565 6.61 1.017
MODERATE 120 57 3108 440 5.59 0.792
MODERATE 125 58 3959 599 6.33 0.958
MODERATE 132 55 2211 286 3.76 0.486
MODERATE 133 53 3138 442 5.02 0.707
MODERATE 134 54 3003 572 3.90 0.744
MODERATE 135 53 4187 469 . .
MODERATE 202 51 2627 337 3.68 0.472
MODERATE 203 54 2718 474 3.81 0.664
MODERATE 204 55 3410 558 5.12 0.837
MODERATE 205 55 3314 405 4.97 0.608
MODERATE 209 58 2105 352 2.53 0.422
MODERATE 213 43 2520 504 3.53 0.706

SEVERE 101 15 2290 230 . .
SEVERE 103 22 2825 262 . .
SEVERE 104 17 2427 370 4.13 0.629

HEALTHY (No Renal Disease; CLcr> 80)
MILD (Mild Renal Disease; 60 <CLcr≤ 80)

MODERATE (Moderate Renal Disease; 30 <CLcr≤ 60)
SEVERE (Severe Renal Disease; CLcr≤ 30)
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Table 10.13: Pharmacokinetic Data from a Clinical Pharmacology Renal Impairment Trial

Group Subject CLcr AUC Cmax AUCu Cmaxu
(ng.h/mL) (ng/mL) (ng.h/mL) (ng/mL)

SEVERE 109 22 2704 527 4.06 0.791
SEVERE 119 23 2237 395 6.04 1.067
SEVERE 129 18 1490 233 2.53 0.396
SEVERE 136 27 1407 329 2.67 0.625
SEVERE 137 21 3415 447 6.83 0.894
SEVERE 201 24 2325 404 . .
SEVERE 206 6 1675 259 5.36 0.829
SEVERE 211 19 1974 329 4.15 0.691
SEVERE 214 22 2705 526 7.03 1.368

HEALTHY (No Renal Disease; CLcr> 80)
MILD (Mild Renal Disease; 60 <CLcr≤ 80)

MODERATE (Moderate Renal Disease; 30 <CLcr≤ 60)
SEVERE (Severe Renal Disease; CLcr≤ 30)

Code to analyse such data is provided below and is very similar to that
used in previous model validity exercises. Variability is allowed to change
with group using the repeated statement, and the relationship of the
pharmacokinetic endpoint of interest (in this example, AUC) is mod-
elled on the logscale as a function of creatinine clearance. The estimate
statements are used to output estimates of mean AUC at various levels
of creatinine clearance.

Renal Impairment AUC Assessment Example - SAS proc mixed code:

proc mixed method=reml data=renal;
class subject group;
model lnauc=clcr/s
ddfm=kenwardroger cl alpha=.1 outp=out;
estimate ’80’ intercept 1 clcr 80/cl alpha=0.1;
estimate ’70’ intercept 1 clcr 70/cl alpha=0.1;
estimate ’60’ intercept 1 clcr 60/cl alpha=0.1;
estimate ’50’ intercept 1 clcr 50/cl alpha=0.1;
estimate ’40’ intercept 1 clcr 40/cl alpha=0.1;
estimate ’30’ intercept 1 clcr 30/cl alpha=0.1;
estimate ’20’ intercept 1 clcr 20/cl alpha=0.1;
estimate ’10’ intercept 1 clcr 10/cl alpha=0.1;
repeated /group=group subject=subject;
ods output Estimates=outest;
run;

For AUC, the resulting back-transformed model estimates are pre-
sented in Table 10.14. No relationship between creatinine clearance and
AUC was observed in the renally impaired patients. Analysis of Cmax
and unbound AUC and Cmax are left as an exercise for interested read-
ers, and may be performed using code on the website accompanying this
book.

Generally, a log-linear relationship of total and unbound AUC and
Cmax with creatinine clearance is observed. If not, transformation of
creatinine clearance using a power model generally suffices to adequately
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Table 10.14 Estimated Population Parameters from Evaluation of logAUC as
a function of Creatinine Clearance

Creatinine Clearance Estimated Mean AUC 90% CI

80 2953 2651,3289
70 2869 2625,3136
60 2787 2580,3011
50 2708 2506,2926
40 2631 2406,2878
30 2557 2293,2851
20 2484 2177,2835
10 2413 2062,2825

describe the data. As such a model has already been described in the
context of dose-proportionality (see Chapter 7), this is not discussed
further here.

As with hepatic impairment, based on these findings, the population
pharmacokinetic model may be rebuilt, if appropriate. Dose is typically
adjusted in renally impaired patients to achieve concentrations that are
expected to be safe and effective. Labelling statements based on data
like those described above provide the basis for the selection of dose-
adjustment or contraindication. [124].

10.7 Technical Appendix

10.7.1 Models, Derivations, and Software in Population
Pharmacokinetic Models

Models such as

cit = (e−keit − e−kait)
keikai(Dose)
Cli(kai − kei)

+ εit (10.1)

may be used to easily derive estimates for Tmax, Cmax, and AUC. We
provide one such example here based on the estimated parameters from
the fitted model.

To derive Tmax, take the first derivative of ĉit (the fitted model) with
respect to t. The resulting equation is:

dĉit

dt
=

k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)
(−k̂eie

−k̂eit + k̂aie
−k̂ait).

Setting this equal to zero and solving for t yields an estimate for Tmax
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of

Tmax =
ln k̂ai − ln k̂ei

k̂ai − k̂ei

.

