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Preface to the First Edition (1992)

Some physicists may be drawn to biology because of the challenge that lies
in the vast complexity of biological matter; what attracted me initially was
the curious paradox that makes electron microscopy of macromolecules
possible—phase contrast, the contrast that arises not despite but because of,
the imperfections of the objective lens. It is the capricious nature of such
details that carries the promise of future problems finding totally unex-
pected (and sometimes surprisingly simple) solutions. Once engaged in
electron microscopy, as a student I was in awe of the wide range of forms
in which living matter is organized, but I was also frustrated by the central
limitation of the instrument—that it renders these structures only in the
confusing, highly ambiguous form of projections.

Three-dimensional information about an object is usually obtained in
a cumbersome way, by a process that does not leave the object intact,
namely by cutting and slicing, and by stacking or geometrically relating the
resulting images. Consider the origins of anatomy, which set itself the task
of making a three-dimensional image of the body with all its organs. It
started as a heretical undertaking because it required dissection, intrusion
into the body, violating its sancity which was being upheld by the Roman
Church. Because of the need for dissection, the teaching of anatomy in the
Middle Ages was a clandestine operation performed by candlelight in a win-
dowless hall, with the corpse lying on a table that was specially designed to
hide it rapidly, in case the authorities stormed the premises. Perspective
anatomical drawings and three-dimensional models emerged as the result
of an intense visual, tactile and visceral effort on the part of the scholar.
Centuries after this type of three-dimensional imaging with the scalpel was
begun, computerized axial tomography (CAT) was invented, a miraculous
tool to look inside a living body without a single cut.

This book deals with a similar revolution (albeit on a different time
scale) in the study of the cell’s ultrastructure, brought about by the appli-
cation of tomographic techniques to electron microscopy. For a long time,
structural information about cell components had to be inferred from
images of thin sections, the thickness being limited by the path length of
100-kV electrons in biological matter. The limitations of sectioning are well
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known: it produces distortions and material loss, and additional errors arise
in the attempt to stack the section images to form a three-dimensional rep-
resentation. Organelles of complex shape have proved difficult or impossi-
ble to study in this way. The problem is solved by increasing the voltage to
the range of 400 to 1000 kV, thereby increasing the penetration thickness,
and using a series of views rather than a single one to generate a ‘true’ three-
dimensional image. Again, an inside look is obtained into the structure,
which remains intact during the investigation.

Similar techniques have been developed for macromolecular assem-
blies that are in a much smaller size range and require no increase in
voltage. Thus, electron tomography has filled a large gap: for the first time,
all hierarchies of structural organization, ranging from the level of atomic
structure (explored by X-ray crystallography) to the architecture of the cell
(explored by confocal scanning light microscopy) can now be studied by
quantitative three-dimensional imaging techniques that require no symme-
try or order. Although this book deals only with the mid-level of structural
organization in this vast logarithmic range, the challenges posed by the
explosive increase in the amount of data, and the need to make them acces-
sible in some ‘nested’ way are becoming evident. Clearly, the revolution in
the biology of the cell will not be complete until a system of data storage,
retrieval and visualization is found that is capable of mapping out the intrin-
sic complexity of the cell’s components—the cell as a walk-in world, one of
the momentous challenges of computational biology.

This book emerged as the result of a long and sometimes tedious inter-
action with the contributors. I was lucky to find authors that were not only
experts in their fields but also enthusiastic to cooperate and share my vision.
I am very grateful for their patience and endurance. Special thanks go to
Michael Radermacher and Bruce McEwen, who discussed with me the
concept of the book. I also wish to acknowledge valuable suggestions by
Pawel Penczek and Terry Wagenknecht, who helped me read and reconcile
the contributions. Finally, I thank Amelia McNamara of Plenum for initiat-
ing an endeavor that allowed me to illuminate this stimulating topic from
many directions.

vi PREFACE TO THE FIRST EDITION (1992)



Preface to the Second Edition

Electron tomography has come of age. The technique, which had long led
an existence as a more or less esoteric exercise of a few determined groups,
has largely become main-stream. Packaged software that can be bought
with the electron microscope has alleviated the need for special training
and has made electron tomography accessible to scientists with diverse
backgrounds, including those with little or no background in mathematics,
physics or computer science. High-visibility papers and reviews have
appeared with stunning three-dimensional images depicting the organiza-
tion of the cell or a particular organelle. In some cases, such as the mito-
chondrion, long-standing ideas about the architecture have turned out to
be utterly false. As a result of this development, today’s cell biologists 
confronted with vexing problems of spatial organization are more likely to
consider an investment in 3D imaging. Depending on temperament, extent
of funding and determination, this investment can take the form of collab-
oration with one of the existing NCRR/NIH-supported Biotechnology
Centers, collaboration with a colleague in the same institution or an effort
to install an electron microscope equipped with an automated tomography
kit in their own laboratories.

The first edition of this book brought together a group of experts in
the fundamental and practical aspects of the technique. While the material
in the mathematically oriented chapters is still relevant, new ideas have
emerged on how to optimize the results, and a literature has sprung up
around the applications of the different approaches. Updated chapters by
the original contributors will therefore be useful at this point. Additional
mathematical/computational tools have gained importance, namely those
that aid in the interpretation of the reconstructed volumes. Among these
are techniques for denoising, segmentation, docking and fitting. I am grate-
ful to all contributors for the great investment of time and effort they have
put in this endeavor, not only in drafting their chapters, but also in helping
me review all the material for consistency and accuracy.

Joachim Frank,
December 14, 2005

vii



Contributors

Montserrat Bárcena • Universiteit Utrecht, Department of Molecular
Cell Biology, Krupt Building, Room West 511, Padualaan 8, 3584 CH
Utrecht, The Netherlands. m.barcena@bio.uu.nl

Sami S. Brandt • Helsinki University of Technology, Laboratory of
Computational Engineering, PO Box 9203, FI-02015, Finland.
Sami.Brandt@tkk.fi

Jose-Maria Carazo • Centro Nacional de Biotecnologia (CSIC), Uni-
versidad Autónoma, 28049 Cantoblanco, Madrid, Spain. carazo@cnb.uam.es 

Achilleas S. Frangakis • EMBL, European Molecular Biology Labora-
tory, Meyerhofstr. 1, D-69117 Heidelberg, Germany. frangak@embl.de 

Joachim Frank • Howard Hughes Medical Institute, Health Research,
Inc. at the Wadsworth Center, Department of Biomedical Sciences, State
University of New York at Albany, Empire State Plaza, Albany, NY 12201-
0509, USA. Joachim@wadsworth.org

Peter W. Hawkes • CEMES-CNR, BP 94347, F-31055 Toulouse Cedex
4, France. hawkes@wanadoo.fr

Reiner Hegerl • Max Planck Institute for Biochemistry, Am Klopfer-
spitz 18, D-82152 Martinsried, Germany. hegerl@ biochem.mpg.de

Gabor T. Herman • Department of Computer Sciences, The Graduate
Center, City University of New York, New York, NY 10016, USA.
gherman@gc.cuny.edu

Chyong-Ere Hsieh • Resource for Visualization of Biological Com-
plexity, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY
12201 USA. hsiehc@wadsworth.org 

ix



Qiang Ji • Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute, Troy, NY 12180, USA qji@ecse.rpi.edu

Ming Jiang • Electrical, Computer, and Systems Engineering Depart-
ment, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
qji@ecse.rpi.edu

Abraham J. Koster • Leiden University Medical Center, Molecular Cell
Biology, Eindhovenweg 20, Leiden, The Netherlands. a.j.koster@lumc.nl

Jun Liu • Institute of Molecular Biophysics, Florida State University,
Tallahassee, FL 32306-4380, USA. winker@bio.fsu.edu

Pradeep K. Luther • Imperial College, Biomedical Sciences Division,
Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK.
p.luther@imperial.ac.uk

Carmen Mannella • Resource for Visualization of Biological Com-
plexity, Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY
12201, USA. Carmen@wadsworth.org

Roberto Marabini • Escuela Politécnica Superior, Universidad
Autónoma, 28049 Cantoblanco, Madrid, Spain. Roberto@cnb.uam.es

Michael Marko • Resource for Visualization of Biological Complexity,
Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY 12201,
USA. marko@wadsworth.org

David N. Mastronarde • The Boulder Laboratory for 3D Electron
Microscopy of Cells, Department of Molecular, Cellular, and Developmen-
tal Biology, Campus Box 347, University of Colorado, Boulder CO 80309,
USA. mast@colorado.edu

Bruce F. McEwen • Resource for Visualization of Biological Complexity,
Wadsworth Center, Empire State Plaza, PO Box 509, Albany, NY 12201-
0509, USA. bruce@wadsworth.org

Pawel A. Penczek • The University of Texas–Houston Medical School,
Department of Biochemistry and Molecular Biology, 6431 Fannin, MSB
6.218, Houston, TX 77030, USA. Pawel.A.Penczek@uth.tmc.edu 

Michael Radermacher • University of Vermont College of Medicine,
Department of Molecular Physiology & Biophysics, HSRF Building, Rm
120, Burlington, VT 05405, USA. mraderma@physiology.med.uvm.edu

x CONTRIBUTORS



Bimal K. Rath • Wadsworth Center, Empire State Plaza, PO Box 509,
Albany, NY 12201-0509, USA. bimal@wadsworth.org

Carlos O. S. Sorzano • Escuela Politécnica Superior, Universidad San
Pablo–CEU, 28668 Boadilla del Monte, Madrid, Spain. Coss.eps@ceu.es

Kenneth A. Taylor • Institute of Molecular Biophysics, Florida State
University, Tallahassee, FL 32306-4380, USA. taylor@bio.fsu.edu

Xun Wang • Electrical, Computer, and Systems Engineering Depart-
ment, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
qji@ecse.rpi.edu

Hanspeter Winkler • Institute of Molecular Biophysics, Florida State
University, Tallahassee, FL 32306-4380, USA. winkler@bio.fsu.edu

Elmar Zeitler • Fritz-Haber-Institut der Max-Planck-Gesellschaft,
Faradayweg 4–6, D-14195 Berlin, Germany. zr@fhi-berlin.mpg.de

CONTRIBUTORS xi



Contents

Introduction: Principles of Electron Tomography  . . . . . . . . . . . . . . . . 1
Joachim Frank

Chapter 1
Sample Shrinkage and Radiation Damage of Plastic Sections  . . . . . . 17
Pradeep K. Luther

Chapter 2
Electron Tomography of Frozen-hydrated Sections of Cells and 
Tissues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Michael Marko, Chyong-Ere Hsieh and Carmen A. Mannella

Chapter 3
The Electron Microscope as a Structure Projector  . . . . . . . . . . . . . . . 83
Peter W. Hawkes

Chapter 4
Cryotomography: Low-dose Automated Tomography of 
Frozen-hydrated Specimens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Abraham J. Koster and Montserrat Bárcena

Chapter 5
Fiducial Marker and Hybrid Alignment Methods for Single- and 
Double-axis Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
David N. Mastronarde

Chapter 6
Markerless Alignment in Electron Tomography  . . . . . . . . . . . . . . . . . 187
Sami S. Brandt

xiii



Chapter 7
Algorithms for Three-dimensional Reconstruction From the 
Imperfect Projection Data Provided by Electron Microscopy  . . . . . . 217
Jose-Maria Carazo, Gabor T. Herman, Carlos O. S. Sorzano 
and Roberto Marabini

Chapter 8
Weighted Back-projection Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Michael Radermacher

Chapter 9
Reconstruction with Orthogonal Functions . . . . . . . . . . . . . . . . . . . . . 275
Elmar Zeitler

Chapter 10
Resolution in Electron Tomography  . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Pawel A. Penczek and Joachim Frank

Chapter 11
Denoising of Electron Tomograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Reiner Hegerl and Achilleas S. Frangakis

Chapter 12
Segmentation of Three-dimensional Electron Tomographic 
Images  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Achilleas S. Frangakis and Reiner Hegerl

Chapter 13
Segmentation of Cell Components Using Prior Knowledge  . . . . . . . . 371
Ming Jiang, Qiang Ji, Xun Wang and Bruce F. McEwen

Chapter 14
Motif Search in Electron Tomography  . . . . . . . . . . . . . . . . . . . . . . . . 401
Achilleas S. Frangakis and Bimal K. Rath

Chapter 15
Localization and Classification of Repetitive Structures in 
Electron Tomograms of Paracrystalline Assemblies  . . . . . . . . . . . . . . 417
Kenneth A. Taylor, Jun Liu and Hanspeter Winkler

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

xiv CONTENTS



1

Joachim Frank • Howard Hughes Medical Institute, Health Research, Inc. at the
Wadsworth Center, Department of Biomedical Sciences, State University of New York at
Albany, Empire State Plaza, Albany, NY 12201-0509, USA

Introduction: Principles of 
Electron Tomography

Joachim Frank

1. What is Electron Tomography? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. A Historical Perspective  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. The Principle of 3D Reconstruction  . . . . . . . . . . . . . . . . . . . . . . . . . 8
4. How this Book is Organized  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1. WHAT IS ELECTRON TOMOGRAPHY?

Tomography is a method for reconstructing the interior of an object from
its projections. The word tomography literally means the visualization of
slices, and is applicable, in the strict sense of the word, only in the narrow
context of the single-axis tilt geometry: for instance, in medical computer-
ized axial tomography (CAT-scan imaging), the detector–source arrange-
ment is tilted relative to the patient around a single axis (Fig. 1a). In electron
microscopy, where the beam direction is fixed, the specimen holder is tilted
around a single axis (Fig. 1b). However, the usage of this term has recently
become more liberal, encompassing arbitrary geometries, provided that the
specimen is actively tilted into multiple angles. In line with this relaxed con-
vention, we will use the term electron tomography for any technique that
employs the transmission electron microscope to collect projections of an
object that is tilted in multiple directions and uses these projections to
reconstruct the object in its entirety. Excluded from this definition are
‘single-particle’ techniques that make use of multiple occurrences of the



object in different orientations, with or without the additional aid of 
symmetry (Fig. 1c). These techniques are covered elsewhere (non-symmet-
ric: Frank, 1996, 2006; symmetric: Glaeser et al., 2007).

The terms ‘3D imaging’ and ‘3D electron microscopy’ have come into
use as general terms to denote the capabilities of the instrument combined
with the necessary computational tools to obtain a 3D image of an object’s
interior. For instance, a new series of Gordon Conferences was started in
1985 under the title ‘Three-dimensional Electron Microscopy of Macro-
molecules’, with the intention of providing a forum for scientists approach-
ing the study of biological structure with both crystallographic and
non-crystallographic techniques. (The term 3D electron microscopy may
actually sound misleading since it conjectures an instrument with true 3D
imaging performance. Such an instrument was actually conceived (Hoppe,
1972; Typke et al., 1976) but never advanced beyond the blueprint stage.)

2. A HISTORICAL PERSPECTIVE

3D imaging techniques are now commonplace in many areas of
science, and it is difficult to recall that they have emerged only within the
past 30 years; before that time, computers were simply too slow to be useful
in processing 3D data on a routine basis, although much of the mathemati-
cal theory was well developed.

We may consider Plato’s simile of the cave as a precursor to the recon-
struction problem: here our ignorance of the essence of reality is depicted
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FIGURE 1. Three popular data collection geometries in 3D construction. (a) CAT-scan
geometry, with the patient being stationary and a rigid source–detector arrangement
tilted by equal increments; (b) equivalent single-axis tilt geometry in the transmission
electron microscope, with the source–detector arrangement being stationary and the
specimen tilted by equal increments; (c) as (b), but tilting replaced by the multiple inci-
dence of molecules found in different random orientations.



by the situation of a man in a cave who watches shadows on the walls of
his domicile; the shadows are all he sees of the world outside, and, because
of the scantness of the information he receives, his comprehension of reality
is severely limited. Similarly, a single projection, sometimes actually called
a ‘shadowgraph’, of an object, is totally insufficient to establish its 3D shape.
If we were prevented from changing the angle of view, we would be in a
similar situation to the man in the cave, although without the dire existen-
tial ramifications.

The history of tomography (see also the brief account by Herman and
Lewitt, 1979) is a history of intellectual challenges in a number of unrelated
fields of science. As Elmar Zeitler recounts in Chapter 9, the same mathe-
matical solution to the reconstruction problem that was found by Radon
(1917) has had to be rediscovered numerous times. Two Nobel Prizes are
directly related to 3D reconstruction: one that was shared by A. Cormack
and G. N. Hounsfield in 1979 for the development of computerized 
axial tomography, and one in 1982 to Aaron Klug, in part for his pioneer-
ing work in the 3D reconstruction of molecular structures from their elec-
tron micrographs.

Klug traces the origins of 3D reconstruction in electron microscopy
in his Nobel lecture (Klug, 1983). His laboratory, the Molecular Biology
Laboratory of the Medical Research Council (MRC), is the appropriate
starting point for a brief history of 3D imaging in electron microscopy. The 
predisposition of this institute for initiating quantitative structure res-
earch with the electron microscope is obvious, considering its historic 
role in the development of protein crystallography under Max Perutz’s
leadership.

DeRosier and Klug (1968) considered the problem of reconstructing
the helical structure of the T4 phage tail from its projection (Fig. 2). To put
their contribution into perspective, we must skip ahead and give a basic
outline of the principle underlying 3D reconstruction. According to a fun-
damental mathematical theorem, the measurement of a projection yields a
single central plane of the object’s 3D Fourier transform.The Fourier trans-
form, an alternative representation of the object, is a breakdown of the
object’s density distribution into sine waves. The Fourier transform consti-
tutes a complete description of the object in the sense that, if we know the
strengths (amplitudes) and phase shifts of all sine waves traveling in all pos-
sible directions and having wavelengths down to d/2, then the object is com-
pletely known to a resolution of d. The projection theorem thus suggests a
recipe for reconstructing the object from its projections: by tilting the object
through a range of ±90°, we effectively sample its Fourier transform on a
bundle of planes all intersecting one another on a single axis. It is clear that
the angular spacing must be close enough to prevent information loss; in
particular far away from the axis where the planes are maximally spaced
and where the information on sine waves with the smallest wavelengths is
situated.

INTRODUCTION: PRINCIPLES OF ELECTRON TOMOGRAPHY 3



The application of this method to electron microscopy poses a problem
because the tilt range is normally restricted for several reasons, the most
important of which is the need to support the specimen on some type of
grid that obstructs the electron path at high angles. Therefore, the angular
range in commercial instruments does not usually exceed ±60°. Special tilt
stages have been designed that push the range to ±85° (Chalcroft and
Davey, 1984). However, when the object is contained in a thick plastic
section, the increased path length of electrons traversing the sections at high
angles also become a serious problem. One way to overcome this restric-
tion is the development of tilt stages for cylindrical mounting of objects with
360° rotation capability. For instance, Barnard et al. (1992) placed a test
object (spores) at the edge of an ultrathin glass capillary. Apart from these
special cases, the experimental restriction to a range of about ±60° applies,
which means that in the general case of an object without symmetry, a sig-
nificant portion of the Fourier transform simply cannot be measured.

4 JOACHIM FRANK

FIGURE 2. Principle of 3D reconstruction: the projections of the object furnish dif-
ferent central sections of the object’s Fourier transform. If the number of projections
is sufficient (making use of symmetries where possible), then the complete Fourier
transform can be regenerated by interpolation, and from this the original object can
be retrieved by inverse Fourier transformation. (Reproduced from DeRosier and Klug
(1968), by permission of Macmillan Journals, Ltd.)



In contrast, when an object does possess symmetries, then the meas-
urement of any projection yields other symmetry-related projections simul-
taneously. Another way of saying this is that, in this case, only part of the
Fourier transform needs to be known for the entire Fourier transform to
be generated. Among symmetric objects, those with helical symmetry, such
as the T4 phage tail studied by DeRosier and Klug (1968), have a special
position in that a single projection may be sufficient to generate the entire
Fourier transform.

As early as 1970, Crowther and co-workers at the MRC formulated the
approach to be used for reconstructing objects with or without symmetry
with great clarity, and they also derived a general formula linking resolu-
tion, object size and number of projections. The first particle with icosahe-
dral symmetry was reconstructed in 1970 (Crowther et al., 1970b).
Subsequently, Henderson and Unwin (1975) developed the reconstruction
of single-layer, ‘two-dimensional’ crystals in the general crystallographic
framework (see Amos et al., 1982).

It is now necessary to illuminate the substantial contributions to the
field by another group closely linked to crystallography: the group of Walter
Hoppe at the Max Planck Institute in Munich (later relocated to Martins-
ried). Hoppe envisaged the prospect of 3D reconstruction in electron
microscopy in imaging objects not amenable to crystallographic techniques.
Consequently, he pursued almost exclusively the development of methods
aimed at reconstructing objects lacking symmetry or crystalline order.
Progress in this direction was initially slow because many tools of data pro-
cessing had yet to be developed or adopted from other fields. The recon-
struction of the fatty acid synthetase molecule in 1974 (Hoppe et al., 1974)
represented a significant achievement, which marked the beginning of elec-
tron tomography in the proper sense of the term. At that time, essentially
all important tools were in place: the use of correlation functions for the
alignment of projections, the Smith–Cormack scheme of 3D reconstruction
(Cormack, 1964; Smith et al., 1973) and the first sophisticated image-
processing software system of modular design dedicated to electron
microscopy applications (see Hegerl and Altbauer, 1982).

However, work in several other laboratories during that same period
pointed to the deleterious effects of radiation damage, which made the
quantitative interpretation of images taken with the standard imaging con-
ditions questionable, and cast serious doubts on the significance of 3D infor-
mation obtained by multiple exposure of the same object. According to
Unwin and Henderson (1975), high-resolution information (at least to 7 Å)
is preserved when the total dose is kept below 1 e/Å2.Thus, it became appar-
ent that 3D reconstruction would produce biologically significant results
only under two rather narrowly defined circumstances: (i) when applied to
macromolecular structures, only those data collection schemes are accept-
able that make use of multiple occurrences of the same molecules, by
extracting different projections from different ‘repeats’ of the molecule; and

INTRODUCTION: PRINCIPLES OF ELECTRON TOMOGRAPHY 5



(ii) when applied to cell components in an entirely different size range
where resolution requirements are normally more modest (50–100 Å), and
specialized higher voltage microscopes must be used for increased pene-
tration, much higher accumulated radiation doses may be acceptable. In
fact, these types of objects rarely exist in ‘copies’ with identical structure,
thus excluding any approach that uses averaging implicitly or explicitly.

With hindsight, it must be seen as unfortunate that Hoppe’s leading
laboratory in 3D reconstruction of non-crystalline objects invested its main
efforts in an area that does not fall in either category, namely tomography
of single macromolecules (or complex assemblies such as the ribosome)
from a tilt series, in the course of which the molecule receives a radiation
dose that exceeds the limit found by Unwin and Henderson (1975) by a
large factor. (The arguments put forward by Hoppe (1981) attempting to
justify 3D electron microscopy of individual macromolecules receiving high
doses of radiation are not convincing.)

Meanwhile, the general theory of 3D reconstruction was advanced by
a number of studies; among these, the works of Bates’s group (Lewitt and
Bates, 1978a,b; Lewitt et al., 1978), Zwick and Zeitler (1973), Colsher (1977)
and Gilbert (1972) should be mentioned for their relevance to our subject
matter. 3D reconstruction in all areas of science proceeded at such a rapid
rate that, in 1975, the Optical Society of America decided to organize a
topical meeting on 3D reconstruction in Stanford, California. This meeting
brought together contributors from a wide range of fields, such as geology,
radioastronomy, radiology and electron microscopy.An overview of various
implementations and applications presented at that meeting was compiled
by Herman (1979).

At that time point, 3D reconstruction of general, asymmetric biologi-
cal objects in electron microscopy took different paths, distinguished by the
presence of redundancies or lack thereof, and the applicability of averag-
ing techniques (Frank, 1975; Saxton and Frank, 1977). Particles, such as
macromolecular assemblies, that exist in abundance with identical structure
can be reconstructed from their ‘single-particle’ projections, i.e. from 
projections of particles that are dispersed and randomly oriented 
(Radermacher et al., 1987a,b; see Frank, 1996, 2006). Methods to align, clas-
sify and orient such projections, as well as 3D reconstruction from data with
general geometries, constituted the main directions of algorithm develop-
ment in this branch of 3D reconstruction. On the other hand, there are the
kinds of specimen that lack redundancy altogether, and for such speci-
mens—typically organelles and other subcellular structures—electron
tomography is the only approach to 3D visualization available.

In the development of electron tomography of subcellular structures,
progress hinged on the availability, to the biologist, of high- or intermediate-
voltage electron microscopes equipped with precision tilt stages and sup-
ported by sophisticated image-processing resources. Centers with this
degree of organization and sophistication did not emerge until the begin-
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ning of the 1980s when the National Institute of Health’s Biotechnology
program started to support three high-voltage microscopes dedicated to the
biological sciences in the USA1. Thus, the pace of development of this tech-
nology was rather slow, especially considering the state of the art that
already existed when Hoppe et al.’s fatty acid synthetase study (Hoppe et
al., 1974) was published. However, perhaps the most important factor deter-
mining the pace with which 3D imaging with the electron microscope devel-
oped has been the speed and memory of computers. It must be realized that
electron tomography posed computational problems of such magnitude
that, until the beginning of the 1990s, only groups with access to mainframes
were able to make significant progress. Other important factors were the
slow progress toward automation of data collection and the need for image-
processing software capable of handling the numerous combinations of
operations that are encountered in the analysis of electron microscopic
data.

Finally, the 1990s brought a breakthrough toward full automation, as
affordable CCD cameras grew large enough to cope with the field sizes
encountered in electron tomography, and electron microscopes were inte-
grated with fast computer control. Here the work by Abraham Koster, one
of the contributors to this volume (Chapter 4), deserves special mention
(Koster et al., 1992). Nowadays, thanks to his and others’ pioneering work,
commercial instruments come equipped with the necessary gadgetry and
software to perform low-dose data collection, as well as preliminary recon-
struction, on the spot. Thus, with the new generation of powerful and smart
electron microscopes, the drawing Walter Hoppe once used to illustrate both
the potential (the capability of 3D imaging) and limitations (radiation
damage) of electron tomography (Fig. 3a) has to be substantially revised
(Fig. 3b).
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FIGURE 3. Electron tomography then (a) and now (b). (a) Adapted from Hoppe (1983);
(b) adapted from B. Carragher, unpublished drawing.

1 University of Colorado in Boulder, Colorado; University of Wisconsin in Madison; and New
York State Department of Health in Albany, New York. Of these, only the one in Albany
has remained in operation.



3. THE PRINCIPLE OF 3D RECONSTRUCTION

The principle of 3D reconstruction becomes clear from a formulation
of the fundamental relationship between an object and its projections. An
understanding of the basic concept of the Fourier transform is needed for
this formulation. A brief introduction is provided in the following. For a
more detailed introduction, the reader is referred to the specialized litera-
ture such as Bracewell (1999). A compilation of definitions and formulae
for the case of discrete data is provided in the appendix of a book on 3D
electron microscopy of macromolecular assemblies by the author (Frank,
2006).

The Fourier transform provides an alternative representation of an
object by breaking it down into a series of trigonometric basis functions. For
mathematical expediency,complex exponential waves of the form exp[2piRr]
are used instead of the more familiar sine and cosine functions.The argument
vector describing a location in 3D space is r = (x, y, z), while R = (X, Y, Z) is a
so-called spatial frequency vector,which gives both the direction of travel of a
spatial wave and the number of full spatial oscillations per unit length. From
such spatial waves, the object can be built up by linear superposition:

(1)

with the complex coefficients cn. The 3D Fourier transform may be visual-
ized as a 3D scheme (‘Fourier space’) in which the coefficients cn are
arranged, on a regular grid, according to the position of the spatial fre-
quency vector. Each coefficient cn contains the information on the associ-
ated wave’s amplitude (or strength),

(2)

and phase (or shift of the spatial wave in its travelling direction, with respect
to the origin),

(3)

The projection theorem offers a way to sample the Fourier transform
of an object by measuring its projections. According to this theorem, the 2D
Fourier transform of a projection of the object is identical to a central section
of the object’s 3D Fourier transform. Thus, by tilting the object into many
orientations, one is, in principle, able to measure its entire Fourier trans-
form. Obviously, the projections must be collected with a small angular
increment and, ideally, over the full angular range. Then, after the Fourier
summation in equation (1) is performed, the object can be retrieved. As
always, the devil is in the details, as evidenced by the lengths and depths of
the treatises by specialists found in this book.
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The angular increment Δq is evidently determined by two parameters
(Fig. 4): (i) the mesh size of the Fourier space grid; and (ii) the size of the
region, in Fourier space, that needs to be filled. These quantities are in turn
determined by object diameter and resolution:

1. The mesh size must be smaller than 1/D, where D is the object
diameter.

2. The region in Fourier space for which data must be acquired is a
sphere with radius 1/d, where d is the resolution distance, i.e. the
size of the smallest feature to be visualized in the reconstruction.

According to these essentially geometrical requirements, the minimum
number of (equispaced) projections works out to be (Bracewell and Riddle,
1967; Crowther et al., 1970a):

(4)

Reconstruction methods may be classified according to the way in
which projections are collected or, alternatively, according to the way in
which the object is retrieved from its measured projections. The former
relates to the experiment, while the latter relates to the mathematical and
computational aspects of reconstruction as discussed in Chapters 6, 7 and
8. As to the data collection geometries, there are three that have gained
practical importance in electron microscopy: single-axis, double-axis and
conical tilting.

Single-axis tilting is simply achieved by rotation of a side-entry rod in
the electron microscope, whereas double-axis tilting involves a second tilt
capability around an axis perpendicular to the first (Fig. 5a), and conical
tilting provides a rotation capability in the inclined plane defined by the

N
D
d

= p
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FIGURE 4. Sampling in Fourier space
for single-axis tilting with equal incre-
ments Δq. For explanation, see text.
Adapted from Frank (1992).



first tilt (Fig. 5b). It is easy to see, by invoking the projection theorem, that
double-axis and conical tilting provide a much wider coverage of Fourier
space if the maximum tilt angle is the same in all cases (Fig. 6a–c). However,
the price to be paid for this information gain is a >2-fold increase in total
dose (Frank and Radermacher, 1986; Radermacher and Hoppe, 1980).
Because of this disadvantage, and the more elaborate experimental proce-
dure, conical data collection has not been widely used in experimental pro-
tocols where a single biological structure is multiply exposed. (Conical data
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FIGURE 5. Schematic diagrams showing the principle of side-entry tilt stages with
two degrees of freedom. (a) Double-tile stage. aa is the principal tilt axis, correspon-
ding to the long axis of the rod. bb is the second tilt axis. q and y are the correspon-
ding tilt angles. n denotes the normal to the specimen plane. Tilting around the second
axis is actuated by translation (indicated by arrows) of sliding rods which engage
wheels attached to the turret T. (b) Tilt-rotation stage for conical geometry. Again n
denotes the normal to the specimen plane. q is the tilt angle, and j the rotation angle
in the plane of the circular turret T. Rotation is actuated by a cable pulled in the direc-
tion of the arrow, with return movement provided by a spring S. The turret is held in
a stable position by retaining pins P. Adapted from Turner (1981).

FIGURE 6. Coverage of 3D Fourier space in the case of three data collection geome-
tries: (a) single-axis; (b) double-axis; and (c) conical. In each case, equal angular incre-
ments are depicted. From Lanzevecchia et al. (2005); reproduced with permission of
Elsevier.



collection, of course, has found widespread application in reconstructions
of macromolecules in single-particle form from their projections (see
Radermacher et al., 1987b).) Lately, the idea of using the conical tilt geom-
etry in tomography has been revived by Lanzavecchia’s group, with remark-
able success (Lanzavechia et al., 2005; Zampighi et al., 2005).

4. HOW THIS BOOK IS ORGANIZED

The sequence of chapters in this book essentially follows the flow of
information in electron tomography, proceeding from specimen prepara-
tion, to data collection in the instrument, and then to the techniques used
for alignment, reconstruction and interpretation of the resulting tomo-
graphic volumes.

We start with the question of to what extent the object reconstructed
from electron microscopic projections resembles the biological object. This
question has three different aspects to it: one that has to do with the rela-
tionship between the native biological object and the specimen investigated
in the electron microscope; the second with the relationship between that
specimen and the images formed by the electron microscope; and a third
with the relationship between the set of multiple projections and the final
3D image.

Two chapters deal specifically with the specimen preparation aspect
and the question of fidelity to the original biological structure. The first, by
Pradeep Luther (Chapter 1), examines the quality of specimen preparation
in plastic sections, and the damage inflicted by the beam, with special atten-
tion to the problem of section shrinkage. Knowledge of the behavior of the
specimen is of crucial importance in planning an experiment that requires
multiple exposure of the same specimen. The other chapter, by Mike
Marko, Chyongere Hsieh and Carmen Mannella (Chapter 2), describes
experience gained with the new, promising technique of sectioning frozen-
hydrated biological material prepared by high-pressure freezing for the
purpose of electron tomography.

Peter Hawkes (Chapter 3) explores the conditions that must be satis-
fied in the imaging by electron microscopy for the observed projections to
be regarded as simple line integrals of an object function. It is of course
always possible to apply the reconstruction procedure ‘blindly’ to a set of
experimental images and obtain a 3D density map, or ‘object function’. The
question is whether this reconstructed object has any meaning, or even a
tractable relationship to the physical object the images originated from. By
implication, the simple projection relationship and the image formation in
bright field under the usual weak object assumptions yield a very elegant
linear system description of the imaging and reconstruction process. As the
specimen thickness increases, which is the case for cell sections investigated
by electron tomography, multiple scattering increasingly interferes with the
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linear system concept, but energy filtering (also covered in this chapter) can
effectively increase the thickness range of validity.

Low-dose data collection, in the now common automated mode, is
covered in a chapter by the pioneer of automated tomography, Abraham
Koster, together with Montserrat Bárcena (Chapter 4). This chapter goes
into all the necessary details regarding optimum settings, data collection
protocols and the important considerations of dose fractionation.

Electron tomographic reconstruction requires that projections be
aligned to a common frame of reference.The use of gold bead markers is now
routine, and therefore it is justified that a chapter be devoted to the mathe-
matical basis of marker-based alignment. David Mastronarde (Chapter 5),
author of the well-known IMOD software, gives an expert introduction into
this subject. However, the search for a reliable markerless alignment method
continues, since the electron-opaque markers produce artifacts in the recon-
struction volume that cannot be removed computationally. Sami Brandt
(Chapter 6),one of the pioneers of markerless alignment techniques,has con-
tributed an authoritative chapter on recent approaches to this problem.

Three chapters are devoted to the theory of reconstruction, address-
ing different issues that arise due to the peculiarities of data collection and
numerical computation. We first present the chapter by Jose-Maria Carazo,
Gabor Herman and co-workers (Chapter 7), which gives an overview on
the approaches to the inverse problem presented by the reconstruction
from a finite number of projections. This same chapter also introduces iter-
ative algebraic methods, such as algebraic reconstruction techniques (ART)
and related techniques. Next, Michael Radermacher (Chapter 8) goes into
the details of weighted back-projection for general geometries, and formu-
lates the algorithms underlying the computer programs now widely used in
the field. Weighted back-projection methods have a special position in the
practical implementation of 3D reconstruction, mainly because of their
mathematical tractability and high computational efficiency. Radermacher
summarizes the rationales and important formulae of weighted back-pro-
jection methods for regular and general geometries. Finally, in this section
on the mathematics of reconstruction, Elmar Zeitler (Chapter 9) has con-
tributed a chapter that presents an elegant general framework of recon-
struction using special functions of mathematical physics, a chapter that
brilliantly illuminates the inter-relationships of all approaches to recon-
struction in use today.

Although the theoretical resolution obtainable in tomographic recon-
structions is well known, the problem of how to measure the actual reso-
lution achieved has been elusive. The chapter by Pawel Penczek and this
author (Chapter 10) addresses this important issue with a new approach.

The remaining chapters in this book deal with different aspects of
interpretation of the reconstruction. The first step is the removal of noise,
either by simple Fourier filtration or more advanced “denoising” proce-
dures. These procedures are described by Reiner Hegerl and Achilleas
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Frangakis (Chapter 11). Segmentation is obviously the most important
aspect as it is instrumental for the assignment of meaning to the different
parts of a density map. Three chapters deal with segmentation, namely one
authored by Achilleas Frangakis and Reiner Hegerl (Chapter 12), with seg-
mentation based on local characteristics of the density distribution; the
second, by Ming Jiang et al. (Chapter 13), on model-based segmentation
making use of level set methods.The third chapter in this category addresses
segmentation by rigid body motif search using cross-correlation. This
chapter is co-authored by investigators who each have made separate con-
tributions to this area of research: Achilleas Frangakis and Bimal Rath
(Chapter 14). Another aspect of interpretation comes up when we try to
characterize quasi-periodic structures, as presented by the complex organ-
ization of muscle trapped in the rigor state. We are then dealing with mul-
tiple versions of a 3D motif, which may allow the tracking of a physiological
process evolving in time and space—a promising method of analysis
described in the final chapter by Ken Taylor, Jun Liu and Hanspeter Winkler
(Chapter 15).
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1. INTRODUCTION

Just as fossil insects embalmed in amber are extraordinarily preserved, so
are biological samples that have been embedded in plastic for electron
microscopy.The success of embedding samples in plastic lies in the astound-
ing resilience of the sections in the electron microscope, albeit after initial
changes. The electron microscope image results from projection of the
sample density in the direction of the beam, i.e. through the depth of the
section, and therefore is independent of physical changes in this direction.
In contrast, the basis of electron tomography is the constancy of the 
physical state of the whole section during the time that different views at
incremental tilt angle steps are recorded.

The shrinkage of a plastic section in each dimension, especially the
depth, when viewed in the electron microscope, is now a well known phe-
nomenon. Knowledge of the shrinkage behavior of a section of a sample
embedded in a particular plastic is of crucial importance when embarking
on the electron tomography of the sample. In the last 15 years, the most
important advances in electron tomography have been the development of
automated methods of recording tilt series and direct imaging onto CCD
cameras (Koster et al., 1997; Koster and Barcena, Chapter 4 in this volume).
These advances have enabled tremendous savings in labor but also in the
total dose experienced by a sample. In this chapter, we review the studies
carried out on shrinkage behavior of samples embedded in various resins
and we review the protocols that have been followed by the leading pro-
ponents of electron tomography.

2. ON RADIATION DAMAGE

Several researchers have written reviews on the effects of the electron
beam on biological samples (Egerton et al., 2004; Glaeser and Taylor, 1978;
Grubb, 1974; Lamvik, 1991; Reimer, 1989; Stenn and Bahr, 1970). Electron
microscope radiation has the primary effect of producing intense ionization
in organic materials, which results in the formation of free radicals and ions.
This causes bond scission and molecular fragments to be formed. These
primary effects occur at all temperatures. At room temperature, the free
radicals and molecular fragments can undergo diffusion, and produce cross-
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linking or further chain scission. Damage to secondary structure occurs at
an electron dose of <100e/nm2. Further exposure causes the tertiary struc-
ture to undergo dramatic reorganization following loss of specific groups
and altered structural composition. The dominant effect finally is that of
mass loss from the sample, which preferentially involves H and O in com-
parison with C and N. The mass loss is accompanied or followed closely by
shrinkage of the sample normal to the beam.

We can reduce the radiation damage on an organic sample by cooling
the sample to cryotemperatures and by using low-dose techniques (to be
described later). One of the main effects of electron irradiation at conven-
tional illumination levels is to cause specimen shrinkage normal to the
plane of the sample. The effect of the shrinkage in reciprocal space is illus-
trated in Fig. 1. The example considered is a structure based on cubic 
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FIGURE 1. Illustration of the ‘missing wedge’ problem due to specimen shrinkage in
the electron microscope. (a) Projection of a cubic crystal (for example) viewed edge-on
with the c axis parallel to the electron beam. (b) Reciprocal lattice for the projection in
(a). A conventional tilt holder in the electron microscope can be tilted in the range in
the range of –60° to +60°. When a tilt series is recorded about a single tilt axis, and the
3D transform calculated by combining the individual transforms, data will be missing
from the 3D transform inside the ‘wedge’ AOB of angle 60°. If the sample thickness
reduces by 50% as in (c), then the corresponding reciprocal lattice shown in (d) is
stretched 100% along c*. The projection for the 101 diffraction spot, comfortably
included in the tilt series for the unshrunk sample (a and b), now lies within the missing
wedge. In relation to the original reciprocal lattice, the missing wedge is now described
in (a) by A’OB’ and has an angle of 98°. For 50% shrinkage, the tilt holder effectively
covers only the range –41° to +41° in relation to the original sample.



symmetry (Fig. 1a), which collapses in thickness by 50% (Fig. 1c). With a
conventional tilt holder, a series of views about a single tilt axis are recorded
in the range –60° to +60°. The 3D transform in (Fig. 1b), obtained by com-
bining the transforms of the individual views, has missing from it data in
the 60° wedge AOB. In the case of the 50% collapsed sample (Fig. 1c), the
reciprocal space is stretched by 100% in the corresponding direction (Fig.
1d). The volume of the 3D transform that can be sampled is now much
reduced, e.g. the spot 101 present in (Fig. 1b) is missing from the transform
(Fig. 1d). In relation to the original sample, the missing wedge (A′OB′) in
the 3D transform has an angle of 98°. The effective tilt range is now only
±41°. Sample shrinkage therefore directly reduces the resolution normal to
the sample plane in a tomogram of a plastic-embedded sample. Hence we
must make every effort to curtail the shrinkage.

It is appropriate to describe the terminology of Amos et al. (1982) for
the various imaging modes in the electron microscope and the electron dose
involved for a single image in each case. A dose on the sample of 50–
400e/nm2 is considered as a very low dose, which is appropriate for very
high resolution studies of unstained crystalline specimens. A dose of
∼1000–2000e/nm2 is termed a minimal dose, which is used for stained or
non-crystalline specimens. Conventional microscopy for single images
involves doses on the order of ∼5000–50,000e/nm2 due to the time involved
in searching and focusing. Minimal and low-dose methods require a search
of suitable areas to be done at very low magnification, about ×2000, during
which the dose should be extremely low (∼2e/nm2). Modern electron micro-
scopes provide low-dose imaging modes in which the focusing is done at
high magnification on areas adjacent to the area of interest, followed by
image recording at the desired magnification.

3. ON SAMPLE PREPARATION

3.1. Fast Freezing/Freeze Substitution

To produce plastic-embedded samples with the best possible preser-
vation, rapid freezing followed by freeze substitution has been the most suc-
cessful method. Various methods have been used for rapid freezing. Sosa 
et al. (1994) successfully froze muscle fibers by ‘plunge-freezing’, which
involves rapid propulsion of the sample into a trough of cold cryogen, e.g.
liquid ethane, at –180°C. ‘Slam-freezing’ involves rapidly propelling a
sample onto a highly polished metal block (usually copper) cooled by liquid
helium or liquid nitrogen. Spectacular fast-freeze deep-etch replica images
of various samples were obtained in the pioneering studies by Heuser
(Heuser, 1989; Heuser et al., 1987). Details of the slam-freezing method
applied to striated muscle fibres to capture different activity states have
been described (Craig et al., 1992; Hirose et al., 1993; Liu et al., 2004a; Padron
et al., 1988).
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The currently preferred rapid freezing method for plastic-embedded
specimens is high-pressure freezing. The two most commonly used ins-
truments for this technique are the EMPACT made by Leica (www.
leica-microsystems.com; Vienna, Austria) and the HPM 010 made by BAL-
TEC-RMC (www.baltec-rmc.com). Excellent results have been obtained
with these machines (Giddings et al., 2001). While the depth of good freeze
is very shallow with plunge-freezing, ∼5mm or less, and is a little better with
slam-freezing, ∼10–30mm, it is improved considerably, ∼100mm, with high-
pressure freezing (Shimoni and Muller, 1998; Studer et al., 2001).

3.2. Conventional Processing

Considerable effort is often required to perfect the rapid freezing tech-
nique for some samples, and conventionally prepared samples may have to
be used for the first investigations. The good news is that valuable insight
can be obtained by processing a sample by conventional methods. This
usually comprises fixation in glutaraldehyde followed by osmium tetroxide,
dehydration in a solvent such as acetone or ethanol, infiltration and embed-
ding in a selected plastic resin. The details of these standard protocols are
available in various manuals of electron microscopy techniques (Glauert,
1998; Hayat, 2000). In a recent tomographic study, Harlow et al. (2001) used
these methods to study frog neuromuscular junction. They prepared 50 nm
thick sections of the Epon-embedded sample and recorded a 1° and 2° step
tilt series while the section was cooled to cryogenic temperatures. From the
tomograms, Harlow et al. produced a detailed account of active zone mate-
rial that showed the arrangement and associations of structural components
of the organelle.

4. METHODS OF MEASURING SAMPLE THICKNESS

Knowledge of the starting thickness of a sample is essential for carry-
ing out 3D reconstructions and their interpretation. Knowledge of the
changes that occur to the sample dimensions during electron microscopy is
also just as important. Methods to measure the initial thickness of a sample
and changes that occur following the microscopy are described in this
section.

4.1. Methods Not Involving the Electron Microscope

4.1.1. Ultramicrotome Advance Setting

For sections, the advance setting on the ultramicrotome is potentially
a good estimate of their thickness. The microtome setting may apply espe-
cially to sections belonging to a well-cut ribbon in which the sections have
uniform interference color. However, past research has shown that there is
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considerable variation in section thickness within a ribbon. Gunning and
Hardham (1977) used a Reichert OMU3 ultramicrotome to cut ribbons of
sections from a Spurr’s resin block. By monitoring the thickness of the indi-
vidual sections by interference microscopy (next section), they found a 
33% variation in the thickness of the sections about the mean value. Ohno
(1980) evaluated the section thickness in relation to the microtome setting
using sections of Epon-embedded rat kidney. By cutting cross-sections (see
later), he found a variation of 20% for sections of thickness <100 nm.
For thicker sections ranging from 0.2 to 0.9mm, the thickness was found 
to be closer to the microtome setting, with a relative variation of about 
7%. It is likely that modern ultramicrotomes such as the Leica Ultracut 
UC6 (www.leica-microsystems.com) and the RMC PowerTome series
(www.baltec-rmc.com), used in combination with good knives, can cut
ribbons of uniform thickness sections.

4.1.2. Interference Color Scale

The thickness of sections can be estimated from the interference color
of the sections as they float in the knife trough. The thickness scale of inter-
ference colors proposed by Peachey in 1958 is probably the most widely
used. His measurements were done on methacrylate sections using an ellip-
someter. Several groups have reported sightly differing scales (e.g. Williams
and Meek, 1966).The author has found the thickness scale of Yang and Shea
(1975), based on Epon–Araldite sections and measured by the resectioning
technique (see later), to be more useful, especially for the important range
<100 nm (Table 1).

In general, the interference color of a section is only used as a rough
guide to its thickness. This is probably because, with current methods, thick-
ness estimation from the observed color is subjective. It is the author’s view
that more quantitative estimates can be obtained from the interference
colors. For this to be possible, two provisions are essential: (i) an accurately
reproduced color scale; and (ii) a standard light source. Since different light
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TABLE 1. The interference color scale of plastic sections as a measure of
section thickness from the work of Peachey (1958) and Yang and Shea (1975)

Thickness (nm)
Interference Color Peachey (1958) Yang and Shea (1975)

Gray <60 <40
Silver 60–90 40–60 
Yellowish-silver 60–67
Pale gold 78–90
Gold 90–150 90–100
Dark gold 100–110



sources have different spectral properties, thus giving different color biases,
a standard light source used to illuminate the sections and the color scale
simultaneously would provide a standard scale. In the photographic indus-
try, color-corrected lamps are commonly used.

The interference color of a section becomes even more valuable when
it is realized that the color of a section mounted on an uncoated grid, viewed
subsequent to the microtomy, is in fact the same color as that observed for
the section when it was floating on the trough during the microtomy. The
physical basis for the color to be the same in the two situations is as follows.
The color observed is due to the interference of the light reflected off the
top and bottom surfaces of the section. When light reflects from a surface
of higher refractive index, there is phase change of p/2°. This change occurs
only for the reflection off the top surface of a section. Reflections off the
bottom surface do not produce a phase change since the refractive index
of a resin section (1.54) is greater than that of water (1.3) for the situation
when the section is on the trough, and of air (1.0) when a section is viewed
subsequent to the microtomy. There appears to be little effect of any
absorbed water or stain.The above does not apply when plastic sections are
mounted on grids coated with formvar or formvar/carbon, as the additional
thickness causes a change in the interference color. Coated slot grids are
required for electron tomography of serial sections.

4.1.3 Interference Microscopy

An important method of determining the thickness of thin transparent
samples uses the transmitted light interference microscope. The technique
has been used in several studies on the measurement of section thickness
(Cosslett, 1960; Gillis and Wibo, 1971; Gunning and Hardham, 1977). Unfor-
tunately, interference microscopes do not appear to be manufactured com-
mercially any more. However, they are much cherished and can be tracked
down in a few microscopy or physics research laboratories.

The use of an interference microscope fitted with a Jamin–Lebedeff
interference system has been described by Gillis and Wibo (1971) and
Spencer (1982). In this microscope (Fig. 2a), a polarized beam of light is
divided into two. The measuring beam passes through the transparent
sample while the reference beam passes through the reference medium. A
small path difference in the measuring beam is introduced by the sample,
which can be measured from the shift in the interference fringes obtained on
combining the two beams (Fig. 2b). The thickness t is calculated from the
fractional shift Δx/x of the fringes and the wavelength of the light λ employed:

(m – n)t = Δx/x.l

where m is the refractive index of the section, about 1.54 for epoxy resins,
and n is the refractive index of the reference medium (= 1 for air).
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Figure 2b shows an example of the fringe pattern as viewed in a
Mach–Zender interference microscope. The shift in the pattern is caused
by a section mounted on a grid.The relative shift in the fringe pattern needs
to be determined as accurately as possible. Using digitized images, the fringe
patterns can be integrated separately over the section and over air, and the
shift found by correlating the two arrays. Cosslett (1960) and Gillis and
Wibo (1971) estimated that the error involved is ∼2% when 10 or more
measurements are done.

4.2. Methods of Thickness Measurement by Electron Microscopy

4.2.1. Folds

One of the simplest methods of estimating the thickness of a section
during electron microscopy is by measurement of the width of any folds
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FIGURE 2. (a) Schematic representation of the Mach–Zender interference micro-
scope. In this microscope, the incident light is divided into two beams which pass
through the test sample and the reference. (b) Fringe pattern across a section and grid
in the interference microscope. A section (S) mounted on a grid (G) causes a shift Δx
in the fringe pattern relative to that in air (A). 



that may occur in the section (Small, 1968). Folds or crimps sometimes occur
during electron microscopy on sections that are not well stuck to the grid
coating.They frequently occur in sections that are mounted on coated grids.
The minimum width of the fold is equal to twice the section thickness.

4.2.2. Thickness Measurement from Re-sectioned Sections

Probably the most direct method of measuring the section thickness is
by re-embedding the section, cutting cross-sections and viewing the cross-
sections in the electron microscope. This is a destructive method and there
is the dilemma of cutting cross-sections from unviewed samples or cutting
cross-sections from radiation-damaged samples after electron microscopy.
Bedi (1987) has suggested the following solution for resin sections. After
trimming a block face, a small score is applied to the face. Upon sectioning,
two ribbons are obtained, one of which can be used for experimental
viewing in the electron microscope and the other for measuring thickness
by the above method.

Cutting cross-sections at any random position in a sample is straight-
forward. However, if one wants to cut cross-sections across a region 
precisely identified by electron microscopy, for example across the region
where tilt views were obtained, then the meticulous methods developed by
Jesior (1982) are to be recommended. Although most of his work was done
on negatively stained crystalline material, the method applies just as well
to positively stained resin sections. Jesior’s method requires application of
latex particles along with the test material onto a coated finder grid. The
size of the latex particles, 1.3mm, is chosen to enable viewing at both the
electron microscope and light microscope levels. The method is illustrated
in Fig. 3. In the electron microscope, the grid is viewed and the path of the
cross-section required is noted relative to the grid holes. At the same time,
the position of the required object is measured carefully, in terms of its dis-
tance and angle relative to the edges of the grid hole, and also the latex par-
ticles in the vicinity are mapped. The whole grid is then re-embedded in
epoxy resin. The block is trimmed with a glass knife. Once the grid bars sur-
rounding the required object are exposed, the block face and the sloping
sides are cut. The required region is then approached by first cutting with
the microtome a precise number of thick sections. With the block face
devoid of grid bars, a diamond knife can then be used safely for cutting the
final sections. Sections from material stained prior to embedding do not
require restaining.

4.2.3. Thickness Measurement from Internal 
Periodicity—Bennett Method

An elegant method devised by Bennett (1974) exploits the internal
periodicity of a sample to measure the effect of electron irradiation on the
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relative section thickness. Bennett used a centrifuged pellet of paracrystals
of light meromyosin (LMM), which is the a-helical rod part of a myosin
molecule, fixed and embedded in Araldite. LMM paracrystals applied
directly to a coated grid, negatively stained, and viewed in the electron
microscope show a strong banding pattern with a periodicity of 43 nm along
their length. As the paracrystals are rod shaped, they tend to lie flat on the
coated grids. In the embedded pellet, the paracrystals have a variety of ori-
entations. Consequently, in a section cut from the block, the majority of the
paracrystals do not lie in the plane of the section, and hence they do not
show any banding pattern. Selecting a paracrystal and tilting the section
perpendicular to the long axis of the selected paracrystal brings the banding
pattern into view. Only a few paracrystals fortuitously oriented in the plane
of the section show a sharp banding pattern in the untilted section. Bennett
found that the periodicity measured from the in-plane paracrystals was 
different from that measured in paracrystals which required tilting of the
section. The paracrystals which required tilting had a smaller periodicity
than that predicted by the geometry. By assuming a shrinkage to a fraction
f of the original thickness, she derived the relationship between tilt angle j
required to view the banding pattern sharply and the true periodicity p and
measured periodicity q (Fig. 4):
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FIGURE 3. Method for cutting cross-sections of a specimen along a path precisely
defined by electron microscopy (Jesior, 1982). For the chosen sample, in this case a
fribronogen crystal (labeled C), the surrounding latex particles are mapped and the
reference plane P and distance d of the reference plane to the crystal noted. After
embedding, the block is trimmed and then oriented in the microtome so that the prin-
cipal plane is parallel to the knife. The required area is approached by cutting several
thick sections. (From Jesior, 1982; reproduced with permission by Elsevier).



q2 = p2 – p2(1 – f 2)sin2j

Plotting q2 versus sin2j allows the relative thickness and periodicity to be
found. Luther et al. (1988) modified the above equation by introducing
parameters fx and fz for the fractional in-plane and depth shrinkage:

q2 = p2 f x
2 – p2(f x

2 – f z
2)sin2j

A serious limitation of the method is that a variable amount of time is
required in selecting suitable paracrystals and then in tilting the section
until the banding pattern is sharp. The high accumulated dose means that
this method is more suited for the measurement of the final thickness in
conventional dose electron microscopy. Bennett noted a 50% reduction in
the thickness of Araldite sections.

This method gives changes in thickness of a section, not the absolute
value. However, the principle involved, that of measuring the relative thick-
ness of a section from knowledge of the periodicity, is widely applicable for
samples with crystalline or paracrystalline order, as shown later for cryosec-
tions of striated muscle (Sjostrom et al., 1991).
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FIGURE 4. Measurement of the relative shrinkage in periodic objects (Bennett, 1974).
This method is suitable for samples which have 3D order or 2D order out of the plane
of the sample; i.e. the sample has to be tilted in the electron microscope to visualize
the repeating pattern. For a sample with original periodicity p, the electron beam
causes a reduction in thickness by a factor f and a new smaller periodicity q. Conse-
quently, the sample has to be tilted to a larger angle j to visualize the banding pattern.
The fact that the banding pattern for paramyosin crystals as used by Bennett (1974),
and tropomyosin paracrystals as used by Luther et al. (1988) can be visualized sharply
at the reduced thickness state shows that the shrinkage occurs uniformly through the
depth of the sample. The reduction in thickness does not occur due to, for example,
etching from each of the surfaces because that would require the periodicity to remain
unchanged. (From Bennett, 1974; reproduced with permission by the Company of 
Biologists Ltd.).



4.2.4. Electron Diffraction

Berriman and Leonard (1986) have used a method first proposed by
Dorset and Parsons (1975) for using the electron diffraction pattern to
measure the thickness of crystals several unit cells thick. To understand this
method, note that the 3D Fourier transform of a crystal one unit cell thick
consists of a reciprocal lattice of spikes perpendicular to the a*, b* plane.
The diffraction pattern of such a crystal tilted to q° samples the 3D trans-
form along the plane tilted to the same angle (Fig. 5a). By tilting the crystal
at various angles, the 3D transform is sampled at different planes and infor-
mation is built up for 3D reconstruction. In the case of a crystal more than
one unit cell thick, the spikes in the 3D transform are broken up into layers
or zones (Fig. 5b). The width of these Laue zones is related to the thickness
of the crystal, and the separation of the zones is related to the unit cell
spacing c. From the tilt angle, c can be calculated geometrically from the
separation of the zones. The advantage of this method is that it does not
require any specific orientation of the crystal relative to the beam, only a
knowledge of the tilt angle. Hence it allows low-dose experiments to be 
performed.

4.2.5. Use of Gold Particles

The application of colloidal gold particles to a sample for determining
its thickness was first investigated by two groups: Berriman et al. (1984) and
Luther et al. (1988). The basic geometry involved in the latter method is
described here.

Figure 6 shows a stereo pair of electron micrographs of a section
labeled with gold particles on both surfaces. By using gold particles of dif-
ferent diameters (5 and 15 nm, respectively) to mark each surface, areas
labeled simultaneously on the top and bottom surfaces can be identified
while viewing in the electron microscope. The geometry of the method,
illustrated in Figure 7, is derived from the edge-on view of a section tilted
to an angle b. Particles 1 and 2 mark one surface, and particle 3 marks the
other surface. They are imaged on the micrograph as 1′, 2′ and 3′. The co-
ordinate system for the section has the y-axis parallel to the tilt axis, the 
x-axis in the plane of the section and the z-axis normal to the plane. Coor-
dinates u′ and v′ are measured on the micrograph, with the u′-axis parallel
to the x-axis. If the shrinkage in the plane is mx and that normal to the plane
is mz, then:

u = mx x cosb + mz z sinb (1)

v = mx y (2)

Shrinkage in the plane of the section mx can be found from (2), and then
the shrinkage mz normal to the plane can be found.
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FIGURE 5. Electron diffraction method for measuring lattice spacing and crystal thick-
ness for a thin crystal (Berriman and Leonard, 1986; Dorset and Parsons, 1975). In this
figure, the c axis is normal to the plane of the crystal. (a) For a crystal one unit cell
thick, the diffraction intensities are continuous spikes which can be sampled by tilting
at any angle. (b) For a crystal a few unit cells thick, the diffraction intensities lie along
bands or zones with a periodicity equal to c*. The thickness of the crystal can be cal-
culated from the width of the bands (Dorset and Parsons, 1975). This method allows
relative thickness measurements (from c) to be found using low dose conditions.
(From Berriman and Leonard, 1986; reproduced with permission by Elsevier).
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FIGURE 6. Thickness determination by labeling with gold particles. Stereo view of a
section marked with gold particles. The two surfaces of the section are labeled with
gold particles of different sizes to enable identification in the electron microscope of
areas labeled on both sides. Scale bar 200 nm.

FIGURE 7. Geometry of a section labeled with gold particles viewed edge-on to
measure section thickness and collapse. Gold particles 1 and 2 mark one of the sur-
faces and particle 3 (larger) marks the other. (a) Section tilted to 45°. In the micro-
graph, the images of the three particles occur at 1’, 2’ and 3’. (b) Subsequent state
after section collapse. In the micrograph, 3’ has moved relative to 1’ and 2’. (c) Final
image taken at 0° tilt. (From Luther et al., 1988; reproduced with permission by 
Elsevier).



At the start of the experiment, the sample is tilted to 45° in the elec-
tron microscope, a suitable region found at very low magnification, and the
microscope focused at an adjacent area. With the selected region exposed
continuously to a fixed beam intensity, a series of micrographs are recorded
at different times to sample the effects of the irradiation.The effects of very
low doses can be investigated since the minimum potential dose is the
amount required to record one micrograph. Note that the applied gold par-
ticles can obscure valuable structural details. Therefore, the particles must
be applied carefully to ensure suitable distribution on each surface. The
method used by the author is to float a grid on to a drop of the colloidal
gold solution for ∼30s and then blot the grid lightly and allow it to air-dry.
An excellent method of preparing colloidal gold particles of different sizes
is described by Slot and Geuze (1985). To improve the attachment of the
gold particles to the section, 0.02% polylysine may be applied to each
surface of the grid (Muller et al., 2000).

5. STUDIES ON SHRINKAGE OF PLASTIC SECTIONS

5.1. Early Studies

Cosslett (1960) carried out pioneering work on the effect of the elec-
tron beam on sections, for which she used an interference microscope to
measure the section thickness before and after the electron irradiation.
She used two different media for the reference beam which allowed her
to measure changes in both the thickness and the refractive index of the
section. The resins examined were methacrylate, Araldite, Vestopal and
Aequon (water-miscible medium). For methacrylate, the effect of the
beam was the greatest: the sections reduced in thickness by 50% of the
starting value. Sections of the other resins reduced in thickness by 20–30%.
In each case, Cosslett noted that the refractive index increased from 
1.54 to 1.9. The increase in refractive index was attributed to changes 
in internal structure of the resins. The work of Bennett (1974), using sec-
tions of LMM paracrystals embedded in Araldite, showed a reduction in
section thickness by 50% following electron microscopy at conventional
doses.

5.2. Characterization of Shrinkage of Plastic Sections

There are now a few detailed studies of the variation in thickness of
plastic sections with electron dose (Braunfeld et al., 1994; Kremer et al.,
1990; Luther et al., 1988; Trachtenberg et al., 2000). The experiments of
Luther et al. (1988) using the gold particles method are described here (see
Section 4.3.5). Sections of tropomyosin paracrystals embedded in Araldite
were used. Their results are shown in Fig. 8. In each of the four panels, the
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upper trace shows the shrinkage measured in the plane of the section and
the lower trace shows the shrinkage measured in the depth. There are two
parts to each curve: at the start of the experiment, low dose rates were used,
in the order of 50e/nm2/s, then the dose was increased to 400e/nm2/s.
Despite the low dose rates used at a magnification of 20,000×, ‘strict’
minimal dose conditions could not be used to record the image of a pris-
tine section, because the beam, although weak, caused violent planar move-
ments in the section and occasionally breakage of the section. Therefore,
the sample was first viewed at very low magnification and then the selected
area was translated into the beam by hand. There were still gross move-
ments within the irradiated region and, when the first image was recorded
after 15s of irradiation (allowing the section to stabilize), the section had
already experienced a dose of 700e/nm2.The results in Fig. 8 show that there
is sudden collapse to 70% within 3min (after an accumulated dose of
9000e/nm2) and then the shrinkage levels off. The collapse occurred in a
similar fashion in areas with resin only (Fig. 8a–c) and in areas with embed-
ded tissue regions (Fig. 8d). Increasing the dose from 50 to 400e/nm2/s (after
20min in (Fig. 8a) and 15 min in (Fig. 8b, c and d)) resulted in a new shrink-
age curve which leveled off at a final thickness of 60% of the original. The
fact that the curves level off after each set dose level indicates that the
changes that occur in a sample allow it to dissipate the energy at the set
dose rates. Hence the changes that occur are not just dependent on the accu-
mulated dose. This implies that the electron microscopy should be carried
out at the lowest dose rate possible with a particular sample. The shrinkage
in the plane of the section following irradiation is much lower: there is a
small shrinkage by 5% at the lower dose level and a further 5% at the
higher dose level.

Luther et al. (1988) also discussed the ‘clearing’ that is observed with
a stained section after very low doses (Fig. 9). The effect seen is that of
enhanced contrast of the stained material due to the increased transparency
of the surrounding resin. To demonstrate the effect, a small disk within the
field of view was irradiated with a dose of 1e/nm2 at low magnification
(×3000).Then the beam was spread to cover a larger region.With the result-
ing reduced illumination, the exposed disk and the immediate surrounding
area were photographed. The process of photography causes the sur-
rounding area to be slightly irradiated as well. In the micrographs, the main
exposed region showed a marked improvement in contrast of the stained
material compared with the slightly exposed surrounding area. For the total
dose received, ∼15e/nm2, the shrinkage curves in Fig. 8 imply that no sig-
nificant shrinkage has occurred. Hence Luther et al. concluded that clear-
ing could be due to mass loss or some change in chemical structure which
causes less electron scattering, and that the efffect must precede the depth
shrinkage. Braunfeld et al. (1994) investigated this phenomenon and con-
cluded that the change in beam intensity was directly related to mass loss
for electron doses up to ∼1.5 × 104 e/nm2.
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FIGURE 8. Measurement of section collapse (lower trace) and planar shrinkage
(upper trace) as a function of electron dose. (a, b and c) Gold particles over resin only
(Araldite). (d) Gold particles over a paracrystal. The dose rate, initially 0.5 e/Å2/s, was
increased to 4 e/Å2/s after 20 min for (a) and after 15 min for (b, c and d). (From Luther
et al., 1988; reproduced with permission by Elsevier).



5.3. Investigation of Parameters That May Reduce 
Section Shrinkage

The Holy Grail for electron tomography of plastic-embedded samples
is finding the resin that is most resistant to electron radiation and that expe-
riences the least shrinkage. Only a few resins have been quantitatively
tested for their shrinkage behavior in the electron microscope. Some of
these studies include: Luther et al. (1988), Araldite; Kremer et al. (1990),
Epox 812/Araldite and LX112; Braunfeld et al. (1994), Epon, Epox and
Lowicryl; van Marle et al. (1995), Epon and Lowicryl; and Trachtenberg et
al. (2000), Spurr’s resin. Hence epoxy resins are the most widely studied,
with only two studies on Lowicryl, an acrylic resin. These studies showed
that for each resin tested, the response to electron dose has the same char-
acteristic form: an early rapid phase of shrinkage followed by a slow period
of thinning. The amount of z-shrinkage and planar shrinkage was found 
to be similar in all of these studies (although slightly less in Lowicryl
(Braunfeld, 1994)), hence there is little to choose between the different
resins. Most of the recent tomographic studies have been done using epoxy
resins. Trachtenberg et al. (2000) reported a higher than normal z-shrinkage
of 45% in their Spurr’s-embedded samples. Spurr’s resin, an epoxy resin, is
preferred by some researchers on account of its very low viscosity.

Kremer et al. (1990) and Braunfeld et al. (1994) investigated the
hypothesis that normally polymerized plastic blocks further polymerized in
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FIGURE 9. The ‘clearing’ effect as observed in an Araldite section of Drosophila flight
muscle. The electron dose on the ‘cleared’ central patch is 0.1 e/Å2 compared with the
much lower dose (0.02 e/Å2) for photography of the surrounds. Scale bar represents 2
microns. (From Luther et al., 1988; reproduced with permission by Elsevier).



a microwave oven are more stable in the electron microscope and suffer
less shrinkage. Unfortunately, they found little improvement in the shrink-
age properties of sections from the microwave-treated blocks.

Another factor that could have a protective effect on the section
shrinkage is higher accelerating voltage electron microscopy (HVEM).This
was investigated by Kremer et al. (1990), who used a 1 MV electron micro-
scope. They observed shrinkage curves similar to those observed by con-
ventional transmission electron microscopy (TEM) (Luther et al., 1988) and
concluded that shrinkage in x–y and z did not seem to be reduced in
HVEM.

5.4. Shrinkage Studies of Native Samples 
(Not Embedded in Plastic)

Jesior and Wade (1987) examined the shrinkage in negatively stained
2D crystalline arrays of the bladder membrane, following conventional dose
electron microscopy with a total dose of 105 e/nm2. By embedding the
sample and cutting cross-sections, they found that the membrane had ‘flat-
tened’ to 60% of the native thickness. Berriman and Leonard (1986) used
electron diffraction to study the variation in thickness of negatively stained
thin crystals of catalase as a function of electron dose. From the electron
diffraction pattern, the separation of the Laue zones was measured, and
hence the c spacing of the unit cell. As shown in trace 5 of Fig. 10, the c
spacing reduced as the logarithm of the accumulated electron dose. After
a dose of 105 e/nm2, the crystals had reduced in thickness to 60% of the
starting value. Berriman and Leonard also studied how samples that are
cooled to liquid nitrogen temperatures are affected in the electron micro-
scope, and these results will be described in a later section.

The effect of electron irradiation on negatively stained, dried cryosec-
tions at room temperature was investigated by Sjostrom et al. (1991). The
material used was longitudinal cryosections of fish muscle, negatively
stained in ammonium molybdate. In the ideal case, tilting such sections
about the myofibril axis, to view in turn the [10] and [01] projections of the
myosin filament hexagonal array, would require a total tilt of 60°. However
Sjostrom et al. found that the angle of tilt required to observe the two views
was ∼120°. From this, they concluded that the sample had collapsed to
nearly 33% of the original thickness. Some of this collapse could occur
during drying the negatively stained cryosection prior to the electron
microscopy.

5.5. Shrinkage Occurs Along Directions Lacking Restraint

Does the shrinkage in a section occur in any preferred direction when
irradiated in the electron microscope? Bennett (1974) proposed that
shrinkage in z occurs in the electron microscope because this is the only

SAMPLE SHRINKAGE AND RADIATION DAMAGE OF PLASTIC SECTIONS 35



dimension of the section which is not supported on each side. In the plane
of the section, shrinkage is restrained by attachment of the section to the
grid bars or support film. Berriman and Leonard (1986) have provided
strong evidence for this idea (Fig. 11). They applied catalase crystals to a
holey carbon-coated grid and viewed carefully those crystals that partly
covered the holes. When viewed at very low illumination levels (100e/nm2

accumulated dose), crystal edges were continuous across the hole and the
support film. With increased accumulated dose (10,000e/nm2), the part of
the crystal across the hole contracted in the plane of the grid such that the
edge of the crystals was drawn towards the rest of the crystal. The amount
of contraction was estimated by viewing the lattice spacings. Unwin (1974)
has shown that parallel with the dimensional changes, there are changes in
the images and diffraction patterns of stained samples, indicating that radi-
ation causes movement in the stain. Berriman and Leonard (1986) suggest
that this redistribution of stain may be due to the stain moving along with
the parts of the sample which are free to contract in the electron beam.

Similar shrinkage occurs in the part of a plastic section that does not
cover a grid hole completely. In the electron beam, the part that is not
attached to the grid bars starts to contract just like the catalase crystal
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FIGURE 10. Investigation of the c unit cell size of thin catalase crystals (hence crystal
thickness) with accumulated dose under different experimental conditions. The aster-
isk indicates the value (206 Å) found by X-ray diffraction. (1) Frozen-hydrated crystals
at 120 K. (2) Glucose-embedded at room temperature. (3) Dried, negatively stained
crystals in uranyl acetate at 120 K. (4) Negatively stained at 120 K with a contaminat-
ing layer of ice or deposited carbon layer. (5) Negatively stained at room temperature.
(From Berriman and Leonard, 1986; reproduced with permission by Elsevier).



sheets shown in Fig. 11. Hence, for tomography, it is important to select a
section that covers a grid hole completely and is well attached to the grid
bars.

5.6. Is Shrinkage Uniform in Z?

For a sample to become thinner in the electron microscope, two ways
can be envisaged: collapse (shrinkage) or loss of mass from the surface
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FIGURE 11. Demonstration of sample shrinkage in the electron microscope occur-
ring only along directions lacking physical constraints. The figure shows images of
catalase crystals spanning holes in the supporting film, viewed under low dose, 1 e/Å2

(left panel), and high dose, 100 e/Å2 (right panel). In each case, the straight edge of the
catalse crystals imaged in low-dose conditions becomes rounded with accumulated
dose. With the points of attachment remaining unaffected, the roundedness is due to
shrinkage of the crystal sheets perpendicular to the edges. Scale bars represent 
0.1mm. (From Berriman and Leonard, 1986; reproduced with permission by Elsevier).



(etching). In electron tomography studies on sectioned samples, it is now
customary to stretch the final 3D reconstruction along z to compensate for
this.The assumption is that thinning is caused by shrinkage, and that shrink-
age is uniform through the depth of the sample. How can we determine
whether the thinning is due to collapse of the section or due to material
loss near the surfaces? In the section shrinkage studies of Bennett (1974)
and Luther et al. (1988) using paracrystals, they found that when the ran-
domly oriented paracrystals were tilted to view the banding pattern, the
patterns were sharp across the whole of a selected paracrystal at particular
tilt angles. This implicates uniform collapse in z as the origin of the thin-
ning. If the collapse was not uniform in z, then only part of a particular
paracrystal would show sharp banding at a particular angle.

The work of van Marle et al. (1995) questions the premise of uniform z-
shrinkage in sections. They prepared 100 and 200 nm sections of Epon-
embedded testis material from rats that was conventionally processed,
mounted on formvar-coated grids, and then carbon coated. Resectioning the
unexposed sections and viewing the cross-sections in the electron micro-
scope convinced these authors that the sample material was distributed
homogeneously throughout the depth of the section.However,after electron
microscopy and production of tomograms of the samples, they found that xz
projections comprised quite inhomogeneous density distributions through
the depth,such that the greatest density was near the surface of the section on
the vacuum side, followed by the region close to the formvar surface. van
Marle et al. also found that there was more shrinkage for a sample cryocooled
in the electron microscope than one cooled prior to insertion, implying that
the microscope vacuum may also play a part in the shrinkage. These para-
doxical results need to be investigated further as they imply great impact on
the practice and interpretation of electron tomography.

6. EFFECT OF LOW TEMPERATURES ON RADIATION
DAMAGE AND SAMPLE SHRINKAGE

6.1. Characterization of Shrinkage in Native (Unembedded)
Crystals at Low Temperature

It is now well established that radiation damage effects are greatly
reduced by electron microscopy at low temperatures (Glaeser and Taylor,
1978). For example, studies on purple membrane have shown that at liquid
nitrogen temperatures, there is a reduction in radiation sensitivity by a
factor of at least four, as judged by the fading of the diffraction spots
(Hayward and Glaeser, 1979).

As mentioned in Section 5.4, a systematic study of catalase thickness
under various conditions in the electron microscope was carried out by 
Berriman and Leonard (1986).They monitored the effects of radiation dose
by measuring the separation of the Laue zones in the electron diffraction
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pattern. They also measured the effect of the preparation on the starting
thickness prior to any electron microscopic irradiation (Fig. 10). From X-
ray diffraction of crystals in the hydrated state, the cell c dimension was
measured to be 20.6nm (asterisk in Fig. 10). With negatively stained crys-
tals, they noted that this dimension was reduced to 70% of the hydrated
value at the start of the electron microscope investigation. As mentioned
earlier, for the sample kept at room temperature, trace 5 shows a logarith-
mic shrinkage of a further 50% following a dose of 106 e/nm2. Maintaining
the negatively stained crystals at 120K, they found no change in c for high
levels of a dose of ∼2 × 105/nm2 (trace 3). Negatively stained crystals with a
contaminating layer of ice or a layer of carbon deposited, kept at 120K,
follow the same course (trace 4) as for crystals without contamination (trace
3), but are more radiation sensitive. They also examined crystals ‘embed-
ded’ in glucose and viewed them at room temperature with low dose. Trace
2 shows that the starting thickness was 80% of the native value. Although
the sample did not shrink, it was highly radiation sensitive, and the pattern
disappeared after a dose of only 300e/nm2. Viewing frozen-hydrated crys-
tals gave the value of c closest to the native value (90%, trace 1). There was
no shrinkage and the sample, although radiation sensitive, is more resistant
than the glucose-embedded sample at room temperature; here the pattern
is destroyed after a dose of 800e/nm2.

6.2. Characterization of Shrinkage of Plastic Sections at 
Low Temperature

Characterization of shrinkage of plastic sections cooled to cryotem-
peratures is a subject of paramount importance for tomography studies.
Kremer et al. (1990) examined 250nm thick sections of Epon 812/Araldite
coated with TiSi on a high voltage electron microscope operated at 1000kV
with the section cooled to –160°C. Metallic coatings are used at low 
temperature as carbon becomes an insulator (Rader and Lamvik, 1992).
The metallic coatings eliminate charging effects at these temperatures
(Braunfeld et al., 1994). The shrinkage was monitored by the gold particles
method. Using a continuous irradiation of 100e/nm2/s, they observed 
the usual rapid phase of shrinkage, followed by a very slow phase. They
observed a final z-shrinkage of 20%, with little lateral shrinkage.

Braunfeld et al. (1994) examined sections of Epon resin coated with 
3nm of titanium at –165°C. As shown in Fig. 12, they found that 50% of the
total z-shrinkage occurs after 1.4 × 105 e/nm2. However, their results showed
that in the dose range <5000e/nm2, there was virtually no shrinkage. Hence
they proposed that tilt series could be recorded at low temperatures within
the limiting dose of 5000e/nm2 with negligible shrinkage.This proposal does
not appear to have been tested in practice.

In another study, Trachtenberg et al. (2000) examined the surface layer
of Halobacterium salinarum embedded in Spurr’s resin.The sample was fast
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frozen and freeze substituted and the sections observed at –170°C. They
reported that the section was stable after a dose of 10,000e/nm2. Unfortu-
nately, they noted a high z-shrinkage of ∼45% despite their use of low 
temperatures.

In general, in laboratories where tomography is carried out, cryohold-
ers are routinely available. With current automated methods and availabil-
ity of cryoholders, it is surprising that tomographic tilt series for plastic
sections are rarely recorded at low temperatures, although there is much
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FIGURE 12. Characterization of shrinkage in Epon resin cooled to –165°C. The low-
dose data are shown on an expanded scale in (b). In these titanium-coated sections,
50% of the total z-shrinkage occurs after 1.4 × 105 e/nm2. As shown in (b), in the dose
range <5000 e/nm2, there is virtually no shrinkage. (From Braunfeld et al., 1994; repro-
duced with permission by Blackwell Publishing).



evidence that cryoimaging of plastic sections would reduce the shrinkage.
Notable tomography studies at low temperature include those of Harlow
et al. (1998, 2001), but the benefit of cryotemperature was not discussed.
The reason for the reluctance to use low temperatures may be the incon-
sistency in the shrinkage values, as in the study of Trachtenberg et al. (2000)
above. More tomographic studies need to be done to show the benefits of
cryogenic imaging for tomography.

7. REVIEW OF SAMPLE PREPARATION AND IMAGING
PROTOCOLS IN PAST TOMOGRAPHY STUDIES

7.1. Comments on Sample Preparation and Tomography

Compared with the 1st Edition of this chapter, there are now several
published tomography studies with some spectacular success stories. Ex-
cellent reviews have appeared recently highlighting the techniques and
achievements (Lucic et al., 2005; Marsh, 2005; McEwen and Frank, 2001;
McIntosh et al., 2005).

It is appropriate to review the methods of sample preparation that
have been used in these studies and the protocols used for collecting the
tomography data set. A selection of these studies is listed in Table 2.
The early studies used conventional chemical fixation for preparing their
samples, but recent studies use rapid freezing/freeze substitution methods.
For embedding the samples, epoxy resins of the Epon/Araldite type are the
most common.A variety of section thicknesses are used, ranging from ultra-
thin ∼30nm sections of Liu et al. (2004b) and He et al. (2003) that aim to
probe molecular details, to medium thick 500nm studies that encompass
complete organelles and parts of complete cells. The most popular electron
microscopes for tomography are operated at 300kV, fitted with field emis-
sion source. HVEM electron microscopes (1MV) that had been falling out
of favor are now back in demand for tomography of thick sections. Bouwer
et al. (2004) have demonstrated that by using most-probable loss (MPL)
energy signal with an intermediate voltage electron microscope (IVEM), it
is feasible to record tilt series for tomography of a section up to 5mm thick.

Two studies are described separately below, one which unravels molec-
ular detail (He et al., 2003) and the other cellular detail (Ladinsky et al., 1999).

7.2. Tomography of the Desmosome

In this study by He et al. (2003), neonatal mouse skin was processed
by high-pressure freezing/freeze substitution, embedded in epoxy resin, thin
30–70nm sections cut, carbon-coated, and viewed in a 300KV FEG elec-
tron microscope. Of the different tomograms calculated, the best detail was
obtained using data collected over two orthogonal axes, over the tilt range
±75° in 1.5º steps. Electron tomograms normally have non-isotropic 
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resolution, since the limited tilt range (e.g. ±60º) results in a missing wedge
in Fourier space. He et al. claim that their tomogram has an isotropic reso-
lution of 2.3nm, because of their double-axis high tilt range protocol and
because the cadherin molecules are tightly packed within the desmosome
and hence may be resistant to shrinkage by radiation. One should there-
fore try to assess the shrinkage behavior of a sample prior to the tomogra-
phy. This feature is illustrated in Fig. 13 taken from their Supplement 
Fig. S2. After segmenting their tomogram with Amira (TGS Inc, San Diego,
Californaia) in an iterative process, He et al. were able to fit the crystal
structure of cadherin to their electron density maps.

7.3. Studies on the Golgi Apparatus

Unlike the ultrathin sections used to elucidate the molecular structure
of the desmosome in the previous example, intermediate thickness sections,
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FIGURE 13. Factors affecting isotropic resolution in tomograms. (a and b) x–y slices
from tomograms with tilt range ±60° (a) and ±75° (b); white rings apparent in (a) are
much reduced with higher tilt range. (c and d) y–z sections from a ±60° single-tilt axis
tomogram show conical streak artifacts. (e and f) y–z sections from a ±60° dual-tilt axis
tomogram show reduced artifact images. (g and h) y–z sections from a ±75°single-tilt
axis tomogram show reduced conical streaks. (i and j) y–z sections from a ±75°dual-
tilt axis tomogram show round gold particles with minimal artifacts. The authors claim
that desmosomes are tightly packed and have high radiation resistance, hence shrink
little. Excessive z-shrinkage in a sample effectively reduces the tilt range, hence the
quality of the 3D image. (From He et al., 2003, courtesy of David Stokes).



250–500nm, have been used to understand the 3D structure of the Golgi
apparatus. In a landmark study, Ladinsky et al. (1999) used four 250nm thick
serial sections, collected tilt series over two orthogonal axes over the range
±60 in steps of 2°, calculated each tomogram, and combined them to give a
single tomogram of volume 1 × 1× 4mm3.The samples were prepared by rapid
freezing/freeze substitution techniques, followed by embedding in Epon/
Araldite resin. The 7 nm resolution 3D image allowed them to dissect the
Golgi apparatus in different planes, giving new and insightful views of
tubules and vesicles associated with the different cisternae.The development
of the technique of tomography applied to Golgi research has been reviewed
by Marsh (2004), and this is also an excellent general review on tomography.

8. CONCLUSIONS AND RECOMMENDATIONS

For sample preparation, it is clear that rapid freezing (e.g. by high-
pressure freezing) followed by freeze-substitution gives the best sample
preservation. For embedding the sample, the most common resins used are
of the epoxy type, such as Epon or Araldite. The section thickness depends
on the size of the object of study, and can range from ∼30nm for study of
molecular organization to ∼500nm to study the 3D structure of organelles
and cellular entities. The sections may be coated with 0.02% polylysine and
then with gold particles ranging from 10 to 30nm to allow accurate align-
ment of the tilt views. Some methods of alignment use correlation match-
ing of the different views and do not require gold particles (Winkler and
Taylor, 2006). It is essential to carbon-coat the sections to reduce charging
effects and improve stability in the microscope. For thin sections, a 100kV
electron microscope is sufficient. However, electron microscopes with 200
and 300kV fitted with field emission sources are regularly used for thin sec-
tions. For the thicker, 250–500nm, sections, intermediate-voltage, 300 and
400kV or high-voltage 1MV electron microscopes are required. The use of
automated methods is highly desirable to minimize the radiation dose on
the sample, since low-dose methods are used to track, focus and record the
image. The saving in labor and electron dose for ∼100–200 images required
for a dual-tilt axes series is enormous. Recording images directly onto a
CCD camera with at least 1000 × 1000 pixels or bigger is another great
saving on labor. Pre-irradiation of the section is necessary in order to induce
the rapid phase of the shrinkage, to allow collection of data over the slow
phase. In practice, with the beam intensity set to the value to be used for
recording the images, a few (~3–4) minutes pre-irradiation is sufficient. One
can easily ascertain that the rapid phase shrinkage is complete by examin-
ing a few successive images of a field of fiducial markers on a grid tilted to
a high fixed angle (e.g. 45°). For the data collection, the use of low-dose
methods ensures that there is negligible further shrinkage. In the study by
He et al. (2003), the total pre-irradiation dose was 105 e/nm2 and the same
amount again for the complete data collection. The beam intensity value
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used for the pre-irradiation should not be exceeded for the data collection
as it could induce further shrinkage.To obtain the most isotropic 3D images,
the tomography data set should include double axes tilt series collected
over a large range, about ±75° (He et al., 2003). For the sampling steps over
the tilt range, 1–2° steps are routinely used with the computer-controlled
specimen holders.The alternative is to use the Saxton scheme in which finer
steps are used at higher tilt angles to compensate for the increased relative
thickness of the sample (Saxton et al., 1984).

In the first edition of this book, I wrote ‘The overwhelming conclusion
. . . to limit the effects of electron irradiation, a sample must be cooled to 
low temperatures (about –150°C or less)’. Although cryoholders and auto-
mated methods for data collection allow relatively straightforward 
low-temperature work, the take-up has been very poor. It appears that
researchers, in a bid to ensure that the tilt series is recorded over the stable
part of the shrinkage curve,pre-irradiate the sample with a high dose at room
temperature. Considering the success of electron tomography of plastic-
embedded sections, it appears that the shrinkage that occurs in room tem-
perature studies is tolerable. Nevertheless, further studies are required to
establish the benefit of cryo-cooling of plastic sections for tomography and to
recommend suitable protocols. The ultimate goal is to eliminate plastic
embedding altogether and cut cryo-sections of vitrified samples and view them
by cryo-electron microscopy (see Marko et al., Chapter 2 of this volume).
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1. INTRODUCTION

1.1. Cryoelectron Tomography

The technique of cryoelectron tomography of frozen-hydrated biological
specimens is opening a new window on cellular structure and organization.
This imaging method provides full 3D structural information at much
higher resolution (typically 5–10 nm) than is attainable by light microscopy,
and can be applied to cells and organelles that are maintained in a state
that is as close to native as can be achieved currently in electron microscopy.
Not only can cryoelectron tomography be used to visualize directly
extended cellular structures, such as membranes and cytoskeleton, but it
can also provide 3D maps of the location, orientation and, perhaps, the con-
formation of large macromolecular complexes, the cell’s ‘molecular machin-
ery’. This information complements that coming from single-particle
cryoelectron microscopy (Frank et al., 1996, 2006) and X-ray crystallogra-
phy, about the subnanometer structure of the same molecular assemblies
after isolation. As with studies using single-particle cryoelectron
microscopy, specimens smaller than 1 μm in size can be prepared for cryo-
electron tomography by plunge-freezing (Dubochet et al., 1988). Cells or
organelles can be rapidly frozen directly on an electron microscope grid in
thin layers of glass-like, amorphous ice, without the formation of ice crys-
tals that would otherwise disrupt fine structure (Kellenberger, 1987). Spec-
imens are imaged directly, without chemical fixation, dehydration or
staining with heavy metals. Cryoelectron tomography is made possible by
electron microscope automation, which allows the recording of image series
from sequentially tilted specimens with a sufficiently low cumulative elec-
tron dose, such that damage to high-resolution fine structure is avoided
(Dierksen et al., 1993, 1995; Koster et al., 1997; Mastronarde, 2005; Rath 
et al., 1997; Chapter 4 of this volume).

Examples of specimens studied by cryotomography since the year 2000
include (i) isolated organelles such as mitochondria (Mannella, 2005;
Mannella et al., 2001; Nicastro et al., 2000), axonemes (McEwen et al., 2002)
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and triad junctions (Wagenknecht et al., 2002); (ii) small bacterial cells, such
as Pyrodictium (Nickell et al., 2003) and Spiroplasma (Kürner et al., 2004,
2005);and (iii) thin parts of intact eukaryotic cells, such as the cytoskeleton in
the leading edge of Dictyostelium (Bretschneider et al., 2002; Medalia et al.,
2002) and sea urchin sperm flagella (Nicastro et al., 2005a).The reader is also
referred to reviews by Koster et al. (1997), McIntosh (2001), McIntosh et al.
(2005), Plitzko et al. (2002), Steven and Aebi (2003) and Leapman (2005).

Considerable progress has been made in the use of cryotomography to
reconstruct and identify macromolecules and macromolecular assemblies,
sometimes within larger scale reconstructions of cells or organelles. Exam-
ples are the nuclear pore complex (Beck et al., 2004; Stöffler et al., 2003),
viruses (Cryklaff et al., 2005; Förster et al., 2005; Grünewald et al., 2003),
ATPase (Rockel et al., 2002), ribosomal subunits (Zhao et al., 2004),
immunoglobin (Bogini et al., 2004; Sandin et al., 2004) and synaptic macro-
molecules (Lucic et al., 2005a). When the 3D orientation of the macromol-
ecule can be precisely determined, an averaged structure can be computed
in order to achieve increased resolution of the in situ macromolecule
(Böhm et al., 2000, 2001; Frangakis and Förster, 2004; Frangakis et al., 2002;
Förster et al., 2005; Grünewald et al., 2002; Rath et al., 2003;Walz et al., 1997;
Chapter 14 of this volume).

Reviews containing useful discussions of the role of cryoelectron
tomography in structural biology and cellular proteomics include those of
Koster et al. (1997), Baumeister and Steven (2000), McEwen and Frank
(2001), McIntosh (2001, 2005), Frank et al. (2002), Baumeister (2002),
Plitzko et al. (2002), Steven and Aebi (2003), Sali et al. (2003), Lucic et al.
(2005b) and Leapman (2005).

Until recently, cryoelectron tomography could not be applied to
excised bulk tissue or to large cells, except at their leading edges, in part
because these specimens are too large to be vitreously frozen by plunging
into a cryogen. In addition, a specimen thickness exceeding 500 nm poses
serious obstacles for high-resolution tomography, even when an accelerat-
ing voltage in the range of 300–400 kV is used, with respect to both the
requirement for low-dose imaging (Grimm et al., 1998) and the number of
images needed for the reconstruction (Crowther et al., 1970).

1.2. Role of Frozen-hydrated Sections in Tomography

Cryoultramicrotomy of frozen-hydrated specimens currently offers the
best possibility to extend electron tomography to large cells and bulk tissue in
their native states (Dubochet and Sartori Blanc, 2001). Sections are usually
cut from high-pressure-frozen material with diamond knives, and are
mounted ‘dry’ on transmission electron microscopy (TEM) grids for cryo-
electron microscopy.Like plunge-frozen specimens, frozen-hydrated sections
must be kept below the devitrification temperature (–133 to –138°C;Dubochet
et al., 1988) at all times, to prevent formation of damaging ice crystals.
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Frozen-hydrated sections should be distinguished from ‘cryosections’.
Cryosections is the term that is commonly applied to sections that are 
prepared by the technique of Tokuyasu (1986) for immunological studies.
In the Tokuyasu method, material is lightly pre-fixed, cryoprotected with
sucrose, frozen, and sectioned at –90°C. Sections are then collected on a
sucrose solution, and warmed to room temperature for immunolabeling,
heavy metal staining and electron microscopy. In contrast, frozen-hydrated
sections are not subjected to chemical fixation or staining, are prepared 
at temperatures below –135°C, and are maintained at those temperatures
during electron microscopy.

Successful use of frozen-hydrated sections for electron tomography
was first reported a few years ago, with specific application to mammalian
tissue (Hsieh et al., 2002, 2003; Marko et al., 2002). The technique has
recently been adopted by other laboratories, for studies of yeast (Schwartz
et al. 2003), isolated chloroplasts (Nicastro et al., 2005b) and algae (Leis 
et al., 2005).The methodology described in this chapter reflects, and expands
on, refinements in the technique, as recently reported in Hsieh et al. (2006).

The cryoultramicrotome can be used to cut sections with actual thick-
nesses in the range of ∼70–350 nm, as measured by subsequent tomographic
reconstruction or by electron energy loss. This means that the thickness of
the ice layer is not dictated by the size of the organelle or cell. As pointed
out elsewhere in this book, higher tomographic resolution can be obtained
for a given number of tilt images (and the same electron dose), if the spec-
imen is thinner. Thus, for frozen-hydrated sections, the investigator can
negotiate between resolution and 3D depth. In some cases, it is desirable
to make reconstructions at two different section thicknesses.

In previous reports, we compared tomograms from frozen-hydrated
tissue sections with tomograms from plastic sections of the same tissues,
prepared using high-pressure freezing and freeze substitution. In tomo-
grams of liver (Hsieh et al., 2006) and skin (Hsieh et al., 2004), the cellular
ultrastructure was similar, and the principal differences seen were due to
the selective staining and obscuration of features by the heavy metals used
for the plastic sections. Such plastic sections may be preferred over frozen-
hydrated sections in some situations, for example when the experiment
requires immunolabeling or collection of a large number of tomograms.
However, in such applications, it is advisable to compare plastic sections
with frozen-hydrated sections of the same specimen, to confirm that the
structures of interest have not been significantly altered by freeze substitu-
tion or staining.

2. FREEZING METHODS

At ambient pressure, formation of vitreous (non-crystalline) ice
requires cooling at a rate of ∼105 °C/s to below the vitrification temperature,
about –135°C. During plunge- or slam-freezing, this cooling rate occurs in
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specimens only to a depth of one to several micrometers from the cryogen
or metal surface, respectively. The rate of cooling deeper into the specimen
is slower, resulting in formation of ice crystals. High pressure suppresses ice
crystal formation; thus application of a cryogen at high pressure (≥2000 bar)
allows biological specimens to be frozen without damage from large ice crys-
tals, at depths where the cooling rate is as much as 10 times slower than at
the surface. For specimens that have a naturally very low water content, or
those that are infiltrated with sugars or other cryoprotectants, low freezing
rates may be adequate for good vitrification of thick specimens, and high-
pressure freezing may not be required. For a general reference on freezing
techniques for electron microscopy, see Steinbrecht and Zierold (1987).

