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Foreword
Joel S. Demski

It has long been recognized that accounting is a source of information. At the
same time, accounting thought has developed with a casual if not vicarious view
of this fundamental fact, simply because the economics of uncertainty was not
well developed until the past four decades. Naturally, these developments in
our understanding of uncertainty call for a renewed look at accounting thought,
one that formally as opposed to casually carries along the information perspec-
tive.

Once this path is entered, one is struck by several facts: Information is
central to functioning of organizations and markets, the use to which informa-
tion is put becomes thoroughly endogenous in a well crafted economic analysis,
and uncertainty and risk sharing are fundamental to our understanding of
accounting issues.

This is the path offered by the remarkable Christensen and Feltham
volumes. Their path takes us through equity and product markets (Volume I)
and labor markets (Volume II), and offers the reader a wide-ranging, thorough
view of what it means to take seriously the idea that accounting is a source of
information. That said, this is not academic technology for technology’s sake.
Rather it cuts at the very core of the way we teach and research accounting.
Once we admit to multiple sources and multiple uses of information, we are
forced to test whether our understanding of accounting is affected seriously by
ignoring those other sources and uses of information, both in terms of combin-
ing information from various sources for some particular use and in terms of
reactive response to other sources when one, the accounting source, is altered.
It is here that the importance of thinking broadly in terms of the various sources
and uses comes into play, and the message is unmistakable: accounting simply
cannot be understood, taught, or well researched without placing it in its natural
environment of multiple users and multiple sources of information.

The challenge Peter and Jerry provide is not simply to master this material.
It is to digest it and act upon it, to offer accounting thought that is matched, so
to speak, to the importance of accounting institutions.

We are deeply indebted to Peter and Jerry. That debt will go unattended
until we significantly broaden and deepen our collective understanding of
accounting.



Preface

In 1977, Tom Dyckman, then Director of Research for the American Account-
ing Association (AAA) encouraged Joel Demski and Jerry Feltham to submit
a proposal for a monograph in the AAA Research Monograph series, “on the
state of the art in information economics as it impacts on accounting.” Joel and
Jerry prepared a proposal entitled:

“Economic Returns to Accounting Information in a Multiperson Setting”

The proposal was accepted by the AAA in 1978, and Joel and Jerry worked on
the monograph for the next few years, producing several of the proposed chap-
ters. However, the task went more slowly and proved more daunting than
expected. They were at separate universities and both found that, as they wrote
and taught, they kept finding “holes” in the literature that they felt “needed to
be filled” before completing the monograph. This, plus the rapid expansion of
the field, meant they were continually chasing an elusive goal.

In the early nineties, Joel and Jerry faced up to the fact that they would
never complete the monograph. However, rather than agree to total abandon-
ment, Jerry “reserved the right” to return to the project. While, at that time, he
did not expect to do so, he did have 500 pages of lecture notes that had been
developed in teaching two analytical Ph.D. seminars in accounting: “Economic
Analysis of Accounting Information in Markets,” and “Economic Analysis of
Accounting Information in Organizations.”

Over the years, Jerry had received several requests for his teaching notes.
These notes had the advantage of pulling together the major work in the field
and of being done in one notation. However, they were very terse and mathe-
matical, having been designed for use in class where Jerry could personally
present the intuition behind the various models and their results. To produce a
book based on the notes would require integration of the “words” and “graphs”
used in the lectures into the notes (and there were still holes to fill).

Peter Christensen had been a student in one of Jerry’s classes in 1986. In
1997, Peter asked Jerry if he was going to write a book based on his lecture
notes. When Jerry stated it was too big a task to tackle alone, Peter indicated
his willingness to become a coauthor. This was an important factor in Jerry’s
decision to return to the book, since he had worked effectively with Peter in
publishing several papers over the preceding 10 years. Also of significance was
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our assessment that young researchers and Ph.D. students would benefit from
a book that provides efficient access to the basic work in the field. The book
need not try to provide all the latest results and it need not “fill the holes”. The
objective s to lay an integrated foundation that provides young researchers with
the tools necessary to insightfully read the latest work in the field, and to
develop their own theoretical analyses.

Parallel to Jerry’s two Ph.D. courses, the book is divided into two volumes.

Economics of Accounting: Volume I - Information in Markets
Economics of Accounting: Volume II - Performance Evaluation

Chapter 1 gives an overview of the content of Volume I, while Chapter 16 gives
an overview of the content of Volume II. Each volume is divided into several
parts.

Volume I - Information in Markets
Part A. Basic Decision-Facilitating Role of Information
Part B. Public Information in Equity Markets
Part C. Private Investor Information in Equity Markets
Part D. Disclosure of Private Owner Information in Equity and
Product Markets

Volume II - Performance Evaluation
Part E. Performance Evaluation in Single-Period/Single-Agent
Settings
Part F. Disclosure of Private Management Information in Single-
Period/Single-Agent Settings
Part G. Contracting in Multi-Period/Single-Agent Settings
Part H. Contracting with Multiple Agents

The three chapters in Part A are foundational to both volumes. However, with
occasional exceptions, one can read the material in Volume II without having
read Parts B, C, and D of Volume I. Jerry begins both of his Ph.D. courses by
ensuring all students understand the fundamental concepts covered in Part A,
since these courses are offered in alternate years and the students differ with
respect to which course they take first.

Students often seem to find it easier to grasp the material in Volume II, so
there is some advantage to doing it first. However, conceptually, we prefer to
cover the information in markets material first, and then consider management
incentives. The advantage of this sequence is that management incentive
models assume the manager contracts with a principal acting on behalf of the
owners. The owners are investors, and Volume I explicitly considers investor
preferences with respect to the firm’s operations. Furthermore, while most
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principal-agent models implicitly assume incentive risks are firm-specific, there
are models that recognize that incentive risks are influenced by both market-
wide and firm-specific factors. To fully understand the impact of the market-
wide factors on management incentives, one needs to understand how the mana-
ger can personally invest in the market so as to efficiently share market-wide
risks with other investors. The first volume provides the necessary background
for this type of analysis.

Acknowledgments
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CHAPTER 1

INTRODUCTION TO INFORMATION IN
MARKETS

In their book on cost determination, Demski and Feltham (1977) characterize
accounting as playing both decision-facilitating and decision-influencing roles
within organizations. Inits decision-facilitating role, accounting reports provide
information that affects a decision maker’s beliefs about the consequences of his
actions, and accounting forecasts may be used to represent the predicted con-
sequences. On the other hand, in its decision-influencing role, anticipated
accounting reports pertaining to the consequences of a decision maker’s actions
may influence his action choices (particularly if his future compensation will be
influenced by those reports).

We adopt these two themes, but broaden the perspective to consider the
impact of accounting on investors, as well as managers. We view accounting
as an economic activity — it requires the expenditure of resources, and affects
the well-being of those who participate in the economy. Obviously, to under-
stand the economic impact of accounting requires economic analysis.

The relevant economic analysis is often referred to as information econom-
ics. It is a relatively broad field that began to develop in the nineteen-fifties,
with significant expansion in the nineteen-eighties. Much of information
economic analysis makes no explicit reference to accounting reports. In fact,
even the information economic analyses conducted by accounting researchers
often do not model the specific form of an accounting report. Nonetheless,
many generic results apply to accounting reports. Furthermore, the impact of
accounting reports depends on the other information received by the economy’s
participants. Hence, it is essential that accounting researchers have a broad
understanding of the impact of publicly reported information within settings in
which there are multiple sources of public and private information.

In our two volumes, we consider the fundamentals of a variety of economic
analyses of the decision-influencing and decision-facilitating roles of informa-
tion. While many of these analyses do not model the details of accounting
reports, our choices reflect our convictions as to the analyses that are relevant
for understanding the economic impact of accounting.

While the two volumes contain many references to recent research, we do
not seek to comprehensively cover recent research. Information economic
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research has grown significantly, and our focus is on fundamentals. New
researchers, particularly Ph.D. students, find it difficult to find time to read the
fundamental work in the field, and this makes it difficult for them to fully grasp
the recent work. Our two volumes stem from two Ph.D. seminars at The
University of British Columbia. The first considers economic analyses that are
pertinent to the examination of the role of accounting information in capital
markets. The second considers economic analyses that are pertinent to the
examination of the role of accounting information in motivating managers.
Hopefully, by developing an understanding of the fundamentals in these two
areas, new researchers will be able to gain a broad understanding of the field,
and then will be able to efficiently read and understand the recent work that is
of interest to them.

The focus in this first volume is on the decision-facilitating role of infor-
mation, with emphasis on the impact of public and private information on the
equilibria and investor welfare in capital and product markets. A key distinction
between the analyses in the two volumes is that in the first volume, managers
of firms are not explicitly modeled as economic agents — they do what they are
told by shareholders, and do not require any incentives to do so. In the second
volume, managers are economic agents with personal preferences, and the
theme is the role of information for performance evaluation.

This first volume is divided into four parts. In Part A, we set the stage in
terms of representation of uncertainty, preferences, decisions, and information.
The important concept of risk sharing is also introduced in a partnership setting.
Risk sharing is a key concept both in the market setting and in the analyses of
performance evaluation in the second volume. Part B extends the analysis to a
competitive market setting with public information, whereas Part C considers
settings in which investors may acquire private information. Finally, Part D
considers settings in which managers (or owners) of firms have private infor-
mation that they can publicly disclose to the capital and product markets. This
first chapter provides a brief overview of each of the four parts.

1.1 BASIC DECISION-FACILITATING ROLE OF
INFORMATION

If accounting reports are to be informative about the future, a decision maker
must believe there are multiple events that can occur, he must be uncertain about
which events have occurred or will occur, and he must believe there is arelation
between past and future events. A report is informative if it changes the deci-
sion maker’s beliefs about the possible events. In Chapter 2 we summarize the
key elements of the representation of uncertainty and decision maker preferen-
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ces under uncertainty. The representation of information and its decision-facili-
tating role are introduced in Chapter 3.

To represent uncertainty we introduce the concept of a state. The state is
a complete description of all possible past and future events that are beyond the
decision maker’s control. There are many possible states, but ““in the end” only
one is realized. The outcome of any action (or sequence of actions) can be
represented as a function of the decision maker’s actions and the state.

An event is a collection of states to which we can assign probabilities,
which represent the decision maker’s beliefs about the likelihood of the events
occurring. The specification of the set of states, the set of events, and the
decision maker’s probabilities is the probability space on which economic
decision problems under uncertainty can be defined.

Decision-making under uncertainty is a choice among gambles (i.e., out-
come probability distributions). Based on assumptions of rational choice under
uncertainty, a decision maker’s preferences can be represented by a utility
function which assigns a real number to each possible outcome, such that the
decision maker’s optimal action (i.e., preferred gamble) maximizes his expected
utility.

Throughout this volume, an outcome is often described in terms of some
physical or monetary measure of wealth or consumption (possibly at multiple
dates). A decision maker is always assumed to prefer more outcome to less, and
is generally assumed to be either risk neutral or strictly risk averse. That is, the
decision maker’s utility function is increasing and either linear or strictly
concave. Preferences among gambles (actions) are often decision maker speci-
fic, but the first- and second-order dominance relations provide partial order-
ings of gambles such that one gamble dominates another if it is preferred by all
decision makers who have increasing or have increasing, concave utility func-
tions, respectively.

In Chapter 3 we consider decision-facilitating information systems in the
context of single-person decision making under uncertainty. An information
system is represented as a set of signals (e.g., accounting reports) that might be
generated and the likelihood of the possible signals given the possible events
that affect the outcomes generated by the decision maker’s actions. A signal
(e.g., an accounting report) potentially changes a decision maker’s beliefs about
the outcomes from his action alternatives and, hence, potentially changes his
action preferences. To have economic value to a decision maker, he must
believe that his outcome beliefs will be changed by some of the possible signals
and, for at least some of the signals, those changes in beliefs will be sufficient
to change his preferred action.

The key characteristic of a signal is the posterior event beliefs it generates.
The representation of that information is, to some extent, arbitrary. For
example, we can report income in Canadian dollars or Euros, but the infor-
mation content is exactly the same (if we know the exchange rate). Further-
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more, in some settings, the decision maker’s posterior beliefs are not influenced
by details — a summary measure such as net income might result in the same
beliefs as a report with all the components of net income. This leads to the
concept of a sufficient statistic — knowing a sufficient statistic is as good as
knowing any other representation of the information, and there are always many
possible sufficient statistics. A key characteristic of a sufficient statistic is that
it is not sensitive to the decision maker’s utility function or prior event beliefs,
it only depends on his beliefs about the likelihood of the possible signals given
the possible events of interest.

For a given decision maker and information system, there is an optimal
decision rule specifying the optimal action for each signal the information
system might generate. The choice among information systems is based on the
decision maker’s expected utilities that result from using the optimal decision
rules for each information system. In general, the preference ordering among
information systems depends on the characteristics of the decision problem, i.e.,
the decision maker’s preferences and beliefs, and the relation between outcomes
and actions. However, if the signals from one information system tell at least
as much about the likelihood of the outcome-relevant events as the signals from
another information system, the former is weakly preferred to the latter indepen-
dently of the characteristics of the decision problem.! This result is commonly
referred to as the Blackwell Theorem.

Accounting information has many different roles. The analyses in Chapters
2 and 3 focus on decision making under uncertainty by a single decision maker
— the only role for information in that setting is to facilitate the decision maker’s
decisions. In the remainder of the book, we consider settings in which there are
multiple decision makers. While the use of accounting information for facili-
tating decisions continues to be important, the role of accounting information
in the contractual arrangements within the organization and between the firm
and the markets in which it operates becomes an additional key issue.

We begin our examination of the economics of accounting information in
multi-person decision making in Chapter 4 by considering a simple setting that
we call a partnership (also referred to in the literature as a syndicate). The key
concepts introduced are efficient risk sharing and congruent preferences for
action and information system choices.

In Chapter 4, a partnership is assumed to have the following key character-
istics. There are two or more partners who contract to share an aggregate
outcome that depends on random outcome-relevant events and, possibly, also
on actions taken by one or more partners. Each partner has personal preferences
depending on his personal share of the aggregate outcome, i.e., his piece of the

' Of course, this ignores differences in the costs of implementing the various information
systems.
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total pie. The partners have no direct preferences with respect to the actions that
are taken. The size of the total pie available to the partnership is contractible
information, so that the partners can agree to a sharing rule that specifies how
each partner’s share of the total will be determined.

For a given action, uncertainty with respect to the outcome-relevant events
creates uncertainty about the size of the total pie. How should that risk be
shared between the partners? Obviously, the partners would like the sharing
rule (i.e., the allocation of the event-contingent aggregate outcome between
partners) to be Pareto efficient. That is, it is not possible to find another alloca-
tion that makes at least one partner better off and no partner worse off. If beliefs
are homogeneous, each partner’s event-contingent consumption only depends
on the size of the total, i.e., each partner’s consumption can be written as a
function of aggregate consumption. Furthermore, the slope of this function is
given by the ratio of the partner’s risk tolerance (the inverse of the risk aversion)
relative to the aggregate risk tolerance of all partners. That is, the more risk
tolerant partners bear bigger shares of the risk in the aggregate outcome.

The information system is assumed to report the outcome that is to be
shared, i.e., the outcome is contractible information. With homogeneous
beliefs, the reporting of other post-decision information, such as the events that
affect the outcome, is irrelevant. However, if beliefs are heterogeneous, the
partners can benefit from making “side-bets” on events that will be reported in
addition to the aggregate outcome.

HARA utility functions constitute an important class of utility functions that
we consider in many different contexts throughout the book. This class consists
of utility functions for which the risk tolerance is a linear function of the
decision maker’s consumption, and includes the exponential, the logarithmic,
and the power utility functions. The slope coefficient in this linear function is
termed the risk cautiousness. If all partners have homogeneous beliefs and the
same risk cautiousness, then each partner’s efficient consumption is a linear
function of the aggregate outcome, i.e., there is linear risk sharing.

Interestingly, the conditions that result in linear risk sharing also result in
congruent (i.e., identical) preferences over actions and pre-decision information
systems if the sharing rule is efficient. Furthermore, those preferences can be
represented by a “partnership utility function.” Hence, the analyses of informa-
tion systems in Chapter 3 apply in a straightforward manner to partnerships for
which there are congruent preferences.

It should be noted that although we only present the sufficiency of linear
sharing for congruent preferences, the conditions for linear risk sharing are (in
most cases) also necessary conditions for congruent preferences. Furthermore,
we also reiterate that we have assumed the partners have no direct preferences
with respect to their actions. Models in which there are direct action prefe-
rences are typically called agency models. These are examined in Volume II.
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1.2 PUBLIC INFORMATION IN EQUITY MARKETS

In Part A we consider the basic economic model of single-person decision
making, and we extend the analysis to partnerships with multiple decision
makers. Inboth settings, pre-decision information reduces the uncertainty about
the future consequences of current actions and, thus, helps make better deci-
sions. In Part B we move to a competitive market setting in which firms are
owned by equityholders (investors) and the information is public, i.e., known
to all investors.

1.2.1 Impact of Public Information in Pure-exchange Setting

There are three key differences between our partnership and market settings.
First, in our partnership setting, there is a single firm and the partners have no
other random sources of consumption. On the other hand, in our market setting,
there are multiple firms and a partner may have other random sources of con-
sumption (e.g., compensation for labor). Second, the form of the partnership
contract is unrestricted, whereas, in the market setting, there is no direct con-
tracting and the risk sharing possibilities are constrained by the available set of
marketed securities (e.g., equity in the firms). Third, the “weights” used in
determining the size of each partner’s share of the partnership outcome are
exogenous, whereas, in the market settings, the investors’ “weights” are
endogenously determined and depend on their exogenously endowed ownership
of marketed securities and non-tradeable claims to consumption.

In the market setting, the investors need not trade. Hence, each investor’s
share of the risky aggregate outcome after trading must give him at least as high
an expected utility as the expected utility of his endowed position (i.e., indivi-
dual rationality). The market is assumed to be competitive, so that investors
take the market prices of securities as given, and choose their portfolio of
securities to maximize their expected utility subject to their budget constraints
(i.e., individual optimality). The security prices are determined such that
demand equals supply for each security (i.e., market clearing). If there are pro-
duction choices, efficient production choices maximize the market value of the
firm’s current and future dividends (to all its claimants).

In our market setting, information can affect the market prices of the mar-
keted securities and the trades made by investors, as well as the production
choices by the firms’ managers. We initially (Chapters 5, 6, and 7) focus on
pure exchange settings in which the managers’ production choices are treated
as exogenous and unaffected by changes in the information system. Further-
more, we assume that all investors receive the same information at the same
time (e.g., publicly reported dividends and financial statements).
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Allinformation systems (even the null system) report the dividends received
by investors. A key issue in the pure exchange setting is the identification of
conditions under which additional public information does or does not have
economic value. Interestingly, in any risk sharing setting, public information
can have a negative effect if it comes before the investors have had an oppor-
tunity to share their risks. For example, you cannot insure a risk if you and the
insurer already know the outcome.

This negative effect is avoided if investors can trade claims before public
information is released. Interestingly, while the subsequent release of public
information will cause equilibrium prices to change (if investor beliefs change),
this does not imply that the information has economic value to investors. That
is, price changes (or even trading) do not imply changes in consumption plans.
In particular, in a pure exchange setting, changes in public information will not
facilitate a Pareto improvement if endowments are measurable with respect to
the less informative system, and the investors have homogeneous beliefs and
time-additive preferences. Hence, additional public information can only be
valuable to investors if it facilitates better insurance of personally endowed
consumption risks, more side-betting due to heterogeneous beliefs, or improved
coordination of consumption across periods due to diverse non-time-additive
preferences. None of the above seem to be key sources of value for publicly
reported accounting information. Hence, we extend our pure-exchange, public
information model to consider endogenous production choice.

1.2.2 Impact of Public Information in a Production Choice
Setting

While information induced price changes imply investor beliefs have changed,
the key issue is whether those changes in beliefs result in changes in production
plans by the firms (and, hence, affect the investors’ consumption plans). That
is, does the information facilitate a more efficient use of the economy’s resour-
ces? We explore this role for information in Chapter 8.

In the pure exchange setting we introduce a distinction between economy-
wide and firm-specific events. The former are events that affect the aggregate
supply of consumption in the economy, and thereby create risks which investors
must share. The latter, on the other hand, are events that affect the outcomes of
specific firms, and create risks which investors can avoid by holding well-
diversified portfolios. In the production setting, we consider information about
both economy-wide and firm-specific events, and allow for the possibility that
managers might have firm-specific information that is not known by investors.

A manager is exogenously assumed to select the production plan that maxi-
mizes the intrinsic value of the firm. The intrinsic value equals the market value
that would hold if the managers and investors had the same information. The
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analysis establishes that, in the production setting, it is valuable for managers
and investors to have information about economy-wide events, even though this
information was not valuable in the pure-exchange setting. On the other hand,
while it is valuable for managers to have firm-specific information about the
firm’s productivity, it is irrelevant whether this information is reported or not
reported to investors (assuming that investors trade well-diversified portfolios
at prices that reflect the fact that managers have firm-specific productivity infor-
mation).

In sum, information that facilitates managers’ production decisions is valu-
able. Nonetheless, there is no benefit to mandating managers to report their
private firm-specific information to investors if the investors trade well-diver-
sified portfolios in a competitive market in which they all will receive the same
information (and they have homogeneous beliefs, as well as time-additive pre-
ferences). That is, while reporting firm-specific information may appear to
facilitate the investors’ investment decisions because it influences market prices,
the investors gain no benefit from that information.

Given these results, one may question whether it is worthwhile for account-
ing researchers to study general equilibrium models of competitive markets. We
obviously feel that it is. First, it is important for accounting researchers to
understand the nature of these results so that we do not use arguments for the
value of accounting information that are incorrect. For example, establishing
that accounting reports or earnings forecasts affect prices establishes that the
report or forecast influences investors’ beliefs, but it does not establish that
reporting this information to investors makes them better off.

Second, general equilibrium models are essential for understanding the
implications of the investors’ opportunity to trade claims, particularly in
contexts in which there are both diversifiable and non-diversifiable risks. In
Parts C and D of this volume, and in the second volume, we consider partial
equilibrium models of settings in which markets are not perfectly competitive,
due, for example, to private investor information, imperfect competition in
product markets, and incentive issues for managers. In those settings there is
greater scope for financial reporting to investors to have value. Partial equilib-
rium models are used for tractability reasons. However, their appropriateness
depends on how well they reflect the prices that would result from a general
equilibrium model. We believe the big picture is important and understanding
general equilibrium prices and investor welfare in a perfectly competitive
market is useful for understanding prices and investor welfare in imperfectly
competitive markets.

For example, the agency literature commonly assumes a risk-neutral prin-
cipal without any further justification. That assumption can be justified in a
general equilibrium setting if the contractible information is viewed as pertain-
ing to firm-specific events, and the principal is viewed as a partnership of inves-
tors who hold a diversified portfolio of firms. On the other hand, if there are
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both firm-specific and economy-wide risks, the latter type of risk must be
recognized when we specify the principal’s utility function.

Part B is structured as follows. Chapters 5, 6, and 7 consider pure-exchange
settings in which production and dividend decisions are fixed, so that the event-
contingent dividends from marketed securities are exogenous. Chapter 5 pro-
vides some basic insights by focusing on a single-period setting while Chapters
6 and 7 extend the analysis to settings with multiple consumption and trading
dates. In Chapter 6 the public information structure is fixed and it provides the
basis for the examination in Chapter 7 of the impact of changes in public infor-
mation systems (e.g., the rules governing published accounting reports) in a
pure-exchange setting. Chapter 8 extends the analysis to settings in which pro-
duction/dividend decisions are endogenous. In Chapters 9 and 10 we consider
the relation between accounting information and market values of firms. We
review that analysis in the following section.

1.2.3 Market Values and Accounting Information

We draw heavily from the basic theory of finance for our understanding of the
relation between public information and the market prices of marketed securi-
ties. Investors consume dividends, and are assumed to prefer more consumption
to less. Dividends are publicly reported and future dividends are assumed to
depend on uncertain future events, so that a marketed security is described as
a sequence of event contingent dividends. At any given date, the history of
information provided by the public reporting system is represented by a signal
that equals the set of events that have a positive probability of occurring in the
future. Each marketed security has a signal/date contingent market price.

An arbitrage opportunity exists if an investor can get “something for
nothing,” e.g., he can find a trading strategy of marketed securities that requires
no investment and is guaranteed to provide a non-negative return with a positive
probability of a positive return. A basic assumption for a competitive market
is that security prices and, in particular, the relative security prices, are such that
there are no arbitrage opportunities. Otherwise, the security prices cannot be
sustained as part of an equilibrium in which demand equals supply. If there are
no market frictions, the assumption of no arbitrage has important implications
for how security prices are determined, and these implications do not require
specification of the investors” endowments, beliefs, or preferences (beyond non-
satiation). The key implication of no arbitrage is that for each date and signal
at that date, the price of a security can be expressed as the weighted sum of all
possible future date-event contingent dividends. The weights, which are refer-
red to as event prices, apply to all marketed securities at a given date, but
change with time and the publicly reported signals.

Two alternative representations of no-arbitrage market values are instruc-
tive. First, the event prices for each date can be normalized so that they sum to
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one, and can be interpreted as risk-neutral probabilities. The current market
price of a market security can then be expressed as the net present value of the
risk-adjusted expected dividends, with the riskless discount rate for each date
set equal to the current price of a zero-coupon bond for that date. This valuation
relation is as if investors are risk neutral and hold homogeneous beliefs given
by the risk-neutral probabilities. However, the existence of the risk-neutral
probabilities follows solely from the no-arbitrage condition — investors may be
risk averse or risk lovers, and they may hold heterogeneous beliefs.

Second, if the investors have homogeneous beliefs, then an event-contingent
valuation index can be computed for each event by dividing the risk-neutral
probability by the investors’ probability. The risk-adjusted expected dividend
for a marketed security can then be computed by applying the investors’ beliefs
and adding the covariance between the security’s dividend and the valuation
index. The valuation index is based on the no-arbitrage event prices, and cannot
be given any additional economic interpretation based solely on the no-arbitrage
assumptions. However, in an equilibrium context with homogeneous beliefs
and time-additive preferences, the valuation index is a measure of the scarcity
of consumption, i.e., if aggregate consumption is relatively scarce in a future
event, the valuation index for that event is relatively high. In other words, the
price of a security increases as the covariance of the dividend with the scarcity
of consumption increases, ceteris paribus. Furthermore, the event prices are
determined by three factors: the discount factor, the conditional probability of
the event, and the relative scarcity of consumption in that event.

Clean Surplus Accounting
The analyses in Chapters 5 through 8 are based on a dividend-value relation in
which security prices are expressed in terms of future date-event contingent
dividends. Chapter 9 introduces an accounting-value relation in which security
prices are expressed in terms of the current book value of equity and future date-
event contingent residual income, where residual income equals net accounting
income minus the spot interest rate times the opening book value of equity. The
accounting-value relation is based on the no-arbitrage dividend-value relation
plus an assumption that the predicted accounting numbers satisfy a clean
surplus relation. This latter relation states that, except for the dividends, all
changes in the book value of equity are recorded in the income statement.
Interestingly, changing the accounting policy affects the current book value
of equity and future date-event contingent residual income but, nonetheless, the
market value of equity stays the same. This holds as long as the clean surplus
relation is satisfied by the accounting policy used in deriving forecasts, and the
accounting policy has no economic consequences (e.g., tax effects). Changing
the accounting policy such that more value is recognized in one period will
always result in the recognition of less value in some other periods, and the
effects are precisely offsetting. In other words, the accounting-value relation
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does not depend on the use of “proper” accounting, €.g., accounting that reflects
changes in economic value.

The accounting-value relation is simply a restatement of the dividend-value
relation using the clean surplus relation. However, the accounting-value
relation provides interesting insights as more assumptions are imposed. For
example, if we assume mark-to-market accounting for financial assets, and there
is dividend policy irrelevance, then the market value relation can be restated as
an operating income value relation in which the market value of equity is equal
to the book value of equity plus the net present value of the future risk-adjusted
expected residual operating income. The key insight is that we only need fore-
casts of the operating activities. The distribution of value to equityholders
through the choice of dividend policy (and, thus, retained earnings) is irrelevant
— it only affects the financial assets, and they are marked-to-market. Another
insight from this analysis is that the discounted operating cash flow model,
which is often used in corporate finance, can be viewed as a special case of the
residual operating income model. Under “cash accounting,” the book value of
operating assets is zero, so that the capital charge used in computing residual
operating income equals zero.

Conceptually, the current market value of equity depends on the forecasts
of dividends, residual income, residual operating income, or operating cash
flows for the entire anticipated life of the firm. However, it is always possible
to express that value as a function of forecasts for some shorter period, and then
make an appropriate truncation adjustment. The nature of that adjustment is
identified in Section 9.3 for the dividend model and the various forms of
accounting models.

