

PERSPECTIVES IN
CONTROL ENGINEERING

IEEE Press
445 Hoes Lane, P.O. Box 1331

Piscataway, NJ 08855-1331

IEEE Press Editorial Board
Robert J. Herrick, Editor in Chief

M. Akay
J. B. Anderson
P. M. Anderson
J. E. Brewer

M. Eden
M. E. El-Hawary
R. F. Hoyt
S. V. Kartalopoulos
D. Kirk

M. Padgett
W. D. Reeve
M. S. Newman
G. Zobrist

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor

John Griffin, Acquisitions Editor
Robert Bedford, Assistant Acquisitions Editor

Anthony VenGraitis, Project Editor
Marilyn Catis, Marketing Manager

IEEE Control Systems Society, Sponsor
CSS Liaison to IEEE Press, Bruce M. Krogh

Cover design: William T. Donnelly, WT Design

Technical Reviewers
Bruce H. Krogh, Carnegie Mellon University, Pittsburgh, PA

Dr. Michael K. Masten, Texas Instruments, Plano, TX
Harris N. McClamroch, University of Michigan, Ann Arbor, MI

Siva S. Banda, Wright Patterson AFB, OH

Books of Related Interest from the IEEE Press

THE CONTROL HANDBOOK
Edited by William S. Levine
A CRC Handbook published in cooperation with IEEE Press
1995 Hardcover 1,568 pp IEEE Order No. PC5649

INTELLIGENT CONTROL SYSTEMS: Theory and Applications
Edited by Madan M. Gupta and Naresh K. Sinha
1996 Hardcover 865 pp IEEE Order No. PC4176

ISBN 0-8493-8570-9

ISBN 0-7803-1063-2

UNDERSTANDING ELECTRO-MECHANICAL ENGINEERING: An Introduction to
Mechatronics
Lawerence J. Kamm
1996 Softcover 416 pp IEEE Order No. PP3806 ISBN 0-7803-1031-4

ROBUST VISION FOR VISION-BASED CONTROL OF MOTION
Edited by Markus Vincze and Gregory D. Hager
2000 Hardcover 272 pp IEEE Order No. PC5403 ISBN 0-7803-5378-1

PERSPECTIVES IN
CONTROL ENGINEERING

Technologies, Applications, and New Directions

Tariq Samad
Honeywell Technology Center
Minneapolis, MN

IEEE Control Systems Society, Sponsor

+ IEEE
PRESS

The Institute of Electrical and Electronics Engineers, Inc., New York

This book and other books may be purchased at a discount
from the publisher when ordered in bulk quantities. Contact:

IEEE Press Marketing
Attn: Special Sales
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 0885-1331
Fax: + 1 732 981 9334

For more information about IEEE Press products, visit the
IEEE Online Catalog & Store at http://www.ieee.org/iceestore.

©2001 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, 17th Floor, New York, NY 10016-5997

All rights reserved. No part of this book may be reproduced in any form,
nor may it be stored in a retrieval system or transmitted in any form
without written permission from the publisher.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2

ISBN 0-7803-5356-0
IEEE Order No. PC5798

Library of Congress Cataloging-in-Publication Data

Samad, Tariq.
Perspectives in control engineering: technologies, applications, and new directions Tariq

Samad.
p. em.

"IEEE Control Systems Society, sponsor."
Includes bibliographical references and index.
ISBN 0-7803-5356-0
1. Automatic control. 2. Control theory. I. IEEE Control Systems Society. II. Title.

TJ213 .S1145 2000
629.8-dc21

00-038854
CIP

CONTENTS

Introduction xvii

Acknowledgments xxiii

PART I CONTROL TECHNOLOGIES

CHAPTER 1 REAL-TIME COMPUTING AND CONTROL 1
Scott Bortoff

Editor's Summary
1.1 Introduction 1

1.1.1 Background 2
1.2 Timing Is Everything 4
1.3 Low-Level Real-Time Programming 6

1.3.1 Fixed-Priority Scheduling Theory 8
1.3.2 Data Dependence 10

1.4 Real-Time Operating Systems and Programming
Languages 11
1.4.1 Real-Time Operating Systems at Run-Time 13

1.5 Hardware Issues 17
1.5.1 Desktop PCs 17
1.5.2 Single-Board Computers 17
1.5.3 Digital Signal Processors 18
1.5.4 Programmable Logic Controllers 18

1.6 Conclusion 19
References 19

CHAPTER 2 DISCRETE-EVENT SYSTEMS AND THEIR
OPTIMIZATION 20
Edwin K. P. Chong

Editor's Summary 20
2.1 Introduction 20
2.2 Discrete-Event Systems 22

2.2.1 What Is a System? 22
2.2.2 What Is a Discrete-Event System? 23
2.2.3 Why the Need for Discrete-Event Systems? 24

2.3 Some Discrete-Event System Models 25
2.3.1 State Trajectory of a Discrete-Event System 25
2.3.2 State Model of a Discrete-Event System 26

2.3.2.1 State Machines 26
2.3.2.2 Nondeterministic State Machines 27
2.3.2.3 Markov Chains 28

v

vi

2.3.2.4 State Machines and Discrete-
Event Systems 29

2.3.3 State Models with Event Clocks 29
2.3.3.1 Event Clocks 30
2.3.3.2 Discrete-Event Simulations 32
2.3.3.3 Markov and Semi-Markov

Processes 32
2.4 Optimization of Discrete-Event Systems 33

2.4.1 What Is Optimization? 33
2.4.2 Gradient Algorithms for Optimization 34
2.4.3 Gradient Estimation 35
2.4.4 Online Optimization 37

2.4.4.1 Basic Idea 37
2.4.4.2 Example Application 37

2.5 Further Reading 40
Acknowledgments 40
References 40

CHAPTER 3 COMPUTER-AUTOMATED CONTROL SYSTEM
DESIGN 42
Georg Griibet

Editor's Summary 42
3.1 Introduction 42
3.2 Control Design Life Cycle to Be Supported by CACSD 45
3.3 Design Modeling and Synthesis Algorithms 47

3.3.1 Physical System Modeling 48
3.3.2 Synthesis Algorithms and Controller Modeling 51
3.3.3 Performance Evaluation Setup 53

3.4 Quality Modeling for Design Analysis and Decision
Making 54
3.4.1 Quality Functions 56
3.4.2 Feasible Design and Competing Requirements 58
3.4.3 Visualization for Comparative Design

Exploration 59
3.5 Automatic Tuning and Declarative Compromising 60

3.5.1 Automated Tuning by Multi-Objective Parameter
Optimization 62

3.5.2 Declarative Compromising 63
3.5.3 Robust Control Laws by Multimodel

Compromising 66
3.6 Further CACSD Technology 66

Acknowledgments 69
References 69

CHAPTER 4 SYSTEM MODELING 71
Pradeep Misra
Editor's Summary 71
4.1 Introduction 71

4.1.1 Historical Perspective 72
4.1.2 Modeling and Control 73
4.1.3 Classification 73

4.2 Static Models 75
4.2.1 Linear Models 75
4.2.2 Nonlinear Models 77

4.3 Dynamical Models 79

Contents

Contents vii

4.3.1 Lumped Parameter Models 80
4.3.2 System Identification 82

4.3.2.1 Transfer Function Models 83
4.3.2.2 State Space Models 84

4.3.3 Model Reduction 86
4.3.3.1 Modal Truncation 86
4.3.3.2 Singular Perturbation 86
4.3.3.3 Balanced Reduction 87

4.4 Nonlinear Dynamical Systems 88
4.4.1 Common Effects of Nonlinearities 89
4.4.2 Linearization 92

4.4.2.1 Local Linearized Approximation 92
4.4.2.2 Describing Function Approximation 93
4.4.2.3 Feedback Linearization 95

4.5 Models of Distributed Parameter Systems 95
4.5.1 Classification of PDEs 96
4.5.2 Finite Difference Models of PDEs 97

4.5.2.1 Explicit Models
(Forward Differences) 98

4.5.2.2 Implicit Models
(Backward Differences) 99

4.6 Macromodels: Scope and Future 99
4.7 Remarks 101

Acknowledgment 102
References 102

CHAPTER 5 INTELLIGENT CONTROL: AN OVERVIEW OF
TECHNIQUES 104
Kevin M. Passino

116

120
121

110
113

106

105

Editor's Summary 104
5.1 Introduction 104
5.2 Intelligent Control Techniques

5.2.1 Fuzzy Control 105
5.2.1.1 Fuzzy Control Design
5.2.1.2 Ship Example 109
5.2.1.3 Design Concerns 109

5.2.2 Neural Networks 110
5.2.2.1 Multilayer Perceptrons
5.2.2.2 Training Neural Networks
5.2.2.3 Design Concerns 115

5.2.3 Genetic Algorithms 116
5.2.3.1 The Population of Individuals
5.2.3.2 Genetic Operators 117
5.2.3.3 Design Concerns 118

5.2.4 Expert and Planning Systems 119
5.2.4.1 Expert Control 119
5.2.4.2 Planning Systems for Control

5.2.5 Intelligent and Autonomous Control
5.3 Applications 122

5.3.1 Heuristic Construction of Nonlinear
Controllers 122
5.3.1.1 Model-Free Control? 122
5.3.1.2 Example: Vibration Damping in a

Flexible-Link Robot 123
5.3.2 Data-Based Nonlinear Estimation 124

viii

5.3.2.1 Estimator Construction
Methodology 124

5.3.2.2 Example: Automotive Engine Failure
Estimation 125

5.3.3 Intelligent Adaptive Control Strategies 126
5.3.3.1 Fuzzy, Neural, and Genetic Adaptive

Control 126
5.3.3.2 Example: Adaptive Fuzzy Control for

Ship Steering 128
5.4 Concluding Remarks: Outlook on Intelligent Control 130

Acknowledgments 132
References 132

CHAPTER 6 NEURAL, FUZZY, AND APPROXIMATION-BASED
CONTROL 134
Jay A. Farrell and Marios M. Polycarpou
Editor's Summary 134
6.1 Introduction 134

6.1.1 Components of Approximation-Based Control 135
6.1.1.1 Control Architecture 135
6.1.1.2 Approximator 136
6.1.1.3 Stable Training Algorithm 137

6.1.2 Problem Statement 138
6.1.3 Discussion 139

6.2 Control Architectures 140
6.2.1 Indirect Methods 141
6.2.2 Direct Methods 142

6.3 Approximator Properties 142
6.3.1 Universal Approximator 14J
6.3.2 Parameter (Non)Linearity 145
6.3.3 Best Approximator Property 147
6.3.4 Generalization 147
6.3.5 Extent of Influence Function Support 149

6.3.5.1 Approximators with Local Influence
Functions 149

6.3.5.2 Lattice-Based Approximators 151
6.3.5.3 Curse of Dimensionality 151

6.3.6 Approximator Transparency 151
6.4 Parameter Estimation: Online Approximation 152

6.4.1 Parametric Models 152
6.4.2 Gradient Algorithms 155
6.4.3 Least-Squares Algorithms 157
6.4.4 Lyapunov-Based Algorithms 158
6.4.5 Robust Learning Algorithms 160

6.5 Conclusions 162
References 163

CHAPTER 7 SUPERVISORY HYBRID CONTROL SYSTEMS 165
Michael D. Lemmon

Contents

Editor's Summary 165
7.1 Introduction 165
7.2 Examples of Supervisory Hybrid Systems

7.2.1 Switched Dynamical Systems
7.2.2 Asynchronous Sequential Circuits

7.3 Hybrid Automaton 170

166
167

169

Contents

7.3.1 Definition of the Hybrid Automaton 171
7.3.2 Robotic System Example: Revisited 174

7.4 Hybrid Specifications 177
7.5 Hybrid System Analysis 179
7.6 Hybrid Control System Synthesis 183
7.7 Summary 185

Acknowledgments 186
References 186

CHAPTER 8 VARIABLE STRUCTURE AND SLIDING-MODE
CONTROL 189
Fumio Hamano and Younchan Kim

Editor's Summary 189
8.1 Introduction 189
8.2 Basic Idea of Sliding-Mode Control 193

8.2.1 Tracking Problem and Tracking Error
Dynamics 193

8.2.2 Choosing a Sliding Surface (or Line) 194
8.2.3 Control Law to Confine the State on the Sliding

Surface 194
8.2.4 Control Law for Reaching the Sliding Surface

(and Staying on It) 195
8.2.5 Robust Sliding-Mode Control 195
8.2.6 Generalized Lyapunov Function 196
8.2.7 Preventing Chattering by Continuous

Approximation 197
8.3 Sliding-Mode Control: General Case 198

8.3.1 Problem Formulation 199
8.3.2 Sliding Surface 200
8.3.3 Robust Sliding-Mode Control 201
8.3.4 Continuous Approximation to Avoid

Chattering 203
8.3.5 Example: Single Degree of Freedom Robot 203

8.4 Sliding-Mode-Like Control For Sampled Data
Control Systems 206

8.5 Concluding Remarks 216
References 216

CHAPTER 9 CONTROL SYSTEMS FOR IICOMPLEXITY
MANAGEMENT" 218
Tariq Samad

Editor's Summary 218
9.1 Introduction 218

9.1.1 Control Systems: Domain Knowledge and Solution
Technologies 219

9.2 Control and Automation Tomorrow: Toward
Complexity Management 221

9.3 Objectives for Control and Automation 221
9.3.1 Human and Environmental Safety 222
9.3.2 Regulatory Compliance 223
9.3.3 Time and Cost to Market 223
9.3.4 Increased Autonomy 224
9.3.5 Other Criteria: Yield, Capacity, Efficiency,

and More 224
9.4 Emerging Control Technologies for Complex Systems 225

ix

x Contents

9.4.1 Randomized Algorithms 225
9.4.2 Biologically Motivated Control 226
9.4.3 Complex Adaptive Systems 227
9.4.4 Distributed Parameter Systems 228

9.5 New Application Opportunities for Control and
Automation 228
9.5.1 Large-Scale and Enterprisewide Optimization 228
9.5.2 Integration of Business and Physical Systems 229
9.5.3 Autonomous Vehicles 229
9.5.4 Data Mining and Intelligent Data Analysis 231
9.5.5 Control Systems and the World Wide Web 231

9.6 Schools of Complexity Management 231
9.6.1 Human and Environmental Safety: Forfeiture

and Risk Assessment 232
9.6.2 Efficiency in Design: System Engineering and

Virtuality 233
9.6.3 Nature and Biology: Evolution, Emergence, and

Power Laws 234
9.6.4 Societal Connections 235

9.7 Conclusions 236
References 237

PART II CONTROL APPLICATIONS

CHAPTER 10 CONTROL OF MULTIVEHICLE AEROSPACE SYSTEMS 239
Jorge Tierno, Joseph Jackson, and Steven Green

Editor's Summary 239
10.1 Introduction 239
10.2 Future Controls Applications and Challenges in ATM 241

10.2.1 Preliminaries: Airspace and Air Traffic
Management 241

10.2.2 Air Traffic Capacity Management in the Presence
of Disturbances 242
10.2.2.1 Initial Conditions and Framework 243
10.2.2.2 Control Variables 244
10.2.2.3 State Variables 244
10.2.2.4 Disturbances 245
10.2.2.5 Control System 245

10.2.3 Enabling User Preferences in a Safety-Constrained
ATM System 246
10.2.3.1 Development of Distributed

Separation Assurance Procedures 247
10.2.3.2 ATM Considerations 247
10.2.3.3 Flight Deck Considerations 248
10.2.3.4 Airline Operating Center (AOC)

Considerations 248
10.2.4 "Executing to Plan" in Constrained Airspace:

Terminal Area Operations 249
10.3 Example 2: Uninhabited (Combat) Air Vehicles 249

10.3.1 Inter-Fleet and Central-Command-to-Fleet
Communications 250

10.3.2 Safety Analysis and Conflict Resolution 251
10.3.3 Autonomy 252

10.4 Example 3: Formation Flying and Satellite Clusters 253
10.4.1 Multi-Agent Systems and Decentralized

Contents

Distributed Control 254
10.4.1.1 Emergent Behavior 255
10.4.1.2 Flocking 255
10.4.1.3 Market-Oriented Programming 255

10.4.2 Distributed Processing 255
10.5 Conclusions 256

Acknowledgments 257
References 257

CHAPTER 11 AFFORDABLE FLIGHT CONTROL FOR AIRCRAFT
AND MISSILES 259
Kevin A. Wise
Editor's Summary 259
11.1 Introduction 259
11.2 Aircraft and Missile Dynamics and Linear Models 260
11.3 Simulation Tools 268
11.4 Flight Control System Design 269

11.4.1 Aircraft Control Law Design Using Dynamic
Inversion 270

11.4.2 Missile Control Law Design Using Linear
Quadratic Optimal Control 273

11.4.3 Zero Shaping to Improve Control System
Design 279

11.5 Analysis Tools 281
11.5.1 Linear Analysis Models 281
11.5.2 Performance Analysis 283
11.5.3 Robustness Analysis 283

11.6 Digital Implementation, Reusable Software, and
Autocode 286

11.7 Flight Control Challenges in the Twenty-First Century:
Unmanned Aircraft 287
References 290

CHAPTER 12 INDUSTRIAL PROCESS CONTROL 291
MichaelA. Johnson and Michael J. Grimble
Editor's Summary 291
12.1 Introduction 291
12.2 Industrial Process Control Technology: State of the Art 292

12.2.1 The Information Technology Infrastructure
for Process Control 293

12.2.2 Process Control Applications Software 294
12.2.2.1 Control Application Suite 1 294
12.2.2.2 Control Application Suite 2 295
12.2.2.3 Control Application Suite 3 295

12.2.3 Data Communications and Standards 296
12.2.4 Summary Conclusions 296

12.3 Organizing Process Control Applications/Production
Processes 297
12.3.1 The Industrial Operations Hierarchy: Strategy

Issues 297
12.3.2 The Industrial Operations Hierarchy: Information

Issues 299
12.4 Performance Monitoring 300

12.4.1 Statistical Process Control 301
12.4.2 Performance Quality Indices 302

xi

xii Contents

12.4.3 Benchmarking Process Control 305
12.4.4 Summary Conclusions 306

12.5 Industrial Three Term Control 306
12.5.1 The Sustained Oscillation Procedure 307

12.5.1.1 Procedure 1: Method of Sustained
Oscillation 308

12.5.2 Why Autotune? 309
12.5.2.1 Problems with Ziegler-Nichols PID

Tuning 309
12.5.2.2 A Technology Changeover in the

1980s 310
12.5.2.3 Process Controller Technology

Today 310
12.5.3 The Relay Experiment 310

12.5.3.1 Nonparametric Identification by Relay
Experiment 311

12.5.3.2 PID Control 311
12.5.3.3 Procedure 2: The Relay Experiment 312

12.5.4 Recent Directions for Industrial PID 312
12.6 Adaptation and Robustness 313

12.6.1 Adaptation 313
12.6.2 Robustness 313

12.7 Aspects of Global System Optimization 314
12.7.1 The Supervisory System Command Structure 315

12.7.1.1 Low-Level Control Strategies 315
12.7.1.2 Dynamic Setpoint Maneuvers 315
12.7.1.3 Setpoint Optimization and Load

Management Strategy 316
12.7.2 Model-Based Predictive Control 316

12.7.2.1 The Basics of Model-Based Predictive
Control 317

12.7.2.2 A Process Model 317
12.7.2.3 A Predictive Model Equation 317
12.7.2.4 A Process Cost Function 317
12.7.2.5 A Receding Horizon Control

Philosophy 318
12.7.2.6 Some MPC Tuning Parameters 318
12.7.2.7 The Two Key Advantages of MPC 318
12.7.2.8 MPC Architectures 319
12.7.2.9 Finally, the Industrial Varieties of MPC 319

12.8 Conclusions 319
Acknowledgements 321
References 321

CHAPTER 13 POWER SYSTEM CONTROL AND ESTIMATION
IN A COMPETITIVE ENVIRONMENT 324
Christopher L. DeMarco

Editor's Summary 324
13.1 Introduction: Electric Power System Structure and

Forces for Change 324
13.2 Power System Dynamics and the Historical Structure

of Grid Control 327
13.2.1 Control Objectives in Power Systems 327
13.2.2 Synchronous Generator Dynamics: A Brief

Tutorial 328
13.2.3 Grid Frequency Regulation 331

Contents xiii

13.2.4 Stability-Enhancing Controls in Power Systems 334
13.3 Institutional Changes Impacting Control Techniques 337

13.3.1 Power Grid Control Structures: If They're Not Broken,
Why Fix Them? 338

13.4 New Technologies Impacting Restructuring and Control
in a Competitive Environment 339
13.4.1 The Impact of Efficient Gas Turbines 339
13.4.2 The Role of New Information and Measurement

Technologies 340
13.4.3 Control Opportunities for Flexible AC

Transmission Systems 342
13.5 A Perspective on Future Directions for Power System

Control Development and Research 343
References 346

CHAPTER 14 INTELLIGENT TRANSPORTATION SYSTEMS: ROADWAY
APPLICATIONS 348
Omit OzgOner

358

357

365

368

354
354

354
355

366

352

Editor's Summary 348
14.1 Introduction 348
14.2 Traffic-Related Issues 351

14.2.1 Signalization 351
14.2.2 Networks of Intersections
14.2.3 Routing 353
14.2.4 Control of Traffic on Highways

14.2.4.1 Convoys, Platoons, et al.
14.2.4.2 Ramp Control and Merging
14.2.4.3 Automated Highway Systems

14.2.5 Some Practical Concerns 355
14.3 Intelligent Vehicles 357

14.3.1 Pre-IV Autonomy: Cruise Control and ABS
14.3.1.1 Preliminary Needs: Drive-by-Wire

Vehicles 357
14.3.2 Car Following and Advanced Cruise Control
14.3.3 Lane Tracking 361

14.3.3.1 Vehicle Model 362
14.3.3.2 A Nonlinear Lane-Keeping

Controller 363
14.3.4 A Lateral Lane Change Controller 365
14.3.5 Hybrid Systems and Scenario Resolution

14.4 Conclusions 366
14.4.1 Related Problems 366

14.4.1.1 Precision Movement
14.4.1.2 Coupled Systems 366
14.4.1.3 Autonomy versus Full Information

Exchange 366
14.4.1.4 Fault Tolerance/Safety 368

14.4.2 And Technology Keeps Marching On ...
References 369

CHAPTER 15 AUTOMOTIVE POWERTRAIN CONTROLLER DEVELOPMENT
USING CACSD 370
K. Butts, J. Cook, C. Davey, J. Friedman, P. Menter, S. Raman,
N. Sivashankar, P. Smith, and S. Toeppa
Editor's Summary 370

xiv Contents

15.1 Introduction 370
15.1.1 The Role of the Powertrain Control System 371
15.1.2 The Powertrain Controller Development

Organization 372
15.2 The Systems Engineering Process 373

15.2.1 The Powertrain Controller Development
Process 374

15.3 Computer-Aided Control System Design for Powertrain
Controller Development 376
15.3.1 Software Requirements Capture 377
15.3.2 Software Application Architecture Design 377
15.3.3 Control Feature Design and Validation 379
15.3.4 Software Application Validation 382
15.3.5 Control Feature Software Design 382
15.3.6 Control Feature Software Implementation 383
15.3.7 Control Feature Structural Verification 383
15.3.8 Control Feature Functional Verification 384
15.3.9 Software Application Structural Verification 385
15.3.10 Software Application Functional Verification 386
15.3.11 Software/Module Integration Verification 386
15.3.12 User Documentation 387
15.3.13 Configuration Management 388
15.3.14 Software Engineering Project Management 388

15.4 Conclusion 390
References 391

CHAPTER 16 BUILDING CONTROL AND AUTOMATION SYSTEMS 393
Albert T. P. So

Editor's Summary 393
16.1 Introduction 393
16.2 Existing Building Control Technologies 395

16.2.1 Applications of PID Loops 396
16.2.2 Programmable Logic Control 398
16.2.3 Direct Digital Controls 399

16.3 Information Technology for Building Systems Control 399
16.3.1 Control Networks 400
16.3.2 Protocols 402

16.4 Building Automation Systems (BASs) 404
16.4.1 Hardware Structure 404
16.4.2 Software Features 406

16.5 Advanced Building Controls Technologies 407
16.5.1 Applications of Expert Systems 407
16.5.2 Neural Network-Based Control 408
16.5.3 Fuzzy Logic-Based Control 410
16.5.4 Computer Vision-Based Control 412

16.6 Difficulties with Building Systems Control 413
16.7 Conclusion 414

References 415

CHAPTER 17 CONTROLLING CIVIL INFRASTRUCTURES 417
B. F. Spencer Jr. and Michael K. Sain

Editor's Summary 417
17.1 Introduction 417
17.2 Hybrid Control Systems 420

17.2.1 Hybrid Mass Damper 420
17.2.2 Hybrid Base Isolation 429

Contents

17.3 SemiactiveControl Systems 430
17.3.1 Variable-Orifice Dampers 430
17.3.2 Variable-Friction Dampers 431
17.3.3 Controllable Tuned Liquid Dampers 431
17.3.4 Controllable Fluid Dampers 432
17.3.5 SemiactiveImpact Dampers 434

17.4 Semiactive Control of Civil Engineering Structures 435
17.4.1 Scale-Model Studies 435
17.4.2 Full-Scale SeismicMR Damper 436

17.5 Conclusions 439
Acknowledgements 440
References 440

CHAPTER 18 ROBOT CONTROL 442
Bruno Siciliano
Editor's Summary 442
18.1 A Historical Perspective 442
18.2 Kinematic Control 443
18.3 Dynamic Control 446
18.4 Force Control 451
18.5 Visual Servoing 457
18.6 The Future 459

References 460

CHAPTER 19 CONTROL OF COMMUNICATION NETWORKS 462
R. Srikant
Editor's Summary 462
19.1 Introduction 462
19.2 Network Control and Management 464

19.2.1 Admission Control for Real-Time Sources 464
19.2.2 Congestion Control for Best-Effort Sources 465
19.2.3 Routing 466
19.2.4 Scheduling 467

19.3 QoS, Admission Control, and Calculus of Variations 468
19.3.1 Large Deviations of the Empirical Mean of a

Sequence of Random Variables 468
19.3.2 Large Deviations of a Random Process from Its

Fluid Limit 469
19.3.3 Estimating Probabilities of Rare Events in Queues 471
19.3.4 Examples 474

19.4 Congestion Control 476
19.4.1 Model 477
19.4.2 Implementation Issues 480
19.4.3 Simulations 483

19.5 Conclusions 486
Acknowledgements 487
References 488

INDEX 491

ABOUT THE EDITOR 503

xv

INTRODUCTION

Automation systems that affect the physical world must ultimately exploit concepts that
control engineering and science have always been at the forefront of developing-eon-
cepts such as feedback, dynamical systems, optimization, modeling, and estimation. It
is thus no wonder that controls has, in the past, been a linchpin of our modern tech-
nological world. Achievements as numerous and diverse as space missions, petroleum
refining, climate-controlled homes and buildings, commercial and military airplanes,
innumerable chemical products, reliable electric power, and many, many others have
been rendered possible because of control technology. Controls is one of a handful of
disciplines that can truly claim to be a common enabler across such a spectrum of
applications.

Today, governments, societies, and corporations are attempting to close the gap on
ever-larger-scale systems and ever-more-complex problems. In response to the dictates
of human and environmental safety, national defense, corporate cost-reduction and
profitability, and other factors, a new generation of automation and control systems
is being envisioned and developed.

Many of today's technologically motivated trends augur well for control, but
significant extensions in the existing controls technology base are required. For exam-
ple, while advances in single-loop and low-level control will always be of interest, the
real opportunities for impact are increasingly at higher levels of systems. The past
successes of control can be attributed in part to the effectiveness with which control
technologists have uncovered new applications of their theories, algorithms, and heur-
istics. Similar diligence is still mandatory and, in addition, we are being challenged to
understand a new and larger class of problems, and to develop new tools and tech-
niques for their solutions.

Some degree of redefinition of controls as a discipline is needed to ensure both that
the expertise of control engineers and scientists continues to be viewed as essential to
the evolutions and revolutions in automation, and that safe, efficient, and performative
solutions are ultimately developed. The redefinition is not a rewriting but a broad-
ening-the foundations of modern control have served society and industry in exemp-
lary ways over the past half-century or so; our challenge is to extend these foundations
and the intellectual edifices we construct from them. One of the themes of this book is
that control technologists are meeting these challenges across a broad spectrum of
techniques and application arenas.

The revolution in information technologies that we have witnessed over the last
decade or two is, of course, part of the picture. The dramatic advances in processors,
memory, communications, displays, and other hardware and software "infrastructure"

xvii

xviii Introduction

have profoundly changed how we live and work. These advances are also being recog-
nized as facilitating new levels of functionality and intelligence in control systems. In
particular, we now have the computational infrastructure available to perform the
complicated calculations implicit in so many control theoretic developments-develop-
ments that, for lack of processing and memory resources, have been gathering dust on
the bookshelf.

Some readers may contrast the optimism expressed above with the lack of recogni-
tion of control in the broader technical community. Ask a randomly selected person
what the key technologies are for the future, and it is unlikely that you will hear control
engineering mentioned. Instead, computing, networks, and perhaps robotics and auton-
omous vehicles will be on the list. This lack of recognition is not late-breaking news to
control engineers and scientists-most of us have become somewhat inured by now to
questions such as "So what does control have to do with anything anyway?" In fact,
however, there are several reasons for the underappreciation of control, notably the
following:

• Control is a "hidden" component in all automated systems, invisible to end
users-the general public in particular.

• The breadth and multifaceted nature of controls is such that relatively few of its
practitioners and developers themselves appreciate its entire scope.

• Controls is among the most mathematically rigorous of the engineering disci-
plines: the intimidation factor limits broad-based appreciation.

• As an established and historically successful discipline, controls has tended to
eschew hyperbole and self-promotion, perhaps to a fault.

None of these reasons has any bearing on the reality of the current impact of control
technology or its future relevance. We can be excited about the substance of our dis-
cipline even as we acknowledge its rhetorical shortcomings!

ABOUT THIS BOOK

This edited volume brings together a set of chapters authored by experts in a number of
specialized subfields of control technology. Our objective is to provide a broad review
of the state of the art in control science and engineering, with particular emphasis on
new research and application directions. The "take home message" is that controls is a
vibrant, exciting, diverse field. Its new initiatives are likely to ensure its central role in
technological solutions for the increasingly complex challenges facing society and
industry in a new millennium.

This book is targeted to control engineers of all stripes, from industrial practi-
tioners to academic researchers. This is a broad audience, and the book attempts to
appeal to this diversity by not narrowly constraining the style, tone, or technical depth
of individual chapters. Some chapters are technical tutorials; others focus on discus-
sions of today's state of the art; some provide experimental results; several emphasize
future visions; and so on. We hope that the heterogeneity will create cross-cutting
appeal; our goal is that every control engineer will find parts of this book of significant
interest both intellectually and professionally. Most chapters are written at a level

Introduction xix

appropriate for an undergraduate-degree control engineer, but a few may require an
introductory graduate-level mathematical background.

Although this book covers most of the key technical specializations of control, it is
not intended to be an encyclopedic compilation. Readability and a reasonable length
were important considerations in planning the contents. As discussed below, the sub-
jects covered reflect the emphases of the IEEE Control Systems Society (CSS). In any
case, controls is too dynamic a discipline to expect one snapshot such as a printed book
to be truly comprehensive, even in principle.

Book Outline

The technical contributions to this volume are structured into two parts. The first set of
chapters is devoted to control "technologies"; the second focuses on traditional and
novel application domains for control systems. To help unify and integrate the different
chapters, each is preceded by an Editor's Summary and, where appropriate, includes at
the end a list of related chapters. The book includes affiliation and contact information
for the chapter contributors and a comprehensive index.

Part I. The nine chapters in the first part are concerned with the following tech-
nology-oriented topics:

• Chapter 1: Scott Bortoff describes the challenges and solution approaches for
implementing control algorithms on real-time digital computing platforms. The
complications discussed include sampling rate variations, variable processing
delays, task scheduling, interprocess communication, and sensor and actuator
failure.

• Chapter 2: Edwin Chong reviews discrete-event systems, contrasting them with
the continuous-time systems (and sampled equivalents) which control science
and engineering have traditionally focused on. Techniques for optimizing dis-
crete-event systems for applications in communications networks, manufactur-
ing systems, and other fields are presented.

• Chapter 3: George Grubel offers a general introduction to the topic ofcomputer-
aided control system design (CACSD). The chapter emphasizes the importance of
system modeling, performance specifications, and the iterative process of control-
ler development. As an example, flight control system design is considered.

• Chapter 4: Pradeep Misra gives a broad overview of the basic concepts of
modeling and simulation as they relate to control systems. He discusses a num-
ber of modeling methodologies and topics, including system identification,
model reduction, linearization, and distributed parameter systems.

• Chapter 5: Kevin Passino reviews a number of intelligent control techniques.
The central concepts of fuzzy logic, neural networks, genetic algorithms, and
planning systems are outlined and illustrated with examples from ship maneu-
vering, robotics, and automotive diagnostics. Remarks on autonomous and
adaptive control are also included.

• Chapter 6: Jay Farrell and Marios Polycarpou give the reader a technical intro-
duction to "nonlinear approximators," specifically neural networks and fuzzy
models. The authors describe algorithms for estimating values of approximator

xx Introduction

parameters, and they introduce the concepts of generalization, approximator
transparency, and linear versus nonlinear parametrizations.

• Chapter 7: Hybrid dynamical systems-systems that contain both continuous-
time and discrete-event dynamics-are the subject of this chapter by Michael
Lemmon. The focus here is on hybrid systems where the discrete-event compo-
nent models supervisory commands. Deadlock avoidance for a two-arm robotic
platform serves as the motivating example.

• Chapter 8: Fumio Hamano and Younchan Kim also treat hybrid systems. Their
subject is variable structure control-eontrol schemes in which the control
structure can be modified dynamically. One particular variable structure control
technique, sliding mode control, is developed in some detail.

• Chapter 9: To conclude the first part of the book, Tariq Samad discusses the
increasing complexity of automation and control systems and attempts to relate
it to developments in control technology and control applications.

Part II. Each of the ten chapters in the second part of this volume discusses the
application of control to an important application domain.

• Chapter 10: Jorge Tierno, Joseph Jackson, and Steven Green describe issues
related to the control of multiple aerospace vehicles. They consider three appli-
cation areas, all of which are driving new research: "free flight" commercial air
transportation, autonomous formation flight of uninhabited vehicles, and pre-
cise positioning of satellite clusters.

• Chapter 11: Kevin Wise discusses the development of flight control laws in
military high-performance aircraft and missiles, with an emphasis on cost effi-
ciency and exploitation of CACSD tools. Dynamic models for control design
are presented, and the role of simulation and analysis software is emphasized.

• Chapter 12: Michael Johnson and Michael Grimble outline the hierarchical
organization of process control systems and review several control technologies
for the process industries. These include performance monitoring, PID control-
ler tuning, adaptive and robust control, model predictive control, and plantwide
optimization.

• Chapter 13: Christopher DeMarco reviews the historical operation of electric
power networks and the control challenges arising from the deregulation and
competition that are now driving the evolution of the electric power industry.
New technological developments, from flexible AC transmission devices to
agent-based optimization, are proposed to meet these challenges.

• Chapter 14: An area of increasing engineering interest in general is intelligent
transportation systems. Such systems pose a number of challenging control
problems, and in this chapter Dmit Ozguner discusses several of these-with
specific attention to traffic control and intelligent road vehicles.

• Chapter 15: As a sophisticated example of CACSD, Ken Butts and colleagues
discuss in detail a process for team-based development of automotive power-
train controllers. The process is based on systems engineering principles. Key
aspects include validation and verification, feedback mechanisms, and analysis
and design support.

Introduction xxi

• Chapter 16: Albert So starts his chapter with a review of the history of building
control and automation systems. He notes the revolution in building automa-
tion caused by the personal computer platform, and he discusses local area
networks for building management systems. Finally, applications of intelligent
control in this domain are reviewed.

• Chapter 17: A relatively new area for control is the control of civil structures
such as buildings, bridges, and towers. In this chapter, Michael Sain and Bill
Spencer note some relevant actuation technologies and present several examples
of operational structural control systems. Semiactive control actuators are dis-
cussed at some length.

• Chapter 18: Bruno Siciliano presents traditional techniques and recent develop-
ments in robot control. The chapter sketches the evolution from kinematic
control to dynamic control to force control, which permits precise tasks in
elastic or compliant environments to be accomplished. Vision-based robot con-
trol is highlighted as the next frontier.

• Chapter 19: The last chapter also highlights a new, and promising avenue for
control applications: communication networks. R. Srikant points out the con-
trol problems involved: admission control, congestion control, packet routing,
and scheduling of node bandwidth. He also discusses specificconsiderations for
asynchronous transfer mode networks and the Internet.

CSS Technical Activities Board-Providing
Resources for Control Engineers

This book is an initiative of the Technical Activities Board of the IEEE Control
Systems Society. The majority of the chapter contributors are leaders of CSS TAB,
and in most cases are chairs of technical committees on specialized control topics. The
difficult process of identifying which topics to include in a book of limited size was
facilitated by the structure of TAB: the topics largely correspond to the technical
committees.

CSS TAB provides resources and collaboration opportunities for control engineers
and scientists, whether students, industrial practitioners, or academic researchers. Up-
to-date information about the Board and about available resources can be accessed
through the Web site of the Control Systems Society http://www.ieeecss.org. The CSS
home page can also be accessed through the central IEEE Web site at http://ieee.org/
organizations/tab/curjsoc hps.htrnl. Furthermore, information on joining the Society
and on membership benefits can also be obtained through this Web site.

The flagship periodical of IEEE CSS, Control Systems Magazine, regularly carries
feature articles on emerging technologies and application domains for control. Many of
these articles are written at introductory or tutorial levels. (Earlier versions of a couple
of the chapters in this book appeared in CSM.) Readers who find this book of interest
may find CSM a useful vehicle for keeping abreast of future developments in control
technology.

Tariq Samad
Honeywell Technology Center

Minneapolis, MN

ACKNOWLEDGMENTS

I am grateful to the contributors to this volume for graciously tolerating several rounds
of review and revision. The Publications Activities Board of the IEEE Control Systems
Society, chaired by Bruce Krogh, supported this project and solicited several reviewers
whose feedback on an earlier draft of the manuscript resulted in a significantly
improved final product. Finally, it has been a pleasure working with the IEEE Press
staff on this project.

Tariq Samad
Honeywell Technology Center

Minneapolis, MN

xxiii

LIST OF CONTRIBUTORS

xxiv

Ken Butts
Ford Research Laboratory
Powertrain Control Systems Department
MD 2036 SRL
2101 Village Road
Dearborn, MI 48121 USA

Edwin K. P. Chong
Purdue University
School of Electrical and Computer
Engineering
1285 Electrical Engineering Building
West Lafayette, IN 47907-1285 USA

Christopher DeMarco
Department of Electrical and Computer
Engineering
University of Wisconsin-Madison
1415 Engineering Drive
Madison, WI 53706 USA

Jay A. Farrell
Department of Electrical Engineering
Marlan and Rosemary Bourns College of
Engineering
University of California, Riverside
Riverside, CA 92521 USA

George Grubel
formerly with:
Institute of Robotics and System Dynamics
DLR - German Aerospace Center
Oberpfaffenhofen
D-82234 Wessling, GERMANY

Fumio Hamano
California State University, Long Beach
Department of Electrical Engineering
1250 Bellflower Blvd.
Long Beach, CA 90840 USA

Michael A. Johnson
Industrial Control Centre
University of Strathclyde
George Street
Glasgow Gl lQE
Scotland, UK

Younchan Kim
California State University, Long Beach
Department of Electrical Engineering
1250 Bellflower Blvd.
Long Beach, CA 90840 USA

Michael D. Lemmon
Department of Electrical Engineering
University of Notre Dame
Notre Dame, IN 46556 USA

Pradeep Misra
Wright State University
Electrical Engineering Department
3640 Col. Glenn
Dayton, OH 45435 USA

Umit Ozguner
Ohio State University
Department of Electrical Engineering
2015 Neil Avenue
Columbus, OH 43210 USA

List of Contributors

Kevin M. Passino
Department of Electrical Engineering
The Ohio State University
2015 Neil Ave.
Columbus, OH 43210 USA

Tariq Samad
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418 USA

xxv

Marlos M. Polycarpou
University of Cincinnati
Department of Electrical and Computer
Engineering and Computer Science
Cincinnati, OH 45221-0030 USA

Bruno Siciliano
IEEE Robitics and Automation Society Vice-
President for Publications
PRISMA Lab. Dipartimento di Informatica
e Sistemistica
Universita degli Studi di Napoli
Federico II
Via Claudio 21,80125 Napoli, ITALY

Michael K. Sain
University of Notre Dame
Department of Electrical Engineering
275 Fitzpatrick Hall
Notre Dame, IN 46556 USA

R. Srikant
Coordinated Science Lab and Department of
General Engineering
University of Illinois
1308 W. Main Street
Urbana, IL 61801 USA

Albert T. P. So
Department of Building & Construction,
City University of Hong Kong
Tat Chee Avenue, Kowloon,
HONG KONG

B. F. Spencer, Jr.
University of Notre Dame
Department of Civil Engineering &
Geological Sciences
156 Fitzpatrick Hall
Notre Dame, IN 46556 USA

Jorge Tierno
Honeywell Technology Center
3660 Technology Dr.
Minneapolis, MN 55418 USA

Kevin A. Wise
Boeing Technical Fellow
The Boeing Company
P.O. Box 516
St. Louis, MO 63166 USA

Chapter

1
REAL-TIME COMPUTING
AND CONTROL

Scott Bortoff

Editor's Summary

To engineers involved in designing, developing, or operating control systems for practical applications,

research in control may seem an exercise in mathematical abstractions. As an engineering discipline,

however, the connection with the physical world is intrinsic to control. Interfacing with sensors and

actuators, implementing advanced algorithms on real-time platforms, dealing with sampling time issues,

and other such pragmatic matters may seem to be taken for granted in much of advanced control, but in

fact there is an extensive body of research that is concerned with these very topics

All advanced control algorithms today are hosted on digital computing systems, and any discussion

of real-time control applications must address the specific issues and challenges associated with digital

implementation. The benefits of digital realization are numerous: software-based computing allows more

sophisticated control laws; updates and maintenance are rendered easier in many cases; control systems

can be made more compact; and control can more readily be integrated with ancillary functions such as

information display, system health management, and data recording.