2.1. Ambient-pressure Freezing

The use of freezing as an alternative to chemical fixation is not a new
idea. From the start, it was recognized as potentially offering a means to
improve the fidelity of preservation in electron microscopy. In the 1950s,
Fernàndez-Moràn experimented with freezing using liquid helium 
(Fernàndez-Moràn, 1960). More than a decade later, Taylor and Glaeser
(1974, 1976) initiated cryoelectron microscopy of macromolecules, using
liquid nitrogen as the cryogen.

Sitte (1996) described a technique in which a small droplet of cell sus-
pension is placed on the tip of a pin that fits into the microtome chuck. The
pin is plunged in liquid ethane, and then mounted in the microtome, after
which the specimen can immediately be sectioned. Only a small number of
good sections can be obtained, however, because biological material is vit-
rified only to a depth of ∼1 μm in the absence of cryoprotectant. As noted
by Dubochet et al. (1988), plunging is best done in liquid propane or liquid
ethane, and not in liquid nitrogen. In the latter case, nitrogen gas produced
at the specimen surface inhibits heat exchange (the so-called Leidenfrost
effect), and reduces the cooling rate, resulting in ice crystal formation.

Slam-freezing achieves the fastest available cooling rate (>106 °C/s),
and allows vitrification to a depth of ∼10 μm. The specimen is rapidly
pressed against a polished metal surface (cooled to the temperature of
liquid nitrogen or helium) by means of a device that prevents bouncing of
the specimen after the initial impact. Unfortunately, the layer that is opti-
mally frozen is close to the impact surface, and cell structures, such as larger
vesicles that are not well supported by the cytoskeleton, become distorted.
Propane-jet freezing yields good freezing for specimens up to 40 μm in
thickness, and is often used for freeze-fracture work, but it has rarely been
used for frozen-hydrated sections. For reviews of these techniques, see
Gilkey and Staehelin (1986) and Sitte (1996).

2.2. High-pressure Freezing

Currently, the most popular method of freezing tissue, as well as pel-
leted or flat-cultured cells, is high-pressure freezing (Dahl and Staehelin,
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1989; Moor, 1987; Studer et al., 1989, 2001). Liquid nitrogen is applied at high
pressure (≥2000 bar), which suppresses significant ice crystal formation to
sample depths of 100–300 μm, despite the relatively slow cooling rate of
104 °C/s. There are numerous reports that high-pressure freezing, unlike
plunge-freezing of thin specimens, does not produce purely amorphous ice,
but rather a mixture of microcrystalline ice forms. The microcrystals range
in size from 2 to 30 nm (Echlin, 1992; Michel et al., 1991; Moor, 1987). They
are composed of high-pressure forms of ice (ice II, III and IX), as well as
cubic and hexagonal ice (Erk et al., 1998; Sartori et al., 1996; Studer et al.
1995). Microcrystals have a greater tendency to form in regions of high water
content (e.g. Lepault et al., 1997; Richter, 1996). With good technique, ice
crystals that might be present are too small to cause noticeable structural
damage (Gilkey and Staehelin, 1986; Moor, 1987; Vanhecke et al., 2003).

In plastic sections after freeze substitution, the presence of crystalline
ice can only be assessed by its effects on specimen ultrastructure, e.g. seg-
regation of cellular components and distortion of membranes (McDonald
and Morphew, 1993). In frozen-hydrated sections, the state of the ice can
be directly determined either by electron energy-loss spectroscopy (Sun 
et al., 1995) or, more conveniently, by electron diffraction. Vitreous ice is
characterized by an electron diffraction pattern having two diffuse rings
corresponding to spacings of 0.370 and 0.214 nm when freezing is per-
formed at atmospheric pressure, or 0.357 and 0.214 nm when freezing is per-
formed at high pressure (Sartori et al., 1996). The presence of cubic ice is
indicated by sharp rings corresponding to spacings of 0.366 and 0.224 nm,
while hexagonal ice gives rise to discrete spots, with the most intense 
occurring at these same spacings (Dubochet et al., 1988). The high-pressure
crystalline forms, ice III and IX, are characterized by spots or arcs corre-
sponding to spacings of 0.303, 0.279 and 0.179 nm, which are not shared by
other forms of ice; a spacing at 0.225 nm, which is in common with both
cubic and hexagonal ice; a spacing at 0.215 nm, which coincides with vitre-
ous ice; and spacings at 0.195 and 0.169 nm, which are shared with weak
reflections from hexagonal ice (Sartori et al., 1996)

We find that electron diffraction from frozen-hydrated sections cut
from optimally high-pressure-frozen material is characterized by the
pattern of two diffuse rings, and discrete spots are not apparent (Hsieh 
et al., 2006). This indicates either that microcrystals are absent, or else that
they are present at concentrations too low to be detected by electron dif-
fraction (discussed in more detail in Section 7.4).

3. OPTIMIZATION OF HIGH-PRESSURE FREEZING

3.1. Types of Specimen Carrier

Generally, for specimens prepared by high-pressure freezing, the depth
of optimal freezing does not exceed 100 μm from the cooled surface of the
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specimen carrier, unless the cell or tissue has very low water content
(Shimoni and Müller, 1998). Several types of specimen carrier have been
found to be appropriate for frozen-hydrated section work. The carrier used
most often with the HPM 010 high-pressure freezer (Bal-Tec, Balzers,
Liechtenstein) comprises pairs of 3 mm diameter aluminum disks that fit
together to form an internal cavity 2 mm in diameter. Disks of different
types may be assembled to provide cavity depths of 100, 200 or 300 μm.
Bal-Tec also supplies specimen carriers that, when opened after freezing,
leave a ‘dome’ of specimen exposed and ready for sectioning (Craig and
Staehlin, 1988). The Bal-Tec disk carriers are used for either tissue or cell
suspensions. For the EMPACT high-pressure freezer (Leica, Vienna,
Austria), a single 3 mm diameter disk, available with a cavity in a variety
of sizes and shapes, is used for tissue samples. Recently, a metal tube with
an inside diameter of 200 or 300 μm has been used for cell suspensions, with
both the Bal-Tec and the Leica high-pressure freezers (Studer et al., 2001).

3.2. Specimen Loading

A suspension of cultured cells, bacteria or isolated organelles is con-
centrated into a paste in the appropriate filler material (see below) before
freezing in the disk-type specimen carrier or the metal tube. Alternatively,
the cells can be grown as a layer directly in the disk-type carrier (Sawaguci
et al., 2003), or they can be grown on filters (Morphew and McIntosh, 2003;
Walther and Müller, 1997) or sapphire disks (Hess et al., 2000) that fit in
the disk-type carrier.

Pieces of excised tissue must be small enough to fit into the disk-type
carrier. The time between cessation of blood flow and freezing should be
minimized, and probably should not exceed 1 min.An ideal loading scheme,
proposed by Shimoni and Müller (1998), involves sharpened gold tubes
with 100 μm outer diameter and 50 μm inner diameter; these tubes are pro-
pelled into the tissue and are used as the specimen carrier for the high-
pressure freezer. No filler is needed. However, the yield of tubes that
contain tissue is low (E. Shimoni, personal communication). At present, we
find that the best technique for tissue is the use of a biopsy needle with 
300 μm outer and 200 μm inner diameter (Hohenberg et al., 1996;Vanhecke
et al., 2003), available as a part of a kit from either Leica or Bal-Tec. With
the biopsy needle, a core of tissue can be excised, ejected and placed in the
high-pressure freezing carrier, pre-loaded with the desired filler, in 30–40 s.

3.3. Fillers

When loading cell pastes or pieces of tissue into the specimen carrier
of the high-pressure freezer, it is important to avoid air spaces, since the
high compressibility of any gasses that may be present would prevent ade-
quate pressure build-up.The high water content of typical buffers or culture
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media is incompatible with good freezing; therefore, aqueous solutions
lacking cryoprotectants are not suitable filler materials. A commonly used
filler for tissue samples is 1-hexadecene, which does not penetrate the tissue
and does not have apparent deleterious effects on tissues with brief contact
(Studer et al., 1989). Although not compatible with certain freeze substitu-
tion protocols, aqueous buffers containing 20% dextran (molecular weight
40,000 Da; Sartori et al., 1993) as a filler are ideal for frozen-hydrated sec-
tions of both tissue and cell suspensions. Large molecular weight polymers
have the advantage that they can be added to the medium of choice without
significantly contributing to the osmolarity. Aqueous solutions of 10–20%
sucrose have also been used as a filler for both tissue and cell suspensions.
Sucrose acts as an internal cryoprotectant at this high concentration, since
the increased osmolarity results in osmotic efflux of intracellular water.
While this reduction in water content of the biological specimen makes vit-
reous freezing easier, it also alters the ‘native state’ of most cells and tissues.

3.4. Quality Variation

As noted above, freezing quality is strongly dependent on the water
content, and cells or cellular compartments that have high water content
are especially difficult to freeze well. For difficult specimens, such as soft
animal tissue, the volume of material to be frozen should be kept as small
as possible, with a thickness of 200 μm or less, such that freezing rate can
be maximized. Freezing of low water content material may be successful
for specimen thickness up to 300 μm. Even when using best practices, there
is often considerable variability in freezing quality from one high-pressure
freezing run to another, as well as within different areas of the same block
of frozen material. Differences in freezing quality are even sometimes
observed within a single cell. Thus, considerable time must always be spent
at the electron microscope, to find the best-preserved areas. Very poor
freezing can already be detected in the cryomicrotome, where irregularities
in the block face give it a dull appearance after fine trimming, while with
excellent freezing, ribbons of shiny sections are easily produced.

4. CRYOULTRAMICROTOMY

4.1. Development of Cryoultramicrotomy

Taken as a whole, cryoelectron microscopy of frozen-hydrated sections
is a demanding technique. However, thanks to gradual technical progress
over the years, the microtomy itself, given the appropriate equipment and
an ideal specimen, is not much more difficult than is microtomy of plastic
sections.

Cryoultramicrotomy started with Fernández-Morán (1952), and was
taken up again by Bernhard and Leduc (1967). In both cases, the sections
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were freeze-dried before electron microscopy. The earliest report of sec-
tioning unfixed tissue at temperatures as low as –150°C appears to be by
Hodson and Marshall (1970). Transfer of frozen-hydrated sections to the
transmission electron microscope, for imaging in the fully hydrated state,
was first described by Hutchinson et al. (1978). Early work in elemental
analysis of frozen-hydrated tissue sections in the scanning electron micro-
scope is reviewed by Gupta and Hall (1981). In these studies, however, spec-
imens were not frozen in the vitreous state.

Important contributions to the development of ultramicrotomy of vit-
reously frozen specimens have come from biologists (Al-Amoudi et al.,
2003, 2005; Chang et al., 1983; Dubochet et al., 1987; Frederik et al., 1982,
1984, 1993; McDowall et al., 1983; Michel et al., 1991, 1992; Richter, 1994,
1996; Richter et al., 1991), as well as from microanalysts (Buchanan et al.,
1993; Edelmann, 1994; Shi et al., 1996; Somlyo et al., 1977, 1985; Sun et al.,
1995; Zierold, 1984, 1987, 1988). For an excellent, comprehensive review, see
Sitte (1996).

The number of publications in which frozen-hydrated sections are used
for biological research is increasing rapidly, as the technical hurdles are
being overcome. These papers include studies of DNA and chromatin
(Leforestier, 2001; Sartori Blanc et al., 2001; Woodcock, 1994), bacteria (Al-
Amoudi et al., 2004; Matias et al., 2003; Zhang et al., 2004), skin (Norlén 
et al., 2003, 2004) and liver (Hsieh et al., 2006).

4.2. Cryoultramicrotomes

The cryoultramicrotome was conceived nearly simultaneously with 
the room temperature ultramicrotome. In the days of the high-speed
(20,000 r.p.m.!) rotary microtome, Gessler and Fullam (1946) designed a
cryo version. Shortly after the advent of the ‘modern’ ultramicrotome,
Fernández-Morán (1952) described a cryounit. LKB, Sorvall and Reichert
all made early commercial models. The development of cryoultramicro-
tomes is covered in detail by Sitte (1996).

Cryoultramicrotomes, up until the 1990s, were adequate for cutting
Tokuyasu sections, but they were not fully adequate for routine work with
frozen-hydrated sections. The key improvement was automatic mainte-
nance of a stable temperature of –160°C or lower, without compromising
smooth operation of the cutting cycle and the advance. Still, not all cryoul-
tramicrotomes produced today are optimally designed for frozen-hydrated
section work. In the selection of a microtome, it is important to ensure that
the particular model is specifically designed for work with vitreously frozen
specimens at –160°C or lower. The use of diamond knives is recommended
(Michel et al., 1992). For work with frozen-hydrated sections, these knives
are available in a range of angles (see below), and are supplied without 
a liquid reservoir. An antistatic ionizer is needed during both trimming 
and sectioning, to help the sections to glide off the knife edge. Further 
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accessories, such as supplementary cold fiber-optics illumination and
custom equipment for mounting sections on grids, are also essential for
achieving reliable results. Figure 1 shows the chamber of a suitably
equipped cryoultramicrotome.

4.3. Preparation of High-pressure-frozen Specimens 
for Microtomy

After high-pressure freezing, all preparation steps are carried out in
the cryochamber of the ultramicrotome, which is cooled to –160°C or lower,
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FIGURE 1. Cryochamber of an UCT ultramicrotome with an EM-FCS cryo kit (Leica,
Vienna, Austria). The chamber is cooled to –160°C and is filled with cold, dry nitrogen
vapor. One of the two auxiliary fiber-optic illuminators is seen, labeled (F). The spec-
imen is held in the chuck (C). The knife stage is shown positioned for trimming, with
the diamond trimming tool (T) adjacent to the specimen. For microtomy, the section-
ing knife (K) is moved in front of the specimen, and a brass shelf (S) is pushed forward
so that it is close to the knife edge. The shelf, fabricated in-house, provides a surface
for collecting sections. Both diamond knives (T and K) are from Diatome (Biel, Switzer-
land). The head of the ionizer unit (I; Static Line II, Haug, Biel, Switzerland) is mounted
∼3 cm from the knife edge. The glass screw press tool is mounted at (P). (See color plate)



and is continuously flushed with cold, dry nitrogen gas so as to prevent frost-
ing. When the metal tube specimen carrier is used (see Section 3.1), it is
directly clamped in a suitable microtome chuck, and the surrounding metal
is trimmed away with a diamond tool that has sides angled at 45°. The 
standard disk-type aluminum specimen carriers are clamped in a vice-type
microtome chuck, as shown in Fig. 2, and the metal is similarly trimmed to
expose the specimen, while leaving it well supported by the remaining
portion of the carrier. In the case of the disk-type specimen carriers that
reveal a dome of specimen after opening, the metal carrier does not need
to be trimmed. For trimming, a microtome feed of 500 nm and a speed of
100 mm/s are used, and the antistatic ionizer is set on full power to keep
material from sticking to the knife. With both types of specimen carrier, the
specimen is held firmly without the need for ‘cryoglue’ (Richter, 1994). The
final trimming step in all cases is the creation of a low mesa-shaped block
face, with a square shape not more than 100 μm on a side. The small block
face helps to reduce sectioning artifacts, and the square shape helps in the
assessment of compression (see Section 7.2). With the disk-type carrier, the
orientation of a piece of tissue can easily be seen, and a great deal of addi-
tional material is available for sectioning, once initial electron microscopic
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FIGURE 2. Trimming of high-pressure frozen specimens. (a) A 3 mm diameter alu-
minum specimen carrier for the HPM010 high-pressure freezer (Bal-Tec, Balzers,
Liechtenstein) is shown, before and after trimming. The upper portion of the carrier
has been removed, revealing the specimen and allowing inspection for air bubbles
and suitable areas for microtomy. (b) A top view of the trimmed specimen carrier
shows the trimmed block face, which is shaped like a low mesa (arrowhead), 100 μm
square, as seen within a 250 μm graticle square of the stereomicroscope. (c) With the
chuck rotated 90° from its position in (b), the diamond trimming tool is used to cut a
45° bevel in the metal on the bottom of the specimen carrier, leaving a thin ridge of
specimen from which the mesa (arrowhead) has been cut. (d) Bottom view of the
trimmed specimen carrier. The specimen is well supported during microtomy by the
remaining metal bevel (*). The mesa is indicated by an arrowhead. (See color plate)



examination has proven that a particular carrier contains optimally well
frozen material.

4.4. Sectioning Parameters

Sectioning artifacts (see Section 7) can be reduced, or ease of micro-
tomy can be improved, with the appropriate choice of cutting conditions.
The exception is cutting temperature; in our hands, we found no clear evi-
dence of the effect of temperature on section quality, within the range –140
to –160°C. Since we have found that the temperature in the center of the
cryochamber is 5–10°C higher than in the bottom of the chamber, where
the microtome’s temperature sensor is located, we avoid temperature set-
tings warmer than –150°C. We prefer a sectioning temperature setting of
–160°C, which gives a generous margin of safety for devitrification. Ease of
sectioning, and ease of collecting the sections, is improved, and the chance
of frost accumulation is reduced, when the room humidity is not greater
than ∼40% at 20°C.

Knife marks can be reduced through the use of an undamaged
diamond knife and through ensuring that the knife is kept free of frost and
debris (Michel et al., 1992). After a few hours of use, frost particles become
difficult to remove from the knife edge, so the knife should be exchanged.
We find that diamond knives for cryo-use must be resharpened more often
that those used for plastic sections.

Compression can often be reduced through the use of low-angle knives
(Studer and Gnägi, 2000). Although some laboratories prefer the 45° angle
that is standard in plastic section work, 35° knives are more commonly used
for cryoultramicrotomy, and some laboratories use 25° knives (Zhang et al.,
2004). For our specimens, 35° knives have proven to be the best choice.
We find that wear is excessive with 25° knives, while compression is not 
significantly reduced. We have also observed that the power setting of the
antistatic device can have an effect on compression. When ribbons of sec-
tions can be prompted to glide smoothly off the knife through ‘tuning’ of
the power setting, compression is sometimes found to be reduced. Use of 
a very small block face (<100 μm in width) can also aid in reducing 
compression.

Chatter can be minimized through the firm mounting of the specimen
in the microtome chuck, and through the use of a small block face. The use
of very high cutting speeds (e.g. 50 mm/s rather than 0.5 mm/s) has been
proposed as a way to minimize chatter (Al-Amoudi et al., 2005). In that
report, the high cutting speed was also found to reduce crevasse depth,
although it increased the numbers of crevasses. In our experience, if speci-
mens are optimally frozen, sections free from chatter and crevasses can be
obtained at ‘normal’ cutting speeds (0.2–1 mm/s). Thus, we find that high
cutting speed, while accelerating knife wear, has little effect on sectioning
quality. We typically use a cutting speed of 0.4 mm/s. Knife wear is a par-
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ticular concern for tomographic work in which sections thicker than 100 nm
are often desired, since knife wear increases with section thickness.

5. COLLECTION AND MOUNTING OF SECTIONS 
FOR TOMOGRAPHY

5.1. Types of Grids

Two types of TEM grids are recommended for tomography of frozen-
hydrated sections: folding grids, and standard (single) grids that are coated
with a Quantifoil film. Folding grids take the form of two TEM grids
attached by a hinge (Fig. 3c). Sections are trapped between the two grids,
so loss of sections is rare. Folding grids with a mesh size finer than 200 are
not useful for tomography, because their double thickness causes occlusion
at high tilt, for specimen areas not close to the centre of the grid opening.
A hexagonal grid mesh is preferred, because the alignment of the grid bars
relative to the tilt axis has less effect on high-tilt occlusion than when
square-mesh grids are used. Folding grids are preferred for sections thicker
than 200 nm, because thicker sections attach less well to grids. The Quan-
tifoil film (Quantifoil MicroTools, Jena, Germany) is a 25 nm thick carbon
film with a regular array of circular holes. We find that type R3.5/1 (3.5 μm
diameter holes spaced 1 μm apart) is most suitable for tomography. The
Quantifoil film is available on grids of several different materials and mesh
sizes. Molybdenum 200 mesh grids are the most suitable, and are preferred
over copper grids because the support film remains flat when cooled (Vonk,
2000; see also Section 6). The regular array of holes in Quantifoil films is
also very useful for tracking the area of interest during tilting, and for relo-
cating the area of the specimen after in-plane rotation, during collection of
an orthogonal tilt series for double-tilt reconstruction (Mastronarde, 1997;
Penczek et al., 1995).

5.2. Support Films

A continuous support film is necessary for both types of grids described
above. As mentioned in Section 6 and, as shown in Fig. 4, frozen-hydrated
sections have a curved, undulating topology, so the points of contact with a
flat support are limited. Thus, a continuous support film maximizes the
occurrence of regions of contact. Another reason for the use of a continu-
ous film is that it provides a substrate for colloidal gold particles, which are
used as fiducial markers for alignment of the tilt series (see below). Since
the Quantifoil grids already have a (perforated) film covering the grid
squares, it is only necessary to add a thin (∼10 nm) carbon coat, which is
ideal for thin-section work. The folding grids require a formvar film, usually
50 nm thick, followed by the carbon film. For the folding grids, the support
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films are applied to only one side, so there will be only one set of films after
folding.

5.3. Fiducial Markers

Alignment based on fiducial markers is robust and reliable, and is espe-
cially useful for the low-contrast images of frozen-hydrated sections. The
markers can also aid in tracking and focusing during collection of the tilt
series. The colloidal gold solution is applied either immediately after the
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FIGURE 3. Collection and mounting of sections. (a) A ribbon of sections is cut, and
then the knife is moved laterally. A series of ribbons is thus collected on the knife edge.
Faint gold interference color can be seen in most sections, indicating a thickness of
∼140 nm. In places, a purple color is seen, corresponding to a thickness of ∼180 nm.
Some sections are curled at the edges, or wrinkled. (b) A Quantifoil grid is placed on
a fresh piece of indium foil, just adjacent to the knife edge, and sections are trans-
ferred to the center of the grid by means of a dog hair. (c) When folding grids are used,
the indium foil is pre-folded to a 90° angle and, after placement of the sections, the
indium foil is used to push the grid closed. (d) After the grid is latched, the indium foil
is folded closed and the ‘envelope’ (arrow) is pressed with the polished metal rod
(white arrow at left). (e) Quantifoil grids (arrows) are placed, still supported on indium
foil, in the glass press tool. An impression of the grid squares in the indium foil indi-
cates the evenness of pressing. (See color plate)



thin carbon film is deposited, or after the grids have been cleaned by glow-
discharge. Some experimentation is needed to establish the optimal drop
size and blotting conditions for each grid type. The particle size is usually
10–20 nm, depending on the magnification that will be used for collection
of the tilt series. After storage, grids with fiducial markers should be glow-
discharged again just before collecting frozen-hydrated sections, to aid in
section attachment (Buchanan et al., 1993).
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FIGURE 4. (a) Carbon film on a copper Quantifoil grid at –176°C; note wrinkling of
the film. (b) Carbon film on a molybdenum Quantifoil grid at –176°C; note the flat film.
Both (a) and (b) were recorded at 60° specimen tilt. (c) Frozen-hydrated section at 0°
tilt; note the numerous straight knife marks, running from lower left to upper right.
The knife marks are parallel to the cutting direction. Chatter, which would be seen as
a periodic variation in thickness perpendicular to the knife marks, is absent. (d) The
same frozen-hydrated section as in (c), at 60° tilt. The waviness of the section is indi-
cated by curved knife marks and density shading due to increased thickness in pro-
jection. Suitable areas for tomography, where there is close contact of the section with
the film and where the section is not bent, can be determined by such images, as
described in the text. The holes in the Quantifoil film are 3.5 μm in diameter.



5.4. Collection of Sections

In the microtome cryochamber, the grids are placed near the knife
edge, and on the same level as the knife, so that the knife edge and the grids
are in focus and in the field of view of the stereomicroscope. This is accom-
plished by use of a platform (Figs 1 and 3c), which we have fabricated for
our Leica FSC cryomicrotomy system. Newer Leica cryomicrotomes
provide a platform, and certain models of Diatome cryodiamond knives
have integrated platforms. On the platform (Fig. 3b and c), the grids are
placed on short strips of fresh indium foil, 0.127 mm thick (Alfa Inorgan-
ics, Beverly, MA, USA). The indium aids in the folding and pressing of the
folding grids, and it forms a protective envelope around them (Buchanan
et al., 1993; Fig. 3d). For the Quantifoil grids, the indium foil again helps in
the pressing operation (Fig. 3e). A few short ribbons of sections are accu-
mulated on the knife edge, by translation of the knife after each ribbon is
cut (Fig. 3a). The sections are then transferred to the adjacent grids by
means of a hair or eyelash.The white hair of a Dalmatian dog (Forbes, 1986)
is recommended, because it does not break at low temperature.

Suitable sections for tomography are pre-screened at the microtome.
Especially wavy sections will not attach well to grids, and high local curva-
ture will interfere with imaging at high tilt (Fig. 4d). As noted earlier,
sections with a dull appearance indicate surface roughness due to poor
freezing. The amount of compression (see Section 7.2) can be estimated 
at this stage, especially when a square block face is used. The 16 grid 
squares in the center of a 200 mesh grid are ideal for high-tilt, double-axis
tomography, and we try to place four short ribbons of sections in this 
area.

5.5. Attachment of Sections to Grids

As noted above, since the frozen-hydrated sections are not flat (see
Section 6), only limited areas become attached to the support film. Because
the support film carries the gold fiducial markers necessary for alignment
of the tilt series, movement of the section relative to the support film during
collection of the tilt series will result in incorrect alignment. Even when
there is no movement, reconstruction accuracy is highest in the plane of the
support film that contains the fiducials. Alignment errors relative to the
section are expected to increase as the gap between support film and section
widens. Thus, it is important to maximize the area of contact between the
lower surface of the section and the support film.

The sections are attached to the grids by pressing with a polished metal
rod normally supplied with the microtome. Folding grids are placed inside
an indium envelope prior to pressing with the rod (Fig. 3d). For Quantifoil
grids, better results are obtained when the glass screw-type press tool sup-
plied with the Leica cryoultramicrotome is used (Figs 1 and 3e). In that case,
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the soft indium deforms upon pressing, and acts as a backing for the support
film. Since the press tool directly contacts the sections on Quantifoil grids,
use of the screw-type press tool provides better shielding against frost, and
less likelihood that the sections will be pulled off the grid.

Grids are then placed in small covered grid boxes for transfer to
storage under liquid nitrogen and then to the workstation of the cryo-
transfer TEM specimen holder. Because the sections are exposed on the
Quantifoil grids, section loss may occur, and frost accumulation may be
experienced, especially after storage for several days under liquid nitrogen.
Thus, it is best to examine Quantifoil grids within a day of preparation.
After storage for several days under liquid nitrogen, grids of either type
should be transferred back to the cryochamber of the microtome, for a
check that sections are still present, and in the desired central area on the
grid. The grids should then be pressed again, to maximize attachment of the
sections.

6. SELECTION OF SECTIONS SUITABLE FOR 
ELECTRON TOMOGRAPHY

Many of the sections cut in the ultramicrotome will be suitable for
general cryoelectron microscopy imaging, but only a small percentage will
be suitable for electron tomography. The area of interest must have good
structural preservation, and a sufficient number (at least four) of well-
distributed gold markers to enable alignment of the tilt series (markerless
alignment may be possible in some cases; see Section 10). The area of inter-
est should be near the center of the grid, so as to maximize the available
tilt range for either single- or dual-axis data collection.The tilt range should
be checked at a magnification low enough to image the whole grid square
(the electron dose at this magnification will be minimal). A sensitive TV-
rate camera is ideal for this operation.

As described above, frozen-hydrated sections tend to be curved even
after pressing, typically with a few undulations in the cutting direction, as
shown in Fig. 4d. This topology poses a problem for attachment to the
support film, especially if the support film is itself not flat. Carbon support
films on copper grids tend to wrinkle when exposed to liquid nitrogen tem-
peratures, but the films remain flat when molybdenum grids are used (Fig.
4b), because molybdenum grids better match the thermal expansion char-
acteristics of carbon films (Vonk, 2000).

For successful tomography, the area of interest in the section should
not be more than 100 nm above the support film to which the gold fiducial
markers are attached (Fig. 5). Proximity of the section to the carbon surface
may be determined by noting the movement of the gold particles relative
to features in the specimen, as the specimen is tilted. If the images are dis-
played so that the tilt axis is vertical, a visual comparison of the positions
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of gold markers relative to features in the specimen will indicate the degree
of separation between the specimen and the support film (Fig. 5d and e).

The actual separation can be determined by the formula z = (x1 –
x2)/(2 sina), where z is the separation, x1 – x2 is the distance by which the
marker has moved relative to a specimen feature after tilting, and a is the
tilt half angle, for example 5° for a ±5° stereo pair or 15° for images recorded
at 0 and 30° (Hama and Arii, 1987).
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FIGURE 5. Projection images and tomographic cross-sections demonstrating good
(a–c) and poor (d–f) attachment of the section to the support film. (a and b) Tilt images
recorded at 0 and 30°, respectively, with the tilt axis vertical. Note that the spacing
(arrow) between the edge of a mitochondrion (indicated by a black line) and a gold
marker changes only slightly, as expected when the section is in close contact with
the support film that carries 10 nm gold particles. (c) A gold marker (arrow) is on the
lower surface of the section, as seen in a cross-section from the reconstruction (section
between the dotted lines), indicating that the support film (black dotted line) is in
contact with the section. (d and e) Tilt images at 0 and 30° indicating a wide separa-
tion between the section and the support film. The double arrows show that the
spacing between a gold marker and the edge of a mitochondrion (indicated by a black
line) varies greatly with tilt. The method for calculating the separation between the
section and the support film is given in the text. (f) In cross-section, the section
(between white dotted lines) is tilted and curved relative to the support film (black
dotted line) that contains 20 nm gold markers (arrows). At (*), note the cross-sectional
view of crevasses (see text and Fig. 8). Images a, b, d and e were recorded at an elec-
tron dose of 0.35 e−/Å2. For these single-axis reconstructions, the cross-sections shown
are along the x-axis (perpendicular to the tilt axis). The individual gold markers in the
images do not correspond to those shown in the projection images. Specimens: (a–c)
isolated rat liver mitochondria, 135 nm thick; bar in (b) = 100 nm; (d–f) rat liver tissue,
200 nm thick; bar in (e) = 200 nm.



7. CHARACTERISTICS OF FROZEN-HYDRATED SECTIONS

Sectioning artifacts are well documented (Al-Amoudi et al., 2005;
Chang et al., 1983; Frederik et al., 1982, 1984; Hsieh et al., 2002, 2006; Michel
et al. 1991, 1992; Richter et al., 1991, 1994; Zierold, 1984). The most common
artifacts are knife marks, chatter, compression and crevasses. Rarely
observed, and of uncertain cause, is a fine pattern of striations, spaced 
∼15 nm apart and oriented in the sectioning direction. These can be seen
throughout the depth of the tomographic reconstruction (Hsieh et al., 2002).
We find that with good technique, all sectioning artifacts except for com-
pression and lack of flatness can be minimized.

7.1. Knife Marks and Chatter

Knife marks and chatter are found on both frozen-hydrated and conven-
tional plastic sections,and they can be ameliorated by similar methods for the
two types of section. Knife marks are grooves that are often visible on both
surfaces of the section (Al-Amoudi et al., 2005; Frederik et al., 1984; Richter 
et al., 1991).They can be controlled through the use of a fresh knife edge that
is kept free of frost. Under ideal conditions, knife marks can be absent from
fields as wide as 1 μm. Since knife marks are normally only ∼10 nm deep, they
do not affect the interior of the tomographic reconstruction.Mild knife marks
can be seen on all of the frozen-hydrated sections shown in this chapter, and
are especially evident in low-magnification images (Fig. 4c and d).

Chatter appears as a regular variation, by 10–30%, in section thickness
with a periodicity of between 0.1 μm and several micrometers (Chang et al.,
1983). Chatter can be minimized by making sure that the block is firmly
mounted. Some investigators believe that friction of the section on the knife
surface may contribute to chatter (Al-Amoudi et al., 2005). The frequency
and severity of chatter may be influenced by cutting speed (Section 4.4;
Al-Amoudi et al., 2005; Zierold, 1987). For our specimens, even low-
magnification images show that the sections are normally free of chatter
(Fig. 4c and d).

7.2. Compression

Compression is indicated by a shortening of the section in the direc-
tion of cutting, accompanied by an increase in thickness. In plastic sections,
compression can be reversed by re-expanding the sections while floating on
a water surface, but a liquid on which frozen-hydrated sections will float at
temperatures below –135°C has not yet been found. Thus it is unknown if
this method would work with frozen-hydrated sections.The amount of com-
pression in frozen-hydrated sections varies with specimen type and section
thickness, and is usually ∼30–60% (Chang et al., 1983; Michel et al., 1992;
Richter, 1994; Shi et al., 1996). Compression is clearly evident in Fig. 6a,
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FIGURE 6. Appearance of mitochon-
dria in frozen-hydrated sections of
successively greater thickness. As the
thickness increases, it becomes more
important to use well-frozen speci-
mens in order to avoid formation of
crevasses. Shown here are nearly cre-
vasse-free sections of mouse skin at
100 nm thickness (a), and rat liver at
200 nm (b) and 270 nm (c) thickness.
Thickness for (a) and (b) was meas-
ured by electron energy-loss imaging;
thickness for (c) was measured by
tomographic reconstruction. These
images were recorded at an electron
dose of 3–5 e−/Å2, ∼10 times higher than
can be used for recording projection
images in tomographic tilt series. In
(a), compression is evident from the
narrower membrane spacing in the
cutting direction (arrow), compared
with the spacing in the orthogonal,
uncompressed direction (arrowhead).
Bars = 200 nm.



where the spacing between outer and inner membranes on the periphery
of mitochondria is reduced in the direction of compression.

Compression can sometimes be limited by reducing the angle of the
microtome knife from the commonly used 45° to 35, 30 or even 25° (Michel
et al., 1992; Richter, 1994; Zhang et al., 2004). Since low-angle knives are
very fragile, the oscillating diamond knife (Studer and Gnägi, 2000) was
developed as an alternative, with the oscillation acting to decrease the effec-
tive knife angle. Recently, the oscillating knife has been adapted for cutting
frozen-hydrated sections; however, results were inconsistent, and only 3%
of the sections cut were uncompressed (Al-Amoudi et al., 2003). In spite of
this disappointing report, further investigation of use of the oscillating
knife, with specimens of varying thickness and material may be worthwhile.

In frozen-hydrated sections, compression appears to be non-uniform
with respect to different cellular components. A survey of our own images,
as well as images published by others, confirms reports that small particles
and certain rigid structures such as ribosomes (Dubochet and Sartori Blanc,
2001) and DNA crystals (Leforestier et al., 2001) may retain their shape
despite distortion in the overall shape of the cell or a membranous
organelle. For example, we have observed that desmosomes in mouse skin
resist compression in frozen-hydrated sections (Hsieh et al., 2004). There-
fore, it is not possible to restore the original specimen geometry computa-
tionally in tomograms of frozen-hydrated sections, as is sometimes done
with plastic sections to compensate for their uniform thinning due to mass
loss from electron irradiation (Luther et al., 1988; van Marle et al., 1995;
Chapter 1 of this volume).

7.3. Crevasses

Crevasses, named after the cracks that form in glaciers, are an artifact
unique to frozen-hydrated sections (Chang et al., 1983). We have charac-
terized crevasses using electron tomography (Hsieh et al., 2002). They are
grooves perpendicular to the cutting direction, usually spaced ∼100 nm
apart, and with typical dimensions of 100 nm in length, 20 nm in width and
10–50 nm in depth. Most commonly, the depth is little more than 10 nm;
thus, in sections at least 100 nm thick, crevasses do not interfere with tomo-
graphic study of the section interior. They are found only on the surface of
the section that constituted the block face when the section was cut.Various,
and contradictory, mechanisms for crevasse formation have been proposed,
based on mechanical models (e.g. Al-Amoudi et al., 2005; Richter et al.,
1991). Figure 5 shows typical crevasses, both in projection images and in
tomographic cross-section, as do Figs 7d and 8.

We have observed that, when the quality of high-pressure freezing is
excellent, based on ultrastructural preservation in the frozen-hydrated sec-
tions, the severity of crevasses is reduced. This is especially true for thicker
sections. While sections 100 nm or less in thickness can often be cut without
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crevasses, only exceptionally well frozen material can be used to produce
crevasse-free sections when the thickness exceeds 200 nm (Fig. 6; Hsieh 
et al., 2006).

As noted in Section 2.2, several studies have suggested that high-
pressure freezing (unlike plunge-freezing) does not produce uniformly
amorphous or vitreous ice, but rather mixtures of ice phases and types, some
of which are microcrystalline. Nevertheless, the same studies reported that
crystalline ice is not detected in material that has been optimally high-
pressure frozen. We have found that, when electron diffraction gives clear
evidence of crystalline ice, there is a significant increase in severity of cre-
vasses (Fig. 7), consistent with earlier reports (Chang et al., 1983; Erk et al.,
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FIGURE 7. Forms of ice in frozen-hydrated sections, as seen in images and corre-
sponding electron diffraction patterns. (a) Vitreous ice prepared by plunge-freezing of
a 100 nm thick layer of pure water. In the diffraction pattern, the characteristic diffuse
rings at spacings corresponding to 0.214 and 0.370 nm are clearly seen. (b) Vitreous
ice from a high-pressure-frozen 200 nm thick rat liver section. The diffraction pattern
is less clear for sections of frozen-hydrated tissue in this thickness range, due to a
background of diffuse scattering from the biological material. (c) High-pressure-frozen
liver section 100 nm thick, with a diffraction pattern showing sharp arcs, correspon-
ding to spacings of 0.366 and 0.224 nm, that are characteristic of cubic ice. Such dif-
fraction patterns are rarely observed, suggesting that the content of cubic ice in this
specimen is much greater than usual. (d) A combination of vitreous and hexagonal
ice in a 100 nm thick liver section. The presence of hexagonal ice, due to poor freez-
ing, indicated by discrete spots in the diffraction pattern, leads to severe sectioning
artifacts, such as crevasses and tears (arrows); the section quality is so poor that arti-
facts largely obscure the features of the specimen. Bars = 200 nm



1998; Frederik et al., 1984; Zierold, 1984). Thus, it may be that increased 
crevasse severity correlates with an elevated content of microcrystalline ice,
due to less successful suppression of crystal formation in the specimen
during a particular high-pressure freezing run.

However, we find that crevasses can be observed even when the elec-
tron diffraction pattern shows no sign of crystalline ice (see Fig. 3 in Hsieh
et al., 2006). Thus, the tendency for crevasse formation is either unrelated
to minor crystalline ice content, or else it is extremely sensitive to it, such
that the content of crystalline ice needed to induce crevasses is below the
detection level in electron diffraction patterns. As described in Section 2.2,
the sharp diffraction rings and spots associated with crystalline ice tend to
occur near or within the diffuse rings due to vitreous ice.These diffuse rings,
and the high background of diffuse scattering from the biological material
in the section, might mask weak reflections from a minor amount of crys-
talline ice.

8. IMAGING CONDITIONS FOR TILT 
SERIES COLLECTION

Tilt series of frozen-hydrated sections are recorded in the electron
microscope in the same way as are those of plunge-frozen specimens.
Imaging conditions that maximize the signal-to-noise ratio within accept-
able cumulative electron dose limits for prevention of damage to macro-
molecular structure are discussed elsewhere (Grimm et al., 1989; Hsieh 
et al., 2006; Marko et al., 1999, 2000; McEwen et al., 2002; Chapter 4 of this
volume). However, frozen-hydrated sections are sensitive to electron irra-
diation in ways that plunge-frozen specimens are not.

As a result of the common problem of poor attachment of frozen-
hydrated sections to the support film, electron irradiation can cause the
section to move relative to the support film (Fig. 8a and b). As explained in
Section 5.5, tilt series alignment that is based on fiducial markers attached
to the support film will fail if such movement occurs, although markerless
alignment (see Section 10) might succeed. Thus, if images of the untilted
specimen, recorded before and after collection of a tilt series, show move-
ment of the markers relative to the specimen features, the reconstruction
should not be attempted using marker-based alignment.

It is well known that surface artifacts in frozen-hydrated sections can
be ‘ironed out’ by electron irradiation (Sartori Blanc et al., 1998; Fig. 8c and
d). This improves the appearance of the section for general imaging, but is
not useful for electron tomography because the electron dose necessary for
smoothing (∼100 e−/Å2) exceeds the typical maximum permissible cumula-
tive dose for the tilt series (30–80 e−/Å2).
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9. SAMPLE TOMOGRAMS

An example of a tomographic reconstruction of a section of high-
pressure-frozen rat liver tissue is presented in Fig. 9.The improved clarity of
structural detail in the tomographic slices, as compared with the projection
image though the whole section, is striking. Membranes of mitochondria and
the endoplasmic reticulum are clearly visible, as are ribosomes, particularly
those that are attached to the endoplasmic reticulum.These reconstructions
show that the invaginations (cristae) of the mitochondrial inner membrane
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FIGURE 8. Effects of electron irradiation. (a and b) Untilted images recorded before
(a) and after (b) the recording of a tomographic tilt series. The accumulated electron
dose was 1 e−/Å2 for (a), and 50 e−/Å2 for (b). The electron irradiation during the record-
ing of the tilt series was not sufficient to flatten out crevasses (black arrows), but it
did cause the section to move relative to the gold markers on the support film (circles
and white arrow); a reconstruction was therefore not attempted. The dose used to
record (b) was 3 e−/Å2; thus, it is less noisy than (a), which was recorded at 0.35 e−/Å2,
a typical electron dose for a projection image that is a member of a tilt series. (c and
d) Example of flattening of severe crevasses (arrows) in a frozen-hydrated section. The
accumulated dose was 3 e−/Å2 in (c) and 100 e−/Å2 in (d). Sections are rat liver, 200 nm
thick. Bars = 200 nm.



connect to the boundary region of this membrane by means of small circu-
lar or slit-like openings, as was previously reported for conventionally pre-
pared (Mannella and Frey, 2000; Mannella et al., 1997) and plunge-frozen
intact mitochondria (Mannella et al., 2001; Nicastro et al., 2000). Since these
‘crista junctions’ have been implicated in the regulation of diffusion of
metabolites and proteins between mitochondrial compartments (Mannella,
2005; Mannella et al., 1997, 2001), the confirmation of their existence in
frozen-hydrated tissue was a bioenergetically significant finding.

We have also carried out tomography of frozen-hydrated sections 
of yeast (C.-E. Hsieh et al., unpublished), skin (Hsieh et al., 2004) and
cyanobacteria (Ting et al., 2005). Such material proved much easier to work
with than soft animal tissue, because excellent high-pressure freezing, which
is essential for high-quality sections, could be more routinely obtained. We
advise investigators to develop skills and acquire experience with such spec-
imens prior to working on more difficult materials such as soft tissue.

10. CURRENT DIFFICULTIES AND FUTURE PROSPECTS

Electron tomographic reconstruction of frozen-hydrated sections
offers tremendous promise, as the only currently available technique for 3D
imaging of large cells and cells in tissue, in their native state, at resolutions
of 5 nm or better.

Currently, the most significant problem for frozen-hydrated sections is
the poor yield of sections that can be used for electron tomographic data
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FIGURE 9. Sample tomographic reconstruction of a 200 nm thick liver section. Zero
degree tilt series image (a), and 5.4 nm thick z-slice from the corresponding recon-
struction (b) The angular range of the tilt series was ±60°, with an angular increment
of 2°. Imaging was done at 400 kV with zero-loss energy filtering; the total electron
dose was 50 e−/Å2. Bar = 200 nm. (Tomogram also used in Hsieh et al., 2006.) 



collection. A skilled, dedicated individual can achieve a yield of 60% for
sections that have sufficient quality for imaging in the electron microscope.
However, very few of these sections will satisfy all of the necessary condi-
tions for successful tomography. Interesting regions, free of contaminants
and severe artifacts, must be located centrally on the grid and in the grid
square, so that a complete tilt series can be recorded without occlusion by
a grid bar or the frame of the specimen holder. Gold fiducial markers
(Brandt et al., 2001a; Chapter 5 of this volume) must be appropriately dis-
tributed on the area of interest. Most importantly, the section must be in
close proximity to, and firmly attached to, the support film or grid (see Sec-
tions 5.5 and 6). Because of the need to keep the cumulative electron dose
low, some problems, such as imperfect freezing, may not be discovered until
after the tomogram has been computed, especially for thicker specimens.
Currently, good tomograms are obtained for fewer than 5% of the frozen-
hydrated tissue sections that are cut at the cryoultramicrotome.

In principle, alignment problems caused by lack of proximity between
section and support film, and by poor attachment of the section to the
support film that carries the fiducial markers could be overcome by mark-
erless alignment methods (Brandt et al., 2001b; Winkler and Taylor, 2005;
Chapter 6 of this volume). However, for beam-sensitive frozen-hydrated
specimens, attainment of high resolution requires fractionation of the total
allowable dose to the extent that each individual image has a very low
signal-to-noise ratio; this makes alignment by correlation methods prob-
lematic. In addition, under very low dose conditions, the dense gold markers
become essential for tracking and focusing on the specimen during collec-
tion of the tilt series. Thus, better means of enhancing attachment of sec-
tions to the support film are being explored, involving ‘functionalization’ of
the support films by structural and chemical surface modification, as well
as improvements in mechanical clamping methods.

Progress has been made in controlling sectioning artifacts, but further
work is needed before we can fully understand the correlation between
freezing quality and crevasse formation. Also needed is a reliable means of
reducing compression; such a method might involve further developments
in diamond knife technology, including the oscillating diamond knife (Al-
Amoudi et al., 2003; Studer and Gnägi, 2000).The investigation of the causes
and prevention of sectioning artifacts is complicated by the fact that con-
tributing factors combine in different ways, and solutions tend to be speci-
men dependent.

We are also investigating the use of focused ion beam instrumentation
as an alternative approach to cryoultramicrotomy, for the purpose of thin-
ning bulk frozen-hydrated material for cryoelectron tomography (Marko 
et al., 2006). This method has the potential to avoid both the sectioning 
artifacts and the attachment problems encountered with mechanically cut
sections.
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1. INTRODUCTION

The intuitive understanding of the process of 3D reconstruction is based on
a number of assumptions, which are easily made unconsciously; the most
crucial is the belief that what is detected is some kind of projection through
the structure. This ‘projection’ need not necessarily be a (weighted) sum or
integral through the structure of some physical property of the latter; in

83

Peter W. Hawkes • CEMES-CNRS BP 94347, F-31055 Toulouse cedex France



principle, a monotonically varying function would be acceptable, although
solving the corresponding inverse problem might not be easy. In practice,
however, the usual interpretation of ‘projection’ is overwhelmingly
adopted, and it was for this definition that Radon (1917) first proposed a
solution. In the case of light shone through a translucent structure of
varying opacity, a 3D transparency as it were, the validity of this projection
assumption seems too obvious to need discussion. We know enough about
the behavior of X-rays in matter to establish the conditions in which it is
valid in radiography. In this chapter, we enquire whether it is valid in elec-
tron microscopy, where intuition might well lead us to suspect that it is not.
Electron–specimen interactions are very different from those encountered
in X-ray tomography; the specimens are themselves very different in nature,
creating phase rather than amplitude contrast, and an optical system is
needed to transform the information about the specimen that the electrons
have acquired into a visible image. If the electrons encounter more than
one structural feature in their passage through the specimen, the overall
effect is far from easy to guess, whereas in the case of light shone through
a transparent structure, it is precisely the variety of such overlaps or super-
positions that we use to effect the reconstruction. If intuition were our only
guide, we might easily doubt whether 3D reconstruction from electron
micrographs is possible: there is no useful projection approximation for the
balls on a pin-ball machine! Why then has it been so successful? To under-
stand this, we must examine in detail the nature of the interactions between
the electrons and the specimen, and the characteristics of the image-
forming process in the electron microscope. Does the information about the
specimen imprinted on the electron beam as it emerges from the latter rep-
resent a projection through the structure? How faithfully is this informa-
tion conveyed to the recorded image? These are the questions that we shall
be exploring in the following sections.

2. ELECTRON–SPECIMEN INTERACTIONS

2.1. Generalities

The electron microscope specimen is an ordered array of atoms—highly
ordered if the object is essentially crystalline or has been organized during
the preparation process into some kind of array, and organized, or ordered
more locally, in the case of isolated particles. It may be stained, in which case
the light atoms of which organic matter is mainly composed will be selec-
tively bound to much heavier atoms, but if very high resolution is desired it
will probably be unstained. Its thickness will depend on its nature and on the
resolution to be achieved, for reasons that will gradually became clear. The
electric potential within the specimen is not uniform, since in the simplest
picture, each atomic nucleus creates a Coulomb potential, screened to an
extent that depends on the nature of the atom in question by its electrons.
In reality, the situation is complicated by the bonding between the atoms,
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but the potential distribution will be dominated by the pattern of screened
Coulomb potentials associated with the atoms of specimen or stain.

The first step in electron image formation in a conventional (fixed-
beam) transmission electron microscope (TEM) consists of irradiating 
the specimen with a beam of electrons, which may suffer various fates.
Many will pass through the specimen, unaffected by its presence in their
path.These are said to be unscattered. In the atomic picture, they do not pass
close enough to any of the specimen atoms to be deviated signifi-
cantly from their course; recalling that, from the electrons’ point of view, the
interior of the specimen is a potential distribution, the unscattered electrons
pass through a zone in which the transverse electric field is weak every-
where. Since the mean potential inside the specimen is different from that of
the surroundings, the energy of the beam electrons will be altered slightly as
they enter the specimen, reverting to its original value as they emerge.

Electrons that pass close to a specimen atom experience a strong trans-
verse electric field and hence will be deflected laterally, or scattered; this
scattering may or may not be accompanied by a transfer of energy from the
beam electron to the specimen. If the energy transferred is negligible, the
electron is said to be scattered elastically; if, however, there is an apprecia-
ble recoil on the part of the specimen atoms, the scattering is inelastic. The
likelihood of these various events is measured by their scattering cross-
sections, which tell us not only the probability of elastic or inelastic scat-
tering as a function of incident beam energy and of the atomic number of
the scattering atom but also the angular scattering probability. The mean
scattering angle, for example, can thus be determined.

Scattered electrons may then emerge from the specimen or may be
scattered afresh, elastically or inelastically; the likelihood of a second scat-
tering event increases with specimen thickness, as we should expect.

This qualitative picture of the electron–specimen interaction goes some
way to dispel any doubts that the transmitted beam carries enough infor-
mation about the specimen for reconstruction to be possible. It also shows
us that the simple picture of intensity attenuation must be replaced by the
very different idea of a scattering pattern directly related to the electric
potential distribution within the specimen, itself determined by the atomic
arrangement and dominated by the fields created by heavy atoms, if any are
present. In the case of unstained specimens, therefore, we can hope to
recover information from all the specimen atoms, but if these are light the
signal will be weak or, in other words, only a small fraction of the incident
beam electrons will be carrying useful information when they leave the spec-
imen. In the case of stained specimens, whether the stain is negative or pos-
itive, the recorded image will be dominated by contrast from the stain.

In order to translate the foregoing discussion into more quantitative
language, we now analyze the electron–specimen interaction, especially the
elastic case, with the aid of quantum mechanics. We only reproduce here
the main steps of the argument, a full account of which may be found in
texts on electron microscopy (Reimer, 1997; Williams and Carter, 1996).
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It is sufficient for our purposes to represent the incident beam by an
extended plane wave

(1)

traveling along the microscope axis, which coincides with the z coordinate
axis.The effect of imperfect beam coherence (a spread in the incident beam
direction and energy) will be considered in Section 3.2. Elastic scattering
by a specimen atom generates a spherical wave, so the wave function
becomes

(2)

where

(3)

The function f(q) is the complex scattering amplitude, f(q) = |f(q)| exp ih(q),
and k is the wave number1:

(4)

We can use this basic formalism in different ways, and it is important
to distinguish between these, since they provide an understanding of the
two important contrast mechanisms in the electron microscope. The con-
trast is always phase contrast, in the sense that virtually all the electrons
incident on the specimen emerge beyond it and are, hence, available to par-
ticipate in image formation. Two very different mechanisms operate to
convert the phase information into a visible image and, hence, into inten-
sity variations in some plane downstream from the specimen. We return to
these in Section 3, but they inevitably influence the present discussion.

2.2. Amplitude Contrast

We first use equation (3) to calculate the number of electrons scattered
through an angle greater than some threshold value a, treating the scat-
tering medium as a film of given mass thickness m (product of density r and
thickness t). It is easy to show that the decrease in the number of electrons
in the beam scattered through angles smaller than a is given by

(5)
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where N = (Avogadro’s number)/(atomic weight) and s(a) is the scatter-
ing cross-section:

(6)

From (5) we see that

(7)

If, therefore, the angle a corresponds to the angle of acceptance of the
objective aperture, n/n0 tells us what fraction of the incident beam will pass
through the aperture and reach the image. This is a most important result,
for two reasons. First, it tells us that the contrast variations at the final image
are directly related to the projection of the density through the specimen
along the path of the electron. Secondly, it reassures us that this relation-
ship is single-valued since the exponential function varies monotonically.

The fraction intercepted varies with the nature and position of the scat-
tering atoms and hence generates scattering contrast. The phase shifts are
closely related to the angular deflections of the electrons in the specimen and
depend on the nature of the scattering atoms encountered. They are con-
verted into amplitude contrast by the objective aperture, which intercepts
electrons that have been scattered through larger angles and have passed
close to the heavier atoms in the specimen. Virtually all the medium-
resolution contrast (beyond 2–3nm, say) seen in electron micrographs is 
generated by this mechanism, and this therefore includes contrast from 
negatively stained specimens, for which the resolution is not better than this
figure.

Equation (7) is valid only if multiple scattering is rare, though an
expression of the same form is obtained if elastic and inelastic single scat-
tering are allowed (see Section 6.1 of Reimer, 1997); the total cross-section
is the sum of the elastic and inelastic cross-sections. An estimate of the
maximum acceptable specimen thickness can therefore be based on the
mean free path between scattering events, which is denoted by mt in equa-
tion (7). (Published values of this path length frequently represent the
product of density and path length, just as the mass thickness is the product
of density and thickness.) Figure 1 shows how the total elastic and inelas-
tic cross-sections vary in the range from 20 to 500kV for elements between
carbon (Z = 6, atomic weight = 12, density = 2.2g/cm3) and platinum (Z =
78, atomic weight = 195, density = 21.5g/cm3). Table 1 shows the true elastic
mean free path for a light element (carbon) and a heavy element (platinum)
as a function of accelerating voltage. For 100kV, for example, the elastic
mean free path is ∼200nm for pure carbon (graphite) but falls to 40nm for
germanium (Z = 32) and below 10nm for platinum (Z = 78), which is com-
parable with the common staining elements osmium (Z = 76) and uranium
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(Z = 92). For further data, see Reimer and Sommer (1968), Arnal et al.
(1977), Reichelt and Engel (1984) and, for guidance through the extensive
literature, Chapters 5 and 6 of Reimer (1997).

The simple expression for n can be improved by including inelastic
scattering, but is unreliable if the specimen thickness is increased to the
point beyond which multiple scattering is common. Nevertheless, in normal
circumstances, the current density distribution emerging from the objective
aperture does reflect faithfully the pattern of scattering atoms in the spec-
imen, especially the heavy atoms which will probably be those of any stain.
Even though the model of the specimen that enabled us to reach this con-
clusion was crude, we can conclude that, so far as this contrast mechanism
is considered, the images used for 3D reconstruction are essentially pro-
jections through the specimen. All the early, successful attempts at 3D
reconstruction relied on contrast of this kind (DeRosier and Klug, 1968;
DeRosier, 1971), and the reasoning employed to justify the reconstruction
procedure was considerably less laborious than that given here. The speci-
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FIGURE 1. The elastic and inelastic cross-sections for carbon and platinum for accel-
erating voltages in the range 20–500 kV (after Reimer, 1997).

TABLE 1 Elastic mean free paths for carbon and platinum (in nanometers) as a
function of accelerating voltagea

Accelerating voltage (kV) Carbon Platinum

17.3 45.9 0.03
25.2 65.5 3.78
41.5 102 5.41
62.1 145 6.57
81.8 181 7.83
102.2 216 8.95
150 321 10.9
300 518 14.7
750 632 23.6

a After Reimer (1997).



men is there represented by a mass density distribution, rt(x, y, z), the
Fourier transform of which is

(8)

A central section through this 3D function yields a 2D distribution, and, in
particular, for Z = 0, we have

(9)

The quantity m is the projection in the z direction of the mass density dis-
tribution, and, as we have seen, the intensity distribution in the image is
given by n/n0 = exp(−m/mt). The foregoing analysis is, however, necessary to
understand the assumptions underlying this reasoning.

2.3. Phase Contrast

At higher resolution, a very different contrast mechanism comes into
play, and we must re-examine the expression for the wave function emerg-
ing from the specimen.The latter is calculated by dividing the specimen into
a large number of very thin slices, each of which is represented by a 2D,
multiplicative, complex ‘transparency’. The incident wave is thus modified
by the first slice, allowed to propagate to the following slice, is again mod-
ified, propagates further, and so on, until the far side of the specimen is
reached. This technique has been studied in very great detail, in connection
with crystal structure determination in particular, and is widely used for
image simulation. The aspect of this theory of interest here is the phase-
grating approximation. In certain circumstances, the outgoing wave from the
specimen can be represented by a multiplicative specimen transparency
function:

(10)

in which the phase shift j and the amplitude term |S| are projections of the
potential and absorption of the specimen. In this approximation, multiple
scattering is permitted.A careful examination of the derivation of this result
shows that it is essentially a high-energy approximation, strictly valid for
vanishing wavelength, when the Ewald sphere2 becomes indistinguishable
from a plane. The phase shift j is given by
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(11)

in which l is the electron wavelength:

(12)

e is the absolute value of the charge on the electron, m0 is its rest mass, U
is the accelerating voltage, and Û is its relativistically corrected value:

(U in volts).The integral is taken through the specimen, in which the poten-
tial distribution is V(x, y, z).

Although it is not necessary to adopt the approximations that lead to
this phase-grating approximation when calculating the image of a given
structure, it is difficult to see how we could proceed in the opposite direc-
tion without it. If the specimen cannot be represented by a multiplicative
specimen transparency function, or projection, the interpretation of any
attempted 3D reconstruction will be obscure. Indeed, attempts to perform
such reconstructions would be likely to fail or, at least, prove to be inca-
pable of furnishing high-resolution detail owing to the inconsistency of the
data in the different views through the specimen when these views are not
strictly projections.

In conclusion, therefore, we may say that the information conveyed by
the emergent electron wave is essentially projection information provided
that the conditions of the phase-grating approximation are satisfied. The
most important of these is that the wave function does not ‘spread’ later-
ally as it propagates through the specimen (‘column approximation’). This
is stated with great clarity by Spence (2003):

This important qualitative result [that the broadening is typically less than 0.4
nm for thicknesses below 50 nm] indicates that the axial, dynamical image wave-
function on the exit-face of a crystal is locally determined by the crystal poten-
tial within a small cylinder whose axis forms the beam direction and whose
diameter is always less than a few angströms for typical HREM conditions. This
is essentially a consequence of the forward scattering nature of high-energy elec-
tron diffraction.

Thus, the thinner the specimen, the higher the accelerating voltage
(with little further gain beyond ∼600kV), and the lighter the atoms involved,
the better will be the phase-grating and hence the projection approximation.
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This qualitative observation is useful, but how can it be rendered quan-
titative? A valuable rule-of thumb is given by Spence (2003), whose chapter
on non-periodic specimens is recommended as background reading. He
notes that the effects of Fresnel diffraction in the specimen are neglected
in the phase-grating approximation, which is tantamount to assuming that
the curvature of the Ewald sphere is negligible. The properties of Fresnel
wave propagation can therefore be used to estimate the maximum tolera-
ble thickness (t) for which the phase-grating approximation is acceptable.
Spence finds

where d is effectively the desired resolution. Figure 2 shows t as a function
of l (or accelerating voltage) for d = 0.5, 1 and 2nm.

It is easier to establish the reliability of the phase-grating approxima-
tion in the case of crystalline materials. Indeed, any attempt to simulate the
image of a structure by the multislice method effectively imposes a peri-
odic character on the latter for, if the structure has no natural periodicity,
then for the purposes of the calculation it is regarded as one member of an

t
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�
2

l
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FIGURE 2. The maximum thickness t as a function of accelerating voltage (U) or
wavelength (l) for a resolution of 0.5, 1 and 2 nm.



array of replicas of itself. The amount of calculation becomes proportion-
ately larger, which explains why accurate image simulations for complex,
non-periodic specimens remain rare. Among the earlier calculations are
those by Grinton and Cowley (1971), for a negatively stained rod-shaped
structure (schematically representing a virus), who find that the approxima-
tion beaks down at ∼10nm for a resolution of 0.3nm at ∼60kV (l = 5pm);
this is more pessimistic than Spence’s estimate (18nm).

Although it is dangerous to extrapolate their results beyond the rather
limited conditions in which the latter were obtained, we next draw atten-
tion to the careful study by Jap and Glaeser (1980) of the domains of valid-
ity of two single-scattering approximations (the kinematic or first Born
approximation and the weak phase object approximation) for two organic 
crystalline materials: anhydrous cytosine and DISOPS (disodium-4-
oxypyrimidine-2-sulfinatehexahydrate). Since these are crystalline, Jap and
Glaeser consider both individual diffraction spots and the projected poten-
tial. Their findings cannot be encapsulated in a single conclusion, but their
curves for the reliability of the projected potential given by the two single-
scattering approximations considered do suggest some general guidelines.
For resolutions in the 3–5Å range, the single-scattering approximations are
‘quite reliable’ for thicknesses of 100–150Å at 100kV and of 200–250Å at
500kV. (The dissimilarity factor, in terms of which reliability is defined by
Jap and Glaeser, is a well-defined quantity for crystalline specimens; the
ranges given above correspond to different values of this factor.) We must,
however, insist that these results, though indicative, must be treated with
caution, even though they agree reasonably with the estimates given earlier.
Jap and Glaeser concluded:

It seems likely that the single-scattering approximations will tend to have a
greater validity for large, complex structures than for small, simple structures
because it is more likely in the case of small structures that atom centers can
overlap in projection. This effect gives rise to large values of the Fourier coeffi-
cients of the crystal potential, and a non-linear dependence of the transmitted
electron wave function upon the crystal potential. On the other hand, organic
structures with much larger unit-cell dimensions will produce a situation in which
very many more beams are simultaneously excited than is the case for cytosine or
DISOPS. Thus the domain of validity of the single-scattering approximations for
larger structures again cannot be accurately predicted from the present results.

Our present concerns being with specimens possessing little or no peri-
odicity, these warnings are particularly apposite. Furthermore, the tilt angles
of the outer members of a tilt series are large (±65°), with the result that
the thickness traversed by the electrons is much greater than for the un-
tilted specimen. Some subsequent calculations by Glaeser and Downing
(1993) are, however, reassuring. On the basis of earlier work (Ho et al., 1988;
Jap and Glaeser, 1980), they used dynamical theory calculations to estab-
lish ‘the domain of specimen thickness, resolution and accelerating voltage
within which the usual kinematic theory remained valid to a specified
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degree of accuracy’. They conclude ‘that the kinematic theory can be used
for unstained biological macromolecules up to a specimen thickness of at
least 10 to 20nm for voltages of 100kV or more’. Glaeser and Downing also
describe calculations designed to reveal the impact of dynamical effects on
bacteriorhodopsin images. For the smallest thickness considered (4nm,
about the size of the bacteriorhodopsin molecule), such effects are negligi-
ble. They increase with thickness but ‘none of the indicators of dynamical
effects becomes large enough to be considered a significant effect until the
specimen thickness is at least 12nm. These calculations support earlier con-
clusions . . . that dynamical effects can be ignored, and kinematic diffrac-
tion theory can be used to solve crystal structures of biological molecules
up to a specimen thickness of 10 to 20nm, using data obtained with 100kV
electrons’. Certainly these comments are concerned with electron crystal-
lography rather than tomography, but they are indicative of the reliability
of the projection approximation. See also Glaeser and Ceska (1989),
Chapter 6 of Spence (2003), ‘HREM in biology, organic crystals, and radi-
ation damage’, and especially Section 6.9 on ‘Molecular imaging in three
dimensions—electron tomography’, and Glaeser et al. (2007).

2.4. Amplitude Contrast Re-examined

It is convenient, particularly on a first encounter, to discuss the scat-
tering contrast generated by the objective aperture, which intercepts some
of the scattered electrons, and the higher resolution phase contrast as
though they were separate and disjoint mechanisms. This is, however,
strictly incorrect and, more seriously, leaves a twilight zone somewhere
between the high- and medium-resolution regimes unaccounted for. In fact,
we could abandon the notion of scattering contrast altogether and include
the role of the aperture in the discussion of the mechanisms that convert
phase variations in the wave function into amplitude variations in the
image. This is indeed done in image simulation. Nevertheless, a great many
electron images can be explained satisfactorily by the arguments of Section
2.2, and there is no reason to adopt a complicated train of thought when a
simpler one is not misleading. The fact that the two approaches give iden-
tical results for single atoms can be demonstrated explicitly (see Section
6.3.3 of Reimer, 1997, for a proof of this).

2.5. Radiation Damage

The problem of the damage that the electron beam may cause as it
passes through the specimen goes rather beyond the subject of this chapter
and is dealt with more fully by Luther in Chapter 1. Indeed, one of the con-
ditions to be satisfied if the electron microscope is to furnish true projec-
tions through the structure is that the passage of the electrons leaves the
latter unscathed. Fortunately, many of the requirements for the preserva-
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tion of high-resolution information that we have already encountered are
the same as those that protect the specimen from radiation damage, since
the aim is to keep inelastic scattering as low as possible. The accelerating
voltage should not be too low, and the specimen should be thin and consist
of light atoms. For stained specimens, the remedy is less obvious, as heavy
atoms are numerous and the beam may cause loss of mass and stain migra-
tion. Some idea of the magnitude of the effects may be gained by noting
that both the elastic and inelastic cross-sections are roughly halved by an
increase in accelerating voltage from 100 to 300kV. The reduction in inelas-
tic scattering in a given specimen should be accompanied by diminution of
radiation damage, though other factors are also involved. We refer to
Chapter 1 of this volume and to Chapter 10 of Reimer (1997), where the
physics of the damage process is thoroughly explored. The earlier papers of
Zeitler (1982, 1984) are also of interest in this context. The situation has,
however, changed dramatically with the widespread use of cryotechniques
in electron tomography (see Chapter 2 by Marko et al. and a recent survey
by Plitzko and Baumeister, 2006).

3. IMAGE FORMATION IN THE TRANSMISSION
ELECTRON MICROSCOPE

3.1. The Coherent Limit

The illumination in an electron microscope is partially coherent. The
effective source is small but not pointlike, and the energy spread is narrow
but still appreciable. It is, however, convenient to analyze image formation
on the assumption that the source is perfectly coherent, i.e. has vanishingly
small dimensions and negligible energy spread, and introduce the effects of
partial coherence by a perturbation procedure. As before, we represent the
wave emerging from the specimen in the form

(13)

and we allow this wave to propagate through the objective lens field to the
objective aperture and thence to the image plane of the microscope. Each
of these steps is represented by a Fourier transform, an immediate conse-
quence of the form of the Schrödinger equation (for details, see Glaser,
1952; Hawkes, 1980a; Hawkes and Kasper, 1994). The effect of the objec-
tive lens aberrations may be represented by a multiplicative function in the
objective aperture plane (strictly, the plane conjugate to the source, but by
considering a plane incident wave, the source is automatically conjugate to
the back focal plane of the objective, close to which the aperture is in prin-
ciple located); see Born and Wolf (1999) for a proof of this. With no new
approximations, therefore, and the sole assumption that the illumination is
coherent, we may write down the wave function (y) and hence the current

y y= ( )S x y s0 0,
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density (∝ yy*) in the image plane of the microscope. In practice, however,
the spherical aberration of the objective lens is the only geometrical aber-
ration that need concern us, and this renders the expression for the image
intensity substantially more simple.

A straightforward calculation, set out in detail in most modern texts
on electron image formation (Hawkes, 1980a; Reimer, 1997; Spence, 2003;
Hawkes and Kasper, 1994), tells us that the wave function in the image
plane of the microscope,y(xi, yi) is related to that emerging from the object,
y(x0, y0), by a relationship of the form

(14)

in which Ei and E0 are quadratic phase factors and K is a function charac-
terizing the transfer of information along the microscope:

(15)

and xa, ya are position coordinates in the aperture plane.
The function a(xa, ya) is equal to unity in the objective aperture and

zero outside. The phase shift g (xa, ya) is determined by the spherical aber-
ration coefficient of the objective lens Cs and the defocus Δ measured in
the object plane (i.e. the distance from the specimen to the plane optically
conjugate to the image plane). An additional term can be included in g to
describe any residual astigmatism, but we shall neglect this since it is not
directly relevant to the theme of this chapter. Thus,

(16)

Since (14) has the form of a convolution, its Fourier transform will be the
direct product of the transforms of the member functions. Writing

(17)
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This extremely important exact equation tells us that, provided we can
neglect geometrical aberrations other than spherical aberration, the elec-
tron microscope behaves as a linear scalar filter acting on the complex wave
function y. If we could record the image wave function, the object wave
function could be deduced from it in a straightforward way. Unfortunately,
only the amplitude of the wave function, and not its phase can generally be
recorded unless we are prepared to abandon the traditional imaging modes
and invoke holography or accept the relatively difficult computing needed
to solve the ‘phase problem’. This difficulty is readily understood in simple
physical terms. We have seen in the discussion of scattering that deflection
of an electron by the electric field close to an atom is equivalent to intro-
ducing a phase variation in the wave function. The phase of the image wave
is likewise intimately associated with the direction in which the electrons
are traveling at the image plane. We can record the points of arrival of elec-
trons, but we do not know where they were coming from.This is the essence
of the phase problem, and shows why it can be solved, in theory at least, by
taking two micrographs at different defocus values (or, more generally, in
different imaging conditions). Great progress has been made in recent
years; see Kirkland and Hutchison (2006) for a survey.

In order to proceed further, we replace the wave function y0 at the exit
surface of the specimen by the product of the specimen transparency and
the (plane) wave incident on the object:

y0 = S(x0, y0)ys (19)

Since the modulus of S is frequently close to unity, it is convenient to write

S = (1 − s)exp(ij) (20)

In the case of a weakly scattering specimen, both s and j are small; we
recall that the presence of s allows for inelastic scattering. The exponential
may then be expanded, giving

S ≈ (1 − s)(1 + ij − . . . ) ≈ 1 − s + ij (21)

if quadratic and higher order terms are neglected. Substituting the approx-
imation (21) into (18), we find

(22)

in which d is the Dirac delta function and , are the Fourier transforms
of s and j. From the definitions of K and , equations (15) and (17), we
know that

(px, py) = A(lfpx, lfpy) (23)K̃
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where A = a exp(−ig). The current density in the image ji is proportional to
yiyi*. After some straightforward calculation, again neglecting quadratic
terms in s and j, we find that

(24)

Writing ji = 1 + C, we see immediately that

(25)

where is the Fourier transform or spatial frequency spectrum of C, itself
a measure of the image contrast.

This result tells us how the phase and amplitude of a weakly scatter-
ing specimen are represented in the image. Each is modulated by a sinu-
soidally varying function, the behavior of which is governed by the spherical
aberration coefficient of the objective lens, Cs, and the choice of the defocus
value. Since the microscopist has no control over Cs, the value of the defocus
is chosen in such a way that as wide a range of values as possible of the
spatial frequencies of the specimen phase reach the image undistorted by
the function sin g.This in turn implies that a range of sizes of specimen detail
will be present in the image and can be interpreted directly.

However, equation (25) is a linear equation. Thus, even if all the 
information needed for subsequent 3D reconstruction is not present in a
single micrograph, it is, in principle, possible to form a linear superposition
of several micrographs, taken at different defocus values and suitably
weighted, to create an image less disturbed by the transfer function sin g.
We shall not give details of this technique (see Saxton, 1986; Schiske, 1968,
1973; Hawkes and Kasper, 1994), but it may be important to ensure that
information about the specimen that is carried by the electron beam, but is
destroyed or distorted by the passage through the microscope, does appear
correctly in the image used for 3D reconstruction.

The form of the phase contrast transfer function, ∝ sin g, changes
rapidly as the defocus is varied. Before discussing this behavior, we scale,
for convenience, the defocus Δ and the coordinates (xa, ya) in the aperture
plane in such a way as to suppress the dependence of px, py, and Δ on l and
Cs. We write

(26)
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where a = xa/(Csl3)1/4 and likewise for a. It has been suggested (Hawkes,
1980b) that the scaling factors be given names. A defocus of (Csl)1/2 is thus
said to be 1Sch (one scherzer), and a length of (Csl3)1/4 is said to be 1Gl
(one glaser). With this new scaling, we have

(27)

Figure 3 shows sin g as a function of for various values of in the
vicinity of = 1, √3

–
, and √5

–
, where the function has wide fairly constant

regions and varies least rapidly with . These are therefore the values of
defocus to be preferred for high-resolution imaging. In practice, the so-
called Scherzer focus, corresponding to = 1, Δ = (Csl)1/2, is the most con-
venient for direct interpretation of the recorded image.

3.2. Real Imaging Conditions: Partial Coherence

In practice, almost all of the assumptions that we have been making
are unjustified. The illuminating beam is not perfectly coherent, and the
specimen rarely scatters so weakly that j2 can be truly neglected. In this
section, we briefly consider the relatively innocuous effects of partial coher-
ence.We return to the problems associated with the weak scattering approx-
imation in Section 4.

We have assumed that the illuminating beam has no energy spread
(perfect temporal coherence) and is emitted from a vanishingly small
source (perfect spatial coherence). In practice, the energy spread may reach
a few electron volts, the exact value depending on the nature of the emitter
and the gun optics. The finite source size has the effect of spreading the
directions of arrival of the electrons at the specimen. Instead of all arriving
parallel to the microscope axis (plane wave), they will be incident over a
narrow range of angles centred on this same axis.
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FIGURE 3. The function sin g as a function of reduced spatial frequency p– for reduced
defocus = 1 (a), √–3 (b) and √–5 (c).D



Each of these effects can be represented to a good approximation by
an envelope function, in the sense that the coherent transfer function sin g
is to be multiplied by a function representing the effect of finite energy
spread and another representing that of finite source size. These envelopes
attenuate the transfer of information, and it is therefore important to ensure
that, if high resolution is to be achieved, the microscope source is suffi-
ciently small and has a narrow enough energy spread for this information
to survive in the image. Figure 4 shows a typical situation.

In an attempt to combat the effect of energy spread, monochromators
are being incorporated in electron microscopes. See Hawkes (2006) for ref-
erences to this work and to attempts to correct chromatic aberration.

3.3. Real Imaging Conditions: Specimen Tilt

In practice, the incident beam, however close to perfection the spatial
coherence may be, is not incident normal to the specimen surface for the
simple reason that a 3D reconstruction is based on a set of closely spaced
views through the specimen from different directions. These are commonly
obtained by tilting the specimen, and any known symmetry properties of
the structure may be used to supplement the information obtained from
the tilted images. Alternatively, a single tilted image may be sufficient if the
specimen consists of particles that tend to adopt a particular orientation on
the specimen support but have random orientations in the plane of the
latter. In all cases, however, the problem remains: the microscope transfer
function is highly defocus dependent, and we have stated without comment
that the microscopist must choose the defocus value with care and fore-
thought. How can we reconcile this with the fact that, for specimen tilts that
may reach 45° or more, the defocus difference between different sides 
of the image may well be of the order of micrometers? This problem has
other ramifications of considerable importance. For example, averaging to
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FIGURE 4. The attenuation of the transfer function (sin g) due to partial coherence for
the following conditions: (a) U = 200 kV; Cs = 2 mm; defocus = −841 Å; beam divergence
(partial spatial coherence) semiangle = 0.6 mrad; defocus spread (partial temporal
coherence) = 69 Å. (b) U = 400 kV; Cs = 0.9 nm; defocus = −457 Å; semiangle = 0.64 mrad;
spread = 56 Å.



enhance the signal-to-noise ratio for low-dose images of fragile specimens
is not possible if the defocus varies across the object; the contrast transfer
equations themselves cannot be used in the form given above, and the nec-
essary corrections introduce artefacts.Various proposals for overcoming the
problem by digital processing of the recorded tilt images before 3D recon-
struction have been made over the years (e.g. Amos et al., 1982; Henderson
and Baldwin, 1986; Henderson et al., 1986; Schiske, 1982), but the most sat-
isfactory solution is surely that developed by Zemlin (1989). This requires
modification of the microscope to permit the image to be formed as a
mosaic of small subimages, each created by illuminating a small zone of the
specimen; the illumination spot is then moved to the adjoining zone until
the whole specimen area has been covered. In this way, the defocus spread
need never exceed that corresponding to the width of an illuminated zone
since the microscope defocus can be adjusted as the illuminating spot climbs
up the slope of the specimen.

This technique is not a panacea; there are so many conflicting require-
ments in high-resolution electron microscopy that any perturbation of the
delicate balance, however advantageous, is almost certain to have draw-
backs as well. In the case of this dynamic focusing idea, care must be taken
to ensure that the inevitable loss of spatial coherence due to the decrease
in spot size does not cause an unacceptable attenuation of the transfer func-
tion. Zemlin estimates that this diminution of the coherence can be kept
within acceptable bounds, however. Furthermore, the situation that we 
have been considering is the most unfavorable; when the structure of iso-
lated particles is to be established, the defocus difference across an indi-
vidual particle will be much smaller, and the problem consequently less
serious. For discussion of the choice of defocus for such specimens, see
Radermacher (1988) and Chapter 8 below.

3.4. Real Imaging Conditions: Thick Specimens

For the vast majority of the specimens employed in 3D reconstruction,
the image is the result of scattering contrast, as described in Section 2.2.
Electrons scattered through large enough angles by the specimen atoms are
intercepted by the objective aperture and, hence, are absent from the image.
Their absence is indicated by dark contrast against the bright background
and, as equation (7) indicates, the number of electrons per unit area at an
image pixel is proportional to exp(−m/mi), where m is the mass thickness
through the corresponding object area.

In an ideal recording system, therefore, in which the number of elec-
trons per pixel could be measured, the logarithm of this quantity would rep-
resent a projection through the object directly. Cameras that do indeed yield
such measurements accurately over a wide range of values of the number of
incident electrons are routinely available. If the images are recorded on film,
the situation is a little more complicated. At electron microscope energies,

100 PETER W. HAWKES



every electron causes sufficient ionization of the grains of the photographic
emulsion to render at least one crystal developable. If E electrons are inci-
dent per unit area of an emulsion consisting of silver halide crystals of mean
cross-sectional area A, there will be on average EA collisions per crystal, so
the fraction F of all crystals hit at least once becomes

F = 1 − exp(−EA) (Poisson distribution) (28)

After development, the emulsion is characterized by its optical density
D, which is defined in terms of the fraction of light transmitted through the
emulsion T by

(29)

This may be written as

D = Dsat{1 − exp(−EA)} (30)

where Dsat is the saturation density, the value reached after an exposure
long enough for every grain to be rendered developable. Very often, it is
sufficient to expand the exponential and neglect quadratic and higher order
terms, whereupon equation (30) becomes

D = DsatAE ∝ E (31)

(For extensive discussion, see Valentine, 1966, and also Section 4.6.2 of
Reimer, 1997.)

To summarize the result of this section, the natural logarithm of the
optical density gives a direct measurement of the projected density through
the structure, apart from a scaling factor.

The discussion of film has been retained for completeness, but this
recording medium has been almost wholly superseded by the CCD camera,
which has a wide dynamic range and hence furnishes information about the
incident electron current density in a form ready for processing. (Never-
theless, the excellent resolution of film and its long lifetime, important 
for archival purposes, are very valuable features.) A disadvantage of CCD-
based detectors is the indirect nature of the detection process: ‘The incident
electrons form a visible light image in a thin polycrystalline phosphor, which
is imaged onto and recorded by the CCD, often after some demagnification
in tapered fibre optics’ (Faruqi et al., 2003a). For this reason, a new gener-
ation of devices that detect electrons directly is currently being developed.
Among the most promising are the ‘hybrid pixel detectors’, which generate
very little readout noise and hence lead to true electron counting. For
details of these new detectors, see Faruqi et al. (2003a, b, c, 2005), Faruqi
and Cattermole (2005) and Evans et al. (2005).
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3.5. Energy-filtered Imaging and EELS

When an electron beam traverses a specimen, a substantial fraction of
the electrons pass through unaffected by their passage. The other electrons
interact with the atoms in various ways. If the specimen atoms are mostly
light and the specimen is thin,the majority of the interactions will be elastic—
the electron loses very little energy during the collision—and, on average,
electrons will interact with at most one atom.The collision is described as an
elastic scattering event. In other conditions, however, the electrons may be
scattered more than once (multiple scattering) and may transfer some of
their energy to the specimen; we then speak of inelastic scattering.

When inelastic scattering occurs, the electrons emerging from the spec-
imen will have different energies and the energy spectrum will be to some
extent characteristic of the composition of the specimen. The study of such
spectra is highly developed (Egerton, 1996) and an electron energy-loss
spectrum atlas is available, with the aid of which individual atomic species
can be identified (Ahn, 2004). In imaging conditions, however, the inelasti-
cally scattered electrons are undesirable. The chromatic aberration of elec-
tron lenses has the effect of blurring the image and it is therefore
advantageous to remove these electrons. This can be achieved by means of
an imaging energy filter.

The transmission electron microscope may be equipped with a post-
column magnetic prism or an in-column magnetic filter, typically an Ω-filter
(so called from the shape of the optic axis in the device); the most common
commercial prism device is the GIF (Gatan Imaging Filter, marketed by
Gatan). These accessories allow the microscopist to form an image with
electrons in a chosen energy range or to form an energy-loss spectrum from
a selected area of the specimen.The collection edited by Reimer (1995) and
the book by Egerton (1996) are good background references, largely
addressed to physicists, while the papers by Leapman (2003, 2004) and espe-
cially Leapman et al. (2004) are concerned with biological applications.

Energy filtering is used for various purposes. The energy window may
be chosen so that only electrons that have lost very little energy when tra-
versing the specimen are allowed to reach the image, as described above.
In this case, only elastically scattered electrons will be selected and any blur-
ring caused by chromatic aberration will be substantially reduced. Exam-
ples of the benefit of zero-loss filtering, in low-dose conditions in particular,
are to be found in the work of Grimm et al. (1996a, 1998). Figure 5 shows
the improvement obtained on an image of a Thermoplasma acidophilum
cell and on the subsequent reconstruction. Alternatively, the window may
be chosen in such a way that information about a particular chemical
element is transmitted to the image. In the pioneering study of Leapman et
al. (2004), the filter was set to detect phosphorus in cell sections of the nem-
atode Caenorhabditis elegans. The authors explain in detail how the various
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parameters were chosen. They obtained a tilt series in the angular range
between ±55° at energy losses centered on 157 and 120eV with an energy
window of 15eV. These values are just above and just below a feature in
the energy-loss spectrum characteristic of phosphorus (the L23 edge). The
position of phosphorus in ribosomes is clearly seen in the resulting 3D
reconstruction. A third possibility, discussed by Grimm et al. (1996b), has
been exploited by Olins et al. (1989) and more recently by Bouwer et al.
(2004); examination of an energy-loss spectrum shows that although the
spectrum has a fine structure characteristic of the individual elements com-
prising the specimen, it also exhibits general trends and in particular a
‘most-probable’ energy loss. By setting the energy selection window around
this value, the image will be perceptibly sharper and the signal will not be
as low as when the zero-loss region is selected, a very attractive feature.
However, the technique is not appropriate for thin specimens, where elastic
scattering is dominant. Olins et al. showed that sections up to 0.5μm thick
can be imaged using energy filtering, and they used the images to make a
tomographic reconstruction of chromatin in the Balbiani ring of Chirono-
mus tentans. Bouwer et al. reconstructed the spiny dendrite from the mouse
hippocampus from a thick copper–lead-stained section. An example of the
improvement is shown in Figs 6 and 7. In Fig. 6, unfiltered (left) and most-
probable-loss (right) images are compared for a 2μm thick section; in Fig.
7, a zero-loss image and a most-probable-loss image are compared.

Elemental reconstruction suffers from a number of hazards in addition
to those now well known in regular electron tomography, notably radiation
damage. Many of the most interesting elements for cell biologists are
present in extremely low concentrations, and the background subtraction
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FIGURE 5. Unfiltered (A) and zero-loss (B) filtered images of a Thermoplasma aci-
dophilum cell. The specimen thickness is 0.25–0.3μm, which is greater than the mean
free path of 300 kV electrons in ice at liquid nitrogen temperature. The slit width was
20 eV. (C) A section through a tomographic reconstruction based on the filtered image
set. Courtesy of J. Plitzko, Max-Planck-Institut für Biochemie, Martinsried.



that is necessary to reveal the true signal requires great care. This is par-
ticularly true at high tilt angles. Also, the markers attached to the specimen
for alignment of the individual members of the tilt series must be visible 
in the energy-filtered image (and not excluded by the choice of energy
window).
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FIGURE 6. Unfiltered and most-probable-loss images of a 2μm thick section of a
spiny dendrite sample. For the filtered image, the slit was 40 eV wide and centered on
150 eV. Magnification ≈ 5000. The reduction of the blurring caused by chromatic aber-
ration is obvious. (From Bouwer et al. (2004), reproduced with permission of Elsevier).

FIGURE 7. Zero-loss and most-probable-loss images of a 2μm thick section of a spiny
dendrite sample. The exposure times were adjusted to produce the same mean image
intensity: 1200 s for the zero-loss case (slit width 15 eV) and 10 s for the most-probable-
loss image (slit width 35 eV). The most-probable-loss signal is ∼120 times higher than
the zero-loss signal, while the resolution in the two images is comparable. Magnifica-
tion ≈ 5000. (From Bouwer et al. (2004), reproduced with permission of Elsevier).



4. THE MICROSCOPE AS PROJECTOR: ASSESSMENT

The object of this chapter is to discuss the extent to which the electron
microscope provides a projection of some aspect of the specimen structure
that can be used to form a reliable 3D reconstruction of the latter. There is
always a danger that a critical examination of a complicated situation will
give the reader the impression that the situation is, if not hopeless, certainly
far from rosy.The list of things that can go wrong seems interminable: insuf-
ficient source coherence, a strongly scattering specimen, appreciable inelas-
tic scattering, structural dimensions that cross the vague frontier between
scattering contrast and phase contrast, loss of information thanks to the
form of the contrast transfer function and inadequacy of the column
approximation. And yet, there are plenty of successful 3D reconstructions
in the literature, and the structures obtained seem in harmony with struc-
tural information obtained by other means and enable the molecular biol-
ogist, for example, to confirm or invalidate earlier hypotheses about
structure and function. In this last section, we attempt to draw together the
strands of the interwoven arguments of the preceding sections, and we con-
clude that, provided that certain cautionary remarks are borne in mind, the
electron microscope image does contain the projection information on
which a three-dimensional reconstruction can be safely based.

First, we must distinguish between stained and unstained specimens. If
a heavy-atom stain is employed, then for several reasons the highest reso-
lutions cannot be expected. The stain will itself not cling to all the fine
details of the object and is often incapable of penetrating into all the narrow
interstices of the structure. Furthermore, the presence of heavy atoms
makes the weak scattering approximation untenable, so all the reasoning
based on this becomes invalid. Conversely, the scattering properties of this
heavy stain are excellent for creating scattering contrast, and such contrast
does indeed represent a projection through the object. We recall that it is
important to use not the optical density but its logarithm. A set of views
through a stained specimen may be expected to yield a 3D reconstruction
that is reliable down to the resolution of the specimen preparation and
staining procedures, at best ∼2nm but sometimes worse than this. For a
much fuller discussion of all practical aspects of this branch of 3D recon-
struction, see the long review by Amos et al. (1982) and the book edited by
Turner (1981), especially the chapter by Steven (1981), as well as later 
chapters of this volume.

When we wish to establish the 3D structure of a specimen at higher
resolution, better than 1.5 or 2nm, say, the situation changes radically. Very
different techniques of specimen preservation are brought into play, the
beam electrons convey information about the positions of light atoms, and
the mechanism of image formation is that appropriate to a phase object.

If the information recorded in the image is to be used for reconstruc-
tion, and hence represents a projection through the specimen, certain 
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precautions must imperatively be taken. If not, the different views used for
the reconstruction will at best be found to be incompatible, and the recon-
struction methods described elsewhere in this book will fail to generate a
high-resolution model. At worst, the views will be compatible but wrong,
yielding a reconstructed structure that is false.

These precautions are of two kinds. First, we must be sure that the
phase shift of the wave function leaving the specimen is essentially a pro-
jection through the latter, and, secondly, we must arrange that this phase
information is converted faithfully into amplitude variations in the
recorded image, at least in the size range of interest. In other words, certain
rules must be respected during the preparation of the specimen, and the
mode of observation in the microscope must likewise be rigorously con-
trolled. So far as the specimen is concerned, it is most important that it can
be represented by a multiplicative transparency (equation 13), with the
implications that we have already mentioned: the beam accelerating voltage
should not be too low, nor the specimen thickness too great. It is difficult
to give figures, since the limiting thickness is a function of beam voltage and
of the atomic number of the heaviest atoms present, but for unstained bio-
logical material observed between 100 and 200kV the thickness should
probably not exceed 10 or 20nm.

For transfer along the microscope, we are obliged to use linear trans-
fer theory, since no useful conclusions can be drawn from the more com-
plicated non-linear theory that we obtain if we do not assume that the
specimen scatters weakly. The beam convergence must be small, the energy
spread small, and the defocus value suitably chosen. Some way of circum-
venting the problem of the variation in the defocus of a steeply tilted spec-
imen must be found, such as that described in Section 3.3.

For the very highest resolution, all these precautions and many others
relating to the actual reconstruction process and described in subsequent
chapters are mandatory. For more modest, but still high, resolution,
however, we may enquire what is likely to happen if we relax the require-
ments a little. If the specimen is thicker than ideally we should like, the
columns of the ‘column approximation’ will broaden and the resolution of
the phase-grating approximation will deteriorate slowly. Inelastic scattering
will increase and add a lower resolution background to the image, which
will in consequence display a lower signal-to-noise ratio. The curvature of
the Ewald sphere will have a small effect on the fidelity of the reconstruc-
tion (Cohen et al., 1984; Wolf et al., 2006).

The theoretical assumption that is the worst respected in practice is,
however, that the specimen is a weak scatterer and, hence, that the phase
shifts introduced are small. Even if we relax this by regarding the specimen
phase variation as a function with only small variations about its mean
value, many specimens that preserve very fine detail will not be truly weak
scatterers. It is difficult to discuss the consequences of semi-weak scatter-
ing, but we can anticipate that the effects will be, if a little misleading, not
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catastrophic. If we continue the series expansion of exp(ij), we obtain an
alternating sequence of real and imaginary terms, of which the former will
join the amplitude contrast term (s in equation 21) and the latter will alter
the absolute value of the phase contrast term. Modest violation of the weak-
scattering requirement should therefore not be too serious.

There are hazards in 3D reconstruction of many kinds. Here we have
concentrated on a particular kind and have deliberately refrained from
comment on those dealt with elsewhere in the book, notably radiation
damage, which is extensively discussed by Luther in Chapter 1, and the
practical problems of data acquisition.We have shown that at both high and
modest resolution projection information can be recorded. How this infor-
mation is used to generate three-dimensional structures is the subject of the
remainder of this book.

Almost all the reviews on the various aspects of 3D reconstruction
neglect the question examined in this chapter, taking it for granted that the
electron microscope does project the specimen structure onto the image,
or at least onto the exit surface of the object. The surveys by Frank and
Radermacher (1986) and by Glaeser (1985) are rare exceptions and inter-
est has been revived by Wolf et al. (2006) and Lawrence et al. (2006). The
list of further reading is concerned with 3D reconstruction in general, there-
fore, and hardly at all with the specific topic of projection.
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Electron tomography is an imaging technique that provides 3D images of
a specimen with nanometer scale resolution. The range of specimens that
can be investigated with this technique is particularly wide, from large
(500–1000 nm) unique variable structures such as whole cells to suspensions
of thousands of small identical macromolecules (>200 kDa). When applied
to cryofixed frozen-hydrated biological material, the technique is often
referred to as cryotomography. In combination with automated low-dose
data collection and advanced computational methods, such as molecular
identification based on pattern recognition, cryotomography can be used to
visualize the architecture of small cells and organelles and/or to map macro-
molecular structures in their cellular environment. The resolution that can
be obtained with cryotomography depends on several fundamental and
technical issues related to specimen preparation, microscopy and subse-
quent image processing steps, but will typically be in the range of 5–10 nm.

1. INTRODUCTION

1.1. Basic Concept

Most objects, either biological or inorganic, have a 3D architecture.The
higher the complexity of an object, the less revealing is the 2D image that
is obtained with transmission electron microscopy (TEM) due to the super-
position of multiple 3D structural features into one 2D projection image.
3D imaging of cellular structures has great impact on how we understand
the cellular architecture, and provides a powerful tool to expand upon the
2D images obtained of cell biological structures when studied by conven-
tional 2D TEM during the last decades.

Because of the large depth of focus of the instrument, electron micro-
graphs taken with TEM are essentially 2D projections of the imaged spec-
imen. In electron tomography, 2D images of a specimen are acquired as
viewed from different angles and then synthesized into a 3D mass density
map, often referred to as a tomogram. The specimen holder is tilted incre-
mentally around an axis perpendicular to the electron beam, e.g. from –65°
tilt to +65° tilt with 1° increments, and images are taken at each position.
Before computation of the tomogram, the projection images must be mutu-
ally aligned within a common frame of reference.

The 3D reconstruction (tomogram) is computed either in real space 
or via interpolation in Fourier space and subsequent back-transformation.
The description in Fourier space helps to explain the requirements for data
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recording, and its dependence on the size of the specimen and on the
desired resolution of the tomogram. The description in Fourier space tells
us that a 2D image of the tilt series corresponds to a central section in the
3D Fourier transform of the specimen that is imaged: acquisition of a tilt
series with incremental tilts distributed over a large angular range is equiv-
alent to scanning the specimen information in Fourier space by the corre-
sponding set of sections (Fig. 1). The full structural information to a given
resolution can be recorded by tilting about a single axis over an angular
range of 180°.