Most of the value relations developed in Chapters S through 10 assume the
number of shares will remain constant, and all exchanges of cash between the
firm and its equityholders are encompassed by the dividends (which may be
positive or negative). This is readily extended to the issuance or repurchase of
shares for cash, if the exchange takes place at the current market price of the
shares. However, the issuance of contingent claims to shares (e.g., warrants,
convertible debt, and employee stock options) presents non-trivial valuation
issues. The analysis in Section 9.4 considers these types of transactions and
identifies a class of “super clean” surplus accounting policies such that discount-
ing the risk-adjusted expected residual income based on these policies yields the
market value of the current equity outstanding. In addition, a class of “mixed”
surplus accounting policies are identified which yield the aggregate market
value of the equity outstanding plus the current contingent claims to equity.

Dividend policy irrelevance is not assumed in our basic no-arbitrage valua-
tion models, but it is assumed in all of the analyses in which we separate the
book value of equity into financial and operating assets, and assume financial
assets are marked-to-market. Taxes can create frictions such that the dividend
policy is not irrelevant. In Appendix 9A, we illustrate the care that must be
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taken in specifying the accounting numbers used in specifying accounting-value
relation in the presence of taxes.

Information Dynamics

Chapter 9 establishes relations between the current market value of equity and
forecasts of future residual income numbers (and current book value). Obvious-
ly, those forecasts depend on the investors’ current information. Chapter 10
develops several examples of the relation between market values and represent-
ations of investor information that use current and past accounting numbers.
The representations in each example are not unique. They depend on the
accounting policies used to determine the accounting numbers employed in
representing that information.

In each example we assume a stationary economy in which some sufficient
statistic for the investors’ information is given by a linear process — a linear
information dynamic. The linear information dynamic and no arbitrage imply
that the market value of equity is a linear function of the information variables.
A key feature of our analysis is that the statistic representing investor informa-
tion need not involve accounting numbers. In fact, the initial statistic we con-
sider is expressed in terms of operating cash flows (such as net cash receipts
from operations and cash investments in operating assets), as well as other non-
accounting information. We then develop alternative statistics that involve
accounting numbers derived by applying explicit accounting policies to the
initially specified dynamics. This approach facilitates exploration of the impact
of accounting policies on the relation between equity value and contempora-
neous accounting numbers.

In our basic model (Section 10.2), there is a one-period lag between capital
investment and a randomly decaying sequence of net cash receipts. The inves-
tors’ information can be represented by either the current cash flow information
or accrual accounting numbers. The accounting is defined to be unbiased if the
difference between the market and book value of the firm’s operating assets is
expected to equal zero in the long-run (i.e., after any current idiosyncratic dif-
ferences have been eliminated). On the other hand, if that difference is expected
to be positive, then the accounting is defined to be conservative. In our basic
model, there are two potential sources of accounting conservatism: the depreci-
ation rate and the anticipated existence of current and future positive net present
value (NPV) investment opportunities. The former can be avoided by depreci-
ating capital investments at the same rate as the expected rate of decay in the
cash receipts from prior investments. However, the latter is endemic if we
record investments only when they are made, and then only at their cost.

The initial discussion of linear models identifies a set of assumptions under
which market risk can be recognized and still maintain linearity. While we
assume risk neutrality in virtually all the examples in Chapter 10, we do
illustrate the recognition of market risk in our basic model. As in Chapter 9, the
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discount factor and the capital charged used in computing residual operating
income are based on the riskless interest rate (which is assumed to be constant
in our examples). The adjustment for risk is encapsulated entirely in the linear
coefficients applied to residual income, start-of-period book value (if the depre-
ciation rate is conservative), and current investments (if there are positive NPV
investments).

The basic model is extended in Section 10.2.2 to include the possibility of
“other” investment information about the random persistence of cash receipts
from prior investments and the random growth in investment opportunities.
This gives greater scope for the use of accrual accounting to reflect the
investors’ “other” information, and thereby reduce the dimensionality of the
statistic used to represent the investors’ information. Accounting policies are
defined to be “efficient” if the current market value of a firm’s equity can be
expressed as its current book value plus a multiple of its current residual
operating income. While efficiency is possible, it is not achieved if there are
positive NPV investments and they are recorded at the cost when incurred.

“Other” information is ubiquitous and is unlikely to be “efficiently” im-
pounded in accounting numbers. This creates difficulties for empirical research-
ers, since it forces them to find proxies for the “other” information. Many
empirical studies have merely ignored the “other” information and “hoped” this
did not create an omitted variables problem. As discussed in Section 10.2.3, an
alternative approach is to use analysts’ forecasts as a means of inferring the
investors’ “other” information. This effectively integrates approaches that relate
current market value to accounting income forecasts, with approaches that relate
current market value to current accounting income. The existence of “other”
information about both the random persistence of net cash receipts from prior
investments and the random growth in investment opportunities play a central
role in these results.

Section 10.3 considers examples based on models that are similar to our
basic capital investment model, but introduce some key differences. The basic
model assumes that net cash receipts randomly persist and cash investments
randomly grow. However, in many settings the random cash receipts and cash
investments contain both persistent and transitory elements. The example in
Section 10.3.1 illustrates that in relating market values to current residual
income it is useful to separate out (and ignore) transitory cash receipts. This
may appear to be a violation of the clean surplus relation, but it is not. We
emphasize that the clean surplus relation must hold for forecasted accounting
numbers, but that it is appropriate to omit transitory components of current
residual income if they are uninformative about future residual income.
Information about current cash investments has no impact if the firm invests in
zero NPV projects. On the other hand, if the firm invests in positive NPV
projects, it is important to consider both transitory and persistent investments.
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The coefficients will be positive for both types, but the former will be smaller
than the latter.

The example in Section 10.3.2 introduces a two-period lag between net cash
receipts and cash investments. This additional lag is depicted as arising from
a one period delay in receiving cash from customer sales. This allows us to
illustrate a working capital accrual represented by accounts receivable adjusted
for an allowance for bad debts (based on “other” investor information). This
model further illustrates the impact of transitory cash receipts, since it is sales
that persist in this model, rather than the cash receipts per se.

The final example (Section 10.3.3) introduces research and development
(R&D) expenditures. They constitute a significant source of conservative
accounting, since GA AP requires expensing, rather than capitalizing, significant
portions of R&D. Merely expensing the cash investments in our basic model
does not adequately illustrate the R&D effect, since that merely results in “cash
accounting.” In our R&D example we recognize that R&D expenditures often
result in capital investments in production facilities, which are capitalized and
subsequently result in cash receipts. In our linear value relation, the R&D
expenditures must effectively be removed from residual operating income and
handled separately — we refer to this as a line-item approach (which is illustrated
in earlier examples, e.g., those involving conservative depreciation and transi-
tory cash receipts). We do not consider capitalization of R&D, although that
could be done. Instead, we merely illustrate a linear value relation in which
R&D is excluded from residual income and used separately to the extent it
reflects information about current and future positive NPV investments in R&D.
Interestingly, if R&D is a non-negative NPV investment, then implementation
investments must be positive NPV investments, thereby providing another
source of conservative accounting in this example.

1.3 PRIVATE INVESTOR INFORMATION IN EQUITY
MARKETS

Part B considers the impact of public information in competitive capital markets
in which all investors receive the same information and are price takers. In Part
C we consider the impact of private investor information and non-price taking
behavior. The interactive effect of public reports and private investor infor-
mation is of particular interest to accounting researchers. We are interested in
private investor information for two reasons. First, it is widely recognized that
investors often know much of the information content in an accounting report
before it is released. One reason for this is private information acquisition by
investors. The gain from private information comes from going long or short
in a firm’s shares immediately before the release of public information that
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causes the price to increase or decrease (and then reversing the position after the
information is impounded in the price). Thus, intuitively, one expects investor
demand for private information to increase immediately prior to an anticipated
public report. Second, the timely release of earnings forecasts and other mana-
gement information may reduce the incremental informativeness of a private
signal and, thus, reduce the incentive to acquire the private signal. Recognizing
that investors may acquire private information allows us to examine the relation
between public reports, private information acquisition, price changes, price
informativeness, and trading volume. The identified relations provide insights
that are potentially useful in explaining the relations observed in empirical
studies. '

In perfectly competitive capital markets with no private information, market
prices depend only on the publicly reported information and, thus, equilibrium
prices carry no additional information about the occurrence of the uncertain
events. However, if some investors know more about future events than is
publicly reported, they will utilize that information in determining their de-
mands for individual securities. Hence, the aggregate demand for individual
securities and, thus, the market clearing prices, depend on the investors’ private
information. Obviously, rational investors realize that there is a dependence
between private investor information and equilibrium prices. This means that
rational investors use the equilibrium prices as signals about the other investors’
private information. Hence, the equilibrium concept must recognize that the
equilibrium prices of securities themselves are a source of information that
affects the investors’ demand for individual securities. Equilibria that reflect
attempts by investors to infer other investors’ information from the equilibrium
prices are termed rational expectations equilibria.

If the set of available securities is sufficiently rich and private information
is the only random factor affecting prices, then the equilibrium prices fully
reveal a sufficient statistic for the investors’ information, i.e., the resulting
equilibrium is a fully revealing rational expectations equilibrium. This implies
that any anticipated attempt to use the private information will result in the
impounding of the private information in the market price, so that there will be
no private gain from acquiring the information. This eliminates any incentive
to acquire costly private information. However, there would be a private gain
if everyone believed that no one is acquiring private information. This implies
a lack of an equilibrium due to what is called the private information paradox.

In the real world, investors do expend resources on acquiring private infor-
mation, implying they believe that they will be able to trade on this information
without fully revealing it in the trading process. The common approach in the
accounting literature (and much of the economics and finance literature as well)
is to assume that there is some unobservable, exogenous random factor that in-
fluences prices and precludes investors from perfectly inferring the information
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acquired by other investors. The resulting equilibria are referred to as noisy
rational expectations equilibria.

A key question is how much of the private information can be inferred from
equilibrium prices. In turn, the informativeness of equilibrium prices affects the
investors’ incentives to acquire private information themselves. Hence, we must
examine both the formation of equilibrium security prices and the equilibrium
amount of private information acquisition. The informativeness of equilibrium
prices depends on how aggressively investors react to their private information,
i.e., price informativeness and trading volume are closely related. This analysis
ties into the empirical accounting literature examining the relation between, for
example, earnings announcements and trading volume.

In most cases, a partial equilibrium analysis is employed in which there is
a riskless security and a single risky security, and the unobservable random
factor is the supply of the risky security by liquidity or noise traders, who trade
for reasons independent of public and private information. The fact that the
random supply is not observable implies that rational investors cannot determine
whether a high price of the risky security is due to other rational investors
having favorable information or a low supply from the liquidity traders.
Unfortunately, using this approach to introduce noise implies that the analysis
does not allow social welfare statements because the preferences of the liquidity
traders are not explicitly modeled.> Nevertheless, this type of model serves to
provide a simple means of introducing noise into the price process, and thereby
permits examination of the interactive effect of public and private information
acquisition, as well as the response of prices and trading volume to the two
types of information. Of course, we can examine how the public reporting
system affects the expected utilities of the rational investors, but any gain to the
rational investors may be offset by a loss for the liquidity traders.

There are two broad types of analyses in this literature. The models we con-
sider in Chapter 11 assume the rational investors are risk-averse price takers.
There are two basic models of this type. The first (referred to as the GS type
model) assumes investors have the same constant risk aversion, and they can
acquire a common private signal. The uninformed investors imperfectly infer
the common private signal from the price. The second (referred to as the HV
type model) assumes investors have different risk aversion, and they can acquire
differentially precise private signals and make imperfect inferences about the
other investors’ information from the price. The GS and HV type models obtain
similar results since both assume investors are risk-averse price takers. Several

2 Another common approach is to assume the rational investors are randomly endowed with
shares of the risky security. Their preferences are modeled, but social welfare statements are
equally problematic because the model precludes trading before the investors acquire their private
information. Hence, the investors face information risk created by their acquisition of informa-
tion, and the fact that it is partially impounded in the price.
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papers in the accounting literature use HV type models, but we focus on the GS
type models because they tend to be less complex.

Risk aversion plays a key role in the GS (and HV) models examined in
Chapter 11 since it determines how aggressively the informed investors react to
their private information and, thus, how much of the information is impounded
in the price. The informed investors are assumed to act as price takers when
they trade on their private information. This implies that even though the
informed investors rationally anticipate the relation between the equilibrium
prices and the private information, they ignore the effect their trades will have
on the information conveyed to uninformed investors through the resulting
price. This may be a reasonable assumption in settings in which many com-
peting investors become informed and their individual actions have a relatively
small impact on the price. However, in some settings there are only a few
investors who become informed (e.g., insiders). If their trades have a significant
impact on the total trades in the market, they will restrain their trades so as to
partially “hide” their private information while still making a profit from its use
in their trades.

This latter type of analysis is examined in Chapter 12. The informed inves-
tors and the liquidity traders place orders for shares with a “market-maker,” who
sets the price so that he is expected to breakeven given his inferences about the
informed investors’ private information based on the total orders received. The
informed investors and the market-maker are risk neutral, and the informed
investors act strategically in that they anticipate the market-maker’s rational
inferences from the total orders received. The risk neutrality assumption makes
the model relatively simple to use, and provides somewhat different results
because of its focus on trading volume and strategic trading by the informed
investors.

In both chapters we examine the impact of the informativeness of a public
report on price informativeness, price variability, and trading volume in the pre-
sence of private information acquisition. The impact of the informativeness of
the public report depends on whether the public report is released prior or sub-
sequent to investors acquiring private information. Increasing the informative-
ness of the public report about the final dividend is likely to reduce the incre-
mental informativeness of the private signal. Hence, if the public report is
released prior to private information acquisition, fewer investors acquire the
private signal, and they trade less aggressively on their private information.
This implies that the increased informativeness of the public report may be
partially offset by a reduced informativeness of the price. On the other hand,
if the public report is released subsequent to private information acquisition, the
advantage of privately acquiring information about the forthcoming public
information increases, resulting in a more informative equilibrium price prior
to the release of the public report. The price reaction to the public report when
it is released will be reduced. That is, in this setting, there can be a negative
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relation between the informativeness of the public report and the price reaction
to the release of the report.

This analysis highlights the fact that the impact of the informativeness of a
public report depends on the timing of the release of public reports relative to
the acquisition of private information. Obviously, private information can be
acquired both prior and subsequent to the release of public reports. Hence, we
only point to partial effects that may occur in a more general setting.

The interactive effect of public reports and private information have been
used in exploring the use of public reports and market prices in incentive con-
tracts within settings in which the market price is influenced by both accounting
reports and private investor information. In that analysis, both the accounting
report and the investors’ private information are assumed to be useful for incen-
tive contracting, but the latter is not contractible information. The stock price
is contractible and reflects both the accounting report and the investors’ private
information. However, the price may not efficiently aggregate these two sour-
ces of information from an incentive contracting perspective. Hence, both the
market price and the accounting report are used in optimal contracts. We
explore these issues in Chapter 21 in Volume II.

1.4 DISCLOSURE OF PRIVATE OWNER INFORMATION
IN EQUITY AND PRODUCT MARKETS

In Part D (Chapters 13, 14, and 15), we assume a firm’s current owners (or their
representative — the firm’s manager) have private information relative to
potential new investors or the owners (managers) of other firms. We consider
anumber of models that examine the informed owners’ incentives to reveal their
information to others, particularly to investors in new equity that is issued
and/or competitors in the firm’s product market. This revelation may take place
through verified reports (e.g., audited accounting statements), unverified reports
(e.g., earnings forecasts), or costly “signals” (e.g., the retention of risk by risk-
averse owners). Furthermore, even if a report is not verified, we often assume
(as is common in the literature) that the reporting manager is motivated to report
truthfully if he reports (e.g., due to unmodeled threats of litigation that may
reveal lies).

In Chapter 13 we assume there is a single risk-averse owner, who has
decided to take his firm public for the purpose of sharing his risks with well-
diversified investors, and to possibly obtain capital from those investors. In
Chapters 14 and 15, on the other hand, the current owners are assumed to be
risk neutral (e.g., they are well-diversified and the risks are firm-specific) and
they are issuing new equity to obtain capital for investments and/or they are
concerned about the actions of competitors. In Chapter 14, if there is a com-
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petitor, he takes the form of a potential entrant into the product market, whereas
in Chapter 15 the firm competes in a duopoly in which the two firms simul-
taneously choose either production quantities (Cournot competition) or selling
prices (Bertrand competition).

1.4.1 Disclosure by a Risk-averse Owner

In the risk-averse owner model in Chapter 13, we do not consider why the
owner has not been well-diversified, but merely consider his actions given that
he has decided to become as well-diversified as possible. If he had no private
information, he would merely sell virtually all the shares in his firm, retaining
only the fraction that constitutes his efficient share of market risk. However, as
in many initial public offerings (IPOs), the existing owner has private informa-
tion, and the new investors know he has private information. If the investors
will underprice the shares relative to their intrinsic value (i.e., the market price
that would hold if the investors knew the owner’s private information), then the
owner will be motivated to find a mechanism for communicating his private
information to the investors.

The owner can always retain some or all of his shares but, obviously, this
is costly to the owner since he retains firm-specific risk that he cannot insure
through the market. The fraction he retains at a given price is an increasing
function of the intrinsic value of the shares. Rational investors will anticipate
the relation between price and the fraction sold, thereby making the price a
function of that fraction. On the other hand, a rational owner will anticipate the
investors’ response to his choices. Consequently, in a rational expectations
equilibrium (generally referred to as a signaling equilibrium in this type of
setting), the fraction of shares retained is a mechanism that can be used to
communicate the owner’s private information.

In Section 13.2 we discuss some general concepts of equilibria in disclosure
(signaling) games. There are typically many Nash equilibria in these games, but
many are sustained by non-credible threats as to how investors will react to the
owner’s off-equilibrium signals (e.g., a retained fraction he is not expected to
choose given any information). Hence, refinements of the Nash equilibrium
concept are introduced so as to identify credible equilibria (and exclude non-
credible equilibria). We refer to the equilibria that satisfy the refinements as
“stable.” Within our models, these refinements generally serve to support
separating equilibria (e.g., equilibria in which there is a separate level of owner-
ship retention for each possible intrinsic value) and to exclude pooling equilibria
(e.g., equilibria in which the owner selects the same ownership retention level
given all possible intrinsic values, and the price reflects the investors’ prior
beliefs).

With the requisite game theoretic concepts in hand, Section 13.3 examines
two settings in which it is assumed risk retention is the owner’s only available
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mechanism for communicating his private information. In the first setting
(Section 13.3.1), the owner’s private information is represented by a finite
number of possible intrinsic values and there are a finite number of possible
outcomes. Instead of merely choosing the number of shares to retain, the owner
is able to offer contracts to investors that specify how his compensation will
vary with each possible outcome. The contracts in the optimal menu are non-
linear functions of the outcome. The owner bears no risk with his worst signal
(or for any signal for which he chooses not to operate the firm), and the
riskiness of the contract to the owner increases as the intrinsic values increase.
That is, the stable equilibrium is a separating equilibrium.

In the second setting (Section 13.3.2), we assume the owner is restricted to
choosing his level of ownership retention (i.e., the contract is a linear function
of the outcome). This provides the basis for interesting comparative statics
when applied in a setting in which the owner’s set of possible information is
represented by a continua of intrinsic values, the outcome is normally distri-
buted (with a known variance), and the owner’s preferences are represented by
an exponential utility function. For example, the level of ownership retained is
an increasing function of the intrinsic value (a separating equilibrium), and the
equilibrium levels are decreasing functions of the variance, i.e., it takes less
ownership retention to signal a given intrinsic value if ownership retention is
more costly. :

In virtually all the models in Part D, we assume that all risk is firm-specific.
However, Section 13.3.3 considers the impact of market risk. This analysis
establishes that the level of ownership used to signal the owner’s information
depends only on the firm-specific risk — the market risk is offset, to the extent
that it is efficient to do so, through adjustment to the owner’s personal invest-
ment in the market portfolio.

Risk retention is costly to a risk-averse owner. Hence, he has an incentive
to find mechanisms for reducing his risk retention, and still obtain a market
price for his shares that is at least as high as their intrinsic value. Section 13.4
considers the possibility of issuing verified reports (e.g., audited financial
statements) at the time the shares are issued. If the report can perfectly and
costlessly reveal the owner’s information (or lack thereof), then the owner will
always issue the report and retain no risk. However, a combination of verified
reports and risk retention are used if there are frictions, e.g., a report cannot
verify the lack of information, the issuance of a verified report is costly, or a
verified report imperfectly reveals the owner’s information. We characterize the
optimal combination in each setting.

Section 13.5 briefly examines the value of verified reports that will be
issued at the time the outcome is realized (rather than when the contract is
issued). If the report will be incrementally informative about the owner’s prior
information, it will be optimal for the owner to issue risk sharing contracts in
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which his compensation is contingent on both the outcome and the ex post
report.

Finally, Section 13.6 concludes our analysis of reporting by a risk-averse
owner with an examination of a setting in which the owner is privately informed
about both the intrinsic value of his firm and the risk he will bear if he retains
shares. The report is unverified, but is subject to possible litigation and the
expected cost of the litigation is a function of the riskiness of the outcome.

1.4.2 Disclosure on Behalf of Risk-neutral Owners

In Chapter 8 we assume investors all have the same information and can
efficiently share their risks by trading in well-diversified portfolios of equities
in a set of perfectly competitive firms. The manager of each firm is assumed to
select the production plan that maximizes his firm’s intrinsic value given his
information. Since investors trade in well-diversified portfolios, they obtain no
benefit from disclosure of the managers’ firm-specific information, even though
it is beneficial to the investors if the managers have firm-specific information
about the productivity of capital invested in their firms.

Chapter 14 considers a similar setting, but focuses on a single firm in which
the manager is assumed to act, given his information, so as to maximize the
intrinsic value of the shares held by the firm’s current owners. Of particular
interest to accounting researchers is the manager’s decision to disclose his
private information. We consider both the ex post disclosure choice made after
the manager has received his information and the ex ante disclosure policy that
would be preferred by the current owners.

Risk aversion plays no role in this analysis and, hence, risk retention is not
asignaling device. We assume there are no other costly signals available to the
manager. His only disclosure device is his report to investors. Throughout
most of the chapter, any report made by a manager is assumed to be truthful.
This may be because it is audited, or because of threats of future litigation if the
manager lies. In any event, recipients believe what the manager says if he dis-
closes information, and a key issue is their response if he does not disclose
information.

The current owners are assumed to retain their shares. However, the firm
may issue new shares to new investors in order to finance some capital invest-
ment in the firm. In that case the value of the current equity depends on the
price paid by the new investors (since that will affect the fraction of the firm’s
ownership retained by the current owners). The higher the price, the larger the
retained ownership. ,

We also consider settings in which the product market is not perfectly com-
petitive. The firm is currently a monopolist but faces a potential competitor.
The better the market, the greater is the firm’s intrinsic value if it remains a
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monopolist, but if that is known to the potential competitor, the more likely he
is to enter (and thereby reduce the value of the current owners’ equity).

The disclosure equilibria depend on whether the recipients of interest are
investors in new equity, a potential competitor, or both. The equilibria also
depend on whether the available reports are costless and complete, costless and
incomplete, or costly. Section 14.2 considers settings in which there is a single
type of recipient — either new investors or a potential competitor. If the reports
are costless and complete, then the manager will fully disclose all his informa-
tion even though he would like to “hide” bad news from new investors or “hide”
good news from a potential competitor. On the other hand, if the reports are
costly, the manager will choose to disclose only good news to new investors, or
only bad news to the potential competitor.

Section 14.3 demonstrates that the results can change significantly if the
reports are costless and there are two types of recipients. For example, there can
exist a disclosure equilibrium in which the manager does not disclose either
very bad news (so as not to significantly lower the price of new equity) or very
good news (so as not to significantly increase the probability of entry of the
competitor), but does disclose information between the two extremes.

Section 14.4 considers settings in which the reports are costless and incom-
plete, in the sense that the manager cannot issue a report verifying he has no
information, and there is a positive probability that it is the case. If there is a
single type of recipient, Section 14.4.1 establishes that the manager again
discloses only good news if the recipients are new investors, or discloses only
bad news if the recipient is a potential competitor. Section 14.4.2 extends the
new equity setting to consider the impact of a lawyer who will undertake a law-
suit if there is no report, a bad outcome, and the lawyer believes there is a
sufficiently high probability the manager has withheld bad news (as opposed to
merely having no information). In that setting, there is an equilibrium in which
the manager discloses good news (to obtain a high price for the new equity) and
very bad news (to avoid a future law suit), but “hides” the remaining informa-
tion.

In the basic new equity model, the manager’s information system is exogen-
ous and he is assumed to undertake the investment irrespective of the informa-
tion received (i.e., his information is not decision-facilitating). Further exten-
sions to the new equity setting include the endogenous acquisition of informa-
tion by the manager (Section 14.4.3) and endogenous investment choice (Sec-
tion 14.4.4). Interestingly, if the production choice is exogenous, the current
owners would prefer, ex ante, to preclude the manager from acquiring costly
information, but the manager will acquire private information if he is acting in
the current owners’ best interests ex post. On the other hand, the current owners
strictly benefit from the manager’s private information if it facilitates better
investment decisions. Disclosure or lack of disclosure has no ex ante benefit to
the current owners if the manager makes the production decision. However, if
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all shares are sold to the new investors and they make the investment decision,
the expected market price will be greater the more information the manager
discloses to the new investors.

Chapter 14 concludes (in Section 14.5) with a brief discussion of what are
called “cheap talk” equilibria. This is a setting where the manager’s report is
not verified and there are no exogenous incentives for him to tell the truth.
Instead, the reporting incentives are all endogenous. If there is only one type
of recipient, then there will be effectively no disclosure. However, with two
types of recipients, there can exist reporting tensions such that the manager
imperfectly reveals his information.

1.4.3 Disclosure in a Duopoly

Chapter 15 continues the analysis in Chapter 14 in that we again assume the
current owners are well-diversified and all risk is diversifiable. There are now
two firms, with different sets of owners, competing in an industry with down-
ward sloping demand curves for the firms’ products. The managers receive
private information, which they may disclose, and then simultaneously choose
either production quantities (Cournot competition) or prices (Bertrand competi-
tion). The managers’ information may pertain to either the intercepts of the
demand curves or the variable costs of production, and either type of informa-
tion may be firm-specific or industry-wide.

Under Cournot competition, the owners of the first firm prefer that the
second produces less rather than more. This implies that, ex post, the first man-
ager prefers to reveal to the second that he has observed good news about either
the first firm’s demand or costs, or he has observed bad news about either the
industry-wide demand or costs. On the other hand, under Bertrand competition,
the owners of the first firm prefer that the second sets a higher price rather than
a lower price. This implies that, ex post, the first manager prefers to reveal to
the second that he has observed good news about demand or bad news about
costs, irrespective of whether the information is industry-wide or firm specific.
Of course, if the managers’ information is costlessly and completely verifiable,
the ex post disclosure equilibrium will be full disclosure.

Interestingly, while there is full disclosure ex post, that is not always the ex
ante preference of the firms’ owners. In fact, we begin Chapter 15 (Section
15.1) with an examination of the owners’ ex ante choice among disclosure
policies, assuming the manager can be committed to follow these policies. In
each case, there are gains to disclosure of either good news or bad news, with
losses to disclosure of the converse (all relative to the results with no disclo-
sure). If the gain from disclosure is a concave (convex) function of the man-
ager’s signal, then the optimal ex ante disclosure choice is no (full) disclosure.
This yields the result that no disclosure is preferred ex ante if the information
is industry-wide with Cournot competition or firm-specific with Bertrand com-
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petition. On the other hand, full disclosure is preferred ex ante if the informa-
tion is firm-specific with Cournot competition or industry-wide with Bertrand
competition.

Section 15.2 considers ex post disclosure under Cournot competition.
Section 15.2.1 provides the full disclosure results described above, assuming
production choice is positive for all information. However, there can be a
partial disclosure equilibrium if some information results in zero or negative
production (if that is feasible). Section 15.2.2 then integrates the analysis of
disclosure in a duopoly with the analysis in Section 14.4 that assumes there is
a positive probability a manager is uninformed and he cannot verify that fact to
his competitor. The results are comparable to those for the single recipient
models in Section 14.4.1.

