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Preface

Many real-world problems involve the simultaneous optimization of several
competing objectives and constraints that are difficult, if not impossible, to
solve without the aid of powerful optimization algorithms. What makes multi-
objective optimization so challenging is that, in the presence of conflicting
specifications, no one solution is optimal to all objectives and optimization
algorithms must be capable of finding a number of alternative solutions repre-
senting the tradeoffs. However, multi-objectivity is just one facet of real-world
applications. Most optimization problems are also characterized by various
forms of uncertainties stemming from factors such as data incompleteness
and uncertainties, environmental conditions uncertainties, and solutions that
cannot be implemented exactly.

Evolutionary algorithms are a class of stochastic search methods that have
been found to be very efficient and effective in solving sophisticated multi-
objective problems where conventional optimization tools fail to work well.
Evolutionary algorithms’ advantage can be attributed to it’s capability of
sampling multiple candidate solutions simultaneously, a task that most clas-
sical multi-objective optimization techniques are found to be wanting. Much
work has been done to the development of these algorithms in the past decade
and it is finding increasingly application to the fields of bioinformatics, log-
ical circuit design, control engineering and resource allocation. Interestingly,
many researchers in the field of evolutionary multi-objective optimization as-
sume that the optimization problems are deterministic, and uncertainties are
rarely examined. While multi-objective evolutionary algorithms draw its in-
spiration from nature where uncertainty is a common phenomenon, it cannot
be taken for granted that these algorithms will hence be inherently robust to
uncertainties without any further investigation.

The primary motivation of this work is to provide a comprehensive treat-
ment on the design and application of multi-objective evolutionary algorithms
for multi-objective optimization in the presence of uncertainties. Chapter [II
provides the necessary background information required to appreciate this
work, covering key concepts and definitions of multi-objective optimization



VI Preface

as well as a survey of the state-of-the-arts which highlights the major design
issues of multi-objective evolutionary techniques.

The rest of this work is divided into three parts, which each part con-
sidering a different form of uncertainties: 1) noisy fitness functions, 2) dy-
namic fitness functions, and 3) robust optimization. The first part comprises
of Chapters and addresses the issues of noisy fitness functions. Chapter
investigates the effect of noise on multi-objective evolutionary algorithms
and Chapter [ provides a comprehensive survey of noisy evolutionary multi-
objective optimization literature and presents a comparative study between
existing algorithms for noisy multi-objective optimization. As a specific in-
stance of a noisy multi-objective problem, Chapter [4] presents a hybrid multi-
objective evolutionary algorithm for the evolution of artificial neural network
classifiers.

Part 1II is concerned with dynamic multi-objective optimization and com-
prises of Chapters [l and [6l Chapter [ provides a survey of dynamic evolu-
tionary multi-objective optimization literature as well as a discussion on the
different types of dynamic multi-objective test functions and performance in-
dicators. Chapter[Glextends the notion of coevolution to track the Pareto front
in a dynamic environment. Since problem characteristics may change with
time, it is not possible to determine one best approach to problem decompo-
sition. Therefore, this chapter introduces a new coevolutionary paradigm that
incorporates both competitive and cooperative mechanisms observed in na-
ture to facilitate the adaptation and emergence of the decomposition process
with time.

The final part of this work addresses the issues of robust multi-objective
optimization where the optimality of the solutions is sensitive to parame-
ter variations. Analyzing the existing benchmarks applied in the literature
reveals that the current corpus has severe limitations. Therefore, Chapter [7
presents a robust multi-objective test suite with noise-induced solution space,
fitness landscape and decision space variation. In addition, the vehicle rout-
ing problem with stochastic demand (VRPSD) is presented a practical exam-
ple of robust combinatorial multi-objective optimization problems. A survey
of existing robust multi-objective evolutionary techniques are presented in
Chapter [ and simulations are conducted to solve the test suite suggested in
Chapter [l In Chapter [@ a hybrid MOEA is developed to optimize robust
route schedules for the VRPSD problem.

Data Storage Institute, Chi-Keong Goh
National University of Singapore, Kay Chen Tan
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Chapter 1
Introduction

Optimization may be considered as a decision-making process to get the most
out of available resources for the best attainable results. Simple examples in-
clude everyday decisions, such as the type of transport to take, which clothes
to wear and what groceries to buy. For these routine tasks, the decision to be
made for, say, the cheapest transport can be exceedingly clear. Consider now,
the situation where we are running late for a meeting due to some unforeseen
circumstances. Since the need for expedition is conflicting to the first consid-
eration of minimizing cost, the selection of the right form of transportation
is no longer as straight-forward as before and the final solution will represent
a compromise between the different objectives. This type of problems, which
involves the simultaneous consideration of multiple objectives, are commonly
termed as multi-objective problems.

Many real-world problems naturally involve the simultaneous optimization
of several competing objectives. Unfortunately, these problems are character-
ized by objectives that are much more complex as compared to routine tasks
and the decision space is often so large that it is often difficult, if not impos-
sible, to be solved without advanced and efficient optimization techniques.
In addition, as reflected by the element of uncertainty in the example given
above, the magnitude of this task is exacerbated by uncertainties such as the
presence of noise and time-varying components that are inherent to real-world
problems. Multi-objective optimization in the presence of uncertainties is of
great importance in practice, where the slight difference in environmental
conditions or implementation variations can be crucial to overall operational
success or failure.

1.1 Multi-objective Optimization

Real-world optimization tasks are typically represented by its mathematical
model and the specification of multi-objective criteria captures more informa-
tion about the modeled problem as several problem characteristics are taken
into consideration. For instance, consider the design of a system controller

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 1
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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x A fi A
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[ [
- -

5 2

Fig. 1.1 Illustration of the mapping between the solution space and the objective
space

that can be found in process plants, automated vehicles and, household ap-
pliances. Apart from obvious tradeoffs between cost and performance, the
performance criteria required by some applications, such as fast response
time, small overshoot, and good robustness, are also conflicting in nature
|47, 183, 1186, [265].

Without any loss of generality, a minimization problem is considered here
and the multi-objective problem can be formally defined as

Juin £(x) = {f1(x), f2(x), ..., fur(x)} (1.1)
s.t. g(x) > 0,h(x) =0

where x is the vector of decision variables bounded by the decision space, X"=
and f is the set of objectives to be minimized. The terms “solution space”
and “search space” are often used to denote the decision space and will be
used interchangeably throughout this book. The functions g and h represent
the sets of inequality and equality constraints that define the feasible region
of the n,-dimensional continuous or discrete feasible solution space. The re-
lationships between the decision variables and the objectives are governed by
the objective function f : X" —— FM . Figure. [ illustrates the mapping
between the two spaces. Depending on the actual objective function and con-
straints of the particular multi-objective problem, this mapping is not unique
and may be one-to-many or many-to-one.

1.1.1 Totally Conflicting, Non-conflicting, and
Partially Conflicting Multi-objective Problems

One of the key differences between single-objective and multi-objective op-
timization is that multi-objective problems constitute a multi-dimensional
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objective space, F™ . This leads to three possible instances of multi-objective
problems, depending on whether the objectives are totally conflicting, non-
conflicting, or partially conflicting. For multi-objective problems of the first
category, the conflicting nature of the objectives are such that no improve-
ment can be made without violating any constraint. This result in an interest-
ing situation where all feasible solutions are also optimal. Therefore, totally
conflicting multi-objective problems are perhaps the simplest of the three
since no optimization is required. On the other extreme, a multi-objective
problem is non-conflicting if the various objectives are correlated and the
optimization of any arbitrary objective leads to the subsequent improvement
of the other objectives. This class of multi-objective problems can be treated
as a single-objective problem by optimizing the problem along an arbitrar-
ily selected objective or by aggregating the different objectives into a scalar
function. Intuitively, a single optimal solution exists for such a multi-objective
problem.

More often than not, real-world problems are instantiations of the third
type of multi-objective problems and this is the class of multi-objective prob-
lems that we are interested in. One serious implication is that a set of solu-
tions representing the tradeoffs between the different objectives is now sought
rather than an unique optimal solution. Consider again the example of cost
vs performance of a controller. Assuming that the two objectives are indeed
conflicting, this presents at least two possible extreme solutions, each repre-
senting the best achievable situation for one objective at the expense of the
other. The other solutions, if any, making up this optimal set of solutions
represent the varying degrees of optimality with respect to the two different
objectives. Certainly, our conventional notion of optimality gets thrown out of
the window and a new definition of optimality is required for multi-objective
problems.

1.1.2 Pareto Dominance and Optimality

The concepts of Pareto dominance and Pareto optimality are fundamental
in multi-objective optimization, with Pareto dominance forming the basis of
solution quality. Unlike single-objective optimization, where there is a com-
plete order (i.e, f1 < fo or f1 > fa2), X" is partially-ordered when multiple
objectives are involved. In fact, there are three possible relationships between
the solutions, which are defined by Pareto dominance.

Definition [Il1: Weak Dominance:f; € FM weakly dominates fy € FM, de-
noted by fi1 <fy ’Lff T1,4 < T2 Vi € {].,27 7]\4'}

Definition [[l2: Strong Dominance: f; € FM strongly dominates fy € FM,
denoted by fi1 < fy fo Ty, < T2 4 Vi € {1,2,...,M} and T1,5 < Taj E[] S
{1,2,..., M}
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Fig. 1.2 Illustration of the (a) Pareto Dominance relationship between candidate
solutions relative to solution A and (b) the relationship between the Approximation
Set, PF# and the true Pareto front, PF*

Definition [1l3: Incomparable: f; € FM is incomparable with fo € FM,
denoted by f1 ~ fy fo T15 > T2 di € {172,...,M} and T1,5 < Taj 3] €
{1,2,..., M}

With solution A as our point of reference, the regions highlighted in differ-
ent shades of grey in Figure. [[2(a) illustrate the three different dominance
relations. Solutions located in the dark grey region are dominated by solution
A because A is better in both objectives. For the same reason, solutions lo-
cated in the white region dominates solution A. Although A has a smaller ob-
jective value as compared to the solutions located at the boundaries between
the dark and light grey regions, it only weakly dominates these solutions by
virtue of the fact that they share a similar objective value along either one
dimension. Solutions located in the light grey regions are incomparable to
solution A because it is not possible to establish any superiority of one solu-
tion over the other: solutions in the left light grey region are better only in
the second objective while solutions in the right grey region are better only
in the first objective. It can be easily noted that there is a natural ordering
of these relations: f1 < f; = 1 Xf; = f; ~f5.

With the definition of Pareto dominance, we are now in the position to
consider the set of solutions desirable for multi-objective optimization.

Definition [[l4: Pareto Optimal Front: The Pareto optimal front, denoted
as PF*, is the set of non-dominated solutions with respect to the objective
space such that PF* = {f;|3f; < £, f; € FM}

Definition [15: Pareto Optimal Set: The Pareto optimal set, denoted as
PS*, is the set of solutions that are non-dominated in the objective space
such that PS* = {x}|#F(x;) < F(x}),F(x;) € FM}
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The set of tradeoff solutions is known as the Pareto optimal set and
these solutions are also termed “non-inferior”, “admissible” , or “efficient”
solutions. The corresponding objective vectors of these solutions are termed
“non-dominated” and each objective component of any non-dominated solu-
tion in the Pareto optimal set can only be improved by degrading at least
one of its other objective components [243].

1.1.3 Multi-objective Optimization Goals

An example of the PF”* is illustrated in Figure.[[.2[(b). Most often, information
regarding the PF* and its tradeoffs are either limited or not known a priori. It
is also not easy to find a nice closed analytic expression for the tradeoff surface
because real-world multi-objective problems usually have complex objective
functions and constraints. Therefore, in the absence of any clear preference
on the part of the decision-maker, the ultimate goal of multi-objective op-
timization is to discover the entire tradeoff. However, by definition, this set
of objective vectors is possibly an infinite set as in the case of numerical
optimization and it is simply not achievable.

On a more practical note, the presence of too many alternatives could very
well overwhelm the decision-making capabilities of the decision-maker. In this
light, it would be more practical to settle for the discovery of as many non-
dominated solutions as possible within our limited computational resources.
More precisely, we are interested in finding a good approximation of the PF*
and this approximate set, PF*, should satisfy the following optimization goals.

e Minimize the distance between the PF4 and PF*.
e Obtain a good distribution of generated solutions along the PF4.
e Maximize the spread of the discovered solutions.

An example of such an approximation is illustrated by the set of non-
dominated solutions denoted by the filled circles residing along the PF* in
Figure.[L2(b). While the first optimization goal of convergence is the primary
consideration of all optimization problems, the second and third optimization
goals of maximizing diversity are entirely unique to multi-objective optimiza-
tion. The rationale of finding a diverse and uniformly distributed PF# is to
provide the decision maker with sufficient information about the tradeoffs be-
tween the different solutions before the final decision is made. It should also
be noted that the optimization goals of convergence and diversity are some-
what conflicting in nature, which explains why multi-objective optimization
is much more difficult than single-objective optimization.

1.2 Evolutionary Multi-objective Optimization

Traditional operational research approaches to multi-objective optimi-
zation typically entail the transformation of the original problem into a
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single-objective problem and employ point-by-point algorithms, such as
branch-and-bound, to iteratively obtain a better solution. Such approaches
have several limitations, including the requirement of the multi-objective
problem to be well-behaved, i.e. differentiability or satisfying the Kuhn-
Tucker conditions, sensitivity to the shape of the Pareto-front, and the gen-
eration of only one solution for each simulation run. On the other hand,
metaheuristical approaches that are inspired by biological or physics phe-
nomena, such as evolutionary algorithms and simulated annealing, have been
gaining increasing acceptance as a much more flexible and effective alterna-
tive to complex optimization problems in the recent years. This is certainly
a stark contrast to just two decades ago, as Reeves remarked in [220] that an
eminent person in operational research circles suggested that using a heuristic
was an admission of defeat!

Among these metaheuristics, MOEA is one of the more popular stochas-
tic search methodologies to solve multi-objective problems. Emulating the
DarwinianWallace principle of “survival-of-the-fittest” in natural selection
and adaptation, MOEAs have the distinct advantage of being able to sample
multiple solutions simultaneously. Such a feature provides the MOEA with
a global perspective of the multi-objective problem as well as the capability
to find a set of Pareto-optimal solutions in a single run. Applying genetic
operators, such as the selection process and crossover operator, allows the
MOEA to intelligently sieve through the large amount of information embed-
ded within each individual representing a candidate solution and exchange
information between them to increase the overall quality of the individuals
in the population. In this section, state-of-the-art MOEAs, multi-objective
test problems, and performance indicators that are used for algorithmic per-
formance evaluation in this book are discussed.

1.2.1 MOFEA Framework

Many different evolutionary techniques for multi-objective optimization have
been proposed since the pioneering effort of Schaffer in [231], with the aim
of fulfilling the three optimization goals described previously. Most of these
MOEAs are largely based on the computational models of genetic algorithms
(GAs) [121], evolutionary programming (EP) [8(], and evolutionary strategies
(ES) [219]. Interestingly, ES is the only paradigm developed for the purpose
of optimization; GAs are designed as a general adaptive system, while EP
are developed as a learning process to create artificial intelligence.

Recent years have also seen the emergence of other biologically inspired
models, such as particle swarm optimization (PSO), differential evolution
(DE), cultural algorithms (CA), and artificial immune systems (AIS) for
multi-objective optimization. While all these algorithms are different in
methodology, particularly in the generation of new candidate solutions, the
distinctions between them have become increasingly vague as researchers
sought to exploit the advantages offered by the different algorithms in a
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Fig. 1.3 Framework of

P <—Population Initialization
MOEA

A<—Create External population or Archive
While (Stopping criteria not satisfied)
P<—Eval(P, A)
P<Diversity(P, A)
AS—Update(P, A)
S<—Selection(P, A)
P<— Variation(S)
End While

common platform. Moreover, multi-objective optimization requires researchers
to address many similar issues that are unique to multi-objective problems,
regardless of the computational model applied. Therefore, no distinction will
be made between the different evolutionary computation models and all
these techniques developed for multi-objective optimization are referred to
as MOEA.

One distinct feature that characterizes state-of-the-art MOEAs such as
non-dominated sorting genetic algorithm IT (NSGAII) [61], Pareto archived
evolution strategy (PAES) [166], Pareto envelope based selection algorithm
(PESA) [45], incrementing multi-objective evolutionary algorithm (IMOEA)
[258] and strength Pareto evolutionary algorithm 2 (SPEA2) [29§] from early
research efforts is the incorporation of elitism. Elitism involves two closely
related process, 1) the preservation of good solutions and 2) the reinsertion of
these solutions into the evolving population. While the general motivations
may be similar, these algorithms can be distinguished by the way in which
the mechanisms of elitism and diversity preservation are implemented.

The general MOEA framework can be represented in the pseudocode shown
in Fig.[[3and it can be shown that most MOEAs fit into this framework. There
seem to be many similarities between single-objective evolutionary algorithms
(SOEAs) and MOEAs with both techniques involving an iterative adaptation
of a set of solutions until a pre-specified optimization goal /stopping criterion
is met. What sets these two techniques apart is the manner in which solution
assessment and elitism are performed. This is actually a consequence of the
three optimization goals described in Section[[[T.3l In particular, solution as-
sessment must exert a pressure to drive the solutions toward the global trade-
offs as well as to diversify the individuals uniformly along the discovered PF4.
The archive updating and selection process must also take diversity into con-
sideration to encourage and maintain a diverse solution set.

The optimization process starts with the initialization of the population.
This is followed by evaluation (Eval) and density asssessment (Diversity) of
candidate solutions. After which, good solutions are updated into an external
population or archive (Update). MOEAs perform the archiving process differ-
ently, some of which maintains a fixed sized archive while others store only
non-dominated solutions. Nonetheless, in most cases, a truncation process
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will be conducted based on some density assessment to restrict the number of
archived solutions. Both NSGAII and SPEA2 maintains a fixed sized archive
which includes both dominated and non-dominated solutions while PAES
and PESA stores only non-dominated solutions. For the truncation process,
PAES and PESA employ a hyper-grid measure while SPEA, NSGAII and
IMOEA employ Euclidean-based measures.

The selection process typically involves the set of non-dominated solutions
updated in the previous stage. For NSGAII, SPEA2 and PESA, tournament
selection is conducted directly on the archive. In [252], the archive of non-
dominated solutions and evolving population is combined before tournament
selection is performed. Bosman and Thierens |24] noted that diversity usu-
ally serves only as a secondary selection criteria to the optimization goal of
convergence. As a specific instance, NSGAII applies the crowded comparison
operator only to break any tie in rank occurred during the tournament se-
lection. On the other hand, the selection process in PESA is based on the
degree of crowding or the squeeze factor only.

After the selection process, variation operators are applied to explore and
exploit the selected individuals to generate a new population of solutions.
Different methods of generating individuals can be found in the literature.
Uniform crossover and bit-flip mutation have been used for NSGAII and
SPEA2. In AIS-inspired MOEAs [42, [189], cloning and hypermutation are
applied while EDA-based MOEASs [25,1202] enforce sampling from leant prob-
abilistic models. Variation operators associated with the various paradigms
have been applied across the different computational model resulting in very
similar implementations, a point mentioned earlier. Some recent examples
include the introduction of recombination into the AIS-inspired MOEAs in
[143, [248] and the hybridization of clonal selection and hypermutation with
PSO-inspired MOEAs [292].

1.2.2 Basic MOEA Components

The framework presented in the previous section serves to highlight the pri-
mary components of the MOEA, elements without which the algorithm is
unable to fulfill its basic function of finding PF*satisfactorily. More elabo-
rate frameworks with different concerns exist in the literature. For instance,
Bosman and Thierens [24] presented a framework that considers how MOEAs
can be constructed to control the emphasis on the exploration and exploita-
tion of diversity or proximity. In another work, Laumanns et al [176] focused
on the design and incorporation of elitism into MOEAs.

Fitness Assignment

As illustrated in Figure [[4] solution assessment in MOEA should be de-
—

signed in such a way that a pressure P,, is exerted to promote the solutions

in a direction normal to the tradeoffs region and at the same time, another
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pressure (}St to promote the solutions in a direction tangentially to that re-
gion. These two orthogonal pressures result in the unified pressure (}Su to
direct the evolutionary search in the multi-objective optimization context.
Based on the literature, it is possible to identify three different classes of fit-
ness assigment: 1) Pareto-based assignment, 2) aggregation-based assignment
and 3) indicator based assignment.

Pareto-based Fitness Assignment: Pareto-based MOEAs have emerged as the
most popular approach [257] since Fonseca and Fleming [84] put into practise
the notion of dominance suggested in |100]. On its own, Pareto dominance

is unable to induce P; and the solutions will converge to arbitrary portions
of the PF4, instead of covering the whole surface. Thus Pareto-based fitness
assignments are usually applied in conjuction with density measures, which
can be incorporated in two ways. The first approach which is commonly
known as fitness sharing aggregates the Pareto-based fitness and some form of
density measure to form a scalar fitness. In this case, the aggregation function
must be carefully constructed to maintain a balance between P; and ‘]3“
This approach has been applied by sucessfully in works such as |82, [18&,1298].
The second approach adopts a two stage process where comparison between
solutions is conducted based on Pareto-fitness before density measure is used.
Note that this indirectly assigns higher priority levels to proximity. Another
interesting consequence is that (an will be higher in the initial stages of the
evolution. On the other hand, when the solutions begin to converge to the
PF*, the influence of (Ft becomes more dominant as most of the solutions
are equally fit. This approach is used in algorithms such as PAES, NSGAII
and IMOEA.

However, Fonseca and Fleming [84] highlighted that Pareto-based assign-
ment may not be able to produce sufficient selection pressure in high-
dimensional objective and it also has been shown empirically that performances
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of Pareto-based MOEAs do not scale well with respect to the number of ob-
jectives in [125, [153]. To understand this phenomenon, let us consider a M-
objective problem where M>>2. Under the definition of Pareto dominance, as
long as a solution has one objective value that is better than another solution,
never mind the degree of superiority, it is still considered to be non-dominated
when if it is grossly inferior in the other M-1 objectives. Intuitively, the number
of non-dominated solutions in the evolving population grows with the number
of objectives resulting in the lost of selection pressure.

To this end, some researchers have sought to relax the definition of Pareto-
optimality. Tkeda et al |132] proposed the a-dominance scheme which con-
siders the contribution of all the weighted difference between the respective
objectives of any two solutions under comparison to preventing the above sit-
uation from occuring. Laumanns et al |[173] suggested an e-dominance scheme
which has the interesting property of ensuring convergence and diversity. In
this scheme, an individual dominates another individual only if it offers an
improvement in all aspects of the problem by a pre-defined factor of €. A
significant difference between a-dominance and e-dominance is that a solu-
tion that strongly dominates another solution also a-dominates that solution
while this relationship is not always valid for the latter scheme. Another in-
teresting alternative in the form of fuzzy Pareto-optimality is presented by
Farina and Amato |74] to take into account the number and size of improved
objective values.

Aggregation-based Fitness Assignment: Aggregation of the objectives into a
single scalar is perhaps the simplest approach to generate PF4. Interestingly,
unlike the Pareto-based approach, aggregation-based fitness induces (J_DU di-
rectly. However, aggregation is usually associated with several limitations
such as its sensitivity to PF* shape and the lack of control of the direction of
?u resulting in the contrasting lack of interest paid by EMOO researcher as
compared to Pareto-based techniques. Ironically, the failure of Pareto-based
MOEAs in high-dimensional objective space may well turn the attention to-
wards the use of aggregation-based fitness assignment in MOEAs.

The multi-objective genetic local search (MOGLS) [138,1139,1140, [141] is a
well-known instance of aggregation-based MOEA that has been demonstrated
to be capable of evolving uniformly distributed and diverse PF4. Different
search trajectories are generated during the evolution through the use of
random weights in |138, 139] while Jaszkiewicz [140, 141)] applied different
instances of predefined utility functions. Jin et al investigated two different
approaches in [147]. In the first method, each individual is assigned its own
weights that will be regenerated every generation while the second method
periodically change the weights along the evolutionary process. The most
significant result of this work is that both methods are able to converge on
concave PF* empirically, which is against conventional wisdom on the limita-
tions of aggregation. According to [148], this is because the aggregation-based
MOEA will transverse the entire Pareto front regardless of PF* shape and
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the archive plays a significant role in retaining the non-dominated solutions
found.

Instead of performing the aggregation of objective values, Hughes [126,1217]
suggested the aggregation of individual performance with respect to a set of
predetermined target vectors. In this approach, individuals are ranked ac-
cording to their relative performance in an ascending order for each target.
These ranks are then sorted and stored in a matrix such that is may be used
to rank the population, with the most fit being the solution that achieves the
best scores most often. It has been shown to outperform non-dominated sort-
ing applied in NSGAII in high-dimensional multi-objective problems [126].

At this point of time, it seems that Pareto-based fitness are more effective
in low-dimensional multi-objective problems while aggregation-based fitness
has an edge with increasing number of objectives. Naturally, some researchers
have attempted to marry both methods together. For example, Turkcan and
Akturk |269] proposed an hybrid multi-objective fitness assigment method
which assigns a non-dominated rank that is normalized by niche count and
an aggregation of weighted objective values. On the other hand, Pareto-based
fitness and aggregation-based fitness are used independently in various stages
of the evolutionary process in |75, |198].

Indicator-based Fitness Assignment: Since the performance of MOEAs are as-
sessed and compared using performance indicators, it is therefore desirable to
maximize algorithmic performance according to these measures. Fleischer [79]
is probably the first to suggest that multi-objective performance indicators
can be used to guide the evolutionary process and recasted the multi-objective
problem as a single-objective problem that maximizes the hypervolume met-
ric of the discovered PF. In [69], hypervolume is used as the selection criteria
to remove the worst individuals in the worst-ranked PF* after non-dominated
sorting to maintain a fixed population size. Zitzler and Kunzli [296] took a
step further and applied binary indicators directly to determine the relative
fitness of the evolving individuals. The utility of indicator-based fitness has
also been investigated in |16]. While no clear guidelines on the choice of met-
rics exist at this time, it is clear that the selected measure must be able
to provide an indication of solution quality in the aspects of diversity and
convergence in order to exert the Fu

Diversity Preservation

Density Assessment: A basic component of diversity preservation strategies
is density assessment. Density assessment evaluates the density at different
sub-divisions in a feature space, which may be in the parameter or objective
domain, before any action is taken to influence the survival rate of the solution
points |154]. Depending on the manner in which solution density is measured,
the different density assessment techniques can be broadly categorized un-
der 1) Distance-based, 2) Grid-based, and 3) Distribution-based. One of the
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basic issues to be examined is whether density assessment should be computed
in the decision space or objective space. Horn and Nafpliotis [123] stated
that density assessment should be conducted in the feature space where the
decision-maker is most concerned about its distribution. Since we are inter-
ested in obtaining a well-distributed and diverse PF4, most works reported
in the EMOO literature applied density assessment in the objective space.
There are also researchers who performed density assessment in the decision
space |243] as well as in both objective and decision spaces simultaneously
[64,1119,1223]. In fact, there may be little correlation between diversity in the
two feature spaces. Tan et al |252] pointed out that it essentially depends on
what is desired for the underlying problem.

Distance-based assessments is based on the relative distance between in-
dividuals in the feature space. Examples include niche sharing [84, 123, 1243],
crowding [61], clustering [50, 1300], lateral interference [155], Pareto poten-
tial regions [113] and k-th nearest neighbor |2, 298]. Niche sharing or simply
niching is by far the most popular distance-based approach.

Niching is originally proposed by Goldberg |[101] to promote population
distribution to prevent genetic drift as well as to search for possible multiple
peaks in single-objective optimization. The main limitation of this method
is that its performance is sensitive to the setting of niche radius. Fonseca
and Fleming [84] gave some bounding guidelines of appropriate niche radius
values for multi-objective problems when the number of individuals in the
population and the minimum/maximum values in each objective dimension
are given. However, such information are often not known a prior in many
real-world problems. Tan et al [255] presented a dynamic sharing scheme
where the niche radius is computed online based on the evolved tradeoffs.

The k-th nearest neighbor is another approach which requires the specifi-
cation of an external parameter. Zitzler et al |298] adopted k as the square
root of the total population size based in some rule-of-the-thumb used in sta-
tistical density estimation. In |2, |228], average Euclidean distance between
the two nearest solutions is used as the measure of density. Like niching, this
approach is sensitive to the setting of the external parameter, which in this
case is k. The k-th nearest neighbor can also be misleading in situations where
all the nearest neighbors are located in a similar region of the feature space.
In certain sense, the nearest neighbor is similar to the method of crowding.
However, crowding do not have such bias since it is based on the average dis-
tance of the two points on either side of current point along each dimension
of the feature space.

Crowding, clustering and lateral interference are instances of distance-
based assessments that are not influenced any external parameters. Nonethe-
less, distance-based assessment schemes are susceptible to scaling issues
and their effectiveness are limited by the presence of non-commensurable
objectives.

Grid-based assessment is probably the most popular approach after niching
and it can be found in 42,143, 145,/166, 188]. In this approach, the feature space



1.2 Evolutionary Multi-objective Optimization 13

is divided into a predetermined number of cells along each dimension and
distribution density within a particular cell has direct relation to the number
of individuals residing within that cell location. Contrary to distance-based
assessments methods which includes methods that are very different, both
conceptually and in implementation, the main difference among the various
implementation of this approach, if any, lies in the way in which the cells and
individuals are located and referenced. For example, the cell location of an
individual in PAES and PESA is found using recursive subdivision. However,
in [188], the location of each cell center is stored and the cell associated with
an individual is found by searching for the nearest cell center. The primary
advantage of grid-based assessment is that it is not affected by the presence
of non-commensurable objectives. However, this technique depends heavily
on the number of cells in the feature space containing the population and
it works well if knowledge of the geometry of the PF* is known a priori.
Furthermore, it’s computational requirements are considerably more than
distance-based assessments.

Distribution-based assessment is rather different from distance-based and
grid-based methods because distribution density is based on the probability
density of the individuals. The probability density is used directly in [25] to
identify least crowded regions of the PF4. It has also been used to compute
the entropy as a means to quantify the information contributed by each indi-
vidual to the PF4 in [49, 158, 1248)]. Like grid-based methods, it is not affected
by non-commensurable objectives. The tradeoff is that it can be computation-
ally more intensive compared to distance-based measures because it involves
probability density estimation functions such as Parzen window in estimating
the distribution density of the individuals. On the other hand, the computa-
tional effort is a linear function of population size which is advantageous for
large population sizes. While some distribution-based methods require exter-
nal parameter setting such as the window width in Parzen window estimation
[248], there exist an abundance of guidelines in the literature.

Finally, an empirical investigation is conducted in [154] on the effectiveness
of the various density assessment methods in dealing with convex, non-convex
and line distributions. In general, the study shows that all techniques under
investigation are able to improve distribution quality in the sense of unifor-
mity. But the findings also suggest that it is not possible to ascertain which
method is better for which type of problem distribution because of the inter-
actions between density assessment and genetic selection.

Encouraging Density Growth: Apart from inducing appropriate ?t and ?u
to generate new and diverse solutions, other means of encouraging diversity
growth can also be found in the literature. For instance, in [266], Toffolo
and Benini applied diversity as an objective to be optimized. Specifically, the
multi-objective problem is transformed into a two-objective problem with
genetic diversity as one of the objectives and the other objective being the
ranks with respect to the objectives of the original multi-objective problem.
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Mating restriction is another alternative approach and it is extended from
SOEA where it is originally intended to promote diversity in the population.
Mating restriction has been applied in [84,[112,137] and it works by prevent-
ing similar Parents from participating in the recombination process together
in order to avoid the formation of lethal individuals. However, contrary results
on the effectiveness of mating restriction in promoting diversity has been re-
ported in |136]. In particular, Ishibuchi and Shibata [136] noted that mating
restriction improves convergence at the expense of solution set diversity.

Diversity can also be encouraged through the simultaneous evolution of
multiple isolation subpopulations. In |60, 198, 1230], each subpopulation is
guided towards a particular region of the evolved PF*. Okuda et al [203]
assigned one subpopulation for each objective and used an additional sub-
population as a normal MOEA solving for the multi-objective problem. The
best individuals from the SOEA subpopulations are migrated to the MOEA
subpopulation.

Elitism

The use of the elitist strategy is conceptualized by De Jong in [62] to preserve
the best individuals found to prevent the lost of good individuals due to the
stochastic nature of the evolutionary process in SOEA. When appropriate
individuals are reinserted or retained in the evolving population, elitism can
improve convergence greatly, although it maybe achieved at the risk of pre-
mature convergence. Zitzler |301] is probably the first to introduce elitism
into MOEAs, sparking off the design trend of a new generation of MOEAs
[41]. Elitism can be considered as an indispenable component of MOEA,
having being shown to be a theoretical necessity for MOEA convergence
[162, 225, 226].

Archiving: The first issue to be considered in the incorporation of elitism
is the storage or archiving of elitist solutions. Archiving usually involves an
external population or archive as the repository and this process is much more
complex than in SOEAs since we are now contenting with a set of Pareto-
optimal solutions instead of a single solution. However, the PF* is an infinite
set which raises the natural question of what should be maintained?. Without
any restriction on the archive size, the number of non-dominated solutions
can grow exceedingly large. Therefore, in the face of limited computing and
memory resources in implementation, it is sometimes unwise to store all the
non-dominated or elitist solutions found.

Most works enforce a bounded set of elitist solutions which requires a trun-
cation process when the size of the elitist solutions exceeds a predetermined
bound. This leads to the interesting question of which solution should be
kept? Some works [61), 1249, |298] maintain a fixed-size archive which updates
dominated solutions as long as space is available, while others store strictly
non-dominated solutions only [45, 166, 251, 252]. In either case, it is only
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natural to truncate the archive based on some form of density assessment dis-
cussed earlier when the number of elitist solutions exceeds the upper bound.
However, other measures, such as hypervolume [161] and relaxed forms of
Pareto dominance, have been applied as well [63, 206].

For bounded archiving, two implementations of truncation can be found
in the literature, i.e. batch and recurrence mode. The truncation criteria will
be based on the density assessment process described earlier. In the batch
mode, all solutions in the archive will undergo density assessment and the
worst individuals are removed in a batch. On the other hand, in the recurrence
mode, an iterative process of density assessment and truncation is repeated to
the least promising solution from the archive until the desired size is achieved.
While the recurrence-mode of truncation has higher capability to avoid the
extinction of local individuals, which somehow leads to the discontinuity of
the discovered Pareto front, compared to the batch-mode truncation, the
recurrence-mode truncation often requires more computational effort.

The restriction on the number of archive solutions leads to two phenom-
ena [76] which have a detrimental effect on the search process. The first is
the shrinking PF4 phenomenon which results from the removal of extremal
solutions and the subsequent failure to rediscover them. In the second phe-
nomenon, non-dominated solutions in the archive are replaced by least crowded
individuals. In the subsequent generations, new individuals that would have
been dominated by the removed solutions are updated into the archive only
to be replaced by solutions dominating them. Repeated cycles of this process
is known as the oscillating PF4. The alternative and simplest approach is, of
course, to store all the non-dominated solutions found [72, |77, 199, 209]. One
potential problem is the computational cost involved with the pairwise com-
parison between a new individual and each of the archived solutions. To this
end, more efficient data structures have been proposed in |76].

Reinsertion: The next issue to be considered is the introduction of elitist
solutions into the evolving population. Empirical investigations are also con-
ducted in [175, 1209] and the results demonstrate the advantages of elitism in
improving convergence.

One problem faced is the “exploration-exploitation” dilemma; a higher de-
gree of exploitation attained through the reintroduction of elitist solutions
leads to the lost of diversity, while too much exploration leads to slow con-
vergence rates. The consequence of the lack of necessary diversity to fuel the
evolutionary process is a PF4 that fails to span the entire PF* uniformly
and, in the worst case, premature convergence to local optimal solutions.

To this end, elitist schemes that sought to balance the tradeoffs between
exploration and exploitation have been proposed recently. Bosman and
Thierens [24] highlighted the importance of improving diversity through
elitism and presented a general framework for MOEAs which allows designers
to control the balance between diversity and proximity exploration. Designing
an elitist scheme along the same lines, Tan et al [252] proposed an enhanced
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Table 1.1 Definition of ZDT Test Functions
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exploration strategy in which the ratio of solutions selected based on ranking
and diversity is adapted based on an online performance measure. Solutions
selected on the basis of rank are subjected to normal genetic operators, while
those selected based on niche count undergo local search to improve solution
distribution. In [57], controlled elitism is explored in NSGAII where the num-
ber of individuals from each non-dominated front is fixed by a user-defined
parameter. Furthermore, each front is allowed to have an exponentially
reducing number of solutions.

1.2.3 Benchmark Problems

Benchmark problems are used to reveal the capabilities, important character-
istics, and possible pitfalls of the algorithm under validation. In the context
of multi-objective optimization, these test functions must pose sufficient dif-
ficulties to impede MOEAS’ search for Pareto optimal solutions. Deb [54] has
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identified several characteristics that may challenge MOEAs’ ability to con-
verge and maintain population diversity. Multi-modality is one of the charac-
teristics that hinders convergence in MOEA. Multi-modality essentially refers
to the presence of multiple local Pareto fronts. Convexity, discontinuity, and
non-uniformity of the Pareto front may prevent the MOEA from finding a
diverse set of solutions.

The problems of ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, TLK, DTLZ2,
DTLZ3, FON, and KUR are selected to validate the effectiveness of multi-
objective optimization techniques in converging and maintaining a diverse
Pareto solution set in this book. This set of test problems is characterized by
the different features mentioned above and should be a good test suite for
a fair comparison of different multi-objective algorithms. Many researchers,
such as [45, 161, 258, 1275, [299], have used these problems in the validation
of their algorithms under noiseless conditions. The optimal Pareto fronts for
the dual-objective problems are shown in Figure 2.

The test problems of ZDT1 through ZDT6 are constructed by Zitzler et al
[299] based on the guideline described by Deb [54]. Formally, the ZDT test
problems have the following functional structure.

min f1(xq1) = o1

min fo(xaz) = g(xaz) - h(f1,9) (1.2)

where x41,Xd2 € X, and the g and h functions control the problem diffi-
culty and the shape of the Pareto front, respectively. By having independent
functions relating to convergence and diversity, this framework facilitates the
incorporation of various problem features to construct different test prob-
lems. Table [Tl summaries the definition and features of the various ZDT
test functions.

DTLZ2 and DTLZ3 belong to the DTLZ test suite proposed by Deb et al
in [61], which is different from most existing multi-objective test problems in
the sense that these test problems are scalable in the number of objectives. In
the light of recent studies [125, [153] reporting on MOEA’ apparent inability
to scale up its performance with high dimensional space, both DTLZ2 and
DTLZ3 will undoubtably be useful in the investigation of MOEA capability
to handle high dimensional objective spaces. DTLZ3 is also characterized by
the presence of multiple local fronts. The definitions of DTLZ2 and DTLZ3
are given below,

min f1(x) = (14 g(xar)) - cos(0.5wz1) - - - cos(0.5mzpr—1)
min f2(x) = (14 g(xar)) - cos(0.5mx1) - - - sin(0.57zp—1)
z (1.3)
min fr(x) = (14 g(xar)) - sin(0.57z1)
ming(Xn) = D, cx,, (Ti — 0.5)2

where M =5, xpr = {xar, s Zar1o}, 25 € [0,1]
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min f1(x) = (14 g(xar)) - cos(0.57zy) - - - cos(0.5mzar—1)
min f2(x) = (14 g(xar)) - cos(0.5mx1) - - - sin(0.57wrr—1)

: (1.4)
min fa7(x) = (14 g(xar)) - sin(0.57z1)
min g(xpr) = 100{|XM + 20 exy, (T — 0.5)% — cos (207 (x; — 0.5))}

where M =5, xpr = {xp, .oy g9}, T € [0,1]

FON [82] is a two-objective minimization test problem that has been widely
used in the literature. Besides having a non-convex Pareto front, there are
high interactions between decision variables and this problem has a large and
non-linear tradeoff curve that is suitable for challenging an algorithm’s ability
to find and maintain the entire Pareto front uniformly.

fi(@1,...,x8) =1 —exp[— Zf:l(aci -

)%,
fg(xl, ...7$8) =1 —+ eXp[— Zf:l(xi — s (15)

7
g
where —2 < x; <2, Vi=1,2,...,8

KUR [165] is characterized by an optimal Pareto front that is non-convex
and disconnected, i.e. it contains three distinct disconnected regions on the
final tradeoff. The decision variables correspond to the global tradeoff for
KUR are difficult to be discovered since they are disconnected in the decision
variable space. Like FON, there are high interactions between the decision
variables which will pose problems to the MOEAs.

fi(z1,22) = Z?Zl [—10 exp(—0.2y/z? + m?+1)], (1.6)

fo(mr,ws) = 320 [Ja[0® + 5 - sin(a?)],

where z; € [-5,5].

1.2.4 Performance Metrics

Performance analysis of different MOEAs essentially boils down to the eval-
uation of the approximate Pareto front obtained within some computational
budget. Then performance metrics or indicators play an important role as
functions that return a scalar quantity, reflecting the quality of the scrutinized
solution set with respect to some measure. In single-objective optimization,
this quality comes in the form of the objective function. For multi-objective
optimization, however, quality can be defined in a variety of ways, for ex-
ample, the uniformity of solutions, the dominance relationship between two
solution sets, and the closeness to the Pareto-optimal front.

There have been increasing concerns on the choice of performance metrics.
To this end, Knowles and Corne [163] and Zitzler et al [297] have discussed at
length, the suitability and limitations of various performance metrics. Com-
parative studies performed by researchers, such as Jaszkiewicz [141], Deb
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et al [61], Tan et al [252], Veldhuizen and Lamont |275], made use of a suite
of unary performance metrics pertinent to the optimization goals of proxim-
ity, diversity, and distribution. The metrics used in this book are described
below. Appropriate performance indicators for measuring uncertainties will
be discussed in the relevant chapters.

Prozimity Indicator: The metric of generational distance (GD) gives a good
indication of the gap between the PF* and the evolved PF4. Mathematically,
the metric is a function of individual distance given as,

1 = o)\ ?
GD = E : (TLPF ; d?) (1.7)

where npp = |[PF*|, d; is the Euclidean distance (in objective space) between
the i-th member of PF4 and the nearest member of PF*. Intuitively, a low
value of GD is desirable, which reflects a small deviation between the evolved
and the true Pareto front. However, this metric gives no indication of diversity
achieved by the various algorithms. In order to evaluate the true ability of
the algorithm, GD has to be complemented by diversity indicators.

Diversity Indicator: One of the primary concerns regarding the use of unary
diversity indicator is that a good measure of diversity is meaningless if the
approximate Pareto front is far away from the ideal tradeoffs. Taking into
account these concerns, we propose a simple modification of maximum spread
(MS) to measure how well the true Pareto front is covered by the discovered
Pareto front

—A —
M, min[f;, fi] - max

A £ a0
el (Y o

—A . .. . .. .
where f, and ij‘ are the maximum and minimum of the i-th objective in

PFA, respectively; T: and i:‘ are the maximum and minimum of the i-th
objective in PF™*, respectively. The greater the MS’ is, the larger the area of
PF* is covered by the PF. The modified metric is illustrated in Figure.

Distribution Indicator: Further, the uniformity among the distributed points
or individuals is also an important issue in order to ensure consistent transi-
tion among the solution points when searching for the most suitable solution
from the best possible compromise. The metric of spacing [233] gives an indi-
cation of how evenly the solutions are distributed along the discovered front.
It is defined as,

1 1 & -2\ 2
§=—- (E~;(d§—d’)2) (1.9)

B 1 npr )

I — —_— .

d = — >

i=1
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Fig. 1.5 Different Characteristics exhibited by MS’ and MS. MS’ takes into ac-
count the proximity to the ideal front as well.

where npr = |PF|, d} is the Euclidean distance (in the objective domain)
between the i-th member and its nearest member in PF4.

General Quality Indicator: By taking into account performance in diversity
and proximity, the metric of hypervolume (HV) provides a general quality
measure of the solution set. In order to calculate a normalized value and
eliminate bias, Veldhuizen and Lamont expressed the metric of HV as
a ratio between the HV of PF4 and PF*,

HVR(PF#)
HVR = ————~ 1.10
HVR(PF") (1.10)
npr
HV = volume U v; (1.11)
i=1
where npr = |[PF4|. Mathematically, for each member f/* in the non-

dominated set, a hypercube v; is constructed with a reference point and the
member fZA as the diagonal corners of the hypercube. The reference point
can be found by constructing a vector of the worst objective function values.
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Pareto Dominance Indicator: In [297], Zitzler et al showed that no combina-
tion of unary performance metrics can provide a clear indication of whether
an evolved set is better than another in the Pareto dominance sense. There-
fore, an n-ary Pareto dominance indicator is proposed in this book as a com-
plement to the above metrics. Considering the different PFs, Ay, Ao, ..., A,
evolved by n algorithms, this metric measures the ratio of non-dominated
solutions that are contributed by a particular solution set A; to the non-
dominated solution set provided by all solution sets. Mathematically, the
non-dominance ratio (NR) is given by,

NR(A1, Ao, .., A,) = BOAL
|B]
B = {bz‘ Y b; 3(13' S (Al UAds..U An) < bz} (112)

where A; is the solution set under evaluation.

1.3 Empirical Analysis and Performance Assessment
Adequacy for EMO Techniques

As researchers continue to design more advanced multi-objective evolution-
ary techniques and explore other EC paradigms, the issue of assessing the
weaknesses and strengths of the various methods is becoming increasingly
important. This section provides a holistic perspective towards the empiri-
cal investigation of MOEAs and presents a conceptual framework in which
researchers should consider in the design and implementation of MOEA ex-
perimental study. This framework comprises of a structural design plan and
a general theory of adequacy in the context of MOEA. The former considers
the practical aspects of experimental study and involves the delineation of
essential components, description, and discussion of design and implementa-
tion issues. On the other hand, the latter considers the theoretical aspects of
experimental study and a set of axioms for adequacy are formulated based
on various insights gained from the state-of-the-arts. With this framework in
place, we hope to motivate discussions in this area from different perspectives
to improve empirical study techniques.

1.3.1 Preliminary Discussions

Despite almost two decades of research, performance assessment remains one
of the most difficult challenges to the researchers of MOEAs. As with all
stochastic methods, the evaluation of EA performance is not a trivial task.
One implication of stochasticity is that the capability of the algorithm can-
not be precisely determined before its actual application. It gets even more
complicated in the context of multi-objective optimization where the conflict-
ing goals of multi-objective optimization have a profound impact on MOEA
performance assessment. Zitzler et al [297] states that it is not clear what
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quality means with respect to approximations of the Pareto-optimal set: close-
ness to the optimal solutions, or other properties? Bosman and Thierens |24]
further noted that state-of-the-art MOEAs have similar or incomparable per-
formances because of the conflicting optimization goals. Performance assess-
ment can be conducted either empirically or theoretically. At present, there
are several limitations to the theoretical approach which lead to the adoption
of experimental studies as the de facto approach for the evolutionary compu-
tation community. On the other hand, empirical assessment has its fair share
of limitations, some of which are inherent.

Performance Assessment Issues

Contemporary views held that theoretical investigation is an essential fixture
of technique evaluation for black box optimization techniques such as EA.
The main detractors of evolutionary optimization assert that theoretical val-
idation is the only way to have any assurance of algorithmic reliability. The
situation is best described by Goldberg:

“...why in the design, testing and utilization of a material machine are
we quite content to adopt normal design or engineering method and
when we turn to what I'll call a conceptual machine [EAs] do the rules
change in the direction of rigor and proof? |99’

Theoretical analysis contributes to the understanding of evolutionary dynam-
ics and will be crucial to the design of competent evolutionary optimization
techniques. However, the theoretical approach lacks the flexibility and practi-
cality of experimental investigation. In the literature, theoretical treatment of
algorithmic performance includes verification of convergence and stability for
particular algorithms as well as run-time analysis for comparative purposes.
Either way, due to the stochastic nature of EAs and its complex relationship
with the optimization problem, it is difficult, if not impossible, for any formal
mathematical treatment of algorithmic performance. Researchers can either
get lost in the mire of complexity or resort to substantial simplifications be-
fore any analysis can be done. Markov chains and, in Goldberg’s words, a
variety of patch-quilt models have featured prominently in these studies.
Secondly, existing theoretical studies [225, [226] are focused on obtain-
ing proofs of convergence under certain general conditions. Moreover, these
assumptions are often weak and Powell (1998) noted that there is hardly any
correlation between the algorithms that are in regular use for practical appli-
cations and the algorithms that enjoy guaranteed convergence in theory. It
is worth mentioning that a proper framework for theoretic means of compar-
ing algorithmic performance is formulated by He and Yao [167] only recently.
Furthermore, the only known theoretic-comparative study for multi-objective
optimization |174] is valid for the solitary class of simple discrete problems.
As a consequence of the lack of fidelity and generality, these studies are mere
simulacrum of the original quest for rigor. In order for any theoretical study
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to stand up against any scrutiny, there must be a complete axiomatization
of particular EA and the various problems to be solved. It also follows that
the formulation of a systematic proofing of EA performance is required. Un-
fortunately, these requirements are far beyond our knowledge.

Empirical study is attractive because it can be used to assess algorithmic
performance once the basic algorithm is in place. In particular, experiments
can easily be conducted to determine the conformance of algorithmic behav-
ior to design specifications or the fine-tuning of algorithm parameters during
any stage of the design process. When evaluating the performance of MOEA
empirically, the particular algorithm/s will be applied to optimize a set of
pre-selected test functions and the evolved approximate sets will be taken
as an indication of algorithmic performance. However, it is clear that most
empirical assessments in the literature do not provide any insight to algorith-
mic behavior apart from the fact that it is either working or not. In other
words, there is a distinct lack of any discussion on why and how the algorithm
fails or succeeds. Thus, in order to enhance our understanding of the MOEA
mechanism, it is necessary to conduct empirical analysis of sufficient depth.

While guidelines for the design of experimentation involving heuristics go
as far back as the 1980s [15, 48, [103, [106], similar works pertinent to evolu-
tionary computation are only reported recently. Eiben and Jelasity consid-
ered the generality of the analysis drawn from experimental results reported
in the evolutionary computation (EC) literature and identified some of the
limitations regarding to the choice of test problems and performance metrics
in [68]. In the domain of evolutionary multi-objective optimization, studies
have focused on the development of performance metrics and test functions,
resulting in great strides in these areas. Initial empirical studies are usually
based on simple extension of single-objective problems, which reveal little or
no characteristic of the algorithm under observation. To this end, Veldhuizen
and Lamont [276] are probably the first to formalize a set of standard test
problems for MOEA, while Deb [54] identified the different difficulties that
may pose problems for MOEA. In order to quantify the evolved tradeoffs,
many different metrics have been proposed over the years. For instance, the
metric of generational distance measures proximity, the metric of maximum
spread measures diversity, while the metric of spacing measures distribu-
tion. The fact that any interpretation is largely dependent on the accuracy
of performance indicators has initiated much research in the recent years
[116, 163, 297]. In particular, Zitzler et al [297] proved that many popu-
lar metrics are not compliant with respect to non-dominance relationship.
Although much work has been done to improve the reliability of empirical
studies, there are little or no discussions at all on how it should be conducted
with adequate substantiality on their statements made on the performance
and behavior of the evaluated algorithm. In particular, there is a lack of
discussion on the following issues:

e the development and implementation of empirical studies,
e the appropriate depth of empirical analysis,
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e the adequacy of empirical studies for claims made on algorithmic perfor-
mance and behavior.

1.3.1.1 Easy and Hard Problems in Empirical Assessment

Empirical assessment involves the consideration of several issues, some of
which are easy to resolve while the rest may take considerable more time
before any consensus may be formed. In this chapter, we will simply call
these issues as the easy and hard issues of performance assessment. Since
the early days of development, EA researchers have taken a rather pragmatic
or engineering approach towards performance assessment; it is decomposed
into simpler sub-problems and investigated separately, while alternatives are
sought for issues that are deemed too hard to solve. Intuitively, many of the
easy problems of empirical assessment are associated with these smaller com-
ponents. Conversely, the hard issues not only include issues that researchers
avoid but also issues that got lost in the decomposition.