The relationship between the attainable resolution d (parallel to the
optical axis) is determined by the angular tilt angle increments Δa. For
linear tilt increments, d is given by the relationship d = pD/N (Crowther et
al., 1970; Grimm et al., 1998; Hoppe, 1969), where D is the diameter of a
spherical object, and N the number of projections recorded at equally
spaced tilt angles over a range of 180° (also given by 180/Δa). Thus, when
131 images are taken of an organelle 300 nm in size, the attainable resolu-
tion d equals 7 nm (p × 300/131). This rule of thumb for the attainable res-
olution gives an indication for the data collection parameters that have to
be used. For instance, in order to reconstruct a specimen of 50 nm diame-
ter (D) with a resolution of 2 nm (d), one would need 75 projections (N)
and thus a tilt increment of ∼2.4°.
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FIGURE 1. Data sampling in Fourier space. The description in Fourier space (kx, ky)
tells us that a 2D image of the tilt series corresponds to a central section in the 3D
Fourier transform of the specimen that is imaged. The collection of a tilt series is equiv-
alent to sampling the specimen information in Fourier space. A projection of an object
with a thickness D corresponds to a central slice of thickness 1/D in Fourier space. The
central section is perpendicular to the projection direction. The sampling is done with
angular increments sufficient to obtain a resolution up to pD/N where the information
of adjacent projections overlaps (black arrows). When a tilt series of a section is
acquired, the angular tilt increments become smaller at higher tilt angles. 



The relationship d = pD/N is only valid if the geometric thickness of
the specimen is independent of the tilt angle (i.e. if the specimen is spher-
ical or cylindrical), and if the sample can be fully tilted, from –90° to 90°.
In practice, it is not possible to collect a tilt series over the full angular range
of 180°. At high tilts, typically at tilts higher than 65–70°, two kinds of prob-
lems arise. First, the grid-bars will eventually obscure the field of view, even
using mesh sizes larger than 200. The design of the specimen holders also
imposes mechanical constraints to the achievable tilt angle. A second type
of problem is that at high tilt angles, the effective specimen thickness rapidly
increases. At high tilts, very few electrons will be able to penetrate through
the specimen to give a useful contribution to the image. These two effects
limit the angular tilt range to a maximum tilt angle (amax). Furthermore,
most specimens in electron microscopy, far from being spherical, are quite
extended in the x- and y-directions, but have a limited thickness in the z-
direction. For a section with a thickness of T, the value of D equals
T/cos(amax) where amax is the maximum tilt angle (McEwen et al., 2002;
Radermacher, 1992). For an optimal sampling of specimens of variable
thickness, non-equidistant tilt angles may be advantageous (Grimm et al.,
1998; Saxton et al., 1984). The basic idea is that the 3D Fourier space cor-
responding to the specimen under investigation is more efficiently sampled
at higher specimen tilt angles.With this data collection scheme, the tilt incre-
ments are smaller at high specimen tilts than at low specimen tilts. The
advantage is that the number of images that need to be acquired to attain
a certain resolution is lower with this scheme than with a linear, equidis-
tant scheme. The non-linear tilting scheme has advantages for low-dose
tomographic data collection (Grimm et al., 1998) and will be described in
more detail later in the chapter.

In 3D Fourier space, the missing information at angles higher than amax

has the shape of a wedge, and therefore this effect is referred to as the
missing wedge. The missing wedge leads to an elongation factor in the z-
direction. The elongation depends on the size of the wedge given by
sqrt((amax + sinamax cosamax)/(amax – sinamax cosamax)) where amax is the
maximum tilt angle (Radermacher, 1992). For a tilt range of +65 to –65, the
elongation factor would be ∼1.5. For example, the attainable resolution in
the z-direction for the 300 nm section mentioned above would be 10.4
instead of 6.9 nm.

These effects due to the missing wedge inspired the development of
dual-axis tilt electron tomography (Mastronarde, 1997; Penczek et al., 1995).
With the double-axis tilt electron tomography technique, two tilt series are
collected. The second tilt series is taken after rotating the object by an 
angle of ∼90°. In this manner, the missing information is much less: in
Fourier space, the missing information will not have the shape of a wedge,
but of a pyramid. For room temperature holders, double-axis tomography has
become the de facto standard data collection scheme. For cryotomography,
technical issues related to the cryoholders with a suitable mechanical con-
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struction for sample rotation and tilting have obstructed routine applica-
tion of double-axis tilting,Though experiments were done using double-axis
tilting (Nickell et al., 2003) with cryotomography, it is expected that more
routine application will be possible with improved cryoholders in the near
future.

The geometry of sampling in 3D Fourier space (one/two orthogonal
single-axis tilt series as well as the missing wedge/pyramid of information)
is the reason why the resolution of a tomogram will not be the same in all
directions; the tomogram will have an anisotropic resolution (Baumeister
and Steven, 2000). This anisotropic resolution has to be taken into account
during the analysis of the tomogram. For instance, in some directions within
the tomogram of a membrane, connections may be present and in other
directions they may not (Nicastro et al., 2000).

To be able to study the samples embedded in a vitreous ice environ-
ment, the specimen is investigated at liquid nitrogen temperature. Cooling
the specimen further down to liquid helium temperature (4 K) has been
shown to be advantageous for thin samples, but it is unclear if this is also
true for thicker samples as used in cryotomography (Dubochet et al.,
1988; Talmon, 1987). The sensitivity of the specimen to the irradiating 
electron beam is a fundamental limitation of cryotomography. To avoid
unnecessary irradiation of the specimen, electron tomography on frozen-
hydrated specimens has to be done in the ‘low-dose’ mode, and the total
dose the specimen receives should be spent on the acquisition of the
images of a tilt series. Automated procedures for low-dose data acquisition
were developed to satisfy the latter requirement (Dierksen et al., 1993).
Because of the inherent low contrast of frozen-hydrated specimens and 
the sensitivity of the specimen to the electron beam, cryotomograms are
characterized by a low signal-to-noise ratio (SNR). Apart from the elec-
tronic noise due to the detector itself, a large contribution to the noise is
due to statistical fluctuations in the number of electrons counted by the
detector. This noise, often described as shot noise, is fundamental and
cannot be reduced. The dependence of the resolution on noise and elec-
tron dose was discussed in detail previously (Grimm et al., 1997; McEwen
et al., 2002).

Though it is possible to give an indication of what resolution can be
attributed for a given specimen and for a given data collection scheme, this
does not imply that that resolution is indeed obtained. Unfortunately,
though progress has been made in defining standards for resolution esti-
mation (Cardone et al., 2005; Penczek, 2002; Unser et al., 2005), straight-
forward quantitative verification of resolution is not available for electron
tomography. In single-particle techniques, the Fourier shell correlation
(FSC) approach (Saxton and Baumeister, 1982) is often used to determine
the resolution. With FSC, it is possible to measure to what resolution two
independent reconstructions contain the same structural details. For 
electron tomography, this approach is less useful since it is based on 
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comparing tomograms that are produced from two independent data sets
(a data set split in two halves). For cryotomography, the approach is even
less useful since the number of projections in a tilt series will often be <100.
As a result, the measured resolution as given by the FSC will be largely
underestimated. If the specimen allows, a practical approach could be to
assess the resolution based on the presence of a known molecular structure
(e.g. a known atomic model of the 20S proteasome) within a tomogram.The
putative structure as observed within the tomogram with, for instance, 4 nm
resolution could then be compared with its known high-resolution model
rendered down to the same 4 nm resolution. A number of experimental
methods to assess resolution in cryotomography are discussed by McEwen
et al. (2002).

When repetitive structures are present within a tomogram, such as
many copies of a macromolecular structure, it is possible to increase the
resolution using 3D averaging techniques (Walz et al., 1997b). For the
application of these averaging techniques, it is important to realize that
the defocus of the microscope has to be sufficiently small to ensure suffi-
cient contrast transfer. Also important to realize is that structural varia-
tions may be present within the tomogram that could be averaged out
during the process. Therefore, careful multivariate statistical methods are
needed to verify to what extent the averaged result represents the true
structures within the tomogram (Walz et al., 1997b). Finally, before align-
ing, classification and averaging in electron tomograms, it has to be taken
into account that the effect of the missing wedge on each of the structures
encapsulated in the tomogram is very significant (Bohm et al., 2000;
Frangakis et al., 2002). Recently, this averaging approach, often used as a
technique extending upon template matching, has matured and been
applied in several cases (Forster et al., 2005).

Electron tomography of frozen-hydrated cellular structures at a reso-
lution of 2–5 nm allows the study of the 3D organization of cellular struc-
tural components at a level that is sufficient to identify individual large
macromolecular assemblies and to visualize connections between cellular
components (Frangakis et al., 2002; Grünewald et al., 2003). The cellular
architecture, supramolecular organization and interactions can be studied
by analyzing their spatial relationships. The attainable resolution range and
the size of the objects that can be imaged makes it well suited for studying
cell organelles and subcellular molecular assemblies. Cryotomography is a
tool to investigate the cellular architecture and networks of large macro-
molecular assemblies in situ and will be most powerful when it is applied
in combination with other techniques, both with higher resolution (X-ray
and nuclear magnetic resonance (NMR)) and with lower resolution (fluo-
rescence light microscopy), as well as genomics and proteomics approaches
(Baumeister, 2002; Baumeister and Steven, 2000; Baumeister et al., 1999;
Frank et al., 2002; McEwen and Frank, 2001; Russell et al., 2004; Steven and
Aebi, 2003; Subramaniam and Milne, 2004).
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1.2. Historical Perspective

The basic concept of electron tomography is that 3D reconstructions
can be obtained from a set of 2D projections (Radon, 1917). The approach
was put forward in 1968 in three independent papers (DeRosier and Klug,
1968; Hart, 1968; Hoppe, 1969). The possibility of identifying macromolec-
ular structures in frozen cells or tissue was already stated in Hart’s paper
of 1968 and re-addressed again in a review in 1997 (Koster et al., 1997) by
Baumeister’s group (Max-Planck-Institute for Biochemistry, Martinsried,
Germany). In 1968, the technical challenges to carry out (cryo)tomography
were substantial, and it took 30 years before the technique could be applied
in practice. It was not until the 1980s that cryoelectron microscopy was
developed (Dubochet et al., 1988) and the technical requirements to collect
data at very low dose under cryogenic conditions could be met. Moreover,
the computational power required to process data sets and to visualize the
noisy tomograms was just not available.

During the 1980s, significant pioneering research and development on
(cryo)tomography was carried out by Baumeister’s group. Fundamental
high-risk technological developments were pursued by several members of
that group. In particular, Dieter Typke and Reiner Hegerl were pivotal in
several research initiatives related to instrumentation development (lenses
and high-tilt specimen holders), to aspects of automation, to novel
approaches in reconstruction and application of statistical image analysis
techniques during the 1980s, 1990s and early 2000s. In the early 1990s, the
first automated data collection system for cryotomography was realized,
and was optimized during the next few years (Dierksen et al., 1992, 1993,
1995; Grimm et al., 1998; Horowitz et al., 1997; Ratho et al., 1997; Walz et al.,
1997a). In the early 1990s, computer-controllable TEMs and sensitive elec-
tron image detectors became available. Pioneered by the group of David
Agard and John Sedat (UCSF, Californa), the mechanical housing and com-
puter control of cooled slow-scan CCD (charge-coupled device) cameras
were adopted from applications in wide-field light microscopy to meet the
requirements of electron microscopy. Once the CCD interfacing was sorted
out, automated tomography became possible (Koster et al., 1992). Also, the
computational power of desktop computing increased rapidly and the
required computational methods for electron tomography were optimized
(Böhm et al., 2000; Frangakis et al., 2001; Walz et al., 1997b). At the begin-
ning of 2000, many of the technological improvements were realized and
commercial instrumentation for cryotomography became available. Cryo-
tomography became a tool for both cell biology and structural biology
applications.

With cryotomography, a major practical obstacle is the sensitivity of
unstained ice-embedded samples to the electron beam irradiation.This sen-
sitivity requires that electron tomographic data collection has to be done
under extreme low-dose conditions, typically <5000–10,000 e/nm2. Though
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the dose can be distributed over a large number of projections during data
collection (McEwen et al., 1995), low-dose data collection of low-contrast
frozen-hydrated samples will result in 3D reconstructions with a very low
SNR (De Carlo et al.,2002).A major step forward to overcome this limitation
was taken in the late 1990s when it was recognized that it is not indispensable
to identify the 3D molecular structures by direct visual inspection. Instead,
the identification of a given 3D molecular structure, often referred to as a
template (Böhm et al., 2000), in noisy electron tomograms could also be
based on pattern recognition methods.The recognition of the template may
be statistically significant even if the particle is hardly recognizable by eye.

Since 2000, interest in cryotomography has increased enormously, and
novel methodological approaches were proposed and realized by several
groups worldwide to collect data sets more automatically (Bouwer et al.,
2004; Nickell et al., 2005; Rath et al., 1997; Zhang et al., 2001, 2003; Zheng
et al., 2004; Ziese et al., 2002a). Besides freezing suspensions of molecules
and organelles, approaches to section vitrified cells and tissue, possibly using
vibrating knives, were investigated by several groups, including those of
Joachim Frank, Mike Marko and Bruce McEwen (Albany), Jacques Dubo-
chet (Lausanne) and Wolfgang Baumeister (Martinsried) (Al-Amoudi et
al., 2004, 2005; Hsieh et al., 2002; Sitte, 1996), and improved methods to
transfer cryosamples from the laboratory into the electron microscope with
a minimum amount of perturbation were proposed. Furthermore, dedicated
image processing techniques to improve the reconstruction step (Liu et al.,
1995; Van Aert et al., 2002) and visualization and interpretation were devel-
oped (Bajaj et al., 2003; Baumeister, 2005; Bohm et al., 2000; Frangakis and
Hegerl, 2002; Frangakis et al., 2001; McEwen et al., 2002; Perkins et al., 1997;
Ress et al., 2004; Sali et al., 2003; Volkmann, 2002).

In this chapter, we will focus on the principles and basic procedures of
electron tomography as they are applied to the 3D imaging of biological
objects prepared for TEM with the best possible structural preservation
currently available: fully frozen-hydrated specimens. In cryotomography,
four phases can be distinguished: specimen preparation, data acquisition,
reconstruction and visualization. Successful application of the technique
depends on a large number of factors, ranging from critical specimen prepa-
ration conditions to the correct application of complex image analysis tools.
Though several technical aspects of electron tomography on frozen-
hydrated samples are addressed to identify the limitations and the poten-
tial of the technique, in this rapidly developing field we cannot hope to be
complete and apologize for having not referred to important work and
developments.

1.3. Applications of Cryotomography

Thanks to technical improvements of instrumentation, cryotomogra-
phy became more applicable to biological systems in the late 1990s. Though
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it is difficult to make a clear division, one can try to distinguish between
four different types of applications.

First, cryotomography can be applied on cryofixed suspensions of mul-
tiple copies of macromolecular complexes embedded in a thin layer of vitri-
fied buffer. High-resolution information, better than 4 nm resolution, can be
attained by averaging multiple subtomograms containing individual copies
of the macromolecular structure. It is important for this kind of application
that the structures under investigation are in principle identical, although
possible conformational changes can be explored by an extensive use of sta-
tistical analysis techniques. Characteristic of this approach is the acquisition
of a large number of tomograms to increase the resolution. Furthermore, to
attain even higher resolutions, a combination of single-particle electron
microscopy with electron tomography can be carried out (Walz et al., 1997b,
1999). In order to align subtomograms containing individual particles, suffi-
cient information within those subtomograms needs to be present (Hender-
son, 1995). The implications of Henderson’s work are discussed in a review
by Frank (2002), where it is noted that close to atomic resolution is feasible,
provided the particle exceeds a certain size.To approach that resolution, the
number of particles that have to be averaged has to be significantly high.The
number is roughly the cube of 1/d (d being the resolution). In the case of a
ribosome, a resolution in the range of 1 nm can be achieved by analyzing
∼30,000 particles. Therefore, to attain 0.3 nm, it would require ∼27 × 30,000
particles: close to a million particles. In practice, with electron tomography,
the averaging of substructures was carried out with significantly lower
numbers and at much lower resolution. Examples of the approach where
multiple molecules are averaged are the acrosomal bundles (Sherman et al.,
1997), the thermosome from the archeon Thermoplasma acidophilum
(Nitsch et al., 1998), the tricorn protease (Walz et al., 1997a) (Fig. 2), VAT, a
CDC48/p97 ATPase homolog in T. acidophilum (Rockel et al., 1999), nuclear
pore architecture (Beck et al., 2004; Stoffler et al., 2003) (Fig. 3), individual
Escherichia coli 30S and 50S ribosomal subunits (Zhao et al., 2004), and
immunoglobulins (Bongini et al., 2004; Sandin et al., 2004).

Secondly, cryotomography can be applied on isolated similar, but not
identical, macromolecular structures or small organelles that are sufficiently
thin for direct observation with TEM. With these samples, inherent vari-
ability is expected, and attention is paid to those features that are similar.
Cryotomography can show the overall 3D morphology of these struc-
tures, and higher resolution information can possibly be attained by aver-
aging over multiple repetitive features on or within these organelles or
structures. Technical issues that can play an important role in these appli-
cations are careful isolation methods and the approach to locate the struc-
ture of interest on the electron microscope grid. Examples are parts of the
yeast spindle pole body (Bullitt et al., 1997) (Fig. 4), chromatin fibers com-
posed of a continuously variable zig–zag nucleosomal ribbon (Horowitz 
et al., 1997), axonemes (McEwen et al., 2002), isolated triad junctions
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FIGURE 2. The effect of averaging subtomograms. Electron tomography on isolated
ice-embedded tricorn capsids of 14.6 MDa (from the archaebacterium Thermoplasma
acidophilum). Electron tomography was carried out on seven particles, and each series
is composed of 25 images (−60° with 5° intervals. The magnification corresponded to
0.5 nm per pixel, and the total dose for data collection to 30 e/nm2. In the tomogram,
4.2 nm resolution (FSC) was obtained. Slices through the subtomogram of one indi-
vidual particle (left) and an isosurface display after averaging seven particles. The 5-
fold axis of the particle becomes visible. The 4.2 nm tomogram was used as the
starting reference for a refinement procedure incorporating 2D images of the particle
to attain 1.3 nm resolution (Walz et al. 1999). (From Walz et al. (1997a), reproduced
with permission of Cell Press).

FIGURE 3. Nuclear pore complex. Isosurface representation of a tomogram showing
the nuclear envelope. Individual nuclear pore complex (purple) and membrane (yellow)
are segmented manually. Bottom left and center: different views of the averaged nuclear
pore complex structure Bottom right: overview of the structural elements of the nuclear
pore complex. (From Beck et al. (2004), reproduced with permission of AAAS).
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FIGURE 4. Images and tomographic reconstruction of the spindle pole body (SPB)
core produced by heparin treatment. (A and B) Face-on views of the frozen-hydrated
and negatively stained SPB cores (protein is black). f = filaments. Scale bar = 50 nm.
(C) Edge-on view of a negatively stained SPB core (protein is black). (D) Schematic
diagram of the metastable SPB core, with approximate vertical positions of the slices
shown in (E–J) indicated. (E–J) Successive slices through the tomographic 3D map of
frozen-hydrated SPB core (protein is white). The SPB core is viewed face-on, begin-
ning at the cytoplasmic side and progressing toward the nucleoplasmic side, with 14
nm between slices. (E and F) A disordered region above second intermediate layer
(IL2). (G) An ordered punctate appearance is visible in the central region of this slice
(xt). (H) A ring of protein is visible forming a border (b) located at the base of the
hexagonal IL2 crystal and at the top of the cential plague (CP). (I) Region in the CP in
which filamentous proteins are visible (f). (J) Filamentous proteins (f) are seen ema-
nating from the bottom of the SPB core. (From Bullitt et al. (1997), reproduced with
permission of Cell Press.)



(Wagenknecht et al., 2002) (Fig. 5), the nuclear pre-mRNA processing
machine (Medalia et al., 2002a), herpes simplex virus (Grunewald et al.,
2003), human immunodeficiency virus (HIV; Benjamin et al., 2005) or a
retrovirus envelope glycoprotein (Beck et al., 2004; Forster et al., 2005).

Thirdly, cryotomography can be applied to study parts of the cellular
architecture, or macromolecular arrangements in their cellular context, in
bacteria, large viruses, small cells or regions of cells, that are sufficiently thin
for direct observation with TEM. These applications are of particular inter-
est considering that cells are not merely collections of individual molecules
and that functions are performed by ensembles of molecules which consti-
tute functional modules. Whereas stable complexes (e.g. the ribosome)
present in the cell at all times can be isolated for detailed studies, other
functional modules are transient and will escape biochemical detection and,
as a consequence, characterization. Ideally, such molecular ensembles
should be studied where they act, i.e. in their cellular context. With the
application of cryotomography, the cell arrangement and macromolecular
organization of vitrified cells can be studied.Though the potential of whole-
cell imaging is very large, since the TEM can only image structures with suf-
ficient resolution up to 1000 nm thickness, only relatively small cells or
bacteria (<500–1000 nm in diameter) can be investigated with tomography.
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FIGURE 5. Isolated triad junctions. Stereo-pairs of a surface-rendered representation
of a tomographic reconstruction of a triad junction. Sarcoplasmic reticulum- (SR) and
transverse tubule-derived vesicles are shown in green and red, respectively. Yellow
spheres in the lumen of the SR represent calsequestrin, and continuous yellow slabs
near junctional surfaces of the SR represent the condensed calsequestrin. Blue struc-
tures correspond to feet/ryanodine receptors. (From Wagenknecht et al. (2002), repro-
duced with permission of the Biophysical Society). (See color plate)



Nevertheless, these specimens are relatively thick for TEM, so the applica-
tion of a high voltage (e.g. 300 or 400 kV) together with an imaging energy
filter often plays an important role. In addition, to compensate partly for
the limited resolution, extensive use of visualization and computational
modeling is applied. For instance, visualization of the actin cytoskeleton in
an unperturbed, close-to-life state was achieved with the application of cryo-
tomography to vitrified eukaryotic cells of Dictyostelium discoideum
(Medalia et al., 2002b). For this study, cells grown on electron microscopy
grids were sufficiently thin and flat to be examined at least locally by elec-
tron tomography. 3D reconstructions of these cells provided snapshots of
the dynamic actin filament network. Other examples are actin and vesicles
(Grimm et al., 1997), prokaryotic cells (Grimm et al., 1998), the protein
import pore of the outer membrane of mitochondria (Ahting et al., 1999),
Neurospora mitochondria (Nicastro et al., 2000), rat liver mitochondria
(Mannella, 2006; Mannella et al., 2001), phage genome transfer into lipo-
somes (Bohm et al., 2001), T4 bacteriophage (Messaoudi et al., 2003),
archeon Pyrodictium cannulae entering the periplasmic space (Nickell 
et al., 2003), vaccinia virus (Cyrklaff et al., 2005), the cytoskeletal structure
of Spiroplasma melliferum (Kurner et al., 2005), the organization of the core
proteins of the yeast spindle pole body (Muller et al., 2005) and molecular
complexes in the synaptic cleft (Lucic et al., 2005).

Fourthly, for even larger specimens such as the majority of cells and
tissue, a type of application that has not matured yet but has great poten-
tial is cryotomography on sections. For these applications, the cryofixation
and subsequent sectioning of frozen-hydrated material is limiting due to the
technical hurdles in specimen preparation. Pioneering work on this area has
been carried out on tissue sections of rat liver where internal features within
mitochondria could be seen (Hsieh et al., 2002), and on sections of E. coli
and Pseudomonas aeruginosa (Matias et al., 2003). For an extensive discus-
sion on sectioning frozen-hydrated material, see Chapter 2 of this volume.

2. SPECIMEN PREPARATION 

2.1. Cryofixation

The specimen preparation step is of paramount importance as it defines
how useful the outcome of the electron tomography efforts will be. Cryofixa-
tion has the virtue that the native structure of the sample is preserved by vit-
rification of the water content.The vitrification process enables the structure
of macromolecules and the cellular architecture to be studied in a frozen-
hydrated near native state, without considering possible specimen prepara-
tion artifacts that may be related to chemical fixation and/or staining.

Small objects, such as isolated macromolecules in a suspension,
organelles, or small cells that have dimensions less than a few micrometers,
can be cryofixed using a plunger (Adrian et al., 1990; Cyrklaff et al., 1990;
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Dubochet et al., 1988; Lepault et al., 1983). A plunger is a device that allows
the rapid freezing of the sample by quickly thrusting the grid into liquid
ethane (or propane) at liquid nitrogen temperature. Several types of
plungers, for instance automated, temperature-controlled and humidity-
controlled, are commercially available that can make this step in the pro-
cedure quite reproducible and controllable. The speed of vitrification is
quite high, in the millisecond range, which can be important for interpre-
tation of results in performing time-resolved experiments (Chestnut et al.,
1992; Heymann et al., 2003; Lepault et al., 1991; Steven et al., 2005; Talmon
et al., 1990; White et al., 2003).

For thicker samples, the plunging technique will not be very successful
because of physical reasons that prevent successful vitrification (Dubochet
and Sartori Blanc, 2001). Ice crystals would form that preclude high-
resolution interpretation. For samples thicker than a few micrometers,
such as large organelles, small cells or parts of tissue, a high-pressure freez-
ing device is the instrument of choice.With high-pressure freezing, the pres-
sure in the vicinity of the sample is rapidly raised and the temperature
simultaneously lowered. As a result, the sample will vitrify and the content
of the sample, the cellular architecture or network of macromolecular con-
nections, will be fixed, fully frozen-hydrated.

One can ask the question of why high-pressure freezing is not the spec-
imen preparation step used by all of those interested in high-resolution mor-
phological information using electron microscopy.There are several reasons
for this.The sample might simply not be suitable for cryofixation as the appli-
cability of the technique depends heavily on the size of the sample and on
its components. The speed and quality of vitrification depend on the con-
stituents of the sample (e.g. high sugar content).Although better vitrification
can be obtained by adding cryoprotectants (e.g. dextran), these substances
may influence the native ultrastructure of the sample and compromise the
interpretation of the final outcome of the experiment. In practice, high-
pressure freezing is still an approach that requires considerable technical
skills and understanding of the procedure. High-pressure freezing works
quite reliably for objects less than ∼300 μm in size. For larger specimens, no
techniques are available to vitrify them successfully (Studer et al., 1989).

2.2. Sectioning Frozen-hydrated Material

Most specimens prepared for TEM such as cells or tissue will be several
micrometers thick and not suitable for direct imaging with TEM. An
approach to overcome this limitation is to slice these samples in sufficiently
thin sections using cryoultramicrotomy (Dubochet et al., 1988; Sitte, 1996).
Though sectioning frozen-hydrated material is a technique not strongly
defined as yet, results show that frozen-hydrated sections can be produced
reliably to a thickness of ∼100 nm. For an extensive discussion on section-
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ing frozen-hydrated material, see Chapter 2 of this volume. Tools and pro-
cedures to produce very thin sections (20–50 nm) of frozen-hydrated mate-
rial have been shown to be highly reliable and can contribute greatly to
provide answers to many structural questions (Zhang et al., 2004). In sec-
tioning frozen-hydrated material to produce thicker sections (thicker than
100 nm), several cutting artifacts may occur, notably compression and cre-
vasses (Al-Amoudi et al., 2004, 2005; Frederik et al., 1982; Hsieh et al., 2002;
Zhang et al., 2004). An investigation involving a tomographic reconstruc-
tion showed that knife marks were 10–40 nm deep and located on the ‘knife
face’ of the section, while crevasses were 20–50 nm deep and found on the
‘block face’ (Hsieh et al., 2002). In the experiments reported, a 15-nm
banding pattern perpendicular to the cutting direction was observed in the
interior of the section, probably associated with section compression. The
banding was most evident in the uniformly dense, protein-rich material of
the mitochondrial matrix. These artifacts could be minimized, if not totally
avoided, by future developments. In this direction, the most remarkable
advance has been the design of a new oscillating diamond knife that greatly
reduces the cutting artifacts (Al-Amoudi et al., 2003; Studer and Gnaegi,
2000).

2.3. Freeze-Substitution

Considering the fact that sectioning frozen-hydrated material is by no
means a matured technique yet, large-scale morphological studies that
would involve sectioning frozen-hydrated material cannot be routinely per-
formed. For those applications, an alternative approach for specimen prepa-
ration could be cryofixation followed by freeze-substitution (Erk et al.,
1998; Humbel et al., 1991; von Schack et al., 1993). With freeze-substitution,
the water in the cryofixed block is replaced by organic solvents in succes-
sive steps and at low temperature. The outcome of the treatment is a plastic
block of material with reasonably well preserved ultrastructure. Of these
plastic blocks, sufficiently thin sections can be produced using ultramicro-
tomy and imaged with TEM. Moreover, as a result of staining, membranous
structures can clearly be visualized with electron tomography. Note,
however, that ultrastructural interpretation has to be carried out with
caution because of possible variations within the sample due to fixation,
staining, embedding and shrinkage during data collection (Braunfeld et al.,
1994). Although in this chapter we will restrict ourselves to electron tomog-
raphy on frozen-hydrated specimens, structural work using freeze-
substituted material can be very powerful (e.g. to study desmosomes (He
et al., 2003), cisternae at different levels of the Golgi complex (Marsh et al.,
2004), activated contracting insect flight muscle (Taylor et al., 1999), cen-
trosomes from early Drosophila embryos (Moritz et al., 1995) and multi-
vesicular bodies (McIntosh et al., 2005; Murk et al., 2003).
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2.4. Whole Cells

A first attempt to prepare whole cells for cryotomography was carried
out by plunge-freezing the archeon Sulfolobus (Grimm et al., 1998). Tilt
series were recorded (50–140 images) with an energy-filtering electron
microscope at 120 kV. The embedded cells were between 300 and 750 nm
thick. The resolution allowed the identification of the cytoplasmic mem-
brane (4 nm in width), the S-layer (10 nm width) and the space in between,
the (quasi-) periplasmic space (20 nm wide). Later, in a similar approach,
cryotomography was carried out on cells grown on electron microscope
grids where the actin filamentous arrangement in a eukaryotic cell, D. dis-
coideum, was studied (Kurner et al., 2004; Medalia et al., 2002b).The periph-
eral of these cells was sufficiently thin to be imaged with cryotomography.
The cells were incubated on the carbon-coated copper grids for 30–60 min.
Coating on both sides of the grid proved to be essential. For data collection,
a 300 kV TEM was used (with energy filter) and data were collected from
–60 to + 60° with 1° increments. The nominal defocus was 15 μm, the pixel
size 0.85 nm and the resolution ∼5.5. nm.Tomograms of these cells provided
snapshots of the dynamic actin filament network (Fig. 6), which occupies 6%
of the volume of the cortical region. It was shown to consist of two types of
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FIGURE 6. Cytoskeletal network of a Dictyostelium discoideum cell. (A) Three-dimen-
sional volume rendering representation of a cortical region of the cytoplasm (400 ×
870 × 97 nm) showing the actin filament network (reddish), membranes (blue) and
cytoplasmic macromolecular complexes (green), many of them resembling 80S ribo-
somes in size and shape. (B) Visualization of the network of actin filaments. (C) Ideal-
ized representation of the actin network region marked in (B) at a resolution of 2 nm
using the 3D density map obtained from the atomic model of an actin filament. (D)
Docking of the atomic model of actin into the density map of an actin filament. (Panel
A adapted from Medalia et al. (2002b); panels B–D reproduced from Kurner et al. (2002)
with permission by Elsevier).



arrays: almost isotropic networks and parallel arrangements of actin fila-
ments that are linked together by bundling proteins.The tomograms showed
the interaction between individual microfilaments, their branching angles
and membrane attachment sites.

2.5. The Fiducial Markers

Once the specimen is inserted in the TEM, a tilt series of the specimen
can be collected. As the holder is tilted, the specimen will move and focus
will change due to mechanical imperfections of the goniometer and the
specimen holder. Although automated data collection is able to compen-
sate for the major movements, accurate alignment of the set of 2D images
to a common origin has to be performed after data collection.

In essence, there are two approaches to align a tilt series. One is based
on using high-density markers, such as gold beads 5–10 nm in diameter,
which are included in or on the specimen (Frank et al., 1996; Fung et al., 1996;
Kremer et al., 1996; Nickell et al., 2005).The other approach is based on using
the structural elements within the sample to align one image with the other
(Brandt et al., 2001; Liu et al., 1995; Owen and Landis, 1996).This latter strat-
egy has the advantage that no additional preparative steps have to be taken.
Often the alignment of the tilt series based on structural elements within the
sample is tightly connected to reconstruction scheme in an iterative manner.

However, in some situations, where the sample is relatively thick and
the image contrast is not sufficient for alignment, the alternative method
based on fiducial markers can be more effective. The presence of a suffi-
cient amount of high-contrast markers within the field of view together with
the structure of interest may be crucial for the required image processing
(alignment and reconstruction). When very low dose images are collected,
the SNR of each individual image in the tilt series can be so low that the
images are not suitable for accurate alignment based only on the presence
of structural elements within the sample. High-contrast markers such as
gold beads within the sample can be used for alignment of the data set (Fig.
7). In most cases, 5–10 fiducial markers within the field of view should be
sufficient to allow for alignment of the data set and the subsequent recon-
struction. In addition, careful analysis of the fiducial markers throughout
the data set can also be used to measure (and correct) resolution-limiting
effects due to magnification change and image rotation that might be
present in the tilt series.

3. OPTIMIZATION OF ELECTRON MICROSCOPY 

3.1. Specimen Thickness

For electron tomography, the specimen has to be sufficiently thin to
provide images that are projection images of the sample. If the sample is
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too thick, too many scattering events of electrons within the sample will
result in images that are not true projections of the sample. Since electron
tomography is a technique aimed at exploiting the third dimension (the
thickness) of a sample, most users will investigate a sample as thick as pos-
sible. However, it has to be taken into account that at high tilt, the speci-
men will appear to be thicker compared with the untilted situation. The
increase in thickness depends on the specimen tilt angle, a, i.e. the thick-
ness increases with 1/cos(a). This means that, for example, at 60° tilt, a 100
nm thick specimen will appear to be 200 nm thick. Therefore, the increase
in thickness when tilting the specimen is a factor that cannot be neglected
in practice.

Several factors determine the allowable specimen thickness. For an
extensive description, we refer the reader to an overview paper (Koster et
al., 1997). When the electron beam penetrates the specimen, three types of
events can take place (Fig. 7). (i) When the specimen is thin enough, the
majority of the electrons will transfer through the sample as if the sample
was not present (unscattered electrons). (ii) A part of the fraction of elec-
trons that scatter within the specimen experiences an energy loss in the
process (inelastic scattering). These inelastically scattered electrons gener-
ate a blurry background. (iii) A part of the fraction of electrons that scatter
will do so with negligible energy loss (elastically scattered electrons). Con-
trast formation with these elastically scattered electrons is described by the
phase contrast imaging theory (Burge et al., 1977; Patwardhan, 2003;
Toyoshima and Unwin, 1988; Zhu et al., 1997), since contrast is determined
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FIGURE 7. The effect of the defocus on the appearance of images for cryotomogra-
phy. Images of ice-embedded particles (tricorn capsid of Thermoplasma acidophilum)
at 0.5 μm (left) and 5 μm (right) underfocus. The spherical shaped particles are clearly
visible at large defocus. (From Walz et al. (1997a), reproduced with permission of Cell
Press).



by phase shifts between the unscattered and elastically scattered electrons.
This fraction of elastically scattered electrons provides high-resolution
information. Past a certain—allowable—thickness, this contribution of elas-
tically scattered electrons to the image contrast becomes small, and high-
resolution contrast will be hidden by the (background) contribution of
inelastically scattered electrons.

The experimenter has some means to maximize the allowable thick-
ness. For thick specimens, in the size range of 200–500 nm, the use of
medium high voltage TEM (e.g. 300 kV) may be a prerequisite. Medium to
high voltage increases the penetration power of the electron beam and
reduces the deteriorating influence of multiple scattering. The higher the
voltage, the smaller the fraction of the electron beam that will lose energy.
The fraction of electrons that loses energy is described by the mean free
path, and is determined by both the high voltage of the microscope and the
composition of the specimen (Feja and Aebi, 1999; Grimm et al., 1996). An
indication of the relative contribution of inelastically scattered electrons to
the image can be obtained by electron energy loss spectroscopy (EELS;
Leapman and Sun, 1995; Somlyo and Shuman, 1982). Although outside the
scope of this chapter, it is worth noting that those electrons that lose energy
can be very effective in characterizing the elemental composition of the
specimen and consequently give 3D information on the distribution of spe-
cific elements such as iron in ferritin (Zhang et al., 2005). The electrons that
do not lose energy contribute to the zero-loss peak. For thin specimens, the
zero-loss peak is large compared with the overall spectrum. However, for
very thick specimens, the zero-loss peak can become insignificant (Bouwer
et al., 2004). Though one might reason that very high voltage electron
microscopy would enable the investigation of even thicker specimens, there
is a limit to the effectiveness of a high acceleration voltage for frozen-
hydrated specimen. It was shown that the high voltage enhances the radi-
ation damage due to knock-on events, i.e. inelastic scattering events, in which
the energy transferred to an atom is greater than its binding energy, and
that the possible gain in penetration power is limited (Grimm et al., 1998).
Increasing the accelerating voltage from 100 to 300 kV gives an increase in
the penetration power with a factor of 2, while the additional gain by a
further increase from 300 kV to 1.2 MV is only a factor of 1.5. An acceler-
ating voltage of 300–400 kV thus seems to be a practical compromise.

A piece of instrumentation that will enhance the image contrast in elec-
tron tomography is an imaging energy filter (Grimm et al., 1997; Marco et al.,
2004). Using zero-loss energy filtering, only those electrons that did not lose
energy will contribute to the image contrast. As a result, the low-resolution
contribution (blur) of those electrons that lost energy within the sample is
removed and the image will be clearer.An alternative way to remove the dis-
turbing image contrast of inelastically scattered electrons is to apply image
restoration techniques. With image restoration, a series of images taken 
at different defocus are combined into one image (Coene et al., 1992), the
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contribution of inelastically scattered electron is removed and the image
contrast will improve (Han et al., 1995, 1997).

Nevertheless, there is a limit to the extent energy filtering or image
restoration can help in the improvement. The techniques cannot overcome
the fundamental limitation that the fraction of elastically scattered elec-
trons will become less and less when the specimen gets thicker. At some
thickness, the allowable thickness, the remaining fraction of (single) elasti-
cally scattered electrons will be extremely small and the tiny amount of
high-resolution image contrast will be obscured by the (counting) noise in
the image recorded at very low intensity. Current developments aimed at
developing spherical aberration and chromatic aberration correctors for
TEM imaging are attachments that do not intend to remove electrons, but
to make them contribute to the high-resolution information in the image
(Freitag et al., 2005; Rose, 2005; Sawada et al., 2005). Potentially, these
attachments would make it possible to image sections thicker than several
micrometers.An unsolved fundamental limitation is that the image contrast
is reduced due to multiple elastic scattering events, which cannot be reme-
died by energy filters or aberration correction. To minimize the influence
of this effect, the use of a small objective aperture that blocks the electrons
at high scattering angles will have a positive effect, but will also limit the
resolution in the image.

3.2. Allowable Electron Dose

In practice, high-resolution imaging of frozen-hydrated specimen is
limited by radiation damage of the specimen since unstained specimens are
very sensitive to the electron beam. When the specimen is exposed to an
amount exceeding the allowable dose, the specimen will change due to the
electron irradiation, and eventually even effects on the ice will become
visible (bubbling). Therefore, the electron dose will need to be minimized
and it is important to determine how much electron dose the specimen can
take before specimen damage occurs at the resolution aimed for. This dose,
the allowable total electron dose, has to be distributed over the number of
images that will be taken with the microscope (Hegerl and Hoppe, 1976;
McEwen et al., 1995). In most cases, the allowable electron dose will be the
limiting factor for cryotomography.

An upper limit to the number of projections over which the dose can
be fractionated is given by the requirement that the 2D images in the tilt
series have to be aligned to a common origin before a 3D reconstruction
can be computed. The dose fractionation will reach its limit when the 
individual 2D images within the data set cannot be aligned accurately
because the SNR becomes too low. In this regard, the presence of high-
density markers (e.g. 5 or 10 nm gold beads) in the sample can be of 
great help.
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There is still another practical limitation to dose fractionation: suffi-
cient electrons must be recorded for each image to give a statistically sig-
nificant image on the recording device (CCD camera) (Grimm et al., 1998).
These authors stated that, although it will be possible to obtain resolutions
approaching 2 nm for objects that are <100 nm in thickness because small
objects do not require such a fine angular sampling, specimens thicker than
500 nm will be limited to 6–10 nm resolution. Later it was pointed out
(McEwen et al., 2002) that it was not taken into account that as the desired
resolution increases, so does the total electron dose required to ensure sta-
tistical significance of each volume element at the resolution limit. This
requirement is independent of the size of the object or the recording media
used. As stated, a poor recording medium can impose further limits to res-
olution, but a superior medium cannot overcome the statistical nature of
the electron beam. McEwen and colleagues deduce that it will be difficult
to push resolution past 5 nm without severe irradiation damage to the 
specimen.

The allowable dose differs depending on the combination of specimen
and the desired structural details which are hoped to be revealed. For
example, cryotomography of isolated triad junctions (Fig. 5) at 200 kV was
carried out with a total dose of 5000–8000 e/nm2 to attain a resolution of
5–6 nm (Wagenknecht et al., 2002). Cryotomography of vaccinia virus par-
ticles with a 300 kV TEM was performed with a total dose of 2500–3500
e/nm2 and the resolution achieved was ∼5 nm (Cyrklaff et al., 2005). These
examples indicate the resolution and range of electron dose that can be
allowed to image vitrified samples. Depending on the type of question, pro-
cedures that include averaging of substructures within the tomogram could
be used to obtain higher resolution information (Forster et al., 2005).

3.3. Image Detector

In most cases, a digital image recording device, such as a cooled CCD
camera, is attached to the TEM to perform automated data collection.
Digital image recording is required to enable automated compensation 
for image shifts and defocus changes that occur during the tilt series 
(Dierksen et al., 1992). Concerning the camera, two parameters need to be
taken into account to optimize data collection: the sensitivity and the res-
olution of the device. Since a CCD camera has considerably less resolution
than photographic film, choosing a sufficiently high magnification is a crit-
ical factor for cryotomography. When the magnification selected is too low,
the image will not show sufficient detail. On the other hand, one major dif-
ference between CCD cameras and exposure on film is that the field of view
is by far greater for photographic film, even in comparison with a 4000 ×
4000 pixel camera (Typke et al., 2005). Therefore, when the magnification
selected is too high, sufficient image detail can be retrieved, but the overall
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area that is imaged will be very small. Therefore, it is important to select 
a compromise magnification that will show sufficient image detail for the
specific question at hand.

In CCD cameras for TEM, the electrons are converted into photons
by means of a scintillation screen at the entrance of the camera. The light
is guided via fiber optic elements, or lenses, to the CCD chip. Thus, the dis-
tribution of the electron intensity impinging on the entrance of the camera
is transferred to a distribution of photons going through the optical ele-
ments to the CCD chip. This conversion from an electron distribution to an
image intensity distribution can be described by a point-spread function. To
date, the point-spread function will be sharper (better) for a microscope
operating at low voltage (e.g. 100 kV) than at high voltage (e.g. 300 kV).
The sensitivity will be higher when the phosphor layer (or YAG screen) on
top of the CCD chip is chosen to be somewhat thicker. However, a thicker
layer will result in less resolution. Most CCD cameras for electron
microscopy are equipped with large-area chips, containing 10242–40962 or
more pixels with a pixel size in the range of 15–30 μm. The CCD chip in
the camera housing is cooled, for instance to –36°C, to reduce electronic
noise in the images taken.

To have an idea of the compromises to be made, suppose we would
like to obtain a tomogram of a small organelle 200 nm in diameter with a
resolution of 2 nm. To allow interpretation of structures to a given resolu-
tion, in most cases at least three resolution elements are needed, in this
example ∼0.7 nm. A resolution element in an image is in most cases not the
same as the CCD pixel, but instead is determined by the point-spread func-
tion of the CCD camera (which is, in turn, mostly determined by the phos-
phor layer on top of the CCD chip). Suppose we have a 200 kV TEM at
our disposal with a CCD camera outfitted with a phosphor layer of 20 μm
thickness. For such a setup, the resolvable image detail that can be obtained
will be in the order of 30 μm (Downing and Hendrickson, 1999; Koster et
al., 1992; Sherman et al., 1996; Zhang et al., 2003; Zuo, 2000). For a 300 kV
TEM, the scintillator will be thicker and the smallest independent resolu-
tion element will be ∼50 μm. Optimally, the pixel size of our available micro-
scope and camera (30 μm, or 30,000 nm) would exactly match the resolution
element we aim for in imaging the specimen (0.7 nm). Therefore, the mag-
nification has to be 30,000 nm divided by 0.7 nm, which equals ∼42,000. Note
that this is the magnification from the specimen to the image detector (here
the CCD camera). Depending on the specific instrumental setup, the mag-
nification factor will differ between the different detectors (e.g. a camera
mounted at the end of an energy filter, or a camera at a 35 mm port much
closer to the specimen).

So far we assumed that the 30 μm spot generated by the electrons in the
scintillator matched the CCD pixel size. However, this is typically not the
case. Some cameras are equipped with 20482 pixels of 14 μm. In spite of 
the fact that the camera has more, and smaller, pixels, the images will contain
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only ∼10242 resolvable details. To adapt the camera settings to the highest
resolution image content, most designs of the readout electronics of the
CCD chip are capable of transferring the data from the chip in different
ways. For instance, the electronics can transfer the content of the 20482 pixels
one at a time.Another way would be to transfer packages of pixels at a time,
for instance groups of 2 × 2 pixels (binning of 2).With these settings, the field
of view is ∼7002 nm2 (10242 pixels) with a pixel size of 0.7 nm (28 μm).

In choosing the camera settings and illumination intensity, it is impor-
tant to consider the sensitivity of the camera. Suppose the electron dose per
exposure of the specimen is 100 e/nm2 (1 e/Å2). Let us estimate if we can
see this image clearly using a CCD camera. As discussed above, each pixel
of the image gives a number (counts) that is linearly related to the imping-
ing electron intensity.The linear factor, generally indicated by ADU (analog
to digital units), is one of the specifications/characteristics of the CCD and
indicates its sensitivity.

Let us suppose now that we use a camera optimized for low-dose elec-
tron microscopy that has large pixels and is cooled to reduce the inherent
noise of the chip. With a CCD camera having 28 μm pixels at a magnifica-
tion of 42,000, one pixel corresponds to 0.72 nm2. Therefore, the number of
electrons per pixel equals 100 e/nm2 times 0.72 nm2 which corresponds to
49 electrons per pixel. The sensitivity can be 9 ADU per electron (for a par-
ticular high voltage and a particular type of scintillator). At very low close
levels, the noise produced within the CCD chip may become stronger than
the signal produced by the electron’s image intensity. In most cases, the
specifications of the CCD camera contain an indication of the inherent
noise, for instance the standard deviation of the noise can be 2 counts.These
49 electrons will produce an image with a value of ∼450 counts, much higher
than the noise level.

Let us suppose now that we use a camera not optimized for low-dose
applications that has small pixels of 6.5 × 6.5 μm and is not cooled. The sen-
sitivity of such a camera can be 0.5 ADU per electron (for a particular high
voltage and a particular type of scintillator). The inherent noise (standard
deviation) can be 4 counts. At 42,000 magnification, one pixel corresponds
to ∼0.162 nm2. With the same illumination intensity as mentioned above, the
number of electrons per pixel equals 100 e/nm2 times 0.162 nm2 which
corresponds to 2.5 electrons per pixel. With a sensitivity of 0.5 ADU per
electron, the image will have an average count of ∼1. The noise per 
pixel will be ∼4 counts. In this example, for a non-optimized camera for 
low-dose imaging, the image will be drowned in the noise and will not be
usable.

3.4. Optimizing Image Contrast

For a more complete description on image formation and how this
impacts electron tomography, see Chapter 3 of this volume.
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An important point to realize in discussing image formation is that in
order to minimize specimen damage, the total electron dose that is needed
to collect the tilt series has to be kept as low as possible (e.g. ∼5000 e/nm2).
The interaction between the specimen and the imaging electron beam has
to generate suitable image contrast that allows the image intensity distri-
bution to be related to a distribution of mass density within the sample. In
practice, under these conditions, weak phase objects can only be visualized
by choosing a large defocus, enhancing the relatively low frequencies as
described by the phase contrast transfer theory. When imaging thin layers
of suspensions containing macromolecules, it may be an advantage to mix
the solution with ammonium molybdate. The mass den-sity of the macro-
molecule is less than that of the ammonium molybdate and will produce
high contrast images, often referred to as cryonegative staining (Adriant 
et al., 1998; De Carlo et al., 2002).

Several parameters can be used to optimize the image contrast. One
could select a small objective aperture (e.g. 10 μm). The small aperture will
block electrons that are scattered over a large angle and will be effective
in blocking multiple elastically scattered electrons. Although a small objec-
tive aperture precludes high-resolution imaging, this may be a valid option
for relatively low resolution imaging. On the other hand, the aperture
chosen cannot be too small. As is shown in Fig. 8, depending on the thick-
ness of the specimen, the relative contribution of elastically scattered elec-
trons comprises the greatest fraction of the electrons that would be filtered
out by an aperture, the opposite of what one would want to do. Therefore,
only choosing a higher acceleration voltage can help to optimize the con-
trast at high resolution.

A limitation in selecting too small an objective aperture can be the per-
formance of the specimen holder. For example, if during collection of a tilt
series the holder moves laterally over a large distance (e.g. >5 μm), the
optics have to be adjusted over that distance to keep the feature of inter-
est centered. It may well be that at some point the optical correction will
become less optimal and the edge of the objective aperture will (partly)
block the illuminating beam. Nevertheless, in most instruments, the move-
ment of (cryo)holders during a tilt series will be within a range of 2 μm and
should not be the cause of serious problems.

To enhance the image phase contrast, the tilt series in cryotomography
are often taken at large defocus (>5 μm). To choose the suitable defocus,
we need to consider the image formation process as described by the phase
contrast transfer theory. In the case of a (weak) phase contrast specimen
(i.e. a thin frozen-hydrated sample), the image formation can be mathe-
matically described by the phase contrast transfer function (CTF). Several
programs are available to display a phase CTF for a specific type of micro-
scope (defined by a number of TEM specifications, such as the spherical
aberration constant, the chromatic aberration constant, and the temporal
and spatial coherence of the electron source) and for a particular defocus.
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Figure 9 shows that a transfer function for a Tecnai 20 FEG at 200 kV at a
defocus of –3.4 μm has its first zero at 2.8 nm. Because CTF corrections in
the noisy images of a cryotilt series are very difficult to carry out, the
defocus is often chosen such that the first contrast reversal as described by
the CTF corresponds to the highest resolution aimed for. For instance, in
the cryotomography experiments on visualizing the actin cytoskeleton, a
defocus of 15 μm was chosen to optimize contrast at 5.5 nm resolution with
a 300 kV microscope. The interpretation of images at higher resolution is
not straightforward because of the contrast reversals which occur. However,
novel instrumental developments aimed at compensating for the spherical
and chromatic aberration coefficients within the TEM (Freitag et al., 2005)
could provide means to facilitate image interpretation at higher spatial 
frequencies.

Another practical approach can be to optimize the contrast by choos-
ing the defocus to match the resolution of the digital camera. For instance,
suppose the pixel size of a 2048 × 2048 CCD camera is 0.7 nm.As explained
in the previous section, because of the imperfect transfer of the scintillator
on top of the CCD camera, in many circumstances it will be effective to
collect images with 2 × 2 binned resolution, corresponding to a pixel size of
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FIGURE 8. Distribution of scattered electrons for vitreous ice. When the electron
beam penetrates the specimen, three types of scattering events can take place. When
the specimen is thin enough, the majority of the electrons will transfer through the
sample as if the sample were not present (unscattered electrons). A fraction of elec-
trons that scatter within the specimen experience energy loss (inelastic scattering).
Another fraction of electrons that scatter will do so with negligible energy loss (elas-
tically scattered electrons). (a) Distribution (without an aperture) over the elastic (lower
diagonally hatched area), inelastic (upper diagonally hatched area) and mixed (hori-
zontally hatched area) scattering channels for vitreous ice as a function of thickness
(in multiples of the total mean free path Ltot and, for 300 kV, in nm). The dashed lines
mark fractions of single (elastic or inelastic) scattering. (b) Distribution of electrons
hitting or passing the objective aperture (diameter corresponding to 0.4 nm resolu-
tion). (From Koster et al. (1997), reproduced with permission of Elsevier).



1.4 nm. Then, following image sampling theory, the best resolution one can
ever hope to retrieve will be by sampling with twice the pixel size (i.e. the
Nyquist frequency), corresponding to 2.8 nm. Therefore, the limitations of
sampling make it sensible to use, at least, a defocus value that positions the
first zero of the transfer function at 2.8 nm. Using a lower defocus would
only produce an unnecessary reduction of the contrast in our images.

When aiming at achieving better contrast, zero-loss filtering can be of
great help for most specimens imaged with electron tomography (Grimm
et al., 1996, 1997; Koster al., 1997). As mentioned before, the main purpose
of such a filter will be to remove inelastically scattered electrons from the
image. Because of the chromatic aberration of the objective lens, these
inelastically scattered electrons contribute significantly to a blurry back-
ground in the image. Often an energy window of ∼10 eV is applied. To
determine experimentally whether or not zero-loss filtering may be of help
to produce better images for the type of samples investigated, one can
image energy loss spectra at different specimen tilt angles (Angert et al.,
2000; Grimm et al., 1997; Marco et al., 2004; Midgley and Weyland, 2003;
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FIGURE 9. Contrast transfer function. Theoretical contrast transfer functions for an
FEG instrument at an acceleration voltage of 200 kV. The spatial coherence (a = 0.1
mrad) and temporal coherence (energy width of the incident beam ΔE = 0.7 eV) lead
to small attenuation of the contrast transfer function. The defocus value (−3.4 μm) was
chosen such that the first zero of the CTF occurs at (2.8 nm)−1.



Somlyo and Shuman, 1982; Zhu et al., 1997). These experiments showed
that the amount of electrons that do not lose energy becomes less at higher
specimen tilts (because the path through which the electrons pass in the
specimen will be longer at high tilts). While the effect is not readily visible
to the eye for thin specimens (less than ∼100 nm thickness), the effect of
zero-loss filtering becomes clearer for samples in the intermediate thick-
ness range of 100–500 nm. This is illustrated in Fig. 10 with two different
specimens. In those image regions where a sufficiently high number of elec-
trons have penetrated the specimen without energy loss, details are
observed with higher resolution than in the unfiltered image.Within thicker
objects, small details are sometimes more readily seen in the unfiltered
image due to the low-resolution information of the inelastically scattered
electrons. However, the contrast is better with zero-loss filtering. When the
specimen is beyond a certain thickness, very few electrons will pass the
specimen without energy loss or multiple scattering, and the images will be
very dim and not possible to align. Though high-resolution information will
be lacking, it may be an effective, alternative, approach to use the energy-
filtering slit to select those electrons in the spectrum at the maximum of
the plasmon peak (Bouwer et al., 2004). Thickness variations in thick spec-
imens may produce strong intensity differences in these images, but a CCD
camera, due to its large dynamic range, will be able to record such images
properly.
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FIGURE 10. Filtered and unfiltered images of ice-embedded specimens. (a) Actin fil-
aments and vesicles (250 nm thick ice). The half of the image below the diagonal is
zero-loss filtered, while the upper half is unfiltered. Whereas contrast is comparable
in both images, the resolution is improved in the case of the filtered image, such that
individual actin filaments can be identified. (b) Multilamellar vesicles (600 nm thick
ice). The division of the image is as in (a). Only a few lamella can be distinguished in
the unfiltered case. (From Koster et al. (1997), reproduced with permission of Elsevier).



As an example of how imaging conditions can be optimized to obtain
a cryotomogram of a particular structure, let us look at the data collection
parameters as used in studying isolated triad junctions (Wagenknecht et al.,
2002). A tilt series (–60 to +60°) was collected at 2° intervals with an elec-
tron dose of 50–100 e/nm2 per image (3000–8000 en/nm2 total estimated
dose per reconstruction). The images were collected using a JEOL
JEM4000FX transmission electron microscope operated at 200 kV with
objective lens underfocused to 10 μm. At this defocus, the first zero of the
CTF is at 5 nm. Both the defocus level and the tilt angle increment limit
the best attainable resolution to 5–6 nm. The magnification conditions from
specimen to CCD camera corresponded to a pixel size of 1 nm. Alignment
of the projections and 3D reconstruction were carried out using the
SPIDER package (Frank et al., 1996). A different instrumental set-up was
used to collect data on the bacterium Spiroplasma melliferum. This 
structure was studied to ∼4 nm resolution (Kurner et al., 2005). Data col-
lection was done with a defocus of 10 μm in a 300 kV microscope. The
herpes simplex virus (Grunewald et al., 2003) of ∼200 nm in diameter was
imaged at a defocus setting of 10 μm required to enhance the low contrast
features (5 nm range) that would otherwise be undetectable in a noisy 
background.

3.5. Challenges Encountered in Cryotomography Data Collection

There are a number of technical issues that can make cryotomography
a tedious process. Although ongoing developments make specimen prepa-
ration, data collection and image processing increasingly user-friendly, some
technical hurdles are still present.

Imaging sectioned frozen-hydrated material for cryotomography is
particularly problematic. First, the specimen is often not very level—it can
be cracked and different areas on the section might therefore be at differ-
ent heights (focus) and expose quite significant different orientations
(tilted) (Al-Amoudi et al., 2005; Hsieh et al., 2002). In addition, the section
is not always well adhered to the specimen support. These two characteris-
tics can make data collection very problematic. For instance, when a con-
ventional low-dose data collection scheme is used, the measured focus
change and specimen movements may differ significantly from the move-
ments at the area of exposure. Data collection on these specimens may
require significant user interaction to keep the feature of interest centered.
Moreover, since it is possible that the specimen is not attached to the spec-
imen support, the distance between specimen and the fiducial markers
(deposited on the specimen support for tracking and focusing) may in fact
be a cause for inaccurate alignment of the tilt series. Developments on
better data collection procedures will need to be developed. Another chal-
lenge is related to locating the feature of interest on the specimen within
the TEM. Because of the high sensitivity of the specimen to the electron
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dose, the search for the area of interest will have to be done at very low
magnification (where hardly any details can be seen).

Conventional cryoholders are cooled with a liquid nitrogen dewar
mounted on the end of the holder rod outside the microscope column. In
older designs, due to the weight of the dewar, the specimen usually exhibits
a continuous drift at specimen tilts higher than 45°. This movement is often
due to a combination of mechanical sliding of the rod inside the microscope
column and a slight change in temperature due to a varying liquid nitrogen
level in the dewar. At these higher tilts, the specimen drift rate can become
such that the automated procedures in the data collection algorithms have
to include features to cope with it. When drift is present, the alignment of
the imaging optics will be continuously adapted to compensate for this drift,
and the accumulated amount of image shift will get larger and larger as the
tilt series collection proceeds. Ultimately, the illumination and imaging
alignment will be partly blocked by the (fixed) mechanical aperture of the
objective lens. Moreover, when the alignment of the imaging optics is
changed considerably, calibrations related to automatic focusing will
become less valid and the automatic focusing step within the data collec-
tion procedure will be less accurate. Fortunately, most current side-entry
cryoholders show a better performance in this regard than in the past (Fig.
11). In addition, novel designs of specimen holders have become available
where the specimen is cooled inside the column and that do not exhibit
these specimen movement problems.

Double-axis tilting has proven to be a powerful approach to minimize
reconstruction artifacts due to the missing wedge in applications using room
temperature electron tomography (Mastronarde, 1997; Penczek et al., 1995).
In many cases, double-axis tilting has been shown to be almost indispensa-
ble for obtaining tomograms of sufficient quality to allow tracking of 3D
structures.Therefore, double-axis tilting for cryotomography is highly desir-
able to maximize the quality and interpretability of tomograms. Novel
designs of specimen holders are capable of double-axis tilting at cryogenic
temperatures, with a performance at least equal to conventional single-tilt
room temperature specimen holders.

3.6. Setting up a Data Collection Experiment

3.6.1. Magnification

As stated in Section 3.3, the choice of magnification is an important
parameter as it sets a limit to the highest resolution that can be obtained
from the 2D images recorded and the largest field of view that can be
observed. These two factors demand a compromise which depends on the
specific biological question addressed. Because of the relatively small field
of view of slow-scan CCD cameras, often the magnification is chosen to be
as small as possible. However, it has to be kept in mind that for a subse-
quent image analysis steps, the magnification needs to be sufficiently high
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FIGURE. 11. Specimen movement (shifts in xy-direction) as a function of specimen
tilt measured for a side-entry cryoholder close to the optimum alignment position for
tomography. The shape of such a curve depends greatly on the goniometer, holder,
eucentric height and alignment of the microscope, but also on possible specimen drift
during data collection. In most cases, the total amount of shift in the plane of the spec-
imen (xy) will be <2 μm.



to resolve the required image features measuring at least 3 pixels. For
example, to resolve two membrane layers with 3 nm space in between, a
pixel size of 1 nm would be a good choice. From these requirements on the
pixel size together with the specifications of the camera set-up, a lower limit
to the magnification can be determined. For a CCD camera with 24 μm
(24,000 nm) sized pixels, the magnification required to image 6 nm features
(diameter) with 3 pixels would be 24,000 nm divided by 2 nm which equals
12,000. At this magnification, and with a CCD camera that is composed of
10242 pixels of 24 μm, the field of view is then 2 μm.

3.6.2. Angular Range and Increment

A large angular tilt range is advantageous to minimize the missing
wedge. However, the choice of the angular tilt range and tilt increments is
mostly limited by practical circumstances such as the loss of image contrast
due to inelastic scattering at high tilts. For example, a 200 nm thick sample
at a 70° tilt will be 2.7 times thicker (540 nm). In most cases, a maximum
tilt angle of 65° is chosen. Suppose the goal is to image a 200 nm thick
section with a resolution in the z-direction of ∼6 nm. For linear tilt incre-
ments, the resolution d is given by the relationship d = pD/N (Crowther et
al., 1970; Grimm et al., 1998 Hoppe, 1969), where D is the diameter of the
object, and N the number of projections recorded at equally spaced tilt
angles over a range of 180° also given by 180/Δa. To attain 6 nm resolution,
the number of images we need to acquire is then ∼100 (3 × 200/6). The
angular sampling than corresponds to 1.8° (180°/100 images). To cover the
tilt range of 130°, ∼66 images will need to be taken.

For specimens that are not spherical objects, such as isolated large
macromolecular objects embedded in a section of vitrified ice, but a section
(slab), an alternative data collection geometry will be more suitable. For
these samples, where the thickness of the section (D) increases with the
specimen tilt angle a following D/cos(a) (Radermacher, 1992), the angular
increments should be smaller to compensate for the increase in thickness
to sample the object to the same resolution throughout the tilt series. This
idea is the basis for the non-equidistant tilt increments scheme proposed
by Saxton et al. (1984). The goal of the Saxton data collection scheme is to
fill Fourier space more evenly by making the tilt increment smaller at high
tilt angles, to compensate for the increase in specimen thickness. In this
scheme, the tilt angle varies as an+1 = an + arcsin(sin a0 cos a0). The number
of images in a tomographic series (N) in terms of the initial tilt increment
a0 is then (approximately) given by N = (2 (amax/a0) + 1) (1/2amax) ln ((1 +
sinamax)/(1 – sinamax)). For a given initial angular increment a0, the Saxton
scheme will require more images than a constant angular increment strat-
egy. For example, for a tilt range of –60°/+60° and an initial increment of
1.5°, there would be 102 images for the Saxton scheme compared to the 
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81 images of a linear scheme. Clearly, it is also possible to start from a larger
initial angular increment to keep N the same or even lower compared with
taking a tilt series with a constant increment.

3.6.3. Illumination conditions

For the illumination conditions, we take the allowable dose into
account. Suppose we have measured in an independent experiment that the
tolerable specimen damage occurs with a dose of ∼5000 e/nm2. From this
number, we can compute the electron dose per image. If 61 images were
needed, that would mean that the illumination intensity should be such that
per exposure not more than 80 e/nm2 (5000 e/nm2/61) are used.With a mag-
nification of 16,000 and a pixel size of 1.5 nm, 180 electrons are counted per
pixel (780 × (1.5)2). For many camera systems, this intensity of illumination
is sufficiently high for detection. Nevertheless, for much less intense illumi-
nation, the electronic readout noise of the camera may obscure the signal,
and the individual 2D images will not contain sufficient information for sub-
sequent alignment. In those circumstances, choosing a lower magnification
may be a necessity.

In many cases, it can be advantageous to adapt the exposure time
dynamically during data collection, maintaining the same total dose
(Grimm et al., 1998). The exposure time should be increased with the tilt
angle to keep the SNR of the individual 2D images in a tilt series more or
less constant. If this is not done, the images at high tilt angles may show an
insufficient contrast to allow alignment of the data set. Several schemes for
varying the exposure time can be used. An exponential increase in expo-
sure time (t) can be used to maintain the count rate on the camera, and
thereby the SNR, constant in all images of an evenly thick specimen. In the
case of whole cells in thin ice, another scheme following an inverse cosine
proved to be useful: t = t0/cosa (Grimm et al., 1996). In practice, limits have
to be set to the extent the exposure time is allowed to vary, for instance 
100 ms for the shortest exposures time (to acquire sufficient signal for 
subsequent alignment of the data set) and 3 s for the longest (during which
the specimen should not move significantly (e.g. move <0.5 pixel).

3.6.4. Defocus

As discussed above, it could be effective to choose the defocus such
that the first zero of the CTF matches the target resolution, e.g. 3 nm, which
corresponds to a defocus of ∼3.5 μm for a 200 kV instrument (e.g. a Tecnai
F20; Fig. 9). When a larger defocus is chosen, or when higher resolution is
aimed for, contrast reversals in the image formation will require post-image
processing to deconvolute with the appropriate point-spread function
(Winkler and Taylor, 2003).
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3.6.5. Search

It can be difficult to localize the area of interest on the microscope grid.
Because of the low-dose requirements, one has to scan the specimen at very
low magnification, and a very large defocus helps to maximize the contrast
in the image. A novel development to improve the efficiency in searching
an area or feature of interest on an electron microscope grid includes the
combination of cryoelectron microscopy with fluorescence imaging.The flu-
orescence signal could potentially be used to indicate the area of interest
for cryotomography (Biel et al., 2003; Braet, 2004).

4. AUTOMATION

4.1. Automation Procedures

The steps involved in collecting a single-axis tilt tomographic data set
are in principle straightforward. The specimen is tilted over a large angular
range and images are recorded at a series of discrete tilt angles. However,
because of the beam sensitivity of the specimen, data collection has to be
performed under strict low-dose imaging conditions. Under these conditions,
manual data collection is extremely tedious and prone to failure. Due to
mechanical imperfections of the goniometer, the tilt axis is not completely
stable. Therefore, even if the specimen has been carefully adjusted to the
correct z-position (the eucentric height) and the tilt axis is well aligned to
the optical axis of the microscope, the real tilt axis (and thus also the spec-
imen) may move by several 100 nm, or even microns, when the specimen is
tilted.This movement of the specimen produces image shifts as well as focus
changes.

In automated electron tomography, all microscope operations required
for recording data sets, including focusing and correction of image shifts,
are done automatically. Essential in the data collection programs is the
capability of low-dose data collection, e.g. recording of complete tilt series
with a total dose of <5000 e/nm2. Most automated programs that are set up
for low-dose data collection can acquire tilt series for which only 3% of the
electron irradiation is used for the overhead and 97% is actually used for
the data themselves (Nickell et al., 2005). The images are usually recorded
by means of a slow-scan CCD camera in a digital format (Downing and
Hendrickson, 1999; Faruqi et al., 2003; Zhang et al., 2003; Zuo, 2000).
The image acquisition with a digital camera implies that changes in image
position and defocus can be detected by on-line image processing and
immediately be corrected for by computer control of the microscope. More-
over, the tilt series are directly available in digital format for subsequent
processing and reconstruction. Since the original description of these
systems (Dierksen et al., 1992; Typke et al., 1991), hardware and software
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specifications have been improved: measures have been added to com-
pensate more effectively for specimen drift during data collection, and 
procedures required for calibrating the microscope control at various 
magnifications and high tensions have been made more flexible and 
user-friendly.

4.2. First Generation: Image Shifts and Focus Tracking 

In order not to lose the specimen area under investigation during the
recording of a tilt series, image shifts and focus changes have to be meas-
ured and compensated for. To minimize the electron dose that is delivered
to the specimen area of interest, the images required for focusing and track-
ing at the higher magnification are recorded on areas which do not coin-
cide with the area of interest (Fig. 12).
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FIGURE 12. The first generation automated data collection approach. In this
approach, three steps are carried out automatically at every tilt angle: TRACK, FOCUS
and EXPOSURE. In order not to lose the specimen area under investigation during
recording of a tilt series, image shifts and focus changes have to be measured and
compensated for. These steps (TRACKING and FOCUS, respectively) are carried out
at some distance from the field of interest, in non-overlapping areas situated along
the tilt axis (dashed line). Magnifications closer to the one used for EXPOSURE are
generally selected and the images can be binned (e.g. 4 × 4) to increase the read-
out of the CCD. Finally, the image is recorded in the area of interest, with such low-
intensity illumination conditions that the dose applied is the corresponding fraction of
the total allowed dose.



For the compensation of specimen movement, either the electron
optical controls, i.e. the deflection coils and the objective lens current, or,
alternatively, the mechanical specimen stage controls (x–y–z controls) are
used. The electron optical control is fast, convenient, accurate and repro-
ducible, and thus preferable to the control of the mechanical stage as long
as the image shift is within the accessible range. The amount of shift and
focus change that occurs during data collection depends on the goniome-
ter and the specimen holder. Figure 11 shows an example of a specimen
movement curve (shifts and focus changes). In most experiments, accumu-
lated specimen shifts of only 1–3 μm occur during a tilt series, provided that
the specimen has carefully been set to the eucentric height.

Image shifts are measured by determining the peak position in the
cross-correlation function of an image recorded after setting a new tilt angle
with a reference image that was recorded previously. The two correlated
images are recorded at different tilt angles. Therefore, the two images will
not only appear be shifted but will also differ to some extent due to the dif-
ferent projection angles. To compensate for this effect prior to the compu-
tation of the cross-correlation function, the image recorded at higher
absolute tilt angles a is stretched perpendicular to the tilt axis by a factor
according to 1/cos(a) (Dierksen et al., 1992). To compensate for the image
shift, the current in the image shift coils is changed (using an appropriate
calibration) so that the mid-point of the feature of interest prior to the spec-
imen tilt is centered back with this compensation. The above data collec-
tion scheme will perform worse at high magnifications, e.g. higher than
50,000, because the image shift per tilt increment may be larger than half
the field of view of the CCD camera. Therefore, at high magnifications, the
field of view will be too small to measure the displacement and a more elab-
orate data collection scheme has to be used (Dierksen et al., 1992, 1993;
Koster et al., 1997; Rath et al., 1997; Zhang et al., 2001; Zheng et al., 2004).

In one of these alternatives schemes, the shift measurements are done
at a lower magnification, for instance at 4000, where the field of view
increases to several μm2. In some cases, it is optimal to choose the options
for data collection such that after incrementing the tilt angle, the image shift
is first measured and corrected for at low magnification (the SEARCH posi-
tion). Next, at a higher magnification, a more accurate image centering is
performed (at the TRACK position). The accuracy in compensating the
image shift is better than 0.5% of the full image size.The accuracy in obtain-
ing a tilt series data set is less accurate than 0.5%, usually due to sudden
specimen movements of the holder (‘jumps’) that can occur when the tilt
angle is incremented. In practice, an accuracy in the range of 2% of the full
image size is reached.

After TRACKING, automatic focusing can be done with the technique
of measuring the displacement of the image upon tilting the beam at the
FOCUS position (Koster et al., 1987, 1989). The autofocusing procedure
determines the defocus by comparing two images acquired with different

CRYO-TOMOGRAPHY 147



(opposite) beam tilts. As an option to compensate for specimen drift, it is
possible to record a third image and use this image to estimate and com-
pensate for the drift between the images, thus separating beam tilt-induced
from drift-induced shift. The amount of image shift, measured with cross-
correlation, is proportional to the defocus and can thus be used for focus
correction by changing the objective lens current. Although the accuracy in
measuring the defocus can be very high, ∼5 nm for thin samples (Koster et
al., 1987), the actual setting of the defocus will have an error in the order
of 100 nm for the somewhat thicker typical specimens studied with electron
tomography (Dierksen et al., 1995). An increase in reliability for the auto-
focusing procedure can be obtained by taking into account that the speci-
men is tilted and therefore the defocus in the image will vary across the
image (Ziese et al., 2003). As stated above, the amount of image shift that
will occur on invoking a beam tilt will be proportional to the defocus.There-
fore, supposing that the center of the image is exactly in focus, for a tilted
specimen the situation will be that the further the feature is away from the
center of the image—and thus away from the focus plane—the larger the
image shift will be.To ensure that all areas within the image of a tilted spec-
imen will give rise to the same cross-correlation peak (which provides the
average defocus), it is necessary to squeeze/stretch the two images used for
defocus determination with a factor that depends on the direction of the
tilt axis as well as on the amount of specimen tilt.The possible error in focus
determination will be larger at low magnification (where the defocus ramp
within the image can be larger).

Finally, after compensation for the shift and focus changes, a 2D image
(part of the tilt series) is recorded (EXPOSURE). These four steps
(SEARCH,TRACK, FOCUS and EXPOSURE) are repeated until the full
angular tilt range is covered.

4.3. Second Generation: Pre-calibration 

In the late 1990s, the mechanical construction of specimen holders and
TEM goniometers was improved considerably, and a novel approach was
evaluated to collect tilt series automatically (Ziese et al., 2002a). Compared
with the previous generation of holders, the novel holders exhibited repro-
ducible specimen movement. The basic idea was to measure, prior to data
acquisition, how the specimen moves, and extract from the movement
parameters a mathematical model describing this behavior. The approach
resulted in a 5-fold increase in speed, enabling the acquisition of 151 images
in <20 min.

Experimentally, it was found that the actual shape of the xyz move-
ment of the specimen (the specimen movement calibration curve) depends
on the displacement of the tilt axis of the goniometer from the optical axis
(Fig. 13), whether or not the specimen holder was removed/inserted, the x/y
of the stage position, the x/y/z change in stage position, the z-height of an
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image feature and the image shift settings. Only the last two parameters,
the z-height of the specimen and the electron optical image shift settings,
can be adjusted by the user. Note, however, that the displacement of the tilt
axis of the goniometer from the optical axis is influenced by the electron
optical image shift settings. With the best settings, there will be hardly any
movements; otherwise, shifts can be positive or negative and can take values
up to several micrometers.

Therefore, in its most basic application, the procedure for automated
data collection would consist of two steps: first, a pre-calibration step in
which the movement of the stage is measured in both the xy-plane (image
shifts) and the z-direction (defocus change) for the range of tilt angles
needed to acquire a tilt series. It is sufficient to record these measurements
at low magnification with 5° tilt increments. Next, the actual data sets with
smaller tilt increments and higher magnifications are recorded, interpolat-
ing the values of image shift and defocus change obtained in the first step.
The modeling used for the pre-calibration method showed that the image
displacements will be smaller when the optical axis of the microscope is
aligned to the tilt axis of the specimen stage. This alignment can be done
with the image shift controls inside the microscope. Furthermore, using the
mathematical model, it was shown to be possible to predict the overall
image movements after a few measurements (three) of image shift and
defocus change (Ziese et al., 2002a). This ability to make predictions was
further developed and exploited in the third generation of data collection
programs.
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FIGURE 13. Observed movements when a specimen holder is tilted. The image shifts
and the changes in defocus depend on both the distance of the tilt axis (x) of the
goniometer from the optical axis and on the distance from the tilt axis to the eucen-
tric height position (z). The measurement of shifts and changes in defocus as a func-
tion of specimen tilt can be used for calibration purposes as well as for predicting
specimen movement. 



The approach based on changing the alignment to match the position
of the specimen tilt axis enhanced the quality of a tilt series. For example,
the amount of required defocus change compensation was reduced by an
order of magnitude (from 10 μm to 1 μm), which made the problem of mag-
nification change during data collection negligible. Another advantage of
the approach is that the required computer-controlled steps for tracking
image shifts and defocus changes are uncoupled from the acquisition of the
tilt series. The uncoupling provides opportunities for acquisition modes
other than bright-field imaging and the use of detectors other than CCD/
film. For instance, a tilt series could be taken in STEM mode (Midgley and
Weyland, 2003; Ziese et al., 2002a,b) and, possibly simultaneously, (3D)
element-specific information about the sample could be collected with an
energy-dispersive X-ray (EDX) detector.

4.4. Third Generation: Prediction 

The ongoing developments in specimen cryoholders made it possible
to model the observations of image shifts and focus changes and to predict
the overall image movements after a few measurements of image shift and
defocus change (Zheng et al., 2004; Ziese et al., 2002a). For instance, by
assuming that the sample follows a geometric rotation and that the optical
system can be characterized in terms of an offset between the optical and
mechanical axes, it was found that the image movement in the x, y and z
directions due to stage tilt can be dynamically predicted with desired accu-
racy (15 nm in the x–y position and 100 nm in focus). Thus, the microscope
optical system (beam/image shift and focus) can be automatically adjusted
to compensate for the predicted image movement prior to taking the pro-
jected image at each tilt angle. As a consequence, it became no longer 
necessary either to record additional images for tracking and focusing
during the course of data collections or to spend valuable set-up time in a
pre-calibration of stage motions. This scheme was found to tolerate a sig-
nificant degree of non-eucentricity and to be quite robust in the collection
of regular and cryo low-dose images on thin or thick samples even at 
magnifications >62,000× and angular step as large as 10°. More elaborate
schemes were proposed that included several steps to make the procedure
more robust to unmodeled events (Nickell et al., 2005).

Though the first generation of the automated data collection proce-
dure was already very efficient by spending >95% of the electron dose on
the actual data (and not on the overhead related to automation), the second
and third generation of programs made data collection faster (5-fold) and
more convenient. Current automation data collection developments are
aimed at making the tomography procedure part of a larger automation
process that includes automated (2D) scanning of the grid, as well as auto-
mated alignment and reconstruction (Carragher et al., 2000). For applica-
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tions of cryotomography where high resolution is an important factor, the
requirements for the accuracy of defocus determination, as well as of
obtaining quantitative information on the amount of phase/amplitude con-
trast, may become more stringent possibly to allow (automated) corrections
for the CTF. Although the approach has been described (Winkler and
Taylor, 2003), it is still unclear how corrections for the CTF can be effectu-
ated on cryo-tomograms.

5. CONCLUDING REMARKS

Regardless of the specimen and the type of data recording, the series
of 2D images acquired with the TEM need to be processed to obtain a 3D
image: the tomogram. First, the images have to be aligned with respect to
each other. For an extensive description on the alignment procedure, see
Chapters 5 and 6 of this volume. Briefly, several alignment procedures are
available. Because of the very low SNR in the images, the alignment step
can pose problems. During alignment, the relative translation between the
individual images will need to be determined, a possible gradual change in
scaling (magnification) and possibly a change in image rotation. Some of
the procedures available make use of fiducial markers present within or on
the sample, whereas other methods rely fully on the contrast generated by
the material within the section and do not need markers (Liu et al., 1995)
(see also Section 2.5).

Next, after alignment, the tomogram can be computed using either res-
olution-weighted back-projection (Radermacher, 1992) or iterative refine-
ment methods. For an extensive description on the reconstruction phase,
see Chapters 7, 8 and 9 of this volume. Briefly, we like to point out that the
iterative methods, e.g. maximum entropy (Barth et al., 1988; Skoglund et al.,
1996), ART (Marabini et al., 1997) or SIRT (Sorzano et al., 2001), can
produce reconstructions that appear smoother than tomograms produced
with weighted back-projection, which can considerably help the subsequent
visualization.

One of the major problems is that cryotomograms suffer from substan-
tial residual noise. The low SNR is particularly unavoidable at higher res-
olutions because of the dose sensitivity of the specimen. The individual
images within a tilt series are very noisy and, as a result, the tomogram gen-
erated is also noisy, in spite of optimized data collection schemes and
optimal reconstruction approaches. In specific applications, such as cryoto-
mography on whole cells, an extra problem is due to the fact that the cyto-
plasm within the specimen is densely packed with molecules connecting to
each other (Grunewald et al., 2003). Within cryotomograms, it is therefore
virtually impossible to apply volume segmentation and feature extraction
based upon visual inspection of the tomogram, which is an approach often
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successful with other types of samples which are less low-dose demanding
and with much higher contrast as a result of staining with metal salts. Other
characteristics inherent to the technique complicate the tomogram segmen-
tation and the analysis of the results. For example, for correct interpretation
of the tomograms, the geometry of data collection has to be taken into
account (double- or single-axis tilting, the tilt range and tilt increments) as
well as special characteristics that are linked to image formation (contrast
enhancement by zero-loss filtering and large defocus to enhance contrast).

In most 3D visualization approaches, isosurface representation or
volume rendering is used to display the 3D volume. However, the inherent
noise and low contrast of cryotomograms make such an approach in most
cases not effective. Special means need to be used to smooth the appear-
ance of the reconstruction in order to extract morphological informa-
tion. To enhance the SNR, spatial filtering, such as median or Gaussian 
filtering, can be applied. A characteristic of these approaches is that 
the filtering enhances the SNR in the image at the cost of resolution.
The high-resolution information is hidden in the noise, and straight-
forward application of spatial filters will eliminate the high-resolution 
information.

In order to segment and analyze 3D subtomograms from the tomo-
grams or to extract quantitative information, dedicated strategies and inno-
vative image analysis techniques are needed. Special algorithms were
developed to minimize the resolution-lowering effects of isotropic low-pass
filters. Depending on the particular question at hand, other algorithms
might be effective in extracting the information. For instance, segmenting
a volume in different objects can be quite effective using eigenvector analy-
sis (Frangakis and Hegerl, 2002), or using wathershed transformations
(Volkmann, 2002). To filter out objects with a particular shape, wavelet
transformation might be useful (Frangakis et al., 2001). One type of filter
that turned out to be a powerful tool for visualization uses non-linear
anisotropic diffusion to reduce noise in electron tomograms (Fernandez
and Li, 2003; Frangakis and Hegerl, 2001).

Though spatial filtering techniques can be very useful to visualize the
overall shape of structures within tomograms, they remove the high-reso-
lution information, and the presence of individual molecular structures can
be concealed. However, it is not necessarily required to identify the 3D
molecular structures by direct visual inspection.The identification of a given
molecular structure can be based on 3D correlation, or on other pattern
recognition methods. A 3D cross-correlation peak may be significant even
if the particle is hardly visually recognizable. Suitable reference structures
can be derived from data obtained with other high-resolution techniques
such as X-ray crystallography, NMR or electron crystallography. The
pattern recognition approach, as developed for cryotomography, is known
as template matching and is an algorithm capable of detecting and identi-
fying macromolecules in tomographic volumes in a fully automated manner
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(Böhm et al., 2000; Frangakis et al., 2002; Rath et al., 2003) (Fig. 14). The
algorithm is based on non-linear cross-correlation and incorporates ele-
ments of multivariate statistical analysis. This approach can be suitable to
identify macromolecules in the size range of 0.5–1 MDa with good fidelity
in a cryotomogram with a resolution of 4–6 nm (Forster et al., 2005).
Methods for multivariate statistical analysis of sets of tomograms allow the
classification of these volumes into homogenous sets. In this manner, only
identical units are averaged (Frangakis et al., 2002; Walz et al., 1997b). The
method is applicable not only to identical units within a tomogram but also
to identical units coming from different tomograms. This type of strategy
constitutes a way to enhance the resolution significantly.

Cryotomography is a technique capable of bridging the gap between
high-resolution (nanometer resolution scale) imaging and molecular
imaging (atomic resolution) but also between nanometer scale and fluo-
rescence light microscopic imaging as used for live cell imaging (micrometer
resolution scale). Though technical developments in bridging this gap are
ongoing, solutions have not matured yet.

In order to bridge the resolution gap with techniques achieving atomic
resolution, the information provided by macromolecule structures resolved
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FIGURE 14. Identification of individual macromolecules based on their high-
resolution structure. The pattern recognition approach as developed for cryotomog-
raphy is known as template matching and is an algorithm capable of detecting and
identifying macromolecules in tomographic volumes in a fully automated manner
(Böhm et al. 2000; Frangakis et al. 2002). The algorithm is based on non-linear cross-
correlation and incorporates elements of multivariate statistical analysis. 



by high-resolution methods (e.g. single-particle reconstruction methods
with electron microscopy, X-ray diffraction methods or NMR methods)
needs to be put into the relatively low resolution cryotomograms of cell
organelles or cells (Sali et al., 2003). Cryotomography, by providing 3D
images at moderate resolution recorded in a non-invasive mode with
minimal perturbations of the biological systems, could be a powerful
approach to determine the relative location of molecular structures using
pattern recognition techniques. Such an approach attempts to identify
macromolecular complexes as a function of their structural signature in cryo-
tomograms of cryofixed cells.

In this chapter, we zoomed into some of the theoretical and practical
issues related to cryotomography. Reading this chapter will make it clear
that the electron microscopist performing cryotomography will be con-
fronted with various challenges related to specimen preparation, data col-
lection, image processing and aspects of pattern recognition to exploit the
tomograms. In spite of these hurdles, we hope to have shown that the
outcome, the cryotomogram, can be very gratifying. In spite of their mod-
erate resolution (5–10 nm), cryotomograms of frozen-hydrated biological
structures reveal an astonishing amount of information about cell archi-
tecture as a network of molecular interactions.
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1. INTRODUCTION

Accurate alignment of projection images is an important step in obtaining
a high-quality tomographic reconstruction. Ideally, all images should be
aligned so that each represents a projection of the same 3D object at a
known projection angle. Inadequate image alignment will result in blurring
or smearing of features in the reconstruction. The problem is made more
difficult because exposure to the electron beam during the acquisition of a
tilt series induces geometric changes in many samples (primarily plastic-
embedded material). For any sample, but particularly for ones that are not
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rigid during imaging, a powerful method of image alignment uses the meas-
ured coordinates of fiducial markers through the series of images; these can
be fit to equations that describe the image projection. Alternative methods
are based on cross-correlation of images. The fiducial marker method has
the advantage that it guarantees a consistent alignment among the images
from the full range of tilt angles. It is also more easily adapted to correct
for changes in the sample that occur during imaging.

Various formulations of fiducial alignment have been described; they
differ in their levels of complexity and methods of solution and in whether
they require each marker to be measured on all projections (Berriman et al.,
1984; Jing and Sachs, 1991; Lawrence, 1992; Penczek et al., 1995).The formu-
lation presented below reflects the implementation of fiducial alignment in
the IMOD package (Kremer et al., 1996) (http://bio3d.colorado.edu/imod),
which provides a superset of features described elsewhere.This chapter will
describe the basic method as well as some practical aspects of fiducial align-
ment, drawing on extensive experience with the method in the Boulder
Laboratory for 3D Electron Microscopy of Cells. It shows how the method
can be extended to preserve resolution in reconstructions of large, hetero-
geneous volumes (e.g. Marsh et al., 2001). It also describes the role and lim-
itations of fiducial markers in making reconstructions from tilt series taken
around two orthogonal axes (Mastronarde, 1997; Penczek et al., 1995) and
the complementary role that cross-correlation can play in this process.

2. DEFINITION OF VARIABLES AND 
PROJECTION EQUATIONS

Figure 1A depicts the geometry of the projection during a tilt series.
There are three coordinates systems to consider: that of the microscope, the
specimen and the projection images. The coordinate system of the micro-
scope coincides with that of the specimen before it is tilted; the axes in both
will be referred to as x, y and z. The axes of the projection images are des-
ignated u and v. The fiducial points are described by the following:

nT is the total number of fiducial points
rj = (xj, yj, zj) are the coordinates in the specimen of the jth fiducial

point, j = 1, . . . , nT

pij = (uij, vij) are the measured projection coordinates of the jth point in
the ith view

ni is the number of points measured in the ith view (not all need to be 
measured)

Vi is the set of points measured in the ith view
j ∈ Vi means that the jth point was measured in the ith view

The equations presented next represent a relatively complete model
of the projection process, but in practice only a subset of the variables

164 DAVID N. MASTRONARDE



included in the model can be derived from measurements of fiducial posi-
tions in the projection images (see below). The model for the projection is
that the specimen is tilted about the y-axis, the tilt axis of the goniometer,
and may also be tilted somewhat about the x-axis. In the course of projec-
tion onto a detector, the image is also generally rotated and shifted. For the
ith view:

ai is the angle of tilt around the microscope x-axis, and Xi is the rotation
matrix for this tilt:

(1)

bi is the angle of tilt around the microscope y-axis, and Yi is the product of
a rotation matrix for this tilt and a matrix for projection into the u, v plane:

(2)Yi
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FIGURE 1. (A) Projection of a specimen. The coordinate system of the untilted spec-
imen in the microscope is (x, y, z) while the coordinate system of the digitized image
is (u, v). For the ith projection, the specimen may be tilted slightly by angle αi about
the x-axis as well as tilted by angle bi around the y-axis. The projection image is rotated
by angle γi and shifted by (Δui, Δvi). (B) Specimen changes included in the model: 
mi provides an overall scale change, ti represents additional thinning, si provides
for stretch along the x-axis relative to the y-axis, and di represents skewing of the 
axes.



gi is the angle of rotation around the microscope z-axis after projection into
the u, v plane, with rotation matrix Ri:

(3)

di = (Δui, Δvi) is the translation after projection into the u, v plane

Changes in the specimen during the recording of the tilt series can be
modeled by three possible transformations: an overall size change, which is
indistinguishable from a change in microscope magnification; an additional
shrinkage along the specimen z-axis, referred to as thinning; and an addi-
tional anisotropic shrinkage along an axis in the x–y plane of the specimen.
Such anisotropic shrinkage is the same as a negative stretch, so it will be
referred to as stretch.There are several equivalent ways of representing this
change; Fig. 1B shows one way in which it is expressed in terms of changes
in the length and orientation of the specimen x-axis relative to the y-axis.
For the ith view:

mi is the overall scaling factor
si is an additive factor such that mi + si is the scaling along the speci-

men x-axis
di is the skew angle, a rotation of the specimen x-axis toward the y-axis
ti is a multiplicative factor for the thinning along the specimen z-axis
Di is the matrix representing all of these specimen changes:

(4)

The overall projection matrix, Ai, is thus the following product:

(5)

where it is sometimes convenient below to refer to the six elements of Ai

as ai, bi, etc. Given values for all of the unknown parameters just described,
the fiducial coordinates implied by the projection model, p′ij = (u′ij,v′ij), are
calculated from:

p¢ij = Airj + di (6)

From this, it is evident that rj can be arbitrarily shifted, and di can be
adjusted to give the same projection values. This degeneracy can be elimi-
nated by fixing the origin of the specimen coordinate system at the centroid
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of the fiducial points, which is implemented by making the last point not a
variable but a sum of the others:

(7)

When the systems of equations is sufficiently constrained, as described
in the next section, an appropriate subset of the unknown parameters can
be found by minimizing the total error E, which is the sum of squares of
the distances between projected and measured positions:

(8)

The displacements di can be found and eliminated from the equations
by taking the derivatives of E with respect to Δui and Δvi and setting them
to zero. For Δui:

(9)

,

(10)

Now define:

, the centroid of fiducial points measured in the ith view, a 

constant, and 

, the centroid of points projecting into the ith view, a sum of 

variables.

Then equation (10) and a similar expression for Δvi can be written:

(11)

Substitution into equation (6) then gives

(12)

Given values for the projection variables governing Ai, the 3D coor-
dinates rj can be solved from linear equations such as equation (12). When
the shrinkage is assumed to be isotropic, a closed-form solution is then
available for each projection variable (Penczek et al., 1995), and a solution
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can be obtained by iterating until convergence is achieved. In the more
general formulation here, the remaining variables must be found by numer-
ical methods for minimizing E. Since it is possible to take the derivative of
E with respect to each variable, methods such as variable metric minimiza-
tion (see Koval, 1997) or conjugate gradients can be used. Such minimiza-
tion methods require adequate initial values of the variables to avoid being
trapped in local minima. Tilt angles can be initialized to the nominal angles
from the goniometer; values representing specimen changes can be set to
1 or 0 as appropriate. An initial value for the rotation after projection can
be estimated from the apparent angle of the tilt axis in the images and does
not need to be very accurate. Given these projection variables, initial values
of the 3D coordinates and displacements can be estimated, which can be
done by solving a single large set of linear equations (Brandt et al., 2001a).
An alternative approach, used in IMOD, is to start with initial estimates of
the di and solve for each rj separately by a least-squares fit to equation 6,
then compute di from equation 11, and iterate to convergence.

3. OBTAINING UNIQUE SOLUTIONS

In order to find a unique alignment solution, it is necessary to choose
an appropriate subset of variables, which involves constraining the mini-
mization by giving some variables fixed values, and avoiding combinations
of related variables that can be covaried to give identical or near-identical
solutions. All variables except the rotation angle after projection must be
fixed to an appropriate value on one view in order to constrain the 3D fidu-
cial coordinates. For example, if tilt angle were allowed to vary on all views,
then there would be an infinite number of equivalent solutions with the tilt
angles changed by a constant and the fiducials rotated about the y-axis by
the same amount.

There are several relationships among the variables; the easiest one to
see is the equivalence between thinning and a combination of stretch along
the x-axis and a change of tilt angle. Just considering the product of distor-
tion and y-axis tilt matrices, XiDi, the projected x-coordinate on one view
is given by:

(13)

However, for a given thinning ti, if we change the tilt angle to:

(14)

and change the x-axis stretch to:
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then it is equally true for all x and z that

(16)

Thus, thinning can always be expressed with these equations as an x-
stretch and a change in tilt angle, which means that it is impossible to solve
for all three of these variables. This interplay between thickness, tilt angle
and x-stretch also causes a problem when solving for tilt angle and x-stretch.
If the tilt angle is fixed for the zero-tilt view, then the 3D fiducial coordi-
nates can be scaled in z and the tilt angle and x-stretch values for all of the
other views can be changed to be consistent with the scaled z values. This
degeneracy can be avoided by constraining the x-stretch to zero in two
views instead of just one.