Similarly, Section 15.2.3 integrates the analysis of disclosure in a duopoly
with the two-recipient model in Section 14.3.1 in which the firm must obtain
capital by issuing equity to new investors. The manager’s disclosure prefer-
ences are the same for both recipients if the private information pertains to
either firm-specific demand or cost information under Cournot competition, or
to firm-specific or industry-wide demand information under Bertrand competi-
tion. Hence, in these settings there is full disclosure. However, in the other
settings (i.e., industry-wide demand or cost information with Cournot competi-
tion or firm-specific or industry-wide cost information under Bertrand competi-
tion), there is a tension similar to the tension in Section 14.3.1 (where the com-
petitor is a potential entrant). However, while the equilibrium in Section 14.3.1
involves no disclosure of very bad and very good news, in the duopoly setting
the equilibrium may be such that, for example, the manager only discloses good
industry-wide information.

1.5 CONCLUDING REMARKS

Our focus in this volume is on the economic analysis of information in capital
and product markets, with particular emphasis on the impact of public reports.
In laying the foundation, we considered settings in which there is no private
information. However, to fully understand the impact of public reports we must
consider them in the context of settings in which investors and managers acquire
private information. Except for the liquidity traders in Chapters 11 and 12, and
the managers in Chapters 8, 14, and 15, the “players” in our analysis are ratio-
nal, expected utility maximizers. If some players have private information, then
it is common knowledge that they may have such information, and everyone
“plays” accordingly. The uninformed players make inferences about the private
information of the informed players based on the observable consequences of
the informed players’ choices. The informed players, on the other hand, are
aware that the uninformed will be making such inferences, and act accordingly.
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While there is a developing body of research referred to as behavioral
economics and finance, we have restricted our attention to classical information
economic analysis. Even so, we have not attempted to provide an exhaustive
survey of all the relevant literature, particularly with respect to recent research.
Our objective has been to provide an integrated exploration of the basic infor-
mation economic research that we perceive is relevant for understanding the
economic impact of accounting information. The material is quite technical,
rather than being an intuitive survey. The content is designed to help develop
the technical background and skills of new accounting researchers who wish to
be able to efficiently read the current information economic literature in ac-
counting, and to carry out their own information economic research. If a reader
develops a strong interest in a particular area, then they should read the original
research in that area. It should be much easier to do so if you have carefully
gone through this book.

There are gaps in the material covered in this book. Insome cases, we have
omitted models that we view as interesting, but which we view as relatively
idiosyncratic. That is, while many papers provide interesting insights relative
to our area of interest, some stand alone in the literature. We have focused on
work in which there are a number of related papers.

In other cases, there are relevant areas of research which constitute a suffi-
ciently large body of research that they require separate volumes, e.g., papers
that explore the economics of auditing. An obvious area of research that fits
into this latter category is the use of public reports as performance measures in
motivating managers. We assume in this volume that the manager is either
irrelevant or is exogenously motivated to act (rationally) in the best interests of
the owners. However, managers are more appropriately viewed as rational
players who act in their own best interests. Their authority in operating a firm
is delegated to them by the owners. This is a contractual arrangement, and the
terms of that contract often provide incentives by making a manager’s compen-
sation conditional on his reported performance. Hence, public reports poten-
tially play an important role in a firm’s operations by serving as performance
measures in contracting with managers. We view this as a very significant role
for accounting reports and, hence, explore this area in Volume II of this book.

Finally, some of the gaps in this book reflect gaps in the available literature.
The reader is encouraged to undertake research to fill those gaps. Of particular
note is the use of accounting reports in contracting with debtholders. Through-
out this book we focus on equityholders, and often assume that the firm is
exclusively financed by equity or that the existence of debt does not affect the
manager’s actions. For example, in Chapters 9 and 10 we explicitly consider
the possibility of debt, but put it into the background by assuming dividend
policy irrelevance and mark-to-market accounting for debt (which is viewed as
anegative financial asset). Tax and bankruptcy issues raise questions about the
dividend policy irrelevance assumption. Furthermore, the existence of debt is



26 Economics of Accounting: Volume I - Information in Markets

likely to affect the choices made by managers, whether they are acting in the
best interests of the equityholders or of themselves. There is very little theoreti-
cal work in accounting with respect to the role of accounting information in the
pricing of debt or in the determination of debt covenants. This is an area of
potentially useful information economics research in accounting.



PART A

BASIC DECISION-FACILITATING
ROLE OF INFORMATION



CHAPTER 2

SINGLE PERSON DECISION MAKING UNDER
UNCERTAINTY

If there is no uncertainty, there is no role for information. Hence, any examina-
tion of the role of accounting information in markets and organizations must
recognize that decision makers face uncertainty about the consequences of their
actions. In this chapter we summarize some key elements of the representation
of uncertainty and decision maker preferences under uncertainty. The represen-
tation of information and its decision-facilitating role is introduced in Chapter
3. Chapters 2 and 3 consider settings with a single decision maker, while
Chapter 4 considers a setting with multiple decision makers, and it introduces
the key concepts of efficient risk sharing, and congruent preferences over
actions.

The chapters in Part A (Chapters 2, 3, and 4) are foundational chapters for
the subsequent analyses in both volumes. They introduce key economic con-
cepts that are the basis for both the examination of information in markets in
this volume and the examination of performance evaluation in Volume II.

The structure of the remainder of this chapter is as follows. In Section 2.1
we introduce uncertainty based on the theory of probability. In order to
represent uncertainty we introduce the concept of a state. The state is a com-
plete description of all possible past and future events that are beyond the
decision maker’s control. There are many possible states, but “in the end” only
one is realized. The outcome of any action (or sequence of actions) can be
represented as a function of the decision maker’s actions and the state. An event
is a collection of states to which we can assign probabilities, which represent
the decision maker’s beliefs about the likelihood of the events occurring. The
specification of the set of states, the set of events, and the decision maker’s
probabilities is the probability space on which economic decision problems
under uncertainty can be defined.

In many settings we focus on the outcomes instead of the states directly.
This is facilitated by the introduction of random variables in Section 2.2. A
random variable is a function from the set of states to the set of possible values
it may take. Each action specifies its own random variable, and the probability
distribution over outcomes is parameterized by the action.
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In Section 2.3 we introduce decision making under uncertainty. Decision
making under uncertainty is a choice among gambles (i.e., outcome probability
distributions). Based on assumptions of rational choice under uncertainty, a
decision maker’s preferences can be represented by a utility function which
assigns a real number to each possible outcome, such that the decision maker’s
optimal action (i.e., preferred gamble) maximizes his expected utility.

Throughout this volume, an outcome is often described in terms of some
physical or monetary measure of wealth or consumption (possibly at multiple
dates). A decision maker is always assumed to prefer more outcome to less, but
his attitudes towards risk is less obvious. This is discussed in Section 2.4. We
generally assume decision makers to be either risk neutral or strictly risk averse.
That is, the decision maker’s utility function is increasing and either linear or
strictly concave. Sections 2.5 and 2.6 introduce specific classes of preferences
used throughout both volumes, i.e., HARA utilities and mean-variance prefer-
ences, respectively. Section 2.7 introduces a specific parametric model, known
as the hurdle model, that we use (primarily in Volume II) to illustrate some of
the general theory. The models we consider in this volume assume that the
decision makers’ preferences only depend on the monetary outcome. However,
the need for performance evaluation derives from the fact that the decision
makers’ preferences may also depend on the action itself. This is a key assump-
tion for most of the settings examined in Volume II

Preferences among gambles (actions) are often decision maker specific. In
Section 2.8 we derive first- and second-order dominance relations that provide
partial orderings of gambles. One gamble first- or second-order dominates
another if it is preferred by all decision makers who have increasing or have
increasing, concave utility functions, respectively.

2.1 REPRESENTATION OF UNCERTAINTY

Uncertainty can pertain to both the past and the future. In particular, a decision
maker is uncertain about some past or future event if he believes there is more
than one possible substantive description or characterization of what has
occurred or will occur. For example, a decision maker in Vancouver may be
“interested in” the weather at the Toronto airport. He is uncertain about
yesterday’s, today’s, and tomorrow’s weather if he believes it may have been,
is, or will be clear, cloudy with zero rain, or cloudy with a strictly positive
amount of rain.

In representing uncertainty it is useful to introduce the rather abstract
concept of a state. We can think of a state as a complete description of all
possible past and future events that are beyond the decision maker’s control, but
may influence his information or the consequences of his actions. There are
many possible states (e.g., an infinite number) that may occur, but “in the end”
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only one is realized. In the following discussion we let s represent a specific
state and let S represent the set of possible states. The “completeness” assump-
tion implies that s depicts all relevant aspects of the uncontrollable events that
occur over the time frame of the analysis. Hence, the outcome of any action (or
sequence of actions) can be represented as a function of the decision maker’s
actions and the state. The “non-controllability” assumption implies that the
decision maker’s beliefs about the state are independent of his actions. Of
course, the decision maker’s belief about an event that is a function of the state
and his actions depends on his past or planned future actions.

Probabilities are numbers in the interval from zero to one that represent the
decision maker’s belief about the likelihood of an event occurring. If the deci-
sion maker is absolutely certain that an event is impossible, then the decision
maker’s probability for the event is zero. Conversely, if the decision maker is
absolutely certain that an event has occurred or will occur, then the decision
maker’s probability for the event is one. More generally, the decision maker is
uncertain about the event and assigns a probability between zero and one.

The probabilities we consider are often referred to as being subjective and,
as noted above, are described as being specific to a decision maker. That is,
probabilities can vary across individuals. This can occur because of differences
in their experiences (i.e., past information) or in their fundamental characteris-
tics (e.g., DNA). As we see later in the book, the existence and source of
differences can significantly affect our analysis.

A decision maker may never fully know the state s, i.e., even at the “end”
the decision maker may be uncertain as to what has in fact occurred. However,
a decision maker observes events (e.g., the weather on a given day in a given
location) and receives reports of the observations of others (e.g., a published
weather report). Inherently, there are many possible states that will result in the
same observed or reported event, i.e., an event is a collection of states (for
example, there are many possible states that have the same weather on a given
day at the Toronto airport).

Probability theory describes uncertainty in terms of a probability space
(S, £, P), which consists of a state space, a sigma-field, and a probability
distribution. The state space S = { s } describes the basic events that serve as
the foundation for the specification of probabilities. If the set of possible states
has a finite number of elements, then positive probabilities can be assigned
directly to each possible state. However, if the number of possible states is
infinite (e.g., all the real numbers from -e to +) then it may well be that no one
state has a positive probability of occurring, and clearly it is not possible to
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assign a positive probability to all states (since their sum must equal one).'
Nonetheless, while specific states may not have a positive probability of
occurring (such states are often referred to as being of measure zero), sets of
states can have a positive probability of occurring.

A sigma-field, denoted = = { £ }, consists of the empty set and all proba-
bilizable events, i.e., the events to which the decision maker can assign zero or
positive probability. Every probabilizable event is a subset of the state space,
ie,&c S,V Ee E? and logical consistency requires that the following sets
belong to the sigma-field:

- the entire state space, i.e., S € =}

— any complimentary event, i.e., if £ € £, then £ € & (where £° = S\,
represents the elements in S that remain after “subtracting” the elements

in §);

— for any sequence of events { &, &, ... } in Z, the union U ¢ isin Z.
i=1

The probabilities assigned by a decision maker to the probabilizable events
¢ € E constitute the decision maker’s probability distribution. The function P
is a probability distribution on (S,Z), where = is a sigma-field on S, if:

- P.E-1[0,1], P 20,V &€ E, ie., a non-negative real number is
assigned to every event &;

- P(S) =1 and P(@) = 0, where @ is the empty set, i.e., the probability
that the state is in the designated state space is one;

- if { £, &, ... } is a sequence of disjoint events, then

PUS) - Y PE).
' i=1

i=1

The specification of a probability function is relatively straightforward if §
has a finite number of elements and = consists of all possible sets that can be
constructed from those basic elements. For example, if S = { red, green, blue },

! Of course, if the number of states is countably infinite, then it is possible to assign a positive
probability to each state, although the probabilities of some states will have to go to zero in the
limit, e.g., if S = { 5y, 5,, ... } and P(s;) = 2", then the probability of each state is positive and the
sum of the probabilities for the infinite number of states equals one, with lim ;... P(s)=0.

2 The symbol V represents “for every.”
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then &= { &, &, &b $ior St oo $1grn@ } Where the subscripts indicate the colors
that are in the set. In this case, P({,,) = P() + P() + P(&,) = 1 since S = G
On the other hand, specifying the probability distribution is conceptually
more complex if S has an infinite number of elements. For example, suppose
the state space is the set of real numbers, i.e., S = (-,+), and no number has
a positive probability of occurring.’ However, the decision maker could assign
positive probabilities to all open or closed intervals, e.g., B = (b, b), and all
sequences of disjoint open or closed intervals. The smallest sigma-field that
contains all open (or closed) intervals in R is referred to as the sigma-field of
Borel sets.* The probability assigned to Borel set B < S is denoted P(B).

2.2 RANDOM VARIABLES

A random variable is a variable whose “value” depends on the state 5. It is
defined by a function from § to the set of possible “values” the variable may
take on. (The term random variable is often restricted to a variable whose value
is described by a real number or vector of real numbers, and if a non-numerical
description such as color is used, it is termed a random object.)

Consider a random variable x, with x: S - X c R (the concepts are readily
extended to a random vector). Given the probability space (S, =, P), the proba-
bility of event B < X is

Pr(xeB) = P{s € S| x(s) € B},

i.e., the probability of all states that result in the event x € B. The probabilities
for a random variable can be fully characterized by a distribution function,
denoted &(z), that describes the probability that the value of the random variable
is less than or equal to some value ¢, for all # € R. For example, if x is the total
rainfall at the Toronto airport in a given month, then &(¢) is the probability the
total rainfall does not exceed . Any distribution function has the following
characteristics.

Distribution Function (d.f.): If &(t) = Pr(x € (-»,f]), it is a distribution
function for the random variable x with the following characteristics:

- D)< d(")ift' <t”,i.e., ad.f. is non-decreasing (more events have
larger probability);

% The concepts described here can be readily extended to include vectors of real numbers.

* Note that any arbitrary number b in R is also a Borel set, since { b } = ((-=,b)u(b,))°. How-
ever, these sets may have zero probability.
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-  &(") isright continuous, i.e., (") = D(¢), where D(¢") denotes the limit
of values of @(x) as x converges to ¢ through values greater than ¢;

- lim &@#) =0 and lim @) = 1.

t-o tme

An important characteristic of a distribution function is how it changes as
tincreases. It can increase in “jumps” or in a continuous fashion. Ifitincreases
only in jumps at a countable number of points, we refer to the distribution as
discrete and can characterize it with a probability frequency function.

Probability (Frequency) Function (p.f.): If X = { x,, x,, ... } is a countable
(perhaps finite) number of distinct values, then we have a discrete distri-
bution

p(x) = Pr(xe{x;}),
which is termed a probability (frequency) function (p.f.) and is such that

@ = Y, k)

lizx; st}

PrxeB) = Y, o).

li:x;eB)

If the distribution function is absolutely continuous over the entire range of
x, it can be characterized by a probability density function (see, for example,
Billingsley, 1986, Theorem 31.8).°

Probability Density Function (p.d.f.): The random variable x has an abso-
lutely continuous distribution if there exists a non-negative probability
density function (p.d.f.) ¢ such that for any Borel set B < &,

Pr(x € B) = f o (x) dx,

B

5 If no number has a positive probability, the distribution function is continuous. However, to
facilitate a density representation (by the Radon-Nikodym Theorem) the distribution function
must be absolutely continuous (see Billingsley, 1986, Example 31.1, for an example in which the
distribution function is continuous and differentiable almost everywhere, but integrating @'(x)
does not lead back to @(x)).
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i.e., the probability of x € B is obtained by integrating ¢(x) over the Borel
set B. Furthermore, the distribution function for x can be differentiated
almost everywhere, and at any continuity point x of the p.d.f. ¢, @ '(x) =

o(x).

In most examples in this book the distributions are either discrete or abso-
lutely continuous. However, in some cases they are a mixture of the two and
most of our theoretical results apply to settings with a mixture, i.e., there are a
countable number of “jumps” and there are intervals between the jumps at
which the distribution is absolutely continuous. Hence, we assume ¢(x) is a
generalized probability density function.

Generalized Probability Density Function (g.p.d.f.): We refer to p(x) as
ag.p.d.f. if, at any given value of x, it can be either a p.f. or a p.d.f. In that
case, for an arbitrary function g(x) and Borel set B, we let

f g(x) d (%)

B

denote the general Lebesgue-Stieltjes integral, which applies to discrete,
absolutely continuous, and mixed distributions. (Itis essentially a general-
ized summation operator.)

To illustrate the above, we consider three examples and compute the expectation
of g(x) = x*, denoted E[g(x)].

(a) Discrete Distribution: X = { x,=2, x,=4, x,=6 }, with ¢(x,) = .2, ¢(x,)
=.5, and ¢(x,) = .3. Figure 2.1a depicts the distribution function, which
is a series of discrete steps.

E[g(x)] = f x2dd(x) = 2x 22+ .5x4*+ .3 x 62 =19.6;

—00
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Figure 2.1a: Discrete probability distribution function.

(b) Absolutely Continuous Distribution: X = [0, 10], with p(x) =.1, forx €
[0, 10], and zero otherwise.

® 1.0

0 10 x
Figure 2.1b: Absolutely continuous probability distribution function.
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Figure 2.1b depicts the distribution function, which is a continuous
function that is differentiable at all points except x = 0 and x = 10.

+o 10
Elg(x)] = f x2dd(x) =fx2x.1dx=33.33333;
~o0 0

(¢) Mixed Distribution: X = [0, 10], with ¢(x) =.1 for all x € (2,4)u(4,6),
o(x,;=2)=.1, p(x,=4) = .3, p(x,=6) = .2, and zero otherwise. Figure2.1c
depicts the distribution function, which is continuous except at the three
“jump” points.

+00

E[g)] = f x? dP(x)
4 6
=.1x22+.3x42+.2x62+fx2x.1dx+fx2x.1dx
2 4
= 19.33333.
D10 °
0.8
0.6
0.3
0.1
2 4 6 X

Figure 2.1¢: Mixed probability distribution function.

In each case we use the expression d®(x). In case (a) that is equivalent to
summing over the values of x for which @(x) has a discrete increase (i.e., d®D(x)
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= g(x) for x at which @(x) has a discrete increase, and zero otherwise). In case
(b), dD(x) = p(x)dx applies to the values of x over which @(x) increases con-
tinuously. And in case (c), we apply the first approach to the values of x for
which &(x) has a discrete increase and apply the second approach over the
values of x for which @(x) increases continuously.

2.3 REPRESENTATION OF PREFERENCES

A decision is a choice from among a set of actions. We assume the decision
maker’s preferences are based upon the consequences of those actions,
including any preference relevant descriptions of the actions (e.g., the amount
of time required to undertake a given task). The set of possible actions is
denoted A = { a }, and can include either specific acts or strategies that specify
event contingent acts. The preference relevant description of the set of possible
consequences of those acts is denoted X. This description can have many
dimensions, e.g., the decision maker’s consumption and effort at a sequence of
future dates.

We assume that the decision maker can express a preference ordering over
the set of possible outcomes (consequences) and across the set of possible
actions. Our objective is to develop a numerical representation of the decision
maker’s preferences across outcomes and a numerical representation of the
relation between actions and outcomes such that we can compute a number for
each action that is consistent with the decision maker’s preferences across those
actions.

In a “certainty” setting, the decision maker identifies a unique outcome for
each action. Therefore, any system that assigns a higher number to a more
preferred outcome will also assign a higher number to a more preferred action.
Only the ordering of the outcomes is significant.

In an “uncertainty” setting, we assume that the decision maker identifies a
set of possible outcomes and views each action as a gamble across the set of
possible outcomes. The connection between the decision maker’s preferences
across outcomes and his preferences across actions is now less clear. In this
setting, our objective is to develop two real valued functions:

wX-R a utility function that assigns a utility number to each
possible outcome;

®: XxA - [0,1] a family of probability distribution functions, where
&(x|a) is the distribution function over x € X given
action a € A and ¢(x|a) is the corresponding generalized
probability density function.
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We then want those two functions to be such that the following relations hold:
- u(x") > u(x") if, and only if, x’ is at least as preferred as x”;

- Ua)= fx u(x) de(x|a') > U(a") Efx u(x) dd(x|a") if, and only if,

a’ is at least as preferred as a”.

The big advantage of this type of preference representation is that we can assign
areal number to each gamble (i.e., its expected utility) such that the preference
relation among gambles can be represented as a comparison between real
numbers for which there is a natural ordering. Another advantage is that we can
later introduce information that influences the probabilities of the gambles but
not the utility numbers for the outcomes, allowing us to readily recompute the
decision maker’s preferences across actions given a particular signal (revision
of probabilities).

The literature contains a variety of axiomatic systems (sets of assumptions)
that are used as a basis for supporting the above representation of preferences.
The following is essentially the same as that found in DeGroot (1970). These
follow from the path breaking work of von Neumann and Morgenstern (1944)
and assume that the probability functions ¢ are known (i.e., in a sense they are
objective) and do not have to be elicited from the decision maker.®

To simplify the discussion we assume the set of preference relevant out-
comes, X = { x,, ..., x, }, is finite and we let ¢(-) represent a lottery (i.e., a
probability function) defined over X. The set of all possible lotteries over the
elements of X is denoted

AX)={¢p:X-R| Y, xox)=1land p(x) 20,VxeX }.

If outcome x; € X occurs with certainty, then it is a lottery in which ¢(x) = 1 for
x =x; and zero otherwise. In the following discussion, this lottery is succinctly
represented by [x;], which is in the set 4(X). Preferences are expressed in terms
of lotteries, where @' > (>, ~) ¢ ?is used to represent the fact that the decision
maker strictly prefers (weakly prefers, is indifferent between) lottery ¢' to (to,
and) lottery g%

® An alternative approach is to use axioms (often referred to as the Savage axioms) which
consider the elicitation of both the decision maker’s preferences over outcomes and beliefs about
the likelihoods of the outcomes for the alternative action choices. Hence, the system develops
both a utility function and subjective probability functions (see Savage, 1972).
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Preference Assumptions
The decision maker’s preferences over lotteries are assumed to be such that the
following conditions hold.

1.

Interest: There exists a worst and best possible outcome x;, x, € X
such that the decision maker strictly prefers the latter to the former, i.e.,
[x]1 =[xl 2[x]),VxeX, and [x] < [x,].

Completeness: The decision maker can provide a complete ordering
of all lotteries, i.e., for every pair of lotteries ¢', ¢* € 4(X), either ¢' >
¢* or @' < ¢* or both (i.e., @' ~ ¢?).

Transitivity: There are no incongruities in the ordering in (2), i.e., if
@' < ¢ and ¢* < ¢’ then ¢' < ¢°.

Monotonicity: In a two-stage gamble, the decision maker prefers a
higher probability of obtaining a preferred lottery relative to a lower
probability, i.e., if ' < ?> and 0 < y’ <p” < 1, then y'p? + (1-y")p' <
79> +(1-y")¢', where y is the first-stage probability of obtaining the
second-stage lottery ¢,

Continuity: For any three lotteries there exists a two-stage gamble
between the most and least preferred lottery for which the decision
maker is indifferent to the intermediate lottery, i.e., if ¢' < ¢* and ¢* <
¢°, then there exists a first-stage probability y € [0,1] such that ¢? ~ yp'

+ (1-p)p’.

Substitution: The decision maker is indifferent between lottery ¢ €
A(X) and lottery B[x,] + (1-B)[x,], where

B =Y e,

xeX

and y(x) € [0,1] is such that [x] ~ y(x)[x,] + (1-y(x))[x,].

Observe that the existence of y(x) in (6) follows from (1) and (5).
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Proposition 2.1 (DeGroot 1970, p. 108)
The above preference assumptions are jointly satisfied if, and only if, there
exists a utility function u: X - R such that ¢' < ¢* if, and only if, the
expected utility of outcomes is lower for ¢' than for ¢?, i.e., U(p") < U(¢p?),

where Ulp) = Z u(x) p(x).

xeX

Proof: The first step is to develop a utility function using the following pro-
cedure:

(a) Find x, and x, such that [x,] = [x] = [x;], Vxe X (by (1));
(b) Let u(x,) =0 and u(x,) =1 (x, > x, by (1));

(c) For each x € X find the number y(x) € [0,1] (by (5)) such that
[x] ~ (1-y()x,] + y(O[x, 15

(d) Letu(x)=y(x), VxeX.

The second step is to prove that the above utility function satisfies the pro-
position. This follows directly from (4) and (6).

To complete the proof it remains to be shown that the existence of u satis-
fying the condition in the proposition is sufficient to imply all the assumptions.
Itis straightforward to verify this using the basic mathematical properties of the
expected utility formula. Q.E.D.

A utility function u describes the preferences for a given decision maker and
can be used to assess the decision maker’s preferences among action alter-
natives. However, it is not appropriate to make comparisons of one decision
maker’s utility relative to that of another. This can be seen by the fact that the
utility function used to represent the preferences of a given decision maker is
not unique. While we used u(x,) = 0 and u(x,) = 1 in proving the preceding
proposition, the use of 0 and 1 was arbitrary — we could have used any pair of
numbers. Interestingly, if we had used a different pair of minimum and maxi-
mum utility numbers, then the new utility function would be a positive linear
transformation of the old (i.e., it is a positive multiple of the old, plus a constant
which could be positive or negative). The following proposition establishes that
all utility functions that represent the preference orderings of a given decision
maker are positive linear transformations of each other.
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Proposition 2.2 (DeGroot 1970, p. 108)
Suppose that u' and u” are real-valued functions on X each of which satisfies
the property stated in Proposition 2.1. Then there exist constants f € B and
v > 0 such that

W) =f +vul(x), VxeX.

Proof: Since [x,] < [x,], it follows that: u'(x,) < u'(x,) and u’(x,) < u*(x,).
Therefore, we can always find fand v > 0 such that

u'(e) =f +vui(x),
u'(x,) =f +vul(x,).
Let y(x) be such that [x] ~ y(x)[x,] + (1-y(x))[x,], which implies
u'(x) = yoou'(x,) + (1-y(x))u'(x,),
and w'(x) = p()u(x,) + (1-p(x)u’(x,).
It then follows that
u'(x) =y + v ul(x)] + (1-y)If + v w¥(x,)]
= f+ v[yu(x,) + (1-p(x)u*(x)]
=f +vu2(x). Q.E.D.

The above set of preference assumptions is one of the most basic in the
literature. The assumptions can be modified so as to consider infinite sets of
possible outcomes with bounded or unbounded preferences, as well subjective
probabilities and the role of information. Technical considerations arise in these
settings that result in slightly more complex structures and some additional
assumptions. However, the basic thrust of these assumptions is essentially the
same as the above. If the decision maker has consistent preferences that are
fundamentally based on the potential outcomes and the likelihood of those out-
comes, then we can represent his preferences by a utility function and his beliefs
by a probability function, such that his preferences across actions (strategies) are
represented by the expected utility of each action.
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2.4 RISK AVERSION

In the preceding analysis the outcome descriptions in X reflect any aspect of the
outcome that influences the decision maker’s preferences, including qualitative
characteristics. In this section we focus on settings in which the outcome is a
real valued, single dimensional number, i.e., X = { x } < R, and the set of
outcomes over which the decision maker’s preferences are defined is an interval
on the real line (e.g., (-0,+) or [0,4+)). Furthermore, the outcome represents
some attribute for which the decision maker prefers more to less, i.e., x' < x* if,
and only if, x' < x>. For example, the outcome could be the decision maker’s
terminal wealth or the firm’s profit, and the decision maker prefers more wealth
or profit to less. To simplify the discussion, we refer to x as the decision
maker’s outcome, but keep in mind that the concept applies to a broad class of
single-dimensional measures.

The decision maker’s preferences over his outcome are represented by the
utility function u(x), which is increasing in x, i.e., u(x') < u(x?) if, and only if,
x' < x*. The “shape” of u(x) is an important characteristic of the decision
maker’s preferences in many analyses. Let /=[x, ] represent a closed interval
of outcomes.

Definition Concavity and Convexity of Preferences
The decision maker’s preferences are defined to be concave (convex) on the
interval I if, for every pair of outcomes x', x* € I and every 4 € (0,1),

u() 2 (<) A u@x") + (1-2) u(x?),
where x=Ax+1-DAPel

The decision maker’s preferences are strictly concave (convex) on [/ if strict
inequality holds for every x', x* € L

We are primarily interested in concave utility functions, for the reasons
explained below.

Figure 2.2 depicts three concave utility functions: (a) is linear over the
entire interval, (b) is piece-wise linear, and (c) increases at a decreasing rate
over the entire interval. Over the linear segments the utility function is both
weakly concave and weakly convex, so that in (a) we have u(x) = A u(x") + (1-
A) u(x*). The utility function in (c) is strictly concave over the entire interval
[x,% ], so that u(x) > 4 u(x') + (1-2) u(x?) for all x € (x',x?) holds for any interval.
In (b) the utility function is not strictly concave, since u(x) = A u(x') + (1-)u(x*)
whenever x' and x are chosen such that they belong to the same linear segment
for the utility function.
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Figure 2.2: Concave utility functions.