But the digital world brings complications too. For example, the continuous variables of a physical

system must now be discretely sampled. Variations in the sampling rate are generally assumed to be

negligible, but this is not always the case and a significant adverse impact on control quality can result.

Similarly, variable delays arise in the processing of sensory data. In today's processors, even the same

sequence of arithmetic operations can take more or less time to execute depending on the state of the

processor and operand values.

As control programs become more complex, so do their real-time implementations. Most control

system computing platforms are used for several tasks in addition to executing the base control law. Real­

time computing and control thus also involves the solution of difficult scheduling problems. Different tasks

can have different priorities, desired execution frequencies, and execution times; there may be dependences

between them that require interprocess communication and accessing of shared resources; and failures of

sensors and actuators and other abnormal situations cannot be allowed to compromise safety.

Scott Bortoff is an associate professor in the Department of Electrical and Computer Engineering at

the University of Toronto, and a former chair of the IEEE-CSS Technical Committee on Real-Time

Computing, Control, and Signal Processing.

1.1 INTRODUCTION

It is safe to say that most modern control systems are implemented digitally. From the
fly-by-wire systems that control modern commercial and military aircraft to the digital
proportional-integral-derivative (PID) boxes that regulate everything from temperature
to pH in a process control setting, there is a clear preference for digital realizations. This

1

2 Chapter 1 Real-Time Computing and Control

is true even though the plant might be a continuous-time system, the control law might
be designed using continuous-time mathematics, and the controller itself could other­
wise be realized with inexpensive analog components.

The reasons for this trend are well-known: Software is easier to modify than analog
hardware; both dynamic range and signal-to-noise ratio of digital signals can be made
larger (especially given today's high-precision digital-to-analog (D/A) converters [1]),
larger time constants can be implemented with software, complex nonlinear and adap­
tive control laws can be realized only by using a computer, overall system reliability is
increased, overall control system weight can be reduced, and so on. In addition, a
computer in the loop can add functionality to the system as a whole, much of which
might be considered outside the traditional domain of control systems. For example, a
processor in the loop can log data, a critical feature to the process control industry.
With off-the-shelf networking technology, the controller can interface with the Internet,
giving control engineers remote access to the system. Built-in testing and fault detec­
tion, a necessity for avionics systems, can also be coded into the controller.

In this chapter, we focus on the methods and tools used to implement digital
controllers. Our main focus is on software, an area that has undergone a tremendous
transformation in the last decade or so. Indeed, all areas of real-time systems, including
real-time operating systems, programming languages, scheduling theory, and formal
methods, are very active areas of research within both computer science and electrical
engineering, and there are now a number of monographs on the subject, for example,
[2]-[6].

After providing some background in Section 1.1, we present an example in Section
1.2 that illustrates why real-time aspects should be of interest to the control engineer.
We then turn our attention to the methods used to implement digital controllers,
beginning in Section 1.3 with a low-level approach that is best when the control law
is simple, for example, single-input, single-output PID. Of course, computers in-the­
loop are often used for more than just control. The real-time control system might be
designed to realize a conventional control law and also to provide a timely response,
within a specifieddeadline, to other asynchronous events. In this case, designing a single
program to execute as a single task becomes unwieldy. Therefore, as the number of real­
time specifications and tasks increases, the software is best designed to run not as a
single process but as as multiple, cooperating, communicating processes. In Section
1.3.1. we present an introduction to scheduling theory, which is used to assign priorities
to processes running under a priority-based preemptive operating system. Our focus
then turns to higher level approaches to real-time control system implementation,
namely, real-time operating systems and programming languages, in Section 1.4. We
close the chapter in Section 1.5 with a brief look at hardware, including single-board
computers and Programmable Logic Controllers (PLCs).

1.1.1 Background

Most feedback control systems can be represented by the generic feedback loop shown
in Figure 1.1. Here, the Plant includes the actuators, the system to be controlled, and
the sensor dynamics. The Controller is comprised of the sampler, which may be an
analog-to-digital (A/D) converter, a shaft encoder, or some other instrument that con­
verts each measured plant signal Yi(t), 1 ::::: i ::::: p, into a discrete-time measurement Yi(t);
a processor, which computes the control law based on these measurements; and a

Section 1.1 Introduction

Controller

Data hold

r u 1- e-sT u y
~ Control law Plant

s

Data sampler

y
T

. ,
, .
....... _ -_ _ -- .. -- ..

Figure 1.1 The general form of a digital control system.

3

(1.1)

(1.2)

sample-and-hold, which converts the discrete-time control signals U;, 1 ::s i ::s m, back
into continuous-time signals u., 1 ::s i ::s m, for example, a digital-to-analog converter.
(Throughout this chapter, the symbol --. is used to denote a sampled, discrete-time
quantity.) The controller is usually designed to sample Yi(t) periodically, at uniformly
spaced instances of time t = kT, where k > 0 is an integer index and T is the sample
period. The control law itself is usually realized as a set of discrete-time state equations

u(kT) = h(x(kT), y(kT), r(kT») ,

x(kT + T) =f(x(kT), y(kT), r(kT») ,

where the vectors x= [Xl, ... ,xn]T, Ii = [iiI, ... ,um]T, and y = rY1, ... ,~]T are the
controller state, controller output, and sampled plant output, respectively,r E R,' is a
vector of reference input signals, and f and h are (perhaps nonlinear) maps of appro­
priate dimension.

Example 1.1.1

Consider the servo control system diagrammed in Figure 1.2, where the plant has transfer
function P(8) = sd~l). Suppose that in addition to several transient response specifications, the
servo angle y must also track a ramp input applied at r with zero steady-state error. To meet these
specifications, assume that a digital PID control structure is used, as shown in Figure 1.2. The
three gains, K p , K d , and Ki, are designed to satisfy the specifications under two assumptions:
(1) y(t) is sampled uniformly in time, at t = kT, for some T> 0; and (2) the processor's
computational delay is fixed and known to the designer. Often, the computational delay is
assumed to be zero because the time required to compute the control law is much less than T. In
this case, the controller is being designed under the assumption that the output u(kT) is available
simultaneously with the sampled input y(kT). In any case, the state equations (1.1)-(1.2) for the
digital PID controller shown in Figure 1.2 are

U(kT) =7Xl(kT) + (KiT -7) ~(kT) + (Kp + KiT +7)e(kT) (1.3)

Xt(kT + T) = x2(kT) (1.4)

~(kT + T) = x2(kT) +e(kT) (1.5)

where e(kT) = (T<kT) - Y(kT)) is the tracking error. The states are usually initialized at the
origin, so Xl (0) = X2(0) = o.

4 Chapter 1 Real-Time Computing and Control

DigitalPID control law

Data hold Plant Sampler

Figure 1.2 Servomotor with digital PID controller.

Coding (1.1)-(1.2) on any processor is a usually an elementary task in any pro­
gramming language. The real challenge is timing: The processor must be programmed
to sample y uniformly in time, at T -second intervals, and the controller output Ii must
be computed and applied to the plant at a time consistent with the design assumptions.
In particular, if the computational delay is assumed to be zero, then u(kT) must be
applied to the plant as soon as possible after y(kT) is sampled. This is because the
control law gains (or more generally, the functions! and h) are typically quite sensitive
to the sample interval T; a small change in T can result in a large change in closed-loop
pole locations, for example. Moreover, the performance of the overall system is usually
very sensitive to timing jitter, which is a variance in the time that y is sampled and/or
the time that u is applied to the plant.

1.2 TIMING IS EVERYTHING

In an actual digital implementation, delays are present in both the signal conversion
hardware and the processor. If the delay is of fixed duration, then (1.1)-(1.2) can often
be modified to compensate the delay. The simplest case occurs when the delay is a
multiple of T, that is, qT for some positive integer q. In this case, q additional shift
operators (l/zq, where z is the shift operator) can be put into the loop, between the
sampler and the data hold, and the control law can be designed to meet performance
specifications despite the delay. Of course, the additional shift operators are not part of
the control law-their presence in the loop is to model the total controller delay.

Unfortunately, the delays in a digital control system are not always of fixed dura­
tion. Depending on the hardware used, an analog-to-digital converter may take a
varying amount of time to complete the data conversion. Or if a timer is used to
generate a processor interrupt and an interrupt service routine (ISR) is then used to
trigger the data-conversion hardware, then a delay will be associated with servicing the
interrupt, called -the interrupt latency. This is seldom a fixed duration of time because
the processor could be servicing an interrupt of higher priority, whose ISR must finish
before the data-conversion ISR can run. In addition, processors, especially those with
complex instruction set architectures (CISC) such as the Pentium, can take a varying
number of central processing unit (CPU) cycles-a varying amount of time-to com-

Section 1.2 Timing is Everything 5

plete the calculation of (1.1)-(1.2). This is due to instruction branching, main memory
caches (which reduce the average amount of time to fetch instructions and operands
but increase the variance), and the fact that the number of CPU cycles required to
execute some instructions, such as floating point multiplication, is dependent on the
operands themselves. All of these varying delays result in timing jitter, so that y(kT) is
not sampled at time kT but some time later, and u(kT) is not applied to the plant at
exactly time kT, but some time later.

Example 1.2.1

Continuing the digital PID control system introduced in Example 1.1.1, let us illustrate the effect
of timing jitter. First, assume that the PID gains, listed in Table 1.1, have been designed under the
ideal assumptions of zero computational delay and a fixed, uniform sample time ofT = 50ms. In
this case, if we apply a ramp input f(kT) = kT, then the internal model principle tells us that the
tracking error will converge to zero as k ~ 00.

How is performance affected if this same control law is implemented with hardware that
samples y(t) not at time t = kT but rather at time t = kT + D, where D is a random variable,
uniformly distributed in the interval [0.005, 0.010]?Thus, the actual measurement occurs 5 to 10ms
after time kT. What if we assume further that the time required to compute u(k) is not zero but is a
random variable C, uniformly distributed in the interval [0.015, 0.030], meaning the processor takes
15 to 30 ms to complete the calculation of u(kT)? In this case, u(k) could be applied to the plant as
late as 40 ms after time kT, or, more importantly, as late as 30 ms after y is measured.

Figure 1.3 shows the effects of this timing jitter on the tracking error for the servomotor
system by comparing it with the ideal delay-free case, when the ramp input f(k) = kT is applied.
(All initial conditions are zero.) As expected, in the ideal case, econverges to zero exponentially.
However, when computational and measurement delay are included in the simulation, eno longer
converges to zero. In fact, it suffers from a "noisy" steady-state error. What causes this? During
the interval of time [kT, kT + C + D], the previously computed control, u(kT - T), is still being
applied to the plant. The design has not taken this into account.

Judging from this example, it is dangerous for the control system designer to be
ignorant of real-time implementation issues. Both delay and timing jitter, present in any
real-world application, can adversely affect closed-loop performance. At the very least,
the designer should be aware of their effects. Better still, the designer should incorpo­
rate the computational delays and worst-case timing jitter estimates into the control law
specifications. Including the time-varying effects of timing jitter into controller design
methodologies is very much an open area of research. Nonetheless, the designer can
always perform simulations that include the effects of delay and timing jitter, as we
have here. Finally, the designer should be actively involved at the implementation stage,
in case the control law must be 'modified should the timing specifications change. In
short, the control system designer's efforts do not end with Eqs. (1.1)-(1.2).

TABLE 1.1 PIOController Parameters

Parameter Value

50ms
1.0
0.5
0.5

Section 1.3 Low-Level Real-Time Programming 7

tion), then computes fi(kT) using (1.1), converts u(kT) to u(kT), and finally computes
x(kT + T) using (1.2). The software is written to initialize the timer and the ISR, and
then to enter into an infinite loop to wait for the interrupt. In this loop, it can execute
any other tasks, such as built-in testing or fault diagnosis. When the interrupt is gen­
erated, the processor immediately executes the ISR. Of course, the interrupt latency,
delays in signal conversion, and time to execute the interrupt service routine all should
be taken into account in the design of the control law. If the processor has no other jobs
to execute, these delays are usually measured in microseconds on a modern micropro­
cessor, so their relevance is implementation-dependent.

Now let us suppose that the processor is to accomplish several other tasks in
addition to just realizing a simple controller. For example, suppose that a single pro­
cessor is to be used for the following three tasks:

1. Realize the digital PIO controller for the servo system diagrammed in Figure 1.2.

2. Interface with an ultrasonic transducer, which measures a distance in space. This
task is really two separate tasks. First, the processor must periodically send a signal
to the sensor, which then emits an ultrasonic pulse. At the same time, the processor
must start a timer. When the returned echo is received by the sensor, it raises an
interrupt line to the processor. The processor must respond by stopping the timer
and reading its value, which is subsequently converted to a distance estimate.

3. Pass data to and from a second processor via an RS-232 serial port.

The designer who chooses to write a single low-level program for all three tasks will
soon realize that it will contain four ISRs: one for the digital PID control law, which is
driven by a timer; one to trigger the ultrasonic sensor, which is also driven by a timer;
one to stop the ultrasonic sensor counter and read its value, which is driven by the
sensor itself; and one to attend to the serial port buffer, which is driven by the RS-232
port hardware. If we assume that there is no dependence among these three tasks, then
any of the interrupts could occur at any time. In particular, two could occur simulta­
neously, or one could occur while the processor is executing the ISR for another. Thus,
the designer must assign priorities to each interrupt.

Most modern processors have special hardware that orders the interrupts and their
ISRs according to a priority assignment. Should interrupt X occur while the ISR for
interrupt Y is running, then ISR Y will be interrupted only if X has a higher priority
than Y. In this case, ISR Y would be stopped, and ISR X would run to completion: ISR
X has preempted ISR Y. When finished, the processor will return to ISR Y. Otherwise,
if X has a lower or equal priority than Y, then ISR Y is allowed to run to completion, at
which point ISR X begins processing. By convention, the integer 1 is usually associated
with the "highest" priority task, while higher integer values imply lower priorities.

Returning to our example, we see that each of the four tasks has severe timing
constraints. One way software can be designed for these specifications is to code each
of the four tasks as an ISR and then program the hardware to generate the
appropriate interrupts. But each ISR would have to be assigned a priority. How should
the designer assign these priorities? For a relatively simple example such as this, an
exhaustive search of all possible assignments is possible. We can simply check all 24
possible priority assignments and determine if the timing constraints are met for each
assignment. However, since the number of possible priority assignments is equal to the

8 Chapter 1 Real-Time Computing and Control

factorial of the number of tasks, a more formal method is needed. Fortunately, schedul­
ing theory provides several sufficiently mature tools to aid the designer in this task.

1.3.1 Fixed-Priority Scheduling Theory

In any real-time system, process scheduling is the programmer's responsibility. In
the previous example, the processes to be scheduled were four ISRs. More generally,
each might be an independent process running under a fully preemptive, priority­
based, real-time operating system. (Here, fully preemptive means that a higher-priority
process will always be able to interrupt a lower priority process, and the higher­
priority process will then run until completion.) In either case, process scheduling
means assigning a priority Pi' where Pi E {I, 2, ... , N}, to each process, denoted Ti'

1 ~ i ~ N. There are several methods to assign priorities, and indeed scheduling
theory for real-time systems continues to be a vigorous area of research.
Fortunately, several so-called fixed-priority algorithms, where the process priority
Pi is assigned to the process before run-time and remains fixed during run-time,
are adequate for most control applications.

Let us first assume we have a set of N periodic processes, denoted {Th ... , TN}.
Each might be an ISR triggered by a timer, for example. For each process, assume the
following data are known to the designer:

• The computation time Ci, which is the worst-case (least upper bound) time
required to complete process Ti' assuming no other processes can run;

• A deadline Di , which is the maximum allowable time between the release time of
a process Ti (e.g., the time that an interrupt for a particular ISR occurs) and
when the process must complete; and

• A period Ti , which is the time between releases of process Ti'

Note that we can relax the periodic assumption and include sporadic processes in the
analysis, if we assume that the time T, is the minimum arrival time for the process. In our
previous example, the ultrasonic sensor ISR that stops the timer and reads its value is a
sporadic process. The interrupt is generated when the echo returns to the sensor, not by a
timer. But this interrupt has a minimum arrival time that is equal to the product of the
speed of sound and twice the minimum distance that can be sensed.

The rate monotonic (RM) algorithm is probably the most popular method of
priority assignment. Priorities Pi are assigned inversely related to the process period
T; In particular, the process with the shortest period is assigned the highest priority
(I), while the process with the longest period is assigned the lowest priority (N). In
its simplest form, the process deadlines D, are assumed to be equal to the period Ti .

In this case, several simple necessary and/or sufficient conditions can be checked to
see if the schedule is feasible, that is, if all processes will meet their deadlines. For
example, if

i:Ci
:::: N(2 1

/
N

- 1),
i=1 T,

where the left-hand side is the total processor utilization, then the process set is feasible.
If the deadlines D, are less than Ti , then this formula no longer holds, but other
necessary and sufficient conditions are easily checked [4].

Section 1.3 Low-Level Real-Time Programming 9

Another similar algorithm is the so-called Deadline Monotonic (DM) scheduling
[7]. Here, fixed priorities Pi are assigned inversely to the process deadlines Di. instead of
the periods. (This should not be confused with the earliest deadline first algorithm,
which is a dynamic-priority scheduling algorithm that executes the process with the
earliest deadline.) This approach has several advantages over RM, including a greater
emphasis on process deadline. This can result in a reduction in timing jitter (the varia­
tion in the total time required to complete a process) when compared to RM, which can
be critical to a control application.

After assigning priorities, we must check to see if each process will meet its dead­
line. Both RM and DM schedules, and most other fixed-priority algorithms, are ana­
lyzed the same way. For each t., define the response time R, as the worst-case amount of
time required for the process Ti to complete. Since process Tj can interrupt process Ti if
Pj < Pi, the response time for Tj must be added to C, when computing R; That is, we
must add to the computation time C, the so-called maximum interference that Ti

receives from all tasks of higher priority. Once all the response times are computed,
we simply check if R, is less than D, for 1 ~ i ~ N, and if so, then the process set is
schedulable, meaning all processes are guaranteed to meet their deadlines.

It can be shown that the response time R, satisfies the equation

(1.6)

where H is the set of processes with priority strictly greater than Pi, and where r·l is
the ceiling operator, defined for all real numbers s as rsl = S, where S is the smallest
integer that is greater than or equal to s. Equation (1.6) is not difficult to understand:
The term r~l is simply the (integer) number of times that a higher-priority process Tj

can interrupt task T:i before T:i has completed. Multiplying this term by C, and sum­
ming over all tasks of higher priority than task Ti gives the maximum (worst-case)
amount of time spent servicing all the higher priority tasks. Adding C, gives the
response time.

Note that Eq. (1.6) is nonlinear because of the ceiling operator. However, it is
easily solved by converting it into the following recurrence relation [7]

(1.7)

for k :::: 1, where RI = Ci . If Rf+l = Rf for any k > 1, then R, = Rf. In this case, the
task Ti is guaranteed to meet its deadline if and only if R, < Di •

Example 1.3.1

Consider three processes 71,72, and 73, with computation times Ci , periods Ti , and deadlines D i as
given in Table 1.2. The RM schedule would assign the highest priority to 71 and the lowest to 73,

that is, PI = 1, P2 = 2, and P3 = 3. Using Eq. (1.7) to compute the response times, we find that
R1 = 1 because 71 has the highest priority. Since R1 < D1 = 5, 71 is guaranteed to meet its
deadline. Computing R2 recursively using (1.7), we have

10 Chapter 1 Real-Time Computing and Control

R~ =2

R~ = 2+ r~l' 1 = 3

R~ = 2 + r~l' 1 = 3,

so R2 = 3 < 10 = D2, and so 72 also meets its deadline. Computing R3 the same way, we have

Rj = 3

R~ = 3+ r~l' 1+r1
301· 2 = 6

R~ = 3+ r~l' 1+rI~1· 2 = 7

R1 = 3+ r~l' 1+rI~1· 2 = 7.

Since R3 = 7 > 4 = D3 , 73 is not guaranteed to meet its deadline, and the rate monotonic
schedule fails the schedulability test.

On the other hand, if we use a Deadline Monotonic schedule, then the priorities are
reassigned as PI = 2, P2 = 3, and P3 = 1. A very similar calculation shows that

R3 = 3 < 4 = D 3

R1 =4 < 5 =D1

R2 = 7 < 10= D2

and all three processes are guaranteed to meet their deadlines.

1.3.2 Data Dependence

Thus far, we have assumed that the processes Tt, ... , TN are independent. Of
course, in most real-time systems, processes communicate among themselves, share
resources, and so on. For example, it is very common for two processes to communicate
by using sharedmemory; that is, certain variables can be stored in memory that can be
accessed by two separate processes.

TABLE 1.2 Computation Times, Periods, and
Deadlines for an Example Schedule

Process C

1
2
3

T

5
10
20

D

5
10
4

Section 1.4 Real-Time Operating Systems and Programming Languages 11

Example 1.3.2

Suppose three processes, t.. 1 ~ i ~ 3, are running on a singleprocessor, and Tl and T3 share some
memory, denoted X, that stores a vector x of real numbers. The process T3 implements a user
interface that displays x on a screen, while Tl is a device driver that interfaces with data­
conversion hardware, reading the data x from a hardware register and storing it in X. Assume Tl

is at a higher priority than T3. Now, Tl might interrupt (preempt) T3 while T3 is accessing X. Thus,
when Tl finishes putting new data into X and T3 begins to run again, then the (old) data that T3

was reading will be inconsistent with the (new) data that Tl put into X.

The sections of code that access a shared resource such as shared memory are said
to be critical sections. Computer scientists have known for decades that such critical
sections must be protected, meaning only one process at a time may access the shared
resource. For example, if a process and an ISR share a memory location that stores an
integer, then neither one can interrupt (preempt) the other while the integer is being
written to that memory location, an operation that might take several processor
instructions to complete. Otherwise, the data stored will be corrupted.

Now, if each "process" is really an ISR, then the simplest way to protect a
shared resource is to disable all interrupts before entering the critical section and
then reenable all of them after leaving the critical section. In this way, once an
ISR begins the critical section, it is guaranteed to complete its execution without
interruption. This is a very common way for ISRs to communicate. In Example
1.3.2, r3 would disable interrupts before reading from X, thus ensuring that it will
not be interrupted by rt until it is finished. Note, however, that disabling interrupts
for a period of time increases the interrupt latency, since a higher-priority interrupt
(it) will not be processed until a lower-priority process (r3) has reenabled the inter­
rupts. Thus, every effort should be made to minimize the number of CPU cycles over
which interrupts remain disabled.

Real-time programming at this level becomes awkward as the number of processor
tasks increases. A single program becomes difficult to test because the usual tools such
as debuggers are often useless:A real-time system is not correct unless both its logic and
its timing are correct. The designer might be able to verify the logical correctness of the
code with a debugger, test vectors, and so forth, but proving that the timing constraints
are also satisfied under all conditions can be very difficult. Moreover, if the designer
must add another task after the code is complete, then the entire design might have to
be redone because the timing of the whole system has changed. Finally, worst-case
interrupt latency might become intolerable due to a large number of critical sections
of code, each protected by disabling and reenabling interrupts. When enough of these
effects conspire to make a low-level approach too difficult, either a real-time operating
system or a high-level real-time programming language is probably in order.

1.4 REAL-TIME OPERATING SYSTEMS AND
PROGRAMMING LANGUAGES

An operating system is a program, or a set of programs, that manages the hardware and
software resources of a computer. At the heart of any operating system is its kernel. The
kernel is the program that schedules application programs, manages main memory,
handles communication among application programs, and usually contains drivers for

12 Chapter 1 Real-Time Computing and Control

devices such as disks, user interfaces, and network interfaces. The kernel insulates each
application program from the details of opening files, communicating with other pro­
grams, and so forth.

Most preemptive, priority-based, real-time operating systems are built around
relatively small kernels that provide a minimum of functionality. For example, the
QNX kernel [8] provides only two basic functions:

• Process scheduling, which manages the state of each process and determines
when each process will run; and

• Interprocess communication, which allows processes to send messages to each
other.

All other functions that might normally be associated with the kernel, such as device
drivers and file system support, are provided as separate processes. This architecture
offers several advantages over large, feature-rich kernels (such as Linux). First, because
the kernel is small, the worst-case interrupt latency time (the time elapsed after an
interrupt occurs but before its ISR runs) can be shorter and simpler to determine.
Latency time can be both long and difficult to measure for a large kernel for the
following reason [9]. Suppose a low-priority user process executes a system call to
the kernel just before a high-priority interrupt occurs. When the interrupt does
occur, that system call might not be preemptable because the kernel itself is not pre­
emptable. Thus, the interrupt might not be serviced until control is returned to the low­
priority process. To make matters worse, the nonpreemptable system call could in turn
issue a second and then a third nonpreemptable system call. Thus, with a large number
of available, nonpreemptable system calls, the worst case interrupt latency could be not
only long, but also quite difficult to determine. Moreover, this worst-case might occur
only very rarely and would therefore be an overly conservative estimate of latency time.

This is the case with many popular operating systems, such as Windows NT [10].
Because the NT kernel is not fully preemptable, it is not possible to determine a worst­
case bound on the amount of time that will elapse between an event, such as a software
interrupt, and the operating system's response. This makes such operating systems
unsuitable for so-called hard real-time applications, where the response time must be
precise and guaranteed. For example, imagine a process that generates gating signals in
a pulse-width modulation (PWM) motor driver. The duration of the pulse is the control
input. Suppose the process uses a system timer to control the duration of the pulses.
The timer is initialized at a number proportional to the desired pulse duration and
counts down, generating a software interrupt when it reaches zero. The process then
responds to the interrupt by changing the state of a bit on a digital output card via a
device driver for that card. If this process is running under Windows NT, then the
amount of time that will elapse between the timer interrupt and the hardware bit flip
will vary, leading to a "noisy" control signa1. The variance is not entirely deterministic.
(In particular, it is impossible to compute an upper bound on this time, such that the
operating system will always satisfy the bound.) Moreover, as the PWM switching
frequency increases, this varying delay will remain the same (at best), meaning the
signal-to-noise ratio will decrease. Thus, if the PWM switching frequency is sufficiently
high, then such a software-only solution using Windows NT will probably fail to meet a
specification on signal-to-noise ratio. On the other hand, for many control systems the
response time of an operating system like NT is "fast enough." Indeed, NT is designed

Section 1.4 Real-Time Operating Systems and Programming Languages 13

to minimize response times. In such a case, the latency and its variance, that is, the
timing jitter, would be relatively small and performance would not be noticeably
affected. Returning to the PWM example, if the pulses have a duration of between
one and two seconds, then a few milliseconds of timing jitter will probably not adversely
affect performance.

When the sampling frequency is relatively high and a hard bound on response time
is necessary, then a truly real-time operating system becomes necessary. By limiting the
functionality of the kernel to the bare essentials and by designing the kernel to be fully
preemptable, meaning kernel system calls can be interrupted, a real-time kernel will
provide not only a lower latency time, but also a more predictable latency time. Note
that this does not necessarily limit the functionality of the operating system as a whole.
Device drivers, file system support, user interfaces, and so on, can be added as processes
whose priority can be assigned by the programmer.

The primary advantage of using a real-time priority-based operating system over
writing a single low-level program is that each task can be coded as a separate process.
There are two prevailing philosophies here: Either a programming language such as C,
extended by real-time libraries, can be used to develop each separate program, or
alternatively, a real-time language such as Ada can be used to generate cooperating
processes. In both scenarios, the result is really the same: A number of cooperating
processes are created that run together, for all practical purposes simultaneously on a
single processor.

Developing and testing each process separately offer the same advantages that
breaking down a single, large program into separate subroutines does. Management
is simplified since coding can be done by several developers. Testing is often simplified
because the logical correctness of each process can be determined independently from
other processes, and the timing correctness can be determined by the proper application
of scheduling theory. Determining the worst-case run-times (C;), necessary to assign
priorities (Pi)' can be done for each process independently. Finally, adding functionality
is simply a matter of writing new code for new processes and perhaps redefining prio­
rities-existing processes do not require modification. Thus, for sufficiently complex
real-time programming tasks, fully preemptive, priority-based operating systems and
real-time programming languages are a major asset.

1.4.1 Real-Time Operating Systems at Run-Time

In a preemptive, priority-based system, priority is assigned to a process by the
designer, not the operating system (OS), assuming static priorities are being used. It is
important to understand how a typical real-time OS schedules these processes. Roughly
speaking, each process can assume one of two states: ready or blocked. The operating
system maintains a list of all processes and allows the process that has the highest priority
and is also in the ready state to execute. The OS will continue to monitor the status of all
other processes. The highest-priority process continues to execute until either another
higher-priority process becomes ready, because of an external signal, for example, or the
process itself becomes blocked, for example, it completes its calculations.

In the QNX operating system, for example, processes either are in the ready state,
or they assume one of a number of different blocked states, each of which is related to
interprocess communication. A simplified version of the situation is diagrammed in
Figure 1.4. Again, the highest-priority ready process runs, until either another

14 Chapter 1 Real-Time Computing and Control

higher-priority process becomes ready or it issues either a send() or receivee) call,
both of which are kernel calls. (Other processes might enter the ready state because of a
hardware interrupt or a timer interrupt, for example.) When this occurs, the process
becomes blocked, ceases to run, and the kernel executes the next process in the ready
state with the highest priority. Should two or more processes be ready and at the same
priority, then they can be scheduled round-robin, or first-in first-out (FIFO). This
client-server architecture is very well-suited to control applications, as the following
example illustrates.

Receive

Reply
blocked

Receive

Ready

Send

Send
blocked

Send

Receive
blocked

Figure 1.4 The QNX process states are based on a client-server model. A process
begins in the ready state. If it issues a send message to another process, it
becomes send-blocked until it receives a receive message from that pro­
cess. It then becomes reply-blocked, until it receives the reply signal from
that process, when it again becomes ready. Otherwise, it can issue a
receive message and become receive-blocked, until it receives a send
message from another process. Messages issued by the process are
shown in bold, while those issued by other processes are in normal type­
face. Taken from [8].

Example 1.4.1

Let us return to the three processes introduced in Example 1.3.2. Again, process 71 is a simple
device driver. When it runs, it reads the data x from several AID registers, copies it into the
shared memory X, and then blocks. Suppose now that process 72 is a control law, which uses x to
compute a control using an expression such as (1.1)--(1.2). As such, 72 is timer-driven, meaning it
will sleep (block) until a timer expires, at which point it becomes ready. Finally, 73 is the user
interface, which displays x on the computer screen. Suppose priorities are assigned as PI = 1,
P2 = 3, and P3 = 5, and all other processes running have lower priority (P; > 5 for i > 3).

At time to, when all three processes are started, 71 (the device driver) will run because it has
the highest priority. After properly initializing the AID hardware, it issues a receive(72) call and
becomes receive-blocked until 72 issues a send(71)' Being the highest-priority process now in the
ready state, 72 (the controller) now runs. It initializes its timer, and it goes to sleep (blocks) until
the timer expires. When this occurs, at every time kT, it first issues a send(71), causing 72 to reply­
block. (It would normally receive-block, but 71 has already issued a receive(71), so 72 reply­
blocks.) Now 71 moves to the ready state, and being the highest priority process, it runs. It reads
the AID, moves the data into shared memory, and issues a reply(72), which makes 72 ready.
Finally, it issues a receive(72) to become receive-blocked again. At this point, 72 will run again,

Section 1.5 Hardware Issues 17

least the priority of !i while accessing the shared resource.) Thus, B, is just the largest C,
of all tasks sharing the resource. A more complete discussion is beyond our scope, and
we refer the reader to anyone of a number of textbooks on the subject, for example [4].

There are alternatives to the use of preemptive, priority-based, multitasking oper­
ating systems that we have presented here. For example, so called cyclic executives
execute processes on a fixed schedule and have certain advantages, such as minimizing
timing jitter. But the trend in industry seems to be toward multitasking, real-time
operating systems, in which programs are written using well-known languages such
as C, extended with libraries of real-time functions, or perhaps Ada. Given the wide­
spread familiarity of both C and multitasking operating systems such as Linux, this
trend will doubtless continue.

1.5 HARDWARE ISSUES

Our emphasis to this point has been on the real-time software aspects of controller
implementation using a general processor. The chapter would be incomplete without
some discussion of the hardware requirements. In the following subsections, we outline
a few of the more popular off-the-shelf hardware platforms used to realize control
systems.

1.5.1 Desktop PCs

The commodity pricing of desktop PCs, along with their continuously improving
performance, storage capacity, and ability to network, has made them increasingly
popular platforms for real-time control. Of course, it is often necessary to enclose
the delicate electronics into an appropriate industrial-strength case. But, under the
hood, there is little difference between an industrially hardened PC and its desktop
version. Input-output can be provided by using appropriate expansion cards. The
primary advantage of using PCs is, of course, low cost, relatively high performance,
and a large variety of available software.

The question is what operating system to use. As discussed earlier, Windows NT is
not a "hard" real-time operating system: A controller that is running as a process on
such a machine will suffer from some timing jitter. Depending on the other executing
processes, this mayor may not be an issue for the particular control problem at hand.
As an alternative to developing a controller in a language such as C, the designer can
turn to number of Windows NT applications that provide graphically programmable
controllers. Labview from National Instruments is a popular example. In a matter of
minutes, a designer can program a PID controller using its graphical programming
language. However, if more demanding real-time performance is required, a "hard"
real-time as such as the Unix-derivatives QNX or Lynx should be used.

1.5.2 Single-Board Computers

Desktop PCs can be too large and bulky for embedded use. When size is an issue, a
so-called single-board computer can be used. Functionally, these are complete PCs on a
single printed circuit board, perhaps lacking the keyboard and monitor, and manufac­
tured with smaller footprints than would be used for a desktop PC. Typically, they are
equipped with popular busses such as the PCI bus and the relatively new PC-I04 bus.
The latter accommodates very small expansion cards for input-output. These are

18 Chapter 1 Real-Time Computing and Control

stacked parallel to the "motherboard," so that the entire unit fills a very compact
volume. Most support solid-state storage such as flash memory that can replace disk
drives, making the PC more rugged. Several operating systems are now available which
can be loaded from flash memory instead of disk drives.

1.5.3 Digital Signal Processors

Several manufacturers market Digital Signal Processors (DSPs) and complete
stand-alone DSP boards for control system implementation. DSPs excel at the numer­
ical aspects of control, such as floating point multiplication and indexing arithmetic.
Moreover, most DSPs do not have memory caches and use a RISC architecture, mean­
ing instructions take a fixed number of CPU cycles to complete. Thus the time required
to execute a set of instructions is easy to predict. When the timing aspects of a controller
implementation are critical, both in terms of speed and timing jitter, a DSP will offer
the best solution.

1.5.4 Programmable Logic Controllers

Programmable Logic Controllers (PLCs) are special-purpose industrial computers
that are used extensively in industry to implement control systems [12, 13]. Historically,
PLCs were invented as a programmable replacement for large hardwired control panels
that were used to control machines on the factory floor in the automotive industry.
Typically, these panels connected switches to relays, valves, lights, sensors, and so on,
all wired together to make a complex factory system work. Thus, early PLCs acted as
simple on/off control devices, taking input from perhaps a large number of switches
and sensors, and providing output to electromechanical relays.

Traditionally, PLCs have been programmed using a graphical language called a
ladder diagram. A ladder diagram is essentially a schematic wiring diagram that shows
the logical behavior of an electrical circuit. It is familiar to electricians and technicians
who might work on a factory floor. Each "rung" of a ladder represents an electrical
circuit, which might include a switch, relay, light,and so forth. "Rungs" can be added to
the PLC program just as a new line of C code can be added to a C program.

PLCs have evolved into much more than just programmable switches. Elements
such as timers, logic statements, and arithmetic operations can be used to make deci­
sions based on timing and logic. They can include a rich set of input/output modules,
including A/D converters, shaft encoder modules, and even vision systems. Modules
particular to control include PID subsystems and ethernet communication modules.
Thus, a custom control system can be put together using a PLC and a set of appropriate
modules and software.

PLCs are generally used in an environment that has a large number of inputs and
outputs, and where logical decisions based on these signals must be made. For exam­
ple, the high-level control of an industrial robotic manipulator will often be done
using a PLC. Such a controller would provide the reference set-points to the low-level
joint control system. At the same time, it might monitor a safety system, stopping the
robot should a light-beam break, indicating that a person has entered an unsafe area.
The PLC might also interface with other factory-floor PLCs that control the systems
that feed parts to the manipulator. More complete descriptions can be found in [12,
13].

References

1.6 CONCLUSION

19

Real-time programming is usually thought to be beyond the scope of conventional
control theory and practice. This is rather ironic, given that so much advanced theory
can only find application through advances in real-time technology. In this chapter, we
have illustrated the danger of ignoring real-time issues, and we have introduced some
modern tools that are extremely useful for complex real-time control system design. In
the future, tools such as real-time operating systems, programming languages, and
processor architectures will make possible control systems with increased functionality
and complexity. Control engineers should not only reach out and embrace this tech­
nology, but they should playa role in its development. After all, the job does not end
with a difference equation.

Related Chapters

• Some related types of real-time control issues also arise in communication networks­
see Ch. 19.

• The use of programmable logic controllers for real-time control programming is briefly
discussed in Ch. 16.

• In Ch. 13,a challenging class of real-time control problems that arise in power systems,
due to couplings between geographically separate generators, is discussed.

REFERENCES

[1] S. R. Norsworthy, R. Schreier, and G. C. Ternes (eds.), Delta-Sigma Data Converters.
Piscataway, NJ: IEEE Press, 1997.

[2] R. J. A. Buhr and D. L. Bailey, An Introduction to Real-Time Systems. Upper Saddle River,
NJ: Prentice Hall, 1999.

[3] M. Joseph (ed.), Real-Time Systems: Specification, Verification and Analysis. New York:
Prentice Hall, 1996.

[4] C. M. Krishna and K. G. Shin, Real-Time Systems. New York: McGraw-Hill, 1997.
[5] J. Wikander and B. Svensson (eds.), Real-Time Systems in Mechatronic Applications.

Boston, MA: Kluwer, 1998.
[6] G. Olsson and G. Piani, Computer Systemsfor Automation and Control. New York: Prentice

Hall, 1992.
[7] N. C. Audsley, A. Burns, and A. J. Wellings, "Deadline monotonic scheduling theory and

application." Control Engineering Practice, Vol. 1, no. 1, pp. 71-78, February 1993.
[8] QNX OS System Architecture. Kanata, Ontario, Canada: QNX Software Systems,Ltd., 1993.
[9] H. Rzehak, "Real-time Unix: What performance can we expect?" Control Engineering

Practice, Vol. 1, no. 1, pp. 65-70, February 1993.
[10] M. Ragen, "Real-time systems with Microsoft Windows NT." Available at www .micro

soft.com/embedded/winnt.htm.
[11] J. L. Peterson and A. Silberschatz, Operating System Concepts. Reading, MA: Addison­

Wesley, 1987.
[12] J. Stenerson, Fundamentals of Programmable Logic Controllers, Sensors, and

Communications. Englewood Cliffs, NJ: Prentice Hall, 1993.
[13] T. E. Kissell, Understanding and Using Programmable Controllers. Englewood Cliffs, NJ:

Prentice-Hall, 1986.

Chapter

2
DISCRETE-EVENT SYSTEMS
AND THEIR OPTIMIZATION

Edwin K. P. Chong

Editor's Summary

Classical control technology has by and large focused on continuous-time systems-including their digi­

tized and sampled equivalents. The unequivocal success in this arena has resulted in a broadening of

interests and in explorations of the application of control concepts to other problems, even those that are

not readily amenable to the techniques of traditional control. This chapter focuses on one such topic:

discrete-event systems.

Whereas control technology is mostly concerned with systems with internal dynamics that can be

mediated by continuous-valued inputs, discrete-event systems (DES) exhibit dynamics that evolve in

accordance with external events-the state of the system changes only when an event occurs. Many

problems in communication networks, manufacturing systems, transportation and traffic, and numerous

other domains can be seen as DES applications. In the first case, for example, events of interest can be the

arrival of packets of information at a node in the network. (Connections between DES and communica­

tion networks are further elaborated in Chapter 19.)