When fiducials are confined to one plane in z, as happens when col-
loidal gold is deposited on only one surface of a section, even fewer vari-
ables can be solved for. Thinning cannot be detected at all and a change in
tilt angle cannot be distinguished from a stretch along the x-axis.

In addition to these relationships, which can generate many exactly
equivalent solutions, experience has shown that some variables are very
difficult to solve for together because they can be varied jointly so as to
generate nearly equivalent solutions. It is difficult to obtain an accurate
solution for tilt around the x-axis when the rotation after projection is free
to vary as well. When the fiducials are in only one z-plane, inappropriate
solutions can occur if this rotation and the skew angle are both allowed
to vary.

4. TRANSFORMATIONS TO ALIGN PROJECTION IMAGES

Once a solution is obtained specifying how each point in the speci-
men projects to each view, it is possible to reconstruct the volume, for
example by back-projection. However, if the original images can be trans-
formed so that they represent projections of a rigid body (i.e. an unchang-
ing object) tilting around the y-axis (and possibly the x-axis also), then the
computations can be much more efficient, because lines parallel to the x-
axis can be back-projected from horizontal lines in the transformed
images. If there is no tilt around the x-axis, then the computations are
further simplified and reduced to a 2D task because each x–z plane of the
reconstruction is computed from a set of lines at the same y value in the
transformed images.

The image transformations to be applied are linear ones, of the form 

p¢ = Gp + s (17)
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In fully aligned projections of a rigid body, the projection equation into
the ith view is simply:

p = YiXir (18)

In order for a transformation of the projections into a raw image (as
given by equation 6) to be the same as projections from a rigid body,

Gi(Air + di) + si = YiXir (19)

should be true for all 3D positions r, which requires that the matrices mul-
tiplying r be the same on both sides, and that the constant terms on the left
sum to 0:

GiAi = YiXi (20)

si = –Gidi (21)

If changes in the section are isotropic, involving only the scale factor
mi, then A = miRiYiXi and Gi is just Ri

–1/mi. However, in the general case,
equation (20) cannot be solved for Gi because it involves 3 × 2 matrices and
is thus equivalent to six equations with four unknowns. A solution that is
valid for points in the plane z = 0 can be obtained by multiplying the matrix 

products on each side by to convert them to 2 × 2 matrices.Thus

(22)

For the case of tilt only around the y-axis, the transformation is:

(23)

Once Gi is found, equation (21) yields the displacements dui and dvi

that put the centroid of the fiducials at the origin. However, these dis-
placements are generally not optimal for reconstruction. Typically, images
need to be shifted to minimize the amount of area lost upon transforma-
tion and to place the material of interest in the center of the reconstruction
in z (Ress et al., 1999). To shift the zero-degree view in u by us and to shift
the reconstruction in z by zs, the dui would be offset by −us cosbi − zs sin bi.

5. LIMITATIONS OF IMAGE TRANSFORMATIONS

When there are anisotropic changes in the specimen, these transforma-
tions are accurate only for data from one z-plane of the specimen. This
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problem is depicted in Fig. 2, which shows the projection of three lines that
lie parallel to the x-axis and have the same y coordinate, but are placed at
the top, middle and bottom of the specimen. In the absence of shrinkage, the
projections of the lines are always superimposed at the same v coordinate,
although their end-points are staggered in u, depending on the tilt angle (Fig.
2A and B). When the specimen shrinks along an oblique axis (Fig. 2C), the
lines project onto oblique lines in the u–v plane, and the effect of specimen
tilt is to separate their projections in u because of their different z-heights
(Fig. 2D and E).Transforming the images according to equation (23) makes
all of the lines horizontal, but they are now separated in v (Fig. 2D′ and E′).
Notice that the separation in v changes sign between positive and negative
tilt angles (compare Fig. 2D′ with E′). Thus, in aligned views of a specimen
that has experienced such oblique shrinkage during the tilt series, fiducials
on one surface will tend to move downward, and fiducials on the other
surface will tend to move upward. Such effects are seen in some tilt 
series.
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FIGURE 2. Illustration of the limitations of transforming projection images into align-
ment when there is anisotropic specimen shrinkage. (A) View of the original untilted
specimen, with three lines located at different heights in one x–z plane. (B) Projection
image from the original specimen at one tilt angle; the three lines are at the same v
value at all projection angles. (C) View of the specimen after a skew of the x-axis rel-
ative to the y-axis. (D and E) Portions of the projection images from the skewed spec-
imen at +45° and –45°, respectively. The three lines are offset from each other in u by
tilt. (D’ and E’) Projection images after transforming images into alignment. The three
lines are horizontal but at different v values.



To see how the projection position varies as a function of z in the 
specimen, consider a simplified situation where the images have already
been transformed to account for translations, rotations and magnification
changes. The matrix for projection into these images is YiDi/mi to take into
account the anisotropic changes, i.e.

(24)

The point (x,y,z) projects to (aix + ciz,dix + eiy) in these images.The trans-
formation from these images to fully aligned images is given by substituting
the expressions from equation (24) into equation (23).When this transforma-
tion is applied to the images, this projection point is transformed to

(25)

Substituting equations (23) and (24) into equation (25) and simplify-
ing gives the projection position in the transformed images:

(26)

where (u, v) is the rigid body projection position from equation (18). This
result confirms the suggestion from Fig. 2 that when there are anisotropic
changes in the specimen, it is not possible to transform images so that they
can be treated like projections of a rigid body when reconstructing by back-
projection. Rather, it is necessary to modify the back-projection position as
a function of z in the reconstruction, using the coefficients of z in equation
(26). Since a line of the reconstruction at one value of z and y back-
projects from a single horizontal line of an aligned image, the computation
including this modification can still be fairly efficient.

The effects of this correction are subtle for typical data sets, in which
the coefficient of z in the factor added to v in equation (26) has a maximum
value at high tilts of 0.005–0.02. The latter value means that in a recon-
struction 200 pixels thick, the back-projection position needs to be adjusted
by 2 pixels at each surface of the reconstruction. Without this adjustment,
the point-spread function can show effects like those of Fig. 3, which pres-
ents three x–z slices through the average of 12 gold particles from one
region of a reconstruction. Without the correction (upper row), the gold
particle itself appears less symmetric, and the diagonal artifactual rays are
strong in one direction on one side of the center (Fig. 3A) and strong along
the other diagonal on the other side of the center (Fig. 3C). However, the
typical effect of the adjustment is much less than shown here.

′ = + +( )( ) −( )
′ = +

u u t m m s z

v v t z
i i i i i i

i i i

sin cos

tan tan

b d
d b

1

g a x c z g d x e y g a x c z g d x e yi i i i i i i i i i i i11 12 21 22+( ) + +( ) +( ) + +( )( ),

a m s m b c t

d m s m e f
i i i i i i i i i i

i i i i i i i

= +( ) = =
= +( ) = =

cos cos sin

sin

d b b
d

0

1 0

172 DAVID N. MASTRONARDE



6. CONSTRAINING VARIABLES ON ADJACENT VIEWS

Although the fiducial alignment method allows one to solve for an
independent value of each variable for each view, there are circumstances
where this is not desirable. When the ratio of the number of fiducial posi-
tions measured to the number of variables being solved for is not high
enough, random errors in the fiducial positions can have an excessive effect
on the solution and lead to a poor alignment. Moreover, some variables are
intrinsically harder to solve for and are prone to this problem. Rotation and
magnification are relatively easy to solve for, since a change affects the pro-
jection position substantially and unambiguously at any tilt angle.Tilt angle,
thinning and the stretch variables are more difficult to solve for, especially
at low tilt angles where changes may not have much effect on projection
positions. Figure 4A shows an extreme case where solving for an inde-
pendent tilt angle on every view yielded aberrant values near zero tilt. In
this case, the tilt series itself showed no hint of a discontinuity in tilt angle
or other aspects of its alignment.

The solution to this problem is to constrain variables that are expected
to change slowly through the tilt series to have the same or similar values
on a set of adjacent views. The simplest way to accomplish this constraint
is to make a set of views have identical values for a parameter by assign-
ing them all to one underlying variable to be solved. A smoother solution
is obtained by setting up an underlying variable for only a subset of 
the views, such as every fifth view. For each of the remaining views, the
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FIGURE 3. Slices in the x–z plane through an average of 12 gold particles from one
region of a reconstruction. (A), (B) and (C) are from the reconstruction computed
without the adjustments in equation (26); (D), (E) and (F) include the adjustments. (B)
and (E) are through the center of the particle; (A) and (D) are slices 4.5 nm in front of
the center, and (C) and (F) are slices 3 nm behind the center slice. The particles are from
a reconstruction of a 250 nm section of a T-cell lymphocyte, courtesy of Mary Morphew.



parameter is taken to be a linear combination of the values for the two sur-
rounding views that have associated variables. The latter method is illus-
trated in Fig. 4B, where the crosses indicate views with associated variables.
Either method will reduce the number of variables being solved for and
will average over fiducial positions on several views in solving for each indi-
vidual variable, thus reducing the effect of random errors on the solution.
In Fig. 4B, the solution not only eliminates the aberrant values near zero
tilt, but it also has reduced the view-to-view variability seen over most of
the tilt range in Fig. 4A.

7. LOCAL ALIGNMENTS FOR LARGE AREAS

The solution from a fiducial alignment is based on the assumption that
changes in the specimen during the tilt series occur uniformly across the
area being analyzed. Non-uniform changes in the specimen violate this
assumption and will result in a poorer fit to the fiducial positions, especially
in the periphery of the area. These effects will become greater, the larger
the area being reconstructed. To obtain the same quality of alignment in a

174 DAVID N. MASTRONARDE

FIGURE 4. Example showing the value of constraining adjacent views to have similar
values for some variables. (A) Solution for tilt angle with an independent variable for
each view. (B) Solution using independent variables for one-fifth of the views, with
the tilt angle constrained to change linearly between those views. The anomalous
changes near zero tilt are prevented. The alignment included 15 markers confined to
one surface of the specimen. The data set was from a 300 nm section of a Caenorhab-
ditis elegans meiotic spindle and was acquired and aligned by Eileen O’Toole.



large reconstruction, it is necessary to break the reconstruction into smaller
pieces in some way, where each smaller piece uses an alignment based pri-
marily on the fiducials in that area. This could be accomplished in a number
of ways; the procedures followed in the IMOD package are described 
here to illustrate some of the required and desirable features of an 
implementation.

1. A global alignment is obtained from all of the fiducials.
2. The area is divided into an array of local areas that overlap, typi-

cally by ∼50%. Unless the fiducials are either very numerous or very evenly
distributed, some areas may need to be expanded about their centers to
encompass the minimum useful number of points. When stretching vari-
ables are to be solved for, the fiducials in each area must be distributed in
z; this is implemented by requiring a minimum number of points from each
of two surfaces.

3. The variables to be solved for are expressed as increments to the
global solution. Thus, all variables are expected to change slowly and need
to be solved on only a small subset of views (see Section 6). This feature
allows a high ratio of measurements to variables even with a small number
of fiducials in a given local area.

4. Geometric consistency with the global solution is desirable, par-
ticularly if the reconstruction is to be merged with one from a tilt series
around an orthogonal axis. Consistency can be guaranteed by fixing the 3D
coordinates of the fiducials at their global values, but adequate solutions
may be obtained without this constraint.

5. The solution in a local area is used to derive a set of refining image
transformations, which would be applied after aligning images with the
transformations from the global solution.

A seamless reconstruction can be built from a set of local alignments
by the procedure depicted in Fig. 5. The back-projection program takes as
its input the globally aligned images, and the refining transformations and
tilt angles for each local area. In Fig. 5, the crosses mark the centers of the
local areas. Each column of points in the reconstruction is located at a par-
ticular position with respect to up to four nearby local areas. The point in
the slice in Fig. 5 is located in a column that is close to two local area centers
and farther from two others. This point is reconstructed by back-projecting
from the appropriate position in each of the aligned images. The projection
ray and filled circles indicate the projection position at one tilt angle before
modification by the local transformations. The refining transformations for
each of the four local areas are used to find modified projection positions
(open circles). These positions are resolved by interpolation using weights
based on the distance of the point’s column from the centers of the local
areas.

Local alignments can be helpful for reconstructing areas greater than
∼1 μm in extent. For a 2 × 2 μm reconstruction of plastic-embedded,
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sectioned material with ∼1 nm pixel size, a typical result is for the global
alignment to have a mean error of ∼1 pixel and for local alignments to give
average errors of ∼0.6 pixel. The most easily observed effect on the recon-
struction is an improvement in the point-spread function, as revealed by the
reconstructed gold markers in an x–z view having a more compact and sym-
metric shape (Fig. 6). Improvements are less apparent in an x–y view
but can sometimes be seen, such as in the case of Fig. 6G and H.

Note that the use of local alignments, such as the correction for
anistropic shrinkage in equation (26), eliminates the one-to-one relation-
ship between x–z planes in the reconstruction and sets of lines at the same
y value in the aligned images. This complication makes it difficult to apply
algebraic reconstruction techniques (Gilbert, 1972; Gordon and Herman,
1971), which attempt to solve a set of linear equations relating the meas-
ured projection pixels to the unknown voxels in the volume.When each x–z
slice projects to data at the same y value in all of the views, there is a sep-
arate set of equations for each slice. With the more complex alignments
described here, nearby slices are linked and there is a single set of equa-
tions to be solved for the whole volume. While the problem is soluble in
principle, it is now much less tractable.
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FIGURE 5. Illustration of how a seamless reconstruction can be generated using a
set of alignments based on fiducials in local areas. The diagram indicates how a posi-
tion in the volume being reconstructed is mapped to a single point in the projection
at one tilt angle. See text for details.



8. PRACTICAL CONSIDERATIONS

The error in an alignment solution can be considered to consist of two
components, random and systematic. Random errors derive from inaccu-
racy in measuring the positions of the fiducial markers in the projection
images. Two signs that random error is having an excessive effect on the
solution are visible jitter from view to view when stepping through the
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FIGURE 6. Effects of local alignments on reconstruction quality. The images are
based on two reconstructions of trypanosomes in 250 nm plastic sections (±60° tilt
series at 1° intervals, 2.3 × 6.5 μm area acquired at a 1.14 nm pixel size). Local align-
ments reduced the mean error from 1.50 to 0.90 for the reconstruction shown in (A–D),
and from 2.68 to 0.74 for the reconstruction shown in (E–H). (A and B) Projections
through 57 nm of reconstruction in the x–z plane, without and with local alignments,
respectively. Note that the gold particles are crescent shaped in (A) and have strong
artifacts facing to the left and right on the left and right sides, respectively. (C and D)
One x–z slice through the center of a gold particle without and with local alignments,
respectively. (E and F) From the reconstruction with greater global error, one x–z slice
passing through the center of the particle on the right and off-center through the other
particle. (G and H) An x–z slice showing that local alignment (in H) gives much better
delineation of the separate microtubules (arrowheads) and better definition of the
membranes around the structure marked with the star. The data set was acquired and
reconstructed by Mary Morphew.



aligned images, and variation from view to view in solved values for vari-
ables such as magnification and rotation angle. For example, variations in
solved magnification by >0.0005 from the long-term trend might indicate
excessive random error. The effects of random error can be reduced by
marking the fiducial positions more accurately or by adding more fiducials.
The latter remedy averages the errors over more fiducials on a given view
and keeps the solution from accommodating to the errors in a few fiducial
positions.

Systematic errors arise when the fiducial positions are not adequately
described by the alignment model being fit. The primary signs of system-
atic error are asymmetries in the gold particles in a reconstruction. When
viewed with high contrast in the x–z plane, a sphere may appear crescent
shaped rather than appearing elliptical with symmetric tails. When viewed
in x–y planes above or below a particle, the artifactual tails may run diag-
onally rather than horizontally to either side of the particle, with the slope
of the diagonal reversed between the top and the bottom of the particle.
Another sign of systematic errors is a mean residual error higher than the
best that can be achieved for the particular kind of specimen and imaging
conditions. (A residual is the distance between a measured fiducial position
and the projection position implied by the alignment solution.) In such
cases, the residuals tend to be higher at high tilt. The remedies for system-
atic error are to fit the data to a more complex alignment model and to fit
over smaller areas (e.g. with local alignments as described in Section 7).

The best alignment that can be expected will depend on several factors:
the pixel size, the size of the gold fiducials, the thickness of the sample, the
precision with which fiducial positions can be measured automatically and
the amount of effort expended to reduce errors in their positions. Some
generalizations based upon experience in the Boulder Laboratory, using the
automatic fiducial tracking tools in IMOD, may be helpful. With relatively
large pixel sizes (∼2 nm) and images with information about spatial fre-
quencies near the Nyquist limit (e.g. images digitized from film), mean resid-
uals as low as 0.25–0.35 pixels may be achieved. For data acquired from
200–300 nm plastic sections on CCD cameras with a pixel size of ∼1 nm, as
is currently typical, mean residuals can be as low as 0.4–0.5 pixels. If data
are taken with a smaller pixel size, but the specimen is still relatively thick,
the mean residual in pixels can be expected to be higher, although perhaps
smaller in nanometers. Tomography on cryospecimens also tends to give a
higher mean residual (0.5–0.7 pixels).

Which parameters should be solved for depends on what kinds of
changes might be occurring in the specimen and on the number and distri-
bution of available fiducial markers. Magnification and rotation are proba-
bly the most important variables to solve for, if the specimen is at all
susceptible to shrinkage. Solving for tilt angles can overcome inaccuracies in
the goniometer readout and can compensate for a change in the angle of the
irradiated part of the specimen relative to the rest of the grid. If fiducials are
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well distributed in z, either specimen thinning or stretch can be solved for; a
solution for stretch together with tilt angle is preferable because it can
correct for thinning (see Section 3) as well for anisotropic shrinkage.

The inclusion of stretching variables usually gives only a modest
improvement in the quality of the fit. For 26 recent tilt series from the
Boulder Laboratory, adding the stretching variables reduced the mean
residual by a factor of 1.07 on average (range 1.01–1.22). Most of the reduc-
tion was for points measured at high tilt angles; for example, for points
measured at 50–60° the mean residual improved by a factor of 1.15 on
average (range 1.02–1.50). Accordingly, comparison of reconstructions
based on alignments with and without stretching variables show subtle
improvements in the back-projection of high-angle information, similar in
kind to the differences illustrated in Fig. 3. The improvement in the fit from
adding stretching variables is partially masked by the fact that the image
rotation variables alone can compensate for much of the misalignment
caused by skew (shrinkage in the x–y plane along an oblique axis). Tests
with model data indicate that the rotation can be varied to account for
about two-thirds of the error caused by a skew. The error introduced by
specimen stretching is thus somewhat greater than is indicated by the small
reductions in mean residual achieved by explicitly accounting for this effect.
Nevertheless, including stretching variables is not nearly as valuable as
using local alignments for large areas, which can substantially reduce the
residual error and noticeably improve the reconstruction.

It is preferable, but not always necessary to have fiducials distributed
in z, e.g. on both surfaces of a section. The primary benefit of such a distri-
bution is that the alignment should be accurate throughout the region being
reconstructed because it is based on fiducial positions that span the region.
With fiducials on one surface, the alignment must be extrapolated from that
plane into the specimen, and systematic alignment errors will make this
extrapolation progressively less valid the farther one is from that plane.
While reconstructions can often be done successfully with fiducials on one
surface, there is a risk that the alignment will not be adequate and that the
quality of the reconstruction will visibly deteriorate near the other surface
of the specimen. In addition to avoiding this risk, having fiducials distrib-
uted in z gives the secondary benefit of allowing more complex specimen
changes to be corrected.

The number of fiducials required for alignment depends on the
changes that need to be solved for. This requirement is best characterized
by considering the ratio of the number of measurements to the number of
variables being solved for, where each fiducial point contributes two meas-
urements, an x and a y position, on each view. Unless fiducial positions are
measured with a higher degree of precision than provided by the tracking
tools in IMOD, a ratio of at least 4–5 seems to be required for a solution
that is not impaired by random errors in the particle positions.This require-
ment translates to ∼5 fiducials when solving for magnifications and 
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rotations only, or ∼10 fiducials when solving for tilt angles and stretching
variables, provided that the latter are solved on only a subset of views, as
described in Section 6.

9. USING FIDUCIAL MARKERS IN 
DOUBLE-AXIS TOMOGRAPHY

Taking tilt series around two orthogonal axes and combining the
results can significantly improve the definition of some features compared
with those seen in a single-axis tomogram (Mastronarde, 1997; Penczek et
al., 1995). The equations and procedures described above could be used to
analyze all of the marker positions from the two tilt series together, but
most implementations of double-axis tomography have aligned the two tilt
series separately, then used the solved 3D fiducial coordinates to derive a
transformation relating the two tilt series. One advantage of this approach
is that inhomogeneous specimen changes accumulating over two tilt series
will have less effect on the fit of the data and the accuracy of the alignment.
When each tilt series is fit separately, each fit gives a lower error, in the
same way that a piece-wise linear fit to a curving set of points will give less
error than a single linear fit to all points. Penczek et al. (1995) used the 3D
fiducial coordinates to derive a rigid rotation about the three axes, then
applied this rotation to modify the projection angles for the second tilt
series and computed a single reconstruction from the two series with a gen-
eralized weighted back-projection (Radermacher, 1992). The approach in
IMOD is to reconstruct two separate volumes from the tilt series, transform
one to match the other, then combine them. The 3D fiducial coordinates
are used in only the first stage of a two-stage alignment procedure, which
takes advantage of information in the specimen itself to achieve a better
registration between the two reconstructed volumes.

The first stage in this procedure derives a general linear transforma-
tion from the 3D marker coordinates:

(27)

where rj and r′j are coordinates of corresponding points in the second and
first volumes, respectively, and t = (Δx, Δy, Δz) is the translation after trans-
formation. Given a set of corresponding fiducial positions in the two
volumes, the transformation can be found by three separate multiple linear
regressions; e.g. a11, a12, a13, and Δx are found from a least-squares fit of x′j
as a linear function of xj, yj and zj, and similar fits yield the other compo-
nents. At least four points are required for each fit, and at least twice that
many are desirable to provide a more robust solution. Transformations
found in this way generally reveal that a simple rigid rotation, even com-
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bined with a uniform scaling, does not give a sufficiently accurate registra-
tion between the volumes (Mastronarde, 1997).

If fiducial points are confined to one surface, they will not provide suf-
ficient information to solve for the coefficients of z in equation (27). In this
case, one can solve for a transformation consisting of a linear transforma-
tion in the plane of the specimen (which includes the 90° rotation) and small
rotations around the x- and y-axes:

(28)

where X and Y are matrices for rotation about the x- and y-axes like those
in equations (1) and (2). Here the equations are not linear, and a mini-
mization search can be used to find the transformation.

These transformations, which are based on the fiducial coordinates, are
not able to compensate for any non-linear changes in the volume between
the two tilt series. For large volumes (e.g. >1mm in extent), the fit between
fiducial coordinates deteriorates, often giving a mean error of >1 pixel and
larger errors in the periphery. This problem could be alleviated by fitting to
local sets of fiducials, just as in the case of local alignments. However, it is
preferable to use cross-correlation between the two reconstructed volumes,
for two reasons: (i) the material in the volumes is generally better distrib-
uted than the gold fiducials, so displacements between the volumes can be
measured at many more positions; and (ii) these correlations may give a
better registration between the structures of interest than the fiducials, par-
ticularly if some of the latter are located on a support film that changes dif-
ferently under the beam in comparison wih the embedded sample. The
procedure for using correlations is:

1. Obtain a transformation from the fiducial coordinates by fitting to
either equation (27) or equation (28).

2. Transform the second reconstruction into preliminary alignment
with the first.

3. Cross-correlate corresponding subvolumes between the first volume
and the transformed second volume at a 3D array of positions. For example,
the subvolume size might be 80 × 80 × 40 pixels, and there might be three
layers of subvolumes in z at 100 pixel intervals in x and y. An example of
the displacement vectors found by correlation appears in Fig. 7.

4. The correlations yield a set of corresponding positions in the two
volumes, which can then be fit according to equation (27) to obtain one
refining transformation. For large volumes, this global fit is still not very
good: for volumes ∼2 mm in extent processed with a 1 nm pixel size, the
mean error of the fit is typically 0.5–2.5 pixels. In these cases, it is necessary
to fit the same equations to subsets of the corresponding positions that are
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small enough to give a good fit. For example, equation (27) (or equation
(28) if appropriate) would be fit to every set of 4 × 4 × 3 corresponding posi-
tions. With this method of local fitting, the mean error can generally be
reduced to 0.18–0.35 pixel. This procedure yields an array of refining trans-
formations.

5. To produce the final transformed volume, each position in the
volume is located relative to up to four transformations centered at sur-
rounding locations, and a transformation is derived by interpolation from
those surrounding transformations.

This warping procedure can produce a seamless transformation of 
the second tomogram, essentially undoing the specimen distortions that
occurred between the first and second reconstructions. Provided that data
are transformed only once, directly from the original volume, warping does
not degrade the image quality any more than using a single linear trans-
formation or rigid rotations, since data must be interpolated in any case.

One might wonder how the fact that the two volumes are derived from
tilt series around orthogonal axes affects the correlations between them. A
local cross-correlation can be computed by taking the 3D Fourier transform
of each of the two subvolumes, forming the product of one with the complex
conjugate of the other, and taking the inverse Fourier transform.The Fourier
transform of each subvolume is missing a wedge of data due to the restricted
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FIGURE 7. Vectors representing the local displacements between the two single-axis
reconstructions of a double-axis data set, after the reconstructions have been regis-
tered using corresponding fiducial markers. The vectors are exaggerated in length by
a factor of 15. For clarity, only one-fourth of the data used for obtaining local trans-
formations is shown here. The reconstruction was a 4.2 × 4.2 mm area of a pancreatic
beta cell obtained by Brad Marsh.



tilt range, and these wedges are orthogonal to each other, so the conjugate
product of the transforms has two missing wedges. The primary effect of a
missing wedge is to elongate structures in z. By extension from the fact 
that a missing pyramid or cone gives less elongation than a missing wedge
(Mastronarde, 1997; Radermacher, 1992), one would expect a double missing
wedge to produce greater elongation than a single wedge.The peak in these
cross-correlations is thus probably substantially elongated in z. Despite this
elongation, the highest point of the peak can still be localized accurately
enough to give transformation fits with mean errors as low as 0.2 nm.

This method does have some disadvantages. The local correlation will
not work in areas without sufficient material; such areas must be excluded
from the analysis and they will consequently not align as well. Fortunately,
features of interest are rarely located in these areas. The size of the sub-
volumes needed for reliable alignment depends on the density of features
in the specimen and the resolution of the reconstruction, so it is difficult to
make this procedure completely automatic. Nevertheless, when tools are
provided for overcoming these drawbacks, local correlations give an intrin-
sically better registration between the two reconstructions from a dual-axis
tilt series than do the fiducial marker positions alone.

10. CONCLUSIONS AND COMPARISONS

Alignment with fiducial markers has two main strengths. Because fidu-
cial positions measured over the full range of tilt angles are fit to a single
set of projection equations, the alignment of the images is guaranteed to be
globally consistent. The method can be used to correct for anisotropic and
non-uniform changes of the specimen during the tilt series, thus allowing
reconstruction of large areas where such changes have a significant impact
on the quality of the reconstruction.

The fiducial marker method has several practical disadvantages. It can
be difficult to obtain an appropriate distribution of markers on the speci-
men. Colloidal gold particles are usually the densest material in a sample,
so they introduce artifacts characteristic of back-projection into the body
of the reconstruction, adding noise in the regions of interest. This effect 
can be alleviated by performing double-axis tomography, which reduces the
artifacts by making them more circularly symmetric (Mastronarde, 1997).
Another disadvantage of fiducials is the need to track their positions accu-
rately, a potentially labor-intensive step. Several methods for automatically
tracking fiducials have been developed (Brandt et al., 2001b; Fung et al.,
1996; Ress et al., 1999), suggesting that with concerted effort the labor
involved in this step can be reduced to a reasonable level or nearly elimi-
nated. Finally, depending on the complexity of the alignment, the use of
fiducial markers requires some skill in the choice of parameters and the
interpretation of results.
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The main alternative to alignment by fiducials is alignment by 
cross-correlating successive projections (Frank and McEwen, 1992;
Guckenberger, 1982), which can be refined by generating a tomogram and
correlating with reprojections from it (Owen and Landis, 1996; Taylor et al.,
1997; Winkler and Taylor, 2006). These methods face two major challenges.
First, the location of the tilt axis in z after alignment by correlation is deter-
mined by the average z height of the features that contribute to the corre-
lation, which can change through the tilt series. For example, suppose the
main structure in the volume is a curving sheet similar to a 120° segment
of a cylinder with its central axis parallel to the tilt axis, oriented so that the
sheet is vertical in the middle of the volume and oriented at 60° near the
top and –60° near the bottom of the volume. The projections of this sheet
include a sharp line at all angles up to ±60°, but this sharp line will origi-
nate from the middle of the volume at zero tilt and from near the top or
the bottom of the volume at the high tilt angles. With a correlation align-
ment, the tilt axis will shift progressively in z through the series. The second
challenge is that a reprojection contains information from only a limited
range (∼15°) of the views contributing to a tomogram (a consequence of
the central section theorem). It will therefore not provide significant infor-
mation for correcting the aliynment of views that are systematically out 
of register with ones many degrees away. In the example of the curving
sheet, correlating with reprojections will, to first order, simply recreate the
misalignment.

The main advantage of alignment with fiducials is that it guarantees 
a globally consistent alignment that correlation methods have difficulty
achieving. Indeed, a different approach to markerless alignment analyzes
images to find localizable features that may then be fit to the alignment
equations, potentially providing the same quality of global alignment as
with fiducial markers (Brandt et al., 2001a; Chapter 6 of this volume).
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Markerless Alignment in 
Electron Tomography
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1. INTRODUCTION

In computing high-accuracy reconstructions from transmission electron
microscope (TEM) tilt series, image alignment currently has an important
role. Though most are automated devices today, the imaging systems have
certain non-idealities which give rise to abrupt shifts, rotations and magni-
fication changes in the images. Thus, the geometric relationships between
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the object and the obtained projections are not precisely known initially. In
this chapter, image alignment refers to the computation of the projection
geometry of the tilt series so that most of the above deviations from the
assumed ideal projection geometry could be rectified by using simple 2D
geometric transformations for the images before computing a tomographic
reconstruction.

An accurate way to compute the image alignment is by using the con-
ventional colloidal fiducial gold markers. Marker-based alignment methods
are accurate, first, because gold beads can be localized very accurately due
to their spherical shape and typically high contrast to the background and,
secondly, the localization errors are averaged out if a large number of beads
is used (see Brandt et al., 2001b). However, it is not always possible to use
markers. The markers, being electron-opaque, can interfere with the recon-
struction (Frank et al., 1987). Moreover, even if markers were sprinkled on
the preparation, they might not be visible at all in an interesting part of the
preparation, or there might be too few of them to compute the alignment
parameters (Brandt et al., 2001a). Also, with freely supported objects, the
use of markers may be problematic (Liu et al., 1995).

In this chapter, we will consider automatic, marker-free image align-
ment methods designed to avoid the above problems of the marker-based
alignment methods. In fact, different kinds of markerless approaches have
been proposed. For instance, the cross-correlation-based alignment has
been used for a long time to compute the translational alignment for 
tilt series (see, for example, Frank and McEwen, 1992; Frank et al., 1987;
Guckenberger, 1982). A modern, completely different approach for the
problem is feature-based alignment (Brandt et al., 2001a; Brandt and Ziese,
2006), where automatically extracted points of interest are automatically
tracked through the image series to solve the alignment parameters. In our
taxonomy, the third category is formed by the 3D model-based methods
where the projection geometry is refined with the help of an intermediate
reconstruction (Brandt and Kolehmainen, 2004; Brandt et. al, in prepara-
tion; Dengler, 1989; Owen and Landis, 1996).

The organization of this chapter is as follows. The geometry of the
alignment problems is first briefly described in Section 2. In Section 3, we
review the cross-correlation-based alignment and the alignment by the
common line. Section 4 is devoted to feature-based methods and Section 5
to 3D model-based alignment. In Section 6, we present some alignment
examples, and concluding remarks are found in Section 7.

2. THE GEOMETRIC PROBLEM SETTING

For the TEM, a parallel projection model is usually assumed. The
general parallel projection model is also known as an affine camera model
and it includes the orthographic, scaled orthographic and para-perspective

188 SAMI S. BRANDT



projection models as special cases (see, for example, Xu and Zhang, 1996).
A general affine projection is an affine mapping of a 3D coordinate vector
x onto the image plane. The general affine projection model can be written
in the form

(1)

where is a 2 × 1 vector corresponding to the measured coordinates m on
the image plane, A is a 3 × 2 matrix and t is a 2 × 1 translation vector.

Assuming that the rows of A are linearly independent, A can be
decomposed into the form A = KPR with the help of the RQ-decomposi-
tion (Hartley and Zisserman, 2000), where K is a non-singular upper trian-
gular 2 × 2 matrix containing the intrinsic parameters of the affine camera
(Faugeras and Luong, 2001), P is the 2 × 3 orthographic projection matrix
and R is an orthonormal, 3 × 3 rotation matrix. Moreover, if we parame-
terize the rotation matrix by Euler angles, i.e. as a product of three basic
rotations by the angles a, b and g over the z-, y- and z-axes (or over the z-
, x- and z-axes if the second tilt projections are considered), respectively,
the model (1) takes the form

(2)

where Rα is a 2 × 2 rotation matrix, and Rβ and Rγ are 3 × 3 rotation matri-
ces (note, however, the discussion of the parameterization at the end of this
section).

The intrinsic camera parameter matrix K generally has three parame-
ters, which can be defined as 

(3)

where s is the scaling factor, x the aspect ratio and t the skew parameter
(Faugeras and Luong, 2001). The skew parameter allows a possible non-
orthogonality of the axes of the image plane to be taken into account. The
aspect ratio describes the possible difference in scaling along the x- and y-
axes of the image plane. However, for a unique solution of the general form,
a sufficient number of intrinsic parameters must be fixed (see Brandt and
Palander, 2005; Quan, 1996). To the author’s knowledge, skew has been for-
merly neglected in TEM imaging and, for many alignment schemes (both
marker and markerless), the aspect ratio is set to 1, thus, the camera param-
eter matrix has the form K = sI2×2.

We wrote the imaging model in the form (2) to illustrate the general
nature of the alignment problem and how different alignment approaches
relate to it. Using this construction, we consider the alignment problem as
finding the unknown parameters of the imaging model for each projection
image. Once the parameters are estimated, we may apply the following 2D
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geometric transformation for the projection images, i.e. the coordinates of
the points in the projection images are transformed by the formula

(4)

where maligned is the measured projection, corresponding to the 3D point x,
in the aligned coordinate frame, whose origin is the projection of the 3D
origin. By using this 2D geometric transformation for the observed images,
we ‘undo’ the 2D transformation part of the projection equation, i.e. the
effect of the intrinsic parameters of the ‘camera’ and the 2D rotation.

The correction model above has practical implications. In single-axis
tilting, for instance, one has used the projection model in a form where the
tilt axis is the y-axis in the 3D coordinate frame (Lawrence, 1992), which
corresponds to Rg being the identity matrix in equation (2). This transforms
the 3D reconstruction problem into a stack of 2D reconstruction problems,
making the problem easily parallizable.The approach to alignment by cross-
correlation has often considered an even more simplified setting such as
only correcting the translational term t, i.e. the rotation Ra is assumed to
be the identity matrix, and the rotation parameter is assumed to be fixed
for all the images, or the rotations are solved by different means (in the
single-particle reconstruction problem, 2D rotation alignment has been
computed, e.g. by cross-correlation in the polar coordinate plane, see
Section 3.4). Likewise, the magnification change and the other two intrin-
sic parameters are usually neglected in the cross-correlation alignment for
tilt series (see, for example, Frank and McEwen, 1992), i.e. it is approxi-
mated that K = I2×2.

On the other hand, for a double-tilt series, if we could assume that
the tilt axes are precisely the y- and x-axes of the 3D coordinate frame,
one could set Rg = I, if we define Rb as the 3D rotation over the y-axis for
the images in the first tilt and as the 3D rotation over the x-axis for the
second tilt, where b is the corresponding tilt angle parameter. In practice,
to take into account the possible non-orthogonality of the tilt axes (and
the projection direction), it should be recommendable to use the complete
3D rotation model in the computations (for more discussion about the
dual-axis tilting, see Section 4.3). By using the complete 3D rotation model
in equation (2), some deviations from the assumption of a perfect tilt axis
could also be taken into account in the single-axis geometry—however,
if the complete, three-parameter rotation model is needed in either a
single- or dual-axis alignment problem, it is not recommended to use the
Euler angle parameterization, as in equation (2). This parameterization 
for 3D rotations causes singularities for certain configurations that may
cause numerical problems in the parameter optimization (see Triggs et al.,
2000); a better way should be to use the quaternion parameterization
(Kuipers, 2002) or some other parameterizations where these problems are
avoided.

 m R K m taligned
T= −( )−
a

1 ,
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3. ALIGNMENT BY CROSS-CORRELATION AND 
THE COMMON LINE

The emphasis of this section is on the standard, cross-correlation-based
alignment (Frank and McEwen, 1992; Guckenberger, 1982). Hence, Section
3.1 presents the background and principle of the cross-correlation method,
and Section 3.2 considers its implementation in detail. In Section 3.3, we
review the principle of the common lines method as it has been proposed
for the alignment of TEM tilt series (Liu et al., 1995). In Section 3.4, we
discuss the problems and deficiencies of the cross-correlation and the
common lines alignment methods.

3.1. The Basic Idea of Cross-correlation Alignment

The cross-correlation alignment is based upon the use of the discrete
2D cross-correlation function that we here define in the form (see, for
example, Gonzalez and Woods, 1993)

(5)

where f and g denote the optical density measurements of two images and
M and N denote their width and height (see the discussion below about
zero-padding). If f and g are similar to each other up to a shift of r0 = (m0,
n0), the cross-correlation array h will have a maximum at that location. The
cross-correlation alignment problem principally means identifying these
maximum locations pairwise for the images in the tilt series, and these loca-
tions are taken as the estimates of the relative shift parameters. Once the
relative shifts have been found for a sufficient number of image pairs, the
image set can be aligned by identifying the relative shift between the ref-
erence view and each image, and then translating the images by the corre-
sponding negative shift values so that the relative shifts become zero.

3.2. Implementation of Cross-correlation Alignment

In practical implementations, certain image processing tasks must be
used to obtain robust and fast computations. Such tasks include, for example,
image pre-processing, computation of the Fourier transform and peak detec-
tion. The basic algorithm can be modified in many ways, so in the following
we try to discuss the general idea of the algorithm and the related imple-
mentation issues from our perspective rather than trying to describe it
exactly in the form it has been proposed in the literature.A flow chart of the
idea of the cross-correlation-based alignment is shown in Fig. 1.

Cross-correlation alignment is based on pairwise processing of the
images to compute the relative shift between each image pair. In order to
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obtain a robust and accurate estimate for the relative shift parameter, i.e.
a strong and narrow correlation peak, often only the neighboring images
are compared in the tilt series. Alternatively, one could set one image as a
fixed reference to which the relative shifts are measured (Saxton et al., 1984)
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however, that in practical implementations, it is worth processing the images pairwise
to compute the relative shifts between the images pairs, not all together as the chart
might suggest. The final shift estimates, with respect to the reference view, are then
formed from the relative shift between the selected image pairs. 



or use additional shift measurements rather than those of only the nearest
image pairs (Saxton, 1994). As soon as all the relative shifts between the
neighboring images have been estimated, the overall shifts, with respect to
the reference view, can be computed. In the following, it is described in
detail how the relative shift between two images is computed.

To avoid wraparound and boundary effects, the representation of the
images should be first considered. In signal processing, a conventional way
would be to mean-correct the images (i.e. shift the gray values so that the
mean gray value becomes zero), use a suitable window function and extend
the modified images by zero-padding. If the original images are large
enough, the wraparound error can also be avoided by selecting a smaller 
rectangular window, which is correlated with the other image, while those
regions where wraparound occurs are finally neglected. Alternatively, other
versions of the correlation such as the mutual or phase-doubled correlation
function (Saxton, 1994; Taylor et al., 1997; van Heel et al., 1992; Winkler and
Taylor, 2003) could be used. As a pre-processing technique, low-pass and
high-pass filtering have also been used to reduce noise sensitivity (Frank and
McEwen, 1992; Frank et al., 1987) and to suppress the effect of the shape of
the specimen (referred to as ‘rooftop’ effect, see Saxton and Frank, 1977).

A common practice in the cross-correlation alignment is to stretch 
the images by the factor of 1/cos(b) in the perpendicular direction of the
tilt axis, where b is the assumed tilt angle of the projection in question
(Guckenberger, 1982). The stretching is performed to compensate for the
fore-shortening of an object lying on the preparation, when viewed from
different directions (see Fig. 2). The compensation thus assumes that the
imaged object is flat and the viewing direction corresponding to the tilt of
0° is parallel to the sample plane normal.

Depending on the quality of the image data, the stretched images are
then filtered by a suitable digital filter. The filtering is meant to enhance the
relevant information of the images, to remove scanning artifacts, as well as
to reduce noise sensitivity of the approach. It is worth performing the fil-
tration in the Fourier domain as is done for the cross-correlation; see below.

Instead of computing the cross-correlation directly based on the defi-
nition given in equation (5), it is computationally more efficient to employ
the correlation theorem. In Fourier space, we get the cross-correlation
image for the pre-processed images from

(6)

where H, F and G are the discrete Fourier transforms, typically computed
by the fast Fourier transform (FFT) algorithm. The correlation image h is
obtained by the discrete inverse Fourier transform of H(u,v).

To find estimates for the shifts, the peak detection is performed for the
correlation image h(m,n). The precise peak location can be computed in
various ways but, in principle, the maximum location is searched, after

H u v F u v G u v, , * , ,( ) = ( ) ( )

MARKERLESS ALIGNMENT 193



which the center of gravity of the neighborhood of the maximum is com-
puted to obtain a subpixel level estimate for the location. To compute the
center of gravity, the neighborhood must be segmented from the correla-
tion image. In practice, one may use circular or elliptical masks using the
user-specified radius or lengths for the principal axes (Frank and McEwen,
1992).Alternatively, the segmented area could be found by thresholding the
correlation image. After estimating the peak location, its coordinate values
need to be unstretched by the factor of cos(b) in the perpendicular direc-
tion of the tilt axis, to invert the cosine stretching specified above.

3.3. Alignment by the Common Line

Another technique for determining the alignment for electron micro-
scope tilt series is based on the concept of common lines (Crowther, 1971;
Crowther et al., 1970). The cross-correlation has been reported to be better
suited for translational alignment than rotational alignment (Liu et al.,
1995); the common line approach can be used as an alternative way of
determining the rotational alignment (see also Owen and Landis, 1996).
Common lines techniques have been used frequently in estimating the 
projection directions to facilitate singe-particle reconstructions (see,
for example, Crowther et al., 1970; Kenney et al., 1997; Lauren and 
Nandhakumar, 1997; Lindahl, 2001; van Heel, 1987), but this section will
focus on how the common line technique was proposed (Liu et al., 1995) to
be utilized in the alignment of a single-axis tilt series.

The common line technique is based on the Fourier slice theorem (see,
for example, Kak and Slaney, 1988), which states that each 2D projection
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FIGURE 2. Schematic illustration of the image stretching to compensate for per-
spective distortions of a planar object when viewed from different directions. 



image corresponds to a 2D central section in 3D Fourier space. When the
projections have been aligned, i.e. they have been put into the same spatial
coordinate frame, the corresponding sections intersect on a single line in
Fourier space, which is called the common line of the tilt series (Fig. 3).
The idea of the common line alignment of Liu et al. (1996) is hence the
common line in the projections, by using the projection theorem once
again, and using the implied property that there is a 1D profile in the 2D
projection images that is common to all the projections in the tilt series
(Fig. 4).

Let f(x,y) represent the piecewise continuous 2D projection image rep-
resenting the ray attenuation measurement. The Radon transform R of the
image is represented by 

(7)Rf f x y x y dxdy( )( ) = ( ) − −( )
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FIGURE 3. Illustration of the relationship between the tilt series and the Fourier trans-
form of the 3D object. The 2D Fourier transforms of the projection images correspond
to a pencil of planes in the Fourier space that intersect at a single line called the
common line.



where d denotes the Dirac delta function. The function obtained, Rf, is also
called the sinogram of f. Consider the 1D density gi(r) = (Rf)(r –ri,j i) cor-
responding to the image i. The common 1D projection for each view is
defined by the parameter pairs (ri,j i), for which ideally the relationship
holds

g1(r) = g2(r) = . . . = gN(r) for all r; (8) 

hence, the alignment problem is posed as finding these parameter pairs for
each view.

In a practical implementation, one has to use discrete sinograms and
take into account the fact that the realizations for the common 1D projec-
tion will not be identical due to measurement errors. Liu et al. (1995) pro-
posed an iterative scheme that alternates between the shift and rotation
refinement. The relative shift of the first view is fixed as the reference (r1 =
0), and the remaining shift parameters are updated by such estimates that
maximize the correlation coefficient between the current estimate of the
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real space interpretation for the common line.



1D reference profile and 1D profiles of the other views. Correspondingly,
the rotation estimates are updated for each view by determining the angle
that maximizes the correlation coefficient of the 1D common profile of a
view and the mean profile of the other views. More details of the algorithm
can be found in Liu et al. (1995).

3.4. Discussion of the Cross-correlation and Common 
Line Approaches

The primary advantage of the cross-correlation-based alignment is that
it is fast and straightforward to implement. The correlation theorem and
FFT are the algorithmic tools that speed up the practical computations. In
addition, binning the images lightens the computational load, although it
compromises on the achievable accuracy level. In general, the cross-
correlation-based alignment provides moderate accuracy for thin samples
when only translational alignment is needed.

Naturally, problems occur when the assumptions of the method are not
met.The cross-correlation alignment implicitly assumes a planar object, and
the accuracy is adversely affected, if the sample thickness is not negligible.
Usually there are also other inaccurate parameters, in addition to the shift
parameters, that need to be corrected. Not only in-plane rotations and 
magnifications but also the tilt angles may be inaccurately known due to
mechanical and optical inaccuracies of the imaging system. Moreover, since
the images are compared pairwise in the correlation-based alignment, the
accumulation of the error in the estimated parameters has been another
problem in the cross-correlation-based alignment.

In principle, one could extend the cross-correlation alignment to
handle rotation and magnification changes, but a direct extension results in
the addition of the dimensionality of the search space. Therefore, iterative
correlation-based translation and rotation alignment has been also consid-
ered (Frank, 1980) to take small rotational deviations into account. Alter-
natively, one could perhaps employ the 2D correlation-based alignment
methods, used in the single particle analysis (see, for example, Cong et al.,
2003; Joyeux and Penczek, 2002; Penczek et al., 1992); however, the 2D rota-
tion corrections would be only relative between image pairs, i.e. it seems to
remain problematic how to solve the absolute orientation of the tilt axis.

The common line alignment method for tilt series was reviewed above
as an alternative method for the cross-correlation alignment. It should be
noted, however, that the common line method reveals, in addition to the in-
plane rotation parameter, only one shift parameter in the direction of the
tilt axis for each image.The other shift parameter has to be known or found
by different means. In the experiments by Liu et al. (1995), the other shift
parameter was revealed by computing the center of mass of the object in
the direction perpendicular to the tilt axis. The common line method for
alignment of tilt series was unfortunately also reported to be unreliable
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unless the specimen is freely supported so that the object has sharp bound-
aries and only faint background visible on the projections (Liu et al., 1995).

To deal with the problems with the alignment methods above, several
modifications have been proposed. Certain modifications to the correlation
function were used, e.g. by Taylor et al. (1997) and Winkler and Taylor
(2003); their alignment approach was based on area matching, however. A
hybrid method for first solving rotational misalignment by fiducials was pro-
posed by Frank et al. (1987). Owen and Landis (1996) combined the cross-
correlation and the common line method, where they first solved the
translational alignment by cross-correlation and then the rotational align-
ment by the common line alignment. However, Owen and Landis (1996)
computed their final alignment using a different approach, based on the
idea originally proposed by Dengler (1989) (see Section 5). In that itera-
tive method, the alignment is refined by alternating the computation of
reconstruction and correlation between the modeled projections and meas-
ured projections.

For general 3D objects and sample motions, the cross-correlation-
based alignment is unfortunately invalid (see, for example, Brandt and
Ziese, 2006). Likewise, the common line method also has problems as
described above. Proper automatic alignment without fiducial markers may,
however, be achieved by a completely different approach, based on feature
tracking, that is the subject of the following section.

4. FEATURE-BASED ALIGNMENT

In this section, we discuss a modern approach to image alignment for
electron tomography. Since the approach is based on feature tracking, it
avoids most of the problems described above. On the other hand, the price
is paid in the computational cost of the method.

4.1. Background

As accurate alignment can be achieved by using colloidal gold fiducial
markers, a natural question is if there are some other points in the images
that could be used as markers if conventional gold markers cannot be used.
The answer is affirmative, and, in fact, the alignment problem is one form
of the classical problem known as the structure-from-motion problem in the
computer vision discipline, which has been intensively researched during
the last two decades. The principal idea of such marker-free, feature-based
alignment is to track certain points of interest in the images, points that can
be automatically extracted from the images. A feature-based approach for
TEM image alignment was proposed by Brandt et al. (2001a), and the work
was further developed by Brandt and Ziese (2006). Flow graphs of these
two feature-based approaches are displayed in Fig. 5.
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The most demanding problem in marker-free, feature-based alignment
is, however, finding correspondences between the extracted points such that
the correspondence sets would be at least nearly free from mismatches.The
previous approaches (Brandt and Ziese, 2006; Brandt et al., 2001a) there-
fore have the following characteristics: first, initial feature-point corre-
spondences between close-by image pairs or triplets are established by
using the correlation of intensity neighborhood of the points, perhaps on
several resolution scales, and certain constraints in the location where the
corresponding feature point must lie in the other view(s). Secondly, the 
geometric constraints—either the epipolar or the trifocal constraints of
close-by views—are estimated that are used to constrain the final corre-
spondences, and hence, reliable, mostly correct point tracks should be
obtained. As soon as reliable point tracks are found in this way, parameter
optimization follows, also known as bundle adjustment, where the actual
alignment parameters are estimated.

4.2. Description of the Method

Let us now take a closer look at the feature-based alignment method.
In this section, we will, however, emphasize the overall idea, which we con-
sider the most important, rather than trying to report all the details that can
be found from the original works (Brandt and Ziese, 2006; Brandt 
et al., 2001a) and the references therein.

4.2.1. Feature Point Extraction

The first step in the feature-based alignment is to extract points of
interest from the images. Suitable points of interest should have repeatable
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occurrence and be well localizable in the images. Standard features in geo-
metric computer vision are the Harris corner features (Harris and Stephens,
1988; Schmid et al., 2000), which are computed from the local auto-
correlation function of the image intensity gradient. The cornerness
measure is here defined as 

C = det Rxy – k trace Rxy (9)

where Rxy is the smoothed autocorrelation matrix

(10)

Ix and Iy are the x and y components of the image intensity gradient, and h
is a 2D Gaussian smoothing kernel. The local maxima of the cornerness
measure are taken as the points of interest, while the sensitivity of the oper-
ator can be adjusted by the parameter k.

4.2.2. Feature Matching

After the features have been extracted, the correspondences between
the independently computed point sets of image pairs have to be found. In
Brandt et al. (2001a,b), the Harris features were matched comparing the
intensity neighborhood of the feature points by correlation, and a more or
less consistent set was found by employing the relaxation algorithm of
Zhang et al. (1994). However, to our present knowledge (Brandt and Ziese,
2006), a much better way is to use multiresolution cues of the intensity
neighborhood of feature points. The principle of the latter algorithm is
hence summarized below.

Having an image pair and a set of feature points for both images, a
multiresolution pyramid is formed by down-sampling the images by the
factors of 2, 4, 8 and 16. For each feature point in one image, only those
feature points in the other view are selected as possible matching candi-
dates that lie inside a selected search area. The intensity neighborhoods of
the point in the first view and all the matching candidate points in the
second are compared by computing the normalized correlation coefficients
(Gonzalez and Woods, 1993) on all the resolution scales. Those point pairs
are taken as the putative correspondences that have the maximum mean
correlation scores over all the resolution scales and for which the correla-
tion scores exceed certain threshold values on each scale. It is additionally
required that the selected point pair must also be found if the order of the
matched image pair is swapped.

4.2.3. Estimation of the Geometric Constraints

In previous works, we have utilized the two-view, epipolar constraint
(Brandt et al., 2001a) and the three-view, trifocal constraint (Brandt and
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Ziese, 2006) to create reliable point tracks from point correspondences.
These geometric constraints can be represented by a tensor, which is a 3 ×
3 matrix F called the fundamental matrix in the two-view case, and a 3 × 3
× 3 tensor T in the three-view case, called the trifocal tensor (see, for
example, Hartley and Zisserman, 2000).As soon as the geometric constraint
is known, the projection matrices of the two or three views can be recov-
ered, yet only up to a projective transformation, or affine transformation in
the case of an affine camera.

In practice, knowing the two-view constraint tells the corresponding
line in the other view where the correspondence for a point in the first view
must be. In fact, the epipolar constraint can be represented by the bilinear
equation m′TFm = 0 which holds for any matching point pairs m and m′
(here in the homogeneous form) in the two views.The three-view constraint
is even stronger than the two-view constraint: for instance, the knowledge
of the projections of a 3D point in two views and the trifocal constraint gen-
erally imply the location of the projection in the third view. As the trifocal
constraint is richer that the epipolar constraint, there are several algebraic
incidence or trilinear relations related to it (see Faugeras and Luong, 2001;
Hartley and Zisserman, 2000).

Since the geometric constraints are initially unknown, they must be
estimated from the views. The estimation is typically performed using puta-
tive point correspondences between the views (see also Brandt et al., 2001;
and Brandt and Ziese, 2006), but other types of correspondences, such as
curve matches, could be additionally used. Since automatically determined
correspondences almost unavoidably contain mismatches, the constraint
estimation method should be robust against the occurrence of such mis-
matches. In the computer vision community, popular robust estimation
methods are, for example, Random Sample Consensus (RANSAC) (Fishler
and Bolles, 1981) and Least Median of Squares (LMedS) (see, for example,
Xu and Zhang, 1996). In the two-view and three-view geometry estimation
problem, we have used the Maximum Likelihood Robust Estimator
(MLRE) (Brandt, 2002).

As knowing the two- or three-view affine tensor is equivalent to
knowing the affine projection matrices of the views, up to an affine ambi-
guity, the least-squares solution for the affine geometry can be recovered
by the classic factorization algorithm of Tomasi and Kanade (1992). In 
our recent work (Brandt and Ziese, 2006), we therefore used our robust
extension (MLRE) of the factorization algorithm, utilizing the 
equilibration principle (Irani and Anadan, 2000; Mühlich and Mester,
2001), to recover the affine three-view geometry. The epipolar geometry
could also be estimated in this way. In fact, we did not use the trifocal
tensors directly after the estimation but used only the match probability
estimates, which are given as a by-product of MLRE, for selecting those
putative point match triplets that were consistent with the estimated tri-
focal geometries.
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4.2.4. Feature Tracking

After the geometry constraints have been estimated, the feature tracks
are formed from point correspondences that are consistent with the esti-
mated geometric constraints. In Brandt et al. (2001a), a multiresolution
algorithm was proposed that utilized the recovered epipolar geometry in
establishing the final correspondences.The most recent work by Brandt and
Ziese (2006) used another, relatively reliable multiresolution algorithm 
for computing the initial correspondences, so no further matching needed
to be performed after the trifocal geometry estimation and the match 
selection.

In the epipolar alignment (Brandt et al., 2001a), the images were pair-
wise, sequentially matched. However, to obtain more matches and longer
tracks, one should not only process the images sequentially starting from the
image pairs 1–2, 2–3, 3–4, . . . or image triplets 1–2–3, 2–3–4, 3–4–5, . . . but
also process longer steps such as 1–3, 2–4, . . . or 1–3–5, 2–4–6 . . . In this way,
as was done by Brandt and Ziese, a larger amount of reliable tracks may be
established with a wide angular coverage. After matching all the selected
view pairs or triplets, the obtained matches were only rearranged into point
tracks from which the alignment parameters were finally optimized.

4.2.5. Parameter Optimization

The final phase in the feature-based alignment is the step where the
actual alignment parameters are estimated; the problem is also known as
bundle adjustment (see Triggs et al., 2000).The same model i

j for the meas-
ured feature point coordinates i

j can be used as have been used with fidu-
cial markers (Lawrence, 1983, 1992). We have used it in the form 

(11)

where si is the scaling parameter of the view i, R i
a is a 2 × 2 rotation matrix

parameterized by the rotation a i, P is the orthographic projection matrix,
R i

b is a 3 × 3 rotation matrix (around the y-axis) depending on the tilt
parameter b i, xj is the 3D coordinate vector of the point j, and ti is the trans-
lation vector.

We first compute the least-squares estimates for the unknown param-
eters by minimizing 

(12)

by using standard optimization tools for non-linear least-squares. Recently
(Brandt and Ziese, 2006), we have used the trust region method (Coleman
and Li, 1996) as it has been implemented in Matlab Optimization Toolbox
(Matlab, The MathWorks Inc., Natick, MA, USA). The least-squares cost
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function is, however, not robust, i.e. for a gross error in the measurements
such as false point matches, the alignment results easily deteriorate. There-
fore, we refine the least-squares estimates by robust estimators.

A robust solution can be obtained, for instance, by M-estimators, where
the squared cost function in equation (12) is replaced by another function
of the residual that is less sensitive to outliers. Let us first rewrite the cost
function in the form 

(13)

where ek denotes a scalar residual value. We replace the squared cost func-
tion r(x) = x2 by another function of the residuals such as the Huber M-
estimator (Huber, 1981; Xu and Zhang, 1996) 

(14)

where we have used the value 1.345, corresponding to the 95% asymptotic
efficiency, for the tuning constant k. We have used the same optimization
algorithm in minimizing the robust cost function as we used for the least-
squares minimization. In Brandt and Ziese (2006), we additionally chose
the heuristic to refine the solution by a few iterations with Cauchy, Welsch
and Tukey M-estimators.

In the least squares optimization, we suggest initializing the scale
parameters to unity, rotations to zeros, tilts to the assumed values, transla-
tions to the center of the images and the 3D coordinate vectors such that
their x- and y-coordinates represent the centroids of the found projections
and the z-coordinates are initialized to zero. As far as the parameterization
is concerned, since we may set the location of the 3D origin to an arbitrary
position, we fix it to the 3D location of the first point because this selection
has certain advantages in the optimization (see Brandt and Ziese, 2006).
Likewise, we suggest fixing the reference tilt to zero.

4.3. Discussion of the Feature-based Alignment

Feature-based methods provide an alternative approach for image
alignment to facilitate electron tomographic reconstruction. The feature-
based alignment is technically similar to the gold marker alignment, and
therefore a good level of accuracy should be obtained. In both approaches,
certain points are tracked through the image set and, once the correspon-
dences have been established, the alignment parameters are optimized 
for the image set. The principal difference between the marker- and 
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feature-based methods is that the localization and matching of the features
are more difficult in the latter case.

Features such as Harris corners normally localized less accurately than
gold beads, but the decrease in accuracy can be compensated by using a
much larger number of feature points than there would be markers avail-
able. Naturally, fully automatic feature matching makes mistakes, although
the probability for a false match might be small. Therefore, it is important
that the cost function (equation 13) is robust in the alignment parameter
optimization. In the latest development, the trifocal alignment has shown
even better results than were achieved by manual marker picking in some
of our experiments. This is encouraging, especially considering the cases
where the use of markers is neither possible nor preferable.

It might also be a good idea to use a robust cost function if object defor-
mations are expected in the image series. In this way, small non-rigidity of
the specimen or the specimen support might not cause appreciable inaccu-
racy, if the deformation is not on the area of interest, and the deformation
could be automatically handled (Brandt et al., 2001b). One could also intro-
duce additional weights for certain features, stressing the most important
area of the images so that the objects inside the area would be most accu-
rately aligned.

Marker- and feature-based alignments could also be combined in a
trivial way. In this case, since marker localization is normally better than
that of feature points, one should replace the distance function in equation
(12) by the Mahalanobis distance to put more weight onto the markers. In
addition, types of features other than Harris corners could be considered.
For instance, line and curve matches could be searched over multiple views,
as in the way proposed by Schmid and Zisserman (2000) or Shan and Zhang
(2002). However, in this case, the alignment method may become more
complicated and more difficult to handle.

Compared with the cross-correlation alignment, there is greater flexi-
bility in feature-based methods since it is straightforward to take almost
arbitrary 3D geometries and projection models into account by modifying
equation (11). For instance, this classic model (Lawrence, 1983) assumes
that there are only two unknown degrees of freedom in the rotation matrix
corresponding to one view. Due to non-ideality of the imaging device, one
could instead optimize over all the three parameters of a general 3 × 3 rota-
tion matrix. In this case, one should, however, be careful in the rotation
parameterization, as discussed earlier in this chapter (see Triggs et al., 2000).

Double-tilt tomography (Mastronarde, 1997; Penczek et al., 1995) could
also be implemented by feature-based methods. Instead of aligning the two
tilts separately and solving the relative 3D geometries of the two tilt series
in a later stage, as in Penczek et al. (1995) and in Mastronarde (1997), a
direct way would be to optimize the alignments of the two tilt series simul-
taneously as one optimization problem. In practice, the correspondences
between the two tilt series should be additionally established. These corre-
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spondences could be found by using a similar matching procedure, as
described in this section, for image pairs being in different tilt series but
having close projection directions.

The computational cost of the feature-based methods is relatively high
when compared with the traditional cross-correlation-based alignment
methods. The bottleneck is in the multiresolution feature matching since a
large number of point pairs must be compared, on several resolution scales,
using the normalized correlation of the image intensity neighborhood. The
computation can be reduced by using cross-correlation pre-alignment. If the
images are pre-aligned and one additionally uses,at least implicitly, the cosine
stretching, a smaller search window could be used, i.e. the region in the image
where the matching point correspondence is searched could be set smaller.

Although the feature-based methods should in many cases provide an
accurate alignment of conventional electron microscope tilt series of criti-
cal-point-dried samples or sections, there are cases where they may fail.
Probable failure occurs, for instance, when the signal-to-noise-ratio of the
image is poor. This is due to the fact that the Harris corner detector is not
tolerant to a high noise level simply because image noise not only causes
false responses but also devastates the good ones. Effectively, a large noise
level may occur in negatively stained preparations and cryoimage series.
Some of the problems can be avoided by using noise removal such as
Wiener filtering (see Lim, 1990), but, as a rule of thumb, there should always
be some detailed structure visible by eye in the images, to ensure that
feature-based methods could work with the image set.

5. 3D MODEL-BASED APPROACHES

As discussed above, there are cases where neither cross-correlation nor
feature-based methods give satisfactory alignment results. For some of
these cases, the third family of solutions, according to our categorization,
might provide a solution. In this section, we discuss methods that are based
on the idea of building an intermediate 3D model of the object as a refer-
ence that is then reprojected onto the image plane to which the original
projection images are aligned. At the end of the section, we discuss a uni-
fication of the approaches.

The idea of using the reconstruction as a model to refine the projec-
tion alignment is, in fact, relatively old. For instance, Saxton et al. (1984)
used the estimated 3D model of a crystal to refine the cross-correlation
alignment of the tilt series. In their approach, the initial alignment was
obtained by cross-correlation, and the computation of the alignment refine-
ment took place in Fourier space. The shift parameters were refined by
comparing the plane section of the accumulated 3D model, at the appro-
priate angle in the Fourier space, with each projection image and finding
the location of the correlation peak.
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Dengler (1989) proposed a multiresolution or coarse-to-fine approach
where the scale and rotation parameters, in addition to the translation
parameters, were also estimated. The 3D models were created by using an
extended filtered back-projection algorithm starting from the lowest reso-
lution images from the Gaussian pyramid representation of the projections.
The alignment parameters were refined by minimizing the approximate
sum of squared errors between the modeled and the measured projections
over the unknown alignment parameters, starting from the lowest resolu-
tion scale. Because the method is based on the coarse-to-fine approach, pre-
alignment is not as crucial as it would be for an algorithm that used only
the finest resolution.

The alignment method of Owen and Landis (1996) is based on a similar
principle to that of Dengler (1989); their implementation was reported to
be similar to those used in single-particle analysis. However, Owen and
Landis (1996) computed their initial translation parameter estimates by
cross-correlation (Guckenberger, 1982) and the rotation parameters by the
common line method (Liu et al., 1995). Moreover, the 3D reconstruction
was computed using the simultaneous iterative reconstruction technique
(SIRT) (see, for example, Kak and Slaney, 1988), as it has been implemented
in SPIDER (Frank et al., 1981a, 1996), and the alignment parameters were
finally refined in an interative way using the 3D model and the correlation
techniques used in single-particle analysis (Frank et al., 1981b).

Winkler and Taylor (2003) also considered an iterative refinement of
the alignment that is based on references that are computed form back-
projected images. Their work was principally focused on thin specimens
such as sections and 2D crystals, and the initial alignment is based on area
matching, as proposed by Taylor et al. (1997). The refinement was carried
out by maximizing the cross-correlation coefficient between the alignment
reference and the aligned image, and different modifications of the corre-
lation functions were considered in the work (Winkler and Taylor 2003).

Brandt and Kolehmainen (2004) proposed yet another principle for
imaging geometry estimation from tomographic projections that can be
seen to belong to the category of this section. The approach is based on the
utilization of the Bayesian, statistical inversion theory to solve the motion
parameters so that the result would be consistent with the imaging model
and the reconstructed structure. In Brandt and Kolehmainen (2004), a sim-
plified setting of 1D projections of a 2D object was considered. However,
we are currently investigating an extension of this approach to electron
tomography to solve the image alignment with 2D projections of a 3D
object.The preliminary results are encouraging and they are to be published
soon (Brandt et al., in preparation).

Finally, we already see a certain unification in the development of
alignment. The 3D model-based approaches have been used widely in
single-particle reconstruction, also referred to as projection matching
(Penczek et al., 1994). In fact, Yang et al. (2005) recently proposed using the
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quasi-Newton algorithm to optimize the reconstruction and orientation 
of the object simultaneously by constructing the gradient of the objective
function, though partly numerically. Their approach is somewhat close to
that of Brandt and Kolehmainen (2004), although the works by Brandt and
Kolehmainen (2004) and Brandt et al. (in preparation) provide more
general statistical treatment for the 3D model-based alignment problem.

To summarize, we believe that the model-based approaches for image
alignment are promising because the image intensity measurements are all
taken as they are and the unknown parameters including the 3D model are
just fitted to conform, possibly with a statistically sound criterion, with the
observations. There are at least two drawbacks to this approach: that they
are relatively heavy computationally and that there is generally no guar-
antee for finding the global minimum of the cost function; the geometry
parameter initialization therefore has an important role.

6. ALIGNMENT EXAMPLES

In this section, we show some alignment examples by using some of
the methods introduced above. In the experiments, we use the same criti-
cal-point-dried microvillus as used in the experiments of Brandt et al.
(2001a), which is a freely dangling detail of a whole-mounted critical-point-
dried cell, prepared as described in Engelhardt (2000). An sample image
from the tilt series is shown in Fig. 6. The tilt series was taken in 3° incre-
ments from –60° to + 6° with a voltage of 120 kV and a magnification of
50,000× on a film, and manually digitized by a scanner. The image size was
1200 × 2300 pixels, with the pixel dimension, on the object scale, of 5.1Å.

The series is an example of a situation where an automated image
alignment procedure is needed. The microvillus had been immunologically
gold labeled by 3 nm (ezrin) and 6 nm (mucin) beads, but these were so
densely clustered that marker alignment would have been very difficult and
inaccurate in practice since, at best, only three markers could be manually
picked from the set (Peter Engelhardt, personal communication). The set
contained some additional gold particles of 1.4 nm, which were hardly
visible in an individual projection image, but they provided an additional
tool for us to inspect the quality of the reconstruction.

In Brandt et al. (2001a), it was reported that the epipolar alignment, in
the form as it was proposed at that time, is not as accurate as marker-based
methods.This was due to the fact that, in the epipolar alignment, the feature
tracks were relatively short, the localization of the Harris corner points was
less accurate than markers, and a robust cost function was not used in the
parameter optimization. The alignment inaccuracy was visible in the
microvillus reconstruction, shown in Brandt et al. (2001a), in that the recon-
struction was clearly stretched in the depth axis direction. Since the epipo-
lar alignment was not completely satisfactory at that time, it is interesting
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to experiment with the same tilt series again to compare the cross-
correlation-based alignment, epipolar alignment as well as our feature-
based state-of-the-art method, the trifocal alignment.

We first aligned the set by cross-correlation using the IMOD software
package (Kremer et al., 1996). We used the basic version of the algorithm
to find the translational shifts, but manually hand-tuned the orientation of
the tilt axis (one parameter, common for all the images in the set). Addi-
tional hand-tuning might have produced a better alignment, but we did not
go in that direction since our preference is for fully automatic procedures.
However, because the microvillus set had been taken on a film, which was
manually digitized by a scanner, there was additionally relatively large devi-
ation in tilt axis orientation, if compared with the rotation deviation one
would typically expect with a CCD camera.

By both feature-based methods, more than 30,000 Harris feature points
were successfully matched with both the epipolar and trifocal alignment
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FIGURE 6. An sample image from
the tilt series. The tilt axis approxi-
mately coincided with the vertical axis
of the image. Courtesy of Dr Peter
Engelhardt.



methods. However, as the histogram of the track lengths shows in Fig. 7, the
established tracks were much shorter with the epipolar alignment than with
the trifocal alignment method. In addition, due to the earlier optimization
setting, the shortest tracks with the lengths 2 and 3 had to be omitted in the
epipolar alignment computations, so there were only 7716 measurements
in the epipolar alignment that were finally utilized. In contrast, 32,242 
measurements were utilized in the trifocal alignment where they satisfy a
stronger geometric constraint; hence a much more accurate alignment could
be expected.

We evaluated the three alignment methods by computing the filtered
back-projection reconstructions of the microvillus by IMOD (Kremer et al.,
1996). In Fig. 8, there are six slice planes representing the reconstructed
cross-sections from top to bottom of the microvillus. As can be seen, the
feature-based alignment was able to give better reconstructions, of which
the one obtained by the trifocal alignment is clearly the best. The align-
ments tended to be most inaccurate for the top and bottom slices, proba-
bly due to the fact that the measurements, on average, mostly represent the
middle part of the object. In addition, in the third row of Fig. 8, the 1.4 nm
gold particle is well distinguishable only at the trifocal reconstruction. In
fact, our current experience with trifocal alignment is that the level of 
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FIGURE 8. Cross-sections of the filtered back-projection reconstructions of the micro-
villus corresponding to the (left) cross-correlation alignment with hand-tuned orienta-
tion of the tilt axis, (middle) the epipolar alignment and (right) the trifocal alignment.



accuracy it provides is usually comparable with the level of accuracy that
can be achieved by using fiducial markers. For certain samples, even hun-
dreds of thousands of feature point measurements can be used (Brandt and
Ziese, 2006) which should imply, if the assumptions made are valid, a very
high level of accuracy because the estimation error decreases due to the
averaging of the measurement noise.

7. CONCLUSIONS

In this chapter, we have discussed automatic image alignment in elec-
tron tomography. We started by reviewing the principles of conventional
cross-correlation-based image alignment methods and the common line
method as it has been proposed for the alignment of TEM tilt series. Then
we continued by describing the second category in our taxonomy, i.e. the
feature-based alignment approaches, after which we reviewed the third cat-
egory for image alignment that we refer to as 3D model-based methods.
For all the three categories, we discussed the strengths and weaknesses of
the approaches. Finally, we showed some alignment examples. Let us now
summarize the main points of this chapter.

The cross-correlation alignment method is one of the earliest image
alignment methods in electron tomography. At present, it is computation-
ally fast and straightforward to implement, at least when only translational
alignment is needed. However, the method is usually found to be less accu-
rate than fiducial-based alignment methods because of, among other things,
sequential alignment and error accumulation. The method is also less
appropriate for thick samples, because the 2D projections of an object are
similar generally, after the cosine stretching, only if the samples are rela-
tively flat. The common line method (Liu et al., 1995) is an alternative 
for alignment of tilt series, where it can be used to estimate the plane rota-
tion and the shift parameter in the direction of the tilt axis. The cross-
correlation and common line methods have been additionally used together
as a pre-alignment method (Owen and Landis, 1996).

Feature-based methods form a modern approach for automatic image
alignment in electron tomography.The alignment problem can be seen as one
form of a more general computer vision problem known as the structure-from-
motion problem or, alternatively, as an extension of the fiducial-based tech-
niques where automatically extracted features are used instead of fiducials.The
feature-based alignment methods are currently based on the construction of
reliable feature tracks over the image sequence using the available geometric
constraints of a small number of views (Brandt et al. 2001a; Brandt and Ziese,
submitted).When the feature tracks have been established,the total projection
geometry of the image set can be solved,and images aligned.

At present, our experience is that the latest feature-based alignment
(Brandt and Ziese, 2006) is usually able to give a competitive level of accu-
racy when compared with the fiducial alignment in single-axis electron
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tomography of critical-point-dried specimens of whole mounts and sections.
Cases where the feature-based alignment is not expected to work include at
least the cases where feature detection fails, e.g. due to noise, or where the
image intensity neighborhood does not give enough information to obtain a
sufficient number of reliable point correspondences. Another possible case
of failure may occur due to the inaccuracy of the geometry estimation or due
to the final parameter optimization getting trapped in a local minimum.

As a third category of alignment methods for tilt series, we reviewed
the methods that solve the imaging geometry by iteratively constructing a
3D model of the object that is reprojected onto the image plane and the
model projection is matched to the measured projection.A common feature
for the early approaches of this category has been that the model con-
struction and the projection matching have been treated as independent
problems. However, an approach involving simultaneous solving of projec-
tion geometry and the 3D model have also been proposed recently (Brandt
and Kolehmainen, 2004; Brandt et al., in preparation; Yang et al. 2005). The
model-based approaches are relatively complex computationally but we
nevertheless deem the approach promising for obtaining accurate align-
ment, especially if a statistical point of view is considered.

As far as the relationship between the feature-based and 3D-model-
based methods is concerned, it seems to us at present that both ways are
promising. Both approaches have their pros and cons, but the methods 
in the first category also seem to have their place. For instance, cross-
correlation pre-alignment can be performed on a routine basis and it may
significantly simplify the computations in the more sophisticated methods.
The future challenge will be to find a reliable and accurate method, espe-
cially for such cryosamples that are beyond the capabilities of the alignment
methods currently available. Perhaps the 3D model-based approaches are
going to be stronger in the alignment of such low signal-to-noise projections
because to us it seems a better idea to rely on all the intensity measurements
of the cryoprojection images than on a smaller number of individual feature
points whose matching is currently relatively vulnerable to noise.
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1. INTRODUCTION

Since the 1970s, it has become increasingly evident that transmission electron
microscopy (TEM) images of typical thin biological specimens carry a large
amount of information on 3D macromolecular structure. It has been shown
many times how the information contained in a set of TEM images (2D
signals) can determine a useful estimate of the 3D structure under study.

In its most general form, the 3D reconstruction problem in TEM can
be defined by the statement: given a collection of projection images (2D
data) g, determine the 3D structure f that produced the images g. This
problem has to be solved under conditions in which the image data, as well
as the information about the geometry of data collection that relates g to
f, are imperfect; in particular, both the gray level information in the images
and the information regarding the direction of projections are corrupted by
substantial noise. We are interested in knowing under which conditions g is
adequate for producing an that is close to f in some sense. For experi-
mental reasons, we always have three basic limitations on the collection of
the image data set g: the image gray level noise, the imperfect information
about the data collection geometry and, finally, the restriction to a finite
number of images. Can we do something to ameliorate the situation? Can
we qualify our confidence in the reproducibility of the reconstructed struc-
tures (in other words, do small changes in g produce radical changes in 
the estimate ?). Formulated in this way, it becomes clear that the topics
covered under 3D reconstruction in TEM belong to the broad class of
signal-recovery/inverse problems. It is within this framework that we discuss
how the physical limits directly affect the fidelity of the estimated 3D struc-
tures produced by various reconstruction algorithms.

2. OVERVIEW OF OUR APPROACH

In this section, we present the concepts that we consider fundamental to a
careful discussion of our topic. We illustrate these concepts as we go along
on the relatively simple problem of recovering a 2D structure from its 1D
images.

In the area of inverse problems, it is assumed that we have some under-
standing of the data collection process. Usually we describe it by some
mathematical idealization, combined with a description of how the actual
data collection process differs from the ideal one. For example, in the field
of (2D) image reconstruction from (1D) projections, the ideal data consist
of the line integrals, for all lines, of the image f to be reconstructed. In prac-
tice, we can have data corresponding to only finitely many lines, and the
data are likely to be contaminated with noise (see Fig. 1). To approximate
f from such data, there are two basic approaches that we call transform
methods and series expansion methods, respectively.

f̂

f̂
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The essence of transform methods is to find a mathematical procedure
that describes the recovery of f from its ideal data, and then implement this
procedure (as best as one can) making use of the actual data. In the case
of 2D image reconstruction from 1D projections, the ideal data consist of
all p(l,q) that are the line integrals of f along lines at a distance l from the
origin, making an angle q in radians with the vertical. In that case, we have
the formula (Herman (1980), p. 95)

(1)

for f in polar coordinates with f in radians, where p1(l, q) denotes the partial
derivative of p(l, q) with respect to l, and E is a number large enough so
that p(l, q) = 0, for all l > E and all q. This formula is derived, based on the
pioneering work of Radon (1917), in Section 16.3 of Herman (1980). The
inner integral in equation (1) is referred to as a convolution, while the outer
integral is referred to as a back-projection.

For the data collection method described in Fig. 1, we have only (noisy
versions of) the data p(nd, Δm), where d is the length of an edge of a pixel

 
f r

r l
p l l

E

E
, ,f

p q f
q qp

p

( ) =
−( ) −

( )
−− ∫∫

1
2

1
2 1

2

2

 cos
d d

ALGORITHMS FOR 3D RECONSTRUCTION 219

FIGURE 1. A 341 × 341 pixel representation of a 2D image (left) and its 1D projec-
tions (right). Each projection consists of noisy versions of line integrals for 495 paral-
lel lines (the distance between them is the same as the length of an edge of a pixel in
the image); they correspond to individual columns in the picture on the right. The
angle between the lines corresponding to one column and the next one is 2°; there
are 70 columns corresponding to direction angles ranging from −69° to 69° with the
vertical. The noise is additive zero-mean Gaussian noise, with a standard deviation
that is the integral for a vertical line through the largest of the 12 central rectangular
shapes in the image. (The image is approximately a cross-section through a 3D
phantom, designed by Fernández et al. (2002), of mitochondria; the just discussed 
rectangular shapes are sections through the simulated cristae.)



in the image on the left of Fig. 1, the n are integers in the range from −247
to 247, the m are integers in the range from −34 to 35, and Δm is (2m − 1)°
in radians. We now discuss one way of finding an approximation to the 
f in equation (1) based on such data. What we describe is referred to as the
convolution method by Herman (1980); it is more popularly known as 
the filtered back-projection method (FBP), and it is very similar in nature
to the weighted back-projection method (WBP) for the reconstruction of 3D
structures from 2D projection images that is discussed below in Section 4.1.

To evaluate the convolution, we do the following. We define, for −247
≤ ≤ 247 and −34 ≤ m ≤ 35,

(2)

(see p. 128 of Herman, 1980), where q is the so called filter function. There
are a number of ways to define q; they will lead to different reconstructions

. In the illustration given here, we use

(3)

see Herman (1980), p. 126, with the Sinc window from Table 8.1 chosen for
FA. Note that q depends on the parameter A. Choosing A small has a
smoothing effect on the reconstruction; the ideal choice of A depends on
the relative nature of the structure we are attempting to reconstruct (the
signal) and of the data collection (including the noise).

The back-projection, for the data collection geometry described in 
Fig. 1, is approximated by

(4)

where Δ is 2° in radians, and values of pc(r cos(Δm − f), Δm) are evaluated
from values provided by equation (2) using interpolation (typically linear).
Bigger weights have been given to the first and the last angles in this
approximation to the outer integral of equation (1), due to the fact that
there is a big gap between these two angles for which no measurements are
taken. (An alternative way of handling such missing data problems is dis-
cussed below in Section 4.1.)

The reconstruction based on equations (2–4) is shown on the left 
of Fig. 2. Pixel values were calculated by evaluating (r,f) at the centers of
the pixels. The value of A was selected to minimize the norm of the differ-
ence between the reconstruction and the original image in a central region;
its optimal value is 0.1.
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Now we give an example, in the same context, of a series expansion
method. Such a method is basically different from a transform method, in
as much as no attempt is made to find a mathematical expression for the
solution of (an idealized version) of the original problem, but rather the
problem is converted into a finite-dimensional one by restricting our search
for an approximation to only those that can be expressed as a linear com-
bination of some fixed basis functions, i.e. it is assumed a priori that

(5)

(Herman, 1980, p. 98), and the task becomes that of estimating an appro-
priate J-dimensional vector x (whose jth component is xj). If the data col-
lection method is linear (as is indeed the case with line integrals), then we
can say that the ith measurement (1 ≤ i ≤ I) is

(6)

(Herman, 1980, p. 100), where ri,j is what the ith measurement would be if
the structure consisted of only the jth basis function. Our understanding of
the data collection procedure usually allows us to calculate (or, at least, to
estimate) the ri,j. (For the data collection scheme described in Fig. 1, I = 70
× 495 = 34,650.) Our task is now as follows: given a data vector y (whose
ith component is yi) and knowing the system matrix R (whose (i,j)th entry
is ri,j), find an x that ‘satisfies’ equation (6).
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FIGURE 2. Reconstructions from the data shown in Fig. 1; by FBP on the left and by
ART with blobs on the right. 



The algebraic reconstruction techniques (ART) are a family of algo-
rithms designed to solve such problems. We now describe and illustrate a
specific ART algorithm, called the relaxation method for systems of equal-
ities by Herman (1980), p. 187. (Variants of this algorithm will be discussed
and illustrated later in Section 4 for the reconstruction of 3D structures
from 2D projection images.)

The algorithm produces a sequence of J-dimensional vectors x(0),
x(1), . . . . Typically we choose x(0) to be the vector of all zeros, and we stop
the process after we have cycled through all the data some integer number
of times. In the step going from x(k) to x(k+1), we pick the next equality from
equation (6) to be considered; we denote the index i associated with that
equality by ik. (The order in which the equalities are picked can be of great
practical importance; see Herman and Meyer (1993). In the illustrations
below, we follow the data access ordering recommended in that paper; its
implication for the reconstruction of 3D structures from 2D projection
images is discussed in Section 4.) Then

(7)

where ri (for 1 ≤ i ≤ I) denotes the J-dimensional vector whose jth compo-
nent is ri,j and · denotes the usual inner product. A property of this algo-
rithm (follows from Section 16.8 of Herman (1980)) is that if there is an x
satisfying equation (6) exactly, then the algorithm will converge to such an
x, provided that 0 < l < 2. However, the choice of l is important for effi-
cient early behavior, especially in the case of noisy data.

Note that the algorithm, as described above, does not depend on the
choice of the basis functions. However, this choice is important in practi-
cal applications. For the illustration in Fig. 2, we have chosen the so-called
blob basis functions of Lewitt (1990, 1992), following the recommenda-
tions of Matej and Lewitt (1995, 1996). A comment to be made is that
using blobs as basis functions is efficacious in noisy situations (Marabini
et al., 1998; Matej et al., 1994). The blobs that we used for the reconstruc-
tion of 3D structures from 2D projection images are defined in Section
4.2.2 below.

We applied this algebraic reconstruction technique to the data
described in Fig. 1, cycling through the data 10 times. Using the same 
criterion as in the case of the FBP for optimizing A, we found that the
optimal value of l is 0.05. On the right of Fig. 2, we show the resulting 
reconstruction.

The figures of merit (FOMs), measuring the quality of the reconstruc-
tions (defined in this case as one minus a normalized squared distance
between the reconstruction and the original image in a central region), are
0.18 and 0.23 for the FBP and the ART reconstructions, respectively. While
this numerical difference is small, the appearances of the reconstructions
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are strikingly different, indicating that this particular FOM is not good at
capturing the usefulness of a reconstruction for a specific task.

3. DATA COLLECTION, MISSING INFORMATION AND
IMPERFECT DATA

3.1. General Considerations

To perform a 3D reconstruction of a macromolecular structure from
TEM images, it is necessary to collect a set of views of the structure from
different directions. The way in which these different views are obtained
varies with the type of aggregate into which the specimens are arranged.

The simplest case is presented by specimens that are aggregated into
a helical superstructure (for the purpose of this presentation, it does not
matter whether these aggregates are natural or artificially induced). In this
case, it is clear that a single image of the helix already contains views from
different directions of the individual specimens; this is so because the rela-
tive orientation between such a specimen and the electron beam changes
along the helix in a well-defined way. This property makes it possible to
perform a complete 3D reconstruction of the helix from one image of the
helical aggregate (at least up to some aliasing-limited resolution, see
DeRosier and Moore, 1970).

There are other types of aggregations that are also highly symmetri-
cal; this is the situation, for instance, for icosahedral viruses, where a general
view of the specimen already provides 59 other symmetry-related views
around the specimen (Crowther et al., 1970). For the general case, however,
we cannot count on any type of symmetries, since we may well have only
non-aggregated specimens of an asymmetric structure. In this latter situa-
tion, the set of experimentally obtained projection images determining 
the reconstruction must be collected explicitly for a number of projection
directions around the structure. The same situation occurs for specimens
arranged in a 2D crystal, since most of the symmetry elements are not ori-
entation-dependent in the tilt direction perpendicular to the grid plane
(except for a possible screw axis).

In the rest of this chapter, we focus on the case of reconstructing a
structures with no translational symmetries (such as 2D crystals) or point
symmetries (such as icosahedral particles).A differentiation has to be made
between the ‘single-particle reconstruction problem’ and the ‘tomographic
reconstruction problem’. The key conceptual difference is that in the latter
case, we aim at reconstructing ‘unique’ specimens, while in the former case
we assume that we have multiple copies of structurally identical specimens,
and the task is the reconstruction of the common structure.

The differentiation introduced in the previous paragraph has very
strong implications for the approaches that are used to collect data for the
3D reconstruction, as well as for the degree of completeness of the data so
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obtained. For the tomographic case, we obtain different views of the spec-
imen from different projection directions by tilting the specimen in the
microscope with the help of a goniometer. The projection directions are
known, at least in an approximate way, by the angles that are set at the
goniometer. For the single-particle case, however, where the different views
from identical copies of the macromolecular structure are encountered, the
differences between the images are due to the differences in projection
directions relative to the common structure. The experimental views from
different copies are combined in the reconstruction as if they were coming
from the same specimen at different projection directions. Clearly, if a 
sufficiently large number of views is obtained, then there is no need to 
tilt the specimens in the microscope. On the other hand, the directions of
the projections are not known a priori and have to be determined before
(or possibly as part of) the reconstruction process.

There are technical limits to the maximum tilt angle that commercial
goniometers can achieve, usually around ±60°. Even if specially designed
goniometers are constructed, providing, in principle, unlimited tilting 
(Chalcroft and Davey, 1984), there are physical limits to the maximum tilt
angle that can be reached while still obtaining useful images. These limits
arise from the increase in the effective specimen thickness that is propor-
tional to 1/(cos(tilt angle), which makes multiple scattering events more
probable at high tilt. For the single-particle case, these limitations do not
apply in principle, since the different views can be obtained by combining
images from different particles, but the problem then becomes that of ‘dis-
covering’ the projection direction of each view.

The general problem of reconstructing an asymmetric object is thus
posed as the 3D reconstruction of a structure from a finite set of noisy 2D pro-
jection images over a possibly restricted angular range and with an approxi-
mate knowledge of the data collection geometry. It is due to the combined
presence of noise in the image pixels’ values, limited angular coverage and
lack of information of the projection directions that it becomes necessary to
consider reconstruction algorithms capable of dealing with imperfect data.

3.2. Fourier Space Formulation

Much insight into how imperfect data may affect a reconstruction is gained
by introducing the Fourier transform (FT) operator. The FT F of a function
f is defined by

(8)

In Cartesian coordinates for the case n = 3, this definition becomes (where
now f represents a 3D structure)

(9)
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The inverse FT f of F is defined by

(10)

We thus obtain pairs of functions (f, F), where F is the FT of f, and f is
the inverse FT of F. The convention of denoting such pairs by lower case
and upper case letters (lower case associated with real space and upper case
with Fourier space) will be used throughout this chapter, in relation to both
functions and variables.After applying the FT operator to the original func-
tion f, the coordinate system associated with the variable R of the new func-
tion F is different from the coordinate system of the variable r of the
original function f. In the following, we will use the term Fourier space to
refer to the coordinate system of F, and the term real space to refer to the
original coordinate system of f.

One of the most important results relating f and F to each other is the
so-called central section theorem, which states that the FT of an ideal pro-
jection image (containing noiseless line integrals) of a 3D structure is equal
to a central section of the 3D FT of the structure (e.g. Crowther et al., 1970;
others refer to the same result as the projection theorem, e.g. Herman,
1980). Figure 3 shows this relationship. Let us consider the z-axis pointing
in the direction of the electron beam. Without loss of generality, let us place
the tilt axis along the x-axis. If the ideal projection image g is obtained by
tilting the object by q, then its FT G will be a central section tilted around
the X-axis by q of the 3D FT of the structure. It is common practice to
measure tilt angles between +90° and –90° with reference to the z- (or Z-)
axis; so, if q is, say, +60° (with the usual convention that clockwise rotations
are negative), then G is a central section that includes the X-axis and makes
an angle of q ′= −30° with the Z-axis.

The central section theorem is fundamental to the following discussion,
helping us to visualize how the different practical data collection proce-
dures necessarily result in the partial absence of information regarding the
macromolecular structure.

3.3. Single-axis Tilt, Conical Tilt and Generalized Geometries

Single-axis tilt is a common data collection procedure in electron
tomography. The specimen is tilted by small increments in the microscope
around a fixed axis, and a micrograph of it is obtained in each orientation
(Fig. 4a). By calculating the FTs of each of these projections and using the
central section theorem, we obtain a set of tilted planes in Fourier space
that have the tilt axis in common (Fig. 4b and c). Note that for tilting around
a single axis, the 3D problem can be divided into a set of 2D problems, each
being the reconstruction in a plane perpendicular to the tilt axis, which can
be done by the methods discussed in Section 2. The maximum tilt angle
achievable in a microscope is limited, and this limit defines the maximum
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FIGURE 3. The central section theorem. Real space coordinate axes are labeled (x,
y, z), while Fourier space coordinate axes are labeled (X, Y, Z ). (a) An object is shown
in real space placed near the origin, together with a representation of its projection
image g, formed by integrals along parallel lines that are all orthogonal to the x-axis
and are tilted with respect to the z-axis by q. (b) The FT of the object extends over the
entire Fourier space. The FT G of the projection g coincides with the FT of the object
restricted to a plane through the origin of the Fourier space (a central section) that
contains the X-axis and is tilted by q with respect to the XY plane.
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FIGURE 4. Single-axis tilt data collection geometry. (a) Tilting in real space around
an axis perpendicular to the plane of this page (which is assumed to be the x-axis).
(b) Fourier space representation of the information presented in (a); the different pro-
jections provide values in the central sections through the 3D FT of the object with 
the X-axis in common. (c) Close-up view of (b) from the the direction of the positive
X-axis, showing the missing wedge. ((a) is from Radermacher (1980), reproduced with
permission.)



tilt angle of the corresponding sections in Fourier space (Fig. 4c). It is then
clear that there exists a wedge-shaped region in Fourier space for which no
data can be measured (Fig. 4c), and it is consequently termed the missing
wedge region. Correspondingly, the measurable area is also wedge shaped,
and it is usually termed the data wedge.

The missing wedge is centered on the Z-axis in Fourier space and,
assuming a maximum tilt angle of 60°, has a width of 60° (from −30° to +30°
off the Z-axis), while the data wedge is centered around the tilt axis in the
XY plane and has a width of 120°. Being more precise, there are two missing
wedges and two data wedges (Fig. 4c).

A generalization of single-axis tilt results in the so-called conical tilt
schema for data collection. Conceptually, one can get to this mode of data
collection by combining single-axis tilts for tilt axes in many directions. In
practice, the same geometry of data collection can be achieved by first tilting
the specimen in the microscope by the maximum attainable tilt angle, qmax,
and then rotating it in the tilted plane by small angular increments (Fig. 5a);
see Radermacher (1988) and Radermacher et al. (1987).

Following the same line of reasoning that was used for the single-axis
tilt data collection, it is clear that there exists a portion of the FT of the
structure for which no data can be measured. The shape of this missing
region in Fourier space is a cone centered at the Z-axis with a half-width
of 90° – |qmax| (Fig. 5b); consequently, it is referred to as the missing cone
region.
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FIGURE 5. Conical tilt data collection geometry. (a) Tilting in real space by qmax,
around multiple tilt axes in the xy plane. (b) Fourier space representation of the 
information collected in (a); no experimental data are available in a ‘missing cone’
around Z. (From Radermacher (1980), reproduced with permission.)



Having considered single-axis tilt and conical tilt, the concept of ‘gen-
eralized geometries’ can now be introduced. It refers to those cases in which
the pattern of projection directions is not fixed a priori. The most common
experimental situation illustrating this schema happens in the field of single-
particle reconstruction, where we have typically thousands of images that
are considered to be views of the same structure from a random set of pro-
jection directions whose orientations have to be found before (or possibly
during) the reconstruction process.