If u(x) is continuous and twice differentiable on I, then u(x) is concave
(convex) on I if, and only if, u”(x) < (2) O for x € (x',x?). Strict concavity (con-
vexity) holds if, and only if, the strict inequality holds. The latter is depicted in
Figure 2.2(c) where we observe that u(x) is increasing at an ever decreasing rate,
i.e., its slope is strictly decreasing.

Jensen’s inequality is used extensively throughout this book. It establishes
that a concave (convex) utility function represents a weakly risk-averse
(seeking) individual in the sense that if the decision maker’s utility function is
concave (convex), then he weakly prefers (does not prefer) to receive with
certainty the expected value of a lottery instead of the lottery. Furthermore,
those preferences are strict if the utility function is strictly concave (convex).
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Proposition 2.3 (Jensen’s Inequality)
Let u(x) be a concave (convex) function on / and let x be a random variable
such that Pr{ x € I } = 1, and suppose the expectations U(a) and E[x|a]
associated with a given action (lottery) a exist. Then

U(a) = f u(x) dd(x|a) < (=) u(E[x|a]),
X

where Elx|a] = f x dD(x|a).
X

Furthermore, if u(x) is strictly concave (convex) and Pr{ x = E[x|a] } < 1,
the inequality is strict.

Proof: Assume u(x) is concave. If Pr{ x = E[x|a] } = 1, then U(a)= u(E[x|a]).
If Pr{ x =E[x|a] } < 1, then there exists an interval I = [x',x*] such that Pr{ x €
I} =1and x' < E[x|a] < x>. The concavity of u(x) ensures that there exist
parameters fand v such that u(x) < f + v x and u(E[x|a]) =f+ v E[x|a].” It then
follows that

U(a) < f+ v E[x|a] = u(E[x|a)).

Strict concavity implies the inequalities are strict. Furthermore, the same argu-
ments can be applied when u(x) is convex, since in that case -u(x) is concave.
Q.E.D.

Assuming u(x) is a continuous function, there exists, for any action (lottery)
a, a certainty equivalent, denoted CE(a) € R, such that the decision maker is
indifferent between receiving the certainty equivalent with certainty and taking
the lottery, i.e., the certainty equivalent is defined by

u(CE(a)) = U(a).

Figure 2.3 depicts the certainty equivalent for a lottery in which there is a
%3 probability of receiving x' and a ¥ probability of receiving x%.

7 That is, given the concavity of u(x), there is a linear function of x that is “tangent” to u(x) at x
= E[x|a], and lies on or above u(x) for all x € 1.



46 Economics of Accounting: Volume I - Information in Markets

erd /

u(Efxla])
u(CE(a))

U(a) = 2%u(x") + Yau(x?)

xl‘l CE(a) E|[x|a] x?

Figure 2.3: Certainty equivalent.

The difference between the expected outcome and the certainty equivalent
is referred to as the risk premium, and is represented by

n(a) = E[x|a] - CE(a),
so that u(E[x|a] - n(a)) = U(a).

The risk premium can be viewed as the maximum amount the decision
maker would be willing to pay (i.e., reduce his expected payoff) in order to
transfer the risk of the outcome to another party.

Now consider a setting in which x = w + & where w is the decision maker’s
known wealth which is independent of a and £is a random variable with proba-
bility function ¢(€|a). We refer to , as the (minimum) asking price (or cash
equivalent value) of lottery a, where

u(w+n,) = E[u(w+6)|al.
m, is the smallest amount at which the individual would sell lottery a. It should
be distinguished from the (maximum) bid price ,, which is the largest amount
an individual would pay for the lottery a:

u(w) = Elu(w+e-m,)|al.

If wealth affects an individual’s risk preferences, then z, # m,. However, x,
=, if there is no wealth effect. This occurs if the decision maker is risk neutral
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or if u(x) is an exponential utility function, as defined later. In the risk-neutral
case, 7, = m, = E[£|a]. ‘

If the lottery is actuarially neutral, i.e., E[£]|a] = 0, and the decision maker
is risk averse, then both x, and =, are negative, i.e., the decision maker will pay
to avoid the risk and must be paid to undertake the risk. In this setting, the
previously defined risk premium x is equal to -z,. The magnitude of the risk
premium is a measure of the decision maker’s risk aversion, and we use that
connection to develop the following measure of risk aversion.

Local Risk Aversion
Consider the risk premium associated with a small gamble given a wealth level
w. The payoff from the gamble is £, where ®(&a) is the probability distribution
over £and E[¢|a] =0 and Var[e|a] = af. > 0. Let 7 represent the risk premium
associated with this gamble, i.e., u(w-x) = E[u(w+¢)|a].

To develop a succinct measure of the decision maker’s aversion to “local”
risk at a given wealth level, we first obtain the following Taylor approximation
to his utility function at w:

u(w-mt) = u(w) - W' (Wt + u"Wn2! - u" W) /3! + ...
= uw) - u' (W) + O(7) 2.1

where O(-) = “terms of order at most”.> Now we use a similar approximation

to u(w+¢) in the decision maker’s expected utility for w + &

E[u(w+¢)|a] E[u(w) + u'(W)e+ Yau"(w)& + 0(&)|a]

u(w) + Yau" (w) o> + 0(0%). 2.2)

where o(*) = “terms of smaller order than”. Substituting the above expressions
into u(w-r) = E[u(w+¢)|a] and solving for = yields:

= -1 u"(w) + 0(7!2) - o(o-i) = %af_r(w),

2% u'(w)

8 If g is a real-valued function of a real variable, the notation g(x) = O(x) means that g(x) goes
to zero at least as fast as x does. More precisely, it means that there is a constant K > 0 such that

p169]
X

< K as x-0.

The notation g(x) = o(x) means that g(x) goes to zero faster than x does; or equivalently, that the
constant K above is zero.
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where r(w) = - u"(Wlu'(w)

is the measure of local risk aversion.

Hence, the decision maker’s risk premium for a small, actuarially neutral
gamble eis approximately equal to r(w) times Y2 the variance of &. Thatis, r(w)
is twice the risk premium per unit of variance for infinitesimal risk.

The above measure of local risk aversion is often termed the Pratt/Arrow
measure of risk aversion, in recognition of its development by Pratt (1964) and
Arrow (1970). The following two propositions come from Pratt (1964). We
present them without proofs.

Proposition 2.4 (Pratt 1964, Theorem 2)
Let r(w) be the local risk aversion and #(w,a) be the risk premium for any
gamble a (small or large, actuarially neutral or not) at initial wealth w. The
following conditions are equivalent:

(a) r(w) is a (strictly) decreasing function of w;
(b) m(w,a) is a (strictly) decreasing function of w for all a.

Proposition 2.5 (Pratt 1964, Theorem 1)
Consider a gamble @(¢|a) and two utility functions u, and u,. Let r(w) and
m(w,a) be the local risk aversion and risk premia corresponding to i=1,2.
The following conditions are equivalent:

(@ riw) 2 r(w), Vw;
(b) m,(w,a) > m,(w,a), VY wanda;

(c) There exists a concave function G, G’ > 0 and G” < 0 such that u,(x) =
G(u,(x)), i.e., u, is “more concave” than u,.

Proposition 2.4 considers the effect of an individual’s wealth — if his risk aver-
sion decreases with wealth, then his risk premium also decreases. Proposition
2.5, on the other hand, compares one individual with another. If one is more
risk averse than the other, then the former has a higher risk premium, and has
a more concave utility function.

Earlier we stated that it was inappropriate to make comparisons of utility
functions across individuals, yet we appear to be doing so in the above propo-
sition. However, comparisons of risk aversion are not the same as comparing
utility levels. The former are statements about choices among gambles, whereas
the latter compares levels or differences in utility levels that are subject to an
arbitrary scaling of the utility functions (see Proposition 2.2). Of particular note
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is the fact that if two decision makers would make the same choices among all

gambles (i.e., they have the same preference relations), then they have the same
risk aversion, irrespective of the scale of their utility functions.

Proposition 2.6
If there exist parameters f and v such that u,(x) = f + v u,(x) for all x, then

ri(w) = ry(w) for all w.

Proof: The key hereisthatu,’ =vu," and u," =vu,”, sothat r, =-vu,"lvu,’
=7, Q.E.D.

The above result implies that a decision maker’s risk aversion function r(x)
is sufficient to determine a positive linear transformation of his utility function

u(x), i.e., if you know the decision maker’s risk aversion at each x € X, you
know his preferences over lotteries. This can be seen by observing that

rx) = —%lnu%x),

which implies
- f r(x)dx =Inu'(x) + C, (2.3)

where C is the constant of integration. Then, using the fact that ¢"*'®*C =

€“u’(x), and integrating, provides
- f r(x)dx
f e dx =f+ v ux), (2.4)

where fis a constant of integration and v = €€,

2.5 HARA UTILITY FUNCTIONS

We now consider an important special class of utility functions for risk-averse
decision makers. In specifying these functions itis useful to introduce two other
risk measures.

Risk Tolerance: Risk tolerance is the inverse of the decision maker’s risk
aversion, i.e.,



50 Economics of Accounting: Volume I - Information in Markets

-1 __u®
PO ST e

Hence, the larger is p(x), the smaller is the decision maker’s risk premium
and the more willing he is to take on risk.

Risk cautiousness: Risk cautiousness describes the rate of change in the
decision maker’s risk tolerance, i.e.,

_rx) _ wu"x)

rx)* WP

p'(x)=

Definition HARA Utility Functions
The class of utility functions that have linear risk tolerances, i.e., there exist
two parameters a and £ such that
px)=ax+p>0,

are termed the class of HARA utility functions.

Observe that all utility functions in this class have constant risk cautiousness,
ie.,

p=a
In addition, graphically, the measure of local risk aversion is an hyperbola, i.e.,

1
ax + B

r(x) =

Due to the hyperbolic shape of r(x), which is often termed absolute risk aver-

sion, the utility functions with linear risk tolerances are generally referred to as

the HARA class, where HARA stands for “hyperbolic absolute risk aversion.”
We now use r(x) = (ax + ) to characterize u(x). From (2.3) we obtain:

X if a=0, #>0,

Inu'(x) + C = —fr(x)dx =
——l—ln(ax+,B) if a#0, ax+£>0.
a
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Deleting the constant of integration and taking both sides up as powers of e
yields:

e F if a=0, 8>0,

A
[ox +B] ¢ ifa#0, ax+4>0.

u'(x) =

Next, following (2.4), we integrate both sides to obtain f+ u(x).’

-Be>*P + f if =0, #>0,

ux) ~ In(x+p) + f ifa=1, x+8>0,

—l—l[ax+ﬁ]‘-”“ +f  ifa*0,1, ax+B>0.
—

Removing “irrelevant” constants results in the characteristics of HARA utility
functions shown in Table 2.1.

Risk tolerance is increasing in £ for all types. In the exponential utility
function, @ = 0 and risk tolerance is fully characterized by pg, i.e., it is
independent of x and there is no wealth effect. With the logarithmic and power
utility functions with a > 0, the decision maker’s risk tolerance is increasing in
x, while it is decreasing in x for power utility functions with a < 0.

2.6 MEAN-VARIANCE PREFERENCES

If the decision maker has a quadratic utility function, i.e., a HARA utility func-
tion with a = -1, then

u@x)=-%[p-xP>~px-Yx*, forf-x=:0.
Hence,

U(a) = B Elx|a] - 2E[x*|a] = B Elx|a] - ¥2{E[x|a)* + Var[x|al},

® For the power utility functions with a ¢ [0,1] we typically also include the case in which a x
+ B is equal to zero even though the risk aversion is infinity at that point.



Economics of Accounting: Volume I - Information in Markets

52

"suonouny AYun YYVH JO Sonsuaierey) ;17 AqeL

0 g +xo %fﬁxs o1l + XP] I M 2 | o<gsxo 190 19mM0g
I g+x uﬂ l (g+0) g 0<g+x‘I=v | omuyreso]
0 g W g2 - 0<go=vo enusuodxyg
wmunmﬂvmmgu oocﬁwﬂo 1 =omw“>< comwmzm SUOHOSIY ad4],
EON SO sy fmn HoretiEEd




Single Person Decision Making under Uncertainty 53

i.e., the decision maker’s expected utility for a given lottery is a function of the
lottery’s mean and variance. A mean-variance representation does not apply in
general to other utility functions. However, if the outcomes from the alternative
lotteries are normally distributed, then the decision maker’s preferences can be
expressed as a function of the mean and variance, E[x|a] and Var[x|a]. This
holds for any utility function since normal distributions are fully characterized
by their means and variances. Of course, the functional relation may be more
complex than in the quadratic utility case.

Mean-Variance Approximations

In some settings, there is a simple linear mean-variance representation of a
decision maker’s preferences, or this type of representation provides a “close”
approximation to those preferences. To develop this perspective we note that
the ordering of preferences over lotteries in terms of the certainty equivalent
CE(a) is identical to the ordering in terms of the expected utility. From (2.1)
and (2.2) we obtain Taylor approximations to the decision maker’s utility for his
certainty equivalent CE(a) = E[x|a] - n(a) and his expected utility for any
lottery a:

u(CE(a)) = u(E[x|a]) - u'(E[x|a])(E[x|a] - CE(a)) + O((E[x|a] - CE(a))®).
U(a) = u(E[x|al) + Yau"(E[x|a])Var[x|a] + o(Var[x|a]).

In order to obtain an approximate closed form expression for the certainty equi-
valent we note that the utility for the certainty equivalent equals the expected
utility of the gamble. Hence, by dropping the O(-) and o(*) terms in the two
approximations we get

u(E[x|a)) - u'(E[x|al)(E[x|a] - CE(a)) = u(E[x|a]) + Yau"(E[x|a])Var[x|a],
from which we obtain the following approximation of the certainty equivalent:

1 u"(Elx|al)

E(a) = E
CE(a) = E[x|a] + 2 W Elxlal)

Var[x|al

= Elx|a] - Y%r(E[x|al)Var[x|a). @2.5)

Since the ordering of preferences over lotteries in terms of the certainty equi-
valent CE(a) is identical to the ordering in terms of the expected utility U(a), we
observe that, in approximation, the decision maker trades off the expected
outcome of a lottery with its uncertainty as measured by its variance. The
relative weight in that trade-off is the decision maker’s risk aversion at the
expected outcome of the lottery.
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Exponential Utility with Normally Distributed Outcomes
The exponential utility function u(x) = - e is particularly interesting because
the decision maker’s risk aversion is a constant r, i.e., it is independent of the
outcome, so that for the approximation in (2.5) we obtain

CE(a) = E[x|a] - YarVar[x|a]. (2.6)
Hence, the decision maker’s indifference curves in (Var[x|a],E[x|a])-space are
increasing straight lines (and the increasing part of a parabola when risk is

measured by standard deviations). Furthermore, and more importantly, this
approximation is exact if x is a normally distributed random variable.

Proposition 2.7
If u(x) = - exp[-rx] and x ~ N(m(a),0*(a)), then

U(a) = u(CE(a)),
where CE(a) = m(a) - Yaro*(a).

Proof: Using the specific form of the exponential utility function and the
normal distribution, we obtain

+00

_ ) ) 1 _1( x-m(a) 2
v f o rx][ ealot@ | [ 2( o(@) ) ” ¢

-0

= - exp[- r(m(a) - Yaro*(a))]

+00

1 exp[_ 1 (x—[m(a) -roz(a)])z] .
J [27]% o(a) 2 o(a)

= - exp[- r(m(a) - Vard*(a))].

The first equality holds because

e l(u@)2=_,[m(a)_%roz(a)]_ 1 (x—[m(a) —roz(a)])z’
2\ oa) 2 o(a)
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and the second equality holds because the term following the integral is a
normal density function with mean m(a) - ro*(a) and variance o*(a), which
integrates to 1. Q.E.D.

This exponential utility/normal distribution model is used extensively in sub-
sequent chapters. Here we use it to demonstrate the impact of the decision
maker’s risk aversion on his action choices.

A Simple Investment Choice Example

Consider a simple financial investment setting in which the decision maker has
wealth w that he can allocate between a riskless asset (e.g., a zero-coupon bond)
that will return one dollar for each dollar invested (i.e., the risk-free interest rate
is zero) and a risky asset that will provide, for each dollar invested, a return of
1 + & where € ~ N(u,6°), with u > 0. Let a equal the number of dollars invested
in the risky asset so that x =w + ag, with E[x|a] = w + ap and Var[x|a] = a*e.
If the decision maker’s utility function is u(x) = - exp[-rx], it follows from
Proposition 2.7 that

U(a) = - exp[-rCE(a)]
where CE(a) = w + ap. - Vara’d®.

Assuming that the decision maker can go long or short in the riskless asset, his
optimal action can be obtained from the first-order condition for maximizing the
certainty equivalent,'®

CE'(@) = -rac® =0,
which implies that the optimal action is
a* = plro*l. 2.7

Note that the number of dollars invested in the risky asset is independent of the
decision maker’s initial wealth w. This is a direct consequence of the fact that
a decision maker with an exponential utility function has constant (absolute)
risk aversion, which implies that his preferences for gambles (large or small) are
independent of his wealth level.!! While constant risk aversion may not be

1 The second-order condition CE”(a) = - ro* establishes CE is strictly concave, so that the first-
order condition identifies a global maximum,.

' Tt is frequently argued that the risk aversion for most decision makers is decreasing in wealth,
This condition is satisfied for HARA utility functions with @ > 0. If we also have § = 0, then
(continued...)
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descriptive of most decision makers, the literature and the analysis in this book
frequently use the exponential utility function precisely because there is no
wealth effect. This is justified if the wealth effect for a given individual is a
minor aspect of the phenomena being examined. Differences in risk aversion
across individuals can be represented in these analyses by differences in 7.

Substituting (2.7) into U(a) establishes that the decision maker’s maximum
expected utility is

U(a") = - exp[-r(w + Yap¥[ra®])). (2.8)

Differentiating (2.7) and (2.8) with respect to 4 and o establishes that the
investment in the risky asset and the decision maker’s expected utility increase
with g and decrease with *. This reflects the natural impact of shifts in the
mean return and riskiness from a risky asset. Differentiating (2.7) with respect
to r establishes that a more risk-averse decision maker will invest less in the
risky asset. It is inappropriate to make inferences from the derivative of (2.8)
with respect to r, since that involves making statements about the impact of r on
the level of a decision maker’s utility, and we earlier established that utility
levels are not unique. However, in Chapter 3 we return to this example and
consider how a decision maker’s risk aversion affects his demand for informa-
tion about the risky return.

2.7 BASIC HURDLE MODELS

In general, the mean-variance approximation of the certainty equivalent is not
exact, even if the decision maker has exponential utility. To illustrate this and
to provide further exploration of the impact of risk, we introduce a basic version
of a simple model that will be used extensively in future chapters (particularly
in Volume II).

In this model, the decision maker chooses an action a € A = [0,1], which we
refer to as his effort level. There is a random variable & (called the hurdle) that
is uniformly distributed on the unit interval, i.e., @ is absolutely continuous with
density function @(h) = 1 for h € [0,1]. The decision maker’s preference
relevant outcome consists of a gross payoff x € X = { x,, x, }, which can be

1 (...continued)

HARA utility functions with a > 0 have constant relative risk aversion, where relative risk
aversion is defined as r{x)x. These utility functions have the property that the fraction of wealth
invested in the risky asset is independent of the decision maker’s initial wealth.
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either good or bad, as well as the decision maker’s effort level a.”? In the basic
model, the good payoff is achieved if a > h (i.e., the decision maker “clears” the
hurdle). Otherwise, the bad outcome obtains. Hence, p(x=x,) = a, E[x|a] = x,
+ ad,, and Var([x|a] = a(1- a)4,%, where 4, = x, - x,.

The decision maker’s utility function has two arguments, i.e., u(x,a) is
defined over the decision maker’s monetary payoff x and his action a. We
initially assume the decision maker’s utility function is exponential and defined
over the net monetary payoff x - x(a), i.e.,

u(x,a) = - expl- r(x - x(a))},

where x(a) = Vaya? is an increasing, strictly convex personal monetary cost of
effort. This utility function is multiplicatively separable since

u(x,a) = - exp[- rx] exp[re(a)l.

In the analysis that follows we let x, = w and x, = w + 4,. With multiplica-
tively separable exponential preferences, the decision maker’s expected utility
is

U(a) = - exp[-r(w + 4, - k(a))]a - exp[-r(w - k(a))I(1- a),
= - exp[-r(w - k(a))] {exp[-rd,]a + (1- a)}.

The first-order condition for the decision maker’s optimal choice of a, if a €
0,1), is

U'(a) =- expl-r(w - c(a)] (@) {expl-rala + (1- @)} + expl-rd] - 1)
=0.

Since x’(a) = ya, the decision maker’s optimal effort level (if less than one) is'

oy = (ry)? - 4ry(1-exp[-rd,])?
a = .
2ry(1 -exp[-rd.])

2 It would be more consistent with our earlier notation to let x = (x,,x,), where x, € ( Xigs X1p }
represents the payoff and x, = a represents the effort level. However, letting x and a represent
the two dimensions is simpler and should not be confusing in this specific example.

3 Since U’(0) > 0 and the “negative root” is greater than zero, any “positive root” less than one
is a local minimum: If the risk aversion is sufficiently high the decision maker’s optimal effort
levelisa"=1.
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Now compare the above result to the action based on the mean-variance
approximation. The approximate certainty equivalent is

CE(a) = w + ad, - Vara(1- a)4.* - k(a),
for which the first-order condition is
A4, -Yrd?+rad?-«k'(a) = 0.
Hence, the mean-variance approximation results in the action choice
a™ = [Yardr - 4)[rd.? - y].

Observe that w has no impact on the effort choice. This is because there is
no wealth effect on the choice of gambles when the utility for the net return
from effort is exponential. However, the optimal effort does depend on the
decision maker’s risk aversion r, the potential gain from effort 4,, and the cost
of effort y.

08 -
a”(fory=40) ___--""
wk——— a'(fory=40)
| a* (for y = 60)
04—
i a”(fory=60) "7~~~
02}
0 L ‘ 1 ’ 1 [ 1
0 0.01 0.02 0.03

Risk aversion »

Figure 2.4: Mutltiplicative hurdle model effort (4, = 25).

Figure 2.4 depicts the relation between a” and @™ for two levels of y and a
range of values for r. Observe that for 4, /y > 0.5, both the optimal action a” and
a™ are increasing in r, but decreasing for 4, /y < 0.5. The reason for this is that
the outcome risk (e.g., outcome variance) is highest for a = %. If a* > ¥4, then
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increasing the risk aversion creates a stronger incentive to reduce risk, which in
this case is achieved by increasing a. The converse holds if a* < %. In either
case, the mean-variance approximation generates an action choice a™ close to
a’ for small risk aversions, but the difference increases as r increases.

The utility function u(x,a) used above is referred to as multiplicatively
separable. The utility function is referred to as additively separable if there
exist functions u, and v such that

u(x,a) = ux) - v(a),

where u,(x) is the decision maker’s utility for monetary outcome x and v(a) is
the decision maker’s disutility for effort. In the hurdle model, the expected
additively separable utility is

U(a) = ux(xg)a + ux(xb) (l' a) = V(a) = ux(W) + Aua = V(a),

where w = x, and 4, = u,(x,) - u,(x,). Assuming an interior solution with v(a)
increasing and strictly convex, i.e., v'(a) > 0 and v"(a) > 0, the decision maker’s
optimal effort is characterized by the first-order condition

v'(a") =4,

To 1llustrate assume that u,(x) = - exp[-rx] and v(a) = ya/(1- a), so that 4,
=e™[1l-e ] and v'(a) = y/(1- a)®>. Hence, assuming y is sufficiently small
to induce positive effort, the optimal effort level is

Vs ‘/er[l "Ax]-'/z'

a=1-y

Observe that a” is increasing in 4,, decreasing in both w and y, and increasing
(decreasing) in r if

r <) Ai[ln w+d) - lnw].

x

The impact of 4, and y is not surprising, since increasing the former increases
the benefit of more effort, while increasing the latter increases the cost. Perhaps
somewhat surprisingly, increasing w reduces the optimal effort! Wealth does
not affect the decision maker’s risk aversion and, hence, has no effect on the
effort choice with multiplicatively separable exponential utility. However, that
is not the case here. The reason that increasing w reduces a” with additively
separable utility is that the outcome utility is concave, so that increasing w
decreases 4,, i.e., the incremental utility for the outcome increase 4, is reduced.
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The impact of the risk aversion parameter r is also rather subtle. Recall that 4,
=e™[l-e 'A‘]. Increasing r reduces ™ reflecting the reduction in the out-
come utility u, relative to the disutility for effort v. Conversely, increasing r
increases [1 - e~ 'A*] , which has the reverse effect on 4,. If ris small, the latter
impact dominates, while the former dominates if r is large.

We extensively use various versions of the hurdle model in subsequent
chapters (particularly in Volume II). Here we have used it to illustrate the
impact of wealth and risk aversion for both multiplicatively and additively
separable utility functions. The examples highlight the fact that one must be
careful in making generalizations about the impact of utility function character-
istics on the decision maker’s choices.

2.8 STOCHASTIC DOMINANCE

We now consider two partial orderings over alternative gambles (outcome
probability distributions) that depend only on limited assumptions regarding the
shape of the decision maker’s utility function. The analysis is restricted to the
case in which the uncertain outcome is single-dimensional.'* We initially
consider first-order stochastic dominance, which provides a partial ordering of
gambles that only requires the decision maker to prefer more outcome to less.
We then consider second-order stochastic dominance, which provides a more
complete partial ordering that also requires the decision maker to be weakly risk
averse.

We consider a set of gambles that are characterized by parameters w € Q
(e.g., the set of parameters could be a set of actions a € A). The initial question
addressed is: if all we know is that the decision maker prefers more outcome to
less (i.e., x' = x” if, and only if, x’ > x"), when can we say that he will prefer
gamble w, to w, irrespective of the other characteristics of his preferences? To
examine this we first observe that the decision maker’s preferences can be repre-
sented by a utility function u: X ~ Rthat is a non-decreasing function of x.

Now consider a probability space (S,=,P) and a random variable x: Sx£2 -
X, parameterized by w € Q, with a corresponding family of generalized proba-
bility density functions { ¢(‘|w), w € 2 }. The probability distribution corre-
sponding to ¢(*|w) is denoted &(:|w). Now consider the following potential
comparison of the distribution functions of two gambles.

14 Although we do not formally allow for multi-dimensional preference relevant outcomes in this
analysis, we could allow for an additional component such as effort. However, in that case the
additional component must be non-stochastic (see below).
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Definition First-order Stochastic (FS) Dominance
The probability function given w, FS-dominates w, if, and only if, &(x|w,)
> P(x|w,), Vx€X.
That is, we say w, FS-dominates o, if the former is less likely to generate
outcomes in the “lower tail” than is the latter, for all possible “lower tails”. Of
course, this comparison is often not possible, since the inequality may hold for
some x but not for others. Hence, the F'S dominance criterion only provides a
partial ordering of the set of possible gambles. To illustrate, consider the
following probability functions:
(w):  @lx|w,) = .20 for x € [0,5], and zero otherwise;
(wy):  @(x|w,) = .10 for x € [0,10], and zero otherwise;

(w3):  @(x|w,) = .20 for x € [2.5, 7.5], and zero otherwise.

The distribution functions are depicted in Figure 2.5. Obviously, w, and w,
both FS-dominate w,, but neither w, nor @, FS-dominates the other.

@ 1r —_————
08
06}

04

Outcome x

Figure 2.5: FS-dominance.

The key result here is that if one gamble FS-dominates the other, then the
former is preferred by any decision maker who prefers more to less. Early
analyses containing this and other widely known results can be found in Hadar
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and Russell (1969) and Hanoch and Levy (1969), and proofs of this and the
other stochastic dominance results that follow are provided in Appendix 2A.

Proposition 2.8 (Hadar and Russell 1969, Theorems 1,1, 2, & 2';
Hanoch and Levy 1969, Theorem 1)
Given any two gambles @, and w,, ®, > @, for all non-decreasing utility
functions if, and only if, w, FS-dominates w,.

As noted above, one gamble FS-dominates another if the distribution for the
former has uniformly smaller lower tails than the latter. Instead of comparing
distribution functions it is often useful to compare the ratio of the generalized
probability density functions, i.e., the likelihood ratio ¢(x|®,)/@(x|®,). This
ratio will be less than one for some x and greater than one for others. For some
distributions, such as those in the one-parameter exponential family (see below),
the ratio is a uniformly decreasing function of x if the mean of w, is less than for
w,. To illustrate, consider the family of normal distributions for which w €
c Ris the mean and ¢ is the variance; in this case,

o(x|w) = [276*1" exp[-Ya(x-w)*/d*] ,

p(x|o,)

and
o(x lwz)

= exp[Ya(w, - w,) (@, + », - 2x)/¢?],

which is decreasing in x if @, > w,. Distributions that have this property are
said to satisfy the monotone likelihood ratio property.