An estimate for Cmax may be derived by taking the predicted concen-
tration at this time point:

Cmax = (e−k̂eiTmax − e−k̂aiTmax)
k̂eik̂ai(Dose)

Ĉli(k̂ai − k̂ei)
.

To derive AUC(0−∞), take the integral from zero to infinity of ĉit with
respect to time (t):

∫ ∞

0

ĉitdt =
k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)

∫ ∞

0

(e−k̂eit − e−k̂ait)dt.

Integration yields:

k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)

( 1

k̂ei

− 1

k̂ai

)
=

Dose

Ĉli
.

As stated in Chapter 7, we chose here to utilize SAS for the non-
linear mixed effect modelling of data; however, several other statistical
packages are readily available (SPLUS, NONMEM, WINNONLIN, P-
KBUGS, etc., [365]) and may be used for this purpose. Readers inter-
ested in more details of these software packages should see [468] and
[435].

10.7.2 Determining Precision for Absolute and Relative Bioavailability
Studies

The approach to determine precision in estimates of absolute bioavail-
ability F̂ or to the ratio of relative bioavailability for differing formu-
lations administered by the same route is similar to that shown for
drug-interaction trials in Chapter 7. SAS code is as follows. Use of a
randomized 2 × 2 cross-over is assumed, and the sample size (n) and
standard deviation of AUC (sigmaW) should be entered by the user.
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Sample Size Code for Precision in Absolute Bioavailability and Relative
Bioavailability Studies:

data a;
* total number of subjects
(needs to be a multiple of number
of two);

n=20; seq=2;
* significance level;

a=0.05;
* variance of difference of two observations
on the log scale;
* sigmaW = within-subjects standard deviation;

sigmaW=0.2; s=sqrt(2)*sigmaW;
* error degrees of freedom for cross-over
with n subjects in total
assigned equally to seq sequences;

n2=n-seq;
run;

data b; set a;
* calculate precision;

t=tinv(1-a,n2);
SE=s/(sqrt(n));

* precision on log-scale;
w=t*SE;

* precision on natural-scale;
exp_w=(exp(t*SE)-1)*100;
run;

proc print data=b; run;

10.7.3 Determining Precision for Pediatric, Elderly, and Gender
Pharmacokinetic Studies

The approach to determine precision in estimates of age and gender trials
is similar to that shown for drug-interaction trials in Chapter 7. SAS code
is as follows. Use of a non-randomized parallel-group trial is assumed,
and the sample size (n) and between-subject standard deviation of AUC
(sigma) should be entered by the user.
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Sample Size Code for Precision in Age and Gender Studies:

data a;
* number of subjects per grouping;
n=10;
* significance level;
a=0.05;
* sigma = standard deviation;
sigma=0.3; s=sigma;
* error degrees of freedom for each group;
n2=n-1;
run;

data b; set a;
* calculate precision;

t=tinv(1-a,n2);
SE=s/(sqrt(n));

* precision on log-scale;
w=t*SE;

* precision on natural-scale;
* plus or minus (percentage) of mean exposure;

exp_w=(exp(t*SE)-1)*100;
run;

proc print data=b; run;



CHAPTER 11

Epilogue

Many people in business and medicine regard statistics as at best a nui-
sance, and at worst a hinderance to science. For example, Einstein liked
to say that ‘God doesn’t gamble.’ [54]. That is likely true in the long run
(in statistical terms, in the limit), but in the short term while making
drugs, we cannot operate with complete certainty and have to depend
upon statistics to guide us in making safe, effective, quality products. In
clinical drug development, statistics are used to quantify the uncertainty
associated with human use of drugs - not to eliminate uncertainty. In
a perfect world, it would be perfectly clear whether to use a drug or not
(the drug is either safe, effective, and made well or it is not), but in
practice, statistics are used to measure the outcome of studies used as
tools to assess these properties. If they are not used well, the trend to-
ward increased length and cost in drug development [137] are very likely
to continue.

Clinical pharmacology and many aspects of drug development are evolv-
ing, and will continue to do so. These changes are good as they would be
expected to improve the drugs that are produced for the people who need
them. Statistically, changes such as these represent new challenges, but
the raw materials to meet the needs of the science are available. Change
is not so bad once you get used to it.

The future of Statistics in Clinical Pharmacology lies in learning (not
confirming). Design of studies and bioequivalence analyses can be auto-
mated by sponsoring companies themselves or by commercial software
companies. Indeed, some software companies already claim to do so, and
it is to be expected that more will appear in the future. This frees up
statisticians to spend more time on the parts of drug development that
are in need of attention. Confirmatory work like bioequivalence testing
should soon no longer be an activity directly involving statisticians but
will be handed off to clinical scientists and pharmacokineticists with sta-
tisticians only being consulted as needed.

To reiterate, the future of statistics in clinical pharmacology lies in
other areas - in particular, better understanding of quantitative aspects
of safety and efficacy assessment in Phases I and IIa. Better control of
these should lead to less Phase III portfolio attrition. Particularly, safety
in the use of drug products could use some quantitative enhancements.

333
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We hope you have found this book useful in making some of the con-
cepts associated with statistics in clinical pharmacology more transpar-
ent, and we hope it has provided practical tools for people working in
this area of drug development. We wish all our readers good luck with
the application of the principles described in this book and look forward
to many exciting discoveries in clinical pharmacology and statistics in
the coming years.
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