4. SAMPLE ALGORITHMS

4.1 Weighted Back-projection

There are inversion formulae for the reconstruction of 3D structures
from 2D projection images that are very similar in nature to equation (1)
for the reconstruction of 2D images from 1D projections; see, for example,
Theorem 2.16 of Natterer and Wübbeling (2001). Such formulae consist of
an inner integral (corresponding to the convolution in equation (1), but this
time the integrations are over the 2D projection planes rather than the 
1D projection lines) and a back-projection (which is this time a back-
projection into 3D space of the processed 2D projection images). As in all
transform methods, a computational procedure has to be designed to imple-
ment such ideal inversion formulae for the reconstruction of a 3D structure
from the noisy samples of its projection images that is provided by TEM.
WBP is one such computational procedure.

Before going into the details of the WBP method, we demonstrate the
need for weighting (or, in terms of the approach of Section 2, convolution)
with the back-projection. If we do a simple back-projection without weight-
ing (or convolution), then all we do is just ‘smear’ each of the projections
back along the direction from which it was taken. The result is a blurry
approximation of the real structure (see Fig. 6a).The purpose of the weight-
ing in WBP (and of the convolution in FBP) is to process the measured pro-
jection images so that when the images processed thus are back-projected,
the blurring produced by a simple back-projection is avoided, or at least
considerably reduced (see Fig. 6b).

In FBP, we convolve with the same filter function q in all projections
(see equations (2) and (3)), irrespective of the arrangement of the projec-
tion directions. This arrangement is taken into consideration only in the
back-projection, and that is why different weights are assigned to different
convolved projections in equation (4). The WBP is based on an alternative
philosophy: it attempts to design filters (different ones for different pro-
jections, each dependent on the geometrical arrangement of all the projec-
tions) so that when the convolved projections are simply back-projected
(each with the same weight), then the the blurring seen in Fig. 6a (bottom
right) will not be observed.
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FIGURE 6. Schematic representation of simple back-projection (a) and weighted
back-projection (b) for data collected using single-axis tilt geometry. In all cases, a
small sphere has been reconstructed and a slice of the reconstruction perpendicular
to the tilt axis and intersecting the sphere center is shown. Three plots showing one
line (perpendicular to the tilt axis) of three different projections are shown with (b)
and without (a) weighting based on the Hm described in the text.



A heuristic way of arriving at the WBP method is the following. Con-
sider a point object at the origin (this is mathematically described by the
Dirac delta distribution d(r) whose FT has value 1 everywhere) enclosed in
a sphere of radius a. Projections of such a 3D point object will be 2D point
objects, and when those are back-projected into the enclosing sphere they
give rise to line objects of length 2a going through the origin. There is one
such line for each projection; see Fig. 6a. We can work out mathematically
the FT H of this back-projected object. Note that H depends on a, as well
as on the geometry of data collection. Restricting H to the central section
in Fourier space that is parallel to the plane of the mth projection in real
space (see Fig. 3) results in a function Hm(Xm, Ym) where Xm and Ym are the
coordinates within the central section in question. Hm(Xm, Ym) can also be
worked out mathematically (more details on how this may be done can be
found in Chapter 8 of this volume). For the point object of our study, the
value of the FT in this central section is the constant 1: this implies that we
should be dividing the values of the FT of the back-projection by Hm(Xm, Ym).
This is impossible to do if Hm(Xm, Ym) = 0 and is dangerous to do if 
Hm(Xm, Ym) is very small or negative, and so we introduce a (small) posi-
tive number threshold and replace Hm(Xm, Ym) by threshold whenever
Hm(Xm, Ym) < threshold.

Based on these ideas, we can describe the WBP algorithm as follows:

• Weighting: for 1 ≤ m ≤ M (M is the number of 2D projections), calcu-
late pc

m as the inverse FT of Pm(Xm, Ym)/Hm(Xm, Ym), where Pm is the
FT of the mth projection and Hm is defined as in the paragraph above.

• Back-projection: sum the ‘smeared’ versions (into the 3D recon-
struction volume) of the pc

m to form .

Note that the reconstruction depends on the choices of a and threshold.
In comparing WBP with FBP, we note the following. In the derivation

of the weighting in WBP, we have taken into consideration the geometrical
arrangement of the projections; in contrast, the corresponding convolving
functions in FBP ignore this geometry. However, the weighting in WBP is
calculated based on the assumption that we wish to reconstruct a point
object at the origin and it is, strictly speaking, not valid for reconstructing
point objects away from the origin. In fact, the appearance of a recon-
structed point object will be dependent on its location in space. This varia-
tion can be reduced by increasing the size of the radius a. The convolving
function in FBP is derived without any assumption on the location of the
object to be reconstructed, hence the appearance of the reconstruction of
a point object is independent of its location. (This last statement is not
strictly true: there is also a lesser variation in the appearance of a recon-
structed point object due to the fact that the original projections are
sampled and the convolved/weighted projections are also calculated at the
sample points, resulting in having to use interpolation during the back-

f̂
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projection. This property is shared by WBP and FBP; its effects were nicely
illustrated by Rowland (1979).)

4.2. Block ART

In this section, we discuss a particular variant of ART (introduced 
in Section 2) that we have used in the experiments reported below. The
algorithm depends on the choice of the basis functions bj in the 3D series
expansion (which corresponds to equation (5) that was used for the 2D
case). In our work, we have been using two kinds of basis functions (voxels
and blobs, to be defined below), but the mathematical nature of the algo-
rithm is the same in both cases, as will be now elaborated.

The basis functions are defined by a grid G that is a finite set {g1, · · · , gJ}
of points in 3D space and a basic basis function b that is just a function of
three variables. For 1 ≤ j ≤ J, the individual basis functions bj are defined by

bj(r) = b(r – g j), (11)

i.e. the jth individual basis function is obtained from the basic basis func-
tion by shifting its center to the jth grid point. The set of grid points consist
of that subset of a regular lattice (e.g. a simple cubic lattice or a body-
centered cubic lattice) that lie within a sphere large enough to include the
structure to be reconstructed. As in the case of WBP discussed in the pre-
vious section, we assume that there are M 2D projections. We further
assume that in each 2D projection there are N measurements.Thus the total
number of measurements is I = MN. Just as in Section 2, we use ri,j to denote
what the ith measurement would be if the structure consisted of only the
jth basis function and ri (for 1 ≤ i ≤ I) to denote the J-dimensional vector
whose jth component is ri,j.The basic difference between the variant of ART
that is discussed in Section 2 and the block ART that is presented here is
that in the latter the algorithm proceeds by taking into consideration not
only one measurement at a time, but rather a block of measurements that
come from a particular 2D projection. This results in the replacement of
equations (7) by

(12)

where mk is the index of the 2D projection used in the kth iterative step.
Just as in the 2D case, we choose x(0) to be the vector of all zeros.The theory
of such block ART algorithms was introduced by Eggermont et al. (1981).
Their limiting convergence properties have been carefully studied in that
and consequent publications (see Censor and Zenios, 1997); however, such
limiting convergence results are not necessarily relevant in practical appli-
cations in which (for reasons of computational time and cost) we wish to
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stop the iterative process as early as possible. One of the reasons for this
early termination is that many times the solution in the limit is something
like a least squares solution, which are known to fit the noise as well as the
signal, and so the corresponding reconstructed volumes are too noisy (since
they tend to minimize the squared error between the noisy experimental
projections and the projections taken from the reconstructed volume).

The order in which the projections are picked is important. Equation
blocks are determined by all those pixels belonging to the same projection
image. We order the projections in such a way that each one is as nearly
orthogonal as possible to the previous two projections (a projection is
orthogonal to another projection if their corresponding projection direc-
tions are orthogonal).

In order to turn equation (12) into a reconstruction algorithm, we need
to decide how to choose the parameter l and at which value of k to stop
the iterative process.

These choices depend on many things (see, for example, Marabini 
et al., 1997, 1998). Generally speaking, for the same number of iterations,
the value of l should be smaller if the data are noisier. Typically, in the
single-particle reconstruction problem (in which the number M of 2D pro-
jections tends to be quite large), it is sufficient to cycle through the meas-
urement data only once (i.e. to stop the iterative process at k = M). In the
tomographic reconstruction problem (in which M tends to be much
smaller), one needs to cycle through the data several times.

4.2.1. Block ART with Voxels

A basic voxel basis function depends on a variable that we will call
here VEL (for voxel edge length): it is defined to have the value 1 at points
strictly inside the cube that is centered at the origin and that has edges of
length VEL parallel to the coordinate axes, and to have the value 0 at points
strictly outside this cube. (While this does not make any difference in any
possible application, for completeness we can define the basic voxel basis
function to have the value 1/2 at the faces, the value 1/4 at the edges, and
the value 1/8 at the corners of the cube.) The associated grid G is defined
as the set of all points of the form VELR, where the coordinates of the
vector R are integers, that lie within a sphere that is large enough to include
the structure to be reconstructed. A consequence of this definition is that
any reconstruction produced by block ART with voxels will have a constant
value within cubes of edge length VEL.

4.2.2 Block ART with Blobs

A basic blob basis function is a generalization of a well-known class of
functions in digital signal processing called Kaiser–Bessel (see Lewitt,
1990); it is spherically symmetric (i.e. its value at a point depends only on
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the distance r of that point from the origin), has non-zero values only in a
sphere (of radius a) around the origin, and smoothly decreases from a posi-
tive value at the origin to zero at the surface of that sphere. The general
form of a blob is:

(13)

where Im denotes the modified Bessel function of order m and a is a param-
eter controlling the blob shape. The three parameters m (a non-negative
integer), a and a (non-negative real numbers) control the smoothness and
shape of a blob and influence the results yielded by reconstruction and 
visualization algorithms; therefore, the appropriate selection of them is
highly important. In our work, we set m equal to 2, which makes the blobs
have continuous first derivatives everywhere.

The choice of the grid G is also important. It was shown by Petersen
and Middleton (1962) that the body-centered cubic (bcc) grids provide the
most efficient sampling of �3. The bcc grids are defined by

(14)

where k is a 3D vector, whose components (k1, k2 and k3) belong to the set
of integers denoted by �, and Δ is a positive real number (the sampling dis-
tance). In order to visualize this grid, we can use a small portion of it and
take advantage of its periodic repetition (see Fig. 7). For reconstruction 
purposes, Matej and Lewitt (1995) demonstrated that whenever a linear
combination of blobs is employed to obtain a reconstruction, the bcc grids
provide desirable sets of locations for the center of the blobs.

Having decided that we use m = 2 and the bcc grid, there are three
parameters to be chosen: Δ, a and a. Clearly, to be able to approximate 
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FIGURE 7. Points in the body-centered cubic grid
in a 2 × 2 × 2 portion of space (assuming Δ = 1). The
rest of the points can be obtained by filling in space
by the most natural repetition of the indicated 2 ×
2 × 2 portion.



arbitrary structures, the value of Δ should be small. However, in a fixed
volume of space, the number of grid points (and consequently the computa-
tional cost of a reconstruction algorithm) is proportional to 1/Δ3 and so prac-
tical considerations do not allow us to choose Δ to be very small.The cost of
reconstruction is also proportional to a2. The computational cost does not
depend on α, and so this parameter may be chosen purely based on the
quality of the resulting reconstructions. Matej and Lewitt (1995) proposed a
method for the selection of the parameters with the aim of ensuring that
ART will produce ‘good’ reconstructions. In particular, they postulate that a
linear combination of blobs with xj = 1, for 1 ≤ j ≤ J, should approximate a
constant-valued function. They show that for this we should select Δ, a and
a such that

(15)

is satisfied.
Garduño and Herman (2004) reported that the parameters yielded by

the methodology suggested by Matej and Lewitt (1995) produced in some
cases non-convex reconstructions from data obtained from convex struc-
tures, causing a significant inaccuracy in the visualization of the resulting
surfaces. To correct this problem, Garduño and Herman (2004) proposed
an additional criterion for the selection of the parameters Δ, a and a: a
should be chosen as small as possible, consistent with both satisfying equa-
tion (15) and achieving the result that if two blobs at nearest grid points in
the grid BΔ (those separated by √3

—Δ) are given coefficients 1 with all other
blobs given coefficients 0, then the surface obtained by thresholding at t =
0.5 should enclose a convex set. The selection of the latter criterion is not
arbitrary but is based on the fact that the location of the two nearest blobs
will determine the best resolution that can be achieved by an approxima-
tion using blobs. Furthermore, given a choice of Δ, such a criterion provides
us with a unique pair a and a that satisfies equation (15).This is the method-
ology used in this chapter for determining the blob parameters.

5. PRACTICAL ILLUSTRATION

5.1. General Considerations

In this section, we present practical cases of how different reconstruc-
tion methods treat the ‘imperfect data’ problem that is typical in 3D elec-
tron tomography.As a general remark, it is important to stress that ‘the best
reconstruction method’ does not exist. Each technique makes its own
assumptions about the possible set of solutions, the noise or the type and
extent of a priori knowledge. Depending on the specific problem at hand,
these assumptions may or may not be the most appropriate ones.
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There are two important points directly related to 3D electron
microscopy applications that need to be addressed here. One is the char-
acterization of the image degradations introduced by the electron micro-
scope as an image-forming system, the other is the noise model to be used
in the reconstruction process.

Not surprisingly, the electron microscope cannot be considered a
perfect imaging system. It is well known that it introduces some degrada-
tions into the images it renders. Erickson and Klug (1971) presented an
analysis on how these instrumental degradations can be modeled, within
certain limitations, in terms of a single-system optical transfer function
(OTF), providing a parametric model for it (in the field of electron
microscopy, the OTF is usually called the contrast transfer function or
CTF). The corresponding point-spread function is referred to as the 2D
TEM-PSF. In general, the 2D TEM-PSF, being the inverse FT of the instru-
ment CTF, does not have a finite support, although in practice it can be
approximated by a finite-support blurring function.

With respect to the contents of this chapter, knowledge of the CTF is
important because it tells us that the relationship between the 3D object
and the 2D image obtained from it is not that of a simple projection,
but rather a projection convolved by the 2D TEM-PSF (defined in the 
previous paragraph). This fact should be kept in mind when modeling the
image formation.

In a first approximation to the reconstruction problem, one might think
of neglecting this instrumental degradation. However, this is not an accept-
able choice in the quest for high-resolution structural information. Addi-
tionally, the fact that the geometry of data collection is known only in an
approximate way introduces imperfections in our initial data set as well.

Regarding the noise model, it is clear that part of the noise is due to
electron counting, and thus follows a Poisson process. It is also clear that
there are other contributions coming from the specimen embedding and
supporting material, from the photographic emulsion and processing, the
photographic grain, and inaccuracies in the scanning devices. Other sources
of ‘noise’ are more difficult to consider, such as the inaccuracies in the 
determination of the geometry of data collection or inaccuracies in the
determination and restoration for the CTF. It follows from all these con-
siderations that realistic noise models are not trivial, and therefore should
always be used with some caution, being aware of their limitations.

5.2. Test Data Set Description and Testing Approach

In this section, we present a practical study of two widely used recon-
struction methods: WBP and block ART. Only block ART with blobs has
been studied, based on its well-established superiority to block ART with
voxels (Matej and Lewitt, 1996; Matej et al., 1994). The two methods have
been tested on three simulated data sets, two typical of high-resolution
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studies of single particles (one typical of the conical tilt geometry as
depicted in Fig. 5, and the other typical of a geometry with even angular
distribution) and the third typical of electron tomography. Each data set
consists of a number of independently generated collections of projection
images (each collection in the data set corresponds to one instance of what
is denoted by g in Section 1). The performance of the methods is measured
and compared using a well-defined FOM in a statistical manner. This work
has been done using the X-Window-based Microscopy Image Processing
Package (XMIPP) that is freely available from the authors’ web site
(http://xmipp.cnb.uam.es/).

The first test data set consisted of 30 collections of 10,000 projection
images which were obtained using random projection directions of the 
thermosome from Thermoplasma acidophilum (Ditzel et al., 1998). The
sampling interval, in both the images and the volume, was 0.266 nm.
The dimensions of the images and of the volumes were 96 × 96 and 96 ×
96 × 96, respectively. The simulation was intended to represent a practical
case of high-resolution (below 1 nm) single-particle reconstruction.

The second test data set consisted of 10 collections of 10,000 projec-
tion images each that were obtained randomly within a conical tilt data 
collection geometry with a tilt angle of 60° of the thermosome from 
T. acidophilum (Ditzel et al., 1998).

The third test data set consisted of 10 collections of 70 regularly dis-
tributed projection images following the single-axis tilt data collection
geometry with a maximum tilt angle of ±60° of the mitochondria-like
phantom described by Fernández et al. (2002) and Bilbao-Castro et al.
(2004). Each of the images was of dimensions 256 × 256 pixels, and the
reconstructed volume was 256 × 256 × 256 voxels. The rationale here was
to simulate the case of a tomographic study of a cell organelle.

Note that these data sets represent very different mathematical situa-
tions when they are translated into a system of conditions defining the
reconstruction in equation (6). In the first two cases, we have a very large
collection of images and the task is the reconstruction of a relatively small
volume, while it is exactly the opposite that happens in the third case, since
here we have relatively few large images and the task is to reconstruct a
large volume. To be precise, in the first two cases, the total number of pixels
in a collection g of projection images is 10,000 × 96 × 96, while the number
of voxels in the volume is 96 × 96 × 96; in the third case, the total number
of pixels in g is 70 × 256 × 256 and the number of voxels is 256 × 256 × 256.
As a consequence, the system (equation 6) is overdetermined in the first
two cases by a factor of ∼100, and is underdetermined in the third case.
Additionally, as the size of the images become larger and larger in tomo-
graphic applications with a reduced number of views, the tomographic
reconstruction problem will become more and more underdetermined,
while in the single particle cases, as the number of images coming from 
different specimens become larger, the reconstruction problem becomes
more and more overdetermined.
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Another difference is the coverage of the Fourier space that can be
achieved using g. This is reasonably uniform in the first case, has a missing
cone in the second case (see Fig. 5) and has a missing wedge in the third
case (see Fig. 4).WBP and ART each have their ways of handling such data:
WBP takes the geometry of projection directions into consideration in
designing the weighting function, while the system (equation 6) that ART
attempts to solve is explicitly based on the projection directions.

Regarding the generation of the projection images of the thermosome,
each of them was calculated from the set of atomic coordinates contained
in Protein Data Base (PDB) entry 1A6D by replacing each non-hydrogen
atom in the structure with a blob (equation 13) with appropriately chosen
parameters, which allows a perfect analytical description of the projections.
Projections were then sampled at intervals of 0.266 nm. The generation 
of the mitochondrion-like phantom was performed as in Fernández 
et al. (2002). This phantom consists of hollow cylinders representing 
the membranes and a set of solid cylinders simulating the cristae. The 
cristae are embedded in a region of intermediate density, resembling the
mitochondrial inner matter.

The electron microscope-induced projection blurring was taken into
account using a family of CTFs whose average is plotted in Fig. 8. The
defocus value was randomly changed between views within the interval
[–0.315, –0.285] μm for the single particle case and the interval [–1.575,
–1.475] μm for the tomographic reconstruction. In the experiment with
random conical tilt, the tilt angle was fixed to 60°. Restoration of the CTF
was performed such that it tended to resemble a practical experimental
case: only a phase flipping was performed based on a CTF estimate pro-
vided by all the projection images.
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mapped to 0.5.



As for inaccuracies related to the determination of the actual geome-
try of projection directions, Gaussian noise was added to all the parame-
ters determining it, so that views were not perfectly centered, but they had
a noise with 2 pixel edge lengths standard deviation in both x and y, and 2°
in each of the three Euler angles. Gaussian noise was added to each pixel
value so that the signal-to-noise ratio was 1/3 in the case of single particles
and 2/3 in the case of tomography.

The testing of the different algorithms should be based on a statistical
comparison of their relative ability to perform well-defined and relatively
simple tasks coded in the form of FOMs. However, since all algorithms have
free parameters that have to be adjusted, prior to their comparisons it is
necessary to perform a parameter optimization approach in which, for all
reconstruction algorithms, their free parameters are adjusted to optimal
performance. The parameter optimization and the algorithm evaluation
should be performed on the sames FOMs. This methodology has been pre-
sented in a number of previous works, such as Furuie et al. (1994), Matej 
et al. (1994) and Sorzano et al. (2001). For this chapter, we have selected, as
an illustrative example, a FOM based on the Euclidean distance between
the reconstructed volume and the original volume:
(where pv and rv are the values assigned to the vth voxel of the phantom
and the reconstruction, respectively, and V is the total number of 
voxels within a sphere of radius half the reconstructed volume edge).
Clearly, this FOM measures only a global characteristic of reconstruction
accuracy.

The parameters to be optimized for WBP, as described in Section 4.1,
are a and threshold. In fact, based on past experience, we have in all cases
fixed a so that it is half the length of the edge of the cubic volume within
which we perform the reconstruction. For block ART, we need to select
the relaxation parameter, l, which controls the magnitude of the update 
of the reconstructed volume during each iteration; see equation (12).
Note that the number of iterations for block ART is normally also a free
parameter. However, we set it to M (the number of projection images) for
the overdetermined case following the results and discussions presented 
in Marabini et al. (1998), and to 10M for the underdetermined case (see
Marabini et al., 1997). With these choices for the number of iterations, the
selected values of l were 0.3124, 0.0625 and 0.5, respectively, for the three
test data sets.

In Fig. 9a, we present the results corresponding to the first data set. In
this overdetermined case, the performances of the two reconstruction algo-
rithms according to this FOM called scL2 were similar, rendering FOM
values of 0.62 ± 0.03 for block ART and 0.60 ± 0.03 for WBP. The first value
is the mean of the FOM over the 30 collections of 10,000 projection images
each, and the second value is the standard deviation. Bearing in mind 
that the standard deviation of the mean of 30 samples is (1/√30

—
) times the
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between the means is over three times the standard deviations of the means,
implying that the observed difference has statistical significance, albeit not
a large one. (The phrase ‘statistical significance’ is used here in the sense
that is standard in hypothesis testing. Its meaning is not that the difference
between the means of the outcomes of the experiments using the two
methods is large, or even that it is necessarily important from the point of
view of the application. Rather it is a measure of our confidence by which
we can reject the null hypothesis that the methods are equally good, from
the point of view of the FOM, in favour of the alternative hypothesis that
the one for which the mean is larger is the better one. This confidence
depends not only on the difference between the means, but also on the 
variability of the experiments, as indicated by the standard deviations. Thus
statistical significance is indicated even by a very small difference in means,
as long as the standard deviations are correspondingly small.)

Regarding the case in which there was a missing cone of data, the
results are presented in Fig. 9b. This time, the global FOMs (0.53 ± 0.01 for
block ART and 0.49 ± 0.02 for WBP) are less similar: bearing in mind again
that the means are averages of several (this time 10) samples, the differ-
ence between the mean FOMs for the two reconstruction methods is even
more significant than in the previous case, with block ART presenting 
more details than back-projection. This type of result was expected, since
we found in our previous work (Marabini et al., 1997) that WBP is more
sensitive to a missing angular range than ART with blobs.

As for the third case of a tomographic reconstruction problem, it is 
an underdetermined situation with a missing angular range. The results
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FIGURE 9. Three slices perpendicular to the Z-axis corresponding to, from top to
bottom, the block ART reconstruction, the phantom volume and the WBP reconstruc-
tion, respectively. 



obtained are presented in Fig. 10.The FOM specified above provides values
of 0.9958 ± 0.0001 for the block ART reconstruction and of 0.9954 ± 0.0002
for WBP that are again significantly different. Two observable disad-
vantages of WBP when compared with block ART are: a blurring along the
z-axis (notice the two extra cylinders that appear on the left in the WBP
reconstruction that have been ‘smeared’ from another plane) and the loss
of the resolution in the ‘bilayer’ that surrounds the specimen as it goes
farther away from the center (a behavior that is in agreement with the
theory, since as we move away from the center we increasingly violate the
assumed nature of the point-spread function of simple back-projection, and
so the correction becomes less reliable).

6. DISCUSSION

In this work, we have presented two different families of reconstruc-
tion algorithms (transform methods and series expansion methods) used in
the field of 3D electron microscopy, including a more detailed analysis of
two common algorithms: WBP and block ART. There are several lessons to
be learned from this exercise.

The first one is the realization that no algorithm can be treated as a
black box, and that special attention has to be given to the actual value of
the parameters that characterize each algorithm in the context of a par-
ticular application. In this study, we have presented an approach in which
the value of these parameters is selected according to the maximization of
a well-defined FOM. Clearly, there is ample opportunity to define other
FOMs and, consequently, to ‘tune’ the algorithms for a better recovery of
certain types of information, such as ‘feature separability’, ‘contrast’ etc.,
which is a common practice in the field of computed tomography (CT) in
medicine. This review does not pretend to explore this issue in depth, as it
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FIGURE 10. One slice perpendicular to the Z-axis corresponding, from left to right,
to the ART reconstruction, the phantom volume and the WBP reconstruction, 
respectively. 



deserves a work of its own, but simply presents this situation explicitly since
many times it is hidden in the common use of the methods.

The second lesson is the importance of limits, other than the ones
imposed by the reconstruction algorithms, on our capacity to achieve better
reconstructions and, in this way, higher resolution biological information
from our 3D reconstructions. Of utmost importance are the errors due to
our imperfect knowledge of the geometry of data collection and, also, due
to the inaccuracies introduced by the instrument’s CTF. This consideration
indicates that a very interesting way to overcome these limitations could be
a combination, into a single algorithm, of the functionalities of reconstruc-
tion techniques and geometry estimation methods (see Scheres et al. (2005)
for a way to advance in this direction).

Finally, the third reflection is that under the general title of ‘3D EM
Reconstruction Methods’ there are quite different types of situations. A
clear example is the realization that typically single-particle reconstruction
problems are greatly overdetermined in terms of the basic characteristics
of the systems of equations that arise from them, while tomographic recon-
struction problems fall at the opposite extreme. Furthermore, the two types
of problems are evolving in such a way that the former one becomes even
more overdetermined, while the latter one becomes more and more under-
determined. Being so different in their basic mathematical characteristics,
it is clear that the relative performance of the methods in these two areas
could also be very different: what performs ‘best’ in the one case may be
inferior in the other.
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1. INTRODUCTION

Traditionally, 3D reconstruction methods have been classified into two
major groups, Fourier reconstruction methods and direct methods (e.g.
Crowther et al., 1970; Gilbert, 1972). Fourier methods are defined as algo-
rithms that restore the Fourier transform of the object from the Fourier
transforms of their projections and then obtain the real-space distribution
of the object by inverse Fourier transformation. Included in this group are
also equivalent reconstruction schemes that use expansions of object and
projections into orthogonal function systems (e.g. Cormack, 1963, 1964;
Smith et al., 1973; Chapter 9 of this volume). In contrast, direct methods are
defined as those that carry out all calculations in real space. These include
the convolution back-projection algorithms (Bracewell and Riddle, 1967;
Gilbert, 1972; Ramachandran and Lakshminarayanan, 1971) and iterative
algorithms (Gordon et al., 1970; Colsher, 1977). Weighted back-projection
methods are difficult to classify in this scheme, since they are equivalent to
convolution back-projection algorithms, but work on the real-space data as
well as the Fourier transform data of either the object or the projections.
Both convolution back-projection and weighted back-projection algorithms
are based on the same theory as Fourier reconstruction methods, whereas
iterative methods normally do not take into account the Fourier relation-
ships between object transform and projection transforms. Thus it seems
justified to classify the reconstruction algorithms into three groups: Fourier
reconstruction methods, modified back-projection methods and iterative
direct space methods, where the second group includes convolution back-
projection as well as weighted back-projection methods.

Each reconstruction algorithm requires a set of projections of the
object, recorded under different projecting directions. While the choice of
the data collection geometry is determined by the properties of the speci-
men, e.g. by its radiation sensitivity, by the degree of variation among par-
ticles in the preparation and by orientational preferences of the particles,
this geometry in turn determines which algorithm is most efficient in cal-
culating the 3D structure.

As explained in more detail in the introductory chapter by Frank, four
kinds of data collection schemes are used in electron microscopy: single-
axis tilting, conical tilting, random-conical tilt and general random tilt. For
the collection of a single-axis tilt series, the specimen is tilted in the micro-
scope in a range of typically −60° to +60° in small increments, e.g. 1–5°, and
an image of the same particle is recorded for each specimen position. For
a conical tilt series, the specimen is tilted by one fixed angle in the range of
45–60° and then rotated within this plane by small angular increments.
Again an image of the same particle is recorded for each specimen posi-
tion. Both data collection schemes are mainly used for preparations that
are radiation resistant or contain particles that individually have different
shapes, i.e. averaging over different particles is either not required or not
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possible. Conical tilt reconstructions have seen a recent revival in the appli-
cation to thin sections and replicas (Bellon et al., 2005, Zampighi et al., 2005)
Reconstruction schemes based on a random or random-conical tilt geome-
try intrinsically average over a large number of identical particles, and the
electron exposure of each single particle can be kept very low.The random-
conical data collection scheme (Frank and Goldfarb, 1980; Radermacher et
al., 1986, 1987) makes use of the fact that many particles tend to exhibit a
preferred orientation with respect to the specimen support plane, leaving
only one rotational degree of freedom, which is a rotation around an axis
perpendicular to this plane. The set of images from many such particles in
a micrograph of a tilted specimen form a conical tilt series with random
azimuthal angles. To achieve the maximum amount of 3D information, a
large tilt angle is required, typically between 45 and 65°. If a preferred ori-
entation is not present, then any micrograph of the specimen showing par-
ticles in random orientation provides a random tilt series (e.g. Vogel and
Provencher, 1988). Intermediate to the latter situation is a specimen of par-
ticles with more than one preferred orientation. Each such orientation can
be used as a random-conical tilt series, or the sets of particles with differ-
ent preferred orientations can be combined into a single random tilt series
(Carazo et al., 1989; Frank et al., 1988).

Among all types of reconstruction algorithms, most work has been
devoted to the reconstruction of objects from a single-axis tilt series with
equal angular increments. The Fourier algorithms have been extensively
optimized, and most of them perform very efficiently. Many variations of
the convolution and weighted back-projection algorithms can be found that
are designated for single-axis tilt geometry (e.g. Gilbert, 1972; Kwok et al.,
1977; Ramachandran and Lakshminarayanan, 1971).

For the regular conical tilt geometry, the choice of reconstruction algo-
rithms is much smaller.Although many iterative direct space algorithms can
be used that do not rely on a specific geometry, their performance can be
very slow. In many Fourier reconstruction methods, the problem of Fourier
interpolation and the associated matrix inversion becomes prohibitively
large even for most of currently available computers. Recently developed
methods have overcome many of these limitations by using a moving
window Shannon interpolation technique (Bellon and Lanzavecchia, 1997,
Bellon et al., 1999; Lanzavecchia and Bellon, 1998). Methods that use
orthogonal series expansions still need more development to be efficient in
applications to regular conical tilt geometries. Weighted back-projection
methods, on the other hand, have been extended to the reconstruction from
conical projection series (Radermacher, 1980; Radermacher and Hoppe,
1978) and offer a very efficient solution.

A similar situation can be found for the reconstruction from arbitrary
non-regular geometries with randomly distributed tilt angles. As in the case
of regular conical tilt geometries, the iterative methods are directly appli-
cable. However, as the number of input images in reconstructions from 
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randomly distributed projections is necessarily much larger than in recon-
structions from regular tilt geometries, the problem of computing time
requirements increases even further. Again the weighted back-projection
method in the form developed to deal with arbitrary geometries (Harauz
and van Heel, 1986; Radermacher et al., 1986, 1987) has become a very effi-
cient reconstruction algorithm. The two-step Radon inversion algorithm,
described later in this chapter, has at its core an R-weighted back-
projection and is the fastest of all the current reconstruction algorithms for
arbitrary geometry. In this context, we must also mention the series expan-
sion method developed for arbitrary geometries (Provencher and Vogel,
1988; Vogel and Provencher, 1988). However, this very elegant method has
not found any widespread use beyond its original publication.

For the reasons stated, weighted back-projection methods and itera-
tive methods are currently the most widely used algorithms for the recon-
struction of single, asymmetrical particles in electron microscopy. The
version developed for single-axis tilt geometry is extensively used for the
reconstruction of tomographic data sets. This includes tilt series of struc-
tures embedded in thick sections (e.g. Frank et al., 1987; McEwen et al.,
1986) and, increasingly, tomographic data sets of cryospecimens (e.g. Hsieh
et al., 2002; Stöffler et al., 2003). The weighted back-projection algorithm for
arbitrary geometry is used for the reconstruction of macromolecular struc-
tures from single-exposure random-conical tilt series (Radermacher et al.,
1986), for which this algorithm was specifically developed, and as part of
angular reconstitution techniques. In many situations, this algorithm can be
replaced by the two-step Radon inversion algorithm which is based on R-
weighted back-projection.

Besides performing faster on large data sets, weighted back-projection
algorithms have the important advantage over most iterative algorithms
that all operations involved are linear and the outcome of the reconstruc-
tion is entirely determined by the experimental input data. This linearity
facilitates a description of weighted back-projection methods using the
concept of point-spread functions and transfer functions. Constraints based
on a priori knowledge can be applied using POCS-style methods in a sep-
arate step, independent of the reconstruction algorithm itself.

This chapter starts with a short introduction to the concept of linear
systems. Following this, the transfer function of a simple back-projection is
determined, which yields the weighting functions for the weighted back-
projection. First, the most general weighting function, for a reconstruction
from projection with arbitrary angular distribution, is derived. Afterward,
specific analytical forms of the weighting functions are shown that can be
derived for data sets that consist of projections obtained with equal angular
increments.

Many other weighting functions have been proposed which differ from
the functions shown here mainly by the incorporation of low-pass filters.
The functions derived here do not contain implicit low-pass filters; instead,
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the formulae will be given that describe the dependence of the resolution
on the number of projections available. With these formulae available, the
reconstructions can be low-pass-filtered independently of the reconstruc-
tion algorithm used. This approach allows for flexibility in the choice of the
low-pass filter function and ensures that maximum use is made of the avail-
able data. At the end of this section, some examples of computer imple-
mentations of the reconstruction algorithms will be given.

2. THE CONCEPT OF POINT-SPREAD FUNCTIONS AND
TRANSFER FUNCTIONS

The point-spread function of an imaging system describes the image of
a single point as it results after using a perfect point as input to the system.
Such a system can be any linear optical system or an algorithm that ‘images’
an input distribution onto an output distribution, or even the combination
of optical and digital systems. The complete system involved in 3D electron
microscopy is the microscope that images the object onto a photographic
plate, image plate or CCD camera, the digitizer that transfers the image to
the computer, the algorithms used to process the images, and the media and
equipment to record the final result.

For a more detailed analysis of point-spread and transfer functions, we
refer the reader to Goodman (1968), whose terminology will be closely fol-
lowed, and to Papoulis (1968).

A system is defined as a ‘black box’ that maps a set of input functions
onto a set of output functions. The system will be described by the opera-
tor S. If g1(x′, y′) represents a 2D input and g2(x, y) is the output of the
system, then we use the notation

g2(x, y) = S[g1(x′, y′)] (1)

Because the extension to 3D and higher dimensional systems is straight-
forward, only 2D systems will be regarded here. If the operator S (or the
system it is associated with) is linear, then

S[a · f(x′, y′) + b ·g(x′, y′)] = a ·S[f(x′, y′)] + b ·S[g(x′, y′)] (2)

The response of a linear system can be described as the superposition of
responses to elementary functions into which the input can be decomposed.
One possible decomposition of the function g1(y′, y′) would be

(3)

where d is the 2D d-function. The function g1 passing the system results in

(4)g x y S g x y d d2 1, , ,( ) = ( ) ′ − ′ −( ){ }∫∫ x h d x h x h

g x y g x y d d1 1′ ′( ) = ( ) ′ − ′ −( )∫∫, , ,x h d x h x h
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and from the linearity of S, it follows that

(5)

Here the input function g1(x, h) simply appears as a coefficient of the ele-
mentary function d(x′ − x, y′ − h). To describe the mapping of g1, only the
system’s response h to the delta-function, called the impulse response or (in
optics) the point-spread function, needs to be known for every location (x,y):

h(x, y; x, h) = S{d(x′ − x, y′ − h)} (6)

Note, however, that the system’s response still can depend on the location
of the point.

If the system is shift-invariant, a property also called isoplanatic in
optics, then the system response is independent of the absolute coordinates
and depends only on the difference vector (x − x, y − h). The point-spread
function then can be written as

h(x, y; x, h) = h(x − x, y − h) (7)

Combining equations (5–7), we see that the mapping by a linear shift-
invariant system can be described as the convolution of the input function
with the point-spread function:

(8)

In connection with linear shift-invariant systems, the convolution
theorem of Fourier transforms is of importance:

g* f = F −1{F{g} ·F{f }} (9)

The asterisk indicates convolution, and F indicates the Fourier trans-
form.The convolution of a function g with a function f is the inverse Fourier
transform of the product between the Fourier transform of g and the
Fourier transform of f. This relationship will be extensively used. Let the
function f(x, y) be mapped onto the function g (x, y):

g(x, y) = f(x, y)*h(x, y) (10)

where h(x, y) is the point-spread function of the system. The Fourier trans-
form of g(x, y) is:

G(X, Y) = F (X, Y) ·H (X, Y) (11)

where H(X, Y), the Fourier transform of h(x, y), is the transfer function of
the system, and F(X, Y) is the Fourier transform of f(x, y). Throughout this

g x y g h x y d d2 1, , ,( ) = ( )⋅ − −( )∫∫ x h x h x h

g x y g S x y d d2 1, , ,( ) = ( ) ′ − ′ −( ){ }∫∫ x h d x h x h
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chapter, upper case letters are used for coordinates in Fourier space. The
original function f(x, y) can be recovered from g(x, y) by dividing the
Fourier transform of g(x, y) by the Fourier transform of h(x, y) followed by
an inverse Fourier transform:

(12)

The division of the Fourier transform G(X, Y) by H (X, Y) corresponds
to a deconvolution of g(x, y) by the function h(x, y).

3. 3D RECONSTRUCTION

The input data to any 3D reconstruction are projections of a 3D dis-
tribution. Bright-field images in electron microscopy are in approximation
projections of the potential distribution of the object. Use will be made 
of the projection theorem, which states that the Fourier transform of a 
projection is a central section through the Fourier transform of the 3D 
distribution.

For understanding weighted back-projection methods, it is necessary
to understand the simple back-projection or summation technique, which
will be explained first. A weighted back-projection is a simple back-
projection followed by a deconvolution with the point spread function of
the simple back-projection algorithm. This deconvolution is done by divid-
ing the Fourier transform of the back-projection by its transfer function.
One divided by the transfer function is called the weighting function, a term
from which the term weighted back-projection originates. Convolution
back-projections are algorithms that perform the equivalent convolution in
real space. The convolution kernel for the real-space convolution is the
inverse Fourier transform of the weighting function.

The weighting functions derived in the following sections only corrects
for the transfer function of the simple back-projection algorithm. Specifi-
cally they do not take into account the limits to the resolution caused by
the limited number of projections available.Thus, to obtain a faithful recon-
struction of the object, the 3D reconstruction must be low-pass-filtered to
the resolution that is determined, by virtue of Shannon’s sampling theorem,
by the number and spacing of the available projections. The resolution for-
mulae will be given in Section 4.

In the derivation of the analytical form of the weighting function for
single-axis tilting, it will be assumed that data are available over the full tilt
range from −p/2 to +p/2. Distortions of the image point that are caused by
the missing wedge in single-axis tilt geometries or the missing cone in
conical tilt geometries cannot be corrected by a weighting function or
deconvolution, because the Fourier transform of the point-spread function

f x y
G X Y
H X Y

H,
,
,

for ,( ) = ( )
( )

⎧
⎨
⎩

⎫
⎬
⎭

≠−F 1 0
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H(X, Y, Z) becomes 0 in these regions and thus violates the condition stated
in equation (12).

Distortions caused by missing data can be reduced, however, using a
priori knowledge, such as the possible density range or the overall size of
the reconstructed object. The technique of projection onto convex sets
allows this information to be combined with the reconstruction (e.g. Barth
et al. 1989; Carazo and Carrascosa 1987; Levi and Stark 1983). Essentially,
data consistent with the a priori information are inserted into the missing
range of the Fourier transform of the reconstructed object, while data that
are determined by the experimental projections are left unchanged. A priori
information can also be used to extend the resolution of the reconstruc-
tion by filling in data where the angular sampling is insufficient to fulfill
Shannon’s sampling theorem. Great caution has to be used, however, with
any application of a priori information. If the a priori information is incor-
rect, a structure will still emerge, consistent with the data and the a priori
information; however, it may not reflect the the true structure of the object
under investigation. A priori information also may bias resolution meas-
urements. If, as is often done, the data set is split in half and two separate
reconstructions are calculated that are compared using a resolution crite-
rion that determines the information common to both reconstructions, and
both reconstructions are carried out using the same a priori information,
the resolution measurement may reflect the consistency between the a
priori information rather than the true resolution of the structure.

A powerful a priori information is, for example, a volume constraint,
which postulates that outside of a specified region in three dimensions,
no structure is present. The imposition of this constraint is comparable with
the solvent-flattening approach used in X-ray crystallography. In medical
tomography, the object dimensions can be measured. In 3D electron
microscopy, the precise outline of the molecule is, in general, not available.
For example, when particles are reconstructed that are embedded in nega-
tive stain, the surrounding stain distribution is still part of the structure and
must be included in any volume mask.Otherwise strong artifacts can appear.

Many of the iterative reconstruction algorithms implicitly use a priori
information about the object, and the same precautions must be taken. The
a priori information has to be reliable, and resolution measurements may
require an independent reference, for example the X-ray structure of a sub-
region of the macromolecule.

The weighted back-projection algorithms described here do not make
use of a priori information. Thus, the resolution and quality of the recon-
struction are ruled by Shannon’s sampling theorem. The angular sampling
must be consistent with the resolution achievable and, after the application
of the algorithms described below, the reconstructions must be low-pass-
filtered to the resolution following from Shannon’s sampling theorem. In
all calculations, the pixel sampling of the projections and volumes should
be kept twice as fine as required by Shannon’s sampling theorem, to avoid
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any loss of resolution through limitations in the interpolations used. For
example, if the expected resolution in three dimensions is 2nm, the projec-
tions should be scanned with a pixel size not larger than 0.5nm. In all appli-
cations of Fourier filters, the projections should be padded to twice their
size to avoid wraparound artifacts.

3.1. The Simple Back-projection Algorithm

An intuitively simple reconstruction method is the back-projection or
summation technique.The technique can be explained most easily using the
example of a simple 2D binary object consisting of three disc-shaped
regions with value 1 inside and value 0 outside. This object is to be recon-
structed from its 1D projections (Fig. 1).

The object O (Fig. 1) appears in the projections P at angles q1, q2, q3,
q4 and q5. As a first step in the reconstruction process, the projections 
are smeared out to form so-called back-projection bodies (B in Fig. 1)
(Hoppe et al., 1976). To reconstruct the object, one has to sum all the back-
projection bodies.

The simple back-projection calculates only an approximation of the
object. In the example in Fig. 1, the original three disks are identifiable in
the back-projection because of their higher intensity relative to the sur-
rounding. If the object were not binary, the ambiguity in the back-
projection would be even greater. The quality, however, improves when
more projections are used. It can be shown that a simple back-projection
reconstructs the object with a point-spread function that enhances the low
spatial frequency components.

Let f(x, y, z) be a 3D distribution, which is projected under the angles
qj, fj to form a series of projections pj(xj, yj). Let r j = (xj, yj, zj) be the coor-
dinates in the coordinate system of the projection pj which forms the (xj, yj)
plane. The geometrical relationship between the object coordinates r = (x,
y, z) and r j = (xj, yj, zj) can be described using the rotation matrices Dq j, Dfj:

r j = Dq j ·Dfj · r (13)
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FIGURE 1. Principle of a simple back-projection. A binary object consisting of three
points is projected onto five projections P at angles q1, q2, q3, q4, q5. From these 
projections, back-projection bodies B are created and the object is reconstructed by
summation of these back-projection bodies. The figure shows an actual calculation,
where three points have been projected, ‘smeared back’ (equation 19) and summed
(equation 20).



with

(14)

and

(15)

The object is first rotated by fj around its z-axis, then tilted by −qj

around the new y-axis, and then projected onto the (xj, yj) plane. Only two
angles are needed to describe all projecting directions. A third angle would
just describe a rotation in the plane of the projection, which will be disre-
garded here.

A projection along the direction zj with angles qj, fj can be written as

(16)

A back-projection body is formed by convolution of pj in the (xj, yj)
plane with the 3D spread function

lj = d(xj, yj)c(zj) (17)

with

(18)

The convolution conditions for an isoplanatic system are fulfilled
within a sphere of diameter a if 2 ·a is at least twice the object diameter and
the projections and the reconstruction volume are sufficiently large to
include all back-projection rays.Alternatively, for theoretical purposes, pro-
jections and back-projection bodies can be considered as being of infinite
extent. In practice, the parameter 2 · a is chosen to be the object diameter
for the calculation of the weighting function and infinite in the back-
projection step. All projections and volumes are kept at twice the size of
the object during all calculations.

The back-projection body now can be written as

(19)
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and the back-projection algorithm becomes

(20)

Under the conditions specified above, simple back-projection is a
linear and shift-invariant algorithm. Thus, its performance can be described
as the convolution of the original object with the point-spread function
associated with the algorithm. To obtain a faithful reconstruction, the back-
projected density has to be corrected. This correction can be achieved by
the convolution with a function that acts as the inverse of the point-spread
function. In weighted back-projection methods, this deconvolution is
achieved by dividing the Fourier transform of the back-projected density
by the transfer function that represents the reconstruction algorithm.

3.2. Weighting Function for Arbitrary Tilt Geometry

To find the weighting function for a weighted back-projection for arbi-
trary geometry, we must first analyze the point-spread function of a simple
back-projection in more detail. The 3D object can be rewritten as a super-
position of d functions, using the 3D equivalent to equation (3):

(21)

The point-spread function then can be found by analyzing how the
back-projection algorithm affects a single point in three dimensions repre-
sented by the function

q = d(x, y, z) (22)

The projection of q at angles qj, fj is

pj(xj, yj) = d(xj, yj) (23)

The back-projection body becomes, according to equations (17) and (19),

pb
j(xj, yj, zj) = d(xj, yj)c(zj) (24)

and the point back-projected in three dimensions is found by summation
over qj, fj as

(25)

Thus, b(x, y, z) is the point-spread function of a back-projection cal-
culated from a set of projections taken with arbitrary angles qj, fj.The trans-
fer function is the Fourier transform of (25):
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(26)

and

(27)

where sinc (x) = sin(x)/x.
With the rotation matrices given in equations (14) and (15), Zj can be

expressed in the coordinate system (X, Y, Z) of the object:

Zj = X sinqj cosfj + Y sinqj sinfj + Zcosqj (28)

and the transfer function becomes (Radermacher et al., 1986):

(29)

Hence, the corresponding weighting function for arbitrary geometry is

(30)

Equation (30) is valid only for H ≠ 0. In the implementation of the algo-
rithm, a lower threshold for H is set to avoid division by 0 and to limit the
enhancement of noise.While the threshold value 1 would avoid any enhance-
ment, in practice a value of 0.6 has proven as a good guideline, allowing for
some enhancement in undersampled areas without creating an undue ampli-
fication of noise.The original 3D distribution o(x,y,z) can be recovered from
the back-projection b(x, y, z) by multiplication of its Fourier transform B(X,
Y, Z) by Wa(X, Y, Z), followed by an inverse Fourier transform:

o(x, y, z) = F -1[O(X, Y, Z)] = F −1[B(X, Y, Z)Wa(X, Y, Z)] (31)

The weighting function (30), which is three-dimensional, is applied 
to the 3D Fourier transform of an object reconstructed by simple back-
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projection. Since the Fourier transforms of projections are central sections
through the 3D Fourier transform of the object and since simple back-
projection is essentially a summation which commutes with the Fourier
transform operation, the weighting function can also be applied to the
Fourier transform of the projections before the back-projection step.
However, in an arbitrary tilt geometry, the location of a point in the central
section relative to all other central sections is not independent of an in-
plane rotation of the projection, and therefore a third Euler angle has to
be included in the transformation (13). Only in a random-conical tilt series
and simpler geometries can this third angle be kept 0 by aligning the tilt
axis parallel to the same axis in each projection. Thus, for the application
to the Fourier transforms of the projections, transformation (13) becomes

r j = Dy j
Dq j

Df j
r (32)

Zj in equations. (28) and (29) becomes the Z component of the vector

Rj = Dy j
Dq j

Df j
Dfk

−1Dqk

−1Dyk

−1 Rk (33)

where Rk is the vector (Xk, Yk, 0) in the section in Fourier space at angles
yk, qk, fk to which the weighting function is being applied.

The advantage of applying the weighting function to the projection is
that in most cases H is non-zero along the corresponding sections through
the 3D Fourier transform, because each section is also the origin of one of
the superimposed sinc-functions in H. The disadvantage of this mode of
application is that the number of calculations needed is usually larger.
Assuming that the dimensions of the Fourier transforms of projections and
object are equal to their real-space dimensions, a common situation is that
the xy dimensions of the projections are larger than the xy dimensions of
the object and, secondly, that the number of projections is larger than the
number of z slices in the reconstructed object. The most appropriate im-
plementation of the algorithm is one that allows a choice of the mode of
application.

In practical applications the weighting function (equation 30) performs
well if the number of projections per angular interval varies smoothly. If,
however, large gaps exist in the angular sampling and the number of pro-
jections per angular interval varies rapidly, then fringes may occur in the
reconstruction. These artefacts can be eliminated by the use of a weighting
function that is the Fourier transform of an apodized point-spread function.
The discontinuous step function c(zj) in equation (18), which describes the
length of the rays in the back-projection step, is replaced by a continuous
step function with Gaussian fall-off. This function can be created by a con-
volution of the discontinuous step function with a Gaussian function.
Because of the convolution theorem, its Fourier transform is the product
of the sinc function (equation 18) and the Fourier transform of the 
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Gaussian, which is also a Gaussian function. For the calculation of the
weighting function based on the apodized point-spread function, the ele-
ments in the sum in equation (29) are replaced by products of sinc func-
tions and Gaussians.

3.3. Weighting Function for Single-axis Tilt Geometry with Equal
Angular Increments

The weighting function derived in the previous section is applicable to
any tilt geometry. However, for a single-axis tilt geometry with equal
angular increments, an analytical form of the weighting function can be
found.Although the weighting function for single-axis tilting can be derived
from the inverse Radon transform or a comparison between a simple 
back-projection and a Fourier inversion method (e.g. Cormack, 1963, 1964;
Gilbert, 1972; Ramachandran and Lakshminarayanan, 1971; Vainshtein and
Orlov 1972; and Section 5 of this chapter), it will be derived here as a special
case of the weighting function for arbitrary geometry.

In a single-axis tilt geometry, the object is tilted around a single axis in
equal angular increments, and a projection is recorded for each orientation.
Without loss of generality, the tilt axis is assumed to be the y-axis (Fig. 2);
thus q in equation (14) becomes the tilt angle, and f in equation (15) is kept
at 0. Now we make the following approximations: (i) the variable a in
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FIGURE 2. Single-axis tilt geometry. The tilt axis y is perpendicular to the plane 
of the page, q is the tilt angle, x, y, z the coordinate system fixed to the object, x ′,
y ′, z ′ is the coordinate system, with x ′, y ′ being the plane of the projection. (From
Radermacher, 1988; reproduced with permission of Alan R. Liss, Inc.)



equation (18) is assumed to be infinite, which corresponds to back-projec-
tion bodies that are infinitely extended in the zj direction; and (ii) the series
of projections is available over a continuous range of q from −90° to +90°.
With these approximations, and with

(34)

equation (29) becomes

(35)

From condition (ii) the sum in equation (35) can be replaced by an
integral:

(36)

Since the tilt axis is assumed to be the y-axis, H(X, Y, Z) is independ-
ent of Y. The transfer function is constant in the direction of the tilt axis
and varies only in the planes perpendicular to Y. If the coordinates X and
Z are replaced by the cylindrical coordinates R and Γ within the XZ planes.

X = RcosΓ, Z = R sinΓ, Y = Y (37)

equation (36) becomes

(38)

The solution to this integral can be found using the identity

(39)

for f ′(xn) ≠ 0.The xn are the zeros of f(x) within the integration range.There
is only one zero of f within the integration interval Θe(−p/2, p/2]; f(Θ) = 0
for Θ = Γ − p/2, and the solution of (38) becomes

(40)

We thus obtain the result that, for the deconvolution of a simple back-
projection from a single-axis tilt series with equal angular increments, the
Fourier transform of the back-projections has to be multiplied by the
weighting function

Ws(R, Y, Γ) = R (41)
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where R is the radius in Fourier space perpendicular to the tilt axis Y.Again
the multiplication by R can be applied either to the projections or directly
to the 3D Fourier transform of the back-projection. If applied to the pro-
jections, the application of the weighting function corresponds to a multi-
plication of their Fourier transform by X.

3.4. Weighting Function for Conical Tilt Geometry with Equal
Angular Increments

For collection of a conical tilt series in the microscope the specimen is
tilted by a fixed angle q0 and then rotated in this inclined plane by equal
angular increments Δf. In each position, a projection is recorded.The geom-
etry is equivalent to moving the beam direction along the surface of a cone
(Fig. 3).

To calculate the geometrical relationship between the coordinate
system in the projections and the coordinate system fixed to the object,
again the rotation matrices (14) and (15) are employed with qj = q0 con-
stant, and fj = jΔf. To find the analytical form of the weighting function, the
same assumptions are made as in the calculation of the analytical weight-
ing for single-axis tilting, i.e. the back-projection bodies are infinitely
extended in the zj direction, and the azimuthal angle f is assumed to be con-
tinuous.As before, this results in a replacement of the sinc function in equa-
tion (29) by a d function and a replacement of the sum by an integral. The
transfer function of a simple back-projection from a regular conical tilt
series thereby becomes

(42)
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FIGURE 3. Conical tilt geometry.
As in Fig. 2, the y-axis and y ′-axis
are perpendicular to the plane
(viewing direction at f = 0). x, y, z,
are object-fixed coordinates, q0 the
fixed tilt angle around the y-axis
and f the azimuthal angle around
z. (From Radermacher, 1988; repro-
duced with permission of Alan R.
Liss, Inc.)



By expressing X, Y, Z in cylindrical coordinates R, Γ, Z and making
use of equation (39), we finally obtain (Radermacher, 1980; Radermacher
and Hoppe, 1978):

(43)

Equation (43) is valid in the region R > Zcotq0, i.e. only in the region
of the Fourier transform where measured data are available. It is not valid
within the missing cone. Because 0 � q0 � p/2,

(44)

and equation (43) becomes

(45)

The weighting function that needs to be applied to the 3D Fourier
transform of the back-projection from a regular conical tilt series then
becomes

(46)

Here, as in the previous cases, the weighting function may also be
applied to the projections before the back-projection is carried out. In the
central section in Fourier space that corresponds to the projection at the
angles q and f, equation (47) becomes

Wc(Xj, Yj) = Yj sinq0 (47)

Equation (47) was derived by reverting to Cartesian coordinates in
equation (46) and transforming to the coordinate system of the projection
at angles q0, fj using

r j = Dq0
Dfj

r (48)

with Df and Dq as previously defined in equations (14) and (15).
For a reconstruction from a conical tilt series with equal angular incre-

ments, the weighting step corresponds to a multiplication of the Fourier
transforms of the projections by Y sinq0, where y is the direction of the tilt
axis belonging to the angle q0. In contrast to the weighting function for
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single-axis tilt geometry, which only affects the projection perpendicular to
the tilt axis, for conical tilting the weighting function increases in the direc-
tion of the tilt axis and is constant perpendicular to it.

3.5. Other Forms of Weighting Functions

For reconstruction from projections with arbitrary projecting angles, a
weighting function different from the one derived in equation (29) has been
proposed (Harauz and van Heel, 1986). The filter, which the authors term
‘exact filter’, is an approximation to the function shown here. The essential
difference is that the sinc function is replaced by the simpler triangular 
function. The use of the triangular function in the summation of the single
projection’s contribution to the weighting function poses smaller computa-
tional demands and thus results in a faster performance of the algorithm.
However, if the sine function that appears in equation (29) as part of the
sinc function calculation is tabulated, the difference in computational effort
between the two approaches should be minimal.

For single-axis tilting, a large variety of weighting functions can be
found that combine the R weighting with a window of the Fourier trans-
form that corresponds to a low-pass filter (e.g. Kwok et al., 1977; Ramachan-
dran and Lakshminarayanan, 1971; Suzuki, 1983).The inclusion of a window
function w(R), however, becomes necessary if the deconvolution is to be
carried out in real space. The real-space convolution kernel is calculated as
the inverse Fourier transform of R ·w(R). As R is not square-integrable and
does not have a compact support, its inverse Fourier transform does not
exist. The window function is needed to limit the weighting function to a
compact support, make it square-integrable and, possibly, to carry out this
inverse Fourier transform.

3.6. A Variant of Weighted Back-projection, the Two-step 
Radon Inversion

A variation of the weighted back-projection algorithms described above
is the Two-step Radon Inversion Algorithm in which two consecutive R-
weighted back-projections are employed to invert a 3D Radon transform.
This algorithm can be used for the reconstruction from projections with any
geometry. The problem of accounting for the different projection direction is
solved in the step of creating a 3D Radon transform from the projection set.
This 3D Radon transform is sampled in a regular spherical coordinate system.

As will be shown in Section 5, a series of 2D projections of a 3D object
does not represent the 3D Radon transform of the object. To calculate the
3D Radon transform, first the 2D Radon transforms of all projections have
to be calculated. Each single line in these 2D transforms represents a line
through the origin of the 3D Radon transform. The orientation of each of
these lines in three dimensions is known from the projection angles and
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from their angular coordinate within the 2D Radon transform. In a large
data set, many of these lines represent redundant measurements of the 3D
transform. This 3D Radon transform can then be calculated by an averag-
ing procedure.The result is a 3D Radon transform, averaged from the meas-
urements and stored in a polar coordinate system (r, q, f). The inversion
can now be carried out in two steps: first, all planes (r, f) (q = const) are
sectioned out of the 3D Radon transform. An R-weighted back-projection
is used to calculate the real-space image of these sections. Each recon-
struction section now represents a 2D projection of the object at a specific
angle q. These reconstructed slices form a single-axis tilt projection series
of the 3D object, which can be retrieved with a second R-weighted back-
projection. Detailed descriptions of these algorithms can be found in
Radermacher (1994, 1997) and in Bellon et al. 1999.

4. BAND LIMIT OF A RECONSTRUCTION FROM A LIMITED
NUMBER OF PROJECTIONS

For all reconstructions, only a discrete, limited number of projections
is available. If no band limit is imposed on the reconstruction, then there
exists an infinite number of possible reconstructions that are all consistent
with the available measurements, and the result obtained would be just one
of these possible solutions. However, by using Shannon’s sampling theorem
(Shannon, 1949), a band limit can be determined up to which the recon-
struction is unique, presenting a faithful image of the original object. The
band limitation is not taken into account by the weighting functions derived
above and thus needs to be imposed in a separate step. Like the weighting
function, the low-pass filter can be applied either to the projections before
the reconstruction or to the reconstructed object. The application to the
projections has the advantage that it avoids multiple Fourier transforma-
tions, since it can be done simultaneously with the application of the weight-
ing function. On the other hand, the application of the low-pass filter to the
reconstruction allows for more flexibility. It further reduces any high reso-
lution artifacts that may have been caused by interpolation during the back-
projection step. The low-pass filter can be adjusted, for example, to the
resolution predicted by the sampling or to a measured resolution value (see,
for example, Cardone et al., 2005).

4.1. Resolution for Single-axis Tilt Geometry

The equation for the dependence of the resolution on the number of
projections in a single-axis tilt geometry with equal angular increments has
been derived by Bracewell and Riddle (1967) and Crowther et al. (1970).
Let d be the resolution of he reconstruction and D the diameter of the
reconstruction volume, which is assumed to be cylindrical, the axis of the
cylinder coinciding with the tilt axis. The reconstruction volume is defined
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as the volume large enough to include the complete object. Let Δq be the
angular increment, and let N = p/Δq. Then the best resolution achievable is

(49)

or

d = DΔq (50)

4.2. Resolution for Conical Tilt Geometry

Let q0 be the fixed tilt angle, d the resolution, D the object diameter
and N the number of projections evenly spaced in f . The resolution of the
reconstruction then depends on the number of projections in the following
way (Radermacher, 1980, 1988; Radermacher and Hoppe, 1980):

(51)

and

(52)

Inversion of (52) yields

(53)

The resolution formulae above do not take into account the missing
regions in the Fourier transform of the object caused by the limited tilt
range for single-axis tilting or by q0 < 90° for conical tilting. In a single-axis
tilt series with a limited tilt range around the y-axis from −amax to +amax in
increments of Δq, equation (49) gives the resolution in the x direction. The
resolution in the z-direction depends on the maximum tilt angle, and the
resolution parallel to the tilt axis y is equal to the resolution of the input
projections. Similarly, for a conical tilt series, where the fixed tilt by the angle
q0 is around y, equations (51) and (52) give the resolution in the directions
parallel to the xy plane, whereas the resolution in the z direction depends
on the size of the missing cone (Radermacher, 1980, 1988).

4.3. Resolution in a Flat Extended Reconstruction Volume

For the derivation of equations (49–52) a spherical shape of the recon-
struction volume has been assumed, which is appropriate for most 
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reconstructions of macromolecular assemblies. However, especially in
reconstructions of subcellular components in thick sections, the assumption
of a flat extended slab for the shape of the reconstruction volume is more
appropriate. Equations (49–52) could be applied by using for D the diam-
eter of a sphere that circumscribes the complete slab. However, the result-
ing number of projections necessary to obtain a reconstruction with a
reasonable resolution becomes prohibitive if calculated this way. Indeed,
this approach is unnecessarily conservative. If the image point is analysed
more closely, it can be seen that, for a given resolution d, the diameter D
in any equation (49–52) is the radius of the volume surrounding a single
image point where artifacts are minimal. If the object is considered as being
built up by a superposition of image points, each of which carries a halo of
rays in the directions of the contributing projections (Fig. 4), starting at a
distance D from the centre of the image point, then a faithful reconstruc-
tion can be calculated up to a section thickness of

T = Dcos g (54)

where g is the maximum tilt angle amax for single-axis tilting or the fixed
angle q0 for conical tilting. Substitution of

(55)

in equations (49–52) will therefore give the resolution of a reconstruction
of an extended slab with thickness T.

4.4. Resolution for Random and Random-conical Geometry

For reconstructions from randomly distributed projections, no formu-
lae are available that predict the theoretical value of the final resolution.
For reconstructions from a random-conical tilt series, however, the angular
coverage can be analysed and a conservative estimate of the resolution can
be made by using the largest angular step between two adjacent projections
as the value for Δq = 2p/N in equation (52).

4.5. Resolution in the z-direction

The resolution values that can be estimated with the equations above
only apply to specific directions in the reconstruction. In a single-axis tilt
series, the resolution in the direction of the tilt axis is essentially equal to
the resolution of the micrographs, reduced by radiation damage that could
introduce inconsistencies in the projection set, and by possible inaccuracies
in the alignments of the projections before reconstruction. In the x direc-
tion, we find the resolution determined by equation (50). The resolution in
z direction depends on the size of the missing wedge, the part of the angular

D
T=

cosg
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space that is not covered by projections. For conical and random-conical
tilting, the equations above describe the resolution in the x–y plane and,
again, the resolution in z direction is lower because of the limited tilt range.

In single axis tilting, the tilt range is typically ±60° and for conical and
random-conical tilting, the maximum tilt angle typically is 55–60°. The
missing wedge or missing cone in the 3D Fourier transform creates artifacts
in the real-space reconstruction. Part of these artefacts are spurious features,
defined as clutter (Radermacher, 1980), and the more obvious effect is a loss
of resolution in the z direction (the direction perpendicular to the specimen
plane). This resolution loss can be estimated as a ratio of the resolution in z
direction to the resolution in the x–y plane. By approximation of the image
point with a 3D ellipsoid, one can predict its axis ratio, depending on the two
ellipsoid angles. Using this approach, the resolutions in the z direction are:
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FIGURE 4. Reconstruction of an object within a spherical reconstruction volume and
within an extended slab. (a) Contour plot of a cross-section through a 3D image point
reconstructed from a single-axis tilt series containing 25 projections in the range of 
−60° to +60°, using R-weighted back-projection. Contour levels: dashed lines 2%
increments <0 to 8%; dashed-dotted lines 0 contour; solid lines at 10, 20, 40 and 100%. 
Percentages are relative to the image maximum. (b) sketch of the image point in (a).
C-circle with radius D (= diameter of the reconstruction volume as used in equation
54). d-resolution. (c) Superposition of reconstructed image points on the surface of a
sphere with diameter D. The inside of the sphere is virtually artifact free. (d) Super-
position of two image points at the surface of an extended slab. Within the thickness
T of the slab, no overlap of the artifacts surrounding the image points occurs.



for single-axis tilting

(56)

with a being the maximum tilt angle, and for conical tilting

(57)

with q0 being the fixed tilt angle in the conical tilt series (Radermacher,
1980, 1988).

5. RELATIONSHIP BETWEEN THE INVERSE RADON
TRANSFORM, FOURIER INVERSION AND WEIGHTED
BACK-PROJECTION METHODS

The inverse Radon transform (Cormack, 1963, 1964; Radon, 1917),
Fourier inversion methods and weighted back-projection are equivalent
formulations of the reconstruction problem in a single-axis tilt geometry.
This is true for a single-axis tilt geometry only, where the problem can be
reduced to the problem of reconstructing a 2D image from 1D projection.

The n-dimensional Radon transform is obtained by integration over (n
− 1)-dimensional hyperplanes which for n = 2 results in line integrals. For
n = 3, the integration has to be carried out over planes. Projections obtained
in the electron microscope correspond to line integrals of the potential dis-
tribution of the object. In a single-axis tilt series with tilt axis y, the set of
lines taken from each projection at the same coordinate y0 form the 2D
Radon transform of the xz section through the object at the location y0. In
a conical or arbitrary tilt geometry, the reconstruction problem can no
longer be reduced to a set of planar reconstructions from a set of lines
extracted from the projections. The set of 2D projections in a conical tilt
geometry does not constitute the 3D Radon transform of the object. The
latter would require a set of integrals over all planes and not the set of line
integrals as is found in 2D projections. A method for reconstruction from
a set of 1D projections that form a 3D Radon transform, however, can be
found in earlier 3D imaging techniques applied in nuclear magnetic reso-
nance imaging (Shepp, 1980).

To show the equivalence between Radon inversion, Fourier inversion
and weighted back-projection methods, we follow the book of Deans (1983,
p. 96ff) (see also, for example, Crowther et al., 1970; Gilbert, 1972;
Ramachandran and Lakshminarayanan, 1971; Smith et al., 1973; Vainshtein
and Orlov, 1972; Zwick and Zeitler, 1973.)

The 2D Radon transform of an object f(r), r ∈ R2 is the function
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which is equivalent to a line integral along the line p = x · r, with x being the
unit vector in the direction of the line, x = (cosq, sinq), and the integration
is carried out over the plane in R2. The Fourier transform of f(r) is

(59)

where F2 indicates the 2D Fourier transform. The Fourier transform along
sections in the direction of the unit vector x can be found by replacing R
with sx. Substituting sp for t then yields

(60)

Here, is the Radon transform of f(r) or the
1D projection of f along x. Equation (58) essentially is the projection theorem,
which states that the 2D Fourier transform of the function f(x, y) is the 1D
Fourier transform along p of the 2D Radon transform of f. The function
f(y) can be recovered by application of an inverse 2D Fourier transform to
the 1D Fourier transform along p of the Radon transform. This is the basis
for all Fourier reconstruction methods.

The equivalence of the weighted back-projection method and Fourier
reconstruction methods can be seen from the following. Let pf(q) be a 1D
projection of a 2D object o(x, y) at the angle f. In the coordinate system of
the object, we have q = xcosf + y sinf. Let f(q, f) be the function describ-
ing the set of projections for a continuous angle f. The back-projection in
its continuous form then is

(61)

Let F(R) be the 1D Fourier transform of f(q, f) along q.

(62)

Replacing f in equation (61) by the inverse Fourier transform of F yields

(63)

and after introduction of polar coordinates r, g with x = rcos g, y = r sin g,
equation (63) becomes
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which is the 2D inverse Fourier transform of F(R, f) multiplied by 1/R. The
weighting function for single-axis tilting, R, compensates for this factor.
Thus, a weighted back-projection is equivalent to a reconstruction by
Fourier inversion methods.
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A. APPENDIX: NOTES ON THE COMPUTER
IMPLEMENTATION OF THE ALGORITHMS

Many schemes of computer implementation of algorithms can be
found in the literature on numerical methods, and the following does not
claim to be the most efficient way of programming the algorithms outlined
in the foregoing chapter, but might be helpful in translating the equations
into program code.

A.1. Implementation of the Simple 
Back-projection Algorithm

For the calculation of a simple back-projection, the projection bodies
are summed into the 3D volume. Both the volume and the projections are
available on a discrete sampling grid, and an interpolation is necessary to
sum the rays of the back-projection body into the volume. One possible
solution uses the following scheme. In a loop over the volume elements the
coordinates of each point in the volume are calculated in the projection Pj

at the angles qj, fj. The value of the projection at this point then is interpo-
lated from the values of the surrounding points in the projection and added
to the volume element. For a bilinear interpolation in the back-projection,
the formula is

(65)

where O(m, n, o) is the volume element at x, y, z indices m, n, o with
−M � m � +M, −N � n � +N and −O � o � +O. Here, p and q are the 

O m n o P p q x y P p q x y

P p q x y P p q x y

i i
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i i
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x and y indices of pixels in the projections and are calculated using the
matrices (14) and (15):

x = mcosqi cosfi + ncosqifi − o sinqi

p = integer truncation of x, Δx = x − p (66)

and

y = −m sinfi + ncosfi

q = integer truncation of y, Δy = y − q (67)

Of course, other interpolation schemes can be used, the fastest but
crudest being a nearest-neighbour selection, and a much more elaborate
one is a spline interpolation.

A.2. Implementation of the Weighting Scheme for Arbitrary
Geometry

The following contains two sketches for possible layouts of a program
that calculates and applies the weighting function for arbitrary geometry.
One shows the application of the weighting function to the projections, and
the second shows the application of the weighting function to the volume
after simple back-projection (equations 28, 29, 31).

A.2.1. Application to the Fourier Transform of the Projections

Read the angles yj, qj, fj for all projections
Loop 1 over all projections pk, 1 � k � J.

calculate the transfer function Hk(Xk,Yk) for projection pk at angles qk,fk.
Loop 2 over all Fourier coordinates Xk, Yk in the Fourier plane 

corresponding to the projection pk.
Loop 3 over all projection angles yj, qj, fj;

1 � k � J
calculate the Zj coordinate of point Xk,Yk, i.e. the Z coordinate
of point Rk in the coordinate system of projection pj, at angles 
yj,qj,fj using

Rj = Dy j
Dq j

Dfj
Dfk

−1Dqk

−1Dyk

−1Rk

calculate H(Xj, Yj) = H (Xj, Yj) + 2a sinc(2paZj)
end of loop 3 over projection angles

If H(Xj, Yj) < threshold, then H(Xj, Yj) = threshold
end of loop 2 over Fourier plane coordinates

Fourier transform projection Pk(Xk, Yk) = F (pk(xk, yk)) compute 
Pk(Xk, Yk)/H(Xk, Yk): = Pk

w(Xk, Yk).
Inverse Fourier-transform: F −1{Pk

w(Xk, Yk)}: = pk
w(x, y).

end of loop 1 over projections.
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A.2.2. Application to the 3D Fourier Transform

Read the angles yj, qj, fj for all J projections
Loop 1 over all Fourier coordinates X, Y, Z in the 3D Fourier transform.

Loop 2 over all J projection angles yj, qj, fj.
calculate the Zj coordinate of point R = (X, Y, Z), i.e. the z coordi-
nate of point R in the coordinate system of projection pj at angles
qj, fj (y can be neglected) using Rj = Dq jDfjR
calculate H(X, Y, Z) = H (X, Y, Z) + 2a sinc(2paZj)

end of loop 2 over projection angles.
If H(X, Y, Z) < threshold, then H(X, Y, Z) = threshold

end of loop 1 over Fourier coordinates

Fourier transform back-projected volume: F{ob(r)}: = Ob(R)
Divide: Ob(R)/H(R): = O(R)

Inverse Fourier transform: F −1{O(R)}: = o(r)
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1. INTRODUCTION

In 1917, Johann Radon posed the question of whether the integral over a
function with two variables along an arbitrary line can uniquely define that
function such that this functional transformation can be inverted. He also
solved this problem as a purely mathematical one, although he mentioned
some relationships to the physical potential theory in the plane. Forty-six
years later,A. M. Cormack published a paper with a title very similar to that
by Radon yet still not very informative to the general reader, namely ‘Rep-
resentation of a function by its line integrals’—but now comes the point:
‘with some radiological applications’. Another point is that the paper
appeared in a journal devoted to applied physics. Says Cormack, ‘A method
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is given of finding a real function in a finite region of a plane given by its line
integrals along all lines intersecting the region. The solution found is appli-
cable to three problems of interest for precise radiology and radiotherapy’.
Today we know that the method is useful and applicable to the solution of
many more problems, including that which won a Nobel prize in medicine,
awarded to A. M. Cormack and G. N. Hounsfield in 1979. Radon’s pioneer-
ing paper (1917) initiated an entire mathematical field of integral geometry.
Yet it remained unknown to the physicists (also to Cormack, whose paper
shared the very same fate for a long time). However, the problem of projec-
tion and reconstruction, the problem of tomography as we call it today, is so
general and ubiquitous that scientists from all kinds of fields stumbled on it
and looked for a solution—without, however, looking back or looking to
other fields. Today there is a vast literature which cannot comprehensively
be appreciated in this short contribution. It was Cormack (1963, 1964) who
first made use of orthogonal functions for the solution of Radon’s problem.
Not only is their application elegant, but it also provides a good under-
standing about the inner relationships of a structure to its projections. The
goal of this contribution is to demonstrate these relationships.

2. ORTHOGONAL POLYNOMIALS

As we do not presuppose any knowledge about orthogonal polynomi-
als, we will compile a certain minimum which, however, is derived from
knowledge certainly available to anybody engaged in advanced electron
microscopy, diffraction theory and Fourier techniques. We are concerned
with the properties of orthogonal polynomials, but abstain from general der-
ivations. Rather, we demonstrate them for the special functions that are
needed in tomography and point out that their properties are generally valid
for all orthogonal polynomials. Without calculation, we all know that the
integral over a periodic function vanishes when a number of plus and minus
cycles proper for a complete cancelation fall within the range of integration

(1)

Only if we change n, the number of nodes (zeros) within the interval,
to nil does the integration result in a finite value equal to p. However, actu-
ally no node means also that we violate the original agreement of periodic
functions. One can retain the periodicity and yet avoid the cancellations by
squaring the integrand; and, again without calculation and just by reason-
ing, one can arrive at

Multiplication of two such harmonic functions leads to

cos ; .2

0 2
0n d nf f pp

= ≠∫

cos .n df f
p

=∫ 0
0
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i.e. to an additive mixture of what we would call in acoustics a sum tone
and a difference tone, whose integral amounts to zero except when the
numbers of nodes m and n are the same. The product of two vectors can be
zero although their lengths are not. This happens when their directions are
orthogonal to each other. In analogy, the harmonic cosine functions are
called orthogonal because of the properties we found.

Orthogonality:

(2)

where

A typical feature of these orthogonal functions is the existence of a
recurrence relationship which connects three members of the set.

Recurrence:

This relationship, which follows from the simple rules of compound
angles, enables one to set up the complete system

(3)

Two remarkable facts are contained in these lines. First, solving the last
line for cos4f, we obtain

which amounts to the Fourier decomposition of cos4f into its harmonics; in
other words
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is the corresponding Fourier coefficient usually found by means of orthog-
onality as shown in equation (2) above.The second fact is that the harmonic
functions cosnf with n nodes can be expressed by polynomials in powers
of cosf whose degree equals n. The right hand side of equation (3) shows
polynomials, while the left hand side shows orthogonal harmonics; hence
we are very close to orthogonal polynomials.

We introduce

This polynomial in x is called the Chebyshev polynomial of third
degree, T3(x). With this change of variable from f to x, the above results
also lead to a new formulation of orthogonality.

Orthogonality of polynomials:

(4)

The integrand contains as a so-called weight or weighting 

factor which, besides the range of integration, is typical for the particular
set of polynomials.

Recurrence:

Tn(x) = 2xTn–1(x) – Tn–2(x) (5)

So far we have introduced only the Tn(x), the first kind of Chebyshev’s
polynomials. However, after this lengthy preparation, we may apply more
formal and quicker steps to arrive at Chebyshev’s polynomials of a second
kind. In the complex plane, z1 = eif represents a point on the unit circle, with
the coordinates x and y = . Instead of dealing only with the real part
we take the complex function

In order to avoid the unappealing square root, the modern literature
designates as the Chebyshev polynomials Un(x) of the second kind:
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From the imaginary part of

follows upon division by sinf the recurrence relationship

Un(x) = 2xUn–1(x) – Un–2(x), (6)

which is identical to that for the Tn(x), the difference being that T0 = 1,
T1 = x, whereas U0 = 1; U1 = 2x; through the changed weighting, the orthog-
onality expression also changes slightly to:

(7)

Sometimes of help can be the so-called generating function U(t, x),
which contains, besides the variable of interest x, a dummy variable t that
serves as a marker; when U(t, x) is expanded as a power series in t, it has
as coefficients the polynomials to be generated. It can readily be derived
that

(8)

For the many connections of these polynomials to other classical
orthogonal polynomials such as that of Gegenbauer or Jacobi, the litera-
ture must be consulted (e.g. Szego, 1975).

Here we shall try to involve only those types which occur in tomogra-
phy, such as the Zernike polynomials.

We conclude this section with an example reminding us that functions
can be approximated with the aid of orthogonal polynomials as long as the
range of their independent variable is the same:
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The ‘Fourier coefficients’ ak are readily calculated. The error of the
approximation is always the minimum of the mean square deviation. In
cases where a further improvement is required, more terms must be
included. The advantage is that the coefficient from the previous approxi-
mations remain valid for the refined approximation; new ones are merely
added. This is a very economical feature—coefficients calculated once keep
their value. In the next section, we demonstrate the usefulness of these
properties for solving the problem of interpolation.

3. INTERPOLATION AND QUADRATURE

Measurements of a physical property always render a set of discrete
quantitative values for a selection of fixed parameters that are dictated by
that experiment. On the other hand, a theoretical treatment of a measured
sequence is often facilitated when an analytical expression that describes
the data can be established, because then the required mathematical oper-
ations can be performed effectively. In other words, one needs values not
only at discrete points but elsewhere as well.This problem is solved by inter-
polation. Therefore, this section is included to show why orthogonal poly-
nomials are most suited for this purpose. With an interpolating polynomial
at hand, the problem of determining the integral over an interpolated func-
tion is readily solved. As this problem of quadrature occurs in our recon-
struction procedures as well, its solution is also included in this section.
Although these matters go all the way back to Lagrange and Gauss, a brief
review is still desirable. At every ‘abscissa point’ xj, we have performed a
measurement and found the outcome M(xj). We have obtained a table xj,
M(xj) or a curve with m points, j = 1, 2, 3 . . . m. In accord with Lagrange,
we seek an analytical expression

(10)

(11)

Equation (10) resembles a discrete version of an integral representa-
tion of the function F(x):

(12)

instead of a continuous kernel we have m kernel-functions L(x, xj). (For
convenience we suppress the indicator m; the notation should be either Lm

instead of L, or xm,j instead of xj.) The problem is solved if

L(xi, xj) = di,j. (13)

F x L x y M y dy( ) = ( ) ( )∫ , ;

F x L x x M x M xi i j j i

m

( ) = ( ) ( ) = ( )∑ ,
1

F x L x x M xj j

m

( ) = ( ) ( )∑ ,
1
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The polynomial of mth degree,

(14)

has m zeros at x = xj; its first-order Taylor expansion about x = xi is

p(x – xi) = p(xi) + (x – xi) p′(xi)
= (x – xi) p′(xi)

so that

(15)

has the required property. Remember that the locations of the zeros xj have
not been committed. Instead of opting for the usually equidistant division,
we select the locations such that the sampling of the outcome of our meas-
urements, namely the sampling of the projections, becomes most profitable
as input into the structure synthesis (reconstruction).

First, all the zeros | xj | fall into the range from zero to one; secondly, we
like to sample the neighborhood of the rim of the unit circle more densely
than that of the center in order to compensate for the decreasing projec-
tion length (see Fig. 1). As x = cosf, the projection length = sinf, hence we
should avoid sampling points at xj = ±1 or fj = 0, p. All those requirements

p x
x x p x

L x x
i i

i
( )

−( ) ′( )
= ( ),

p x x x j mj( ) = −( ) =Π 1 2, , . . .
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FIGURE 1. Two sets of zeros x3,j and x5,j of the Chebyshev polynomials U3(x) and U5(x).
Note the interlacing of the sets and the higher density towards the limits plus or minus
one.



are fulfilled when we sample in an equiangular division in f rather than in
an equidistant division in x, by means of the function sin(m + 1)f/sinf, the
denominator normalizing the projection length. This function has m zeros
at fj = jp/(m + 1), j = 1, . . . m with the corresponding zeros xj = cosfj (note
that f0 = 0 and fm+1 = p are not zeros!). We recognize

as the mth Chebyshev polynomial of the second kind, of which xj is one of
its m zeros (see Fig. l). The Lagrange interpolation function is then

(16)

There are now two properties, one generally valid for orthogonal poly-
nomials, the other especially for the derivatives of Um(x), which permit 
simplification of L(x, xj).

1. The Christoffel–Darboux relationship

becomes, upon identifying y with a zero xj on account of

identical to

(17)

a formula that is reminiscent of the unity operator made up of 
eigenfunctions.

2. The expression for the derivative of the Chebyshev polynomial at
the general coordinate x simplifies considerably at the location of a zero.

With these results, we obtain the Lagrange polynomials suited for our
problem:
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The representation of F(x) found by interpolation, equation (2.1), can
be seen by means of equation (18) as an expansion in m terms of orthog-
onal polynomials, namely

(19)

the Fourier coefficients being

where F(xj) = M(xj) has been utilized. As mentioned in Section 1, the usual
way to obtain the Fourier coefficients makes use of the orthogonality, which
here gives

Equating the two last expressions is the essence of the well-known
Gaussian quadrature: integrals of the type

can be approximated by weighted sums

whose error vanishes if G(x) is a polynomial of power less than 2m, since
m sampling points xj and m weights wj are available (see, for example,
Abramowitz and Stegun, 1965). Indeed, it can be shown that the error in
equating both results is less than

Depending on the weight under the integral and on the range of the
integration, different sets of orthogonal polynomials are invoked for the
Gaussian quadrature. From the ‘derivation’ given, we can understand that
for integrals of the type
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where the sampling points coincide with the zeros of the Chebyshev 
polynomials, Tn(x) of the first kind:

and the weights are conveniently constant; on the other hand, the remain-
der Rm is four times larger than the former one.

Incidentally, integrals over the area of the unit circle which are of the
type, say, ∫1

0 rkG(r) r dr are approximated by sums over G(rj) at sampling
points that are the zeros of certain Zernike polynomials, which are of course
mutually orthogonal. In the general literature, they are known as shifted
Jacobi polynomials, i.e. their argument is 2r2 – 1. Weights, zeros and remain-
der are rather complicated and hence are omitted here (see Abramowitz
and Stegun, 1965).

Of equal importance to the radial integration over the unit circle is the
azimuthal integration over 2p-periodic functions as, for example, over a 2D
function at a fixed radius. The theory based on the orthogonal functions
fk(q) = eikq gives a recipe for a Gaussian quadrature:

(20)

The angular sectors are of equal size around the circumference

with an arbitrary start angle a and constant weights.
The remainder Rm(fk) is zero as long as k is less than m.

4. A PRIORI KNOWLEDGE AND ASSUMPTIONS ABOUT
THE OBJECT

The 3D object is composed of thin 2D slices. The mass density r of a
slice varies from point to point (x,y) but does not vary along the third
dimension. This requirement translates into a limitation of the slice’s real
thickness. The mass density is always positive and real; it differs from zero
within a finite region.

1. We assume this region to be the unit disk

x2 + y2 = r2 ≤ 1 (21)

2. We assume that the mass density is periodic with respect to rota-
tions about an axis normal to the disk (unit circle) through its center. Intro-
ducing cylindrical coordinates, r and f, we have
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r(r,f) = r(r,f + 2p) (22)

The mathematical consequence of these realistic assumptions is that the
mass density can be written as a Fourier series

(23)

whose coefficients determine the radial dependence. Symmetry considera-
tions, which are always quite powerful, restrict the mathematical form of
the radial dependence.

3. We assume for the sake of argument that the highest occurring peri-
odicity is of order m. We know from the previous section that

Hence the highest exponent which x = r cosf as such can assume in the
power expansion of the regular mass density function is also m. However,
in the combination r2 = x2 + y2, which is rotationally invariant, higher expo-
nents may occur. It follows that the coefficient rm must be of the form:

rm(r) = rm(a0 + a1r2 + a2r 4 + . . .akr2k + . . .) (24)

It is of interest to note that the Bessel function Jm(r) of order m, which
plays an important role in the theory of diffraction and of reconstruction,
fulfills this requirement.

4. We assume that the total mass of the disk is unity (normalized); that
means

(25)

The total mass is contained in the ‘dc’ coefficient r0(r), whereas the ‘ac’ coef-
ficients rj(r) represent ‘decorative’ yet massless features of the distribution.

5. Finally, we assume that the physical response of the electron micro-
scope is proportional to the optical path length or to the mass thickness 
traversed by the electron, which we write as

(26)

and call s[L], for the sake of brevity, the projection of the mass distribu-
tion r along the path L. For pertinent details and caveats, consult Chapter
3 of this volume. The problem at hand is to record many projections for
various paths L and derive from the results the mass distribution inside the
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disk. With the assumptions made, the problem can be formulated in a clear-
cut way and be solved likewise. We prefer to present the attainment of this
goal in an inductive manner rather than by means of rigorous mathemati-
cal deduction.

5. THE PROJECTION OPERATION

In this section, we specify the projection path L as the secant from rim
to rim of the object disc parallel to its y-axis; the sum of the density values
along this path we call the projection:

(27)

The various relationships of y to other variables permit interesting
transformations of the projection operation and insights into the inter-
relationships between the original structure r and its projections s, e.g.:

Since we need to perform these operations quite often, let us introduce
symbols and operators for it. We define

and try a few projections

(28)

from which we can draw the following conclusions: (i) functions of x are
merely multiplied by the path length through the disc; and (ii) odd func-
tions of y yield zero projections; even functions project into even functions
in x multiplied by the path length. We realize already here that the path
length is the same square root that we encountered in the Chebyshev poly-
nomials of the second kind. Normalizing the projections by this (trivial)
length does remove the unappealing root. It also makes sense as it reflects
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only the a priori knowledge of the object’s spatial limits. Therefore, we
include this normalization in the definition of the operators

PY stands for the averaged density s(x) encountered on a line paral-
lel to y intersecting the x-axis at x.

We remember that density functions with arbitrary powers in r are not
allowed; rather, their lowest term must be of the form (reif)n. The projec-
tion of this expression leads to a surprise:

This finding suggests the introduction of a second operator which per-
forms the projection in the complex plane z = (x, iy) on a density function
r = f(z) as a simple line integration between two conjugated points on the
perimeter of the unit circle:

(29)

When G(z) is the integral of g(z) then its projection is

(30)

Also for the allowed combinations znr2k we can retain the convenience
of this ‘analytical’ projection by writing for r2,

Let us compile a short table of permitted powers and their normalized
projections PZ, as it can be done with ease and without computer:

(31)
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Again, the special suitability of the Chebyshev polynomials is high-
lighted by the readily applicable recurrence formula, that enables us to
remove the powers in x and thus project terms of znr2k into pure sums of
Chebyshev polynomials; we find:

(32)

As a hint of the things to come, observe the possibility to create, by
proper choice of the factors anj, linear combinations

which project into a single Chebyshev polynomial Un+2k(x).
Making the proper choice is tantamount to finding the inverse of the

matrix A = [anj]. This, however, is easy to do since A is already triangular.
The polynomials Rnk(r) will turn out to be orthogonal as well. They are the
famous Zernike polynomials (see, for example, Born and Wolf, 1975).
Before we conclude this section, one more word about a third projection
operator PR which integrates over those values of the radius r that keep
the product r cosf constant equal to x, a condition that makes f a function
of y. Therefore, we begin carefully with projecting a proper function of
r and f, namely:

After changing from the variable y to r and considering angular depend-
ence and change of limits as well, we arrive at

(33)

(34)

It is certainly not accidental that the projection operation also invokes
the Chebyshev polynomial of the first kind since the cosine function fixes
the location whereas the sine function determines the length of the pro-
jection. The PR-operation reveals the relationship between the two kinds
of polynomials, quite readily, Un(x)/(n + 1) = PR(zn), which follows from the
formulae given above by setting g(r) = 1:
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The same effect of an r-projection could be achieved by a delta-
function d(x – r cosf) and an integration over the entire domain r and f,
i.e. by a 2D integration over the unit disc. How does this projection kernel
relate to the previous one? The delta-function is an even function periodic
in f and hence can be represented by a cosine Fourier series. Since expan-
sions are the topic of this chapter, we ask for the expansion coefficients
Gn(x,r) of this series; they are directly found as

(36)

In answering the above question, we see that both kernels render the
same projection result. In the second case, the azimuthal integration will
first filter out the n-fold symmetric structure while the consecutive r inte-
gration will add the seemingly missing r factor.

These findings describe succinctly specific properties of the projection
operation.

6. FOURIER TRANSFORMATION AND PROJECTION

Confirmed by several contributions to this volume, Fourier transfor-
mations, decompositions and syntheses—continuous or discrete—play a
major role in the processing of pictorial information.There is a simple com-
putational aspect to it, i.e. very fast and economical implementations exist,
and furthermore many other mathematical procedures such as convolution
or correlation can be effected with great advantage by advanced Fourier
algorithms. However, there is also a philosophical side. Questions as to the
extension and to the contrast of an image detail are recast in Fourier lan-
guage into questions of how many lines per unit length and of which inten-
sity resemble best the image detail under investigation. The physical
connection between these two reciprocal quantities, the one of a length and
the other of a number (lines) per length, is established by the theory of dif-
fraction or, experimentally, by the interaction of waves with matter. We like
to capitalize on this knowledge. We would continue with our very simple
2D object, the homogeneous disk, this time of radius a. Its 2D Fourier trans-
formation leads to the famous Fraunhofer diffraction pattern (Born and
Wolf, 1975):
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where J1(x) is the Bessel function of first order. If we normalize the inte-
gral by the area of the disk, pa2 we obtain the well-known Airy function:

The Airy function behaves very much like its 1D pendant,

(37)

which, after normalization (division by 2a), turns into the sinc function:

Both functions have very similar properties; they are even, they are
unity for zero argument and they decay in an oscillatory fashion. Later on,
when the angular modulation of the object also plays a role, we will
encounter more general Airy functions, hence the special denotation.

(38)

When the spatial frequency h is chosen to be zero, the Fourier trans-
form (37), becomes tantamount to an integration or projection, and the
result is just the path length of the integral. A projection of the unit disk
parallel to the y-axis at a distance x off-center gives the length and
hence the Fourier transform

We can readily remove the square root by expressing the ‘impact
parameter’ x, the normal distance from the center, by x = cosf. The sine
function thus becomes periodic in f and can be represented by a Fourier
series. The result can be found in pertinent tables: the left hand side, rep-
resenting an FM-sine wave, is decomposed on the right hand side into a
multitude of AM-side bands whose amplitudes (Fourier coefficients) are
Bessel functions of odd order. If we go back from f to x and apply the func-
tions already introduced, we obtain quite naturally
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(39)

a generating function for either the Airy functions or the Chebyshev poly-
nomials. Making use of their orthogonality, we arrive at their respective
integral representations. In order to repeat in Cartesian coordinates the 
2D Fourier transform of the disk, whose result in polar coordinates we
already know, we must perform or look up the additionally required 1D 
x-transform

indeed, we regain the previous Airy disc and recognize the rotational 
symmetry on account of the quadratic addition of the Cartesian frequency
components

Every central section through Fourier transform of the homogeneous
disk looks the same. Hence, one projection suffices for reconstructing the
disk. This situation will quickly change when more interesting structures
arise. If we perform the same transformation on the single members of the
right hand side in equation (39), we obtain again an Airy function, namely

(40)

According to equation (39), the various transforms yield the important
relationship:

(41)

Mathematically, this relationship is a specialized form of the so-called
addition theorem of Bessel functions (x and h must be in perpendicular
directions, see, for example, Gradshteyn and Ryzhik, 1994), the physical
message, however, is more interesting. The one side is, in polar coordinates,
the 2D Fourier transform of the disk (i.e. its diffraction pattern), whereas
the sum consists of products of 1D Fourier transforms, say, diffraction 
patterns of linear projections.

In order to clarify this important connection, we will elaborate on the
2D transformations of the allowed powers znr2k, introduced earlier:
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With Jn(wr) as kernel, the last expression appears as a special trans-
formation in the radial domain of our 2D problem. This frequently occur-
ring transformation is referred to as general Hankel transformation HT
(general, because n is not just zero; see Bracewell, 1999), and for conven-
ience we introduce the operator 

Since (xn+1Jn+1(x))′ = xn+1Jn(x), the Hankel transforms of rn+2k can be
readily evaluated.