Definition Monotone Likelihood Ratio Property (MLRP)
The family of probability functions { ¢(-|w), w € 2 } satisfies (strict) MLRP
if for every x, < x, and w, < w, the following condition holds:

("(xllwl) 5 (> (P(lewl)
o(x 1 Iwz) (P(xz lwz)

If the probability function ¢(-|w) is continuous and differentiable with
respect to w, then from Milgrom (1981) we learn that we can determine whether
MLRP is satisfied by computing the rate of change in ¢(x| ) relative to (x| ).

Proposition 2.9 (Milgrom 1981, Prop. 5)
If Q2 = [w,®] and ¢(:|w) is continuous and differentiable with respect to w,
then { ¢(|w), € Q } satisfies MLRP if, and only if, for all w € £:
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9, x|w)
o(x|w)

Sp(x|w)

is non-decreasing in x, where ¢ (x|w) = 3
w

Returning to the normal distribution case, we observe that

9, (x|w) _X-o

oxlo) ~ 2

’

which is strictly increasing in x, thereby supporting our earlier demonstration
that the normal distribution satisfies MLRP if w represents the mean of the
distribution (or the mean is an increasing function of w).

The normal distribution in which w represents the mean and the variance is
fixed is a specific example of what is called the one-parameter exponential
Sfamily of distributions. Members of this family are frequently used in this book,
and some results apply to the entire family.

Definition One-Parameter Exponential Family of Distributions
A probability distribution is a member of the one-parameter exponential
family if there exist functions 8(x), y(x), a(®), and f(w) such that

p(x|w) = 6(x) f(w) expla(w) w(x)].

Proposition 2.10
The one-parameter exponential family of distributions satisfies MLRP if
o(w) is non-decreasing in w and y(x) is non-decreasing in x.

Proof: Assume Q= {w,®] and both a(w) and B(w) are continuous and differen-
tiable with respect to w. It then follows that

B (@)

M)_) =a'(w) y](x) 4+ £ 277

o) B@)’
which is increasing in x. Q.E.D.
Appendix 2B states the specific forms of several members of this family (expo-

nential, normal, gamma, Poisson, and binomial). In these examples, y(x) = x
and there exists a function B(a) such that S(w) = exp[-B(a(w))], which implies

9 ,(x|w)
o(x|w)

= [x - B'(a(w))]a’(w)
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is an increasing linear function of x (given that a'(w) > 0).

MLRP suggests that increasing w is desirable since it implies that larger
values of x are relatively more likely to occur if w is larger. This intuition is
correct.

Proposition 2.11
If { p("|w), w € Q } satisfies (strict) MLRP, then w, (strictly) FS-dominates
w,, for all v, < w,.

Observe that MLRP is sufficient, but not necessary, for first-order stochastic
dominance. The following example illustrates that the latter can hold without
the former. The likelihood ratio is not monotonic, even though a comparison
of &(x| w,) and D(x|w,) establishes that w, first-order stochastic dominates w,.

X, X, X3
o(x|w,) 0.5 0.3 0.2
(x| w,) 0.2 0.5 0.3
p(x|w,)o(x|wy) 25 0.6 0.667
D(x|w,) 0.5 0.8 1
B(x| wy) 0.2 0.7 1

First-order stochastic dominance provides a preference ordering among
gambles that holds for all non-decreasing utility functions, and ignores whether
the decision maker is risk averse or not. As noted, FS-dominance is a partial
ordering, e.g., we cannot compare gambles w, and @, in Figure 2.5 on the basis
of FS-dominance. However, we observe that these two gambles both have
means of 5.0 and, intuitively, w; is less risky than w,, which suggests that a risk-
averse decision maker may prefer w, to w,. This type of observation leads to
the concept of second-order stochastic dominance, which provides a more
extensive ordering of gambles than does first-order stochastic dominance, if we
restrict our analysis to settings in which the decision maker is risk averse.

Definition Second-order Stochastic (SS) Dominance

The probability function given @, SS-dominates w, if, and only if, G(x|w,)
> G(x|w,), V x € X, where

Gm@=f¢mm@.
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To illustrate SS-dominance, again consider the three gambles depicted in Figure
2.5.

(@,): Gx|w,) = f 2ydy = .14 for x € [0,5],
0

Oforx<0,andx-2.5forx > 5;

(@y): G(x|e,) = f 1ydy = .0522, for x € [0,10],
0

Oforx<0,and x -5 forx > 10;

X
(w;): G(x|w,) = f 2(y -2.5)dy = .1x* - .5x + .625 for x € [2.5, 7.5],
2.5 :
Oforx<25,andx-5forxz>7.5.

Figure 2.6 depicts these three functions, clearly illustrating that v, SS-dominates
both w, and w,, and w, SS-dominates w,.

The key result for SS-dominance is that if a gamble SS-dominates another
gamble, any risk-averse decision maker (that prefers more outcome to less)
prefers the former to the latter.

Proposition 2.12 (Hadar and Russell 1969, Theorems 3,3',4, & 4';
Hanoch and Levy 1969, Theorem 2)
Given any two gambles w, and w,, w, = o, for all non-decreasing, concave
utility functions if, and only if, @, SS-dominates w,.

It should be noted that if one gamble FS-dominates another, then the former also
SS-dominates the latter. However, SS-dominance does not imply FS-domin-
ance, as our example illustrates.

In general, while SS-dominance provides a more complete ordering of
gambles than does FS-dominance, both are partial orderings. Moreover, the two
stochastic dominance criteria only apply to the distributions for the decision
maker’s “total” outcome from risky gambles. For example, if the decision
maker considers investing in a number of different risky assets, then an asset
which is FS-dominated by another asset may very well be part of the decision
maker’s optimal portfolio. This can occur, for example, in a mean-variance
portfolio problem if the dominated asset’s return has a sufficiently low
correlation with the returns of the other assets, so that including the asset in the
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Figure 2.6: SS-dominance.

portfolio reduces the total risk of the portfolio sufficiently to make up for its low
expected return relatively to its variance."

APPENDIX 2A: Proofs of Stochastic Dominance Propositions
To simplify the proofs, we assume throughout this appendix that the generalized
probability density functions are absolutely continuous on X = [x,X]. It is

straightforward to generalize the proofs to discrete and mixed distributions.

Proof of Proposition 2.8:
if: U(w,) - Ulw))

= fu(x) [p(x|w,) - p(x|w,)] dx
X

= u(x)[P(x|w,) - D(x|w,)] t - fu'(x) [P(x|w,) - DP(x|w,)] dx
X

'3 In the context of the CAPM, stocks with negative beta are FS-dominated by the riskless asset,
in equilibrium.
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= - fu’(x) [D(x|w,) - P(x|w,)] dx >0,
X

where the first equality follows from integration by parts, and the inequality
follows from the fact that u’(x) > 0 and D(x|w,) < DP(x|w,).

only if: Proof is by contradiction. Assume there is some interval [x,,x,] such
that &(x|w,) > D(x|w,) for x € (x;,x,). Construct a utility function as follows:
u(x) =0 for x < x,, (x - x,)/(x, - x,) for x € (x,,x,), and 1 for x > x,. The argument
used to prove “if”’ then implies that U(w,) < U(w)). Q.E.D.

Proof of Proposition 2.9:
if: Observe that

[ #utx|@)p(x| ) deo = In p(x|e)

= o(x|w)/p(x|w,) = exp[in p(x|w,) - In p(x| w,)]

@,

= exp| - f 9, (x| w)p(x|w) do|.

@,

Therefore, if ¢,(x|w)/p(x|w) is non-decreasing in x, then p(x|w,)/p(x|w,) is
non- increasing in x, for w, > w,.

only if: The above equality also establishes that if ¢(x|w,)/¢(x|w,) is non-
increasing in x, then

@)

f 9, (x| w)op(x|w) do

@,

is non-decreasing in x. For this to be true for all w, > w,, it must be that
¢,(x|w)/p(x|®) is non-decreasing in x for all w. Q.E.D.

Proof of Proposition 2.11:

From Proposition 2.9 it follows that if 2 is an interval and ¢ is differentiable
with respect to @, then MLRP implies ¢, (x| @)/¢(x| @) is increasing in x for any
w. Let x, be such that ¢ (x|@) < O for all x < x, and > 0 otherwise. We want
to prove that @ (x|w) < 0 for all x and w, where
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X
B,(x|0) = [9,0]w) dy.
£

D, (x| w) < 0 follows immediately if x < x,,. Therefore, consider x > x,,. Since
¢ is a probability function which always sums (integrates) to one, it follows that

x
[ 20l dy =0.
X

Therefore,

D, (x|w) = f 9, |w)dy =0- f 9,0|w)dy <O0. Q.E.D.
X X

Proof of Proposition 2.12:
if: From the proof of proposition 2.8 we get that

U(w,) - Ulw,) = - f u'(x) [D(x|w,) - Dx|w))] dx.
X

Integration by parts gives

U(w,) - U(w))

- u' () [G(x|w,) - G(x|w))] z + fu”(x) [G(x|w,) - G(x|w,)] dx
X

Il

- W®[GE|w,) - GE|w)] + f u"(x) [G(x|w,) - G(x|w)]dx 2 O,
X

where the inequality follows from u'(x) > 0, u”(x) < 0, and G(x|w,) > G(x|w,)
for all x € X.

only if: Proof is by contradiction. Assume by continuity of G that there is some
interval [x,,x,] such that G(x|w,) < G(x|w,) for x € (x,,x,). Construct a utility
function as follows: u'(x) =x, - x, for x < x,, u'(x) = (x, - x) for x € (x,,x,), and
u'(x) =0 for x > x,. The argument used to prove “if”’ then implies that U(w,) <
U(w)). Q.E.D.
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CHAPTER 3

DECISION-FACILITATING INFORMATION

An accounting system potentially reports information to decision makers. Con-
sequently, to understand the economic role of accounting systems it is useful to
understand the economic role of information systems. In our basic economic
model of decision making, the decision maker faces uncertainty about the out-
comes from his actions. We generally view information as a mechanism for
reducing uncertainty, and in single-person decision making the reduction of
outcome uncertainty has economic value (which may or may not exceed its
costs) if it influences the decision maker’s action choices. Hence, the key
characteristic of an information system is how the signals (information) it
generates affect the decision maker’s beliefs about outcome relevant events.

We characterize an information system in terms of the signals it might
generate, and the relation between the possible signals and the possible events
of interest. A system can only be informative about uncertain events if it can
generate more than one signal and the signal generated is correlated with those
events. An information system that provides signals to a decision maker prior
to making a decision, and affects his decision, is referred to as a decision-
Jfacilitating information system. The decision maker can always ignore the
signals when he makes his decision. Hence, if his decision is affected by the
signal received, it must be that he believes it helps him to make a better deci-
sion.

The structure of the remainder of this chapter is as follows. Section 3.1
describes the representation of information systems and signals. The key charac-
teristic of a signal is the posterior event beliefs it generates. The representation
of that information is, to some extent, arbitrary. For example, we can report
income in millions of dollars or thousands of dollars, but the information con-
tent is exactly the same, i.e., scaling of signals does not affect the posterior
event beliefs. Furthermore, in some settings, the decision maker’s posterior
beliefs are not influenced by details — a summary measure such as net income
might result in the same beliefs as a report with all the components of net
income. This leads to the concept of a sufficient statistic — knowing a sufficient
statistic is as good as knowing any other representation of the information, and
there are always many possible sufficient statistics. A key characteristic of a
sufficient statistic is that it is not sensitive to the decision maker’s utility func-
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tion or prior event beliefs, it only depends on his beliefs about the likelihood of
the possible signals given the possible events of interest.

Section 3.2 introduces information into economic decision problems under
uncertainty. For a given decision maker and information system, there is an
optimal decision rule specifying the optimal action for each signal the informa-
tion system might generate. The choice among information systems is based on
the decision maker’s expected utilities that result from using the optimal deci-
sion rules for each information system. In general, the preference ordering
among information systems depends on the characteristics of the decision
problem, i.e., the decision maker’s preferences and beliefs, and the relation
between outcomes and actions. In Section 3.3 we consider statements about the
relative preferences among information systems given only the statistical char-
acteristics of these systems. If the signals from one information system tell at
least as much about the likelihood of the outcome-relevant events as the signals
from another information system, the former is weakly preferred to the latter
independently of the characteristics of the decision problem (assuming the
implementation of information systems is costless). This result is commonly
referred to as the Blackwell Theorem.

Section 3.4 concludes the chapter with an examination of the impact of risk
and risk aversion on the value of information in two specific parametric models,
i.e., in a financial investment model, and in the hurdle model.

3.1 REPRESENTATION OF INFORMATION

This section discusses the formal representation of information systems and the
relations between the system’s signals and the uncertain events of interest. This
includes specification of the decision maker’s beliefs after receiving a signal —
which are generally referred to as his posterior beliefs — and specification of
alternative representations of signals that do not change the information content
- which are generally referred to as sufficient statistics.

3.1.1 Conditional Probability

Before introducing formal representation of an information system, we briefly
consider the concept of a conditional probability, which is one of the basic ele-
ments of probability theory that is important in representing the effect of infor-
mation.

The underlying probability space is again represented by (S,Z,P). Recall
that each probabilizable event ¢ € £ is a subset of the state space, i.e., £ <S. Let
y € Erepresent an observed event and consider how the observation of y affects
the decision maker’s beliefs about all other events £ € £. If y and £ have no
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states in common, i.e., y N &= @, then observing y reveals that £ could not have
occurred. At the other extreme, if all the states in y are also in £, i.e., y < &, then
observing y reveals that ¢ has definitely occurred. In between these two
extremes we have settings in which some states in y are also in &, but there are
some states in y that are notin &, i.e., yNn & = @ and y ¢ & In this case, obser-
ving y potentially changes the decision maker’s beliefs about &, but not to the
extremes of zero or one.

The belief about & given y is referred to as the conditional probability of &
given y, and is written P(¢|y). If y has a positive probability of occurring, i.e.,
P(y) > 0, then the conditional probability is

P(yn¢)
P = 2V0e) 3.1
<ly) PG) 3.1)

Observe that this statement is sufficiently general to include the two extreme
cases, since P(yn¢) = 0 if yn&= @ and P(yn&) = P(y) if y c &

Bayes’ theorem is a widely used application of relation (3.1). It begins with
“prior” beliefs about a set of events that partition the state space and with the
“likelihood” of observing a “signal” y given each of the possible events of
interest. It then uses these elements to compute the “posterior” beliefs about the
events of interest given the signal y.

Definition Partition
Assetof events Q= { w,, ,, @, ... }, which could have a finite or countably
infinite number of elements, defines a probabilizable partition on the state
space Sif w, € 5, w,nw;= @, foralli,j, i #j,and v, U, U W U ... = S.

That is, £ divides S into an exhaustive set of disjoint events. We can think of
these events as the decision relevant events. The prior beliefs about the elements
in Q are represented by P(w;) and the likelihood of the event y given w; is the
conditional probability P(y|w,). The widely used Bayes’ theorem states how to
compute the posterior probability P(w,|y).

Proposition 3.1 Bayes’ Theorem
Let Q partition S such that P(w;) >0 foralli=1, 2, 3, .... Also,lety e Zbe
such that P(y) > 0. Then

P&|w) P(w,
P(w;|y) = Olw) Pe) , i=1,2,3,.. (3.2)

Y1 POlo) P@)

Proof: From (3.1) we obtain both P(w;|y) = P(wny)/P(y) and P(wny) =
P(y|w)P(®;). Given that Q partitions S, it follows that
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PO)= Y P(@y) = Y, Pylw) P®). Q.E.D.
j=1 j=1

The signal y is defined to be independent of the events in Qif the likelihood
P(y|w;) =P(y),Vy€ Y, w;€ Q. In that case it immediately follows from (3.2)
that P(w;|y) = P(w,), Vy € Y, w, € Q, i.e., the decision mdker’s posterior belief
about the events of interest is the same as his prior belief — the signal has no
impact.

3.1.2 Posterior Beliefs with Random Variables

Throughout this book we let # represent an information system and let Y = {y}
represent the set of possible signals that might be generated by 5. Generally, the
information system is a function from the set of states S to the set of signals Y,
i.e.,, n: S~ Y. (In some cases it is important to recognize that the set of possible
signals can vary with the information system, in which case we let Y represent
the set of possible signals for system #.) In the discussion that follows we let
2 = {w]} represent the set of events about which the decision maker wishes to
make inferences based on the signal y from system #. These events are often
referred to as the parameters of interest.

Throughout our subsequent analysis y € Y is a random variable and we
initially assume that @ € Q1s also a random variable, i.e., they are real numbers
(or vectors of real numbers) and are functions of the state s € S. The set Y and
its relation to S are the characteristics of the information system. The relation
between the random variable y and S is given by the subset of states defined by
7'(y) = { s€ S| n(s)=y}.' Conditional on observing y, the decision maker
knows that the true state is in the subset #7'(y) < S. It is important to recognize
that from a decision making perspective the key characteristic of an information
system is not the values the signals may take, but rather what the signals tell the
decision maker about the state.

Treating # as implicit, we represent the joint distribution function for these
two random variables by &(y,w) and the marginal distribution functions by @(y)
and &(w), where

D(y) = [g dd(y,w),

and d(w) = fy dd(y,w).

! Note that if #(*) is not an invertible function, then 7'(*) is a correspondence, i.e., it maps into
sets.
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The corresponding generalized probability density functions are ¢(y,w), ¢(y),
and ¢(w).

Now consider the decision maker’s belief about the unknown parameter
given the receipt of signal y. That posterior belief is represented by &(w|y),
which has a generalized probability density function g(w|y). In deriving
posterior beliefs we typically use the density functions. In particular, assuming
o(y) > 0, we have the following counterpart to (3.1):

()
plwly) = ==—=. (3.3)
90)
Of course, as in the preceding section, if the decision maker’s beliefs are
initially expressed in terms of his prior marginal density function ¢(w) and a
likelihood function ¢(y|w), then Bayes’ theorem implies

p(w|y) = )
fg o(y|w) dP(w)

The following simple example illustrates the two approaches for updating
the decision maker’s beliefs about the events of interest based on observation
of y. In this example, Y and Q are assumed to be finite, with 2 and 3 elements
each, respectively. In the first approach, the decision maker’s beliefs are repre-
sented by the joint probability function ¢(y,w), which is specified in Table 3.1.

wl wz w3

y, 103 ] 02] o1

Y, 0.1 0.1 0.2
Table 3.1: Joint probabilities p(y,w).

From this table we can derive the marginal probabilities for the two signals y,
and y, by adding across the rows to obtain ¢(y,) = .6 and ¢(y,) = .4. The
conditional probabilities obtained using (3.3) are summarized in Table 3.2. Ob-
serve that the rows sum to one, as they should given that the probabilities are
conditional on y. The joint probabilities are simply normalized with the proba-
bility of y, which changes from row to row.
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, @, (02
i 3/6=1/2 | 21.6=1/3 | .1/.6=1/6
Y2 A/4=1/4 | 1/14=1/4 | 2/4=1/2

Table 3.2: Conditional probabilities p(w |y).

Under the second approach, the decision maker’s prior belief is represented
by the prior probability function ¢(w,) = .4, ¢p(w,) = .3, and ¢(w;) = .3, and the
likelihood function ¢(y|w), which is summarized in Table 3.3:

W, @, 125}
Y1 36222 36193 36162
Y2 36163 36162 36193

Table 3.3: Likelihood function ¢(y|w).

Observe that the columns sum to one, since the probabilities are conditional on
w, which changes from column to column. In this case we obtain the marginal
probabilities for the signals as follows:

o) = f 9y, | @) dD(w)=3/4x .4 +2/3x.3+1/3x.3=.6,
Q

00 = [ 90|0) dB(@) = 14 x 4+ 1/3x 3+23x 3= 4.
Q

Now we apply (3.4) and summarize the results for ¢(w|y) in the Table 3.4.

@, @, (]

N 3/4x.4+.6=12 | 23x3+.6=1/3| 13x.3+.6=1/6

1/3x3+4=14]23x3+.4=1/2

y, | V4x.4+4=1/4
Table 3.4: Posterior probability gp(w|y).

Observe that the computed probabilities are consistent with the first
approach. This illustrates that the two approaches are equivalent provided that
the joint probability function ¢(y,w) specified in the first approach is consistent
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with the marginal probability ¢(w) and likelihood ¢(y| w) specified in the second
approach.

3.1.3 Multi-variate Normal Distributions

In many analyses throughout this book we assume the random variables are
normally distributed vectors. In those analyses we use x ~ N(gt,X) to indicate
that the kx1 random vector x is normally distributed with kx1 mean vector g
and kxk covariance matrix L, i.e.,

p(x) = 2n)™"* |H|" exp[-Ya(x - ) H (x - p)],

where H = X! is the kxk precision matrix for x.2

To illustrate the posterior beliefs when variables are normally distributed
we assume y and ® represent nx1l and mx1 vectors of jointly normally
distributed random variables. Two approaches are considered and proofs of the
various relations can be found in Raiffa and Schlaifer (1961). In the first
approach, the decision maker’s prior belief is represented by the joint density
function ¢(y,0) ~ N(&,Z).? In this setting, g is an (n+m) x 1 mean vector and
X is an (n+m) % (n+m) covariance matrix, with

”'y
bo

E}'y zyw
Eo.)y zww

H, H,
H H

wy ww

p= Y= H=2'1=

The marginal distributions are:

o(y) = fk o(y,0) do ~N@,L,),

o(0) = fR p(y,0) dy ~N(,L,.).

In this approach, the conditiona} probability density function for @ giveny is
p(oly) ~ N(n,,, Z,,,), where

? For more extensive derivation of various relations using normal distributions see, for example,
Raiffa and Schlaifer (1961) and DeGroot (1970).

* It would be more precise to write ¢(y,0) as ¢( y) , but the former should not cause any
confusion and is less cumbersome. @
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"'le =ho t Ewy z;; (y - ”’y)’ (353)

Ty = Lo~ oy I, Lo = H.,. (3.5b)

wly
That is, the signal y shifts the prior mean for @ based on the difference between
y and its prior mean, times its covariance with @ adjusted for the variance of y.
Furthermore, the reduction in the prior variance for @ depends on the covarian-
ce between y and @, adjusted for the variance of y. Observe that with normal
distributions, the specific signal y received by the decision maker affects his
conditional mean for @ but it does not affect his conditional variance. The
latter is only affected by the covariance and variance characteristics of ‘the
signal, not the specific signal. This feature simplifies analyses that are based on
normal distributions.

The second approach is frequently used in settings in which o represents
the unknown mean of a process generating independent, identically distributed
random variables (vectors) for which N vectors have been observed (i.e., a
sample size of N). Thatis, y = (y,....yn), ¢(¥|®) = o(y,|@)x...xp(yy| @), and
p(y;|®) ~ N(®,Z,,,), where ® and y, are mx1 vectors and L, is an mxm
covariance matrix. In this setting, if the prior is ¢(®) ~ N(»,,EZ,,), then the
posterior is p(®|y) ~ N(g,,, Z,,,), Where

Pojy = [Z(;:D + Nr’;]lw]—l [z(:):l) B, * z“;llw Eﬁl yj]

I,y = [ELL +N ZQIZ]_l

Observe that the precision (i.e., the inverse of the variance) increases as the
sample size N increases, and the posterior mean is a weighted average of the
prior mean and the total observations, with weights equal to the precision of the
prior and the precision of each signal.

3.1.4 Sufficient Statistics

The information generated by an information system can be represented in a
variety of ways. In this section we consider a statistic y € ¥ that is a function
of the signal y, i.e., it is defined by a function y: Y ~ ¥. We define y to be an
equivalent statistic to y if y is invertible. In that case, one can infer y from y.

For example, assume y =y and y = y are nx1 and n'x1 random vectors,
respectively, with y = f + vy, where f is an n'x1 parameter vector and v is an
n'xn parameter matrix. In that setting, y and y are equivalent representations
of the decision maker’s information if n < n’ and v has rank n, since the
decision maker knows
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y=wv)y' v (y-1f)

if y is reported (since the fact that v has rank n implies that the inverse of v'v
exists). To illustrate, assume y is a 2x1 vector and y is a 3x1 vector with

10 10
f=({0] v=|(1 1f,
-5 01
which implies
. 211|110 23 -1/3(1j1 1 0 2/3 13 -1/3
v'v)y'vt= = = .
12 011 -1/3 2310 11 -1/3 173 2/3

Ify=1[2,4], then y=f+vy=[12,6, -1]'and

oo -0 [,
= vlv -1 vl - - _ 0 = .
y=(vTviy-D [-1/3 13 2/3] H

+5

Now consider a setting in which y is not invertible, so that y cannot be
inferred from y. A key point here is that a decision maker is not directly con-
cerned with determining y. Instead, he is concerned about making inferences
about some decision relevant event @ given y. We refer to y as a sufficient
statistic if it yields the same inferences about w as does y.

In defining a sufficient statistic we consider a “family” of likelihood
functions { p(y|w), y € ¥, w € 2 }. In this analysis y € Y is a random variable,
but w € £2 can be either a random variable or a set of possible parameter values.
The latter interpretation is important when, in Volume II, we consider agency
theory models in which one decision maker (the principal) pays incentive
compensation to motivate the action chosen by another decision maker (the
agent). In that setting Q2 is the set of possible actions that might be chosen by
the agent. The principal assigns probability one to the action induced by the
incentive contract, but the incentive contract depends crucially on the likelihood
function for the set of alternative actions the agent could select.

While w need not be a random variable, it is useful to define a sufficient
statistic in terms of the posterior beliefs that would be generated by prior beliefs
about w. To be a sufficient statistic, using y instead of y must not affect the
decision maker’s posterior beliefs no matter what prior beliefs he holds. That
is, identification of a sufficient statistic depends only on the characteristics of
the likelihood function and not on the characteristics of the prior beliefs.
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Definition Sufficient Statistic
The statistic y: Y - ¥is sufficient for y with respect to w, where the relation
between y and w is characterized by the family of likelihood functions
{ p(y|w), y € Y, w € Q2 }, if the posterior beliefs are such that

p(wly) =p(w|y”), VweQ,

for any prior belief p(w), w € 2, and any two signals y’, y” € Y such that
w(') =yO").

The following well known result identifies the key characteristic of a sufficient
statistic for a given family of likelihood functions (see DeGroot ,1970, p. 156).

Proposition 3.2 Sufficient Statistic Factorization Theorem
A statistic y: Y - ¥is sufficient for y with respect to w, given the family of
likelihood functions { ¢(y|w), y € Y, w € 2 }, if, and only if, there exist real
valued functions g(y) and h(y,w) such that

o(y|w) = g(y) h(y(y),w), VyeY,we Q.

In general, there are an infinite number of possible sufficient statistics, and
any statistic that is equivalent to y is a sufficient statistic. The more interesting
statistics are those that simplify the representation of the information by elimi-
nating unnecessary details. A sufficient statistic ": Y -~ ¥" is called a minimal
sufficient statistic if for every sufficient statistic y there exists a function G,: ¥
- ¥ such that y"(y) = G (y(y)) forally € ¥.*

To illustrate the above, consider the setting in which y = (y,, ..., y,) and y;
~N(w,0%), i.e., w is an unknown parameter and y is a sequence of n independent
draws from a normal distribution with mean w and known variance ¢°. In that
setting,

p(|w) =(@2no?)" exp[—;‘—, Do - w)’]
= (2nol)-"’2exp[ L (X 090 G- w)z)]

=80 h(,w),

4 In Appendix 18A we return to some key characteristics of sufficient statistics within the
exponential family of distributions.
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where

- 1 n

Yy = =21 Yp

n 1

g8Q) = 2no*y™* exp[- j Y-y )2],

h(y,w) = exp[—;:—; (y - w)z].

Hence, the mean of the sample is a sufficient statistic for the detailed sample
results (i.e., y = y) if the sample is normally distributed and the unknown
parameter o is the mean.

Now consider how the above result changes if the decision maker is
uncertain about both the mean and the variance of the normal distribution, i.e.,
o(y;| @) ~ N(p,0%), with o = (,6). We leave the proof to the reader, and merely
state that the sufficient statistic y cannot be reduced to a single element, as in
the preceding case, but it can be reduced to two elements. The first element is
the mean (i.e., i, = y) and the second is the following measure of the dispersion
of the observations:

Y, = E:Ll (y,- “5’)2-

3.2 VALUE OF DECISION-FACILITATING
INFORMATION SYSTEMS

We now examine how information can improve decisions. However, before
relating information to decisions we introduce the concepts of partitions and
measurable functions, which is useful in characterizing the decision-facilitating
role of information.