Modeling approaches for DES include state machines and automata, Markov chains, and timed

models using event clocks. Simple examples are shown for each, drawn from computer systems with on,

off, and failed states and single-serverqueues. Some of these models are also discussed in Chapter 7 which

deals with systems that combine discrete-event and continuous-time dynamics.

This chapter also discusses the topic of optimization of DESs: how control parameters of a DES (for

example, the mean service time for jobs in a queue) can be selected to optimize some performance measure.

To use gradient-based optimization methods for discrete-event systems, gradient information must be

estimated; since the systems and their representations are not continuous, gradients cannot be analytically

calculated. Stochastic approximation algorithms are an effective option and can even allow DES optimi­

zation to be performed on-line, while the system is operating.

Edwin Chong is an associate professor in the School of Electrical and Computer Engineering at

Purdue University, West Lafayette, and the chair of the IEEE-CSS Technical Committee on Discrete

Event Systems.

2.1 INTRODUCTION

The twentieth century was dominated by the development of highly complex man-made
systems that performed complicated tasks. From mobile telephone networks to satellite
space stations, the development of such systems was accompanied by an ever-increasing
demand for even more sophisticated systems. As we usher in a new century that pro­
mises the development of technology currently not even imaginable, the need for a

20

Section 2.1 Introduction 21

systematic and mathematical approach to the analysis, design, and control of compli­
cated large-scale systems is becoming increasingly important.

Such a need has long been recognized by researchers in a multitude of technolo­
gical areas. In operations research, for example, researchers have been interested for a
long time in systematic methods to deal with large-scale systems. However, only in
relatively recent years have control engineers taken up this challenge. A result of this
undertaking has been the birth and development of the area of study known as discrete­
event systems:'

A discrete-event system is a dynamic system that evolves in accordance with the
occurrence of events. An extensive literature on discrete-event systems has appeared in
the last 15 years, and their study continues to be an area of ongoing research. Targeting
application areas such as telecommunication networks and manufacturing systems, the
area has attracted an interdisciplinary pool of researchers, from systems and control,
theoretical computer science, operations research, and artificial intelligence. Within the
domain of control engineering, the study of discrete-event systems attempts to address
the following questions:

• To what extent can ideas from classical systems and control theory be used in
discrete-event systems, and how?

• How do we specify and solve decision and control problems in discrete-event
systems?

• What models are appropriate for performance analysis and optimization of
discrete-event systems?

• How do we systematically and optimally design a discrete-event system to
satisfy given design specifications?

The study of discrete-event systems has reached a stage where an undergraduate­
level textbook on the subject is available, as well as several books on specialized topics
in the area. (We provide some references at the end of the chapter.) Moreover, many
academic institutions around the world have begun to offer courses on discrete-event
systems, reflecting the increased recognition of the importance of the area. Nonetheless,
to date, the state of the art does not yet fully address all of the questions listed above,
and much remains to be done in the area.

In this chapter, we provide an overview of discrete-event systems at a level that
should be accessible to engineers with no more than undergraduate training in systems
and control. The treatment starts out at an elementary level and builds up to a discus­
sion of optimization techniques that are in fact too advanced to be discussed in detail in
a chapter like this. Our goal is simply to whet the reader's appetite, providing a glimpse
of what promises to be an important topic for control engineers in years to come.

In the next section, we provide a simple definition of a discrete-event system. We
begin in Section 2.2.1 with a basic discussion of systems, including input-output systems
and states. Then, in Section 2.2.2, we introduce the idea of a discrete-event system,
contrasting it with classical models based on differential and difference equations. In

1 Often, the abbreviation DES is used. Some use the term discrete-event dynamic system, with the
abbreviation DEDS.

22 Chapter 2 Discrete-Event Systems and Their Optimization

Section 2.2.3, we argue that discrete-event systems arise naturally as models when
considering many of today's complex engineering systems.

Section 2.3 is devoted to a discussion of some basic ideas in modeling discrete­
event systems. We discuss state trajectories (Section 2.3.1) and state machine models
(Section 2.3.2), as well as some extensions of these ideas. To explore discrete-event
system models that consider event occurrence times, in Section 2.3.3 we describe a
particular model using event clocks. Here, we also discuss discrete-event simulations,
as well as Markov and semi-Markov processes. These discussions, though brief, assume
some knowledge of probability and stochastic processes.

In Section 2.4, we discuss the problem of optimization in discrete-event systems,
focusing on a particular approach involving gradients. First, in Section 2.4.1, we define
the components of an optimization problem. Then, in Section 2.4.2 we discuss one
approach to solving optimization problems based on gradient algorithms. To apply
this approach to the optimization of discrete-event systems, in Section 2.4.3 we argue
that gradient estimation is a key ingredient, and we introduce some ideas along these
lines. Finally, in Section 2.4.4, we describe the use of gradient estimators and stochastic
approximation algorithms for the on-line optimization of discrete-event systems. We
illustrate the application of this approach via an example of a capacity allocation
problem.

Finally, in Section 2.5, we provide directions for further reading. In keeping with
the intended level of our exposition, we have attempted to restrict our reference list to
books and overview articles. These references provide good starting points for investi­
gation, and most contain further references to other useful sources, including research
articles.

2.2 DISCRETE-EVENT SYSTEMS

2.2.1 What Is a System?

The heart of control engineering is the ability to analyze real-world "systems"
using analytical tools (pen-and-paper or computer/software). Typically, this analysis
is done by reasoning with a model of the system, the language of such reasoning being
mathematics. Throughout this chapter, we use the term system to mean a mathematical
model, constructed for the purpose of analysis. This use of the term is typical in formal
methods of control engineering.

The prototypical system in control engineering is the input-output system. Here, we
associate with the model an explicit input and output. Typically, the input is "control­
lable" in the sense that we can manipulate it to achieve some desired effect. The output
is usually the manifestation of the resulting effect, such as a sensor measurement of
some physical quantity.

It is also common in control engineering to use state models. Here, we associate
with the model an explicit description of the state of the system. The state is usually an
entity that determines or characterizes the "internal condition" of the system. For
example, the state of a hot-water heater may be defined by the temperature and volume
of water it contains.

Also relevant to our discussion is the notion of a dynamic system. Such a system
"evolves" in the sense that its state changes in response to external factors. Such factors

Section 2.2 Discrete-Event Systems 23

may include changing values of the input, or simply just the passing of time. In the
latter case, we say that the dynamic system "evolves in accordance with time." For
example, the water temperature of a hot-water heater may increase in response to a
change of the temperature setting (input). Ifit has a leak, the volume may decrease with
time even when there is no change in input.

Over the centuries, scientists (physicists, chemists, etc.) have provided engineers
with system models based on physical laws. However these laws were developed, they
agree with how the world operates-experimental measurements of the behavior of the
world agree with what is predicted by these laws. Therefore, such physical laws appro­
priately provide the basis for system models, and many engineering marvels have been
created as a result.

The prevailing mathematical principle underlying physical laws is the differential
equation. From Maxwell to Schrodinger, scientists have used differential equations as
the primary vehicle to describe how things work. Specifically, given certain variables
that describe the state of a system, such as volume and temperature, a differential
equation tells us how these variables change with time (and sometimes even how
they vary with location in space). Not surprisingly, over the years differential equations
have provided the primary basis for models in control engineering.

As the use of computers became mainstream in control systems, engineers began to
use a slightly different form of model, called the difference equation. Functionally, the
difference equation serves the same purpose as the differential equation in that it
dictates how a system evolves with time. The distinguishing factor is that in a difference
equation, time takes on values only at discrete points (e.g., every tick of a second). For
this reason, difference equations give rise to what are called discrete-time models. Such
models may be used to describe the value of the state of a system as sampled at discrete
instants of time, such as is necessitated by the use of an AID (analog-to-digital) con­
verter.

2.2.2 What Is a Discrete-Event System7

A discrete-event system is a dynamic system that evolves in accordance with
occurrences of events. It is instructive to distinguish discrete-event systems from models
based on differential and difference equations. First, we note that while differential and
difference equation models evolve with time, a discrete-event system evolves with the
occurrence of events. The occurrence of such events may also be associated with
instants of time, but this association is unnecessary in certain applications. (We will
provide examples later.) A discrete-event system model may also involve a state. By
definition, the state of a discrete-event system changes only when an event occurs. Note
that the adjective discrete in "discrete-event system" is used to emphasize the notion
that an event makes the system state change abruptly and not continuously. The reader
should not confuse a discrete-event system with a discrete-time system.

Discrete-event system models are useful in a wide variety of situations and provide
a flexible means to describe many systems of interest. An event in a discrete-event
system can represent virtually anything that occurs abruptly. For example, an event
may correspond to the arrival of a packet at a node in a communication network, the
completion of a job by a central processing unit (CPU), or the failure of a machine in a
manufacturing system. Discrete-event system models can be used in virtually all man­
made systems, examples of which are endless-manufacturing systems, communication

24 Chapter 2 Discrete-Event Systems and Their Optimization

networks, computer systems, logistics, vehicular traffic, economic systems, stock mar­
kets, and so on. Discrete-event systems also provide suitable models for some natural
phenomena, such as particle interactions in certain materials.

2.2.3 Why the Need for Discrete-Event Systems7

Discrete-event system models are useful when dealing with dynamic systems that
are not fully captured by classical models, such as differential or difference equations.
Such systems increasingly are dominating the modeling arena for two main reasons.

First, the complexity of many man-made systems necessitates viewing them at
different levels of abstraction. It is often impossible to have a single picture of an entire
system; engineering systems are just too complicated nowadays. The standard practice
is to define various levels of abstraction, each of which can be handled in a manageable
way. Usually, in such multilevel abstractions, a low-level view provides a detailed
description of the dynamics of the various components in the system, whereas a
high-level view is used to characterize the interactions between the components.
Although the low-level dynamics are often adequately captured by classical differential
equation models, the high-level view involves dynamics of a different nature, such as
logical decision making, discrete control actions, abstract task descriptions, and switch­
ing between modes. Therefore, at sufficiently high levels of abstraction, the use of events
to capture dynamics is natural, perhaps even inevitable.

Example

Control issues in manufacturing systems typically are approached in a hierarchical fashion (see
Table 2.1). At the lowest level, we take into account individual machines in the manufacturing
system, such as conveyor motors or robotic manipulators. Here, the time scale of the dynamics
(i.e., how fast the state of the system is changing) is relatively short, perhaps on the order of
milliseconds.

At a higher level, we consider the cells in the manufacturing system. Each cell consists of
several machines, but we are not concerned with the details of individual machines. We focus only
on the aggregate behavior of the machines as a cell. The time scale at which the dynamics evolve is
longer here than in the low-level view, somewhere in the domain of minutes or hours.

At the highest level shown in Table 2.1, we are concerned with the overall behavior of the
factory-the so-called big picture of the system. Here, even individual cells are not of interest,
only how they interact together to affect the overall factory. Time scales at this level are relatively
long, perhaps involving days or even months.

TABLE 2.1 Control Hierarchy in Manufacturing Systems

Level Time Scale Example Issues Example Technologies

Machine Short Robot arm trajectory PID, PLC, Fuzzy
Relay ladder logic
Servomotor control

Cell Medium Routing Simulation
Scheduling

Factory Long Material planning lust-in-time, Kanban
Inventory control
Tooling problem

Section 2.3 Some Discrete-Event System Models 25

A second reason for considering discrete-event system models is that many deci­
sion and control problems involving complex systems are inherently discrete in nature.
These include resource allocation, scheduling, policy selection, synchronization, rout­
ing, and admission control in communication networks. Although such issues give rise
to challenging problems for control engineers, they cannot readily be tackled using only
classical models such as differential equations.

2.3 SOME DISCRETE-EVENT SYSTEM MODELS

2.3.1 State Trajectory of a Discrete-Event System

Figure 2.1 shows the state of a discrete-event system model as a function of time
(the state trajectory). Notice that the state of the system changes only when an event
occurs. The labels (1, {J, and so on, signify the associated events. In between the instants
of occurrence of events, the state remains fixed. Note that the vertical axis in Figure 2.1
does not necessarily represent"numerical" values, such as 1, 2, or 3 but may be arbi­
trary qualitative states, such as on or off. It is often natural in discrete-event systems to
restrict the possible states of the system to some "discrete" (countable) set.

State

Figure 2.1 State trajectory of a discrete event
system.

I
I

pi
I
I

--'
I

al

yl
I

I
I

.7l1

I
I • • •

Time

Example (Simple model of computer)

Consider a "high-level" model of a computer with three states: on, off, and down. When the state
is off and we push the power switch (the event push-switch, denoted n, occurs), the state changes
to on. Similarly, when the state is on and the event 1r occurs, the state changes to off. If the event
fault (¢) occurs when the state is on, the state changes to down. Once in the state down, the state
remains there until the event repair (p) occurs, in which case the state changes to off. Figure 2.2
illustrates a possible state trajectory of the discrete-event system model of the computer.

State

ON

OFFt---....

Figure 2.2 State trajectory of a simple model
of a computer.

I I
.7l1 I

ep:
I

DOWN

.7l J

I
r-­

pi
I

.7l'
I

• • •

Time

26 Chapter 2 Discrete-Event Systems and Their Optimization

Note that in this example, the number of states in the system is finite (three). In
general, it is possible to have an infinite number of states, as in the following
example.

Example (Queue)

Consider the familiar scenario where customers arrive at a server that can serve only one
customer at a time. Customers who have arrived but have not yet completed service must wait in
line (they form a queue). These customers include those who are being served and those who have
not yet begun service. As soon as the server completes service of a customer, that customer
immediately leaves the system.

The model described here is called a single-server queue. The events in the system are
customer arrival (a) and service completion (a). The possible states of the system can be modeled
simply as the number of customers in the queue (i.e., customers who have arrived but have not yet
departed). When event a occurs, the state goes from n to n + 1, where n E {O, 1,2, ...}, while the
event a causes the state to go from n to n - 1, where n E {I, 2, ...}. Note that the event a cannot
occur in state 0 (when there are no customers present). Figure 2.3 depicts a possible state
trajectory of a queue.

While queues model a wide variety of familiar situations found in daily life, such as waiting
in line at the checkout counter of a supermarket, they are also useful in many other application
domains, ranging from telecommunication networks to viral epidemics.

State

3

2

r----j

a l a l
1 I

r----l ,....-- --I

a l o ' a l al___I I I ..I __-.

a l •••
1

o---~-------------------..
Time

Figure 2.3 State trajectory of a queue.

2.3.2 State Model of a Discrete-Event System

2.3.2.1 State Machines

A discrete-event system with a countable number of states can be represented
conveniently by a state transition diagram. In such a diagram, a circle represents a
state, and an arrow going from one state to another (also called an arc) represents a
change of state (also called a state transition). Each arc has a label that represents
the event associated with the state transition. Such a model is also called a state
machine or automaton. The set of all possible states in the system is called the state
space.

Section 2.3 Some Discrete-Event System Models 27

Example (Simple model of computer)

Consider again the previous example of a simple model of a computer. Figure 2.4 shows the state
transition diagram of the model. The state space in this example is {on, off, down}.

Figure 2.4 State transition diagram for a sim­
ple model of a computer.

OFF

p

ON

DOWN

This example, with a finite number of states, falls within the class of finite state
machines (or finite automata). State machines with an infinite number of states are also
possible, as is the case with the single-server queue.

Example (Queue)

Consider the example of a queue. The state, being the number of customers in the system, can be
any nonnegative integer. The state space is therefore infinite. Figure 2.5 shows the state transition
diagram for the queue.

Figure 2.5 State transition diagram for a
queue.

a

a

a

a

a

a

a

a

•••

To summarize, a state machine is a model consisting of a set of states S (the state
space), a set of events E, and a state transition rule 8 that specifies the next state when
an event occurs at a given state. Specifically, if s is the current state and event e occurs,
the state changes from s to s', where s' = 8(s, e). It is convenient to think of 8 as
represented by the arcs in the state transition diagram. Usually, a state machine
model also includes specification of an initial state so.

2.3.2.2 Nondeterministic State Machines

The state machine model, though simple, provides a useful basis for modeling
many systems found in practice. There are several ways to extend the model to incor­
porate more flexible features. The most immediate extension is to allow the occurrence
of a single event at a given state to cause state transitions to more than just one other
state.

28 Chapter 2 Discrete-Event Systems and Their Optimization

Example (Simple model of computer)

Consider again the previous example of a simple model of a computer. Suppose we extend the
model by specifying that when the event 1r (push-switch) occurs at state off, the state can either
become on or down. In this case, the state transition diagram of the model is given in Figure 2.6.
Note that there is an arc from state off to state on as well as another arc to state down, both
labeled with the event n, When event 1r occurs at state off, the next state is either on or down. We
do not specify beforehand which it will be; the next state is therefore not deterministically
determined by the current state and the event that occurs.

OFF

p

ON

DOWN
Figure 2.6 Nondeterministic state transition
diagram for a simple model of a computer.

State machine models in which a single event at a given state can cause transitions
to multiple possible states is called a nondeterministic state machine.

2.3.2.3 Markov Chains

Another extension of the state machine model is to incorporate probabilities with
events. Specifically, in certain applications, the state transitions occur with certain
probabilities. In this case, again we can use a state transition diagram to represent
the system, incorporating a probability with each state transition. The resulting
model is called a Markov chain.

Example (Simple model of computer)

Consider the previous example of the nondeterministic model of a computer. Suppose the
probabilities of state transitions are given in Table 2.2. We can represent the Markov chain model
for the system using the state transition diagram in Figure 2.7, where, in addition to the event
labels,we also incorporate the transition probabilities.

TABLE2.2 State Transition Proba-
bilities for Markov Chain Model
of Computer

Current State Next State Event Probability

OFF ON n 0.95
OFF DOWN rr 0.05
ON OFF rr 0.9
ON DOWN t/> 0.1
DOWN OFF p 1.0

Section 2.3 Some Discrete-Event System Models 29

Figure 2.7 State transition diagram for
Markov chain model of a computer.

OFF

p/l.O

DOWN

2.3.2.4 State Machines and Discrete-Event Systems

At this stage, it is natural to ask what can be done with models of the kind
described earlier. To answer this question, we point out that the study of automata is
a mature subject, with many textbooks written on various aspects of their analysis. The
same can be said about Markov chains. Although it is beyond the scope of this chapter
to discuss the rich theory underlying such models, it should be clear that control
engineers can benefit greatly by taking advantage of the many useful techniques from
the vast literature on these topics. (We provide some references at the end of the
chapter.) In addition to state machines, several alternative discrete-event system models
are available that capture different aspects of the modeling process. These include Petri
nets, max-plus algebra, and communicating sequential processes. Again, a significant
literature is devoted to the study of these models, including their use in applications
such as communication protocols, software engineering, transportation systems, and
manufacturing. Another line of investigation currently of interest combines discrete­
event system models with differential equation models, resulting in what are called
hybrid systems.

The use of state machines in the study of control of discrete-event systems was
initiated by Ramadge and Wonham [18]. Their framework provides a way to explore
control theoretic questions in discrete-event systems. More specifically, they incorpo­
rate the notion of a control input that can be used to influence the behavior of the
system-the control input disables certain events from occurring. Given such a control
framework, many control theoretic ideas familiar in the study of control theory can be
applied to discrete-event systems. For example, we can explore how to design a "feed­
back" controller that uses observations of the state trajectory to choose the control
input such that the overall behavior of the system satisfies some given design specifica­
tion. This line of investigation has led to a theory of supervisory control for discrete­
event systems. We will not discuss this topic any further in this chapter.

2.3.3 State Models with Event Clocks

The previous discussion of discrete-event models does not consider the times at
which events occur, but only the order in which they occur and how the state of the
system changes as a result. Although many problems of interest can be addressed using
only such untimed models (also called logical models), others require explicitly dealing
with the times at which events occur. For example, suppose we are interested in the
average waiting time experienced by customers in a system modeled as a single-server

30 Chapter 2 Discrete-Event Systems and Their Optimization

queue. The waiting time of each customer is the time duration between the arrival and
start of service of a customer-s-clearly the difference between the occurrence times of
two events: a service completion and an arrival. A model capturing waiting times in a
queue must include event occurrence times.

2.3.3. 1 Event Clocks

We now describe one possible way to extend state machine models to include event
occurrence times, leading to a timed discrete-event system model. This extension
involves introducing the notion of eventclocks. To proceed, recall that a state machine
consists of a set of states S, a set of events E, and a state transition rule 8. At any given
state s, consider the set of all events that can occur. We can visualize this set by
considering all arcs that leave the state s in the state transition diagram and by listing
all event labels for those arcs. We call this set the set ofjeasible events at state s, denoted
Ef(s).

Example (Simple model of computer)

Consider again the simple model of a computer shown in Figure 2.4. We have three states,
S = {on, off, down}, and three events E = frr, ¢, pl. At the state off, only event 7r is feasible;
thus, Ef(off) = {7r}. At the state on, there are two feasible events: Ef(on) = {7r, ¢}. At the state
down, only one event is feasible: Ef(down) = {pl.

Note that as the state changes, certain events that were not previously feasible may
become feasible. Also, when an event occurs and the state changes, that event may no
longer be feasible in the next state.

In our timed discrete-event system model, we associate an event clock with each
event in E. When an event that was not previously feasible becomes feasible owing to a
state transition, the clock for that event is set to some initial positive value. This clock
runs down at unit rate and will eventually reach o. As soon as it does, the event occurs.
Because there may be several events that are feasible at any given state, there are several
event clocks running in parallel, each at unit rate. Whichever clock reaches 0 first causes
its associated event to occur.

Example (Queue)

Consider the example of a single-serverqueue, as shown in Figure 2.5. Here, we have state space
S = {O, 1,2, ...} and event set E = {a, a}. Note that both events are feasible at all states except in
state 0, where only the arrival event a is feasible. In other words, Ef(O) = {a}, while
Ef(s) = {a, a} for all S = 1,2,

Suppose we start at state 0 (an empty system). The only feasible event is a, so we set the
event clock for a at some initial value. As time progresses, the a-clock runs down at unit rate.
When this clock reaches 0, the event a occurs (for the first time), and the state changes from 0
to 1. At this stage, both events a and a are feasible. Therefore, we set both clocks to some
initial values, and let them run down at unit rate. Suppose the a-clock reaches 0 first. At that
time, a occurs again (a new customer arrives) and the state goes from 1 to 2. Here, both a and
a are again feasible. However, we need only reset the a-clock to some initial value because the
a-clock has not yet reached 0 and still has some positive time remaining. Having set the a­

clock, the process continues, with both clocks racing to 0 to determine which event is next to

Section 2.3 Some Discrete-Event System Models

State

31

3

2

,
a,

~

a' a' a'
1 I I

~

a' a'
I I

I

al,
rr ' •••

I
0--------+---1---+----+---+---+---...-.---...

Figure 2.8 Timed state trajectory of a queue.

occur. Figure 2.8 illustrates a possible timed state trajectory of the queue, with event times
labeled as al, a2, . .. for the arrival (a) times and d1, d2, .. .for the service completion or
departure (a) times.

Note that the initial clock values in the above timed model have convenient
interpretations. Suppose we label the initial setting of the a-clock at the beginning (when the
state was 0) as Ao. We can think of this value as the time until the first arrival. When the state
first changes from 0 to 1, suppose we denote the initial clock values as Al for the a-clock and
81 for the a-clock. Then, we can think of Al as the interarrival time between the first and
second customers, and 81 the service time of the first customer (the time it takes to serve the
first customer). Note that if Al < 81, then the second customer arrives before the first customer
has completed service, as is the case in Figure 2.8. In this case, the second customer has to wait
in line, and the number of customers in the system increases from 1 to 2. In a similar way, we
can define interarrival times A2, A3, ••• and service times 82,83, •••• In Figure 2.8, the
interarrival times are given by An = an+l - an, n = 1,2, ... , these being the times between the
occurrences of event a. Note that 81,82, ..• are not the times between the occurrences of event
a because a is not a feasible event when the state is o. These periods when the state is 0 are
called idle periods of the queue. The intervals of time between idle periods are called busy
periods of the queue.

It is apparent that the (timed) state trajectory of the system is completely determined by the
numbers Ao,AI, A2 , ••• and 81,82, .•.. These numbers are called the event lifetimes. The event
lifetimesin a timed model can be viewed as the input to the system, which completely determines
the resulting state trajectory.

This description of how event clocks determine the timed state trajectory relies on
the assumption that once an event becomes feasible, it remains feasible until it occurs.
This property of a system is called noninterruption. In systems with this property, once
an event clock is set, it continues to run down until it reaches o. Although many systems
in practice, such as queues and networks of queues, satisfy this property, not all systems
do; such systems are said to be interruptive. For example, the system in Figure 2.4 does
not satisfy the noninterruption assumption because when the state changes from on to
down, the event n becomes infeasible. Clearly, interruptive systems have to be treated
differently. However, many models can be made to satisfy noninterruption by simple
modifications. For example, we can modify the system in Figure 2.4 by including an arc
from state down to itself with the label n, In other words, event n is feasible in state
down but causes a transition back to state down.This model satisfies the noninterrup­
tion property and may equally serve our practical purposes.

32 Chapter 2 Discrete-Event Systems and Their Optimization

2.3.3.2 Discrete-Event Simulations

Timed models using event clocks often are used as the basis for computer simu­
lations of discrete-event systems (also called discrete-event simulations). Such simula­
tions are useful for computing estimates of performance measures, such as the
average waiting time in a queue. To construct the simulation, we first decide how
to set the values of the event lifetimes. Typically, the sequence of event lifetimes for
each event is assumed to be an independent, identically distributed random sequence
with a given distribution. Such a sequence can be generated using a random number
generator, a common component of discrete-event simulation software packages.
Finally, we implement the previously described mechanism for generating the timed
trajectory of the system given the event lifetimes. From the timed trajectory, we can
extract whatever information we desire, such as waiting times of customers in a
queue.

Discrete-event simulations with random event lifetimes can also be applied to
models with nondeterminism. (Recall our previous discussion on nondeterministic
state machines.) Here, the occurrence of an event at a given state can lead to several
possible next states. The typical approach is to pick one of these next states according to
some prespecified probabilities, as is done in Markov chain models. These transitions
can also be implemented using a random number generator.

There is a significant literature on discrete-event simulation techniques; see, for
example, [3], [9]. It suffices to mention here that simulation tools play an important role
in the modeling and performance evaluation of discrete-event systems.

2.3.3.3 Markov and Semi-Markov Processes

The stochastic process resulting from using independent, identically distributed
event lifetime sequences and probabilistic state transitions is called a generalized
semi-Markov process. Researchers have done significant work in characterizing the
properties of such processes. These studies provide valuable analytical tools that can
be used in the analysis of discrete-event systems modeled by such processes; see refer­
ences [10] and [11].

In the special case where the distribution functions of the event lifetimes are all
exponential, the resulting stochastic process is called a continuous-time Markov process.
Such processes yield to a rich analytical theory for which a large literature is available.
Here, again we encourage the interested reader to take advantage of the many acces­
sible treatments of the theory (see, e.g., [5]).

A special case of significant pedagogical interest in the study of queueing systems is
the single-server queue with exponentially distributed interarrival and service times.
Such a system is called an MIMII queue. (We shall not discuss the rationale for the
notation "M/M/I.") Because such a system yields to Markov process analysis, its
properties are easy to derive and are used to provide insight into the behavior of queues.
For example, it is easy to derive the formula for the steady-state average waiting time in
an MIMII queue:

ArY
w = I-AO

Section 2.4 Optimization of Discrete-Event Systems 33

where () is the mean service time and I/A is the mean interarrival time. The parameter A
is also called the arrival rate. Similarly, it is common to express the mean service time as
() = 1/JL, where JL is called the service rate. Note that the steady-state average waiting
time exists only if A < JL, in which case we say that the queue is stable. The condition
A < JL for stability is intuitively appealing: The queue is stable only if the service rate
exceeds the arrival rate, for otherwise the queue will build up indefinitely and customers
will have increasingly larger waiting times.

2.4 OPTIMIZATION OF DISCRETE-EVENT
SYSTEMS

In the design and operation of discrete-event systems, the designer often has the option
of choosing between various alternative systems. Typically, the criterion governing such
a choice is the optimality of the system with respect to a certain performance measure.
This choice is often exercised through adjusting the values of controlparameters. For
example, in the operation of a communication network, we can often adjust the routing
parameters within the network. These routing parameters affect the performance of the
network. Naturally, we are interested in choosing their values such that the overall
throughput or delay is optimized.

The design and operation of discrete-event systems therefore often center around
the problem of performance optimization. In this section, we discuss one possible
approach to this problem.

2.4.1 What Is Optimization?

Optimization is the task of making the best choice among a set of given alterna­
tives. To define such a problem, we must first have a way to compare alternative
choices. This comparison is usually done via an objective function. In the context of
our discussion on performance optimization, the objective function is simply the per­
formance measure. In other words, for each choice, the value of the objective function is
the performance of the system corresponding to that choice. To be specific, we will
assume that our goal is to minimize the value of the objective function. In other words,
we wish to find the choice with an objective function value that is as small as possible.
Maximization problems can be handled simply by multiplying the objective function by
-1. Usually, in an optimization problem we also have to specify the set of feasible
choices, which represents those choices or alternatives over which our minimization is
required. This set is also called the feasible region.

Example (M/M/1 Queue)

Consider a single-server MIMI! queue with interarrival rate A and mean service time fJ. Suppose
we are interested in the steady-state average sojourn time. The sojourn time of a customer in the
queue is the duration of time from arrival to service completion (departure) of the customer. In
other words, the sojourn time is the sum of the waiting time and the service time. The steady-state
average sojourn time is the average sojourn time of all customers, taken over an infinite horizon
(i.e., taken over an infinite number of customers, hence the use of the term steady-state).

Denote the steady-state average sojourn time by T(9), which is a function of the parameter fJ.
Here, fJ is the control parameter that we can adjust. Consider the problem of choosing the
parameter fJ to minimize the performance measure J(9) = T(fJ) + e/9, where e is a given positive
number. The rationale here is that we wish to minimize the sojourn time but with some penalty on

34 Chapter 2 Discrete-Event Systems and Their Optimization

choosing small values of f); if there were no penalty on the choice of 0 to minimize the sojourn
time, the obvious choice would be 0 = o. The values of 0 that are feasible in our problem are those
for which the queue is stable. As mentioned before, these are values for which (} < 1/A. In
practice, we will need to restrict our set of feasible choices of 0 to some subset of the stability
region.

Figure 2.9 shows a plot of J(0) versus (} for an MIMI! queue with A= 1. In this figure, D
denotes the set of feasible parameter values (the feasible region). Because we know the formula
for the steady-state average sojourn time in an MIMI1queue, we can analytically compute the
solution to this optimization problem: ()* = 0.2 in the case of the objective function in Figure 2.9.
(In fact, the value of c = 0.0625 was chosen here to give rise to this convenient solution.)

D
.. Figure 2.9 Objective function for MIMI1

queue with A= 1.

()0.5
o"'---------+------+-----.
o

J(9)

10

5

2.4.2 Gradient Algorithms for Optimization

There are many approaches to solving an optimization problem. A common
approach is to make use of the gradient of the objective function. Given a function
J(O) where the argument 0 is a vector with components 01

, ••• , oK, the gradient of J at
the point 0, denoted VJ(O), is a vector with components

aJ aJ
001 (0), ... , aoK (0).

If the argument 0 is a scalar parameter, then the gradient is simply the derivative.
The typical method for using gradients for optimization is via a gradient algorithm.

Such an algorithm has the form

where an is a positive scalar called the step size. The algorithm is an iterative procedure
that produces a sequence of iterates {On} = {01' O2, ••• } with the goal that it converges to
the solution of the optimization problem. The rationale behind the form of the gradient
algorithm is that the vector VJ(On) at On points in the direction of steepest descent of the
function J. The step size simply dictates how large a step to take in that direction to get
from On to 0n+l. In applying the algorithm, we have to specify an initial point 0o, usually

Section 2.4 Optimization of Discrete-Event Systems 35

a point that represents our best a priori guess. For more details on such algorithms,
see [8].

The above algorithm may lead to values of iterates fJn that lie outside of the
feasible region D, which is often undesirable. To avoid such a situation, a common
approach is to apply a projection at each iteration. A projection nD is a mapping that
takes any point outside of D and gives us a value inside D, but leaves any point inside
of D untouched. In other words, if fJ f/. D, then nD[fJ] E D. On the other hand, if
fJ E D, then nD[fJ] = fJ. The projected version of the gradient algorithm then has the
form

Notice that in the projected gradient algorithm, all iterates fJn lie inside D. A common
projection method is to pick the point nD[fJ] to be the point inside D that is closest
to fJ.

2.4.3 Gradient Estimation

The standard gradient method does not easily apply to problems involving dis­
crete-event systems because the method relies on being able to compute the value of
the gradient at any given point. Discrete-event systems are often too complex to yield
analytical expressions for gradients of performance measures. Moreover, such gradi­
ents usually depend on certain system parameter values or statistical distributions,
which are often unknown. For example, the steady-state average sojourn time in a
single-server queue depends on the arrival rate as well as the interarrival and service
time distributions. Unless these entities are known, we cannot explicitly compute the
gradient.

It turns out that the form of the gradient algorithm can still be used if we have
estimates of the gradient. In other words, we may consider using the following algo­
rithm:

where h; is an estimate of VJ(fJn). Of course, for the algorithm to work, the estimate h;
must be a "sufficiently good" estimate of VJ(fJn). Significant work has been done on
such algorithms since the early 1950s. The first paper to study such algorithms rigor­
ously was by Herbert Robbins and Sutton Monro in 1951, who coined the name
stochastic approximation to describe the method.

Stochastic approximation algorithms are applicable to optimization problems in
discrete-event systems only if we have suitable methods to estimate the gradients of
performance measures. Since the early 1980s, several methods have been proposed for
gradient estimation in discrete-event systems. Foremost among such methods are per­
turbation analysis (see [10], [12]) and the scorefunction or likelihood ratio method (see
[19]).

While it is beyond the scope of this chapter to describe in detail the various
gradient estimation techniques for discrete-event systems, here we give a basic descrip­
tion of one such technique: infinitesimal perturbation analysis (IPA). (For a more
detailed description of the technique, see [10], [12].) The technique of IPA for

36 Chapter 2 Discrete-Event Systems and Their Optimization

discrete-event systems is based on assuming that the event lifetimes are functions of the
control parameter and then expressing the performance measure of interest as a func­
tion of the event lifetimes.

For example, suppose we are interested in the steady-state mean sojourn time,
which is the steady-state average of the sojourn times of the customers in the queue.
Note that the sojourn time of a customer is the difference between the service comple­
tion time and arrival time of the customer. Because we are interested only in the
difference between these two times, we can set the origin of time arbitrarily. So, assume
the origin of time is at the beginning of the busy period (recall the definition of a busy
period in Section 2.3.3.1). The arrival time of the customer is the sum of interarrival
times from the beginning of the busy period to the arrival of the customer; see Figure
2.8. Similarly, the service completion time is the sum of service times from the beginning
of the busy period to the departure of the customer. Therefore, the sojourn time of a
customer can be expressed as a function of certain interarrival and service times, the
event lifetimes of the queueing model.

Suppose the service times are all functions of the control parameter e, the mean
service time. For example, the service time of the nth customer may be S; = eyn, where
Yn is a positive quantity that does not depend on e. Note that by writing the sojourn
time of a customer as a function of the interarrival and service times, we can express the
derivative of the sojourn time with respect to the parameter e as a function of the
derivatives of the service times. (The derivatives of the interarrival times with respect
to eare all zero because the interarrival times are assumed here to be independent of e.)
Because the service time of each customer is an explicit function of e, the derivative of
the service time can also be expressed as an explicit function of e. For example, if the
service time is given by S; =eyn, then the derivative of the service time with respect to e
is S~ = Yn •

In IPA, we use the steady-state average of the derivatives of the sojourn times as an
estimate of the derivative of the steady-state average sojourn time. Therefore, IPA
provides us with a method to estimate the derivative of interest using quantities invol­
ving event lifetimes. The method of IPA is useful for derivative estimation in simula­
tions. In addition to estimating quantities such as the sojourn time from simulation, we
can also estimate derivatives of such quantities.

Often, the derivative of an event lifetime can further be expressed as a function of
the event lifetime itself. For example, if the event lifetime S; is given by S; = eyn, then
its derivative is given by S~ = Yn = Sn/e. Such an expression allows us to obtain IPA
derivative estimates simply by knowing the values of the event lifetimes. This benefit is
especially useful when estimating derivatives from empirical observations of a real
system. In this case, we can measure the values of event lifetimes and as a consequence
also compute their derivatives. These, together with IPA, allow us to estimate deriva­
tives of performance measures from observations of a real system. Thus we can estimate
gradients for the purpose of performance optimization during the normal, productive
operation of a discrete-event system.

Two limitations of IPA prevent its general applicability. The first is that the
method relies on knowing the function relating the event lifetimes with the performance
measure. Second, the method works only if this function meets certain technical
requirements, which may not hold or may be difficult to check. Nonetheless, these
limitations are met in a wide range of applications, such as in many forms of queueing
networks (see [10] for examples).

Section 2.4 Optimization of Discrete-Event Systems

2.4.4 Online Optimization

2.4.4. 1 Basic Idea

37

Our goal is to use derivative estimation techniques together with stochastic
approximation (gradient) algorithms to adjust the control parameters so that the sys­
tem performance is (eventually) optimized. Because techniques such as IPA can be used
to estimate derivatives via observations of a real system, the possibility exists to apply
such optimization algorithms on-line (i.e., while the system is running). Of course, such
algorithms can also be used in simulations of a system.

Figure 2.10 illustrates the idea of on-line optimization of a discrete-event system.
At each iteration, we take observations of the system (by measuring event lifetimes).
Then, we use these observations to form an estimate of the gradient. The gradient
estimate is then used to update the control parameter via a stochastic approximation
algorithm as described before. The updated control parameter is then fed back to the
system, and the process continues in an iterative fashion.

DES

Figure 2.10 On-line optimization of discrete­
event system.

Parameter
update Observations

Example (Optimization of M/M/1 Queue)

Consider the problem of optimizing the performance measure for an MIMI! queue described in
the previous example: J(O) = T(O) + c/O, where T(O) is the steady-state average sojourn time and
ois a control parameter associated with the service times. Specifically, the service time of the nth
customer is Sn = OYn, where Yn has mean 1. Because the derivative of J is given by
J'(O) =T'(O) - c/02

, the estimation of J'(O) involves only estimating T'(O). This estimation
can be accomplished easily in the single-server queue using IPA (see [6] for details).

We apply the on-line optimization approach described above, driven by IPA estimates of the
derivative of J. Figure 2.11 shows plots of the sequence of iterates On versus n (which also counts
the number of customers). We used an initial value of 00 = 0.4. The dashed line represents a single
iterate sequence,while the solid line represents an average over 100 such sequences. Note that the
convergence of the algorithm to the optimal value of 0.2 is quite apparent. In fact, we can actually
prove that the algorithm converges to the optimal solution in this case (see [6]).

2.4.4.2 Example Application

To further illustrate the on-line optimization approach, we describe an example
application. Consider a communication transmitter with total capacity C (bits/s). There
are K classes of traffic streams feeding packets to the transmitter, with an infinite buffer
to store packets that have arrived but have not yet been transmitted. The length (in bits)
of each packet is random, but with unknown distribution. The arrival rate of packets in
each class is also unknown and may differ from class to class. The transmitter divides its

40 Chapter 2 Discrete-Event Systems and Their Optimization

While the above example illustrates the applicability of the on-line optimization
approach, its applicability to other types of problems requires further study.
Appropriate models are required for which derivative estimators can be formulated.
Much remains to be done along these lines.

2.5 FURTHER READING

For an accessible undergraduate-level textbook on discrete-event systems, see [5]. This
reference covers a wide range of topics on discrete-event systems within a single volume.
Several books have been written on specific topics related to discrete-event systems,
typically at the advanced or research level. These include algebraic models [2], mono­
tone structures [11], and stability analysis [17]. A classic reference on discrete-event
simulation is [9]; a more recent book is [3]. A well-used queueing theory text is [13],
while [4] is an excellent text on models for data communication networks. The article
[18] provides a good overview on the theory of supervisory control of discrete-event
systems. An alternative approach is discussed in [14], while [16] describes a similar
theory based on Petri nets. More on Petri net models of discrete event systems can
be found in [1]. For details on the gradient estimation technique of perturbation ana­
lysis, see [10] and [12]. The score function approach is discussed in [19]. For further
reading on optimization methods, see [8]. The book [15] provides a treatment of sto­
chastic approximation algorithms and their applications. The use of infinitesimal per­
turbation analysis and stochastic approximation algorithms for on-line optimization of
queues is described in [6].

ACKNOWLEDGMENTS

The author is grateful for the support from the National Science Foundation under
grant ECS-9501652 and from DARPA/ITO under grant FI9628-98-C-005I.

Related Chapters

• A comprehensive treatment of systems that combine discrete-event and continuous-time
dynamics can be found in Chapter 7.

• The control of communication networks, discussed in Chapter 19, is a particularly
important application for the optimization of discrete-event systems.

• Some modeling methods for continuous-time and sampled data systems are reviewed in
Chapter 4.