The easy problems of empirical assessment include the observation of al-
gorithmic performance, the construction of benchmarks, the design of per-
formance indicators, and the identification of deficiencies in existing works.
Readers should not be misled into thinking that these easy problems can be
easily addressed - the construction of benchmarks that can adequately chal-
lenge the capabilities of EAs, for instance, is the accumulation of two decades
worth of research. These problems are so termed easy because the require-
ments can be expressed objectively, though not necessarily through theoret-
ical or mathematical means. In the context of multi-objective optimization,
it is clear that the evolved approximation sets are the subject of investiga-
tion. benchmarks should impede the discovery of near-optimal, diverse and
well-distributed solution sets, indicators should measure approximation set
quality in terms of multi-objective optimization goals, deficiency of indicators
can be identified based on non-conformance to some dominance relationship,
and run-time analysis should encompass both convergence and diversity.

Furthermore, there exist theories and principles from which guidance can
be drawn. Initial efforts in the design of multi-objective benchmarks are influ-
enced by the work established in the domain of single-objective optimization
and operational research. Therefore, most research efforts on performance
assessment are focused on these areas. Since the scope is properly defined,
the results can be likewise presented in a straightforward manner. All of the
easy problems are associated with the direct testing or examination of perfor-
mance. For example, algorithms are tested upon benchmarks and their per-
formances are measured, in turn, by performance indicators. If observations
and testing were all there was to performance assessment, then performance
assessment would not be much of a problem. Although we still lack a com-
plete understanding of these issues, we have a clear idea of how we should go
about developing them.
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On the other hand, the hard problems of performance assessment are those
that are susceptible to subjectivity and these problems evolve about the no-
tion of adequacy. Most researchers agree that the successful application of
MOEA on a test suite is no guarantee of success on practical problems [276].
A typical test suite employed in recent works 42,158,251, 1252] consists of a set
of four to twelve test functions characterized by different problem difficulties,
which have been identified by Deb [54]. While various multi-objective test
problems have been employed in the literature, these test suites are generally
designed based on the works of [54, 155, 276, 1300]. This naturally leads to the
question of whether exhaustive testing, defined in terms of all possible com-
binations of problem difficulties, is a viable option for algorithm evaluation.
The answer is an emphatic no for two reasons

e [t is an impractical attempt to achieve an adequate experimental study.
e The validity of the concept of problem difficulty hinges on our perceived
notion of how a real-world problem behaves.

By comparing the two types of problems, one observation that can be made
is that the hard problems are supersets of the easy problems. In other words,
these are the big picture considerations that were lost in the decomposition of
these issues. Based on the state-of-the-arts, empirical investigation is decom-
posed into the aspects of benchmark generation and performance indicator
design. Even though, these easy issues have been individually addressed rel-
ative to the said requirements, taken together, do they really represent an
adequate empirical assessment?

These problems are termed hard because of the degree of ambiguity in-
volved. As a first step to answering these problems, the next sections will
present an experimental framework for MOEA assessment as well as a con-
ceptualization of test adequacies.

1.3.2 Systematic Design for Empirical Assessment

MOEA design involves an iterative process of designer intuition and valida-
tion, where performance assessment is carried out to compare, examine, and
improve algorithmic design. In addition, it plays a crucial role in improving
our understanding of EA dynamics and the interplay between the different
components. The knowledge gained will greatly aid the development of more
powerful algorithms. The relationship between algorithm design and the em-
pirical study is illustrated in Figure.[[.Gl The design of the experimental study
involves the consideration of several issues, which can be classified into three
distinct phases, 1) specification, 2) design and 3) execution. Other experi-
mentation design process have also been described in [15]. This design plan
allows researchers to investigate the different aspects of empirical study as
well as the interplay between the different issues. In the subsequent sections,
the various design and implementation issues will be discussed.
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Fig. 1.6 Conceptual framework for the design and implementation of MOEA ex-
perimental study

Specification

The design plan begins with the specification phase where the motivations
of the work and criteria of the empirical study are laid out. The motivations
can range from the validation of one’s design intuition to the understanding
of some theory to the solving of real-world problems. On the other hand,
the criteria determine the extent and depth at which the empirical study is
carried out. Since the criteria will dictate the requirements of the empirical
study, it should be defined before the design and implementation of the actual
experimental study. It is worth noting that although the criteria can be laid
down specifically by the researcher, it is usually inferred implicitly from the
goal of the study as well as the venue of publication; journal publications
definitely warrant a more in-depth empirical study compared to a conference
publication.

Table describes the different levels of empirical study, highlighting the
different types of criteria and the corresponding experimental requirements.
Type I and II assessments represent the most preliminary level of empirical
study and will examine the algorithm’s ability to achieve the goals of prox-
imity, diversity, and distribution. However, the two types of empirical studies
are different in the sense that the latter involves a comparative assessment
which evaluates the significance of the MOEA with respect to the state-of-
the-arts. Type III assessment takes a closer scrutiny of algorithmic perfor-
mance at the component level and typically involves a parameter sensitivity
test. This allows a better understanding of the various operators constituting
the algorithm and their relationships. Type IV will analyze the dynamics of
the evolutionary process and unveil insights to the algorithmic behavior and
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Table 1.2 Different categories of empirical assessment

Type Criteria Experimental Require- Significance
ments
I Assess algorithmic Test algorithm capability Analyzes whether algo-
performance to converge and maintain rithm is working
diversity
11 Assess relative Test and compare algo- Analyzes how well algo-
algorithmic perfor- rithm capability to con- rithm is working
mance verge and maintain diver-
sity

111 Evaluate robust- Test and analyze effects Analyzes what is working
ness of algorithmic of algorithmic components
performance and parameter variation on
algorithmic performance

v Verify  algorithm Characterize population or Analyzes why and how al-
correctness individual dynamics gorithm is working

characteristics. Essentially, different criteria demand different experimental
requirements and the final decision will depend on the designer and the mo-
tivation in algorithm formulation. Note that an empirical study may consist
of more than one type of assessment and each type will answer different
questions specific to EMOO as noted in Table

Design

Decisions made in the design phase should be reflective of the motivations
and criteria specified in the prior phase. This is crucial since it determines
the adequacy of the empirical observations to support any statement made
by the MOEA researcher about algorithmic behavior or performances. Issues
considered in this phase usually include 1) test problems, 2) test algorithms,
3) performance indicators, and 4) experimental data.

Test functions: Many guidelines for the construction of test functions and
test suites have been suggested in the literature. At present, more than 50
multi-objective test functions with different features that can pose difficulties
to the algorithm converging to the Pareto front and maintaining a diverse
solution set have been applied in the literature. Most of these test functions
are either continuous or discrete in nature, while mixed-types are rarely con-
sidered. Although it is not known how well these test functions reflect real
world optimization problems, the community has mostly agreed with Deb
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[54] and Zitzler et al [299] on the type of problem difficulties to be utilized
in experimental studies. In this regard, researchers optimizing real world ap-
plications should report on how particular test suites can reflect the problem
in hand.

Although many good guidelines have been presented, the choice of test
functions should be dependent on the problem and issues considered by the
MOEA designer. One approach is to consider the MOEA functionalities chal-
lenged by the features inherent to the test problems. Problem features are
properties that collectively identify the difficulties posed to the MOEA [16§]
and they can be classified into two broad categories of primary and secondary
features according to the functionalities challenged

e Primary: Bias, PF* and PS* geometry, multi-modality, deception, param-
eter interaction, high-dimensionality.

e Secondary: Robustness, dynamic landscape, mnoisy landscape,
goal /preferences, constraints, real-world.

The latter category provides challenges beyond the difficulties posed by the
former category to the basic ability of MOEA in discovering a near-optimal
and diverse Pareto-front. The researcher should consider incorporating rele-
vant secondary test functions only if it is the motivation of the experimental
study to do so, for example, to assess the constraint handling capability of a
particular proposed feature. On the other hand, regardless of the secondary
MOEA features considered, primary test problems must be included to test
the basic capability of MOEA.

Performance metrics: Although it is commonly agreed that performance in-
dicators should be independent of the particular experiment [48], we believe
that it is important to consider the motivation at hand. A researcher with
the motivation of assessing the capability of a particular noise-handling fea-
ture may consider the issue of robustness as another performance measure.
In certain cases, researchers considering specific domains may need to spec-
ify their own metrics. Furthermore, it is also important to consider how the
different metrics can complement one another. While we are aware of other
classification schemes, it is more useful to classify the different metrics into
the following categories

e Specific indicators: Performance metrics that quantify the approximate
solution set in one aspect of the three multi-objective optimization goals,

e (General indicators: Performance metrics that provide a general indi-
cation of solution set quality by incorporating both convergence and
diversity.

e Pareto indicators: Performance metrics that quantify the solution set
based on dominance criterion.

The need of complementary indicators from the different categories is illus-
trated in Figure. 7l Considering the two approximate sets PF4! and PF42,
we will find that the metric of coverage will indicate that PFA2<PFA! while
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Fig. 1.7 Illustration of the necessity of complementary Performance indicators.
The metric of coverage will indicate that approximate sets PFA?<PFA! while the
metric of HVR will with respect to R indicate the same performance.

the metric of HVR with respect to R will prefer PF42. In this specific in-
stance, it is necessary to apply specific indicators, such as GD and MS, to
understand this phenomenon.

Test algorithms: Apart from the selection of test problems and performance
metrics, it is also necessary to have an appropriate set of test algorithms
for any comparative study. Many comparative studies demonstrating the su-
periority of current state-of-the-art over earlier attempts and conventional
approaches can be found in the literature. Depending on the issues and prob-
lem considered, this set of test algorithms may include deterministic meth-
ods, heuristics, MOEAs, and/or hybrid MOEAs. Common examples of test
MOEAs that have been employed in recent studies [95, 120, [188] include NS-
GAII, SPEA2, and PAES. The selection criteria are that these algorithms
must be truly reflective of the state-of-the-arts and of the issues considered.
Otherwise, the experimental results that form the basis of analysis will not
be reliable.

A further point to note is that the type of test algorithms also depends
largely on the motivation of the study. If the proposed optimizing technique
represents a novel computational paradigm, the set of test algorithms should
be representative of the different evolutionary computational models in the
literature, including MOPSO, EA, and simulated annealing. However, if the
proposed technique represents an improvement over some existing approach,
it is necessary to use a set of test MOEAs that represents the state-of-the-arts
in that particular field. On the other hand, if improvements are done at the
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operator level, not only is it necessary to gauge the improvements brought
about by the proposed operators in a baseline algorithm, the extendibility of
the proposed operators should also be assessed.

Ezxperimental Data: Appropriate experimental data must be collected during
the experimentation process to facilitate analysis in the later phase. Depend-
ing on the defined criteria, the required data may include evolutionary trends,
population distribution, and the final evolved approximate Pareto fronts. The
type of data gathered is largely dependent on the type of analysis warranted.
In the most general case, the coordinates of the final set of Pareto optimum
solutions found in the objective and search space will suffice for the plotting
of the Pareto front approximated and the calculation of performance met-
rics. It is highly likely that these data may require further processing before
they could be interpreted and analyzed. Lastly, due to high computational
cost, careful considerations must be made to avoid repeating the experiments
again.

Execution

In the final phase of the experimental study, 1) implementation of the exper-
imentation design is carried out and 2) analysis of the results is performed.
Practicality and fairness of experimentation is of significant concern in this
part of the experimental study.

Implementation: Actual realization of test algorithms, test functions, and
data collection schemes selected in the design phase involve hardware and
software considerations. Practical constraints include processor speed, mem-
ory requirement, single or distributed processing, etc. For instance, once the
appropriate data is defined, plans must be made on how it can be collected
and processed. The decision to perform online computation of evolutionary
trends will ease memory requirements to store raw data at the expense of
computational effort.

Relevant software consideration includes the operating system and pro-
gramming language used to implement the algorithms. One particular issue
in this stage is the implementation of test algorithms. Factors affecting soft-
ware implementation includes the MOEA researcher programming skills and
the availability of test algorithms for download. While it may be more prac-
tical to use existing codes, it is well-known that different implementations
can have severe impact on algorithmic performance. Therefore, steps must
be taken to ensure fairness of all experiments conducted. The alternative is to
conduct all experiments on a common platform. Of similar interest, Bleuler
et al [23] suggested the use of PISA as a common platform to study the per-
formance of stochastic algorithms. In cases where the MOEA researcher need
to code the test algorithms from scratch, the performances of the test algo-
rithms should at least be comparable to, if not better than, the performances
reported in the original works. At the very least, researchers should ensure
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that the same initial population is used in the experiments since the evolu-
tionary optimization process is sensitive to the bias introduced by the initial
population. During the experimentation, justifications must be made for pa-
rameter settings for parameters such as crossover, mutation rates, etc. On
the part of the researchers, they should ensure that implementation details
are comprehensively furnished for implementation.

Data Analysis: In this stage, the experimental data obtained will be analyzed
and evaluated with respect to the algorithmic motivation and the experimen-
tal specifications. For typical EMO empirical studies, statistical information
of the various test metrics will be reported, i.e. the mean, median, standard
deviation, maximum and minimum, to quantify the reliability and validity
of the algorithmic performance. These statistics can either be summarized in
tabular form or displayed graphically via box plots. While the former displays
the precise value obtained for the various metrics, the use of the latter can
highlight the relative differences between test algorithms, which can be useful
in comparative assessment. Nevertheless, a mere difference in the average of
the metrics cannot be blindly regarded as a performance difference between
the various MOEAs. As such, statistical techniques, such as ANOVA, t-test,
etc, should be included to quantify the significance of the differences amongst
the optimizers.

Besides the statistical information, the Pareto fronts obtained are usually
illustrated to reflect clearly the multi-objective nature of the optimization
problem under investigation. Graphical visualization of the Pareto front al-
lows a quick overview on the performance of the MOEA and cross valida-
tion between the statistical results earlier. Generally, authors will present
the Pareto front of a randomly chosen run or select the run that can best
complement the statistical information displayed earlier.

The experimental analysis should be sufficiently adequate to quantify the
correctness and viability of the MOEA | test and verify any hypothesis and as-
sumption made during the algorithm design and uncover pertinent parameter
relationship and/or dynamic behavior within the algorithm. Naturally, the
analysis should be synchronized to the underlying motivation during the al-
gorithm formulation and the depth of the analysis will depend on the desired
criteria.

1.3.3 Survey on Experimental Specifications

In this section, we will discuss on the different levels of experimental studies
that have been conducted in the evolutionary multi-objective optimization
literature. Note that this survey is restricted to articles with empirical stud-
ies found in the IEEE Transactions on Evolutionary Computation from the
period between year 2000 and 2006. It is meant to illustrate the different
experimental specifications listed in Table and highlight possible trends
and deficiencies in the current practices.
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Table shows the list of papers and the types of empirical analysis
present. The label (y/) in the table represents the presence of the particular
depth of analysis (columnwise) for the particular article (row-wise). A further
distinction is made according to the general motivation of the different works.
Works that sought to solve real world problems are denoted as RW, while
works with the motivations of developing new algorithms or features are
represented by Alg and Mec, respectively.

As mentioned earlier, more than one type of analysis may be present in the
empirical study. At the same time, we observed that some types of analysis
occur at a higher frequency for works with certain motivations.

Table 1.3 Levels of Experimental Study Analysis in the Literature

Reference Year Motivations Type 1 Type 2 Type 3 Type 4
Obayashi et al [201] 2000 RW Vv

Hughes and Leyland [130] 2000 RW Vv Vv

Jaszkiewicz [140] 2002 RW Vv

Goulermas and Liatsis [105] 2003 RW N4 Vv Vv
Atkinson-Abutridy et al[8] 2003 RW Vv Vv

Guan and Zhang [109] 2003 RW vV Vv

Ishibuchi et al [139] 2003 RW Vv Vv
Jaszkiewicz [141] 2003 RW Vv Vv
Weicker et al [280] 2003 RW Vv

Ascia et al [7] 2004 RW Vv Vv
Khoshgoftaar et al [156] 2004 RW Vv Vv

Shin et al [239] 2005 RW vV vV

Teo and Abbass [259] 2005 RW Vv Vv
Benedetti et al [17] 2006 RW N

Abido [1] 2006 RW v v Y

Erbas et al [71] 2006 RW Vv N4 Vv
Everson and Fieldsend [72] 2006 RW Vv

Cvetkovic and Parmee [51] 2002 Mec Vv Vv
Jensen [142] 2003 Mec Vv

Fieldsend et al [76] 2003 Mec Vv

Tan et al [258] 2001 Alg Vv v v
Tan et al [251] 2006 Alg Vv Vv Vv
Deb et al [61] 2002 Alg v v

Yen and Lu [287] 2003 Alg J Y

Lu and Yen [188] 2003 Alg Vv

Farina et al [73] 2004 RW Alg vV

Coello Coello et al [43] 2001 Alg v v

Ho et al [120] 2004 Alg Vv

Garca-Pedrajas et al [87] 2005 Alg Vv Vv vV
Knowles [160] 2006 Alg vV

Emmerich et al [70] 2006 Alg Vv
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RW: Type 1 analysis is more commonly employed in this class of works and
it allows for either the identification of the tradeoffs between the various
objectives or verification of PF4 with known results. There are two main
approaches in performing Type 1 analysis, 1) comparing the evolved so-
lutions with those currently employed in practice |201] and 2) validating
through practical realization |17]. Type 2 analysis, i.e. comparative studies
with existing approaches, are also conducted in works such as |1, 1105]. The
frequency of Type 3 analysis, which provides more depth to the analysis,
seems to increase after 2003 as researchers [1, 8, [17, [71, 139, 141, 239]
sought to investigate algorithm robustness under parameter variations.

Alg: Type 2 analysis is commonly employed in this class of publications.
The comparative studies conducted in the papers sampled are rather com-
prehensive, with problem test suites that challenge the MOEA in various
aspects, state-of-the-art test algorithms, and a good coverage of perfor-
mance indicators to assess algorithmic performances. Type 3 analysis is
also performed in some of these works to evaluate the contribution of the
components within the proposed algorithm assessed at the parameter level
[43] or at the component level [258].

Of course, the parameters should ideally be related to the complements
that are newly introduced by the proposed MOEA and not the existing
evolutionary operators |[61]. While it can be argued that the viability of
the conventional operators should be re-assessed due to the new proposed
operators, such analysis should ideally be performed only after a deeper
understanding of the new operators is achieved. It is common that evolu-
tionary trends of certain performance indicators might be used sometimes
for comparison purposes. However, it should be noted that a mere evolu-
tionary trend should not be viewed as a type IV analysis |70]; instead, the
trend analysis must show the behavior of the algorithm 251, 258].

Mec: Amongst the various papers surveyed, only three of them involve pro-
posals for operator improvements in MOEA. They include the reduction
of the run-time complexity of NSGA-IT [142], unconstrained elite archives
[76], and the incorporation of preferences in evolutionary multi-objective
optimization [51]. As such, in these papers, a comprehensive theoretical
treatment of the operators can be found, which is normally used to satisfy
the type 3 and 4 specifications. As such, type 2 analysis will form the main
bulk of the empirical study. Type 1 analysis will not be necessary as the
focus in these papers are the operators and they will be evaluated in a
suite of well-studied benchmark problems.

1.3.4 Conceptualizing Empirical Adequacy

Empirical study forms one of the most integral components in EMOO. Be-
sides understanding the algorithmic development of MOEAs, it is important
to determine whether the empirical study conducted is adequate to derive any
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conclusive statement about its performance. Despite its importance, there is
alarmingly little research in this area. Due to the lack of proper theoretical
foundation, rules of thumb serve as the guidelines for researchers in designing
their evaluation study. As such, there is a pressing need to establish standard
guidelines in assessing the adequacy of the empirical study. For this purpose,
a set of criteria to evaluate the adequacy of an empirical study will be for-
mally defined. Also, a general axiomatic theory of adequacy will be developed
to make explicit some underlying assumptions in general empirical studies.

An Inadequacy Criterion

The concept of (experimental) adequacy is first coined by Goodenough and
Gerhart [104] in the field of software engineering in order to formalize a
framework for software testing. Likewise, this section aims to motivate the
use of similar concepts to guide our investigation of algorithmic capability
and behavior. The adequacy criterion [295] can be regarded as a predicate
that defines what must be exercised to constitute a comprehensive test, i.e.
one which is able to substantiate the conclusive remark of the corresponding
analysis. As a simple extension, the adequacy criterion C can be formulated
as a function that takes in the MOEA or the algorithm incorporating the
proposed features under evaluation, denoted as Ar, and the corresponding
set of specifications S and empirical test T.

Definition [l 6: Adequacy Criterion: The adequacy criterion C is the function
C:ArxSxT — {True, False} (1.13)

where C(Ar,S,T)=True means that the evaluation test T is adequate for
testing Ap with criteria S, else T is inadequate.

However, as mentioned earlier, the notion of adequacy is susceptible to
subjectivity and it is difficult to define an appropriate adequacy criterion.
Hence, an inadequacy criterion will be defined instead, i.e. criteria that de-
fine the inadequacy of the evaluation suite. For our purpose, the inadequacy
criterion is based on the segregation of empirical studies into various compo-
nents discussed earlier.

Definition [I17: Inadequacy Criterion: The inadequacy criterion C is the
function

C:AprxSXTr AXT pXT pXT 11mpXT ana — {True, False} (1.14)

where T=False if any of the components of the test (Test problems, Tp;
Test metrics, Ts; Test algorithms, T 4; Implementation, Try,p; Data Anal-
ysis, T ana) is not adequate for testing algorithm Az against specification S,
otherwise T is adequate.
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This definition provides a simple approach to evaluate the adequacy of
an empirical test in general, where each of the different components of the
empirical test could be evaluated for its adequacy based on the experimental
specification. If each of the components cannot be proven to be inadequate
with respect to the experimental specification, this will imply that the empir-
ical test is adequate to substantiate conclusive statement on the algorithmic
performance and behavior of the MOEA.

Axiomatization of Empirical Analysis Adequacy

The notion of axioms for testing can be found in the field of software engi-
neering [279] as requirements for test adequacy criteria. On the other hand,
the axiomatic approach presented in this chapter serves as a guide to the
adequacy of empirical analysis. The basic idea is to highlight the fundamen-
tal properties of the experimental studies and use it as a checklist if these
properties are satisfied.

Performance analysis is ultimately based on actual experimental perfor-
mance. Therefore, the first and foremost property of empirical analysis ade-
quacy is the existence of an empirical study.

Axiom I. Non-Existence inadequacy: The absence of any empirical
study is not adequate for any performance validation.

That is to say choreographed scenarios of proposed evolutionary techniques/
mechanism, no matter how detailed, is simply not adequate. One might argue
the case where the algorithm can be proved convergent or even superior to
existing approaches. However, due to the limitations of theoretical analysis
pointed out earlier, this axiom stands valid and performance assessment is
inadequate unless empirical validation is provided.

Of course, the mere existence of experimentation does not imply adequacy
of the empirical investigation. Central to our notion of adequacy is the need
for the actual experiments and analysis to reflect the specifications required
for the particular work, a point has been pointed out in the framework of
experimental design and laid down formally in (LI4]). As a specific instance,
consider the scenario where a new density assessment scheme is proposed.
Since the role of any density assessment scheme in MOEA is to promote
diversity and improve PF4 distribution, the criteria of the empirical study
involves demonstrating how the scheme performs its role. Clearly, the lack of
any test problems that challenge the scheme’s ability to maintain a diverse
and uniformly distributed PF4 or the lack of any specific indicators that
measure these qualities will render the empirical study inadequate. Therefore,
the next axiom is given as,

Axiom II. Compliancy: Any component of the empirical assessment
that is not reflective of the experimental criteria is not adequate.
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Having considered the properties of the empirical studies in general, we
will now regard how the very nature of MOEA affects the analytical process.
The first thought that crosses our minds is, probably, the fact that MOEAs
are stochastic and multiple simulation runs must be performed to attain sta-
tistical consistency. However, apart from stochasticity, what we really need
to take note of is the fact that the canonical MOEA is composed of several
interacting elements. While it may seem reasonable to generalize the success
of the MOEA on a particular set of test problems to its base components,
it is clear, based on reasonable intuitive deduction and known empirical al-
gorithmic behavior, that such generalization is not true without any further
empirical verification. Thus, an adequate empirical study for the algorithm
is not adequate for analysis of its individual components.

Axiom ITI. Anti-Generalization: An adequate empirical investigation
of Ar with components O1, O is not adequate for the analysis of its
individual components.

By the same account, the complex relationship between the different com-
ponents and the MOEA implies that the sum of all individual parts is by
no means any indication of true algorithmic performance. Thus any conclu-
sion on algorithmic performance drawn from the empirical evaluation of it’s
individual components is not adequate.

Axiom IV. Anti-Decomposition: Adequate empirical investigations of
A7 components O, O is not adequate for the analysis of the MOEA.

These two properties account for component interactions within the same
algorithm. Given that MOEAs share common density assessment schemes,
genetic operators, and etc, and many mechanisms are proposed with the in-
tention for general implementation, it is necessary to consider the extendibil-
ity of the various components as well. Clearly, we should not expect, for
instance, the crowding distance operator of NSGAII to function as well when
implemented in PAES. Thus the final axiom presented in this chapter is given
by,

Axiom V. Anti-Extensionality: An adequate empirical investigation of
A71 with components Oq, Os is not adequate for the analysis of Apy
with components Oy, Os.

1.3.5 Case Studies

Adopting one of our previous works in [252] as a case study, the adequacy
of a few experimental setups are examined through the proposed axiomatic
approach in this section. In this work, the notion of adaptation is extended
to the mechanisms of elitism and mutation operator with the motivations of
improving the exploratory and distribution capabilities of MOEAs.



1.3 Empirical Analysis and Performance Assessment Adequacy 37

e Adaptive mutation operator (AMO): The mutation rate is adapted with
time to balance the exploration and exploitation effects of AMO.

e Enhanced exploration strategy (EES): The ratio between solutions selected
for normal genetic operators and archived solutions selected for local search
to improve solution distribution is adapted.

For the ensuing discussions, we assume the following settings: The proposed
features are incorporated into a basic MOEA, denoted as ALG, and validated
upon the test problems of ZDT4, ZDT6, FON and KUR. Test algorithms
employed include NSGAII, SPEA2 and PAES while the performance metrics
of GD, MS, S and HVR are used. In order to provide a fair comparison, all the
algorithms are implemented with the same binary coding scheme of 30-bit
per decision variable, tournament selection, uniform crossover, and bit-flip
mutation whenever applicable. Furthermore, all simulations are implemented
in C++ on an Intel Pentium 4 2.8 GHz computer and thirty independent runs
are performed for each of the test functions in order to obtain the statistical
consistency.

Scenario 1: A type Il empirical study is conducted in which the performance
of ALG is compared against the test algorithms. Part of the analysis made
is as follow.

“ZDT4 proved to be the most difficult problem faced by the algorithms
since no algorithm, except ALG due to the exploratory effects of AMO,
is able to deal with multi-modality effectively. The challenge of FON
is to find and maintain the entire Pareto front uniformly. With the
exception of the ALG, the other algorithms found it difficult to find a
good spread and distribution. This is due to the incorporation of EES
which facilitates the distribution of solutions. ”

This is a reasonable test suite with ZDT6, FON and KUR challenging the
MOEA’s ability to maintain a uniformly distributed PF4 and ZDT4 posing
convergence problems. The test algorithms are representative of the state-of-
the-arts while the performance metrics consist of a general quality indicator
and three specific indicators to evaluate PF4 quality in terms of convergence,
distribution and diversity. Thus the compliancy axiom holds. However, the
statements claiming EES and AMO contribution to the distribution and con-
vergence of the PF4 is a clear violation of the anti-generalization axiom. For
this particular empirical analysis to be adequate, such statements should ei-
ther be withdrawn or validated by type III performance assessment.

Scenario 2: Following a type II empirical study in which the performance of
ALG is demonstrated to be competitive in all aspects, a type III analysis is
conducted to examine the individual contributions of AMO and EES. In this
particular setup, the performance of the basic MOEA with and without the
individual components of the proposed mechanisms is measured on all the
test problems but only the metric of HVR is retained. Part of the analysis
made is as follow.
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“ALG with only AMO outperforms the basic MOEA and ALG with
only EES for ZDT4, demonstrating the exploratory effects of AMO.
On the other hand, ALG with only EES outperforms the other algo-
rithm settings for FON and ZDT6. This clearly illustrates the ability
of EES to improve the distribution of solutions along PF4. Thus, it is
clear that EES and AMO will improve the performance of the MOEA
incorporating them”

This time round, the anti-generalization axiom holds as the contributions of
AMO and EES to the basic MOEA are analyzed individually. On the other
hand, the decision to apply HVR alone violates the compliancy property. As
mentioned in section [[L3.2], the metric of HVR is unable to provide specific
information of a solution set regarding convergence, distribution or diversity.
For all we know, the superior performances exhibited by ALG with only AMO
for ZDT4 can be attributed to better diversity or distribution rather than
convergence. The extendibility also fails to hold since EES and AMO may
not improve the performance of NSGAII or SPEA2. It should also be noted
that the anti-Decomposition will fail to hold had not the comparative study
preceeded this.

1.4 Overview of This Book

Multi-objective optimization is a challenging research topic not only because
it involves the simultaneous optimization of several complex objectives in the
Pareto optimal sense, it also requires researchers to address many issues that
are unique to multi-objective problems. Advances made in the field of EMOO
is the result of two decades worth of intense research examining topics such
as fitness assignment [74, [188], diversity preservation [154], balance between
exploration and exploitation [24], and elitism [176].

The primary motivation of this book is to provide a comprehensive treat-
ment on the design and application of MOEAs for multi-objective optimiza-
tion in the presence of uncertainties. As mentioned right at the start of this
chapter, the difficulty of multiple criteria decision making (MCDM) is exac-
erbated by the fact that real world problems are not deterministic in nature.
While it has been shown that MOEAs are powerful and efficient optimizers
of static multi-objective problems, their performance are rarely examined in
the presence of uncertainties and it is unlikely that the state-of-the-arts are
capable of handling the demands that the task entails.

This book is organized into three parts, with each part addressing a differ-
ent form of uncertainty. The first part comprising of Chapters focuses on
the optimization of noisy multi-objective problems. Unlike existing studies
of multi-objective evolutionary algorithms (MOEAs) [257, [299], Chapter
examines the performance of MOEASs in noisy environments. Chapter [3 de-
scribes a number of existing MOEAs for noisy multi-objective problems and
simulation studies are performed to compare the noise-handling features of
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various MOEAs. Chapter [ considers the design of artificial neural networks
as a specific instance of noisy problem.

The second part starts with a survey of existing works for dynamic multi-
objective optimization. A formal categorization of dynamic multi-objective
test functions and the requirements of performance indicators for assessment
of dynamic MOEAs are also provided in Chapter Bl Chapter [0l introduces a
new coevolutionary paradigm that incorporates both competitive and coop-
erative mechanisms observed in nature to solve multi-objective optimization
problems and to track the Pareto front in a dynamic environment. The main
idea of competitive-cooperation coevolution is to allow the decomposition
process of the optimization problem to adapt and emerge rather than being
hand-designed and fixed at the start of the evolutionary optimization process.
In particular, each species subpopulation will compete to represent a particu-
lar subcomponent of the multi-objective problem, while the eventual winners
will cooperate to evolve the better solutions. Through this iterative process
of competition and cooperation, the various subcomponents are optimized by
different species subpopulations based on the optimization requirements of
that particular time instant, enabling the algorithm to handle both the static
and dynamic multi-objective problems.

The third and final part concentrates on the issues of robust multi-objective
optimization. In particular, the suitability of existing robust test problems
for multi-objective optimization is examined and a set of guidelines for the
construction of robust multi-objective test problems is presented. The fun-
damental component of the robust test problems is a Gaussian landscape
generator that facilitates the specification of robust optimization-specific fea-
tures, such as noise-induced solution space, fitness landscape, and decision
space variation. This generator is developed with the purpose of generat-
ing noise-sensitive landscapes in conjuction with existing multi-objective test
problems. Subsequently, a robust multi-objective test suite is built upon the
ZDT framework. In addition, the vehicle routing problem with stochastic
demand (VRPSD) is as presented a practical example of robust combinato-
rial multi-objective optimization problems. Chapter [§ provides an overview
of existing robust multi-objective evolutionary techniques. This chapter also
explores the concept of inheritance to reduce computational effort and sim-
ulations are conducted to analyze the characteristic of the continuous test
suite. In Chapter @ a hybrid MOEA employing a route simulation method
is developed to evolve robust routing schedules for the VRPSD problem.

1.5 Conclusion

In this chapter, we have covered the necessary concepts and definitions of
multi-objective optimization and uncertainties to appreciate this book. This
chapter also presented an introduction to MOEAs, with a general framework
which illustrates the basic design issues of the state-of-the-arts. Subsequently,
a survey of the state-of-the-arts based on the basic MOEA components of
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fitness assignment, diversity maintenance, and elitism is presented to high-
light the development trends of multi-objective evolutionary techniques. This
chapter also addresses the issue of adequacy for the empirical performance
assessment of MOEA. For this purpose, a set of adequacy criteria which
evaluates the general adequacies of an empirical study based on its various
components is presented. Details of the various components on how they
relate to the overall algorithmic development process and their adequacy un-
der different experimental specifications are provided. Furthermore, a set of
axioms that make explicit the underlying assumptions of general empirical
study was formulated. Finally, the overview of this book is presented.



Chapter 2

Noisy Evolutionary Multi-objective
Optimizationﬁ

In the previous chapter, we have described the multi-objective optimization
problem and the challenges that it entails. However, the formulation presented
in equation (L1]) assumes that the objectives can be found deterministically,
which is hardly the case in many real world problems. Noise stems from sev-
eral sources, including sensor measurement errors, incomplete simulations of
computational models, and stochastic simulations. Apart from these external
sources, noise can also be intrinsic to the problem. A good example is the evo-
lution of neural networks where the same network structure can give rise to
different fitness values due to different weight instantiations [144].

In noisy single-objective optimization, a solution may appear either better
or worse than its true fitness. Because noise changes the way in which we
perceive a solution, the selected or adopted solution may not necessarily be
the best available in the evolving population. Detrimental impacts of noise
observed by Beyer [2]] include the reduction of the convergence rate and pre-
mature convergence to sub-optimal solutions. In the case of multi-objective
optimization, the solutions can be incomparable as well. An instance of how
noise can mislead the optimization process is illustrated in Fig.[2l In a deter-
ministic setting, it is clear that solution A dominates solution B. However,
under the influence of noise, enhanced solution B (B’) will be judged to be
the better solution. In fact, a strongly-dominated solution can easily become
incomparable in the presence of noise and admitted into the archive of non-
dominated solutions. Furthermore, the shape of the Pareto front may appear
differently, providing the decision makers with the wrong information regard-
ing the tradeoffs between the different solutions.

Therefore, we can expect the way in which noise changes the dominance
relationship between the different solutions in the evolving population to
pose great challenges to MOEA. In the following sections, we will describe
how noise is modeled in optimization problems and how noise affects the
performance of the MOEA.

* (© 2008 IEEE. Reprinted, with permission, from C. K. Goh and K. C. Tan, “An
investigation on noisy environments in evolutionary multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 11, no. 3, pp. 354-381, 2007.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 43
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Fig. 2.1 Effects of noise on the perception of solution quality. The dark and grey
closed circles denote the true and possible perceived quality of the solutions. The
open circle surrounding each solution is the area of influence of noise.

2.1 Noisy Multi-objective Optimization Problems

As mentioned above, a distinctive feature of noisy fitness functions is that
each evaluation of the same solution results in different objective values.
Mathematically, for noisy multi-objective optimization, equation [[.1] can be
rewritten as

in F(x) = {f1(x) + 61, f2(x) + 02, ..., far(x) + Ons } (2.1)
where 9; is a scalar noise parameter added to the original objective function
of f; and F is the resultant objective vector.

The optimization of noisy problems is greatly influenced by the noise
model adopted and the level of noise intensity. Several studies concern-
ing evolutionary optimization in noisy environments, the vast majority of
which conducted in the domain of SO optimization, have been reported
[10, 13,18, 211, 27, [99, 200, 2177, 224], 2277]. Most of these investigations are done
on the basis of Gaussian noise. Notable exceptions include the investigation
conducted by Arnold and Beyer [I1], which revealed significant differences
between the influence of Gaussian, Cauchy, and x? distributed noise on the
performance of (p1/p, A)-ES. In the context of multi-objective optimization,
Teich [263] considered a uniform noise model, while Buche et al [32] incor-
porated the effects of outliers on the optimization process.

The common practice is to incorporate the selected noise model as an
additive perturbation to the original test functions. Unlike the study of dy-
namic optimization problems (which we will cover later), there is no specific
test problem or test suite for the analysis of the impact of noise on evolu-
tionary optimization. The same guidelines for the selection of test problems
are applicable to noisy multi-objective optimization as well. In fact, applying
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Table 2.1 Summary of multi-objective test problems extended for noise analysis

Literature Test Problems

Basseur and Zitzler [16] ZDT1, ZDT6, DTLZ2, KUR, COMET, and QV
Buche et al [32] BSDK1

Bui et al [33] ZDT1-ZDT6

Fieldsend and Everson [78] DTLZ2

Goh and Tan [95] ZDT1, ZDT4, ZDT6, FON and KUR
Hughes [127] MOP3 [277]

Singh [247] S1

a suite of multi-objective test problems with different features will allow us
to examine the influence of noise on these features. Moreover, it should be
noted that the different problem features will determine the extent and ef-
fect that noise has on the optimization process. For instance, we can expect
problems with strong parameter dependencies and small isolated PF* to be
more susceptible to noise as compared to those without these features. On
the other hand, it has been reported that noise has a smoothing effect on the
fitness landscape, which allows the EA to handle multi-modality with greater
success [216]. The different test problems that have been extended for noise
analysis are summarized in Table 2.1

2.2 Performance Metrics for Noisy Multi-objective
Optimization

Like deterministic multi-objective optimization, the optimization goal of
noisy multi-objective optimization is to find a near-optimal, diverse, and uni-
formly distributed PFA. To be precise, we are concerned about how good
the PF4 truly is and not how it is perceived since it is the true objective
values that matters during implementation. Therefore, performance metrics
proposed for deterministic multi-objective optimization can be used directly
to assess the performance of MOEAs in the presence of noise. The only dif-
ference between deterministic and noisy multi-objective optimization is that
the objectives are perturbed by noise and the true values not be known. In
this case, re-evaluation can be employed to compute the effective objective
values before the results are assessed.

Visualization of the evolved PF4 is used in [33] [78, [127] to demonstrate
the effectiveness of the proposed methods. Bui et al [33] employed GD and
attainment surface to provide a quantitative measure of algorithmic perfor-
mance. Teich [263] used coverage to compare the quality between different
true PF4s, while Buche et al [32] measure that distance between PF4 and
PF* with respect to ten predefined points in the decision space.
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Table 2.2 Parameter settings of the simulation study

Parameter Settings

Chromosome Binary coding; 15 bits per decision variable.

Population Population size 100; Archive (or secondary population) size
100.

Selection Binary tournament selection

Crossover operator Uniform crossover

Crossover rate 0.8

Mutation operator Bit-flip mutation

Mutation rate — 1 ____ for ZDT1, ZDT4 and ZDT6;

chromosomf-length

for FON and KUR;

bit_-number_per_variable

Ranking scheme Pareto ranking
Diversity operator Niche count with radius 0.01 in the normalized objective
space.

Evaluation number 50,000

However, noise-specific performance measures can also be found. Field-
send and Everson [78] measured the Euclidean distance between true and
noisy PF4. Such a measurement provides an indication of how well the re-
sampling technique performs. Basseur and Zitzler [16] proposed a probabilis-
tic extension of the attainment function, which provides the visualization of
the probablistic k% approximation set. This probablistic % approximation
set is defined as the set of evolved solutions which dominates objective vectors
that have been attained with a probablity up to k%.

In cases where the true PF4 can be determined, deterministic performance
metrics should be used because it will provide a more accurate assessment of
algorithmic performance. On a more practical side, it should be highlighted
that the selection of final solution for implementation will be based on the
corrupted PFA. Therefore, apart from expending a certain amount of com-
putational resource to reduce uncertainties, we can also expect noise-specific
metrics, such as the probabilistic attainment function, to play a dual role in
the evaluation of algorithmic performance as well as the solution selection.

2.3 Empirical Results of Noise Impact

Noise has a disruptive presence that is encountered in many industrial ap-
plications like control systems, medical instruments, communications, and
multimedia networks. It is also present at all stages of implementation, such
as from data acquisition to system modeling. This section examines the
impact of noise on the dynamics of fitness and diversity in evolutionary multi-
objective optimization.
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The evolutionary model adopted in this section is based on the conceptual
framework in Chapter [Il The algorithm employs a fixed-size population and
an archive to store non-dominated solutions found during the evolution pro-
cess. The archive is updated at each cycle, i.e. a candidate solution will be
added to the archive if it is not dominated by any members in the archive.
Likewise, any archive member dominated by this solution will be removed
from the archive. When the predetermined archive size is reached, a recur-
rent truncation process based on niche count is used to eliminate the most
crowded archive member. Although MOEAs have been implemented in differ-
ent ways, most current state-of-the-art MOEAs include some form of elitism
and diversity preservation mechanisms. In this paper, elitism is implemented
by selecting individuals to a mating pool through a binary tournament selec-
tion of the combined archive and evolving population. Taking into account
the study in [I127], the selection criterion adopted in this chapter is based on
the Pareto ranking scheme described in [84] and niche count [102] is used in
the event of a tie. Note that the mechanism of niche sharing is used in the
tournament selection and diversity maintenance in the archive.

Five benchmark problems, ZDT1, ZDT4, ZDT6, FON, and KUR, are se-
lected to examine the effectiveness of MOEASs in converging and maintaining
a diverse set of non-dominated solutions under the influence of noise. In this
study, noise is implemented as an additive normal distributed perturbation
with zero mean. It is assumed that noise has a disruptive influence on the
value of each individual in the objective space [13, 27, [127, 128, 227], i.e.

f(x) = f(x) + Normal(0, %) (2.2)
where o2 represents the level of noise present; Normal denotes the normal
distribution function; f and f denote the objective function with and without
the additive noise, respectively. Investigations of other noise models are left
for future work.

Experiments are conducted at noise levels of o2 = {0.2%, 0.5%, 1%, 5%,
10%, 15%, 20%} in order to study the impact of noise on evolutionary multi-
objective optimization. Thirty independent simulation runs are performed for
each of the test problems and the values of the various parameter settings in
the algorithm are tabulated in Table The mutation rates adopted in this
chapter are based on experimental studies that have been successfully applied
in [251]. A random initial population is created for each of the simulation runs
in every test problem.

2.3.1 General MOFEA Behavior under Different
Noise Levels

The performance trace representing the mean of true values of GD and
MS over 30 simulation runs for ZDT1, ZDT4, ZDT6, FON and KUR with
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Fig. 2.2 Performance trace of GD for (a) ZDT1, (b) ZDT4, (c¢) ZDT6, (d) FON,
and (e) KUR under the influence of noise level at 0.0%, 0.2%, 0.5%, 1.0%, 5.0%,
10% and 20%

different noise levels are shown in Fig. and Fig. 23] respectively. The
trace of GD and MS are sufficient to demonstrate the impact of noise on
convergence and diversity.

According to Nissen and Propach [200], population-based EAs are inher-
ently robust in SO optimization under low level of noise. It can be seen from
Fig. and Fig. that MOEA is also capable of evolving satisfactory so-
lutions in multi-objective optimization under the influence of low levels of
noise.

In addition, the smoothing effect described by Rana et al [216] is also ob-
servable from the simulation results at low noise levels. An interesting finding
is that the performance of MOEA actually improves with the introduction of
low levels of noise. For instance, there is a high tendency to evolve better cov-
erage for FON, which challenges the algorithm’s ability to find and maintain
the entire Pareto front uniformly. In the case of ZDT4, which challenges the
algorithm’s ability to deal with multi-modality, the presence of noise allows
MOEA to reduce the gap between PF* and PFA. As in the study conducted
in [216], smoothing is achieved without resampling, probably an indication
of implicit averaging.

In contrast, it can be observed that MOEA suffers from degenerate con-
vergence properties and faces the problem of maintaining a diverse solution
set under the influence of sufficiently high levels of noise. Fig. 2.4l shows that
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Fig. 2.5 The actual and corrupted location of the evolved tradeoff for (a) ZDT1,
(b) ZDT4, (c) ZDT6, (d) FON, and (e) KUR under the influence of 5% noise. The
solid line represents PF* while closed circles and crosses represent the actual and
corrupted PF# respectively.

the archiving process deteriorates with increasing noise levels and fails to
maintain a stable archive of non-dominated solutions. Further investigations
revealed that good solutions are actually kept out of the archive by the pres-
ence of noise-enhanced solutions. The impact of noise is also observed to be
more severe on problems such as FON, ZDT1, and ZDT6. In particular, the
MOEA is unable to improve in performance beyond the initial population for
the problem of FON. Although the MOEA fails to escape the local optima
of ZDT4, its performance for ZDT4 appears to be insignificantly affected by
noise.

2.3.2 MOFA Behavior in the Objective Space

It is important to analyze the behavior of MOEA in the objective space
since how it performs depend on the degree at which noise affects the fitness
landscape. A straight-forward approach to examine algorithmic behavior in
the objective space is, of course, to look at how the MOEA will perceive
the perturbed solutions. On a more critical note, if the significance of the
point on erroneous selection of solution for implementation made earlier had
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Fig. 2.6 Decision-error ratio for the various benchmark problems (a) ZDT1, (b)
ZDT4, (c) ZDT6, (d) FON, and (e¢) KUR under the influence of different noise
levels

not been fully appreciated, a quick inspection on the relationship between
the actual and perceived locations of the final tradeoff illustrated in Fig.
should do the trick. Notice how the perceived PF4 of FON in Fig 25(d)
seems to imply the presence of a knee solution. The situation will actually get
worse with increasing noise levels. Therefore, it is definitely worth the extra
computational effort required to perform re-evaluation to obtain the expected
objective values for the final PF* to get a better indication of solution quality.

For a more in-depth analysis of how this affects the MOEA, we will first
consider how the MOEA makes decisions based on the perturbed fitness val-
ues. Fig. shows the decision-error ratio against the number of generations
for the five benchmark problems. The decision-error ratio is defined as the
ratio between the number of incorrect decisions made for these operations
and the total number of decisions made. From the figure, we can observe two
trends, the first of which is the positive correlation between the decision-error
ratio and noise. There is actually a special significance attached to the ratio
at 0.5 because it provides an indication of the degree in which the evolu-
tionary optimization process has degenerated into a random search process.
Intuitively, the decision-error ratio should not exceed this 0.5 mark. In the
event of such an interesting situation, then all we need to do is to “hard code”
the MOEA to select the percieved inferior solution instead! True enough, with
the exception of FON and ZDT1, the decision-error ratio did not exceed 0.4
even at o = 0.2. This seems to imply that the algorithm should converge to
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Fig. 2.7 The entropy value of individual fitness for (a) ZDT1, (b) ZDT4, (c) ZDT6,
(d) FON, and (e) KUR under the influence of different noise levels

PF* eventually. Unfortunately, this may not happen due to a phenomenon
which we term as the curse of elitism, because 1) the noise enhanced solutions
in the archive are keeping out the good solutions (a point mentioned earlier)
and 2) the optimization process is biased towards less promising areas due to
the reinsertion of elitist solutions.

With the exception of FON, the second trend observed is that the decision-
error ratio generally increases as PF4 approaches PF*, indicating a perfor-
mance deterioration of optimization process along the evolution. For problems
which demonstrate such characteristics, it is desirable to devise a mechanism
that makes effective use of initial decisions to improve the convergence of
evolutionary multi-objective optimization. Comparing Fig. 2.2 Fig. 2.3 and
Fig. 2.6, it is apparent that the evolutionary optimization process stagnates
as the error ratio saturates in the evolution. Such a degenerate convergence
behavior of MOEA is due to the unreliability of selection, ranking, and archiv-
ing in the presence of noise. On the other hand, FON exhibits exactly the
opposite behavior, with decision-error ratio improving with the number of
generations. This is because the solutions of the initial population of MOEA
are always located around a small region about f; = fo = 1 due to the high
parameter interactions between the decision variables, which amplifies the
effects of noise.

Another way of analyzing the impact of noise on the objective space is
to examine the distribution of Pareto ranks assigned to the noisy solutions.
Shannon’s entropy [238] is applied to quantify the amount of uncertainty in
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Fig. 2.8 Search range of an arbitrary decision variable for ZDT1 at (a) 0%, (b)
20% noise and FON at (c) 0% and (d) 20% noise. The thick line denotes the trace
of the population mean along an arbitrary decision variable space, while the dashed
line represents the bounds of the decision variable search range along the evolution.

the ranking process and the entropy of solution Pareto rank in the evolving
population for all noise levels is shown in Fig. 2.7 It can be seen that only
simulation runs with no or low noise levels exhibit behavior of a stable op-
timization process with a converged fitness distribution. This is because the
ranks of these individuals should also converge to better rank values as the
evolving population converges to a better set of individuals in a low-noise
environment. In contrast, simulation runs at high noise levels demonstrated
high levels of uncertainty in the evolutionary optimization process.

2.3.3 MOFEA Behavior in Decision Space

We have observed that the optimization process tends to converge to sub-
optimal PF even though the MOEA is making the correct decisions most of
the time. So the natural question now is what ezactly are the effects of those
right decisions? Since the behavior of MOEA in the objective space seems to
reveal little, we turn our attention towards how it behaves in the decision space.
In order to examine algorithmic behavior in the decision space, Fig.[28(a)- (d)
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illustrates trace of the search range for ZDT1 and FON along the evolution for
an arbitrary selected decision variable at 0% and 20% noise levels.

By comparing the search range depicted in Fig. Z8(a)-(b) and Fig. [Z8(c)-
(d), it is clear that a disciplined evolutionary search is lacking at high noise
levels. Specifically, MOEA is capable of narrowing down the search range
for better evolutionary search optimization in a noise-free environment. On
the other hand, it can be observed that the mean location of individuals re-
mains relatively the same despite a more diverse search space. This implies
that the evolutionary process roughly knows where the promising regions are
despite the presence of noise, most probably a consequence of the correct
decision-making. More significantly, it also means that the impact of keep-
ing out the true non-dominated solutions is greater than the reinsertion of
inferior solutions. Therefore, apart from the need to improve the archive up-
dating process of MOEAs, it is also desirable to devise a scheme that allows
adaptation of search range based upon the mean location of individuals for
better evolutionary search optimization in a noisy environment.

2.4 Conclusion

In this chapter, extensive studies have been performed to examine the impact
of noisy environments in evolutionary multi-objective optimization, particu-
larly for the population dynamics of fitness and diversity. It has been observed
that the impact of noise on MOEA is different for the various benchmark
problems, i.e. MOEA tends to evolve better solutions for some of the prob-
lems in the presence of low-level noise, while the evolutionary optimization
process degenerates into a random search under increasing levels of noise.
Furthermore, it seems that the selection process is more reliable in the early
stages of evolution and the statistical analysis of online optimization behavior
in the decision space has revealed that the evolution defines a population dis-
tribution with a mean value that remains relatively invariant in the decision
space despite the different environmental conditions.



Chapter 3

Handling Noise in Evolutionary
Multi-objective Optimization

In the previous chapter, we have shown empirically that the performance of
MOEA deteriorates quickly with increasing noise intensities. As the results
suggest, the canonical MOEA will face difficulties identifying non-dominated
solutions, let alone maintaing a diverse set of near-optimal solutions.

In single-objective optimization, there are three basic approaches to sup-
press the detrimental effects of noise [144], 1) explicit averaging, 2) implicit
averaging, and 3) selection modification. In explicit averaging, each solution is
evaluated a number of times and averaged to compute the expected objective
values. Increasing the number of samples (H) reduces the degree of uncertainty
by a factor of v/H at the expense of higher computational cost. Instead of re-
evaluating and averaging the objective values over a number of samples, a large
population is used in implicit averaging. When population size is large, there
are many similar solutions and the influence of noise is compensated as the
algorithm revisits the same region repeatedly. In selection modification, the
ranking and selection procedures are modified such that a solution is judged
better than another solution only if it satisfies certain conditions.