(43)

(44)

Just as in the case of the operator PZ, we had to make use of the recur-
rence formula, this time for the Bessel functions, in order to reduce all the
occurring powers (1/w)k to 1/w, with the result:

(45)

Note the remarkable correspondence to the general PZ(znr2k)! Here
we clearly recognize the above transforms as diffraction patterns of disk-
like structures that have an n-fold azimuthal symmetry. The first index n
refers to that symmetry, whereas the second index refers to the highest
power of (the rotation invariant) r2 which occurs in the series describing
the radial dependence of the mass density in this particular n-fold sym-
metric structure. It is important to note that these generalized Airy func-
tions have for a fixed n-fold symmetry, the welcome property of
orthogonality, i.e.

so that in reciprocal space, spatial frequency functions with that symmetry
can readily be expanded into sums over generalized Airy functions. Now
we look for such linear combinations of allowed powers in r that Hankel-
transform into a single ‘clear-cut’ Airy function.The above table shows that,
for example,
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We could go on finding more expressions by inverting the triangular
equation system (matrix), but there an even simpler way of generating these
interesting polynomials. Of course they do have a name; again they are the
Zernike polynomials . As their definition we require that their
Hankel transform yields an Airy function with identical indices:

(47)

The straightforward yet slightly cumbersome stepwise inversion
described above can be simplified by applying directly the inverse Hankel
transform which, by the way, is self-reciprocal and thus yields

(48)

In physical terms we can describe these transformations by stating that
a Zernike-mass density diffracts into an Airy pattern, and vice versa. When
you look up these integrals in a table, you will find them written in the form
of the more general Jacobi polynomials; hence more information is found
by checking under those (e.g. in the well known handbook by Abramowitz
and Stegun, 1965). We could have also synthesized the Zernike polynomi-
als by orthogonalizing the powers of r2 with a weighting function r2n+1 over
an integration range from zero to one.

It seems indicated that we briefly summarize the results we have
obtained thus far. We have dealt with three operations: (i) the projection
PY along a line, which could be seen as a special case of (ii) the second
transformation, i.e. the 1D Fourier transform (1D-FT) and finally (iii) the
2D-FT. In Cartesian coordinates, the 2D-FT is simply obtained by a dupli-
cation of the 1D-FT. In polar coordinates, however, the azimuthal transform
leaves as the second 1D transform over the radius, a special transform
known as Hankel transform (HT). Throughout our treatment of the recon-
struction problem, all three transforms are intimately connected, as demon-
strated by our finding of special functions and polynomials that transform
into each other. As a special bonus, they are orthogonal and remain so after
transformation.

7. ZERNIKE POLYNOMIALS AND THE SELECTION RULE

Up to now we have encountered the Zernike polynomials always in
connection with some other orthogonal function. In this section, we intro-
duce them more formally in their own right. The Zernike polynomials are
chosen such that the functions

(49)

form a complete orthogonal system over the unit disk, i.e.

y f i f
ns

n
n s
nr e R r,( ) = ( )+2

−( ) ( ) = ( ) ( )+
∞

∫1 2 0

k
nk n k

n
nk nR r A w J wr w dwe .

R r J wr rdr A wn k
n

n
k

nk nk+ ( ) ( ) = −( ) ( )∫ 20

1
1 e .

R rn k
n

+ ( )2

RECONSTRUCTION WITH ORTHOGONAL FUNCTIONS 293



(50)

The polynomials are then orthogonal over the interval (0, 1),
with a weighting function r, and normalized such that

(51)

Most important for our purpose is the generating function (see, for
example, Born and Wolf, 1975):

(52)

whereby
If we identify t with ei2q, we obtain very simple expressions, namely

and, with x = cosq,

(53)

Observing that the imaginary part

is just the kernel for the projection operator PR, the generating function
assumes a very simple meaning:

whose imaginary parts can be rearranged into
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This formula encompasses all the relationships between the set of
orthogonal functions in real space involved in projection and reconstruc-
tion. A Fourier transform of the formula translates the relationships into
reciprocal space. Multiplying both sides of the formula by a Zernike poly-
nomial and integrating over r leads on the left hand side to a pro-
jection, whereas on the right hand side one Chebyshev polynomial Un+2k(x)
is singled out by orthogonality with the same indices as the projected
Zernike polynomial. Playing this trick again, yet multiplying both sides now
by a Chebyshev polynomial Un+2k(x), leads to a reconstruction of a Zernike
polynomial. In other words, the projection operator has reconstructive
properties as well; however, this time in the x or angular domain. Indeed,
this is what tomography is all about: to obtain the structure from many pro-
jections of a tilted object. Therefore, it pays to rewrite this reconstruction
operation in terms of angles

(55)

Forgetting the weight cosma for a moment, this integral expressing the
structure is the summation of projections taken under various tilts.
This operation is often referred to as back-projection. However, the analy-
sis shows that back-projection can be correct only if the cosine weighting
factor is included. It is remarkable that due to the symmetries, an angular
range from zero to p/2 suffices. This goes beyond the fact that the projec-
tion s(x, 0) and the projection s(–x, p) of the flipped over structure are
identical, and is a feature of the function system employed.

We conclude this section with some remarks about the selection rule.
The Zernike polynomials have two distinct indices, n and s, while the
Chebyshev polynomials and the Airy functions have only one, namely m,
which is the sum m = n + 2s. For a given m, this Diophantic equation has
many solutions (n, s), the parity of m and n being, however, always the same.
How can we understand this ambiguity? The ‘quantum number’ n was
already introduced as the number of zero lines running through the n-fold
symmetric structure which we call spokes, for convenience. The quantum
number 2s is the number of zeros (nodes) which occur in the radial exten-
sion of one particular Zernike polynomial. These are s concentric grooves
running around the center of the ‘eigen structure’ yn,s(r, f). The spokes and
the grooves together add up to m = n + 2s zeros. In the projection, only the
total number of zeros counts and not their type, azimuthal or radial, as in
the eigen structure. This phenomenon, which is typical for a reduction of
dimensions as it occurs in the process of projection, for example, is well
known in other fields—in crystallography and signal processing the term
aliasing has been coined for that phenomenon.
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8. THE NUMERICAL SOLUTION OF THE RADON PROBLEM

In Fig. 2, we present the coordinate systems of the experimental set-
up. The recording ‘plane’ is the x-axis. The projection is performed parallel
to the y-axis, the optical axis of the microscope. The object with its own
coordinate system (x, h) or (r,f) centered on the tilt axis of the microscope’s
stage is tilted by an angle q with respect to the x-axis. The measured results
are a set of projections s(x) obtained at discrete tilts q.

The problem is to find from these results the density distribution 
r(r, f) within the object (we consider the angle still as a continuous vari-
able). As pointed out already, it is sensible to normalize the projections by
the length which contributes within the object to this projection.
The Radon integral expresses the relationship between the measured
results and the mass density to be deduced from them:
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FIGURE 2. Coordinate systems of the projection experiment. System (x, h) fixed
within the tilted object and q is the tilt angle. System (x,y) fixed in the microscope 
(y is the optical axis).



The Radon kernel

(57)

is a delta-function, whose Fourier components we could already identify as
the kernel of the projection operator for the n-fold symmetric mode. The
general solution must include all modes and all tilt angles. Therefore, we
introduce, in analogy to the yn,s of the previous section, the two-dimensional
projection polynomials pn,s,

(58)

which also are orthogonal over the domain –1, 1 and –p, p:

(59)

The Radon kernel then becomes,

(60)

a product kernel whose factors each belong to one of the two orthogonal
spaces spanned by the functions pns and yns.

The density function, expanded in the appropriate space, is represented
by the series

(61)

whose Fourier coefficients are

(62)

Similarly, in the dual space, the normalized projected mass density will
be represented by

(63)

whose coefficients are found as
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Inserting the expansion of r(r, f) into the Radon integral, with its
kernel also expanded, and performing the integrals over the orthogonal
system’s domain, we obtain the very simple relationship between the expan-
sion coefficients of the density function and the projected density function.
They are simply proportional to each other:

(65)

Therefore, the solution of the integral equation, i.e. the inversion of the
experimental data into the sought-for information, is achieved by solving
this relationship for rns:

rns = lns sns. (66)

Herewith the problem is reduced to one of preparing the sns values from
the experimental raw material. Fortunately, the necessary integrals are all of
the type ideally suited for Gaussian quadratures. If the experimentalist inter-
polates his discrete measurements onto abscissa points as demanded by the
Gaussian quadrature,a reconstruction can be performed with ease,with high
accuracy and, more importantly, with a reliable estimate of the errors.

The theory relates the data t(x, q) in the double integral to

(67)

In Gaussian quadrature, this double integral becomes a sum over the
integrand at special ‘spokes’ qj and at special coordinates xk, namely the
zeros of the Chebyshev polynomial, multiplied by the appropriate weights
vj and wk. Assume the option of 2l spokes and m zeros. Then, with the 
following discrete quantities

we obtain the formula

(68)
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The second simplification brings an experimental advantage. It relates
to the fact that

so that, for the same tilt, measurements are paired in a consistent fashion,
thus increasing the accuracy of the procedure (this is why an even number
of tilt angles should enter the analysis).

(69)

Having obtained these values, it is a simple task to obtain the mass
density, because we have

(70)

The problem of finding a judicious truncation was highlighted and
solved by Smith (1978) by resorting to the selection rules (see the follow-
ing section.)

I would like to end this chapter with a quote from Strichartz (1982) in
a paper on Radon inversion: ‘What I like most about mathematics is the joy
of discovery, when understanding overcomes confusion. What I like least
about mathematics is the way clear and simple ideas tend to become muddy
and murky and mystifying when committed to the printed page’.

9. REFERENCES TO THE RADON PROBLEM

This section is primarily intended as a guide through the electron
microscopy literature, which was already rather complete by the mid-1970s.
However, first I would like to briefly outline the general development.

The mathematical research has continued to develop along the lines
typical for this field, i.e. towards generalization. Whereas the method pre-
sented here operates in a 2D space, mathematicians study the general 
n-dimensional problem. Deans (1979) describes a Radon inversion formula
which holds in spaces of even or odd dimensions. As transformation pairs,
he finds Gegenbauer polynomials, of which Chebyshev polynomials are a
special type. Mathematically, one can construct various function pairs which
span dual orthogonal spaces (see, for example, Lerche and Zeitler, 1976).
As we have seen, the orthogonal functions are typified by the weight func-
tions. Therefore, weight functions most suited for the particular Radon
problem must be sought. In our case, we used a sharp cut-off in the weight-
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ing function without investigating its consequences. One knows, however,
from optics and signal theory that such measures will lead to ringing—to
Gibbs phenomena—which in optics are avoided by masks with soft transi-
tions (apodization). Mathematical investigations in this direction would be
welcomed by the experimentalists. A fairly modern account of the mathe-
matical status of the Radon problem is given by Helgason (1980) in the
book The Radon Transformation.

Among the practical papers, we can only mention the large array from
electrical engineers and computer specialists who are concerned with
improving medical tomography. In this field, many restrictions typical for
electron microscopic tomography are not operative. Furthermore, the pro-
jection schemes used in medicine differ from those in electron microscopy,
the latter relying on a strictly parallel projection. In astronomy, image
reconstruction had begun earlier than in electron microscopy.There the line
integration (projection) is taken perpendicular rather than parallel to the
propagation of the radiation, a fact that confirms the breadth of applica-
bility of the Radon problem.An overview of the implementation and appli-
cation of image reconstruction methods outside the field of electron
microscopy is compiled and edited by Herman (1979).

We continue now with tomography for electron microscopy. This field
was opened very suddenly in a paper published in Nature by DeRosier and
Klug in 1968. These authors approached the problem as crystallographers
who are accustomed to reconstructing regular structures from diffraction
patterns and Fourier-transforming the information desired from reciprocal
space into real space. Since the electron microscope forms an image of the
object, this step should be unnecessary. Where is the mistake? The crux is
that the electron microscopic image is a projection, and its Fourier trans-
form is just a central section through the reciprocal space of the object. The
idea of DeRosier and Klug was then to fill the entire reciprocal space by
Fourier transforms of many tilted exposures and then perform the recon-
struction just as crystallographers would do. This approach is called the
Fourier approach.

Very early in the game, a group around Bates (Smith et al., 1973) in
New Zealand engaged in image reconstruction from finite numbers of 
projections. They were concerned with the fact that interpolation between
data is required when the Fourier approach is to be applied. So they were
looking for an appropriate and reliable interpolation scheme which also
permitted economical usage of the computer. As a result of their research,
they found polynomials which are identical to those of Cormack, identi-
cal to the orthogonal Chebyshev and Zernike polynomials, including 
the selection rule with which this chapter deals. They showed how one 
can use this rule as a consistency condition to estimate a posteriori 
the quality of the input data and the validity of the information derived
from them, including statements about the resolution attained. The most
recent paper along the same line of reliability is by Howard (1988);
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it neither mentions the papers by Bates et al. nor does it surpass their
results.

A number of years ago, a computer program based on these ideas was
implemented and run by P. R. Smith at the Biozentrum in Basel, Switzer-
land, and it remains in use there and in many other laboratories. A com-
prehensive description of this program system for processing micrographs
of biological structures, including a comparison with other systems, was 
prepared by Smith (1978).

An important trilogy on image reconstruction from projections by
Bates et al. (Lewitt and Bates, 1978a,b; Lewitt et al., 1978) addresses the
question of error sensitivity towards truncation and the influence of sam-
pling. The basic difference between the Fourier approach and the orthogo-
nal function method can be attributed to the difference of the expansion of
the 2D Fourier kernel in cylindrical coordinates. The Fourier approach
chooses Bessel functions and harmonic functions for its decomposition, of
which only the latter are orthogonal, whereas the Cormack system of
orthogonal polynomials is readily introduced by expanding the kernel right
from the beginning into orthogonal functions, namely into Airy functions
and Chebyshev polynomials (see, for example, Zeitler, 1974). Also the 
convolution method of Ramachandran and Lakshiminarayanan (1971)
becomes unnecessary in this system since the Fourier transform of a pro-
jection leads to the same Airy function as does the 2D Fourier transform
of the structure.

The most obvious extension of the expansion method into three
dimensions has been implemented by Provencher and Vogel (1988). They
describe the 3D structure of single particles by the orthogonal system of
spherical harmonics, which are generally known from quantum mechanics
through their application in calculating the electronic states of atoms.
Instead of tilting a single object, they start out with an array of statistically
oriented particles and study in an iterative fashion how the projections
obtained fit the proposed structure. They obtained very impressive results
for a globular virus (Semliki Forest virus) suspended in vitrified water. It
must be pointed out, however, that the functions of the projections are not
orthogonal.

Discrete Radon transform methods have been introduced into elec-
tron microscopy by Radermacher (Radermacher, 1994, 1997, Radermacher
et al., 2001), particularly in the context of single-particle reconstruction of
macromolecular complexes.Another group with active interest in the devel-
opment of Radon transform-based image processing procedures has been
that of Lanzavecchia in Milan (Lanzavecchia and Bellon, 1998; Lanzavec-
chia et al., 1999, 2002). Radon-based projection alignment and 3D recon-
struction were implemented as a suite of programs in the SPIDER program
system (Frank et al., 1996; http://www.wadsworth.org/spider_doc), and there
are examples of structures solved entirely by Radon techniques (Ruiz et al.,
2003).
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Since the first edition of this chapter, new books on orthogonal poly-
nomials have been published: a survey on Application and Computation by
Gautschi et al. (1999) and the Classical Polynomial of Discrete Variables by
Nikiforov et al. (1992).

More exciting, however, is the import and the standing tomography has
gained in the intervening years. From a general public point of view, tomog-
raphy is considered part of the fast growing and greatly supported field of
biomedical technologies and biomedical engineering. The universities are
aware of this trend as a challenge and an opportunity as well; they offer
curricula, graduate programs and faculty positions to create foundations
and professionals in both sciences, the biomedical and the engineering phys-
ical sciences. Thus, it is entirely appropriate for the department of electri-
cal engineering, of computer science or of applied mathematics to propose
a new program in computer tomography. For instance, G. T. Herman, a
pioneer in reconstruction methods and a Professor at the City University
of New York, has offered the following graduate seminars:

Reconstruction from Projections, 2002
Discrete Tomography, 2003
Algorithms for Image Reconstruction, 2004

This development will also help in avoiding the infertile duplications
of tomographic methods in the various fields such as astronomy, geology,
medicine and biology.The awareness and the common teaching will be ben-
eficial and economical. To see an example for the present compartmental-
ization, look in IEE Transactions on Information Theory, 2002 for a paper
‘on the recovery of a function on a circular domain’ by Pawlak and Liao
(2002) which, found accidentally, covers a similar ground as the present
chapter.

Young scientists looking for an important problem should turn to the
still lacking quantitative comparison of the calculated data with the origi-
nal physical data.

More’s law, still effective, has advanced the power and the speed of
computers to incredible levels. Large populations of single particles can by
analyzed with statistical significance and refinement loops can be run until
successful convergence is achieved. One more item that attests to the vital-
ity of our field is Eric Weisstein’s list (www.treasure-troves.com/books
Radon Transforms.html) of books about Radon transforms on the world-
wide web!

Let’s see what’s next.

10. SUMMARY

The premise of this chapter is that the experimental results are given as
numerical data. The mathematical solution of reconstructing a 2D object
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from its 1D projections is based on the orthogonal function expansion
method such that the experimental data can be utilized with ease and least
error.

⇐⇒

⇑ ⇑
HT FT
⇓ ⇓

The necessary steps towards this goal are summarized in the above
scheme. Arrows pointing from structure functions r to projection functions
s indicate the projection operation, whereas arrows of opposite sense
denote the inverse operation, i.e. reconstruction and hence the solution of
the problem. Hankel transforms applied to structure functions and Fourier
transforms applied to projection functions lead into the reciprocal or fre-
quency space. Here the most suitable representation of the various Fourier
components is found as an expansion into orthogonal Airy functions Ans(w).
From the object space of structures, orthogonal Zernike polynomials

transform into Airy functions, and from the space of projections
orthogonal Chebyshev polynomials Un+2s(x) transform into the same Airy
functions. When the Fourier components rn and sn are expanded in terms
of the pertinent orthogonal sets, the expansion coefficients rns and sns are
proportional to each other. Hence if the sns are determined from the exper-
imental data, the reconstruction is effected by merely inserting the proper
rns into the structure expansion.
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1. INTRODUCTION

Traditionally, in computed tomography practiced in radiology, the resolu-
tion of the reconstruction is expressed in terms of the number of evenly
spaced projections required for the faithful reconstruction of an object that
has a given diameter (see equation (10) below).The tacit assumption is that
projection data have a sufficient spectral signal-to-noise ratio (SSNR) in the
whole frequency range in order to reproduce the object faithfully. In elec-
tron microscopy, the situation is dramatically different, as the electron dose
limitations result in very low SSNR in the individual projections. The sup-
pression of signal is particularly severe in high spatial frequencies, where
the signal is affected by the envelope function of the microscope and the
high amount of ambient noise, as well as in some low spatial frequency
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regions (due to the influence of the contrast transfer function (CTF) of the
electron microscope). In single-particle reconstruction, a satisfactory level
of the SSNR in the 3D reconstruction is achieved by including a large
number of 2D projections (tens to hundreds of thousands) that are aver-
aged during the reconstruction process. Except for rare cases (Boisset et al.,
1998), the angular distribution of projections is not an issue, as the large
number of molecules and the randomness of their orientations on the
support grid all but guarantee uniform coverage of angular space. The
concern is whether the number of projections per angular direction is suf-
ficient to yield the desired SSNR or whether the angular distribution of pro-
jections is such that the oversampling of the 3D Fourier space achieved
during the reconstruction process will yield the desired SSNR. The resolu-
tion measures used in single-particle reconstruction are designed to evalu-
ate the SSNR in the reconstruction as a function of spatial frequency
(Penczek, 2002). The ‘resolution’ of the reconstruction is reported as a
spatial frequency limit beyond which the SSNR drops below a selected
level, for example below one.

The most commonly used resolution measure in single-particle recon-
struction is the Fourier shell correlation (FSC), the 3D equivalent of the
Fourier ring correlation (Saxton and Baumeister, 1982). Its advantages are
the ease of use and its direct relationship to the SSNR in the data, thus
leading to straightforward interpretation of the results. The FSC is evalu-
ated by taking advantage of the large number of single-particle images
available: the total data set is randomly split into halves; for each subset a
3D reconstruction is calculated (in 2D, a simple average); and two objects
are compared in Fourier space:

(1)

In equation (1), is the Fourier transform of f, the asterisk indicates
complex conjugation, 2e is a pre-selected shell thickness, the yn form a
uniform grid in Fourier space and r = ||yn|| is the magnitude of the spatial
frequency. The FSC yields a 1D curve of correlation coefficients as a func-
tion of r. Note that the FSC is insensitive to linear transformations of the
objects’ densities. An FSC curve everywhere close to one reflects strong
similarity between f and g; while an FSC curve with values close to zero
indicates the lack of similarity between f and g. Particularly convenient for
the interpretation of the results in terms of ‘resolution’ is the relationship
between the FSC and SSNR (Frank and Al-Ali, 1975):
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The factor of two is inserted because the data set was split into halves
(Unser et al., 1987); thus, the SSNR of the full reconstruction is twice that
derived from half data sets. Equation (2) yields an interpretation of the FSC
in terms of ‘resolution’, understood as the spatial frequency at which the
SSNR falls off below a pre-defined (although arbitrary) level. A good
choice of the cut-off level is SSNR(r) = 1.0 — a level at which the power of
the signal in the reconstruction is equal to the power of the noise. Accord-
ing to (2), this corresponds to FSC = 0.333. Another often used cut-off level
is FSC = 0.5, at which SSNR in the reconstruction is 2.0.

It is important to keep in mind that to call the FSC a ‘resolution
measure’ is a misnomer as there is no simple relationship between the FSC
and the resolution concept used in optics. The latter is based on the notion
of resolvability of the imaging system and is usually related on the one hand
to the wavelength of the radiation used to image the object, and on the
other to the point-spread function (PSF) of the imaging system. To appre-
ciate the difference, it is sufficient to notice that an object blurred with a
radially symmetric PSF has, according to the FSC, resolution extending to
the maximum spatial frequency (this is because FSC is invariant with
respect to multiplication of the Fourier transform of the object by a radi-
ally symmetric function, see (1)), while the same object can have very poor
resolution according to optical criteria. Conversely, an object imaged with
ideal PSF (the delta function), but corrupted by strong noise, will generally
have low resolution as evaluated by the FSC, while the influence of noise
is not considered in the context of optical resolution. For electron micro-
scopic data, the FSC reflects mainly phase errors. Although in general the
FSC would also decrease for data that have phases in perfect agreement
but errors in amplitudes, this does not normally occur to a significant extent
in practice in electron microscopy. Thus, it would be more proper to call the
FSC the ‘phase consistency measure’, as this is what the FSC primarily
reflects.

Despite its popularity, the FSC has a number of well-known shortcom-
ings. The relationship between FSC and SSNR (equation 2), and thus the
interpretation of the results, is only valid under the assumption that the noise
in the data is additive and statistically independent from the signal. With
that, it is possible to calculate the variance of the FSC (Saxton, 1978) and
also of the SSNR (Penczek, 2002; Unser et al., 1987). For the FSC equal to
zero, the variance of its estimate is particularly simple, and equal to the
inverse of the number of Fourier coefficients within a given Fourier shell.
This is the basis for the 3s resolution criterion (van Heel, 1987), according
to which the resolution is set to the spatial frequency at which the FSC is sig-
nificantly different from zero, at a significance level corresponding to three
standard deviations. However, the exact number of independent Fourier
coefficients in the data is all but impossible to estimate, as in addition to the
likely reduction of this number due to alignment of the noise component in
the data, it is also reduced by the interpolation of the images during various
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image processing operations and by the masking of the results in real space;
it is further influenced by the size of the window in which the object of inter-
est is embedded, and by other image processing operations performed on
the data, which are often difficult to identify. In addition, we have to consider
that the variance of the FSC decreases to zero when FSC increases to one
(Penczek, 2002), so the error of the assessment of the FSC value is much less
for high FSC values. Overall, because of these properties of the FSC, the
danger of overestimating the resolution of the results (and, in effect, inter-
pretation of the structure corrupted by artifacts) can be reduced by adopt-
ing as a cut-off level a value of the FSC larger then zero, for example 0.5
(Böttcher et al., 1997; Conway et al., 1997; Penczek, 1998).

In addition to the listed shortcomings of the FSC, which in practical
applications make it difficult to decide precisely what the resolution of the
results might be, one has to be aware that FSC yields a 1D resolution that
results from rotational averaging. This makes it impossible to detect
anisotropy in the 3D distribution of the SSNR in objects reconstructed from
the set of their projections. For example, in the case of overabundant pro-
jections, one can expect the resolution to be strongly anisotropic, being
higher in Fourier planes perpendicular to the over-represented directions
(Boisset et al., 1998). A directional resolution can be calculated by com-
paring reprojections of the reconstructed structure with the original pro-
jection data (Cardone et al., 2005; Unser et al., 2005), but the methods based
on this concept are not general, as they will not yield information about res-
olution in Fourier planes that do not have corresponding projections. A
general approach requires calculation of the 3D SSNR, which, as shown in
Penczek (2002), can be done to a good degree of accuracy for a class of
reconstruction algorithms that are based on interpolation in Fourier space.
Although the estimation is not exact, it yields the distribution of SSNR per
Fourier voxel, making it possible to detect and quantify any anisotropy in
resolution.

The principle of data collection and calculation of the 3D reconstruc-
tion in electron tomography is dramatically different from those used in
single-particle reconstruction, being more similar to those in basic computed
tomography in radiology. There is only one object—a thin section of a bio-
logical specimen—and a tilt projection series is collected in the microscope
by appropriately tilting the stage holding the specimen. This immediately
imposes severe limitations on the total dose that can be applied, making
individual projection images rather noisy. The projection images have to be
aligned, but in tomography the problem is somewhat simpler than in single-
particle reconstruction because fiducial markers can be used to aid the 
procedure. Moreover, the presence of the markers makes the problem math-
ematically relatively well defined, although possible distortions of the spec-
imen due to radiation damage can complicate the otherwise straightforward
task considerably. Significantly, the data collection geometry in electron
tomography can be controlled (within the limits imposed by the mechanics
of the specimen holder and by the specimen dimensions).

310 PAWEL A. PENCZEK AND JOACHIM FRANK



Two commonly used data collection geometries are single-axis tilting
and double-axes tilting, i.e. two single-axis series, with the second collected
after rotating the specimen by 90° around the axis coinciding with the direc-
tion of the electron beam (usually set as the z-axis of the system) (see also
the Introduction by Frank in this volume). In either case, the maximum tilt
angle is 60–70° (limited by the effectively increased thickness of the object
at high tilt angles and by the geometry of the specimen holder) and the
number of projections (limited by the overall electron dose that the speci-
men can sustain).Another possibility is to use conical tilting, where the spec-
imen tilt angle remains constant while the stage is being rotated in equal
increments around the axis perpendicular to the specimen plane. In all three
geometries, part of the Fourier transform of the reconstructed object is
undetermined. In single-axis tilting, the undetermined region is called the
missing wedge.The double-tilt tomography was originally conceived to alle-
viate the problem and, although the quality of double-tilt reconstructions is
markedly improved, a large portion of the Fourier space still remains unde-
termined, forming the so-called missing pyramid. Particularly discomforting
is the fact that in all data collection geometries, Fourier information along
the z-axis is missing.This all but eliminates from the 3D reconstruction those
features that are planar in x–y planes, making it difficult to study objects that
are dominated by such features, such as membranes.

In electron tomography, there is only one projection per projection
direction, so the evaluation of resolution based on the availability of multi-
ple projections per angular direction, as practiced in single-particle recon-
struction, is not applicable. It was recognized early that splitting of the
available set of projections into halves and comparing the two reconstruc-
tions in Fourier space using the FSC technique would lead to an underesti-
mation of the resolution, as each of the data sets would have projections
spaced with an increased angular step, which—as follows from Crowther’s
formula (Crowther et al., 1970) (see equation (10))—would necessarily
decrease the resolution.The recently published papers on various aspects of
resolution measures do not address the core of the issue, nor do they provide
operational solutions (Cardone et al., 2005;Penczek,2002;Unser et al., 2005).

The assessment of resolution in tomography has to include a combi-
nation of two key aspects of resolution evaluation in reconstructions of
objects from their projections: (i) the distribution of projections should be
such that the Fourier space is, as much as possible, evenly covered to the
desired maximum spatial frequency; and (ii) the SSNR in the data should
be such that at the resolution claimed, the signal is sufficiently high. In elec-
tron microscopy, both in single-particle reconstruction and in tomography,
there is an additional loss of SSNR in the reconstructed object due to errors
in alignment of projections. Unlike in single-particle reconstruction, in tomo-
graphy these errors are relatively small and, if fiducial markers are used to
align the projections, they are uncorrelated with the signal component in
the data. In this chapter, we will demonstrate that in the case of 3D recon-
structions from 2D projections, an assessment of resolution that fulfills the
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two requirements listed is indeed possible. The principle of the method is
based on the observation that in this case, the projections will always have
redundant components in Fourier space extending to maximum spatial fre-
quency (incidentally, this statement is not true for reconstructions of mul-
tidimensional objects from 1D projections). By taking advantage of these
redundancies and by assuming isotropy of SSNR in projections, it is possi-
ble to estimate the overall resolution in the reconstruction.

2. 3D RECONSTRUCTION FROM PROJECTIONS AS AN
INVERSE PROBLEM

In its design, the 3D single-axis tilt tomography is very similar to the
early applications of computed tomography to 2D scanning of the interior
of the human body (for a review, see Natterer and Ritman, 2002). The
reason is that in the case of the single-axis tilt data collection geometry, the
3D problem is reduced to a set of essentially independent 2D problems,
the solution of each yielding one ‘slice’ of the structure in a plane perpen-
dicular to the tilt axis. A ‘stack’ of these slices forms the final 3D object.
Thus, principles of single-axis tilt tomography can be conveniently discussed
in terms of 2D computed tomography. Whenever necessary, we will refer to
fully 3D tomography, i.e., double-tilt tomography (Penczek et al., 1995) or
the recently introduced conical tomography (Lanzavecchia et al., 2005).

Within the linear, weak-phase-object approximation of the image for-
mation process in the microscope (Wade, 1992), the images (projections)
observed represent line integrals (ray transforms) of the Coulomb poten-
tial of the specimen under examination, modified by the CTF of the micro-
scope. Although the CTF decreases toward the origin of Fourier space,
there is no loss of information in this region in higher frequencies, the infor-
mation is lost at frequencies at which CTF is equal zero. To prevent the loss
of high-frequency information, in electron tomography the underfocus
setting of the microscope is usually selected such that the first zero of the
CTF coincides with the maximum expected resolution. In effect, it is justi-
fied to ignore the influence of the CTF on the resolution.

Considering the general d-dimensional problem, we denote by Sd−1 a
unit sphere in Rd.A direction of projection onto a (d-1)-dimensional hyper-
plane x ∈ q^ is given by a vector q ∈ Sd−1, where q^ = (y ∈ Rd : q · y = 0};
q ≠ 0, then q^ is the central hyperplane perpendicular to q.

With this notation, the d-D ray transform of function f is defined by
(Natterer and Wübbeling, 2001):

(3)

The function
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is called a (d-1)-dimensional parallel beam projection of f with direction q.
In single-axis tilt tomography, we parameterize q by the tilt angle q 1 (the
angle between the direction of the electron beam and the normal to the
microscope stage plane): q = (sin q, cos q)T. The ray transform is related to
the Fourier transform by the central section theorem (Natterer and
Wübbeling, 2001), which states that

(5)

i.e., each Fourier transform (Pq f )^ of projection Pq f yields the Fourier trans-
form of f on the central hyperplane, whose normal is parallel to the pro-
jection direction. Note that we also write Ff instead of .

Pf is an integral transform, and the reconstruction problem belongs to
a class of inverse problems. The invertibility of the ray transform has been
extensively studied (Faridani, 2003; Natterer, 1986) and, for continuous
functions, analytical solution have been derived (see Natterer, 1986). For
electron tomography, the two important questions are: (i) what should be
the distribution of projection directions q for the ray transform to be invert-
ible; and (ii) is the solution unique? The required properties of the distri-
bution of projections can be deduced from the central section theorem: the
distribution of projections should be such that their Fourier transforms
cover the whole Fourier space continuously. Indeed, since the Fourier trans-
form of each projection q is the cross-section of that is perpendicular to
q in Fourier space, their continuous set yields and thereby determines 
f = F −1 . In 2D, it follows that (for asymmetric objects) projection directions
should continuously fill the angular range [0, p[ (because f is a real func-
tion, its Fourier transform is Friedel-symmetric, and it follows that a pro-
jection in projection in direction q is Friedel-related to the projection in
direction q + p : q(u) = q +p* (u); thus, in real space, the two are mirror-
related about the origin of the system of coordinates gq(x) = gq +p(−x)). For
the 3D ray transform, the requirement for its invertibility is known as
Orlov’s condition (Orlov, 1976), which states that the inversion of the 3D
ray transform is possible, and the solution is unique, if there is a continu-
ous set of projections gq corresponding to the motion of the vector q over
any continuous line connecting the opposite points on the unit sphere.
Again, as in 2D, projections in 3D are mirror-related. If we parameterize q
by the tilt angle q and the azimuthal angle j as

q = (cosj sinq , sinj sinq ,cos q)T (6)

and use Friedel symmetry of the 3D Fourier transform of f, we find 
that gq,j(x) = gq+p , j+p(−x).

Unlike in 2D, in 3D there is an infinite number of different data col-
lection geometries that fulfill Orlov’s condition. In electron tomography, we
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use three data collection geometries but, due to the technical limitations of
the microscope (design of the stage), none fulfills Orlov’s condition.

1. Single-axis tilt geometry: the vector q moves on a grand circle cov-
ering a fragment of its length. Assuming that the tilt axis coincides with the
y-axis of the coordinate system in which the z-axis corresponds to the direc-
tion of the electron beam, we have 

(7)

where 0 < q max < 90°2 is the maximum tilt angle (usually 60° or 70°). The
portion of Fourier space that is left unmeasured is referred to as the missing
wedge.

2. Double-tilt geometry (Penczek et al., 1995): the vector q moves on
two perpendicular grand circles, in each case covering a fragment of the
grand circle’s length:

(8)

The portion of Fourier space that is left unmeasured is referred to as missing
pyramid.

3. Conical geometry (Lanzavecchia et al., 2005): the vector q covers
the whole length of the circle parallel to the x−y plane that forms a cone
with its tip at the origin of the coordinate system:

(9)

where qtilt is the tilt angle. Thus, in this data collection geometry, all images
are collected at the same tilt, while in the two previous geometries the tilt
angle varies.The portion of Fourier space that is left unmeasured is referred
to as the missing cone.

The reconstruction problems for data collections geometries stated in
equations—and used in electron tomography are known as limited-angle
problems. If the number of projections within the limited angular range
were infinite, it would be possible to recover f uniquely (Keinert, 1989).
Recovery of f from limited angular-range projections is equivalent to ana-
lytical continuation of and is very unstable and sensitive to errors in the
data. More practical approaches are based on the availability of a priori
knowledge about the reconstructed object, such as limited spatial support,
non-negativity, similarity to known objects, etc. Formally, the process of
enforcing selected constraints is best described in the framework of the
theory of Projections Onto Convex Sets (POCS) (Sezan, 1992; Sezan and
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Stark, 1982;Youla and Webb, 1982), introduced into electron microscopy by
Carazo and co-workers (Carazo, 1992; Carazo and Carrascosa, 1986, 1987).
However, convincing results in the application of POCS to low- and 
intermediate-resolution electron microscopic data are scarce; therefore, in
the following, we will assume that meaningful statements can be made
about the resolution only within regions of Fourier space that are covered
by Fourier transforms of the measured projections.

The discussion so far concerned an infinite number of projections, while
in practice only a finite number can be measured. It is well known that a
function f cannot be uniquely recovered from a finite number of its projec-
tions (Faridani, 2003). The reason is that a function reconstructed from a
finite number of its projections can contain so-called null functions, i.e., func-
tions whose projections calculated in directions of measured data are exactly
zero (this is why the null functions are also referred to as ghosts (Louis,
1984)). It follows that a reconstructed function can be significantly different
from the original function, but it can still agree perfectly well with each of its
measured projections. The ghosts will appear as artifacts and they can be
introduced into the reconstructed object by various image processing steps,
such as interpolation, suboptimal weighting functions, inconsistencies in the
data, and so on. However, in practice, the situation is not as difficult as it
would seem from these statements. It can be shown that for the ray trans-
form, the null functions are high-frequency objects (Louis, 1984; Maass,
1987) and, in practical applications, they can be suppressed by appropriate
low-pass filtration. Nevertheless, even if ghosts do not constitute a serious
problem, their potentially adverse influence underscores the necessity to
estimate the resolution of the reconstructed object properly and to apply a
Fourier filter that accounts for the uneven distribution of the SSNR.

3. ANGULAR DISTRIBUTION OF PROJECTION ANGLES 
IN TOMOGRAPHY

In order to reconstruct an object from a finite number of its projec-
tions, it is necessary to establish what is the minimum number of projec-
tions required (in the absence of noise) and what should be their angular
distribution. In the single-axis tilt geometry, the problem of 3D reconstruc-
tion is reduced to a series of (in principle) independent 2D reconstruction
problems for the x–z slices. If the object has a circular support, lengths x
and z of the reconstructed object are the same and each is equal to L pixels,
with pixel dimensions being p × p nm. For evenly spaced projections in 2D,
the requirement for sufficient sampling in Fourier space yields the follow-
ing angular step (Bracewell and Riddle, 1967):

(10)
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In electron microscopy, equation (10) is often referred to as Crowther’s 
criterion (Crowther et al., 1970).

However, in order to facilitate the penetration by the electron beam,
the objects imaged by electron tomography often are made to have slab
geometry, i.e., they are obtained by thin sectioning of larger volumes of 
biological material and, in effect, their z-dimension is much less than the
dimensions in x and y. In effect, in terms of pixels we have:

Lz << Lx = Ly = L. (11)

Because of the slab geometry of the system (relationship (11)), the
angular step between projections should no longer be even. In the context
of 3D reconstruction from 2D crystallographic data, a non-even distribu-
tion of angles was proposed by Saxton et al. (1984) as:

(12)

where we assumed that the projections are sampled at Nyquist frequency
and the resolution of the reconstruction is 2 pixels. However, the angular
spacing computed according to this equation has the following disadvan-
tages (i) it does not depend on the x–y dimensions of the slab; and (ii) it
would approach 0° as the tilt angle approaches 90°. Another distribution of
angles can be proposed based on the simple observation that a 2D recon-
struction for dimensions given by equation (11) can consistently recover
information only within an ellipse with main axes equal to L and Lz, respec-
tively (similarly to the situation for a 2D reconstruction carried out within
a square and using 1D projections of equal length and constant sampling
step, one can recover only information restricted to a circle):

(13)

For infinite x–y dimensions of the slab (L→∞), equations (13) and (12)
are equivalent, and for Lz = L (reconstruction within a square) equation (13)
yields the familiar dependence on the angular step on the radius of the struc-
ture (equation (10)). Generally, equation (13) will yield fewer angles than
equation (12) (Table 1), although for large L and small tilt angles the differ-
ences are negligible.

The distribution of projection angles in the case of double-axis tilt
geometry can be conveniently considered as a natural extension of the
single-axis tilt geometry. If the first series is collected using the scheme given
by equation (13), then for the second tilt series one can use the same scheme
with exclusion of projections — in order to minimize redundancies — that
have tilt angles < J. The value of this angle is obtained based on a simple
geometrical consideration: if the maximum tilt angle for the first tilt series

 
Δq

p
q= − −⎛

⎝
⎞
⎠

180 2
1 1

2

2
2

o

L
L

Lz

z sin .

Δq
p

q= 180 2o

Lz

cos ,

316 PAWEL A. PENCZEK AND JOACHIM FRANK



is qmax, J should be such that the angular gap b between second series pro-
jections collected at J is no larger than required by the sampling distance
at this angle (Fig. 1), yielding the following relationship:

(14)

If the requested angular gap b is equal to the maximum angular gap
due to missing edge, equation yields J = 90°, so there is only one projection
from the second tilt series, as expected. For the requested angular gap b
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TABLE 1. (a) The sequence of projection angles for single-axis tomography as
proposed by Saxton et al. (1984), taking into account only the thickness of the
specimen and (b) taking into account both the thickness and x–y dimensions.

The sequence of projection angles for the second tilt series in double-axis
tomography assuming a maximum tilt angle (c) qmax = 60° and (d) qmax = 70°

(c) Equation (15) (d) Equation (15)
(a) Equation (12) (b) Equation (13) qmax = 60° qmax = 70°

0 0.0 0.0
1 10.0 10.0
2 19.4 19.4 16.8
3 28.5 28.5 25.9 25.4
4 36.9 37.0 34.6 34.1
5 44.6 44.8 42.6 42.1
6 51.4 51.8 49.9 49.4
7 57.5 58.0 56.3 55.9
8 62.7 63.5 62.0 61.7
9 67.1 68.3 66.7

10 70.9 72.5 71.1
11 74.1 76.2
12 76.8 79.4
13 79.0 82.3
14 80.9 84.9
15 82.5 87.4
16 83.8 89.7
17 84.9
18 85.9
19 86.6
20 87.3
21 87.8
22 88.2
23 88.6
24 88.9
25 89.2
26 89.4

All angles were calculated using thickness Lz = 12 and x = y dimension, L = 50 voxels and assuming
resolution of two voxels.



larger than the missing gap wedge, equation (14) has no solution. For a 

reconstruction within a square, we have and the minimum tilt 

angle of the second series can be easily found. For example, for Lz = 50,
b = 2.3° and qmax = 70°, we obtain J = 6.3°, while for qmax = 60° we have 
J = 4.0°. For the slab geometry, the problem is more difficult, as the angular
gap b depends on the angle J via equation (13):

(15)

This relationship is non-linear; however, for given L, Lz, and qmax, the
solution can be found numerically. For example, for Lz = 50 and qmax = 70°,
we obtain as the value of the minimum angle of the second tilt series J = 6.2°,
while for qmax = 60° we have J = 4.0°.The remaining angles for the second tilt
series are found using equation (13).Table 1 contains examples of sequences
of projection angles generated using equations (12), (13) and (15).
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FIGURE 1. Double-tilt data collection geometry. qmax = maximum tilt angle of both
series of projections; ϑ = minimum tilt angle of the second series of projections; b =
the angular gap of the missing wedge of the first series of projections.



4. INFLUENCE OF MISSING FOURIER INFORMATION ON
RESOLUTION IN TOMOGRAPHIC RECONSTRUCTIONS

The quality of tomographic reconstructions depends on the maximum
tilt angle used. The fraction q of missing Fourier space information can be
easily calculated for the three data collection geometries, taking as a refer-
ence the volume of the slab:

(i) single-axis tilt; missing wedge: (16)

(ii) double-axis tilt; missing pyramid: (17)

(iii) conical; missing cone: (18)

The equations are valid for Lz ≤ L and qmax > 45°. Examples of frac-
tions of missing Fourier information resulting from equations (16)–(18) are
given in Table 2. In the case of a reconstruction within a square (Lz = L), the
fractions of missing Fourier space information appear to be large, although
it helps to put them in perspective. For an object that has a spatial resolution 

of , isotropic loss of 29% of Fourier information would result in a 

spatial resolution of — it certainly would be close to impossible to 

notice the resulting deterioration in the otherwise noisy tomograms. For the
more realistic slab geometry, the results are even more striking as the loss
of information is very small, indeed. One has to conclude that the problems
with the missing information in tomography are mainly caused by the fact
that the loss is entirely along (and in directions that form oblique angle
with) one of the axes of the coordinate system, resulting in anisotropic,
object-dependent artifacts. This analysis also indicates that the occasionally
quoted assessment of the loss of resolution due to the missing wedge or
cone might be to a certain extent misleading. It is possible to calculate 
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TABLE 2. Examples of fractions of missing Fourier information for three data
collection geometries calculated using equations (16)–(18)

Lz/L = 1.0 Lz/L = 0.2
qmax = 60° qmax = 70° qmax = 60° qmax = 70°

Single-axis 29% 18% 5.80% 3.6%
Double-axis 11% 4% 0.44% 0.16%
Conical 9% 3% 0.36% 0.12%

qmax is the maximum tilt angle. Reduction of the section thickness to the ratio of 0.2 results in a 
dramatic reduction of the fraction of missing Fourier information and in a seeming increase in 
resolution.



analytically the PSF corresponding to the particular data collection geom-
etry.These PSFs are elongated in the direction of the missing wedge or cone 
(in our geometry, the z-axis) and one can interpret the width of the central
lobe as the expected elongation point-like features in the tomogram
(Radermacher, 1988). Although this is certainly true for small spherical
objects, for more complicated objects the distortions will be object depend-
ent. In general, it is possible to predict that flat objects extending in a plane
perpendicular to the missing wedge or cone axis will be severely deterio-
rated, or that it might be entirely missing in the reconstruction. This is illus-
trated in Fig. 2, in which we demonstrate that elongated objects that are
oriented perpendicularly to the direction of a missing wedge vanish entirely
after Fourier information is removed systematically from the Fourier trans-
form of the original image. Moreover, this effect and, more generally, the
extent of deterioration of images are only marginally affected by the change
of the missing wedge angle from 60 to 70° (Fig. 2).

5. RESOLUTION ESTIMATION IN TOMOGRAPHY

Although there is a consensus on the general concept of resolution in
electron tomographic reconstructions, i.e., that that the resolution should
be derived from (i) the number and angular distribution of projections and
(ii) the noise level in the data, a systematic study of the problem is lacking.
One of the reasons is that an electron tomographic study of any particular
object is unique. What we mean by uniqueness is that biological objects
visualized by tomography, although they are usually members of certain
broader categories (e.g. mitochondria), are not reproducible and they have
inherent variability. Thus, unlike in crystallography or in single-particle
studies, repeated reconstructions of the object from the same category will
yield structures that have similar overall features, but are also significantly
different. In effect, this makes it impossible to study resolution of tomo-
graphic reconstructions in terms of statistical reproducibility. Moreover,
because of the dose limitations, there is only one projection per each
angular direction, so the standard approach to SSNR estimation based on
dividing data set into halves is not applicable. In order to develop a working
approach, one has to consider two aspects of the resolution estimation in
tomography: (i) angular distribution of projections; and (ii) estimation of
the SSNR in the data. The first aspect together with the conditions for
proper distributions of projection angles in slab geometry were discussed
in previous sections. In this section, we will introduce a method for estima-
tion of the SSNR that takes advantage of inherent Fourier space redun-
dancies in the inversion of the 3D ray transform.

Three recently published papers devoted to resolution measures
claimed prospective applications to tomography, but were focused only on
the second aspect of the problem, i.e., estimation of the SSNR. (Cardone
et al., 2005; Penczek, 2002; Unser et al., 2005). In all cases, the proposed 
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FIGURE 2. Effects of the missing wedge on a 2D image. (a) Model image. (b)
Maximum tilt angle of 60° and directions of the missing wedge in the y and x direc-
tions, respectively. (c) Maximum tilt angle of 70° and directions of the missing wedge
in the y and x directions, respectively.

solution was based on extensions of resolution measures routinely used in
single-particle reconstruction. In Penczek (2002), the author developed a
3D SSNR for a class of 3D reconstruction algorithms that are based on
interpolation in Fourier space. The work is a direct extension of an earlier
work by Unser et al. (1987), who initially proposed a 2D SSNR. In 3D, the



problem is more complicated, as the resolution measure has to account for
the Fourier space interpolation between polar and Cartesian coordinates
necessary during the reconstruction step. For a nearest-neighbor interpola-
tion, the extension of 2D definition is straightforward, but the SSNR is
underestimated due to the very simple interpolation scheme used. A
marked improvement can be achieved by using the gridding-based inter-
polation scheme (Penczek et al., 2004). The 3D SSNR works well for iso-
lated objects and within a limited range of spatial frequencies. The measure
requires calculation of the Fourier space variance, so it will yield correct
results only to the maximum frequency limit within which there is sufficient
overlap between Fourier transforms of projections.

An alternative approach to the estimation of the 3D SSNR was
recently proposed by Unser et al. (2005). In order to avoid the reliance on
a particular reconstruction algorithm, the authors proposed to estimate the
SSNR in 2D by comparing reprojections of the reconstruction structure
with the original input projection data, and to average the contribution in
3D Fourier space to obtain the 1D dependence of the SSNR on spatial fre-
quency. The process of 3D reconstruction involves averaging of the data in
3D Fourier space whose extent is difficult to assess. The authors propose to
estimate it by repeating the calculation of the 3D SSNR for simulated data
containing white Gaussian noise. The ratio of the two curves, i.e., the one
obtained from projection data and the other obtained from simulated noise,
yields the desired true SSNR of the reconstructed object. Although the
method is appealing in that it can be applied to any (linear) 3D recon-
struction algorithm, the application to tomography is of doubtful validity
since, similarly to the method of Penczek (2002), it requires sufficient over-
sampling to yield correct results. A more serious disadvantage is that the
calculation of the 3D SSNR as proposed by Unser et al. (2005) actually
yields the 2D SSNR of the input data, not the 3D SSNR of the reconstruc-
tion. This can be seen from the fact that in averaging of 2D contributions
to the 3D SSNR, the authors neglect weighting due to uneven distribution
of projections in Fourier space (see Vainshtein and Penczek (2006) for the
role of weighting in reconstruction from projections). In effect, the SSNR
calculated according to their recipe will be dominated by contributions
from projections data that have similar angular directions (for example, in
the case of double-tilt, by untilted projections).

An interesting approach to the resolution estimation was introduced
by Cardone et al. (2005), who proposed to calculate, for each available pro-
jection, two 2D Fourier ring correlation (FRC) curves: (i) between selected
projections and the reprojections of the volume reconstructed using the
whole set of projections; and (ii) between selected projections and repro-
jections of the volume reconstructed with the selected projection omitted.
The authors showed that the ratio of these two FRC curves is related to 
the SSNR in the volume in the Fourier plane lying perpendicular to the
projection direction, as per the central section theorem (5). The authors
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propose to calculate the SSNR of the whole tomogram by summing the
independent contributions from respective FRC curves, normalizing the
results, and calculating the ratio. However, it is straightforward to note that
the method suffers from the same disadvantages as the method of Unser et
al., i.e., (i) it does not account for the SSNR in the data lying in non-over-
lapping regions and (ii) because of the omission of reconstruction weights,
it does not yield the proper 3D SSNR.

In order to introduce our approach to the estimation of resolution in
tomograms,we begin by noting that,given a set of noisy projections collected
such that the Fourier space is sufficiently covered (as given by equations (12),
(13), and (15)), it is impossible to state the resolution of the reconstruction
unless the SSNR of the data is known. However, unlike in 2D, any data col-
lection geometry in a 3D reconstruction from 2D projections (inversion of
the ray transform) will necessarily have Fourier space redundancies within a
whole range of Fourier space. This is a simple consequence of the central
section theorem (5): any non-trivial arrangement of central sections will
share at least one common line and,as a result,will yield oversampled regions
in Fourier space. By exploring these redundancies, and by using the standard
FSC approach, it is possible: (i) to calculate the SSNR in certain regions of
Fourier space; (ii) to calculate the SSNR in individual projections in the
entire range of spatial frequencies; and (iii) assuming isotropy of the data, to
infer/deduce the resolution in non-redundant regions of Fourier space.
Given the SSNR in projections and equations (12), (13), and (15), which tell
us what the angular spacing of the projections is, it becomes possible to cal-
culate the distribution of the SSNR in the reconstructed 3D object.

In order to illustrate the method, we will analyze the single-axis tilt data
collection geometry with the simplifying assumptions that the reconstruc-
tion was performed within a square (Lz = L) and that the angular step of pro-
jection data was selected in agreement with equation (10). In effect, given
sufficient SSNR in the projection data, it should be possible to reconstruct
the object within the entire range of spatial frequencies. We note that in the
direction perpendicular to the tilt axis (y), the oversampling decreases
monotonically with the spatial frequency, while along the tilt axis it remains
constant and equal to the factor given by the number of projections (Fig. 3).
Moreover, in the regions adjacent to the tilt axis, there is a high degree 
of oversampling within a cylinder extending to the maximum spatial fre-
quency, which makes it possible to calculate the SSNR in the data within this
region by comparing 3D reconstructions calculated from even- and odd-
numbered projections. Finally, by assuming that the distribution of SSNR in
2D projections is isotropic, we can infer the SSNR in the perpendicular,
undersampled direction. Based on this information, we can state (using 
a selected cut-off level) what the resolution will be in the undersampled
direction. The method is even more easily applicable to the double-tilt
geometry, in which there are two perpendicular redundant directions, and to
conical tomography, in which there are numerous pair-wise common lines
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between Fourier space projection planes. It is also important to note that, as
long as the alignment of the projection data was done using fiducial markers,
the SSNR analysis will not be adversely affected by the problem of ‘align-
ment of noise’ common to reconstructions aligned or refined using correla-
tion techniques (Stewart and Grigorieff, 2004).

The proposed method of calculation of the resolution in tomography
was tested using single-tilt series of projections of a test 3D object placed
in a cube with 1283 voxels. In this case Lz = L, so the angular step was
selected according to Crowther’s criterion (10) and set to Δq = 0.5°, result-
ing in 360 equispaced projections.The projections were corrupted by Gauss-
ian noise such that the SNR in real space was ∼200 (the relatively low level
of noise was selected to demonstrate the performance of the method in the
high-frequency range). In order to simplify the analysis, we generated the
full range of projections, so there was no missing wedge in the reconstruc-
tion. We calculated two 3D reconstructions using odd- and even-numbered 
projections, respectively.
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FIGURE 3. Estimation of SSNR of projection data and resolution of tomographic
reconstruction. The half-circle = the region in 3D Fourier space that has the same
modulus of spatial frequency |k|. Long vertical arrow = the larger gap in Fourier space
in the direction perpendicular to the tilt axis at the spatial frequency |k|. Short arrow
= the smaller gap in Fourier space close to the position of the tilt axis y, also at the
spatial frequency |k|. The resolution is calculated using the modified FSC approach by
carrying out the summation of Fourier coefficients located on circular cross-sections
of the resolution cone. For a small opening angle of the resolution cone, the over-
sampling of the Fourier space is approximately equal to the factor given by the number
of projections.



We compared the two test reconstructions in Fourier space using a
modified FSC approach. Instead of carrying summations in equation (1)
over spheres, we included in summations only those Fourier coefficients
that were located on cones with the axes placed on the y-axis of the coor-
dinate system (which coincides with the tilt axis, see Fig. 3).Thus, for a given
opening angle of this resolution cone and for a given modulus of spatial fre-
quency, the resulting FSC curve was calculated using only Fourier coeffi-
cients from a region of the 3D Fourier space that had uniform overlap
between 2D Fourier transforms of projections. Since the number of pro-
jections was known, this overlap could be calculated based on the central
section theorem (5) using simple geometrical considerations. Depending on 
the opening angle of the resolution cone (measured from the tilt axis y of
the coordinate system), we obtained the resolution estimate for a given
conical region in Fourier space. We performed the calculation for cone
angles varying from 2 to 90° (Fig. 4). The FSC curve for the cone of 2°
reflects the resolution along the y-axis, which is oversampled nearly 360
times. With increased opening angle of the cone, the values of FSC coeffi-
cients decrease, down to the lowest values for the opening angle of 90°.
The FSC curve calculated using the opening angle of 90° reflects the reso-
lution in the grand circle in the x–z central section of the 3D Fourier space,
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FIGURE 4. Calculation of directional resolution using the modified FSC approach that
takes advantage of redundancies in Fourier space in tomographic reconstructions from
projections. The FSC curves are calculated using Fourier coefficients that are located
in 3D on cones that have axes placed on the single-tilt axis (y) of the system. Depend-
ing on the opening angle of the cone, the resulting FSC curves reflect resolution in a
given region of Fourier space: (——) 2°, the resolution on circles along the direction
of the tilt axis with the highest degree of the oversampling; (— —) 10°; (— · —) 40°;
(— ·· —) 90°, the resolution on the great circle perpendicular to the tilt axis, thus with
the lowest degree of oversampling.



thus perpendicular to the direction of the tilt axis y. This is the direction
with the least degree of oversampling, and thus with the least favorable 
resolution.

The SSNR in the data was calculated using the FSC results calculated
for the cone with 2° opening angle. The SSNR in the reconstruction was
calculated using the relationship between SSNR and FSC (equation (2))
and then divided by the number of projections included in respective recon-
structions to yield finally the SSNR in a single projection. The actual SSNR
level in the data was derived from the FSC curve calculated between two
projections of the test structure, generated using the same angular direc-
tion, but corrupted by two different realizations of Gaussian noise. The
agreement between the SSNR calculated using the modified FSC approach
and the actual SSNR level is excellent (Fig. 5).

The final step of analysis is to combine the information about the cal-
culated level of SSNR in the data with the knowledge of the angular step
of the single-axis tilt series. The latter was set to 0.5° — sufficient for the
full coverage of Fourier space. Based on the FSC comparison of 3D recon-
structions calculated from data sets split into halves, thus each using a set
of projections spaced by 1°, one would have to set the resolution of the test
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FIGURE 5. Calculation of the SSNR in the data based on oversampled region of
Fourier space in a 3D tomographic reconstruction. (——) an SSNR curve derived from
an FRC curve calculated between two projections of the test structure generated using
the same angular direction, but corrupted by two different realizations of the Gauss-
ian noise. This curve reflects the true distribution of the SSNR in the projection data
that could be calculated if redundant projections of the specimen could be collected
in the electron microscope. In the practice of electron microscopy, this information is
not available; (— —) SSNR in the data derived from the modified FSC calculation with
the cone angle of 2° (see Fig. 4). The two curves agree very well, demonstrating that
it is possible to derive the level of SSNR in the data by taking advantage of redun-
dancies in the coverage of 3D Fourier space by Fourier transforms of 2D projection
data.



reconstruction in the direction perpendicular to the direction of the tilt axis
to spatial frequency ∼0.28, if a cut-off level of SSNR = 1 was selected (see
Fig. 4). However, the calculation of the SSNR using the modified FSC
approach yields SSNR > 1 extending to a spatial frequency of ∼0.38, thus
significantly higher.

6. CONCLUSIONS

The determination of resolution in electron tomography requires a
multifaceted approach. In order to decide whether a given reconstruction
from electron microscopic projection data constitutes an acceptable
approximation of the original (albeit unknown) structure, it is necessary to
consider a number of general issues: (i) the invertibility of the ray trans-
form, particularly in the context of the slab geometry commonly used in
electron tomography; (ii) the dependence of the distribution of projection
angles on the data collection geometry; (iii) the influence of the limited
angular range of the projection data; and (iv) the determination of the
SSNR in the data.

Although the reconstruction of a function from a finite set of its pro-
jections is a difficult inverse problem that does not have a unique solution,
in practice the uncertainty due to possible introduction of artifacts is low,
as these artifacts mainly affect high spatial frequencies in the reconstructed
object and can be suppressed by the appropriate low-pass filtration. Much
more serious difficulties are caused by the limited tilt range of the speci-
men stage. In effect, the reconstruction problems for data collection geome-
tries used in electron tomography fall into the category of limited-angle
problems. Theoretically, given an infinite number of projections within the
limited angular range, it would still be possible to reconstruct the object
uniquely. However, in practice, only a limited number of projections is
available, the data are noisy and the orientations of projections are known
to a limited accuracy. Although it is possible improve — to a degree — the
quality of the reconstruction using approaches that are based on the avail-
ability of a priori knowledge about the reconstructed object (POCS), in the
absence of objective and independent standards the success of such
methods is difficult to assert. In addition, these approaches often depend
on non-linear operations of the data that will result in apparent, but dif-
ficult to verify improvements in resolution, particularly if the latter is
assessed using Fourier space-based criteria.

The distribution of projection angles is derived based on the require-
ment for a possibly uniform coverage of the Fourier space by finite-thickness
central sections corresponding to Fourier transforms of projections. For
standard slab geometry of the sample in electron tomography, for single-
axis tilt, the angular step of projections has to decrease with the increased
tilt angle. If the double-tilt data are collected, the same scheme has to be
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applied to the second tilt series, although low-tilt projections are redundant
and should be omitted. The minimum tilt angle of the second tilt series is
derived based on simple geometrical consideration. As a consequence, we
showed that for a maximum tilt angle of 70°, the number of second series
projections that have to be collected is significantly reduced.

For the estimation of the SSNR in the reconstruction, we introduced
a novel approach based on the modified FSC analysis. We demonstrated
that in the case of a 3D reconstruction from 2D projections (inversion of
the ray transform), the object will necessarily have, as a consequence of the
central section theorem, Fourier space redundancies within the entire range
of Fourier space. In the proposed approach, these redundancies are used to
calculate FSC coefficients within oversampled regions of Fourier space.This
is done by comparing Fourier transforms of objects reconstructed from
even- and odd-numbered projections, respectively. Because the degree of
the oversampling in the region adjacent to the tilt axis (or axes, for double-
tilt geometry) is high, it is possible to obtain a robust estimate of the FSC
and, in consequence, the SSNR. Next, we have to assume that the SSNR in
the data is isotropic and this allows us to infer what the SSNR in the under-
sampled regions of Fourier space is. Finally, given the known distribution
of projections angles, it becomes possible to calculate the distribution of the
SSNR in the reconstructed 3D object. We demonstrated the efficacy of 
the new method using a simple single-axis tilt simulated data set. However,
the method is quite general and applicable to all three data collection
geometries used in electron tomography.
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1. INTRODUCTION

The crucial problem inherent to electron tomography is radiation damage
or, related to this, the choice of the correct electron dose: an excessive dose
destroys the specimen, especially biological ones, while an insufficient dose
results in images that are noisy and lack information. Sophisticated and
highly automated techniques have been developed both for data acquisi-
tion with the aim of keeping the electron dose as low as possible, and 
for image processing, in order to extract reliable information from the
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recorded data. However, the tolerable dose is very small, especially for
unstained, frozen-hydrated specimens. As a rule of thumb, 5000e/nm2 are
tolerable for such specimens. According to the dose fractionation theorem
(Hegerl and Hoppe, 1978), the total tolerable dose has to be divided by the
number of projection views in order to find the dose allowed for each image
of a tilt series. In addition, the low scattering power of biological material
results in low-contrast images. For instance, assuming a tilt series of 50
images, a pixel size of 1nm2, phase contrast imaging with a contrast of 10%,
and considering only the shot noise of the electrons, the signal-to-noise ratio
(SNR defined as energy of signal over energy of noice) in the projection
images is in the order of 1. An increase in the number of projection images,
a decrease of the pixel size and additional noise arising from the image
recording system push the SNR below 1. The noise in the raw images prop-
agates into the final tomogram; the resulting noise distribution in the tomo-
gram strongly depends on the type of reconstruction algorithm used, e.g.
the choice of weighting function in the case of weighted back-projection.
Due to the incompleteness of information typical for tomography of the
cell, the SNR of the final density map may be of the same order of magni-
tude as that of the raw images, at least when no additional filtering is used.

The low SNR creates severe problems for the visualization and inter-
pretation of the 3D density maps reconstructed from tilt series. Typically,
the maps are inspected first by displaying slices through the reconstruction.
Even though our brain is very skillful in recognizing 2D structures in a noisy
environment, we have difficulties recognizing small, arbitrarily sliced, 3D
structures. Iso-surface representation and volume rendering are powerful
tools to represent 3D structures; however, the interpretation of the output
is frequently impossible without further processing of the map. Quantita-
tive analysis of the reconstruction, e.g. by automatic segmentation (see
Chapter 12 of this volume), and subsequent measurement of structural
parameters is an even more demanding task and requires powerful tools
for noise reduction.

There is a growing interest in developing new techniques for noise
reduction. Looking around at other fields concerned with image analysis,
for instance medical imaging or astronomy, we see much activity. Studying
the literature is inspiring and helps in developing new ideas or adapting
existing approaches to the needs of electron tomography, but it also has to
be pointed out that most existing techniques require data with a SNR much
higher than 1, and therefore are of no use for electron tomography. Fur-
thermore, most of the presently available techniques have been developed
for 2D images and need to be extended to 3D.

For structure analysis based on electron microscopy with a resolution
in the nanometer range, noise reduction is absolutely essential. The impres-
sive results obtained by electron crystallography (Fujiyoshi, 1998) as well
as by single-particle analysis (Frank, 2002) are attributed to noise reduction
by averaging. In both cases, the signal is highly redundant and averaging is
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either an intrinsic part of the measurement or it is achieved by appropriate
data processing. Assuming the noise to be additive, averaging is the
optimum technique because it is—in principle—free from artifacts. Occa-
sionally, redundant signals are also encountered in electron tomography,
e.g. by direct imaging of single molecules in suspension, by imaging cells
which contain multiple copies of a stable molecular complex or by imaging
quasi-periodic structures such as some types of cell wall. In the first two
cases, 3D extensions of the methods for single-particle averaging can be
applied, whereas for the third case, modifications of the correlation aver-
aging technique might help. Signals originating from whole cells or cell
organelles, however, are unique and cannot be averaged.

Imaging of unique, non-repetitive structures is in fact the main appli-
cation field of electron tomography. In those cases where averaging is not
feasible, classical filter techniques are frequently applied to improve the 
visibility of the reconstructed density maps: real-space filters, such as 
Gaussian or median, or filters operating in reciprocal space producing a
characteristic dampening of high frequencies.All of these filters smooth the
data, but they smooth the signal along with the noise.With such filters, some
improvement can be achieved as long as the noise has more energy in the
high-frequency domain than the signal. Advanced filters should differenti-
ate in a more elaborate way between noise and signal; however, the true
signal is usually unknown. Several attempts have been made to develop
appropriate methods, using very general properties of signals. In contrast
to noise, features of signals, such as for instance boundaries of cellular struc-
tures, are extended and may also be characterized by their orientation.
Special operations or transformations make use of relationships or affini-
ties among pixels that exist in signals but not in noise. The examples dis-
cussed in Section 3 are filtering of coefficients obtained by wavelet
transformation (WT), non-linear anisotropic diffusion and the bilinear
filter.The methods mentioned so far are designed for post-processing, which
means that they are applied after the 3D reconstruction. On the other hand,
several reconstruction techniques have been proposed in which denoising
is an integral part of the reconstruction procedure itself. Section 3.4 
presents a brief discussion of such techniques, e.g. 3D reconstruction with
minimum energy (minimum variance) or maximum entropy. Practical real-
izations of such techniques, however, are frequently achieved as a refine-
ment procedure applied to an initial reconstruction, and can therefore also
be considered as post-processing methods.

2. CHARACTERIZATION OF NOISE AND SIGNAL

2.1. Noise

In electron microscopy, the answer to the question ‘what is noise?’
depends on the experiment. Two noise sources are permanently present:
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the quantum noise of the electron beam and the noise originating from 
the image recording system. In single-particle averaging, the background
fluctuations caused by the specimen support are also considered noise. This
is in contrast to electron tomography, where both the object under scrutiny
and the specimen support or the surrounding ice matrix are signals, which
have to be jointly reconstructed.

The quantum noise originates from random fluctuations of the number
ni of electrons that hit the pixel with index i. When considered as a random
variable, this number is subject to a Poisson distribution specified by expec-
tation and covariance. The statistical properties of these variables, with
accuracy up to the second order, are:

(1)

ni is the expected signal at pixel i, and the whole set {ni} describes a hypo-
thetical image that has been recorded without noise. Following the covari-
ance term, the noise is characterized by two statements: its variance Var{ni}
= ni depends on the signal, and the noise at pixel i is statistically independ-
ent of the noise at all other pixels. If we regard phase contrast (see Chapter
3 of this volume) as the prevailing imaging mode in electron tomography,
the signal ni is mainly composed of two terms, the primary beam and a weak
scattering wave. The signal Ii of interest, produced by the object structure,
is then given by a usually small deviation from the mean:

(2)

After some calculations

(3)

The covariance term can be approximated by due to the fact that
the number N of pixels is typically large, and—assuming a thin and weakly
scattering specimen—due to small deviations of all ni with respect to the
mean . In other words, the noise level is determined mainly by the inten-
sity of the primary beam and, therefore, the concept of signal independence
and additivity of noise is an acceptable approximation.

The image recording system creates additional noise and induces cor-
relation between the pixels. Film or CCD cameras are usually characterized
by a modulation transfer function (MTF) and a detection quantum effi-
ciency (DQE). The first quantifies the broadening of a point signal and the
coupling between neighboring pixels; the second describes the enhance-
ment of the noise level. For a given electron microscope, it is easy to get an
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idea how quantum noise and detector noise add up by recording an image
without a sample. The image shows pure noise and can be used to calculate
a power spectrum, as shown in Fig. 1. There is a strong dampening of high
frequencies corresponding to the correlation between pixels. The curve can
be approximated by superposition of a constant part with a Gaussian func-
tion. When test calculations are made to evaluate the efficiency of denois-
ing methods, such a model should be used for a more realistic simulation
of noise.

The propagation of noise from the raw images into the 3D recon-
struction is a complicated process. Assuming a linear reconstruction
approach and signal-independent noise in the projection images, the noise
in the tomogram is also independent from the reconstructed signal. Its
spatial distribution strongly depends on the experimental conditions. In the
case of an ideal single-axis tilt series, the variance of noise is constant within
the volume of isotropic resolution defined by the Crowther condition.

2.2. Signal

For the interpretation of electron tomograms, it is usually assumed that
the signal is obtained by a linear mapping of the object’s mass density. The
signal, however, is distorted due to the complex process of image formation
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FIGURE 1. Real (left hand) and simulated (right hand) noise. Upper row: rotationally
averaged power spectra with histograms of the image as an insert. Lower row: image
data.



in the electron microscope (for details, see Chapter 3 of this volume) and
due to imperfections of the 3D reconstruction, the latter arising from
missing data (the ‘missing wedge’ problem) and imperfect alignment of the
projection images. It might happen that signal distortions in the high-
frequency domain cannot be differentiated from the noise. Missing wedge
artifacts may also modify the signal in a lower frequency range such that
the effect of noise filters is influenced, as mentioned below in Section 3.2.
Typically for ice-embedded biological specimens, the signal is extremely
weak and, therefore, noise filters are needed particularly for such specimens.

3. NOISE FILTERS

Filtering an image means that the value of each pixel is replaced by a
new value, which is calculated from a combination of the current value of
the pixel with those of its neighbors. The calculation scheme, usually rep-
resented by a filter kernel, has to be chosen according to the desired filter
response; i.e., the task the filter has to achieve. Filters intended for noise
reduction should remove random fluctuations superimposed on the signal.
A simple approach is to replace each pixel value by the average of its near
neighbors and itself.The Gaussian filter is another frequently used example.
Both filters remove high-frequency noise; however, they also smooth edges.
These filters are easy to apply because they belong to a class of filters with
some favorable properties: the new pixel value is linearly related to the old
pixel values with weights that do not depend on these values. Since the
weights do not change when moving from one processed pixel to the next
one, the kernel can be represented as a small image composed of these
weights, and the filter operation can be realized as a convolution of the
whole image with this kernel. In contrast to such linear filters, the median
filter is an example of a non-linear filter, sometimes also classified as a
neighborhood-ranking filter versus the above-mentioned neighborhood-
averaging filters (Russ, 1995). The median filter operates by analyzing the
statistical distribution of neighboring pixel values such that the most prob-
able value of this distribution is taken for the new pixel value. This filter
tends to sharpen edges; however, this happens mainly in images where indi-
vidual pixels are heavily corrupted or missing (‘salt-and-pepper noise’), a
type of noise not characteristic for electron tomography.

Advanced noise filters should be designed such that they smooth the
noise while still preserving edges. Therefore, a more elaborate analysis of
the pixel neighborhood is required. Proximity relationships have to be com-
bined with an adequate investigation of pixel values around the currently
processed pixel. In the ideal case, for each pixel, noise is discriminated from
the signal on the basis of the fact that the signal contains features spread
over neighboring pixels whereas noise does not. Clearly, any approach can
only be an approximation to this ideal.
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In the context of electron tomography, three methods have thus far
been proposed and realized for advanced noise filtering: wavelet filtering,
non-linear anisotropic diffusion and the bilateral filter. All three are non-
linear operations, but each of them is based on different approaches for the
discrimination between signal and noise. In the following paragraphs, these
methods will be presented and discussed, especially with respect to their
specific ways of signal detection.

3.1. Wavelet Filtering

Frequently, the extraction of information from measured data is facil-
itated by an appropriate transformation of the data. Fourier transformation
is the ideal technique to extract periodic signals. The data are decomposed
into waves, and those with wavelengths corresponding to the periods of the
components of the signal have strong amplitudes. The extraction of non-
periodic signals from the background by Fourier transform is less efficient
mainly because waves are infinitely extended, in contrast to periodic signals
that are bounded and localized. This problem has motivated the develop-
ment of the WT. With this transformation, the data are tested for similarity
with a wavelet basis function modified for different scales and locations.
Mathematically, the operation is realized by a convolution of the data I(x)
with a set of functions created from a basis function h(x) by translations x
and dilations a:

(4)

The function I(x) can be reconstructed exactly from the coefficients w(x;a),
provided that h(x) and its Fourier transform fulfill some general conditions
that have been discussed elsewhere (Daubechies, 1992). It is important that
large coefficients indicate high similarity between data and the wavelet
function for specified positions and scales, or, in other words, they indicate
the existence of a structured and localized signal, while noise results in small
coefficients. Therefore, WT and a suitable suppression of the small coeffi-
cients followed by the inverse WT offer a way for noise reduction.

It has been shown that relatively simple basis functions can be used to
detect signals fairly independently of their specific structure (Daubechies,
1992). For practical realizations, it is also important that the highly redun-
dant set of coefficients w(x;a) can be reduced to a discrete subset by con-
structing an orthonormal set of functions from the basis function h(x):

hmk(x) = h(2mx – kΔx) (m = 0,1,2, . . . ; k = ±1, ±2, . . . ) (5)

The continuous scale parameter a is now replaced by a ‘pyramid’ of
dilations discretely scaled by powers of 2 (a = 2–m) and the translation x is
sampled by multiples of a basic distance Δx. The transformation is not only
invertible but also complete in the sense that the number of coefficients
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obtained by the WT is the same as the number of samples representing the
original data. This type of WT in conjunction with appropriate filtering of
coefficients has been applied successfully in other fields, e.g., in data com-
pression and in the interpretation of electrocardiograms. For noise reduc-
tion, a special coefficient filtering, the ‘soft thresholding’ or ‘coefficient
shrinking’, was proposed by Donoho in 1995:

(6)

where x and y denote the values of WT coefficients before and after filter-
ing, respectively. This type of filtering is superior to hard thresholding (y =
x for |x| ≥ l for and y = 0 elsewhere) with respect to error minimization and
smoothness of the filtered signal.

Multidimensional applications can be achieved by combining the 1D
functions as a tensor product, as shown by Mallat (1989) and Daubechies
(1992). Unfortunately, with this type of transformation, the magnitude of
the coefficients depends on the orientation and position of the structural
feature. Yu et al. (1996) proposed a brute-force approach to overcome this
anisotropy of signal recognition, using the following strategy:

Step 1: from the input image, create a set of images by rotation and 
translation.

Step 2: subject each member of the set to WT, apply coefficient threshold-
ing and compute inverse WT.

Step 3: invert rotation and translation of each member.
Step 4: average the set, which results in the output image.

This procedure has been realized for 2D images and applied to the
slices of electron tomograms by Stoschek and Hegerl (1997). The results
obtained with this pseudo-3D denoising method are evidently superior to
those obtained with conventional filters. However, the method is very
demanding in terms of computational power and, as discussed in the orig-
inal article, may occasionally create artifacts. It may also happen that linear
structures extending perpendicularly to the slices are not correctly recog-
nized. Nevertheless, Fig. 2 shows a successful application of this approach
to an electron tomographic reconstruction of a vesicle with actin filaments
embedded in vitreous ice. It also demonstrates that rotation and translation
invariance are essential steps in this method.

Recently, a 3D wavelet-based filter was proposed (Moss et al., 2005)
and used to visualize structures in electron tomograms. Instead of trans-
forming the data by the discrete WT given in equation (5), the data are mul-
tiply convoluted with a 1D basis function in varying directions but with a
fixed scale parameter a. No global noise filtering can be achieved with this
filter; however, with an appropriately chosen scale parameter, structures of
corresponding size are highlighted against the environment.
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3.2. Non-linear Anisotropic Diffusion (NAD)

Diffusion is a process well known in physics. Its effect is to equilibrate
an inhomogeneous distribution of heat or matter steadily in time, e.g. the
concentration of salt in water. Analogously, an image can be considered 
as an inhomogeneous distribution of gray values and, by simulating the 
diffusion process in the computer, the gray values can be modified toward
a more homogenous distribution. Obviously, the image will be smoothed
and, thereby, noise will be removed. With linear diffusion, the result is iden-
tical to Gaussian filtering, as will be shown below. The basic idea of non-
linear anisotropic diffusion is to control the magnitude and direction of the
diffusion flux dependent on the underlying image structure. The diffusion
flux across edges should be low in order to keep the edges preserved, while
areas free of edges should be smoothed by a large diffusion flux.

Mathematically, the diffusion process can be modeled by a partial dif-
ferential equation. Let I(x,t) be the gray values of an image evolving in time
t from the starting image I0(x) = I(x,0), with pixels at position x in a space
of arbitrary dimensions. The gradient ∇I causes a flux j,

(7)

which aims to compensate for this gradient according to the choice of the
diffusivity D. This relationship is known as the first Fick’s law. The diffusion
equation describes the change of intensity or gray value at position x by
balancing the in- and outgoing flux:

(8)
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FIGURE 2. Pseudo-3D wavelet denoising applied to an electron tomographic recon-
struction of a lipid vesicle with actin filaments embedded in vitreous ice. Isosurface
representation of (a) original data, (b) map denoised using orthogonal WT and (c) map
denoised using translation- and rotation-invariant WT. For (b) and (c), Symmlet 8
wavelet kernel and soft thresholding was applied. (From Stoschek et al. (1997), repro-
duced with permission of IEEE Computer Society Press).



Usually D is considered to be a constant parameter c, such that the
equation becomes linear in all derivatives of I:

It = cΔI (9)

The solution can be found as a classical example in textbooks on partial
differential equations: the intensity distribution I(x,t) at time t results from
the starting image I0(x) by a convolution of the latter with a Gaussian func-
tion using a variance of 2ct. In other words: linear isotropic diffusion is
equivalent to conventional Gaussian filtering. The diffusion flux has the
direction of the gradient and, consequently, edges are smoothed due to the
large gradient in the direction perpendicular to the edge.

A fundamental step towards better signal preservation was made by
Perona and Malik in 1990 by substituting the function 

(10)

for the diffusivity D.This makes equation (8) non-linear and the magnitude
of the local flux is modified by a diffusivity that depends on the underlying
image structure. In particular, the flux across edges is reduced due to the
smaller diffusivity produced by the large gradient. Generally, the process
results in intraregional smoothing between well-preserved edges. Unfortu-
nately, the now reduced flux across edges does not remove the noise in the
neighborhood of edges. In order to remove this remaining noise, a flux par-
allel to edges or perpendicular to the image gradient would be needed.

For a general control of magnitude and direction of the diffusion flux,
e.g. to enable additional flux parallel to edges, an appropriately chosen
tensor D has to be inserted for the diffusivity in equation (7), with the 
consequence that the diffusion process (8) becomes both non-linear and
anisotropic. Weickert (1998) proposed to base this tensor on the so-called
structure tensor Js, which is the dyadic product of the gradient, ∇I. ∇IT,
convoluted with a Gaussian of variance s. The structure tensor Js can be
calculated for each voxel of the map. Its eigenvalues mi and eigenvectors vi

characterize the local structural features of an image within a neighborhood
of size s. Depending on these features, the local diffusion flux can now be
decomposed into components with directions corresponding to those of the
eigenvectors vi with freely choosable magnitudes li. For 3D images (i =
1,2,3) such as electron tomograms, the diffusivity can then be written as:

(11)

There are various ways to define the parameters li as functions of the
local structure represented by the eigenvalues mi. It is generally known that
eigenvectors and eigenvalues indicate the direction and magnitude of
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extreme variations, v1 and m1 being the largest, and v3 and m3 the smallest
(see Fig. 3). This property can be used to classify voxels: for instance, the
condition m1 ≈ m2 >> m3 assigns the voxel to a line parallel to v3, and m1 >>
m2 ≈ m3 to a plane perpendicular to v1. In the first case, it makes sense to
smooth mainly along v3, and in the second along v2 and v3. For 2D images,
Weickert proposed two basic concepts, which he called ‘edge-enhancing dif-
fusion’ (EED) and ‘coherence-enhancing diffusion’ (CED). With EED, the
flux along the first eigenvector is a monotonically decreasing function of
the first eigenvalue, while the strength along the other eigenvector is kept
constant. The aim is to reduce the flux across edges and to smooth prefer-
entially in regions bounded by these edges. The filter can be regarded as an
anisotropic regularization of the Perona–Malik model. With CED, the flux
is made small and constant along the first eigenvector, while the flux along
the second eigenvector increases with the difference between the largest
and smallest eigenvalues. This filter amplifies curvilinear structures and is
an efficient tool to improve images of fingerprints.

For the denoising of electron tomograms, Frangakis and Hegerl (2001)
proposed to combine the advantages of EED and CED in a 3D hybrid
approach. The basic idea is to use the difference m1 – m3 as a switch between
EED and CED. If this difference is small, the noise level is still high, and
EED is applied to reduce the noise between edges. On the other hand, a
large difference indicates the existence of a local curvilinear structure, to
be enhanced by CED. The setting of li is as follows:

For the EED part, the unsmoothed version J0 of the structure tensor
is used, which has the eigenvalues m1 = |∇I|2, m1 = m3 = 0, and the eigenvec-
tor v1 = ∇I. Then 

l1 = l1 = g(m1), l3 = 1 (12)

with a suitable function g, e.g. as in equation (10) or, alternatively, with 

DENOISING OF ELECTRON TOMOGRAMS 341

FIGURE 3. Classification of voxels according to the eigenvalues and eigenvectors of
the structure tensor. (From Fernandez and Li (2003), reproduced with permission of
Elsevier).



Following Weickert (1998), a choice of m = 4 and Cm = 3.315 gives visu-
ally good results.

CED is based on the smoothed structure tensor Jσ and on the choice

(13)

With a = 1, CED is identical to a Gaussian filter. Figure 4 shows an
example where this hybrid approach is applied to the tomographic recon-
struction of a chromatin fragment.
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a b

c d

80 nm

FIGURE 4. Horizontal slice through an electron tomographic reconstruction of a chro-
matin fragment. (a) Original (b–d) denoised using (b) Gaussian filtering, (c) median fil-
tering and (d) the hybrid approach of NAD. (From Frangakis and Hegerl (2001),
reproduced with permission of Elsevier).



Fernandez and Li (2003) used this hybrid strategy with an extended
exploitation of the information given by the structure tensor. First they
define parameters

and then classify voxels according to the scheme (see Fig. 3):

P1 > P2 and P1 > P3 ⇒ plane-like
P2 > P1 and P2 > P3 ⇒ line-like
P3 > P1 and P3 > P2 ⇒ plane-like

The switch between EED and CED as well as the setting of li for EED
are used in the same manner as described above. In the case of CED, the
setting is more differentiated with respect to the classification of the voxel.
For voxels that are part of a curvilinear structure, the setting of equation
(13) is used, but for voxels of a plane-like structure, the magnitudes are
chosen as follows:

(14)

Frangakis and Hegerl (2002) argued against an extensive use of this
structural parameter because of a frequently observed strong noise sensi-
tivity of the second eigenvalue m2. One should also be aware of the fact that
the eigenvectors may be affected by the orientation of the missing wedge:
according to test calculations (Fernandez and Li, 2003), there is a tendency
of the first and third eigenvector to become perpendicular and parallel to
the electron beam, respectively.

The implementation of NAD follows the technique for iterative solu-
tion of partial differential equations. Denoting Dik with Dik = Dki for the ele-
ments of the diffusivity tensor in equation (11), a discretized version of the
following equation has to be solved:

3.3. The Bilateral Filter

In contrast to conventional neighborhood-averaging filters, the bilat-
eral filter combines the influence of neighboring pixels to the filter output
with respect to both the spatial domain and the intensity range (Tomasi 
and Manduchi, 1998). The common way to accomplish a neighborhood-
averaging filter is to replace each pixel with the average of itself and its
appropriately weighted neighbors. The equation 
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(15)

is a multidimensional representation of such a filter where the indices i or
j run over all N pixels in a lexicographic manner (i,j = 1, . . . ,N). Ii and Îi

denote the respective densities of pixel i in the unfiltered and filtered
images, and wij is the weight of pixel j with respect to pixel i. The weights
decrease with increasing distance between pixel i and j. Therefore, in prac-
tice, there is a maximum distance (due to the disappearance of weights
beyond this distance) which limits the sum over j in equation (15), so that
the filter can be realized as a kernel operation.The denominator is optional;
its purpose is to preserve the local mean. One of the most popular exam-
ples of this filter type is the Gaussian filter with weights defined as

(16)

where xi denotes the position of pixel i. The user has to set the parameter
s, which determines the range of smoothing.

The weights of the bilateral filter are obtained by multiplying the
Gaussian weights (16) with a further factor such that the underlying image
structure can contribute. This factor is of similar construction, but the dis-
tance term in the exponent of equation (16) is replaced by the squared dif-
ference of density values of the corresponding pixel pair:

(17)

Two parameters must now to be set, sD for the smoothing distance as
before, and an additional sI for an appropriate intensity range. With a large
sI, the filter is reduced to a normal Gaussian filter. To understand the effect
of this non-linear filter, let us assume that pixel i is part of a line which is
characterized by a set of pixels having, ideally, the same density values.
Neighboring pixels j that are also part of this line have similar densities and,
therefore, the second factor in the weight is close to 1. Pixels with the same
distance from pixel i, but away from the line, contribute with a smaller
weight according to the larger difference Ii – Ij. Consequently, mainly pixels
along the line contribute to pixel i, hence the line is better preserved when
compared with Gaussian filtering.

It is worth mentioning that the weights wij defined in equation (17)—
sometimes called ‘affinity weights’—are also used in a method for image
segmentation described in Chapter 12 of this volume. In this context, the
weights are arranged as a matrix, the so-called affinity matrix. By analyz-
ing eigenvectors of this matrix, a powerful foreground versus background
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separation can be achieved, e.g. the separation of a cell from the sur-
rounding ice matrix.

The bilateral filter is easy to realize; however, some effort is required
to make its application fast. The filter can be implemented as a normal
kernel operation equivalent to the Gaussian filter but, in contrast to the
latter, the operation is slow because the kernel has to be recalculated for
each pixel. The non-linear behavior of the filter also prevents replacement
of the kernel operation by the fast and elegant combination of fast Fourier
transform combined with a simple multiplication in Fourier space as used
for the Gaussian filter in the case of a larger kernel. Fortunately, however,
the operation is well suited for parallel processing. Figure 5 shows an appli-
cation of the bilateral filter to the tomographic reconstruction of a flight
muscle (from Jiang et al., 2003).

3.4. Constrained or Regularized Reconstruction

The denoising techniques described so far are post-processing
methods, which means that they are applied to the final tomogram as
obtained for instance by weighted back-projection (see Chapter 8 of this
volume) or by the algebraic reconstruction technique (ART) (see Chapter
7 of this volume). There also exist some methods where noise reduction is
an intrinsic part of the 3D reconstruction. Such methods subject the data
to constraints derived from a priori information or from additional meas-
urements. Typical examples for a priori information are positivity—density
values are always positive (appropriate correction of contrast transfer func-
tion required)—or reconstructions in conjunction with additional principles
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FIGURE 5. Bilateral filtering of an electron tomogram. (A) Surface view of the origi-
nal density map of rigor flight muscle thin section. The map density variance is 48.
(B) The bilateral filtered density map (A) with sD = 1 pixel and sD = 200 (by courtesy
of Jiang et al.). (From Jiang et al. (2003), reproduced with permission of Elsevier).



such as energy minimization or entropy maximization (Barth et al., 1988;
Skoglund et al., 1996). Constraints from experimental data can be realized,
for instance, when something is known about the shape of the specimen,
which might be its thickness or surface relief. The corresponding algorithms
are usually formulated as an optimization task to be solved iteratively (see
Chapter 2 in this book). The effect of noise filtering is obvious in the case
of minimum energy or maximum entropy because these constraints have
the effect of smoothing the data. The problem is again to find the right
balance between smoothness and fidelity to the measured data. Unfortu-
nately, nothing is known about studies concerned specifically with noise
reduction properties of such methods.

4. EFFICIENCY, OR ‘WHAT IS GOOD DENOISING’?

The aim of all the methods we are considering is to reduce the noise
as much as possible with full preservation of the structural information.
However, what does this mean in practice, and how can the result be eval-
uated? The answer obviously depends on what is intended with denoising.
Is it intended for improving the visualization of a map, or as a pre-
processing step for subsequent segmentation? For the latter application,
more smoothing might be useful, while less smoothing is preferable for the
former. It is also important to consider the size of the structural features
under scrutiny. The parameters controlling the noise filtration have to be
chosen appropriately.Test calculations help to understand how the methods
work and to learn how the parameters should be set. Examples can be
found in the references cited in Sections 3.1–3.3. In the following treatment,
test calculations are presented, which compare anisotropic diffusion with
the bilateral filter, and finally some quality criteria are considered.

Before going into details of test calculations and quality criteria, it
might be useful to compare the methods with respect to their ease of imple-
mentation and handling.

1. Wavelet filtering: a program for discrete WT is required for the
implementation of wavelet filtering. Such transformations are available in
modern program packages for image processing. An additional but not too
complicated routine for rotating the complete area of an image is needed
to realize rotation invariance. For the application, only one threshold
parameter has to be set, at least for the simplest version of wavelet filter-
ing. As already mentioned, the procedure is not yet realized as a real 3D
filter. It is also very demanding in terms of computational power, but par-
allel processing of steps 1, 2 and 3 is straightforward.

2. Non-linear anisotropic diffusion: NAD is usually realized as 
an iterative numerical solution of a partial differential equation. This
requires some programming; however, some versions are freely available
(Frangakis and Hegerl, 2001; Fernandez and Li, 2003; see also IMOD
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http://bio3d.colorado.edu/imod/doc/program_listingprogram_listing; and
SPIDER http://www.wadsworth.org/spider_doc). Of the three denoising
methods discussed, NAD is certainly the most flexible one, but it is difficult
to handle in its hybrid form (see Section 3.2) due to the large number of
parameters that must be set. When using the simpler edge-enhancing
method, only two parameters must be defined.

3. Bilateral filter: this filter is conceptually the simplest method, and
it can be realized as a kernel operation corresponding to a Gaussian filter
in real space. Two parameters have to be set.

It should be mentioned that even though the three methods lend them-
selves to parallel computing to different degrees, parallel computing is nev-
ertheless always possible for all three methods by dividing the volume into
appropriately overlapping subvolumes (i.e. taking account of kernel width
as necessary) and performing separate processing of each.

4.1. Test Calculations

The great advantage of test calculations with phantoms is that they
offer the possibility of comparing the noise-filtered map quantitatively with
the original structure model or with the corresponding noise-free tomo-
graphic reconstruction. This allows one to study the effects of differently
chosen control parameters and to optimize the filtering with respect to
special quality criteria. The tests should be performed by a simulation of
the full tomographic process in order to include the effects of the ‘missing
wedge’. Therefore, from the phantom, projection images are produced,
noise is added to each, and all projections are merged in a 3D reconstruc-
tion as usual. The resulting map can then be subjected to the different
denoising methods. To make the simulation as realistic as possible, the
spectra of the added noise were modeled as shown in Fig. 1.

Figure 6 summarizes the results of test calculations where edge-
enhancing NAD is compared with the bilateral filter.The comparison is fair
in that both methods are mainly controlled by two parameters: edge-
enhanced NAD with the diffusion strength l and the number of iteration
steps, and the bilateral filter with the variances sI and sD for intensity and
distance. Additionally, a conventional Gaussian filter was applied for com-
parison. Using data from the Protein Data Bank, models of proteasomes,
thermosomes and actin filaments were calculated and randomly distributed
in the test volume. The linear extension of a voxel is 0.5nm, as is the case
for each pixel in the projection images. From this volume, 53 projection
images were calculated, corresponding to a tilt series with a tilt increment
of 2.5° within the angular range from –65° to +65°. Simulating bright field
imaging with a mild band-pass and a contrast of 5%, noise was added, cor-
responding to a dose of 20 or 50 electrons per pixel and per projection. The
root mean square deviation (RMSD) of signal and noise was around 1 (2.4)
and 4.5 (7), respectively (RMSD values correspond to a dose of 20 elec-
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trons/pixel; those in parentheses to 50 electrons/pixel). The tomographic
reconstruction from these projection images is free from alignment errors
but shows typical reconstruction artifacts, mainly due to the missing wedge.
Taking the RMSD of the noise-free reconstruction for the signal, the values
of 1.1 (2.8) and 8.5 (13.5) characterize signal and noise, respectively 

The aim of the test calculations was to find the optimum similarity
between the denoised map and the noise-free reconstruction by varying the
parameters mentioned above (l, iteration steps, sD and sI). Using the cross-
correlation coefficient (CCC) as a measure for similarity, two criteria for
optimization were applied: (i) the maximum of CCC and (ii) again the
maximum of CCC but with the additional condition that the variance of the
denoised map remains larger than that of the noise-free map. The results in
Fig. 6 show that criterion (i) leads to very strong denoising, with over-
smoothing of the data. However, the resulting maps are quite useful since
they can be applied—after further processing with appropriate morpholog-
ical operators (Russ, 1995)—to segment the macromolecular complexes.All
maps satisfying criterion (i) have a variance smaller than that of the noise-
free reconstruction, which indicates loss of signal.This was the reason for the
use of criterion (ii), which sets a lower limit to the variance of the denoised
map.The resulting images show weaker denoising, with more residual noise,
but also with more residual details of the structures of interest.

Regarding the different filter techniques, NAD shows the sharpest
edges, while Gaussian filtering shows the smoothest. In Fig. 7, the Fourier
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a–d

e–h

FIGURE 6. Test calculation with synthetic data simulating an electron dose of 20 elec-
trons/pixel. All images show the same slice through a volume, each represented with
the intensity range mean ± 3 × variance. (a) Noisy reconstruction, (e) noise-free recon-
struction. Weak denoising with (b) Gaussian filter, (c) bilateral filter and (d) NAD.
Strong denoising with (f) Gaussian filter, (g) bilateral filter and (h) NAD.



shell correlation (FSC) between noise-free reconstruction and denoised
maps is displayed to demonstrate the effects of different filter techniques in
frequency space. In these examples, NAD gives better results in the low-dose
case of 20 electrons/pixel, while the bilateral filter is better when applied to
the less noisy tilt series with 50 electrons/pixel. Strong denoising according
to criterion (i) shifts the gain in information to lower spatial frequencies.