REFERENCES

[1] R. David and H. AlIa, Petri Nets and Grafcet: Tools for Modeling Discrete Event Systems.
New York: Prentice Hall, 1992.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and Linearity: An
Algebrafor Discrete Event Systems. Chichester, England: John Wiley & Sons, 1992.

References 41

[3] J. Banks, J. S. Carson, and B. N. Nelson, Discrete-Event System Simulation, 2nd ed., Upper
Saddle River, NJ: Prentice Hall, 1996.

[4] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Englewood Cliffs, NJ: Prentice Hall,
1992.

[5] C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis. Homewood,
IL: Aksen Associates, 1993.

[6] E. K. P. Chong, "On-Line Optimization of Queues using Infinitesimal Perturbation
Analysis," in Discrete Event Systems, Manufacturing Systems, and Communication
Networks, P. R. Kumar and P. P. Varaiya, eds., Vol. 73, IMA Volumes in Mathematics
and its Applications. New York: Springer-Verlag, pp. 41-57,1995.

[7] E. K. P. Chong and P. J. Ramadge, "Convergence of Recursive Optimization Algorithms
Using Infinitesimal Perturbation Analysis Estimates." Discrete Event Dynamic Systems:
Theory and Applications, Vol. 1, no. 4, pp. 339-372, June 1992.

[8] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. New York: John Wiley &
Sons, 1996.

[9] G. S. Fishman, Principles of Discrete-Event Simulation. New York: John Wiley & Sons,
1978.

[10] P. Glasserman, Gradient Estimation via Perturbation Analysis. Norwell, MA: Kluwer
Academic Publishers, 1991.

[11] P. Glasserman and D. D. Yao, Monotone Structures in Discrete-Event Systems. New York:
John Wiley & Sons, 1994.

[12] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic Systems.
Norwell, MA: Kluwer Academic Publishers, 1991.

[13] L. Kleinrock, Queueing Systems, Voll: Theory. New York: John Wiley & Sons, 1975.
[14] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event Systems.

Norwell, MA: Kluwer Academic Publishers, 1994.
[15] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and Applications. New

York: Springer-Verlag, 1997.
[16] J. Moody and P. Antsaklis, Supervisory Control ofDiscrete Event Systems Using Petri Nets.

Norwell, MA: Kluwer Academic Publishers, 1998.
[17] K. M. Passino and K. L. Burgess, Stability Analysis of Discrete Event Systems. New York:

John Wiley & Sons, 1998.
[18] P. J. Ramadge and W. M. Wonham, "The control of discrete-event systems." Proceedings of

the IEEE, Vol. 77, no. 1, pp. 81-97, January 1989.
[19] R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochastic

Optimization via the Score Function Method. New York: John Wiley & Sons, 1992.

Chapter

3
COMPUTER-AUTOMATED
CONTROL SYSTEM DESIGN

Georg Grubel

Editor's Summary

With cost efficiency a technological imperative today, the future impact of control technology does not

depend on new algorithms and theories alone. Such developments need to be employed rapidly, reducing

the time involved in deploying controllers for new applications. Furthermore, the insertion of advanced

control on a large scale cannot require significant numbers of highly skilled (e.g., Ph.D.-degreed) staff.

Thus control technology must be packaged in a form that allows small teams of control engineers to

efficientlyexploit new research developments and to minimize the cycle time from specification to product.

It is a sign of the maturity of control that this packaging is now being accomplished through the devel­

opment of computer-aided control system design (CACSD) tools. In industries where customized control

applications are a frequent demand, CACSD tools that automate several of the steps involved in the

practice of control design are now regularly used. At the same time, research continues toward the goal of

end-to-end (specification to deployment-ready software) control design automation. No practicing control

engineer today can afford to be ignorant of CACSD; it must be considered as much a part of one's

professional education as, say, the first course in nonlinear control.

This chapter provides an introduction to CACSD, with specific emphasis on control design auto­

mation. System modeling, performance specifications by way of mathematical criteria, and iterative algo­

rithms for realizing an ultimately satisfactory controller are among the topics covered. In other chapters in

this volume, the state of the art and current research trends in CACSD are discussed in depth from the

perspective of two control application domains-automotive powertrain control (Chapter 12) and flight

control (Chapter 13). The latter application is also used to illustrate the general observations in this

chapter.

Georg Grubel was with the DLR German Aerospace Center and is a former chair of the IEEE-CSS

Technical Committee on CACSD.

3.1 INTRODUCTION

CACSD~omputer-aided control system design-is the discipline that allows control
engineering methods to be computer executable in a user friendly, reliable, and efficient
way. Its activities yield toolboxes and computer-integrated design frameworks that
make the broad scope of control methodologies hands-on applicable to the practitioner
and that automate the control design and development process as much as possible.

The field started with R. E. Kalman. After Kalman developed the Riccati form­
alism for linear quadratic gaussian (LQG) control synthesis (1960), he and T. S. Englar
developed the first CACSD program suite in 1966. This was the Automatic Synthesis

42

Section 3.1 Introduction 43

Program (ASP) [15]. It featured programs for solving the Riccati equation for both
continuous and sampled-data systems, computation of time histories by scaled matrix
exponentials, stability computations, loss of controllability by sampling, computation
of a minimal realization, approximation of an impulse response, multi-rate sampling,
continuous time filters, and model-follower control. This program suite made state
space optimal control theory applicable to nontrivial control engineering problems,
which was not possible just by paper and pencil. Since then, CACSD technology has
made tremendous progress in providing fast and reliable numerics [28], the standard
functional programming language Matlab, data models for integrated environments
based on object-oriented software engineering principles [30], and interactive spread­
sheet user interfaces with dynamically coupled information displays for visual explora­
tion, for example, [7].

As illustrated by Figure 3.1, the traditional scope of CACSD covers the triangle of
mathematical modeling of input-output connected systems; control system analysis
with particular emphasis on feedback stability and robustness; and feedback control
synthesis. But the high-powered desktop computation facilities now available enable
the control engineer to use a considerably enlarged methodological framework for
computer-aided system design: Fast nonlinear simulation allows the engineer to inves­
tigate the behavior scenarios of rather complex control systems. Together with control
engineering analysis methods, this allows design-embedded assessment of generic feed­
back properties simultaneously with task-specific system performance. Based on con-

System
requirements

ALGOR. controller

Optimization

Real-time software/
hardware co-design

Physical plant

Figure 3.1 The engineering triangle supported by CACSD technology.

44 Chapter 3 Computer-Automated Control System Design

current evaluation of all design specifications, multi-objective optimization can be
applied to find a best-possible compromise among conflicting design requirements
and to automate tuning of the adjustable parameters of a chosen synthesis algorithm.
Hence, the control-specific CACSD methods are used in combination with the general­
purpose methods of nonlinear simulation, design-embedded assessment, and multi­
objective optimization (cf. Figure 3.1). High desktop computation power makes these
computation-intensive methods affordable within an interactive design computation
process.

The overall perspective of CACSD is to embed the control design process into a
simulation-based, "virtual engineering" environment. For that, modeling plays a prime
role to fit the virtual design objects to reality. First, modeling refers to the physical
plant. Computationally affordable symbolic algorithms now allow high-level multidis­
ciplinary system model building, with automatic mathematical model processing, to
generate standard linearized CACSD models as well as numerical code for fast non­
linear simulations. Second, modeling refers to requirements capture, that is, the task to
develop a proper set of executable quality functions for complete coverage of design
requirements. Third, the resulting control law has to be suitably modeled in the form of
computer-executable software specifications for seamless transfer of control algorithms
to the industrial software engineering process for production-ready real-time software/
hardware co-design. This links the "control reality triangle" to CACSD technology (cf.
Figure 3.1).

Virtual engineering paves the way for a "first-shot quality" satisfaction design
procedure from the early phases of dynamic analysis and control synthesis up to vali­
dated specifications of system-embedded control software, which takes into account all
performance requirements as well as tolerances and implementation implications.
Albeit not yet commonly in use, this will in future be essential for attaining performant,
robust control laws, while reducing design engineering cost and development time. This,
in particular, holds for the development of competitive "good enough" products whose
design is to be optimally tuned to user requirements at the lowest system cost by
exploiting the performance potential of a chosen system solution up to its limits.

This contribution deals with CACSD as a technology to support various steps of
control design automation. In Section 3.2, design is characterized as an iterative feed­
back process. This implies that change management in the course of the design process
is of prime concern. Hence a model of control design life cycle is assumed, which shows
where to start and how to initialize the design process, and when to accept a design or
to reiterate on a higher design process level. Section 3.3 deals with object diagrams for
physical system modeling, controller parameterization by control synthesis formalisms,
and the data computation setup for on-line evaluation in control design tuning.
Section 3.4 focuses on executable design specifications in the form of quality functions
in time and frequency domains. Quality functions are the basis for detecting the need
for change early in the design process. In particular, fuzzy-type interval-quality mea­
sures can be used to visualize design satisfaction and conflict detection. Section 3.5
addresses automatic controller tuning by multi-objective multiparameter optimization.
This allows interactive design tradeoffs in a noninferior set of design alternatives,
meaning that no one quality function can be improved without worsening some
other. This compromise is particularly important for designing a balanced multimodel
robust controller that not only is good for a nominal design condition but also behaves
in a satisfactory manner for a set of operating conditions or system parameter toler-

Section 3.2 Control Design Life Cycle to be Supported by CACSD 45

ances. Section 3.6 points to the further need to support declarative design of control
laws by making best use of automated computations in design-automation machinery.
Throughout, the examples to demonstrate conceptual aspects are drawn from [14] and
[25] in the application domain of flight control design.

3.2 CONTROL DESIGN LIFE CYCLE TO BE
SUPPORTED BY CACSD

In the general domain of systems engineering, control law design is the activity respon­
sible for system dynamics integration to provide precise and stable system functioning,
often pushing system operability toward its physical limitations. This task has to be
properly handled by the design process. Whereas control theory embodies mathemati­
cally formalized expert knowledge of where to start and how to initialize the control law
design process, multi-objective optimization-based synthesis tuning provides the quan­
titative decision clues for when to accept a design iteration versus when to reiterate on a
previous design process level. This is depicted as a control design life cycle in Figure 3.2.

Function
requirements

Quality
requirements

Tradeoff
negotiation

Design modeling & synthesis
Process dynamics (P)
Controller & filters (T)
Actuator & sensorsystems (P, T)
Controlled systems dynamics (P,T)
Casedefinition & selection (Pj' OJ)

Quality modeling & analysis
Indicators,

criteria& demands

Thning & compromising
(T-variation)

., Q(I)
I
I
I
I
I
I
I Q(J)

Q(K)
no

ok ..;:------.....
yes

Testscenario
data

Formal validation (p)
(assessment)

no
ok ;>------......

yes

Implementation specifications

Figure 3.2 Control law design life cycle: Where to start and how to initialize the
design process, and when to "ok" or to re-iterate on a higher design
process level.

46 Chapter 3 Computer-Automated Control System Design

Design Modeling on level (I) makes use of available CACSD tools for system
modeling and synthesis of controllers and filters. Object-oriented information modeling
relates the accumulated model knowledge in a retraceable way. Quality Modeling on
level (J) is the task that formally deploys all the requirements on robust stability,
dynamic performance, control effort, and implementation constraints in the form of
mathematical criteria and satisfaction demands that can be analyzed based on the
models of (I). The pertinent information has to be ordered in such a way that different
design alternatives can be compared visibly. Tuning & Compromising on level (K)
parameterizes the feasible control laws to be implemented. If no feasible solution in
the set of possible design alternatives can be found to satisfy all quality demands, here
the conflicts become visible allowing the designer to reiterate the design process either
by relaxing design demands on level (J) or by adding design degrees of freedom via
higher-order control law dynamics on level (I). Levels I-J-K also form a hierarchy in
terms of the number of iterations the engineer usually has to perform. Design balancing
by parametric quality compromising on level K requires the largest number of itera­
tions. This suggests that design changes I,J,K be stored on a hierarchical database,
which then allows design iterates to be automatically retraced by pertinent indices i,j,k
that mark the corresponding data objects.

Conceptually, control design is a feedback process of manipulation and interpreta­
tion that reduces the uncertainty of what can be achieved in terms of specifications to
attain the desired control function quality attributes of a given dynamic plant object.
This is depicted in Figure 3.3. The objects, attributes, and operations one is dealing with
are interrelated in Figure 3.4.

The modification feedback process between designer and specification in Figure
3.3 corresponds to iterations between level K and level J in Figure 3.2. The manip­
ulation feedback process between designer and object corresponds to iterations
between level K and level I. The synthesize-search feedback process between objects
and attributes in Figure 3.4 corresponds to tuning and compromising iterations in
level K.

Based on the picture of design as a feedback process, future design environments
for control engineering were anticipated in [21], more than 10 years ago. This con­
ceptual framework, combined with pertinent software engineering principles, led to
the development of the modular control design software environment ANDECS [9],
which is a production implementation of the control design automation concepts
dealt with in this chapter. Broadly, three methods of working are distinguished:
design by analysis and synthesis (attribute-centered), design by procedure (opera­
tion-centered), and design by search (exploration-centered). Attribute-centered design
by analysis and synthesis and exploratory design by search may be combined in a

Manipulation

?Signer~

Modification Interpretation

~speCilation
Object

Figure 3.3 Design is a feedback process,
(from [21]).

Section 3.3 Design Modeling and Synthesis Algorithms

Indicate

Synthesize

{Attributes}~{Objects}
~

Search

47

Figure 3.4 Objects, Attributes and Oper­
ations, (from [21]).

Systematic
manipulation

{
Opera!ions on}

objects

declarative approach to design. This is possible on the basis of quality functions as
executable design specifications and automatic synthesis tuning to attain these
specifications.

The design process is a feedback process. That is particularly true for control law
design because of its multidisciplinary interrelation with system dynamics. For exam­
ple, the flight control law of an aircraft determines the basic system architecture to
integrate the functional demands of autopilots and piloted flight with flight system
dynamics, which encompasses flight mechanics, aerodynamics, structural loads and
aeroelasticity, engine dynamics, control sensors and actuators, and control-logic soft­
ware embedded in the flight control computers. Changes in performance demands and
system data originate from the disciplinary domains involved as system development
proceeds. This requires a virtual engineering environment, where changes in virtual
system prototypes can be executed rapidly and where data integration supports a
seamless methodology for retraceable change management. The declarative design
approach using interactive multiobjective optimization [23] is believed to be best
suited for satisfying this need.

3.3 DESIGN MODELING AND SYNTHESIS
ALGORITHMS

Design modeling refers to the control objects to be designed as well as to the design
evaluation set up for control law tuning. This encompasses physical system dynamics,
control-system sensors and actuators, and controller logic, which incorporates the
control law for multivariable control-error dynamics shaping, gain scheduling, mode
switching, control redundancy management, and the like. These models, integrated
together, represent the (nonlinear) evaluation model of the controlled system to assess
control performance for various command and disturbance cases. A specific aspect is
modeling of the control law itself. This is called control synthesis. For control synthesis,
control theory provides a broad spectrum of analytic formalisms, each one requiring a
suitable (linear) synthesis model. Both types of models, evaluation models and synthesis
models, are required as part of the data computation chain for controller tuning.

48 Chapter 3 Computer-Automated Control System Design

3.3.1 Physical System Modeling

The multidisciplinary nature of control design becomes most visible in the model­
building process of the plant, that is, the physical system that is to be controlled. This
requires contributions from different engineering disciplines which are usually repre­
sented by different specialized groups in the product development team. To integrate
the modeling contributions of different engineering groups, which talk their own
domain-specific language, into a computer-executable comprehensive model of system
dynamics is not an easy task. It is burdened with high engineering transaction costs
since granularity and complexity of system dynamics models evolve as system design
proceeds. Declarative system dynamics model building is best suited to handle this
problem.

Declarative system dynamics model building using equation-based object libraries
is outlined in Figure 3.5. Object diagrams are most appropriate for iterative system
model building and allow a computer-processable representation of system equations to
be automatically generated. Symbolic formula manipulation then allows generation of
an efficient mathematical analysis code and numerical simulation code. Such computer­
aided modeling makes best use of vested interests in validated component models and
thereby reduces engineering transaction costs in model-based multidisciplinary control
design projects. It can be traced back to [2], more than 20 years ago. Nowadays the
availability of high desktop computation and visualization power and advanced soft-

Declarative---------------.....,
system model building

Automatic--------t----------,
mathematical modeling

Numeric
simulation
code

Simulation code for
different simulation
environments:

- Matlab/Simulink
(mfile/cmex)

- MatrixX/Systembuild
(DeB)

- Dymosim (DSblock)

Symbolic
analysis
code

Parameter-explicit
nonlinear/linear
models in:

- Ordinary
state-space form

- LFT standard form

Figure 3.5 Declarative system model building as computer-processable input to
automatic mathematical modeling and code generation.

Section 3.3 Design Modeling and Synthesis Algorithms 49

ware [4] makes this approach hands-on applicable to the design engineer. The approach
allows the user to automate various steps in the process of system model building and
model maintenance as the design life cycle evolves:

• Object-oriented decomposition with respect to basic engineering disciplines
allows coding of expert engineering knowledge into validated object class
libraries independent of future use in specific functional system interrelations.
Object encapsulation of all pertinent modeling information (equations, vari­
ables, parameters, units, visualization attributes, etc.) allows structured compu­
ter-processed documentation to be presented in interactive hypertext format to
the design engineer.

• Objects may contain a well-defined interface that encapsulates model complex­
ity at different levels of granularity. This allows changing the internal model
specification without affecting its external interface behavior. In this way, the
contents of an object can be specialized to capture more detailed phenomena by
making use of the inheritance principle of object-oriented information decom­
position. Hence model maintenance can be kept most transparent.

• A "hardware description language" functional composition of a system model
from subsystems and constituent objects can be visualized by hierarchical
object diagrams of which controller block diagrams are just a special case.
Available software allows system composition via object diagrams to be per­
formed interactively by a drag-and-drop graphical user interface. The hier­
archical model structure allows the isolation of subsystem design activities
within a common system dynamics model. Hence efforts with regard to system
dynamics integration and optimization can be kept minimal. Since domain­
specific description icons for the various system components can be used, a
hierarchically structured object diagram is equally expressive for, among other
things, mechanical, electrical, and hydraulic components, and for analog/digi­
tal control elements.

• Integrated symbolic equation manipulation yields efficient mathematical system
models (e.g., all equations that are not necessary for a specific task are auto­
matically removed) from which compilers are able to generate numerically effi­
cient simulation code for different simulation run-time environments. Hence
reuse of the same system model in different simulators is automated.

Aircraft dynamics modeling for flight control design demonstrates the feasibility of
this approach (cf. Figure 3.6). By means of a graphical object editor, one can zoom in
on objects and display their internal structure. Zooming in on the aerodynamics model
results in the object diagram displayed in the top left of Figure 3.6. Zooming in on the
aerodynamics object results in the parameters and equations window of this object, part
of which is displayed in the top right of Figure 3.6. By interactively augmenting the
object diagram, the flight mechanics aircraft model can be visibly changed to an aircraft
flight system dynamics model including the structural flexibility effects of the aircraft
body ("flexBody"), motivators (e.g., longitudinal motion elevators with electro­
hydraulic actuators), and sensors and controls to close the control feedback loop, as
depicted in Figure 3.7.

Section 3.4 Quality Modeling for Design Analysis and Decision Making 55

time-responses of linearized system models, frequency responses of various types of
transfer functions, and simulated nonlinear system time responses.

Evaluation criteria can be deterministic or stochastic. Besides generic control per­
formance criteria, for example [5], synthesis-specific criteria can be considered in addi­
tion to monitoring characteristic properties of the control synthesis process [29].
Furthermore, Table 3.1 shows various examples of how task-specific control require­
ments may be expressed by quality functions. The table also exemplifiesanother aspect:

TABLE 3.1 Control Design Requirements and Quality Functions (Criteria and Demands) for the
Aircraft Landing Approach as Specified in the Control Design Challenge [22]

Control activity criteria, effort minimization for:
11 tailplane, altitude command
12 throttle, altitude command
13 tailplane, airspeed command
14 throttle, airspeed command
15 throttle, wind step
16 throttle rate, wind step
17 Relative stability of eigenvalues A;:

no explicit specification
18 Absolute stability of eigenvalues A;:

no explicit specification

c =maxh(t) < 1.05
t

c =maxVA(t) < 1.05
1

c = max IVA(t)1 < 2.6
1 > 15

c = J~2 h2(t)dl min
12 = 30s

min
c = J~2 u2(t)dt min

min
min

c = J~2 ii(t)dl min

1 . (-Reo.;») min
c= -mIn ---

i IA;I < 0.6
c = exp(mfX(Re(A;»)

< 0.95

2

3

4

5

6

7

8

9

10

Requirements

Altitude unit step:
settling time < 45 s
Altitude unit step:
rise-time < 12s
Cross-coupling altitude airspeed:
for a step in commanded altitude of 30m, the
peak value of the transient of the absolute error
between VA and commanded airspeed should be
smaller than 0.5 mls
Airspeed unit step:
settling time < 45 s
Airspeed unit step:
rise time < 12s
Cross-coupling airspeed altitude:
for a step in commanded airspeed of 13mis, the
peak value of the transient of the absolute error
between h and commanded he should be smaller
than 10m.
Altitude unit step:
overshoot < 5%
Airspeed unit step:
overshoot < 5%
Airspeed wind disturbance:
for a wind step with amplitude of 13mis, there
should be no deviation in the airspeed larger
than 2.6mls for more than 15s.
Altitude wind disturbance:
no explicit specification given

Mathematical Criteria

c = ft~2(h(t) - 1)2dt
t) = lOs, t: =30s
c = t) - t2

hit, = 0.1, h(t2) = 0.9

c = ft~2(VA(t) - lidt
t) = lOs, t2 =30s
c = t2 - t)

VA(t.) = lOs, VA(t2)= 30s

c = maxlh(t) I
t

Demands

min

< 12

< 0.5/30

min

< 12

< 10/13

56 Chapter 3 Computer-Automated Control System Design

To cover control-task performance in due detail may require quite a number of quality
functions associated with different command and disturbance cases. In robust multi­
case tuning, this number even increases because a set of different plant model instantia­
tions is to be considered within a tolerance band of parameter uncertainties or operat­
ing conditions. For instance, taking three operating conditions simultaneously, to
achieve robust control tuning, amounts to 3 x 18 = 54 quality functions based on
Table 3.1.

Computationally, quality functions can be evaluated in parallel to attain reason­
able computer processing times, but a great number of noncommensurable quality
functions pose a complexity burden on decision evaluation for design tradeoffs. This
problem may be alleviated by interactive visual decision support, as discussed later.

3.4.1 Quality Functions

Without loss of generality, a quality function criterion can be mathematically
formulated as a real-valued function which assumes that the smaller a value, the better
the requirement is satisfied. Table 3.1 shows various examples. Then, design satisfaction
can be assessed either by the demand that criteria values are lower than given upper
bounds or that they are as low as possible. Table 3.1 also gives examples for such
demands denoted either by < or min. The min demand can be interpreted as an inequal­
ity demand with a yet undefined upper bound ex as low as possible.

This allows definition of commensurable, normalized quality measures to assess
requirement satisfaction:

qj:=Cj/~'

qj ~ 1:

qj > 1:

qj .s ex:

requirement j is satisfied,

requirement j is not satisfied, and

ex = "min" denotes best possible requirement satisfaction.

(3.1)

In practice, requirements most often are formulated by indicator intervals to judge
system behavior by quality levels. For example, for piloted flight, handling quality levels
are to be satisfied according to various interval-quality criteria such as the C*, Phase
Rate, Open-Loop-Outset Point (OLOP), and Neal Smith criteria (cf. Figure 3.15).
Thereby level 1 may be "good", level 2 may be "acceptable" and level 3 may be
"not acceptable" (bad). This kind of specification of design requirements can be treated
by a suitable fuzzy definition of interval quality, for example [18]: Requirement satis­
faction as a function of a scalar indicator i is measured by an interval quality function
q(i) that is characterized by means of at most four good/bad values b, < g/ < gh < bh

q(i):= max{L(i), 0, H(i)},

L(i) = (i - g/)/(b/ - g/),

H(i) = (i - gh)/(bh - gh),

(3.2)

The graph of this mapping is depicted in Figure 3.12. Such interval quality func­
tions are also appropriate to quantify robustness requirements: If system behavior is
known to change within an interval set of operation conditions and system parameter

Section 3.4 Quality Modeling for Design Analysis and Decision Making 59

Then a design alternative with a ~ 1 is a feasible design that satisfies all requirements
within the demanded bounds. In particular, a design alternative a(II) is said to be better
than a design alternative a(I) if aUI) < aU) ~ 1, and a "best-feasible" design over all
alternatives is characterized by

a* = min]o} (3.8)

In well-posed engineering design problems, one always encounters competing require­
ments of performance versus cost, and one has to search for a suitable tradeoff. This
search is to be confined to the set of "best achievable" compromise solutions, known as
Pareto-optimal solutions, where improvement in anyone quality measure can be
achieved only by deterioration in at least one other quality measure. Generally, a design
alternative a(II) is said to be Pareto preferred, or noninferior, to an alternative a(I) if all
quality measures of aUI) are better (smaller) than or equal to those of a(I), with at least
one being strictly better. Hence as a best choice one may select the best-feasible candi­
date (3.8) out of a Pareto preferred set.

3.4.3 Visualization for Comparative Design
Exploration

Given a set of feasible design alternatives, one has to compare them and select a
suitable tradeoff candidate out of this set, or one has to decide how to improve design
further, that is, to generate a further design alternative with a "better" tradeoff. For this
decision process advanced CACSD environments adopt the paradigm of "vision to
think" to explore design patterns by interactive information steering. This is most
intelligible if organized as a multilayered information spreadsheet graphical user inter­
face (GUI), for example [7].

Comparative design evaluation in view of tradeoff decisions requires that many
quality functions be simultaneously considered. This needs a high-dimensional kind of
display to visibly compare different design alternatives. The means to do this is a dis­
play in "parallel coordinates": A high-dimensional space is spanned by parallel coor­
dinate axes and a polygonal line represents a point in this space. For example, Figure
3.14 depicts such a parallel coordinates display of quality functions showing five dif­
ferent design alternatives of a flight control law. Feasibility assessment is visible: all
polynomial lines below a border line of value 1 indicate requirements satisfaction, and
values above this line indicate design deficiencies with respect to the adopted specifica­
tions. This also allows detection of competing requirements: For any two design alter­
natives, which belong to a Pareto-optimal set, competing requirements are visualized by
polygonal lines that are crossing. As an example, in Figure 3.14 a strong conflict can be
immediately detected between maximum elevator rate (ELEVRATE) and satisfaction
of the C* handling quality criterion (CSTAR).

The parallel coordinates of Figure 3.14 span a seven-dimensional design-response
surface. The sequential ordering of the coordinate axes is not unique. Coordinates may
be ordered to focus on hot spots of high design sensitivity; they may be ordered with
respect to different classes of requirements (e.g., the classes' automatic control require­
ments, handling quality requirements, control effort); or they may be clustered with
respect to different operation and parameter tolerance conditions handled as a multi-

62 Chapter 3 Computer-Automated Control System Design

used in a particular synthesis toolbox, as well as direct tuning (K) of explicit controller
parameters.

3.5.1 Automated Tuning by Multi-Objective
Parameter Optimization

Generally, multiple parameters need to be tuned simultaneously. In addition, these
parameters may be of different types since both synthesis parameters and additional
control law parameters may have to be tuned concurrently if in an incremental design
process an analytically generated control law structure is augmented by additional
dynamic compensators, filters, and signal limiters. Manual sequential tuning of one
parameter after another is not very efficient either in the engineering time required or in
the result that can be achieved. Hence an algorithmic tuningprocedure is sought, which
can be used for automated tuning of multipleparametersof different types. Moreover, in
view of Section 3.4.2, automatic tuning should find Pareto-optimal solutions. To find
Pareto-optimal tuning parameters T = !(Q), multi-objective evolutionary algorithms as
well as nonlinear mathematical programming algorithms can be applied.

Multi-objective evolutionary algorithms [8] directly use Pareto-preference ranking.
The fitness of a population's individual is measured by how many other individuals it is
inferior to. According to this criterion, populations are ranked, where the best solutions
will be the noninferior ones. Thus, noninferior solutions will always be most likely to be
selected, leading to convergence to a Pareto set. Methods like multiple subpopulations
and Pareto-fitness sharing are applied to force individuals of the same Pareto rank to
spread out evenly over the entire Pareto set. Evolutionary strategies cope well with large
numbers of parameters as well as with a large search space, which makes them likely to
find the global instead of a local solution in multimodal problems. They require a large
number of function evaluations, but on return they yield multiple solutions that are well
dispersed in or near to the entire Pareto-optimal set.

Nonlinear programming algorithms use an analytical optimality condition for
Pareto optimality and for attaining a numerical convergence condition. If suitably
parameterized, nonlinear programming can be used to systematically find a sequence
of Pareto-optimal solutions one by one. Thus this approach fits well with interactively
exploring the compromise nature of a Pareto-optimal set in the engineer's search for a
"best" tradeoff. Efficient nonlinear programming algorithms require smooth functions
and are bound to a local solution in the neighborhood of the starting condition that has
to be provided to initialize the algorithm. Since the run-time of such algorithms
increases more than linearly with the number of parameters to be optimized, for inter­
active application of nonlinear programming algorithms, the number of parameters
should be kept low.

Hence a two-phase tuning procedure is appropriate. In the first phase, a multi­
objective evolutionary algorithm is used to globally optimize all available tuning para­
meters. In the second phase, a nonlinear-programming interactive tuning system is
applied for engineering tradeoff search, which starts with a global (near-) Pareto-opti­
mal design alternative found by an evolutionary algorithm in the first phase. For
computing efficiency, one may confine optimization in the second phase to a reduced
(segmented) tuning parameter set.

To check whether a feasible solution can be attained by proper tuning, the follow­
ing constrained minimization problem with an auxiliary variable a ~ 0 is considered:

64 Chapter 3 Computer-Automated Control System Design

function values is dealt with to attain a "best" engineering tradeoff. For this purpose,
compromising demands de are interactively declared on conflicting requirements,
whereby de is chosen to restrain the amount of degradation one is willing to pay on
a requirement's quality function qe in order to improve satisfaction of all conflicting
requirements in the best possible way. Starting an interactive iteration process with an
already known Pareto-optimal solution Q(v-l) = {qjV-l), q~v-l)}, one chooses an upper
bound d~v) for the next design step v such that

(3.12)

and looks for a solution of the constrained minimization problem

min a(T)
t:«

s.t. qj(T) s a, (3.13)

qe(T) s d~v),

for all quality functions, j = 1, ... , J; j #- c.
This corresponds to the a posteriori min-max tuning approach developed by

Kreisselmeier and Steinhauser [10, 20]. Compromising is restricted to the set of
Pareto-optimal alternatives. Min-max optimization, constrained by de' then attains
the "best-possible" solution in the sense that all criteria of interest are minimized up
to the constraint of a prequantified limit of degradation one declares to be acceptable
for conflicting quality functions.

Consider an example from flight control: By manual tuning according to current
industrial practice, control parameters K = t" for the control law of Figure 3.8 have
been determined. Some analysis shows that satisfaction of the C* flight-handling criter­
ion is in strong conflict with maximum control rate. Now, constrained min-max opti­
mization is used to quantitatively explore possible compromises. To achieve this, start
with values TO to compute a first Pareto-optimal design alternative. This improves both
C* and maximum control rate without degradation of the other criteria beyond their
already achieved level of satisfaction. Figure 3.17 shows criteria values marked by "0"
for the start value corresponding to TO and marked by "1" for the first achieved Pareto­
optimal solution, T 1

• For this first step, a multi-objective evolutionary algorithm might
have been used to attain a global Pareto-optimal solution.

An "improved" Pareto-optimal solution, which does not exeed the maximum
control rate of the start design TO, can now be obtained as follows: The demand for
C* is set to a, which is to be minimized, and the demand value de for control rate is
relaxed to value 1.1, which was the value attained by industrial practice to start with.
The previous (Pareto-optimal) tuning values T 1 are chosen as attainable start values for
the optimization algorithm. After three to four optimization iterations, which take only
a couple of seconds of computation time, the optimizer reaches a new Pareto-optimal
design alternative "2," which is characterized by having attained the specified upper
bound for control rate, while decreasing C* as much as possible. Repeating this pro­
cedure accordingly four times results in the compromise set of Figure 3.17, which

Section 3.5 Automatic Tuning and Declarative Compromising

t EO

~ 5.6 oStart value
Cf.)

U

4.8

4.0

3.2

2.4

1.6

0.8 Levell

65

0.9 1.1 1.3 1.5 1.7 E-1

Max. control-rate [rad/s]~

Figure 3.17 Compromise-gradient visualization in the C*/control-rate plane.

actually is just a different visualization of the same five design alternatives displayed in
Figure 3.14 and Figure 3.15. The shape of the Pareto-optimal compromise set can be
used to negotiate C*-quality versus control-effort. For example, an allowed increase of
maximum elevator rate by 0.02 [rad/s] from "case 2," which itself corresponds to the
starting result, will improve the C* quality measure by about 30% to reach level 2 of
handling quality. But a much higher maximum control rate has to be allowed to reach
level 1. This is now a question of a tradeoff to be negotiated by the control design
engineer with the cost-responsible systems engineer.

Table 3.2 lists the iteratively compromised controller gains. Automated tuning of
the three parameters by constrained parameter optimization takes a couple of seconds
for execution of each declarative design command, whereas manual tuning of all three
parameters concurrently would have been a much more cumbersome and time-consum­
ing trial-and-error task since it requires a nonlinear change to attain the appropriate
gains.

As demonstrated by this example, compromising is an active "what-if' exploration
of a Pareto-optimal solution set in quality-function space. Incrementally relaxing upper
bounds on conflicting criteria by means of graphical-interactive input on a visualization
display like Figure 3.17 allows exploration of the compromise gradient for design
tradeoff negotiations.

TABLE 3.2 Controller Gains: Start Values and Compromising Alternatives of Figure 3.17.

start (0) 2 3 4 5

Nz gain 3.76 3.29 3.69 4.52 5.25 6.37
Nz integral gain 2.00 0.96 0.84 0.67 0.60 0.57
Pitch rate gain 0.20 0.00 0.00 0.00 0.03 0.16

66 Chapter 3 Computer-Automated Control System Design

3.5.3 Robust Control Laws by Multimodel
Compromising

Quality-function control law tuning by parameter optimization is not restricted to
a single evaluation model. Any type of control law parameterization can be used
together with a set of linear/nonlinear evaluation models. Several operating conditions,
for instance, the ones marked in Figure 3.10, and several "quality vertex" dynamics
models for the most stable (slowest) and the least stable (fastest) behavior within the
system parameter tolerance range can be handled in this way. The idea is to deploy
individual quality functions for the different evaluation models and to concatenate all
the quality functions to one quality-function set, which then is to be compromised
within the set of Pareto-optimal solutions. The goal of robustness-aimed compromising
is to achieve a balancedcontrol behavior so that off-nominal cases of system behavior
are also controlled well within given quality intervals.

This approach turns out to be design efficient. For the GARTEUR1 design
challenge on robust flight control design [22], large parameter tolerances in mass,
center of gravity, airspeed, and computation time delay of the digital flight control
computer have been taken into account by two suitably chosen, worst-case models,
in addition to a model with an average parameter instantiation. This kind of multi­
model compromising has resulted in the most robust control law among 12 design
competition entries developed along different design methodologies. For this multi­
model design case, the overall number of quality functions amounted to 3 x 18 = 54,
based on Table 3.1. But since only those quality functions have to be actively
compromised which are in strong conflict, not all quality functions of each evalua­
tion model have to be treated actively by the optimization algorithm. Rather, weak
conflicts, where quality functions remain within their "good" level (cf. Section 3.4.1)
have only to be monitored after an optimization cycle and hence need no evaluation
during an optimization run. For this interactive search, the data structure of the
optimization environment should allow activation/deactivation of quality functions
at run-time [7].

3.6 FURTHER CACSD TECHNOLOGY

The common control engineer's daily life is much more occupied with tuning and
incremental improvement of already available controllers to adapt them to changing
product needs than with designing a new controller from scratch. Thus CACSD
technology to support computer automated control system design within the control
system life cycle has been emphasized in this chapter. The processing power and
visualization capabilities of desktop computing platforms today, together with
advanced modeling, simulation, and multi-objective optimization methodologies,
opens the perspective towards a new control engineering lifestyle of virtual product
engineering in a system dynamics context, where a validated "first-shot quality"
design of executable specifications for "autocode" control software development
and maintenance becomes feasible.

1 GARTEUR = Group for Aeronautical Research and Technology in EURope.

Section 3.6 Further CACSD Technology 67

Three levels in the control design life cycle have been dealt with in view of
design automation: design modeling; quality modeling; and tuning and compromis­
ing. The follow-on design activity of formal validation (assessment) (cf. Figure 3.2)
seamlessly fits into this conceptual framework. Assessment by a systematic, formal
procedure is to be performed with respect to a relevant subset of the quality func­
tions that capture the given control requirements. In particular, this refers to the
requirement of stability robustness. The design optimization environment (cf.
Figures 3.11 and 3.16) can also be used for model-based assessment: Now the
optimizer has to search for the worst values of quality functions, which can be
attained within an assumed system model tolerance range. That is, instead of mini­
mizing over the tuning parameters T, the optimizer is used to maximize over the
tolerance range of system parameters p. To detect all hidden design deficiencies a
global search procedure, for example, employing evolutionary algorithms [17], is
required. A different type of approach is model-free validation based on machine
learning, for example, the Unfalsified Control Concept [27]. As an advantage of this
data-driven approach, experimental data can be used, as well as simulated data,
which allows unmodeled hardware in the validation loop. Another aspect is valida­
tion of control logic in discrete-event/continuous-time control systems. This relies on
formal methods of computer science. How to apply qualitative modeling techniques
to the continuous-time part to allow formal validation ("model checking") by com­
puter science methods is presently a topic of active research.

Declarative control design with explicitly treated quality functions is apparently
better suited to handle the design complexity problem than procedural design in that
it allows interactive exploration of visualized design conflicts and the achievable
design potential. The methodology fosters a design process, in which a full set of
quality functions is taken care of from the very beginning and parametric and
operational tolerances are handled on-line in the design loop by suitably chosen
worst-case evaluation models. This provides the quantified comparison baseline for
design decisions and change management. In future control design environments,
this methodology has to be supported by a uniform information model for CACSD
versioning. Developing the information model within the ISO Standard To
Exchange Product Data (STEP) would formally link the computer-aided control
design process with overall product design (cf. [30]). This should be paralleled by
an automatic translation of system model components into the object-oriented
STEP/EXPRESS language.

The optimization-based approach is computationally demanding and asks for
further development of superfast algorithms for synthesis, analysis, and simulation. In
particular, automated separation of linear from nonlinear model equations for so-called
inline integration [3] in system simulation ought to be advanced by symbolic equation
handling and pertinent numerical solvers. The development of efficient model reduction
algorithms to generate high-fidelity system dynamics models from high-granularity
disciplinary models, for example, finite-element models of structural dynamics, is also
of concern.

The various evaluation cases in multi-objective tuning and compromising can be
executed in parallel by meta-computing, that is, by sharing distributed computation
power in a computer network. This means that information systems interoperability [19]
using object-based middleware techniques for a distributed engineering-software oper­
ating system on top of different computer operating systems, or for a federation of Java

68 Chapter 3 Computer-Automated Control System Design

virtual machines, ought to be adopted for CACSD environments. This implies that
parameterized quality functions as well as the synthesis, analysis, and simulation mod­
ules in Figure 3.11 are provided as data-typed computation components. To support
interworking via a network, the semantics of the quality functions and evaluation cases
have to be made transparent to information brokers such that multidisciplinary users of
an interoperable CACSD system get ready access to this design information. This holds
in particular for the multidisciplinary development and maintenance of system models,
where a standard modeling language like Modelica [24] for both physical and algorith­
mic control components should be used in future. Computer-supported information
sharing is important to keep track of design consistency by all stakeholders who experi­
ence long engineering transactions in their project work.

For initialization of automated design computations, CACSD environments
have to support a manual, procedural process mode as well. This is usually called
a Computer-Aided Control Engineering (CACE) environment. It should rely on a
repository that provides the following layered services: engineering-database ser­
vices, model/data definition services, algorithmic services, tool-control services,
task-control services, user-interaction services, and process communication services
[12], in which every layer connects only to interfaces that are no more than one
level above or below it. Layering is an architectural provision to ease future
upgrades. Such an "open," layered framework is not yet commercially available.
Its development and implementation with production-quality software on all layers
remain a challenge.

Nonlinear parameter optimization by algorithmic search techniques is the key
asset in automated control design tuning. In a CACSD design-automation environ­
ment, a generic optimization setup (cf. Figure 3.16) should be available, in which the
generic optimization task is defined once and execution can be performed by any
suitable solver from both the field of nonlinear mathematical programming and the
field of evolutionary computation. This requires development of a proper data structure
to interactively switch among different kinds of solvers and to activate/deactivate any
quality function at run-time. In the set of solvers, "hybrid" solvers combining evolu­
tionary algorithms with nonlinear programming algorithms should be available for
global/local search. Conceptually, data-driven search is used to invert the design­
response surface spanned by the attainable values of quality functions (cf. Figure
3.14), with respect to the tuning parameters. One may investigate the use of neural
networks as a general learning approach for approximating this map as the set of
feasible design alternatives evolves by the various optimization search iterations. A
neural network approximation is analytically differentiable and allows gradient com­
putation by applying the chain rule of differentiation. Such an approximation of the
design-response surface can save evaluation time in initializing retuning of a controller
later on.