The ideas behind these three approaches can be easily applied to multi-
objective optimization to suppress the effects of noise. But no matter which
approach is adopted, it is necessary to consider how noise affects the selection,
elitism, and diversity preservation processes in MOEA. There are two ways
in which an inferior solution can be chosen over a better one in the selection
process. Firstly, the selection mechanism can perceive an inferior solution to
dominate a superior solution under the influence of noise. Secondly, as long
as the inferior solution appears to be non-dominated, it can be selected by
virtue of a better perceived degree of diversity measure. Similarly, the archive
can be deceived into storing inferior solutions. Not only can these archived
solutions drive out superior solutions, they can also prevent good solutions
from entering the archive. Recall that most state-of-the-art MOEAs are elitist
in nature. The worst problem is that these archived inferior solutions can
mislead the entire optimization process, resulting in sub-optimal or unrealistic
solution sets.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 55
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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The straight-forward approach is to remove elitism completely. However,
there is no indication that non-elitist MOEAs will perform significantly bet-
ter for noisy problems and we can identify two difficulties in the absence of
elitism. Firstly, good solutions will be lost along the evolution and we can
expect slower convergence since elite solutions are not exploited. Further-
more, when noise intensity is sufficiently high, what will happen is that the
MOEA will favor a particular set of solutions in one generation while favoring
another set of solutions in another generation. This will result in the algo-
rithm oscillating between different regions in the search space without ever
converging.

Based on the above discussions, it is clear that much thought and effort
must be devoted to the design of robust MOEAs for noisy multi-objective
optimization. This chapter describes a number of existing MOEAs for noisy
optimization, focusing on how archiving, selection, and diversity preservation
are performed in the presense of noise.

3.1 Estimate Strength Pareto Evolutionary Algorithm

Teich [263] suggested the estimate strength Pareto evolutionary algorithm
(ESPEA), which is based on the strength Pareto evolutionary algorithm
(SPEA) developed by Zitzler and Thiele [300]. The main difference between
the two algorithms is the use of probability theory to model the stochastic
objective values. The major steps of SPEA and ESPEA within each iteration
are shown below.

Strength Pareto Evolutionary Algorithm (SPEA)

Step 1: Evaluate all solutions in Py.
Step 2: Update Archive:

- Add non-dominated solutions in P; to A;.
- Remove dominated solutions from updated A;.
- Apply clustering if |A;| exceeds size limit.

Step 3:  Fitness assignment:

- Assign fitness to archived solutions based on non-dominance.
- Assign fitness to solutions in P; based on fitness assigned to archived
solutions.

Step 4: Recombination process

Estimate Strength Pareto Evolutionary Algorithm (ESPEA)

Step 1:  Evaluate all solutions in P;.
Step 2:  Update Archive:
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- Calculate the probability of dominance for all solutions in P;. Add
the set of solutions with the best probability of dominance to A;.

- Calculate the probability of dominance for all solutions in A;. Remove
the set of solutions with the worst probability of dominance from A;.

- Apply clustering if |A;| exceeds size limit. Euclidean distance is
calculated based on expected objective values.

Step 3:  Fitness assignment:

- Assign fitness to archived solutions based on probabilistic non-dominance.
- Assign fitness to solutions in P, based on fitness assigned to archived
solutions.

Step 4:  Recombination process

It can be easily observed that the general algorithmic stucture of SPEA is
retained in ESPEA but the introduction of a probability of dominance brings
about significant changes to how the actual archive updating and fitness
assignment processes are being performed to improve algorithm robustness
to noise.

In ESPEA, each noisy objective value is described by a property interval
[fL, fV], where f£ and fU represent the lower and upper bounds of f;. Noise
is assumed to be uniformly distributed so f; can take up any value within
the interval [f%, fU] with equal probability. Let us consider two solutions F,
and F;. The probability that solution F', dominates solution F} is given by

M
P(Fy 2Fy) = [[ P(fai = foi) (3.1)

i=1
where P(fq,i < fp.) is defined as

0, it fy: < faa
e U L
P(fai = foi) =41 if fa: < foi
ey Tl ( i dy + fmm(fg’ﬂfgi) iy ) otherwise
fai— 1L e Y max(f7 .2 f7, 15, )
(3.2)

In this way, F, < F}, only if the upper bound of the property interval fg ;18
smaller than the lower bound flfi for all objectives. In another words, we can
say for certain that F, dominates Fj, when the worst case F, is better than
the best case Fy. On the other hand, F, does not dominate F} as long as the
upper bound f; is smaller than the lower bound f; for any one objective.
When there is an overlap between the property intervals of both solutions,
F, <X F, with a certain degree of probability. If the noisy objective values of
the solution F, can be described by [fa,i — da,i, fa + 0a,i], We can rewrite the
third case of equation as follows:
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P(fai = foi) = 5=+ | (o = 805 = min(foi = 80 fai = b)) (3:3)

1
26&,1’

+

T (max(fa,i — 0a,i fo.i — Ob,i)

—min(fa,i + 0ai, fo,i + 6b,i>)}

Intuitively, P(fq,; =< fp,:) is sensitive to the setting of ¢, ;. Teich assumed
a fixed 64, which is set before each optimization run. However, a priori
knowledge regarding 4, ; is typically not available. One possible approach
is to estimate 0,,; during the clustering process when the expected cluster
distances are calculated.

Archive Update: The algorithm maintains two populations, the population
(Py) of evolving individuals and the fixed-size archive (A;) of non-dominated
solutions. Non-dominated solutions found in P; are copied and added to the
archive. After which, dominated solutions found in the updated archive are
removed. The challenge in this updating process is the identification of good
solutions to be added and kept in the archive. This is where the probability
of dominance comes into play in ESPEA, allowing solutions that would oth-
erwise be rejected by the deterministic scheme a chance to enter the archive.
The decision to add any solution to the archive is based on a mean probability
that the solution is dominated by other solutions in P;:

> P(F, =F,), (3.4)

where a lower R(F,) implies a higher probability that F, is non-dominated.
With each solution assigned a different probability of being dominated (im-
plying varying degrees of non-dominance), it is not readily apparent which
solutions belong to the first non-dominated front. In ESPEA, the criterion
for solution entry to the archive can be governed by any of the three following
rules:

- Add F, to archive if the probability of being dominated R(F,) is below
a threshold «a.

- Add 8% of solutions with the lowest R(F,) to the archive.

- Add all « solutions with the lowest R(F,) to the archive.

The idea is to ensure that all solutions with a decent probability of being
non-dominated are copied into the archive. Thereafter, solutions with high
probability of being dominated are removed from the archive and the prob-
ability of the stored solution being dominated by other solutions in A; is
calculated as follows:

1

BFa) =&

Y P(F,<Fy), (3.5)

FreA,
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Fig. 3.1 Archived solutions for (a) «=0.15 and (b) @=0.25 at §=0.2. The proba-
bilities of being dominated are appended next to the associated solutions. Archived
and non-archived solutions are denoted by x and o , respectively.

As before, the decision to remove any solution from the archive is determined
by any of the following heuristical rules:

- Remove F, from A; if the probability of being dominated R(F,) is above
a threshold o’.

- Remove 3'% of solutions from A; with the largest R(F,)).

- Remove all 4/ solutions with the largest R(F,)) from A;.

Therefore, what is left in the archive is a set of probably non-dominated
solutions at the end of the updating process. Consider the set of solutions
illustrated in Fig. Bl The first rule is applied in this particular instance to
update appropriate solutions into the archive; archived solutions are denoted
by x, while the remaining solutions are represented by o. The probabilities of
being dominated R(F,) are shown next to the associated solutions at 6=0.2.
It is clear that the archiving process is sensitive to threshold settings. At
a = 0.15, some of the perceived non-dominated solutions are left out of the
archive. This implies that a lower a may impose too strict a criterion and
good solutions will still be denied the chance to survive. On the other hand,
a higher a will result in more solutions being stored in the archive. While
storing more solutions will increase the prospects of preserving good solutions,
it will also increase the likelihood of updating more inferior solutions as well.
Thus, the setting of « represents the tradeoff between preventing the potential
loss of good solutions and exploiting solutions with high probabilities of non-
dominance.

Fitness assignment: Fitness assignment is conducted after the archive update.
Since the solutions from both P; and A; will participate in the recombination
process, fitness is assigned to individuals from both populations. The fitness of
the archived solutions, also called strength (S), are calculated first as follows:
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Fig. 3.2 Fitness assignment for (a) «=0.15 and (b) «=0.25 at §=0.2. Archived
and non-archived solutions are denoted by x and o , respectively.

S(F,) = ﬁ > P(F,=F). (3.6)

FbGPt

After which, the fitness of each of the individuals in P; is equal to one plus the
total strength of the archived solutions that dominate it with a probability
greater than a.

F(F,) =1+ > S(F,) (3.7)

F,eP,|P(F,<F.)>a

Fig. shows the fitness of each solution at a=0.15 and a=0.25. All archived
solutions have fitness values much smaller than 1.0, while solutions in the
evolving population have fitness values greater than 1.0. The impact of the
archiving process is readily apparent in these fitness values. Notice that some
of the perceived non-dominated solutions have relatively poor fitness values
in Fig. B2Z(a). If we are to increase a beyond 0.4, then the archive will also
include some of the perceived dominated solutions. In this way, solutions
perceived to be dominated will be assigned good fitness values and hence,
increasing the chances of participating in the recombination process.

3.2 Multi-Objective Probabilistic Selection
Evolutionary Algorithm

In an independent study, Hughes [127,[128] suggested a multi-objective proba-
bilistic selection evolutionary algorithm (MOPSEA) which also employs prob-
abilistic dominance to account for the effects of noise in the objective space.
The probability of dominance introduced by Hughes is different from that de-
scribed above in the sense that noise is assumed to be normally distributed.
This assumption leads to a very different formulation and interpretation for
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the probabilistic dominance relationship between two solutions, F, and Fy.
P(F, < Fy) is actually the probability that the perception of F, dominating
F; is wrong and it is calculated as follows:

P(faﬂ' = fbﬂ') =0.5+ OSerf(%) (38)
M

P(Fy < Fy) = [[ Plfus = fo) (39)
=1

where o, is the standard deviation of the objective values and P(f,; =< fp,:) is
the probability that the judgement that the i-th objective of F, is better than
the i-th objective of F, is wrong. One attractive feature of this formulation
is that the probabilities of other dominance relationships between F, and F}
can be calculated easily once P(F, < F}) is known.

P(F, <F,)=1- P(F, < F)) (3.10)
P(F,~F,) =1—P(F, <F,)— P(F, < F,) (3.11)

oy, s typically not known a priori and it can only be estimated during the
optimization process. If computational resources and time permits, o,, can be
estimated for each and every solution by evaluating the solution over a few
samples. But this is not the case for many real-world applications. If variance
is assumed to be constant throughout the search space, Hughes suggested
estimating o,, from a random solution at the start of the optimization process
and using it for all subsequent comparisons.

Fieldsend and Everson [78] considered the efficient computation of prob-
abilistic ranking and suggested an online Bayesian learning algorithm to es-
timate the noise variance o,,. More significantly, it is demonstrated that the
algorithm is capable of tracking noise variance under different conditions, such
as unknown noise properties, independent noise for each objective, and etc.

Unlike most state-of-the-art MOEAs, MOPSEA maintains only one evolv-
ing population on which genetic operations are performed to generate new
solutions. Elitism is implemented by retaining a significant portion of the
best solutions. Nonetheless, Hughes suggested (but did not simulate) an
unique approach of using a probabilistic tournament selection to update an
archive in [129]. The basic algorithmic structure of MOPSEA is kept simple,
with stochastic universal sampling, intermediate crossover, and uniformly dis-
tributed mutation operators, probably to highlight the contributions of prob-
abilistic dominance in noisy multi-objective optimization. The main steps of
the algorithm within an iteration are shown below:

Multi-objective Probabilistic Selection Evolutionary Algorithm (MOPSEA)

Step 1:  Evaluate all solutions in P;.
Step 2:  Fitness assignment: Calculate the probabilistic Pareto ranking of
all solutions.
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Step 3: Elitism: Maintain the best 70% of the solutions in terms of fitness
and discard the rest.

Step 4:  Recombination process: Perform selection, crossover, and mutation
on the population until it is filled to the original population size.

Fitness Assignment: In a certain sense, the probabilistic Pareto ranking
scheme is rather similar to the scheme presented by Fonseca and Fleming
[84] except that the rank of each solution is determined by the probabilities
of other solutions dominating it. The rank of F, is calculated as

R(F,)= Y P(F, <F,)+05 Y PF,~F)—05
F,cP, F,eP,

(3.12)

The second term in equationB.12]is introduced to account for the probability of
non-dominance between the solutions. Notice that it is multiplied by a factor of
0.5 to maintain consistency in the sum of ranks. The third term allows a solution
to compare with itself. Alternatively, we can rewrite equation[3.12] as

R(F,)= > P(F,XF,)+05 > PF,~F,)
F,eP, F,eP,

(3.13)

This ranking scheme is illustrated in Fig. B3] for o, = 0 and o, = 0.3. We
can observe that although the perceived non-dominated solutions are still
assigned better fitness, the probabilistic ranking scheme tends to favor well-
spaced solutions. If you are to think about it a little deeper, you will realise
that there is a higher degree of uncertainty regarding the dominance of a so-
lution located in a denser region. Therefore, the probabilistic ranking scheme
not only emphasizes on solutions with high probabilities of non-dominance
but also on solutions with less uncertainties regarding their quality.
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Fig. 3.4 Lifetime De-
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A probabilistic sharing mechanism is applied to encourage diversity and
uniform distribution of solutions in the evolving population. The probabilistic
niche count for individual F', is defined as

ne(Bo) = > v(Fq,Fy) - _ ey (3.14)

FbGPt 1 + h”%

where v(F,, Fp) is the geometric mean between F, and Fy, in the objective
space, hqg = 05/+/202 and hg = 05/+/202. The shared fitness value of each
individual is then calculated by dividing the fitness by its niche count.

3.3 Noise Tolerant Strength Pareto Evolutionary
Algorithm

Buche et al [32] modified the archive updating mechanism of the SPEA [300]
to reduce the detrimental effects of noise on the elitist process. The design of
noise tolerant strength Pareto evolutionary algorithm (NTSPEA) is motivated
by the authors’ work on gas turbine combustion processes and they are partic-
ularly concerned about the influence of outliers on the optimization procedure.
Outliers are the result of instrumentation failure, which can be of several mag-
nitudes larger than measurement noise. Under the influence of an outlier, an
inferior solution may be perceived to be unrealistically good, driving out the
true non-dominated solutions and misleading the optimization process.

The NTSPEA introduces the concept of a lifetime to non-dominated solu-
tions stored in the archive so the impact of inferior solutions on the optimiza-
tion process will be limited. At every generation, non-dominated solutions
with expired lifetime are removed from the archive, added to the evolving
population, and re-evaluated. After the re-evaluation, it is unlikely that an
outlier will remain non-dominated and hence, it will not be updated into
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Fig. 3.5 Lifetime of |
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the archive again. On the other hand, a good solution is likely to remain
non-dominated.

The lifetime of each non-dominated individual is dependent on the fraction
of archived solutions it dominates and this relationship is shown in Fig. 3.4
Since the archive is empty initially, the first set of non-dominated solutions
is assigned the maximum lifetime of Kpyax. In the subsequent generations,
archived solutions with expired lifetimes are removed from the archive before
the updating process. Each newly generated solution is assigned a lifetime
which is inversely proportional to the fraction of previously archived solutions
that it dominates. Fig. BB shows the lifetime of solutions (denoted by o) found
in the current generation with respect to the members of the previous archive
(X) denoted by on a two-objective problem.

With the archive of non-dominated solutions in place, fitness are assigned
to the solutions in archive and evolving population as in the case of SPEA.
Binary tournament selection is then conducted to select solutions from the
combined archive and evolving populations. Thereafter, crossover and muta-
tion are performed on the selected solutions to create a new population. As
mentioned before, archived solutions with expiring lifetimes are re-evaluated
in NTSPEA. The archive is first checked for solutions with expiring lifetimes
and these solutions are copied and added to the new population before the
evaluation procedure. The main steps of NTSPEA are summarized below:

Noise Tolerant Strength Pareto Evolutionary Algorithm (NTSPEA)

Step 1:  Evaluate all solutions in P;.
Step 2:  Update Archive:

- Delete expired solutions from A;.
- Calculate lifetime for all solutions in P;.



3.4 Modified Non-dominated Sorting Genetic Algorithm II 65

- Add non-dominated solutions in P; to A;.

- Remove dominated solutions from updated Aj;.

- Apply clustering if |A;| exceeds size limit. Perform explicit averaging
to calculate cluster distances.

Step 3:  Fitness assignment:

- Assign fitness to archived solutions based on non-dominance.
- Assign fitness to solutions in P, based on fitness assigned to archived
solutions.

Step 4: Recombination process
Step 5:  Add expiring solutions from A; to Py.

3.4 Modified Non-dominated Sorting Genetic
Algorithm II

Babbar et al [12] introduced explicit averaging into NSGAII and modified
the non-dominated sorting procedure to allow seemingly dominated solutions
into the first non-dominated front. This modified NSGAII, which we shall call
MNSGALII, also incorporates a procedure to remove unreliable solutions from
the final set of non-dominated solutions. The main steps of MNSGAII are
summarized below:

Modified non-dominated Sorting Genetic Algorithm IT (MNSGAII)

Step 1:  Perform explicit averaging to calculate expected objective values
for all solutions in P;. Update variance of each solution.

Step 2: Combine P; and A;.

Step 3:  Perform modified non-dominated sorting on combined population.

- Perform non-dominated sorting on combined population as in NSGAII.

- Compute neighborhood distances between solutions from the first non-
dominated front and the other fronts.

- Assign all solutions with neighborhood distance smaller than the
neighborhood restriction factor to the first non-dominated front.

Step 4: Update neighborhood restriction factor.

Step 5:  Create A;;11: Perform crowding sort to truncate combined
population size to |Ay|.

Step 6: Recombination process: Conduct tournament selection on Asy;1 to
form mating pool. Perform crossover and mutation to create Pyy;.

Interested readers are encouraged to read [6I] on NSGAIL As in all
dominance-based approaches, there is a bias towards the perceived non-
dominated solutions. Since the solutions may seem better or worse than what
they really are in noisy multi-objective optimization, it is highly probable that
the selection pressure is directed towards inferior solutions, while the truly
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good solutions are lost quickly along the evolution. The first step taken in
MNSGALII to reduce the effects of noise is to conduct explicit averaging for all
solutions. Although explicit averaging can reduce the uncertainty in the se-
lection process, it is not feasible to use large number of samples, particularly
for problems with expensive objective functions.

Since the number of samples is limited, it is inevitable that the first
non-dominated front will comprise of both dominated and non-dominated
solutions. To prevent the loss of potentially useful solutions, Babbar et al
suggested a clustering mechanism to induce solutions from the inferior non-
dominated fronts into the first layer. This mechanism works by comparing the
distances between solutions from the first non-dominated front and the other
fronts. A higher ranked solution F, is re-assigned to the first non-dominated
front if the following criterion is satisfied for any arbitrary objective,

< K\/w (3.15)

where fp ; is the i—th objective of solution F} from the first non-dominated
front, vq,; is the variance of F, updated during the averaging process and K
is the neighborhood restriction factor. The rationale is that it is very likely
for a perceived inferior solution located in close proximity to a perceived non-
dominated solution in the objective space to be a true non-dominated solution.
By assigning the first rank to these otherwise higher ranked solutions, truely
good solutions are given the reprieve necessary to survive the selection process.

Fig. illustrates the modified non-dominated sorting procedure in MNS-
GAIL Tt is clear that the number of solutions present in the first non-
dominated front is highly dependent on the setting of K; a large K setting
will reduce selection pressure, while too small a K value will defeat the pur-
pose of modifying the sorting procedure in the first place. MNSGAII applies
a simulated annealing inspired adaptive scheme that reduces K over genera-
tions. The equation that governs the behavior of K is given by,

‘fa,i - fb,i

K =C(1—exp(ft)) (3.16)

where C' determines the largest setting of K and 3 controls the rate at which
K reduces with t. Initially, K is large and more dominated solutions will
be accepted into first non-dominated front. On the other hand, the number
of solutions being accepted is reduced over the number of generations. The
rationale is that the reliability of the solution will increase with time through
explicit averaging, allowing the algorithm to sort the solutions into the dif-
ferent layers of non-dominated fronts with a greater degree of certainty.

At the end of the evolutionary process, the clustering mechanism is applied
once again. However, in this instance, it is applied to remove solutions that
are significantly different from the other archived solutions. Solutions that do
not satisfy the following criterion for all M objectives are removed from the
final archive.
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3.5 Multi-objective Evolutionary Algorithm for
Epistemic Uncertainty

(3.17)

Limbourg [I83] extended a probabilistic theory known as the Dempster-
Shafer framework of evidence to model epistemic uncertainties and suggested
a set of guidelines for the design of selection and archive updating mecha-
nisms for noisy multi-objective optimization. Associated with this proba-
bilistic framework is the notion of belief and plausibility, which are used to
characterize the lower and upper bounds of the k-nearest neighbour distances
calculated during density estimation. We will call this algorithm MOEAEU
and the major steps of the algorithm are shown below:

Multi-Objective Evolutionary Algorithm for Epistemic Uncertainty (MOEAEU)

Step 1:
Step 2:

Evaluate all solutions in Py.
Update archive:

- Add solution to A; as long as solution is not strong certain dominated.
- Remove solutions from A; that are strong certain dominated.
- Apply truncation while |A;| exceeds size limit.

Calculate k-nearest neighbours belief and plausibility pairs for each
solution.
Binary tournament selection:
Pick two solutions randomly from A;.
Compare belief and plausibility pairs of selected solutions based
on weak uncertain dominance.
Remove loser from archive.
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Fig. 3.7 Illustration of the Certain and Uncertain Dominance relation for 4 dif-
ferent solutions intervals

Step 3: Binary Tournament selection:

- Pick two solutions randomly from P;.
- Compare selected solutions based on weak uncertain dominance.
- Add winner to mating pool.

Step 4: Recombination process

The Dempster-Shafer framework does not assume any probabilistic dis-
tribution and represents each noisy objective value as an interval, i.e. f, =
[ ia,fa}. With such a representation, the manner in which comparisons are
conducted between solutions is different. There are two degrees of domi-
nance that an interval can be judged to be better than (or dominates)
another:

Definition Bl1 Certain Dominance: The interval f, = | ia,fa] certain dom-
inates fy = [£,, 7], denoted by fu <c fo, iff Fu < £,

Definition [3l2 Uncertain Dominance: The interval f, = | ia,fa] uncertain
dominates fb = [ilﬂ?b]’ denoted by fa <ue fba fo ia < ib and ?a < Tb

fa certain dominates f, if the worst f, is better than the best f;. On the
other hand, f, uncertain dominates f; if f, is better than the best f; and not
worse than the worst f;. The two relations can be illustrated using the four
intervals (A, B, C, and D) shown in Fig. Bl A certain dominates B, C,
and D. This follows that A uncertain dominates B, C, and D as well. B and
D uncertain dominate C but are indifferent to C with respect to the certain
dominance criterion. B and D are indifferent with respect to both domi-
nance relations. It is clear that the certain dominance is a much stronger
criterion as compared to uncertain dominance. We can make the decision
that f, is better than f; with a much higher degree of confidence when cer-
tain dominance holds for f, as compared to the case of uncertain dominance.
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Extending these two interval relationships to multi-objective optimization,
Limbourg suggested the following two dominance relations:

Definition [Bl3 Weak Uncertain Dominance:F, weakly and uncertain dom-
inates Fy, denoted by ¥, <ue Fo, iff fa,i <uc fo,0 Vi€ {1,2,...,M}

Definition [Bl4 Strong Certain Dominance: F, strongly and certain dom-
inates Fy, denoted by Fy <c Fo, iff fai =¢ fo; Vi € {1,2,..., M} and
fa’j < fb,j E|j S {172, ,M}

Selection Process. The dominance relation described in Definition B3 is used
as the decision-making criterion of the tournament selection. In another
words, solutions are compared using the weak uncertain dominance relation.
Note that this relation has a low degree of indifference and the probability
of making a wrong decision based on this relation can be very high depend-
ing on the degree of overlap between the objective intervals. However, since
decision errors are inevitable in the presence of noise, Limbourg argued that
the tradeoff in accuracy must be made because a high degree of indifference
in the comparison of solutions will result in a random search.

Archiving Process. The MOEAEU employs a fixed-size archive A; to store all
the non-dominated solutions found in P;. In each generation, solutions that
are not dominated in the strong certain sense, described by Definition [B14,
are added to the archive. Previously archived solutions that are strong cer-
tain dominated are removed from the archive. Notice that such an updating
scheme allows all solutions that are probably non-dominated to be added to
the archive and both perceived dominated and non-dominated solutions exist
in the archive simultaneously. Since it is much harder to satisfy the strong
certain dominance criterion, we can expect the archive to be filled up quickly
with solutions, especially if the interval range is large. When the size of the
archive reaches the limit, truncation is performed to keep the archive size
under control. As in the case of MOEAs for deterministic optimization, only
solutions located in the least crowded regions are kept. Density assessment is
estimated using the k-th neighbour distance where the normalized distance
between any two solutions F, and F} is calculated in the following manner:

d(Fa,Fw:\/ S @ (fui— foa) (3.18)
=1 M

A 1
d; = - 3.19
maxp A, (Fo) — ming A, (Fyp) ( )

where cfi represents the maximum extend found in the archive for the i-th
objective. Since the solutions F, and F}, are represented by intervals, the nor-
malized Euclidean distance between them is also an interval. In MOEAEU,
d(F,,Fyp) is represented by belief and plausibility pairs. The lower bound or
belief is given by
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bel(d(FmFb)) = min (foi— foi)® (3.20)

1= 7

07 ia K 7
‘_Ilnll’l (fa i fb,i)2 = or f 7
o min((f, , = Toi)®s (£, = Fai)?), otherwise

while the upper bound or plausibility is calculated as follows:

max (fa i — fi)? (3.21)

i=1,.

max((ia)i — fo)% £y, — 7‘“')2)

pl(d(Fo. Fy))

max (faz fb,i)z

i=1,..

After calculating the (bel, pl) pairs for all the solutions in A, binary tourna-
ment selection is conducted to remove the more crowded solutions. During
the tournament selection, two solutions are chosen at random and their k-
th neighbour distance intervals are compared using the uncertain dominance
criterion. The winner of the tournament remains in the archive, while the
loser is removed. In the event that the (bel, pl) pair of the two solutions are
indifferent, the survivor is selected randomly.

3.6 Indicator-Based Evolutionary Algorithm for
Multi-objective Optimization

Basseur and Zitler [I6] considered how noise can be handled in indicator-
based evolutionary algorithms (IBEA). In this particular implementation of
IBEA, the e -indicator is used to guide the evolutionary process and the
expected indicator values are used as fitness values to improve robustness.
The main steps in each iteration of the algorithm is shown below:

Indicator Based Evolutionary Algorithm (IBEA)

Step 1: Evaluate all solutions in P;.

Step 2: Fitness assignment: Assign expected I.+ value as fitness to
solutions in P;.

Step 3: Remove individual with the smallest fitness value.

Step 4: Recombination process

- Perform binary tournament selection, crossover, and mutation.
- Add new individual to P;.

Similar to MOPSEA, IBEA is a steady-state algorithm but only the worst
solution is replaced by a new individual in each generation.

Fitness Assignment: Like Teich, the authors assumed noise to be uniformly
distributed. But the way in which the solutions are modeled is significantly
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different from the other works discussed previously. Most researchers assume
that a true objective vector exists for each solution. In IBEA, each solution is
associated with a probability distribution over the objective space. In other
words, each solution x, is associated with a set of objective vectors {F,}
instead. As a consequence of such a model, the expected indicator value is
not calculated based on the expected objective values but as the average of
indicator values with respect to the set of objective vectors.

1
15 (%a)|

Fit(x,) = 3 E(I(F(Pt), Fa)> (3.22)

F,e5(xq)

B(I(F(P).F)) = > (3.23)

Fi1€S5(x1),x:1€P

Z IE+({F1""vFj}’{Fﬂ})

F,;eS5(x;),x; EPt

where S(x,) is the set of samples drawn for the solution, F' is the function
that maps the solutions from the decision space to the objective space. Ac-
cordingly, the fitness value provides an indication of how much x, contributes
to the overall quality of the evolved solution set.

One drawback of this fitness scheme is the large computational cost in-
volved in the calculation of expected I.+ for each solution. To this end, the
authors exploited the fact that the minimum I+ value determines the actual
value and hence, not all combinations of objective vectors have to be consid-
ered. The pseudocode for this estimation is given as:

Expected I+ Value Estimation

Step 1:  Determine € = min, p maxg,cs(x;) Iy ({F;}{Fa.}).
Step 2:  Determine relevant I values:

- Create empty List, L.
- Compute € = Iy ({F,},{F,}) for all x; € P; and F; € S(x;).
- Add (e,xj) toLife <€

Step 3:  Sort L in increasing order of e.
Step 4:  Set I=0 and initialize zero array N of size | Py |
Step 5:  Compute expected I+ value estimation: While L is not empty

- load first (¢/,x)) pair from L.

- p= 1 A H I*N[x}]
IL-Nix;] ~1lxePe TP

- I=I4p-¢

- N[x}] = N[x}] + 1. Remove first element from L.

Step 6: Return I as expected 1.+ value estimation.
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Basseur and Zitler suggested using a bucket sort to reduce computational
complexity of the sorting performed in Step 4. Simulation results conducted
showed that the adopted fitness assignment scheme is significantly more ef-
fective as compared to computing the expected indicator value based on the
expected objective values.

3.7 Multi-Objective Evolutionary Algorithm with
Robust Features

We suggested three noise-handling features [95] and incorporated them into
a simple MOEA, which we call MOEA-RF. Unlike the other algorithms de-
scribed so far, these noise-handling features are designed based on the obser-
vations made on population dynamics presented in Chapter 2 The experien-
tial learning directed perturbation (ELDP) is designed upon the observation
that MOEAs are better in decision-making at the early stages of evolution,
while the gene adaptation selection strategy (GASS) exploits the observation
that the mean location of archived individuals remains relatively constant
under different noise conditions. Lastly, the possibilistic archiving method-
ology is developed using the concept of possibility and necessity measures,
which helps to perform effective archiving of noisy objective vectors. The
main steps of the algorithm within each iteration is summarized below:

Multi-Objective Evolutionary Algorithm with Robust Features (MOEA-RF)

Step 1: Evaluate and assign Pareto ranking to all solutions in P;.

Step 2:  Calculate niche count for all solutions in P; with respect to archived
solutions.

Step 3:  Possibilistic archiving.

Step 4: Combine P; and archive.

Step 5: Create mating pool:

- Binary tournament selection:
- Pick two solutions randomly from combined population.
- Compare selected solutions based on Pareto rank.
- Add winner to mating pool.

- Perform GASS on all solutions in mating pool.

Step 6: Recombination process: Perform crossover and ELDP

Experiential Learning Directed Perturbation (ELDP): As mentioned earlier,
ELDP makes use of the better decisions at early generations to improve per-
formance. The ELDP is a deviation from conventional mutation paradigm
in two aspects: 1) the change in chromosome is ordered instead of being
by chance and 2) variation can be performed either in genotype or pheno-
type space. In particular, the actual adaptation in ELDP is based on poste-
rior knowledge of favorable movements in the search space. For the ensuing
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discussion, an individual is represented as a vector X = (g, p, ), where the
vectors g and p represent the decision vector in the genotype space G € B¢
and the phenotype space X € n,, respectively; f is the associated objective
vector in the objective space, FM. The binary representation g of the de-
cision variables is mapped by the function f : G — X from the genotype
space to the phenotype space and there is a corresponding inverse function
f71: X —-G.

The experiential learning strategy adopted by ELDP for directed pertur-
bation in the phenotype space is inspired by the role of the momentum term
in back-propagation for neural networks; accelerating movement in the di-
rection of improvement, while restricting movement otherwise. The variation
for each decision variable z; can be described as follows,

Azj(t) = Azj(t) + a- Azt —1) (3.24)

where a represents the learning rate; A refers to changes acquired through
prior genetic operations such as crossover, while A corresponds to changes
including the effect of momentum. According to equation the posterior
knowledge comes in the form of past movements made by the individual in
concern. The ELDP defines a two-mode operation to impose the necessary
control for directed variation in the phenotype space and to perform bit-flip
mutation in the genotype space for genetic diversity. The ELDP operation is
given as follows,

pj(t) + Al‘j(t), if Appin < \a . ij(t — ].)| < Nmaz

zj(t+1)= {f(gBF (g(t) + Ag(t))), otherwise.

(3.25)
where Ax;(t) refers to the variation described in equation B:24 and gpr()
denotes bit-flip mutation for the j-th decision variable. Note that the corre-
sponding changes will also be updated in the genotype for any variation in
the phenotype space. From equation [3.25] the magnitude of directed pertur-
bation is bounded by A..in and Ap,qz, which can be set by the user. The
limiting bounds on directed perturbation for z; ensure that a new search di-
rection is initiated through bit-flip mutation to reduce the impact of outliers
or whenever the evolutionary search process has stalled. For simplicity, Apmin
and A4z is set as 0.0 and 0.1, respectively, on the normalized decision space.

The operation of ELDP is illustrated in Fig. [3.8 By considering each and
every decision variable, the ELDP provides a simple and efficient way for
adaptation of the required variation associated with each parameter. From
B24) and ([B23), the variation increases in magnitude in the direction of
change and thus accelerates convergence when Az;(t) and Az;(t — 1) have
the same sign. Likewise, the variation is small if Axz;(¢) and Az;(t — 1) are
different in sign, implying that the ELDP performs local fine-tuning in the
later stages of evolution where movements tend to fluctuate. Moreover, such
properties are desirable in the context of noisy objective function optimization
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Fig. 3.8 Operation of ELDP

where inferior solutions are likely to participate in the recombination process.
In such cases, the ELDP helps to reduce the stochastic influence of noise and
prevents the individuals from changing haphazardly.

Gene Adaptation Selection Strategy (GASS): Recall that the mean of the
population distribution remains relatively invariant in the decision space de-
spite the different environmental conditions. In addition, the search range of
the different variables tends to converge to a smaller region within the search
space in a noise-free environment and remains relatively unchanged or even
diverges in a noisy environment. It is thus useful to construct an approximate
model of the ideal population behavior for guiding the evolutionary search
process.

The proposed GASS attempts to manipulate population distribution so
that the evolutionary algorithm exhibits certain desirable search character-
istics. It first builds a posterior model of the desired population distribution
and then adapts part of the selected individual’s chromosome. Mathemati-
cally, the adaptation of gene structure is given as

) {U(aj,bj), U(0,1) < L -

x;(t), otherwise.

Here = is the probability of decision variable j being selected for adaptation.
The GASS defines an operation in the phenotype space which is character-
ized by a uniformly distributed number U on the interval [a;,b;] for each
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Fig. 3.9 Search range defined by convergence model

decision variable. After which, the corresponding genotypic adaptation will
be updated. It adopts two different models to control the evolution for a bet-
ter convergence, i.e. the interval [a;, b;] is dependent on the state of evolution
and the archival population distribution in the decision space.

Convergence model:  The population distribution tends to converge as the
evolving population approaches the final tradeoff. Since it is difficult to
determine if PF4 corresponds to PF*, the adopted model needs to define a
space that is larger than the current search range along the j-th dimension
to prevent a premature convergence. The corresponding interval is given as

a; = lowbd; — w - meanbd; (3.27)
bj = uppbd; + w - meanbd;

where w is a fixed parameter that controls the step change in the search
range, lowbd;, uppbd;, and meanbd; correspond to the minimum, maxi-
mum and mean of z; in the archive, respectively. The aim of the conver-
gence model is to compel EA to look beyond the current search region as
shown in Fig. In the case where an individual corresponds to the global
optimum, the overall quality of the evolving population is not adversely af-
fected. This is because similar individuals have similar genetic information
and the model creates individuals based on the converged search region.
Divergence model: A degenerate evolutionary search process is character-
ized by a non-convergent population distribution. In the situation where
the evolutionary process degenerates into a random search, such as due to
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high level of uncertainty in the system, the interval for the j-th decision
variable defines a small search region around its mean given as

a; = meanbd; —w - meanbd; (3.28)

b; = meanbd; + w - meanbd,;

The aim of the model is to reduce stochastic change in gene structure due
to random selection of individuals by providing a stable search range as
shown in Fig. Note that the interval specifying the location of new
individuals is only a rough deduction of the search region based on the
available information.

Intuitively, the utilization of statistical model can improve robustness of
existing selection strategies, where individuals selected based on fitness are
included directly in the evolving population. Note that such a procedure
introduces another desirable effect. By focusing on a specific region of the
search space, we are effectively performing implicit averaging. The selection of
appropriate model is performed autonomously based on the condition of the
evolutionary process. As shown by the experiments in Section 23] the search
process degenerated by noise can hardly fill up more than 30% of the archive’s
capacity. Hence, the behaviors of convergence and random search can be
determined based upon the growth rate of archive population and the gene
adaptation strategy can be activated when there is sufficient indication of
convergence or random search behavior in the evolution. We applied a simple
scheme; divergence model is activated when 60% of the archive capacity is
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reached, while convergence model is activated when less than 60% of the
archive is filled after 150 generations.

A Possibilistic Archiving Methodology: We also presented two archiving mod-
els, i.e. necessity-possible (NP-) archiving model and necessity (N-) archiving
model, based on the concept of possibilistic Pareto dominance relation. Con-
trary to MOPSEA and ESPEA, where probabilities are employed to model
uncertainty as part of the Pareto ranking procedure, fuzzy numbers are used
here to represent the objective vectors. The proposed approach is based on
the concept of possibility and necessity measures [67], which aims to rectify
certain deficiencies present in the current Pareto-based updating strategy in
handling noisy environments. Besides, a tagging system is proposed to allow
both the models to co-exist in the situation where the uncertainty level is low.

The archive updating schemes adopted in existing MOEAs are largely
based on the concept of Pareto optimality and some form of truncation pro-
cess is usually applied to limit the number of good individuals stored in the
archive due to the limitation of memory resource. Although such an updating
scheme is simple and effective, it is not competent in dealing with individ-
uals containing uncertainties in the objective functions since the dominance
relationship for these individuals in the presence of noise is no longer deter-
ministic. In the absence of a reliable decision maker, the standard archiving
scheme can be easily deceived into removing non-dominated individuals from
the archive or inserting dominated individuals to the archive, which could
subsequently affect the performance of evolutionary multi-objective optimiza-
tion in noisy environments.

The instance in Fig. 311 shows the distribution of archived individuals
marked by closed circles and the newly evolved individuals marked by crosses
in a two-dimensional objective space. From the definition of Pareto domi-
nance, it is clear that A, C, and D will be selected to fill the archive in
the evolution. However, A provides only marginal improvement for z; at a
great expense of xo, which gives little contribution to the overall quality of
the solution set. In the face of limited archive storage, non-contributing indi-
viduals occupying valuable space that are usually located in isolated regions
in the objective space are less unlikely to be removed during the truncation
process. It is thus desirable if the updating function is capable of reject-
ing such non-dominated individuals according to some a-priori knowledge or
user preference. In addition, it is also desirable if the updating mechanism
can minimize removal of non-dominated individuals and provide a chance for
individuals degraded by noise to survive in the evolution.

To understand the proposed archiving models, a number of definitions are
given as follows:

Definition [Bl5 Necessity Condition: Given that fi and fo are fuzzy numbers
with membership functions iy, and piy,, respectively, the necessity that the
largest possible value of f; is smaller than the smallest value of f5 is given by
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Fig. 3.11 Distribution of archived individuals marked by closed circles and the
newly evolved individuals marked by crosses in a two-dimensional objective space

Nec(zy < zy) = inf,max [1 — ppy (w), infycy (1 — piy, (v))} (3.29)

Definition BL6 Possibility Condition: Given that f; and fs are fuzzy num-
bers with membership functions pg, and piy,, respectively, the possibility
that the smallest possible value of f; is smaller than the largest value of fo
is given by

Pos(z; < Z2) = sup,min[1 — iy, (u),sup, o ips(@)]  (3.30)

Definition BL7 NP-Dominance: Given that f; and fo are M-dimensional
objective vectors of fuzzy numbers with membership functions py, and py,,
respectively, X; N P-dominates Xs, denoted by X; <yp Xo, iff

Pos(z; ; < Z2,j) > Pos(z;; <Z2:)V1,2,.... M
or
Nec(z1,i < z9;) =131 € 1,2,..., M and Nec(Z1; < zy;) <1Vj€1,2,...M
(3.31)

Definition BL8 N-Dominance: Given that f; and fo are M-dimensional ob-
jective vectors of fuzzy numbers with membership functions py, and py,,
respectively, f1 N-dominates fo, denoted by X1 <n Xo, iff

Nec(Z1; < z9,;)=1Vi€1,2,..,. M (3.32)

Fig. illustrates the different dominance relations for a minimization prob-
lem. The shaded region represents the area dominated by the individual
marked by a circle. The N P-model behaves similarly to existing archiving
models but allows decision-maker to reject certain non-dominated individu-
als in the evolution if necessary. This archiving model compares and updates
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Fig. 3.12 Region of dominance based on (a) NP-dominance relation, and (b) N-
dominance relation

individuals according to the N P-dominance relation. As shown in Fig.
BIAD), the width of the fuzzy membership function associated with the
i-th objective is denoted by L;, which represents the tolerance level of inferi-
ority for each objective. As L; tends to zero, the behavior of N P-dominance
approaches that of Pareto-dominance relation. The pruning criterion is based
upon some degree of crowding or niche count, which helps to maintain pop-
ulation diversity in the archive.

The N-archiving model updates individuals according to the N-dominance
relation, which stores a set of possibly non-dominated individuals. The mem-
bership function is a reflection of the uncertainty level present in the system,
and the width L; represents the possible values of the i-th objective. In order
to minimize deletion of non-dominated individuals, the N-archiving model
removes an archived individual only if it is N-dominated by an individual in
the archive. In this model, an individual is selected if there is no archived
individual that necessarily dominates it. Intuitively, the size of archive will
grow exceedingly large with the increase of noise and any form of niche count
or crowding comparison is of no practical meaning in the presence of noise.
Therefore, the truncation criterion for the archive should be based upon the
apparent ranking provided by the prior evaluation process.

It is clear that the proposed two archiving models operate at the two ends
of the noise spectrum. A tagging system is thus proposed to provide a graceful
integration of both models since it is often more desirable to incorporate both
the model properties in the presence of low noise level. Each individual is
assigned either a NP-tag or N-tag that defines the behavior it will experience
during the archiving process, e.g. an individual assigned with the N P-tag is
regarded as if only the N P-model is implemented. The assignment of tags is
based on a probability distribution as shown in Fig. 313l If the noise level
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is below the minimum threshold of T},,;,, all individuals will be assigned the
N P-tag. When the noise level is above the maximum threshold of T};,,., all
individuals will be assigned the N-tag with a probability of Pymax. If the
noise level is between the two thresholds, the probability of Py is a linear
function of noise as depicted in Fig. The Possibilistic archiving model
is shown in Fig. B.14

3.8 Comparative Study

In this section, a comparative study is conducted between MOEA-RF, NTS-
PEA, MOPSEA, SPEA2, NSGAII, and PAES. Since re-sampling is prob-
ably the simplest and most common noise compensation technique, the
baseline algorithm with a re-sampling rate of 10 (named as RMOEA) is
also included in the study. The indices of the seven algorithms are listed in
Table B.Il In this study, different experimental setups with noise settings of
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Table 3.1 Indices of the different algorithms

Index 1 2 3 4 5 6 7

Algorithm MOEA-RF RMOEA NTSPEA MOSPEA SPEA2 NSGAII PAES

Table 3.2 Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, NTSPEA,
MOPSEA, RMOEA and MOEA-EF;
Population size 1 in PAES;
Archive (or secondary population) size 100.
Chromosome Binary coding; 15 bits per decision variable.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate
0.8
Mutation operator Bit-flip mutation in NSGAII, SPEA2, NTSPEA, RMOEA and
ELDP in MOEA-RF
1 for ZDT1, ZDT4 and ZDT6;
for FON and KUR;

Mutation rate

chromosomle_length

bit_-number_per_variable
Hyper-grid size 2% per dimension
Niche Radius Dynamic for MOEA-RF.
Evaluation number 50,000

0% = {0%,5%,10%,20%} are applied to evaluate the performances of the
algorithms.

Both the step size w for GASS and the learning rate o for ELDP are
set as 0.3 in the algorithm. The Possibilistic archiving approach as shown
in Fig. B13 is applied with triangular membership function for both the N-
and NP-archiving models. Since the width of the membership function for
the N-archiving model represents the noise level, it can be estimated by re-
sampling one individual at the beginning of the evolution. The parameters
for tag assignment, such as Thyin, Tmaz, and Pymax, are set as 0.0, 0.1, and
1.0, respectively. In accordance to the original paper [32], kmax is set as 4,
while ¢; and cg are set as 10% and 30%, respectively, for NTSPEA. The value
of s is calculated by re-sampling ten individuals immediately after the first
evaluation for MOPSEA.

ZDT1: Fig. shows that the performances of the algorithms deteriorate
with the increase in noise level; particularly there is a drastic performance
change in PAES when the noise level is increased to 5%. Fig. B1D(c) shows
that the MOEA-RF, NTSPEA, and MOPSEA are capable of evolving better
solutions in a noisy environment as compared to algorithms without any noise
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Fig. 3.15 Performance metric of (a) GD, (b) MS, and (c) HVR for ZDT1 attained
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Fig. 3.16 The PF* from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d)
MOPSEA, (e) SPEA2, (f) NSGAII, and (g) PAES for ZDT1 with 20% noise

compensation techniques. With the exception of RMOEA, Fig. 311 shows
that most algorithms encountered no problem in converging and maintaining
a diverse set of solutions for ZDT1 under noiseless environment. As shown by
the evolutionary trace of GD in Fig. B.I8 the poor performance of RMOEA
can be attributed to the re-evaluation of candidate individuals. Although the
performance of MOEA-RF for proximity is not the best, it has the fastest
convergence for both GD and MS as can be seen from the evolutionary trace
of GD and MS in Fig. The metric of HVR in Fig. BT7(d) indicates
that the solutions evolved by MOEA-RF have the best overall quality. It
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Fig. 3.18 Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT1
with 20% noise

also produces a more uniformly distributed Pareto front as shown by the low
value of S. The KS test also revealed that MOEA-RF and other algorithms
are statistically different in terms of S, MS, and HVR.

Among the conventional MOEAs, i.e., SPEA2, NSGAII, and PAES, it is
apparent that the PAES is most affected by the noise. As can be seen from
the distribution of GD in Fig. BI8(a), MOEA-RF, NTSPEA, and MOPSEA
produce competitive results since various features are included in these algo-
rithms to deal with the noise. On the other hand, the performance of RMOEA
is the worst among all algorithms except for PAES. As can be observed in
Fig. and Fig. BI8(b)-(d), the MOEA-RF is capable of evolving a more
diverse and uniformly distributed Pareto front for ZDT1 in the presence of
noise as compared to other algorithms.

ZDTj4: From the trend of GD over the various noise levels in Fig. B20(a), it
is apparent that the smoothing effect of noise described in Section 2 is also
present for the noise levels of 5% and 10%. In contrast to the algorithmic
behaviors observed for ZDT1, this phenomenon enables some of the algo-
rithms, such as SPEA2 and MOPSEA, to evolve better solutions as shown in
Fig.B20(a) and Fig. B20(c). It can be observed from Fig. 321 and Fig.
that the local optima imposed by this benchmark appear to be a formidable
barrier against the global convergence. At the end of 50,000 evaluations,
RMOEA, MOPSEA, SPEA2, NSGAII and PAES only managed to discover
one of the local Pareto fronts. On the other hand, Fig. B.23(a) shows that
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Fig. 3.19 Evolutionary trace of (a) GD and (b) MS for ZDT1 with 0% noise
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Fig. 3.20 Performance metric of (a) GD, (b) MS, and (c) HVR for ZDT4 attained
by MOEA-RF (¢), RMOEA (00), NTSPEA(|), MOPSEA (*), SPEA2 (V), NSGAII
(A) and PAES (e) under the influence of different noise levels

MOEA-RF, incorporated with ELDP and GASS, is able to evolve individu-
als near to the global Pareto front consistently. From the convergence trace
of GD in Fig. B25(a), it is clear that ELDP plays an important role in the
algorithm to escape from the local optima. Moreover GASS is activated when-
ever the criterion of convergence is satisfied, which diverts the evolutionary
search and avoids the local optima. The dips on the metric of MS, observed in
Fig. B28|b), correspond to the effect of jumping from one local Pareto front
to another during the evolutionary search. In this intermediate state of jump-
ing, there is a transition from one relatively diverse set of individuals along
a local Pareto front to another, which results in the effect of sudden dips. As
can be observed in Fig. B23[(b)-(d), MOEA-RF is capable of evolving a more
diverse and uniformly distributed Pareto front under noiseless environment
as compared to the other algorithms.
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Fig. 3.22 The PF4 from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d)
MOPSEA, (e) SPEA2, (f) NSGAII and (g) PAES for ZDT4 with 20% noise

As can be seen in Fig. and Fig. 324 the performances of NTS-
PEA, MOPSEA, SPEA2, NSGAII, and PAES are poor under the influence of
noise. Furthermore, the number of non-dominated individuals discovered by
these algorithms is also greatly reduced as shown in Table 3.3l By comparing
Fig. B23(b)-(d) and Fig. B24(b)-(d), it is apparent that MOEA-RF is able
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Fig. 3.25 Evolutionary trace of (a) GD and (b) MS for ZDT4 with 0% noise

to evolve individuals that are on or close to the global tradeoff for ZDT4,
although its performance is generally affected by the presence of noise.

ZDTG6: Tt can be observed from Fig. that different algorithms behave
differently, although their performances generally deteriorate with increasing
noise levels. For instance, Fig. B26(c) shows that there are drastic drops in
the performances of MOPSEA and PAES as reflected by the metric of HVR
when the noise level is increased to 5%. On the other hand, the performances
of NTSPEA, NSGAII, and SPEA2 seem unaffected for MS and GD over the
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Fig. 3.27 The PF* from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d)
MOPSEA, (e) SPEA2, (f) NSGAII, and (g) PAES for ZDT6 with 0% noise

noise levels of 0%, 5%, and 10%, but deteriorate sharply when the noise level
is increased to 20%. It can also be observed that the noise-handling algorithms
of RMOEA, NTSPEA, MOPSEA, and MOEA-RF have different degrees of
success in the presence of noise. For example, the re-sampling mechanism
employed by RMOEA has a slight edge over only PAES at noise level of
20% for GD and MS, while MOEA-RF outperforms other algorithms on the
various metrics of GD, MS, and HVR.

Although RMOEA, MOPSEA, and PAES can identify some parts of the
tradeoff for ZDT6, Fig. B27(b), (d), and (g) show that these algorithms are
unable to evolve a well-distributed Pareto front. Fig. B.29(c) also shows that
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Fig. 3.31 Evolutionary trace of (a) GD and (b) MS for ZDT6 with 0% noise

RMOEA is unable to find a diverse solution set consistently. On the other
hand, NSGAII, SPEA2, and MOEA-RF provide competitive results in all
aspects, particularly for the metric of GD as shown in Fig. In addition,
the convergence traces of GD and MS in Fig. B31 show that MOEA-RF
offers the fastest convergence among all algorithms due to the incorporation
of ELDP.

Fig. and Fig. show that NTSPEA, MOPSEA, NSGAII, SPEA2,
and PAES are unable to find any individuals along the global tradeoff under
the influence of noise. The simple archiving technique employed in NTSPEA
allows it to cope with noise better than MOPSEA, SPEA2, NSGAII and
PAES. On the other hand, MOEA-RF is able to find a set of solutions near
the global tradeoff consistently. With the exception of GD at 0% noise, the
KS test indicates that the performance of MOEA-RF is statistically different
from those of the other algorithms in all aspects of the MO optimization
goals. The MOEA-RF also maintains a stable evolving environment through
GASS that defines a concentrated search region. This results in a consistent
algorithmic performance as reflected by the small variance of all metrics in
Fig. Conversely, RMOEA shows a large variance for the metric of S, MS,
and HVR, despite the presence of re-sampling technique in the algorithm.
FON: Tt can be observed from Fig. that none of the noise-handling
MOEAs provides distinct advantage over NSGAII and SPEA2 for solving
FON in noisy environments. In fact, only MOEA-RF is able to match the
performances of NSGAII and SPEA2 in terms of convergence and diversity
over the different noise levels. Conversely, the performances of other algo-
rithms deteriorate drastically at noise levels of 10% and 20% as shown in
Fig. B3l It can be observed from Fig. B33 and Fig. B34 that RMOEA are
unable to find the final tradeoff, while other algorithms are capable of find-
ing at least some parts of the optimal Pareto front. The results also show
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Fig. 3.36 Evolutionary trace of (a) GD and (b) MS for FON with 0% noise

that MOEA-RF offers the best performance in terms of spacing and spread
and the KS test reveals that the performance of MOEA-RF is statistically
different from those of the other algorithms in terms of MS, S, and HVR.