3.2.1 Partitions and Measurable Functions

In the following analysis we use the concept of a partition for representing both
information and events that affect outcomes. Recall from the definition in
Section 3.1.1 that a set of events defines a probabilizable partition of the state
space S if the elements divide S into an exhaustive set of disjoint probabilizable
events. A probabilizable partition is not a sigma-field, but a partition can be
used to generate a unique minimal sigma-field. In particular, a sigma-field Z'is
the minimal sigma-field generated by the partition if it is the sigma-field with
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the fewest elements such that the elements of the partition are (subsets of the)
elements in =.

An information system # defines a partition of the state space as the set of
subsets of states that result in particular signal for each subset, i.e., the set
{ n'(») < S,y € Y'}. This partition is an equivalent representation of the infor-
mation system. If the number of elements in this partition is finite, it is often
more convenient to represent the information system as the partition of the state
space it generates instead of its random variable representation. Hence, (with
a slight abuse of notation) we let Y denote the set of signals as well as the
partition generated by the information system, and y € Y represent the
information signal as well as the set of states that result in this signal, i.e., y =
{seS|nis)=y}’

In some cases two information systems can be compared on the basis of the
relative fineness (or coarseness) of their partitions of S.

Definition Fineness and Coarseness of Partitions
Partition Y’ is at least as fine a partition of S as partition Y” if, for every y’
€ Y’ there exists ay” € Y” such thaty’ < y”. (Equivalently, Y” is at least as
coarse a partition as Y’.)
Partition Y is a finer partition than Y” if Y’ is at least as fine as Y” and
the converse is not true.

The fineness/coarseness relation provides an incomplete ordering of parti-
tions. To illustrate, assume § is an interval on the real line and the information
systems Y, Y”, and Y" divide S into sequences of intervals as represented in
Figure 3.1.

Consider a function 2 § - X , i.e., f{s) = x specifies the element of X
associated with each state s € S. Now consider whether a partition Y tells us
enough about S to determine the value of the function f. If that is the case, then
the function is defined to be measurable with respect to the partition.®

5 Alternatively, we can directly define the set of information signals as Y = { y | y = #"'(5(s)), s
€S}

6 More generally, a random variable f{*) is measurable with respect to the sigma-field generated
by the information system #() if { s| fs) =x } is an element in that sigma-field for all x. Hence,
every element in sigma-field generated by f{*) is also an element in the sigma-field generated by
the information system 7(-). However, if the number of elements in the partition generated by the
information system is finite, our definition of Y-measurability and the more general definition of
measurability are equivalent statements.



Decision-Facilitating Information

r |
L no,oon o, i ¥ Vs’ |
I | 1 1 1 1 |
IR T ST . S S . S
I T | I | |
Y”,l yl m l y2 m | y3 m | y4 m | ys " |
I I I T I 1
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Figure 3.2: Y’'-measurable function.
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Definition Y-measurable Functions
A function f: § ~ X is Y-measurable with respect to a partition Y of S if f(s")
= f(s") for every pair of states s’, s” € y, in every partition element y € Y.
We can then express f as a function from Y to X, i.e., {y) =fs), for s € y.

To illustrate, consider the function depicted in Figure 3.2, and relate it to the
partitions in Figure 3.1. This function is such that it is measurable with respect
to Y’, which is specified in the figure. This follows from the fact that the func-
tion has the same value for all states in each element of Y’. The fact that f{y,")
= fly,") implies that f'is also measurable with respect to Y”. However, the fact
that f(y,") # f(y,") implies that fis not measurable with respect to Y".

The preceding characterizes the measurability of a function with respect to
a specified partition Y. We can go in the opposite direction and specify which
partitions are sufficient to sustain a given function, or class of functions.
Furthermore, we can identify the coarsest partition that sustains a given class.’

Definition f-sufficient and f-relevant Partitions
Given an arbitrary family of functions f: $xQ -~ X (where w € Q is a
“parameter” of the function from S to X), a partition Y is f-sufficient with
respect to Q if f(s,w) is Y-measurable for all w € 2. Furthermore, Y is f-
relevant with respect to £ if Y is the coarsest partition that is f-sufficient.

For example, for the function fin Figure 3.2, both Y’ and Y” are f-sufficient,
while Y” is f-relevant since Y” is coarser than ¥’ and there is no partition coarser
than Y” that is f~sufficient.

3.2.2 Basic Information Economic Model

In this model there are potentially two individuals of interest. The first is an
information system evaluator who selects an information system # from a set of
alternative systems H. Our analysis is conducted from the perspective of that
individual. The second is a decision maker who selects and implements an
action a from among a set of actions A after observing a signal y € Y from the
system # chosen by the evaluator. While we frequently assume the evaluator

" With general state spaces and sigma-fields, a sigma-field is f-sufficient if the random variables
f*,w) parameterized by w are all measurable with respect to that sigma-field (see previous
footnote). A sigma-field is f-relevant if it is the minimal sigma-field generated by the random
variables f{*,w), for all w.
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is also the decision maker, we allow for the possibility that they may be two
different individuals.?®

The model is based on a probability space (S, =, P), where S encompasses
all sources of uncertainty. In particular, S represents all uncertainty with respect
to the outcomes that will result from the alternative information systems and
actions, and all uncertainty with respect to the information signals that may be
received.

Outcomes and Utilities: The evaluator chooses an information system # €
H and the decision maker chooses an action (or strategy) a € A given the signal
y € Y from the information system. The preferences of direct interest are those
of the evaluator. His preferences are assumed to depend on an outcome that can
be divided into two components. The first component is the “gross” outcome
x € X which is assumed to depend on the state s € S and the action a € A as
specified by the outcome function

x: SxA -~ X.

The second is the cost of the information system # € H, which we assume for
simplicity is independent of the state and the action. The cost function is
represented by x(#) and has the same dimension as x so that the evaluator’s von
Neumann/Morgenstern utility function with respect to the net outcome is
expressed as u(x-x).

Some aspects of the state do not affect the outcome x, and it is at times use-
ful to focus on outcome-adequate or outcome-relevant partitions of the state
space.

Definition Outcome-adequate and Outcome-relevant Partitions
A partition @ = { 0 } of the state space S is outcome-udequate if it is x-suf-
ficient, i.e.,

x(s',a) =x(s’a), Vs's’€l, VOecO, VacA.

A partition @ is outcome-relevant if it is the coarsest outcome-adequate
partition.

Observe that we can express the outcome functions as x: @xA - X if @ is
outcome-adequate, where x(6,a) = x(s,a), for s € 6.

® For an early discussion of this type of model in the accounting literature, see Feltham (1968,
1972) and Feltham and Demski (1970).
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Information: The information received by the decision maker before he
chooses his action is represented by a signal y € Y, where Y is the set of possible
signals. The fact that S is assumed to represent all sources of uncertainty,
including any factors that affect the information received, implies that the set of
signals defines a partition of S. The set Y and the partition it defines on S both
depend on the information system # € H that is chosen.

Beliefs: To simplify the following discussion we assume that S and A are
finite, with all s € 5, i.e., each state is a probabilizable event. The evaluator’s
prior belief about the states is represented by the probability function P(s), and
his prior belief with respect to the outcome-relevant events is

P@) =Y PGs).

sebd
Similarly, the marginal probability of the signal y is

Py)= Y P(s),

SEY

and the likelihood function relating the outcome-relevant events to signals is

P(yn6)
=~ 7 yné = @
oy|6) =1 PO

0 yno =@.

The evaluator’s posterior beliefs given signal y are

o(sly) = { PO)
0 s¢y
P(yn6)
Fono) yno + @
o@ly) ={ PO
0 yné = 9.

Figure 3.3 illustrates the two partitions defined by ¥ and ® on S. In this
illustration there are five possible states and the information system reports one
of two signals, y, or y,, where y, is reported if the state is “odd numbered” and
¥y, is reported if the state is “even numbered.”



Decision-Facilitating Information 87

>
@‘

@Qe
6

@

Figure 3.3: Information and outcome-relevant
partitions.

There are two possible actions, @, and a,, and the outcome function is
x(s,a)) = x(s5,a,) =x(s3,a,) = 10;  x(s4,a,) = x(s5,a,) = 30;
x(51,ay) = X(55,ay) = 25;  x(853,a,) = X(54,a,) = x(s5,a,) = 15.

Hence, the outcome-relevant partition of Sis @ = { 6,, 6,, 6, }, with 6, = { s,,
5, },0,={5;},and 0, = { s,, 55 }. If the states are equally likely, then the prior
probabilities for the outcome-relevant events, the likelihood function condition-
al on those events, and the resulting posterior probabilities are as summarized
in Table 3.5. The marginal probabilities for the two signals are ¢(y,) = .2 + .2
+.2=.6and p(y,) =.2 +.2 = 4. Observe that signal y, increases the probability
that event 6, has occurred and reduces the probabilities of the other two events,
whereas signal y, has the reverse effect.
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0, 0, 0,
Prior: P 2+2=4 0.2 2+.2=4
Likelihood: ¢(y,|0) | 2+.4=.5 | 2+2=1 | 2+4=35
0(,]0) 2+4=5 | 0+2=0 | 2+4=5
Posterior:  ¢(8|y,) 2+6=13[2+6=1/3].2+.6=1/3
0(8]y,) 2:4=5 | 0:4=0 | 2:4=5

Table 3.5: Prior and posterior beliefs, and the likelihood function for
the outcome-relevant events.

Decision Strategies: The analysis is stated from the ex ante perspective of
the information system evaluator. To evaluate system # he must predict the
action the decision maker will select given each possible signal y € Y. This
prediction may be either deterministic or stochastic. If it is deterministic, the
prediction is represented by a function a: Y - A, where a = a(y) represents the
action the decision maker is predicted to select if he receives signal y. On the
other hand, if the prediction is stochastic, it is represented by a probability
function a: AXY - [0,1], where a(a|y) is the probability action a will be selected
if the decision maker receives signal y, with

E a(aly) = 1.

acA

The latter is more general in that it permits consideration of random action
choice. If the decision choice is not random, then

1
a(aly) =
0

Expected Utility for given Decision Rules and Information Structures:
The evaluator’s expected utility for a given decision rule and a given informa-
tion structure can be stated using either the likelihood function ¢(y|6) or the
posterior belief ¢(8|y). The expressions are slightly different if the decision rule
is deterministic versus stochastic.

a(y) = a,
a(y) # a.
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Deterministic decision rule:

Uan) =Y. Y. ux(®,a®)) - xn) o(y|6) P(6)

fe® yeY

Y Y w6 a0) - () 9(6]y) P).

yeY 0€®

Stochastic decision rule:

Y Y Y ux® a) - k() alaly) o(y|6) P(6)

6e® yeY acA

U(a,n)

Y Y Y wx, a) - k) ataly) 9(6]y) PG).

yeY 6e@ acA

Optimal Decision Rules: From the perspective of the information system
evaluator, a; is an optimal deterministic decision rule for information system
n if

Ula,.n) > U@an), Vac{a:Y-A}.
Similarly, a,; is an optimal stochastic decision rule for information system 7 if
Ua,.n) 2 Ulan), VYae{a:AxY~[0,1]|Y,,a@y)=1,yeY}.

Proposition 3.3
If an optimal stochastic decision rule a; exists, there is an optimal deter-
ministic decision rule a; such that

U') = Uaym) = Y [max( Yy u(x(e,a>-x(n>)<o(e|y>)]Pm.

yeY | aeA \ 6e@

That is, randomization over A given'y is never necessary, and a; (y) is an action
that provides the evaluator with the maximum expected utility conditional on
having observed signal y. The key here is that an optimal stochastic decision
rule only assigns non-zero probabilities to actions that have maximum expected
utility conditional on having observed signal y.

We now consider two extreme information systems: the null and perfect
systems. These serve as useful benchmarks in some of the subsequent analyses.
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Null information system: The null information system n° sends a constant
(null) signal represented by Y° = {y°}. The optimal decision for this system is
a’(y°) = a°, where a’ is such that

U'°) = U@y = max( Y ux(8.a) - (1) P(e)).

a€cA €O

Perfect information system: The perfect information system n” reveals the
outcome-relevant events (which is essentially equivalent to revealing the state),
so that ¥ = @. The optimal decision rule a”: @ - A is such that

U'(P) = Uay?) = ¥ ( max u(x (6,a) —x(n”))) P().
fe® aeA

Observe that the maximization operator and the summation over outcome-
relevant events are reversed between the null and perfect information systems.
The optimal null action maximizes the expected utility, whereas the optimal
perfect information action potentially differs for each outcome-relevant event.

Optimal Information System: If the optimal decision rule is implemented
for each information system, the system most preferred by the information
system evaluator, denoted #", is characterized by

U@)2U@) YneH.

Alternatively, if decision rule a(#): AxY" - [0,1] is predicted to be implemented
with information system # € H, the system most preferred by the evaluator is
characterized by

Ua(n"),n") = Ula(n),n) ¥V n € H.
3.2.3 Value of Information

In the discussion that follows we drop the cost of the information system and
examine the value of a system # relative to the null system #* This should not
be construed as ignoring costs, but merely as determining whether a system
might be sufficiently valuable to offset additional costs. If it has no incremental
value, then it is not preferred if there are incremental costs. Throughout this
analysis we assume that the information evaluator is the decision maker, so that
the optimal deterministic decision rule is implemented for each information
system.
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Let 7(#n) represent the value of # relative to #°, expressed in the same units
as the outcome x. In particular, z(s) is the maximum amount the information
system evaluator would pay (i.e., the buying price) to implement # instead of #°
(which is assumed to have zero cost). That is, z(#) is such that

U = % [max( Y u(@.a)-n(n)) w(ely)) }P(w.

yeY | aeA \ ge@

If the evaluator is risk neutral, then the value is equal to the optimal ex-
pected gross outcome for information system s minus the optimal outcome with
the null system, i.e.,

OEDD [max( ) x(0,a)¢(0|y)) ]P(y) —max( ) x(0,a)P(0)).

yeY | acA \ fc@ acA \ Ge@

A somewhat similar calculation is also possible if the evaluator has an exponen-

tial utility function, i.e., u(x-x) = - exp[-r(x-x)] = -exp[- rx]Jexp[rx], in which
9

case

m(n) = l{ln[max( Y -exp[-rx(6,a)] P(0)) ]
;

acA fe@

- ln( Z [max( E - exp[-rx(6,a)] ¢(0|y)) ]P(y)) }

yeY | agA \ ge@

A key factor permitting a closed form expression for z(#) in the risk-neutral
and exponential-utility settings is that in those settings the size of the cost of the
information system has no impact on the decisions that are made, i.e., there are
no wealth effects on the choices among gambles. As we saw in Chapter 2, that
is not the case for other risk-averse utility functions, so that the value of a infor-
mation system must be expressed as an implicit function.

Given that the evaluator selects the optimal action for each signal, the value
of n relative to #° is always non-negative. This follows from the fact that it is
always possible for the decision maker to ignore the signal received and select
a’ for each signal y € Y. Furthermore, the value of information system # can
never exceed the value of the perfect information system #?, since a?(6) identi-
fies the best action in each state 8 € @. These statements are summarized in the
following proposition, along with conditions that are necessary for # to have
strictly positive value.

® Note that in this case the value of the information system is equal to the difference between the
certainty equivalents for # and #” with no information costs for both.
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Proposition 3.4
The value of # is non-negative and less than the value of the perfect
information system, i.e., #(#”) > m(n) 2 0, and the following are necessary
conditions for 5 to have strictly positive value:

(a) A cannot be a singleton, i.e., there must be alternative actions.

(b) a?(0) # a° for at least some 6 € O, i.e., one action cannot be optimal for
all outcome-relevant events — there must be some desire to choose
better actions.

(©) a; (y) # a’ for at least some y € Y, i.e., the change in beliefs must be
sufficient for at least one signal (more generally, a measurable set of
signals) to induce the decision maker to choose a different action.

A sufficient condition for 5 to have strictly positive value is that a° is not an
optimal action for at least some y € Y.'°

Finally, to identify information systems that have a value equal to the value
of the perfect information system, let @ represent an a”-relevant partition of @
(and, hence, of §), i.e., @ is the coarsest partition of @ such that

a?(@)=a?@") if0,0"cfeéb.

Observe that different events 8’ and 6" must result in different outcomes for at
least some actions (since @ is an outcome-relevant partition of S), but they can
result in the same optimal action choice. Therefore, from a decision-facilitating
perspective there is no need to distinguish between those two events.

Proposition 3.5
The value of information system # is equal to the value of perfect
information, i.e., z(n) = n(n?), if Y is at least as fine a partition of S as is the
a’-relevant partition @.

19 As stated in the proposition, the value of perfect information is an upper bound on the value
of any imperfect information system # and zero is a lower bound. There are a number of papers
in the early seventies that identify other bounds that are “sharper” than these two. They are all
developed for the case in which the information evaluator/decision maker is risk neutral. See, for
example, Demski (1972), Ziemba and Butterworth (1975) and Huang, Vertinsky, and Ziemba
(1977).
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3.3 COMPARISON OF INFORMATION SYSTEMS

We now consider statements about relative preferences among information
systems given only the statistical characteristics of these systems, knowing very
little about the evaluator and the decision context in which he will use the
system. In these statements we examine the evaluator’s preference under the
assumption that both systems are costless and that the information will be used
to make optimal decisions from the evaluator’s perspective.

3.3.1 Generally at Least as Valuable Information Systems

In the following discussion we use the term payoff function to refer to the
function w: @xA - R, where w = ucx, i.e., the payoff function is obtained by
combining the evaluator’s utility function # with the outcome function x as
follows:

w(6,a) = u(x(6,a)).

To explicitly recognize the role of the payoff function w: ®xA - R and prior
probability function P: @ - [0,1] in the expected utility calculation, we let

Uw,Pa,n) = Y Y, w(Ba()) e(y|6) P©),

Ge® yeY

and U'w,P,p) = Y, Y, w(ba' () e(y|6) P@),

0c® yeY

where a” is the optimal decision rule given w, P, and #.

The following analysis makes statements about the relative value of infor-
mation systems that are independent of the payoff and prior probability func-
tions. Hence, we require some notation to represent the set of possible functions
that are being considered. In all cases, the state partition @ is taken as given —
the functions are those that apply to that partition. The set of all possible prior
beliefs over the events in @ is denoted

AB) ={P:0~R|YuoPO)=1,P®) 20, YOO},

and the set of bounded, relative payoff functions given @ and the set of actions
A is denoted

W(O,A) = { w: OxA - [0,1] }.
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Observe that if the evaluator’s utility function is bounded, there is no loss of
generality in assuming that it has been scaled such that it has a minimum of zero
and a maximum of one (see Proposition 2.2).

Now we focus on a comparison of pairs of information systems. We define
one information system to be “generally at least as valuable” as the other if the
former would not be of less value in any decision context for which & is
outcome-adequate.'' The actions do not play a central role here, but the set A
must be sufficiently diverse. We assume the set of actions A has a cardinality
at least as great as @, so that there could conceivably be a different optimal
action for each event 6.

While the basis for much of the analysis reported below can be found in
Blackwell (1951, 1953) and Blackwell and Girshick (1954), the specific form
of the analysis relates more closely to Marschak and Miyasawa (MM) (1968),
and frequent reference is made to that paper.

Definition Generally at Least as Valuable - MM Condition (A)
Given @ and A, n? is generally at least as valuable as #' if, and only if,

Uw,Pn® 2 UWw,Py'), Ywe WOA),PecA0).
3.3.2 Informativeness

At Least As Informative: The following is a very important condition for
comparing information systems on the basis of their likelihood functions. In
this discussion we refer to information system #' in terms of the |@|x|Y |
Markov matrix ', whose element in row 6 and column y' is the likelihood
¢'(y'|6). Observe that, as with any Markov matrix, the elements of ' are non-
negative and its rows sum to one.

Definition At Least as @-informative - MM Condition (B)
Information system 0’ is at least as @-informative as 3" if, and only if, there
exists a |Y 2|x|Y!| Markov matrix B with elements b(y'|y?) > 0 such that

n'=7n’B.

The relation between y' and y* is statistical, not necessarily physical. How-
ever, the process generating y' acts “as if” y* were generated and then either

"' Blackwell (1951, 1953) uses the term “more informative” for what we have defined to be
“generally at least as valuable.” Our terminology seems to fit more closely to its intuitive mean-
ing.
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some noise is added to that signal to obtain y' or information is deleted through
aggregation (which MM refer to as collapsing).

Definition Collapsing Information - MM Condition (C)
Information system n' is a collapsing of ?* if ¥ % is a partition of Y' (i.e., Y2
is a finer partition of S than Y).

Proposition 3.6
If information system %' is a collapsing of n?, then n? is at least as @-infor-
mative as n'.

Hllustrations: To illustrate the above, consider the following three systems
(@ has three elements):

10 100 60 .40 0
n'=[1 9], w*=|.1 .6 3|, n°=|.06 50 .44|.
1.9 1.3 .6 06 .44 .50

Observe that n' is a collapsing of 0 since the second signal of n' aggregates
(collapses) the second and third signals of 5. The latter is at least as informa-
tive as the former because 1' = 4?B with

10
B=(0 1|.
01

This illustrates the fact that in a collapsing, B is all zeros and ones, and the
number of signals are reduced. On the other hand, #* has the same number of
signals as 0 but is less informative, as demonstrated by the fact that n° = 4’B
with

=

I
o © o
I S S
o B

and there does not exist a Markov matrix B such that 6> = #’B.

Is n' at least as informative as 0®, or vice-versa? The answer is no! To
illustrate, first consider whether there exists a 2x3 Markov matrix B such that
n° =n'B. The non-existence of B follows from the fact that it would require
that both ¢(y,’|6,) = .50 and ¢(y,’|6;) = .44 equal .1xb,, + .9xb,,, which is
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obviously impossible. Now consider whether there exists a 3x2 Markov matrix
such that ' = n°B. Observe that n* is invertible and, hence, we can solve for
B:

B = [“3]-1 “l = %

S O W

2
31
3

The problem is that B is not a Markov matrix — while the rows sum to one, one
of the elements is negative.

This example illustrates that “informativeness” provides only a partial
ordering of information systems — not all systems can be compared on the basis
of informativeness.

Infinite Sets: If the set of signals is not finite, then we can use the like-
lihood distribution functions and the informativeness relation holds if there
exists a Markov kernel b(y'|y*) such that

0'(y'0) = f b(y'|y?) dP*(y*|6).

YZ
A Markov kernel a is non-negative function that integrates over Y to one, i.e.,

fb(v‘lyz)dy'=1-

yl

To illustrate this type of relation consider a decision setting in which &
represents an unknown mean y of a normally distributed process that generates
an independent sample of size # with known variance ¢°. In that setting, y” is
an ;x1 vector of observations and the likelihood function is

o(y"|p) = 2na?)"" exp[ i o/ -u)zl

Now consider two information systems with sample sizes ' < 7% In this set-
ting, b(y'|y? equals zero if y‘has some observations that are not the same as in
y’, whereas b(y ly>) =1ify? has n' elements in common with y'. Assume, for
example, that 7> =n + 1 and ' = n, then (lettmg the ﬁrst n elements of y? corre-
spond with the n elements in y') we have b(y'|y' yn+l )=1forall y,”l € (-00,00)
and
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p(y'|p) = fb(y‘ly‘,y,ﬁ,)¢(y‘,y,.2+1|u)dy,,2+.

= Qno’y"* exv[;i;ﬁl: ) - m’

Relation Between Informativeness and Value: Now we relate informative-
ness to value, which is Blackwell’s key result. An information system that is
at least as @-informative as another is at least as valuable, for all decision
settings in which @ is an outcome-relevant partition of S.

Proposition 3.7 (MM Theorem 6.3): (B) =(A4)
If #° is at least as @-informative as 7', then #? is generally at least as valu-
able as 7.

Proof: Let w'(6,y) = w(6,a’(y)), so that

Y w6y 9@ly) 2 Y. wba) 0@|y), VacA.
fe® fe®

Multiply both sides by P(y) and use p(6|y) P(y) = ¢(y|6) P(6):

E w'(6)y) o(y|6) P(O) > E w(b,a) p(y|0) P(6), YVaecA. (3.6)

fe @ fe@

Assume 7 is at least as @-informative as 7'. We then obtain

v Py =Y Y w*(o,ybLZ b(y'|y2>¢<yz|0>]P<o)

6€0 yley! Zey?

=y ¥ b(v'lyz)[z w*(o,y'>¢@2l0)P(e)]

y2er? yley! 0c®

<y ¥ b@'m[z w*<a,y2>¢@2|0>P<o>]

yler? yley! fe@

= Y Y w©6y)er?6) PO = UwPyp).

y25y2 fec@
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The first equality follows from the fact that #” is at least as informative as #'.
The second equality is merely arearranging of terms. The inequality is obtained
by switching to a potentially better decision rule, given that the expression in
the square brackets is the same as in (3.6). The final equality holds because y'
only appears in b(y'|y®) and the sum for all y' equals one. Q.E.D.

Observe that the informativeness relation we have been using is a weak
relation. The fact that system #?is at least as informative as #' does not pre-
clude the converse. Hence, it is not surprising that the resulting value relation
is also weak. However, a stronger informativeness relation will not, in general,
result in a stronger value relation. To illustrate, consider the following defini-
tion of more informative.

Definition More @-informative
Information system % is more @-informative than ' if, and only if, the
former is at least as informative as the latter and the converse does not hold.

Now consider the two illustrative matrices 0 and n* introduced earlier. We
have already demonstrated that the latter is at least as informative as the former
and it is straightforward to prove the converse does not hold. Hence, 1* is more
@-informative than n'. Now consider two decision problems which differ with
respect to the payoffs associated with three actions and the three payoff-relevant
events, but which have the same prior beliefs and hence the same posterior
beliefs. The prior and posterior beliefs are summarized in Table 3.6.

0, 9, 9,

Prior: PO 0.3 0.4 0.3
Posterior: 7' y,' 30/37 4/37 3/37
¥, 0 417 3/7

0% y?2 30/37 4137 3/37

P 0 8/11 3/11

y:2 0 25 3/5

Table 3.6: Prior P(6) and posterior ¢(8|y) beliefs.

Table 3.7 specifies the payoff functions for the two decision problems.
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Problem (a) Problem (b)
6, 6, 6, 6, 6, 6,
Action aq, 1 0 0 1 0 0
a, 0 1 0 0 1 0.4
a, 0 0 1 0 0 1

Table 3.7: Payoff functions w(6,a).

Observe that in both problems, g; is the optimal action given event 8, so that
each event has a different optimal action. In problem (a), information system
0’ generates a different action choice for each signal, with a’(y?) = a,, while the
optimal action choices for information system n' are a’(y,") = a, and a*(y,') =
a,. The expected payoffs for n' and n* are .66 and .72, respectively. Hence, in
this problem, the additional signal in 1)* results in a higher expected payoff, due
to the fact the optimal decisions differ between y,” and y,’.

In problem (b) the optimal action choices for the signals from ' are the
same as in problem (a). However, the optimal action choices for the signals
from n? are a’(y,%) = q, and a’(y,%) = a’(y,%) = a,, i.e., the second and third
signals induce the same action choice as the second signal inn'. Consequently,
the expected payoff is .768 for both information systems, which implies the
more informative system is no more valuable than the less informative system.

Noiseless Information Systems: In some settings the signals define a
partition on the event space ®. These systems are defined to be noiseless and
the informativeness relation takes a particularly simple form. However, one
must be careful here. Information systems always define partitions on the
underlying state space S, but two factors hinder a comparison on the basis of
partitions. First, the partition defined by one system may be neither coarser nor
finer than the partition defined by another system. Second, information systems
may not define partitions on the events that influence the payoff from alternative
actions.

Definition Noiseless Information Systems - MM Condition (N)
Information system 7 is noiseless relative to @ if, and only if, ¥ defines a
partition on 6.

Observe that a noiseless system is such that the likelihood function ¢(y|6) is
equal to either zero or one. Earlier we introduced MM’s collapsing condition
(C). It plays a particularly important role if the information systems are noise-
less.
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Proposition 3.8 (MM Theorem 11.4): (N) =[(4) =(C)]
If #' and #* are noiseless information structures with respect to @, then 7
is at least as @-informative as ' if, and only if, #' is a collapsing of 7%

Redundant Information: In the preceding analysis we implicitly assume
that the evaluator can only choose between two information systems. Now
consider the possibility of selecting ', #%, or #'2, where 5' reports both y' and
y>. Marschak and Miyasawa refer to #' as a garbling of #? if the following
relations hold.

Definition Garbling: MM Condition (G)
Information system 7' is a garbling of n* if each of the following three
equivalent conditions are true (where each of the conditional probability
functions are derived from a joint probability function ¢(y',y%,6)):

@ o('[y0) = (' |y;
(b) p(8]y'.y*) = p(8]y?);
©) o' Y*|0) = 00'y*) 0(?|6) .