At a glance, CACSD technology developments and commercial-off-the-shelf
CACSD software products are scattered over a broad range of activities. Declarative
design in view of controldesign automation, as outlined in this contribution, to a great
extent makes these developments coherent with a suitable computation machinery for
"virtual engineering." This is a step towards increasing control engineering competitive­
ness by a computer-aligned design process for better balanced, performance-reliable
controllers achieved in shorter engineering time. An information port to CACSD devel­
opments is provided by the home page of the IEEE Technical Committee on CACSD [1].

References

ACKNOWLEDGMENT

69

The contributions of the author's former colleagues in the DLR-Control Design
Engineering Group are gratefully acknowledged-in particular, H.-D. Joos on multi­
objective flight control design issues; D. Moormann, G. Looye, and P. Mosterman on
object-oriented flight-system dynamics modeling; K.H. Kienitz on fuzzy-type specifica­
tions in goal attainment; R. Finsterwalder on interactive exploration of design-infor­
mation patterns; and A. Varga on performant control numerics software.

Related Chapters

• An in-depth discussion of how CACSD tools are being used for automotive powertrain
controller development can be found in Chapter 15.

• Applications of CACSD to flight control are also described in Chapter 11.
• A variety of modeling and simulation methods for control systems is outlined in

Chapter 4.

REFERENCES

[1] IEEE TC on CACSD: : http://www-er.df.op.dlr.de/cacsd/.
[2] H. Elmqvist, "A structured model language for large continuous systems." Ph.D. Thesis,

Department of Automatic Control, Lund Institute of Technology, Sweden, 1978.
[3] H. Elmqvist, M. Otter, and F. E. Cellier, "Inline integrations: A mixed symbolic/numeric

approach for solving differential-algebraic equation systems." Proc. European Simulation
Multiconference, Prague, June 5-8, pp. xxiii-xxxiv, 1995.

[4] H. Elmqvist, S. E. Mattson, and M. Otter, "Modelica-a language for physical system
modeling, visualization and interaction." Proc. 10th IEEE Int. Symposium on Computer
Aided Control System Design, Hawaii, August 22-27, pp. 630-639, 1999.

[5] W. Feng and Y. Li, "Performance indices in evolutionary CACSD automation with appli­
cation to batch PID generation." Proc. 10th IEEE Int. Symposium on Computer Aided
Control System Design, Hawaii, August 22-27, pp. 486-491, 1999.

[6] R. Finsterwalder, "A 'parallel coordinate' editor as visual decision aid in a multi-objective
concurrent control engineering environment." Proc. IFAC Symposium on Computer Aided
Design in Control Systems, Swansea, UK, July 15-17, pp. 118-122, 1991.

[7] R. Finsterwalder, H.-D. Joos, and A. Varga, "A graphical user interface for flight control
development." Proc. 10th IEEE Int. Symposium on Computer Aided Control System Design,
Hawaii, August 22-27, pp. 439-444, 1999.

[8] C. M. Fonseca and P. J. Fleming, "An overviewof evolutionary algorithms in multiobjective
optimization." Evolutionary Computing, Vol. 3, no. 1, pp. 1-16, 1995.

[9] G. Grubel, H.-D. Joos, M. Otter, and R. Finsterwalder, "The ANDECS design environment
for control engineering". Proc. 12th IFAC World Congress, Sydney, Australia, Vol. 6, pp.
447-454, 1993.

[10] G. Grubel, R. Finsterwalder, G. Gramlich, H.-D. Joos, and S. Lewald, "ANDECS: A
computation environment for control applications of optimization." In R. Bulirsch and
D. Kraft (eds.), Control Applications of Optimization, Int. Series of Numerical
Mathematics, Vol. 115, Birkhauser Verlag Basel, pp. 237-254, 1994.

70 References

[11] G. Grubel (ed.), "Case study: Applied multidisciplinary dynamics design experimenting."
Proc. IFAC Conf. on Integrated Systems Engineering, Baden-Baden, Germany, September
27-29, pp. 89-117, 1994.

[12] G. Grubel, "The ANDECS CACE framework." IEEE Control Systems Magazine, pp. 8-13,
April 1995.

[13] H.-D. Joos, M. Schlothane, and G. Grubel, "Multi-objective design of controllers with fuzzy
logic." Proc. IEEE/IFAC Joint Symposium on Computer-Aided Control System Design,
Tucson, AZ, March 7-9, pp. 75-82, 1994.

[14] H.-D. Joos, "A methodology for multi-objective design assessment and flight control synth­
esis tuning." J. Aerospace Science and Technology, Vol. 3, no. 3, pp. 161-176, 1999.

[15] R. E. Kalman and T. S. Englar, A User's Manual for the Automatic Synthesis Program
(Program C). NASA CR-475, 1966.

[16] C. T. Kelley, Iterative Methodsfor Optimization. Frontiers in Applied Mathematics, No. 18,
Society for Industrial and Applied Mathematics, 1999.

[17] J.-H. Kim and H. Myung, "Evolutionary programming techniques for constrained optimi­
zation problems." IEEE Trans. on Evolutionary Computation, Vol. 1, no. 2, pp. 129-140,
July 1997.

[18] K. H. Kienitz, "Controller design using fuzzy logic-A case study." Automatica, Vol. 29, no.
2, pp. 549-554, 1993.

[19] B. Kramer, M. Papazoglou, and H.-W. Schmidt, Information Systems Interoperability.
Advanced Software Development Series, Research Studies Press. New York: John Wiley &
Sons, 1998.

[20] G. Kreisselmeier and R. Steinhauser, "Application of vector performance optimization to
robust control loop design for a fighter aircraft." Int. Journal Control, Vol. 37, no. 2, pp.
251-284, 1983.

[21] A. G. J. MacFarlane, G. Grubel, and J. Ackermann, "Future design environments for
control engineering." Automatica, Vol. 25, no. 2, pp. 165-176, 1989.

[22] J. F. Magni, S. Bennani, and J. C. Terlouw (eds.), "Robust flight control-A design
challenge." Lecture Notes in Control and Information Sciences, Vol. 224, New York:
Springer, 1997.

[23] K. M. Miettinen, Nonlinear Multiobjective Optimization. Norwell, MA: Kluwer Academic
Publishers, 1999.

[24] Modelica: http://www.Modelica.org
[25] D. Moorman, P. J. Mosterman, and G. Looye, "Object-oriented model building of aircraft

flight dynamics and systems." J. Aerospace Science and Technology, Vol. 3, no. 3, pp. 115­
126, 1999.

[26] S. J. Rasmussen and S. G. Breslin, "AVDS: A flight system design tool for visualization and
engineer-in-the-loop simulation." Proc. AIAA Guidance and Control Conference, AIAA- 97­
3467, pp. 135-143, 1997.

[27] M. G. Safonov and T.-C. Tsao, "The unfalsified control concept and learning." IEEE
Transactions on Automatic Control, Vol. 42, no. 6, pp. 841-843, June 1997.

[28] V. Sima and S. Van Huffel, "High-performance algorithms and software for systems and
control computations." Proc. 10th IEEE Int. Symposium on Computer Aided Control System
Design, Hawaii, August 22-27, pp. 85-90, 1999.

[29] K. C. Tan, T. H. Lee, and E. F. Khor, "Control system design automation with robust
tracking thumbprint performance using a multi-objective evolutionary algorithm." Proc.
10th IEEE Int. Symposium on Computer Aided Control System Design, Hawaii, August
22-27, pp. 498-503, 1999.

[30] T. Varsamidis, "Object-oriented information modelling for computer-aided control engi­
neering." Ph.D. Thesis, School of Electronic Engineering and Computer Systems,
University of Wales, Bangor, UK, 1998.

Chapter

4
SYSTEM MODELING

Pradeep Misra

Editor's Summary

Models-in the sense of mathematical representations of systems-are critical to all advanced control. Not

only is it a truism that we can only control or optimize a system to the extent that we understand it, but

also virtually all advanced control techniques rely on an explicit representation of the system. In some

cases, a model is used in the design process alone; in others, the on-line controller contains a model; in yet

others models of different fidelity and complexity are used for design, analysis, and operation.

While control engineers use models on a regular basis, the full variety of models as relevant to

control is not always appreciated. Models in control engineering can be distinguished along several

dimensions, such as static and dynamic, linear and nonlinear, first principles and empirical, lumped and

distributed. This chapter provides a broad overview of many of the popular modeling methodologies. It

does not attempt to discuss anyone approach in complete detail, but rather to explain key concepts and to

present a number of techniques that are seldom treated as parts of one unified topic. Subjects of specific

importance for control that are also discussed include model reduction and linearization of nonlinear

models. More in-depth discussions of specificmethods are included in other chapters in this volume-see

Chapter 2 for discrete-event system models, Chapter 7 for hybrid models that combine continuous-time

and discrete-event behaviors, and Chapter 6 for nonlinear "approximators." Examples of models for

different applications can be found in several chapters in the second part of this book.

As the systems that we attempt to control become increasingly more large-scale and complex, no one

type of modeling approach will be sufficient. A future trend in system modeling is the developing of

macromodels or multimodels, integrations of disparate models in one framework. As today's systems

become tomorrow's subsystems, the control engineer's comprehensive understanding of system modeling

will only continue to become more important.

Pradeep Misra is an associate professor in the Department of Electrical Engineering at Wright State

University. He also serves as the secretary/administrator of the IEEE Control Systems Society.

4.1 INTRODUCTION

A system may be defined as a mechanism comprised of a collection of objects (physical
or abstract) related through physical relationships, along with mathematical rules that
govern the behavior of the mechanism. Only for the most simplistic systems is it
possible to determine the exact relationships and rules that characterize their behavior.

Present technology has enabled engineers to build increasingly complex systems,
which in turn have provided us with the means to perform increasingly difficult tasks.
This increased ability is achieved at the price of distancing ourselves from compact

71

72 Chapter 4 System Modeling

analytical models, typical of systems a few decades ago. Therefore, modeling and
simulation in a broader sense have taken on extremely important roles in modern­
day system analysis and design.

Use of models has been prevalent from ancient times. Although modeling techni­
ques have changed with the advent of technology, the paradigm remains the same. The
process of developing models of complex systems is, by nature, iterative. Typical itera­
tive phases during the modeling process are illustrated in Figure 4.1 [31].

For a reasonably complex system, a model is a simplified rendering of underlying
mechanisms and rules that capture the essence of the system. Typically, regardless of its
complexity, the model will not be able to replicate the actual system exactly when first
derived. Therefore the model must be verified through simulation by comparison of the
system's response with that of the model and refinement of the model iteratively, until
the model accurately mimics the physical system's behavior. Occasionally, this leads to
taking a second look at the underlying principles and redefinition of the model. The
degree of accuracy required is, of course, application-dependent.

4.1.1 Historical Perspective

From the earliest times, the driving force for developing models has been to
explain, in a comprehensive manner, the physical world around us. For example, sev­
eral models of our solar system were developed over the centuries. It was assumed that
Earth was at the center of the solar system and these models were only partly successful
in describing and predicting the behavior of the system. Only in the early seventeenth
century, when Johannes Kepler proposed the three laws (modeling assumptions, really)
of planetary motion-the law of orbits, the law of areas, and the law of periods-did
the model of the solar system begin to be more reliable. These laws were based on data
gathered by physical observation of the motion of planets; hence the model may be
considered an empirical model. Later in the same century, Isaac Newton provided a
mathematical and physical basis for Kepler's laws by deriving the three laws from the
concepts of conservation of energy and momentum.

The solar system example clearly shows the evolutionary process in developing a
sophisticated/reliable model. Earlier models assumed Earth, and after Copernicus, the
Sun as the center, with other bodies in the solar system going around in circular orbits.
The models were based on data gathered with low-fidelity sensors (human eyes), and
there was no evidence that the models were incorrect until, by use of higher fidelity

Knowledge about----....----I~
the system

Measurements
andobservations

Figure 4.1 Iterative modeling process.

Section 4.1 Introduction 73

instruments (telescopes), it was determined that these models did not satisfactorily
explain the system. The underlying principles were reexamined, leading to a more
sophisticated model with elliptical orbits. The model was then refined and validated
by alternative means.

Mathematical maturity has enabled the present-day engineer to develop sophisti­
cated and reliable models. This advance, coupled with significant improvements in
technology, has enabled us to construct and employ highly complex systems. Lest we
become complacent, however, nature continues to humble us by categorically illustrat­
ing the limitations of even the best of the current technology. Conspicuous illustrations
of these limits are the sinking of the Titanic in 1912, the collapse of the Tacoma
Narrows suspension bridge in 1940, and the destruction of the Ariane 5 launcher in
1996, to name a few. Some of these disasters could have been avoided with better
modeling and testing. But before we become too disheartened by the failures, let us
hasten to point out the successesin which we can take pride. From earlier times, we can
cite the Egyptian pyramids, the European cathedrals, and the Taj Mahal, and from
modern times, the Golden Gate bridge, the Apollo project, the Boeing 777 airplane, the
space shuttle, and the space station. The earlier accomplishments utilized empirical
models, whereas the later ones used sophisticated mathematical models of various
subsystems, decomposed mainly hierarchically but not exclusively, and then integrated
for the final design-a multimodel design approach [27].

4.1.2 Modeling and Control

Modeling of a system is seldom, if ever, a goal in itself; rather, it is the means to
attain some goal. From the viewpoint of a control systems engineer, the goal is to
control the response of the underlying system. The successful operation of a system
under changing (and often not fully predictable) conditions often requires a feedback or
closed-loop control system. The response of the system is compared with the desired
operating conditions, and the difference between the two is used to adjust the response
through a controller. The purpose of the controller is to minimize and, ideally, to
eliminate the effect of external disturbances, steady-state errors, transient errors and
variations in plant parameters on the output of the system.

A typical feedback control problem involves the selection of sensors to measure
and monitor the system outputs; selection of actuators to drive the system; mathema­
tical formulation of the desired output response; development of mathematical models
of sensors, actuators, and the plant; design of the controller based on the plant model
and the control criteria; and evaluation of the feedback control system by extensive
simulation or, where possible, applying it to the actual system. These steps are iterated
until the feedback control system exhibits the desired response. It is, therefore, evident
that modeling plays a key role in the effective control of a physical system or a process.

4.1.3 Classification

The vastness of the field of modeling and simulation, which spans all aspects of
science and engineering, makes it virtually impossible to provide a synoptic coverage of
the subject. It is difficult to pin down a specific classification scheme because distinc­
tions arise from a variety of factors. Nonetheless, it can be safely said that a useful
classification must depend on mathematical concepts that are required to accurately
represent the physical phenomenon. Some obvious distinctions would be static versus

74 Chapter 4 System Modeling

dynamical models, time-invariant versus time-varying models, linear versus nonlinear
models, deterministic versus stochastic models, "crisp" versus "fuzzy" models [1], and
so on. Within each such classification, there could be continuous, discrete, or hybrid (a
mixture of continuous and discrete variables) models. System models may also be
classified based on their representation, for example, state variable models versus
input-output models. Various model types can be loosely represented in the treelike
structure shown in Figure 4.2 [10]. In the figure, each branch may be continued to have
further subclassifications, as shown for the linear constant coefficient models.

The layout of the rest of this chapter is as follows. In Section 4.2, we discuss linear
and nonlinear static models and estimation of their parameters. In Section 4.3, we focus
on linear lumped parameter dynamical models obtained from mathematical descrip­
tions of electrical, mechanical (translational and rotational), and thermal systems. We
also discuss linear dynamical models obtained by parameter estimation from input­
output data. Finally, we discuss model order reduction by modal truncation, singular
perturbation, and balanced realizations. In Section 4.4, we cover nonlinear system
models, as well as some of the commonly encountered nonlinearities and several tech­
niques to obtain linearized approximate models of nonlinear systems. In Section 4.5, we
consider classification and finite difference models of distributed parameter systems.
Finally, Section 4.6 contains a general discussion of the scope and future of mathema­
tical modeling.

Mathematical
models

Static Dynamic

Increasing degree ofrealism

Decreasing ease of analysis

Deterministic Stochastic

Lumped
parameter

Distributed
parameter

Linear Nonlinear

Constant
coefficient

Variable
coefficient

Discrete Continuous Hybrid

Figure 4.2 Partial classification tree of mathematical models.

Section 4.2 Static Models

4.2 STATIC MODELS

75

Models described by mathematical equations may be stated in a fairly general form as

F(V(x(t)), x(t), u(t), t) = 0 (4.1)

where t indicates that the underlying system is a continuous-time system, F represents a
system of interrelated equations, x(t) represents states, V(x(t)) their first derivatives,
and u(t) external inputs. In a similar manner, discrete-time systems may be represented
as

F(V(x[k]), x[k], u[k],k) = 0 (4.2)

where k represents the discrete-time axis, x[k] represents states, V(x[k]) their first dif­
ference or time shift, and u[k] external inputs. In Eq. (4.1) or (4.2), if the term V(x(t))
(respectively, V(x[k])) is uniformly zero, the model is static. In that case, the relation­
ship between state variables is purely algebraic. Whether or not the resulting model is
linear will depend on how the states x(t) (respectively, x[k]) are related. In the remainder
of this section, we will assume that the models are deterministic. Furthermore, we will
deal with continuous models unless otherwise warranted.

A scientist or an engineer tasked with developing a model of a system is generally
privy to some knowledge about the system. This prior understanding can often be
captured in the form of a model structure. The problem that then remains is the
identification of the parameters associated with the model form. Parameter estimation
techniques have been developed that can estimate the best-fit values of these parameters
based on data collected during the operation of the system. Clearly, the greater the
quantity and the better the quality of the collected data, the more accurately the para­
meter values can be determined.

Notions of model structure and parameter estimation arise in static as well as
dynamic models. In the next few paragraphs, we discuss one popular class of
approaches to parameter estimation in static models, both linear and nonlinear. The
field of system identification specifically focuses on parameter estimation for dynamical
models.

4.2.1 Linear Models

Assume that we are given the data points {(Xi'Yi), i = 1, ... n}, where X and yare
both scalars and Xi is monotonically increasing. Often the data lends itself to models of
the form

m

Y =j(x) = L Cjh(x),
j=l

(4.3)

where hex) are known functions. Then, the best values of the unknowns Cj that will fit
the model are given by minimization of the least-squares error E(Cj , j = 1, ... , m),
defined as

76 Chapter 4 System Modeling

E(C}, j = 1, ... , m) =t[[t Cjj(Xk)] _ Yk]2.
k=1 J=I

(4.4)

For models of the type described by (4.3), the computation of the unknown parameters
(Cj) becomes rather straightforward. To minimize the sum of the square of the error
E(Cj , j = 1, ... , m), we take partial derivatives of the error with respect to
Cj; j = 1, ... , m. Setting 8Ej8Cj = 0, j = 1, ... , m, will yield normal equations

i = 1, .. . ,m. (4.5)

The system of equations in (4.5) can be easily formulated in matrix-vector form as

where superscript (.)T denotes matrix transposition, C = [CI C2 .•• Cm] is the vector of
unknowns to be determined, Y = [Yl Y2 ... Yn] is defined from the given data, and the
matrix F is defined as:

F=

II (XI) II (X2)
12(xI) 12(X2)

The system of equations in (4.5) may be solved quite efficiently using Cholesky decom­
position, QR decomposition or singular value decomposition (SVD) [9], [26].

The linear least-squares formulation in (4.5) can be readily specialized for a few
frequently encountered situations. For example, if the functions !j(x) = x j

-
I
, one gets a

polynomial model in x. For j = 1 the result would be a straight line, for j = 2, a
parabola, and so forth. Furthermore, the least-squares line can account for several
models through linearization to Y = CX + D. Table 4.1 shows a few models in
which a linearized representation enables us to obtain the model in a straightforward

TABLE 4.1 Linearization for Linear Least-Squares Approximation

Model Linearization Change of Variable Constants

A
Y=CX+D

1
Y=y A = C, B=Dy=-+B X=-,

x x

1
Y=CX+D X=x, Y=~ A=C, B=D

y= Ax+B y

y = BeAx Y=CX+D X=x, Y =loge(y) A = C, B=eD

y=BxA Y=CX+D X = loge(x), Y = loge(y) A = C, B= eD

Section 4.2 Static Models 77

manner. One can, of course, find several other models that may be linearized in similar
fashion.

The simplicity of linear least-squares approximation may tempt one to use higher
degree polynomial approximations to fit nonlinear data. Naturally, in theory, there is
no limit to the degree of polynomial used in representing the data, as long as the
underlying model lends itself to it. However, if the data do not correspond to a high­
degree polynomial model, the fitted polynomial may exhibit highly oscillatory behavior.
The oscillatory behavior may be reduced to some extent by using the least-squares fit
with orthogonal polynomials such as Chebyshev polynomials, but it cannot be elimi­
nated altogether.

In Eq. (4.3), the system model y = f(x) was dependent on a single variable x. From
a computational viewpoint, the modeling problem becomes considerably more challen­
ging if the number of independent variables is more than one. Fortunately, from a
mathematical standpoint, the result is often a simple extension of the single variable
case. The expressions for the least-squares error (4.4) and normal equations (4.5) takes
on vector forms; that is, x is replaced by x, where x represents a vector of variables. The
modified system of equations takes the following form:

Setting aE/ aCj = 0, j = 1, ... , m, will yield normal equations

i= 1, ... ,m,

leading to a convenient matrix-vector form for determining the unknowns Cj •

4.2.2 Nonlinear Models

For the cases discussed in Section 4.2.1, the choice of the model enabled us to
reformulate the least-squares parameter estimation problem such that the model was
linearly dependent on unknown parameters Cj , j = 1, ... ,m. Next, we generalize the
parameter estimation problem to the cases where such a simplification is not possible.
The basic outline of the parameter estimation technique remains unchanged; that is, we
define a least-squares error and compute the parameter values (values of Cj) so that the
least-squares error is minimized. Unfortunately, because of nonlinear relationships
among parameters, the minimization procedure for determining Cjs becomes iterative.

We may define the model to be fitted as

y =f(x, C)

where nonlinearities are embedded in f(x, C) and C is a vector of model parameters
{Cj,j = 1, ... , m} to be determined. As before, the least-squares error may be defined as
the sum of the squares of errors between the model and the measured data

78 Chapter 4 System Modeling

n

E(Cj , j = 1, ... , m) = L[Yk - f(Xk' C)]2.
k=l

Expanding the error to a quadratic form (through the use of Taylor series expansion) at
the rth iteration, we get

(4.6)

where C r is the estimate of the parameter vector C at the rth iteration, S is a column
vector of length m containing the first derivatives of E with respect to C, and T is an
m x m matrix containing second-order derivatives of E with respect to elements of the
parameter vector C, evaluated at Cr. Sand T are, respectively, known as the gradient
vector and the Hessian matrix of E. Mathematically, the former is given by

S. = aE(C)
J ac.

J

- -2 ~[y -f(C)] af(Xk' C)
- L k xi, ac.'

k=l J

and the latter by

j = 1,m, C = C r

T. _ ifE(C)
lJ - ac.ac.

I J

=2~ [Of(Xk' C) Of(Xb C) [Yk _ f(Xk' c)l iff(Xb C)] i.] = 1,m, C =C r6 »c, ec, sese,

where the second derivative is often ignored.
It is easily seen by setting E(C) - E(C r

) = 0 in (4.6), that knowing Sand T, we can
iteratively refine the model parameter C, using the inverse Hessian iteration

(4.7)

If the second-order approximation in (4.6) is a poor local approximation or the com­
puted parameter vector C is far from the optimal value, the inverse Hessian iteration
fails to give a good fit of the model to the data. In that situation, an approach similar to
steepest descent [4, 26], given by

Cr+1 = c,+as

where a is a small constant, is used to refine the approximation. Furthermore, when
successive iterations using the steepest descent produce relatively small improvement,
one can switch back to inverse Hessian iteration in (4.7). The resulting elements of
vector C are the required parameters of the nonlinear model. Of course, the above
optimization scheme is one of several that may be used for obtaining optimal C. Several
others may be found in [4].

Section 4.3 Dynamical Models 79

The preceding discussion addresses only models obtained through unconstrained
optimization. In practice, model parameters may be constrained to lie within certain
predefined regions, making the problem considerably more difficult. A commonly
employed approach to solve such problems employs Lagrange multipliers [2].

4.3 DYNAMICAL MODELS

A very large variety of physical systems exhibit behavior that evolves over time. For
such systems, which are of considerable interest for control, the models and techniques
discussed in the previous section are no longer adequate. Instead, dynamical models are
used to express their changing behavior.

Recall the general functional representation for a system model:

(Continuous) F(V(x(t)), x(t), u(t), t) = 0

(Discrete) F(V(x[k]), x[k], u[k], k) = O.
(4.8)

For static models, we assumed that the term (V(x(·)) was zero. For dynamical models,
this term is no longer uniformly zero. If in (4.8), we can rewrite the differential or
difference relationship as

V(x(t)) = F(x, u, t), (4.9)

then we have state space models. On the other hand, when it is not possible to express
(4.8) as an explicit system of differential equations (4.9), the resulting system is known
as a singular, implicit, or differential-algebraic system. Such models represent dynami­
cal systems with algebraic constraints. Note that, while (4.9) refers to the continuous­
time case only, as shown in Figure 4.3, it is always possible to switch between contin­
uous-time and discrete-time models.

For continuous-time systems, if the function representation exhibits dynamical
dependence on time t (temporal variable) as well as space x (spatial variable), then
the system is defined as a distributed parameter system. Such systems, for example,
structures, heat flow, and fluid flow, are modeled using partial differential equations.
On the other hand, if the dependency on a space variable is absent or negligibly small,
then the system model may be expressed using finitely many differential equations, and
the system is then said to be a lumpedparameter system. The latter is perhaps the most
studied class of dynamical systems, especially for linear cases such as electrical circuits,
translational or rotational mechanical systems, and so on. A somewhat more exotic
variety would include systems that are continuous, but may trigger a controlled switch
in a continuous process or set off a timing mechanism in a discrete system. Such systems
are known as state event systems. On the discrete side, dynamical systems include

TIme events

Stateevents
......

Continuous Discretization..... Discrete
systems

"l Interpolation
.... systems

.Jt

~

Figure 4.3 Continuous and discrete intercon­
version.

80 Chapter 4 System Modeling

sampled data systems, represented by difference equations. Depending on the sampling
scheme, they may be single-rate or multi-rate sampled data systems. If the sampling
period is not fixed, the systems are called discrete-event systems. In these systems, the
system dynamics is affected only at the occurrence of events; in between events, the
system parameters retain their values. Examples include systems such as traffic net­
works and communication networks. If we interface discrete-event systems with con­
tinuous dynamical systems, we get hybrid systems [31].

4.3.1 Lumped Parameter Models

The major components of lumped parameter models are energy sources, passive
energy storage elements, and passive dissipative elements. Along with the above basic
components used in electrical, mechanical, hydraulic, or thermal systems, there are also
transduction elements that transfer energy between various physical systems. Some
commonly encountered transduction elements include electric motors (electrical energy
to mechanical energy), generators (mechanical or fluid energy to electrical energy),
heating coils (electrical energy to thermal energy), and so on.

A lumped parameter model is described by a system of differential equations.
These equations are obtained by formulating a set of mathematical equations by sum­
mation of through -variables at any junction, summation of across -variables within any
closed loop, and a mathematical representation of each element of the system. The
dynamical order of the system is governed by the number of independent energy storing
elements.

Nonlinearities will be addressed in the next section; for the time being, we will
review idealized linear elements. Variables required to formulate various lumped para­
meter models and symbols commonly used to denote them are listed in Table 4.2. The
differential and algebraic equations describing individual elements are listed in Table
4.3.

TABLE 4.2 Common Variables Used in System Modeling

System

Electrical
Hydraulic
Rotational
Translational
Thermal
Thermodynamical

Through-Variable

Current (I)
Fluid flow rate (q)
Torque (T)
Force (F)
Heat flow rate (Q)
Entropy flow (rlj)

Across-Variable

Voltage (V)
Pressure (P)
Angular Velocity (w)
Velocity (v)
Temperature (T)
Temperature (T)

As mentioned earlier, transduction is used to transfer energy from one type of
system to another; this does not preclude a transfer of energy from (say) electrical to
electrical form. Transducers may be divided into two major categories:

• Transformers: Transformers relate through-variables to through-variables and
across-variables to across-variables, for example, electric transformers relating
voltage to voltage and current to current with an appropriate proportionality
constant. Another common example would be an electric motor that relates
armature current to torque and voltage across the armature to angular velocity.

Section 4.3 Dynamical Models 81

• Gyrators: Gyrators relate through-variables to across-variables and vice versa,
for example, a hydraulic ram that relates fluid pressure (across variable) to
linear force (through variable) and fluid flow rate (through variable) to linear
velocity of the piston (across variable).

One may now model the system through differential relationships in the time
domain directly to obtain state space models or use Laplace transforms of various
differential relations to obtain transfer function models [5, 15, 24]. As discussed later
in Section 4.4, one may also obtain linear lumped parameter models by local lineariza­
tion of nonlinear systems.

TABLE 4.3 Relationships between Through and Cross Variables

Element Symbol Element Equation

Electrical inductance L V=L
dI
dt

Electrical capacitance C I=C
dV
dt

Electrical resistance R R=~
I

Translational spring
1 dF

K v=--
K dt

Translational mass M F=M
dv
dt

F
Translational damper B B=-

v

Rotational spring
1 dT

K W=--
K dt

Rotational mass (inertia) I T=I
dw
dt

Rotational damper B B=!
to

Fluid inertia I P=I
dq
dt

Fluid capacitance
dP

C q=C-
dt

Fluid resistance R R=~
q

Thermal capacitance C Q=C
dT
dt

Thermal resistance
T

R R=-
Q

82 Chapter 4 System Modeling

4.3.2 System Identification

In many practical situations, models of components of the system and their math­
ematical interrelationships are not known precisely. In these cases, the strategy
described in the previous section becomes unsuitable. Instead, one must construct a
mathematical model of the system from measurement of the system's response to
known signals. The process of constructing mathematical models of dynamical systems
from measured data is known as identification. We will restrict the discussion to linear,
lumped, time-invariant, deterministic systems. Although methods for identifying mod­
els for more general classes of systems exist, they are beyond the scope of the present
discussion. We will consider discrete-time identification because regardless of whether
or not the system under consideration is continuous, the input and the output measure­
ments are obtained at discrete-time instances.

For deterministic systems, models obtained through identification methods may be
broadly classified into nonparametric and parametric models. If the structure of the
model is not defined a priori, then the system model is referred to as a nonparametric
model. Some commonly used nonparametric models include impulse response and
frequency response models. On the other hand, if the structure of the model is pre­
determined, the model is said to be a parametric model. For example, the model may be
restricted to be a sum of a fixed number of decaying exponentials. The identification
process then determines the coefficient and the decay rate for each term in the summa­
tion. Some commonly used parametric models include differential or difference equa­
tions, transfer functions, and state space descriptions. Paradoxically, so-called
nonparametric models have many more parameters generally than parametric models.
It is interesting to note that parametric models can be deduced from nonparametric
models. Because parametric models are more compact (fewer parameters to identify), it
is not surprising that their identification has garnered more attention. Among para­
metric models, the majority of the research has been devoted to identification of models
expressed by difference equations.

Assume the following general model:

A(q) C(q)
E(q)y(k) = B(q) u(k) +D(q) e(k)

where A(q), B(q), C(q), D(q), and E(q) are polynomials in the delay operator q, y(k) and
u(k) represent the output and the input, respectively, and e(k) represents external dis­
turbances. Then, depending on the elements of various polynomials, the following
system models are commonly studied.

y(k) = A(q)u(k) + e(k)

E(q)y(k) = A(q)u(k) + e(k)

E(q)y(k) = A(q)u(k) + C(q)e(k)

y(k) = ~i:~ u(k) + e(k)

A(q) C(q)
y(k) = B(q) u(k) +D(q) e(k)

(FIR)

(ARX)

(ARMAX)

(OE)

(BJ)

(4.10)

Section 4.3 Dynamical Models 83

The model acronyms in (4.10) stand for finite impulse response (FIR), auto-regressive
with exogenous input (ARX) , auto-regressive moving average with exogenous input
(ARMAX), output error (OE), and Box-Jenkins (BJ) [3].

4.3.2.1 Transfer Function Models

We first consider the output error model. Taking the z transform of the output
error model under ideal conditions (e(k) = 0), we get a proper stable z-domain transfer
function:

where the coefficient of the zO term in the denominator is assumed to be unity without
loss of generality and n is the order of the system model and the degree of the numera­
tor polynomial has been assumed to be (n - 1). The above transfer function can also be
written as the infinite series

H() h h -1 h -k h -(k+l)
Z = 0 + tZ + ... + kZ + k+Iz + ...

Let I, h represent column vectors of length N(» n), where

I = [/0 11 ... IN_l]T and

h = [ho hI . .. hN- 1]T

denote, respectively, the measured and the actual values of the impulse response. The
latter are also known as Markov parameters of the system. Then, the least-squares
identification problem can be stated as

[
N-l]1/2

min lIell = min Lei
a.b a.b ;=0

where e =1 - hand

a = [ao at

b = [1 b1

(4.11)

The transfer function coefficients are related to H(z) as

(4.12)

where a and b were defined in (4.11) and the elements of HI and H2 are obtained by
equating like powers of z-l on the two sides in the following relationship

84 Chapter 4 System Modeling

-I -en-I) (I b -1 b -en-I) b -n)ao + alz + ... + an-Iz = + IZ + ... + n-IZ + nZ

X (ho+ h1z-1+ ... + hrz-r + hr+1z-(r+l) + ...)

Clearly, if b and HI are known, then a can be found from a = HI b. However,
because of measurement errors, it is virtually impossible to determine the exact h.
Hence, we replace HI and H 2 by matrices FI and F2 formed from the measured impulse
response data f. Sincef is an estimate of h,

where d(b) is the equation error.
The elements bi to b; of b can be found by minimizing IId(b)lI. Subsequently,

substituting b in (4.12), we can compute a. Further discussion and extensions of the
above least-squares parameter identification scheme can be found in [6, 17, 23] and the
references therein.

4.3.2.2 State Space Models

Although the identification of a transfer function model is mathematically rather
straightforward, the resulting model can be sensitive to parameter variation. A small
change in the coefficients of the model can affect the system response considerably. In
general, state space models identified from the measured input-output data are less
sensitive to small perturbations in their parameters. A state space model for a linear
time-invariant discrete system with n states, m inputs, and p outputs can be described by

x(k + I) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k),
(4.13)

where A is an (n x n) state matrix, B is an (n x m) input matrix, C is a (p x n) output
matrix, and D is a (p x m) input-output matrix. The vectors x, u, and yare known as
the state, input, and output vectors, respectively. We now outline one popular approach
to state space identification.

Assuming that x(O) is zero, we can show the output of the system (4.13) to a known
input sequence u(O), u(I), ..., to be

y(O) = Du(O)

y(l) = CBu(O) + Du(l)

y(2) = CABu(O) + CBu(l) + Du(2)

y(r - I) = CA r
-

2Bu(O) + CA r
-

3Bu(l) + ... + CBu(r - 2) + Du(r - I)

These relations can be expressed in a matrix-vector form as

Section 4.3 Dynamical Models

[yeO) y(l) · .. y(r - 1)] =

[H(O) H(I) . · . H(r - 1)]

u(O) u(l)

o u(O)

u(r - 1)

u(r - 2)

85

o o u(O)

For the purpose of explanation, assume that the underlying system has a single input
and a single output and that u(O) is nonzero. We define the three matrices above as Y,
H" and U, respectively, and we get H, = YU-I. Note that D = H(O) and CAi

-
1B =

H(i), i = 1,2, ... , are the Markov parameters of the system [13]. The computed Markov
parameters are then arranged in a Hankel matrix defined as

Hr =

CB
CAB

CAr-IB
CArB

=

H(I)
H(2)

H(2)
H(3)

H(r)
H(r + 1)

CAr-IB CArB CA2(r- l)B H(r) H(r + 1) H(2r - 1)

The size of the Hankel matrix is increased with additional measured input-output data
until its rank stops growing, that is, n = rank(Hr) = rank(Hr+ I) .

Once the Hankel matrix of rank n is found, the state space model of order n is
constructed as follows:

• Perform the singular value decomposition on Hk as

• Define a modified Hankel matrix iIr as

iIr =

CA2rB

• Define matrices associated with the state space model as

A = S -1/2[U11] TiIr [V11]s-1/2
U21 V21

B = SI/2V~

C = U11S 1/2

D = H(O).

86 Chapter 4 System Modeling

Note that the techniques for model identification described here illustrate the basic
principles. For more realistic situations, one must take into account several practical
constraints [16, 20].

4.3.3 Model Reduction

Often, in their zeal to capture all possible details, engineers overmodel the physical
system. This leads to fairly large-order system models. Naturally, the higher the dyna­
mical order of the system model, the more complex and usually inefficient is the con­
troller derived from it. It is, therefore, natural to seek lower order approximate models
to closely describe the actual plant. This is known as the model reduction problem.

The earlier approaches to model reduction were based on truncation of less impor­
tant states from state space models. Essentially, the relatively fast-decaying modes of
the system can be ignored as their influence on the performance of the system is less
pronounced than that of slowly decaying modes.

4.3.3. 1 Modal Truncation

Given the state space description of a linear time invariant system,

dx
dt = Ax-s Bu

Y= Cx s Du,

we assume that the state matrix is in its Jordan form, that is, a matrix with elements
along the main diagonal and possibly a few 1s along the first super diagonal when the
state matrix A has dependent eigenvectors for repeated eigenvalues. Assume that A can
be partitioned as

where the elements along the diagonal are arranged in increasing magnitude of the
negative real parts. Furthermore, the magnitude of the negative real part of the last
element of A1 is much smaller than the magnitude of the negative real part of the first
element of A2. Then, the modes in the block A2 will decay much faster than those in AI.
The faster modes may be truncated to get a reduced-order model. Clearly, modes of the
lower order approximation are a subset of modes of the original model. In addition, all
reduced-order models obtained by modal truncation match perfectly with the original
model at infinite frequency.

4.3.3.2 Singular Perturbation

Singular perturbation is a well-studied alternative to the modal method discussed
above. Here again, the underlying principle is to partition the original system as a fast
and a slow subsystem. The states of the fast subsystem are set to their steady-state
values to obtain a reduced-order model. Briefly, the singular perturbation approach
may be described as follows. Given the state space model:

Section 4.3 Dynamical Models

d [XI(t)] [All A I2][XI(t)] [BI(t)]
dt EX2(t) = A21 A22 X2(t) + B2(t) u(t)

[
XI(t)]

yet) = [CI C2] + [D]u(t)
X2(t)

87

(4.14)

where E is a small number [28]. Then setting E = 0, and assuming that A22 is invertible,
yields

o= A2IXI(t) + A22X2(t) + B2u(t) or,

X2(t) = - A2iA21Xl (t) - A221B2u(t).

Substituting X2(t) in (4.14), one obtains a singular perturbation approximation model

dXI (t) [-I] [-I]-cit = All - A 12A22 A21 Xl (t) + BI - A 12A22 B2 u(t)

yet) = [C1 - C2A2iIA21]Xl(t)+ [D - C2A22IB2]U(t).

Singular-perturbation-based order reduction yields models with a good match with the
original system at low frequencies.

4.3.3.3 Balanced Reduction

Often the overmodeled system may have states that are either uncontrollable or
unobservable. Because these states do not contribute to transfer of signals from the
input to the output of the system, they may be eliminated from the system dynamics. In
addition, there may be states that are weakly controllable and/or observable; that is,
these states make a relatively small contribution in the transfer of signals from the input
to the output. Internally balanced state space realizations have a basis such that each
basis vector is equally controllable and observable. Moreover, it is possible to quantify
the degree of controllability and observability of each basis vector for such realizations.
Given a stable state space realization (A, B, C, D), one can obtain its controllability
grammian (P) and observability grammian (Q), respectively, through the solution of
Lyapunov equations

AP + PAT + BBT = 0

ATQ+QAT +CTC=O.

Then, the realization (A, B, C, D) is said to be internally balanced if P = Q = I; and

~=

o o

o
o

88 Chapter 4 System Modeling

where all diagonal elements can be ordered so that 0'1 > 0'2 > ... > a, > O. The elements
ai represent the degree of controllability and observability of each basis vector of the
state space.

Assume that b can be split into two submatrices bl and b2' with a clear difference
between the relative values of the magnitudes of their diagonal elements. Then a
reduced-order model may be obtained by

1. Direct truncation: This is easily achieved by splitting the state vector of balanced
realization conformable to the dimensions of the two blocks, bl and b2' and
truncating the states that correspond to I;2 [8, 21].

2. Singular perturbation approximation: For some applications, direct truncation is
not desirable because the corresponding reduced-order models incur the greatest
approximation errors in the low-frequency range. Balanced singular perturbation
ensures that the error in the low-frequency range is eliminated [7].