From the evolutionary trace in Fig.[3:36] it is obvious that RMOEA, NTS-
PEA, MOPSEA, and PAES are unable to improve beyond the initial can-
didate solutions at 20% noise. As a result, NTSPEA, MOPSEA, and PAES
only manage to find one or two solutions that are far away from the final
tradeoff for most of the 30 simulation runs, leading to the high values of GD
and S as shown in Fig. B35(a)-(b). On the other hand, MOEA-RF, SPEA2,
and NSGAII are able to discover some individuals that are near to the final
tradeoff. The KS test indicates that the three algorithms are rather similar
in performance for the various MO optimization metrics. Fig. B35(d) and
Fig. also show that MOEA-RF has a slight edge in producing better
solutions as compared to the other algorithms, due to the proposed GASS
that concentrates the evolutionary search to reduce the stochastic influence
of noise as shown in Fig. B30la) where the improvement of convergence for
MOEA-RF coincides with the activation of GASS.
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Fig. 3.37 Performance metric of (a) GD, (b) MS, and (c) HVR for KUR attained
by the algorithms under the influence of different noise levels
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Fig. 3.38 Performance metric of (a) GD, (b) S, (¢) MS, and (d) HVR for KUR
with 0% noise

KUR: Similar to FON, Fig.[337shows that MOEA-RF, NSGAII, and SPEA2
are better for solving KUR in noisy environments as compared to the other
algorithms. Fig. shows that the global search mechanism of MOEAs
generally responds well to the challenges of discontinuity and non-convexity
posed by noiseless KUR. Among these algorithms, MOEA-RF, NTSPEA,
SPEA2, and NSGAII are capable of finding a diverse and uniformly dis-
tributed Pareto front for most of the 30 simulation runs. It can be observed
from Fig. B39(b)-(d) that RMOEA, NTSPEA, MOPSEA, and PAES have
difficulty in distributing individuals uniformly along the discovered Pareto
front in noisy environments. On the other hand, MOEA-RF, SPEA2, and
NSGAII give good performance in terms of distribution and diversity under
the influence of noise. Besides having similar results for GD and MS, Table
B3] depicts that MOEA-RF, SPEA2, and NSGAII are capable of archiving
more non-dominated individuals as compared to the other algorithms.

3.9 Effects of the Proposed Features

It can be observed from the comparative studies that MOEA-RF is capable
of evolving near-optimal, diverse, and uniformly distributed Pareto fronts for
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and (d) HVR for KUR

Table 3.3 Number of non-dominated individuals found for the various benchmark
problems at 20% noise level

MOEA-RF RMOEA NTSPEA MOSPEA SPEA2 NSGAII PAES

1st quartile 28 6 5 7 18 17 4
ZDT1  Median 31 7.5 6 9 21.5 19.5 4.5
3rd quartile 32 10 8 10 27 23 5
1st quartile 29 5 6 9 12 20 5
ZDT4  Median 33 7 8 11 26.5 15 6
3rd quartile 41 8 10 13 29 21 9
1st quartile 82 2 4 3 8 8 2
ZDT6  Median 85 3 5 4 9 9 4
3rd quartile 88 5 6 5 11 11 6
1st quartile 9 1 1 1 6 6 1
FON Median 11 2 1.5 2 8.5 85 2
3rd quartile 17 2 2 3 12 12 3
1st quartile 25 6 5 8 23 25 7
KUR  Median 27 8 5.5 9 25 27 9
3rd quartile 30 9 7 11 28 30 10

the different benchmark problems. In this section, the dynamics and param-
eter settings of ELDP and GASS are examined in the presence of the possi-
bilistic archiving model. Simulation results show that the proposed archiving
model plays a complementary but crucial role in the preservation of good
individuals discovered by ELDP and GASS, without which the potential of
ELDP and GASS may not be easily exploited. Note that ZDT4 and FON
are used in the study here since it has been observed in the previous section
that most algorithms are unable to deal with these two benchmark problems
effectively across the different noise conditions.
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Fig. 3.40 The first row represents the distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA at
generation (a) 0, (b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4

15

0.05 02 15
0.04
‘ 015
ovoa h ! ! !
0.1
0 02
\‘ ~ A h ﬂ 05 05 05
001 ‘\Mm 'VN WH ‘\ 0.05 “\ A \
0 Iy ol A A 0 o 0
0 ‘ 0 05 1 [ 05 0 05 0 05 1
100 5 1.5 1 1
»
80P o 4 08 08
60f o 3le ! 06 0.6
40 oo 2 0s 04 04
20 1 0.2 0.2
0 0 0 0 0
0 05 1 0 05 1 0 05 0 05 0 05 1
(a) (b) (c) (d) (e)

Fig. 3.41 The first row represents distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA
with ELDP at generation (a) 0, (b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4

The Parzen window density estimation [210] is used to estimate the distri-
bution of individuals in the decision space. Fig. B.:4T(a)-(e) shows the distri-
bution of one decision variable and the associated non-dominated individuals
of baseline MOEA at the generation of 0, 10, 60, 200, and 350 for ZDT4. Sim-
ilarly, the effects of ELDP and GASS are shown in Fig. B41] and Fig. 342
respectively. To illustrate the working dynamic for the problem of FON, the
distribution of one decision variable and the associated non-dominated indi-
viduals for baseline MOEA without and with the proposed features at the
generation of 0, 50, 150, 350, and 500 are shown in Fig.[3.43 to Fig. Note
that the possibilistic archiving model behaves like the standard archive in the
absence of any preference or noise. The distribution and the associated non-
dominated individuals demonstrate how the different features influence and
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Fig. 3.42 The first row represents distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA
with GASS at generation (a) 0, (b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4
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Fig. 3.43 The first row represents the distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA at
generation (a) 0, (b) 50, (c) 150, (d) 350, and (e) 500 for FON

improve the optimization process. In addition, it shows whether the proposed
features are behaving in accordance to the design specifications.

It can be seen from the figures that ELDP and GASS have a distinct
advantage in overcoming local optimality for ZDT4 as well as in finding a
diverse tradeoff for FON. By comparing the decision variable distribution
and the evolved non-dominated solutions across the different generations, it
is evident from Fig. B4Ila)-(c) and Fig. B:44|(a)-(c) that the population dis-
tribution converges faster when ELDP is incorporated. The slight divergence
of the decision variable distribution about the main peak in Fig. B 44|(d)-(e)
illustrates the local fine-tuning capability of ELDP, which is important in
leading the evolution towards the global tradeoff. By comparing the decision
variable distribution between Fig. [340(c) and Fig.B42(c) as well as between
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Fig. 3.44 The first row represents the distribution of one decision variable and
the second row shows the associated non-dominated individuals of baseline MOEA
with ELDP at generation (a) 0, (b) 50, (c) 150, (d) 350, and (e) 500 for FON
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Fig. 3.45 The first row represents the distribution of one decision variable and
the second row shows the associated non-dominated individuals of baseline MOEA
with GASS at generation (a) 0, (b) 50, (c) 150, (d) 350, and (e) 500 for FON

Fig. B.43(c)-(e) and Fig. B45(c)-(e), it can be seen that the incorporation of
GASS results in a diverse distribution of individuals in the decision space.
This shows that GASS is capable of diverting the evolution to other search
regions upon the detection of a convergence, thus allowing the algorithm to
discover the global tradeoff for ZDT4 as well as to achieve a good spread of
non-dominated individuals for FON.

To examine the effect of parameter sensitivity for ELDP and GASS, anumber
of simulations are performed with different settings of «={0.0,0.05,0.1,0.3,0.5}
for ELDP and w={0.05,0.1,0.3,0.5} for GASS at noise levels of 0% and 20%.
The setting of =0 for ELDP is equivalent to the operation of bit-flip mutation.
Apart from demonstrating that ELDP provides better performances over the
bit-flip mutation, it is observed that ELDP and GASS are capable of performing
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consistently and effectively within a large range of o and w settings for ZDT4
and FON at different noise levels.

3.10 Further Examination

The results in Sections [3.8 and reveal that the proposed features can im-
prove the performance of multi-objective optimization in terms of proximity,
diversity, and distribution under the influence of noise. In this section, the
features of ELDP and GASS are applied to SPEA2 and NSGAII to exam-
ine if their effects can be reproduced in conventional MOEAs. The ELDP is
used in place of the bit-flip mutation operator in SPEA2 and NSGAII, while
the GASS is implemented in conjunction with existing selection schemes.
The possibilistic archiving model is not implemented here since the archiv-
ing strategies of SPEA2 and NSGAII play an important role in defining the
behaviors of the algorithms.

It has been observed in the previous section that SPEA2 and NSGAII can
neither discover the global tradeoff for ZDT4 nor maintain a well-distributed
set of individuals for FON. The performances of these two algorithms are
also largely affected by noise in ZDT4 and FON. Hence, these two bench-
mark problems are used in the study here. NSGAII-RF and SPEA2-RF de-
note the respective algorithms incorporated with the proposed features. The
metric distributions of the simulation results for noiseless and noisy ZDT4
are shown in Fig. B46(a)-(d) and Fig. B47(a)-(d), respectively. Similarly,
the performance of the algorithms for noiseless and noisy FON is shown in
Fig. B48(a)-(d) and Fig. B-49(a)-(d), respectively.

It can be observed from Fig. 346 - Fig. that ELDP and GASS are
capable of improving the performances of SPEA2 and NSGAII in terms of
convergence and diversity of individuals along the tradeoff for ZDT4 and
FON. In the case of ZDT4, the incorporation of the proposed features allows
NSGAII-RF and SPEA2-RF to escape the local optima in ZDT4. In the case
of FON, Fig. B.48 shows that the incorporation of ELDP and GASS improves
the performance in terms of GD, MS, and HVR. It can also be observed from
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with 20% noise

Fig. that NSGAII-RF and SPEA2-RF have a slight edge over NSGAII
and SPEA2 in almost all aspects of the multi-objective optimization goals.

3.11 Conclusion

Noise has a detrimental effect on the selection, elitism, and diversity pre-
sevation processes in MOEAs. Hence, it is not surprising that most of the
algorithms presented in this chapter involve different schemes to improve the
performance of these mechanisms in the presence of noise.

The simplest approach to reduce the impact of noise is to conduct ex-
plicit averaging. In this regard, the modified non-dominated sorting genetic
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algorithm IT (MNSGAII) and the indicator-based evolutionary algorithm
(IBEA) worked on the expected fitness values. Furthermore, in MNSGATI,
dominated solutions are inducted into the first non-dominated front using a
clustering algorithm to prevent the loss of good solutions due to errors made
during the non-dominated sorting procedure. To improve the reliability of
the selection process, algorithms, such as estimate strength Pareto evolution-
ary algorithm (ESPEA), multi-objective probabilistic selection evolutionary
algorithm (MOPSEA), and multi-objective evolutionary algorithm for epis-
temic uncertainty (MOEAEU), introduce the concept of probability to model
the noisy objective vectors. To minimize the impact of noise on the opti-
mization process, the noise tolerant strength Pareto evolutionary algorithm
(NTSPEA) assigns a finite lifetime to all archived solutions. The MOEA-RF
incorporates two heuristics to guide the optimization process in the presence
of noise and applies a possibilistic archiving to minimize the removal of true
non-dominated individuals and provide a chance for individuals degraded by
noise to survive in the evolution.



Chapter 4

Handling Noise in Evolutionary Neural
Network Designl

In this chapter, we consider the design of artificial neural networks (ANNs) as
an instance of noisy design problem. In the context of ANN design, evolution-
ary optimization has led to the development of evolutionary artificial neural
networks (EANN) in which adaptation is performed primarily by means of
evolution. Given that the intrinsic relationship between the architecture and
the associated synaptic weights can be quite complex, the design methodol-
ogy would be flawed if we were to decouple these two properties during the
training phase of the network. The design of ANN has two intrinsical noise
sources:

e The same network structure can give rise to different fitness values due to
different weight instantiations.

e Excess hidden layer neurons tend to fit the observed features of the train-
ing samples which are not representative of the intrinsic underlying dis-
tribution of observations, obstructing the characterization of the true
properties of the system or problem.

To minimize the effects of these two forms of noise, we developed a hy-
brid multi-objective evolutionary neural network (HMOEN) in [98]. A micro-
hybrid genetic algorithm (uHGA) is applied to optimize the synaptic weights
with respect to any new ANN structure introduced to reduce the former ef-
fects of noise, while singular vector decomposition (SVD) is incorporated in
an architectural recombination operator to handle the latter. The role of the
SVD operator is important, particularly in obtaining the geometrical rele-
vancy of neurons in hidden layer space when attempting to prune a neural
network to finally arrive at a parsimonious network architecture.

* (© 2008 IEEE. Reprinted, with permission, from C. K. Goh, E. J. Teoh, and K. C. Tan,
“Hybrid multiobjective evolutionary design for artificial neural networks”, IEEE
Transactions on Neural Networks, vol. 19, no. 9, pp. 1531-1548, 2008.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 101
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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4.1 Singular Value Decomposition for ANN Design

As mentioned above, excess hidden neurons will lead to the phenomenon of
over-fitting of data that are not characteristic of the underlying problem.
However, it is difficult to quantify the contribution of additional neurons in
the hidden layer without the use of an independent validation set of data. In
this chapter, we suggest the use of a simple, yet, robust information measure
based on the SVD operator in the framework of EANNSs to achieve this pur-
pose, in removing neurons in the hidden layer of the evolved single hidden
layer feedforward neural network.

Computationally, the SVD is very robust and allows the discrimination
against noise contamination. Typically, the SVD is utilized in computing the
pseudoinverse (Moore-Penrose generalized inverse) of a rectangular, possibly
singular, matrix. The SVD has also been extensively applied in problems of
least squares, spectral estimation, and system identification. In signal pro-
cessing, the SVD plays a central role in subspace modeling or low-rank ap-
proximation (similar to our problem of estimating the number of hidden layer
neurons) of signals.

4.1.1 Rank-Revealing Decomposition

Consider the output matrix H of the hidden layer corresponding to the N
training samples and n hidden neurons. The actual rank (say k) of H may
be different from its numerical rank (say n), where k& < n. Such a situation
usually arises when the original matrix H is contaminated by E resulting in
a matrix, H

H=H+E (4.1)

with rank(H)=Fk and rank(H)=n. This contamination, commonly referred to
as noise, obstructs the characterization of the true properties of the system or
problem given the observed training samples. This phenomenon actually cor-
responds to the marginal role played by additional hidden layer neurons that
tend to fit the features of the training samples which are not representative
of the intrinsic underlying distribution of observations.
Given a real matrix H € RV*" applying the SVD results in the orthogonal
transformation,
UTHV = [22:0]
> = diag(oy, ...0p)

where U € RV*N and V € R™" are known as the left and right singular
vectors of H. Y. € RMN*" is a diagonal matrix with unique, non-negative
entries ordered in decreasing magnitude. This decoupling technique of the
SVD allows the expression of the original matrix as a sum of the first n
columns of u and uT, weighted by the singular values. The rank of H is
determined by observing the n largest singular values that are non-zero.

(4.2)
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While SVD does not reveal the actual rank of full-ranked H [159, 245],
through the structure of its zero elements, it provides information of the
actual rank through the structure of small elements. Let the singular values
of H and H be (0y,...0,) and (51, ...5,), respectively. From Schmidts Sub-
Space Theorem, we have

Gigr + -+ 03 < |IEI[E (4.3)

where || ||F denotes the Frobenius norm, revealing the rank of H such that
its n — k smallest singular values are bounded by the Frobenius norm of E.

4.1.2 Actual Rank of Hidden Neuron Matriz

Every neuron in the hidden layer constructs a hyperplane in the input fea-
ture space [124] and the contribution of each hidden neuron to the separating
capability of the ANN depends on its uniqueness. In a geometrical sense, the
rank of H denotes the space in which the columns of H occupy, represent-
ing the number of separating hyperplanes in the system. In the case where
n = H — 1 hidden neurons are used with a suitable non-linear activation
function such that H is full-ranked, the rank requirement [124] 229] is satis-
fied, giving rise to N — 1 separating hyperplanes for N training samples. This
follows that, using simple matrix inverse, we are guaranteed perfect recon-
struction for the training set. Intuitively, if H is of higher rank, H better fits
the training data, at the expense of generalization when lim,,_, yrank(H).
This full-rank condition also ensures that the patterns projected onto the
hidden layer space are linearly independent; accordingly this is also known
as ¢-general position [46].

However, it should be noted that even if the transformed patterns produced
in the hidden layer space are in general position, some of these patterns
may be degenerate in the sense that certain patterns can be represented as
a linear combination of other patterns. This leads to the issue of whether
this additional hidden neuron is contributing to the actual separability of the
samples or merely compensating for the presence of noise in the observations.
Clearly, there is a limit, for which introducing additional hidden neurons will
tend to over-fit the training data. Therefore, the actual rank of the matrix
H is more useful in estimating the appropriate number of hidden neurons in
the Single-Hidden Layer Feedforward Network (SLFN) for a given problem.
In the context of representing the input patterns in hidden layer space, we
can think of additional hidden layer neurons as causing degeneracy in this
hidden layer space, for increasing the number of hidden layer neurons is akin
to introducing noise into the system thus perturbing the hidden layer space
such that the hidden layer space is now being represented by n hidden neurons
which are of marginal benefit.

In Fig. 41l we illustrate the problem of hyperplane construction in hid-
den layer space and its corresponding relationship with the singular values of
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Fig. 4.1 Tllustration of constructed hyperplanes in hidden layer space with (a) 1-4,
(b) 5-8, (c¢) 9-12 hidden neurons and (d) corresponding decay of singular values as
number of hidden layer neurons is increased

the hidden layer output matrix H using a rwo-dimensional toy problem that
is easily visualizable. From observation, we know that three appropriately
placed hyperplanes should provide us with a good balance of network ca-
pacity and complexity without sacrificing the generalization capability of the
resulting classifier. The placement of these hyperplanes is achieved through
the use of learning algorithms (e.g. EA or backpropagation using gradient
descent) on the set of training data. These learning algorithms will usually
attempt, to the best of their abilities, to position these hyperplanes such
that their construction is as linearly independent as possible for the given
set of training data. This usually requires that the learning algorithm has
converged prior to using the SVD to decompose the matrix H and obtain
the set of singular values. The singular values confirm that the use of three
hidden layer neurons should be sufficient for the network capacity given the
complexity of the problem. We arrive at this conclusion from the presence
of a noticeable gap in the decay of singular values, indicating that most of
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the spectral energy of H can be attributed to the first three hidden layer
neurons. Note that while we may not know the identities of these three most
linearly independent hyperplanes (unless we carry out a recalculation of the
SVD using a permutation of all possible combinations of hidden neurons),
we find that it is more efficient to retrain the whole network using the found
number of hidden neurons, which in this case is three.

Theorem [l1: Define the numerical e-rank k. of the matrix H with respect
to some tolerance e [115] by

ke =k.(H,e) = IllgrllliZIlgs{rank(H—i-E)} (4.4)

which states that if there is a gap between the k.-th and the k1-th singular
values of size ¢, then H has actual rank (e-rank) k.. The larger this gap ¢ is,
the more robust the matrix is to perturbation. To avoid possible problems
when is itself perturbed, the definition of actual rank is refined by introducing
6 as an upper bound for € for which the numerical rank remains at least equal
to k.

Theorem [4l2: The matrix H has a numerical rank of (8, ,r) with respect
to the norm || - || if 6, &, and r satisfy the following:

k = inf{rank(B) : ||A — B|| < ¢}

e < 6 <sup{n:||A— B|| <n = rank(B) > k} (4.5)

ok provides an upper bound for 8§, while o1 provides a lower bound for €.

The above definitions are equivalent to saying that the matrix H is linearly-
independent when perturbed by E up to a threshold determined by || E||? < €.
This result also means that the singular values of H satisfy ox, > ¢ > op.y1-
As described in [I15], a well-determined gap between the singular values of
oy. and oy, represented by e should exist in order for the above definition
to make much sense; k. should be, in other words, well-defined for small
perturbations of the threshold ¢ and the singular values. Alternatively, the
numerical e-rank is the smallest integer k for which (Schmidts Sub-Space
Theorem),

Z 0]2 < g2 (4~6)

j=k+1

This result suggests that as more neurons are added to the hidden layer, the
contribution of each additional hidden neuron decreases after a certain thresh-
old. From a geometric point of view, additional hyperplanes constructed by
these newly introduced hidden neurons are not unique, or different as com-
pared to existing hyperplanes (these new hyperplanes may be almost parallel
to existing ones). The significance of these new hyperplanes can be quantified
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by examining the singular values of the matrix H as more hidden layer neu-
rons are added. For detailed proofs of these theorems, the interested reader
is directed to [159) 245].

In our context, this suggests that we should use a SLFN with a fewer
number of hidden neurons since a higher number of neurons in the hidden
layer may unnecessarily fit the noise that is inherently present in the samples.
As noted in [T15], F is typically unknown but what we do have knowledge of
is the source of E, which in turn can be used to estimate the norm of FE.

These singular values indicate the degree of mutual correlation between
features in the hidden layer space with column degeneracy resulting when
these hidden space features are highly correlated, which in turn leads to the
conclusion that these additional neurons are redundant. While the singular
values do not provide information on which of these features are correlated
(the identities of the neurons are not explicitly known), the presence of small
singular values would indicate that these additional hidden neurons can be
removed without affecting the performance of the SLFN significantly.

4.1.3 Estimating the Threshold

A long-standing problem in the use of the SVD as a tool in determining
the actual or effective rank of a perturbed matrix is in the distinguishing of
significantly small and insignificantly large singular values [164].

Suppose H,, € RV*" represents the hidden layer output activation matrix
of a SLFN with n neurons in the hidden layer. As n increases, the input-
output space mapping that is discovered by the MLP better approximates
the training data. Increasing n can be seen as increasing the complexity (and
hence capacity) of the network. Since all problems would have an inherent
degree of complexity, which is essentially unknown, estimating this complex-
ity characterized by k that is in some sense close to the inherent complexity
of the problem is our objective. However, as n is increased, the better fitting
of the training data by the MLP gives rise to a lesser ability to generalize on
unseen examples (i.e. the training set). Let o;(H,) denote the i-th singular
value of the SLFN with n hidden neurons. A way to measure the contribution
of the i-th singular value to say, the separability of classes, is to relate its
value to the other singular values.

If € is large, we can assume that the matrix H is relatively robust to per-
turbations; conversely, if ¢ is selected to be small (but not too small such that
the numerical e-rank does not make sense), external noise that is introduced
to the system may cause the matrix H to be rank-degenerate. Often, there
is no clear value for k where o) — 041 is obvious. If the SLFN has been
well-trained and has converged (there is little change in its weight values),
the decay of the singular values is gradual and not very distinct and hence,
we cannot conclude confidently that the numerical rank of matrix H is less
than its actual rank. This has been explored in further detail in [262].
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4.1.4 Moore-Penrose Generalized Pseudoinverse

To resolve a linear system of the general form HF = T is straightforward
if the matrix H is square and non-singular. However, under many practical
circumstances, the matrix H is usually singular and likely to be rectangu-
lar. The Moore-Penrose generalized pseudoinverse simplifies the treatment
by providing the solution to the linear system in a least-squares sense. The
pseudoinverse of H is defined differently depending on the rank and dimen-
sionality of H.

In most practical problems, the system is over-determined and hence,
would want to find the least-square error of ||H 3 —T||2 in the presence of the
inconsistencies introduced by the additional equations. Thus, § is obtained
from ||HB — T||2. The pseudoinverse can be shown to be the minimum norm
least-squares solution of the system, i.e. the pseudoinverse of 3, which is 37,
minimizes ||H( — T||2. For further details on the pseudoinverse, readers are
directed to [237].

4.2 Hybrid Multi-Objective Evolutionary Neural
Networks

4.2.1 Algorithmic Flow of HMOEN

To design an evolutionary ANN that is capable of evolving the architecture
and weights of the ANN simultaneously, a few features, such as variable-
length chromosome representation, specialized genetic operator in the form
of the SVD-based Architectural Recombination (SVAR), and micro-hybrid
genetic algorithm (uHGA) for effective local search, are incorporated in
HMOEN. The pseudocode for HMOEN is given below:

Hybrid Multi-Objective Evolutionary Neural Networks (HMOEN)

Step 1: Initialize population of ANNs, P;.
Step 2:  Evaluation of ANNs on training set and Pareto ranking.
Step 3:  Update archive:

- Add non-dominated solutions in P; to A;.

- Remove non-dominated solutions from updated A;.

- Remove most crowded solutions based on niche count if |A;| exceeds
size limit.

Step 4: Combine updated A; and P;. Perform binary tournament selection
to form mating pool.

Step 5:  Calculate epr and gen_req for all selected solutions.

Step 6: Perform SVAR and mutation.

Step 7:  Implement pHGA.

Step 8: If stopping criterion is not satisifed, repeat process from Step 2.
Otherwise output A;.
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The design process begins with the initialization of population. All indi-
viduals will be evaluated according to the objective functions and ranked
according to their dominance relationship in the population. The objective
functions and ranking scheme will be described in Section After the
ranking process, non-dominated solutions will be updated into the archive.
HMOEN applies the fixed-sized archive applied in Chapter Bl Elitism is im-
plemented by a two-stage process; 1) the archive and evolving population are
combined and 2) binary tournament selection of this combined population is
conducted to fill up the mating pool. In binary tournament selection, two in-
dividuals are selected randomly from the combined population and compared
based on the Pareto rank. The individual with a lower rank, i.e. better, is se-
lected for genetic variation. In the event of a tie in Pareto ranks, niche count
is used as the tie-breaker. The selected ANNs will then undergo the process of
SVAR, which adapts the network architecture, and the mutation process. In
order to reduce the noise presented by the change in network architecture as
well as to improve convergence, the offspring are allocated to the pHGA for
local exploitation. The evolution process repeats until the stopping criterion is
satisfied. The mechanisms of SVAR and pHGA are described in Sections[£.2.7]
and [L20] respectively.

4.2.2 Moulti-objective Fitness Fvaluation

ANN design is cast as a multi-objective optimization problem where a num-
ber of objectives such as training accuracy and degree of complexity can be
specified. The conflicting objectives of maximizing network capacity and min-
imizing network complexity is manifested in the tradeoffs between training
and test accuracies. As before, the Pareto ranking scheme [84] assigns the
same smallest cost for all non-dominated individuals.

One of the primary reasons why a weighted objective is not favored is due
to the fact that it is difficult to properly apportion the weights that should
be associated with each objective in converting a multi-objective problem
into a SO problem. Most objectives that are considered, such as training
accuracy and size of neural network weights, are not commensurable (not of
the same dimensional quantity), which makes it rather difficult to place these
two objectives on a similar platform for comparison.

In this chapter, we consider the simultaneous evolution of both the neural
architecture as well as the synaptic weights. Further, this problem is distin-
guished from previous works by formulating the problem as a multi-objective
problem where the twin objectives of classification accuracy and network
complexity are conflicting in nature. Therefore, the optimization problem for
the ANNs generalization on unseen data can be written as

fr=min{S3 S (0e(0) - u(0)"
fo = min{NH,} (4.7)
f3 = min{[|[Wg|[2}
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where f; refers to the sum-of-squared (SSE) errors of the classification errors.
In our problem formulation, we use only one hidden layer of neurons (k=1),
as dictated by the Universal Approximation Capability (UAC) theorem for
neural networks. IV is the number of samples, C' is the number of classes, and
dy, is the desired output.

The two other objectives that we consider in our multi-objective approach
are firstly, the minimization of the number of neurons in the hidden layer (f2),
and secondly, the minimization of the Ls-norm of the hidden layer weights
(f3). We consider each in turn, as will be demonstrated later in our exper-
imental results. The use of fo and f3 in addition to f; typically leads to
improved generalization performance (as compared to the use of f; as the
sole objective to be maximized) as the size, or complexity of the network is
now controlled. There is little distinction, empirically, of which of the two
additional objectives to be minimized (f2 or f3) leads to better testing accu-
racies. We will address this issue in a later section of this chapter.

4.2.3 Variable-Length Representation for ANN
Structure

EAs process a set of encoded parameters, providing EA designers with the
flexibility to design an appropriate representation of the potential solutions.
Appropriate representation implies that it fulfils some criteria, such as ease
of implementation or exploitation of the problem structure. For simplicity,
the chromosome is often represented as a fixed-structure and the embedded
variables are usually assumed to be independent and context insensitive. In
EANNS, a hybrid structure between binary and real-number representation
is commonly used for the simultaneous optimization of weights and architec-
ture. However, such a representation is not suitable for ANN design problems
where flexibility is essential for the simultaneous evolution of architecture and
connection weights.

In this chapter, a variable-length chromosome representation is adopted
to represent the ANN topology, including the number of neurons in the hid-
den layers and the connection weights linking the input, hidden, and output
layers as illustrated in Fig. [L2(a). Fig. 2(b) is the instantiation of the rep-
resentation in Fig. 2(a). Each neuron is coupled with its associated weights,
thus allowing easy manipulation by search operators for the addition or dele-
tion of neurons. The chromosome may consist of different number of neurons,
which reflects the complexity of the ANN, but the number of connections is
fixed by the number of input attributes. Such a representation is efficient and
facilitates the design of problem-specific genetic operators.

4.2.4 SVD-Based Architectural Recombination

In EANNS, the recombination process between two ANNs is unlikely to pro-
duce a good offspring due to the lack of a clear definition of a building block
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Fig. 4.2 An instance of the variable chromosome representation of ANN and (b)
the associated ANN

in the framework of ANN [284]. However, the lack of recombination to facil-
itate the exchange of information between candidate solutions implies that
each individual is expected to adapt independently by making best use of all
available local information. This motivates the development of the SVAR ap-
proach which is based on the fact that each neuron constructs a hyperplane
in the input feature space and hence, contributes to the resulting separat-
ing capability of the ANN. It follows that each neuron and its associated
connections define a building block which contributes to the capacity of the
ANN.

The issues considered in the design of the SVAR operator include the
selection of the appropriate neuron and its associated weights for recombina-
tion as well as the decision to remove or add an appropriate neuron to the



4.2 Hybrid Multi-Objective Evolutionary Neural Networks 111

candidate ANN design. SVAR is performed between two parent ANNs and
the procedure is outlined in the pseudocode below:

SVD-Based Architectural Recombination (SVAR)

Step 1:  Apply SVD operator to determine presence of redundant neurons
for both parents with a corresponding threshold € and to determine
the number of (redundant) hidden layer neurons to remove.

Step 2:  Selection of neurons for removal or exchange.

Step 3:  For both parents, perform either removal, exchange, or addition of
neurons:

- IfU(0,1) < 1/3,
Perform exchange of marked neurons.
Else if there are redundant neurons as indicated from Step 1,
Perform removal of marked neurons.
Else add neurons marked for exchange to both parents

For our proposed approach, the building blocks of each network are the
neurons (together with their incoming weights from the previous layer). We
call these neurons building blocks as they are the smallest units for which we
operate on (such as performing crossover). The SVD is used as the tool to
determine the presence of redundant neurons, while the calculation of inter-
and intra- subspace angles is used for the selection of neurons to be removed
or exchanged. The SVD operator will decide the number of hidden layer
neurons to be removed.

The number of neurons in the hidden layers that are deemed redundant by
the SVD operator is in effect a function of the threshold that is used, with ¢
assuming the role of the SVD threshold. In deciding which hidden layer neu-
ron to remove or prune, we use a geometrical approach, where the algorithm
examines the subspace spanned between the hidden layer neurons such that
the neuron(s) which is (are) most linearly correlated with the other hidden
layer neurons is (are) consequently removed. This is to prevent unnecessary
removal of a neuron at the initial stages when the weights are not yet adapted
to the problem.

The rationale for utilizing subspace angles as the selection criterion for
pruning and exchange is to encourage the linear independency between the
neurons. In [262], the authors used the SVD operator to first determine the
appropriate, or necessary, number of hidden layer neurons on an initially large
structured feedforward neural network. After which, the network is retrained
using the same learning algorithm but using the reduced set of hidden layer
neurons. In our approach, however, we adopt an online method such that
during the evolutionary process, the identity of the hidden layer neuron(s)
to be removed are determined geometrically by the subspace approach as
described above. From the flowchart, it is observed that it is possible for a
candidate ANN with redundant neurons to retain the same structure via the
exchange of neurons from the other parent.
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4.2.5 Micro-Hybrid Genetic Algorithm

As mentioned in the introduction, the optimization of neural network struc-
tures is an inherently noisy problem, i.e. the immediate neural network fitness
after the recombination process may not be a good indicator of the new net-
work structure due to an inappropriate set of weights. Thus, it is necessary to
optimize the synaptic weights with respect to the new ANN structure after
any structural changes. The mutation operator offers a simple option for local
fine-tuning [139]. However, domain information cannot be easily incorporated
and its stochastic nature tends to render the search operation inefficient. In-
tuitively, the change in genetic structure should be ordered instead of being
left to chance in order for the local search to be robust. While the well-known
back-propagation (BP) algorithm is a directed search, by means of gradient
descent, it is prone to being trapped in local optima. In view of these con-
cerns, the EANN is hybridized with the ptHGA .

(HGA

THe pHGA exploits the synergy between a pGA [150] and the pseudoinverse
operator to decompose the large and complex search space. Specifically, the
1GA performs local fine-tuning of the hidden layer weights, while the pseu-
doinverse operator optimizes output weights in the least squares sense based
on the weights found by the uGA. The pseudocode of the ypHGA is shown
below:

Micro-Hybrid Genetic Algorithm (¢HGA)

Step 1: Initialize POP by creating |[POP| — 1 variants of selected ANN.

Step 2: Evaluate POP and store best ANN.

Step 3:  Perform binary tournment to select |[POP| —1 ANNs from POP.
Insert best ANN into mating pool.

Step 4: Perform crossover on selected neurons.

Step 5:  Perform mutation on selected neurons.

Step 6:  Apply pseudoinverse operator.

Step 7: If stopping criterion is not satisifed, repeat process from Step 2.
Otherwise, output best ANN.

In pHGA, simulated binary crossover (SBX) and uniform mutation (UM) is
applied to evolve the desired set of connection weights. The mutation strength
of UM is adapted as,

s = 0.1 (uppbd,, — lowbd,,) (4.8)

where uppbd,, and lowbd,, correspond to the minimum and maximum of the
associated weights in the population, respectively.
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Balance between Evolution and Learning

While the incorporation of local search can accelerate the convergence of
the evolutionary optimization process, hybrid EAs also give rise to issues
pertinent to the tradeoffs between evolution and learning. Apart from the
obvious challenge posed by limited computational resources, balance between
exploration and exploitation is necessary to maintain diversity in the evolving
population for the approximation of the Pareto optimal front. Consequently,
these concerns have led to the recent development of resource utilization
schemes, such as local search probability [139] and simulated heating [14].

While local search probability can reduce the computational time utilized
for local fine-tuning, the exploration-exploitation dilemma is not explicitly
considered. The fundamental idea behind simulated heating is based on sim-
ulated annealing, where the intensity of local search increases with time.
Although it is intuitive that more computational time for local search should
be allocated in the later stages, online search requirements are not consid-
ered in simulated heating. In contrast to existing methods which allocate
resources based on a predetermined schedule, the allocation of resources here
is based on the feedback of an online performance measure, the evolutionary
progress rate [252]. The evolutionary progress rate (epr(t)) can be defined as
the ratio of the number of new non-dominated solutions discovered in gener-
ation ¢, new_nondomsol(t), to the total number of non-dominated solutions,
total_nondomsol(t),

new_nondomsol(t)

epr(t) = foainondomsol(d) (4.9)

The set of new non-dominated individuals discovered at each generation
is basically composed of individuals that dominate the non-dominated in-
dividuals of the previous generation and individuals that contribute to the
diversity of the solution set.

In this adaptive scheme, the number of individuals allocated for local
search is adapted based on the epr(t) in every generation. Mathematically,
the adaptation of computational resource allocation can be written as,

gen_req(t) = (1 — epr(t)) . (upp_bdcom — low_bdcom) + low_bdeom,  (4.10)

where gen_req is the number of generations performed by pHGA, while
upp_bdcom and low_bd..,, denote the upper and lower limits of available com-
putational resource, respectively. The rationale is that a high value of epr(t)
means that the algorithm is still in the exploratory stage and the need for
local fine-tuning is low. Likewise, a low value of epr(¢) is an indication of con-
vergence and more resources are required to meet the requirements of local
fine-tuning. In this chapter, upp-bd.om and low_bd.,,, are set as 20 and 10 of
the total population size, respectively.



114 4 Handling Noise in Evolutionary Neural Network Design
4.3 Experimental Study

4.3.1 FEzxperimental Setup

In order to evaluate the effectiveness of the proposed methods, a detailed
empirical study is carried out on seven different datasets. HMOEN is imple-
mented using the MATLAB technical computing platform and corresponding
simulations are performed on an Intel Pentium 4 2.8 GHz computer. Thirty
independent runs are performed for each of the datasets to obtain statisti-
cal information such as consistency and robustness of the algorithms. The
various parameter settings of HMOEN are tabulated in Table 1

In the training phase for the classifiers, we use 30-fold cross-validation,
partitioning the data into two independent training and testing sets. 60%
of the available samples are randomly selected as training data, with the
remaining 40% as testing data. Prior to training, pre-processing is carried on
the samples of each dataset. All input features are scaled and transformed
such that the resulting input features have a mean of 0 and a variance of 1,
as it has been shown that convergence is usually faster if the average of each
input variable over the training set is close to zero [I78]. For the outputs,
since we consider classification problems, we use binary target values with
a l-out-of-C' encoding where for a C-class problem, the largest output i
is assigned to class i, with i={1,2,...,C'}. For the k-th training sample, the
desired class output ¢ where di,(8) = {0,1} is 1 for k = ¢ and 0 otherwise. This
is essentially a winner-take-all approach for the output layer neurons, and is
a common approach used for classification purposes. Hidden layer neurons

Table 4.1 Parameter settings of HMOEN for the simulation study

Parameter Settings

Population Main population size: 20; Archive size: 20
pHGA: 4.

Chromosome HMOEN: Variable-length real number representation;
wHGA: Real number representation;

Selection Binary tournament selection

Crossover operator HMOEN: SVAR
pHGA: SBX

Crossover rate 0.9

Distribution index (SBX) 10
Threshold, ¢ (SVAR) 0.995

Mutation operator Normally distributed mutation
Mutation rate 0.1
Mutation strength Adaptive

Nice radius Dynamic.
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Table 4.2 Characteristics of Data Set
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Dataset Samples Attributes Classes Remarks

Cancer 699
Pima 768
Heart 297

Hepatitis 155

Horse 368
Iris 150
Liver 345

9

13

19

27

2

Determine the patients for whom the tu-
mour is benign or malignant

Determine whether a patient shows sign
of diabetes according to World Health Or-
ganization Criteria

The learning task is to predict the pres-
ence or absence of heart disease given the
results of various medical tests carried out
on a patient.

The hepatitis problem is a complex and
noisy dataset as it contains a large num-
ber of missing data (there are 167 missing
values in total in this dataset). The learn-
ing task is to predict whether a patient
with hepatitis will live or die.

The objective here is to determine, based
on the physical ailments and attributes
of a particular horse, if it should have
surgery performed on it.

This dataset is perhaps the best-known
database to be found in pattern recogni-
tion literature. One class is linearly sep-
arable from the other two; the latter are
NOT linearly separable from each other.

The learning task for this dataset is to
determine, if the adult male that is tested
using blood tests suffer from liver disor-
ders that might arise from excessive alco-
hol consumption.

use a hyperbolic tangent non-linearity, while the output nodes use a linear

output activation function.

The real-world datasets used in this simulation study, represent some
of the most challenging problems in machine learning, were obtained from
the UCI machine learning database (http://www.ics.uci.edu/~mlearn/
MLRepository.html). Many researchers have used these datasets in validat-
ing the performances of their algorithms, and thus these datasets provide
a good test suite of problem for evaluation of the proposed approach. The
key characteristics of these problems and their associated learning tasks are
summarized in Table
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4.3.2 Analysis of HMOEN Performance

Ezxperimental results: Table and Table [£4] show the results of HMOEN
over 60 independent runs on the seven problems. HMOEN_HN denotes that
ANNs are evolved based on the criteria of f; and fy, while HMOEN_L2
denotes that ANNs are evolved based on the criteria of f; and f3. The test
and training results are based on the ANN with the best training accuracy
on the dataset from each run. Network size refers to the mean of the number
of hidden layer neurons of the associated ANNs.

With the exception of Hepatitis, the networks evolved by HMOEN_HN
and HMOEN_L2 have comparable sizes. For instance, the mean network size
evolved by HMOEN_HN and HMOEN_L2 are 9.8667 and 9.6833, respectively.
This is probably because architectural adaptation is governed by the same
mechanism of SVAR. On the other hand, apart from Liver, the paired-T test
reveals that the different optimization criteria have a significant impact on
test accuracies. In particular, HMOEN_L2 performs significantly better for
the problems of Pima, Hepatitis, Horse, and Iris, while HMOEN_HN only
fares slightly better for Cancer and Heart.

Effects of proposed features: In this section, the effects and contributions of
multi-objectivity, and the proposed features of SVAR and pHGA are exam-
ined for the different datasets. Note that only HMOEN_L2 is used in the
study here since it has been observed in the previous section that f; and f3
are generally the better optimization criteria. Here, different case setups are
used to represent different combinations of features in HMOEN_L2. The dif-
ferent cases are summarized in Table[4.5l In Case 1, f1 and f3 are aggregated
with the weight vector [0.8 0.2], i.e. FF = 0.8 f; + 0.2 - fo. HMOEN_L2 is

Table 4.3 HMOEN_HN Performance on the Seven Different Datasets. The Table
Shows the Mean Classification Accuracy and Mean Number of Hidden Neurons for
all Datasets.

Data Set

Method Cancer Pima Heart Hepatitis Horse Iris  Liver

HMOEN_HN
Training Mean 0.9816 0.8075 0.9021 0.9668 0.9991 1 0.797
Std 0.0015 0.0053 0.0098 0.0113  0.002 0 0.0098

Testing Mean 0.9682 0.7536 0.8106 0.7551  0.977 0.9103 0.6894
std 0.0058 0.0182 0.0261 0.0441 0.0171 0.0313 0.0271

Network size  Mean 4.8  8.0833 9.6833 10.7 9.15 2.6833 6.7667
Std 1.8485 1.8712 3.1218 3.5668 5.3673 1.0813 1.1552
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Table 4.4 HMOEN_L2 Performance on the Seven Different Datasets. The Table
Shows the Mean Classification Accuracy and Mean Number of Hidden Neurons for
all Datasets.

Data Set

Method Cancer Pima Heart Hepatitis Horse Iris  Liver

HMOEN_L2
Training Mean  0.9825 0.7954 0.9035 0.9498 0.9991 0.9839 0.8059
Std 0.0017 0.0052 0.0088 0.0164 0.0022 0.0056 0.0119

Testing Mean 0.9626 0.7845 0.7969 0.803  0.9838 0.98 0.6800
std 0.011 0.0122 0.0294 0.048 0.0131 0.0184 0.0294

Network size  Mean  4.6667 7.5167 9.8667 11.3833 7.2  3.0833 6.8333
Std 1.5367 2.446 3.5865 3.2682 5.0583 0.8693 1.2374

Table 4.5 Different Case Setups to Examine Contribution of the Various Features

Settings
Case Optimization Goal SVAR pHGA
1 Weighted Yes Yes
2 Multi-objective No No
3 Multi-objective Yes No
4 Multi-objective No Yes
5 Multi-objective Yes Yes

represented as Case 5. The variable-length chromosome, Gaussian mutation
operator, and archive mechanism remain fixed for the five cases.

The distributions of the classification accuracy and network size are repre-
sented by boxplots in Fig. and Fig.[Z4 respectively. By comparing Case 1
(which is the SO version of HMOEN) and Case 5 in Fig. 3] we can note that
the multi-objective approach is generally better with similar structural com-
plexities. The paired-T test conducted also indicates that the performance
between Case 1 and Case 5 is statistically different in all problems except
Cancer. The purpose of conducting variants of HMOEN _L2 with and without
SVAR is to ascertain the contribution of the proposed operator. The effects
of SVAR can be observed by comparing the performances between Cases 2
and 3 and Cases 4 and 5 in Fig. Clearly, without the use of the SVD as a
form of capacity control in SVAR, the performances demonstrated in Case 2
and Case 4 are inferior to those in Case 3 and Case 5, respectively, for most
of the problems. In addition, comparable, if not better, classification accura-
cies are achieved with smaller networks as evident in Fig. L4l These results
substantiate our earlier hypothesis that each (hidden) neuron, together with
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its corresponding hidden layer weights (leading from the input layer to the
hidden layer), functions as a building block for an EANN. The specialized
recombination operator acts specifically on these neuronal building blocks.
This notion is intuitively appealing because when viewed from the perspective
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of hidden layer space, each hidden neuron and its input set of weights (for
the single hidden layer) construct a separating hyperplane in hidden layer
space; thus, each hidden neuron together with its corresponding set of input
weights, which are treated as a set of building blocks, are accountable for
determining the separation of the training samples in hidden layer space. By
comparing the performances between Cases 2 and 4 and Cases 3 and 5, it is
clear that the introduction of ptHGA provides substantial improvements to
the classification performance on the testing sets of all the datasets. It can
be noted that the local search ensures that the final network is sufficiently
well-trained such that the SVD is able to operate on the hidden layer activa-
tion matrix effectively. Recall that the use of the SVD, as described earlier,
requires the network to be well-trained. In other words, without pHGA, the
SVAR tends to remove neurons excessively as reflected in the generally lower
number of hidden neurons (large number of neurons are pruned). Therefore,
it is also evident that SVAR and pHGA are complementary mechanisms in
HMOEN.

Effects of SVD threshold settings: It can be observed in the previous sec-
tion that the SVAR allows HMOEN to evolve smaller networks with com-
parable, if not better, classification accuracies. In this section, experiments
are conducted for the various datasets over SVD threshold settings of
{0.9, 0.95, 0.98, 0.99} to investigate its effects on network structure and
classification performance. Trends of testing accuracies and network sizes
over the four threshold settings for the different datasets are plotted in
Fig. and Fig. 6] respectively.

Theoretically, the size of the network is expected to increase with the SVD
threshold. This can be explained from the fact that the pruning mechanism,
implemented through the proposed SVD-based crossover, becomes stricter
so as to maintain more of the spectral energy of the singular values. This
requires that more hidden layer neurons need to be kept. This conjecture
is reinforced from Fig. where a monotonically increasing trend for the
architectural or structural complexity is observed as the SVD threshold is
progressively increased from 0.95 to 0.99.

From a conventional and theoretical perspective, the trends for the train-
ing and testing accuracies are usually strongly positively correlated up to a
certain point, beyond which the performance of the classifier on the test set
degrades. The correlation between these two sets becomes negative when the
training accuracy steadily increases while the testing accuracy drops. Con-
tinuing the training process beyond this point would result in the classifier
being overtrained and any subsequent training, while increasing the training
accuracy, will always degrade the performance of the classifier on the testing
set.

Overtraining occurs in two ways, either with excessively many training
epochs or when the architecture of the network is overly complex. The former
applies to the traditional learning route for neural networks, while the latter
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applies to our approach, where the SVD threshold is increased during the
pruning mechanism which in turn is implicitly implemented via the SVD-
based crossover. We can understand the SVD threshold from the perspective
of architectural complexity. A higher SVD threshold means larger networks
with more hidden layer neurons being evolved. However, using the proposed
approach, we clearly see from Fig. that using a larger SVD threshold does
not necessarily lead to a lower performance in generalization as measured by
the accuracy on the testing set. Alternatively, this can be understood from
the perspective of the proposed method being able to prevent over-training
from occurring.

4.4 Conclusion

In this chapter, we highlighted the two sources of noise in the design of neu-
ral networks, 1) the same network structure giving rise to different fitness
values due to different weight instantiations and 2) excess hidden layer neu-
rons over-fitting the observed features of the training samples which are not
representative of the intrinsic underlying distribution of observations. We de-
scribed a hybrid multi-objective evolutionary approach which applies a robust
information measure based on the singular value decomposition to estimate
the necessary number of neurons to reduce the second form of noise. Sub-
sequently, the SVD-based architectural recombination is presented for the
purpose of facilitating the exchange of neuronal information between candi-
date neural network designs and adaptation of the number of neurons for each
individual based on a geometrical approach in identifying hidden layer neu-
rons to prune. In addition, two other problem-specific operators comprising
a variable-length representation and a micro-hybrid genetic algorithm with
adaptive local search intensity are also proposed to handle the fundamen-
tal issues of structural adaptation and local fine-tuning. The use of tHGA
effectively removes the first source of noise. Experimental studies are also per-
formed to examine the effectiveness of the proposed methods with respect to
real-life datasets to illustrate that both the SVAR and pHGA models assume
different, but nonetheless significant, roles in the evolution of effective ANN
designs. While we have demonstrated the effectiveness of our proposed ap-
proach for classification problems, we believe that the methods that we have
employed in this article are sufficiently flexible and robust to be extended to
handle a variety of problem domains, such as regression, prediction, as well as
system identification problems, all of which we hope to investigate in future
works.



Chapter 5

Dynamic Evolutionary Multi-objective
Optimization

Many real-world systems include time-varying components and, very often,
the environment in which they operate is in a constant state of flux. For
problems involving such dynamic systems, the fitness landscape changes to
reflect the time-varying requirements of the systems. Examples of such prob-
lems can be found in the areas of control, scheduling, vehicle routing, and
autonomous path planning.

In dynamic single-objective problems, it is unlikely that the optimal so-
lution will remain invariant in face of the changing fitness landscape. Pre-
viously found solution becomes obsolete and it must be updated to meet
the new requirements. Dynamic multi-objective problems are certainly much
more complex than their single-objective counterparts because we are deal-
ing with a set of solutions instead of just one single solution. Not only are
we required to adapt the obsolete set of Pareto solutions when the problem
changes, we are expected to find a new set of solutions that satisfies the three
multi-objective optimization goals quickly.

In a certain sense, the dynamic multi-objective problem can be considered
as the consecutive optimization of different time-constrained multi-objective
problems with varying complexities. In this case, the simplest approach to
handle dynamic problems is to restart the optimization process everytime a
landscape change is detected. However, one of the challenges of evolution-
ary dynamic optimization is to exploit past information to improve tracking
performance; it is simply too inefficient to restart the optimization process
everytime a change in landscape is detected, especially when the new optimal
solution set is somewhat similar to the previous solutions. It is also imper-
ative that the MOEA must be capable of high speed convergence to find
the optimal solution set before it changes. On the other hand, when MOEA
converges to the new Pareto optimal set, the difficulty is that there will be
a lack of diversity necessary to explore the search space for the new Pareto
optimal front and Pareto optimal set when landscape changes.

In this chapter, we will present a taxonomy of dynamic problems and
describe a number of existing test functions for dynamic multi-objective
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optimization that can be found in the literature. We will discuss the issues of
performance assessment and present a number of performance metrics in dy-
namic multi-objective optimization. We will also present a number of MOEAs
that are designed to handle the difficulties posed by the dynamic landscapes.

5.1 Dynamic Multi-objective Optimization Problems

Dynamism in real-world problems may arise from a variety of factors, some
of which are due to human intervention, while the rest are inherent to the
problem; a change in preference by the decision-maker, a new job in the pro-
duction line, an obstacle in the path of a robot, and breakdown of vehicle
in vehicle routing, etc. In certain cases, the number of objectives or decision
variables to be optimized may change requiring a drastic change in the rank-
ing or representation on the part of the MOEA. In this work, we will focus
on dynamic multi-objective problems with fixed objective and design space
dimensionality and which require the MOEA to track the changing fitness
landscape.