The first condition can be interpreted as stating that the evaluator’s belief about
y'is independent of 6 given y*. The second condition states that the evaluator’s
belief about & is independent of y' given y. The third is perhaps the most inter-
esting because, based on Proposition 3.2, it implies that y* is a sufficient statistic
for (y',y?) with respect to 6."

Now consider the relation between garbling and informativeness.

Proposition 3.9 (MM Theorem 6.2)
If ' is a garbling of #?, then #” is at least as informative as both 7' and 7'

Effectively, garbling implies that y' adds nothing to y*.

12 See Amershi (1988) for an extensive discussion of the relation between informativeness and
sufficient statistics, including consideration of generalized probability spaces.
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3.4 IMPACT OF RISK AND RISK AVERSION ON THE
VALUE OF INFORMATION

To illustrate the potential impact of risk aversion on the value of information we
return to the simple financial investment and hurdle model examples introduced
in Chapter 2.

3.4.1 Financial Investment Example"

Recall that in the financial investment example the decision maker is an investor
with w units of capital and chooses between investing in a riskless and a risky
asset (investment). The wealth level w does not play any role, due to the lack
of a wealth effect with exponential utility. Hence, in the following discussion
we assume, for simplicity, that the investor has zero wealth (i.e., w = 0).

The Basic Model: The investor can invest a units of capital in a risky asset
by borrowing a units of capital (a < O represents going short in the risky asset
and investing |a| in the riskless asset). The net return per unit invested in the
risky asset is represented by the random variable € and the cost of riskless
borrowing is normalized to be one per unit. Hence, the net outcome is x = ae.

The investor’s prior belief with respect to the net return £is normally distri-
buted with mean g, and variance 6,>. He has an exponential utility function
with risk aversion r. Hence, with normally distributed returns, he selects his
investment level so as to maximize his certainty equivalent:

CE(a) = E[x|a] - YarVar[x|a].

If the investor chooses his action based on his prior beliefs, then his optimal
decision (see equation (2.7)) is

a’ = pyflroy’] 3.7
and his expected utility is
U(a’) = - exp[- rCE(a’)]
where CE(a°) = Yaul[roy?]. (3.8)

Impact of Information: Now assume that information system # provides
the investor with a signal y prior to making his investment decision. We assume

" Gould (1974) provides an analysis of a similar example.
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that y and £are jointly normally distributed, and the signal is scaled so that both
y and ehave mean p,. Furthermore, the variance of y is ayz and this is also the
covariance between y and ¢, i.e., we assume that y is measured such that it
equals the investor’s posterior mean and ¢ is essentially y plus unanticipated
randomness in returns.' Hence, the investor’s posterior belief about £ given y
is £y ~ N(y,0,%), where 6,> = o)” - 6,? is the posterior variance, i.e., the unanti-
cipated randomness in returns.
From (3.7) and (3.8) it follows that

a'(y) = yllro,’]
CE(a’(y)|y) = Vay*l[ro*).

From this (and the analysis in Appendix 3A) we obtain the following expected
utility for system #:

+00

U@ = —fexr)[-ﬁyz

9|

@nal) exp[— Lo- uo>2]dy

y

—00

(2
= - CXP[-% uﬁ}-

1) 20,

Value of Information: In the exponential utility function case the optimal
action is independent of the cost of the information system since there is no
wealth effect. The value of the information is equal to the amount z such that

U(a’) = U (n) explra].
Taking the log of both sides, using o,? = 6;* - 5,7, and solving for  yields:

1 2 2 2
7= —|Ino;, - In(c; -0)) |.
2r no (0 y)

From the above, we obtain the following comparative statics. The value of the
information is:

4 The representation of information is somewhat arbitrary. Assume that (J, &) are jointly
normally distributed random variables with means (1;4,), variances (a;%,0,2) and covariance d;,.
Now let y = py + (J - ;) 0/a5’, which implies that y has mean p, and variance o,* = 6,’/0;’.
Hence, if the underlying signal and ¢ are jointly normally distributed, one can always redefine
the signal so that y and £ have the assumed relation.
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(a) independent of the prior mean K,

(b) decreasing in the prior uncertainty o,’, given that the uncertainty
resolved by the information (ayz) is held constant;

(c) increasing in the uncertainty resolved by the information (ay2), given
that the prior uncertainty (g,°) is held constant;

(d) decreasing in the decision maker’s risk aversion r.

Results (a), (b), and (c) are not surprising. The investor is undertaking a
gamble both in his investment decision and in acquiring information; with
exponential utility there is no wealth effect on the preferences among gambles,
$O [ty has no impact. More prior uncertainty, holding o,” constant, implies that
there is greater unresolved uncertainty after the signal is received and, hence,
itis less valuable. Conversely, increasing ayz while holding o, constant implies
that there is less unresolved uncertainty after the signal is received and, hence,
the signal is more valuable. One can view increasing ayz as increasing the infor-
mativeness of the information system. In this example, even a small increase
in informativeness has value. A key aspect of that result is that the investor’s
set of possible actions is a convex set and the optimal action is a continuous
variable of the investor’s posterior mean, i.e., any change in expectation leads
to a change in action. That type of “fine tuning” was not possible in our earlier
example with a finite action space (recall that there were only three possible
actions).

Students often find result (d) to be surprising. The usual intuition is that
risk-averse investors dislike risk so they will be willing to pay more for the
information so as to reduce their risk. However, this fails to recognize that an
investor can reduce his risk by investing less in the risky asset. If he is less
willing to invest in the risky asset, independent of the information, then the
information is less valuable. Furthermore, “buying” information is itself a
gamble, with an outcome that is greatest if y is either very large or very small.
A more risk-averse investor is less willing to undertake that gamble.

In concluding this example it is important to note that this has been a partial
equilibrium analysis. In particular, the information received by the investor is
assumed to have no impact on the market price of the risky asset. In Chapters
5 and 7 we re-examine the impact of acquiring information in a pure exchange
market setting — considering the case in which all investors receive a report of
y. Inthat setting, a public signal has zero value if the investors have equilibrium
holdings prior to receiving the information — the prices adjust (whereas here the
price is fixed at one) so that the investors choose to retain their prior equilibrium
holdings. This result changes in Chapter 8 when we introduce production
choice, and changes again in Chapters 11 and 12 when we consider an equili-
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brium in which only some investors receive y and the others seek to infer y from
the equilibrium price.

3.4.2 The Hurdle Model

Recall that in the hurdle model the decision maker chooses an action a € [0,1]
and obtains a good outcome x, if a is greater than the hurdle A € [0,1], and
receives a bad outcome x, otherwise. The decision maker’s prior belief about
the hurdle 4 is assumed to be uniformly distributed over the unit interval [0,1],
and his utility function depends both on the outcome net of the information cost
x - k and the effort (action) a, i.e., the utility function is u(x-x,a). In the follow-
ing analysis we assume the agent has an additively separable utility function
such that

u(x-x,a) = u(x-x) - v(a),

where u ' >0,u " <0, v'>0and v(0) = 0. We consider a simple version of the
model in which the decision maker can acquire perfect information about the
hurdle.

With perfect information about the hurdle before choosing the action, the
decision maker can choose his optimal action with a perfect knowledge of how
high he must jump to clear the hurdle. Since it is costly for the agent to jump,
his optimal action strategy is either to precisely clear the hurdle, i.e., a”(h) = h,
if u,(x,-x) - v(h) 2 u(x,-x), or not to jump at all, i.e., a”(h) = 0. Hence, we can
characterlze the optimal action strategy by a cutoff h” (x) € [0,1] such that

h o if b < BP(k),
aP(h) =
0 if h > A'®x).

The optimal cutoff #”(x) € (0,1) is the hurdle for which the agent is indif-
ferent between clearing the hurdle (and obtaining the good outcome), and not
jumping (and obtaining the bad outcome), i.e.,

4,06) = v(h*(x)), (3.9)

where 4,(k) = u(x,-x) - u,(x,-x). Note that 4,'(x) > 0if the decision maker is
risk averse. Hence, he clears higher hurdles, the higher is the information cost.
That is, even though the information cost is sunk when the decision maker
makes his action choice, that cost affects his optimal action. On the other hand,
if the decision maker is risk neutral or has a multiplicatively separable expo-
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nential utility function, the optimal cutoff is independent of the information
cost.

Since the hurdle % is assumed to be uniformly distributed over the unit
interval [0,1], we can write the decision maker’s expected utility as follows:

AP(x)

U'(nP) = BP()4 (k) + ufx,- k) - f v(h)dh.
0

Without information the agent does not spend x and must choose an optimal
action a’ independent of k; his expected utility is given by

U(n°) = a®4,0) + ux,) - v(@®),
where a° is given by
v'(a®) = 4,0). (3.10)

To illustrate, assume u,(x-x) = - exp[-r(x-x)] and v(a) = ya/(1- a). Hence,
4,(x) = 4,(0) exp[rx] and (3.9) and (3.10) then imply that

}f”(;c) ) 4,(0)exp[r«] ,
4,0)explrx] + y
and a® =1 - y*4,0)™".

Figure 3.4 shows the decision maker’s expected utility with perfect and no
information along with the optimal cutoff for varying information costs for the
perfect information system (x, = 20; x, = 10; r =.1; y = .1). The optimal action
with no information is a’ = .34. With perfect information the agent clears
substantially higher hurdles, and the maximum hurdle he clears increases with
the information cost. The value of perfect information is the information cost
for which the expected utility with perfect information is equal to the expected
utility with no information, which in this example is 7 = 3.6. Hence, while we
plot the cutoffs for costs of x greater than 3.6, the decision maker would not
choose to acquire the information for those cost levels.



106 Economics of Accounting: Volume I - Information in Markets
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Figure 3.4: Optimal action strategy with perfect information
and expected utilities for perfect and no information
for varying information costs x. (a° =.34; = = 3.6).

APPENDIX 3A: Expected Values of Exponential Functions
with Normal Distributions

In a number of settings in this book, exponential utility is combined with normal
distributions to obtain relatively simple decision rules and expected utility levels
(see, for example, Proposition 2.7). In the simplest of these settings, the deci-
sion maker’s outcome is a linear function of the normally distributed random
variables. In others, the outcome function is quadratic.

Let x ~ N(u,X) be an nx1 random vector, where N(u,X) represents the
normal distribution function with mean p and covariance matrix X. The preci-
sion matrix is represented by H = X!, In the following analysis, the function
parameters are represented by constants f, r, and f, nx1 vector v, and nxn
positive definite symmetric matrix Q.

Expectation of a exponential-linear function of a normally distributed vector:
E[B exp[- r(f+ vx)]]

= f B exp[- r(f + v'x)] d N(u,X)
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=f 2] |H|" f expl- 7(f + v'x) - Va(x - p)'H(x - p)] dx
=B [2n]"|H|* f expl- r(f + Vgt - Yarv'Ev)
-Vo(x - g+ rZV)'H(x - g + rZv)] dx
= B expl- r(f+ V'i - Yarv'Ev)] f dN(p - rZv, I)

= B expl- r(f+ V'jt - Yarv'Ev)].

Expectation of an exponential-quadratic function of a normally distributed
vector:

In this analysis it is useful to let &= x + (rQ + H)'(rv - Hp), which is a nor-
mally distributed vector with the same covariance X as x, but with mean g +

(rQ + H)'(rv - Hp).
E[B exp[- r{f + v'x + ¥2x'Qx)]]
= f Bexpl- r(f+ vix + ¥x'Qx)] d N(1,X)
=B [2n]™"|H|* f exp[- r(f + v'x + ¥ax'Qx) - Ya(x - p)'H(x - p)] dx
=f [2a]""|H|* f exp[- (if + (rv - Hp)'x + ¥ax'(rQ + H)x + Yap'Hp)] dx
= f [2n]""|H|" exp[- (rf + Vap'Hp - Va(rv - Hp)'(rQ + H)'(rv - Hp))]
X f exp[- 2&'(rQ + H) %] d%

= B expl- (rf + Vap'Hp - Ya(rv - HR)'(rQ + HY''(rv - Hp))]

x |H|” |rQ + H|™” f[zn]-‘/m |rQ + H|” exp[- V2&'(rQ + H) 8] d%

=B [H|*|rQ + H|™ exp[- (rf + Yap'Hp - Y2(rv - Hp)'(rQ + HY'(rv - Hp))].
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To illustrate the use of the above expression, consider the financial invest-
ment model in Section 3.4.1. In that model, U'(5) has a very simple quadratic
form in which x =y, with X ~ N(ip,0,%), and f + v'x + ¥2x'Qx = Y2y’[ro]".
Hence, p = po, H=0,%, f=0, v =0, and Q = [r0,’]", and the preceding result
implies

U(n) =-0," % (0,7 + 0, x exp[- Vap’0,” + YVapy’0,* (0, + 6,%)"]
= - (0,/0,) expl- Va0,

given that 6, + 0> = g,”.
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CHAPTER 4

RISK SHARING, CONGRUENT PREFERENCES,
AND INFORMATION IN PARTNERSHIPS

Chapters 2 and 3 focus on decision making under uncertainty by a single deci-
sion maker. In the remainder of the book all analyses consider settings in which
there are multiple decision makers. This chapter considers a simple setting that
we call a partnership, although in the literature it is often called a syndicate
(e.g., Wilson, 1968). The key concepts introduced are efficient risk sharing and
congruent preferences for action and information system choices.

In this chapter, a partnership has the following key characteristics. First,
there are two or more partners who contract to share an aggregate outcome,
which we can represent as end-of-period consumption or wealth. Second, the
aggregate outcome depends on random outcome-relevant events and may also
depend on actions taken by one or more partners. Uncertainty with respect to
the outcome-relevant events creates uncertainty about total consumption. Third,
each partner has personal preferences and a partner’s preferences depend on his
personal share of the aggregate outcome, i.e., his piece of the total pie. Fourth,
the partners have no direct preferences with respect to the actions that are taken,
only for their share of the end-of-period consumption. Fifth, the aggregate
outcome available to the partnership is contractible information, so that the part-
ners can agree to a contract that specifies how each partner’s share of the total
will be determined. This implies, for example, that any personal sources of con-
sumption are considered in determining the aggregate outcome (consumption)
to be shared.

In Section 4.1 we identify the characteristics of a contract that specifies a
Pareto efficient sharing of the aggregate outcome resulting from a given action.
A general characterization of the setting in which the partners have the same
(i.e., homogeneous) beliefs is provided in Section4.1.1. Section 4.1.2 identifies
special cases in which Pareto efficient contracts are linear functions of the
aggregate outcome. Section 4.1.3 considers settings in which partners can have
different (i.e., heterogeneous) beliefs.

Section 4.2.1 considers the partners’ preferences among alternative actions.
A key issue here is whether the partners have the same preferences over alterna-
tive actions given their contract with respect to how the outcome is to be shared.
Interestingly, the conditions that result in linear risk sharing also result in
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congruent preferences over actions. Although we only present the sufficiency
of linear sharing for congruent preferences, the conditions for linear risk sharing
are (in most cases) also necessary conditions for congruent preferences.

In Section 4.2.1, the partner’s beliefs at the time of the action choice are
taken as exogenous (as well as homogeneous). In Section 4.2.2, we extend the
analysis to consider the impact of pre-decision information and the partners’
preferences with respect to alternative information systems.

Finally, in Section 4.3 we briefly consider what has been termed a team in
the literature. Essentially, a team is a partnership in which the partners have
congruent preferences and homogeneous prior beliefs, and the team members
can, at a cost, personally acquire information and communicate it to other
partners before they take their personal actions.

Before proceeding, we reiterate that the partners have no direct preferences
with respect to their actions. Models in which there are direct preferences for
actions are typically called agency models. These are examined in Volume II.

4.1 EFFICIENT RISK SHARING

The partnership consists of n partners who share an aggregate outcome x € X <
R. This outcome is a single dimensional real number, which we can think of as
money or a single type of consumption good. It may come from several sour-
ces, but the specific sources are not of direct concern for most of our analysis.
The key feature of the aggregate outcome is that it is uncertain (and later we
consider the possibility that it may be influenced by the partners’ actions). As
in preceding chapters, uncertainty is represented by a probability space. A key
issue is whether partners have homogeneous beliefs, so that the probability
space { S, =, P } is common to all partners, or they have heterogeneous beliefs,
represented by { S, Z, P, }, i = 1,...,n. Observe that we assume that the state
space S and the set of probabilizable events = are the same for all partners — if
they have heterogeneous beliefs it is only with respect to the probability
functions P, defined on =Z. In Sections 4.1.1 and 4.1.2 we assume the partners
have homogeneous beliefs, and in Section 4.1.3 we extend the analysis to
consider heterogeneous beliefs.

4.1.1 Efficient Risk Sharing with Homogeneous Beliefs

Throughout Section 4.1 we ignore action choices and focus on the efficient
sharing of an uncertain aggregate outcome denoted x € X. All uncertainty is
reflected in a state space S, so that the aggregate outcome (wealth) is a function
of the state s € S. The state is not directly observed, but the aggregate outcome
is contractible information along with an outcome-adequate partition of S
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denoted by @ = { 6 }. (Thatis, x and @ are observed at the end of the period
and can be verified before the “court” enforcing the partnership contract.)
Hence, the aggregate outcome can be represented by the following function:

x:0-X

Since x is a function of @ and 6 is contractible information, we express the
partnership contract as a function of 8. In particular, we let ¢ = (c,...,c,)
represent the partnership contract (i.e., the contract for sharing the aggregate
outcome), where
o-C

i

¢
specifies partner i’s share of the aggregate outcome, with C, representing the set
of possible consumption levels for partner i (e.g., if consumption must be non-
negative, then C, = [0,»)). Similarly, we can represent the full specification of
the partnership contract as a sharing rule (specifying each individual partner’s
share) of the form

c.0-C,
where C=Cx.xC,.
To be feasible, a sharing rule ¢ must specify shares that are individually
feasible (i.e., are in the set C, for each partner i = 1,...,n) and feasible in aggre-

gate (i.e., does not distribute more than the total pie x).

Definition Sharing Rule Feasibility
A partnership sharing rule c is feasible if, and only if,

ceCs= {c Y c(6) s x(0), c@eC, Vi=1,..n Ve @}.

i=1

In our basic model we assume that the partners have homogeneous beliefs
P. From this we can determine a homogeneous probability distribution &(6)
with respect to the outcome-adequate partition @, and a homogeneous outcome
distribution function @(x). The corresponding generalized probability density
functions are ¢(6) and ¢(x), respectively.

We assume partner i’s preferences depend on his share of the aggregate out-
come in each state and his beliefs. Furthermore, we assume that those preferen-
ces can be expressed as an increasing, concave von Neumann/Morgenstern
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utility function u;: C;, - R, with u,'(c;) > 0 and u,"(c;) < 0, so that his expected
utility given his personal sharing rule c; is

U{c) = f ulc (6)) do(9).

%}

Our focus in this chapter is on characterizing Pareto efficient contracts
among the n partners. That is, we are concerned with identifying contracts that
are not dominated by any other contract when considered from the perspective
of all the partners as individuals. There is no concept of fairness and, for much
of our analysis, we ignore factors that affect the partners’ bargaining positions
when they join the partnership.

Definition Pareto Preference and Efficiency
Partnership contract ¢? is Pareto preferred to ¢' if, and only if,

Ufe? 2 Ule), Vi=1,..,n.

The Pareto preference is strict if there is a strict inequality for at least one
partner.

Partnership contract ¢” is Pareto efficient if, and only if, there does not
exist any other feasible plan ¢ that is strictly Pareto preferred to ¢’.

In characterizing Pareto efficient risk sharing it is useful to consider the set

of possible feasible sharing rules and the set of possible vectors of expected
utility levels for the n partners:

c-{e

U= {U = (Up.nU,)

Y c(6 s x6), c)€C, Vi=1,.,n, vee@},

i=1

U, =Uf) Yi=l..n, Ve EC}.

A key feature of C is that it permits the partnership to throw away some of
the outcome, so that the total of the individual shares can be less than x. This
condition implies that C is a convex set and this, combined with the concavity
of the partners’ utility functions, implies that U is a convex set.'

! A set G is defined to be convex if for any two members g' and g?, any convex combination g
=21g"+ (1-A)g% for A € (0,1), is a member of the set G.
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Lemma 4.1
The sets C and U are both convex.

We leave the proof as an exercise for the reader. However, we depict these two
sets in Figures 4.1 and 4.2. Assume that individual consumption cannot be
negative (i.e., C; = [0,%)), there is no uncertainty (i.e., x(6) = 16 for all 8), and
there are only two partners (i.e., n =2). In Figure 4.1, C consists of all pairs of
numbers ¢ = (¢,¢;) such thatc, > 0,¢, > 0,and ¢, + ¢, < x.

P

0 x e
Figure 4.1: Set of possible sharing rules for a single outcome.

Now assume that the partners have square-root utility functions «,(c,) = ¢,” and
uy(c;) =[9+c,]*. Hence, as depicted in Figure 4.2, U consists of all pairs of
numbers U = (U,,U,) such that U, = ¢,*, U, = [9 + ¢,]*, and (c,,c,) € C.

Let U’ represent the set of Pareto efficient utility levels, i.e.,

U'={(UeU|3U €Usuchthat U/ > U, Vi=l,..n, and > for somei }.
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3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 U,
Figure 4.2: Feasible and Pareto efficient expected utility levels for
the single outcome case.

In Figure 4.2, the set of Pareto efficient utility levels U" consists of the points
on the curved, “northwest” frontier of U. The convexity of the set implies that
any point on the frontier (i.e., in U") is such that if a line is drawn tangent to the
frontier at that point it will not intersect the frontier at any other point. As a
result, for any Pareto efficient partnership contract ¢” there exist non-negative
partner utility weights A,,...,4, such that the ¢’ is a solution to the following
problem.

Efficient Risk Sharing Problem:

maximize Y. A, Ufc) (4.1a)
ceC i=1
subjectto Y. ¢[(0) <x(6), VO€O, (4.1b)

i=1

c(®)eC, VOB, i=1,..n @.1c)
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If we assume the feasible individual consumption set has the form C; =
[c,,0) and @ is a finite set, the efficient risk sharing problem can be represented
by the following Lagrangian:

n

Y ¢ -x©6

i=1

&= Z 4 Ufe) - E 1(6)
i=1

6@

n

+ L@ 6 - c ],
i

6e@ i=

where p(6) and {;(0) are Lagrange multipliers for the event-contingent aggregate
outcome and event/partner contingent individual consumption constraints,
respectively. Differentiating the Lagrangian by ¢, = ¢,(6) for a given event and
partner yields the following first-order conditions:?

A1, (c0)) p(6) - u(O) + £(O) =0, VOe®,i=1,..n. 4.2)

The problem has a concave objective function and linear constraints.
Hence, the Kuhn-Tucker conditions identify a global maximum, and the
following proposition due to Wilson (1968) characterizes a Pareto efficient con-
tract.

Proposition 4.1 (Wilson 1968, Theorems 1 and 5)
A necessary and sufficient condition for ¢’ to be a Pareto efficient partner-
ship contract is that there exist non-negative weights A = (4,,...,4,) such that
¢’ is a solution to efficient risk sharing problem (4.1). If all partners are
strictly risk averse, then the solution has the following characteristics.

(a) All of the aggregate outcome is distributed to the partners, i.e.,

f c;() = x(), VOco.

i=1

(b) Individual consumption only varies with the outcome, i.e., ¢, (8 ") =
¢, (0% if x(6") =x(0 %), and, hence, the contract can be expressed as a
function of the aggregate outcomes x instead of the events , i.e., ¢,’(x)
= ¢,’(0) for O such that x(6) = x.

? These conditions are sometimes referred to as the Borch first-order conditions since Borch
(1962) was the first to derive the necessary and sufficient conditions for Pareto efficient risk
sharing.
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(c) There exist positive weights A,,...,4, and a positive multiplier u(x) for
each aggregate outcome x € X such that

u,-'(c,-'(x))=IE9(i)—)- ife; () >¢, Vi=1l,n. 4.3)

i P

(d) If ¢;'(x) > ¢;, then the partner’s consumption is a strictly increasing
function of the aggregate outcome, i.e., ¢, (x') < ¢,"(x?), forall i = 1,...,n,
if x' < x*. Furthermore, if X is a convex set and ¢;"(x) is differentiable,

then
* A cf X
;') = L) exi=tm,
p (¢ (x)
where plc)= - _u_,_(Q
u,-”(C,-)

p€)=Y. pc),
i1

i.e., the slope of a partner’s consumption function is equal to the ratio
of the partner’s risk tolerance relative to the aggregate risk tolerance of
all partners.

Proof:
(a): The proof is straightforward since all partners prefer more to less (i.e., 4;'(c;)
> 0) and, hence, it can never be efficient to throw away some of the pie.

(b): The fact that all partners have strictly concave utility functions and homo-
geneous beliefs is important for this result. If ¢; differs between 6" and 6% even
though they produce the same x, then that implies that at least two partners are
bearing unnecessary risk. Proof is by contradiction. Assume there are two
events such that x(8') = x(62) with at least two partners with ¢,"(8") # ¢, (6?).
Replace these consumption shares with ¢,(8"') = [p(8")¢;"(8") + p(8)¢; (0] +
[p(@")+p(0?)]. The revised contract is feasible and, by Jensen’s inequality, it
provides every partner with at least as high an expected utility, with some
strictly higher.

(c): Expression (4.3) follows from (4.2) given condition (b).
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(d): Let g(x) = p(x)/p(x) so that (4.3) can be written as

Au (e (%) = g(x). (4.4)
Differentiate both sides: 4, #,"(c;'(x)) ¢ (x) = g'(x). (4.5)
Divide (4.5) by (4.4):
(e () €' (%) + u/' (e (%)) = g'(x) + (). S
Rearrange terms:  ¢}'(x) = p(c]0)| - £X |, @7
8(x)

Summing both sides of (4.7) and recognizing that the left-hand side must equal
one, since the total consumption sums to x, implies:

_8x _
g(x)

n -1
> p,.(c;f(x))} : Q.E.D.

i=1

The expression g(x) = u(x)/p(x) is introduced in the proof of (d) and will
appear several times in subsequent analysis. It can be interpreted as the margi-
nal utility (scaled by 4,) to each member of the syndicate of an increase in the
aggregate outcome at the level x. The multiplier p(x) is influenced by the prob-
ability of x, and dividing through by ¢(x) removes that effect. Hence, g(x)
reflects the scarcity of consumption, but not its likelihood.

Observe that the following ratios follow directly from (4.3) in condition (c).

Corollary 4.1
If ¢, (x) > ¢;, then

u(c;(x") _ g6

, Vi=1,.,n, (4.8)
u'(ci(®) 8t

¥ -1
W) 4oy 4.9)

uy' (e () Ay

The first ratio establishes that every partner has precisely the same marginal rate
of substitution (in terms of utility of consumption) across any pair of outcomes.
This is depicted in the Edgeworth box in Figure 4.3, which has two partners and
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two outcomes, with x' = 20 > x> = 10. The points in the box indicate each part-
ner’s share of the aggregate outcome, with partner 1’s share being measured
from the bottom left corner and partner 2’s share being measured from the top
right corner. The indifference curve for partner i represents the set of consump-
tion levels ¢;' = ¢,(x") and ¢ = ¢,(x?) that provide partner i with the same expec-
ted utility. Condition (4.8) establishes that an efficient contract always occurs
at points at which the indifference curves for the two partners are tangent to
each other (unless there is a corner solution). The set of all such points is
depicted by the bold line and is referred to as the “contract curve.” In this figure
we assume ¢; = 0 and the partners both have square-root utility functions, but
partner 1 is more risk averse than partner 2, with u,(c,) = ¢,” and u,(c,) = [9 +
c,]”. This is reflected in two ways. First, partner 1’s indifference curve is more
curved than for partner 2 (it is linear if a partner is risk neutral).” Second, if
partner 1 receives a much larger share, we have a corner solution in which
partner 2 receives zero in the second (low) outcome (as reflected by the contract
curve in the upper right-hand corner of the box).

o (x") Partner 2
1020 15 10 5 0
0
() \
8 2
Partner 2’s 6 \ \ Contrgct'/t’:urve 4
indifference qurve
4 Partner'1’s 6
\ indifference curve
2| \ 8
0 X 10 %)
Partner 1 0 5 10 15 20

Figure 4.3: Edgeworth box — efficient sharing of uncertain
binary outcome.

The second ratio (i.e., expression 4.9) reveals that for any given outcome,
the marginal rate of substitution of utility across partners is equal to the ratio of
their weights in the efficient risk sharing problem. The fact that «;’ is decreas-
ing in ¢, implies that for any given outcome x the partner with the largest weight
receives the largest share of the pie. In Figure 4.3 that characteristic is repres-

3 The “slant” of an indifference curve depends on the probability function. In this example we
assume p(x') = .7.
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ented by the fact that the contract curve is non-decreasing, with the points close
to the lower left corner representing settings in which the ratio 4, /4, is small,
and the points close to the upper right corner representing settings in which that
ratio is large.