4.4 NONLINEAR DYNAMICAL SYSTEMS

As noted in the previous section, the following state description may be used to repre­
sent nonlinear dynamical systems

dx "-
dt = F(x, u, t). (4.15)

where the states in (4.15) are nonlinearly related. The system is referred to as autono­
mous if (4.15) does not have explicit dependence on time; otherwise it is said to be
nonautonomous. Furthermore, ifu(t) = 0, the system (4.15) is called unforced; otherwise
it is a referred to as a forced system. Note that in the literature autonomous is often
replaced by time-invariant and nonautonomous by time-varying.

Several inherent properties of linear systems, which make them easier to model and
analyze, become invalid for nonlinear systems. Properties such as superposition and
commutativity (the linearity of a cascade of two linear subsystems) do not carryover to
nonlinear systems. The response of nonlinear systems is not as predictable as for linear
systems; for example, sinusoidal excitation of linear systems, but not nonlinear ones,
produces sinusoidal output with the same frequency as the excitation signal. Another
striking difference is the number of equilibrium points. An equilibrium point of the
system (4.15) is defined as a state in which the velocity of the state is zero; that is, for an
autonomous system F(x, t) = o. Linear systems have no more than a single isolated
equilibrium point. In contrast, a nonlinear system may have multiple isolated equili­
brium points. As a straightforward example, ~ = 21l'x has a single equilibrium point at
the origin, whereas ~ = x - x2 has equilibrium points at 0 and 1.

A typical feedback control system will have a plant and a controller, together with
sensors and actuators. If all elements of these four components are linear, the resulting
system is linear. If anyone of the four components exhibits nonlinearity, the overall
system becomes nonlinear. A viable approach to work with such systems is to identify,
and where possible, model the nonlinearity.

92 Chapter 4 System Modeling

be modeled as a system of two coupled first-order systems with two states. Specifically,
writing a second-order system as

we get

dX2 _!i(Xb X2)
dx, - fl(Xl' X2)'

The corresponding trajectories when plotted in the (Xl, X2) plane yield a phase plane.
The trajectories may be drawn using a slope at each point of the phase trajectory or via
the method of isoclines [29]. The phase-plane trajectories can now be used to study
properties such as limit cycles, chaos, and bifurcation. A major drawback of this
approach is the difficulty in visualizing the solution in dimensions greater than two.

4.4.2 Linearization

In general, the qualitative behavior of a nonlinear system at a point near one of its
equilibrium points is adequately captured by its linearized approximation at that point.
Hence, it is natural to consider ways to obtain a linearized representation of nonlinear
systems. A linear model may be obtained as a local linearized approximation model
obtained through Taylor series expansion or (more recently) as a global linearized
model obtained through feedback linearization, where the former is an approximate
representation and the latter is exact. In addition, we may obtain reasonably accurate
linear models of some nonlinearities through a Fourier series based approximation
technique. In the rest of this section, these models are briefly discussed.

4.4.2.1 Local Linearized Approximation

We assume that the system is expressed by the following nonlinear vector differ­
ential equations

dx
dt = F(x, u) (4.16)

where X is the state vector of length nand u is the input vector of length m.
Furthermore, F is a differentiable vector function of X and u. Clearly, its isolated
equilibrium points can be determined from F(x, 0) = O. By a shift of axis, an equili­
brium point can be made to lie on the origin in the shifted system. Specifically, if an
isolated equilibrium point lies at X = Xo, then the system may be modified to ~ =
Fz(z, u) with an isolated equilibrium point at the origin of the new state space. Hence
we can assume, without any loss of generality, that X = 0 is an equilibrium point of the
system.

Next, using Taylor series expansion of F(x, u) about X = 0, u = 0 gives

Section 4.4 Nonlinear Dynamical Systems

{aF} {aF} 1 la
2Fj

2F(x, u) = F(O, 0) + ax _ _ x + au _ _ u + 2! au2 x
x-O,u-O x-O,u-O x=O,u=O

lla2Fj 2 21aJ-Fj+ 2! au2 u + 2! axau xu + ·.. ·
x=O,u=O x=O,u=O

93

Neglecting terms beyond first derivatives and noting that by definition, F(O, 0) = 0, the
linearized approximation of the system (4.16) may be expressed as the linear state
variable model

dx
dt = Ax+Bu,

where A and B are, respectively, n x nand n x m Jacobian matrices defined as

[aF] [aF]A= - and B= - .
ax x=O,u=O au x=O,u=O

This seemingly straightforward method has one major drawback. The dynamics repre­
sented by it are valid only in a small neighborhood of the equilibrium point. Thus, the
method becomes less appealing for highly nonlinear systems.

4.4.2.2 Describing Function Approximation

Use of describing functions attempts to extend transfer function-based modeling,
analysis, and control techniques from linear to nonlinear systems. Essentially, a describ­
ing function gives a linear approximation of a nonlinear system. The premise is that if a
sinusoidal input is applied to a system with a nonlinearity (symmetric about the origin)
and it is assumed that the output has the same fundamental frequency as the input, then
provided that the term containing the fundamental frequency is most significant, all
higher order harmonics, subharmonics, and the de component may be ignored [29]. The
resulting model will be a reasonable linear approximation of the nonlinearity.

In performing describing function analysis, it is assumed that there is only one
nonlinearity in the system. If the system contains more than one nonlinearity, they are
all lumped into a single one. Clearly, the approach has some limitations, yet the sim­
plicity afforded by the method makes it quite popular for modeling nonlinearities. A
common procedure to obtain the describing function model of a nonlinearity is to find
the Fourier series representation of the output and use the fundamental harmonic to
construct the describing function.

Let the input to the nonlinear element N(M, w) be

x(t) = M sinwt

and let the steady-state output of the nonlinear device be given by

94

00

yet) = L N1sin(wt + ~l)·
l=}

Chapter 4 System Modeling

(4.17)

with the .e = 0 term being zero and .e = 1 representing the term with the most significant
contribution. Then, by definition, the describing function of the nonlinearity is

(4.18)

Describing function descriptions are obtained by Fourier series expansion of the
output waveform emerging from the nonlinear element when excited by a sinusoidal
input with a fixed frequency. Clearly, (4.17) may be expressed as a trigonometric
Fourierseriesexpan~on

00

yet) = ao+L akcos(kwt) + bk sin(kwt)
k=}

where ak and bk are the Fourier series coefficients computed as

I1TI2

ao = T y(t)d(wt)
-T12

2jTI2
ak = T y(t) cos(kwt)d(wt)

-T12

2jT/2
bk = T y(t) sin(kwt)d(wt)

-T12

where T is the period of the input signal. Then the describing function defined in (4.18)
can be reduced to the complex expression

b} .a}
N(M,w) = M+J M=

A reasonably large variety of nonlinearities satisfy the following conditions: (a) the
nonlinearity exhibits odd function behavior, that is,f(-t) = -f(-t), (b) there is only
one nonlinear component in the system, (c) the nonlinearity is time invariant, and (d) all
higher-order harmonics are filtered owing to the low-pass property of the controller in
the feedback configuration. Therefore in many, but not all, cases the fundamental term
is the only significant component of the output yet), justifying the corresponding
describing function as a reasonable approximation of the underlying nonlinearity.
Describing functions for several of the nonlinearities discussed above may be found
in advanced control texts, for example, [29] and [30].

Section 4.5 Models of Distributed Parameter Systems

4.4.2.3 Feedback Linearization

95

Both local linearizations and describing functions lead to approximate linear mod­
els. Although quite adequate for some applications, they fall short in others because of
their inherent limitations. An alternative to approximate linearization is feedback lin­
earization. This approach to obtain linearized models has garnered considerable atten­
tion in the last few years. Naturally, the feedback linearization approach has its own
limitations and shortcomings, and overcoming them is very much a topic of current
research. Feedback linearization is based on differential geometry and requires some
mathematical sophistication; hence readers are referred to [11, 14, 19, 30] and other
texts.

4.5 MODELS OF DISTRIBUTED PARAMETER
SYSTEMS

In the models discussed thus far, the dynamical changes were limited to the time vari­
able. A very large class of physical systems lends itself to a change of dynamical
behavior in both time and one or several space variables. Such systems are modeled
using partial differential equations (PDEs). As a quick illustration, we model the vibra­
tion of a clamped string. To simplify matters, it is assumed that the string is homo­
geneous and perfectly elastic, that gravitational forces compared to lateral tension on
the string are negligibly small, and that every infinitesimally small section of the string
traverses in a vertical plane. Using the notation in Figure 4.8, it can be easily seen that

where TA and TB are tensions at the endpoints of the segment under consideration and
T is a constant. Note that the net lateral tension is zero since there is no lateral
deflection by assumption. By Newton's law, the net vertical tension is

T . R T . a2f

BSln p - ASlna=p6.x
at2

where ptu is the mass of the segment, f(x, t) is the vertical displacement, and frf is the
acceleration. Dividing the above equation by T, we get the force equation

p~xalf
T at2 = tanfJ - tan a

{(x, t)

(4.19)

Figure 4.8 Deflection in a stretched string. o x x+Ax L

96 Chapter 4 System Modeling

where tan ex and tan f3 are the slopes at x and x + ~x, respectively. Since ft», t), the
vertical displacement, is a function of x as well as t, we have

tanfJ =il ·
x x+dx

Rewriting the force equation (4.19), we get

In the limit, as ~x ~ 0, the force equation becomes the partial differential equation

cYl T a21
at2 = pax2 '

4.5.1 Classification of PDEs

Depending on the underlying process, partial differential equations may be linear
or nonlinear. To keep the discussion concise, we limit the scope to only linear PDEs.
The following classification, though not exhaustive, captures a very large class of prac­
tical models. The classification is based on special cases of the general three-dimensional
convection-diffusion equation or the advection-diffusion equation, given by

K2::0

(4.20)

Furthermore, I = ftx, y, Z, t) is a function of the three space variables as well as time,
and U is the velocity vector (Ux ' Uy , Uz) . The three scalar elements in U may be
functions of one or more of the functionj", the spatial variables x, y, z, and the temporal
variable t. If U is a constant or an explicit function of (x, y, z) and t, we obtain a linear
convection-diffusion equation. On the other hand, if U also depends on f, then the
corresponding convection-diffusion equation is nonlinear.

Depending on the underlying physical problem, some of the components in (4.20)
may be zero, leading to special forms of a convection-diffusion equation [25]:

Parabolic PDEs. When all three components of the velocity vector U are uni­
formly zero, Eq. (4.20) simplifies to

Section 4.5 Models of Distributed Parameter Systems 97

(4.21)

Equation (4.21) represents a prototypical parabolic partial differential equation in
spatial and temporal variables. It is also known as the unsteady diffusion equation.

Elliptic PDEs. When all three components of the velocity vector U are uniformly
zero, and in additionf is independent of t, Eq. (4.21) simplifies to

(4.22)

Equation (4.22) represents a prototypical elliptic partial differential equation in spatial
variables. It is also known as Laplace's equation. Following are more general formula­
tions of elliptic PDEs:

V2f = g(x, y, z)

V2f + h(x, y, z)f = g(x, y, z)

Poisson's equation

Helmholtz's equation.

Hyperbolic PDEs. When the diffusivity K = 0, Eq. (4.20) simplifies to

af
-+U·Vf=O.
at

(4.23)

Equation (4.23) represents a prototypical hyperbolic partial differential equation in
spatial and temporal variables. It is also known as the convection equation.

It is easily seen that the above classification is based on three-dimensional flow
models. If the flow is limited to two of the three spatial variables, then Eq. (4.20)
represents two-dimensional flow models. Similarly, if the flow is restricted to a single
spatial variable, then (4.20) represents one-dimensional flow models.

4.5.2 Finite Difference Models of PDEs

Because of their inherently complex nature, the best technique for solution of most
PDEs is numerical. To obtain a numerical solution, the solution space of the PDE is
discretized into rectangles of appropriate dimensions for time and one-space dimen­
sional problems (or two-space dimensional problems), rectangular parallelepipeds for
time and two-space dimensional problems (or three-space dimensional problems), and
rectangular hyper parallelepipeds in higher dimensions. Development of finite differ­
ence models is most easily illustrated by means of time and one-space dimension, for
example, the one-dimensional diffusion equation

af(x, t) alf(x, t)
---=K---

at ax2 (4.24)

Discretization of its solution space for Xo ~ x ~ XI and to ~ t ~ tl involves dividing
the time and space axes into small steps. Step sizes are governed by the nature of the
problem and desired accuracy. If the solution space exhibits large variations, it is

Section 4.6 MacroModels: Scope and Future

4.5.2.2 Implicit Models (Backward Differences)

99

Explicit models based on forward differences are very efficient to solve because
they require a simple sparse matrix multiplication. However, they are not uncondition­
ally stable; stability depends on the step size chosen to discretize the grid. An alternative
approach is to use backward differences in the temporal variable and central differences
in the spatial variable. As will be seen shortly, to propagate the solution, this approach
requires solution of a sparse system of equations.

Assume that the point under consideration is (Xi, t j +1
) . Approximating the PDE at

this point using backward differences in temporal and central differences in spatial
variables, we get

rj+l rj rj+l _ 2r j+ 1 + rj+l
Ji - Ji + O(~t) = K Ji+l ~i Ji-l + O«~t)2).

~t (~x)2

On rearranging Eq. (4.26), we get

j+l j+l j+l _ j
-a/;_1 + (1 + 2a)/; - a/;+1 - /; .

(4.26)

(4.27)

The stencil that corresponds to (4.27) is shown in Figure 4.9. It has been shown that
the implicit model in (4.27) is unconditionally stable. Furthermore, to improve the
accuracy in the temporal variable to O«~t)2), one could use the Crank-Nicholson
method [25].

Following a similar approach, it is easy to see that both implicit and explicit finite
difference models for other PDEs can be obtained. However, one must verify that the
solution will converge by ensuring that the spectral radius of the state matrix of the
underlying dynamical system is less than unity.

4.6 MACROMODELS: SCOPE AND FUTURE

Although the discussion thus far has been limited to techniques for a specific type of
system models, it would only be appropriate to finally turn our attention to more
general questions. It is true that, to a large extent, present technology permits the
engineer to arrive at an acceptably accurate model of a specific component of the
system. We refer to these models as micromodels. A reasonably complex system may
consist of a generous mix of components that may be linear, nonlinear, time driven,
event driven, and so forth. From a modeling viewpoint, a complex system has a
highly amorphous structure. Therefore, no single modeling technique is either suited
or sufficient for representation of a system. A challenging aspect of research in
modeling always has been and continues to be tactical integration of information
(component models) to achieve a specific objective. We will refer to these heteroge­
neous systems as macromodels.

Perhaps it would be fair to say that because of the nature of the subject, the field of
communication networks has had to deal with coordination and control of distributed
information the most. It is also interesting to note that there is much commonality
between some of the macromodeling techniques proposed in the control system litera-

100 Chapter 4 System Modeling

ture and those in use in communication networks. Some commonly used architectures
for local area networks in communication network systems are shown in Figure 4.10.

Over the years, several macromodels have been proposed in the systems literature.
Most continue to be used in their largely original form with suitable modifications or
enhancements as warranted by the system or situation under consideration. These
include hierarchical models, decentralized models, multimodels, and so on.

Hierarchical Models. Hierarchical models represent a top-down control/coordina­
tion protocol. There may be several levels of hierarchy within a system. The modules at
each level of hierarchy control the modules at the next lower level and are in turn
controlled by the modules at the next higher level. The decision-making structure is
pyramidal; the various levels of hierarchy in the system share information vertically. It
is also evident that the decision process has a larger significance when made at higher
levels of hierarchy. Hierarchical models correspond to the star topology in commu­
nication networks. A mathematically sophisticated treatment of hierarchical control
may be found in [18].

Decentralized Models. A decentralized model represents a more distributed infor­
mation and control structure. Although the system remains structurally intact, its out­
put information is shared among several controllers. These controllers collectively
contribute to the control of the system. Unlike hierarchical models, where the structure
is top-down, the structure of decentralized models is more lateral. The control decisions
are made locally, and the effect of local control decisions may be coordinated through a
centralized coordination module. The model provides sufficient flexibility for reorga­
nization and lends itself naturally to building redundancy into the control system. In
decentralized models, although the information is easily accessible throughout the
system, the control architecture is decentralized. In fact, the local controllers are
given considerable autonomy. The tree protocol in communication networks has con­
siderable commonality with decentralized systems, where the system buses carry the
information and subsystems are controlled by local controllers. The reader is referred to
[12] for more details on decentralized models.

Supervisory Control Models. Hierarchical and decentralized models have a unique
characteristic: They provide a uniform structure to the entire system model. This prop-

Station

(Repeater

(a) Tree (b) Ring (c) Star

Figure 4.10 Common network topologies.

Section 4.7 Remarks 101

erty can be a strong point for situations where there is little or no ambiguity about
micromodels and leads to mathematically well-defined models. On the other hand, if
the system is sufficiently complex, it may not be the best strategy to use a uniform
modeling technique throughout the system. Supervisory control models provide a
framework to address the situation where a multitude of nonuniform micromodels
represent low-levelsystems. The task of the supervisory control module is then to assign
an appropriate weight to each micromodel and to develop a composite model output to
achieve the control objective.

The control flow outlined in Figure 4.11 represents the general framework within
which supervisory control models may operate. For more information on supervisory
control (also referred to as a multiple model approach), the readers are referred to
[22].

Input

Output

Figure4.11 Supervisory control.

4.7 REMARKS

The preceding discussion was deliberately limited to deterministic models. In addi­
tion to models and techniques discussed in this chapter, there are mathematically
mature techniques for several other modeling-related issues. For example, an exten­
sive literature addresses the problem of stochastic modeling, briefly alluded to in
Section 4.3.2, where an explicit representation of random uncertainty is taken into
account.

As was mentioned at the very beginning of this chapter, the field of modeling is
vast and ever growing. It would be a daunting task to encapsulate the entire subject into
a few short pages. The primary purpose of this chapter was to expose the reader to
essentials of modeling rather than to provide an exhaustive treatment of models and
modeling techniques. Some of the topics discussed in this chapter are covered in con­
siderably greater detail in related chapters listed in the box below. For the rest, the
reader is urged to refer to the references listed at the end of the chapter and to research
journals, where this ever-evolving subject gets continued attention.

102 Chapter 4 System Modeling

ACKNOWLEDGMENT

The author gratefully acknowledges numerous constructive suggestions by Tariq Samad
in writing this chapter.

Related Chapters

• A discussion on models for discrete-event systems is included in Chapter 2.
• Models for systems that combine continuous-time and discrete-event behavior are

described in Chapter 7.
• A detailed treatment of nonlinear approximators as system models can be found in

Chapter 6.
• Compositional approaches to system modeling that rely on computational tools are

presented in Chapter 3.

REFERENCES

[1] D. Y. Abramovitch and L. G. Bushnell, "Report on the fuzzy versus conventional control
debate." IEEE Control Systems Magazine, Vol. 19, no. 3, pp. 88-91, 1999.

[2] A. E. Bryson, Dynamic Optimization. Reading, MA: Addison-Wesley, 1999.
[3] P. E. Caines, Linear Stochastic Systems. New York: John Wiley & Sons, 1988.
[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[5] R. C. Dorf and R. H. Bishop, Modern Control Systems. Reading, MA: Addison-Wesley,

1998.
[6] A. G. Evans and R. Fischl, "Optimal least squares time-domain synthesis of digital filters."

IEEE Trans. Audio and Electroacoustics, Vol. AEA-21, pp. 61-65, 1973.
[7] K. V. Fernando and H. Nicolson, "Singular perturbation model reduction of balanced

systems." IEEE Trans Automat. Control, Vol. AC-27, pp. 46&-468, 1982.
[8] K. Glover, "All optimal Hankel norm approximations of linear multivariable systems, and

their t.; error bounds." Int. J. Contr., Vol. 39, pp. 1115-1193, 1984.
[9] G. H. Golub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore, MD: Johns

Hopkins University Press, 1989.
[10] W. J. Palm III, Modeling, Analysis and Control ofDynamic Systems. New York: John Wiley

& Sons, 1983.
[11] A. Isidori, Nonlinear Control Systems. New York: Springer-Verlag, 1989.
[12] M. Jamshidi, Large Scale Systems-Modeling, Control and Fuzzy Logic. Englewood Cliffs,

NJ: Prentice-Hall, 1996.
[13] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[14] H. K. Khalil, Nonlinear Systems. New York: Macmillan, 1992.
[15] B. Kuo, Automatic Control Systems. Englewood Cliffs, NJ: Prentice Hall, 1995.
[16] L. Ljung, System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall,

1987.
[17] L. E. McBride, H. W. Schafgen, and K. Steiglitz, "Time-domain approximation by iterative

methods." IEEE Trans. Circuit Theory, Vol. CT-13, pp. 318-387, 1966.
[18] M. C. Mesarovic, D. Macko, and Y. Takahara, Theory of Hierarchical Multilevel Systems.

New York: Academic Press, 1970.

References 103

[19] R. R. Mohler, Nonlinear Systems, Vol. 1, Dynamics and Control. Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[20] M. Moonen and J. Vandewalle, "A QSVD approach to on- and off-line state-space identi­
fication." Int. J. Contr., Vol. 51, pp. 1133-1146, 1990.

[21] B. C. Moore, "Principal component analysis in linear systems:Controllability, observability,
and model reduction." IEEE Trans. Automat. Control, Vol. AC-26, pp. 17-31,1981.

[22] R. Murray-Smith and T. A. Johansen, Multiple Model Approaches to Modelling and Control.
London: Taylor & Francis Ltd., 1997.

[23] J. P. Norton, An Introduction to Identification. New York: Academic Press, 1986.
[24] K. Ogata, Modern Control Engineering. Englewood Cliffs, NJ: Prentice Hall, 1997.
[25] C. Pozrikidis, Numerical Computation in Science and Engineering. London: Oxford

University Press, 1998.
[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C,

The Art of Computer Programming. Cambridge, MA: Cambridge University Press, 1997.
[27] T. Samad, "Complexity management: Multidisciplinary perspectives on automation and

control." Technical Report CON-R98-001, Honeywell Technology Center, 1998.
[28] V. Saxena, J. O'Reilly, and P. V. Kokotovic, "Singular perturbation and time scale methods

in control theory: Survey 1976-1983." Automatica, Vol. 20, pp. 272-293, 1984.
[29] S. M. Shinners, Modern Control System Theory and Design. New York: John Wiley & Sons,

1992.
[30] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall,

1991.
[31] P. P. J. van den Bosch and A. C. van der Klauw, Modeling, Identification and Simulation of

Dynamical Systems. Boca Raton, FL: CRC Press, 1994.

Chapter

5
INTELLIGENT CONTROL: AN
OVERVIEW OF TECHNIQUES

Kevin M. Passino

Editor's Summary

In many established fields, the label "intelligent" heralds new developments that take issue with some

traditional assumptions in research. In the case of intelligent control, an explicit attempt is made to draw

inspiration from nature, biology, and artificial intelligence, and a methodology is promoted that is more

accepting of heuristics and approximations-and is less insistent on theoretical rigor and completeness­

than is the case with most research in control science.

Beyond such general and abstract features, succinct characterizations of intelligent control are

difficult. Extensional treatments are an easier matter. Fuzzy logic, neural networks, genetic algorithms,

and expert systems constitute the main areas of the field, with applications to nonlinear identification,

nonlinear control design, controller tuning, system optimization, and encapsulation of human operator

expertise. Intelligent control is thus no narrow specialization; it furnishes a diverse body of techniques that

potentially addresses most of the technical challenges in control systems. It is also important to emphasize

that intelligent control is by no means methodologically opposed to theory and analysis. Chapter 6 of this

book, for example, discusses some theoretical results for neural networks and fuzzy models as nonlinear

approximators

Introductory tutorials to the key topics in intelligent control are provided in this chapter. No prior

background in these topics is assumed. Examples from ship maneuvering, robotics, and automotive

diagnostics help motivate the discussion. (Other chapters in this volume, notably Chapter 16, also outline

applications of intelligent control.) General observations on autonomy and adaptation-two character­

istics that are often considered essential to any definition of intelligence-are also included.

Kevin Passino is an associate professor in the Department of Electrical Engineering at The Ohio

State University, past chair of the IEEE-CSS Technical Committee on Intelligent Control, and current vice

president of Technical Activities for CSS.

5.1 INTRODUCTION

Intelligent control achieves automation via the emulation of biological intelligence. It
either seeks to replace a human who performs a control task (e.g., a chemical process
operator), or it borrows ideas from how biological systems solve problems and applies
them to the solution of control problems (e.g., the use of neural networks for control).
In this chapter we provide an overview of several techniques used for intelligent control
and discuss challenging industrial application domains where these methods may pro­
vide particularly useful solutions.

104

106 Chapter 5 Intelligent Control: An Overview of Techniques

• The inference mechanism uses information about the current inputs (formed by
fuzzification), decides which rules apply in the current situation, and forms
conclusions about what the plant input should be.

• Defuzzification converts the conclusions reached by the inference mechanism
into a numeric input for the plant.

5.2.1.1 FuzzyControlDesign

As an example, consider the tanker ship-steering application in Figure 5.2 in which
the ship is traveling in the x direction at a heading 1/1 and is steered by the rudder input
8. Here, we seek to develop the control system in Figure 5.3 by specifying a fuzzy
controller that would emulate how a ship captain would steer the ship. Here, if 1/1, is
the desired heading, e = 1/1, -1/1 and c = e.

The design of the fuzzy controller essentially amounts to choosing a set of rules
(rule base) in which each rule represents the captain's knowledge about how to steer.
Consider the following set of rules:

1. If e is neg and c is neg then 8 is poslarge.

2. If e is neg and c is zero then 8 is possmall.

3. If e is neg and c is pos then 8 is zero.

4. If e is zero and c is neg then 8 is possmall.

5. If e is zero and c is zero then 8 is zero.

6. If e is zero and c is pos then 8 is negsmall.

7. If e is pos and c is neg then 8 is zero.

8. If e is pos and c is zero then 8 is negsmall.

9. If e is pos and c is pos then 8 is neglarge.

Figure 5.2 Tanker ship steering problem.

Fuzzy controller Tanker
ship

Figure 5.3 Control system for tanker.

Section 5.2 Intelligent Control Techniques 107

Here, "neg" means negative, "poslarge" means positive and large, and the others
have analogous meanings. What do these rules mean? Rule 5 says that the heading is
good, so let the rudder input be zero. For Rule 1:

• "e is neg" means that 1/1 is greater than 1/1,.
• "e is neg" means that 1/1 is moving away from 1/1, (if 1/1, is fixed).

• In this case we need a large positive rudder angle to get the ship heading in the
direction of 1/1,.

The other rules can be explained in a similar fashion.
What, precisely, do we (or the captain) mean by, for example, "e is pos," or "e is

zero," or "8 is poslarge"? We quantify the meanings with "fuzzy sets" ("membership
functions"), as shown in Figure 5.4. Here, the membership functions on the e axis
(called the e "universe of discourse") quantify the meanings of the various terms
(e.g., "e is pos"). We think of the membership function having a value of 1 as meaning
"true," while a value of 0 means "false." Values of the membership function in between
oand 1 indicate "degrees of certainty." For instance, for the e universe of discourse the
triangular membership function that peaks at e = 0 represents the (fuzzy) set of values
of e that can be referred to as "zero." This membership function has a value of 1 for
e = 0 (i.e., J.,tze,o(O) = 1) which indicates that we are absolutely certain that for this value
of e we can describe it as being "zero." As e increases or decreases from 0, we become
less certain that e can be described as "zero," and when its magnitude is greater than n
we are absolutely certain that it is not zero, so the value of the membership function is
zero. The meaning of the other two membership functions on the e universe of discourse
(and the membership functions on the change-in-error universe of discourse) can be

"neg"

"neg"

"pos"

e(t), (rad.)

"pos"

I gz =100

1
-~ -Jz ~ e(t), (rad/sec)

"neglarge" "negsmall" ~ ~ "zero" "possmall" "poslarge"

II/ ~

~

Figure 5.4 Membership functions for inputs
and output.

......

o
,

go o(t), (rad)

108 Chapter 5 Intelligent Control: An Overview of Techniques

described in a similar way. The membership functions on the 8 universe of discourse are
called "singletons." They represent the case where we are only certain that a value of 8
is, for example, "possmall" if it takes on only one value, in this case i~~, and for any
other value of 8 we are certain that it is not "possmall." Finally, notice that Figure 5.4
shows the relationship between the scaling gains in Figure 5.3 and the scaling of the
universes of discourse. (Notice that for the inputs there is an inverse relationship since
an increase an input scaling gain corresponds to making, for instance, the meaning of
"zero" correspond to smaller values.)

It is important to emphasize that other membership function types (shapes) are
possible; it is up to the designer to pick ones that accurately represent the best ideas
about how to control the plant. Fuzzification (in Figure 5.1) is simply the act of finding,
for example, Jlpos(e) for a specific value of e.

Next, we discuss the components of the inference mechanism in Figure 5.1. First,
we use fuzzy logic to quantify the conjunctions in the premises of the rules. For
instance, the premise of Rule 2 is

"e is neg and c is zero."

Let Jlneg(e) and Jlzero(c) denote the respective membership functions of each of the two
terms in the premise of Rule 2. Then, the premise certainty for Rule 2 can be defined by

Jlpremise(2) = min {Jlneg(e), Jlzero(c)}.

Why? Think about the conjunction of two uncertain statements. The certainty of the
assertion of two things is the certainty of the least certain statement.

In general, more than one JLpremise(i) will be nonzero at a time, so more than one rule
is "on" (applicable) at every time. Each rule that is "on" can contribute to making a
recommendation about how to control the plant and generally ones that are more on
(i.e., have Ilpremise(i) closer to one) should contribute more to the conclusion. This
completes the description of the inference mechanism.

Defuzzification involves combining the conclusions of all the rules. "Center-aver­
age" defuzzification uses

~ _ Li=l biJlpremise(i)
0- 9

Li=1 Jlpremise(i)

where b, is the position of the center of the output membership function for the ith rule
(i.e., the position of the singleton). This is simply a weighted average of the conclusions.
It completes the description of a simple fuzzy controller (and notice that we did not use
a mathematical model in its construction).

There are many extensions to the fuzzy controller that we describe above. There
are other ways to quantify the "and" with fuzzy logic, other inference approaches,
other defuzzification methods, "Takagi-Sugeno" fuzzy systems, and multi-input
multi-output fuzzy systems. See [7, 25, 26, 31] for more details.

Section 5.2 Intelligent Control Techniques

Weights

Figure 5.7 Single neuron model.

n

z= LWiXi-b

i=1

y

111

and the Wi are the interconnection "weights" and b is the "bias" for the neuron. (These
parameters model the interconnections between the cell bodies in the neurons of a
biological neural network.) The signal z represents a signal in the biological neuron,
and the processing that the neuron performs on this signal is represented with an
"activation function" f where

Y=f(z) =f('t WiXi - b).
1=1

(5.1)

The neuron model represents the biological neuron that "fires" (turns on) when its
inputs are significantly excited (i.e., z is big enough). Firing is defined by an activation
function f where two (of many) possibilities for its definition are:

• Threshold function:

{
I if z ~ 0

fez) = 0 if z < 0

• Sigmoid (logistic) function:

1
f(z) = 1+ exp(-z)' (5.2)

There are many other possible choices for neurons, including a linear neuron that is
simply given by fez) = z.

Equation (5.1), with one of the above activation functions, represents the compu­
tations made by one neuron. Next, we interconnect them. Let circles represent the
neurons (weights, bias, and activation function), and lines represent the connections
between the inputs and neurons and the neurons in one layer and the next layer. Figure
5.8 is a three-"layer" perceptron since there are three stages of neural processing
between the inputs and outputs.

112 Chapter 5 Intelligent Control: An Overview of Techniques

(1)
xn\

First
hidden
layer

Here, we have

(2)xn2

Second
hidden
layer

Output
layer

Yl

Ym

Figure S.8 Multilayer perceptron model.

• Inputs: Xi, i = 1, 2, , n

• Outputs: Yj,j = 1,2, , m

• Number of neurons in the first hidden layer, nb in the second hidden layer n2,
and in the output layer, m

• In an N layer perceptron there are n, neurons in the ith hidden layer,
i = 1,2, ... , N - 1.

We have

Xl = 1/(t W~Xi - bJ)
i=1

withj = 1,2, ... , nl. We have

XJ = fj2(t w~x: - bY)
i=1

withj = 1,2, ... , n2. We have

with j = 1, 2, ... ,m. Here, we have the following:

• wb (w~) are the weights of the first (second) hidden layer.
• wij are the weights of the output layer.
• hJ are the biases of the first hidden layer.

Section 5.2 Intelligent Control Techniques 113

• bJ are the biases of the second hidden layer.

• b, are the biases of the output layer.
• fj (for the output layer), jj2 (for the second hidden layer), and jjl (for the first

hidden layer) are the activation functions (all can be different).

5.2.2.2 Training NeuralNetworks

How do we construct a neural network? We train it with examples. Regardless of
the type of network, we will refer to it as

y = F(x, 0)

where 0 is the vector of parameters that we tune to shape the nonlinearity it implements.
(F could be a fuzzy system too in the discussion below.) For a neural network, 0 would
be a vector of the weights and biases. Sometimes we call F an approximator structure.
Suppose that we gather input-output training data from a function y = g(x) that we do
not have an analytical expression for (e.g., it could be a physical process).

Suppose that y is a scalar but that x = [Xl, ••• , Xn] T. Suppose that Xi = [x1, ... ,
X~]T is the ith input vector to g and that yi = g(xi

) . Let the training data set be

The function approximation problem is how to tune 0 using G so that F matches g(x) at
a test set r. (I' is generally a much bigger set than G.) For system identification the Xi

are composed of past system inputs and outputs (a regressor vector) and the yi are the
resulting outputs. In this case, we tune 0 so that F implements the system mapping
(between regressor vectors and the output). For parameter estimation, the xi can be
regressor vectors, but the yi are parameters that you want to estimate. In this way we
see that by solving the above function approximation problem we are able to solve
several types of problems in estimation (and control, since estimators are used in, for
example, adaptive controllers).

Consider the simpler situation in which it is desired to cause a neural network
F(x,9) to match the function g(x) at only a single point x where y = g(x). Given an
input x, we would like to adjust 9 so that the difference between the desired output and
neural network output

e = y - F(x, 0) (5.3)

is reduced (where y may be either vector or scalar valued). In terms of an optimization
problem, we want to minimize the cost function

(5.4)

Taking infinitesimal steps along the gradient of 1(0) with respect to 0 will ensure that
1(0) is nonincreasing. That is, choose

iJ = -ij\l1(9), (5.5)

114 Chapter 5 Intelligent Control: An Overview of Techniques

where ij > 0 is a constant and if ()= [(}b ... , (}p]T,

al«(})
dOl

\lJ«()) = oJ«()) =
a(}

°fJJ()}
p

Using the definition for l(O), we get

or

iJ = -ij~ (ji- F(i, ()))T(ji- F(i, ()))

so that

iJ = -ij~ (jiTY_ 2F(i, ())TY+F(i, ())TF(i, ())).

Now, taking the partial we get

iJ = _ - (_2 of(i, ())T - 2 of(i, ())T F(- 0»)
11 ae Y + ae x,.

If we let 1J = 2ij, we get

iJ = 17of(i, Z)!T (ji- F(i, B))
oz z=(}

so

iJ = 11~(X, O)e

where 11 > 0, and

(- 0) _ aF(x, Z)I
T

t; x, - a '
z z=(}

(5.6)

(5.7)

(5.8)

Using this update method, we seek to adjust 0 to try to reduce l(O) so that we achieve
good function approximation.

In discretized form and with nonsingleton training sets, updating is accomplished
by selecting the pair (xi, yi), where i E {I, ... , M} is a random integer chosen at each
iteration, and then using Euler's first-order approximation the parameter update is
defined by

Section 5.2 Intelligent Control Techniques

O(k + 1) = O(k) + l1~i(k)e(k),

where k is the iteration step, e(k) = yi - F(xi,O(k)) and

. T
~(k) = aF(x

l

, z)
8z

z=()(k)

115

(5.9)

(5.10)

When M input-output pairs, or patterns, (Xi,yi) where yi = g(x i) are to be
matched, "batch updates" can also be done. In this case, let

and let the cost function be

M

l(O) = :~::>iTi,
i=1

(5.11)

(5.12)

and the update formulas can be derived similarly. This is actually the backpropagation
method (except we have not noted that because of the structure of the layered neural
networks certain computational savings are possible). In practical applications the
backpropagation method, which relies on the steepest descent approach, can be very
slow since the cost l(O) can have long low-slope regions. It is for this reason that in
practice numerical methods are used to update neural network parameters. Two of the
methods that have proven particularly useful are the Levenberg-Marquardt and con­
jugate-gradient methods. For more details, see [5,8, 12, 13, 14, 16, 17,21,32].

5.2.2.3 Design Concerns

You encounter several design concerns in solving the function approximation
problem using gradient methods (or others) to tune the approximator structure.
First, it is difficult to pick a training set G that you know will ensure good approxima­
tion. (Indeed, most often it is impossible to choose the training set; often some other
system chooses it.) Second, the choice of the approximator structure is difficult.
Although most neural networks (and fuzzy systems) satisfy the universal approxima­
tion property, so that they can be tuned to approximate any continuous function on a
closed and bounded set to an arbitrary degree of accuracy, this generally requires that
you be willing to add an arbitrary amount of structure to the approximator (e.g., nodes
to a hidden layer of a multilayer perceptron). Because of finite computing resources, we
must then accept an approximation error. How do we pick the structure to keep this
error as low as possible? This is an open research problem, and algorithms that grow or
shrink the structure automatically have been developed. Third, it is generally impossible
to guarantee convergence of the training methods to a global minimum owing to the
presence of many local minima. Hence it is often difficult to know when to terminate
the algorithm. (Often tests on the size of the gradient update or measures of the
approximation error are used to terminate.) Finally, there is the important issue of
generalization, in which the neural network is hopefully trained to nicely interpolate

116 Chapter 5 Intelligent Control: An Overview of Techniques

between similar inputs. It is very difficult to guarantee that good interpolation is
achieved. Normally, all we can do is use a rich data set (large, with some type of
uniform and dense spacing of data points) to test that we have achieved good inter­
polation. If we have not, then we may not have used enough complexity in our model
structure, or we may have too much complexity that resulted in "overtraining" where
we match very well at the training data but there are large excursions elsewhere.

In summary, the main advantage of neural networks is that they can achieve good
approximation accuracy with a reasonable number of parameters by training with data.
(Hence there is a lack of dependence on models.) We will show how this advantage can
be exploited in the next section for challenging industrial control problems.

5.2.3 Genetic Algorithms

A genetic algorithm (GA) is a computer program that simulates the characteristics of
evolution, natural selection (Darwin), and genetics (Mendel). It is an optimization
technique that performs a parallel (i.e., candidate solutions are distributed over the
search space) and stochastic but directed search to evolve the most fit population.
Sometimes when it "gets stuck" at a local optimum, it is able to use the multiple
candidate solutions to try to simultaneously find other parts of the search space that
will allow it to "jump out" of the local optimum and find a global one (or at least a
better local one). GAs do not need analytical gradient information, but with modifica­
tions they can exploit such information if it is available.

5.2.3.1 The Population of Individuals

The fitness function of a GA measures the quality of the solution to the optimiza­
tion problem (in biological terms, the ability of an individual to survive). The GA seeks
to maximize the fitness function l(e) by selecting the individuals that we represent with
the parameters in B. To represent the GA in a computer, we make () a string (called a
chromosome) as shown in Figure 5.9.

In a base-2 representation, alleles (values in the positions, genes on the chromo­
some) are 0 and 1. In base-l0, the alleles take on integer values between 0 and 9. A
sample binary chromosome is given by: 1011110001010, while a sample base-l0 chro­
mosome is: 8219345127066. These chromosomes should not necessarily be interpreted
as the corresponding positive integers. We can add a gene for the sign of the number
and fix a position for the decimal point to represent signed reals. In fact, representation
via chromosomes is generally quite abstract. Genes can code for symbolic or structural
characteristics, not just for numeric parameter values, and data structures for chromo­
somes can be trees and lattices, not just vectors.

Chromosomes encode the parameters of a fuzzy system or neural network, or an
estimator or controller's parameters. For example, to tune the fuzzy controller dis-

/ Valueshere =alleles

, , , , , , , , , , , , "~-- String of genes =chromosome

"\ Gene = digit location

Figure 5.9 String for representing an individual.

Section 5.2 Intelligent Control Techniques 117

cussed earlier for the tanker ship, you could use the chromosome:

(These are the output membership function centers.) To tune a neural network, you can
use a chromosome that is a concatenation of the weights and biases of the network.
Aspects of the structure of the neural network, such as the number of neurons in a
layer, the number of hidden layers, or the connectivity patterns can also be incorpo­
rated into the chromosome. To tune a proportional-integral-derivative (PID) control­
ler, the chromosome would be a concatenation of its three gains.