In contrast to noisy fitness functions, the fitness topology of dynamic multi-
objective problems may change but the objective values are deterministic at
any one time. In this context, the term static is more appropriate than deter-
ministic for denoting multi-objective problems without explicit consideration
of its dynamism. For dynamic multi-objective problems, the PF* and the
PS* are unlikely to remain invariant and the optimization algorithm must be
capable of tracking the PS* over time. The dynamic multi-objective problem
can be described as

xren)I(rT{T F(X7 t) = {fl(X7 t)v f2(x7 t)a ) fM(X7 t)} (51)
where t is typically measured in terms of solution evaluations. For subsequent
discussions, we will affix the time variable to the multi-objective optimiza-
tion notations described in Chapter [ to distinguish dynamic multi-objective
optimization from static multi-objective optimization. The terms PF; and
PS; refer to the desired Pareto front and solution set at time ¢, while the set
of tradeoffs and non-dominated solutions evolved by the dynamic MOEA at
time ¢ will be termed as PFtA and PSf, respectively.

5.2 Dynamic Multi-objective Problem Categorization

In dynamic single-objective problems, a solution can either deteriorate due to
a shift in the fitness landscape or become obsolete due to the emergence of a
new optimum. Likewise, such traits can be found in dynamic multi-objective
problems, except that we are now dealing with a set of solutions, which
makes the tracking process a lot trickier. Another distinct characteristic of
dynamic multi-objective problems is that the shape and distribution of PF*
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are susceptible to change as well. This makes it necessary to consider the
dynamics of both feature spaces in the investigation of dynamic MOEAs.

Accordingly, Farina et al [73] identified four different types of dynamic
multi-objective problems according to the changes affecting the optimal
Pareto front and the optimal Pareto set,

Type I where PS} changes, while PF} remains invariant,
Type II where both PS; and PF; changes,

Type III where PF} changes, while PS} remains invariant and
Type IV where both PS} and PF} remain invariant.

Farina et al further noted that even though both PS; and PF; are time-
invariant in Type IV problems, it is possible that the fitness topology is
changing with time. Continuous changes in the fitness landscape can easily
mislead the optimization process, posing a challenge to the MOEA finding
the desired solutions.

The above classification scheme is only applicable to dynamic multi-
objective optimization problems. There also exist other appropriate but more
general categorizations of dynamic problems. Deb et al [58] pointed out that
the changes in a dynamic multi-objective problem can take place in the objec-
tive functions, the constraint functions, and the variable boundaries. In [145],
dynamic problems are classified according to how the optimal solutions move
after a landscape change. Jin and Sendoff stated that the location of the op-
timum can 1) move linearly, 2) move non-linearly, 3) oscillate among a few
points, or 4) move randomly in the decision space. Another different but im-
portant perspective of dynamic problems can be found in the single-objective
domain. Branke [26] proposed the categorization of dynamic problems based
on 1) frequency of change, 2) severity of change, 3) predictability of change,
and 4) periodicity of change.

These classifications are complementary schemes. The first and second
schemes categorize the dynamic multi-objective problem based on the phys-
ical aspects of change, the third considers how the optimum behaves with
time, while the fourth considers how the changes are effected. A more gen-
eral approach would be to decompose the dynamic problem into its spatial
and temporal components. Table Bl shows the list of spatial features and
their attributes, while Table summarizes the different temporal features.
Note that the spatial component is further decomposed into physical and non-
physical attributes of change. Physical attributes refer to physical aspects of
problem change such as PS} and PF}. Non-physical attributes refer to the
manner in which these spatial physical attributes are changed. Further, note
that these physical spatial attributes are unique to dynamic multi-objective
problems since we are dealing with a set of solutions in contrast to a single
solution in single-objective optimization.

A dynamic multi-objective problem may be characterized by more than one
specific instance of spatial and temporal attributes. For example, a dynamic
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Table 5.1 Spatial Features of Dynamic Multi-Objective problem

Type Attributes
_ PS; The whole or part of PS; moves to a new location
g PF; The shape of PF; changes or a part of PF; disap-
i pears
f Fitness landscape Fitness landscape changes without affecting PS™
and PF*
Random Random PSj, PF; and fitness landscape changes.
Aspect of change may occur at the same time or
may not happen at all.
= Random Changes to physical attributes are random
g = Trend Changes to physical attributes follow a fixed pat-
Z, 5 tern. Past physical topology may or may not be

revisited again

Periodic Changes to physical attributes are periodic.
Changes within each period may or may not follow
a fixed pattern

Table 5.2 Temporal Features of Dynamic Multi-Objective problem

Type Attributes

None No change is triggered at all

Random Change is triggered randomly

Fixed Change is triggered at a fixed interval

Scheduled  Change is triggered based on a predetermined schedule such that it
may follow a trend or even appear random.
Conditional Change is triggered after some predefined condition is satisfied

multi-objective test problem can exhibit PF} and PS; changes simultane-
ously as in the case of Type II problem described earlier. At the same time,
PF* changes may follow a fixed trend that is triggered randomly, while PS*
changes may be periodic that is triggered based on a fixed schedule. In the
event of random physical changes, it is still possible that whenever a par-
ticular aspect, such as PF}, changes, the change may be following a certain
trend.

5.3 Dynamic Multi-objective Test Problems

Dynamic multi-objective problems are essentially multi-objective problems.
Therefore, fitness landscape characteristics such as multi-modality, high-
dimensionality, and test suites suggested in the evolutionary multi-objective
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optimization literature are applicable and should be taken into account when
constructing any test function or test suite. Some features specific to the dy-
namic domain that should be considered in a dynamic multi-objective test
suite include

e Cyclic spatial changes;

e Predictable spatial changes;

e Landscape changes, such as emergent landscapes, that are difficult to
detect;

e Landscape properties that allow very fast convergence or no exploitable
spatial changes at all, i.e. memory has no significant advantage at all;

In general, any dynamic test suite should include features that challenge
the dynamic MOEA capability to 1) detect a change in the environment,
2) maintain or generate the necessary diversity to explore the search space
upon any changes, 3) exploit past information, and 4) converge to the new
PS; quickly.

The spatial and temporal features described in Table Bl and Table
provide different challenges in the design of dynamic MOEAs. For example,
the storage of past PS} in the form of memory will improve algorithmic per-
formance for problems exhibiting periodic non-physical attributes. In cases
where spatial and temporal features follow some trend, the presence of pre-
dictive elements can prepare the evolutionary process in anticipation of the
problem’s future behavior. On the other hand, we can expect that these
mechanisms will have little or no significant advantage for problems which
do not revisit previous PS; or exhibit any trend. Furthermore, it is always
possible that the reintroduction of previous solutions or prediction strategy
may mislead the optimization process instead.

5.3.1 TLK2 Dynamic Test Function

TLK2 [257] is one of the earliest dynamic multi-objective test problems to
be suggested in the literature. It is based on the moving peaks function [26],
which provides an artificial multi-dimensional landscape consisting of several
peaks, where the height, width, and position of each peak are varied as the
environment changes. The problem of TLK2 is given as

min fi(x) = 21 (5.2)

. _ 1
min fo(x) = - (5.3)
g(t) = max SHi(t) 2] (5.4)

LA W) 25 (251 = X (1)

At a predefined frequency 77, the height and width of each peak are changed
by adding a random Gaussian variable. The location of each peak is moved
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by a vector v of fixed length s in a random direction, i.e. the parameter
s controls the severity of change. A change in the peak is governed by the
following equations

o€ N(0,1) (5.5)
Hi(t) = H(t—1)+7-0 (5.6)
Wi(t) = Wi(t—1) +0.01 - & (5.7)
X)) = Xi(t—-1)+v-o (5.8)

The change in multi-modal function g may result in a shift of the optimum
to a different location. In this case, the evolutionary search needs to jump or
cross a valley in order to find the new optimum.

5.3.2 FDA Dynamic Test Functions

The FDA test suite proposed by Farina et al [73] is built upon the ZDT and
DTLZ frameworks described in Chapter [Il This test suite has been used in
[68, 117, 192, 289]. Formally, the two-objective FDA test problems have the
following functional structure.

min fi(xr, t Z :rF(t) F(t)>0 (5.9)
T EXT
min fa(x11, X111, t) = g(x11,t) - h(x1, f1,9) (5.10)
gxmt) = 1+ G + Y (z: - G(1)’ (5.11)
T €XI11
h(xm,t) = 1 — (%)H(ﬂ (5.12)

where F'; H, and G are time-dependent functions which control how the
density of Pareto solutions, shape of the PF; and PS} change with time.

The M-objective FDA test problems have the following functional
structure.

min f1(x,t) = (14 g(xs1)) - cos(0.5my1) - - - cos(0.5mypr—1)  (5.13)
min fa(x,t) = (14 g(x71)) - cos(0.5myy) - - - sin(0.57ypr—1)  (5.14)

min fas(x,t) = (14 g(xxx)) - sin(0.57y;) (5.15)
gxit) = G(t)+ > (zi— G(t)° (5.16)

yi = 2 ® (5.17)
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where F' controls how the density of Pareto solutions changes over time and
G controls the changes in the PF} and PS; over time.
The dynamics of the FDA test functions are governed by the equation,

1 7

t= - LTTJ (5.18)
where np and 7p specify the severity and frequency of landscape change,
respectively. Interestingly, due to the sinusoidal behavior of G(t) and H (t), np
also determines the periodicity of similar solution sets emerging. In particular,
a smaller ny implies that the number of different P.S} is small. Both nr and
7r has a lower bound of 1.0. Setting a value of n; < 1.0 will result in a
magnitude change that is out of range, while increasing values of ny produce
decreasing magnitudes of change. Likewise, decreasing values of 7 will result
in increasingly static environments.

Mehnen et al [192] also suggested a generalization of the FDA framework,
which allows for the number of Pareto front segments and the number of local
optimal fronts to be dynamic as well. This extended framework is defined as
follows,

F(t)

min fy(x1,t) = a3 (5.19)
min fo(xi1,t) = g(x11,t) - h(f1,9) (5.20)
gxmt) = 1+ Y (2 — G(1))*~ cos(w(t)m(z; — G(t))+1(5.21)
(fist) = 2= (210 = (L singe ey 10 (5.22)

Based on the FDA framework, Farina et al suggested five different prob-
lems and the definitions of these dynamic multi-objective test functions are
summarized in Table 5.3l The first three problems are bi-objective problems.
FDAL is a Type I problem where only the PS} is dynamic. FDA2 is a Type
IIT problem where only the PF} changes, from a convex to non-convex front.
FDA3 is a type II problem where both the PF} and PS} changes. FDA4 and
FDAJ5 have scalable number of objectives. These two test functions are Type
I and Type II problems, respectively.

5.3.3 dMOP Test Functions

In [94], we developed three test functions based on the construction guidelines
provided by Farina et al described above. The definitions of these dynamic
multi-objective test functions are summarized in Table 4l The first test
function, dMOP1, is a Type III problem where only the PF} is dynamic,
while dMOP2 is a Type II problem where both PS; and the PF; change
with time. Like FDA1, dMOPS3 is a Type I problem. However, the variable
that controls the spread of the PF} changes as well.
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Table 5.3 Definition of FDA Dynamic Test Functions

Test Definition

1 FDA]. fl(X]) =i,
fz(XHm) =g-h,
g(xir) = 1+ X7, (v = G(1),
h’(flvg) =1- \/g
G(t) = sin(0.57 - t)
where |x77] =9, x5 €[0,1], x5 € [-1,1]

2 FDA2 fi(xr) = x1,
f2(x11) =g h,
g(xII) =1+ ZZEX[I x’i27
L 2
Bx111, f1,9) = 1 — (L) O+ asenpsy i)
H(t) =0.75+ 0.7 - sin(0.57 - t)

where |X1[| = |X1[1| =15, x5 € [0, 1], Xr1,X111 € [0, 1]
3 FDA3 filxn) =3, ey, 71 (1),
fa(x11) =g h,

g(xi1) =1+ G(1) + X, e, (2 — G(1)7,

h’(flvg) =1- \/g

G(t) = | sin(0.57 - 1)

F(t) _ 102 sin(0.57t)

where |x;| = 5,|x1] =25, x7 €[0,1], %7 € [-1,1]
) = (1+ g(xr)) T2 cos(54E),

) = (1+g(xr)) [T, (cos(34F)) sin(ZM2T),
Far(x) = (14 g(xrn) [T sin(57)

9(x11) = Y, ey, (10 = G(1))%,,

G(t) = |sin(0.57 - t)|
where x € [0, 1]

4 FDA4 fi(x

Jre(x

)

5 FDAS5 fi(x) = (14 g(x1r1)) [T " cos(4T™),
Fr(x) = (14 g(xrr)) TT;L, " (cos(47)) sin(#E47),
Fu(x) = (1+ g(xr)) [TL7 " sin(47),

g(xir) = G(t) + X, o, (w1 — G(1)) 7,

Yi =, (t)v

G(t) = |sin(0.57 - t)|

F(t) =1+ 100sin*(0.57 - t)
where x € [0, 1]
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Table 5.4 Definition of AMOP Dynamic Test Functions

Test Definition

1 dMOPl fl(ml) =i,
fo(z2,..®m) =g h,
g(z2, ..xm) =1+9-3 7", z:2,
(f1,9) =1 - (4"
H(t) = 0.75 - sin(0.57 - t) + 1.25
where m = 10, z; € [0,1]

2 dMOP2 fl(ml) =i,
fz(l’g, :L‘m) =g- h,
g(x2, ) = 1+ X7, (2 — G(1)),
B(f1,g) = 1 — (£2)70
H(t) =0.75 - sin(0.57 - ¢) + 1.25
G(t) = sin(0.57 - t)
where m = 10, z; € [0, 1]

3 dMOP3 fi(zr) = zr,
fo(x\zr) =g - h,
g(x\z,) = 1+ Y00 (2 — G(1) 7,
h’(flvg) =1- \/g
H(t) = 0.75 - sin(0.57 - t) + 1.25
G(t) = sin(0.57 - t)
where m = 10, r=U(1,2,...,m), z; € [0,1]

5.3.4 DSW Test Functions

Mehnen et al [I92] proposed the DSW test suite to facilitate theoretical
analysis in dynamic multi-objective optimization.

2
min f1 (X) = (Cllll‘l + a1 — by - G(t)) + Z $22 (523)
1=2,...,]x%]|
2
min fQ(X) = (a21$1 + agoxy — ba - G(t) — 2) + Z $12 (524)
i=2,...,]x]|

where the type of spatial changes is determined by setting appropriate ai1,
als, 21, agz, by, and by values. Three different test functions are suggested
and parameters are defined as follows,

DSW1:x e [—50,50}”“,&11 = 1,312 = 0,&21 = 1,322 = O,bl = 1,b2 =1
(5.25)



134 5 Dynamic Evolutionary Multi-objective Optimization

DSW2XE[5050} ;a11 = 0,812 = 1,801 = 0,800 = 1,by = 1,bs =1
(5.26)

DSW3XE[5050} a11—1a12—0a21—1a22—0b1—0b2—1
(5.27)

DSW1 has a dynamic PS; and the dynamic MOEA is required to track the
optimal solution set with [G(t), G(t) + 2]. Like DSW1, DSW2 has a dynamic
PS;. The PS; is discontinuous, which departs diametrically. If G(t) is pe-
riodic, then PS} will join and depart periodically. In DSW3, both PS} and
PF; change with the solution set as the extend of the Pareto front increases
with time. The main limitation of the DSW test problems is that it is not as
intuitive as compared to TLK2 and the FDA test functions when it comes to
the configuring of dynamic spatial features.

5.3.5 JS Test Functions

An interesting approach of aggregating objective functions of existing test
problems through dynamically changing weights to form a lower dimensional
dynamic problem is proposed by Jin and Sendhoff in [I45]. A three-objective
problem can be reformulated to form a two-objective dynamic problem in the
following way,

min f{(x,t) = w(t) - f1 + (1 —w(t)) - f2 (5.28
min f5(x, ) = w(t) - fi + (1 = w(t)) - f3 (5.29)

where 0 < w < 1 is a function of time that gives rise to the dynamic prop-
erties of the reformulated problem, fi, f2, and f3 are the original objective
functions. w can be defined as either a linear or non-linear function to produce
different test properties. As an example, Jin and Sendhoff used the following
three-objective problem:

min f(x) = % + (zo — 1)? (5.30)
min fo(x) = 23 4+ (22 + 1) + 1 (5.31)
min f3(x) = (z; — 1)* + 23 + 2. (5.32)

Based on the aggregation approach, the dynamic multi-objective test function
can be written as

min fi(x) = w(t)[(@? + (r2 = 1)’ +  (5.33)
(1= w(®))[z] + (z2 +1)* +1] (5.34)
min f2( ) = w(t)[zf + (w2 —1)%] + (5.35)
(1 —wt)[(zx1 — 1)% 4+ 22 + 2] (5.36)

Simplicity and ease of construction are the main advantages of this approach.
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5.4 Performance Metrics for Dynamic Multi-objective
Optimization

While it is difficult to define a single quantitative measure of performance,
there is a general consensus on what constitutes a good performance in
dynamic optimization. Discussions on this topic in the domain of single-
objective optimization can be found in [196] 281]. The MOEA solving for a
static multi-objective problem is expected to adequately attain the optimiza-
tion goals of 1) good convergence to the PF*, 2) diversity of the solution set,
and 3) uniform distibution of the solutions. When it comes to a dynamic en-
vironment, obtaining a near-optimal, diverse, and uniformly distributed PF4
is no longer sufficient. The dynamic MOEA must also be capable of respond-
ing and adapting rapidly to the changing environment. It is essential that
the dynamic algorithm discovers the new solution set quickly because each
solution has a finite lifetime in a dynamic environment. The implementation
of a new solution can be costly in many real-world applications, making it
impractical to apply new solutions that will become obsolete too soon.

It is worth noting that the goals of achieving high speed convergence and
PF4 optimality in dynamic optimization can be conflicting. Consider the
situation where two different dynamic MOEAs are used to track PS; of a
problem characterized by severe fitness landscape changes. The first algo-
rithm (Alg 1) is designed with a greater emphasis on exploration, while the
other algorithm (Alg 2) has strong local search tendencies. Alg 1 should find
its way to the immediate vicinity of PS; rather quickly but will face prob-
lems attaining good convergence. On the other hand, Alg 2 will achieve good
convergence at the expense of convergence speed. Therefore, performance
metrics of dynamic MOEAs should provide an indication of 1) how effective
the dynamic MOEA is in attaining the multi-objective optimization goals
in the face of changing environment and 2) how fast the dyanmic MOEA is
capable of tracking PS;.

5.4.1 Illustrating Performance Using Static
Performance Measures

This approach provides an indication of how well the static optimization
goals are achieved before each landscape change. Therefore, researchers can
take advantage of the great number of static performance metrics developed
over the years and draw upon their experience in static multi-objective op-
timization directly in the evaluation of algorithmic performance. After the
calculation of solution set quality, the results can either be tabulated [289] or
illustrated as a plot of performance trend [58, [73].

Farina et al [73] suggested the following two metrics to measure conver-
gence in the decision and objective space at different time instances.



136 5 Dynamic Evolutionary Multi-objective Optimization

1 i _ pE () — D (1)

2(t) = — . .
@)= 2 A =g =oe | (5:37)
I & .
er®)= =3~ min [Ips (1)~ psf 0] (5.39)
j=1

where np is |[PFA|, R(t) is the time-dependent nadir point, and U(t) is the
time-dependent utopia point. pf}(¢) and pf}‘l(t) are the i-th member of PF}
and PF{, respectively, while ps}(t) and psf(t) are the i-th member of PS}
and PS# respectively. c,(t) is very similar to the metric of GD described in
Chapter[dlexcept that the distance between pf} (t) and pf;l(t) is normalized by
R(t)—U(t). As emphasized in Chapter[] different metrics or combinations of
metrics can be used as long as it gives an indication of how well the algorithms
perform relative to the different optimization goals. Zeng et al applied the
metrics of GD and spread to measure how well the MOEA performs in the

aspects of convergence and diversity, respectively, while the metric of HVR
is used by Deb et al [58].

5.4.2 Time Averaging Static Performance Measures

It is rather difficult to compare and evaluate the performance of multiple
algorithms through the use of tables and performance trends. Therefore, as
pointed out by Branke [26], it is desirable to have a more compact form to
describe algorithmic performances. One way of achieving this is to extend
the idea of offline error applied in dynamic single-objective optimization and
calculate the time averages of static metrics.

Time-averaged convergence measure: Hatzakis and Wallace [T17] applied the
time averages of the convergence measures ¢, (¢) and cy(t).

1 & pf; (t) — pf}' (1)
Cp = — min ||———~——2 2 5.39
npt ; ]; i=linh ! R(t) —U(?) I (5.39)
1 T np
Cf=— § i () — psi(t A
= pr HJE:I min ||psi (¢) — psj (1) (5.40)

where 7 is the number of time samples used. Apart from the number of sam-
ples, when sampling is performed is another factor to be considered. The
sampling of performance metrics should be done at instances just before the
next landscape change to eliminate unnecessary penalty on dynamic MOEAs
employing diversity introduction schemes, such as random restart or hyper-
mutation, in situations where change is small.

Off-line variable space distance and mazimum spread: In [94], we define an
extension of MS and a variable space variation of GD (VD), which can be
expressed in the following form,
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1 T
VDoffline = ; ZVD : I(t) (541)
1 T
MSof fiine = — > MS-I(t) (5.42)
o, otherwise. ’

where % is the modulus operator. Similar to the metric of GD in static
environment, a low value of VD fiine is desirable and reflects good tracking
capability. Likewise, a higher value of MS, fiine reflects that the MOEA is
capabable of evolving a diverse PF{! in a dynamic environment. VD measures
the degree of convergence between PS** and PS4.

nps

VD= . (np,s Z dQ)% (5.44)

nps

where npg = [PSZ|, d; is the Euclidean distance (in decision space) between
the i-th member of PS{! and the nearest member of PS*¢.

Convergent ratio, average density, and coverage rate: Zhang [290] sug-
gested three metrics to measure algorithmic performance in the aspects of
convergence and diversity in a dynamic landscape. The first metric is the
convegence ratio C'R which measures the consistency of the algorithm in
finding PF}. C'R is given by,

1 T K-l K
= — C(Xy;, X 5.45
Kt K j 2 v Xt (5.45)

t=1 j=1 i=

where K is the number of simulation runs made by the algorithm and C(-)
is the coverage metric. Note that coverage is used to measure the relative
algorithmic performance across the different runs over time. Thus, CR value
will be low when the algorithm performs consistently. However, it is clear
that this metric provides no indication of how close the discovered solutions
are to the true Pareto front.

To measure how well the algorithm distributes the non-dominated solu-
tions evenly after each landscape change, an extension of the spacing metric
is suggested,

npr 1

AD = - Z = (on : ;(d; - J/)Q) ’ (5.46)
C?’ — L nsz d’.
npr !

i=1
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where npp = |PF#|, d; is the Euclidean distance (in objective space) between
the i-th member of PF/! and the nearest member of PF*¢.

The metric of average coverage (AS) is used to measure the diversity of
the algorithm and defined as follows,

T K
— 1 A A A A A
AS = o E:j ; a2 = S £ f € PSTE (547

where f£; is the i-th objective in PF/.

5.5 Evolutionary Dynamic Optimization Techniques

5.5.1 Design Issues

Most of the studies on evolutionary optimization in dynamic environments
are restricted to the domain of single-objective problems. Comprehensive dis-
cussions on dynamic single-objective evolutionary optimization can be found
in [30] T96]. Nonetheless, these works are important sources from which im-
portant lessons on dynamic optimization can be drawn upon. For instance,
the design issue of diversity, in particular, has been much discussed, and ap-
plies to all problem domains. There are, of course, other design issues that
are unique to multi-objective optimization.

Detection of environmental changes: The detection of environmental changes
that necessitate the adaptation of solutions is an important mechanism for
any EA- inappropriate choice of an indicator of environment change can lead
to failure to respond to changes or even false alarms. For instance, the average
population fitness deviation is a popular indicator of environment change in
the single-objective literature. In Pareto-based MOEAs, the discovery of a
solution that dominates a number of solutions in the previous Pareto optimal
front will lead to a significant change in average population fitness. Therefore,
this particular indicator will not be able to detect actual changes reliably. In
this sense, the re-evaluation of past solutions to check for changes in the
objective values is a more reliable approach. However, it assumes that a
variation in the environment will be reflected on the entire fitness landscape.
Futher note the objective functions can be computationally expensive and
that noise (as studied previously) in the objective functions can also lead to
false alarms.

Decision-making: While the dynamic MOEA must be capable of finding a
diverse set of Pareto-optimal solutions, it should be noted that only one solu-
tion will be implemented. Since it is not practical to assume the availability
of human guidance at all times, it may be necessary to incorporate an online
decision-maker. The most straight forward approach is to make use of user
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knowledge and preferences. In the absence of such information, a plausible
alternative is to find the knee solution.

Outdated elitist solutions: One potential problem of MOEAs in dynamic en-
vironment is their exploitation of non-dominated solutions. In the event of
an environment change, the current solution set may not be indicative of
the optimal Pareto front. Unless these outdated solutions are re-evaluated
or removed, solutions that are non-dominated in the new environment may
be kept out of the archive. If the new optimal solution set is not within the
immediate vicinity of the previous optimal solution set, it is unlikely that
MOEA is able to track any landscape changes. It is also highly possible that
the reinsertion of outdated elitist solutions will misguide the subsequent op-
timization process. On the other hand, the exploitation of past information
is desirable to improve the adaptation process.

Diversity: At this point, it is important to make the distinction between de-
cision and objective space diversity. Objective space diversity offers decision-
makers with a variety of tradeoff solutions while decision space diversity is
the crucial ingredient that drives the evolutionary search process. In MOEAs,
the diversity mechanisms (described in Chapter refchl) are used to maintain
diversity in the objective space but objective space diversity do not neces-
sarily mean that decision space is diverse. Typically, diversity is lost as the
population converges to promising region. Unless explicit mechanisms are
employed to maintain or introduce diversity in the decision space, there may
not be sufficient diversity in the evolving population to adapt the solutions
to changes in the environment quickly, if the algorithm is able to react at all.
Different techniques proposed to promote diversity are based the following
three classes.

e Diversity introduction: This approach introduces diversity upon the
detection of landscape change [40] 108, 273] as illustrated in Fig. 51l Ran-
dom restart or reinitialization is one of the simplest techniques for gener-
ating diversity. Other common techniques include hypermutation, where
mutation is increased dramatically, and the variable local search, where
mutation is increased gradually if no improvement is achieved. These ap-
proaches can be easily extended to MOEAs. The main drawback is that
information gained is lost after the introduction of diversity.

e Diversity maintainance: This approach sought to maintain diversity
throughout the run [91) [T07, [195]. The effect of incorporating diversity
maintainance is illustrated in Fig. While the conventional MOEA
tends to converge quickly to PS}, the incorporation of a diversity main-
tainance scheme will ensure the presence of individuals in other regions of
the search space. One of the techniques that can be easily incorporated in
MOEAs is the random immigrant which is conceptually similar to the idea
of random restart. However, in random immigrant, random individuals are
introduced into the evolving population at fixed intervals and only a part
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Fig. 5.1 Distribution of solutions after (a) landscape changes and (b) introduction
of diversity

Fig. 5.2 Snap shots of the distribution of solutions at different time instances (a)
without diversity maintainance and (b) with diversity maintainance

of the population is replaced. Diversity preservation techniques described
in Chapter [l can also be used, except that diversity assessment should be
performed in the decision space.

Multiple population: The basic idea of applying multiple populations is to
conduct simultaneous exploration in different regions to track any change
or emergence of new optimal solutions [34, 270, 282]. Typically, this ap-
proach involves a population which exploits the current optimal solution,
while the other populations are encouraged to explore the search space
as shown in Fig. 5.3l In some works, some form of explusion mechanism
is incorporated to encourage the dlﬁerent populations to search different
regions of the search space, allowing the other populations to locate the
new PS}. The population of previous PS} can either be freed to explore
other regions or remain in the same region in anticipation of future PS}
revisiting the same region again.
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Fig. 5.3 Behavior of multiple populations (a) before and (b) after a landscape
change

5.5.2 Dairectional-Based Dynamic Evolutionary
Multi-objective Optimization Algorithm

Farina et al [(3] suggested an hybridization between evolutionary strategies
(ES) and deterministic local search to improve the speed of convergence to
track the dynamic PS*t and PF*t. This direction-based dynamic evolution-
ary multi-objective optimization algorithm (DB-DEMOA) involves a two-
stage optimization procedure. This first stage searches for the payoff matrix,
utopia, and nadir points of the PF*¢ while the second stage searches for a
set of uniformly distributed solutions between the Utopia points. The major
steps of the DB-DEMOA are shown below:

Directional-Based Dynamic FEvolutionary Multi-objective Optimization
Algorithm (DB-DEMOA)

Step 1:  Stage 1: Search for nadir points, utopia points and payoff matrix.

Step 2:  Stage 2: Search for solutions between the utopia points.

Step 3: Check for changes in environment. Restart optimization process
using P; as starting population if change is detected.

In each stage, an (14+1) ES and a local search operator are applied in an
sequential manner. Once the ES is determined to have converged, the opti-
mization process is switched to either a gradient-based algorithm (GBA) or a
simplex Nelder Mead search algorithm (NMA). The convergence criterion is
satisfied when solution variation in the design space between two consecutive
iterations falls below a threshold.

The algorithm stops the optimization process once the set of non-
dominated solutions is found by the local search process in Stage 2. Thereafter,
ne solutions will be selected randomly from P, and checked for changes in the
problem periodically in the following manner:

1~ Fit@) —Fj(@)
= — : : 5.48
W= DI TE (5.45)
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where R; and U, are the time-dependent nadir and utopia points, respec-
tively. Once ¢; falls above the values between 10~2 and 10~2, the optimization
process is restarted automatically from Stage 1. To exploit possible similari-
ties between past and current environments, the population prior to landscape
change detection is used as the starting population for Stage 1.

Stage 1: As mentioned earlier, the first stage calculates Ry, Uy, and payoff
matrix [M]. The utopia point is given as

U, = [min fi] = [U; ] (5.49)

and the set of solutions associated with U; is represented by the matrix M.
1\/135(2'7 :) = [x\fi,t(m) = Ui)t}. (550)

The DB-DEMOA minimizes each objective function in a sequential manner
to find the utopia points associated with each objective. After which, the [M]
is calculated from U; and M, in the following manner

_ Ui, i=3j
M= {fj,t(Mz(i, 1)), otherwise (5.51)

The nadir point is then calculated from [M] in the following way.

Rt =maxM(,:)Vi=1: M. (5.52)

Stage 2: Stage 2 attempts to find a set of ns Pareto-optimal solutions that
are uniformly distributed between the utopia points. In DB-DEMOA, the
multi-objective problem is converted into a single-objective problem using
the following scalar function,

o L (fi = PF) _

= Ji%[m}’f =Lins. (5.53)
where PF is the i-th objective value in the k-th chosen center. To find the n
Pareto-optimal solutions, DB-DEMOA solves for n; different single-objective
problems, each with a different P*. P* is calculated iteratively as the centroid
between each utopia point as well as between utopia points and successive
solutions found by minimizing equation (B.53]). Consider the example of a
two-objective problem. P! will be the centroid between M; and M. After
obtaining the solution by minimizing the function, P? and P? are the cen-
troids between M; and S;, and Ms and Sy, respectively.

5.5.3 Dynamic Non-dominated Sorting Genetic
Algorithm IT

Deb et al [68] extended the NSGAII for the online optimization of a dynamic
hydro-thermal power scheduling problem. To detect possible changes in the
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fitness landscape, the dynamic NSGAII (DNSGAII) randomly selects and
re-evaluates 10% of the parent population in each generation. In the event
of a landscape change, all parent solutions are re-evaluated before combining
with the offspring population. The authors explored two means of introducing
diversity into the evolving population, either by inserting new individuals or
performing mutation on existing solutions. The major steps of this algorithm
within one iteration are shown below:

Dynamic Non-Dominated Sorting Genetic Algorithm IT (DNSGAII)

Step 1: Evaluate all solutions in P;.
Step 2:  Check for changes in environment.

- Select and re-evaluate 10% of individuals from A;.
- Re-evaluate all solutions in A; if changes are detected in the objective
values.

Step 3: Combine P; and A;.
Step 4:  Perform modified non-dominated sorting on combined population.
Step 5: Create Ayyq

- Perform crowding sort to truncate combined population size to |Ay|.

- If landscape changes detected, select (% of individuals from combined
population.

- Replace selected individuals with random solutions/mutate selected
individuals.

Step 6: Recombination process: Conduct tournament selection on Asy; to
form mating pool. Perform crossover and mutation to create Pyy;.

DNSGAII introduces diversity to part of the evolving population, allowing
it to exploit information from the previous PS*t. From Step 5, it is clear
that (% is a critical parameter since it determines how much of the previous
solutions are retained. (% of the population are either replaced by newly
created solutions or reinserting mutated variants of the selected individuals.
The two schemes have their own strength and weakness. Reinitializing new
solutions will allow DNSGAII to adapt faster to drastic changes in the land-
scape but performs poorly in environments with small changes. On the other
hand, mutating existing solutions will not introduce too much diversity into
the population. But this will allow NSGAII to handle small variations in the
problem quickly at the expense of poor performances when faced with great
changes in the environment.

Apart from tracking the dynamic PS** and PF*¢, the algorithm must be
capable of making good impromptu decisions automatically once a good so-
lution set is found. Assigning equal importance to the two objectives of the
dynamic hydro-thermal power scheduling problem, Deb et al calculates a
pseudo-weight w for each non-dominated solution found in the algorithm in
the following manner:
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Since equal importance is assigned to both objectives, the solution with w
that is closest to 0.5 is selected and implemented.

5.5.4 Dynamic Multi-objective Evolutionary
Algorithm Based on an Orthogonal Design

Zeng et al [289] suggested a dynamic orthogonal multi-objective evolution-
ary algorithm (DOMOEA) that incorporates orthogonal design methodology
to improve convergence. This dynamic algorithm is similar to the orthogo-
nal multi-objective evolutionary algorithm-II (OMOEA-II) [288] except that
a periodic check is performed to detect landscape changes. The DOMOEA
treats the dynamic multi-objective problem as a new problem instance after
every landscape change. However, it exploits past information by using the
PS{ prior to change as the new initial population. The major steps within
an iteration is shown below:

Dynamic Multi-Objective Evolutionary Algorithm based on Orthogonal De-
sign (DOMOEA)

Step 1:  Evaluate all solutions in P;.
Step 2:  Check for changes in environment.

- Check for discrepancies.
- If landscape change is detected, re-evaluate A; and set it as A;y1. Go
to Step 4.

Step 3:  Selection Process

- Combine P; and A;.
- Perform crowding sort to truncate combined population size to |A4|

Step 4: Crossover operation

- Select two random solutions from A, ;.

- Perform linear crossover if random number < P, else perform
orthogonal crossover.

- Add offspring to Py41.

The selection process of DOMOEA is very similar to the crowding-sort pro-
cedure of NSGAII. However, the clustering algorithm of SPEA is adopted
instead of crowding.

In DOMOEA, diversity is maintained in the evolving population through
a linear crossover operator, which generates an offspring different from its
parents x, and xyp,. The linear crossover first generates four random numbers
—0.5 < a4, Q5 Bayi, Bv,i < 1.5 such that the condition ay; + op; = 1
is satisfied. These random numbers will determine the extend in which the
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Table 5.5 Orthogonal design methodology for 3 factors and 3 levels
Factors
Combination x1 To T3 Selected
Objective
1 0.1 0.0 0.3 0.0760
2 0.1 0.1 0.5 0.0560
3 0.1 0.2 0.7 0.0760
4 0.15 0.0 0.5 0.0973
5 0.15 0.1 0.7 0.0772
6 0.15 0.2 0.3 0.0373
7 0.2 0.0 0.7 0.1190
8 0.2 0.1 0.5 0.0390
9 0.2 0.2 0.3 0.0590

offspring will take after a particular parent. Thereafter, the offspring are
calculated as follows

Vi
Toi = Qa,iTa,i T QbiTh,

x;n = Ba,i(Tai — 2i) + Bi(Tpi — 2i)

where z; is a point in the middle of the i-th decision space. Fig. E.4lillustrates
the distribution of the offspring (o) relative to the parent (x). Notice that the
offspring created by equation (555]) tends to be located nearer to the parent.
On the other hand, equation (B.56]) will create offspring located far away from
the parent, contributing to the diversity of the evolving population.

The orthogonal crossover is used to perform local fine-tuning and can
give very good results if the region H bounded by the parents is linear or
quadratic. The orthogonal array is first constructed and an objective is se-
lected randomly as the optimizing goal. The orthogonal design method is then
applied to identify and select the two best solutions as the offspring. Consider
the instance where the solutions x, =[0.1 0.2 0.3] and x;, =[0.2 0.0 0.7] are
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selected for the orthogonal crossover operation. The three-dimensional region
H is given by 0.1 < 21 <0.2,0.0 <29 <0.2 and 0.3 < z; <0.7. In orthogo-
nal design, the number of decision variables is also denoted as the number of
factors and the number of different variation of each factor is called the level.
If we are to evaluate each factor at three different levels, there will be a total
of nine combinations to be tested. The nine combinations and their associated
objective values are tabulated in Table. Combination 6 provides the best
results and thus, the first offspring is given as x’, =[0.15 0.2 0.3]. The second
offspring is determined by first calculating the mean objective attained for
each level of every factor. This is calculated in the following manner:

Mean objective value due to different levels of x;

A 1
fer,zoin = 5(0.0760 +0.0560 + 0.0760) = 0.0693
1
3

2 1
Jar, Lol = 5(0.1190 +0.0390 + 0.0590) = 0.0723

le,Lle = =(0.0973 4+ 0.0772 4 0.0373) = 0.0706

Mean objective value due to different levels of x5
1
3
P 1

fao,Lviz = 5(0.0560 +0.0772 4+ 0.0390) = 0.0574

Foazon = =(0.0760 + 0.0973 + 0.1190) = 0.0974

P 1
fao,Lviz = 5(0.0760 + 0.0373 + 0.0590) = 0.0574

Mean objective value due to different levels of x3
N 1

fus,Lonn = 3(0.0760 +0.0373 4 0.0590) = 0.0574
A 1
fas,Loi2 = 5(0.0560 +0.0973 + 0.0390) = 0.0641

. 1
Fry 1uts = 5(0.0760 +0.0772 4 0.1190) = 0.0907

The variable x; provides the best objective values at level 1, the variable zo
provides the best objective values at either level 2 or level 3, and the variable
x3 provides the best objective values at level 1. Thus, the second offspring is
given as x’, =[0.1 0.1 0.3] or x’, =[0.1 0.2 0.3].

5.5.5 Dynamic Queuing Multi-objective Optimizer

Hatzakis and Wallace [I17] presented a dynamic queuing multi-objective op-
timizer (D-QMOQ) which exploits past information to predict the future
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behavior of the dynamic multi-objective problem. An autoregressive model is
employed to estimate the location of PS},; and the predicted individuals are
used to seed the population when a change in the problem landscape is de-
tected. Diversity is also maintained throughout the evolution. The D-QMOO
is based on a fairly elaborate algorithm, the queuing multi-objective opti-
mizer. Clustering is performed in the decision space to promote diversity and
to handle the possible presence of multiple discontinuous fronts. Both clus-
tering and ranking are only performed periodically to reduce computational
cost. Genetic operators to be executed on each individual are also embedded
as parameters within the chromosome as in the case of mutation strength in
evolutionary strategies. Interested readers are encouraged to read [I80]. The
major steps of the DQMOO are shown below:

Dynamic Queuing Multi-Objective Optimizer (D-QMOO)

Step 1:  Activate feed-forward prediction strategy after landscape change.
Step 2:  Selection process. Only ranked solutions are allowed to participate.
Step 3: Recombination and mutation process.

Step 4:  Evaluation.

Step 5:  Periodic clustering process. Individuals are sorted into clusters in
the decision space using Fuzzy c-means approach.

Step 6:  Grouping process. Individuals within clusters are allocated to sub-
groups based on dominance relation. non-dominated and dominated
solutions are assigned to front and cruft, respectively.

Step 7:  Perform thinning process if population size exceeds limit.

Step 8:  Periodic ranking process.

Feed-forward prediction strategy: No landscape change detection mechanism
is incorporated because the D-QMOO assumes the availability of a priori
knowledge on when a landscape change will be effected. The feed-forward
prediction strategy refers to the incorporation of an autoregressive model to
forecast the location of PS}, | based on the accumulated time series. In the
event of each problem variation, the predicted non-dominated solutions for
PS;,; will be inserted into the evolving population. When the prediction
error is low, this allows the algorithm to converge upon PSjf,, faster. One
time series is maintained for each objective and each time series tracks the
best non-dominated solution along its associated objective. The time series is
updated with the best solution to the previous landscape after each change.
Since all the time series are initially empty, this strategy cannot be applied
to predict the next optimum effectively in the initial stages.

Diversity maintenance: In the event that the prediction error is large and the
forecasted solutions are far away from PSj, |, the D-QMOO maintains suffi-
cient diversity to facilitate the optimization process. Diversity is maintained
in four ways. Firstly, clustering is conducted to partition the population into
clusters. These clusters are evolved independently but the offspring of one
cluster may inherit the genetic information of parents from other clusters.



148 5 Dynamic Evolutionary Multi-objective Optimization

Secondly, a thinning process is applied to ensure that a diverse set of individ-
uals exists in the evolving population. In each generation, individuals within
each cluster are further divided into two fixed-size groups, the front and the
cruft, which consist of the non-dominated solutions and the dominated solu-
tions, respectively. When the limit of the front is exceeded, solutions with the
least contributions towards overall hypervolume are removed from the group.
In the case of the cruft, solutions are either removed based on their crowd-
ing distance in the decision space or their age with equal probability. Least
crowded and younger solutions are preferred. Finally, all duplicate solutions
are removed during the recombination and ranking process.

5.5.6 Multi-objective Immune Algorithm

Zhang [292] suggested an immune algorithm approach for dynamic multi-
objective optimization. The notion of applying an immune system method-
ology for dynamic optimization is very attractive because it has the natural
capability to react to new threats and an immune memory which allows it to
respond to antigens encountered before faster. For a more in-depth discussion
on artificial immune systems, readers are refered to [53]. The multi-objective
immune algorithm employs five different cell types, antigens (Ag), B-cells,
helper T-cells (T}), suppressor T-cells (T ), and memory cells. The Ag mod-
els the dynamic problem, while B-cells represents the potential solution to
the problem. T}, cells represents the non-dominated or archived solutions and
memory cells are the collection of all previous non-dominated solutions. The
major steps of the algorithm are shown below:

Multi-Objective Immune Algorithm (MOIA)

Step 1:  Activate initial population scheme after landscape change.
Step 2: Calculate affinity values for B-cells in population P;.

Step 3: Update environmental memory.

Step 4: Dynamic clonal selection to create clone population C;.
Step 5:  Generate new population:

- Perform hypermutation on C;.

- Combine population and new solutions.

- Remove dominated and duplicate solutions to form Dy.

- Update n%.

- Perform binary tournament selection to select % of D;.

- Create new random B-cells to replace identical individuals in
population to form P;.

Step 8: Update T}, population A;.

- Add non-dominated solutions from P; to A;.
- Remove dominated solutions in A;.
- Apply clustering if |A;| exceeds size limit.
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Initial population scheme: As in the case of D-QMOO, the MOIA assumes the
availability of a priori knowledge on when a landscape change will be effected.
Upon a landscape change, the MOIA searches the environmental memory for
non-dominated solutions of past environments that satisfy two conditions, 1)
the solutions have the same number of objectives in the current environment
and 2) the solutions exhibit similar behaviors in their previous and current
environments. The MOIA first searches the memory for past solutions with
the same dimensions with the current environment. If such solutions are
found, the differences in objective values of these solutions before and after
the landscape change are calculated in the following manner.

. >l
£ =— Xit — X
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| (5.57)

where x; ;; is non-dominated solution of the k-th environment, which satisfies
the first condition, and my is the set of non-dominated solutions stored for
the k-th environment. The set of solution satisfies the second condition if
€ < 0.5. The first set of solutions that satisfies both conditions will be used
to seed the new population. 80% of the new population will be selected from
this set of solutions, while the rest are created randomly. The set of matching
solution is also used to fill the A;. In the event that no suitable solution is
found, the evolving population will be reinitialized.

Calculation of affinity and activation value: After the creation of Py, either
through the immune operators or the initial population scheme, the affin-
ity and activation values of each solution are calculated. The affinity of the
solution x, is measured with respect to the archived solutions

A 1-A

) (05 + DT o) Exar Ar))  exp(ol )

(5.58)

where T, is the archived solution in A; closest to x, in the Euclidean sense
and ||-]| is the Euclidean norm. The first term in equation (2.58) is a function
of D and E, which measures the density of T}, in A; and how well x, approx-
imates the archived solutions in Ay, respectively. D and E are calculated in
the following manner,

[{xi € A s [Ixg — Thll < o}
Al

E(Fo,A)= Y (Fo.Fj)) (560)
FpeA,

D(T),) = (5.59)

where 0 < o < 1 is the density radius and (-, -) is the inner product between
the two objective vectors. Therefore, it provides a bias towards Pareto opti-
mal solutions that approximate rare antigens. While the first term promotes
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exploitation, the purpose of the second term in equation (B.58)) is to promote
exploration. Nonetheless, it can be easily seen that it has a bias towards so-
lutions located near the origin of the decision space. The setting of A € [0, 1]
controls the balance between exploration and exploitation.

The activation level of x, determines whether it will take part in the clonal
process and it is calculated as follows:

act(xq) = af f(xq) exp(—c(xq)) (5.61)
o) — {xp € Pt : ||xp — X4]| < o}
c(xq) = P (5.62)

where ¢(x,) is the density of x, in P;. From equation (B.61]), we can expect
that solutions located in less crowded regions with high affinity values to
have high activation values. On the other hand, solutions residing in crowded
areas or with low affinities will have relatively lower activation levels. By
using the product of the affinity value and degree of crowding of a solution
as the activation value, the MOIA ensures that none of the multi-objective
optimization goals is neglected.

Update of environmental memory: After the calculation of affinity and acti-
vation values, a set of non-dominated solutions from P; will be added to the
environmental memory population E. This memory should be distinguished
from the archive of non-dominated solutions A; since it stores non-dominated
solutions across different problem instantiations. To maintain a diverse set
of solutions, only individuals satisfying the following criterion are updated in
the memory population:

min{||x, — xs||, xp € E} > 4. (5.63)

After all the non-dominated solutions satisfying the above condition are
added to the memory, a check is performed to remove any duplicate solu-
tions. There is a restriction on the size of the environment memory. Once
this limit is reached, solutions in the most crowded region of the memory
are removed using equation (5.63) with decreasing 0 values until all excess
solutions are removed.

Clonal selection: The selection process is based on the principle of clonal
selection and it favors solutions with high degrees of affinity. The selection
process starts with the calculation of the mean activation values of the so-
lutions in P;. After which, solutions with activation values greater than a
certain threshold are selected for the clonal process, i.e act(x,) > « - act
where act is the mean activation value of the solutions in P;. Zhang devised
a method to adapt this threshold such that the number of different solutions
taking part in the clonal process is dependent on the size P;. The selection
criterion is given by
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0, if |Py| <20
a={ P20 e 90 < |P| < 50 (5.64)
0.6, otherwise

Such a selection process ensures that a sufficient number of solutions will
participate in the clonal process in every generation. The number of clones
that each individual will produce to form C; is based on the affinity level. It
is computed as follows,

) = [ (1 = i) | (5.65)

is a random number. Note that of the

1 1
where 1 € |5y TFarree)

selected solutions will be cloned a number of times and |Cy| is greater than
A

Generate new population: Two different mutation operators are used to pro-
mote exploration and exploitation of the search space in MOIA. The first
operator is the hypermutation operator and it is performed only on |A;| so-
lutions in C;. This operator is defined as follows,

;= C(Tai + (1= Oy (5.66)

where xf € A, is randomly selected from the A;. The mutation probability
of this operator is given as

@_W—aff(xa))

Pra(xe) = 1= gpexp(~ - LIS

(5.67)

where aff = max, .p, aff(xa) and aff = min, p, aff(xq) The other
solutions in C; are subjected to uniform mutation with the following mutation
probability,

Pro(xq) =1 — exp(—||xqa — X]|)- (5.68)

After the mutation process, the new antibody population is combined with
the non-dominated solutions from P; to form a temporary population D;. All
duplicate and dominated solutions are then removed from D;. Thereafter,
binary tournament selection is conducted to select n% of the updated D; to
form P;. n is also adapted along the optimization process and it is based on
the number of non-dominated solutions found in each generation,

100, if ID| < 50
n=12 60+ 23(100 — [D|), if |D| <50 (5.69)
50, otherwise
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To avoid over-specialization and hence losing diversity, all identical solutions
are replaced by random solutions.

5.6 Conclusion

Many real-world problems involve time-dependent components. For such
problems, it is unlikely that the optimal Pareto set and the Pareto front will
remain invariant and the previous solution must be adapted to reflect the
current requirements. Therefore, the optimization goal is not only to evolve
a near optimal and diverse PF4 but also to track it as it changes with time.

In this chapter, we first presented a classification scheme for dynamic
multi-objective problem and described a number of existing dynamic test
functions. In order to track the time-varying Pareto optimal solution set, the
MOEA must be capable of detecting the landscape change, maintaining or
introducing sufficient diversity to find the new optimal solution set after each
landscape variation, and handling the outdated solutions. In addition, the dy-
namic MOEAs must be capable of finding the new solutions quickly before the
landscape change is effected again. Most algorithms presented here maintain
a mechanism to re-evaluate solutions periodically to check for discrepancies as
indications of problem variation. Since sufficient diversity is the key to track-
ing the dynamic solution set, all dynamic MOEAs incorporate some form of
genetic operator to perform exploration immediately after a problem change.
In addition, the directional-based dynamic evolutionary multi-objective opti-
mization algorithm and the dynamic multi-objective evolutionary algorithm
based on an orthogonal design implements local search operators that exploit
similarities between the landscape prior and after change. The dynamic queu-
ing multi-objective optimizer also applied an autoregressive model to predict
the location of the next solution set to improve convergence.



Chapter 6

A Coevolutionary Paradigm for
Dynamic Multi-Objective
Optimizationﬁ

As pointed out in the previous chapter, it is imperative that the MOEA must
be capable of attaining high convergence speeds in order to find the optimal
solution set before it changes and becomes obsolete. However, high conver-
gence speed often implies a rapid loss of diversity during the optimization
process, which inevitably leads to the inability to track the dynamic Pareto
front. Therefore, it is necessary to maintain or generate sufficient diversity to
explore the search space when the multi-objective problem changes.

In these two regards, the notion of coevolution is very attractive. The co-
evolutionary paradigm, inspired by the reciprocal evolutionary change driven
by the cooperative [213] or competitive interactions [222] between different
species, has been extended successfully to multi-objective optimization re-
cently [44] [134, 151, 187, 190, 251].

e On the former issue of high convergence speed, several studies [212] 272]
have shown that the introduction of ecological models and coevolutionary
architectures are effective methods to improve the efficacy of canonical evo-
lutionary algorithms. As a specific instance, Tan et al [251] demonstrated
that high convergence speeds can be achieved while maintaining a good di-
versity of solutions. Multi-objective coevolutionary algorithms (MOCAs)
seem particularly suitable for dynamic multi-objective optimization, where
the high speed of convergence can potentially be exploited for adapting
quickly to the changing environment.

e On the latter issue of diversity, the works in [9] [213] demonstrated that
both competitive and cooperative coevolutions have their own unique
mechanisms for maintaining diversity in the species sub-population.

On the other hand, successful implementation of coevolution requires ap-
propriate problem decomposition. In this chapter, we are concerned with
the decomposition of the search space. The best way of handling problem

* (© 2008 IEEE. Reprinted, with permission, from C. K. Goh and K. C. Tan,
“A Competitive-Cooperation Coevolutionary Paradigm for Dynamic Multi-objective
Optimization”, IEEE Transactions on Evolutionary Computation, accepted.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 153
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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decomposition may not be known a priori and may change with time in
dynamic multi-objective problem. This chapter describes a new coevolution-
ary paradigm [94]that incorporates both competitive and cooperative mech-
anisms observed in nature to solve multi-objective optimization problems
and to track the Pareto front in a dynamic environment. The main idea of
competitive-cooperation coevolution is to allow the decomposition process
of the optimization problem to adapt and emerge rather than being hand-
designed and fixed at the start of the evolutionary optimization process. In
particular, each species sub-population will compete to represent a particular
sub-component of the multi-objective problem, while the eventual winners
will cooperate to evolve better solutions. Through this iterative process of
competition and cooperation, the various sub-components are optimized by
different species sub-populations based on the optimization requirements of
that particular time instant, enabling the MOCA to handle both the static
and dynamic multi-objective problems. A competitive-cooperation coevolu-
tionary algorithm (COEA) for static environment is designed based on the
proposed coevolutionary paradigm and subsequently extended as dynamic
COEA (dCOEA) to handle dynamic multi-objective optimization problems.