In a study presented by Frangakis and Hegerl (2001), NAD was applied
to redundant data such that the result could be compared with that
obtained by averaging. A total of 468 3D maps of individual macromole-
cules (VAT, a ATPase homolog) obtained by tomographic reconstruction
were aligned and averaged. One average image was calculated from the
original maps, and another one after processing each individual map with
NAD. The FSC curve of the latter was slightly better, whereas the corre-
sponding average appeared more blurred. This seems to be a contradiction;
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FIGURE 7. FSC between noise-free reconstruction and noisy maps: unfiltered (solid
line); Gaussian-filtered (dotted line); bilateral-filtered (dash-dotted line); and NAD
(dashed line). (a) 20 electrons/pixel, weak filtering; (b) 20 electrons/pixel, strong filter-
ing; (c) 50 electrons/pixel, weak filtering; (d) 50 electrons/pixel, strong filtering.



however, one has to consider that the FSC function measures only the sim-
ilarity between two subsets of the maps. The conclusion to be drawn is that
denoising improves the similarity between the particles but reduces the
magnitude of Fourier coefficients in the high-frequency range. Appropriate
enhancing of the high-frequency amplitudes of the denoised particle images
makes the two averages indistinguishable.

4.2. Quality Criteria

Though important for understanding the theory and for optimiz-
ing parameter settings, the results of test calculations should not be over-
estimated in terms of their implication for real applications. The characters
of signal and noise might be different from those used in the simulations
due to an oversimplification of the imaging model. As discussed above, it is
even difficult to define the meaning of ‘good denoising’ in test calculations.
In applications to real data, the true signal is unknown, and the evaluation
of the denoising result has to be based on only two maps, the original and
the noise-filtered maps. The most obvious approach to a quality criterion is
to compare the variances of both maps. All denoising methods have in
common that they reduce the variance, and the problem is to find out by
how much they should be allowed to do so. The following rationale appears
to be the most reasonable: given the SNR of the original map, the variance
should not be reduced below the fraction of variance that corresponds to
the signal:

(18)

Though usually unknown, it should be possible to make an estimation
of the expected SNR, at least for typical and frequently used experimental
set-ups. Occasionally, the map includes a region free from structural fea-
tures, containing pure noise. The variance taken from this region in
denoised and original maps is a direct indicator for noise reduction.
However, one should not forget that such regions might also contain spu-
rious signals or clutter from the reconstruction process, e.g. back-projection
rays, which contribute to the signal variance.

It is certainly one advantage of NAD that the iterative nature of the
procedure also makes it possible to consider intermediate states of the map.
For instance, the relative variance mentioned above can be monitored as a
function of the iteration steps or, in other words, as a function of the time
parameter. Weickert (1999) proposed to stop the iteration when the limit
given in equation (18) is reached. Another termination criterion, the ‘de-
correlation criterion’, was proposed by Mrazek and Navara (2003). It is
based on the temporal development of a special cross-correlation coeffi-
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cient to be calculated from the map or image at time t and at time t = 0,
and thus does not require an estimation of the SNR. Using the notation of
Section 3.2, the exact definition of this coefficient can be written as follows:

(19)

Assuming ideal denoising at a certain time t, the noise-filtered map
should be identical to the signal and, after subtracting this map from the
original map, pure noise should be obtained. Thus, at time t, no correlation
between the difference map and the denoised map could occur. In practice,
one could expect that the decorrelation coefficient reaches a minimum, and
the time corresponding to this minimum would define the end of the iter-
ation. Unfortunately, a minimum can be observed only occasionally. For a
detailed discussion of this criterion, the reader is referred to the literature
(Fernandez and Li, 2003; Mrazek and Navara, 2003).

5. CONCLUSION

So far, three basically different methods for advanced noise filtering
have been realized in the field of electron tomography. They differ with
respect to the way in which the signal is recognized and separated from the
noise. WT, analysis of the structure tensor and the calculation of affinity
weights are the means, respectively. The last two of these methods, realized
as NAD and the bilateral filter, are widely used, as demonstrated by publi-
cations concerned directly with applications of electron tomography. NAD
is more flexible and can be designed individually for data representing 
specific structural features. The bilateral filter may be favored due to its 
simplicity. Also the wavelet-based method offers great power for signal
recognition; however, alternative mathematical approaches are needed for
real 3D realizations. In the future, other approaches may emerge, or the
existing ones may be combined for greater efficiency.

There is also a great need for practical and reliable criteria for meas-
uring the quality of the noise filtering process. Such criteria may be differ-
ent depending on the final aim of denoising, e.g. the desired smoothness of
the data. In any case, they must exploit more than a simple image property
such as the variance, but this will depend on future developments.
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1. INTRODUCTION

The intuitive understanding of the process of segmentation is that of a com-
partmentalization of the image into coherent regions and the extraction of
independent objects. Perhaps the most sophisticated segmentation mecha-
nism is human vision, which is capable of interpreting a large variety of
groups, associating them into classes and compartments, as well as finding
relationships among them. Computer-based image segmentation algorithms
typically perform only a single task, which is coupled to a specific applica-
tion. Humans use a large variety of different criteria to segment images, e.g.
similarity, proximity, continuity and symmetry. In electron tomography, the
observer usually searches for a known shape or multiply occurring shapes
to guide his segmentation. The separation criteria used are the gray value
and the contrast between the feature and the environment. In a general
sense, the aim is to group pixels or voxels into subsets which correspond to
meaningful regions or objects. When regarding pictures by eye, one has an
intuitive sense for the boundaries of meaningful objects and regions. When
using the computer, however, it is difficult to find quantitative criteria which
define meaningful areas on the basis of pixel properties such as contours,
brightness, color, texture, etc.

Segmentation algorithms incorporate edge detection and shape recov-
ery, which are essential for many visualization tools. Independently of
whether the technique is interactive, semi-automatic or fully automated,
the separation of 2D or 3D images into several more coherent regions,
the properties of which—as defined by intensity or texture—are roughly
uniform, becomes indispensable as the image complexity grows. In electron
microscopy, the feature of interest usually corresponds to pixels possessing
different intensities compared with the background, at least locally, or those
grouped into certain patterns. The goal is to locate these regions within the
image and then perform segmentation.

The need for segmentation increases dramatically when the images go
from two dimensions to three. Apart from the increased image complexity,
which is intrinsic to an increase of the dimensionality, the comprehension
of an image is much more difficult, due to the limited visualization capa-
bilities. The perception of a certain object is significantly hampered because
it might be covered, shadowed or obscured by noise and other surrounding
objects. Through segmentation, the field of view can be cleared and simpli-
fied to allow for its interpretation. In this way, the segmentation can be
exploited for the design of masks, allowing the interpretation to focus on
different features of an object.

Image segmentation techniques can be classified into two broad fami-
lies: contour-based and region-based approaches. Contour-based approaches,
e.g. snakes, usually start with a first stage of edge detection, followed by a
linking process with the aim of detecting a boundary. Region-based
approaches, e.g. segmentation with eigenvectors, to be discussed later, try to
find partitions of the image pixels into sets with similar image properties.
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The major difference between these techniques is the decision criterion: local
versus global. Contour-based techniques make local decisions (e.g. merge/
split, stop/evolve) that may be proven premature. Region-based techniques
make the decision by defining a global objective function. The advantage in
the latter case is that decisions are made when information from the whole
image is taken into account simultaneously, at the expense of higher compu-
tational costs.

The mathematical theory of the techniques described below is exhaus-
tively presented in various scientific papers and books.Therefore, we will not
aim to give a detailed mathematical description, but rather a short overview,
which provides the basic literature of each technique and its applications in
electron tomography. Since segmentation is a subjective process, the prop-
erties of each technique will be discussed, but not compared, since the algo-
rithms perform differently for different types of data. Nevertheless, the
examples presented for segmented tomograms will give a flavor of the per-
formance and function of each algorithm, and will give an idea of ‘what an
algorithm can do’ instead of ‘what an algorithm cannot do’. It is important
to notice that the algorithms presented can be easily combined, and that the
result might surpass the performance that each algorithm is able to achieve
on its own. Specific choices for tuning the algorithms toward better applica-
tion to electron tomographic data sets will also be mentioned.

2. SPECIFIC DEMANDS OF ELECTRON TOMOGRAPHIC
DATA ON SEGMENTATION ALGORITHMS

Electron tomographic images represent a tough challenge for most of
the current image and signal processing applications in computer science.
The reasons are mainly 3-fold: (i) the low signal-to-noise ratio (SNR); (ii)
the missing information (missing wedge) in Fourier space; and (iii) the fact
that the transfer function of the microscope is virtually unknown, especially
for thick specimens. Although each of these issues alone would not be pro-
hibitive by itself, the combination produces a very difficult task.

Cryoelectron tomograms, in particular, suffer from a very low SNR due
to the low electron dose that must be used. The use of higher doses would
increase the SNR, but would destroy or falsify high-frequency information
due to alterations of the specimens. Even though the noise sources are mul-
tiple and hard to describe, the noise can be considered to be white or band-
pass-filtered white noise (see Chapter 11 of this volume). Furthermore, the
missing wedge problem is inherent in the fact that cryoelectron tomogra-
phy is not capable of recording the complete 3D information, due to the
limited tilt range of the tilt device (compustage).The effect is nicely demon-
strated in Fourier space, where a wedge-shaped region does not contain any
information (see Fig. 1 in Chapter 1 of this volume). Effectively, for a
normal tilt range of ±60°, one-third of the data are missing, which results in
a blurring of the object features in the direction of the beam. The blurring
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amounts to a virtual elimination of the gradient (by gradient we mean the
image gradient defined as the first derivative of the image intensity), which
is the most important feature-delimiting criterion, and is used by all seg-
mentation techniques.

3. DENOISING AND EDGE-ENHANCING TECHNIQUES

Denoising techniques are important tools for the processing of cryo-
electron tomographic reconstructions, which are both complex and noisy.
In the examples presented below, the segmentation techniques will be
applied to 2D and 3D images that have been denoised by non-linear
anisotropic diffusion (Frangakis and Hegerl, 2001; see also Chapter 11 of
this volume). In non-linear anisotropic diffusion, the shape, eccentricity and
direction of a Gaussian filter are modified anisotropically and adjusted
locally as a function of the magnitude and direction of the local gradient
and the gray flow of the image, such that edges are preserved while noise
is smoothed. The segmented tomograms given as examples were all
denoised by non-linear anisotropic diffusion (Fig. 1). Segmentation can, in
principle, also work on non-denoised tomograms, but it is simpler to tune
the parameters on data with less noise.

4. VISUALIZATION OF THE SEGMENTATION RESULTS

Most segmentation techniques produce a binary result, in the form of a
mask, conveying the decision on where an object is located.The direct visual-
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FIGURE 1. (a) A slice through a 3D image of a Pyrodictium abyssi cell (Baumeister
et al., 1999) and (b) a slice denoised by non-linear anisotropic diffusion. (From 
Frangakis et al. (2002), reproduced with permission by Elsevier).



ization of this mask by surface rendering produces facets, with the correspon-
ding normal vectors being perpendicular to each other, producing a non-
smooth,Lego-like impression.To convey the result of a segmentation,not the
mask but rather the product of the mask with the original 3D image should be
visualized, which is normally free of such arteficts as the original intensities in
the image are preserved. For demonstration purposes, a Gaussian function
has been segmented with a sphere and an isosurface has been generated from
the mask (Fig. 2b), as well as from the segmented object (Fig. 2a).

5. SEGMENTATION TECHNIQUES

5.1. Thresholding

The simplest and probably the most frequently used segmentation
method is ‘thresholding’. Thresholding is an operation whereby pixels or
voxels are selected according to their intensity above a user-defined param-
eter and assigned to the foreground (white, high density, ‘1’) or the back-
ground (black, low density, ‘0’). The resulting binary Ibin is produced in the
following way:

(1)

where I(x) is the image value at the position x and thr is the user-defined
threshold value. This binary image is then used for further processing.
Thresholding is implicitly used for many visualization techniques, e.g.
isosurface rendering. Thresholding techniques can be applied with a large
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FIGURE 2. Visualization of segmentation results. For demonstration, consider a
spherical mask, representing the result of segmenting a Gaussian blob. (a) Proper visu-
alization of the segmentation is obtained by multiplying the mask by the original
density distribution—no interference of the mask with the object is noticeable (e.g. in
the form of discontinuities, breaks, etc.) (b) The actual mask used for the segmenta-
tion. Visualization of the segmentation result itself, which in the general case is a
binary image, produces a bad, discontinuous visualization.



variety of options, e.g. combination with the presentation of the density his-
togram, or two-value thresholding.

The choice of the threshold is typically user defined. For tomographic
data, there is no objective criterion on how to define this parameter. In the
special case of single-particle reconstruction of purified proteins, where the
resolution of the data set is significantly better and the object under investi-
gation has a known molecular weight, a threshold can be set by calculation
of the total volume occupied by the protein, considering the density of the
protein. A modification of the threshold changes the number of selected
voxels and the corresponding occupied volume. In tomographic data, this
way of determining the threshold is usually not possible as no volume infor-
mation is available; therefore, threshold parameters must be set subjectively.

5.2. Properties and Operations of Binary Data and Masks

Segmentation of electron tomograms by means of thresholding or
other techniques can result in a binary image with thousands to millions of
small islands (an island being a limited region with white pixels separated
from the background), most of them representing noise. Each island can be
assigned to a different number, which in computational jargon is simply
called a ‘label’. Several different measurements exist that may be used to
quantify the labels and choose which one represents the object of interest.
These measurements include, but are not limited to: occupied volume,
length, curvature, principal axis and moments of inertia of each label. These
measurements can be used to separate labels representing regions with
interesting objects from those representing noise (e.g., a cell would occupy
a larger volume than shot-noise). An example of the simplicity and effec-
tiveness of this application is visualized in Figs 3–6.A threshold was applied
to a tomogram of a Pyrodictium cell (Fig. 1b) and a binary image was pro-
duced (Fig. 3a). The binary image was labeled and then the properties of
each label were analyzed.

There is a very small number of labels occupying a very large volume,
as shown in the histogram (Fig. 4). If these labels are separated from the
rest and visualized separately, then it turns out that they represent pieces
important for the segmentation process; i.e. the inner and outer boundary
of the cell (Fig. 5). The same process can be applied on a Dictyostelium cell
recorded by Ohad Medalia (Medalia et al., 2002). In this case, all the pixels
occupying a volume smaller than a certain number are simply excluded
from the visualization. The effects of this procedure are depicted in Fig. 6.

5.3. Binary Morphological Operations

Dependent on the procedure for generating a mask (manual or auto-
mated segmentation, thresholding, etc.), the masks tend to have holes,
rough or disconnected boundaries, and other defects, which affect both the
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FIGURE 3. (a) A binary image created by thresholding of the denoised 3D image of
Pyrodictium. Note that the contrast has been inverted for visualization purposes. (b)
Labeling of the binary image. The gray value of the labels corresponds linearly to their
label number: islands on the top of the image have a low label number, therefore they
appear bright. Conversely, islands at the bottom have a higher label number, there-
fore they appear darker. (Note that the binary images are presented in inverted con-
trast, i.e. the pixels with value 1 are black and the pixels with value 0 white, for
simplification of the black and white print.)
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FIGURE 4. Quantization of the volume occupied by the different labels. The y-axis is
the volume occupied, with respect to the label number plotted on the x-axis.



segmentation results and the visualization. Morphological operations on
binary images are useful for improving the quality of the masks (Weickert,
1999). Morphological operations are local modifications of the multi-
dimensional image I based on the shape of a so-called structuring element
S of the same dimensionality. The structural elements can be of arbitrary
shape but they are typically disks (spheres, in 3D), squares (cubes) or
ellipses (ellipsoids). The aim of these operations is to transform the signal
into simpler ones by removing irrelevant information. Some of the most
common operations are dilation and erosion. The mathematical description
for a binary image of such an operation is the following:

Dilation: (I � S)(x):=min{I(x − y), y ∈ S} and (2)

Erosion: (I � S)(x):=min{I(x + y), y ∈ S} (3)
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FIGURE 5. The labeled islands occupying the largest volume in Fig. 3. They prove to
represent the inner membrane (a) and the outer membrane (b) of the Pyrodictium cell.

a b

FIGURE 6. Isosurface visualization of a part of a Dictyostelium cell (Medalia et al.,
2002) (a) before and (b) after removing all labels that had <200 voxels. 



where � and � are symbols indicating the application of these operations
on an image, given a structural element. If a pixel is ‘switched on’, i.e. has
value 1, then its surroundings gets the value of the structuring element. A
dilation operation would expand the boundaries of the mask, while an
erosion operation would shrink them (Fig. 7). With an iterative and alter-
nating application of these two elementary operations, an ‘opening’ or
‘closing’ of disconnected boundaries can be achieved, holes can be filled
and various defects in the masks can be corrected in a determined way. The
opening of boundaries can therefore be described in the following way:

Opening: (I ° S) (x):=min((I � S) � S)(x) (4)

which is effectively an erosion followed by a dilation. The closing of the
boundaries is the inverse operation:

Closing: (I • S) (x):=min((I � S) � S)(x) (5)

Again, symbols have been introduced for a short notation of these opera-
tions. Erosion and dilation operations can also be defined for gray-level
images, and be easily implemented by level sets (Sethian, 1996).

5.4. Manual Segmentation

Manual segmentation is the most subjective way of segmenting objects;
however, due to the extreme complexity of electron tomographic images,
it is still the most popular (see Marsh et al. (2001) for an extraordinary
example of manual segmentation performed on highly complex 3D
images). The simplest way is to use a brush, and paint the regions of inter-
est, thereby creating a mask for the segmentation (Perkins et al., 1997).
Similar tools have been also developed for the direct segmentation in 3D
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FIGURE 7. (a) Dilation of the boundaries from Fig. 5b, which represent the outer
membrane of the Pyrodictium cell. (b) The mask is multiplied by the original object,
highlighting the intensities of the cell membrane.



(Li et al., 1997). However, this manual tracing is both inaccurate and labo-
rious. Solutions can be provided, for example by intelligent scissors algo-
rithms, which allow objects within digital images to be extracted quickly and
accurately using the mouse (Ballard and Brown, 1982). When the user
defines a position in proximity to an object edge, the boundary snaps at the
edge and the user can precisely wrap the boundary around the object of
interest. The line segments are automatically fitted to the closest edge. With
further mouse clicks, fixed points at the contour to be segmented can be
defined. These types of algorithms find the shortest path in a cost matrix,
which is computed from the image’s gradient image.

5.5. Watershed Transform

The watershed transform is a well-established image processing tech-
nique for gray-scale images (Russ, 2002). In this method, the gray values of
the pixels or voxels are considered as a topographical relief, where the
brightness value of each voxel corresponds to a physical elevation. This
relief is now considered as being filled with water. The positions where the
water arriving from two different minima merge are called the watersheds
(Fig. 8). The procedure results in partitioning the image into regions, the
borders of which separate the minima from each other.

A common problem of the watershed algorithms is oversegmentation.
Due to noise, the complexity and especially the band-pass characteristics of
the data, the volume is partitioned into numerous small regions, which even
outnumber the islands created by thresholding (Fig. 9). By low-pass filter-

362 ACHILLEAS S. FRANGAKIS AND REINER HEGERL

FIGURE 8. Watershed segmentation applied to synthetic data. (a and b) Synthetic
data set of two Gaussian blobs touching each other. The watershed algorithm fills each
region with water and, when the regions touch, then a barrier is set in between them.
(b) Two distinct objects have been produced by segmentation, corresponding to the
position of each blob. (c–h) Application of the watershed transform on real data, exem-
plified by a 3D image of the Thermosome. (c, e and g) Three consecutive slices through
the macromolecule. (d, f and h) The corresponding results of the segmentation.



ing of the data (e.g. by application of a Gaussian filter), it is possible to
reduce the number of unimportant details and thus to reduce the number
of regions. A different way to achieve this is by the introduction of a finite
step size as an additional parameter (Volkmann, 2002). Depending on the
choice of that parameter, the position of the watershed can vary, so that
local, insignificant minima do not contribute to the segmentation result.

The watershed transform has real advantages when a few smooth
objects need to be separated from each other. This is the case when sub-
units of macromolecules need to be segmented. For tomographic data, a
pre-segmentation is necessary, in order to avoid oversegmentation. The
watershed transform can subsequently be used to refine this segmentation,
by removing any noise blobs that were included initially.

5.6. Snakes

The original idea of Kass and co-workers (Kass et al., 1988) for seg-
menting an object was to describe the evolution of a curve g(t) in time t,
called the ‘snake’, which would shrink like an elastic band and, dependent
on the object properties, would balance to a stable state indicating the
object boundaries. The aim of this elastic band approach is that it smoothly
describes the contours (i.e. the edges) of the object and bridges gaps and
openings that occur due to noise or incompleteness of the data, and might
be several pixels wide. This very intuitive way of segmentation had some
initial limitations in the discretization scheme, i.e. how to describe the curve
when it needs to break into two parts. When two separated objects need to
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FIGURE 9. Watershed segmentation of a slice from Pyrodictium (Fig. 1b). On the left
is the watershed result. Each watershed island has been assigned to a different label.
On the right, the watershed result has been multiplied by the binary data from Fig. 3a,
showing the separation of the different subunits.



be segmented, then the algorithm should be able to deal with a discrete
implementation. These discretization issues need to be described when a
curve is expanding from the inside out. Fortunately, these issues can gen-
erally be solved by a technique for propagating interfaces, called level sets,
which was conceived by Osher and Sethian (1988). The level sets are so
named because the snake g(t) is now considered as a (N – 1)-dimensional
curve, i.e. the zero-level set, of a higher (N)-dimensional manifold f, which
propagates over the time t:

(6)

This embedding allows the snake every freedom in topological changes and
movement including the application of several regularization properties.
Additionally, this formulation overcomes the numerical instability problem
posed by a direct discretization of the equations of a propagating front in
general, and the snake in particular (Osher and Sethian, 1988). When the
snake moves as a function of time toward the direction of the normal vector
of its boundary with the speed F, the equation describing this movement
equations is:

(7)

where F = g·(±1 – e·k) is the so-called speed function (Fig. 10). The speed
function is defined at every position of the image as a function of external 

forces which depends on the gradient of image I low-passed

filtered by a Gaussian filter with variance s and internal forces depending
on the curvature k and a balance parameter e (Malladi et al., 1996). Depend-
ing on the sign of the first summand of the speed function F, the snake can
shrink (+) or expand (–).The values of the weighting function are very close
to one for small gradients and approximately zero otherwise. The curvature
term plays a regularizing role, as it smoothes out the areas of high curva-
ture, i.e. it eliminates small noise features and covers openings of the
objects, creating more coherent regions. Since the stopping criterion
depends on the strength of the gradient, and the gradient is essentially zero
in the direction of the beam, due to the missing wedge, it might be advan-
tageous to modify the force pushing the snake toward the object. Thereby
the force component in the beam direction can be set to zero, in order to
avoid a collapse of the snake due to the absence of a useful boundary.

The user must make the effort to tune the internal regularization
parameters, i.e. the curvature as well as the external parameters, which are
image dependent, such as the image gradient, etc. The parameter setting is
usually chosen in such a way that small and insignificant features can be
ignored, so that the snake will move toward, and smoothly lean against, the
object boundary.
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5.7. Initialization of the Segmentation Curve for Electron
Microscopy Data

The segmentation is sensitive to the initial snake conditions. An arbi-
trarily chosen snake initialization will probably not converge to the desired
solution, since it might get caught in high-contrast, large-scale features.
Therefore, it will be advantageous for the user to indicate a rough initial-
ization curve and then let the snake evolve under the pre-set parameters.
For a fully automated segmentation, Bajaj and co-workers (Bajaj et al.,
2003) suggested a procedure for generating an initialization curve that is
based on the calculation of seed points where the snakes get initialized and
from where they will expand. In order to guarantee a reliable stopping cri-
terion, they initialized ‘dual contours’, which move antagonistically to the
segmentation contours from different positions in the 3D image. Ultimately,
both contours will approach each other closely and balance at the bound-
aries of the objects, providing a nice segmentation. An example for a seg-
mentation based on this technique is presented in Fig. 11.
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FIGURE 10. Demonstration of the expansion or collapse of a snake (zero-level set) as
a function of the normal vector and the iteration time. The position of the zero-level
set is indicated by the square. As the iteration time t evolves (t = –1, 0, 1, …), the square
moves higher up and the curve expands. In this case, no external forces are consid-
ered. Through the description of the 3D function, f the snake always stays mathe-
matically describable, even if the curve should break.



5.8. Manual Segmentation with Snakes

The snakes can also be used for manual segmentation. They interact
with the image in a way similar to the intelligent scissors by interfering with
the edges. The difference from the automated segmentation is that now the
snakes are moved and stopped manually by the user. A minimization of the
energy functional is not necessary, since the user decides at which position
the evolution will stop. Parameters such as edge strength and curvature of
the snake can be applied in order to assist the user to place the snake faster
and more accurately in the desired position. In this way, different tolerance
values can be applied in order to stop the contour from moving at certain
points. The connectivity of the snake is preserved at all times.

5.9. Segmentation with Eigenvectors

The segmentation with eigenvectors is based on the minimization of a
global cost function, which exploits the information given by all pixels of
an image as a whole. Its goal is to subdivide the image into two parts, e.g.
foreground and background, thereby extracting the ‘main’ feature in the
image (Malik et al., 2001).Theoretically, the segmentation result should con-
stitute a binary image. In practice, however, gray levels are assigned to each
pixel, with a distribution of intensity values, such that a meaningful area can
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FIGURE 11. Segmentation of a slice from Pyrodictium using level sets according to
the procedure described by Bajaj et al. (2003). (See color plate)



easily be extracted by simple thresholding. Segmentation into more areas
is achieved by a hierarchically descending application of the procedure to
the segmented regions.

The procedure starts by assigning a similarity value wi,j to every pair i,j
of pixels in the image as a bilinear form. These values form the affinity
matrix W between all pixels x with gray values Ii. The similarity measure-
ments can be a function of intensity, gradient, texture, energy and distance.
For multidimensional electron microscopic images (in 2D and 3D), the
affinity matrix, as for instance used in Frangakis and Hegerl (2002), is a
combination of the similarity in gray value and the Euclidean distance:

(8)

where aI is a variable adjusting for the importance of the gray value and ad

for the importance of the Euclidean distance. Large values of wi,j indicate
high overall similarity between the two pixels.

The aim is now to separate the total set of pixels or voxels into two
disjoint subsets A and B with maximum dissimilarity (V = A ∪ B and A ∩
B = ∅). The dissimilarity thereby is measured by the sum of the elements
wi,j of the affinity matrix, which connect an element of A with an element
of B. Shi and Malik (1997) introduced for that purpose the normalized cut
criterion, as a possible way to quantify this notion:

(9)

with and . A good segmentation 

would minimize Ncut(A,B). Therefore, the solution that minimizes the
normalized cut criterion is the optimal separation of the pixels into two
subsets and, correspondingly, of the image into two regions. As shown by
Shi and Malik, the solution of this criterion can be formulated as an 
eigenvalue–eigenvector problem (Shi and Malik, 1997). Following this 
formulation, the connectivity pattern that minimizes this criterion can be
approximated by the second smallest eigenvector of the affinity matrix W.
The vector elements of this ‘indicator’ vector assign a number to each pixel,
such that the entries cluster around two different values, which are inter-
preted as two different labels identifying the two pixel subsets.

5.10. Segmentation Procedure

The inspection of the segmentation results confirms the feasibility of
foreground/background separation, for which this technique has been
designed. The indicator vector containing the segmentation information
possesses bright gray values at the place where the cell lies, and darker
values everywhere else (Figs 12–14).
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FIGURE 12. Results of eigenvector-based segmentation for a slice from a tomogram
of the Pyrodictium abyssi cell; (a) the second eigenvector representing the segmen-
tation result. (b–e) Hierarchical segmentation: the high-intensity values are extracted
from (a) with thresholding. These high-intensity values are subjected to a further seg-
mentation producing (b) and (c). In the next application step of the algorithm, the seg-
mentation of two further features is achieved (d and e). (From Frangakis et al. (2002),
reproduced with permission of Elsevier).

FIGURE 13. Segmentation of a slice from the tomogram of Pyrodictium using the
eigenvector method. The original slice is overlaid with contour plots of the segmenta-
tion. The three main features on the image are seen to be separated from one another.
(From Frangakis et al. (2002), reproduced with permission of Elsevier). (See color plate) 
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6. CONCLUSIONS

Segmentation is a largely subjective operation, which increasingly
becomes a significant aid for the visualization of 3D images. There are
several segmentation algorithms in the literature. Their performance
depends in most of the cases on the application, and there is no single algo-
rithm (at least none known to the authors) that performs equally well with
various types of data. Therefore, only those algorithms that are gaining
importance in electron tomography or have been specifically developed 
for electron tomography were presented and exemplified in this chapter.
Perhaps in computer science books, some even better performing algo-
rithms might exist, and the existing ones might be further improved in the
future. Nevertheless, we hope the examples shown have indicated that by
applying the algorithms presented above, good segmentation results can be
obtained and a large variety of data types can be analyzed. It should be
noted finally that the algorithms are not mutually exclusive but, on the con-
trary, they can be mixed and matched for best results. For all of the algo-
rithms discussed, fast implementations exist which can be integrated in
many visualization packages currently in use.
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1. INTRODUCTION

Electron tomography is a method for determining 3D structure by electron
microscopy, using multiple tilt views of the specimen (Lucic et al.,
2005; McEwen and Marko 2001; McIntosh et al., 2005). Since electron
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tomography does not employ averaging or require the presence of sym-
metry, it can be used in biological applications to image single copies of sub-
cellular components in situ.When specimen preparation is optimized by use
of rapid freezing, and imaged either directly in the frozen-hydrated state,
or after freeze substitution and plastic embedding, electron tomography
provides a relatively high-resolution view of biological structure in a native,
or near-native, cellular context.

To realize the full potential of this powerful breakthrough, investigators
must be able to identify and segment components of interest from the complex
and densely packed cellular environment characteristic of well-preserved bio-
logical specimens. This is particularly challenging because, in addition to the
crowded environment they portray,images of biological specimens have inher-
ently low contrast and a low signal-to-noise ratio (SNR).As a result, segmen-
tation of cellular components has been dominated by manual procedures that
rely on the expert knowledge of biologists to recognize specific structures.
However, such manual procedures are time-consuming, subjective and ill
suited to handling the data throughput required to make statistical correlations
among data sets recorded under differing functional conditions.

Many semi-automatic and fully automatic segmentation methods have
been developed to overcome the limitations of manual segmentation, and
some of these have been adapted for electron tomographic volumes. In this
chapter, we first review segmentation work in the field of electron tomo-
graphy, and then discuss the rationale for using prior knowledge to improve
the segmentation of a 3D reconstruction portraying a densely packed cel-
lular environment with a high amount of noise present (low SNR). This is
followed by a detailed description of our implementation of prior knowl-
edge-based segmentation, including practical applications, experimental
results and evaluations.

2. REVIEW OF VOLUME SEGMENTATION IN 
ELECTRON TOMOGRAPHY

Quantitative analysis of cell components in an electron tomographic
volume has become an important tool at the frontier of structural biologi-
cal research.This analysis often involves segmenting cell components, meas-
uring their dimensions, locating critical points and determining spatial
relationships among the components (e.g. Harlow et al., 2001; Marsh et al.,
1998; Perkins et al., 1997; Renken et al., 2002; Scorrano et al., 2002). In a
number of applications, segmentation was achieved primarily by stacking
the manually traced contours from the individual slices to construct the 3D
model (He et al., 2003; McEwen and Marko 1999; Tregear et al., 2004).
Several software packages can be used to contour electron tomographic
data sets, including: SYNU (Perkins et al., 1997), IMOD (Kremer et al.,
1996), SPIDER/STERECON (Frank et al. 1996; Marko and Leith, 1996)
and NIH Image (Rasband and Bright, 1995).
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Manual tracing quickly becomes tedious and prone to operator error
for complex structures such as the Golgi complex (Marsh et al., 2001). It is
not computationally practical when a large number of data sets are involved.
To address this issue, semi-automated segmentation techniques have been
developed that insert models for common objects, such as vesicles, and prop-
agate contours traced manually in selected 2D slices across all other slices in
the volume (Harlow et al., 2001; Hessler et al., 1992; Hessler et al., 1996;
Marko and Leith 1996; Marsh et al., 2001; Segui-Simarro et al., 2004;
Sosinsky et al., 2005).Most semi-automated methods provide manual editing
to correct problems with over- and undersegmentation. An alternative
approach is to employ 3D tracing using a stereo viewer (Li et al., 1997).

Although semi-automated procedures have clearly improved the effi-
ciency and accuracy of tracing methods, the improvement is insufficient for
segmenting the large throughput of volumes that is produced by modern
methods for electron tomography. To address this issue, researchers have
experimented with various semi-automated or fully automated segmenta-
tion techniques, particularly those based upon active contour methods. In
the geodesic active contour method developed by Bartesaghi and co-
workers (2004), a point inside the selected object must be provided for 
the segmentation to converge to the desired object boundaries. Bajaj and
colleagues (2003) developed a boundary segmentation method based on a
gradient vector diffusion and fast marching technique (Sethian 1996), a sim-
plified and faster variant of the traditional level set method (Sethian 1999).
Babu and colleagues (2004) and Jacob and colleagues (2002) applied para-
metric active contours to the segmentation of chromosomes and 3D DNA
filaments, respectively. The common drawback of the above active con-
touring methods is that they require high contrast image, fine parameter
tuning and appropriate initialization, in order to converge correctly.

Two other segmentation methods, graph cut (Frangakis and Hegerl,
2002) and watershed (Volkmann, 2002), have recently been extended for
the segmentation of electron tomographic data. It is not clear how well they
will perform for smaller structures in the image. Graph cut, watershed and
the active contour methods are reviewed in more depth in Chapter 12 of
this volume.

3. IMPROVED SEGMENTATION USING 
PRIOR KNOWLEDGE

The above segmentation methods depend mainly on raw image inten-
sities and gradient information, which tend to be poorly defined in electron
tomographic reconstructions. As a result, such data-driven methods often
converge to the wrong solution when there are large image contrast varia-
tions and outliers in the tomographic volume. Frequently, however, the
general shape, location and gray-level appearance of cellular objects such
as the cytoskeletal filaments and membranes are well known and can be

SEGMENTATION OF CELL COMPONENTS USING PRIOR KNOWLEDGE 373



incorporated as constraints on the model parameters or into the model-
fitting procedure. While use of prior knowledge is relatively novel for seg-
mentation of electron tomographic volumes, the concept has been widely
adopted in segmentation for other modalities. In this section, we classify
model-based segmentation techniques into four categories based on the
way prior knowledge is incorporated. The categories are: rigid modeling,
constrained deformable modeling, statistic shape modeling and contour
grouping techniques.

The rigid model-based methods include template matching and 
Hough transform. In template matching (Böhm et al., 2000; Frangakis et al.,
2002; Frank and Wagenknecht, 1984), the template is generally a structure
that has been determined at high resolution, usually by an imaging modal-
ity other than electron microscopy (most often X-ray crystallography). The
template is then used to detect the object in the image by cross-correlation.
Despite its current limitations such as low computation efficiency, with
further development template matching promises to become an effective
method for locating and segmenting small macromolecular assemblies that
have a relatively uniform shape.

The Hough transform is used in rigid model-based segmentation to
detect parameterized straight lines or curves in images, by mapping image
points into manifolds in the parameter space and then finding the peaks in
the parameter space. It can be combined with edge detection to improve
the efficiency and robustness of segmentation (Yu and Bajaj, 2004; Zhu et
al., 2003). The generalized Hough transform (Ballard, 1981) was developed
to detect arbitrary known shapes. The drawbacks of both the original and
the generalized Hough transforms are that they cannot account for object
shape variability, and they are usually time-consuming.

Constrained deformable modeling achieves improved robustness by
using prior knowledge to guide deformation. One way to achieve this is to
incorporate size and shape constraints explicitly into the energy function of
the active contour (Ray et al., 2002). This makes it possible to detect
obscured objects. A more general application of this technique is the use of
the deformable template (Jain et al., 1996), in which the object shape is
described by a prototype template and a set of probabilistic deformations
on the template. A Bayesian scheme is employed to find a match between
the deformable template and objects in the image.

The third model-based segmentation approach, statistical shape mod-
eling methods, is represented by the active shape model (ASM) technique
developed by Cootes and colleagues (1995). In ASM, the variations of
object shape are estimated by applying principal components analysis to
the training samples and utilizing the result to regulate the segmentation
result. The ASM has been used successfully for many tasks in general
medical imaging (Behiels et al., 1999; Duta and Sonka 1998; Smyth et al.,
1996), as well for as segmentation of nerve capillary structures from elec-
tron microcope images (Rogers et al., 2000). A similar statistical model was
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proposed by Staib (1990). In their work, concise parameterized models of
contours or surfaces were developed using Fourier descriptors to allow the
systematic incorporation of prior shape information in a general and flexi-
ble way (Staib and Duncan, 1992;Worring et al., 1996). Prior probability dis-
tributions on the parameters are used to introduce a global shape model
with a bias toward an expected range of shapes. A drawback of this Fourier
descriptor-based model is that it has difficulty in characterizing sharp
corners along the object boundary.

Contour grouping techniques (Elder and Zucker 1996; Mahamud et al.,
2003; Wang et al., 2003) are based on high-level perceptual cues such as
closure, proximity and continuity, instead of specific structural knowledge
about the object shape. The grouping usually consists of searching for a
weighted shortest closed path in a graph constructed from the edge map.
One problem with grouping methods is that it is difficult for them to incor-
porate prior knowledge other than these high-level cues.Also, the construc-
tion of the graph is a non-trivial task due to gaps and junctions in the edge
map. Recently, Elder and colleagues (2003) improved contour grouping by
combining it with models of object shape and appearance. However, the per-
formance of their method has not yet been validated for medical imagery.

Although incorporation of prior knowledge into segmentation has
been well studied, application of the above techniques to segmentation of
cell components from electron tomographic volumes requires further
refinements, due to the unique challenges imposed by these data sets. First,
the segmentation should allow sufficient flexibility to reflect biological
shape variability exhibited by the objects in the volume. Overemphasis of
prior knowledge, i.e. rigid size and shape constraints, tends to produce
similar segmentations for dissimilar objects, thereby making comparisons
among the objects meaningless. Secondly, although the goal of segmenta-
tion is often to extract fine features within cell components, a direct detec-
tion of such fine features in the whole tomographic volume involves
searching too great a space and is excessively sensitive to irrelevant fea-
tures at similar scales. Therefore, it is much more efficient and effective to
design multiple model-based techniques that decompose the prior know-
ledge at different levels. For example, it is often appropriate first to locate
large-scale objects spatially related to the fine features and then to segment
the fine features in the localized context.

In the rest of this chapter, we demonstrate the use of a model-based
segmentation framework that fully utilizes prior geometric knowledge, with
two example applications: the extraction of kinetochore microtubules along
with the associated plus-ends, and the segmentation of membranes. For the
first application, we have developed an automated approach with a coarse-
to-fine scale scheme consisting of coarse feature enhancement, object local-
ization, fine feature enhancement and object segmentation. For the second
application, we have designed a deformable contouring method with con-
strained optimization to integrate boundary and region information. In
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both cases, prior knowledge, including object geometrical properties and
gray-level appearance, is systematically incorporated into the segmentation
procedures to achieve robust and accurate segmentation.

4. EXTRACTION OF KINETOCHORE MICROTUBULES 
AND PLUS-ENDS

In this section, we demonstrate our prior knowledge-based methodol-
ogy with the segmentation of kinetochore microtubules and their morpho-
logically variable plus-ends (Howard and Hyman, 2003; Maiato et al., 2004;
McEwen et al., 2002; O’Toole et al., 2003). Automated extraction of the fine
features from the tomographic volume is challenging, because these struc-
tures are in close contact with the cellular matrix and are densely sur-
rounded by proteins of similar appearance, as shown in Fig. 1. In this
section, we present a model-based approach to the segmentation of elec-
tron tomographic volumes as an alternative to the more time-consuming
and subjective manual operations.

In order to build a framework for model-based segmentation that fully
exploits prior knowledge about microtubules and their plus-ends, we con-
sidered the following known features: (i) microtubules are tubular objects
on a large scale; (ii) the microtubule wall constitutes a surface feature in the
localized volume; (iii) the variability of microtubule cross-sectional contours
can be modeled statistically; (iv) microtubule plus-ends display variable
amounts of curling that can be modeled as curved surface patches or 
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FIGURE 1. Left: a slice in the tomographic volume of a metaphase PtK cell kineto-
chore with associated microtubules. The microtubules (arrows) are embedded in a
dense background of the cellular cytoplasm, or in the kinetochore plate. Right: a close-
up view of a microtubule, with the plus-end indicated by an arrow. (Left panel: from
Jiang et al. (2004b), © 2004 IEEE).



filamentous sheets that are connected to the body of the microtubule; and
(v) the curvature of microtubule plus-ends does not change sign because the
plus-end is either straight (zero curvature) or curling away from the micro-
tubule wall. Our automated approach then extracts the microtubules, includ-
ing their plus-ends, with a coarse-to-fine scale scheme. First, coarse tubular
features are enhanced using an anisotropic invariant wavelet transform and
a geometrical tube-enhancing filter. Next, microtubules are localized with a
thinning algorithm applied to the enhanced tubular features. Then, fine fea-
tures are enhanced using a geometrical surface-enhancing filter to accentu-
ate the microtubule boundary features. In the segmentation phase, the main
body of the microtubule is segmented with a modified ASM. Starting from
the end of the tubular portion of the microtubule, the plus-ends are seg-
mented with a probabilistic tracing method. The following subsections
describe the approaches and present examples of experimental results.

4.1. Coarse Feature Enhancement

The low SNR and the presence of irrelevant structures with similar
intensities nearby necessitate a pre-processing step to enhance the micro-
tubules. For this purpose, we use a model-based feature enhancement,
which combines an anisotropic invariant wavelet transform with a geomet-
rical tube-enhancing filter.The wavelet transform enhances the microtubule
globally in the transform domain, while the tube-enhancing filter locally
accentuates tubular features.The output of this coarse feature enhancement
is used to localize the microtubules.

4.1.1 Anisotropic Invariant Wavelet Filtering

In the tomographic volume, the microtubule features are so weak
locally that any general averaging technique used for noise reduction will
readily smooth out the microtubules completely. Based upon the tubular
shape of the microtubules, we use a wavelet transform with anisotropic basis
for enhancement.

Given a 1D orthogonal wavelet basis:

(1)

where y denotes the mother wavelet, Z is the integer set, j denotes
scale and k denotes the translation. The anisotropic basis functions for
higher dimension can be constructed by the tensor product of the 1D
wavelet basis functions. For example, the basis functions for 2D wavelet
transform can be obtained as:

(2)

where j k Z t t Zi i x y, , , .∈ ( ) ∈ 2

 y y yj k j k x y j k x j k y1 1 2 2 1 1 2 2, ; , , ,t t t t,( ) = ( )⋅ ( )

 y yj k
j j Z, ,t t k j,k,t( ) = −( ) ∈−( ) −2 22
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With a different scale parameter for every dimension, the anisotropic
basis is superior to an isotropic basis, in that it can transform anisotropic
image features more effectively into coefficients with large magnitude. This
allows us to set a large threshold on the inverse transform to remove not
only noise but also isotropic features, while preserving anisotropic features.
An inherent problem of the conventional wavelet is its lack of shift invari-
ance, which will result in artifacts on inverse transformation; these are espe-
cially serious at image discontinuities such as edges. To overcome this
problem, we have made the wavelet transform shift-invariant by averaging
over shifts, and orientation-invariant by averaging over rotation (Yu et al.,
1996). Figure 2 shows the enhancement of the tomographic image with the
wavelet transform. Since microtubules are elongated structures, their global
features are well preserved for further processing. Symmlet 8 basis was used
in this and subsequent experiments. In practice, we apply 2D wavelet trans-
form to the 3D volume data in a slice-by-slice manner. This approach is
much more computation efficient than true 3D transform. It is also suffi-
cient to capture the microtubule features, which are highly anisotropic in
the 2D plane.

4.1.2. Geometrical Tube-enhancing Filter

After wavelet filtering, the microtubules are still embedded in the low-
contrast volume. In this situation, it is difficult to use intensity-based
methods to enhance the desired features further.Therefore, we enhance the
microtubules with a 3D geometrical tube-enhancing filter by exploiting the
local geometric properties of microtubules as tubular structures.

A filter based on the Hessian matrix was previously proposed to
produce maximum response for voxels located on tubular structures
(Frangi et al., 1999). The problem with this filter is that gradient informa-
tion is totally ignored, and the output typically decays smoothly towards the
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FIGURE 2. Wavelet and tubular enhancement. Left: the original image. Middle:
enhanced by application of the wavelet transform to the left hand image. The white
tubular features correspond to microtubules. Right: enhanced further by application
of the tube-enhancing filter to the middle image. (From Jiang et al. (2006a), © 2006
IEEE).



object boundary. In our application, a filter with sharp response is more
useful in distinguishing the tubular structures from other object mor-
phologies in low-contrast images. To address this issue, we propose a tube-
enhancing filter constructed with the eigenvalues of the Weingarten matrix
(Monga et al., 1992).

Consider the hypersurface I(x,y,z) associated with the 3D volume
intensity S(x,y,z) described by:

S(x,y,z)Æ (x,y,z, I(x,y,z)) (3)

At each point of this hypersurface, there are three principal directions
corresponding to the three extreme values of the curvatures of the hyper-
surface. To compute the principal directions and the curvatures, we use the
Weingarten matrix expressed as 

W = F2·F1
–1 (4)

with first fundamental form:

(5)

and second fundamental form:

(6)

where subscripts denote image derivatives that can be obtained by con-
volving the volume with derivative Gaussian kernels.

Let l1, l2 and l3 be the eigenvalues of the matrix W with magnitudes
in increasing order, and let v1, v2 and v3 be the corresponding eigenvectors.
The eigenvalues are the curvatures of the hypersurface, with the corre-
sponding eigenvectors representing the principal directions. The relation-
ships among these curvatures provide insight into the geometric properties
of the local image structure. For tubular structures in 3D image, it can be
assumed that l1 is small, while both l2 and l3 have large magnitude and neg-
ative signs. Based on this, we use the following geometrical filter to produce
maximum response to voxels on the center line of a tubular object:

(7)
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where the local shape measure Ka = |l2|/|l3| indicates cross-sectional circu-
larity, while Kb = |l1|/√|l2

——
l3| indicates elongation, and h = ||W||F = √∑i

——
l i

2 is
used to suppress weak background features. a, b and g are thresholds
selected experimentally. Both a and b are set to 0.5, and g is set to half of
the maximum h in the image. By calculating the output value of this filter
at each voxel, we can selectively enhance tubular structures and attenuate
other structures. Since the microtubules have stable diameters in our data
sets, we use fixed scales for the derivative Gaussian kernels. However, adap-
tation to various microtubule diameters (due to magnification) could be
achieved in a straightforward way by convolving with a set of kernel scales
and choosing the maximum response across the scales.

The response of our filter is sharp near the center line of tubular
objects, and it falls off quickly away from the center line. Our filter is also
insensitive to contrast variations. This is advantageous, because the micro-
tubules typically show large contrast variations along their length. As a
result, our filter is effective at enhancing tubular features (Fig. 2, right hand
panel). In Fig. 3, we show a surface-rendered view of an enhanced 300 ×
300 × 60 volume. Initially the microtubules are barely visible in the raw
volume on the left because they are buried in noise and surrounded by
numerous cellular materials. The right hand panel of Fig. 3 shows that the
microtubule locations become obvious after the enhancement.

4.2. Microtubule Localization

Since most of the fine microtubule boundary features can be distin-
guished meaningfully only in a constrained volume, localization is indis-
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FIGURE 3. Volume enhancement. Left: the original volume. Right: the enhanced
volume. The microtubules in the original volume are barely visible, due to the sur-
rounding materials in the volume. (From Jiang et al. (2006a), © 2006 IEEE).



pensable for the subsequent fine feature enhancement and segmentation
steps. We localize the microtubules by extracting their center lines in the
enhanced volume with a thinning method that exploits the properties of
tubular structures. Our method is similar to the ridge-based method
(Aylward and Bullitt, 2002), but it requires neither seeding points nor spec-
ified tracing directions. The center lines are extracted in the enhanced
volume as follows:

1. Each foreground voxel is evaluated against its eight neighbors in
the local normal plane defined in 3D by the eigenvectors v2 and v3, per-
pendicular to the principal direction defined by v1. If the value of the voxel
is a local maximum in the normal plane, then the voxel is recorded as a can-
didate center line voxel. Since the enhanced microtubule has a sharp inten-
sity ridge on the center line, this local maximum indicates the candidate
center line voxel reliably.

2. After all voxels have been evaluated, the center lines are formed by
connecting the neighboring local maximum voxels. Morphological restric-
tions are used to trim off minor branches and to remove isolated voxels. In
the end, only center lines with length above a specified threshold are kept as
reliable references for localization of the microtubules.The extracted center
lines for the enhanced volume in Fig. 3 are illustrated in Fig. 4, where they
are used to localize subvolumes containing each microtubule. Note that the
short enhanced features in the right hand panel of Fig. 3 have been elimi-
nated from the center line plot. The right hand panel of Fig. 4 shows the
center lines as viewed from an oblique direction.
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FIGURE 4. Extracted microtubule center lines from the enhanced volume shown in
the right hand panel of Fig. 3. Left: the same orientation as in Fig. 3. Right: seen in an
oblique view. Shorter enhanced features in Fig. 3 are removed by an adjustable
minimum length constraint that filters out irrelevant structures. 



4.3. Fine Feature Enhancement

The volume enhanced in the previous steps is not directly usable for
segmentation, because most of the fine features have been smoothed out,
as the price of enhancement for localization at a large scale. We enhance
the localized volume at fine scale with a surface-enhancing filter because
the boundaries of microtubule walls and the plus-end filaments can be char-
acterized as surface patches or filamentous sheets. The surface-enhancing
filter is also constructed with the eigenvalues of the Weingarten matrix. The
idea is that for surface features, one eigenvalue, l3 , has a larger magnitude
corresponding to the intensity change along the surface normal, while the
other two eigenvalues l1 and l2 have smaller magnitudes corresponding to
the tangent directions of the local surface. While it is possible to distinguish
between a curved surface and a flat surface by further comparing the two
smaller eigenvalues, it is not desirable since we do not want to produce bias
to either one of them. Therefore, we choose to use only the largest and the
smallest eigenvalues to construct the geometrical surface-enhancing filter
as:

(8)

where Kc = |l1|/|l3|, and a, b and h, have the same meaning as in the tube-
enhancing filter.

Figure 5 demonstrates that the surface-enhancing filter enhances
microtubule boundaries significantly, by exploiting full 3D information.
These enhanced microtubule wall features provide a boundary strength
model that will be used in subsequent microtubule segmentation. It can also
be seen from Fig. 5 that the enhanced microtubule cross-sectional contours
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FIGURE 5. Surface enhancement of individual microtubules viewed in cross-section.
From left to right, each original cross-sectional slice is paired with the corresponding
enhanced version, showing microtubule boundaries in the center of the field. While
the microtubule boundaries are fuzzy in the 2D cross-sectional slices, the surface-
enhancing filter estimates the boundaries in 3D to produce distinct cross-sections.
(From Jiang et al. (2005), © 2005 IEEE).



have circular or elliptical shape, which can be detected with the Hough
transform to initialize the ASM segmentation described in the next section.

4.4. Segmentation of Microtubule Main Body with the Active
Shape Model Technique

The segmentation of the microtubule body is performed within the
localized volume enhanced with the surface-enhancing filter. Even so, auto-
matic extraction of the microtubule boundaries remains challenging, due to
missing features on the microtubule boundaries and overlap by surrounding
materials. Therefore, we have adapted ASM for segmentation. With prior
shape constraints obtained from training samples, ASM segmentation is
robust against confusing image features. In this section,we first introduce the
statistical modeling of microtubule cross-sectional contours using a point
distribution model. In order to characterize the microtubule boundary reli-
ably, we replace the gray-level appearance model with a boundary strength
model obtained from surface-enhancing filtering.We also improve the shape
searching by relating the boundary strength to the weight matrix of the ASM
fitting criterion. Finally, we incorporate Kalman filtering, to impose a
smoothness constraint along the longitudinal direction.

4.4.1. Determining Microtubule Contours with a Point
Distribution Model

We model the microtubule cross-sectional contours with a point dis-
tribution model that examines the statistical distribution of the boundary
points across a given training set (Cootes et al., 1995). The model is built by
applying principal component analysis to a set of manually annotated
microtubule contours.

Let xi = (xi1, yi1, xi2, yi2, . . . , xin, yin) be a vector describing the n points
of the sample shape i in the training set. The mean shape is calculated as:

(9)

The covariance matrix is calculated as:

(10)

The modes of variations of the points of the shape are described by pk,
the unit eigenvector of C, such that:

Cpk = ekpk (11)

where ek is the kth eigenvalue and ek ≥ ek+1.

C x x x x
=

=
−

−( ) −( )∑1
1 1N

i i
T

i

N

x x
=

= ∑1

1N
i

i

N

SEGMENTATION OF CELL COMPONENTS USING PRIOR KNOWLEDGE 383



Since the majority of the shape variation can be explained by a small
number of modes, any shape in the training set can be approximated using
the mean shape and a weighted sum of these deviations obtained from the
first m modes:

(12)

where P is a 2n × m matrix whose columns are the unit eigenvectors pk, and
b is a vector of weights for the eigenvectors. This allows the generation of
new shape examples by varying the parameters in b within suitable limits,
so that the new shape is similar to those in the training set. Figure 6 shows
an example of plausible microtubule contours generated by individually
varying the first three modes of the statistic shape model. It can be seen
that these modes describe the roundness of the microtubule contour, and
how much distortion is allowed.

4.4.2. Boundary Strength Model and ASM Searching with
Adaptive Weights

In ASM, a gray-level appearance model is usually trained to describe
image structure around each boundary point, and is then fitted to a shape
model of the object in the image. However, for our problem, such a model
is not reliable, because the microtubule cross-sectional boundaries are often
blurred and connected to background features. Therefore, we replace the
gray-level appearance model with a boundary strength model based on the
surface-enhancing filtering result, which reliably characterizes the micro-
tubule boundary by exploiting 3D image information.

The ASM searching seeks to find new instances of the modeled object
in images, which involves finding the alignment and shape parameters that
cause the model to coincide with structures of interest in the image. In our
case, to find the microtubule boundary points in the image, we make the
algorithm search along the normal lines, in the cross-sectional slices of the
model, for the points with maximum boundary strength. Constraints are
imposed by the point distribution model.

x x Pb= +
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FIGURE 6. The effect of individually varying the first three modes of the microtubule
point distribution model. Top row, first mode; middle row, second mode; bottom row,
third mode.



The shape model x is fitted to the image object X by minimizing the
fitting criterion:

E(X,x;Ω) = (X – T(x,Ω))T W(X – T(x; Ω)) (13)

where T denotes the spatial transformation, including translation, rotation
and scaling, Ω denotes the transformation parameters, and W is the diago-
nal weight matrix that we define as:

(14)

The transformation adjusts the weights adaptively based on the feature
prominence at the boundary points. This has practical significance in our
problem, because the microtubule boundaries are subject to defects due to
missing data caused by the limited angular range over which electron tomo-
graphic tilt series can be collected.

4.4.3. Modeling Microtubules in 3D with Kalman Filtering

Kalman filtering is used to improve the ASM operation by imposing
longitudinal smoothness along the microtubules, assuming small shape vari-
ations among neighboring slices. Across neighboring slices, the Kalman
filter recursively estimates the shape parameter using state prediction and
state updating with the measurement obtained from the ASM searching.
The ASM modified in this way is robust against missing data and outliers
present in the kinetochore tomographic volume. Details about the integra-
tion of Kalman filtering and ASM can be found in our previous work (Jiang
et al., 2004a).

The effect of Kalman filtering is demonstrated in Fig. 7. The results
obtained by ASM with Kalman filtering (lower row of Fig. 7) exhibit smooth
transitions across the slices, which is more plausible than the unfiltered or
manually trace models (see below). Therefore, incorporation of Kalman fil-
tering into the segmentation process reduces sensitivity to missing bound-
aries or clutter in individual slices, because it utilizes information from
neighboring slices to suppress attraction from confusing image features in
the current slice.

4.5. Extraction of Microtubule Plus-ends

The heavily cluttered cellular environment makes it difficult to use
data-driven deformable models for microtubule plus-end segmentation. It
is also not straightforward to model plus-ends using statistical methods,
because the plus-ends have various lengths and show large shape variations.
On the other hand, the fact that plus-ends are filamentous features 
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connected with the microtubule body suggests the usage of tracing tools for
the segmentation task. To this end, we have designed a probabilistic plus-
end tracing method augmented with the prior knowledge that protofila-
ments are either straight lines or curves without inflections. Such curvature
restrictions can serve as a useful constraint for tracing. In the following sec-
tions, we first describe radial slicing of the localized volume and the ini-
tialization of tracing, and we then formulate the probabilistic framework of
the tracing.

4.5.1. Radial Slicing of the Localized Volume and Initialization 
of Tracing

When microtubules transit from the assembly to the disassembly state,
the 13 or so parallel protofilaments that make up the microtubule wall
adopt a curve conformation (Howard and Hyman, 2003; Fig. 8 left hand
panel). As a result, the microtubules appear to be frayed at the ends.
Current evidence strongly suggests that the curvature at the ends of
protofilaments is planar and variable along the length dimension (Janosi et
al., 1998). In the kinetochore volume, the plus-ends tend to have less regular
conformations due to the interference from other kinetochore materials.
However, planar shapes still characterize the overall curvature of the plus-
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FIGURE 7. Cross-sectional traces demonstrating the effect of Kalman filtering on
ASM segmentation. Top row: consecutive cross-sectional slices of a microtubule seg-
mented using ASM processing without Kalman filtering. Bottom row: the correspon-
ding cross-sectional slices of a microtubule segmented using ASM processing with
Kalman filtering. Kalman filtering makes segmentation more robust and more con-
sistent between successive cross-sectional slices. (From Jiang et al. (2004a), © 2004
IEEE).



ends of protofilaments. It is therefore sufficient to approximate microtubule
plus-ends by tracing the curvature in 2D radial slices passing through the
microtubule axis. Compared with tracing in 3D, tracing in such 2D planes
leads to robust performance, because the adverse influence from other
structures is significantly decreased.

The radial slicing is performed around the microtubule, as shown in
the middle panel of Fig. 8. To be conservative, we limit the radial slicing
within (–40, 40)°, to avoid data distorted by the missing angular range. Since
there are 13–15 protofilaments for each microtubule, there will be six or
seven protofilaments within (–40, 40)°. Therefore, the angles –40, –30, –20,
–10, 0, 10, 20, 30 and 40° are sufficient to sample the protofilaments.We have
tested with finer angular slicing, but this did not improve the final plus-end
classification.

The center of the radial slicing is chosen as the centroid of the micro-
tubule contours in a region of the cylindrical portion of the microtubule
located near to the plus-end, as determined in the prior segmentation steps
described above. In each radial slice, the tracing is selected to begin slightly
before the end of the cylindrical portion of the microtubule, as illustrated
in the right hand panel of Fig. 8. The path for tracing is selected to be along
the microtubule edge and towards the plus-end.

4.5.2. The Probabilistic Tracing Framework

The probabilistic tracing method is designed in the framework of 
particle filtering. Particle filtering techniques have proven to be adept at
tracking in the presence of complicated likelihood functions and non-linear
dynamics, and it has recently been applied successfully to interactive
contour extraction and road detection (Perez et al., 2001).
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FIGURE 8. Illustration of radial slicing of microtubules. Left: idealized array of protofil-
aments at the plus-end of a disassembling microtubule. Middle: cross-sectional view
of the radial slicing process. The circle represents the microtubule wall, and the cutting
planes are perpendicular to the plane of the page. Right: example of a radial slice from
an enhanced volume. The starting points for subsequent tracing are indicated by the
bright spots on the microtubule wall. (From Jiang et al. (2006b), © 2006 IEEE).



We represent the plus-end protofilament under tracing as an ordered
sequence x0:n = {x0 . . . xn}∈Λn+1, where xis are random points in the image
plane. The tracing is accomplished by growing this sequence based on prior
dynamics and a data model p(y|x0:n), where y is the observed image data.

Taking second-order prior dynamics as an example, the a priori density
on Λn+1 is:

(15)

Assuming measurement on x0:n is an independent process, then:

(16)

where Ω denotes the measurement locations in the image plane, pon the like-
lihood of when u lies on the curve, and poff the likelihood of when u does
not lie on the curve.

Using Bayesian rules, we derive the posterior density on Λn+1 up to a
multiplicative factor independent of x0:n:

(17)

where l = pon/poff denotes the point-wise likelihood ratio, which in this appli-
cation is determined as the value of the image generated by equation (8),
with the corresponding radial slice as shown in Fig. 8, right hand panel.

The tracing relies on the computation of the posterior density based
on the following recursion derived from (17):

(18)

Although we have analytical expressions for the prior dynamics and
the likelihood, the recursion in (18) cannot be computed analytically since
there is no closed-form expression for the posterior distributions. Instead,
the posterior distribution can be propagated using sequential Monte-Carlo
methods (Doucet et al., 2000). In this framework, the posteriors are approx-
imated by a finite set of samples:

(19)

where d(·) denotes the Dirac delta measure and wm
n denotes the importance

weight attached to sample xm
0:n.

At each iteration, the weights are chosen using importance sampling.
An easy way to draw the samples is to use the prior density as the proposal
function. The weights thus are given by the likelihood (Doucet et al., 2000):
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(20)

where is the position predicted based on prior dynamics as in equation
(21) below.

An overview of the probabilistic tracing is as follows:

1. Initialization with starting points 
2. Importance sampling step. For each sample m = 1 to M, do the fol-

lowing:
(i) Predict the next position using prior dynamics.

(ii) Evaluate the weight based on likelihood at as in 
equation (20)

3. Selection step. Select the most probable next point using the MAP
(maximum a posterior) estimate and the normalized importance
weights . Go to step 2.

In our application, we choose the prior dynamics to be specified by 
the direction change at a given point xn. Given a normal distribution

, the next point is predicted as:

xn+1 = xn + R(θn)(xn – xn–1) (21)

where R(θn) is a rotation matrix. To adapt the prior dynamics to plus-end
tracing, a parabola model is fitted locally to a number of traced points pre-
ceding the current point xn. The parabola fitting does not allow inflection
points, which makes it suitable to model plus-end protofilaments. A point
xe is then extrapolated along the parabola and is calculated as the angle
between (xe – xn) and (xn – xn–1). Compared with tracing along the tangent
direction ( = 0), tracing along a parabola model is able to take into
account the curving direction of the existing traced segments. For straight
protofilaments, the parabola fitting will degenerate into line fitting and the
tracing will degenerate into tracing along the tangent direction.

The tracing proceeds recursively until the stopping criteria have been
met: either the maximum tracing step has been reached, or the value of the
image data is lower than the pre-set threshold value.

Figure 9 shows that the tracing successfully captures the plus-end con-
formation changes in different radial slices in the same volume.This is quite
difficult for a human operator because of the tedium of manually per-
forming a tracing process that requires precise localization of the micro-
tubule, careful rotation of the volume and examination of many slices.

4.6. Results and Evaluation

In this section, we present sample segmentation results. After localiza-
tion of microtubules in the larger volume (Figs 2–4), the microtuble body
is segmented in a localized volume using the improved ASM method. Figure
10 compares the automatic and the manual results as seen in a surface 
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representation. The automated method clearly produces much smoother
morphologies. The plus-ends are then obtained using the tracing method
with the seeding voxels provided by the segmented microtubule body.
Figure 11 shows the segmented microtubules with their plus-ends.

We quantitatively evaluated the microtubule body segmentation, by
measuring the overlap ratio between the areas enclosed by each automat-
ically segmented cross-sectional contour and the corresponding manual
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FIGURE 9. Tracing in different radial slices of the same volume captures protofila-
ments with differing shapes. (From Jiang et al. (2006b), © 2006 IEEE).

FIGURE 10. Segmentation of a microtubule body. Left: a slice from the original tomo-
graphic volume. Middle: surface representation of the results of manual segmentation
of the same microtubule. Right: surface representation of the results from automated
segmentation. (From Jiang et al. (2004a), © 2004 IEEE).



result. The contour overlap ratio in Fig. 12 indicates that the automatic
results and manual results roughly agree with each other, for most slices.
The automatic segmentation results also show smooth changes of the cen-
troid position across the slices, which means that shape variations among
neighboring slices are small. In contrast, the manual results have relatively
large and irregular changes of the centroid position across the slices, mainly
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FIGURE 11. Segmentations of microtubules displaying various plus-end conforma-
tions. Top row: central slices of individual microtubules as they appear in the original
volume. Bottom row: surface views of the corresponding segmented volumes. (From
Jiang et al. (2005), © 2005 IEEE).

FIGURE 12. Evaluation of the segmentation results, by comparison with manual seg-
mentation. Left: the contour overlap ratio (see text). Middle: plot of the x coordinate
of each cross-sectional contour as a function of contour number. Right: plot of the y
coordinate of each cross-sectional contour as a function of contour number. In the
middle and right hand plots, the solid line depicts automated segmentation, and the
dash–dot curve depicts manual segmentation. (From Jiang et al. (2004a), © 2004 IEEE).



due to the subjectivity and inconsistency of the human operator, and the
lack of tools to incorporate information from neighboring slices. We there-
fore believe that in general the automatic segmentation is more accurate,
consistent and reliable.

Visual inspection of the plus-end segmentation indicates that the auto-
matic results are able to characterize the underlying plus-end structure.
Results such as those in Fig. 11 provide valuable information for biological
study. In addition, the automatic results often reveal meaningful fine fea-
tures not obvious to human operators.

Our method is computationally efficient. For example, on a 2.0 GHz PC
with Pentium 4 processor and 512M RAM,the automated approach requires
about 8 min to extract each microtubule and the associated plus-end, while it
takes hours to trace contours manually on microtubule cross-sections.

5. SEGMENTATION OF MEMBRANE STRUCTURES

Membranes are vital because they form a boundary to contain cells
while maintaining specific types of communication with the outside world.
Membranes also serve to compartmentalize important processes and events
within cells. Finally, membranes are vital for the exchange of material
between the cell and the outside world (uptake and excretion). For this
reason, membrane structures are of great interest to cell and structural 
biologists, and are frequently segmented from electron tomographic recon-
structions. For an idealized membrane, one possible tool for this segmen-
tation task is the use of deformable contours as an energy minimization
problem based on image gradient. However, difficulties arise when
deformable contours are applied to the membranes in an electron tomo-
graphic volume: they are often attracted to local energy minima due to the
crowded cellular environment. Application of a region-based deformable
contour method is one way to avoid the problems of boundary-based
methods, by considering boundary extraction as the minimization of region-
based energy functions (Chan and Vese, 2001; Samson et al., 2000).
However, region-based deformable contouring methods tend to overlook
boundary continuity, which may result in inaccurate segmentation due to
lack of image gradient information.

To overcome these problems, we have adapted a deformable contour
method for membrane segmentation, by integrating both boundary and
region information into one segmentation framework (Wang et al., 2004).
Prior knowledge about the region-based image characteristics, such as
texture and homogeneity within a given object in the image, and hetero-
geneity across object boundaries, is incorporated as an extra constraint to
the existing boundary-based deformable contour formulation. The contour
energy minimization problem is then formulated as the search for an energy
minimum contour with its interior satisfying certain region-based criteria.
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In the following subsections, we first introduce the basics of a deformable
contour method that incorporates constrained optimization, and we then
apply the method to the segmentation of membrane structures.

5.1. Deformable Contour with Constrained Optimization

A deformable contour method performs segmentation by deforming a
closed contour toward a salient object boundary.An energy function is asso-
ciated with the candidate contour to encode some general characteristics
of the object boundary. Given a closed contour C(s, t) enclosing region Ωc(t)
at time t, the target boundary is obtained by minimizing the energy func-
tion that can be defined as:

(22)

where p = 1 or 2, (x, y) ∈ Ωc (t), ∇G*I is used to obtain a smoothed image
derivative with derivative Gaussian kernel, and s is the contour arc length.
Although the term in the inner integral is not always stated in this form, it
is traditionally based on image gradient only. This often leads to incorrect
convergence when a boundary feature is not prominent. We tackle this
problem by imposing the above energy minimization with a region-based
constraint defined as:

D(x, y) ≥ TV (23)

where TV is a threshold value, and D(x, y) is the region constraint function
defined by:

D(x, y) = A(x, y)B(x, y) (24)

with smoothness based on the point gradient as:

(25)

and smoothness based on deviation from averaged region intensity as:

(26)

where I0 is the average intensity over the enclosed region, and s is a thres-
hold value selected based on the intensity distribution. While D(x, y) can
be used to model a general class of region-based image information, it is
considered here as a special case for homogeneity measurement of smooth-
ness at an interior point. A large value of the gradient and a large devia-
tion of the point gray value from I0 produce a small value of D(x, y)
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It can be seen that the smoothness constraint is based on image infor-
mation at both the local level and the regional level. The local minima of
the energy minimization can be removed effectively by combing such
region-based constraints with the deformable contour.

We solve the constrained optimization problem with an evolutionary
strategy to deform C(s, t) until an optimum is reached. An analog to bio-
logical evolution, evolutionary optimization is a recursive process in which
a population of parents and mutants recombine to generate a large popu-
lation of offspring (Buck et al., 1997). These offspring are then evaluated
according to a fitness function, and a best subset of offspring is selected to
replace the existing parents. In our case, a population of contour individu-
als evolves under the regional smoothness constraint with stochastic per-
turbations. Contour energy serves as the fitness function and is used to
evaluate and select the contour individuals. Based on this optimization
strategy, the segmentation algorithm can be described as:

1. Enter the Gaussian filtered image, initial interior location, esti-
mated average intensity, threshold values, number of multiple candidate
contours to generate and number of evolution iterations.

2. Initialize the multiple candidate contours and set the iteration
number to zero.

3. For each of the candidate contours: (i) use level set or fast march-
ing to solve the converged contour based on equation ∂C(s, t)/∂t = (D(x, y)
− Tv − tNG (0,1) , where denotes the outward unit normal of the curve
C, t is time, NG is a Gaussian perturbation and t is a parameter modulating
the perturbation; and (ii) recalculate the average intensity based on the
current enclosed region, and calculate the value of the energy defined in
equation (22).

4. If the iteration number is not reached, select 50% of the contours
with the lowest energy level, duplicate each of them, and go to step 3.
Otherwise, stop the iteration.

5. The contour with the minimum energy level is the solution contour.

5.2. Experimental Results

The constrained deformable contour method is applied to the seg-
mentation of membrane structures from electron tomographic volumes.
Figure 13 demonstrates application of the constrained deformable contour
method on a low SNR image. Although the membrane features of the cell
components are corrupted by noise and blurred by other cellular compo-
nents, the constrained contour method is able to recover the membranes
successfully, by using the region-based intensity and texture information.
Figure 14 shows that the constrained deformable contour method can adapt
to various object shapes and sizes, from large round objects to small elon-
gated objects.
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6. SUMMARY AND CONCLUSIONS

Although electron tomography has opened up new possibilities in the
3D imaging of cellular structures, with an accuracy that was previously
unachievable, interpretation of the tomographic volume remains a chal-
lenging task, due to the quality of the acquired data and the dense packing
and overlap of cell materials in the 3D reconstruction. One important task
in electron tomography is therefore to extract the cell components from the
volume data, as a prerequisite for both qualitative and quantitative biolog-
ical studies.

To overcome the low efficiency and subjectivity of manual segmenta-
tion, we have described how the utilization of prior knowledge can enable
robust and efficient automated segmentation in the presence of noise and
clutter. In particular, we have emphasized two aspects concerning the impor-
tance of appropriate modeling when using prior knowledge. First, it is often
necessary to decompose the prior knowledge into multiple levels, and imple-
ment these in segmentation techniques. Secondly, the prior knowledge
should be incorporated in such a way that the segmentation remains suffi-
ciently flexible so as to reflect object shape variability faithfully.
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FIGURE 13. Examples of membrane segmentation despite poor boundary features.
Each original image is paired with the segmented version.

FIGURE 14. Segmentation of mitochondrial membranes. Left: original electron
microscopic image. Middle: the same with overlay of segmented inner membrane.
Right: the same as the middle image with overlay of segmented mitochondrial cristae. 



We have demonstrated this methodology with two example applica-
tions. We first presented the segmentation of microtubules and their asso-
ciated plus-ends from tomographic volumes of kinetochores. A hybrid
approach was designed to perform automated image enhancement and seg-
mentation. In image enhancement, a transform domain technique and a
spatial domain technique were combined to exploit the tubular geometri-
cal property of microtubules at the global level and at the local level. In
segmentation, the microtubule body was extracted by modeling its cross-
sectional contour statistically and imposing longitudinal smoothness with
Kalman filtering. Starting from the end of the microtubule body, the plus-
ends are extracted based on the spatial connectivity and gray-level similar-
ity between plus-ends and microtubule in the probabilistic framework of
particle filtering.

We then presented the segmentation of membranes using a deformable
contour with constrained optimization. In this method, we introduced the
regional information as an extra constraint, into the existing boundary-
based deformable contour. The incorporation of such an object-level gray-
level appearance helped to overcome the local minima during the contour
energy minimization, and thereby improved the segmentation performance.
In both example applications, the accompanying experimental results indi-
cated that a prior knowledge-based method is a promising approach for the
segmentation of cell components from electron tomographic volumes, for
which, although the data tend to be noisy, object models are often available.
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1. INTRODUCTION

Cryoelectron tomography aims to act as an interface between two levels of
3D imaging: in vivo cell imaging and techniques achieving atomic resolu-
tion (e.g., X-ray crystallography). This most likely will happen through a
computational motif search by mapping structures with atomic resolution
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into lower-resolution tomograms of cells and organelles. There exist a large
variety of pattern recognition techniques in engineering, which can perform
different types of motif search. This chapter will focus on cross-correlation
techniques, which aim to identify a motif within a noisy 3D image (the
tomogram or the 3D reconstruction). Generally, the success of the cross-
correlation approach depends on the resolution of the tomograms, the
degree of corruption of the motif by noise as well as the fidelity with which
the template matches the motif. For maximal detection signal, the template
should have the same impulse response as the motif, which in this case is
the macromolecule sought. Since the noise in the tomogram cannot be sig-
nificantly decreased after data recording, the task of designing an accurate
template reduces to the determination of the precise parameters of the
image recording conditions, so that the searched motifs may be modeled as
accurately as possible.

The range of algorithms available in electron microscopy for the com-
putational search of different motifs is still significantly wider for 2D than
for 3D images. The obvious reason is that only lately the quality of the
tomograms has improved to a resolution where such a search is becoming
sensible. A variety of these motif search algorithms, which were developed
for high-throughput needs of single-particle cryoelectron microscopy, were
compared, and their performance was assessed comprehensively (Zhu et al.,
2004). Among those 2D pattern recognition techniques, the locally 
normalized cross-correlation approach proved to be the most robust and
reliable technique (Roseman, 2004).

The feasibility of these cross-correlation based motif search techniques
has also been demonstrated on 3D data and led to the unambiguous 
detection of known macromolecular structures encapsulated in vesicles
(Frangakis et al., 2002). Furthermore, it has been demonstrated that tem-
plate-matching techniques also perform reasonably well on tomograms of
organelles, as shown in the localization of ryanodine receptors attached to
the membrane of sarcoplasmic reticulum vesicles (Rath et al., 2003).
However, there is still a large need and potential for improvements to
develop good, quantitative detection schemes that will allow a comprehen-
sive evaluation and cross-validation of the results.

In this chapter, a short overview of the cross-correlation techniques
will be given, followed by feasibility studies with synthetic data. Some appli-
cations on real data will be presented, followed by a brief discussion on the
potential and perspectives of the motif search approaches.

2. CREATION OF TEMPLATES

The generation of the templates is a difficult task, since ideally they
should look as similar as possible to the motif contained in the tomogram.
High-resolution structures derived from various techniques can be modi-
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fied in order to be used as templates for the motif search. However, alter-
natively, a feature contained in the tomogram itself can be used for 
this purpose. This approach is the ultimate solution if no other information
on the structure and identity of the macromolecule is available.

A flowchart depicting the path from an X-ray structure to a simulated
3D electron microscopic image, such that it can be used as a template, is
presented in Fig. 1. X-ray structures, which provide the bulk of atomic res-
olution structures, are modified in a way depending on the contrast trans-
fer function (CTF), which in turn depends on the recording parameters of
the data (e.g. defocus, thickness of the samples, sampling increment, ampli-
tude contrast ratio, etc.) and transformed into a lower resolution density
map. The 3D Coulomb potential distribution is generated by interpolating
the atomic Z-numbers into a Cartesian grid with the pixel size of the tomo-
graphic data (Stewart et al., 1993). Next, the resulting density is convoluted
with the estimated CTF and low-pass filtered with a (smooth) cut-off at the
second zero crossing of the CTF. The resulting density map may be repre-
sented by an isosurface that overlays the X-ray structure (Fig. 1).

Both approaches, using data from X-ray structures and using subim-
ages from the tomogram, have their individual merits. The merits of the
latter are that the template will have (i) the same electron optical param-
eters and (ii) the same physical environment as the copies of the motif that
is being searched for inside the target volume. On the other hand, the dis-
advantages of the tomographic subimages approach include (i) the low
signal-to-noise ratio inherent in an electron tomogram and (ii) the fact that
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the missing angular region (missing wedge) of the template and the repeats
of the motif inside the target do not match due to their different relative
orientations to the electron beam. The merits of using X-ray structures
include (i) the high signal-to-noise ratio of the template and (ii) the absence
of distortion due to missing information. On the other hand, since the CTF
of the microscope cannot be perfectly measured and since the defocus is
locally varying due to the tilt of the specimen, the template and the target
will normally have different CTFs.

3. ALGORITHMS

3.1. Cross-correlation based techniques

The cross-correlation coefficient (CCC) is a measure of similarity
between two features, in this case a signal x and a template r. The numer-
ator is the unnormalized part of the CCC, and the two terms under the
square root in the denominator are the variances of the two correlated
objects. The CCC between an image x and the template r, both with the
same size R, expressed in one dimension is:

(1)

Here and are the mean values of the image and the template,
respectively. For the sake of simplicity, the equation is presented for the 1D
case, since the extension to 3D is straightforward.

For the calculation of the normalized cross-correlation function CC(k),
the template is shifted in relation to the image and, at each position k, fol-
lowed by calculation of the CCC. The formula then looks very similar to
equation (1), with the difference being that the position of the template r,
denoted by its index, is changing, resulting in the following formulation

(2)

where k = 1, 2, . . . , N, and and are the mean values of x and r, respec-
tively, and N is the number of data points. The calculation of the numera-
tor for every position in the image leads to a very high computational cost,
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the index of the template has reversed sign.Therefore, the cross-correlation
function, and similarly also other expressions of this mathematical con-
struction, can be calculated in Fourier space with a computational cost in
the order of Nlog(N) operations:

(3)

with F being the Fourier and F –1 the inverse Fourier transformation, and *
indicating the complex conjugate.

In the 3D case, there are six degrees of freedom which need to be
probed in order to find the position of highest similarity between the image
and the template: three translational and three rotational degrees.The peak
of the cross-correlation function, which can be calculated rapidly and in a
single step in Fourier space, indicates the potential translational positions
producing the highest similarity. However, such an acceleration is not easily
achieved for the three rotational degrees of freedom. The angles have to be
determined by a grid search, a computationally very expensive process,
which, however, can be easily parallelized.

Certain strategies can be applied to avoid the grid search of the angles,
which results in a significant acceleration of the speed with which the match
is found. One proposal is to use spherical harmonics to represent the signal,
similar to the developments for search of electron density in X-ray crystal-
lography (Pavelcik et al., 2002). Concrete implementation, which exploits
the spherical harmonics representation and virtually reformulates the orig-
inal search space with three rotational and three translational degrees of
freedom into a combination of one translational and five rotational degrees
of freedom, has already been achieved by Kovacs and colleagues (Kovacs
et al., 2003). In this approach, an intensive grid search is only performed on
the translational parameter, whereas the remaining five rotational param-
eters are done by fast, inexpensive correlation in Fourier space. While the
extension of this methodology to cryoelectron tomography would require
incorporating the missing wedge, this methodology has already been used
for the alignment of 2D projection images for single-particle tomography
(Cong et al., 2003).

3.2. Correlation with non-linear weighting

Cross-correlation performs nicely when the searched 3D image has a
uniform local variance. In electron tomographic images, however, the vari-
ance of the features varies significantly (e.g. gold beads have a much higher
variance than a protein complex). Therefore, the cross-correlation function
has to be normalized locally, i.e. the CCCs need to be computed within a
defined region R around each voxel k, which belongs to a large volume N
(where N >> R). This is described by the following equation:

CC k F F x F r( ) = { }⋅ { }{ }−1 *
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(4)

where k=1,2, . . . ,N−R−1; ;and 

represents the local mean value of x, and the mean value of r.The denom-
inator contains the normalization terms (square root of the variance 

terms). The term represents the local image variance 

at every position k with reference to the surrounding region denoted by R.
Normally, when a spherical mask is used, it can be calculated in real space
for a single orientation only, because in this case the mask is rotationally
invariant.

Equation (4) describes the derivation of the locally normalized cross-
correlation function, for translation coordinates and for a single, fixed angle.
This operation has to be performed separately for every angular orienta-
tion of the template, and the maximum CCC has to be derived. Since the
tomogram already contains the missing wedge as an ‘inevitable’ filter, the
missing wedge does not have to be considered in calculating the numera-
tor. However, it is important that this term be considered in the variance
term of the template in the denominator. Generally, the template, even at
a resolution close to 4 nm, is not perfectly spherical, therefore different
Fourier coefficients of the template are filtered out in Fourier space,
dependent on the rotational angle, and, consequently, the variance of the
template changes for different rotation angles needs to be updated for each
set of angles.

3.3. Correlation with asymmetric masks

The use of spherical masks is advantageous because the local variance
in the 3D image has to be calculated for just one orientation. However a
spherical mask does not necessarily surround the template tightly, and
another problem is that using such a mask implicitly assumes that the motif
is surrounded by solvent, which has a relatively flat background. This ‘void’
volume around the template affects the normalization term significantly,
potentially leading to incorrect results, especially in very crowded environ-
ments. When the motif is in close proximity to other objects, the assump-
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tion of a flat background is no longer valid and, therefore, in order to
achieve more accurate results, the local variance needs to be calculated for
every orientation of the motif in a region under the footprint of the motif.
Hence, an asymmetric mask mR has to be used. For such a mask, the local
image variance sx can be written as 

(5)

As in the computation of the nominator of the cross-correlation func-
tion, the calculation of the summation terms in the above equation in real
space represents a significant computational effort, and therefore it is useful
to calculate those terms in Fourier space (Roseman, 2003).

A flowchart describing the motif search procedure is presented in 
Fig. 2. The templates are rotated through all possible combinations of 
Eulerian angles on a finite grid. This process entails a large amount of com-
putation, since the cross-correlation function has to be calculated for each
orientation of the template. Depending on the nature of the application,
either a spherical or an asymmetric mask, derived from the shape of the
molecule by thresholding the molecule’s density map, can be used. This

s x n R n R
n

N

n R
n

N

n

N

k x x k m k x m k x m k( ) = − ( )( ) ⋅ ( ) = ⋅ ( ) − ⋅ ( )⎛
⎝⎜

⎞
⎠⎟= ==

∑ ∑∑ 2 2

1 11

2

MOTIF SEARCH IN ELECTRON TOMOGRAPHY 407

FIGURE 2. Flowchart of the motif search based on cross-correlation. On the upper
left side, various templates are used to probe the 3D image (the tomogram in the lower
left side) for a motif (see text). (From Frangakis et al. (2002), reproduced with permis-
sion of the National Academy of Sciences).



asymmetric mask has to be rotated to the same set of Eulerian angles as
the template, and the variance of the 3D image under the footprint of the
mask mR at each set of Eulerian angles and at each translational position
needs to be calculated. In order to perform the operation in Fourier space,
and thus gain computation time, the following procedure is used

1. The corresponding binary mask is first pasted inside a blank 3D
image, that has the same size as the searched 3D image. The local variance
under the footprint of this mask is computed using equation (5).

2. The template is multiplied by the matching binary mask, the
missing wedge is taken care of by using a Fourier filter, and the variance of
the resulting image is calculated under the footprint of the mask as a func-
tion of the Eulerian angles.

3. The structural signature of the template is pasted inside a blank 3D
image of the same size as the searched 3D image (such that the center of the
template coincides with that of the 3D blank image). The cross-correlation
is calculated, using fast Fourier transform techniques, between the 3D image
that contains the motif (i.e. the tomogram) and the blank 3D image into
which the structural signature of the template has been pasted.

4. The cross-correlation so derived is then normalized by the corre-
sponding local variance of the tomogram at each position and by the vari-
ance of the template. Since the local variance of the tomogram can be
calculated only when the template is fully contained inside the borders of
the tomogram, the resulting locally normalized cross-correlation array must
be delineated to exclude such points where the local standard deviation of
the test image cannot be calculated.

5. For each orientation of the template, each position of the delin-
eated locally normalized cross-correlation array is checked for whether it
represents a maximum value compared with the delineated locally nor-
malized cross-correlation arrays calculated for orientations already tested.

6. If this is true, the values in an output 3D image containing only the
positions and values of the maxima of the cross-correlation array are
updated, as well as those in a 3D image containing information about the
three Eulerian angles of the corresponding positions.

7. After all possible angle combinations have been used, the locations
and orientations associated with the peaks correspond to all putative loca-
tions and orientations of the motif that it assumes inside the tomogram, and
at those locations the peak height may be used to assign a probability value
for the occurrence of the motif.

4. APPLICATIONS

In a cellular context, the ability to identify macromolecules by their 3D
intensity signature depends on the resolution of the tomograms. Various
studies on both real and synthetic data have explored the feasibility of the
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identification.At the current resolution of ∼4nm, only the largest complexes
can be identified, and even those only with relatively large ambiguity. We
will present the results of some of these studies in order to outline the
current state and the potential of the technique.

One of the first feasibility studies was published by Böhm and col-
leagues (Böhm et al., 2000), who explored the potential of cross-correlation
approaches. We will go over the results of this study in some detail. Next, a
study will be reviewed that demonstrated the performance of the locally
normalized cross-correlation method, by showing the detection and local-
ization of ribosome proteins (Rath et al., 2003). That study showed how
accurate and impressive the results can be when the resolution of the under-
lying 3D map is close to, or better than, 1 nm. Our account of feasibility
studies concludes with the detection of very large macromolecular 
complexes, namely the proteasome and the thermosome. In that study, the
complexes were encapsulated in phospholipid vesicles having cellular
dimensions such that the recording of the tomographic data set closely
resembled that for whole cells. Finally, an application on tomograms of
organelles will be presented in which ryanodine receptors were tentatively
located within sarcoplasmic reticulum vesicles.

4.1. Feasibility studies

Feasibility studies have the principle advantage that they can be per-
formed under controlled conditions. For cryoelectron tomography, this is an
even more significant advantage, since, in contrast with a typical motif
search in a cellular tomogram, where negative controls are very difficult,
cross-validation can be performed. At a resolution of 4 nm, a distinct cross-
correlation peak at the position of a macromolecule, e.g. a thermosome
inside a cellular tomogram, does not necessarily mean that the particular
object is a thermosome since the resolution is insufficient to allow discrim-
ination of competing structures in that size range. Furthermore, even if a
thermosome has been successfully identified, the orientation found in the
search is most probably quite imprecise, since high-resolution information
required for angular definition is missing (Rosenthal and Henderson, 2003).
Characteristic for this situation is that the detection of ribosomes in a cel-
lular context works similarly well with templates that are spheres, cubes or
particles with various other geometric shapes.This indicates that clear cross-
validation methods need to be developed to enable critical evaluation of
the results of detection.

4.1.1. Resolution-Dependence of the Detection Performance

In order to measure the resolution dependence of the detection per-
formance of macromolecular complexes, the following experiment was 
performed: large macromolecules of similar size and shape (GroEL, ther-
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mosome and proteasome) were placed at random positions and orienta-
tions inside a 3D image and were altered by addition of noise of different
types (e.g. band-pass-filtered noise) (Böhm et al., 2000). Subsequently, the
3D images were searched with different templates, and the discrimination
capabilities were evaluated as a function of the signal-to-noise ratio and the
type of template used. The results (Fig. 3) demonstrate that certain com-
plexes can be distinguished under certain conditions even at a resolution
of ∼4 nm. However, the main criterion for the discrimination proved to be
the size of the macromolecule. Therefore, the discrimination of macromol-
ecules having different structural signatures, but similar sizes, was not pos-
sible. This, however, proved feasible at a resolution of 2nm.

4.1.2. Performance of the Locally Normalized Correlation as
Compared with Globally Normalized Correlation

For finding the similarities between a template and a small region of
a larger image, the locally normalized cross-correlation performs much
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FIGURE 3. Results of identification for synthetic data at different resolutions. In (a),
the percentage of particles detected correctly is shown. The detection criterion was as
follows: the correlation peak representing perfect detection was obtained by correlat-
ing the 3D image of a particle with the 3D image of the ‘correct’ template (e.g. a ther-
mosome particle with the thermosome template). The result was divided by the
correlation peak of a particle with the ‘wrong’ template (e.g. a thermosome particle
with a proteasome template). If the result was >1, the identification was assumed to
be correct. In (b), the average of this ratio over all particles is plotted. Due to the dif-
ference in diameter, the 20S proteasome can be easily discriminated from the two
other particles. To distinguish the thermosome from GroEL, a good resolution is oblig-
atory since the low-resolution information of the two particles is basically identical
(same size and shape), whereas the high-resolution data differ due to the distinct sym-
metries (8-fold versus 7-fold). The opposite is true for the discrimination of GroEL from
the 20S proteasome: the two particles are identical in symmetry properties, but 
different in size, explaining why a resolution of 8 nm is sufficient for a successful 
identification. (It should be noted that in the plot on the left hand side, the curves for
20S GroEl and 20S Thermo are superimposed on each other.) (From Böhm et al. (2000),
reproduced with permission by the National Academy of Sciences).



better than its globally normalized counterpart. This is because the locally
normalized cross-correlation makes use of an individual re-scaling of the
template within the underlying subregion of the target. In Fig. 4, a number
of z-slices, from a globally normalized cross-correlation array and a cross-
correlation array locally normalized with an asymmetric mask, are shown.
These slices were obtained while searching for protein S2 inside a 0.8 nm
cryoelectron density map of the 70S Escherichia coli ribosome. The highest
peak in the locally normalized cross-correlation corresponds to the correct
position and orientation of the searched S2 motif. In contrast, however,
the highest peak in the globally normalized cross-correlation array does
not give the correct result. Rather, it is the second highest peak, which is
smaller by 0.02 standard deviations than the highest peak, that corre-
sponds to the correct position and orientation of the motif. In contrast, in
the locally normalized cross-correlation array, the highest peak is higher
by 3.3 standard deviations than the second highest peak, and hence pro-
vides highly significant and unambiguous results.

4.1.3. Detection of Macromolecules in Phantom Cells

The evaluation of results from attempts to identify molecules is diffi-
cult with cellular data, because a cross-validation is currently not possible.
Furthermore, simulations with synthetic data and data from single-particle
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FIGURE 4. Z-slices of a globally (a) and locally (b) normalized cross-correlation
obtained by searching for protein S2 inside a cryoelectron microscopy density map 
of the 70S E. coli ribosome. In each case, the circle indicates the location of the 
highest peak (see text). (From Rath et al. (2003), reproduced with permission by 
Elsevier).



analysis resemble the real situation in tomograms only incompletely in
terms of—among other properties—resolution, missing wedge effect and
defocus in the tilt series used for the reconstruction. An experiment mim-
icking, as closely as possible, the conditions in cells and at the same time
allowing the result to be cross-validated was performed by Frangakis et al.
(2002). Phospholipid vesicles were filled with a single type of known macro-
molecular complex, and were visualized by electron tomography. In this
way, two issues were addressed at the same time: (i) is the resolution
achieved in tomograms sufficient to detect macromolecules?; and (ii) can
these complexes be unambiguously identified inside the vesicles, i.e. does
the analysis give a negative result when the volume is searched with the
‘wrong’ template?

In an attempt to address these questions, two vesicles with two dif-
ferent populations of macromolecules were created: in one vesicle, ther-
mosomes and, in the other, proteasomes were encapsulated. The vesicles,
independent of their content, were searched with the X-ray structures of
both the thermosome and the proteasome, each suitably represented by
densities. The detection results, at the positions with the highest correla-
tion peaks, are visualized in Fig. 5. In both cases, the correct contents of a
given vesicle could be identified; however, the histograms of the CCCs
stemming from the two species do overlap significantly (Frangakis et al.,
2002). This is due partially to the very high similarity of the different
species of macromolecules. A check of the identification numbers shows
that the resolution is just sufficient to distinguish these two large com-
plexes, and that the distinction is mainly based on large-scale features such
as size and symmetry. In a vesicle containing a mixture of proteins, as pre-
sented in Fig. 6, the definitive evaluation of the identification results is not
trivial, since in case of doubt, the unambiguous identification of a particle
is not possible.
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FIGURE 5. Histogram of the cross-correlation between the two X-ray structures in
the phantom cell containing (a) proteasomes and (b) thermosomes.  (From Frangakis
et al. (2002), reproduced with permission by the National Academy of Sciences).



4.2. Application to real data

To locate ryanodine receptor (RyR) molecules, a cryoelectron tomo-
gram of sarcoplasmic reticulum (SR) vesicles with a resolution of ∼50Å was
searched using the locally normalized cross-correlaton. The initial template
was created by windowing a recognizable RyR found inside the tomogram
itself. The search was performed using a spherical mask and searching
exhaustively through all sets of Eulerian angles with 4° increments.