How do we represent a set of individuals (i.e., a population)? Let (){(k) be a single
parameter at time k (a fixed-length string with sign digit), and suppose that chromo­
some j is composed of N of these parameters that are sometimes called traits. Let

. .. . T
fI (k) = [~(k), ~(k), · . · , fiN(k)]

be the jth chromosome.
The population at time ("generation") k is

P(k) = {t1(k) :j = 1,2, ... , S} (5.13)

Normally, you try to pick the population size S to be big enough so that broad
exploration of the search space is achieved, but not too big or you will need too
many computational resources to implement the genetic algorithm.

Evolution occurs as we go from a generation at time k to the next generation at
time k + 1 via fitness evaluation, selection, and the use of genetic operators such as
crossover and mutation.

5.2.3.2 Genetic Operators

Selection follows Darwin's theory that the most qualified individuals survive to
mate. We quantify "most qualified" via an individual's fitness J(&(k)). We create a
"mating pool" at time k:

M(k) = {nt(k) :j = 1,2, ... , S}. (5.14)

Then, we select an individual for mating by letting each nt(k) be equal to ()i(k) E P(k)
with probability

(5.15)
J«()i(k»

Pi = 2:1=1 J«(}i(k)) ·

With this approach, more fit individuals will tend to end up mating more often, thereby
providing more offspring. Less fit individuals, on the other hand, will have contributed
less of the genetic material for the next generation.

Next, in the reproduction phase that operates on the mating pool, there are two
operations: crossover and mutation. Crossover is mating in biological terms (the pro-

118 Chapter 5 Intelligent Control: An Overview of Techniques

cess of combining chromosomes), for individuals in M(k). For crossover, you first
specify the crossover probability Pc (usually chosen to be near unity). The procedure
for crossover is: Randomly pair off the individuals in the mating pool M(k). Consider
chromosome pair £I, fl. Generate a random number r E [0, 1]. If r ~ Pc, then do not
crossover Gust pass the individuals into the next generation). If r < Pe- then crossover £I
and fi. To crossover these chromosomes, select at random a cross site and exchange all
the digits to the right of the cross site of one string with the other (see Figure 5.10). Note
that multipoint (multiple cross sites) crossover operators can also be used, with the
offspring chromosomes composed by alternating chromosome segments from the
parents.

2 3 4 5 6 7 8 9 10 11 12 13

~SWitch these two parts of the strings

2 3 4 5 6 7 8 9 10 11 12 13

Cross site

Figure 5.10 Crossover operation example.

Crossover perturbs the parameters near good positions to try to find better solu­
tions to the optimization problem. It tends to perform a localized search around the
more fit individuals (i.e., children are interpolations of their parents that may be more
or less fit to survive).

Next, in the reproduction phase, after crossover, we have mutation. The biological
analog of our mutation operation is the random mutation of genetic material. To do
this, with probability Pm change (mutate) each gene location on each chromosome (in
the mating pool) randomly to a member of the number system being used. Mutation
tries to make sure that we do not get stuck at a local maximum of the fitness function
and that we seek to explore other areas of the search space to help find a global
maximum for I(O). Since mutation is pure random search, Pm is usually near zero.

Finally, we produce the next generation by letting

P(k + 1) = M(k).

Evolution is the repetition of the above process. For more details on GAs, see [10, 20,
22, 28].

5.2.3.3 Design Concerns

You can encounter many design concerns when using GAs to solve optimization
problems. First, it is important to fully understand the optimization problem, and to
know what you want to optimize and what you can change to achieve the optimization.
You also must have an idea of what you will accept as an optimal solution. Second,
choice of representation (e.g., the number of digits in a base-10 representation) is
important. Too detailed a representation increases computational complexity, while
too coarse a representation means you may not be able to achieve enough accuracy

Section 5.2 Intelligent Control Techniques 121

The reader will perhaps think of such a planning system as a general adaptive (model
predictive) contro ller.

5.2.5 Intelligent and Autonomous Control

Autonomous systems have the capability to independently (and successfully) perform
complex tasks. Consumer and governmental demands for such systems are frequently
forcing engineers to push many functions normally performed by humans into
machines. For instance, in the emerging area of intelligent vehicle and highway systems
(IVHS), engineers are designing vehicles and highways that can fully automate vehicle
route selection, steering, braking, and throttle control to reduce congestion and
improve safety. In avionic systems, a pilot's associate computer program has been
designed to emulate the functions of mission and tactical planning that in the past
may have been performed by the copilot. In manufacturing systems, efficiency optimi­
zation and flow control are being automated, and robots are replacing humans in
performing relatively complex tasks. From a broad historical perspective, each of
these applications began at a low level of automation, and through the years each
has evolved into a more autonomous system. For example, automotive cruise control­
lers are the ancestors of the (research prototype) controllers that achieve coordinated
control of steering, braking, and throttle for autonomous vehicle driving. And the
terrain following and terrain avoidance control systems for low-altitude flight are
ancestors of an artificial pilot's associate that can integrate mission and tactical plan­
ning activities. The general trend has been for engineers to incrementally "add more
intelligence" in response to consumer, industrial, and government demands and thereby
create systems with increased levels of autonomy.

In this process of enhancing autonomy by adding intelligence, engineers often
study how humans solve problems and then try to directly automate their knowledge
and techniques to achieve high levels of automation. Other times, engineers study how
intelligent biological systems perform complex tasks and then seek to automate "nat­
ure's approach" in a computer algorithm or circuit implementation to solve a practical
technological problem (e.g., in certain vision systems). Such approaches where we seek
to emulate the functionality of an intelligent biological system (e.g., the human) to solve
a technological problem can be collectively named intelligent systems and control tech­
niques. By using these techniques, some engineers are trying to create highly autono­
mous systems such as those listed above.

Figure 5.13 shows a functional architecture for an intelligent autonomous control­
ler with an interface to the process involving sensing (e.g., via conventional sensing
technology, vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, motors,
etc.), and an interface to humans (e.g., a driver, pilot, crew, etc.) and other systems. The
execution level has low-level numeric signal processing and control algorithms (e.g.,
PID, optimal, adaptive, or intelligent control; parameter estimators, failure detection,
and identification [FDI] algorithms). The coordination level provides for tuning, sche­
duling, supervision, and redesign of the execution-level algorithms, crisis management,
planning and learning capabilities for the coordination of execution-level tasks, and
higher-level symbolic decision making for FDI and control algorithm management.
The management levelprovides for supervising lower-level functions and for managing
the interface to the human(s) and other systems. In particular, the management level
will interact with the users in generating goals for the controller and in assessing the

Section 5.3 Applications 123

However, often a model is used in simulation to redesign a fuzzy controller. (Consider
the earlier ship-steering controller design problem.) Others argue that a model is always
used: even if it is not written down, some type of model is used "in your head" (even
though it might not be a formal mathematical model).

Since most people claim that no formal model is used in the fuzzy control design
methodology, the following questions arise:

1. Is it not true that there are few, if any, assumptions to be violated by fuzzy control
and that the technique can be indiscriminately applied? Yes, and sometimes it is
applied to systems where it is clear that a PID controller or lookup table would be
just as effective. So, if this is the case, then why not use fuzzy control? Because it is
more computationally complex than a PID controller and the PID controller is
much more widely understood.

2. Are heuristics all that are available to perform fuzzy controller design? No. Any
good models that can be used probably should be.

3. By ignoring a formal model, if it is available, is it not the case that a significant
amount of information about how to control the plant is ignored? Yes. If, for
example, you have a model of a complex process, we often use simulations to gain
an understanding of how best to control the plant-and this knowledge can be
used to design a fuzzy controller.

Nonetheless, at times it is either difficult or virtually impossible to develop a useful
mathematical model. In such instances, heuristic constructive methods for controllers
can be very useful. (Of course, we often do the same thing with PID controllers).

In the next section, we give an example of where fuzzy controllers were developed
and proved to be very effective, and no mathematical model was used.

5.3.1.2 Example: Vibration Damping in a
Flexible-Link Robot

For nearly a decade, control engineers and roboticists alike have been investigat­
ing the problem of controlling robotic mechanisms that have very flexible links. Such
mechanisms are important in space structure applications where large, lightweight
robots are to be utilized in a variety of tasks, including deployment, spacecraft
servicing, space-station maintenance, and so on. Flexibility is not designed into the
mechanism; it is usually an undesirable characteristic that results from trading off
mass and length requirements in optimizing the effectiveness and "deployability" of
the robot. These requirements and limitations of mass and rigidity give rise to many
interesting issues from a control perspective. Why turn to fuzzy control for this
application?

The modeling complexity of multilink flexible robots is well documented, and
numerous researchers have investigated a variety of techniques for representing flexible
and rigid dynamics of such mechanisms. Equally numerous are the works addressing
the control problem in simulation studies based on mathematical models, under
assumptions of perfect modeling. Even in simulation, however, a challenging control
problem exists; it is well known that vibration suppression in slewing mechanical
structures whose parameters depend on the configuration (i.e., are time varying) can

124 Chapter 5 Intelligent Control: An Overview of Techniques

be extremely difficult to achieve. Compounding the problem, numerous experimental
studies have shown that when implementation issues are taken into consideration,
modeling uncertainties either render the simulation-based control designs useless or
demand extensive tuning of controller parameters (often in an ad hoc manner).

Hence, even if a relatively accurate model of the flexible robot can be developed, it
is often too complex to use in controller development, especially for many control
design procedures that require restrictive assumptions for the plant (e.g., linearity). It
is for this reason that conventional controllers for flexible robots are developed either
(1) via simple crude models of the plant behavior that satisfy the necessary assumptions
(e.g., either from first principles or using system identification methods) or (2) via the ad
hoc tuning of linear or nonlinear controllers. Regardless, heuristics enter the design
process when the conventional control design process is used.

It is important to emphasize, however, that conventional control-engineering
approaches that use appropriate heuristics to tune the design have been relatively
successful. For a process such as a flexible robot, one is left with the following question:
How much of the success can be attributed to use of the mathematical model and
conventional control design approach, and how much should be attributed to the clever
heuristic tuning that the control engineer uses upon implementation? Why not simply
acknowledge that much of the problem must be solved with heuristic ideas and avoid all
the work that is needed to develop the mathematical models? Fuzzy control provides
such an opportunity and has in fact been shown to be quite successful for this applica­
tion [23] compared to conventional control approaches, especially if one takes into
account the efforts to develop a mathematical model that are needed for the conven­
tional approaches.

5.3.2 Data-Based Nonlinear Estimation

The second major area where methods from intelligent control have had an impact in
industry is in the use of neural networks to construct mappings from data. In particular,
neural network methods have been found to be quite useful in pattern recognition and
estimation. Here we explain how to construct neural network-based estimators and give
an example of where such a method was used.

5.3.2. 1 Estimator Construction Methodology

In conventional system identification, you gather plant input-output data and
construct a model (mapping) between the inputs and outputs. In this case, model
construction is often done by tuning the parameters of a model (e.g., the parameters
of a linear mapping can be tuned using linear least-squares methods or gradient meth­
ods). To validate this model, you gather novel plant input-output data and pass the
inputs into your constructed model and compare its outputs to the ones that were
generated by the model. If some measure of the difference between the plant and
model outputs is small, then we accept that the model is a good representation of the
system.

Neural networks or fuzzy systems are also tunable functions that can be used for
this system identification task. Fuzzy and neural systems are nonlinear and are para­
meterized by membership function parameters or weights (and biases), respectively.
Gradient methods can be used to tune them to match mappings that are characterized

Section 5.3 Applications 125

with data. Validation of the models proceeds along the same lines as with conventional
system identification.

In certain situations, you can also gather data that relates the inputs and outputs of
the system to parameters within the system. To do this, you must be able to vary system
parameters and gather data for each value of the system parameter. (The gathered data
should change each time the parameter changes, and it is gathered via either a sophis­
ticated simulation model or actual experiments with the plant.) Then, using a gradient
method, you can adjust the neural or fuzzy system parameters to minimize the estima­
tion error. The resulting system can serve as a parameter estimator (i.e., after it is
tuned-normally it cannot be tuned on-line because actual values of the parameters
are not known on-line, and they are what you are trying to estimate).

5.3.2.2 Example: Automotive Engine Failure
Estimation

In recent years, significant attention has been given to reducing exhaust gas
emissions produced by internal combustion engines. In addition to overall engine
and emission system design, correct or fault-free engine operation is a major factor
determining the amount of exhaust gas emissions produced in internal combustion
engines. Hence, there has been a recent focus on the development of on-board diag­
nostic systems that monitor relative engine health. Although on-board vehicle diag­
nostics can often detect and isolate some major engine faults, because of widely
varying driving environments they may be unable to detect minor faults, which
may nonetheless affect engine performance. Minor engine faults warrant special atten­
tion because they do not noticeably hinder engine performance but may increase
exhaust gas emissions for a long period of time without the problem being corrected.
The minor faults we consider in this case study include calibration faults (here, the
occurrence of a calibration fault means that a sensed or commanded signal is multi­
plied by a gain factor not equal to one, while in the no-fault case the sensed or
commanded signal is multiplied by one) in the throttle and mass fuel actuators,
and in the engine speed and mass air sensors. The reliability of these actuators and
sensors is particularly important to the engine controller since their failure can affect
the performance of the emissions control system. Here, we simply discuss how to
formulate the problem so that it can be solved with neural or fuzzy estimation
schemes. The key to this problem is to understand how data are generated for the
training of neural or fuzzy system estimators.

The experimental setup in the engine test cell consists of a Ford 3.0 L V-6 engine
coupled to an electric dynamometer through an automatic transmission. An air charge
temperature sensor (ACT), a throttle position sensor (TPS), and a mass airflow sensor
(MAF) are installed in the engine to measure the air charge temperature, throttle
position, and air mass flow rate. Two heated exhaust gas oxygen sensors (HEGO)
are located in the exhaust pipes upstream of the catalytic converter. The resultant
airflow information and input from the various engine sensors are used to compute
the required fuel flow rate necessary to maintain a prescribed air-to-fuel ratio for the
given engine operation. The central processing unit (EEC-IV) determines the needed
injector pulse width and spark timing, and outputs a command to the injector to meter
the exact quantity of fuel. An ECM (electronic control module) breakout box is used to
provide external connections to the EEC-IV controller and the data acquisition system.

126 Chapter 5 Intelligent Control: An Overview of Techniques

The angular velocity sensor system consists of a digital magnetic zero-speed sensor and
a specially designed frequency-to-voltage converter, which converts frequency signals
proportional to the rotational speed into an analog voltage.

Data are sampled in every engine revolution. A variable load is produced through
the dynamometer, which is controlled by a DYN-LOC IV speed/torque controller in
conjunction with a DTC-I throttle controller installed by DyneSystems Company. The
load torque and dynamometer speed are obtained through a load cell and a tachometer,
respectively. The throttle and the dynamometer load reference inputs are generated
through a computer program and are sent through an RS-232 serial communication
line to the controller. Physical quantities of interest are digitized and acquired utilizing
a National Instruments AT-MIO-16F-5 AID timing board for a personal computer.
Because of government mandates, periodic inspections and maintenance for engines are
becoming more common. One such test developed by the Environmental Protection
Agency (EPA) is the Inspection and Maintenance (1M)240 cycle. The EPA IM240 cycle
represents a driving scenario developed for the purpose of testing compliance of vehicle
emissions systems for contents of carbon monoxide (CO), unburned hydrocarbons
(HC), and nitrogen oxides (NOx), A modified version of this cycle was used in all
the tests.

Using the engine test cell, we take measurements of engine inputs and outputs for
various calibration faults (i.e., we gather sequences of data for each fault). Then, we
induce faults over the whole range of possible values of calibration faults. Data from all
these experiments become our training data set (the set G described in the neural net­
work section). This allows us to construct neural or fuzzy estimators for calibration
faults that can be tested in the actual experimental testbed. Additional details on this
application are given in [18].

5.3.3 Intelligent Adaptive Control Strategies

In this section we overview how intelligent systems methods can be used to achieve
adaptive control. Rather than providing a detailed tutorial on of all the (many) stra­
tegies that have been investigated and reported in the literature, an overview will be
provided in the first subsection of this section that will show how all the methods
broadly relate to each other. The reader should keep in mind that all of these methods
bear very close relationships to the work in conventional adaptive control [IS].

5.3.3. 1 Fuzzy, Neural, and Genetic Adaptive Control

There are two general approaches to adaptive control. In the first one, depicted in
Figure 5.14, we use an on-line system identification method to estimate the parameters
of the plant (by estimating the parameters of an identifier model) and a controller
designer module to subsequently specify the parameters of the controller. If the plant
parameters change, the identifier will provide estimates of these and the controller
designer will subsequently tune the controller. It is inherently assumed that we are
certain that the estimated plant parameters are equivalent to the actual ones at all
times. (This is called the certainty equivalence principle.) Then if the controller designer
can specify a controller for each set of plant parameter estimates, it will succeed in
controlling the plant. The overall approach is called indirect adaptive control since we
tune the controller indirectly by first estimating the plant parameters.

Section 5.3 Applications

Controller
designer

Plant
parameters

System
identification

127

Controller
parameters

r(t) .. Controller
u(t)

Plant
y(t)

Figure 5.14 Indirect adaptivie control.

The model structure used for the identifier model could be linear with adjustable
coefficients. Alternatively, it could be a neural or fuzzy system with tunable parameters
(e.g., membership function parameters or weights and biases). In this case, the model
that is being tuned is a nonlinear function. Since the plant is assumed to be unknown
but constant, the nonlinear mapping it implements is unknown. In adjusting the non­
linear mapping implemented by the neural or fuzzy system to match the unknown
nonlinear mapping of the plant, we are solving an on-line function approximation
problem. Normally, gradient or least-squares methods are used to tune neural or
fuzzy systems for indirect adaptive control (although problem-dependent heuristics
can sometimes be useful for practical applications). The stability of these methods
has been studied by several researchers (including Farrell and Polycarpou who provide
an overview of this research in Chapter 6 [9]). Other times, a genetic algorithm has been
employed for such on-line model tuning, and in this case it may also be possible to tune
the model structure.

In the second general approach to adaptive control, which is shown in Figure 5.15,
the adaptation mechanism observes the signals from the control system and adapts the
parameters of the controller to maintain performance even if there are changes in the
plant. Sometimes, in either the direct or indirect adaptive controllers, the desired per-

r(t)
Controller

u(t)

Adaptation
mechanism

Plant
y(t)

Figure 5.15 Direct adaptive control.

128 Chapter 5 Intelligent Control: An Overview of Techniques

formance is characterized with a reference model, and the controller then seeks to make
the closed-loop system behave as the reference model would, even if the plant changes.
This is called model reference adaptive control (MRAC).

In neural control or adaptive fuzzy control, the controller is implemented with a
neural or fuzzy system, respectively. Normally, gradient or least-squares methods are
used to tune the controller (although sometimes problem-dependent heuristics have
been found to be quite useful for practical applications, such as in the fuzzy model
reference learning controller discussed later). The stability of direct adaptive neural or
fuzzy methods has been studied by several researchers. (Again, for an overview of the
research, see Chapter 6 by Farrell and Polycarpou.) Clearly, since the genetic algorithm
is also an optimization method, it can be used to tune neural or fuzzy system mappings
when they are also used as controllers. The key to making such a controller work is to
provide a way to define a fitness function for evaluating the quality of a population of
controllers. (In one approach a model of the plant is used to predict into the future how
each controller in the population will perform.) Then, the most fit controller in the
population is used at each step to control the plant. This is a type of adaptive model
predictive control (MPC) method.

In practical applications it is sometimes found that a supervisory controller can be
very useful. Such a controller takes as inputs data from the plant and the reference
input (and any other information available, e.g., from the user) and tunes the under­
lying control strategy. For example, in the flexible-link robot application discussed
earlier, such a strategy was found to be very useful in tuning a fuzzy controller. In
an aircraft application, it was found useful in tuning an adaptive fuzzy controller to try
to ensure that the controller was maximally sensitive to plant failures in the sense that
it would quickly respond to them, but it still maintained stable high-performance
operation.

5.3.3.2 Example: Adaptive Fuzzy Control
for Ship Steering

How good is the fuzzy controller that we designed for the ship-steering problem
earlier in this chapter? Between trips, let there be a change from ballast to full condi­
tions on the ship (a weight change). In this case, using the controller we had developed
earlier, we get the response in Figure 5.16.

Clearly there has been a significant degradation in performance. It is possible to
tune the fuzzy controller to reduce the effect of this disturbance, but then other dis­
turbances may occur and may have adverse effects on performance. This presents a
fundamental challenge to fuzzy control and motivates the need to develop a method
that can automatically tune the fuzzy controller if there are changes in the plant.

Fuzzy model reference learning control (FMRLC) is one heuristic approach to
adaptive fuzzy control, and the overall scheme is shown in Figure 5.17. Here, at the
lower level in the figure is a plant that is controlled by a fuzzy controller. (As an
example, this one simply has inputs of the error and change in error.) The reference
model is a user-specified dynamical system that is used to quantify how we would like
the system to behave between the reference input and the plant output. For example, we
may request a first-order response with a specified time constant between the reference
input and plant output. The learning mechanism observes the performance of the low­
level fuzzy controller loop and decides when to update the fuzzy controller. For this

132 Chapter 5 Intelligent Control: An Overview of Techniques

ACKNOWLEDGMENTS

The author would like to thank J. Spooner who had worked with the author on writing
an earlier version of Section 5.2.2.2. The author would also like to thank the editor T.
Samad for his helpful edits and for organizing the writing of this book.

Related Chapters

• Chapter 6 provides a detailed technical introduction to neural networks and nonlinear
approximation, including a discussion of stability properties of adaptive approximators.

• Other intelligent control techniques include agent-based complex adaptive systems. Some
applications of these are outlined in Chapters 10 and 13.

• Some building control applications of neural networks, fuzzy logic, and expert systems
can be found in Chapter 16.

REFERENCES

[1] J. S. Albus, "Outline for a theory of intelligence." IEEE Trans. on Systems, Man, and
Cybernetics, Vo1. 21, no. 3, pp. 473-509, May/June 1991.

[2] P. J. Antsaklis, and K. M. Passino (eds.), An Introduction to Intelligent and Autonomous
Control. Norwell, MA: Kluwer Academic Press, 1993.

[3] K. J. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1995.
[4] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific Press, 1995.
[5] M. Brown and C. Harris, Neurofuzzy Adaptive Modeling and Control. Englewood Cliffs, NJ:

Prentice Hall, 1994.
[6] T. Dean and M. P. Wellman, Planning and Control. San Mateo, CA: Morgan Kaufman,

1991.
[7] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control. New

York: Springer-Verlag, 1993.
[8] J. Farrell, "Neural contro1." In W. Levine (ed.), The Control Handbook, pp. 1017-1030.

Boca Raton, FL: CRC Press, 1996.
[9] J. Farrell and M. Polycarpou. "On-line approximation based control with neural networks

and fuzzy systems." In T. Samad (ed.), Perspectives in Control Engineering: Technologies,
Applications, and New Directions, pp. 134-164. New York: IEEE Press, 2001.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading,
MA: Addison-Wesley, 1989.

[11] M. Gupta and N. Sinha (eds.), Intelligent Control: Theory and Practice. New York: IEEE
Press, 1995.

[12] M. Hagan, H. Demuth, and M. Beale, Neural Network Design. Boston: PWS Publishing,
1996.

[13] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation.
Reading, MA: Addison-Wesley, 1991.

[14] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control
systems: A survey." In M. M. Gupta and D. H. Rao (eds.), Neuro-Control Systems: Theory
and Applications, pp. 171-200. New York: IEEE Press, 1994.

[15] P. A. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall,
1996.

References 133

[16] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence. Englewood Cliffs, NJ:
Prentice Hall, 1997.

[17] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice Hall, 1992.
[18] E. G. Laukonen, K. M. Passino, V. Krishnaswami, G.-C. Luh, and G. Rizzoni, "Fault

detection and isolation for an experimental internal combustion engine via fuzzy identifica­
tion." IEEE Trans. on Control Systems Technology, Vol. 3, no. 3, pp. 347-355, September
1995.

[19] J. R. Layne and K. M. Passino, "Fuzzy model reference learning control for cargo ship
steering." IEEE Control Systems Magazine, Vol. 13, no. 6, pp. 23-34, December 1993.

[20] Z. Michalewicz, Genetic Algorithms +Data Structure = Evolution Programs. Berlin: Springer­
Verlag, 1992.

[21] W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control.
Cambridge, MA: MIT Press, 1991.

[22] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1996.
[23] V. G. Moudgal, K. M. Passino, and S. Yurkovich, "Rule-based control for a flexible-link

robot." IEEE Trans. on Control Systems Technology, Vol. 2, no. 4, pp. 392-405, December
1994.

[24] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control. New York:
Springer-Verlag, 1997.

[25] Kevin M. Passino and Stephen Yurkovich, Fuzzy Control. Menlo Park, CA: Addison­
Wesley Longman, 1998.

[26] T. Ross. Fuzzy Logic in Engineering Applications. New York: McGraw-Hill, 1995.
[27] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ:

Prentice Hall, 1995.
[28] M. Srinivas and L. M. Patnaik, "Genetic algorithms: A survey." IEEE Computer Magazine,

pp. 17-26, June 1994.
[29] R. F. Stengel, "Toward intelligent flight control." IEEE Trans. on Systems, Man, and

Cybernetics, Vol. 23, no. 6, pp. 1699-1717, November/December 1993.
[30] K. Valavanis and G. Saridis, Intelligent Robotic Systems: Theory, Design, and Applications.

Norwell, MA: Kluwer Academic Press, 1992.
[31] L.-X. Wang, A Course in Fuzzy Systems and Control. Englewood Cliffs, NJ: Prentice Hall,

1997.
[32] D. White and D. Sofge (eds.), Handbook of Intelligent Control: Neural, Fuzzy and Adaptive

Approaches. New York: Van Nostrand Reinhold, 1992.

Chapter

6
NEURAL, FUZZY, AND
APPROXIMATION-BASED CONTROL

Jay A. Farrell and Marios M. Polycarpou

Editor's Summary

The assumption of linearity must be given due credit for the tremendous practical impact that control

systems have had over the last several decades. However, as the original challenges have been encountered

and overcome, and as the control and automation of complex, large-scale problems are being sought,

effective methods for dealing with nonlinear systems have become essential.

One key component of nonlinear controls technology is representations or models of nonlinear

systems that are derived from operational data. Such models, referred to as approximators, are the

focus of this chapter. Specific attention is paid to neural networks and fuzzy models. These topics are

discussed within a general formulation that emphasizes their close relationships with other approximator

structures. In this chapter, several associated properties are noted and defined, including universal approx­

imation, linear and nonlinear parameterizations, generalization, and approximator transparency.

Compared to most other chapters in this volume, this one is relatively theoretical. Less formal introduc­

tions to neural networks and fuzzy logic can be found in Chapter 5; some applications are discussed

therein and in Chapter 16.

An important problem in approximator development is the estimation of the approximator para­

meters. This chapter discusses some algorithms-specifically steepest descent, least-squares, and

Lyapunov-based algorithms-that can be used for this purpose. Some degree of modeling error is inescap­

able, and this realization has motivated the development of extensions to parameter estimation algorithms.

Readers interested in additional nonlinear control methods may also find Chapter 8 of interest,

which provides a readable technical introduction to a popular nonlinear control design technique, sliding­

mode control.

Jay Farrell is an associate professor in the Department of Electrical Engineering at the University of

California at Riverside and a former IEEE-CSS liaison representative to the IEEE Neural Networks

Council. Marios Polycarpou is an associate professor in the Department of Electrical and Computer

Engineering and Computer Science at the University of Cincinnati, and a current CSS representative to

IEEE-NNC

6.1 INTRODUCTION

Introductory control courses focus on the design of linear control systems. However,
many control applications involve significant nonlinearities. Although linear control
design methods can sometimes be applied to nonlinear systems over limited operating
regions through the process of linearization, the level of performance desired in other
applications requires that the nonlinearities be directly addressed in the control system

134

Section 6.1 Introduction 135

design. The challenge of addressing nonlinearities during the control design process is
further complicated when the description of the nonlinearities involves significant
uncertainty. In such applications, the level of achievable performance may be enhanced
by using on-line function approximation techniques to increase the accuracy of the
model of the nonlinearities. Such on-line approximation-based control methods include
the popular areas of adaptive fuzzy and neural control. This chapter discusses various
issues related to on-line approximation-based control using a unifying framework and
notation.

6.1.1 Components of Approximation-Based
Control

Implementation or analysis of an on-line approximation-based control system requires
that the designer properly specify the problem and solution. This section discusses
major aspects of the problem specification.

6.1.1.1 Control Architecture

Specification of the control architecture is application dependent and has various
aspects. The designer must determine how the nonlinear function affects the system
dynamics and specify a control methodology capable of using the approximated non­
linear function to improve the system performance. Two examples will clarify these
issues.

Consider a dynamic system that can be described as

Xi(t) = Xi+l(t), for i = I, ... , n - 1

Xn(t) =f(x(t)) + g(x(t))h(u(t)),

y(t) = x(t)

where x = (Xl, ... , xn) is the state of the system, u(t) is the control input, f and g are
accurately known functions, and the actuator function h involves significant nonlinear­
ity. The actuator nonlinearity may, for example, represent dead-zone and saturation
effects. If a satisfactory control system can be designed for the system

Xj(t) = Xi+l(t), for i = 1, ... , n - 1

xn(t) = f(x(t)) + g(x(t))v(t)

y(t) = x(t)

and the function h can he approximated and inverted, then defining u(t) = iz-1(v(t)) will
solve the original control problem (see Figure 6.1).

Consider a dynamic system that can be described as

Xi(t) = Xi+l(t), for i = 1, ... , n - 1

xn(t) = f(x(t)) +g(x(t))u(t),

y(t) = x(t)

Section 6.1 Introduction 137

where in this notation x is a dummy variable. The actual function inputs may include
elements of the state, control input, or outputs. The notation!(x; (), 0) implies that! is
evaluated as a function of x when () and a are considered fixed for the purposes of
function evaluation. In applications, the approximator parameters () and a will be
adapted on-line to improve the accuracy of the approximating function.' The (neural
network) literature refers to the parameters () as the output layer parameters. The
parameters a are referred to as the input layer parameters. Note that the approximation
of Eq. (6.2) is linear with respect to (). The vector of basis functions QJ will be referred to
as the regressor vector. For the applications of interest in this chapter, the regressor
vector is typically a nonlinear function ofx and the parameter vector a. Specification of
the structure of the approximating function includes selection of the basis elements of
the regressor QJ, the dimension of (), and the dimension of a. The values of () and a are
determined through parameter estimation methods based on the on-line data.

The approximator structure defined in Eq. (6.2) is sufficient to describe the various
approximators used in the neural and fuzzy control literature, as well as many other
approximators. In this chapter, we will not discuss specific types of approximators.
Instead, we will analyze approximation-based control from a unifying perspective.
Section 6.3 analyzes the properties of approximators as they relate to approximation­
based control methods. References to publications discussing specific approximator
structures are, for example, B-splines [7], CMAC [1], fuzzy logic [34, 39, 40], radial
basis functions [5, 27], sigmoidal neural networks [28], and wavelets [33].

Regardless of the choice of the function approximator and its structure, normally
perfect approximation is not possible. The approximation error will be denoted
e(x;(}, a) where

e(x; (), a) = I(x) - I(x; (), a). (6.3)

If ()* and o" denote the parameters that minimize the norm of the approximating error,
then

e(x) = e(x; ()*, o") = I(x) - j(x; ()*, 0'*).

In applications, the quantities e(x), ()* and o" are not known but are useful for the
purposes of analysis.

6.1.1.3 Stable Training Algorithm

Given that the control architecture and approximator structure have been selected,
the designer must specify the algorithm for adapting the adjustable parameters () and a

of the approximating function based on the on-line data and control performance.
Section 6.4 presents parameter estimation techniques and analyzes the related

theoretical issues. The main issue to be considered in the development of the parameter
estimation algorithm is the overall stability of the closed-loop control system. The
stability of the closed-loop system requires guarantees of the convergence of the system
state and of (at least) the boundedness of the error in the approximator parameter

1 This is referred to as training in the neural network literature.

138 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

vector. This analysis must be completed with caution, as it is possible to design a system
for which the system state is asymptotically stable while

1. even when perfect approximation is possible (i.e., e(x) = 0), the error in the esti­
mated approximator parameters is bounded but not convergent;

2. when perfect approximation is not possible, the error in the estimated approxima­
tor parameters may become unbounded.

In the first case, the lack of approximator convergence is due to lack of persistent
excitation, which is discussed further in Section 6.4. This lack of approximator con­
vergence may be acceptable, if the approximator is not needed for any other purpose,
since the control performance is still achieved. However, control performance will
improve as approximator accuracy increases. Also, the designer of a control system
involving on-line approximation usually has interest in the approximated function and
is therefore interested in its accuracy. In such cases, the designer must ensure the
convergence of the control state and approximator parameters. In the second case,
the fact that e(x) cannot be forced to zero (the typical situation) must be addressed
in the design of the parameter estimation algorithm. Such algorithms are discussed in
Section 6.4.5.

6.1.2 Problem Statement

Given the discussion of the previous subsections, the approximation-based control
problem can be summarized as follows.

Approximation-Based Control Problem. Given plant input-output data z(t) =
(u(t), yet»~ in compact set D

1. specify a control architecture utilizing an approximated function j(z(t»;
2. find a positive integer M, vectors () E R M

} and a E R M
2 (M = M 1 + M 2) , and a

family of approximators fez; (), a) such that for a cost function of the form

J«(), a) =LIlf(z) - j(z; (), a)1I 2dz (6.4)

there exists (()*, o") E RM such that (()*, o") = argmin(o,a)J((), a), and the closed­
loop system achieves the specified level of performance;

3. find an estimation algorithm (O(t), aCt»~ = A(z(r», r E [0, t] such that (O(t), aCt»~
approaches (()*, o") and the closed loop system is stable.

Therefore, the designer has to select a family of approximators, an estimation algo­
rithm, and a control methodology. The designer should be interested in proving (under
reasonable assumptions) that

1. the tracking error x(t) - Xd(t) is bounded and asymptotically approaches zero (or a
small neighborhood of the origin); and

Section 6.1 Introduction 139

2. the function approximation errorj(z) - fez) is bounded over D and asymptotically
approaches zero (or is asymptotically less than some E over D).

6.1.3 Discussion

The objective of on-line approximation-based control methods is to achieve a higher
level of control system performance than could be achieved based on the a priorimodel
information. Such methods can be significantly more complicated (computationally and
theoretically) than nonadaptive or even linear adaptive control methods. This extra
complication can result in unexpected behavior (e.g., instability) if the design is not
rigorously analyzed under reasonable assumptions.

On-line function approximation has an important role to play in the development
of advanced control systems. On-line function approximation-based control, including
neural and fuzzy approaches, has become feasible in recent decades as a result of the
rapid advances that have occurred in computing technologies. These advances have also
spurred the reemergence of neural network research. Various motivations have been
cited in the literature for the use of neural control. A few of the motivations are as
follows:

• Neural networks are universal approximators. As discussed in Section 6.3.1,
numerous families of approximators have this or related properties.
Therefore, the fact that neural networks are universal approximators is not a
motivation for using them over any other approximator with the same property.

• Neural networks are popular, convenient, or easy to compute. All of these are
weak motivations.

• Neural networks are trainable by backpropagation (gradient descent). Gradient
descent parameter adjustment applies to many families of approximators as
long as the resultant approximator is a continuous function of the parameters.
However, gradient descent is not a strong motivation for using a given approx­
imator owing to the lack of robustness to residual approximation error as
discussed in Section 6.4.5.

• Neural networks use distributed information processing. Distributed informa­
tion processing refers to knowledge stored over many parameters and computa­
tions completed over many nodes. The claim is that this produces fault
tolerance. This claim is justified by the analogy to biological systems.
However, the neural networks that are typically implemented are much smaller
and simpler than such biological systems, resulting in a weak analogy. In fact,
additional parameter adjustment should be expected after node failures before
performance might be recovered. Several other approximators can make the
same distributed information processing claims. In addition, if the approxima­
tor is implemented on a traditional single-processor computer (as is the case in
the vast majority of applications), then it is not possible for a "single nodal
processor" to fail.

• Neural networks offer the inherent potential for parallel computation. Any
approximation structure that can be written in vector product form is suitable
for parallel implementation. Interesting questions are whether any particular
application is worth special hardware, or more generally, whether any particular

140 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

approximation structure merits additional research funding to develop special
hardware.

This list questions several typical motivations for the use of neural networks in approx­
imation-based control applications. The intent is not to show that neural networks
should not be used, but to encourage more careful consideration of the motivations
before choosing a particular function approximator. Alternative motivations are dis­
cussed in greater depth in Section 6.3.

6.2 CONTROL ARCHITECTURES

An approximation-based controller is formed by combining one or more on-line
approximators, which provide estimates of the unknown functions at each instant,
with a control law, whose objective is to use the known components of the plant and
the on-line estimates of the unknown components in order to achieve a desired control
performance.

There are two approaches for combining the control law and the on-line approx­
imation functions. In the first approach, referred to as indirect control, the on-line
approximator is used to estimate the unknown nonlinearities of the plant. Based on
these functional estimates, the control law is computed by treating the estimates as if
they were the true functions, based on the certainty equivalence principle [2]. In the
second approach, referred to as direct control, the on-line approximator is used to
estimate directly the unknown nonlinear controller functions.

To illustrate the concepts of indirect and direct control, consider the problem of
controlling an nth order single-input system of the form

x= f(x) + g(x)u,

where the vector functions f and g are assumed to be unknown. According to the
indirect control approach, two on-line approximation functions, denoted by f(x) and
g(x), will be employed to estimate the unknown functions f(x) and g(x), respectively. By
processing the input u(t) and state variables x(t) in real time, on-line parameter estima­
tion methods are designed for updating the parameters associated with each approx­
imation function rex) and g(x), as shown in Figure 6.2. These functional estimates are
then used in place of the unknown functions in the control law. For example, for
feedback linearizing control, the idea is to cancel the nonlinearities in the feedback
loop and then employ standard .linear control design methods in order to achieve a
desired control performance. Alternatively, in direct control the approach is to approx­
imate the controller functions directly without approximating f(x) and g(x). Therefore,
for feedback linearization the control law

u = a(x) + (J(x)v,

which is used to linearize the system from v to x, is approximated by

u = <2(x) + fi(x)v,

where <2 and ~ are on-line approximation functions (see Figure 6.3).

Section 6.2 Control Architectures

r Controller u Plant x
Input C(!(x), g(x» x=f(x) +g(x) u

command

~ ~

.i.: On-line approximation
of f(x) andg(x)

lJ(x) li(X)

Figure 6.2 Indirect control architecture.

r Controller u Plant x
Input C(a(x), P(x» x= f(x) + g(x) u

command

l ~

r On-lineapproximation
---. of a(x) and{3(x)

Ia(x) Ip(X)

Figure 6.3 Direct control architecture.

141

Both the direct and indirect approaches present formidable challenges in develop­
ing provably stable on-line approximation control systems.

6.2.1 Indirect Methods

In indirect control approaches, the approximation function is used to estimate the
unknown nonlinearities of the system. Therefore, the plant model P(f) is characterized
in terms of all the unknown nonlinearities f = {ti'!2' .. .h}. For example, in a linear­
ized system, the linear model may need to be augmented by unknown nonlinearities
that represent higher-order terms left out during small-signal linearization.
Approximation functions with on-line parameter estimation generate estimates
f = {.kA.....is}, corresponding to each unknown function/;. Each of these function
estimates is generated in real time (or in almost real time) byprocessing the plant input
u(t) and output yet). The on-line approximators given by f yield an estimated plant
model '$(/), which is updated continuously. According to the indirect control
approach, the estimated plant model '$(/) is treated as the "true" plant, and a control
law is designed for it.

An indirect control design consists of two separate tasks: (1) the on-line
approximation of the unknown nonlinearities and (2) the nonlinear feedback control
design. In principle, anyon-line approximation algorithm can be combined with any
nonlinear feedback control law in constructing an indirect on-line approximation

142 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

control scheme. Indeed, one of the key appealing features of indirect control is the
versatility to unify various on-line approximation schemes and feedback control
laws. However, combining a stable estimation scheme with a stable control law
does not necessarily imply that the overall scheme will be stable. Unlike linear
systems, where separation of identification and control can be achieved using adap­
tive linear control techniques, for nonlinear systems the problem is more difficult. A
cause of this difficulty is the difference in instability behavior between linear and
nonlinear systems. Although the states of an unstable linear system remain bounded
over any finite interval, in the case of nonlinear systems the states may become
unbounded in finite time. Therefore, even small approximation errors may cause
the state of the system to become unbounded in finite time-before the on-line
approximation is able to "learn" the unknown nonlinearity. In general, because of
difficulties in establishing stability of indirect control schemes for on-line approxi­
mation, care needs to be taken in their use.

In the practical implementation of indirect control schemes, both on-line approx­
imation and control can be carried out synchronously at every instant of time, or
asynchronously after processing some of the data over some period of time. For
example, in the presence of noise and/or external disturbances, it is common to
perform updates on the on-line approximation function at every instant of time but
to update the control law over a slower time-scale.