6.1 Competition, Cooperation, and
Competitive-Cooperation in Coevolution

Existing coevolutionary techniques can be divided into two main classes:
competitive coevolution and cooperative coevolution. Regardless of the ap-
proach adopted, the design of coevolutionary algorithms for multi-objective
optimization requires one to address many issues that are unique to the multi-
objective problem. In this aspect, insights, such as incorporation of various
elitist and diversity mechanisms obtained from the design of MOEASs, can be
similarly exploited in the design of MOCAs. On the other hand, successful
implementation of coevolution requires one to consider various design issues
[212], such as problem decomposition, handling of parameter interactions,
and credit assignment. The issues of problem decomposition and parame-
ter interactions are often problem dependent and the approaches for solving
these issues may not be known a priori. These factors motivated the work
for an alternative coevolutionary model presented in this chapter.

This section begins with a review of both the competitive and cooperative
coevolutionary algorithms for multi-objective optimization, highlighting vari-
ous features and limitations of existing approaches. A competitive-cooperative
coevolutionary model is then proposed, including discussions on how the dif-
ferent design issues in coevolutionary algorithms are addressed.

6.1.1 Competitive Coevolution

The model of competitive coevolution is often compared to predator-prey
or host-parasite interactions, where preys (or hosts) implement the potential
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solutions to the optimization problem and the predators (or parasites) imple-
ment individual “fitness-cases”. When applying this idea into optimization
[5, 222], there are usually two sub-populations and an inverse fitness inter-
action exists between the two sub-populations. To survive, the losing sub-
population adapts to counter the winning sub-population in order to become
the new winner.

Although the competitive coevolution has been applied in many single-
objective evolutionary algorithm studies [118, 214], this model is rarely in-
vestigated in the domain of EMOO. Laumanns et al [I77] embodied the
model of competitive coevolution in multi-objective optimization through a
spatial predator-prey model. In this model, the solutions are the preys and
the associated solution vectors are represented as vertices on an undirected
and connected graph. There are as many predators as the number of objec-
tives and these predators perform a random walk on the graph along their
respective associated objective. The worst prey in the neighborhood of the
predator, in terms of the associated objective, will be replaced by its offspring.

Lohn et al [I87] presented a different competitive coevolutionary model
which contains a population of candidate solutions and a target population
with the target objective vectors. A distinct characteristic of this algorithm
is the lack of any explicit diversity preservation mechanism to guide the
coevolutionary optimization process. Empirical studies are conducted with
well-known MOEASs, such as SPEA and NSGA, and the performance of this
competitive MOCA is found to be better than the test algorithms.

There are several limitations to this coevolutionary model for numerical
optimization. While competitive coevolution is a natural model for evolving
objects, such as game playing programs, for which it is difficult to write an
external fitness function, the need to hand-decompose the problem into antag-
onistic sub-components places severe limitation on its range of applicability.
Adding to its complexity is the need to adapt the predator population, which
is the population of target vectors in the case of [I87], such that it exerts an
appropriate pressure of convergence. In the context of multi-objective opti-
mization, this pressure must be exerted to promote individuals in a direction
that is normal, as well as tangential, to the tradeoff region at the same time.
Intuitively, such a competitive coevolutionary approach may be sensitive to
the shape of PF* in multi-objective optimization.

6.1.2 Cooperative Coevolution

Cooperative coevolution is inspired by the ecological relationship of symbio-
sis where different species live together in a mutually beneficial relationship.
The basic idea of cooperative coevolution is to divide and conquer [213]: di-
vide a large system into many modules, evolve the modules separately, and
then combine them together to form the whole system. The cooperative co-
evolutionary algorithm involves a number of independently evolving species
that together form complex structures for solving difficult problems. The
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fitness of an individual depends on its ability to collaborate with individuals
from other species, which favors the development of cooperative strategies
and individuals. In addition, these techniques can be implemented at two ba-
sic levels depending on the type of modules that are evolved simultaneously
[152]. In the case of single-level coevolution [44) [T5T], 134, [190], each evolv-
ing sub-population represents a sub-component of the problem to be solved.
On the other hand, a two-level coevolutionary process involves simultaneous
optimization of the system and modules in separate sub-populations [9] [87].

An explicit way of implementing cooperative coevolution in optimiza-
tion techniques is to split a solution vector into different sub-components
and assign multiple evolving sub-populations to optimize the individual sub-
components [2T3]. Contrary to single-objective optimization, multi-objective
optimization is associated with a set of nondominated solutions, which in-
evitably leads to the issues of fitness assignment and representative selection.
In these aspects, appropriate representatives are crucial for the search of
a diverse and uniformly distributed solution set, and suitable cooperative
schemes must be incorporated in order to drive the sub-populations in tan-
dem towards the PF*.

An early attempt to integrate the cooperative model for multi-objective op-
timization is to decompose the problem along the decision space and each sub-
population is optimized by the multi-objective genetic algorithm (MOGA)
[84]. In this multi-objective cooperative coevolutionary genetic algorithm
(MOCCGA) [I51], each individual is evaluated twice in collaboration with
either a random or the best representative from the other sub-populations
and the best Pareto rank is assigned as the fitness. However, the performance
of MOCCGA is limited due to the lack of elitism and the localized perception
of Pareto optimality.

Maneeratana et al [I90] later incorporated elitism in the form of a fixed-size
archive to store the set of nondominated solutions and the same cooperative
model is successfully extended to other MOEAs, such as Niched Pareto GA
[123] and NSGA [243], with significant improvements over their canonical
counterparts. Like MOCCGA, however, these MOCAs also suffer from the
problem that fitness assignment conducted within a species may not be a
good indicator of optimality.

Torio and Li [134] presented a nondominated sorting cooperative co-
evolutionary algorithm (NSCCGA), which is essentially the coevolutionary
extention of NSGAIIL. In NSCCGA, elite solutions are reinserted into the
sub-populations and fitness assignment takes into account the set of non-
dominated solutions obtained via nondominated sorting. Instead of selecting
nondominated individuals with the best degree of crowding, representatives
are selected randomly from the best nondominated front.

Contrary to the trend of integrating the cooperative model with well-
known MOEAs, Tan et al [25I] proposed the cooperative-coevolution
evolutionary algorithm (CCEA) based on a simple MOEA. Although the
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ranking scheme [84] of MOCCGA is adopted in CCEA, each individual is
ranked against the nondominated solutions stored in the archive instead of
within the sub-population. In addition, an extending operator is implemented
in CCEA to improve the diversity and distribution of the PF by reinserting
nondominated individuals with the best niche count into the evolving sub-
population. Various representative selection scheme are also examined and
good performance is observed for the scheme that retains the better solution
in the cooperation between two representatives from each sub-population.

One major issue of these MOCAs is their dependence on appropriate man-
ual decomposition of the problem into various sub-components. Since many
problems exhibit parameter inter-dependencies, the decomposition of solution
vector and the optimization of each sub-component independently may lead
to the phenomenon of fitness landscape warping [212] and convergence to sub-
optimal solutions. It should be noted that parameter interactions are usually
not considered explicitly in EAs. Notable exceptions include the estimation-
of-distribution algorithms (EDAs) [291] that sought to learn the inter-relation
through joint probability distribution models and the covariance matrix adap-
tation evolution strategies (CMA-ES) [I14] which has been recently extended
to multi-objective optimization [135].

Torio and Li [I34] also highlighted that coevolutionary algorithms are sus-
ceptible to parameter interactions, although a higher mutation rate can often
improve the algorithmic performance of rotated problems. Apparently, there
is an inherent tradeoff between the fine-grain search capability and the lack
of diversity due to the smaller size of sub-populations in coevolutionary al-
gorithms. The game-theoretic approach of modeling cooperation in [240] at-
tempts to alleviate the issue of parameter dependencies by decomposing the
optimization problem into only two sub-populations. Without restricting to
a single computational paradigm, an interesting approach of switching itera-
tively between canonical particle swarm optimization (PSO) and cooperative
PSO is proposed by Van den Bergh and Engelbrecht [271] for single-objective
optimization problems.

Applying a variant of the cooperative models discussed so far, Coello Coello
and Sierra [44] proposed a coevolutionary MOEA (CO-MOEA) where dif-
ferent sub-populations cooperate to form the PF instead of a valid candi-
date solution. The CO-MOEA starts with a single evolving population and
adaptively assigns different regions of the decision variable space to new
sub-populations. This assignment process is performed by analyzing the con-
tribution of each decision variable to the PF stored in an adaptive grid [166].
Furthermore, the sub-population size is changed in proportion to the discov-
ery of new non-dominated solutions and any sub-population without signifi-
cant contribution is eliminated. Although such an approach removes design
considerations, like representative selection and parameter interactions, the
CO-MOEA does not incorporate the fine-grain search capability of MOCAs
with Potter and Jong’s model.
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6.1.3 Competitive-Cooperative Coevolution

The issue of problem decomposition poses restrictions on existing algorith-
mic designs and performances of both competitive and cooperative models.
In retrospect, this problem should not arise in the context of coevolutionary
algorithms since the role that each species plays is an emergent property in
nature. On the other hand, the collaboration and competition among differ-
ent species are modeled independently in coevolutionary algorithms, although
these two types of interactions are rarely exclusive within an ecological sys-
tem. For example, there is competition even in the veneer of seemingly perfect
plant-pollinator coevolution in nature [232], where different species of bees
will compete for nectar and different species of flowers will compete to attract
more bees. By incorporating both elements of cooperation and competition,
the proposed model represents a more holistic view of the coevolutionary
forces in nature.

The proposed competitive-cooperative model involves two tightly-coupled
coevolutionary processes as illustrated in Fig. Similar to conventional
cooperative coevolutionary algorithms, individuals from different species col-
laborate to solve the problem during the cooperative process. Each sub-
population evolves in isolation and there is no restriction on the form of
representation or on the underlying EA. On the other hand, the cooperative
species will also compete with other sub-populations for the right to represent
the various sub-components of the problem.

The interaction between the cooperative and competitive processes may
take place iteratively after each generation or at a frequency determined by
the user. For the ensuing discussions, we consider that the problem at hand
is decomposed along the decision variables. Each decision variable may be
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Fig. 6.1 Framework of Competitive-Cooperation Coevolution
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assigned to a number of sub-populations and a sub-population may optimize
for more than one decision variable.

Credit Assignment

The credit assignments for the competitive and cooperative processes are per-
formed at the sub-population and individual levels, respectively. In the co-
operative process, the different objectives are evaluated by assembling each
individual with representatives of the other species to form a valid candi-
date solution. Accordingly, appropriate fitness assignment, such as Pareto
ranking, can be performed for that particular individual. In the competitive
process, the fitness of a particular species is computed by estimating how well
it performs relative to its competitors in cooperating with other species to
produce good solutions. For example, the species selected out of N compet-
ing sub-populations is given a higher probability for representing a particular
variable in subsequent generations, while the losing species of the competition
is penalized and given a lower probability.

Problem Decomposition and sub-component Inter-dependency

As mentioned earlier in the section, the issue of problem decomposition needs
to be addressed for coevolutionary algorithms. The difficulty lies in the fact
that information pertinent to the number or roles of sub-components is usu-
ally unknown a priori and many problems can only be decomposed into sub-
components with complex inter-dependencies. The competitive-cooperation
coevolutionary model addresses such an issue through emergent problem de-
composition.

As illustrated above, the competitive process leads to a potential “arms
race” among the cooperative species to improve their contributions in the
associated sub-components. It should be noted that the collaboration be-
tween these two coevolutionary models can lead to the natural formation
of competitive sub-populations rather than sub-components. In addition, it
facilitates the interactions among different species, in possibly various roles,
right at the onset of the optimization process, which benefits the discovery
of inter-dependencies among the species. Therefore, the interplay of com-
petition and cooperation provides an environment in which inter-dependent
sub-components end up within similar species and reasonable problem decom-
position emerges due to evolutionary pressure rather than being specified by
the user.

The emergent attribute of the competitive-cooperation coevolutionary
model is distinctively different from the cooperative model proposed by Pot-
ter and Jong [213]. Although the participation of a sub-population is based
on its contribution made to the collaboration among species in both ap-
proaches, this feature is due to the emergence of fitter species for a particular
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Table 6.1 Nomenclature

Notation Definition

A Archive of non-dominated solutions
AT Temporal archive of past non-dominated solutions
a; The i-th non-dominated solution of A
Cireq Frequency of competition

N Number of decision variables

Pf Competition pool for the i-th variable
Rsize Number of a; to be updated to AT

S The i-th sub-population

Si,j The j-th individual of S;

Si,rep Representative of S;

SClratio Ratio of stochastic competitors in Pf

problem sub-component in the proposed model. One limitation of the ap-
proach in [213] is that stagnant sub-populations are simply replaced by
randomly initialized sub-populations, implying that any useful information
obtained previously can be discarded.

Diversity

The competitive-cooperation coevolutionary model provides a means of ex-
ploiting the complementary diversity preservation mechanism of both com-
petitive and cooperative models. In the cooperative model, the evolution of
isolated species tends to produce more diversed individuals across the differ-
ent sub-populations, although this property does not necessarily extend to
within each sub-population. On the other hand, a diverse sub-population is
driven by the necessity to deal with different situations posed by the other
sub-populations in the competitive model. Furthermore, the competitive pro-
cess in competitive-cooperation coevolutionary model also allows for a more
diversified search since the optimization of each sub-component is no longer
restricted to one species. The competing species provides another round of
optimization for each sub-component, thus increases the extent of the search
and maintains an overall low computation requirement.

6.2 Applying Competitive-Cooperation Coevolution
for Multi-objective Optimization

Based on the competitive-cooperation coevolutionary paradigm described
in Section [6.1] this section presents a competitive-cooperation coevolution-
ary algorithm (COEA) for multi-objective optimization. The notations used
in subsequent sections are summarized in Table The mechanism of
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cooperative coevolution is described in Section [6.2.1] while the competitive
element of the proposed paradigm is presented in Section [6.2.2] Finally, the
implementation details of COEA are given in Section [6.2.3

6.2.1 Cooperative Mechanism

The cooperative mechanism of the proposed COEA is extended from the
model introduced by Tan et al [251]. By adopting this strategy, the algorithm
can exploit the fine-grained search capability desirable in many applications
and maintain good diversity across the sub-populations. The main steps of
the cooperative mechanism are shown below:

Cooperative Coevolutionary Mechanism
Step 1:  For all solutions in S;

- Assemble complete solution with s; ; and representative from the other
sub-populations.

- Evaluate solution

- Update A,

Step 2:  For all solutions in S;

- Assign Pareto rank to sq ;.
- Calculate niche count of s1 ;.

Step 3: Update representative of S;

At the start of the optimization process, the i-th sub-population is ini-
tialized to represent the i-th variable. Concatenation between individuals in
S; and representatives from the other sub-populations is necessary to form
a valid candidate solution for evaluation. As an example, consider a three-
decision variable problem where sub-populations S7, S, and Ss, represent
the variables x1, x2, and x3, respectively. When assessing the fitness of s j,
it will combine with the representatives of S5 and S3 to form a valid candidate
solution.

In this approach, archive updating is conducted after the evaluation of each
individual. Pareto ranking and niche count computation of individual s; ; are
then conducted with respect to the archive. Note that only the fitness values
of the individuals from S; are updated at the i-th cycle. The Pareto rank of
each individual is based on the number of archived solutions dominating it,
ie.

rank(si ;) =1+ [{ar € Alar < si;}|. (6.1)

Similar to the ranking process, the niche count (nc) of each individual is cal-
culated with respect to the archive of non-dominated solutions. The dynamic
sharing scheme proposed in [255] is employed here to estimate the sharing
radius.
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The cooperative process is carried out in turn for all n, sub-populations,
where n, is the number of decision variables. Before proceeding to the evalu-
ation of the next sub-population, the representative of S; denoted as s;, r¢p is
updated to improve the speed of convergence. This updating process is based
on a partial order such that ranks will be considered first and followed by
niche count if there is a tie in the rank. For any two individuals s; ; and s; 1,
si,; is selected over s; i, if rank(s; ;) < rank(s;y) or {rank(s;;) = rank(s;)
and nc(s; ;) < ne(s;r)}. The rationale of selecting a non-dominated repre-
sentative with the lowest niche count is to promote diversity of the solutions
via the approach of cooperation among multiple sub-populations.

6.2.2 Competitive Mechanism

Given that the cooperative scheme optimizes a single variable in each sub-
population, one simple approach is to allow the different sub-populations to
take up the role of a particular problem sub-component in a round-robin
fashion. The most competitive sub-population is then determined and the
sub-component will be optimized by the winning species in the next cooper-
ative process. Ideally, the competition is performed such that all individuals
from a particular sub-population compete with all other individuals from
the other sub-populations in order to determine the extent of its suitability.
However, such an exhaustive approach requires extensive computational ef-
fort that is often practically infeasible. A more practical approach is thus to
conduct competition with only selected individuals among a certain number
of competitor sub-populations to estimate the species fitness and suitability.
The competitive mechanism is illustrated in Fig. and the main steps are
shown below:

Competitive Coevolutionary Mechanism
Step 1:  For all solutions in S;

- Insert representative of sub-population representing variable @ s; rep
into the competitive pool Pf.
- Ifng > |Sz|
Select competing sub-populations randomly.
Insert competitors from selected sub-population into Pf.
Insert competitors from other sub-populations into Pf.
Insert random individuals from S; into Pf.

Step 2:  Cooperative process.
Step 3: Determine winning sub-population S.
Step 4: Update S; = Si.

The competitive process to discover the most suitable sub-population is
performed for each variable in an iterative manner. For the i-th variable, the
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Fig. 6.2 Illustration of the competitive mechanism

representative of the associated sub-population, i.e. s;, r¢p, is selected along
with the competitors from the other sub-populations to form a competition
pool. The COEA adopts a simple competitor selection scheme of choosing
a random individual from each competing sub-population. Intuitively, the
selection of a random competitor will enable the COEA to explore relation-
ships among the different variables. Other types of competition schemes will
be presented and analyzed in Section In the case where n,>|S;|, i.e.
the number of sub-populations is larger than the sub-population size, the
participating sub-populations will be selected randomly before the start of
the competition process. This provides an opportunity for the other sub-
populations left out in this instance to participate in future competitions.

These competitors will then compete via the cooperative mechanism de-
scribed earlier to determine the extent of the cooperation achieved with the
representatives of the other sub-populations. In this approach, the winning
species is determined by checking the originating sub-population of the rep-
resentative after the representative update. At the end of the competitive
process, S; will remain unchanged if its representative wins the competition.
In the case that a winner emerges from other sub-populations, S; will be
replaced by the individuals from the winning sub-population. The rationale
of replacing the losing sub-population instead of associating the winning sub-
population with the decision variable directly is that different variables may
have close but not identical properties. Therefore, it is more appropriate to
seed the losing sub-population with the desirable information and to allow it
to evolve independently.

By embedding the competitive mechanism within the cooperative process,
the adaptation of problem decomposition and the optimization process are
conducted simultaneously. Hence, no additional computation cost is incurred
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from the competition. Moreover, this approach also has the advantage of
allowing different sub-populations to solve a single component as a collective
unit, with the competitors acting as a source of diversity.

6.2.3 Implementation

The flowchart of the proposed COEA is illustrated in Fig. [6.3 The initializa-
tion process involves the creation of n, sub-populations of random individ-
uals, where the i-th sub-population will represent the ¢-th decision variable.
The individuals will then undergo the competitive-cooperation process un-
til the stopping criterion is satisfied, which can be set based upon a fixed
number of function evaluations. In this work, the number of fitness function
evaluations is determined according to past experience and complexity of the
test functions, which can be in multiples of the number of decision variables.

At each generation, either the cooperative or competitive mechanism is
activated. In particular, the competitive mechanism is applied at a fixed
frequency of Cy,.q = 10, otherwise the cooperative process is adopted oth-
erwise. During the cooperative process, individuals of each sub-population
are evaluated by combining them with representatives from the other sub-
populations to form a complete candidate solution. As mentioned in Section
[6:2.T], the archive will be updated after each evaluation. After all individuals
in the sub-populations have been evaluated in the cooperative process, binary

Initialize
subpopulation

Is stopping criteria met?

Yes

A

Cooperation No
Mechanism
i Competition or Competition
Cooperation?
Update Archive Cooperation
A
Cooperation Competition
Mechanism Mechanism
Return Archive l
v
Binary Tournament bSthf:e .
Selection subpopulation
No individuals
Subpopulation
Parent selected? Crossover
Mutation -

Fig. 6.3 Flowchart of COEA
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tournament selection based on Pareto rank is applied to select the parents
for each of the sub-populations. Here the individual with a lower niche count
will be selected in the case of a tie in rank. The selected parents will then
undergo the process of uniform crossover and bit-flip mutation.

During the competitive process, the archiving is also performed after each
evaluation as described in Section In contrast to the cooperative pro-
cess, tournament selection is not employed here for the selection of parents
and the sub-population individuals are shuffled randomly before undergoing
crossover and mutation. It is not necessary to perform selection based on fit-
ness measure since the replacement individuals have not been evaluated for
their fitness and may not perform in an identical manner in their new role of
optimizing another sub-component.

The algorithm applies a fixed-size archive to store non-dominated indi-
viduals along the evolution. A complete candidate solution formed by the
sub-populations will be added to the archive if it is not dominated by any
archived solution. Likewise, any archive member dominated by this candidate
solution will be removed. When the predetermined archive size is reached, a
recurrent truncation process [I54] based on niche count is used to eliminate
the most crowded archive member.

6.3 Adapting COEA for Dynamic Multi-objective
Optimization

Besides considering the different requirements of multi-objective problems,
the issues of diversity and outdated archived solutions should also be ad-
dressed before the proposed COEA is capable of dealing with environmen-
tal variations in dynamic optimization. Section describes a scheme for
achieving good diversity to be introduced while exploiting useful past infor-
mation. Section describes a simple temporal memory approach, which
stores and reintroduces outdated non-dominated individuals into the archive
when necessary.

6.3.1 Introducing Diversity via Stochastic
Competitors

Generally, the population diversity desirable for tracking the dynamic PS}
in COEA can either be introduced explicitly through mechanisms such as
random restart and hypermutation or be maintained by means of niching
and other diversity preservation schemes. The approach of using multiple
populations to explore the different regions of the search space is not appli-
cable here since the application of sub-populations in COEA serves another
purpose of optimizing a specific sub-component of the problem. Although
explicit generation of diversity will allow the algorithm to react faster to
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severe environmental changes, such an approach is unable to utilize useful
past information. On the other hand, the potential for information exploita-
tion in diversity preservation schemes is often achieved at the expense of a
slower convergence. This is known as the exploration-exploitation dilemma
for dynamic optimization [30].

A diversity scheme which exploits the competitive mechanism of COEA is
thus implemented. In every generation, a fixed number of archived solutions
are re-evaluated and the current objective values are checked against the
previous values for discrepancies. If there is any environmental variation in
the evolution, the competitive mechanism will be started, in addition to its
fixed schedule. This strategy allows the algorithm to assess the potential of
existing information within the various sub-populations for exploitation in
the new problem landscape.

Furthermore, the competitive process provides a natural conduit in which
the introduction of diversity into the sub-populations can be regulated. In-
stead of re-initialization or subjecting the entire sub-population to hypermu-
tation, a set of stochastic competitors, which is illustrated in Fig. [6.4] are
introduced together with the competitors from the other sub-populations,
where the ratio between the two types of competitors is given by the pa-
rameter SCpqti0. The idea is to compare the potential of new regions in the
search space and the past information to decide whether the sub-population
should be initialized. The latin hypercube sampling is applied to generate
individuals along each dimension uniformly. In the case that stochastic com-
petitor emerges as the winner, the particular sub-population is re-initialized
in the region that the winner is sampled from. Hence, diversity is introduced
into the sub-populations only when it presents an advantage over the current
information at hand.
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6.3.2 Handling Outdated Archived Solutions

If there is any environmental change in the evolution, it is likely that
the archived solutions will not remain non-dominated and these outdated
archived solutions will keep out the non-dominated solutions if they are be-
ing left unchecked. Therefore, appropriate measures must be incorporated
to minimize the detrimental effects of any outdated archived solution. A
simple approach is to re-evaluate all the outdated solutions and to remove
only the dominated solutions from the archive. Since most MOEAs are eli-
tist in general, such an approach may mislead the optimization process with
non-dominated but outdated archived solutions. Moreover, the process of re-
evaluation will result in extra computational cost, which is undesirable. An
alternative approach is to simply discard all the archived solutions but useful
information about past PF,; cannot be exploited in the case where PS} is
cyclic in nature.

In order to store the potentially useful information in dCOEA, an addi-
tional external population denoted as the temporal memory is used in con-
junction with the archive. In the ideal situation, the temporal memory is
a repository of all the non-dominated solutions prior to any environmental
variation. Due to the limited computational resources, however, decision must
be made on what solutions and how the solutions are stored in the temporal
memory. The main steps of the temporal archive updating mechanism are
shown below:

Temporal Archive

Step 1:  Select and remove the best archived solution along each dimension
from A; to temporary pool PT.

Step 2:  If Rg;.e > M, randomly select and insert M — Rg;,. solutions from
A, to temporary pool PT.

Step 3:  If Rsire < M, randomly select and remove Rg;,. — M solutions from
temporary pool PT.

Step 4:  Add PT to temporal archive AT,

Step 5: If | AT|> size limit, remove Ry;.. oldest solutions from AT.

To store the outdated solutions, a fixed number Rg;,. of the archive is added
to the temporal memory upon a landscape change. When the upper bound
of the temporal memory is reached, the oldest set of Rg;.. outdated solu-
tions is removed for newer solutions. To select the Rg;.. outdated solutions,
the dCOEA stores the extreme solutions along each dimension in the objec-
tive space. In the case where Rg;,. is greater than the number of extreme
solutions, the rest of the solutions to be stored are randomly selected from
the archive. On the other hand, if R;.. is smaller than the number of ex-
treme solutions, then R,;.. extreme solutions will be randomly selected into
the temporal memory. Intuitively the value of Rg;,. controls the tradeoff be-
tween the storage of information across different environmental changes and
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Table 6.2 Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, PAES, and IMOEA;
sub-population size 10 in COEA and CCEA;
Archive (or secondary population) size 100.

Chromosome Binary coding; 30 bits per decision variable.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate 0.8
Mutation operator Bit-flip mutation
Mutation rate % for DTLZ3 where L is the chromosome
length;
% for FON and KUR where B is the bit size per decision variable;
Niche Radius Dynamic sharing.

the information for a particular instance of landscape change. In particular,
a smaller value of Rg;,. will allow for a more diverse range of past solutions.

After the Ry;.. outdated archived individuals have been added to the tem-
poral memory, all archived solutions will be discarded. Subsequently, the
temporal memory will be re-evaluated and the archive updating is conducted
on this external population. The computational cost incurred by this re-
evaluation process is necessary so as to exploit any useful information about
the current PS;. To address the concern that solutions updated into the
archive through this approach may misguide the optimization process, no
archived solution will be re-inserted back to the sub-populations in the gen-
eration immediately after the environmental change.

6.4 Static Environment Empirical Study

This section starts with a comparative study between COEA and MOEAs
that are representative of the state-of-the-arts in Section [6.Z.11 This section
concludes with further investigations to gain better insights to the dynamics
of competitive-cooperation evolution in Section and Section

6.4.1 Comparative Study of COEA

In order to examine the effectiveness of COEA, a comparative study including
COEA, CCEA [251], SPEA2 [298], and NSGAII [61] is carried out based upon
FON, KUR, and DTLZ3. The simulations are implemented in C++ on an
Intel Pentium 4 2.8 GHz personal computer. Thirty independent runs are
performed for each of the test functions to obtain the statistical information,
such as consistency and robustness of the algorithms. The various parameter



6.4 Static Environment Empirical Study 169

Fig. 6.5 The evolved Pareto front from (a) COEA, (b) CCEA, (c) NSGAII, and
(d) SPEA2 for FON

settings are listed in Table All the algorithms here are implemented using
the same binary coding scheme, tournament selection, uniform crossover, and
bit flip mutation.

FON

The FON challenges the algorithms’ ability to find and maintain the entire
tradeoff curve uniformly. Since the tradeoff curve is non-convex and non-linear
in FON, it is difficult to maintain a stable evolving population for this problem.
A stopping criterion of 20,000 evaluations is used here. The PFs obtained from
the different algorithms using the same random seed are shown in Fig. [6.5(a)-
(d), while the distributions of the different performance metrics are represented
by box plots in Fig. [6.6(a)-(d). The advantage of the proposed competitive-
cooperation model in handling parameter interactions is shown in Fig.[6.6l and
by comparing the evolved PF in Fig.[65(a) and Fig.[62(b).

KUR

The KUR is characterized by PF* that is non-convex and disconnected,
which contains three distinct and disconnected regions on the final trade-
off. The decision variables corresponding to the final tradeoff for KUR are
difficult to find since they are disconnected in the decision variable space. Like
FON, there are high interactions between the decision variables, which pose a
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challenge to MOCAs. A stopping criterion of 30,000 evaluations is used for
this problem. The distributions of the different performance metrics are rep-
resented by box plots in Fig. [6.7(a)-(d). The main difficulty stemming from
the high parameter interactions in this problem is the finding of all the four
disconnected regions of PF. Although CCEA is capable of evolving a PF that
is close to PF*, it can be observed from Fig. [67(b) and Fig. [67(c) that it
faces difficulty in finding a diverse PF. As shown in the metric of MS, the
competitive-cooperation paradigm allows COEA to evolve a more diverse
solution set as compared to the CCEA.

DTLZ3

DTLZ3 is used to challenge the MOEA’s capability to produce adequate pres-
sure in driving individuals towards the high-dimensional PF*. Moreover, the
DTLZ3 is also characterized by the challenge of multi-modality. A stopping
criterion of 28,000 evaluations is used for this problem. The distributions of
the different performance metrics for DTLZ3 are shown in Fig. [6.8(a)-(d). It
can be observed that although SPEA2 and NSGAII are unable to find good
solutions near the PF*, they manage to evolve a good spread of solutions.
On the other hand, the COEA is seen to scale well with increasing objectives
and to produce competitive performance for GD, S, and MS. The metric of
NR also shows that the COEA outperforms CCEA as given in Fig. [6.8(d).
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6.4.2 Effects of the Competitive Mechanism

In this section, experiments are conducted at Cfreq={1, 5, 10, 30, 50, inf}
to study the effects and dynamics of incorporating both competitive and
cooperative processes in a common framework based on the benchmark prob-
lems of FON, KUR, and DTLZ3. As mentioned earlier, the FON and KUR
have severe parameter interactions, which are useful to examine the perfor-
mance improvement of the competitive mechanism in COEA. The DTLZ3
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Table 6.3 Performance of COEA for FON with different C't,eq. The best results
are highlighted in bold.

1 5 10 30 50 Inf
1st quartile ~ 0.0080 0.0050 0.0086 0.0107 0.0119  0.0235
GD Median 0.0116 0.0075 0.0133 0.0157 0.0207  0.0276
3rd quartile  0.0171 0.0090 0.0198 0.0217 0.0243 0.0347
1st quartile  0.9492 0.5394 0.5991 0.6313 0.6121  0.4857
MS Median 0.9741 0.8916 0.8036  0.7510 0.6882  0.5159
3rd quartile  0.9975 0.9466 0.8891 0.8547 0.7280  0.5732

Table 6.4 Performance of COEA for KUR with different Cfreq. The best results
are highlighted in bold.

1 5 10 30 50 Inf
1st quartile ~ 0.0349  0.0256 0.0329 0.0370 0.0521  0.1414
GD Median 0.0425  0.0365 0.0376 0.0864 0.2946  0.2941
3rd quartile  0.0499  0.0549  0.0807 0.3078 0.4924  0.5592
1st quartile  0.9995  0.9822  0.9608 0.9458 0.9214  0.8841
MS Median 0.9998  0.9939  0.9902 0.9678 0.9610  0.9461
3rd quartile  1.0000  0.9988  0.9987 0.9906 0.9730  0.9752

Table 6.5 Performance of COEA for DTLZ3 with different C'f,eq. The best results
are highlighted in bold.

1 5 10 30 50 Inf
1st quartile ~ 28.6021 0.0000 0.0000  0.0000 0.0000  15.0409
GD Median 58.4115 0.0039 0.0009  0.0000 0.0000 18.4015
3rd quartile 100.8232  0.0252  0.0248 0.0271 0.1414 23.4576
1st quartile 0.6744 0.9990 0.9972 0.9950 0.9958  0.9860
MS Median 0.7575 0.9998 0.9990 0.9987 0.9979  0.9933
3rd quartile 0.8702 1.0000 0.9998  0.9996 0.9995  0.9986

is included here since most algorithms are unable to deal with this problem
effectively as observed in the previous section.

The performances of COEA with Creq={1, 5, 10, 30, 50, inf} for FON,
KUR and DTLZ3 are summarized in Table [6.3, Table [6.4] and Table [6.5],
respectively. Note that no competition takes place when C'feq=inf, which
effectively reduces the competitive-cooperative paradigm to a conventional
cooperative model. From the tables, it can be observed that COEA gives
better performances for the three benchmark problems at lower settings of
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Ctreq and the performances deteroriate when the competitive mechanism is
absent. By comparing the results over different C'¢,.q, it is clear that a larger
Ctreq allows the COEA to adapt faster to the problem requirements and to
evolve a more diverse and near optimal PF. On the other hand, it can be seen
that the improvement for MS is attained at the expense of GD for FON and
KUR. In the case of DTLZ3, the algorithmic performance deteriorates sharply
at Crreq = 1 since constant competition may restrict the time necessary for
the sub-populations to adapt to the decision variables. Nonetheless, it can be
observed that the incorporation of competitive mechanism with reasonable
C'freq can result in significant improvement of convergence and diversity for
the problems of FON, KUR, and DTLZ3.

Fig. shows the evolutionary trend of the best solution for each variable
in DTLZ3 with Cfpeq = 10 and Cyreq = 50. In order to evolve a near-optimal,
diverse and uniformly distributed PF, the algorithm needs to maintain a wide
range of values for x1-x4, while finding the optimal value of 0.5 for x5-z14.
For both settings, it can be seen that xi-x4 oscillate continuously along the
evolution process in order to span the entire range of feasible values. Likewise,
x5-x14 are able to converge to the optimal value of 0.5 as shown in Fig. [6.9)c)-
(d). By comparing Fig.[6.9(a) and Fig. [69(b), it can be seen that the COEA
with Cfreq = 10 converges to the optimal value of 0.5 at the 10th generation.
However, the COEA with C,eq = 50 only converges to the optimal value at
the 50th generation. It is also observed that the convergence of the algorithm
coincides with each competition process in the evolution.

To analyze the influence of the competitive mechanism on the emergent
decomposition process, the winning sub-population for each round of the
competition is shown in Fig. To facilitate the introduction of diversity
for variables x1-x14, it is observed that S1-S3 emerge as the most suitable
sub-populations and each takes over the role of optimizing a variable within
r1-T4 in an almost iterative manner. For the variables x5-x14, it is observed
that Sg took over the rest of the sub-populations at the first competition.
Although subsequent winners include Sy, S7, Ss, Sg, and S1g, Sg is shown to
be the dominant sub-population for these variables. It can also be observed
from the sub-population distribution that individuals of S1-S3 are distributed
throughout the search space, while individuals of S4-S14 are concentrated
around the value of 0.5.

6.4.3 Effects of Different Competition Schemes

In this section, three different competition models are incorporated in COEA
and their effectiveness for multi-objective optimization are investigated.
These models are as follows,

e Random: Before the start of each competition process, an individual is
selected randomly from each competing sub-population as the partici-
pant. This set of competitors will remain fixed during the entire course



6.4 Static Environment Empirical Study 175

of the competition for that particular sub-component. This scheme is im-
plemented in the COEA adopted for the comparative study in the previous
section.

e Elitist: Before the start of each competition process, each competing sub-
population selects the best individual for its associated sub-components
as the participant. This set of competitors will remain fixed during the
whole course of the competition for that particular sub-component. This
scheme is expected to perform well when the different sub-components
have similar properties.

e Hybrid: Before the start of each competition process, each competing sub-
population randomly selects either the best individual or a random individ-
ual as the participant. This set of competitors will remain fixed during the
entire course of the competition for that particular sub-component. This
model represents a tradeoff between the random and the elitist scheme.

The experiments are conducted for COEA having different competition
schemes with C'freq = 10. The results of 30 independent runs for the problems
of FON, KUR, and DTLZ3 are summarized in Table [6.6], Table 6.7, and
Table [6.8, respectively. It can be seen that the elitist scheme is capable of
evolving the PF with a good convergence for all the three problems. It also
gives the best performance in the metric of GD for DTLZ3. This result is
expected since the optimal values for variables z5-x14 are identical and the
elitist scheme is able to exploit this relationship quickly. On the other hand,
it is observed that the random scheme and the hybrid scheme demonstrate
better performances when parameter interactions are present. The limitation
of high selection pressure introduced by the elitist scheme is also evident
from the relatively poor performance in the metric of MS for all problems.
Although the random scheme demonstrates the best performance for KUR
where the PS* is discontinuous in the decision space, it produces relatively
poor convergence results for FON and DTLZ3. It can also be seen that the
hybrid scheme provides competitive results in all cases, and gives the best
performance in the metric of MS for FON and DTLZ3.

Table 6.6 Performance of COEA for FON with different competition models. The
best results are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0086 0.0069 0.0071

GD Median 0.0133 0.0083 0.0102
3rd quartile 0.0198 0.0190 0.0158

1st quartile 0.5991 0.671203 0.6646

MS Median 0.8036 0.7565 0.8288

3rd quartile 0.8891 0.8796 0.9125
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Table 6.7 Performance of COEA for KUR with different competition models. The
best results are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0329 0.0264 0.0306

GD Median 0.0376 0.0400 0.0537
3rd quartile 0.0807 0.1056 0.0918

1st quartile 0.9608 0.8244 0.9491

MS Median 0.9902 0.9691 0.9868
3rd quartile 0.9986 0.9948 0.9955

Table 6.8 Performance of COEA for DTLZ3 with different competition models.
The best results are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0000 0.0000 0.0000

GD Median 0.0009 0.0010 0.0033
3rd quartile 0.0248 0.0125 0.0172

1st quartile 0.9972 0.9956 0.9956

MS Median 0.9990 0.9979 0.9995

3rd quartile 0.9998 0.9992 0.9999

The elitist scheme is the greediest method which may restrict the explo-
ration of possible relationships among the variables. This explains the reason
that it performs well for problems with low variable interactions but provides
relatively poor results for problems with high parameter interactions. In con-
trast, the random scheme is the least greedy approach which allows it to con-
sider the different parameter relationships for maintaining diverse solutions
in the evolution. Hence, it performs well for problems with high parameter
interactions but the random nature of the competitor selection also makes it
incapable of exploiting the characteristic that the optimal solutions for FON
and DTLZ3 lie in the same region. Nonetheless, it is also this property that
allows the random scheme to evolve a more diverse PF as compared to the
elitist scheme. On the other hand, the hybrid scheme demonstrates features
of both the random and elitist schemes, thus allowing it to attain competitive
results that are at least comparable to the other two schemes. Although the
three competition schemes behave differently for the different problems, the
proposed coevolutionary model produces better performance as compared to
conventional approaches. Note that these three schemes are only examples of
how different competition models can be applied and other variants can also
be considered if so desired.
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6.5 Dynamic Environment Empirical Study

6.5.1 Comparative Study

To examine the performance of dCOEA, two different dynamic MOEAs based
on a basic MOEA and the CCEA, respectively, are adopted in this study.
The basic MOEA is similar to the model presented in Chapter 2l The algo-
rithm employs a fixed-size population and an archive to store non-dominated
solutions along the evolution. The archive is updated at each cycle, i.e. a
candidate solution will be added to the archive if it is not dominated by
any member in the archive. Likewise, any archive member dominated by this
solution will be removed from the archive. When the predetermined archive
size is reached, a recurrent truncation process based on niche count is used
to eliminate the most crowded archive member. Elitism is implemented by
selecting individuals to a mating pool through binary tournament selection
of the combined archive and evolving population. The selection criterion is
based on Pareto rank and niche count is used in the event of a tie. In both the
dynamic MOEA (dMOEA) and dynamic CCEA (dCCEA), a fixed number
of archived solutions are re-evaluated in every generation. In the case where
a change in the landscape is detected, the temporal memory described previ-
ously will be applied and random restart is incorporated to generate diversity
within the evolving population.

The parameter settings for the different algorithms are tabulated in
Table Thirty independent simulation runs with randomly generated ini-
tial populations are performed for each of the test problems. The experi-
ments are conducted at different severity levels of ny = {1, 10, 20} and
different frequencies of 7 = {5, 10, 25} so as to study the impact of dynam-
ics in uncertain environments. Since each generation involves 100 function

Table 6.9 Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in AMOEA;
sub-population size 10 in dCOEA and dCCEA;
Archive (or secondary population) size 100.

Chromosome Binary coding; 30 bits per decision variable.
Selection Binary tournament selection

Crossover operator Uniform crossover

Crossover rate 0.8

Mutation operator Bit-flip mutation

Mutation rate % for FDA1, dMOP1, dMOP2 and dMOP3;
Niche Radius Dynamic sharing.

Evaluation number 20,000
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Table 6.10 Performance of MOEA, dCCEA, and dCOEA for FDAT1 at different
settings of 77 and nr. The best results are highlighted in bold only if it is statisti-
cally different based on the KS test.

VDoffline MSoffline
(1¢, n7) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile  0.666 0.243 0.107  0.789 0.829 0.939
(5,10) Median 0.683 0.255 0.110 0.801 0.834 0.944
3rd quartile  0.695 0.264 0.113  0.801 0.841 0.953

1st quartile  0.489 0.154 0.034 0.870 0.863 0.963
(10,10) Median 0.508 0.163 0.038 0.878 0.873 0.970
3rd quartile  0.521 0.167 0.039  0.890 0.882 0.977

1st quartile  0.485 0.080 0.001  0.876 0.926 0.979
(25,10) Median 0.528 0.091 0.002 0.894 0.939 0.985
3rd quartile  0.583 0.102 0.003 0.914 0.947 0.989

1st quartile  1.008 0.135 0.020 0.535 0.857 0.973
(10,1) Median 1.031 0.149 0.022  0.585 0.866 0.981
3rd quartile 1.064 0.156 0.025  0.599 0.883 0.984

1st quartile  0.542 0.152 0.039  0.847 0.858 0.970
(10,20) Median 0.584 0.162 0.042  0.868 0.875 0.975
3rd quartile  0.606 0.171 0.044  0.881 0.888 0.979

evaluations, the setting of 7p = 5 implies a change of the landscape in ev-
ery 500 evaluations. In this study, SC)qatio and Rg;.. are set as 0.5 and 5,
respectively.

FDA1

The FDA1 challenges the dynamic MOEAs’ ability to track and converge
towards the PF} with every landscape change. One interesting characteristic
of this problem is that the distribution and diversity of the solutions along
the PF, are not affected by the landscape change. The simulation results for
VDo riine and M S,y f1ine With various settings of 7p and np are summarized
in Table In general, the coevolutionary paradigm is shown to be more
appropriate than canonical MOEAs in handling dynamic landscapes. As can
be seen, the dCOEA outperforms dCCEA in both the aspect of tracking and
finding a diverse solution set. Table also shows a better convergence and
diversity performance of AMOEA, dCCEA and dCOEA for larger value of
71 or less frequent landscape changes. Although the AMOEA gives a better
convergence for larger value of ny or less severe landscape changes, it is
observed that better results of AdCCEA and dCOEA can be obtained with a
more severe landscape change.
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Table 6.11 Performance of MOEA, dCCEA, and dCOEA for dMOP1 different
settings of 77 and nr. The best results are highlighted in bold only if it is statisti-
cally different based on the KS test.

(Ti7 nT)

1st quartile
(5,10) Median
3rd quartile
1st quartile
Median
3rd quartile

(10,10)

1st quartile
Median
3rd quartile

(25,10)

1st quartile
(10,1) Median
3rd quartile
1st quartile
Median
3rd quartile

(10,20)

VDoffline MSoffline
MOEA dCCEA dCOEA MOEA dCCEA dCOEA
0.230 0.005 0.891 0.825
0.242 0.007 0911 0.838
0.252 0.008 0.933 0.846
0.111 0.002 0.916 0.880
0.121 0.003 0.916 0.880
0.132 0.004  0.935 0.888
0.023 0.001 0.916 0.931
0.026 0.00 0.940 0.948
0.030 0.001 0.962 0.962
0.120 0.002 0.891 0.870
0.126 0.003 0.914 0.877
0.137 0.004 0.934 0.893
0.115 0.002 0.904 0.871
0.123 0.003 0.921 0.881
0.133 0.003  0.939 0.890
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Fig. 6.11 Evolutionary trace of dAMOEA (-), dCCEA (- -), and dCOEA (o) for
dMOP1 at (a) 7r =5 and nr = 10 and (b) 77 = 10 and nr = 10.
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dMOP1

Unlike FDA1, the convexity of dAMOP1 changes with time while the location
of PS* remains fixed. The dMOP1 challenges the dynamic MOEA’s ability to
maintain a diverse PF} with every landscape change. The simulation results
for VDo fiine and MS,y f1ine with various settings of 7p and nr are summa-
rized in Table[6. Tl Similar to the problem of FDA1, the dCOEA outperforms
dMOEA and dCCEA in both tracking and finding a diverse solution set. It
is also observed that the dMOEA produces better results than dCCEA for
the settings of 70 = 5 and 7 = 10. The evolutionary trace of VD¢ fiine and
MSof fiine for these settings are shown in Fig. While the dCOEA and
dCCEA behave similarly in the initial generations before the first landscape
change, it can be seen that the dCCEA is greatly affected by the change
in the shape of PF. On the other hand, the AMOEA is capable of finding
the PS; and a diverse PF; despite having a slower convergence. Based on
previous studies in dynamic single-objective optimization, diversity schemes,
like random restart, tend to perform poorly in situation where the change is
small. As compared to the problem of FDAI, the severity of change has less
impact on the metric of VD, fine for these three algorithms. This is due to
the incorporation of temporal memory that allows the algorithm to rediscover
the PS* quickly, even though random restart is utilized in the dMOEA and
dCCEA.

Table 6.12 Performance of MOEA, dCCEA, and dCOEAS for dMOP2 at differ-
ent settings of 70 and nr. The best results are highlighted in bold only if it is
statistically different based on the KS test.

VDoffline MSoffline
(1¢, n7) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile  0.642 0.285 0.352 0.973 0.852 0.988
(5,10) Median 0.666 0.291 0.372 0.981 0.861 0.991
3rd quartile  0.680 0.300 0.384 0.986 0.871 0.994

1st quartile  0.495 0.159 0.173 0.976 0.886 0.991
(10,10) Median 0.517  0.169xx 0.180 0.980 0.902 0.993
3rd quartile  0.535 0.187 0.192 0.987 0.915 0.996

1st quartile  0.462 0.069 0.059 0.9817 0.949 0.991
(25,10) Median 0.514 0.075 0.063  0.989 0.958 0.994
3rd quartile 0.557 0.093 0.071  0.993 0.964 0.997

1st quartile 1.137 0.176 0.140  0.965 0.881 0.991
(10,1) Median 1.166 0.186 0.152  0.978 0.899 0.996
3rd quartile 1.188 0.202 0.176  0.985 0.912 0.998

1st quartile  0.466 0.166 0.162 0.966 0.889 0.991
(10,20) Median 0.487 0.177 0.170 0.979 0.899 0.992
3rd quartile  0.519 0.185 0.184 0.986 0.916 0.996
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dMOP2

The convexity and PS; of dMOP2 change with time, which challenge the
dynamic MOEA’s ability to track the PS;} and to maintain a diverse PF} with
every landscape change. The simulation results for VD¢ fiine and MSyf frine
with various settings of 7 and nr are summarized in Table In contrast
to the previous two problems, the dCOEA is outperformed by dCCEA for
VDo fiine when (77,n7) is set as (5,10) and (10,10). Since random restart
is applied in dCOEA, further investigations in the next section demonstrate
that a lower SC.q450 allows the dCOEA to give a better performance. On the
other hand, the dCOEA outperforms both AMOEA and dCCEA in tracking
and maintaining better diversity for other parameter settings. By comparing
the values of MS,f fiine in Table Table and Table it can be
observed that dCCEA is unable to find a diverse PF, when the shape of PF}
is dynamic.

dMOP3

Although the dMOP3 has similar characteristics as FDA1, the variable that
determines the spread of the solution set in dMOP3 is not fixed and changes
with time. The dynamic MOEA thus faces an additional challenge in tracking

Table 6.13 Performance of MOEA, dCCEA, and dCOEAS for dAMOP3 at differ-
ent settings of 77 and nr. The best results are highlighted in bold only if it is
statistically different based on the KS test.

VDoffline MSoffline
(¢, n1) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile  0.679 0.226 0.083 0.619 0.824 0.906
(5,10) Median 0.701 0.2398 0.087  0.637 0.835 0.913
3rd quartile 0.727 0.249 0.09 0.658 0.841 0.927

1st quartile  0.460 0.140 0.013  0.802 0.856 0.943
(10,10) Median 0.482 0.149 0.017  0.822 0.867 0.957
3rd quartile  0.507 0.162 0.021  0.843 0.880 0.965

1st quartile  0.424 0.068 0.001  0.903 0.927 0.976
(25,10) Median 0.467 0.078 0.002 0.914 0.9338 0.983
3rd quartile 0.515 0.096 0.003  0.927 0.949 0.987

1st quartile  1.055 0.129 0.011  0.505 0.861 0.977
(10,1) Median 1.087 0.138 0.014  0.539 0.873 0.981
3rd quartile 1.108 0.15 0.018  0.565 0.886 0.987

1st quartile  0.477 0.138 0.019  0.837 0.855 0.946
(10,20) Median 0.505 0.147 0.022  0.857 0.865 0.954
3rd quartile 0.538 0.155 0.025  0.866 0.883 0.966
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the diverse PF} for this problem. The simulation results for VDo fiine and
MS, f1ine With various settings of 7r and nr are summarized in Table
By comparing the results in Table and Table [6.TT], it can be seen that
the three algorithms give poorer performances for MS,f fiine With 70 = 5
and 7p = 10. Nonetheless, similar to the problems of FDA1 and dMOP2,
it is observed that the dACOEA outperforms dMOEA and dCCEA in both
tracking and finding a diverse solution set for the different settings of 7
and nr.

6.5.2 Effects of Stochastic Competitors

The SCpratio determines the degree of diversity introduced in the proposed
dCOEA after every landscape change for good tracking performance. The
relationships between SCqtio = {0.3,0.5,0.7,1} and various settings of ny
and 77 for FDA1 are shown in Fig. Note that no stochastic competitor is
introduced when SC.4tio = 1. These relationships are similarly investigated
for the problems of AMOP1, dMOP2, and dAMOP3. The trends for dAMOP1 are
illustrated in Fig. while the plots for AMOP2 and dAMOP3 are omitted
here since similar traits with FDA1 have been exhibited.

It can be seen from the metric of MS, ¢ fiine in Fig. and Fig. that
the diversity of the evolved PF; improves generally with the introduction of
stochastic competitors. On the other hand, Fig. shows that the track-
ing performance deteriorates with increasing diversity for dAMOP1. This is
because the location of PS; remains unchanged for this problem and it is
improbable that the new set of non-dominated solutions introduced by the
stochastic competitors will be better or even comparable to the archived so-
lutions before any landscape change. Nonetheless, it is clear that stochastic
competitors play an important role in the tracking of dynamic PS} for the
problems of FDA1, dMOP2, and dMOP3.