The locations associated with the top 50 peaks, as obtained at the end
of a complete search, were labeled inside the tomogram and were mostly
found at plausible RyR locations, i.e. along vesicle membranes. Subvolumes
around the peaks were windowed and each one was rotated according to
the orientation associated with the corresponding peak. Furthermore, using
multivariate statistical analysis (MSA), a cluster of eight subvolumes was
found in the factor-1 versus factor-2 map in which factor 1 and factor 2
together accounted for 24% of the total intervolume variance.As predicted,
these eight RyRs identified were found to be associated with SR vesicles.
An average of the windowed and rotated subvolumes was created. In 
Fig. 7, a z-slice of the labeled tomogram, x-, y- and z- slices of the average
subvolume, an enlarged image of a y-slice of the initial template, and the
corresponding slice from the average subvolume are shown.
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FIGURE 6. Segmented and denoised 3D image of a vesicle containing two types of
macromolecules, visualized in different colors. In the isosurface visualization, two vesi-
cles (in beige) surrounded by the carbon film (in gray) are shown. In the larger vesicle,
the two different macromolecular complexes were located and positively identified,
and were then replaced with their low-pass-filtered X-ray structure. Proteasomes are
shown in orange and thermosomes in blue. (From Frangakis et al. (2002), reproduced
with permission of the National Academy of Sciences). (See color plate)
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FIGURE 7. Search for ryanodine receptors in a tomographic reconstruction of
SR/transverse tubule vesicles. (a) A z-slice of the tomogram. ‘SR’ and ‘T’ denote vesi-
cles that are derived from sarcoplasmic reticulum and transverse tubule membrane,
respectively. Circles indicate the positions of the ryanodine receptors (RyRs) as deter-
mined by the locally normalized correlation search method. (b) x-, y- and z-slices of
the RyR motif. (c) x-, y- and z-slices representing the average of eight clustered RyR
volumes as determined by multivariate statistical analysis. The averaged volume con-
tains two connected structures: one (�) representing the RyR molecule protein and
one (*) representing a portion of the attached membrane. (d) Left: an enlarged image
of a y-slice of the RyR motif (boxed in (b)). Right: the corresponding y-slice of the
average (boxed in (c)). (From Rath et al. (2003), reproduced with permission by Elsevier).



5. DISCUSSION

The success of the motif search depends on the resolution achieved in
the tomograms. The quality of the template also plays an important role;
however, a good parametric setting should result in the closest possible
match with the data in the tomogram. Concerning the choice of motif search
algorithms, the main concern is their performance in crowded environ-
ments. Both the dense packing of macromolecules in the cytoplasm and the
large variability of the macromolecular structures represent difficult image
processing problems, which will need to be addressed in the future.
However, the prospect for success should be high, since similar problems
have been successfully tackled in two dimensions (Zhu et al., 2004).

From the algorithmic point of view, large efforts are being made to
develop techniques which provide, in terms of both alleviating computa-
tional cost and providing better quality, superior performance compared
with the currently used cross-correlation function. Efforts include, but are
not limited to, the use of spherical harmonics, to overcome the tedious grid
search over all possible rotation angles. The specific handling of the missing
wedge, especially for templates that are directly derived from the tomogram
itself, represents a significant problem still to be solved.

A serious problem is the lack of procedures to cross-validate the results
and perform a negative control of the analysis. In other words, if a certain
macromolecule is identified, how can we be certain that this is the correct
identification? Is it sufficient to search the cellular tomogram with various
and possibly similarly looking macromolecules and verify that a particular
one gives the strongest response (i.e. the highest correlation peak)? This
issue can be demonstrated on the example of the ribosome, which displays
high contrast and can be visualized in cellular tomograms. Cross-correla-
tion produces distinct peaks with the ribosome template; however, it does
so also for various templates, including abstract geometric shapes such as
spheres and squares.Therefore, in addition to the development of improved
recognition algorithms, the development of computational or experimental
ways to perform appropriate negative controls is also necessary.
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1. INTRODUCTION

Electron tomography offers opportunities to study structures that are not
amenable to 3D imaging by any of the classical methods, such as single-
particle reconstruction (Frank, 1996), helical reconstruction (Egelman,
2000; DeRosier and Moore, 1970) or electron crystallography (Glaeser,
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1999) that require either a repetitive structure, or multiple copies of iden-
tical structures. Since electron tomography can produce a 3D image of a
single copy of a structure, it is finding wide application in cell biology and
material science. Paracrystalline specimens constitute another class of struc-
ture for which electron tomography can be particularly useful for obtain-
ing detailed 3D images (Taylor et al., 1997). Paracrystals (para—Greek
prefix meaning faulty) are arrays with various kinds of intrinsic disorder.
Spatial averaging of such specimens usually blurs or even erases the disor-
dered component, which may eliminate the functionally interesting feature.
For this chapter, we define a paracrystalline specimen as one with partial
ordering such that one component of the specimen may be highly regular
while another may be irregular due to either low occupancy, lattice irregu-
larity or both.

Striated muscle is one example of a paracrystalline structure found in
nature. Striated muscles consist of hexagonal arrays of two types of 
filaments: thick, myosin-containing filaments, and thin, actin-containing 
filaments. Interactions between myosin heads and the actin filament are
responsible for filament sliding and muscle shortening (Geeves and
Holmes, 1999). Muscle is paracrystalline because the filaments themselves
have a well-ordered structure, but have a disordered arrangement within
the lattice (Squire, 1981), or the interactions between filaments, which
usually involves the myosin cross-bridges, are highly variable. Structures
that contain actin filaments are often poorly ordered because the actin helix
can have variable twist (Egelman and DeRosier, 1992; Egelman et al., 1982).
However, even in the instances where the actin filament has a well-ordered
28/13 helical structure, such as in insect flight muscle (IFM), the myofibrils
display considerable disordering among the myosin cross-bridges. Other
types of natural structures with paracrystalline ordering include the cross-
linked actin arrays found in microvilli (Tilney et al., 1980) or various in vitro
2D actin assemblies (Taylor and Taylor, 1994; Taylor et al., 2000).

The asynchronous flight muscles of various species of the large water
bug Lethocerus are perhaps the best ordered muscles in the animal
kingdom and are therefore ideal both to study muscle contraction and to
develop methods for image classification in 3D. IFM contains an hexagonal
array of thick filaments with actin filaments interdigitated between thick fil-
ament pairs at pseudodiad positions in the unit cell (Fig. 1b). This filament
arrangement differs from vertebrate striated muscle where the actin fila-
ments lie at trigonal positions within the unit cell. The IFM lattice arrange-
ment facilitates the cutting of several types of thin section that have been
extremely useful for obtaining information on the arrangement of myosin
heads in different muscle states (Fig. 1b). Two kinds of 25nm thick longi-
tudinal section can be cut parallel to the filament axis (Reedy and Reedy,
1985). One of these, the myac layer (Fig. 1a), contains alternating thick and
thin filaments. Another, the actin layer, contains only actin filaments, but
these divide evenly into two groups that differ by azimuthal rotation of 60°
and axial translation of 12.8nm. The third type is a 15nm thick section cut
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transverse to the filament lattice in rigor muscle and is known as the ‘flared-
X’ formation. Myac layers are ideal for studying cross-bridge formations in
different muscle states because they contain all the features of the muscle,
namely thick filaments, thin filaments and the connecting cross-bridges, but
in a thin section that is easy to analyze. The actin filaments in myac layers
are parallel to each other to within a few degrees by virtue of their organ-
ization at the muscle Z-disk. They have an intrinsic disorder in that they
can be rotated randomly by ±180° about the filament axis (Holmes et al.,
1980). Alignment to correct this disorder is essential if averages revealing
actin monomers are to be obtained from the tomogram.

Electron micrographs of rigor IFM myac layers (Fig. 1a) show a repeat-
ing pattern of densities bridging the thick with the thin filaments. This
pattern, known as the double chevron (Reedy et al., 1965), repeats at spac-
ings of 38.5 nm and is produced by the binding of myosin heads to regions
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FIGURE 1. Diagram of the muscle lattice and the myac layer. (a) Electron micrograph
of a 25 nm longitudinal section of rigor IFM. Protein is black and the embedding
medium is white. The vertical rods of density are the thick filament backbones.
Between thick filaments is an actin filament decorated with myosin heads, the cross-
bridges, that originate from the neighboring thick filaments. (b) Diagram showing the
thick and thin filament lattice arrangement and the typical pattern of myosin cross-
bridges that occur in a 15 nm thick transverse section. Two types of cross-bridges, des-
ignated ‘lead’ (L) and ‘rear’ (R), are bound on the actin filaments. The ‘myac’ layer is
a 25 nm longitudinal section containing alternating thick and thin filaments. An ‘actin’
layer is a 25 nm longitudinal section containing only actin filaments and their bound
myosin cross-bridges. (c) Examples of rigor motifs. The top row contains a ‘double
chevron’ on the left and a single chevron on the right. The bottom row contains a pair
of incomplete double chevrons, with one ‘rear’ cross-bridge missing from either side.
The rigor cross-bridge lattice comprises a mixture of these motifs spread irregularly
throughout the sarcomere. Further motif variation can occur due to head occupancy
and effects of lattice constraints on lead and rear cross-bridge structure. 



of the thin filament known as ‘target zones’ (Reedy, 1967; Tregear et al.,
2004). The matched axial periodicities of myosin and actin filaments are a
key aspect of IFM muscle regularity. IFM myosin filaments have the char-
acteristic 14.5nm axial period typical of myosin filaments, but they also have
a 38.5 nm helical period that describes the arrangement of myosin heads
around the filament backbone. The actin filaments consist of a double helix
of actin monomers with a pitch of 2 × 38.5nm. There is a common axial
period of 232 nm (6 × 38.5nm; 16 × 14.5nm) in the muscle. It is the repeat-
ing volumes based on the 38.5nm actin filament half-period that are the
object of our classification efforts.

The repeats described in this chapter are defined by the repeating actin
filament motif within the muscle lattice. ‘Repeats’ can be equated with 
the term ‘single-particle’ used in 3D reconstruction from projections, but
the two are not exactly the same. In single-particle 3D reconstruction, the
images derive from different realizations of a common structure that
present different orientations. In muscle, the repeats have similar orienta-
tions, but have different contents, due to different patterns of cross-bridge
attachments to the actin filaments. Thus, the lattice consists not of one
repeating motif, but of an unknown number of motifs that may be distrib-
uted irregularly. For example, in rigor muscle, there are four main patterns
of cross-bridge attachments to actin independent of any differences in the
structure of the cross-bridges (Fig. 1c). The double chevron contains a pair
of opposed cross-bridges, dubbed ‘lead’ bridges (Reedy and Reedy, 1985),
and an additional pair of opposed cross-bridges, dubbed the ‘rear’ bridges;
single chevrons have no rear bridges, and two types of incomplete double
chevrons each have a single rear bridge that can be positioned on either
side of the actin filament. Further variations on this main theme can be
observed, such as differences in the numbers of myosin heads (one or two)
at both lead and rear bridges, and, when a cross-bridge is single-headed,
there is the possibility that this head can bind either one of two actin
monomers. Finally, the individual myosin heads may differ in structure due
to lattice constraints in the muscle fiber. Contracting muscle has potentially
many more possible combinations because the myosin heads are distrib-
uted over different steps in the actomyosin ATPase cycle.

Intact muscle has presented challenges for 3D imaging. The powerful
methods of single-particle 3D reconstruction based on projections of indi-
vidual molecules or assemblies that have been developed over the years are
ineffective. Single-particle methods are most effective when the particles lie
in random orientations and are well separated. In the muscle lattice, the
repeats lie in preferred orientations and are closely apposed. Because the
repeats have a preferred orientation, the object must be tilted to obtain 3D
data, and, because the repeats lie in close apposition, structures become
superimposed when tilted to high angle.

These problems are all overcome using electron tomography. Tomo-
grams have been obtained of a number of different states of IFM (Chen 
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et al., 2001, 2002; Liu et al., 2004; Schmitz et al., 1996, 1997;Taylor et al., 1999).
However, the tomograms themselves are typically noisy 3D images and, if
the information desired involves molecular conformations, averages should
be obtained to improve the signal-to-noise ratio. It is also desirable to
reduce the highly variable and very numerous structures of myosin cross-
bridges obtainable in a single tomogram to a more tractable number of
averages. A single tomogram of a myac layer from a muscle half sarcomere
usually contains ∼500 repeats. Higher resolution, improved signal-to-noise
ratio and data reduction are all goals that can be met by using the tech-
niques of multivariate statistical analysis (MSA), in particular correspon-
dence analysis (Frank, 1996). In addition, MSA of 3D volumes presents
several unique challenges, including 3D alignment and treatment of the
missing wedge (or pyramid), which do not occur in classification of 2D 
projections.

This chapter will first present approaches to alignment, classification
and averaging of 3D repeats in IFM. This system is in many ways ideal for
development of these protocols. After describing the IFM work, other bio-
logical systems will be discussed, in particular systems in which repeats are
not regularly arranged, and some of the clever solutions developed to
address the problems of alignment and classification.

2. MISSING WEDGE

The majority of tomograms, but especially tomograms of frozen-
hydrated specimens, are computed from single-axis tilt series. Because of
limitations on the highest permissible tilt angle in the electron microscope,
single-axis tilt series have a missing wedge that is usually not larger than
±30° and usually not smaller than ±20°. In principle, this can have a strong
effect on the ability to align 3D volumes and to identify repeating motifs
within a large population. The underlying goal of 3D volume classification
is to extract structural heterogeneity. A projection of a molecule has no
information on the location of features along the projection direction, but
the 3D image of that same molecule does. Moreover, for the same total elec-
tron dose, the 3D image has the same signal-to-noise ratio as its projection
(Hegerl and Hoppe, 1976; Hoppe and Hegerl, 1981; McEwen et al., 1995),
and has higher contrast. However, the missing wedge, which is an entity
defined in Fourier space, can affect the relative weighting of features in the
image and therefore could bias the alignment and classification in favor of
grouping unit cells by orientation rather than structure (see also Chapter
14 of this volume).

The potential for the missing wedge to affect 3D volume classification
can be illustrated with classification of 2D projections of identical particles
that differ only in orientation. In Fourier space, the transforms of these 2D
images consist of a single plane that intersects the origin of the transform,
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i.e. a central section. With respect to the 3D transform, these central sec-
tions can be thought of as having a ±90° missing wedge, i.e. far more of the
3D transform is missing than is measured. If the particles have a thickness,
t, their transform varies slowly over a distance of 1/t. Similarly oriented par-
ticles will have in common an amount of data that depends on the angle
between planes of finite thickness 1/t. In this case, classification will place
those particles that are closely oriented in space into a single class. In other
words, classification clusters the particles by missing wedge orientation. In
fact, this is exactly the desired result in single-particle reconstruction from
a homogeneous population of particles. Problems arise if the particle set is
heterogeneous with respect to structure. Then the classification becomes
much more difficult because the individual projections may have too little
information to distinguish structure differences from orientation differ-
ences (Frank, 1996).

In 3D classification, far more of the transform is measured than is
missing, so the structure is much better defined. This makes 3D classifica-
tion from tomograms potentially powerful for defining structural hetero-
geneity. MSA of 3D repeats in muscle can be more aptly described as the
act of binning a continuum of structures placed around a pair of common
structural elements. Inter-repeat variance in a structure like this can also
come from misalignment, but minimizing alignment errors is part of the
process of iterating to a consistent result. The actual goal is characterizing
structure variability. However, it is not known at the moment how much of
an effect the missing wedge will have on classification of the repeats; will
repeats cluster based on the orientation of the missing wedge, as they do
for projections, or will they cluster based on similarities in structure irre-
spective of the orientation of the missing wedge? 

Consider three cases of volume pairs obtained from tomograms with
differing orientations of the missing wedge after alignment to a common
coordinate frame. The first case (Fig. 2a), which is the most optimal, would
have the volumes already partially oriented as if extracted from a paracrys-
talline specimen so that their missing wedges superimpose. This is the case
for volumes (repeats) extracted from IFM tomograms. The second case
(Fig. 2b) would occur for a population of volumes that differ only by rota-
tion about the normal to the specimen plane.This might occur with volumes
selected from several different tomograms of paracrystalline 2D arrays.
Each volume will have in common the in-plane projection. The alignment
problem is primarily that of determining the in-plane rotation and the 3D
displacement. In this case, the question is whether the 3D volumes would
cluster in the same way that their 2D in-plane projections would cluster,
irrespective of any differences in the positioning of features along the z-
axis. The third case (Fig. 2c) is more general and has the particles randomly
oriented in the specimen and, hence, after alignment, their missing wedges
are randomly oriented. This is the least favorable case because both align-
ment and classification could be affected by the missing wedge.
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Technically, all atoms in the structure contribute to all Fourier coeffi-
cients, so no specimen feature should be entirely missing from a 3D recon-
struction even with a ±30° missing wedge. However, in the low-resolution
realm, where electron tomography operates, the contribution of some fea-
tures may be concentrated in a small region of Fourier space. The best
examples of this situation would be the density profile across a lipid bilayer
or the mean radial density distribution of a filament. At low resolution,
mean density profiles and distributions are sometimes the only features
visible. The membrane profile is a 1D projection onto the normal to the
membrane and thus contributes to only a single line in the Fourier trans-
form. Tomograms of lipid vesicles or membranes reveal the lipid bilayer
only along the lateral edges of the vesicle; the bilayer is entirely absent from
the top and bottom (Dierksen et al., 1995), where the membrane profile
from this part of the vesicle would come to lie within the missing wedge. In
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FIGURE 2. The missing wedge. Each molecular volume (repeat) extracted from a
single axis tomogram has associated with it a wedge of missing data in its Fourier
transform. Depending on the orientation of the repeats with respect to the tilt axis,
after repeats are aligned, their missing wedges will be differently oriented. Both align-
ment and classification of these repeats can be affected by the missing wedge. (a) The
case where all repeats have the same missing wedge orientation. Although the trans-
form data are incomplete, the same portion is missing and the same portion is meas-
ured for each repeat. (b) The case where the missing wedges differ by rotation about
the Z* axis. Although less favorable than case (a), each repeat’s transform will have
in common the X*–Y* plane. (c) The case where the missing wedges can have any
relative orientation. This worst case would occur when the missing wedge of one
aligned repeat fell entirely within the measured data of another repeat. For the same
tilt angle range, this case would have the smallest amount of data in common, whereas
case (a) would have the largest amount of data in common. Case (b) would be inter-
mediate because there would always be some overlap of the two missing wedges.



real space, this phenomenon is equivalent to the statement that one cannot
see the contrast across the membrane without viewing along the membrane
plane, which is impossible for the top and bottom of the vesicle because of
tilt angle restrictions in the electron microscope. Membrane-bound mole-
cules selected from the lateral edges would contain the membrane density,
while those picked from the top and bottom surfaces would not. Classifi-
cation of a collection of all these molecules using MSA would be expected
to segregate those from the top and bottom from those along the lateral
edges irrespective of other structural similarities.

The equator of the Fourier transform of a filament contains the infor-
mation on the mean radial density distribution of a filament. This part of
the transform is essentially a disk that is perpendicular to the filament axis.
If this disk comes to lie within the missing wedge, which will occur when
the filament axis is perpendicular to the tilt axis and the filament lies in the
specimen plane, the filament will all but disappear in the tomogram (Mas-
tronarde, 1997). These problems have provided much of the incentive
toward development of double-axis (Mastronarde, 1997; Penczek et al.,
1995) and conical tilt (Lanzavecchia et al., 2001) tomography.

In the IFM work, it has been possible to collect multiple tomograms
from sections oriented in essentially the same way with respect to the tilt
axis and, hence, the missing wedge orientation is the same over the popu-
lation of repeats. This effectively factors out the missing wedge from affect-
ing the classification or the alignment. This has greatly simplified the
development of the process. Below, classification and alignment for a more
general population of volumes and the possible impact of double-axis
tomography on these problems will be revisited.

3. IDENTIFYING MOTIFS IN TOMOGRAMS

Selecting repeating motifs from tomograms is in many ways similar to
selecting particles in projections. Manual selection is always an option, just
as it is for processing projection images, but automation is obviously desir-
able. When some kind of preferred orientation is present, such as would
occur with a paracrystalline specimen, computation of a cross-correlation
function greatly simplifies the problem of locating and extracting the indi-
vidual repeats. In IFM, the repeats usually have at least some similarity,
because they are the products of interactions between filaments that are
arranged in parallel, so that fitting a lattice to the peak locations of a cross-
correlation function is normally possible. This has been done as part of a
3D ‘unbending’ scheme to correct for out-of-plane bending (Winkler and
Taylor, 1996). On the other hand, if the repeats all lie in a reasonably flat
plane, the projection of the tomogram along the ‘z’-axis can often be used
to determine the ‘x, y’ coordinates, while the average ‘z’ value can be
obtained by inspection. In this case, any of the lattice-fitting programs used
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to analyse 2D crystals would be sufficient to fit a lattice to the ‘x, y’ coor-
dinates (Henderson et al., 1986; Schmid et al., 1993).

When there is no lattice, and repeating motifs are essentially randomly
placed in the tomogram, an automated motif search is computationally
much more demanding but has the benefit of providing information on rel-
ative orientation. Speed is important in this process because the reference
must be rotated over all of Euler space in fine enough increments that
potential repeats are not missed because of a large difference in orienta-
tion compared with the reference. A number of efforts have been made in
this area (Böhm et al., 2000; Frangakis et al., 2002; Rath et al., 2003). Böhm
et al. (2000) segmented motifs using a denoising algorithm and then used
cross-correlation to determine their orientations with respect to a reference.
Frangakis et al. (2002) and Rath et al. (2003) used cross-correlation tech-
niques to identify motifs in tomograms of ice-embedded specimens auto-
matically (also see Chapter 14 of this volume).

The use of cross-correlation to localize variably oriented motifs has
some potential pitfalls. The correlation peak height, which is the measure
of similarity between the reference and the ‘raw’ volume, depends not only
on the similarity in orientation and structure but also on the local normal-
ization, which in turn is affected by the missing wedge (Frangakis et al.,
2002). Thus, similarities in particle structure and alignment could be offset
by missing wedge orientation, and thus the search may fail to identify valid
repeats, i.e. it may produce false negatives. A fast, locally normalized cross-
correlation function (Roseman, 2003) was specifically developed to address
the normalization issue for the selection of particles for single-particle
reconstruction and has been applied to the selection of 3D motifs within
tomograms of ice-embedded samples (Rath et al., 2003). Rath et al. obtained
the unexpected result that searching using a reference extracted from the
tomogram worked better than a reference with high signal-to-noise ratio
obtained by single-particle reconstruction.The reference extracted from the
tomogram has a missing wedge of the same size as the other repeats within
the tomogram, but which may also differ in orientation. However, it also
contains the context, which includes the membrane environment. The
single-particle reference had no missing wedge, but it lacked the membrane
environment. This illustrates that a prime advantage of tomography is its
ability to visualize molecules in the natural context. Signal-to-noise ratio in
the reference may be less important than having the correct context.

4. VOLUME ALIGNMENT

Any effort toward classifying volumes requires alignment to an appro-
priate reference. For alignment of projections, only three degrees of
freedom need be determined—two translational and one rotational—and
numerous methods have evolved to determine them. The autocorrelation
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function, which is invariant to the position of the particle, has been used
extensively to determine the rotational alignment among a set of particles
(for an early application, see Kessel et al. (1980). In volume alignment, there
are six degrees of freedom—three translational and three rotational—so
the alignment step is computationally much more expensive.

In image alignment, it is commonly thought that reference bias must
be avoided in order that the result is not dependent on the choice of 
reference. A solution to the alignment problem is to perform classification
initially using a derived function that is translationally and, if possible, rota-
tionally invariant. In 2D image processing, the double autocorrelation func-
tion (Schatz and van Heel, 1990) and the double self-correlation function
(Schatz and van Heel, 1992) have been developed as a solution to this
problem. For volumes, computation of invariant functions is more difficult.
Functions that are translationally and rotationally invariant and generally
applicable for volumes have not been derived. However, invariant functions
suitable for specific applications have been constructed.

For IFM, the alignment and classification problem is simplified because
the repeats are already partially aligned within a few degrees with respect
to rotations about the filament axis and with respect to displacement, by
virtue of the fact that they are embedded in a lattice. Thus, Winkler and
Taylor (1999) constructed a modified autocorrelation function that was
translationally invariant and could be used to distinguish the 180° ambigu-
ity of the thin filament orientation described above. The invariant function
was computed as follows. First a copy of the repeat was produced and
rotated 180° about the filament axis. Mutual autocorrelation functions (Van
Heel et al., 1992) of both were computed. The sum and difference of these
two functions represent the symmetric and antisymmetric parts of the struc-
ture. The antisymmetric part contains the information on the asymmetry
between the left and right sides of the actin filament, which as mentioned
above is key for correct classification. Similar repeats could then be aligned
among themselves, thereby avoiding the possibility that a large difference
in structure could influence the alignment. After members of the different
classes were identified, they were aligned with each other before averaging.
This step was then followed by several cycles of multireference alignment
and classification.

The result of this effort was a considerable improvement in the appear-
ance of the structures compared with the raw repeats, and thereby facili-
tated the construction of atomic models (Chen et al., 2002). In this first
attempt, a major limitation was the number of repeats. Starting with 480
repeats, removal of poorly structured and preserved repeats reduced the
number by 10–20%. From the remaining ∼400 repeats, 25 classes were com-
puted so that the improvement in signal-to-noise ratio was by only a factor
of 4 on average in each class. This improvement was reflected in the reso-
lution assessed by the spectral signal-to-noise ratio (Unser et al., 1987),
which was 7nm.
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5. REFERENCE-BASED ALIGNMENT SCHEMES

To answer fundamental questions about muscle contraction, a resolu-
tion of at least 5 nm would be needed so that an atomic model of the actin
filament can be positioned independently into the density without inter-
ference by the positions of the myosin cross-bridges. The scheme outlined
above, which used an invariant function combined with multireference
alignment of the actin filament and cross-bridge, did not result in a resolu-
tion sufficient to resolve actin monomers. Despite the potential for bias, Liu
et al. (2004) implemented a reference-based alignment scheme to improve
the resolution of the class averages. The approach was an extension, to 3D
objects, of a method used earlier to visualize heterogeneous conformations
in myosin and actin (Burgess et al., 2004).

The most invariant structure within each repeat is likely to be the actin
filament. Liu et al. made the assumption that the structure of the actin fila-
ment was invariant in each repeat, which is reasonable at the resolution that
electron tomograms can be obtained. First, the partly aligned raw repeats
are aligned to a single actin filament, selected from among the population
to act as a reference. The alignment involves only a small angular search
within an angular cone of 4° radius about the filament axis, to remove any
out-of-plane tilt of the filament segment and to correct for in-plane bends
in the filament. The search is repeated after rotation of 180° about the fil-
ament axis. Then several cycles of MSA, using a mask that selects the actin
filament, followed by multireference alignment, were carried out until the
global average of all the actin filaments revealed the subunit structure along
the actin filament. The procedure does not guarantee that the actin
monomers can be resolved in the global average since that is also a func-
tion of preservation and staining. Cross-validation that the alignment is
working is provided by the presence of the large troponin complex of IFM
(Bullard, 1984), which should become emphasized in the averages if the
alignment is good. In addition, it is known from studies of actin filaments
decorated by myosin heads that the orientation of the actin filament in the
regions where the myosin heads bind in rigor IFM is such that the actin
monomers are positioned optimally to reveal the 2.75nm offset between
the two long pitch actin strands.

6. CLASSIFICATION

Image classification is the heart of attempts to identify structures and
improve the signal-to-noise ratio. There are several schemes that are used
in 2D image classification, among them K-means and hierarchical ascen-
dant methods (see, for example, Frank, 1990). The potential benefits of one
over the other have not been explored for 3D image classification.The clas-
sification of IFM cross-bridge repeats used hierarchical ascendant methods.
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Recently, tomograms of negatively stained integrins were classified using
K-means (Iwasaki et al., 2005). Some newer methods such as self-organiz-
ing maps (SOMs) have proven to be effective in clustering cross-bridge
repeats (Pascual-Montano et al., 2002).

The advent of CCD cameras, automated electron tomography (Braun-
feld et al., 1994; Koster et al., 1992) and rapid freezing/freeze substitution
methods for specimen preservation has improved tomograms considerably.
The combination of these improvements with single-reference alignment
and cross-bridge classification has facilitated routine resolution of both
actin monomers and myosin heads in rigor muscle (Fig. 3). Class averages
show all the predicted arrangements of myosin heads, but with sufficient
resolution that atomic models can be built into the envelopes. From these
atomic models, the effect of an imposed stretch on the rigor fibers could be
determined at the level of the individual myosin heads (Liu et al., 2004). A
shell of stain surrounding the features was also clearly resolved (Fig. 3a) so
that the filaments appeared negatively stained. This is probably because at
the low temperatures of freeze-substitution, where the tannic acid–uranyl
acetate fixative is applied, stain penetration into the protein is poor. In addi-
tion, features such as the α-helical coiled-coil S2 domain that links the
myosin heads to the thick filament backbone are now routinely seen in
some classes (Fig. 3b). Resolution in class averages has improved to ∼4.8nm
in nearly all class averages (Fig. 3c). Further improvements in the signal-to-
noise ratio can be expected with increases in the numbers of repeats that
are aligned and classified.

6.1. Mask Determination

Construction of masks for 3D classification is complicated by the three-
dimensionality of the repeat, but is conceptually the same as mask con-
struction for the purpose of 2D projection classification (Frank, 1996).
Construction usually consists of computing a global average, thresholding
the average, low-pass filtering the resulting binary image, and thresholding
it again to produce the final expanded, smoothed mask. In the muscle
lattice, not all features are equally heterogeneous after alignment, and this
offers the opportunity to obtain higher signal-to-noise ratio improvement
of those parts of the structure that are anticipated to have the least degree
of heterogeneity.

Reference-based alignment of repeats from IFM tomograms assumed
that the actin filament was constant in structure. The actin filament should
then be a source of low inter-repeat variance, and the cross-bridges, i.e. the
desired part of the structure, the source of highest inter-repeat variance.
Construction of a mask that contains just the actin filament facilitates the
calculation of a reduced number of classes from the least variable part of
the structure. Conversely, eliminating the actin filament from the mask facil-
itates calculation of a greater number of classes for the more variable parts
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of the structure, i.e. the cross-bridges.As described below, reassembly of the
actin filament and cross-bridge classes can restore the original context.

Another possible approach is to design the mask based on the vari-
ance map of the global average rather than the global average itself. This
procedure tends to concentrate the classification on those parts of the struc-
ture that exhibit the highest variance. However, it has the risk that with
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FIGURE 3. Single reference alignment of 322 repeats from stretched rigor myofibrils
(Liu et al., 2004). In this example, in which the tomogram has been improved by (1)
collecting data on a CCD camera, (2) collecting the tilt series by automated, low-dose
tomography and (3) improved specimen preservation rapid freezing/freeze substitu-
tion, there is even better definition of the actin filament structure and the individual
myosin heads. (a) Central z-section from each of 16 class averages. (b) Surface view
of these class averages. (c) Fourier shell correlation showing improvement in resolu-
tion to better than 5 nm for most of the class averages.



highly heterogeneous repeats such as occur in IFM, the variance map will
be relatively featureless with regards to the most variable structures. This
approach may work better for those cases where the inter-repeat variance
is concentrated on a single feature.

6.2. Number of Classes to Compute

The goal of 3D repeat classification in muscle is to bin a continuum of
varying structures. This begs the question of what would be the most suit-
able number of bins. Considerations of signal-to-noise improvement and
retention of information on structure variability are conflicting goals; higher
signal-to-noise improvement is achieved by computing fewer classes, but it
reduces the inter-image variance retained among the classes. Conversely,
retaining more image variance by computing more class averages results in
less improvement in signal-to-noise ratio. Hierarchical ascendant classifica-
tion (HAC) has the benefit of allowing different numbers of classes to be
computed from a single classification run. However, HAC does not provide
a ready estimate of the number of different classes present in the data and
so requires that one examine the dendrogram and observe the relationship
between classes.

Reference-based alignment using a constant feature from among the
repeats tends to minimize one potential source of structure variability, the
actin filament, leaving the cross-bridges as the major remaining source.
Winkler and Taylor (1999) made a crude approximation of the number of
possible arrangements of myosin heads in rigor repeats (nine) and almost
doubled that number to allow for some variation in structure among the dif-
ferent arrangements. The 16 classes had between nine and 29 repeats per
class. Using the numbers of repeats per class and the number of myosin
heads per repeat from molecular modeling indicated 2.7 myosin heads per
class on average (Chen et al., 2002), a number that was in excellent agree-
ment with that found in experiments (Goody et al., 1985; Lovell et al., 1981;
Thomas et al., 1983).

Classification of IFM cross-bridge repeats using SOMs (Pascual-
Montano et al., 2002) has the attractive feature of being fast and well
adapted to the analysis of large noisy data sets and that it can predict the
number of classes. Using the same set of aligned repeats used previously in
a HAC classification, SOMs predicted a smaller number of classes, but those
that were predicted were nearly identical to the 16 classes computed using
HAC, as described above.

Still, deciding a priori on the correct number of classes in such het-
erogeneous data remains a difficult question even for rigor muscle; it is a
much more serious question for contracting muscle where the myosin head
population is distributed over the entire catalytic cycle. One possible solu-
tion is separate classification of parts of the repeats. So far, all attempts at
classification of IFM repeats have done so by including the cross-bridges
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on both sides of the actin filament within the classification mask. However,
the myosin head distribution on the left side of the actin filament is inde-
pendent of the head distribution on the right hand side. The target zone in
contracting muscle is three actin monomers long on one side of the actin
filament and only two actins long on the other (Tregear et al., 2004). In addi-
tion, in contracting muscle, the axial register of the thick filaments is lost
(Taylor et al., 1999) so that no correspondence exists between myosin head
origins on the thick filaments on either side of the actin filament.Therefore,
there is no strong justification for classifying repeats using both left and
right sides of the 38.7 nm axial period in a single classification run; classifi-
cation should be done on the left and right sides independently.

This approach could significantly increase the amount of structure
variance recoverable from image classification while at the same time con-
serving the signal-to-noise improvement. For example, suppose there were
nine different ways of arranging myosin heads on each side of the actin fil-
aments within each repeat. Classification would require 81 classes to
recover the original arrangement. However, if classification of each side
were done separately, only nine classes would need to be computed on each
side, resulting in a 3-fold improvement in signal-to-noise ratio for the same
number of repeats. By recombining the separate left and right side class
averages in all combinations, 81 classes can be obtained. The benefits of 
this approach can only be illustrated after first describing the process of
reassembling tomograms using the class averages.

7. REASSEMBLY OF TOMOGRAMS

Tomograms computed from tissue samples such as muscle have a very
heterogeneous molecular composition. In muscle, the actin and myosin fil-
aments are the major proteins and their interactions are the main sources
of heterogeneity. However, the spatial relationship between actin and
myosin filaments and the cross-bridges are the key to understanding muscle
function. In muscle, the context is therefore an important factor in under-
standing function, but signal-to-noise improvement is necessary if mole-
cular models are to be built. MSA can provide the signal-to-noise
improvement, but extracting the repeats from the tomogram removes them
from their cellular context.

The alignment scheme used for the IFM repeats applies a single trans-
formation to align the raw repeats to the reference. To align the class
average to the original raw repeat requires only a single inverse transfor-
mation. Replacement of the raw repeat in the original tomogram by the
class average to which it contributed can restore the context. The process
has been named ‘mapping back’ (Liu et al., 2004).We have used this process
to visualize the pattern of cross-bridge repeats in their original context. In
tomograms of fast-frozen, freeze-substituted IFM rigor fibers that had been
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subjected to a ramp stretch, we used map-backs to visualize patterns in
cross-bridge distortion (Fig. 4).

In principle, a judicious choice of alignment reference and classification
mask can facilitate the averaging of different structures in a multistructure
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FIGURE 4. Reassembly of the raw tomogram from class averages. (a) Projection of
the raw tomogram. (b) Volume-rendered view of (a) reassembled from class averages
computed from its array of repeats. This is done by replacing each raw repeat by the
class average to which it contributed, accounting for the possibility that the unit cells
can be rotated by 180° about the actin filament axis during the alignment to account
for the 28/13 helical structure of the actin filament. This process can help to recover
contextual information on the lattice arrangement that is otherwise lost when the indi-
vidual repeats are extracted from the tomogram. 



sample. In muscle, actin filaments, myosin filaments and cross-bridges con-
stitute three related, but partially independent structures. A plausible
scheme for reassembly of a tomogram using high signal-to-noise ratio class
averages might include the following. (i) As shown above, alignment on
actin minimizes one source of structure variability, but does not necessar-
ily eliminate it. However, with the proper choice of mask, classification
could be done on the actin filament itself to produce class averages inde-
pendent of the cross-bridges. (ii) Classification of cross-bridges independ-
ent of actin would then be done using a mask that excludes the actin (and
myosin filament as well) but includes the cross-bridge features. (iii) To
obtain information on the thick filament would require a separate align-
ment and classification scheme. One possibility would combine alignment
of the individual 14.5 nm axial repeats based on the thick filament back-
bone features with classification based on the myosin heads. The contract-
ing muscle could be visualized at a high signal-to-noise ratio with capture
of much of the structure variance by reassembling each raw repeat with the
actin filament class average to which it contributed, the cross-bridge classes
to which it contributed and the classes of the neighboring thick filaments
to which it contributed. These reassembled repeats could then be inserted
back into their initial coordinates in the raw tomogram, thereby recovering
the cellular context but with high signal-to-noise ratio averages.

8. OTHER EXAMPLES OF 3D VOLUME CLASSIFICATION

MSA of 3D images in the context of tomography has been applied to
a number of other systems. The first attempt at correspondence analysis of
volumes extracted from tomograms was done on volumes to which the par-
ticle symmetry was imposed, thereby reducing the effect of the missing
wedge (Walz et al., 1997). Later, MSA was used to evaluate the accuracy of
an automated motif selection procedure (Frangakis et al., 2002). Classifica-
tion of 50 ryanodine receptor volumes after automated extraction from a
tomogram and clustered with respect to factors 1 and 2 resulted in a class
average of eight repeats (Rath et al., 2003).

Electron tomography has been applied to enveloped viruses with gly-
coprotein surface spikes (Env). In one of these studies, MSA was used to
characterize the spike proteins. Extracted and aligned Env molecular volumes
from the virus surface will have missing wedges in many orientations, cor-
responding to case (3) in Figure 2, thereby complicating MSA and particle
alignment. Förster et al. (2005) used the geometry of the Env particles relative
to the virus center to reduce the Euler angle search range and selected 1,114
Env particles for alignment and averaging. They accounted for the missing
wedge with a specially weighted cross-correlation function and by weight-
ing coverage in Fourier space in the averages. A second application deter-
mined a structure for the Env spikes using cryotomography of intact Simian
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Immunodeficiency Virus (Zhu et al., 2006). In this study, separate averages
were obtained from 6,175 Env particles separated into top-bottom and side
subgroups. Although no special cross-correlation functions and missing-
wedge weightings were used, MSA was incorporated into cycles of align-
ment, classification and averaging and later used to examine variations in
structure within the two groups.

Two applications of electron tomography of nuclear pores have been
reported (Beck et al., 2004; Stoffler et al., 2003), neither of which used 
MSA as described here to obtain high signal-to-noise ratio averages.
Stoffler et al. obtained single axis tomograms from isolated nuclear mem-
branes. Beck et al. (2004) obtained tomograms from isolated Dictyostelium
nuclei and grouped and averaged nuclear pore volumes based on the center
of mass of the density within the pore.

9. SINGLE-AXIS VERSUS DOUBLE-AXIS TOMOGRAPHY

In this chapter, we have described the application of MSA to 3D
volumes and some ways in which the method can be used to improve the
molecular information obtainable from tomograms. The problems associ-
ated with the missing wedge have been described with respect to single-axis
tomography. Double-axis tomography is superior to single-axis tomography
because the specimen transform is more uniformly measured; instead of a
missing wedge, there is a missing pyramid or, in the case of conical geom-
etry, a missing cone.

Double-axis tomography for plastic-embedded or negatively stained
specimens is relatively easy if the specimen will tolerate the additional elec-
tron dose (but see Chapter 1 of this volume). Even when a rotation holder
is not available, simply extracting the grid, rotating it 90° in the holder and
then collecting a second tilt series is a simple solution.The separate tilt series
can be merged into a single tomogram (Mastronarde, 1997; Penczek et al.,
1995) or merged simultaneously (Chen et al., 2001). Most of the published
work in IFM tomography has involved single-axis tilt series (Liu et al., 2004;
Schmitz et al., 1996, 1997; Taylor et al., 1999) but the early efforts on repeat
classification used a double-axis tilt series (Chen et al., 2001, 2002).

Muscle fibrils have the unique advantage that the filaments all lie in
the same orientation. Placing the filament axis parallel to the tilt axis, which
as described above is the optimal orientation for filament visibility, is rela-
tively easy. Is there any reason to use double-axis tilt series for this kind of
specimen? Current efforts on classification of repeats in IFM are using
double-axis tilt series, and the preliminary results indicate that double-axis
tomography is superior.Although single-axis tilt series with the tilt axis par-
allel to the fiber axis gives the most accurate rendition of the filament pro-
files, the cross-bridges generally run perpendicular to the filament axis, so
this orientation is least optimal for them. A second tilt series with the axis
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perpendicular to the filaments produces superior definition of the cross-
bridges even in the presence of poor filament definition. Thus, whenever
possible, double-axis tilt series are recommended if all the data must come
from a single specimen.

Double-axis tomography is quite demanding with ice-embedded spec-
imens because of the radiation sensitivity of the specimen. Double-axis
tomograms of ice-embedded specimens have been obtained (Nickell et al.,
2003), although MSA was not performed on any molecular images derived
from them. However, if averages are necessary to obtain the desired infor-
mation, and 3D images can be obtained over a wide range of orientations
within a single tomogram, or from several tomograms with different tilt axis
orientations, then single-axis tomography should be sufficient to obtain an
average whose transform samples all of Fourier space or, at worst, leaves
only a missing cone of data, provided that the volumes are uniformly dis-
tributed throughout orientation space. This has been the case with many of
the studies that have extracted molecular images from tomograms of
frozen-hydrated specimens for classification and/or averaging (Beck et al.,
2004; Förster et al., 2005; Liu et al., 2006).

The missing wedge can also affect the averages if not treated explic-
itly. In Fourier space, it is possible that the missing wedge, a region with no
data, can overlap regions with data from another volume. Averaging
without explicit treatment of the missing wedge will cause amplitude loss
at high resolution. Thus, averaging in Fourier space, where weighting
schemes can account explicitly for the missing wedge, would be necessary
to obtain the best results. Double-axis tomography alleviates this require-
ment but, in some circumstances, may not eliminate it entirely. Neverthe-
less, reducing the missing wedge to a missing cone or pyramid will have
positive effects on both alignment and classification, and is worth the addi-
tional effort if data can be obtained without heroic struggle.

10. PROSPECTS

The application of MSA to repetitive features in electron tomograms
provides a way to improve the signal-to-noise ratio even in the presence of
conformational heterogeneity.There are many potential applications where
classification can improve the quality of averages or can distinguish subtle
but functionally important differences. As described above, MSA applied
to envelope viruses has succeeded in producing higher-quality images of
envelope glycoproteins, but it could also be applied to density within the
virus, and might be used to deduce connections between the envelope pro-
teins and the underlying tegument (Grünewald et al., 2003).

The formation of protein arrays can reduce conformational variability,
but does not automatically lead to arrays with high order. Thus, electron
tomography can be used to obtain a 3D image, and MSA can be used to
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determine the number of conformers that are present in the arrays. This
philosophy has been used to produce high-quality averages of myosin V in
the inhibited state from tomograms of ice-embedded, disordered 2D arrays
after application of a focus gradient correction (Winkler and Taylor, 2003).
A resolution of 2.4 nm was obtained from ∼6,000 molecules extracted from
the tomograms (Liu et al., 2006). Thus, resolution approaching that which
is readily obtained using negative stain preservation can be achieved, even
when using ice-embedded specimens. The result illustrates the promise of
cryoelectron tomography for characterizing large-amplitude motions in
macromolecular assemblies, not in real time, but as a series of snapshots.

There are many other possible structures that have been difficult to
image in 3D in the past but can now be approached at resolutions near 2
nm, with signal-to-noise ratios that are good enough for insightful model
building.
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1-hexadecene, 56

3D Electron Microscopy, 2
3D image isotropy, 45
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3D unbending, 424
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Actin, see also under Muscle
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by Area matching, 198, 206
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Automatic ~, 198, 207
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Common origin, 129, 132
Computer vision problem, 211
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by Cross-correlation, 74, 188, 190–194,

197, 198, 204–206, 208, 210, 212
Flow-charts, 192
Polar coordinate plane, 190

Alignment (Cont.)
Covariance estimates for, 200
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Errors, 176, 422

Mean residual ~, 178, 179, 182
Random ~, 177–179
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alignment, 199, 207–210

Extrapolation, 180
Features-based, 188, 198, 200, 202,

203–205, 207–209, 211, 212
Flow-chart, 199

by Feature tracking, 198, 199, 202, 211
by Fiducial markers, 62–64, 71, 104, 207,
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by Geometric constraints, 199, 201, 202,

211
Geometry estimation, 212
Global ~, 175–176
by Gold particles, 44, 64–66, 74
by Harris corner points, 207, 208
of Imaging optics, 141
Incorrect ~, 64, 140
by Least-squares fit, 180, 203
Iterative ~, 197, 198, 206
Local ~, 174–177, 179, 181–183
Local minimum in, 212
Markerless ~, 71, 74
of Microscope, 142
effect of Missing region, 182, 421–424
Model, 178
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by Multiple linear regression, 180
by Multiple-resolution matching, 199, 200,

202, 205, 206
Multi-reference ~, 426, 427
Noise-sensitivity of, 193
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Alignment (Cont.)
by Non-linear equations, 202
Parameters, 188, 206

Optimization, 202–203, 204, 207
by Point correspondences, 200, 201, 202,

205, 212
by Point tracks, 201–203, 209
Procedures, 151
Problem, general, 189
Reference-based ~, 430, 432
Refining transformations, 175, 181, 182
Rotational (2D) ~, 190, 194, 426
based on Rigid body model, 169, 170, 172
Shift parameters, 191

Sub-pixel estimate, 194
Stretching for, 147, 148, 166, 173
Stretching variables, 175, 179
by Structural elements, 129
of Subtomograms, 121, 421, 422, 426, 429
Three-view, trifocal constraints, 200, 201,

204
of Tilt axis with optical axis, 149
of Tomograms, 118, 182
by Transformation of image, 171
Translational ~, 194, 197
Trifocal geometry estimation/Trifocal

alignment, 199, 208–210
Two-stage ~, 180
Two-view, equipolar constraint, 200, 201
Unique solution for ~, 168

Amplitude contrast, 84, 86, 87, 93, 151, 403
Analog-to-digital units, 135
Anhydrous cytosine, 92
Antistatic ionizer, 57
Apodization, 300
ART, see under Reconstruction, Algebraic

reconstruction technique
ASM, see Active shape model
Astronomy, 332
ATPase, 51, 349
Automatic focusing, 145, 147, 148

Calibration, 141
Automation of data collection, 7, 18
Average/Averaging,

of Substructures, 133
of Subtomograms, 122, 433, 435

Averaging techniques, 6, 99
3D, 118, 121
in Fourier space, 435
Variance map, 430

Axonemes, 50, 121

Bacteria, 57, 124
Bacteriorhodopsin, 93

Balbiani ring, 103
Banding pattern, 26
Bayesian rules, 388
Bayesian statistical inversion, 206
Beam tilt, 148
Bessel function, 285, 290–292

Addition theorem, 291
Kaiser ~, 232
Modified ~, 233

Bladder membrane, 35
Body-centered cubic grid, 233
Bright-field electron microscopy, 11, 150
Bundle adjustment, 199, 202
Bundling proteins, 129

Caenorhabditis elegans, 102
Calcium release channel, see Ryanodine

receptor
Calsequestrin, 124
Camera

Affine ~ model, 188
Parameter matrix, 189

Carbon support films, 65
Thermal expansion coefficient, 65

CAT scan, 1
Catalase, 35–38
CCD camera, 7, 44, 10, 178, 208, 428, 429

Correlation between pixels, 334
Dynamic range, 101, 139
Electronic readout noise, 134, 144
Fiber optics, 101, 134
Field of view, 133, 141, 143, 147
Image binning, 146
Noise/pixel, 135
Number of electrons/pixel, 135
Phosphor/scintillator, 101, 134, 137
Pixel size, 134, 135, 178
Point spread function, 134
Resolution, 133, 137
Sensitivity, 133

CCF, see Cross-correlation function
Cell,

Architecture, 114, 118, 124, 126, 154
Cortical region, 128
Critical-point-dried ~, 207
Cryo-fixation of, 125–126, 154
Cytoplasm, 128
Embedded ~, 128
Eukaryotic ~, 51, 125
Metaphase PtK ~, 376
Packing of macromolecules, 151
Prokaryotic ~, 125
Vitrified, 120, 124
Whole, 128–129, 151
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Cellular architecture, 114, 118, 124, 126
Cellular proteomics, 51
Central section theorem, see under

Projection, theorem
Centrosomes, 127
Chebyshev polynomials, 278–284, 286–288,

291, 295, 298–301, 303
Generating function, 279

Chemical fixation, 53, 125
Chironomus tentans, 103
Chloroplasts, 52
Christoffel-Darboux relationship, 282
Chromatin, 57, 103, 121, 342
Chromosomes, 373
Classification

2D, 421, 422, 428
3D, 153, 417–439
Class averages, 431, 432
Hierachical ascendant ~, 427, 430
K-means ~, 427
Mask, 426, 428, 431–433
Number of classes, 430–431
by Self-organizing maps (SOM), 428, 430

Clearing (of stained sections), 32, 34
Coating

Carbon 38, 41, 44, 60
Metal, 39
Titanium, 39, 40

Colloidal gold, 60, 61, 169
Column approximation, 105, 106
Common 1D projection, 196
Common line, 197–198, 206

Definition of, 195
Real-space interpretation of ~, 196
of Tilt series, 195, 206

Computed tomography (CT), 240
Computer vision, 198
Conformational heterogeneity, 435
Convolution theorem, 250
Contrast, 240

Reversals, 137
Contrast transfer function, see under Phase

contrast, Transfer function
Convolution, 95, 254, 257

Product, 404
Theorem, 257

Cooling rate, 52, 53, 164
Coulomb potential, 312, 403
Cormack, 3, 275, 276
Cornerness measure, 200
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Correlation theorem, 193
Cross-correlation coefficient (CCC), 348,

405, 406, 412

Cross-correlation function, 152, 164, 194,
206, 404–408, 424, 425, 433

Boundary effect, 192
Local ~, 182, 406
Local variance, 407, 408
Maximum mean score, 200
Measurement of image shift, 148
Mutual ~, 193
Nonlinear ~, 153
Normalized ~, 200, 406
Peak, 147, 148, 182, 191–194, 406, 411, 424,
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Segmentation of, 194
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414, 415
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Cryo-electron microscopy, 50, 119
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Dewar, 141
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Liquid helium, 53
Liquid nitrogen, 53, 54, 65, 141
Liquid propane, 126

Cryo-glue, 59
Cryo-holders, 40, 45, 116, 141, 150

Side-entry, 141, 142
Cryo-protectant, 53, 56, 126
Cryo-samples, see under Specimen, Frozen-

hydrated
Cryo-sections, 35, 42, 45, 52
Cryo-electron tomography, 113–161, 355
Cryo-ultramicrotomy, 51, 56–61, 74, 126
CTF, see under Phase contrast, Transfer

function
Cyanobacteria, 73
Cytoskeleton, 50, 53, 125

Actin ~, 125, 137
Filaments (segmentation), 373
Network, 128

Data collection, 141–145, 154, 218, 219,
221

Automated ~, 133, 145–151
Geometry, 218, 220, 235, 236, 246,

314
Arbitrary ~, 257
Conical ~, 9, 10, 11, 246
Double-axis ~, 9, 10?
Random-conical ~, 237, 247, 257
Saxton scheme, 45
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Data collection (Cont.)
Single-axis ~, 9, 10, 145, 236, 246, 247,

258, 260, 262
Imperfect ~, 234
Low-dose ~, 114, 119, 140
Optimal schemes for, 151
Speed, 150

Data compression, 338
Data sampling, 115
Deconvolution, 144, 251, 262
Defocus, see under Electron microscope,

Defocus
Depth of focus, 114
Desmosome, 41, 43, 69, 127
Detector, 133

Correlation between pixels, 334, 335
Detection quantum efficiency (DQE),

334
Energy-dispersive X-ray (EDX) ~,

150
Hybrid pixel ~, 101
Modulation transfer function (MTF),

334
Noise, see under Noise, Image recording

system
Devitrification temperature, 51
Dextran, 126
Diamond knife, 25, 51, 57, 74

Oscillating, 69, 74, 127
Dictostelium discoideum, 51, 125, 128, 358,

360, 434
Diffraction, see Electron diffraction
Diophanic equation, 295
Dirac delta function, 196
DISOPS, 92
Divitrification, 60
DNA, 57, 69

Filaments, 373
Dose ~, see Electron dose

DQE, see under Detectors
Drosophila, 127
Dynamical theory, 92, 93

EDX, see under Detectors, Energy-
dispersive X-ray

EELS, see under Electron energy loss,
Spectroscopy

Electrocardiograms, 338
Electron

Charge, 90
Penetrating power, 131
Rest mass, 90

Electron counting, 101
Electron crystallography, 152, 417

Electron diffraction
Diffuse scattering, 70
Fresnel ~, 70
Pattern, 54, 70, 71, 89, 90
Sharp rings in, 71

Electron dose, 331
Conventional ~, 31
Cumulative ~, 74
Fractionation, 12, 74, 332
Limits, 71
Low ~, 31, 44, 50, 51, 102, 135, 145
Minimal ~, 20, 32, 44, 65, 146
Maximum ~, 133
Rate, 32
Total ~, 136, 140, 145
Total allowed (tolerable) ~, 146, 332
Very low ~, 20, 74, 119, 129

Electron energy loss, 52
Spectroscopy (EELS), 54, 131

Electron irradiation, 117, 119
Electron microscope

Accelerating voltage, 90, 92, 94, 131
Astigmatism, 95
Back focal plane, 94
Calibration, 146
Chromatic aberration, 99, 138
Contrast formation, 130
Contrast transfer function, see under

Phase contrast
Cryogenic conditions, 119
Defocus, 95, 96, 118, 144

Accuracy of measuring ~, 148
Changes (during tilt), 99, 133, 140, 149,

150
Effect of, 130
Ramp, 148
Setting, 148
Spread, 99, 100
Unit (scherzer), 98

Dynamic effects, 93
Dynamic focusing, 100
Element-specific information, 150
Exposure time, 144

Dynamic adaptation, 144
Inverse cosine, 144

Fixed beam, 85
Focus changes, 144, 147
Illumination, 94

Conditions, 144
Intensity, 135, 144

Illuminating spot, 100
Image-forming process, 83–111, 136, 235
Image plane, 94, 95
Image simulation, 91–93
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Electron microscope (Cont.)
Incident beam, 86
Objective aperture plane, 95
Optical axis, 149
Optical system, 150
Plane conjugate to image, 95
Plane conjugate to source, 94
Point-spread function (PSF), 235, 309
Resolution, 91, 92
Spherical aberration, 95–97
Stage movement, 149
Transfer of information in, 95
Transmission ~, 102
Underfocus setting, 312

Electron optic controls
Deflection coils, 147
Mechanical controls, 147

Electron scattering
Complex scattering amplitude, 86
Cross-section, 87, 88, 94
Elastic ~, 85, 86
Inelastic ~, 85, 87, 88, 137–139
Mean free path of, 87, 88, 137
Multiple ~, 87–89, 139
Plasmon peak, 139

Electron-specimen interactions, 84, 85
Electron wave

Aberrations, 94
Chromatic, 102, 104, 136, 137
Correction, 137
Spherical ~ coefficient, 95–97, 136, 137

Coherence, 86
Spatial, 98, 100, 136, 138
Temporal, 98, 136, 138

Current density, 97
Fresnel ~ propagation, 91
Function, 94–96
Phase shift, 87, 89, 106, 131
Plane ~, 86, 98
Spherical ~, 86

Electron wavelength, 90
Elongation, due to missing wedge, 182
Embedding,

in Ice, 130
in Plastic block, 127

Endoplasmic reticulum, 72
Energy filtration

Energy (selection) window, 102–104
Imaging, 12, 125, 128, 132, 139
by In-column magnetic filter, 102
by Post-column magnetic prism, 102
Window, 138
Zero-loss ~, 73, 102, 103, 104, 131, 138,

139

Energy loss
Imaging, 68, 103, 104, 131, 137, 139

Background subtraction, 103, 104
Blurring due to chromatic aberration,

104
Most probable ~, 41, 103, 104
Negligible ~, 130
Spectrum, 102, 103, 131, 138
Zero-loss peak, 131

Energy spread, 86, 94, 98
Energy transfer, 85, 131
Envelope glycoproteins, 435
Equilibrium principle, 201
Escherichia coli, 121, 125
Etching, 38
Euclidean distance, 238
Euler/Eulerian angles, 189, 408, 413

Parametrization of, 190
Ewald sphere, 89, 91, 106
“Exact filter”, 262

F-matrix, 199
Factorization algorithm, 201
Fatty acid synthetase, 5, 7
FBP, see under Reconstruction, Back-

projection
FEG, see Field emission gun
Ferritin, 131
FIB, see under Sections, Focused ion beam

milling
Fibrinogen crystal, 26
Fick’s law, 339
Fiducial markers, 129, 163, 164, 167, 177, 181,

188
(see also Gold bead markers)
Centroid, 167, 170
Coordinates of, 165, 169, 180
Distribution of in z, 179
Localization errors of, 188
Number of, 175, 178, 179
Positions of, 173, 178, 179
Size of, 178
Tracking of, 178, 183

Field emission source/gun, 41, 44, 138
Filamentous proteins, 123
Filamentous sheets, 382
Filter (3D)

Bilateral ~, 333, 337, 343–345, 349
Edge enhancement, 347
Gaussian ~, 152, 333, 336, 339, 340, 342,

344, 345, 347, 348, 356, 363
Isotropic low-pass ~, 152
Kalman ~, 383, 385, 388
Median ~, 152, 333
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Filter (3D) (Cont.)
by Non-linear anisotopic diffusion

(NAD), 152, 333, 337, 339–343,
346–350, 356

Real-space ~, 333
Surface-enhancing ~, 377, 382
Tube-enhancing ~, 377, 379
by Wavelet transformation, 152, 333,

337–339, 346
Finder grid, 25
First Born approximation, 92
Fixation

Conventional chemical ~, 41
Glutaraldehyde ~, 21
Osmium tetroxide ~, 21

Flagella
Sea urchin sperm, 51

Fluorescence imaging, 145
Fluorescence light microscopy, 153
Focusing, 61, 147
Focus gradient correction, 436
Folds, 25
FOM, see under Reconstruction, Figure of

merit
Formvar-coated grids, 23, 38
Fourier filtering, 193
Fourier slice theorem, see under Projection

theorem
Fourier space, 115

Central section, 115, 257, 422
Coverage of, 143
Missing information in, 116, 319
Optimum sampling of, 116

Fourier transform, 3, 8, 182, 193
FRC, see under Resolution, Fourier ring

correlation
FSC, see under Resolution, Fourier shell

correlation
Fraunhofer diffraction pattern, 289
Freeze-drying, 57
Freeze-fracturing, 53
Freeze-substitution, 40, 41, 44, 52, 54, 127
Freezing

Depth of optimum ~, 54
Imperfect ~, 74
Quality of, 56
Rate of, 53, 56

Friedel symmetry, 313
Frost accumulation, 60, 65, 67

Gabor Herman, 302
Gaussian pyramid representation, 206
Gaussian quadrature, 283, 284, 298
Gaussian smoothing kernel, 200

Gegenbauer polynomials, 279, 299
Ghosts, see Null functions
Gibbs phenomena, 300
Glass knife, 25
Gold bead markers, 12, 74, 129, 132

(see also under Fiducial markers)
Movement of, 71, 72
Reconstructed ~, 176, 178

Golgi apparatus, 43, 44, 373
Cisternae, 127

Goniometer, 142, 147
Eucentric height of, 142, 147, 149
Mechanical imperfections of, 129
Non-eucentricity of, 150
Readout, 178
Tilt axis, 165

Graphite, 87
Grids

Blotting conditions for, 63
Box, 65
Carbon-coated ~, 128
Copper ~, 63, 65, 128
Folding ~, 60, 64
Glow-discharging of, 63
Molybdenum ~, 60, 63, 65
Quantifoil ~, 60, 61, 63–65

GroEL, 409, 410

HAC, see under Classification
Halobacterium salinarum, 39
Hankel transform, 292, 293, 303
Harris corner,

Detector, 205
Features, 200, 204

Heavy atoms, 105
Helical superstructure, 223
High-pressure freezing, 11, 21, 41, 44, 51, 70,

73, 126
of Bacteria, 55
of Cell suspensions, 55, 56

High-voltage EM, 6, 35, 39, 41, 44
HIV, see under Virus, Human

immunodeficiency
Hough transform, 374, 383
Hounsfield, 3, 276
Hypersurface, 379

Curvature of, 379

Ice
Amorphous ~, 50, 53
Crystalline ~, 51, 53, 54, 70, 71
Cubic ~, 53, 70
Hexagonal ~, 53, 70
High-pressure forms of, 54
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Ice (Cont.)
Mean free path in, 103
Thickness of, 52
Vitreous ~, 53, 70, 117, 137

IFM, see under Muscle, Insect flight muscle
Image

Acquisition, 145, 148
Analysis techniques, 152
Bright-field ~, 251
Cosine-stretching of, 193, 194, 205
Foreshortening, 193
Degradation, 235
Intensity gradient, 200
Low-dose ~, 100
Mean-correction of, 193
Normalized correction of, 205
Points of interest in, 200
Pre-processing, 191, 193
Processing, 120
Resolvable ~ detail, 134
Restoration, 131
Roof-top effect, 193
Rotation (during tilt series), 129, 151,

179
Quality, 182
Sampling theory, 138
Shift, 133, 141, 149, 150

Beam tilt-induced ~, 148
Controls, 149
Drift-induced ~, 148
Dynamic prediction of, 150
Electron-optical ~ settings, 149
Tracking of, 146, 150

Stretched ~, 192, 194
Transformations of, 169
Zero-loss ~, 102
Zero-padding of, 193

Imaging model, 189
Immunoglobulin, 121
Immunolabeling, 52, 207
Immunological studies, 52
IMOD (image processing package), 12, 164,

168, 175, 178–180, 208, 209, 346,
372

In-column magnetic filter, 102
Indium foil, 61, 64, 65
Integral representation of a function, 280
Interference color, 61
Intermediate-voltage EM, 6, 41, 44
Interpolation, 280–284

Gridding-based ~, 322
Iron, 131
Irradiation damage, see Radiation damage
Isosurface representation, 332, 339

Jacobi polynomials, 279
Shifted ~, 284

Jamin-Lebedeff interference system, 23

Kinematic approximation, 92, 93
Kinetochore,

Microtubules,
Plus ends of, 385–386
Segmentation of, 375, 376–392, 396

Plate, 376

Lagrange, 280
Interpolation function, 282
Polynomials, 282

Latex particles, 26
Laue zones, 28, 29, 35, 38
Least medium of squares (LMedS), 200
Leidenfrost effect, 53
Lethoceros (water bug), 418
Light meromysoin paracrystals, 26, 31
Light microscopy, 50

Fluorescent ~, 118
Linear system, 106, 249–251

Impulse response, 250, 402
Isoplanatic, 250, 254
Shift-invariance, 250

Linear transfer theory, 106, 249–251
Liposomes, 125
Liver, 57, 70
LMedS, see Least medium of squares
Local shape measure, 380

M-estimator, 203
Huber ~, 203

Mach-Zender interference microscope, 24
Macromolecules, 125, 128, 153, 223, 248, 348,

374
(see also Molecular structures)
Detection of, 411, 412
Structural signatures of, 154

Magnification, 141–143, 173, 178, 179
Accuracy of, 197
for CCD recording, 133
Change of, 129, 151, 172, 178, 187, 190,

197
Compromise in, 134
Factor, 134
Low ~, 141, 145, 149
Required ~, 143

Malahanobis distance, 204
Mammalian tissue, 52
MAP estimate, see Maximum a posteriori

estimate
Markerless alignment, 12,
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Markers (fiducial), 104, 140, 151, 163, 164
(see also Gold bead markers)
Distribution of, 183
High-contrast ~, 129
High-density ~, 132

Mass density
Distribution, 89, 136
Map, 114

Mass loss, 37, 94
Mass thickness, 86, 87, 100
Max Perutz, 3
Maximum a posteriori estimate, 389
Maximum-likelihood robust estimator

(MLRE), 201
Medical imaging, 332, 375
Medical Research Council (MRC), 3
Meiotic spindle, 174
Membrane, 50, 425

Attachment sites (for actin), 129
Cytoplasmic ~, 128
Distortion of, 54
Layers, 143
Profile, 423
Resolved ~, 177
Segmentation of, 373, 375, 392–395
Spacing, 67
Transverse tubule ~, 414

Microfilaments, 129
Microtubules, 177, 380

see also Kinetochore microtubules
Localization, 380–381
Protofilaments, 387, 390
Segmentation, 376–392

Microvillus, 207–210
Mitochondria, 50, 68, 125, 320

Cristae, 72, 73, 395
Diffusion of metabolites in, 73
Matrix of, 127
Membrane of, 69, 72, 395
Phantom ~, 219, 236, 237
Plunge-frozen ~, 73
Protein import pore of the outer ~

membrane, 125
Rat liver ~, 66, 125

MLRE, see Maximum likelihood robust
estimator

Modeling, computational, 125
Molecular machinery, 50
Molecular structure

Conformation of, 421
Detection and identification of, 152, 153,

401–416
Signature of, 408

Morphological information, 126, 152

Monochromator, 99
Monte Carlo methods, 388
Motif search, 401–416, 424–425

Automated ~, 433
by Cross-correlation, 404–408

Locally normalized ~, 402, 406, 409,
411, 414, 425

Cross-validation of, 409, 427
Detection criterion for, 410
by Grid search, 405
Mapping back, 431–433
Masks for, 406–408
Repeats in, 424, 425
Structural signatures for, 408, 410
Templates for, 402–404

Mouse hippocampus, 103
MSA, see Multivariate statistical analysis
MTF, see under Detectors
Multiple scattering, 11
Multivariate statistical analysis (MSA)

Correspondence analysis, 433
of Tomograms, 118, 153, 413, 421, 427, 431,

433–435
Multivesicular bodies, 127
Muscle

Actin
Assemblies (2D), 418–420
Filaments, 35, 419, 420, 427–429, 432,

433
Monomers, 427, 428

Actomyosin ATPase cycle, 420
Contracting ~, 427, 431, 433
Cross-bridges, 418, 419, 428–431, 433,

434
Double chevron in, 419, 420
Drosophila flight ~, 34
Electron diffraction of, 28
Fish ~, 35
Flared-X formation in, 419
Insect flight ~ (IFM), 127, 345, 418–420,

424, 426–428, 430, 431, 434
Myac layer, 418
Myofibrils, 418
Myosin

V, 436
Filaments, 420, 433
Heads, 418–420, 427–430, 433
Heterogeneous conformations of, 427
S2 domain

Rigor ~, 428, 431
Shortening, 418
Striated ~, 20, 27, 418
Target zones in, 420, 431
Thin, actin-containing filament of, 418
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Muscle (Cont.)
Thick, myosin-containing filament of, 418,

419, 428, 431, 433
Troponin complex, 427

NAD, see under Filter (3D), Nonlinear
anisotropic diffusion

National Institute of Health, 7
Nerve capillary structures, 374
Neuromuscular junction, 21
NIH Image (image processing system), 372
Nitrogen gas, 53, 59
NMR, see Nuclear magnetic resonance
Noise, 333–335

Additive, zero-mean ~, 219, 333
Amplification, 256
Bandpass-filtered ~, 410
Counting ~, 132
Denoising, 331–352, 425
Electronic ~, 117
Filters, 336–346
of Image recording system, 335
Gaussian ~, 219
Model, 235
Poisson ~ process, 235, 334
Power spectrum, 335
Propagation, 335
Reduction, 332
Residual ~ (in tomogram), 151
Salt-and-pepper ~, 336
Shot (Quantum) ~, 117, 224, 334, 335
Signal-independence of, 333, 335
Statistics, 135, 333

Nuclear magnetic resonance (NMR), 118,
152, 154

Nuclear pore complex, 51, 121, 122, 434
Nuclear pre-mRNA processing machine, 124
Nucleosome, 121
Null functions, 315
Nyquist frequency, 138, 316
Nyquist limit, 178

Object
complexity, 114
deformations, 204
potential distribution, 251, 267
spatial limits of, 287

Objective aperture, 136, 141
Angle of acceptance of, 87
Plane, 94

Objective lens
Aberrations, 94
Controls, 147
Current, 148

Omega filter, 102
Opacity, 84
Optical density, 101, 105

Saturation ~, 101
Optical path length, 285
Optical Society of America, 6
Optical transfer function, 235
Orthogonal polynomials, 276–280
Orthogonality

Definition of, 277
of Polynomials, 278
Orlov’s condition for, 313

Pancreatic beta cell, 182
Paramyosin crystals, 27
Partial (spatial) coherence, 94, 98–99
Pattern recognition, 120, 152–154
Periplasmic space, 125, 128
Phage genome, 125
Phantom cells, 411, 412
Phase contrast, 84, 86, 89–93, 105, 106, 136,

151
Imaging, 130, 332
Reversal, 144
Transfer function (CTF), 97, 136, 138, 235,

241, 308, 312, 403
Correction of, 137, 235, 237, 345
Determination of, 235
Envelope function of, 98
Estimation of, 237
First zero of, 137, 140, 144
Point-spread function, 144

Transfer theory, 136; see also under Linear
systems

Phase-grating approximation, 89–91, 106
Phase object, 105

Weak ~, 136
Phase problem, 96
Phosphorus

Detection in the cell, 102, 103
Photographic film

Correlation between pixels, 334
Emulsion, 101, 235
Field of view, 133
Grain, 235
Resolution of, 101

Plastic-embedded samples, 17–48, 175
Beam-induced changes in, 163

Plastic sections, 17–48, 25, 177, 178
Plato’s cave, 2
Plunge-freezing, 20, 21, 51, 70, 71, 125, 128
POCS, see Projection onto convex sets
Polylysine, 31, 44
Post-column magnetic prism, 102
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Potential
Coulomb ~, 84
Crystal ~, 92
Inner ~, 84
Mean ~, 85

Pre-irradiation, 44, 45
Projection

Alignment, Radon-based, 301
Angular distribution of, 308, 315–318, 320,

327
Approximation, 90, 93
of Coordinates of points, 190
Definition of, 83, 84
Directions, 194, 218, 237, 238, 254
Equations, 164–168, 170, 183
General affine ~, 189
Geometry, 211
Interpolation (in computing ~), 175
Line integral, 218, 219, 221, 267, 275
Matching, 206
Matrix, 166, 201

Affine ~, 201
Orthographic ~, 189, 202

Model, 188
Operation, 286–289
Path, 286
Polynomials, 297
Ray, 175, 195
Relationship of to object, 87, 188
SNR in, 212
Theorem, 3, 8, 10, 89, 251, 268, 313, 322,

323, 325
(also known as Fourier slice theorem or

Central Section theorem)
Transformation, 201

Projection onto convex sets (POCS) 248,
252, 314, 315, 327

Propane-jet freezing, 53
Protein arrays, 436
Protein data bank, 347
Protease, Tricorn 121
Proteasome, 118, 409, 410, 412, 413
Proteomics, 118
Pseudomonas aeruginosa, 125
PSF, see under Electron microscope, point-

spread function
Pyrodictium abyssi, 356, 358–361, 363, 366,

368, 369
Pyrodictium cannulae, 51, 125

Quadrature, 280–284
Quantum number, 295
Quasi-Newton algorithm, 207
Quaternion parametrization, 190

Radiation damage, 5, 6, 18–20, 50, 93–94,
103, 131–133, 331

of Glucose-embedded samples, 39
Ionization effect of, 18
at Low temperature, 38
Mass loss induced by, 19, 32
in Purple membrane, 38
Tolerable ~, 144

Radiation sensitivity, 38, 39, 117, 140
Radiology, 275, 310
Radon, 3, 275, 276
Radon problem, 296–302

History of, 299–302
Radon transform, 195, 262, 263, 267, 301

Inverse ~, 258, 267
Inversion formula for, 299
n-dimensional ~, 267

Random sampling consensus (RANSAC),
201

Rat liver, 72, 125
Ray transform, 313, 315, 320, 322
Reciprocal lattice, 89
Reconstruction

Accuracy of, 238
effect of Alignment errors, 176, 177, 179
Algebraic Reconstruction Technique

(ART), 12, 176, 222, 234, 237, 240, 345
ART with blobs, 221
Block ART, 231–235, 238–240
Relaxation method, 222

Angular reconstitution, 248
Artifacts in, 141, 319
Automated ~, 150
Back-projection, 169, 172, 183, 219, 220,

230, 231, 295
Bodies, 253–255, 259, 260, 269
Convolution, 246, 247, 251
Equivalence with Fourier inversion

methods, 269
Filtered ~ (FBP), 206, 209, 210, 220,

221, 230, 231, 246
Generalized, weighted ~, 180
Rays, 254
Simple ~, 248, 251, 253–258, 260, 269–271
Weighted ~ (WBP), 12, 151, 220, 231,

235, 237–240, 245–273, 332, 345
Basis functions in, 222
using Blobs, 221, 222, 231
Blurring of, 163
Conical tilt ~, 247, 259–262, 266
Convolution method of, 220
Denoising of, 12
Direct methods of, 246
Elemental ~, 103
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Reconstruction (Cont.)
Figure of merit (FOM) of, 222, 223, 235,

238–240
Filtering of, 152, 249, 251, 263
by Fourier interpolation, 114, 310, 321,

322
by Fourier methods, 246, 247, 258,

267–269
Helical ~, 417
Inverse problem of, 12, 84, 218, 313
Iterative ~, 246, 248, 252
Limited-angle problems in, 314, 327
Maximum entropy ~, 151, 333, 346
Merging of ~, 175
using Minimum energy (variance), 333,

346
with Missing cone, 239, 251, 264, 314, 319,

434
with Missing pyramid, 116, 117, 311, 314,

319, 434
with Missing wedge, 43, 116–118, 143, 251,

265, 311, 314, 319–320, 321, 336, 343,
347, 355, 405, 408, 412, 421–424, 422,
423, 425, 433, 434

Non-convex ~, 234
Number of images for, 51
Point-spread function of, 172, 176, 240,

248, 249–251, 253, 255, 257, 320
Problem, 218, 236, 276
with Orthogonal functions, 276
Quality of, 177, 183, 207
by Radon inversion, 248, 258, 267–269,

296–299, 301
Two-step ~, 262

Real-space ~, 114
Regularized ~, 345–346
Reliability/Fidelity of, 105–107, 218
Resolution of, 308
Reproducibility of, 218, 320
Scheme, 129
Segmentation of, 13
by Series expansion methods, 218, 220,

231, 246–248
Single-particle ~, 154, 182, 194, 223, 232,

236, 308, 310, 321, 358, 417, 420, 422,
425

Smoothing of, 152
Theory of, 12
Transfer function for, 248, 249–251, 255,

259, 260
Transform methods for, 218, 219
Transformation of, 181
Variance of, 408

Refraction index, 23, 31

Registration
of Structures, 181
of Volumes, 181

Relativistic correction, 90
Replica images, 20, 247
Resins

Aequon, 31
Araldite, 22, 26, 31, 33, 34, 39, 41, 44
Epon, 21, 22, 38, 39, 40, 41, 44
Epon/Araldite, 39, 44
Epoxy, 23, 25, 34, 41
Lowicryl, 34
Methacrylite, 22
Microwave stabilization of, 35
Shrinkage-resistance of, 34
Spurr’s resin, 22, 34, 39
Vestopal, 31
Viscosity of, 34

Resolution, 115, 307–330, 436
Anisotropy of, 41, 43, 117, 310
Atomic ~, 121
Best attainable ~, 140, 264
for Conical tilt geometry, 264
Criterion, 252
Dependence of ~ on noise and dose,

117
Directional ~, 325
Elongation factor (of ~ anisotropy), 116
Estimation of, 117, 320–327
for Flat extended volume, 264, 265
by Fourier ring correlation (FRC), 308,

322
by Fourier shell correlation (FSC), 117,

118, 308, 309, 311, 323, 325, 326, 349,
350, 429

Variance of, 309, 310
Gap, 153
Limiting effects, 129, 132
Measurement of, 252, 320
with Number of projections, 249
for Random and Random-conical tilt

geometry, 265
of Reconstruction, 308
resolvability, 309
for Single-axis tilt geometry, 263, 264
Theoretical ~, 143

Ribosome, 6, 69, 124, 409, 411, 415
80S, 128
Proteins, 409
Subunits, 51, 121

Rotation
3D, 190
corrections, 197
matrix, 165, 166, 189, 202, 204, 253, 260



452 INDEX

RQ-decomposition, 189
Ryanodine receptor, 124, 402, 409, 413, 414,

433

S-layer, 128
Sample ~, see also under Specimen
Sample preparation, 20–21, 42, 125–129, 154

Artifacts, 125
Chemical fixation, 52
Critical-point-drying, 207
Cryo-protection, 52
Dry mounting, 51
Frozen-hydrated ~, 114, 117–120, 154, 332
Heparin treatment, 123
Plastic-embedment, 434
Rapid freezing/freeze-substitution, 20–21,

428, 429, 431
Stain/staining, see Staining
Vitrification, 125

Sample preservation, 69, 426
Fidelity, 53

Sample shrinkage, 11, 17–48, 178
Anisotropic ~, 171
Correction of, 176
Curve, 32
Isotropic ~, 166
Lateral ~, 39
at Low temperature, 39, 45
Missing wedge, 19, 20
Oblique ~, 171, 179
Planar ~, 33, 34
Rapid phase of, 44
Uniformity of, 37, 38
in Z-direction, 34, 39, 40, 43

Sample thickness, 92, 106, 125, 129–132, 136,
197, 317

Allowable ~, 130–132
Effective ~, 116
Increase of ~ with tilt angle, 130, 143
Maximum tolerable ~, 87, 91
Measurement of, 21–31

Bennett’s method, 25, 26
Gold particle method, 28–31, 39
Interference microscopy, 22, 23, 31
Re-embedding/re-sectioning, 22, 25

Traversed ~, 285
Sarcomere, 419, 421
Sarcoplasmic reticulum, 124, 402, 409, 413,

414
Scale change, 165
Scaling,

Aspect ratio of, 189
Parameter, 202
Uniform ~, 181

Scanning (on microdensitometer)
Artifacts, 193
Inaccuracies, 235

Scanning transmission electron microscope
(STEM), 150

Scattering
Contrast, 87, 93, 100, 105
Cross-section, 94
Elastic ~, 94, 102, 103, 105, 106, 130, 132
Inelastic ~, 94 , 105, 130–132

Knock-on events, 131
Mean free path for, 131
Multiple ~, 102, 132, 136
Weak ~, 107

Schroedinger equation, 94
Scherzer focus, 98
Scintillator, 134
Section, 212

Artifacts, 59, 60, 67, 74
Banding pattern, 127
Breakage, 32
Chatter, 60, 63, 67
Collapse, 32, 33, 38
Compression, 60, 64, 67–69, 74, 127
Crevasses, 60, 66, 67, 69–72, 74, 127
Cutting, 127
Knife marks, 63, 67, 127
Shrinkage during data collection, 127
Surface ~, 71
Tears, 70
Striations, 67

Attachment of, 63, 65, 66, 140
Collection/mounting of, 61, 64
Cutting speed for, 67
Cutting temperature, 60
Freezing quality of, 74
Frozen-hydrated ~, 53–57, 60, 61, 63–65,

67, 69–71, 73, 125, 126–127, 140
by Focused ion beam (FIB) milling, 74
Mass loss in, 65
Plastic ~, 41, 54, 65, 69
Quality of, 60
Surface roughness of, 64
Thickness, 52
Thick ~, 248
Thin ~, 247
Tissue ~, 57, 125
Tokuyasu method for, 57
Topology of, 60, 64, 65
Unfixed tissue ~, 57
Vitrified ~, 45, 51, 52

Segmentation, 151, 152, 344, 346, 348,
353–370, 371–399

Active contour method of, 373
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Segmentation (Cont.)
Active shape model (ASM), 374, 374,

383–385, 389
Automated ~, 376, 391, 392
Binary morphological operations, 358–361
Closing, 361
Constrained deformable modeling, 374
Contour-based ~, 354, 355, 372, 373, 387
Contour grouping, 374, 375
Deformable contouring, 375, 392, 293–294
Deformable template, 374
Dilation, 360, 361
Edge detection, 354, 374
Eigenvector-based, 366–369
Energy minimization, 392, 393
Erosion, 360, 361
Evolutionary minimization, 394
Fully automated ~, 373
Gradient vector diffusion, 373
Graph-cut method, 373
Hierarchical ~, 366–369
Intelligent scissors, 362
Level sets, 361, 364, 373
Local shape measure, 380
Manual ~, 361–362, 372–373
Mask, 354, 356, 357, 361
Model-based ~, 371–399
Opening, 361
Oversegmentation, 362
Probabilistic tracing method, 377
Radial slicing, 386, 387
Region-based ~, 354, 355
Rigid modeling, 374
Semi-automated ~, 373
Shape recovery, 354
Smoothness constraint, 383, 394
Snakes, 363–366
Statistical shape modeling, 374
Structural elements, 360
Thinning method, 381
Thresholding, 357–358, 362, 367
Tubular structures, 380
Visualization of, 356–357
Watershed transform, 362–363, 373

Serial sections, 23, 372
Shannon’s sampling theorem, 251, 252,

263
Signal processing, 193, 232, 295
Signal recovery, 218
Signal-to-noise ratio (SNR), 71, 74, 100, 106,

117, 132, 144, 151, 238, 332, 351, 355,
372, 377, 394, 403, 410, 421, 425–428,
430, 431, 433–436

Enhancement by filtration, 152, 350

Simultaneous iterative reconstruction
technique (SIRT), 206

Sinc-functions, 257, 258, 260
Single-particle

Averaging, 334
Reconstruction, see under Reconstruction
Techniques, 1, 6, 50, 117, 121, 206, 411, 412
Tomography, 405

Single-scattering approximation, 92
SIRT, see Simultaneous iterative

reconstruction technique
Skew angle, 166, 169, 179, 189
Skin, 57, 73
Slam-freezing, 20, 21, 53
SNR, see Signal-to-noise ratio
Solvent-flattening, 252
SOM, see under Classification, Self-

organizing maps
Source,

Coherence of, 105
Effective ~, 94
Finite ~, 98

Spatial frequency spectrum, 97
Specimen

Accumulated shift of, 147
Aggregation form of, 223
Area of interest in, 145, 146
Changes of, 165, 170, 180, 183
Critical-point dried ~, 212
Cryo- ~, 248
Cryo-fixed ~, 114
Crystalline ~, 84, 92
Damage, 136 (see also Radiation damage)

Tolerable ~, 144
Drift,

Compensation of, 146–148
Continuous ~, 141
Rate at high tilt, 141

Elemental composition, 131
Embedding, 235
Frozen-hydrated ~, 114, 117–120, 154,

332
Ice-embedded ~, 139, 336, 425, 436
Holder, 136, 147, 149
Movement of (during tilting), 129, 140,

141, 145, 147
Compensation for, 147
Mathematical model of, 148, 149
Reproducibility of, 148

Non-periodic ~, 91, 92
Preparation, see under Sample

preparation
Paracrystalline ~, 417–439
Rotation, 150, 172, 173, 178, 181
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Specimen (Cont.)
Sensitivity of ~ to electron beam, 132,

145, 151, 246
Slab geometry of, 264–266, 316, 319, 320,

327
Stained ~, 84, 94, 105, 252
Stretch, 166, 173, 179
Thickness, see under Sample,

Thickness
Thinning, 166, 169, 173, 179
Transparency function, 89, 90, 96, 106
Unstained ~, 105, 119
Weakly scattering ~, 96
Whole mounts, 212

Spectral signal-to-noise ratio (SSNR),
307–309, 311, 312

3D ~, 310, 321, 322, 323, 326–328,
426

Estimation of, 320, 322–327
Relationship with FSC, 308, 309
Variance of, 309

Spherical harmonics, 301, 405, 415
SPIDER (image processing package), 140,

206, 301, 347, 372
Spindle pole body, 123, 125
Spiny dendrite, 102, 104
Spiroplasma melliferum, 51, 125, 140
SSNR, see Spectral signal-to-noise ratio
Stain migration, 94
Staining, 52, 125, 127

Aluminum molybdate, 35, 136
Copper-lead, 103
Cryo-negative ~, 136
Heavy-atom ~, 105
Methyl cellulose/uranyl acetate, 42
Negative ~, 87, 428
Selective ~, 52
Tannic acid/uranyl acetate, 428
Uranyl acetate, 36

STEM, see Scanning transmission electron
microscope

STERECON (stereo-contouring system),
372

Step function, 257
Stereo-microscope, 64
Stereo-pair, 66
Structure-from-motion problem, 211
Structure variance, 433
Sulfolobus, 128
Support films, Functionalization, 74
Symmetries, 5
Synaptic cleft, 125
Synaptic macromolecules, 51
SYNU (surface-rendering system), 372

T-cell lymphocyte, 173
T4 phage, 124, 125

Tail, 3, 5
Template matching, 152, 374
Tensor,

Affine ~, 201
Structure ~, 340, 343
Trifocal ~, 201

Thermoplasma acidophilum, 102, 103,
120–122, 236

Thermosome, 236, 237, 362, 409, 410, 412
Tilt angle

Accuracy of, 197
Maximum ~, 116, 311, 316, 319, 321,

355
Tilt axis, 148

Angle of (in x-y plane), 168
Displacement of ~ from optical axis, 149,

150
Orientation of, 208, 210

Tilt series/Tilt geometry,
Absolute orientation of, 197
Acquisition of, 150
Angular increments, 115, 143, 149, 152,

236, 252
Collection of, 136, 148
Conical ~, 311, 312, 314, 323, 424
Dose fractionation, 132, 133
Double ~, 182, 183, 204, 311, 312, 314, 316,

318, 323, 424
Geometric consistency of, 175
Non-equidistant ~, 116, 143, 316
Pre-calibration of, 148, 149
Random-conical ~, 247, 257
Range of, 4, 65, 103, 116, 143, 148, 266
using Saxton scheme, 143, 316, 317

Tilt stage/tilt experiment, 99
Double-axis, 10, 41, 43, 44, 45, 60, 64, 65,

116, 117, 141, 152, 164, 180–183, 434,
436

Side-entry ~, 10
Tilt-rotation ~, 10

Time-resolved experiments, 126
Tissue , 125, 126

Freezing of, 53
Frozen-hydrated ~, 73
Soft animal ~, 56, 73
Vitrified ~, 120

Transverse-tubules, 124
Triad junction, 51, 121, 124, 133, 140
Tricorn, 121, 122, 130
Tropomyosin paracrystals, 31
Trust region method, 202
TV-rate camera, 65
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Ultramicrotome, 21, 22, 127
Unscattered electrons, 130, 131, 137

Variable metric minimization, 168
VAT, 349
Vesicles, 125, 139

Phospholipid ~, 409, 412, 413, 423
Segmentation of, 373

Vibrating knife, see under Diamond knife,
Oscillating

Virus, 51
Enveloped ~, 433, 434
Glycoprotein surface spikes (Env), 433
Herpes simplex ~, 124, 140
Human immunodeficiency ~ (HIV), 124
Icosahedral ~, 223
Large ~, 124
Retro~ envelope glycoprotein, 124
Semliki forest ~, 301
Simian Immunodeficiency ~, 434
Vaccinia ~, 125, 133

Visualization,
of density map, 332

Vitrification
Depth, 53
Speed, 126
Temperature, 52

Vitrified sample, 133
Volume

(see also under Reconstruction)
Constraint, 252
Heterogeneous ~, 164
Missing region (in Fourier space), 182, 183
Rendering, 332

Volume (Cont.)
Rigid rotation of, 182
Seamless transformation of, 182
Segmentation of, 332
Warping of, 182

Walter Hoppe, 5, 6
Wavelet transformation (WT), 337–339

Anisotropic invariant, 377–378
WBP, see under Reconstruction, Back-

projection
Weak phase (object) approximation, 92, 312
Weak scattering approximation, 98
Weighting functions, see under

Reconstruction, Back-projection,
Weighted

Weingarten matrix, 379, 382
Whole cell imaging, 124
Window function, 262
WT, see Wavelet transformation

XMIPP (image processing package), 236
X-rays, 84
X-ray crystallography, 50, 118, 152, 154, 252,

295, 374, 401
X-ray structure, 252, 403, 412
X-ray tomography, 84

Yeast, 52, 73
Spindle pole body, 121

Zernicke polynomials, 284, 288, 293–295,
300, 303

Generating function for, 294
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Chapter 2, FIGURE 1. Cryochamber of an UCT ultramicrotome with an EM-FCS cryo
kit (Leica, Vienna, Austria). The chamber is cooled to –160°C and is filled with cold,
dry nitrogen vapor. One of the two auxiliary fiber-optic illuminators is seen, labeled
(F). The specimen is held in the chuck (C). The knife stage is shown positioned for
trimming, with the diamond trimming tool (T) adjacent to the specimen. For micro-
tomy, the sectioning knife (K) is moved in front of the specimen, and a brass shelf (S)
is pushed forward so that it is close to the knife edge. The shelf, fabricated in-house,
provides a surface for collecting sections. Both diamond knives (T and K) are from
Diatome (Biel, Switzerland). The head of the ionizer unit (I; Static Line II, Haug, Biel,
Switzerland) is mounted ∼3 cm from the knife edge. The glass screw press tool is
mounted at (P). 
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Chapter 2, FIGURE 2. Trimming of high-pressure frozen specimens. (a) A 3 mm diam-
eter aluminum specimen carrier for the HPM010 high-pressure freezer (Bal-Tec,
Balzers, Liechtenstein) is shown, before and after trimming. The upper portion of the
carrier has been removed, revealing the specimen and allowing inspection for air
bubbles and suitable areas for microtomy. (b) A top view of the trimmed specimen
carrier shows the trimmed block face, which is shaped like a low mesa (arrowhead),
100 μm square, as seen within a 250 μm graticle square of the stereomicroscope. (c)
With the chuck rotated 90° from its position in (b), the diamond trimming tool is used
to cut a 45° bevel in the metal on the bottom of the specimen carrier, leaving a thin
ridge of specimen from which the mesa (arrowhead) has been cut. (d) Bottom view
of the trimmed specimen carrier. The specimen is well supported during microtomy
by the remaining metal bevel (*). The mesa is indicated by an arrowhead.
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Chapter 2, FIGURE 3. Collection and mounting of sections. (a) A ribbon of sections
is cut, and then the knife is moved laterally. A series of ribbons is thus collected on
the knife edge. Faint gold interference color can be seen in most sections, indicating
a thickness of ∼140 nm. In places, a purple color is seen, corresponding to a thickness
of ∼180 nm. Some sections are curled at the edges, or wrinkled. (b) A Quantifoil grid
is placed on a fresh piece of indium foil, just adjacent to the knife edge, and sections
are transferred to the center of the grid by means of a dog hair. (c) When folding grids
are used, the indium foil is pre-folded to a 90° angle and, after placement of the sec-
tions, the indium foil is used to push the grid closed. (d) After the grid is latched, the
indium foil is folded closed and the ‘envelope’ (arrow) is pressed with the polished
metal rod (white arrow at left). (e) Quantifoil grids (arrows) are placed, still supported
on indium foil, in the glass press tool. An impression of the grid squares in the indium
foil indicates the evenness of pressing. 
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Chapter 4, FIGURE 5. Isolated triad junctions. Stereo-pairs of a surface-rendered rep-
resentation of a tomographic reconstruction of a triad junction. Sarcoplasmic reticu-
lum- (SR) and transverse tubule-derived vesicles are shown in green and red,
respectively. Yellow spheres in the lumen of the SR represent calsequestrin, and con-
tinuous yellow slabs near junctional surfaces of the SR represent the condensed calse-
questrin. Blue structures correspond to feet/ryanodine receptors. (From Wagenknecht
et al. (2002), reproduced with permission of the Biophysical Society).
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Chapter 4, FIGURE 6. Cytoskeletal network of a Dictyostelium discoideum cell. (A)
Three-dimensional volume rendering representation of a cortical region of the cyto-
plasm (400 × 870 × 97 nm) showing the actin filament network (reddish), membranes
(blue) and cytoplasmic macromolecular complexes (green), many of them resembling
80S ribosomes in size and shape. (B) Visualization of the network of actin filaments.
(C) Idealized representation of the actin network region marked in (B) at a resolution
of 2 nm using the 3D density map obtained from the atomic model of an actin fila-
ment. (D) Docking of the atomic model of actin into the density map of an actin fila-
ment. (Panel A adapted from Medalia et al. (2002b); panels B–D reproduced from
Kurner et al. (2002) with permission by Elsevier).
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Chapter 12, FIGURE 11. Segmentation of a slice from Pyrodictium using level sets
according to the procedure described by Bajaj et al. (2003).
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Chapter 12, FIGURE 13. Segmentation of a slice from the tomogram of Pyrodictium
using the eigenvector method. The original slice is overlaid with contour plots of the
segmentation. The three main features on the image are seen to be separated from
one another. (From Frangakis et al. (2002), reproduced with permission of Elsevier).
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Chapter 12, FIGURE 14. Eigenvector-based segmentation presented in Fig. 13, visu-
alized in three dimensions. (From Frangakis et al. (2002), reproduced with permission
of Elsevier).

Chapter 14, FIGURE 6. Segmented and denoised 3D image of a vesicle containing
two types of macromolecules, visualized in different colors. In the isosurface visuali-
zation, two vesicles (in beige) surrounded by the carbon film (in gray) are shown. In
the larger vesicle, the two different macromolecular complexes were located and pos-
itively identified, and were then replaced with their low-pass-filtered X-ray structure.
Proteasomes are shown in orange and thermosomes in blue. (From Frangakis et al.
(2002), reproduced wth permission of the National Academy of Sciences).
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