Observe that since all partners are risk averse, every partner bears some risk
reflected by the contract curve falling between the two 45-degree lines in Figure
4.3, c.f., Proposition 4.1(d). This implies, for example, that it is always benefi-
cial to expand the partnership to include more partners (assuming, as we have,
that there are no administrative costs or incentive problems). Even a highly
risk-averse partner can efficiently absorb some risk.

Our analysis has assumed that all partners are strictly risk averse. What
happens if there are risk-neutral partners? In the Edgeworth box, a risk-neutral
partner has a linear indifference curve with a slope equal to - p(x')/@(x?). If both
partners are risk neutral then their indifference curves coincide, so that all the
points in the box are on the contract curve, i.e., all are efficient. On the other
hand, if one partner is strictly risk averse and the other is risk neutral, the
contract curve is such that the risk-averse partner receives the same consump-
tion for both values of x if that is feasible. The latter is depicted in Figure 4.4,
in which partner 1 is the same as in Figure 4.3, while partner 2 is risk neutral.

c(x") Partner 2
1020 15 10 5 0
e02) \ 0
8 2
\ Contract curve .~
Partner 2’s 6 4
indifference gurve Partner 1's”
4 indifferénce curve 6

g \ 8

0 .
Partner1 0 5 10 15

ety 20

Figure 4.4: Edgeworth box — efficient sharing of
uncertain binary outcome with partner 2 risk neutral.

Proposition 4.2
If a subset of the partners are risk neutral and they have sufficient capacity
to absorb all risk, then the strictly risk-averse partners bear no risk (i.e., ¢,(x)
is constant for all x).
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In Volume II we consider a variety of settings in which one or more partners
(referred to as the principal) are risk neutral (e.g., wealthy) owners of the firm,
and they contract with a risk-averse partner (referred to as the agent) to operate
the firm. If the agent has no direct preferences with respect to his actions,
Proposition 4.2 applies and he bears no risk. However, in most principal-agent
models we assume the agent has direct preferences with respect to his actions
(e.g., a disutility or personal cost of effort) and the optimal contract is such that
risk is imposed on the agent for incentive purposes.

4.1.2 HARA Utility Functions and Linear Risk Sharing

Efficient risk sharing when the partners have HARA utility functions (see
Chapter 2) is particularly interesting, if we assume that they have the same
“type” of HARA utility function with identical risk cautiousness. Recall that
the HARA utility functions have linear risk tolerances, which are expressed in
Table 2.1 as ax + £ ,and hence have constant risk cautiousness of a. There are
three basic types: exponential (a = 0), logarithmic (a = 1), and power (a # 0,1
and the power equals 1 - 1/a).

The risk tolerance for the exponential utility function is a constant (i.e., p
is equal to B in Table 2.1). Hence, if all partners have exponential utility func-
tions, p, is partner i’s risk tolerance, p, = p, + ... + p,, is the partners’ aggregate
risk tolerance, and ¢; = -, then Proposition 4.1(d) implies

') = L Wizt

o

Consequently, with exponential utility a Pareto efficient partnership contract
gives each partner a linear share of the aggregate outcome and the partners share
risk in proportion to their risk tolerances. The lack of a wealth effect on the
partners’ risk preferences implies that the partners’ utility weights 4,,...,4, do not
affect their share of the risk — the weights only affect the fixed portions of their
linear consumption functions.

Definition Linear partnership contract
A partnership contract is defined to be linear if it is characterized by
parameters v, and f, such that ¢,(x) = f, + vx, forall i = 1,...,n, and X_ v, =
land Xi_, f, =0.

While not as obvious as in the exponential utility function case, the Pareto
efficient contracts are linear if all partners have logarithmic utility functions or
all have power utility functions with the same risk cautiousness, subject to
appropriate boundary conditions. To avoid the problems created by the lower
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bounds on partner consumption we assume C; = (-.0,) in the exponential utility
case, C; = (- f/a; ) in the logarithmic utility case, and C; = [-B/a;,~) in the
power utility case with a; > 0. Observe that these conditions are such that

limu/(c) ==, Vi=l,.n,
=g,

which induces interior solutions in all cases.

Proposition 4.3
If the partners have homogeneous beliefs and their preferences are repre-
sented by HARA utility functions with identical risk cautiousness, then any
Pareto efficient partnership contract is linear.

Proof: The exponential case (a = 0) follows from the above discussion. We
provide a proof for the logarithmic case (a = 1) and leave the proof for the
power case (a # 0,1) to the reader since it is similar to the logarithmic case.

Proposition 4.1(c) specifies that (4.3) is a characteristic of an efficient
contract ¢. Letting g(x) = p(x)/p(x) and using the derivative of a logarithmic
utility function yields

1
Ai—— = i=1,..,n. .
'c,.(x) ) glx), VxeX,i=1,.,n (4.10)
Solve (4.10) for c;:
A’i
cx)=——-p, VxeX i=1,.,n. (4.11)
§(x)

Sum both sides of (4.11) over all i and use Proposition 4.1(a) to set the sum of
the left-hand-side equal to x:

Zn: c,(x) =x= a2
i=1 gx)

-B, VYxeX, 4.12)

where A, = Y i, A,and B, = Y ., B, Solve (4.12) for g(x):

A
gx) = °_, VxeX “4.13)
x+f

]
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Substitute (4.13) into (4.11):

A
c(x) = ,T (x+B)-B, VxeX,i=1l,..n.

Hence, a Pareto efficient contract ¢ is linear, with the parameters specified in
Table 4.1. Q.E.D.

Utility Function Share of Risk (v;) Intercept (f})

n
Exponential: - exp[- ¢, /p,] L) Pi }: leﬂ( %) —ln( %)}
po Jj=1 i !
o 4 "
Logarithmic: In (c; + §)) jli' A, = E,-,l A viB, - B
1 “l X

Power: 1 [ac; + B] — A= Y A B, - B)a

a- g:

Table 4.1: Linear sharing rules for HARA utility functions with identical risk
cautiousness.

Observe that the variable rates v, € (0,1) represents the share of the risk born
by partner i. Each partner’s share is independent of the weights 4,,...,4, in the
exponential case, but is an increasing function of the relative weight in the
logarithmic and power utility cases with positive risk cautiousness and is a
decreasing function of the relative weight in the power utility case with negative
risk cautiousness. The key is that, if the risk cautiousness is positive, the part-
ners’ risk tolerances are increasing in “wealth” and the partners with the largest
weights effectively receive the largest “wealth”. On the other hand, if the risk
cautiousness is negative, then the partners’ risk tolerances are decreasing in
“wealth” and the reverse holds.

In the logarithmic and power utility function cases, the f; parameter also
affects partner i’s risk aversion. The effect is relatively simple in the logarith-
mic utility case. Here we observe that f; impacts the analysis in essentially the
same way as a personal source of consumption. In particular, it is “as if”’ the
total consumption is x + S, and partner i receives /4, of that total.
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4.1.3 Side-betting with Heterogeneous Beliefs

Partners often have differences in beliefs, so that the homogeneous beliefs
assumption may appear unrealistic. Later in this book we consider a number of
settings in which individuals have differences in beliefs due to differences in
information. Those differences have a profound effect on the analysis and are
generally characterized by one individual attempting to infer the other indivi-
duals’ “private” information based on their observed actions or observed varia-
bles, such as market price, that are influenced by their actions. We leave all
consideration of the impact of differences in information until subsequent
chapters. However, here we briefly consider the impact of what are commonly
referred to as heterogeneous beliefs. These differences in partner beliefs are
assumed to be due to fundamental differences in the partners’ personal characte-
ristics — differences that are irrelevant to the preferences and beliefs of the other
partners (e.g., it is part of their DNA).

In our setting, heterogeneous beliefs are represented by differences in the
probability function P,(¢) that characterizes partner i’ s probability space. In this
analysis it is important to assume that the state space S and the set of
probabilizable events = are common to all partners. Furthermore, the proba-
bility functions must have the same “null sets”, i.e., if P,(¢) = 0 for some partner
i and event ¢ € Z, then P(¢) = O for all partners j. If this was not the case, then
one partner could believe an event has a positive probability of occurring while
another believes it has zero probability, i.e., it is impossible. This would lead
the latter to be willing to undertake an “infinite” bet that the event will not
occur.

The probability function P(¢) is used to derive partner i’s probability
distribution function @(0) and generalized probability density function ¢(6)
with respect to the outcome-relevant events, as well as the outcome probability
functions @,(x) and ¢,(x). Partner i’s expected utility for sharing rule c; is

Uge) = [ ufe () dd6).

@

Using this in efficient risk sharing problem (4.1) leads to a slight change in first-
order condition (4.2):

A u (D) p0) - u(O) +{(6) =0, VOeO,i=1,..,n. (4.14)

While the change is slight, the impact is potentially significant.

To see the impact of heterogeneous beliefs consider Proposition 4.1. There
is no change in result (a) — it is still efficient to fully distribute the aggregate
outcome since all partners still prefer more to less. However, result (b) does not
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hold - the partners’ consumption may differ between two events even though
they produce the same outcome. The key issue is whether the partners’ beliefs
lead them to efficiently “bet” on the event as well as efficiently share the out-
come. We obtain some insight into this by considering (4.14) for events in
which ¢(6) > ¢; and hence {}(d) = 0. The ratio of partner i’s marginal utilities for
two events 8" and 62 such that x(0") = x(?) is

u/c (0 _ p@"Y 0"
u/€(6%)  wODip 6D

Vi=1,..,n. (4.15)

In the homogeneous beliefs case, the right-hand-side of (4.15) is the same for
all partners and all partners have the same marginal rate of substitution between
the two events. If the two events result in the same aggregate outcome, the
latter is only possible if the ratio is equal to one, i.e., each partner has identical
consumption in the two events. However, in the heterogeneous beliefs case, the
right-hand-side differs across partners unless @6 ')/p,(8?) is constant. If the
latter ratio is constant across partners, each partner again has identical consump-
tion for the two events. This occurs because the partners have homogeneous
beliefs about ' and 62 given that they know that either 8' or 2 has occurred!
On the other hand, if p,(0')/p(6%) varies across partners, then (4.15) implies that
efficient consumption must vary across events. In particular, assume partners
i and j are such that p,(6")/p(6° > ¢(6")/p(6%), i.e., i believes 8' is relatively
more likely than does j. This implies, from (4.15), that the marginal rate of
substitution for i must be less than forj. If i and j were the only two partners (or
they represented two subsets of partners with two types of beliefs), partner i
would consume more in state §' than in state 6%, whereas partner j would do the
reverse. We refer to this as side-betting. Figure 4.5 depicts a setting in which
there is no risk, but the partners bear risk because partner i attaches a higher
probability to 6" than does partner j.

4.2 CONGRUENT PREFERENCES

In section 4.1 the relation between the state s and the aggregate outcome x is
exogenous — the partners have no action choices. We now assume the partners
must choose an action a from a set A and then consider the choice of a decision-
facilitating information system # from a set H.
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Figure 4.5: Edgeworth box — side-betting with
heterogeneous beliefs and x(6') = x(8?).

4.2.1 Action Choice

The aggregate outcome is now a function of the random event 8 € @ and the
partners’ action a € A, and is represented by

Xx: OxA - X.

We assume the partners beliefs are homogeneous so that probability distri-
bution over the outcome-adequate events in @ are again represented by @(6).
Of course, since the outcome function depends on the partners’ action a, the
probability distribution over the outcomes in X is conditional on that action, and
is represented by ®(x|a).

The event 6, action a, and outcome x are all contractible information. How-
ever, since the partners’ beliefs are homogeneous, Proposition 4.1 characterizes
efficient risk sharing contracts for a given action a and the contract can be
expressed as a function of x and a, i.e., partner i’s sharing rule is ¢,(x,a). In this
case, partner i’s expected utility from contract ¢; and action a is
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U(c,a) = f uc (x,a)) dd(x|a).
X

For purposes of this analysis we adopt a slightly different approach to the
specification of the efficient partnership contract. Partner 1 is depicted as
having control. He selects the action a to be implemented and the risk sharing
contract ¢. Of course, he can only obtain the participation of the other partners
if he makes it “worth their while.” In this regard, each partner i, i = 2,...,n is
assumed to have an expected utility level U,. that he must receive from the
partnership in order to induce him to participate. This minimum expected utility
level is often referred to as partner i’s reservation utility level. The optimal
action and contract are obtained by solving the following problem.

Optimal Partnership Contract Problem:

maximize U, (c,,a) (4.16a)
ceC,acA
subjectto  Ufcya) 2 U, Vi=2,..n, (4.16b)
Y cxa) <x, VxeX, (4.16¢)
i=1
cxa)eC, VxeX,i=1,.,n (4.16d)

The Lagrangian for this problem is

i=1

zn: c(xa) - x}

L=Uc,@) + Y 41U, - T)- X px)
i=2

x€eX

+ Y Y (@l -, (4.17)

xe€X i=1

where 4, is now a Lagrange multiplier for partner i’s participation constraint
(4.16b), u(x) is the multiplier for constraint (4.16c), and {(x) is the multiplier
for constraint (4.16d).

Solving problem (4.16) for the optimal risk sharing contract given the
optimal action a’ is effectively the same as solving problem (4.1) using x(6) =
x(6,a"). The main difference is that in (4.16) the “weight” assigned to the first
partner is implicitly 4, = 1 and “weights” for the other partners equal the endog-
enously determined Lagrange multipliers for each partner’s participation con-
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straint.* Hence, the characterization of the efficient risk sharing contract is
effectively the same (with ¢,"(x) = ¢;"(x,a") and &(x) = P(x|a")).

Optimal partnership contract problem (4.16) assumes that the first partner
selects both the action and the risk sharing contract for that action. Assume that
the action potentially consists of n tasks, where task g; is implemented by
partner i, i.e., a = (a,...,a,) € A = A;x...xA, (if partner i is not assigned a task,
i.e., he is merely a risk sharer, then A; = @). If all elements of a are contractible
information, we can view ¢; (x,a;) as specifying the optimal risk sharing contract
if @, = a;", and imposing the minimum consumption ¢; if a; #* a,” (which we
assume will be sufficient to deter him from selecting a; # @,"). That is, each
partner receives their efficient share of the outcome if, and only if, they
implement the optimal task assigned to them. Of course, this type of penalty
contract is not feasible if a is not contractible information since in that setting
the contract can only depend on the outcome x, i.e., ¢;: X -~ C,.

Leta,; =(a,,...,a;,,a;,,...,a,) represent all actions other than that of partner
i, so that a = (a_,a;). If each partner i selects action g; € A, based on his personal
preferences given his sharing rule ¢; and his conjecture as to the actions a ; taken
by the other partners, we must add the following incentive constraints to the
optimal partnership contract problem:’

a; € argmax Ufc,a
d,eA;

a), Vi=l..n. (4.16¢)

_,"

That is, to be feasible, the contract and action selected by the first partner must
be such that each partner i has no incentive not to implement the action a; speci-
fied by the first partner given that partner i conjectures that all other partners
will be induced to implement action a;. We include q, in the incentive con-
straints since the action the first partner chooses for his task must be consistent
with his personal preferences once the sharing rules are fixed — otherwise, the
other partners will not conjecture that partner 1 will implement a, and that may
affect their action choices.

* Earlier we stated that for any Pareto efficient risk sharing contract there exist exogenous
weights 4,,...,4, such that the contract is a solution to problem (4.1). It can also be shown that for
any Pareto efficient risk sharing contract there exist exogenous reservation utility levels (72,...,[7,,
such that the contract is a solution to problem (4.16). The Lagrange multipliers in the latter
problem will be equivalent to the weights used in problem (4.1), subject only to possible
differences in scaling, and the expected utilities obtained in solving (4.1) will be the reservation
utility levels used in (4.16).

* “argmax” is the subset of the set of choice variables that maximize the function that follows,

i.e., in this case, the set of actions g, € A, that maximize Ufa,a;). A maximum is assumed to
exist, but it need not be unique.
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While we could provide a general characterization of the optimal solution
to problem (4.16) with the incentive constraints (4.16e), we will not do so.
Incentive problems become much more significant when we assume that the
partners have direct preferences with respect to the tasks assigned to them.
These types of incentive problems are examined in the analysis of princi-
pal/agent problems in Volume II. Here we focus on identifying conditions that
are sufficient for the incentive constraints (4.16e) to be non-binding. That is,
conditions such that the solution to (4.16a-d) is the same as the solution to
(4.16a-e).

In the following analysis we consider a slightly stronger condition, which
we call congruent preferences. A partnership contract induces congruent pre-
ferences if, after specifying the sharing rule ¢ all partners would make the same
action choice (assuming they could control all elements of a).

Definition Congruent Preferences
A partnership contract ¢: X ~ C induces congruent preferences for action a
if

a € argmax Ufc,d), Vi=1,.,n.
deA

From Wilson (1968) we know that the efficient risk sharing contract for
optimal action a” induces congruent preferences for a” if the partners have
HARA utility functions with identical risk cautiousness.

Proposition 4.4 (Wilson 1968, Theorem 11)
Assume that for each HARA utility function, C;is such that the optimal risk
sharing contract induces ¢,(x) > ¢, for all x € X and i = 1,...,n.5 If the
partners have homogeneous beliefs and their preferences are represented by
HARA utility functions with identical risk cautiousness, the Pareto efficient
partnership contract for action a” induces congruent preferences with
respect to a’.

Proof: We limit our proof to the case of logarithmic utility functions since the
proofs for exponential and power utility functions are essentially the same. Let
w(x) = uoc; represent partner i’s payoff as a function of x, where ¢;"(x) = v, x +
f» where v, and f; are as specified in Table 4.1. For logarithmic utility this
composite function is given by

S This is a crucial assumption for the result. If some partners receive the lower bound compen-
sation for some outcomes while other partners do not, their risk preferences are not aligned
(through their sharing rules).
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_1” b .
wix) = n- Tx l—oﬂg :Bi ﬂi

(/]

=In %—] + In[x+g,]~In[x+8,] 4.18)

L ©

This implies that all partners’ induced preferences over the outcome x are the
same, i.e., the induced utilities by the optimal risk sharing contract, w/(x), are
equivalent (up to a positive linear transformation) and, hence, the partners will
all be induced to select the same action. Q.E.D.

Observe that the weighted sum of the payoff functions in (4.18) takes the
following form:

n

w,(X) = Y, Aw(x)

i=1

n

=A’o Z %ln(li)—ln(la)+ln[x +ﬂo] ~1n [x+ﬂo]

i-1 A,

This can be viewed as a partnership utility function with respect to the
aggregate outcome x, and the partners’ choice of the optimal action maximizes
the following partnership expected utility:

U,(x,a) = f w,(x) dd(x|a).
X

Observe that the weights 4,,...,4, have no effect on the partnership’s utility
function — they only introduce irrelevant constants. The key factors affecting
the partnership’s action choice are the aggregate “risk tolerance” parameter f3,
and the outcome distribution functions @®(x|a) for each action. The weights will

affect the distribution of the outcome among the partners, but not their efficient
action choice.
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The same results hold for the exponential and power utility functions, and

Table 4.2 summarizes the partnership utility functions for each HARA type
(omitting the irrelevant constants associated with the weights).’”

- X
Po

logarithmic: ~ w,(x) ~ w,(x) ~ In [x + B,], x+p,>0,

exponential:  w,(x) ~ w(x) ~ - exp

a-1

L fax + 81 %, ax+p,>0.

a-1

power: w,(x) ~ wix) ~

Table 4.2: Partnership utility functions.

In the exponential utility function case, the partnership preferences depend only
on the partners’ aggregate risk tolerance, p,. As in the logarithmic utility func-
tion case, the partnership preferences for the power utility function case depend
on the “aggregate risk” tolerance parameter f§,, but also the partners’ risk
cautiousness a.

4.2.2 Information System Choice

We briefly consider information choice in a partnership.® In this analysis we
assume that the action and information system choice are centrally determined.
Information system # provides a signal y € Y to the partnership before the action
is selected. Beliefs are homogeneous and the partners’ prior beliefs about the
signal are represented by @(y|#) and their posterior beliefs about x given y and
a are denoted ®(x|y,a,n). The information system affects the outcome, since
some systems are more costly than others and, hence, 7 is an argument in
@(x|y,a,n) both because of its associated costs and because the posterior belief
about x given y depends on the system that generates the signal y. We could
include the event 8, but for the reasons discussed above it is irrelevant.

The contractible information consists of x, y, a, and #. So that partner i’s
sharing rule is expressed as ¢;; XxYxAxH - C,. Partner i’s expected utility given
¢,y a,and 7 is

7 See Amershi and Stoeckenius (1983) and Amershi (1988) for further discussion of partnership
(syndicate) preferences and utility functions.

8 See Demski (1973) and Verrecchia (1978) for more detailed analysis based on the work of
Wilson (1968).
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Ulc,y.an) = f ufc (xy,a.)) dd(x|y.a,n),
X

and his ex ante expected utility given c; and #, as well as decisionrulea: Y ~ A,
is

Ufc,a,n) = f Ufcy,.a(y),n) dD(y|n).

Using these expressions, we restate the optimal partnership contract problem as
follows, where A is the set of all possible decision rules.

Optimal Partnership Contract Problem with Information System Choice:

maximize U,(c,,a,n) (4.19a)

ceC,acA,neH

subjectto  Ufc,a.n) > U, Vi=2,..n, (4.19b)
E cxyan) <x, VxeX,yeY (4.19¢)

i=1
cxyan)eC, VxeX,yeY, i=1,.,n. (4.19d)

Given that a and # are under the direct control of the first partner, we can
treat the optimal choices a” and # as implicit in ¢,". Hence, for our purposes we
only need to consider how ¢,” varies with x and y. The Lagrangian for this
problem is

L=Ucran)+ Y, AU an - U,
i=2

-y ﬂ(ny’)[Z c(xy) - x]

x€X yeY

+3 ) E Gy e (xy) - ¢ . (4.20)

xeX yeY i=

Differentiating the Lagrangian with respect to ¢; = ¢,(x,y) for a given outcome,
signal and partner yields the following first-order condition:
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A ui' (e (x.y)) o(x|y,.a().n) o |n) - p(x,y) + §(x.y) = 0. (4.21)

It is again obvious that the optimal contract will fully distribute all of the
outcome, i.e.,

n
Zc,.(x,y) =x, VxeX, yeY,i=1,..,n.

i=1

What is perhaps less obvious is that the partners’ shares depend only on the
outcome x, and are independent of the signal y.

Proposition 4.5
If beliefs are homogeneous and the partners are strictly risk averse, the
optimal risk sharing contract for the problem with information system
choice is independent of y, and there exist positive multipliers 4, and g(x)
such that ¢;’(x) is characterized by

u,.’(c,-'(x))=§/(1x—), ife/ () >¢, Vi=1,..n 4.22)

Proof: The argument that ¢;” is independent of y is essentially the same as the
argument that it is independent of 8in Proposition 4.1. Any variations in¢;” due
to y for a given x represent unnecessary side-betting on y. Given homogeneous
beliefs, eliminating those variations makes the strictly risk-averse partners better
off (due to Jensen’s inequality). Condition (4.22) then follows from (4.21),
since the preceding argument and the assumption ¢;’(x) > ¢; imply

u(xy) + [p(x]y.a).m) o&|m)]
is a constant, which is the multiplier g(x) in (4.22). Q.E.D.

In concluding this section we make the observation that if the partners have
homogeneous beliefs and HARA utility functions with identical risk cautious-
ness (and efficient contracts are interior), there exists a partnership utility
function w,(x) (see Table 4.2) such that ¢* induces all partners to choose
decision rule a” and information system #" so as to maximize:

Usan) = ffwo(x) dd(x|y.a(y).n) dd(y|n).

Y X
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Consequently, if the information systems are costless, the informativeness con-
ditions discussed in Chapter 3 apply in a straightforward manner to partnerships
for which there are congruent preferences.

4.3 DISTRIBUTED INFORMATION IN TEAMS

The work by Marschak and Radner (MR72), which is reported in their book
Theory of Teams (1972), was very important in initiating and developing the
general area of information economics. Most of their work was done in the
early sixties, even though the book was not published until 1972. It was this
work that led to the early work on information economics in accounting.

The initial chapters of MR72 review single person decision making under
uncertainty. The later chapters examine the use of information in a multi-person
setting called a team. A team consists of two or more members who have the
homogeneous prior beliefs and identical preferences over a common outcome.
The members of the team differ with respect to the set of actions they can take,
the information they can observe, and the communication channels through
which they can communicate information to (or receive from) other members
of the team. The analysis identifies the optimal communication and decision
rules for a given information/decision making structure, and examines the
impact of changes in that structure.

MR72 exogenously assume that the team members have identical prefe-
rences over acommon outcome. The analysis in this chapter identifies settings
in which a partnership will act like a team even though their personal preferen-
ces depend only on their share of the aggregate outcome. Hence, we can inter-
pret the MR72 analysis as one in which the team members have homogeneous
beliefs, HARA utility functions with identical risk cautiousness with respect to
their share of the aggregate outcome, and no direct preferences with respect to
their actions.

The work on team theory has been largely dormant over the past twenty
years. In the early seventies it was recognized that the personal preferences of
decision makers in a multi-person setting is an extremely important ingredient
in that decision context. Hence, most subsequent work has assumed that a
decision maker’s preferences are defined over his share of an organization’s out-
come and the actions they personally must take. And up until the mid eighties
there was little consideration of organizations with multiple decision makers.
Hence, issues of decentralized information acquisition, communication, and
decision making have received only limited attention. In the later chapters in
Volume II, we examine some principal/agent models with multiple decision
makers. There may be scope for some interesting future research that returns
to some of the central concerns of team theory, but which addresses these issues
within a principal/agent framework.



136 Economics of Accounting: Volume I - Information in Markets

APPENDIX 4A: Congruent Preferences with Exponential
Utility and Heterogeneous Beliefs

Efficient partnership contracts with heterogeneous beliefs involve what is
commonly termed side-betting. The characteristics of efficient side-betting are
provided in section 4.1.3. We did not consider heterogeneous beliefs in the
discussion of congruent preferences over actions and information in Section 4.2.
In this appendix we briefly consider the congruency of preferences with hetero-
geneous beliefs in settings in which the partners have exponential utility
functions.

Sufficient Conditions for Congruent Preferences

With homogeneous beliefs, HARA utility functions with identical risk cautious-
ness are sufficient to result in efficient contracts that yield congruent preferences
(see Section 4.2). In general, that result does not hold when the partners’ beliefs
are heterogeneous. Here we need the stronger condition that all partners have
zero risk cautiousness. We present the “sufficiency” component of Wilson’s
(1968) result. The precise nature of the necessity condition is somewhat
complex and is not of sufficient general interest for us to explore it here. (See
Amershi and Stoeckenius, 1983, for further discussion.)

Proposition 4A.1 (Wilson 1968, Theorem 11)
If the partners’ beliefs are heterogeneous and their preferences are repre-
sented by HARA utility functions with zero risk cautiousness, then the
Pareto efficient contract for action a” induces congruent preferences with
respect to a’.

Proof: Partner i’s beliefs and preferences are represented by ¢,(6) and u,(c;)) =-
expl[- ¢;/p;]. Assuming ¢; = - o, first-order condition (4.14) implies

1 ¢ (x,0) 1(0)
‘(¢ = — - = . 4A.1
u/'(ci(x,0)) ieXp[ ’ 7, 040) (4A.1)
Solving for ¢(x,0) yields
P;
. =-p. -p, L 4A.2
¢(x,0) = - p,In(u() - p; In 7 qoi(0)] ( )

Summing over all partners, setting the sum of the left-hand-side equal to x, and
solving for In(u(6)) yields
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i=1

In(u()) = - ;-[ x + E p;1n ] (4A.3)

A <o,(0)
Substituting (4A.3) into (4A.2) yields

¢/ (x,0) = vx + £(0),

=P = - Pi
where V= 0, §C)) p,.( £ - In ) ],
Ny P
d o) = | |
an JAC) ,El oo o
Hence, Ufc;.a) = -% Y exp|- x(6.a) exp[-£,(0)]. (4A.4)
i 0€@ 0

Observe that partner i’s expected utility given the optimal contract and action
a is the same as partner j’s expected utility except for the initial constants, p/4;
versus p;/4;, which will not affect their action choices. Q.E.D.

Observe that with exponential utility, the optimal contract is again, in some
sense, linear with respect to x. The important feature for congruency of action
preferences is that the variable rate v; = p/p, is independent of the state. The
fixed component, f(6), depends on the state, but this does not affect action pref-
erences because with exponential utility there is no wealth effect. Of course, it
is important that @ is an outcome-adequate partition of S and the ex post
observation of 8 is contractible information. As a result all side-betting can be
expressed in terms of 6, independen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>