It can also be observed from Fig. that the dCOEA produces the
best results when ny = 1 for FDA1. In contrast, Fig. shows that the
dCOEA gives the worst results for AMOP1 for the same setting of np = 1.
This observation is similar to past findings from dynamic single-objective
optimization that a higher degree of diversity is required with severe changes
in the environment.

6.5.3 Effects of Temporal Memory

The Rgize determines the extent in which information about past PS; is
stored. A larger Rg;,. results in a higher degree of information exploitation
at the expense of a more diverse repertoire of past PS;. On the other hand,
limited information regarding past PS; is avaliable when Rg;.. is small. The
relationships between Ry, = {0,5,10,20} and various settings of ny and
7p for FDA1 are shown in Fig. 614 Note that no memory is kept when
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Fig. 6.12 Performance metrics of VDoffiine (top) and MS,ffiine (bottom) for
FDAL1 over different settings of SCratio (a) at ne=1 (A), n:=10 (o), and n:=20 (O)
and (b) 7r=5 (A), 77=10 (o), and 7r=25 (0)
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Rsi.e = 0. These relationships are similarly investigated for AIMOP1, dMOP?2,
and dMOP3. The trends for dAMOP1 are shown in Fig. [6.15, while the plots
for dMOP2 and dMOP3 are excluded here since similar traits have been
observed.

Similar to the findings in Section [.5.2 better tracking performances are
observed for higher 7p and at np = 1 in FDA1, dMOP2, and AMOP3 for
the different settings of Rg;... Fig. illustrates that the incorporation of
temporal memory tends to improve convergence according to the metric of
VDof fiine. The only exception occurs at the setting of np =1 and 70 =5
for AMOP1. The tradeoff between the exploration and exploitation of infor-
mation is also evident from the figures with increasing Rg;... For instance,
when the repetition of similar PS} is very frequent for ny = 1, a large Rg;ze
can be used to mine information from past PS} since the number of different
PS} that needs to be represented in the memory is small and vice versa.

6.6 Conclusion

This chapter presented a new coevolutionary paradigm that incorporates
both competitive and cooperative mechanisms observed in nature to solve
multi-objective optimization problems and to track the Pareto front in a
dynamic environment. The proposed competitive-cooperation coevolution is
capable of overcoming the limitations of conventional coevolutionary mod-
els by allowing the decomposition process of the optimization problem to
emerge based on problem requirements as well as exploiting the high speed
of convergence to allow the algorithm to adapt quickly to the changing envi-
ronment. Based on this coevolutionary model, a competitive-cooperation co-
evolutionary algorithm (COEA) is proposed for multi-objective optimization.
Subsequently, this algorithm is extended as a dynamic COEA (dCOEA) and
incorporated the features of stochastic competitors, which allows the algo-
rithm to track the changing solution set, and temporal memory, which al-
lows the algorithm to exploit past information. Extensive studies upon three
benchmark problems demonstrate that COEA is capable of evolving near-
optimal, diverse, and uniformly distribution Pareto fronts even for problems
with severe parameter interactions. The parameter settings and working dy-
namics of the competitive mechanism as well as different competitive schemes
are also examined, illustrating the robustness and importance of both com-
petitive and cooperative elements in a common framework. Likewise, exten-
sive studies are performed to investigate the performances of dCOEA over
different settings of change severity and change frequency. Simulation result
shows that dCOEA is capable of tracking the different environmental changes
effectively and efficiently. In addition, the contributions and parameter set-
tings of the diversity scheme and the temporal memory are also analyzed
over various problem settings.



Chapter 7

Robust Evolutionary Multi-objective
Optimizatio

Branke [30] considered robust optimization as a special case of dynamic opti-
mization, where solutions cannot be adapted fast enough to keep in pace with
environmental changes. In such cases, it would be desirable to find solutions
that perform reasonably well within some range of change. In fact, many
real-world applications involve the simultaneous optimization of several com-
peting objectives and are susceptible to decision or environmental parameter
variations, which result in large or unacceptable performance variations. Ro-
bust optimization of multi-objective problems is the third and final type of
uncertainty considered in this work and it involves the optimization of a set
of Pareto optimal solutions that remains satisfactory in face of parametric
variations.

This chapter addresses the issue of robust multi-objective optimization
by presenting a robust continuous multi-objective test suite with features of
noise-induced solution space, fitness landscape and decision space variation.
In addition, the vehicle routing problem with stochastic demand (VRPSD)
is presented a practical example of robust combinatorial multi-objective
optimization problems.

7.1 Robust Multi-objective Optimization Problems

Apart from the multi-objective optimization goals of evolving a set of near
optimal, diverse, and uniformly distributed Pareto solution set, robust multi-
objective optimization sought to find a set of tradeoff solutions that is robust
or reliable |59]. A robust solution can be defined as a solution that provides
satisfactory performance in face of parametric variations, i.e it is insensitive
to small variations in design and/or environment variables.

* (© 2008 IEEE. Reprinted, with permission, from C. K. Goh, K. C. Tan, C. Y. Cheong,
and Y. S. Ong, “Noise Induced Features in Robust Multiobjective Optimization
Problems,” in Proceedings of 2007 IEEE Congress on Evolutionary Computation
(CEC2007), pp. 568-575, 2007.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 189
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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Definition [7l1. Robust Pareto Optimal Front: The robust Pareto optimal
front is the set of objective vectors that are non-dominated with respect to
the optimization objectives, the adopted robust measure, and the applied
noise intensity.

Definition[7.2. Robust Pareto Optimal Set: The robust Pareto optimal set is
the set of solutions whose corresponding objective vectors are non-dominated
with respect to the optimization objectives, the adopted robust measure, and
the applied noise intensity.

In order to reduce the consequences of uncertainties on optimality and
practicality of the solution set, factors, such as decision variable variation,
environmental variation, and modeling uncertainty, have to be considered
explicitly. Therefore, the minimization multi-objective problem is redefined
as the following.

min f(x, 6x, 6e) = {f1(x, 0, 8e), f2(X, 6x, be),
vy Far (%, 6%, 60) } (7.1)

s.t. g(x, 0x,0e) > 0,h(x,6x,8e) =0

where 6, and 0. represent, respectively, the uncertainties associated with x
and environmental conditions. Both forms of uncertainties may be treated
equivalently. Different noise models, such as normal, Cauchy, and uniform
distributions, have been considered in the literature.

In order to avoid any confusion in the subsequent discussions, it will be
instructive to make a distinction between the notations used for deterministic
multi-objective and robust multi-objective optimization. The terms PF* and
PS* refer to the desired Pareto front and solution set in the general sense,
without representing any specific case. The optimal Pareto front and the
corresponding Pareto solution set of a particular deterministic multi-objective
problem will be denoted as PF};,, and PS},,, respectively. Note that PF}_,
may not be known a priori and it is fixed for any particular multi-objective
problem. The final set of non-dominated solutions evolved by MOEA will be
termed as PFg‘et.

In the case of robust multi-objective optimization, the optimal robust Pareto
front and solution set are dependent on the noise model and the robust
measure. Therefore, the notation should reflect the noise model and the robust
measure used. In this chapter, the optimal robust Pareto front and optimal so-
lution set are denoted as P¥}, s and PSy, s, respectively. The terms rm and
6 refers to the robust measure and noise model in consideration, respectively.
Accordingly, PF‘;‘W s refers to the final set of non-dominated solutions evolved
by robust MOEA based on the robust measure rm and noise model 6.

7.2 Robust Measures

There are several possible notions of robustness and many different ro-
bust measures have been applied in the literature. The most popular and
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Fig. 7.1 Illustration of the different robust measures, (a) worst case (— —) and

constrained (—) and (b) effective (----) and standard deviation (—), with respect
to the deterministic landscape (—)

straight-forward measure is the optimization of the expected performance.
Since it is usually hard to compute the integration of the solution over
the possible disturbances analytically, Monte Carlo integration, i.e. E(f;) =
% . Zf\il fi(x+ 6i), is usually applied to obtain an estimate of the expected
performance. Solutions that are optimized based on expected fitness are
known as effective solutions. Hence, for multi-objective optimization, the re-
sulting Pareto front is known as the effective Pareto front (PFéff,é)‘ Other
measures include the optimization based on the worst case scenario [205], as
a constraint to be satisfied [56], and using various forms of variances.

Each of these robust measures reflects the different aspects of robustness
and Fig. [Z] illustrates the behavior of the different robust measures for an
arbitrary function of varying sensitivities in the search space. The various
plots are generated by sampling the values of x with an uniform distribution
of [—0.025,0.025]. If the model is known with absolute certainty and the
solution can be implemented exactly, then the global optimum represented
by the deterministic solution at x = 0.5 is the ideal solution. However, if
variable z is stochastic, then the solutions presented by the other approaches
would be more viable and the location of the optimum is also different. In
particular, it can be noted that the expected fitness approach will favor the
solution at x = 0.11, while the approaches based on variance and worst
case scenario will favor the solution at = 0.75. On the other hand, the
constrained approach indicates the feasible solutions which satisfy the pre-
defined robustness criterion. This chapter is focused on the optimization of
the expected performance.

7.3 Robust Optimization Problems

This section presents a set of guidelines for the construction of robust multi-
objective test problems. Based on the existing literature on robust
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optimization, Section [Z.41] reviews the different categorization of robust
problems and presents a classification scheme applicable to multi-objective op-
timization. Desirable properties of robust multi-objective problems are high-
lighted and some existing test problems are analyzed empirically in
Section [.4.21 Subsequently, the robust landscape generator and detailed con-
struction guidelines are presented in Section Finally, a vehicle routing
problem with stochastic demand (VRPSD) test suite is proposed as an ex-
ample of a real-world representation of combinatorial robust multi-objective
problems in Section[7.6l

7.4 Robust Continuous Multi-objective Test Problem
Design

7.4.1 Robust Multi-objective Problem Categorization

Robust optimization is very similar to noisy optimization and the two are of-
ten considered in the same context. However, there are significant differences
between these two forms of uncertainties. For noisy optimization, uncertainty
is inherent to the objective functions and it tends to mislead the optimiza-
tion process, resulting in convergence to sub-optimal solutions. In the case
of robust optimization, noise is incorporated into the objective functions to
guide the optimization process to regions that are less sensitive to parametric
variations.

Different categorization of robust problems have been considered in the lit-
erature. Based on the source of uncertainty, Jin and Branke [144] states that ro-
bust optimization can be considered from the perspective of solution sensitivity
to decision variable variations or environmental variable variations. Decision
variable variations stem from the fact that deviations from design specifications
are inevitable in manufacturing. On the other hand, environmental variable
variations arise from variations in operational or environmental conditions. In-
stances of environmental variable variations include temperature changes in
circuit design [264], speed changes in aerodynamic shape and turbine blade
design, and machine breakdowns in machine scheduling.

An alternative classification of single-objective problems based on the re-
lationships between the efficient and effective fitness landscapes is presented
recently in [207]. Paenke et al proposed four categories: 1) identical optimum
where efficient and robust optima are identical, 2) neighborhood optimum
where efficient and robust optima are located on the same peak or trough,
3) local-global flip where one of the local optima corresponds to the robust
optimum, and 4) max-min flip where the global maximum corresponds to the
robust optimum.

Deb and Gupta [56] considered a similar classification that is specific to
the context of multi-objective optimization: 1) the global efficient front is
robust, 2) a part of the global efficient front is not robust, 3) the robust front
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is represented by a local efficient front, and 4) the robust front is represented
by both the global and local efficient fronts.

Robust multi-objective problems are certainly much more complex than
single-objective problems as both PF* and PS* are susceptible to change due
to uncertainties. Recent studies [22, [236] have shown that some problems
have the interesting property of demonstrating fitness topological changes in
the presence of noise. To be precise, topological variation strictly refers to the
introduction of new problem features to the deterministic problem under the
influence of noise. According to Huband et al |16§], features refer to prob-
lem characteristics that define problem difficulty. For the two classification
schemes described above, problems of the first category are typically consid-
ered to be less interesting as compared to problems of the other classes. On
the other hand, it is possible that noise-induced features can actually result
in a more challenging optimization problem even if the location of the opti-
mum remains the same. For instance, Beyer and Sendhoff |22] observed the
phenomenon of noise-induced multi-modality whereby a uni-modal problem
transforms into a multi-modal problem when noise is applied. Therefore, it
will certainly be more interesting to classify robust multi-objective problems
according to the aspects of change under the influence of noise, i.e how the
fitness landscape behaves in the face of uncertainties.

Most benchmark problems in the literature are commonly characterized by
the emergence of a local optimum as the most robust solution in the presence
of noise, signifying a change in the location of the optimum and in the context
of multi-objective problem, a change in PS*. Moreover, as mentioned above,
it is distinctly possible that new problem features are introduced. As noted
by Deb and Gupta [56], the PF* is also susceptible to changes.

For the classification of robust multi-objective problems, this paper defines
a three-bit binary number where the bits, in decreasing significance, represent
the presence of PF*, PS*, and noise-induced features, respectively. Therefore,
there is a total of eight classes. At one extreme, we have a class 0 problem
representing a problem that does not change under the influence of noise. On
the other end, we have a class 7 problem which exhibits all three types of
changes. As a specific instance, a multi-objective problem that demonstrates
feature and PS* changes is a class 3 problem under this classification.

The above classification will be useful in the investigation of the various
problem characteristics’ impacts on evolutionary multi-objective optimiza-
tion as well as identifying the suitability of the different robust handling
techniques. Other aspects of robust multi-objective problem that are worth
considering include the effects of the different robust measures on the land-
scape transformation and the degree of change with increasing noise levels.
As shown in Fig. [[T], the various robust measures result in different trans-
formations. For the latter case, the change in landscape properties, such as
the height of each peak, may change gradually with noise or there may be a
sudden change in landscape feature once a certain noise threshold is reached.
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7.4.2 Empirical Analysis of Existing Benchmark
Features

Several desirable properties of deterministic benchmarks and test suites have
been suggested in the EA literature. In addition to these guidelines, the
following issues should be considered in the development of robust benchmark
problems in the context of multi-objective optimization:

e Robust multi-objective problems are essentially multi-objective problems
and guidelines for the construction of multi-objective benchmark problems
established in the existing literature should be taken into account;

e The robust multi-objective test problems should not have any bias towards
PS:m,tS;

e Some test problems should contain noise-induced features that pose more
difficulty to the optimization algorithm;

e The benchmark problem component, which determines how the problem
behaves in the presence of noise, should be scalable;

e Some test problems should contain possible tradeoffs between robustness

and the different objectives.

In general, any test function should be simple enough to allow for analy-
sis of algorithmic behavior but, at the same time, complex enough to allow
conjectures to the real-world. However, a quick survey of past works will re-
veal the lack of problem characteristics beyond the basic landscape featuring
contrastive sharp and broad peaks or troughs in the evaluation of uncertainty-
handling techniques. In particular, some robust single-objective test functions
may be too simplistic for proper algorithmic evaluation with the apparent
lack of difficulties that may hinder the selection of robust multi-objective
solutions. Furthermore, some robust benchmarks are distinctly multi-modal
in nature and it may be difficult to ascertain whether the robust solution
found is the consequence of premature convergence or the effectiveness of the
particular robust optimization technique.

Therefore, empirical investigations are conducted in this section to analyze
the behavior of four existing benchmark problems found in the literature.
Three of the problems studied are extended from single-objective benchmark
problems in |26, 131, [207] using the ZDT framework [299], which allows the
easy incorporation of problem characteristics that hinder MOEA progress to
the Pareto front. The fourth is a robust multi-objective problem proposed
n [56]. These test functions are characterized by multiple dips of varying
widths and depths in the fitness landscape and the global minimum is much
narrower as compared the local minima. Intuitively, it is more sensitive to
noise and one of the local PS will emerge as PS},, ; when noise is applied. All
four benchmark problems are class 2 test functions since only PS* changes.
The definitions of these extended benchmarks are summarized in Table [Tl
To examine the scalability of these problems, experiments are conducted for
N ={2,5,10}.
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Table 7.1 Definition of robust Test Problems

Problem Source Definition
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In the simulation studies, two state-of-the-art MOEAs, the non-dominated
sorting genetic algorithm II (NSGAII) and the strength Pareto evolutionary
algorithm 2 (SPEA2), are applied to determine the difficulty of finding PF*.
Both algorithms are implemented using the same binary coding scheme of
15 bits per variable, binary tournament selection, uniform crossover, and bit
flip mutation. The simulations are implemented in C++ on an Intel Pentium
4 2.8 GHz computer and 30 independent runs are performed for each of the
test functions in order to obtain statistical information, such as consistency
and robustness of the algorithms. The simulation results with respect to the
metrics of ratio of convergence, spacing (S), and maximum spread (MS) are
shown in Table The ratio of convergence is based on the average number
of non-dominated solutions in each run that are located in the vicinity of
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Table 7.2 Empirical Results of NSGAIT and SPEA2 for the different robust multi-
objective test functions

NSGAII SPEA2

Ratio Space Maximum  Ratio Space  Maximum

Spread Spread

2-D  0.8867 0.5411 1.0 0.7280 0.6582 1.0

rMOP1  5-D 0.0 0.5431 1.0 0.0 0.6783 1.0
10-D 0.0 0.5626 0.9999 0.0 0.6773 0.9999

2-D  0.9947 0.5314 1.0 0.9890 0.6362 1.0

rMOP2 5-D 0.9883 0.5369 1.0 0.9840  0.6278 1.0
10-D  0.9850 0.5781 0.9999 0.9807  0.6849 0.9999

2-D 0.9853 0.5332 1.0 0.9833 0.6354 1.0

rMOP3 5-D 0.7193 0.4965 1.0 0.6203  0.6484 1.0
10-D 0.0 0.5039 0.9999 0.0 0.6268 1.0

2-D  0.5250 0.5066 0.9999 0.4243 0.6500 0.9999

rMOP4  5-D  0.0920 0.5012 0.9997 0.0 0.6442 0.9999
10-D 0.0 04900 0.9997 0.0 0.6174 0.9998

PS}.;. A solution is considered to be in the vicinity of PSj,, if it has a
Euclidean distance of less than 0.05 difference from the nearest point in PS}_,.

From the simulation results, it is observed that NSGAII and SPEA2 gen-
erally perform similarly for the set of benchmark problems. It is evident from
the metrics of S and MS in Table that both algorithms are capable of
consistent performance in the aspects of solution distribution and diversity.
This is due to the manner in which the test problems are constructed, where
the distribution and diversity of the solution set is optimized only through
the h function. With the exception of rMOP2, NSGAII and SPEA2 are un-
able to locate PS},, consistently and this situation worsens with increasing
solution space dimensionality. This fact can also be observed from Fig.
which illustrates the tradeoffs evolved by NSGAII and SPEA2 for rMOP3 at
N= {2,10}. As mentioned before, all four problems are characterized by at
least one local Pareto set that becomes more desirable than PS},, when noise
is introduced. Nonetheless, the failure to find PS};_, clearly indicates that the
two algorithms can converge to more robust regions readily even without the
incorporation of any robust handling mechanism. This is because PS},, is
located at a much narrower region and hence, harder to locate as compared
to the broader dips corresponding to the more robust solutions. This im-
plies that rtMOP1, rMOP3, and rMOP4 are not suitable for the evaluation
of robust MOEA techniques since it is not possible to ascertain whether ro-
bust solutions are found due to the adopted robust measures or due to the
algorithms’ failure to locate PS}_, in the first place.



7.5 Robust Continuous Multi-objective Test Problem Design 197

1.4,
09 B
12]
08 B
?
07 it "%%
)
06
08 %%
05 K %Q%
08
o4 o,
%
oaf 04 oy,
02 %Q’o
@,
02 %%%
o1
%Q}
(] o1 02 03 04 05 06 07 08 09 0 o1 02 038 04 05 06 07 08 09
[ [
f
(a) (b)
1 T T
09 B %
osf B S
°
07,
i
08 Y
05 R 0%}
X,
04 )
05 Q%%b
03 Q‘7’00%
%
02 %o @
o
@0
01 %0
X,

Fig. 7.2 The tradeoffs evolved by NSGAII at (a) N = 2 and (b) N = 10 and
SPEA2 for rtMOP3 at (¢) N =2 and (d) N = 10. The PF}_, is represented by (-)
while the evolved solutions are represented by (o).

On the other hand, NSGAII and SPEA2 are able to find the PS}_, of
rMOP2 consistently. This is because the basin of attraction and areas under
the curve of the robust and sensitive peaks are designed to be the same
to prevent any initial bias. This implies that the basin of attraction is an
important feature to be considered in the design of robust multi-objective
test functions.

7.5 Robust Continuous Multi-objective Test Problem
Design

The fundamental component of the robust multi-objective test functions pro-
posed in this work is a Gaussian landscape generator that introduces various
parametric sensitivities to the deterministic fitness landscape. It generates a
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set of n, r-dimensional minima throughout the fitness landscape and is given
by:

B 1 x; — pij - Eij (0, 545)

Eij(J,Sij) = 1+sij 'U(—O',G') (73)

where J is the number of basis functions, dj, 11;;, and w denote the amplitude,
location, and the width of the basis functions respectively. E;; controls how
the environmental variable behaves with noise ¢ and the degree of sensitivity
s;5. Intuitively, the robustness of a particular basin will depend on the asso-
ciated E;; function, while the amplitude will determine the optimality of the
solution. From Eqn and [3] it can be noted that test functions designed
using this landscape generator are different from most previous works in two
aspects:

e Any solution space or objective space transformation is a consequent of
environmental variation. Although environmental parameter variation is
rarely considered in the literature, it is definitely more flexible compared
to decision parameter variation when it comes to the design of different
possible scenarios.

e As observed from the simulation studies conducted in the previous section,
it is important for the basins of attraction of the various troughs to be
very similar. This ensures that there is no initialization bias towards any
particular region of the search space.

The max function has been used successfully in previous works [86, 96] to
combine the different Gaussian components and it ensures that the landscape
feature at any one point is determined and influenced only by the dominant
basin. Without the overlapping influences from the other basis functions,
each basis function can be considered independently and this facilitates the
design and analysis of the robust test function. In particular, it is possible
to define explicitly the locations and depths of the different basins to create
different test functions with specific characteristics. For the purpose of evalu-
ating algorithmic performance, it is necessary to know the relative degree of
robustness for each minimum. The theoretical values for each basis function
can be easily worked out to be:

By =y (L o y(297)) >

QSijO'

One desirable property of this test generator is that it provides a means
to extend existing multi-objective test problems to robust multi-objective
test functions without changing the original problem characteristics. The
rationale is to allow researchers to investigate the impact of robust opti-
mization on test functions with different characteristics such as deception,
multi-modality, and discontinuities. As a specific instance, consider the i-th



7.5 Robust Continuous Multi-objective Test Problem Design 199

objective function of an arbitrary multi-objective benchmark problem. The
corresponding objective function of the extended robust multi-objective test
function can be written as:

fi(x) = fi(xa) + b(xy) (7.5)

where x4 represents the subset of decision variables associated with the origi-
nal problem, while x,. represents the subset of decision variables of the robust
component of the problem.

In this chapter, the robust multi-objective test problems are built upon the
ZDT framework, which has been applied earlier in Section [[.4.2]to extend the
robust single-objective problems. The flexibility of this framework has also
been demonstrated by the development of a suite of dynamic multi-objective
problems by Farina et al in |73]. The guidelines for the construction of the
deterministic ZDT test functions are formally described by the following

min f1(xq1) = =

min fo(xaz) = g(xaz) - h(fi,9) (7.6)

where x41,Xq42 € x and the g and h functions control the problem difficulty
and the shape of the Pareto front, respectively. For the ensuring discussions,
we assume that the particular ZDT problem to be extended has the following
functional form,

g(Xd2) =1+ Zméxdz T

h(fr ) =1— (L) (7.7)

7.5.1 Basic Landscape Generation

Noise-induced changes to the PF*, PS*, and fitness landscape can be intro-
duced by incorporating b into either the h and/or g functions to construct
different classes of robust test problems. A straight-forward approach of in-
troducing robust features into the problem is to change ¢ in the form of
g(x) = 1+ b(x,), with h and f; unchanged. x, is also a subset of x. Let us
consider a two-dimensional landscape generated by

b(xp) =1-— ﬁ Y iex, max{O.S exp [(M)ﬂ

01
,exXp [(7“_0'73?2(0’3) )2 }

(7.8)
The problem landscape presented by b at o = {0,0.15} and the resulting
Pareto fronts are shown in Fig. [[3 The minimum located at (0.75,0.75) is
the global minimum in a deterministic setting and failure to converge to this
point will result in a dominated solution. With s = 1, notice that the effect of
noise on the basin at (0.75,0.75) is actually three times more than that on the
basin at (0.25,0.25). Thus, when noise is incorporated into the problem, the
local minimum at (0.25,0.25) constitutes to the PFY as it is more robust

rm,n
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Fig. 7.3 An example of a landscape with two basins with s = 1 at (a) o = 0.0
and (b) ¢ = 0.15. The minima at 0.75 is optimal under a deterministic setting
while the minima at 0.25 emerges as the global robust minima at ¢ = 0.15. The
corresponding Pareto fronts of the resulting problem in (c) shows the relationship
between the two minima.

and its performance is less affected by noise. Since the only change induced
by noise is the location of PS*, this is a simple instance of a class 2 robust
problem.

On the other hand, if the g and b functions are combined such that

g(x) = (1 + Z l‘z) + b(xy),

TETq2

(7.9)

the resulting problem is also a class 2 problem. However, such a formula-
tion allows the analysis of the effects of robust optimization on the original
problem. Thus, the robust MOEA must be capable of finding the global ro-
bust minimum associated with b as well as dealing with the difficulties posed
by the deterministic problem in order to find PF7,, .. It is also possible to
redefine fi as f1(x) = z1 + b(x,) to construct a class 2 problem with similar
properties.
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Instead of hand-designing b, the landscape generator can be parameterized
to generate arbitrary landscapes by specifying key geometric properties such
as the number of basins, the noise level at which investigations are conducted,
and the locations of the deterministic optimum and robust minimum. The
geometric properties of the other J — 2 basins must be selected such that
their effective minimum computed by Eqn.[.4] are worse than the pre-defined
global robust optimum by some pre-defined ratio. A basin j is considered to
be more robust than basin k if the following criterion is met: s;; - p;; <
S5 - pik- In addition, the sensitivity of each basin to noise should adhere to
the condition of sq; - 15 = S2;5 - poj = ... =4 45 for the landscape to behave
properly.

Accordingly, the general form of the landscape generator can be written
as

(RLS : [pr, hel, [1g; Rgl, 0, J, w0, B) (7.10)

where p, and h,, pg and hy specify the locations and depths of the global
robust and deterministic minima, respectively, while 3 is the factor at which
the next best robust optimum is worse compared to the global robust op-
timum. An example of a two-D landscape generated using the specification
of

([(0.25,0.25),0.8],[(0.75,0.75),1.0],0.1, 40, 0.1,0.1)

is shown in Fig [[4l Note that the landscape illustrated in Fig. [[33] can be
generated by specifying J = 2.

Fig. 7.4 An example of an arbitrary two-D landscape with J = 40 at (a) o = 0.0
and (b) ¢ = 0.15. The minimum at (0.75,0.75) is optimal under a deterministic
setting while the minimum at (0.25,0.25) emerges as the global robust minimum at
o =0.15.
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7.5.2 Changing the Decision Space

When combined with ¢ in the ways described above, the b function gives rise
to the element of noise-induced changes to the PS* and results in class 2
test problems. Features of noise-induced search space variation can be easily
incorporated into the problem by changing ¢ in the following form,

gx) =1+ (Y a;)? 700, (7.11)

TETq2

which forces the distribution of the solutions to change. Notice that g is now
a function of b. In this particular instance, it is possible to apply equation [.§
as the b function but finding its minimum will have no direct contribution to
solution optimality. Interestingly, finding the optimal value for b will improve
the distribution of the solutions near PS* and hence, simplify the problem
somewhat. Thus, the resulting problem can be considered as a class 1 test
problem.

More complex fitness topology variations can be induced by making h a
function of ¢ instead. In particular, consider the scenario where we define b
such that the width, i.e. the size of the basin of attraction, of the selected
minimum is a function of g and replace the g function by

9'(x) = g(xaz) + b(xx. g). (7.12)

The corresponding problem depends on the characteristics of the b function;
it is a class 1 test problem if J = 1 and class 3 test problem if J > 1 and
deterministic and robust optima are different. In any case, the robust MOEA
must be able to deal with the features that arise due to noise in order to find
PF*

rm,n*

7.5.3 Changing the Solution Space

Since the shape of the PF},, is determined by the A function in the ZDT
framework, PF},, . can be easily controlled by combining the b and h in

some appropriate ways. The simplest way to introduce changes in PF* is to
control its convexity:

h(f1,9,%e) =1 — (%)‘Hb(xﬂ. (7.13)
If the ¢ function is unchanged and b defines a single basin, only the convex-
ity of the PF* is affected by noise, while PS* remains the same. Thus, the
resulting problem is a class 4 test problem and the robust MOEA must be
capable of distributing the solutions along PF* with varying noise-induced
convexity. However, if b is characterized by multiple basins as illustrated in
Fig.[T3 or Fig.[4 both the PF* and PS* will change and the corresponding
problem becomes a class 6 test problem instead.
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It is also possible to redefine the h function as,

~

h(f1,9,0) = b(xe, f1) — | (). (7.14)

< |

where b is now a function of f; as well. One interesting implication of such
a formulation, particularly if the sensitivities of the relevant basins increase
with f;, is the resulting tradeoff between the robustness and optimality of
f2. Therefore, a part of the PF* will become dominated in the presence
of noise and hence, only part of 1 makes up the PFy, . Intuitively, the
corresponding problem is a class 6 test problem.

7.5.4 Example of a Robust Multi-objective Test Suite

Having described the possible modifications to extend the ZDT test problems,
we are now in the position to suggest a suite of five robust multi-objective test
problems that satisfy the requirements described in Section Although
not all seven classes of problems are represented, these problems embody the
most challenging aspects of robust multi-objective optimization that have
been described previously. Nonetheless, interested readers are encouraged to
construct more interesting problems based on the guidelines made in the
previous sections. At this point, it is worth mentioning that the proposed b
function can also be employed as a non-optimizable component of the problem
and as a noise-sensitive environment variable instead, i.e. b(R). The defini-
tions and characteristics of the test suite are summarized in Table [3] and
Table [C4] respectively.

GTCOL1 utilizes the effects of equation to bring about a change from
unimodal at ¢ = 0.0 to multi-modal fitness landscape at o = 0.2 as shown in
Fig. The PSj,; and PSy,, , are the same at all noise levels and correspond
to x; € xq1 = 0 and x; € x, = 0. The problem becomes increasingly multi-
modal with increasing ¢ and this is an instance where the problem becomes
more challenging and the robust MOEA will face difficulties finding PF* due
to the landscape change. The settings of |xgz2| = 10, |[x,| =5, and 0 = 0.2
are recommended for GTCOL.

GTCO?2 is an instantiation of the two-minima scenario considered in Sec-
tion [Z5J] This problem is similar to the problem of rMOP4 in the sense
that the deterministic global and local minima are switched when noise is
increased beyond a threshold as shown in Fig. [[.0l However, as mentioned
before, the basins of attraction for both minima are the same, eliminating
initialization bias. The PSj}_;, corresponds to x, = 0.75, while PS},  corre-
sponds to x, = 0.25. The settings of |x,| = 10 and o = 0.2 are recommended
for GTCO2.

GTCO3 represents a combination of GTCO2 and the effects of equation
[[ITl to induce both fitness landscape and PS* changes in the presence of
noise. Noise-induced changes to the decision space are similar to GTCO2
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Table 7.3 Definitions of the GTCO test suite

Problem Type  Definition
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Table 7.4 Characteristics of the GTCO test suite

Problem PF* change PS* change Feature change

GTCO1 - - Increasing multi-modality

GTCO2 - Global to local -

GTCO3 - Global to local Decreasing density of solutions near PF*

GTCO4 Increasing non-convexity Global to local -
GTCO5 Decreasing coverage of PF* Range of x; reduces Linear to deceptive

except that the density of the Pareto optimal solutions is now adversely
affected by noise. The behaviors of the solution space at ¢ = 0.0 and ¢ = 0.2
are shown in Fig. [[7] where it can be noted that the bias away from the PS*
will be attenuated with increasing o values. The density of Pareto optimal
solutions is at its highest and hence, easiest to find when x5 = 0.0. The
settings of |xaz2| = 10, |Xp1| = |Xr2| = 5 and o = 0.2 are recommended for
this problem.

Noise-induced changes in PS* and PF* in GTCO4 are achieved through
the implementation of equation Once again, the b function governed
by equation is applied to generate PS* changes and the corresponding
Pareto fronts at different o levels are shown in Fig. At low levels of o, PS*
corresponds to x, = 0.75 and the PF* becomes increasingly non-convex with
noise. At sufficiently high o levels, the PS* corresponds to x, = 0.25. Note
that non-convexity is one of the problems that posed considerable difficulties
to early multi-objective algorithms. Therefore, a robust MOEA has to be
capable of distributing the discovered solutions uniformly along the Pareto
front for the various degrees of convexity. The settings of [xq2| = |x¢| = 10
and o = 0.2 are recommended for this problem.

S

Fig. 7.5 Fitness landscape of GTCO1 with |z,| = 2 at (a) 0 = 0.0 and (b) o =
0.2. GTCOL1 is unimodal under a deterministic setting and becomes increasingly
multimodal as noise is increased.
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Fig. 7.6 Performance variation of the two minima with increasing o for GTCO2
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Fig. 7.7 10000 random solutions for GTCO3 at (a) o = 0.0 and (b) o = 0.2. The
density of the solutions near the Pareto front is adversely affected in the presence
of noise and deteriorates with increasing uncertainties.

GTCO5 is based on equation [.T4] which introduces noise-induced PS*
and PF* changes. Robustness of the solutions are correlated to f; and this
presents a conflict with the optimality of fo. Considering the effects of this
tradeoff alone, the remaining region of PF* becomes increasingly smaller with
noise as illustrated in Fig. [[.9(a). Fitness topological changes are based on
the principle adopted in GTCO1. However, the associated b function gives
rise to a deceptive landscape in this instance as shown in Fig. [[9(b). The
only decision variable associated with PS* that varies with ¢ is x1, while the
other remains at x, = 0.0 and xq2 = 0.0. The settings of |xq2| = |xr| = 10
and o = 0.08 are recommended for this problem.
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Fig. 7.8 The resulting Pareto front of GTCO4 at (a) x, = 0.75 and (b) x, = 0.75
for o =[0.01, 0.1]

Fig. 7.9 Effects of (a) decision space variation and (b) solution space variation
across different o values for GTCO5H

7.6 Vehicle Routing Problem with Stochastic Demand

This section presents the vehicle routing problem with stochastic demand
(VRPSD) as a practical example of robust multi-objective optimization prob-
lems. The VRPSD is a variant of the classical vehicle routing problem, where
customers’ demands are stochastic and all other parameters are known a
priori. The demands are treated as random variables whose distributions
are known and the actual demand of each customer is revealed only when
a vehicle arrives at the customer’s location. This combinatorial optimiza-
tion problem appears in the delivery of home heating oil @}, trash collec-
tion, sludge disposal @]7 beer and soft drinks distribution, the provision
of bank automates with cash, and the collection of cash from bank branches
[169]. The VRPSD has been shown to be naturally multi-objective [249] and
involves not only generating minimal cost solutions but also robust solutions
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whose expected costs are good approximation of the actual costs of imple-
mentation. Due to the stochastic nature of the customers’ demands, the cost
of a particular solution cannot be known with certainty and various robust
measures, such as the expected cost, have to be employed.

7.6.1 Problem Features

The VRPSD is characterized by many factors, which can influence the behav-
ior of multi-objective routing and scheduling algorithms. A simple example of
the routing plan with |V| = 6 is illustrated in Fig. The routing schedule
S is given as R={ry, ro} where r; is represented by r1= (v1,vg, v2, v3) and
ro is represented by ro= (vs,v4). The depot is omitted since all vehicles must
depart and return to the depot. It can be seen that the number of routes | S|
is equal to the number of vehicles (C,) used in the plan. The condition of

ULRI r; =V, i.e. all customers are routed, must be satisfied.
As a robust multi-objective test function, we suggest the following param-
eterization of the problem landscape,

<VRPSD : F’ |V|a LCa Lda Da ts)

e Topology of customers, L¢ If it is possible to obtain real-world informa-
tion about the problem, then the actual geographical distribution of the
customers can be easily used to construct the problem. Otherwise, the lo-
cations of the customers can be generated randomly based on some reason-
able probability distributions. The spatial distribution of customers can be
categorized into three main classes [242]: 1) Type-R problems where all the
customers are remotely located, 2) Type-C problems where the customers
are grouped into clusters, and 3) Type-RC problems which is a mixture
of remote and clustered customers. The effects that the three customer
topologies have on robust multi-objective optimization will be revealed in
Section

e Customer demand distribution, D The demand distribution determines the
extent to which the robust problem deviates from the deterministic one.
A uniform distribution assumes a fixed range of demands and the problem
can be solved conservatively by optimizing on worst-case demands. On
the other hand, there is an outside chance for the occurrence of outlier
demands if a normal distribution is adopted, which results in a more chal-
lenging problem. One common approach of generating the normal demand
distribution model is to use the original demand quantity from some exist-
ing deterministic VRP datasets as the mean demand and generating the
standard deviation of the demand distribution of each customer randomly
such that it falls between zero and one-third of the mean demand of the
customer [65, 249].

e Location of depot, Lq The location of the depot has a significant impact on
the optimization process. For instance, a depot that is located at the centre
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Ei—» I
Fig. 7.10 Graphical representation of a simple vehicle routing problem

of a map would give the depot better proximity from all the customers and
allow shorter trips back to the depot for restocking in the event of route
failures. The other extreme case would be to locate the depot at a corner of
the map. This would make recourse actions more expensive and emphasize
the importance of robust solutions to the stochastic problem.

e Service duration, ts A service time tg is associated with each customer
and the depot, which will be incurred each time the vehicle arrives at
the customer or returns to the depot for restocking. A convenient way of
specifying the service duration is to set the service times of all customers
to be the same [249]. However, it is quite unlikely that this would be the
case in reality. It would be more appropriate if service times were given
physical meanings such as the time required for loading and unloading of
cargo or the time required for clearing the customs. In either case, the
service time could be proportional to the amount of cargo to be loaded
at the depot and unloaded at the customer. Problems with longer service
times would also amplify the need for robust solutions that minimize the
occurrences of route failures since multiple trips to the depot for restocking
would be more costly.

o Number of customers,|V| V is the set of all customers. It is clear that the
problem gets more difficult as the number of customers increases. Typi-
cal problem sizes that have been adopted in conventional vehicle routing
problem with time windows (VRPTW) test problems range from 100 [242]
to 1000 [122] customers and this serves as a good guide for VRPSD.

e Optimization criteria, F As in all real-world optimization problems, it is
desirable to minimize overall operational cost which includes factors such
as travel distance (Cy), the number of vehicles involved (C,) and monetary
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cost such as driver remuneration (Cy,). Thus, the multi-objective VRPSD
is to find the routing schedule S such that it:

min F(R) = {Ca(R), Cu(R), Cn(R)}. (7.15)

7.6.2 Problem Formulation

One common assumption made in this problem model is the homogeneity of
all vehicles in the fleet and each one has a capacity limit which acts as a hard
constraint. In the case of a route failure, i.e. a vehicle finds that a customer’s
demand cannot be satisfied upon reaching the customer, a recourse policy is
employed to maintain the feasibility of solutions [89, (90, [170, [171, 1260, [261)].
The recourse policy requires the vehicle to unload all remaining goods at
the particular customer, return to the depot to restock before going back
to complete the service and/or continue with the scheduled route. These
recourse actions will of course incur additional transportation cost, in terms
of the travel distance and time for the to and fro trips to the depot. Additional
service times will also be incurred when a vehicle visits a customer more than
once or returns to the depot for restocking. As a matter of practicality, note
that each customer can only be serviced by one vehicle.
Distance cost, Cq: The distance cost of route r; is given by

|rj[—1
C’d(ri) = Z (d(n,j,ri,jﬂ)) + d(”o,""i,l) + d(’l“i’|rj|,’00) + Qd(l‘i). (716)

j=1

where d(r;,5,7;,j+1) is the travel distance between the j-th and the j + 1-th
customer in the route. Q4 is the additional transportation cost incurred for
the recourse policy.

Monetary cost, Cp,: The travel time incurred for route r; is given by

rj]—1
C’t(ri) = Z (T(""i,jy""i,j-&-l)) + T(’Uo,’l“i’l) + T(Ti)|rj|, 1}0) + Qt(ri). (717)

Jj=

—_

where T'(7;;,75,j+1) is the travel time between the j-th and the j + 1-th
customer in the route. @); is the additional transportation time incurred for
the recourse policy. It also includes the additional service times incurred
when a vehicle visits a customer more than once or returns to the depot for
restocking due to route failures.

The time constraint is such that Ci(r;) should not exceed a given bound.
This is a soft constraint and B is calculated as the time for a vehicle to travel
diagonally across the map from one corner to the other and back. This time
is assumed to be eight hours, equivalent to a driver’s workday. Remuneration
is such that drivers are paid $10 for each of the first eight hours of work and
$20 for every additional hour of work subsequently. This is done to penalize
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exceedingly long routes which may not be feasible to implement in the context
of the real-world. Therefore, the driver remuneration can be calculated as,

(7.18)

80 + 160 - Cer)=B otherwise.

CGdrd i (e < B
Con nz{SO Bl if Cifri <
B

Number of Vehicles, C,: The number of vehicles is simply the number of
routes in the schedule.

7.7 Conclusion

Apart from the need to satisfy several competing objectives, many real-world
applications are also sensitive to decision or environmental parameter varia-
tions which result in large or unacceptable performance variations. Although
the application of evolutionary multi-objective optimization to real-world
problems is gaining popularity from researchers in different fields, there is a
distinct lack in studies investigating the issues of robust optimization in the
literature. This chapter examines the suitability of existing robust test prob-
lems for multi-objective optimization and presents a set of guidelines for the
construction of robust multi-objective test problems. The fundamental com-
ponent of the robust test problems is a Gaussian landscape generator that
facilitates the specification of robust optimization-specific features such as
noise-induced solution space, fitness landscape, and decision space variation.
This generator is developed with the purpose of generating noise-sensitive
landscapes in conjuction with existing multi-objective test problems and due
to its independent nature, it can be used to generate robust single-objective
test problems as well. Subsequently, a robust continuous multi-objective test
suite is built upon the ZDT framework. Additionally, the vehicle routing prob-
lem with stochastic demand (VRPSD) is presented as a practical example of
robust combinatorial multi-objective optimization problems.



Chapter 8

Evolving Robust Solutions in
Multi-Objective Optimization

As described in Chapter [, variations in design variables or the environment
may affect solution quality and design performance adversely and robust
optimization considers the effects explicitly and seeks to minimize the conse-
quences without eliminating efficiency. Many different approaches, including
Taguchi orthogonal arrays, response surface methodology, probabilistic de-
sign analysis, have been applied for robust optimization. In operational re-
search, robust optimization is considered as a modeling methodology where
robust problems are reformulated into the form of linear, conic quadratic,
and semi-definite programming problems. Nonetheless, assumptions or ap-
proximations are often made during problem reformulation to ensure com-
putational tractability, resulting in more uncertainties in the problem model.
In addition, it does not allow for the incorporation of any domain knowledge
to achieve better performance. On the other hand, evolutionary optimization
techniques do not have such limitations, making it appropriate for robust
optimization.

Despite the importance and practicality of robust multi-objective prob-
lems, they are rarely considered in the literature until recently (56, [111).
In particular, Deb and Gupta (56) considered the optimization of the mean
objective values as well as the formulation of the robust multi-objective prob-
lem as a constrained problem. In contrast to single-objective optimization,
it is also essential to obtain a well-distributed and diverse solution set in
multi-objective optimization. Although the general concepts of existing evo-
lutionary robust single-objective techniques can be easily extended for robust
multi-objective optimization, the robust optimization process is complicated
by the need to consider explicitly several issues that are unique to multi-
objective optimization. Therefore, the challenge in the design of any robust
MOEA is to deal with issues such as the notion of Pareto-optimality, elitism,
and balance between exploration and exploitation with the additional con-
sideration of robustness.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 213
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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8.1 Evolutionary Robust Optimization Techniques

While MOEAs have been demonstrated to be capable of discovering good
tradeoff solutions for various multi-objective problems, it is necessary to
ensure that these solutions are implementable in practice. Conventional
MOEAs, without the necessary mechanisms to identify robust solutions, are
not capable of finding PS;,, 5 unless it coincides with PSj ;. Therefore, the
selection of an appropriate robust measure is of utmost importance in robust
optimization.

It can be noted that studies on evolutionary robust optimization are mainly
conducted in the domain of robust single-objective optimization. Neverthe-
less, the robust measures and uncertainty handling mechanisms adopted in
these works are generally applicable for robust multi-objective optimization;
subsequent discussions are largely based on these studies and on its suitability
in the context of robust MOEA. Specific issues such as diversity preservation
and fitness assignment must be considered in robust MOEA design.

Based on the state-of-the-art, EAs for robust optimization can be classified
into single-objective and multi-objective approaches depending on how the
various measures are incorporated into the EA.

1. The single-objective approach optimizes the selected robust measures in
place of the original objectives.

2. The multi-objective approach considers the selected robust measures as
additional objectives to be optimized.

As noted by Jin and Branke (144), the former is the more popular approach.
This is perhaps because of its ease of implementation, whereas there is a
need to consider the implications brought about by the increase in problem
dimensionality for the latter.

8.1.1 Single-Objective Approach

Since it is usually difficult to compute the various robust measures analyti-
cally, this approach is also characterized by the stochastic evaluation of the
adopted robust measure to account for uncertainties, i.e. these measures are
usually estimated over a number of randomly sampled perturbations. The op-
timization of the expected objective values estimated from the mean of the
sampled points is also known as explicit averaging and has been applied suc-
cessfully for robust multi-objective optimization (56). In the same work, the
effects of sample size and noise level on PFfﬂg) s are investigated. On the other
hand, Hughes (127) introduced a probabilistic approach for Pareto ranking
scheme to account for the presence of uncertainties.

Although simple to implement, stochastic evaluation is computationally in-
tensive since additional solution evaluations are required. It can be expected
that this situation would be exacerbated by the presence of multiple objec-
tives in multi-objective problems. Therefore, suitable methods for reducing
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the number of evaluations will be required to the lower total computational
cost. To this end, the Latin hypercube sampling is applied by (30, [56) to get
a more efficient fitness estimate. Other methods in the robust single-objective
optimization literature that are appropriate for reducing computational cost
of robust MOEAs include:

e Allocation of more computational resource for the evaluation of Pareto
optimal solutions,

e Use of similar individuals evaluated in the past to estimate the expected
fitness,

e Adaptation of computational resource allocation for evaluation through
the evolutionary process, and

e Use of approximate models in place of the original objective functions.

A viable option for the efficient optimization of expected objective values is
the method of implicit averaging (267, 268) where each solution is perturbed
once before evaluation. This approach is based on the concept that solutions
are implicitly averaged over a set of perturbed samples as the MOEA tends to
revisit promising regions of the search space. Tsutsui and Ghosh also showed,
by means of the Schema theorem, that an EA with infinite population size
working on perturbed evaluations has the same effects as one working on the
effective fitness.

8.1.2 Multi-objective Approach

The multi-objective approach involves both deterministic and stochastic eval-
uation of the various objectives and robust measures, respectively. Therefore,
computational cost is also an important issue as in the case of the single-
objective approach. When the multi-objective approach is applied to solve
robust single-objective problems, it allows us to consider the tradeoff be-
tween robustness and solution quality. On the other hand, when it is applied
to solve robust multi-objective problems, this approach poses an interesting
decision-making exercise particularly if there are also tradeoffs between the
robustness of the different objectives. Furthermore, the scaling capability of
the MOEA becomes extremely important, for example, a five-objective prob-
lem can become a ten-objective problem if the effective performance of each
objective is considered explicitly.

At present, there are two variants of the multi-objective approach for ro-
bust MOEA. The first approach optimizes the selected robust measures on
top of the existing deterministic objective functions and sought to discover
the inherent tradeoff between optimality and robustness. This is also known
as the multi-objective approach (146) and various combinations of different
measures, such as expected fitness and variance-based measures, have been
applied in the evolutionary robust single-objective optimization literature.
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In (218), Ray utilized three objectives, the nominal objective value, the ef-
fective objective value, and the standard deviation, to evolve designs that
remain feasible under decision variable variations.

More recently, Goh and Tan (96) extended this method to evolve the
tradeoff between Pareto optimality and the robust measure of worst case
performance for constrained multi-objective problems. In order to improve
computational efficiency, the mechanisms of Tabu-restriction and uGA are
implemented for the computation of the worst case performance and con-
straint violation. Apart from the nominal objective values, Li et al (181)
applied the concept of the worst case sensitivity region (WCSR) and sought
to maximize the radius of this region. The WCSR approximates the worst
violation that a particular design can absorb before it violates some prede-
termined threshold on performance variation.

In (182), Lim et al also presented a single-objective/multi-objective in-
verse evolutionary optimization methodology for robust design. In contrast to
conventional forward robust optimization, the inverse approach avoids mak-
ing assumptions about the uncertainty when insufficient field data exists for
estimating its structure. Apart from the objectives of nominal fitness and
robustness, Lim et al considered the possible benefits as the uncertainty pre-
vails by introducing an opportunity criterion in the inverse search scheme as
the third objective.

The second variant is proposed by Deb and Gupta (56) as a more prac-
tical approach to the single-objective method and treats the selected robust
measures as hard constraints. Adopting a similar approach in an independent
work, Gunawan and Azarm (110) considered a designer specified WCSR ra-
dius as a constraint to be satisfied. Therefore, in both works, the goal is
to evolve the best PF:?et that satisfies the tolerable bounds on performance
deviation.

8.1.3 Robust Multi-Objective Optimization
FEvolutionary Algorithm

In order to explore the tradeoffs between robustness and Pareto optimality
for constrained MO problems, we suggested a robust multi-objective evolu-
tionary algorithm (RMOEA) which considers robustness as an independent
optimization criterion and implements the features of micro-genetic algorithm
(1GA), Tabu restriction, and archival re-evaluation in (96). The main steps
of RMOEA within each iteration are shown below.

Robust Multi-Objective Evolutionary Algorithm (RMOEA)
Step 1: Evaluate all solutions in P; and update tabu list.

Step 2:  Perform constrained Pareto ranking.
Step 3: Update archive:
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- Add non-dominated solutions in P; to A;.

- Remove dominated solutions from updated A;.

- Remove most crowded solutions based on niche count if |A;| exceeds
size limit.

Step 4:  Combine updated A; and P;. Perform binary tournament selection
to form mating pool.

Step 5:  Recombination process.

Step 6:  Apply AMO operator.

The evolutionary process starts with the initialization of the initial population
of candidate solutions. The initialization process can either be random or
created by means of Design of Experiment (DOE) techniques. After which,
all individuals are evaluated based on the respective objective functions, the
robust measure as well as the constraint violation. In particular, this chapter
utilizes a measure that is calculated based on the worst case situation and
will be described in the next section.

The evaluation process involves the selection of neighboring points for the
assessment of each candidate solution. In order to minimize the effects of
stochasticity associated with the random and DOE creation of neighboring
points, RMOEA applies a uGA to search for the worst solution within a
specified bound defined by the noise model considered. In addition, Tabu
restriction is applied to guide the search and reduce computational load. After
the evaluation process, archiving is performed to store the non-dominated
solutions found along the evolutionary process. Since robust optimization is
inherently uncertain, archived solutions are re-evaluated at periodic intervals.

After which, the selection of individuals into the mating pool is conducted.
The selection process is elitist in nature and is conducted in a two-stage
process: 1) the archive and evolving populations are combined and 2) binary
tournament selection of this combined population is conducted to fill up
the mating pool. In order to promote the exploration and exploitation of
robustness and optimality, the selection criterion adopted in each tournament
is randomly based on either a constrained Pareto ranking scheme or the
robust measure. In the event of a tie, i.e. same rank or same robust measure,
the individual with the lower niche count (102) will be selected. Note that the
mechanism of niche sharing is used in the tournament selection and diversity
maintenance in the archive. After the selection process, the individuals will
undergo the process of uniform crossover and adaptive mutation operator
(AMO) (252).

Multi- Objective Robust Measure: The RMOEA implements a multi-objective
approach, which allows the algorithm to explore the tradeoffs between ro-
bustness and Pareto-optimality. The worst case measure is adopted and the
robust measure for the ¢ — th objective can be written as,
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maxyexne (fi(x')) — fi(x)
fi(x)
where x’ € [x’ — b,x" 4+ up]. From equation (&I), it can be noted that the

measure reflects the degree of variation resulting from the worst objective
value.

filx) = (8.1)

Constrained Pareto Ranking: In RMOEA, the feasibility of each individual
for each constraint is represented by the worst case violation in its neighbor-
hood in order to evolve solutions that remain valid under perturbations. An
individual F, constraint-dominates the individual F} if,

1. F, is feasible and F}, is infeasible.

2. Both solutions are infeasible and F, dominates F, in terms of the different
constraint violations.

3. Both solutions are infeasible, incomparable in terms of the different con-
straint violations and F, dominates F}, in terms of the objective values.

4. Both solutions are feasible and F, dominates F}, in terms of the objective
values.

Actual ranking is based on the scheme presented by Fonseca and Fleming
(84), which assigns the same smallest rank for all non-dominated individuals,
while the dominated individuals are ranked according to how many individ-
uals in the population dominating them.

Tabu Restriction: Tabu restriction is used in conjunction with the evalua-
tion process to reduce the number of evaluations required for solutions that
are similar to those that have been assessed to be infeasible. In addition, it
avoids the classification of a previously known infeasible solution as feasible
solution due to the uncertainties involved in the evaluation process. During
the evaluation process of each individual, each of the neighboring points will
be examined against the Tabu list. Similar points will not be evaluated and
will inherit the attributes of the matching Tabu solution in the Tabu list. At
the same time, the Tabu list will be updated with new solutions that violate
the constraints. Similar to the archive, the most crowded member will be
removed when the maximum size is reached.

1wGA Evaluation of Worst Case Performance: The RMOEA incorporates a
1GA to perform a directed search for each individual’s worst case perfor-
mance and constraint violation within the neighborhood of the particular
individual. The pGA begins with the creation of POP_SIZ FE¢ 4 neighboring
points about the individual under evaluation. The Tabu restriction-assisted
assessment presented in the previous section is implemented for the evalua-
tion of these individuals. Since the uGA sought to discover the worst case
performance, the uGA is actually optimizing a MO problem that maximizes
1) the worst case objective in equation (B1) and 2) the worst constraint vio-
lation. At every generation, the worst performance found will be updated and
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the best individual will be stored. Elitism is applied by reinserting the best
individual into the mating pool. Binary tournament selection is then con-
ducted on the evolving population to fill up the mating pool. After which,
the mating pool will undergo uniform crossover and AMO.

8.2 Empirical Analysis

8.2.1 Fitness Inheritance for Robust Optimization

Since the analytical effective objective values are often unavailable, Monte
Carlo integration is applied to estimate the expected fitness values. How-
ever, this explicit averaging approach requires a large number of evaluations,
which is a computationally expensive task. Therefore, the method of fitness
inheritance is employed here to reduce the number of evaluations.

The key design issues in implementing fitness inheritance are when and how
to inherit fitness from the parents. In this work, we adopt a similar strategy
applied by Bui et al (33), in which the offspring inherits the mean fitness
of the two parents if some similarity criteria are satisfied. After the genetic
processes of crossover and mutation, the distance between the offspring and
the parents is calculated. If the distance is smaller than a threshold T" along
all dimensions in the decision space, the offspring will inherit the mean fitness
from the parents, otherwise the offspring will be evaluated for H samples to
compute the expected objective values. T is set as 0.1 in the normalized deci-
sion space. Fitness inheritance is implemented in both NSGAII and SPEA2
for subsequent empirical studies.

8.2.2 FEwvaluating GTCO Test Suite

In this section, simulation studies are conducted to analyze the performances
of NSGAII and SPEA2 on the proposed GTCO test suite. As before, both
algorithms are implemented using the same binary coding scheme of 15 bits
per variable, binary tournament selection, uniform crossover, and bit flip
mutation. Thirty independent runs of 500 generations are performed for each
of the test problems.

Empirical results

The performance trends of NSGAII and SPEA2 over the number of samples
H={1, 10, 20, 40} and 0={0.0, 0.05, 0.1, 0.2} for the different problems are
shown in this section. For each problem, we will show how the algorithms’
abilities to find a diverse and near optimal PF4 are affected by the introduc-
tion of noise.

GTCOL1 is a class 1 problem where multi-modality is introduced into the
fitness landscape with noise while PSj ,=PSlg ;. From the metric of VD
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Fig. 8.1 GTCO1 Performance trend of NSGAII (first row) and SPEA2 (second
row) over H={1, 10, 20, 40} and 0¢={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS
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Fig. 8.2 The evolved solutions of NSGAII (first row) and SPEA2 (second row)
with number of samples H=1 for GTCO1 along xp2 with number of samples (a)
o =0, (b) 0 =0.05 (¢c) o =0.1, and (d) o = 0.2. The PS* is represented by (x)
while the evolved solutions are represented by (o).

in Fig. BIla) as well as the distribution of the solutions in Fig. B2|(a)-(d),
NSGAII and SPEA2 encounter no difficulty finding PS}_, but both algorithms
face increasing difficulties with increasing o. The diversity of PF;“H’J is also
affected. This clearly demonstrates how robust optimization can be more
difficult in the face of noise-induced landscape features.



8.2 Empirical Analysis 221

Fig. 8.3 GTCO2 Performance trend of NSGAII (first row) and SPEA2 (second
row) over H={1, 10, 20, 40} and 0¢={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS

Fig. 8.4 The evolved solutions of NSGAII (first row) and SPEA2 (second row)
at ¢ = 0.2 for GTCO2 as seen in the decision space with number of samples
(a) H=1, (b) H=5, (c¢) H=10, and (d) H=20. The PS* is represented by (-) at
(z2,23)=(0.25,0.25) while the evolved solutions are represented by (o). The solu-
tions have to be distributed along z1 in order to find the entire span of PF*.

Fig. B3 shows the performance trends of SPEA2 and NSGAII for GTCO2.
GTCO?2 is a class 2 problem which exhibits a change in PS* once o exceeds
a certain threshold. The variations of PS?HJ for both algorithms can be seen
in Fig. B4 Interestingly, the effects of implicit averaging can be observed in
Fig. B4(a) and both algorithms are capable of finding PS’; , as well as a



222 8 Evolving Robust Solutions in Multi-Objective Optimization

o
Number o Samples, H a Number of Samples, H

Fig. 8.5 GTCO3 Performance trend of NSGAII (first row) and SPEA2 (second
row) over H={1, 10, 20, 40} and 0={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS

(c) (d)
Fig. 8.6 The evolved solutions of NSGAII (first row) and SPEA2 (second row)
at ¢ = 0.2 for GTCO3 as seen in the decision space with number of samples

(a) H=1, (b) H=5, (¢) H=10, and (d) H=20. The PS* is represented by (-) at
(z2,217)=(0.25,0) while the evolved solutions are represented by (o). The solutions
have to be distributed along x; in order to find the entire span of PF*.

diverse PF?H)U given a sufficient number of samples. While both algorithms
exhibit similar performances, it can be noted from Fig. B3|(b) and Fig. B4(d)
(along the x; axis) that the diversity maintenance mechanism of SPEA2 is
more susceptible to noise.
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Fig. 8.7 GTCO4 Performance trend of NSGAII (first row) and SPEA2 (second
row) over H={1, 10, 20, 40} and c={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS

(a) (b) © (@)

Fig. 8.8 The PF# of NSGAII (first row) and SPEA2 (second row) at various
o = 0.2 values for GTCO4 as seen in the decision space with number of samples
(a) H=1, (b) H=5, (c¢) H=10, and (d) H=20. The PF* is represented by (-) while
the evolved solutions are represented by (o).

GTCO3 is a class 3 problem which exhibits noise-induced landscape and
PS* changes. The performance trends of NSGAII and SPEA2 are shown in
Fig. As in the problem of GTCO2, NSGAII and SPEA2 are capable
of finding PSZ; o as well as a diverse PF?HJ given a sufficient number of
samples. Nonetheless, even though GTCO2 and GTCO3 undergo the same
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(a) (b)

Fig. 8.9 GTCO5 Performance trend of NSGAII (first row) and SPEA2 (second
row) over H={1, 10, 20, 40} and c={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS

PS* transformation, it is obvious that the change in solution density results in
different sampling requirements. This is evident by comparing Fig. B4(b)-(c)
and Fig. B6|(b)-(c).

Similar to GTCO2 and GTCO3, GTCO4 shows similar performance trends
over different o and H values in Fig. Bl However, since the change in PS* is
closely linked to the change in PF*, the number of samples required to find
PS* is also higher. The PF* changes with ¢ as shown in Fig. Once again,
it can be observed from Fig. B7(b) and Fig. B8(d) (along the x; axis) that
noise poses considerable challenge to the diversity maintenance mechanism
of SPEA2 as it is unable to distribute the solutions uniformly along PF; .

As in the case of GTCO1, NSGAII and SPEA2 have problems finding
PS* for GTCO5 as evident from the metric of VD in Fig. BO(a). From
Fig. B9(b), it appears that algorithmic performances in terms of MS seem to
have improved beyond ¢ = 0.1. However, it is due to the fact that the span
of PF?H)U has reduced considerably. Moreover, further investigations reveal
that the number of solutions found is very small, even at H=40.

From the simulation results, it is clear that the problems of the GTCO
test suite pose different difficulties to NSGAII and SPEA2. Generally speak-
ing, both algorithms exhibit similar performances for the five problems over
different H and o settings. Nonetheless, it is also noted that SPEA2 did not
fare as well in terms of the discovery of an uniformly distributed and diverse
PFfﬂg’U. Together with the observations that NSGAII and SPEA2 are un-
able to handle noise-induced features of multi-modality and deception, this
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suggests that the state-of-the-art MOEAs may not be able to evolve robust
solutions effectively through simplistic extensions.

8.2.3 FEvaluating VRPSD Test Problems

In this section, simulation studies are conducted to analyze the behavior of the
VRPSD, paying particular attention on the impact that customer topology
has on the behavior of multi-objective routing and scheduling algorithms.
Fig. shows the PFZ,, and PFZ;  for three instances of the VRPSD,
each having a different customer topology. The Pareto fronts in Fig. BT0(a)
are obtained based on

(VRPSDI : [Cy, Cpn, C], 100, Type-R, (50,50)
LN (U0, 4p), 10),

and the fronts in Fig. BI0(b) are obtained based on

(VRPSD2 : [Cy, Crn, Cy], 100, Type-C, (50,50)
) N(N? U(Ov %:u’))v 10>7

while those in Fig. RI0(c) are obtained based on

(VRPSD3 : [Cy4, Cpp, Cy], 100, Type-RC, (50,50)
, N (1, U(0, 3p)), 10).

The PFZ,, for each of the test problems is obtained by treating the mean
demand of each customer as its deterministic demand when evaluating the ex-
pected costs of solutions. This approach converts the stochastic problem into
a deterministic one. On the other hand, the PF{:‘HJ is obtained by evaluating
a VRPSD solution multiple times (H=10), each time using a different set of
customer demands randomly generated based on their demand distributions.
The costs are then averaged and taken as the expected cost of the solution.
In Fig. the filled points correspond to the respective fronts obtained im-
mediately after the optimization process. These points are what the logistic
manager sees when he is deciding which one of the solutions along the front
to implement. The hollow points are obtained by implementing the corre-
sponding filled points on 100 sets of randomly generated customer demands
and then taking the average to get the implementation cost. This cost would
be a good indication of the quality of the solution and the Euclidean distance
between corresponding filled and hollow points would give an indication of
the robustness of the solution. From Fig. BI0(a)-(c), it is obvious that the
solutions along PF?H)U are more robust than those along PFZ, since their
expected cost values do not differ much from their implementation costs and
would provide the logistic manager with more accurate information about
the quality of the solutions based on which decision will be made.
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Fig. 8.10 Pareto fronts for (a) VRPSD1, (b) VRPSD2, (c) VRPSD3 test problems.
The first row shows the three-dimensional Pareto fronts, the second row shows the
same fronts along Cq and C.,, the third row shows the same fronts along Cy and
C, and the fourth row shows the same front along C,, and C,. e denote solutions
evolved using averaging while A denote solution evolved deterministically. o and A
represent the corresponding solutions after averaging over 5000 samples.

In order to further examine the behaviors of the PF4, and PFeHU for
each of the VRPSD test problems, separate two-dimensional graphs, each
time considering only two of the objectives, are plotted in Fig. BI0(d)-(1).
It can be observed from the figures that the PFA fr, considering the ex-
pected and implementation costs have the same shape The spacing between
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corresponding solutions is also uniform. This implies that all the solutions
along PF?HJ have almost equal levels of robustness. This cannot be said of
the solutions along PFg‘et. The front for the expected costs changes shape in
most cases when the implementation costs of the solutions along the front are
considered. In Fig. BI0(f), the front for the expected costs is horizontal but
curves upwards when the implementation costs are considered. This shows
that solutions with higher C), are less robust. Similarly, it can also be seen
from Fig. BI0(h), BI0(i), BI0(k), and BI0(1) that solutions for the Type-CS
and Type-RCS test problems become more robust as C, increases. It is also
observed from Fig. [BI0(g) that the robustness of the solutions for the Type-
RS test problem is the worst when there are four or five vehicles. All these
observations point to the fact that the deterministic approach is not reliable
in solving the VRPSD.

It can also be seen from Fig.[RI0(d)-(i) that the PF?H’U and PFZ., obtained
have very different shapes. In Fig. BI0(d)-(f), PF?HJ shows that Cy decreases
with increasing C,,, but PFﬁet shows the exact opposite relationship, i.e. Cy
increases with increasing C,,,. Similarly, in Fig. BI0(g)- (i), PF,‘;‘HJ shows that
Cy increases with C,,, while PF(?et shows the reverse relationship. This finding
demonstrates that the stochastic nature of the problem is not trivial and that
inadequate handling of the problem will give the logistic manager a false
understanding of the situation at hand.

8.3 Conclusion

This chapter describes some design issues that should be considered in the de-
velopment of robust MOEA. In order to reduce computational requirements
incurred by calculating the robust measures, a fitness inheritance scheme is
suggested and incorporated into NSGAII and SPEA2. Subsequently, the mod-
ified MOEAs are applied to demonstrate the difficulties posed by the GTCO
test problems described in Chapter [ The study suggests that robust multi-
objective problems can offer greater challenges to optimization algorithms
when noise is introduced, highlighting the necessity to design more effective
MOEAs as well as more rigorous simulation studies. Empirical analysis of the
VRPSD test problems also reveal the importance of robust optimization for
real-world multi-objective problems as the problem characteristics and hence
solutions tend to change with noise.



Chapter 9
Evolving Robust Routed’

In the previous chapter, we described the VRPSD as an instance of real-world
robust problem. The VRPSD differs from its deterministic counterparts in
that when some data are random, it is no longer possible to require that
all constraints be satisfied for all realizations of the random variables (170).
In addition, the actual cost of a particular solution to the VRPSD cannot
be known with certainty before the actual implementation of the solution.
Optimization of the VRPSD deterministically may yield very good route
schedules which we will show in this chapter to be very sensitive to variations
in customer demand.

In this chapter, a hybrid MOEA (HMOEA) (249) is applied to solve
the VRPSD problem described previously. The algorithm incorporates two
heuristics which exploit knowledge of the VRPSD route structures to improve
algorithmic performance. In addition, an intuitive route simulation method
(RSM), which is an elaborate form of explicit averaging, is proposed to ad-
dress the issue of evaluating the expected costs of solutions. A procedure
based on the RSM is also proposed to assess the quality of solutions on top
of comparing their expected transportation costs which has been used as the
main performance measure hitherto.

9.1 Overview of Existing Works

Many researchers have studied the VRPSD in two frameworks, namely as a
chance constrained program (CCP) (37, 138) or as a stochastic program with
recourse (SPR). In CCP, the problem consists of designing a set of vehicle
routes for which the probability of route failure is constrained to be below a
certain threshold. It is shown by Steward and Golden (246) that, under some

* (© 2008 Elsevier. Reprinted, with permission, from K. C. Tan, C. Y. Cheong and
C. K. Goh, “Solving multiobjective vehicle routing problem with stochastic demand
via evolutionary computation”, European Journal of Operational Research, vol. 177, pp.
813-839, 2007.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 229
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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restrictive assumptions, the problem can be reduced to a deterministic VRP
and then solved using existing deterministic algorithms. Although the CCP
tries to control the probability of route failure, the cost of such failures is
ignored. In contrast, the SPR tries to minimize the expected transportation
cost, which includes the travel cost as well as the additional cost generated by
recourse policies. Gendreau et al (88) commented that SPR are typically more
difficult to solve than CCP but their objective functions are more meaningful.
As such, most of the recent researches revolve around SPR. and results ob-
tained are compared and assessed based on the expected transportation costs
of solutions. In using SPR, various recourse policies have been explored and
there are three common recourse policies (88,[170). In the first approach, also
known as the simple recourse policy (89,190, [170, [171, 1260, [261)), a vehicle re-
turns to the depot to restock when its capacity becomes attained or exceeded.
The vehicle will then resume service at the customer on the planned route
where route failure had occurred. In the second approach (19, 28, 29, 283),
preventive restocking is planned at strategic points, preferably when the vehi-
cle is near to the depot and its capacity is almost empty, along the scheduled
route instead of waiting for route failures to occur. The third approach sought
to optimize the remaining portion of a route after each failure or knowledge
of the actual demand of each customer (234, 235).

Yang et al (283) proposed a dynamic programming recursive objective
function for the VRPSD. The Or-opt operator is adapted to the stochastic
case using a fast approximation computation for the change in the objective
function when performing a local search move where the objective function
needs to be repeatedly computed. Yang et al also showed that the optimal
route, in terms of travel distance, is always a single route, if only capacity
constraints are considered.

Bianchi et al (28,129) also employed the recursive objective function and its
approximation in Or-opt operations in the analysis of various meta-heuristics
such as iterated local search, tabu search, simulated annealing, ant colony op-
timization, and evolutionary algorithm. However, it should be noted that the
dynamic programming recursive objective function ((28, 29, [283) is applica-
ble only if demands take on integer values, i.e. the stochastic demands follow
discrete distributions.

Dror and Trudeau (65) showed that given that the customers’ demands
are independent random variables with non-negative means, route failures are
more likely to occur at the end of a route. They also showed that the expected
transportation cost of a route is dependent on the direction in which the route
is traversed.

9.2 Hybrid Evolutionary Multi-Objective Optimization

Section [0.2.1] describes the structure of the variable-length chromosome
(253, 1254) used to encode solutions in the HMOEA. Section [0.2.2 presents
two local search heuristics that exploit the intrinsic structures of a VRPSD
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solution. The HMOEA has previously been applied to solve the vehicle rout-
ing problem with time windows (VRPTW) (254) and the truck and trailer
vehicle routing problem (TTVRP) (253). However, due to the absence of
hard constraint in the VRPSD, the search space of the problem is consider-
ably larger than those of the VRPTW and the TTVRP. As such, the genetic
operators of the HMOEA are enhanced here to allow the exploration of the
larger search space and are presented in Section [0.2.3]and Furthermore,
a route simulation method (RSM) that allows effective evaluation of VRPSD
solutions is presented in Section The computing budget and the algo-
rithmic flow of the HMOEA are presented in Section and Section
respectively.

9.2.1 Variable-Length Chromosome

In the HMOEA, a variable-length chromosome representation, shown in
Fig.[@1] is applied such that each chromosome encodes a complete solution,
including the number of vehicles and the customers served by these vehicles.
A chromosome may consist of several routes and each route or gene is not a
constant but a sequence of customers to be served. Such a representation is
efficient and allows the number of vehicles to be manipulated and minimized
directly for multi-objective optimization in the VRPSD.

encodes a complete

@ routing solution

A route or vehicle
@ contains a
sequence of
customers

ELELE R
BN ELEE B R E)

Fig. 9.1 Variable-length chromosome representation
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9.2.2 Local Search Exploitation

The role of local search is vital in multi-objective evolutionary optimization
in order to encourage better convergence and to discover any gap in the
Pareto front. The local search approach can contribute to the intensification
of the optimization results, which is usually regarded as a complement to the
evolutionary operators that mainly focus on global exploration. The two local
search methods presented here are inspired by the underlying structures of a
VRPSD solution identified by Dror and Trudeau (65).

1) Shortest Path Search: Shortest Path Search (SPS) is designed to exploit
the fact that route failures are more likely to occur at the end of a route. The
SPS attempts to rearrange the order of customers in a particular route. For
example, given a route that contains five customers, a new route is built by
choosing the customer that is furthest from the depot as the first customer
in the route, while the customer that is nearest to the depot is chosen as
the last customer of the route. Next, the customer that is nearest to the first
customer is chosen as the second customer, while the customer that is nearest
to the last customer is chosen as the second last customer of the new route.
This step continues until all the customers in the original route are re-routed.
The new route will be compared against the original one and the better route
will be retained. By re-routing customers in such a manner, customers that
are further from the depot will be at the beginning of the route whereas those
that are nearer to the depot will be at the end of the route. The rationale
is to reduce the additional transportation cost that will be incurred by the
recourse policy.

2) Which Directional Search: Which Directional Search (WDS) is designed
to exploit the fact that the expected transportation cost of a route is depen-
dent on the traversed direction. In contrast, for the deterministic VRP, the
transportation cost of a route is the same regardless of the direction in which
the route is traversed. To be specific, given a route, the WDS builds a new
route that runs in the opposite direction. Similarly, the new route will replace
the original one if it is better.

9.2.3 Route-Exchange Crossover

In contrast to classical one-point crossover which may produce infeasible route
sequences, we adopt a simple route-exchange crossover operator that allows
good sequences of routes or genes in a chromosome to be shared with other
chromosomes in the evolving population. The operation of this crossover is
shown in Fig.

In the route-exchange crossover, only the best routes of the selected
chromosomes are eligible for exchange. In the case where one of the selected
chromosomes has only one route, a segment of the route is randomly selected to
exchange with the other chromosomes best route which will be inserted as a new
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Fig. 9.2 Illustration of route-exchange crossover

route in the first chromosome. To ensure the feasibility of chromosomes after
the crossover, duplicated customers are deleted. These customers are deleted
from the original routes while the newly inserted route is left intact. The route-
exchange crossover is enhanced with a random shuffling operator to increase
the diversity of chromosomes to explore the larger VRPSD search space. In the
random shuffling operation, with the exception of the newly inserted route, the
order of customers in each of the remaining routes will be shuffled with a prob-
ability equal to the shuffle rate.

9.2.4 Multi-mode Mutation

The algorithm implements a multi-mode mutation operator (253, 1254)
complement the crossover operator in allowing a larger search space to be
explored. There are four parameters associated with the multi-mode mu-
tation, namely mutation rate, elastic rate, squeeze rate, and shuffle rate.
Fig. shows the operation of the multi-mode mutation.
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Fig. 9.3 Operation of multi-mode mutation

1) Partial Swap: The partial swap operator of Tan et al (254), which involves
only a single swap move that swaps two routes at a random point, is modified
in (249) to create a more diverse pool of chromosomes. The operation involves
a number of swap moves and for each move, two routes will be randomly
chosen. A segment is then randomly selected from each route and swapped
to the other route. This new segment takes the place of the previous segment
that has been swapped out. In the situation where either one of the routes
has only a customer in it, a random segment is still selected from the route
with more than one customer. This segment is then swapped with the solitary
customer in the other route. In addition, a mechanism is in place such that
the same two routes will not be selected twice in a particular partial swap
operation.

2) Merge Shortest Route: This operation searches for the two routes of the
chromosome with the smallest sum of travel distance and driver remunera-
tion, and appends one route to the other. The merge shortest route will not
operate on any chromosome with only one route.

3) Split Longest Route: This operation searches for the route with the largest
sum of travel distance and driver remuneration, and breaks the route into
two at a random point.

Like the route-exchange crossover, at the end of the multi-mode mutation,
the random shuffling operation is applied on every route of each chromosome
with a probability equal to the shuffle rate.
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Fig. 9.4 Example illustrating the operation of the RSM

9.2.5 Route Simulation Method

As mentioned earlier, one of the main difficulties of solving the VRPSD is
in finding an objective function that is able to define properly the expected
transportation cost of a solution. In this section, the route simulation method
(RSM) is proposed to evaluate the expected costs of solutions. The funda-
mental idea behind the RSM is based on the sampling method of Lee and
Chew (179) who applied the method for numerical optimization. Fig. 0.4 will
be used to illustrate the operation of the RSM.

Fig. shows a route sequence, Depot—2—3—5—4—1—6—Depot. The
solid arrows indicate the route that the vehicle will take if this were a de-
terministic VRP. In the VRPSD, due to the recourse policies in the event of
a route failure, the actual route taken by the vehicle cannot be known with
certainty before the route is actually implemented. However, the implemen-
tation of the route can be simulated by generating a set of demands of all the
customers based on their demand distributions and treating these demands
as if they were the real demands revealed when a vehicle first arrives at the
customer. The set of demands generated is tabulated in Fig. For this
particular example, it is assumed that the vehicle capacity is 15 and each
arrow indicates a unit of distance.

The vehicle first leaves the depot and arrives at customer 2. It is able to
satisfy its demand with a remaining capacity of 9. The vehicle then travels
to customer 3 and satisfies its demand. The capacity of the vehicle is 7 when
it reaches customer 5. The vehicle then finds that it is unable to satisfy
the demand of customer 5, so it unloads all remaining goods and makes a
return trip to the depot to restock. This recourse is indicated by the dashed
arrows between the depot and customer 5. The vehicle then unloads two
units of goods and leaves customer 5 for customer 4 with a capacity of 13.
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After serving customer 4, the vehicle is empty and returns to the depot
to restock. Since the demand of customer 4 has been satisfied, the vehicle
travels to customer 1 from the depot. The vehicle then satisfies the demands
of customers 1 and 6 and returns to the depot. From this simulation, the
total distance traveled by the vehicle (10 units for this example) and the
remuneration for the driver for a particular realization of the set of customer
demands can be obtained.

Due to the stochastic nature of the cost considered, there is a need to
sample or repeat the above operation H times for every route of a particular
solution, using a different set of demands randomly generated based on the
demand distributions of the customers each time and then taking the aver-
age to obtain the expected transportation cost of the solution. Three different
RSM settings are studied. Generate Every Generation (GEG) refers to the
setting where the H demand sets, which are used by the RSM, are refreshed
every generation. Generate Every M (GEM) refers to the setting where the
H demand sets are only refreshed at the end of every M generations. Lastly,
Alternate Every M (AEM) refers to the setting where for M generations, the
RSM uses the H randomly generated demand sets and for the next M gener-
ations, the RSM uses the mean values of the customers demand distributions
to simulate the implementations of the routes. The H demand sets are then
refreshed for use over the next M generations and the process repeats.

9.2.6 Computing Budget

The computing budget (39, [179) represents a fixed amount of computational
work. As can be observed from the previous section, the RSM requires in-
tensive computations and can be regarded as the bottleneck of the whole
algorithm. As such, it makes sense to define one unit of the computing bud-
get as one run of the RSM on a particular solution using a particular demand
set. Thus, the computing budget puts a cap on the total number of times the
RSM is run on solutions in the HMOEA and can be regarded as the stopping
criterion of the evolutionary algorithm. For GEG and GEM, the computing
budget set is actually approximately equal to the product of the size of the
search population, the number of generations used in the HMOEA, and H,
the number of samples of RSM is performed to obtain the expected trans-
portation cost of a solution. This product gives only an approximate value
due to the additional runs of the RSM during local search. As for AEM, the
following equation applies

Computing Budget ~ 0.5 (T - |Py|) - (H+ 1) (9.1)

where T is the number of generations.

This equation takes into account the fact that AEM alternates between
using H randomly generated demand sets and the mean demand set for the
RSM every M generations. As such, the RSM needs to run H times when
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using the H randomly generated demand sets but only runs one time when
using the mean demand set. The equation only gives an approximation, again
due to the additional runs of the RSM during local search.

9.2.7 Algorithmic Flow of HMOFEA

The major steps of HMOEA are shown below:
Hybrid Multi-Objective Evolutionary Algorithm

Step 1:  Build customer database.

Step 2: Initialize population.

Step 3:  Update archive.

Step 4: Perform binary tournament selection to form mating pool.

Step 5:  Apply route-exchange crossover and multi-mode mutation.

Step 6: Perform local search if criterion is satisfied.

Step 7:  Route simulation method and Pareto ranking.

Step 8:  Elitism.

Step 9: If stopping criterion is not satisified, repeat process from Step 3.
Otherwise output archive.

At the start of the algorithm, a database of customers’ information is built.
The information consists of the coordinates, the mean and variance of the
demand distribution, and the service time of each customer. Other informa-
tion includes the capacity and time window of a vehicle, and the coordinates
and service time of the depot.

Initialization: The first chromosome is built such that the sum of the mean
values of the customer demands on each route does not exceed the vehicle
capacity. Furthermore, the sum of the travel and service times on each route
must not exceed the vehicle time window. The number of vehicles required
in this first chromosome is then taken as the maximum number of vehicles
that each of the remaining chromosomes can use. For each chromosome, the
number of vehicles is randomly picked from the feasible range. The routes
are then built such that each route has approximately the same number of
customers. This procedure is done so that the initial population has a wide
range of chromosomes with different number of vehicles to start with.

Evaluation: After the initial evolving population is formed, all the chromo-
somes are evaluated based on the RSM and ranked according to their Paretos
dominance in the population. Following the ranking process, an archive pop-
ulation is updated. The archive population has the same size as the evolv-
ing population and is used to store all the best solutions found during the
search. The archive population updating process consists of a few steps. The
evolving population is first appended to the archive population. All repeated
chromosomes, in terms of the objective domain, are deleted. Pareto rank-
ing is then performed on the remaining chromosomes in the population. The



238 9 Evolving Robust Routes

higher ranked (weaker) chromosomes are then deleted such that the size of
the archive population remains the same as before the updating process. The
evolving population remains intact during the updating process.

Genetic operations: The binary tournament selection scheme is then per-
formed. All the chromosomes in the evolving population are randomly
grouped into pairs and from each pair, the chromosome with the lower rank is
selected for reproduction. This procedure is performed twice to preserve the
original population size. The genetic operators consist of the route-exchange
crossover and the multi-mode mutation. To further improve the internal rout-
ings of customers, the SPS and the WDS are applied to the evolving and
archive populations every 50 generations for better local exploitation in the
evolutionary search.

Elitism: A simple elitism mechanism is employed in the HMOEA for faster
convergence and better routing solutions. The elitism strategy involves ran-
domly picking a number of good chromosomes (3% of the population size)
from the pool of chromosomes in the archive population belonging to the best
three Pareto ranks. The chosen chromosomes then replace the worst ranked
chromosomes in the evolving population.

This is one complete generation of the HMOEA and the evolution process
repeats until the computing budget is exhausted.

9.3 Simulation Results and Analysis

The HMOEA is programmed in C++ and simulations were performed on an
Intel Pentium 4 2.8 GHz computer. Table shows the parameter settings
chosen after some preliminary experiments.

The test problem applied in this section can be described by

(VRPSDL1 : [Cy, Cpn, Cy], 75, Type-R, (40,40),
N(Na U(Ov %:U’))v maX{L n—= 10}>7

The actual location and p of each customer are based on the test function in
(65). It is to be noted that all the customers’ demands in VRPSD1 are nor-
mally distributed. The service time of each customer is filled in by subtracting
10 from the mean demand or one unit, whichever is larger. This is done so
that a customer with a higher mean demand would require a longer service
time. A fixed service time of 10 is also set for the depot. Since VRPSD1 uses
a 70x80 map, the vehicle time window is calculated to be 212 units. This
time window is equivalent to 8 hours. As such, each hour corresponds to 26.5
units, which is used to compute the remuneration for drivers according to the
rates given in the previous chapter.

The subsequent sections present the extensive simulation results and anal-
ysis. Section [@.3.TJ]demonstrates the effectiveness of the proposed hybrid local
search, as well as analyzes how the various settings in which the local search

(9.2)
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Table 9.1 Parameter settings for HMOEA

Parameter Settings
Population size 500
Crossover rate 0.7
Mutation rate 0.4
Elastic rate 0.5
Squeeze rate 0.5
Shuffle rate 0.3
Computing budget 2,000,000

heuristics are incorporated with the HMOEA will affect the performance of
the algorithm. Section [1.3.2] presents a new way of assessing the quality of so-
lutions to the VRPSD on top of comparing their expected transportation costs
and shows that the HMOEA, equipped with the RSM, is able to produce so-
lutions that are robust to the stochastic nature of the problem. Section
shows how the value of H affects the performance of GEG, whereas section[@.3.4]
attempts to study how the value of M affects the performance of GEM.

9.3.1 Performance of Hybrid Local Search

The HMOEA incorporates the local search heuristics in order to exploit lo-
cal routing solutions in parallel with global evolutionary optimization. The
local search heuristics are specially designed to exploit the route structures
of a solution to the VRPSD. This section demonstrates the effectiveness of
local exploitation in the HMOEA and also analyzes the effectiveness of var-
ious settings in which the local search heuristics are incorporated with the
HMOEA.

Simulations were conducted using six different settings. Three of the set-
tings include the HMOEA with no local search (NLS), with only WDS (WD),
and with only SPS (SP). WD/SP is a setting which involves the application
of WDS for the first two local exploitations in the HMOEA, i.e. on the 50th
and the 100th generation, and alternates between the two local search heuris-
tics every 100 generations, while applying local search every 50 generations.
On the other hand, SP/WD starts with SPS on the 50th and the 100th
generation, and alternates between the two local search heuristics every 100
generations. The final setting is RAN, where during the application of local
search every 50 generations of the HMOEA, each chromosome will have equal
chance of being applied by either SPS or WDS on all of its routes. Each of the
six settings underwent 10 simulation runs. The simulations were conducted
using the GEG setting with H set to 10.
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Fig. 9.5 (a) Average travel distance and (b) average driver remuneration of archive
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Fig. 9.6 (a) Average travel distance and (b) average driver remuneration of non-
dominated solutions for different local search settings
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The convergence traces of the travel distance and the driver remuneration
for the six settings are plotted in Fig. [@5|a)-(b) and Fig. [@6la)-(b). Fig.
shows the convergence of the respective costs, averaged over all the solutions
in the archive population, over the generations. Fig.[0.6|(a)-(b) shows the same
costs averaged over all the non-dominated solutions in the archive population.
The costs are further averaged over the 10 simulation runs performed. The
plots show the effectiveness of local exploitation in the HMOEA as the five
settings which use local search perform better than NLS. The effectiveness of
the SPS is evident since the four settings, namely WD/SP, SP/WD, SP, and
RAN, which make use of the local search operator, are able to find solutions
with travel distance and driver remuneration significantly lower than those
found by WD and NLS. The SPS is able to speed up convergence as it
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causes sharp dips in the respective costs of the solutions found whenever
it is performed. The performances of WD/SP, SP/WD, SP, and RAN are
comparable and the setting WD/SP is selected as the default setting for any
further analysis unless otherwise stated.

In Fig.[@5 it is observed that there are distinctive spikes in the convergence
traces which coincide with the occurrences of local search. This is despite the
fact that during local search, a new route is constructed and compared with
the original one and the better route is retained. This happens because in
comparing the new and original routes during local search, the solutions in
the archive population are re-evaluated by the RSM. This re-evaluation acts
to complement the RSM and is important in the stochastic problem where
the costs of solutions are sensitive to the demand sets that are used by the
RSM. For a particular solution, the fitness evaluated using the RSM can be
very different depending on the demand sets used. As such, it is essential that
a solution to the VRPSD be robust to the stochastic nature of the problem
and its fitness should not differ too much with each evaluation by the RSM.
The re-evaluation of all the solutions in the archive population during local
search ensures that only robust solutions stay non-dominated. The effect of
this can be seen in Fig. which considers only non-dominated solutions in
the archive population. The spikes in these convergence traces during local
search are significantly smaller, if not negligible.

9.3.2 Comparison with a Deterministic Approach

In the absence of a stochastic procedure to deal with stochastic demands,
one can generate the routes using a deterministic vehicle routing algorithm
by treating the expected demand at each customer as its deterministic de-
mand. The attraction of this deterministic approach is its relative simplicity
and familiarity to practitioners. The HMOEA can in fact be modified into
a deterministic vehicle routing algorithm by solely using the mean demand
set in the RSM. However, what makes the HMOEA different from a deter-
ministic vehicle routing algorithm is the RSM’s ability to operate on demand
sets which are randomly generated based on the demand distributions. This
section will show that the RSM’s ability to operate on randomly generated
demand sets can lead to solutions which are more robust to the stochastic
nature of the problem compared to the deterministic approach and that the
expected transportation costs of such solutions are good estimates of the true
performance of the solutions. In addition, a RSM-based procedure is proposed
to assess the quality of solutions on top of comparing their expected costs.
For comparison purposes, simulations were conducted on the three RSM set-
tings, GEG, GEM, and AEM, with H and M both set to 10. The results of
these settings are compared with the deterministic approach (DET). These
four settings provide a spectrum, from pure stochastic to pure deterministic,
of approaches to the VRPSD. Ten simulation runs of each of the four settings
were performed.
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Fig. 9.7 (a) Average travel distance and (b) average driver remuneration of non-
dominated solutions of GEG, GEM, AEM, and DET

The convergence traces of the travel distance and the driver remuneration,
averaged over the non-dominated solutions and over the 10 simulation runs,
for the four settings are plotted in Fig. Due to the nature with which the
RSM is run in AEM and DET, i.e. the RSM is run only once, instead of H
times, when evaluating solutions using the mean demand set, the HMOEA
for these two settings took more than 500 generations to complete. However,
by the 500th generation, these two settings have converged and the plots in
Fig. show only the convergence traces up to the 500th generation. By
comparing the convergence traces of the four settings, it appears that DET
is able to churn out the best solutions since both the average travel distance
and the average driver remuneration are the lowest among the four settings
at the termination of the algorithm.

It is highlighted in the introduction that due to the stochastic nature of
the problem, the actual cost of a particular solution to the VRPSD cannot
be known with certainty before the actual implementation of the solution.
During the decision making process, the logistic manager will look at the
expected transportation costs of all the candidate solutions and choose the
solution that best suits the companys logistic condition, in terms of the avail-
able vehicle fleet size, and the companys priorities of whether to take the
solution with a shorter travel distance but is likely to incur greater cost in
the form of the remuneration for the drivers. In view of this, for the logistic
manager to make correct decisions, it is important for the expected cost of
each solution to give a good estimate of the true performance of the solution,
i.e. the actual cost of implementing the solution should not deviate too much
from the expected cost. As such, it is necessary to compare the results to the
VRPSD based on this aspect on top of comparing their expected costs.

To perform such a comparison, a test demand set is randomly generated
based on the customers demand distributions. This test demand set will rep-
resent the real demands that the vehicles of a particular solution would
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Fig. 9.8 Deviation between actual and expected costs of non-dominated solutions
of GEG, GEM, AEM, and DET for four test demand sets
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Fig. 9.9 Increase in travel distance (first row) and driver remuneration (second
row) after implementing non-dominated solutions of GEG, GEM, AEM, and DET

experience when the solution is implemented. The RSM is then operated,
using that test demand set, on all the non-dominated solutions found at the
termination of each of the four settings, GEG, GEM, AEM, and DET, to
simulate the actual costs of implementing the solutions. The deviation be-
tween the actual and expected costs of each solution is then calculated using
the following equation:

Dev = \/(Ca,eap — Ca)? + (Crmyeap — Cin)? (9:3)

This deviation is essentially the Euclidean distance in the objective do-
main between the actual and expected costs of each solution. To ensure that
the results are not biased towards any test demand set, the same process is
repeated for three other randomly generated test demand sets. The above
procedures are repeated for the non-dominated solutions found by the 10
simulation runs of each setting that were performed. The results of these
comparisons are represented in box plots and are shown in Fig.

It can be seen from Fig. that the expected costs of solutions obtained
by GEG and GEM deviate less from the corresponding actual costs for all
the test demand sets compared to the other two settings. AEM and DET
produce solutions that have expected costs that are poor estimates of the
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actual costs. The spreads of their deviations are also larger compared to
those of GEG and GEM which will result in poorer predictability in the
deviations. It is noted that test demand sets 2 and 4 resulted in greater
deviations for all the four settings but the order of performances of the four
settings remains the same. Although the above results show the magnitudes
of deviations between the actual and expected costs of solutions, they do
not show the direction of these deviations. The actual cost of a particular
solution can be better than the expected cost of the solution even though
the deviation between the two costs is large. To compare the performances of
the four settings based on this aspect, two separate comparisons were made.
The first involves comparing the increase in travel distance, from the expected
value, after implementing a particular solution, whereas the other compares
the increase in driver remuneration. The results of these two comparisons are
shown in Fig. The figures again show the same pattern where GEG and
GEM produced the most robust solutions which have expected costs that are
good approximations of the actual costs.

A test is also conducted to compare the robustness of the solution found
by (65) with those found by the four settings. The solution of Dror and
Trudeau (65) is implemented using the simple recourse policy. The increases
in travel distances for the four test demand sets are obtained and plotted as
four horizontal lines in the respective box plots in Fig. since (65) only
considered the single objective of travel distance. From Fig. [@.9] it can be
seen that the solution of Dror and Trudeau (1986) is not as robust as those
found by GEG and GEM. For test demand sets 2 and 4, the increases in
distances after implementing the solution are comparable with those found
by DET. This is despite the fact that Dror and Trudeau (65) used a worst case
recourse policy where in case of a route failure, all the remaining customers
in the route are served through individual deliveries.

9.3.3 Effects of Sample Size, H

This section analyzes the effect of H on the performance of the HMOEA us-
ing the GEG setting in terms of the expected costs of solutions found and
how well these expected costs approximate the actual costs of implementa-
tion. Ten simulation runs of seven settings with H={1, 3,5, 10, 30, 50, 70} are
performed. The RAN local search setting is used in all the simulations here
to allow a fair comparison since the H settings of 30, 50, and 70 run for less
than 150 generations and would not be operated by the SPS if the default
local search setting of WD/SP were used.

The convergence traces of the travel distance and the driver remuneration,
averaged over the non-dominated solutions in the archive population and
over the 10 simulation runs, for the seven settings are plotted in Fig. [@.10
Due to space constraints, the convergence traces for the H settings of 1, 3,
and 5 are shown only up to the 400th generation. From Fig. [@.10, it can be
observed that as the value of H increases, the number of generations used in
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Fig. 9.11 Increase in travel distance (first row) and driver remuneration (second
row) after implementing non-dominated solutions of GEG using different H values

the HMOEA decreases (A portion of the convergence traces has been enlarged
to highlight this point). This is because as H increases, more runs of the RSM
is applied each time the fitness of a chromosome is evaluated and since the
total number of times the RSM is applied throughout the algorithm for the
seven settings is fixed at the computing budget, the number of generations
used in the HMOEA is reduced accordingly. This reduction in the number
of generations used in the HMOEA results in poorer routing solutions as the
HMOEA does not have sufficient time to explore the search space.

The deviation between expected and actual cost for the different settings
are shown in Fig. It can be observed that as the value of H increases,
the solutions found are more robust to the stochastic nature of the problem
in that the expected costs of the solutions are better estimates of the actual
costs. From the above results, it can be seen that while setting a larger value
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of H for GEG will produce more robust solutions whose expected costs are
better approximations of the actual costs of implementation, due to the fixed
computing budget, the corresponding smaller number of generations used in
the HMOEA will result in poorer routing solutions as there is insufficient
time to explore the search space. As such, there is a trade-off between the
number of generations used in the HMOEA and H, the number of repetitions
of the RSM to obtain the expected cost of a chromosome.

9.3.4 Effects of M

Having analyzed how H affects the performance of GEG, this section attempts
to study if M, the number of generations of the HMOEA before the H demand
sets used by the RSM are refreshed, has any effect on the performance of
GEM. It is to be noted that if M = 1, GEM becomes GEG since the H demand
sets used by the RSM will be refreshed every generation of the HMOEA, and
if M is equal to the maximum number of generations of the HMOEA, i.e.
the H demand sets remain unchanged throughout the algorithm, and H = 1,
then GEM becomes DET except that the mean demand set is replaced by a
demand set that is randomly generated from the demand distributions of the
customers.

Ten simulation runs of three settings with M={100, 200,300} are per-
formed. H is set to 10 for all the three settings. The convergence traces
and box plots for the three settings are plotted in Fig. and Fig.
respectively. The plots for GEG (M = 1), M = 10, and DET are also plot-
ted for comparison. From the figures, it can be seen that the performance of
GEM is the same regardless of the value of M. The average travel distance
and the average driver remuneration of the non-dominated solutions found
are almost the same. The robustness of the solutions is also comparable. The
large disparity between M = 300 and DET in terms of how well the expected
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Fig. 9.12 (a) Average travel distance and (b) average driver remuneration of
non-dominated solutions of GEM using different M values
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Fig. 9.13 Increase in travel distance (first row) and driver remuneration (second
row) after implementing non-dominated solutions of GEM using different M values

costs of solutions estimate the actual costs also highlights the contribution of
the RSM to finding robust solutions to the VRPSD since the major difference
between the two settings is the RSMs ability to use H randomly generated
demand sets to evaluate the fitness of chromosomes.

9.4 Conclusion

A HMOEA featured with enhanced genetic operators and two VRPSD-
specific local search heuristics has been presented in this chapter. To evaluate
the cost of a VRPSD solution, which is stochastic, a route simulation method
(RSM) has also been implemented and incorporated with the HMOEA. The
effectiveness of the two VRPSD-specific local search heuristics and the various
settings in which local exploitation is incorporated with the HMOEA have
been studied. A new way of assessing the quality of solutions to the VRPSD
on top of comparing their expected costs has also been proposed. Extensive
simulations have been performed to show that the solutions obtained by the
HMOEA, equipped with the RSM, are robust to the stochastic nature of the
problem. The expected costs of such solutions are good approximations of
the actual costs of implementing the solutions, thus providing the logistic
manager with accurate information based on which decision will be made.



Chapter 10
Final Thoughts

Our primary objective is to provide readers with a comprehensive introduc-
tion on the design of evolutionary algorithms for multi-objective optimization
with uncertainties. This goal has been accomplished through a relatively easy
walk-through on the basic ideas found in the single-objective literature that
can be applied to handle multi-objective noisy, dynamic and robust fitness
landscapes. These ideas have been introduced in the context of uncertain
multi-objective optimization, together with the different multi-objective evo-
lutionary algorithms designed specifically for handling uncertainties in the
preceeding chapters. In doing so, we hope to expose the readers to a wide
range of design optimization issues and concepts, ranging from the use of pos-
sibilistic theory to dampen the effects of noise to the use of predictive models
to forecast future solutions in dynamic optimization. With this exposure,
readers will have a better appreciation of the generic nature of evolutionary
computation techniques, which allows one to extend and explore new ideas
that can better handle uncertainties.

When we embarked on this research of evolutionary multi-objective opti-
mization with uncertainties, there are only a few publications on this topic.
However, the number of publications has since increased steadily though there
remains many issues to consider in this area. An in-depth discussion for each
of the three forms of uncertainties covered here would warrant a book on
its own each. In squeezing all three topics within a single cover, we have in-
evitably neglected some related issues. This very last chapter aims to identify
some directions for future development of better evolutionary algorithms for
multi-objective optimization in uncertain and dynamic environments.

In Chapter 2l and [B] we assumed that noise in the fitness functions can be
described by a Gaussian distribution. Noise is commonly modeled as such but
this assumption is not valid for all cases. The fact that other noise models
such as Cauchy and x? have different impacts on the optimization process
implies that techniques developed on the grounds of any particular noise
model may not extend well for others. Examples of such techniques include
probabilistic selection schemes of ESPEA and MOPSEA, and the heuristics
of ELDP and GASS.

C.-K. Goh and K.C. Tan: Evolutionary Multi-objective Optimization, SCI 186, pp. 249
springerlink.com © Springer-Verlag Berlin Heidelberg 2009
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In Chapter[I we pointed out that multi-objective test functions must pose
sufficient difficulties to impede MOEAS’ search for Pareto optimal solutions.
While it is not possible to ascertain with absolute certainty any correla-
tion between real-world problem characteristics and test function features,
our categorization of dynamic multi-objective problems in Chapter [{] has, at
least, revealed some possible types of test functions that have yet been ex-
plored. Therefore, it is important to examine the algorithms against various
difficult dynamic test functions before applying them in a practical context.
In addition, one common assumption in evolutionary dynamic optimization
is that changes in the landscape can be detected easily by checking for dis-
crepancies between the old and the re-evaluated objective values. However,
this may not be the case in the event where new peaks are introduced without
affecting the fitness values of existing non-dominated solutions.

In Chapter[d, we showed that MOEAs have a tendency of finding solutions
with broad basins of attraction. This does not show the algorithm’s ability
in finding robust solutions with narrow basins. Addressing the problem, we
have researched in this direction and presented a new robust multi-objective
test suite. Unlike most existing research, sensitivities are introduced in the
environmental variables instead of the decision variables. Such a feature has
enabled us to generate problems with noise-induced difficulties. This neces-
sitates the design of robust MOEAs that are capable of handling such para-
metric sensitivities.

For real-world problems, we realized that there is sufficient overlap between
the different types of uncertainties, which can be examined at the same time.
For instance, in adapting the controller for a dynamic process, the sensors may
return noisy performance readings from the process plant. Also, it may not be
practical to implement a new solution everytime a change in the landscape is
discovered due to the implementation cost and the time required to effect the
change. In such a situation, it may be better to employ a robust solution that
can work well despite the environmental changes. This effectively transforms
the problem into one that requires us to find a new robust solution whenever
performance deteriorates beyond certain criterion.

The importance of reducing the number of evaluations is becoming more
apparent in the face of increasing problem complexity. In presenting the
heuristics of ELDP and GASS to guide the evolutionary process through
the noisy multi-objective fitness landscape in Chapter [3, we have sought to
reduce the number of re-evaluations that is required to improve the reliabil-
ity of the selection process. Likewise, in speeding up the convergence process
by means of the competitive-cooperative co-evolutionary framework to track
the dynamic Pareto solution set in Chapter 6] we are essentially reducing the
total number of function evaluations. Obviously, a straightforward approach
to improve the run-time is to utilize grid or parallel computing approaches.
However, such an improvement in run-time is achieved through sheer brute
computational force rather than the actual reduction of computational re-
quirements and such computing resources may also not be available to all. A
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promising approach is to replace computationally the expensive high fidelity
fitness functions with computationally cheap approximate models. These ap-
proximate models, also known as surrogate or meta-models, have been applied
to robust single-objective optimization. However, there exist few works in the
context of multi-objective optimization for both dynamic and noisy optimiza-
tion problems. One application of surrogate models is thus in the optimization
of noisy fitness functions, where noise may be filtered out through the ap-
proximation process, which is an advantage that may have been overlooked
thus far.

A closely related issue, which often arises in real-time systems, is the need
to discover implementable solutions quickly within a limited time. Addressing
this issue goes beyond improving the soft aspects of evolutionary algorithms,
e.g., it encompasses algorithm intelligence, coding efficiency, and approxi-
mate fitness functions. Given the iterative nature of evolutionary algorithms
and the demand of handling uncertainties, executing the population based
algorithms on desktops or workstations may not necessarily meet the require-
ments of real-time applications. To this end, it would be worth investigating
evolutionary algorithms in dedicated hardware such as VLSI or FPGA.

In our approaches, it is assumed that the decision-maker is capable of
reliably selecting a solution from the diverse Pareto front for implementa-
tion. For multi-objective problems with low-dimensional objective space or
Pareto front, the tradeoffs can be easily analyzed by the decision-maker for
selecting the final solution. On the other hand, the amount of information
present in the final solution set can be overwhelming for high-dimensional
problems. Since only one solution will usually be implemented as the final
design eventually, it would be useful to incorporate some form of preferences
in the optimization process to present a smaller set of “short-listed” solu-
tions. Adding to the fact that considerable computational expense is often
needed to reduce noise present in the final evolved Pareto front, having such
a sub-set of solutions also reduces the computational effort required in the
simulation. In Chapter B, we have mentioned as a design consideration that
the decision-maker may not be available at all time in the case of dynamic
optimization. Thus the incorporation of a mechanism that encapsulates the
essence of decision-makers is important in this aspect.
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