6.2.2 Direct Methods

In direct control approaches, on-line approximation is performed directly on unknown
functions in the control law. In order to design a direct control scheme, the plant model
P(f) needs to be converted into a controller structure C(a) that meets the performance
requirements. The controller structure is characterized in terms of unknown control
functions a = {aI, a2, ... aq } , which appear because of the unknown plant functions f.
In the direct control approach, the on-line approximators are designed to approximate
each unknown function (Xi. Therefore, processing the plant input u(t) and output yet)
yields the estimated controller functions directly.

One appealing feature of direct control schemes is the ability to aggregate several
unknown nonlinearities into one collective term. This can be especially useful for
complex nonlinear systems where tracing the propagation of unknown nonlinearities
into the design of a feedback control law can be intractable. The major source of
difficulty in designing direct control schemes appears in the selection of the controller
structure C(a) and especially in the derivation of adaptive laws for updating the
estimated parameters of the approximation functions. A useful tool in the design
of direct control schemes is Lyapunov's stability theory [18], which is discussed in
Section 6.4.4.

6.3 APPROXIMATOR PROPERTIES

This section focuses on the properties of families of function approximators. For each
property, the technical meaning of the property will first be presented. Then the
property will be interpreted in the context of approximation-based control
applications.

Section 6.3 Approximator Properties 143

6.3.1 Universal Approximator

For approximation-based control applications, a fundamental question is whether a
particular family of approximators is capable of providing a close approximation to the
function f(x). There are at least three interesting aspects of this question:

1. Is there some subset of a family of approximators that is capable of providing an
accurate approximation to f(x)?

2. If there exists some subset of the family of approximators that is capable of
providing an accurate approximation, can the designer specify an approximation
structure in this subset a priori?

3. Given that an approximation structure can be specified, can appropriate parameter
vectors () and a be estimated using data obtained, while ensuring stable operation,
during on-line system operation?

To answer these questions satisfactorily, various technical issues must be addressed.
This section seeks to present a readable, yet rigorous, combination of the results of [14,
32] to analyze the first question. To enhance readability, some technical detail has been
removed. The reader interested in a more complete discussion should consult the
numerous articles on universal approximation (e.g., [6, 11, 14, 32]).

Definition 6.3.1 (Affine Functions) For any r E {I, 2,3 ...}, A' : 91' --+ 91 denotes
the set of affine functions of the form

where w, x E 91' and b E 9t.

Definition 6.3.2 (Single Hidden Layer Networks) The family of r input, N node,
single hidden layer network approximators associated with nodal processor g(.) is
defined by

The fact that various approximators, including sigmoidal networks and radial basis
functions, can be coerced into this form is demonstrated in [32]. Any single hidden layer
network can be written in the form of Eq. (6.2) by defining <Pi(X, a) to be g(Ai(x)), where
a is a vector composed of the elements of wand b. Specification of a unique single
hidden layer network approximator requires definition of the following 5-tuple
F = (r, N, g, (), a). If all parameters except for e are specified, then we have a linear­
in-the-parameters estimation problem (see Section 6.4).

Definition 6.3.2 explicitly defines single-output network functions. The definition
of vector output network functions is a direct extension of the definition, where each
vector component is defined as in Definition 6.3.2 and () is a matrix. With the definition
of vector output single hidden layer networks, multi-hidden layer networks can be
defined by using the vector output from one network as the vector input to another

144 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

network. The discussion that follows focuses on single hidden layer networks. Similar
results apply to multi-hidden layer networks [11, 32].

To state the theorem that follows requires that two classes of nodal processors be
specified.

Definition 6.3.3 (Squashing functions) The nodal processor g(.) is a squashing
function if g(.) is a non-constant, continuous, bounded, and monotone increasing
function of its scalar argument.

Definition 6.3.4 (Local functions) The nodalprocessorg(.) is a localfunction if g(.)
is continuous, g(-) E £} nc; 1 :::s p < 00 and Jgdu. =I- 0 for Lebesgue measure u,

Combining the results of [11, 14, 32],2 the following theorem results.

Theorem 6.3.1 (Universal Approximation) Ifg(.) satisfies either Definition 6.3.3 or
6.3.4, f is continuous on the compact set D E 9lr, and 8 is the family of approxima­
tqrs defined in Definition 6.3.2, thenfor a given E there exist N(E) such that for N >
N(E) there exist f E 8r,N such that

A

p(f,f) < E

for an appropriately defined metric p for functions on D.

Results such as Theorem 6.3.1 are referred to as universal approximation results.
Approximators that satisfy such theorems are referred to as universal approximators.
Universal approximation theorems such as this state that under reasonable assumptions
on the nodal processor and the function to be approximated, if the (single hidden layer)
network approximator has enough nodes, then an accurate network approximation can
be constructed by selection of () and 0'. Such theorems do not provide constructive
methods for determining appropriate values of N, (), or 0'.

Universal approximation results are one of the most typically cited reasons for
applying neural or fuzzy techniques in control applications involving significant unmo­
deled nonlinear effects. The reasoning is along the following lines: The dynamics
involve a function f(x) = fo(x) + ~f(x) where ~f(x) has a significant effect on the
system performance and is known to have properties satisfying a Universal
Approximation Theorem, but ~f(x) cannot be accurately modeled a priori. Based on
universal approximation results, the designer knows that there exists some subset of F
that approximates ~f(x) to an accuracy E for which the control specification can be
achieved. Therefore, the approximation-based control problem reduces to finding j E

F that satisfies the E accuracy specification. Most articles in the literature address the
third question stated at the beginning of this section: selection of () or ((), 0') given that
the remaining elements of F have been specified. However, selection of N for a given
choice of g and 0' (or (N, 0') for a specified g) is the step in the design process that limits
the approximation accuracy that can ultimately be achieved. To cite universal approx-

2 The results of these articles are more general than the theorem that follows but require a more
technical discussion.

Section 6.3 Approximator Properties 145

imation results as a motivation and then select N as some arbitrary, small number is
essentially contradictory.

Starting with the motivation stated in the previous paragraph, it is reasonable to
derive stable algorithms for adaptive estimation of 8 (or (8, a)) if N is specified large
enough that it can be assumed larger than the unknown N. Specification of too small a
value for N defeats the purpose of using a universal approximation-based technique.
When N is selected too small but a provably stable parameter estimation algorithm is
used, stable (even satisfactory) control performance is still achievable; however, accu­
rate approximation will not be achievable. Unfortunately, the parameter N is typically
unknown, since 6.f(x) is not known. Therefore, the selection of N must be made overly
large to ensure accurate approximation. The tradeoff for overestimating the value of N
is the larger memory and computation time requirements of the implementation. In
addition, if N is selected too large, then the approximator will be capable of fitting the
measurement noise as well as the function. Fourier-analysis-based methods for selecting
N are discussed in [29]. Online adjustment of N is an interesting area of research which
tries to minimize the computational requirements while minimizing E and ensuring
stability.

Results such as Theorem 6.3.1 provide sufficient conditions for the approximation
of continuous functions over compact domains. Other approximation schemes exist
which do not satisfy the conditions of these particular theorems but are capable of
achieving E approximation accuracy. For example, the Stone-Weierstrass Theorem
shows this property for polynomial series. In addition, some classical approximation
methods can be coerced into the form necessary to apply the universal approximation
results. Therefore, there exist numerous approximators capable of achieving E approx­
imation accuracy. The decision among them should be made by considering other
approximator properties and carefully weighing their relative advantages and disad­
vantages.

6.3.2 Parameter (Non)Linearity

An initial decision that the designer must make is whether a will be fixed a priori (i.e.,
aCt) = 0'(0) and ir = 0) or adapted on-line (i.e., aCt) is a function of the on-line data and
control performance). If a is fixed during on-line operation, then the function approx­
imator is linear in the remaining adjustable parameters 0, so that the designer has a
linear-in-the-parameter on-line function approximation problem. Proving theoretical
issues, such as closed-loop system stability, is easier in the linear-in-parameter (LIP)
case. In the case where the approximating parameters a are fixed, these parameters will
be dropped from the approximation notation, yielding

A T
f(x,O) = 0 fjJ(x). (6.5)

Fixing a is beneficial in terms of simplifying the analysis but is limiting in terms of the
functions that can be accurately approximated. To obtain a linear in the parameters
function approximation problem, the designer must specify a priori(r, N, G, a). If these
parameters are not specified judiciously, then the desired E accuracy may not be achiev­
able for any value of 8. For later use, we define:

146 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

Definition 6.3.5 (Linear-in-Parameter Approximators) The family of r input, N
node, LIP approximators associated with nodal processor g(.) is defined by

Sr,N,g,u = {I :ffir ~ ffi I(x) =t (}jgj(x), x E ffir, and () E ffiN }. (6.6)

In addition to simplifying the theoretical analysis, an additional motivation for the
desire to use LIP approximations is that such approximators have a single global
minimizing parameter vector (i.e., there are no local minima).

Theorem 6.3.2 (Unique Minimum) [8] Given an approximator of the form Eq.
(6.5), for any N, there exists a unique B* E RN such that f(x) = (B*)TljJ(x) + ej(x)
where

e: = argmin,LIlf(x) - l(x : (})1I 2dx.

In addition, there are no (non-global) local minima of the cost function.

(6.7)

Given that there exists a minimizing parameter vector, the uniqueness of ()* can be
proven by expanding Eq. (6.7) and noticing that it is quadratic in B. Therefore, a major
advantage of LIP approximators is that there exists a single global minimizing para­
meter vector. When a nonlinear in the parameter approximator is selected, there may be
several local minima in the space of possible parameters. If the estimated parameter
vector starts out in the basin of attraction of a local minimum, the estimated parameters
will converge to the local minimum. In this case, it is immaterial that the global mini­
mizing parameter vector achieves E approximation accuracy if the parameter vector at
the local minimum does not. An additional motivation for the use of LIP approxima­
tors is discussed in Section 6.3.3.

The relative drawbacks of approximators that are linear in the adjustable para­
meters are discussed, for example, by Barron in [3]. Barron shows that given certain
technical assumptions, approximators that are nonlinear in their parameters have
squared approximation errors of order O(k) , while approximators that are linear in
their parameters cannot have squared approximation errors smaller than order Ntd (N
is the number of parameters, and d is the dimension of domain D). In spite of these
disadvantageous order of approximation comparisons for high-dimension input
domains, there is still significant interest in linear-in-parameter approximators. First,
the theoretical performance guarantees necessary in dynamic applications prior to
implementation may not be available for approximators with nonlinear parameter
dependence. Second, when the approximator is linearly parameterized and the basis
elements are local, significant computational advantages result [10]. Third, in low­
input-dimension applications, more detailed analysis than order of approximation
arguments is required to determine the relative merits of linear- or nonlinear-in-para­
meter approximators.

Section 6.3 Approximator Properties 147

6.3.3 Best Approximator Property

Universal approximation theorems of the type discussed in Section 6.3.1 analyze the
problem of whether for a family of function approximators Sr,N, there exists a E Sr,N

that approximates a given function with at most Eerror over a region D. This section
considers an interesting related question: Given a convergent sequence of approxima­
tors {ai}, a, E Sr,N, is the limit point of the sequence in the set Sr,N? If the limit point is
guaranteed to be in Sr,N, then the family of approximators is said to have the "best
approximator" property.

Let f be a continuous function on D (i.e., f E C(D)). Let Sr,N be a family of
approximators defined on D such that Sr,N C C(D). If the norm for functions in
C(D) is denoted by II · II, then the distance between two elements of C(D) will be defined
as p(f, g) = Hi - gil· The distance from f to S, N is defined as
p(j, Sr,N) = infaesr,Np(j, a).

The best approximation problem [12] can be stated as: Given f E C(D) and
Sr,N C C(D), find a* E Sr,N such that p(j, a*) = p(j, Sr,N). Universal approximation
theorems do not seek a best approximator, but rather an e-accuracy approximator.
However, a sequence of approximators can be conceived that achieve Eraccuracy
approximation, where {s.] is a sequence that converges to zero. Depending on the
properties of the set Sr,N, the limit point of such a sequence mayor may not exist in
Sr,N·

A set Sr,N is called an existence set if for any f E C(D) there is at least one best
approximation to f in Sr,N. A set Sr,N is called a uniqueness set if for any f E C(D) there
is at most one best approximation to f in Sr,N.

Proposition 4.2 of [12] shows that LIP approximators yield families of approxi­
mators (i.e., Sr,N,g,a) that are existence sets. Nonlinear-in-parameter approximators
may not have the best approximation property. In particular, [12] shows that radial
basis functions with adaptive centers and sigmoidal neural networks with an adaptive
input layer (or multiple adaptive layers) do not have the best approximator property.

6.3.4 Generalization

The term generalization is often used to motivate the use of neural network/fuzzy
methods. The motivational phrase is typically of the form "neural networks have the
ability to generalize from the training data." Analysis of such statements requires
definition of the term generalization.

In [31] neural network applications are classified as either recognition or general­
ization. Recognitionapplications attempt to classify noisy inputs into one of a variety of
categories that were deduced by the network during training (e.g., classify a hand­
written character as one of the letters of a given alphabet). Fault identification applica­
tions could fall into this recognition category of applications. Generalization applica­
tions try to estimate the output value of a continuous function for given input values to
the function. The estimated output value depends on the previous set of training data
that was used to construct an approximating function to fit the training data in some
well-defined sense. Most neural and fuzzy adaptive control applications fall into this
generalization category.

The above categorization is not completely satisfying, since useful pattern recogni­
tion requires classification of input patterns outside the original training set. Therefore,
recognition also incorporates the concept of generalization. Recognition can be inter-

148 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

preted as a mapping from a continuous set of real vectors to a set of m output values,
where the output value indicates the appropriate classification. In this chapter, general­
ization will only be considered in the context of function approximation, as specified in
Section 6.1.2.

As motivated in Section 6.1.2, the approximation-based control problem theore­
tically involves a cost function of the form:

l(O) = lllf(Z) - j(z; O)1I 2dz. (6.8)

This cost function implies that the approximation error should be minimized by selec­
tion of () over the region D. Unfortunately, the above approximation problem (as
stated) can only be solved if j(z) is known.

Whenj(z) is not known, practical solutions to approximation-based control pro­
blems address the minimization of a cost function defined as a summation of sample
errors

(6.9)

where Yi =j(Zi) is known (or able to be estimated from noisy measurements) from
variables sensed in the control application. Generalization refers to the capability of
an approximator that minimizes the scattered data approximation cost function of Eq.
(6.9) to also minimize the function approximation cost function of Eq. (6.8). This
capability depends on (1) the degree of continuity ofj and!, (2) the available training
data, and (3) the method of evaluation of the generalization results. Analysis of general­
ization claims should be split into analysis of the ability of approximators to interpolate
and to extrapolate.

Interpolation is the process of providing an estimate of j(z) at a point z, where z ­
Zi is small for some 1 ::s i ::s N. Conceptually, interpolation averages appropriately
weighted training points in the vicinity of the evaluation point. Therefore, interpolation
is desirable as both a noise filtering and data reduction process. The capability of the
function approximator to interpolate between training samples is necessary if the
approximator is to make efficient use of memory and the training data.

Extrapolation is the process of providing an estimate of j(z) at a point z, where
Z - z, is large for all 1 ~ i ~ N. Therefore, extrapolation attempts to predict the value
of the function in a region far from the available training data. In off-line (batch)
training scenarios, the set of training samples can be designed to be representative of
the region D, so that extrapolation does not occur. In on-line control applications,
operating conditions may force the designer to use whatever data the system generates,
even if the training data do not representatively cover all of D. Since the class of
functions to be approximated is large (i.e., all continuous functions on D) and the
training data will include measurement noise, accurate extrapolation should not be
expected. In fact, the control methodology should include provisions to accommodate
regions of the state space for which adequate training has not occurred. Instead, the
system should slowly move from regions for which accurate approximation has been
achieved into regions still requiring exploration. In addition, it is desirable that explora-

Section 6.3 Approximator Properties 149

tion of new regions does not destroy approximation accuracy previously attained in
other regions, which is one of the motivations for function approximators with locally
supported influence functions.

6.3.5 Extent of Influence Function Support

In the specification of the approximators of Eqs. (6.2) or (6.5), a major factor in
determining the ultimate performance that can be achieved is the selection of the
influence functions ~(x). An important characteristic in the selection of ~ is the extent
of the support of the elements of ~ which is defined to be SUPP</>i = {x E DI~i(X) 1= OJ.
Let JL(A) be a function that measures the area of the set A. Then, the influence functions
~i will be referred to as global influence functions if JL(Supp</» = /.l(D). The influence
functions ~i will be referred to as local influence functions if jL(Supp</» «jL(D). "

Based on the discussion in Section 6.3.4, the designer should not expect f to
accurately extrapolate training data from one region into other (unexplored) regions.
In addition, it is desirable that training data in new regions not affect the previously
achieved approximation accuracy in distant regions. Both of these issues motivate the
selection of local influence functions.

The on-line parameter estimation algorithms of Section 6.4 will adapt the para­
meter vector estimate O(t) based on the current tracking error e(t). If the influence
function ~i has global support, then changing the estimated parameter Oi affects the
approximation accuracy throughout D. Alternatively, if ~i has local support, then
changing the estimated parameter Oi affects the approximation accuracy only on
SUPP</>i which by assumption is a small region of D.

6.3.5.1 Approximators with Local Influence
Functions

Several approximators with local influence functions have been proposed in the
literature. This section analyzes such approximators in a general framework [9].

Local and global approximation structures can be distinguished as follows [9].

Definition 6.3.6 (Local Approximation Structure) A function l(x,8) is a local
approximation to f(x) at Xo iffor any E there exist 8and 8 such that II f(x) - lex, 8) II
~ E for all x E B(xo, 8) = {xlllx - xoll < 8}.

Two common examples of local approximation structures are constant and linear
functions. The constant, linear, or higher order polynomial function can be used to
accurately approximate an arbitrary continuous function if the region of validity of the
approximation is small enough.

Definition 6.3.7 (Global Approximation Structure) A parametric modell(x, 0) is an
e-accurate global approx,/mation to f(x) over domain D iffor the given E there exists 0
such that II f(x) - f(x, (}) /I~ E for all XED.

The main objective of this section is to appropriately piece together a (large) set of local
approximation structures to achieve a global approximation structure. The following

Section 6.3 Approximator Properties 151

Definition 6.3.9 (Partition of Unity) The set ofpositive semi-definite influence func­
tions {I';lex) form a Partition of Unity on D if for any xED, L::l r i(X) = 1.

If a set of positive semi-definite influence functions {ril do not form a partition of unity,
but have the coverage property (i.e., for any XED there exists at least one i such that
ri(x) i= 0), then a partition of unity can be formed from {ril as

ri(X)
ri(x) = N - •

Li=l ri(x)
(6.11)

Function approximators with the partition of unity property, if well designed, are
capable of accurate interpolation.

If the influence functions form a Partition of Unity, it can be shown that under the
assumptions of Definitions 6.3.6 and 6.3.8, the basis-influence approximation achieves
global E approximation accuracy on D.

6.3.5.2 Lattice-Based Approximators

Specification of locally supported basis functions requires specification of the sup­
port of each basis element. Typically, this is implemented through the specification of
center and width parameters of the basis elements. This specification includes the choice
as to whether the center and width parameters are fixed a priori or estimated based on
the acquired data.

Adaptive estimation of the center and width parameters is a nonlinear estimation
problem. Therefore, the resulting approximator would not have the best approximator
property but would have the beneficial order of approximation behavior discussed in
Section 6.3.2.

Prior specification of the centers on a grid of points results in a lattice-based
approximator [4]. Lattice-based approximators result in significant computational sim­
plification over adaptive center-based approximators for two reasons. First, the center
adaptation calculations are not required. Second, the nonzero elements of the vector ljJ
can be determined without direct calculation of ljJ [10]. If the width parameters are also
fixed a priori, then a linear parameter estimation problem results with the correspond­
ing benefits.

6.3.5.3 Curse of Dimensionality

The main drawback of using locally supported basis elements is the fact that the
required number of basis elements increases exponentially with the dimension of D. If D
is d dimensional and m basis elements are allocated per dimension, then the total
number of basis elements is md

. This drawback is referred to as the curse ofdimension­
ality.

6.3.6 Approximator Transparency

Approximator transparency refers to the designer's ability to preload a priori informa­
tion into the function approximator and to interpret the approximated function as it
evolves. Applications using fuzzy systems typically cite approximator transparency as a

152 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

motivation. The fuzzy system can be interpreted as a rule base stating either the control
value or control law applicable at a given system state [21, 34].

In any application, a priori information can be preloaded by at least two
approaches. First, the function to be approximated can always be decomposed as

f(x) = fo(x) + l::t.f(x) (6.12)

where fo(x) represents the known portion of the function and l::t.f(x) represents the
unknown portion for which an approximation will be developed on-line. In this case,
the approximated function would be

j(x) = fo(x) + l::t.j(x).

Second, if for some reason, the approach described in Eq. (6.12) were not satisfactory,
thenj(x) could be initialized by off-line methods to accurately approximate the known
portion of the function (i.e., fo(x». During on-line operation, the parameters of the
approximator would be tuned to account for the unknown portion of the function (i.e.,
llf(x».

Any approximator of the basis-influence class allows the user to interpret the
approximated function. The influence functions dictate which of the basis functions
are applicable (and the amount of applicability) at any given point.

6.4 PARAMETER ESTIMATION: ONLINE
APPROXIMATION

This section examines the formulation of parametric models for the approximation
problem and the derivation of parameter estimation algorithms with certain stability
and robustness properties. Parameter estimation refers to the procedure for updating
the parameters of the function approximator. For notational consistency and conve­
nience, we focus on continuous-time parameter estimation methods. In general, there is
no loss of generality in formulating the parameter estimation in continuous time since
for all the algorithms discussed in this section, there are also corresponding discrete­
time procedures [24].

6.4.1 Parametric Models

From a mathematical viewpoint, the selection of a function approximator provides a
way to parameterize an unknown function. As discussed in Section 6.3, several approx­
imator properties such as localization, generalization, and parametric linearity need to
be considered. Once the structure of the approximation function has been selected, then
the unknown function to be approximated is said to be parameterized and the problem
reduces to one of parameter estimation. This problem falls within the domain of tradi­
tional adaptive control and on-line parameter estimation methods, provided that the
structure of the on-line approximator remains fixed.

To further examine the construction of parametric models, let us focus on the on­
line approximation problem of a nonlinear system represented by

x(t) = f(x(t), o(t», (6.13)

Section 6.4 Parameter Estimation: Online Approximation 153

where u(t) E Rm is the control input vector, x(t) E Rn is the state variable vector, and
f : B" x Rml~Rn is a vector field representing the dynamics of the system. As discussed
earlier, in most applications the vector field f is partially known either by analytical
methods using first principles or by off-line identification methods. Therefore f can be
decomposed as

f(x, u) = fo(x, u) + ~f(x, u),

where fo represents the known system dynamics and ~f represents the discrepancy
between the actual dynamics f and the nominal dynamics fo. The above decomposition
is crucial because it allows the control designer to incorporate prior information;
thereby the neural network (or other type of approximator) is needed to approximate
only the uncertainty ~f (whose magnitude is typically small) instead of the overall
function f. Furthermore, if adaptation of the on-line approximator is disabled, then
the residual controller is the one developed based on the nominal model, or a linear
approximation of the nonlinear system in the case of linear control design methods.

The nonlinear system (6.13) can be rewritten as

x= fo(x, u) + ~r(x, u; 8*)+ ej(x, u), (6.14)

where ~r is an approximating function of the type described in Section 6.3 and 8* E RN

is an "optimal" parameter vector that minimizes the cost function (6.4) between ~f and
~r for all (x, u) belonging to a compact set D. The error term ej, defined as

ej(x, u) = Af'(x,u) - ~f(x, u; 8*),

represents the approximation error, which is the minimum possible deviation between
the unknown function ~f and the input-output function of the on-line approximator
~f. In general, increasing the number of adjustable parameters (denoted by N) reduces
the function approximation error. Universal approximation results (discussed in
Section 6.3.1) indicate that if N is sufficiently large, then ej can be made arbitrarily
small.

With a reasonably large number of parameters, the function approximation error,
in general, is expected to be small (but not zero). The bound of the function approx­
imation error is a critical quantity in approximation-based control, representing the
optimal approximation capability of the selected function approximator within the
compact region D. Linear modeling, which has dominated system theory and design
during the last five decades, can be thought of as a special case of approximation-based
control, where the approximators are linear models of the form rex,u) = Ax + Bu. In
the case of linear models, the approximation error ej is zero at the point of linearization
and may increase at state space regions farther away. The basic idea behind approx­
imation-based control using nonlinear models is to expand the region where the
approximation is valid from a small neighborhood around the linearizing point (in
the case of linear models) to a larger region D, where D can be relatively large (i.e.,
defining the state space region of possible operation). It should be noted, however, that
similar to linear control methods, if the state trajectories move outside the approxima-

154 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

tion region D, then the approximation-based controller may not be effective in achiev­
ing the desired control objectives.

In order to prevent the state trajectories from leaving the region D, some bound
(possibly state-dependent) on the unknown function ~f is required. Otherwise, the
state trajectories can move away from the desired trajectory faster than the feedback
control can bring them back, possibly leading to instability. Unlike linear systems,
where state trajectories can grow, at most, exponentially, in nonlinear systems the
state trajectories can become unbounded in finite time. This is referred to as finite
escape time. Therefore, in nonlinear systems the controller needs to be more aggressive
in order to restrict the trajectories within a desired region. Several authors have
designed control systems that assume known bounds on the unknown dynamics in
order to restrict trajectories from leaving a specified region, and therefore obtaining
global stability results (see, e.g., [22, 29]). These results employ the sliding-mode type of
control methods to restrict the system within some desired region. Adaptive bounding
methods have been used recently [23, 25] to relax some of the restrictive assumptions on
the system uncertainty bounds.

If x is available for measurement in Eq. (6.14), then the parameter estimation
problem becomes a static nonlinear approximation problem of the general form

y= ~i(z; 0*) + ef (6.15)

where z = (x, u) and y= x- fo(x, u) are measurable variables, ef is the approximation
error (or noise term), and 0* is the unknown parameter vector to be estimated. Because
in most applications only x is available for measurement and the use of differentiation
is not desirable, the assumption of xbeing available should be avoided. One way to
avoid the use of differentiators is to use filtering techniques. By filtering each side of
(6.14) with a first-order stable filter S~A' where A > 0, we obtain

where''

y = _1_ [~i(z, 8*)] + 8
S+A

2 1
y = -[x] - -[fo(x, u)]

S+A S+A

1
8 = - [ef(x, u)]

S+A

(6.16)

In the special case where the approximation function is linearly parameterized (i.e.,
~i(z; 0*) = (O*)T4>(z)), then (6.16) becomes a linear parametric model of the form

(6.17)

where t; is a vector of the filtered version of each basis; that is, ~ = S~A [fjJ(z)].

3 The notation y = H(s)[x], where H(s) is a stable transfer function, is to be interpreted as y(t) being
the output of a linear system H(s) with x(t) as input.

Section 6.4 Parameter Estimation: Online Approximation 155

Next we consider various on-line adaptive techniques for the estimation of 0*. The
gradient and least-squares methods are optimization-based methods, where the idea is
to form an appropriate error function and minimize it using standard optimization
techniques. Lyapunov-based methods, on the other hand, rely on the use of
Lyapunov functions to derive a learning algorithm with inherent stability properties.
In order to address the presence of the approximation error 8, in Section 6.4.5 we
discuss the use of robust learning algorithms.

6.4.2 Gradient Algorithms

One of the most straightforward and widely used approaches for parameter estimation
involves the use of the gradient (or steepest descent) method. The main idea behind the
gradient method is to start with an initial estimate 0(0) of the unknown parameter 0*
and to update at each time t the parameter estimate O(t) in the direction where the cost
function J(O) decreases the most. Several variations of the standard gradient algorithm
have also been used in the parameter estimation literature. For example, the stochastic
gradient approach leads to the well-known least-mean-square (LMS) algorithm, first
developed by Widrow and Hoff [38]. Another useful modification of the gradient
algorithm is the gradient projection algorithm, which restricts the parameter estimates
in a specified region.

In this section, we focus on the deterministic, continuous-time version of the
gradient learning algorithm. For continuous-time adaptive algorithms, infinitesimally
small step lengths yield the following update law with respect to a specified cost func­
tion:

O(t) = - '\IJ(O(t)) ,

where '\IJ(O) denotes the gradient of the cost function J with respect to O. Based on
(6.17), if we minimize the cost function associated with the instantaneous error

(6.18)

we obtain the following gradient estimation algorithm:

(6.19)

where r is a positive-definite symmetric matrix representing the learning rate matrix
and the initial condition is given by 0(0) = 00 . In the special case where the same
learning rate y is used for each parameter estimate, then I' = yI, where I is the identity
matrix.

The normalized gradient algorithm is a variation of the gradient algorithm, which is
sometimes used to improve the stability and convergence properties of the algorithm.
The normalized gradient algorithm is described by

;, r~(Y(t)-f)T(t)W))
O(t) = -1-+-f3~~T=--(t-)~-(t-)-,

156 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

where f3 > 0 is a design constant.
The backpropagation algorithm, which has been used extensively in the literature

for training neural networks, is also a gradient-based algorithm. However, the exten­
sion of the backpropagation algorithm to dynamical systems (using learning algorithms
such as dynamic backpropagation [20] and backpropagation through time [36]) yields
adaptive laws that typically require the sensitivity :; of the output x with respect to
variations in the unknown parameters «. Since these sensitivity functions are not
available, implementation of such adaptive laws is not possible. In these cases, approx­
imations of the sensitivity functions are used instead of the actual ones. One type of
approximation used in dynamic backpropagation is to replace the gradient with respect
to the unknown parameters by the gradient with respect to the estimated parameters.
Such adaptive laws were used extensively in the early neural control literature, and
simulations indicated that they performed well under certain conditions. Unfortunately,
with approximate sensitivity functions, it is not possible, in general, to prove stability
and convergence. It is interesting to note that approximate sensitivity function
approaches also appeared in the early days of adaptive linear control, in the form of
the so-called MIT rule [1 7].

One way to avoid the stability problems associated with approximate sensitivity
functions is to reformulate the problem so that the cost function is convex with respect
to the adjustable parameters. Based on the filtering techniques of Section 6.4.1, the cost
function described by (6.18) with y as defined in (6.17) satisfies the convexity property
for linearly parameterized approximators, and its gradient with respect to the estimated
parameters is implementable (~ is calculable from available measurements). Therefore,
the gradient algorithm describ~ by (6.19)has some desirable stability properties, which
are summarized as follows:

Theorem 6.4.1 (Stability of Gradient Algorithm) Suppose the regressor vector is
uniformly bounded (i.e., ~ E Loo) . If the on-line approximator is linearly parameter­
ized (i.e., ~f(z; 0) = OT<jJ(z)) and there is no approximation error (i.e., 8 = 0), then
the gradient algorithm described by (6.17) and (6.19) has the following properties:

(1) (y(t) - 8(t)~(t)) E c, n .coo,

(3) limt~oo(y(t) - 8(t)~(t)) = 0,

(2) 8(t) E .coo,

(4) limt~oo 8(t) = o.

Even in the restrictive case of no approximation errors and a linearly parameter­
ized approximator, it cannot be established that the parameter estimate vector O(t) will
converge to the optimal vector ()*. To guarantee that O(t) will converge to ()*, the
regressor vector ~(t) needs to satisfy a so-called persistency of excitation condition.
Intuitively, this implies that there should be sufficient variation in ~(t) to allow the
parameter estimates to converge to their optimal values. To get a basic idea of why
persistency of excitation is important, consider the trivial case where ~(t) = O. In this
case, y = «()*)T~ will be zero, and the parameter estimate will satisfy 8= 0, which
implies that 8(t) = 8(0). Therefore, even though y(t) - 8(t)~(t) = 0 for all t ~ 0, the
estimated parameter vector 8 does not converge to ()*, unless 8(0) is incidentally selected
to be the optimal parameter vector ()*.

In the presence of approximation errors (i.e., 8(t) #- 0), the stability of the gradient
algorithm (6.19) cannot be guaranteed. In fact, it is known from on-line parameter

Section 6.4 Parameter Estimation: Online Approximation 157

estimation of linear systems that even relatively small approximation errors are suffi­
cient to make the adaptive system unstable. To address this problem, the standard
update law described by (6.19) needs to be modified. Several modifications exist in
the literature for enhancing the robustness of adaptive schemes. These modifications
are discussed in Section 6.4.5.

6.4.3 Least-Squares Algorithms

Least-squares methods have been widely used in parameter estimation in both batch
(nonrecursive) and recursive form [2, 16]. The basic idea behind the least-squares
method is to fit a mathematical model to a sequence of observed data by minimizing
the sum of the squares of the difference between the observed and computed data. To
illustrate the least-squares method, consider the problem of computing the parameter
vector fJ at time t that minimizes the cost function

where Y(i) is the measured data at time r, and ~(i) is the regressor vector at time r. The
above cost function penalizes all the past errors y(r) - ~T(i)fJ(t) for r = 0 up to r = t,
relative to the current parameter estimate OCt). By setting to zero the gradient (with
respect to fJ) of the cost function (VJ(fJ) = 0), we obtain the least-squares estimate for
fJ(t):

(6.20)

provided that the inverse exists, which is a function of the level of regressor excitation.
The least-squares estimate given by (6.20) is derived for batch processing; in other

words, all the data in the time interval [0, t] is gathered before it is processed. In
approximation-based control, the estimated parameter vector OCt) needs to be computed
in real time, as new data becomes available. The recursive version of the least-squares
algorithm is given by

§(t) = P(t)~(t)(yT(t) - ~T(t)O(t))

pet) = - P(t)~(t)~T(t)P(t)

0(0) = 00

P(O) = Po

(6.21)

(6.22)

where pet) is a square matrix of the same dimension as the parameter estimate O. The
initial condition Po of the P matrix is chosen to be positive-definite. Because of the
similarity of the recursive least-squares algorithm to the Kalman filter, when it is
appropriately initialized the matrix P is called the covariance matrix.

The update law for 0, described by (6.21), is similar to the gradient learning algo­
rithm (6.19), with pet) representing a time-varying learning rate. In practice, recursive
least squares can converge considerably faster than the gradient algorithm at the
expense of the increased computation required to compute P. However, in its "pure"
form, the recursive least squares may result in the covariance matrix pet) becoming
arbitrarily small. This problem, which is referred to as the covariance wind-upproblem,

158 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

can slow down adaptation in some directions and, as a result, critically dampen the
ability of the algorithm to track time-varying parameters.

Several modifications to the "pure" least-squares algorithm have been considered.
One such modification is covariance resetting, according to which the covariance matrix
is reset to pet,) = Po at time t, if the minimum eigenvalue of pet,) is less than a pre­
defined small positive constant. This modification helps prevent the covariance matrix
from becoming too small. Another commonly used modification to the least-squares
algorithm leads to the least-squares with forgetting factor, which is given by

~(t) = P(t)W)(y(t) - ~T(t)8(t»)

pet) = -P(t)~(t)~T(t)P(t) + fJP(t)

(6.23)

(6.24)

where fJ > 0 is typically a small positive constant. The extra term fJP(t) in (6.24) pre­
vents the covariance matrix from becoming too small; on the other hand, it may cause
it to become too large. To avoid this complication, pet) is either reset to Po or adapta­
tion is disabled (i.e., pet) = 0) in the case that pet) becomes too large. The literature on
parameter estimation and adaptive control has several rules of thumb on how to choose
the design variables that appear in the least-squares algorithm and its various modified
versions.

The recursive least-squares algorithm described by (6.21) and (6.22) has similar
stability properties as the gradient algorithm.

Theorem 6.4.2 (Stability of Recursive Least-Squares Algorithm) Suppose the
regressor vector is uniformly bounded (i.e., ~ E .coo)' If the on-line approximator
is linearly parameterized (i.e., ~f(z; 0) = OTl/>(z») and there is no approximation
error (i.e., 8 = 0), then the recursive least-squares algorithm described by (6.21)
and (6.22) with y defined by (6.17) has the following properties:

(y(t) - O(t)~(t» E L2 n c.;
limt~oo(y(t)- O(t)~(t» = 0,

limt~oo O(t) = 0, where 0 is a constant vector.

O(t) E .coo,

pet) E L oo ,

In comparing the stability properties of the gradient and least-squares algorithms,
we notice that in addition to the other boundedness and convergence properties, the
recursive least squares also guarantees that the parameter estimate O(t) converges to a
constant vector O. If the regressor vector ~ satisfies the persistency of excitation condi­
tion, then O(t) converges to the optimal parameter vector ()*.

Despite its fast convergence properties, the recursive least-squares algorithm has
not been widely used in problems involving large function approximation structures,
mainly because of its heavy computational demands. Specifically, if the number of
adjustable parameters is N, then updating of the covariance matrix pet) requires adap­
tation of N 2 parameters.

6.4.4 Lyapunov-Based Algorithms

Lyapunov stability theory, and in particular Lyapunov's direct method, is one of the
most celebrated methods for investigating the stability properties of nonlinear systems

Section 6.4 Parameter Estimation: Online Approximation 159

[18]. The principal idea is that it enables one to determine whether or not the equili­
brium state of a dynamical system is stable without explicitly solving the differential
equation. The procedure for deriving such stability properties involves finding a suita­
ble scalar function VeX, t), in terms of the state variables x and time t, and investigating
its time derivative

!!:... V(x t) = (aV)T(dX) + av
dt' ax dt at

along the trajectories of the system. Based on the properties of vex, t) (known as the
Lyapunov function) and its derivative, various conclusions can be made regarding the
stability of the system.

In general, there are no well-defined methods for selecting a Lyapunov function.
However, in adaptive control problems, a standard class of Lyapunov function candi­
dates is known to yield useful results. Furthermore, in some applications, such as
mechanical systems, the Lyapunov function can be thought to represent a system's
total energy, which provides an intuitive lead into selecting the Lyapunov function.
In terms of energy considerations, the intuitive reasoning behind Lyapunov stability
theory is that in a purely dissipative system the energy stored in the system is always
positive and its time derivative is nonpositive.

The derivation of parameter estimation algorithms using the Lyapunov stability
theory is crucial to the design of stable adaptive and learning systems. Historically,
Lyapunov-based techniques provided the first algorithms for globally stable adaptive
control systems in the early 1960s. In the recent history of neural control and adaptive
fuzzy control methods, most of the results that deal with the stability of such schemes
are based, to some extent, on Lyapunov-based algorithms. In many nonlinear control
problems, Lyapunov stability theory is used not only for the derivation of learning
algorithms but also for the design of the feedback control law.

In Lyapunov-based algorithms, the problem of designing an adaptive law is for­
mulated as a stability problem in which the differential equation of the adaptive law is
chosen so that certain stability properties can be established using Lyapunov theory.
Because such algorithms are derived based on stability methods, by design they have
some inherent stability and convergence properties.

According to the Lyapunov design method, an estimation model is derived based
on Eq. (6.16). The estimation model is described by

1 [" "]y == - ~f(z, 8) ,
S+A

which in the case of linearly parameterized approximators becomes

y == _1_ [OT4>(z)].
S+A

A Lyapunov function is then selected, which is positive definite with respect to the
estimation error y - yand the parameter estimation error 8*. - e. Taking the derivative
of the Lyapunov function gives an expression in terms of O. The idea is to select the

160 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

righthand side of the adaptive law so that the derivative of the Lyapunov function is
nonpositive, thus guaranteeing the boundedness of OCt) and yet).

The Lyapunov design method generates the following adaptive law in the case of
linearly parameterized approximators:

OCt) = r</J(z(t))(y(t) - yet)) (6.25)

The above parameter estimation algorithm derived using Lyapunov stability methods is
essentially of the same form as the gradient algorithm (6.19) derived using optimization
techniques. The stability and convergence properties of the two algorithms are also
similar.

Theorem 6.4.3 (Stability of Lyapunov-Based Algorithm) Suppose the regressor
vector </J is uniformly bounded (i.e., </J E L oo) . If the on-line approximator is linearly
parameterized (i.e., ilf(z; 0) = OT</J(z)) and there is no approximation error (i.e.,
ef = 0), then the Lyapunov-based algorithm described by (6.25) has the following
properties:

(y(t) - yet)) E L2 n Loo '

limt-+oo(y(t) - yet)) = 0,

limt-+oo OCt) = o.

OCt) E Loo '

yet) E L oo '

The same remarks as in the gradient algorithm with regards to the persistency of
excitation condition for parameter convergence are also valid here. Similarly, the
Lyapunov-based algorithm (6.25) needs to be modified to handle approximation errors.

6.4.5 Robust Learning Algorithms

The learning algorithms described in Sections 6.4.2-6.4.4 are based on the assumption
of no residual modeling errors. In other words, it was assumed that the only uncertainty
in the dynamical system is due to ~f(x, u), which can be represented exactly by an on­
line approximation function ~f(x, u; (}*) for some unknown parameter vector ()*. In
practice, the on-line approximation function ~f(x, u; 0) may not be able to match
exactly the modeling uncertainty ~f(x, u), even if () was to be selected optimally. This
discrepancy is usually called the approximation error, or the function reconstruction
error. Furthermore, there may be unmodeled dynamics, and the measured input-output
variables may be corrupted by noise and external disturbances. Unmodeled dynamics
arise as a result of model reduction, which may be done either purposefully, in order to
reduce the complexity of the model, or because of unknown dynamics of the full-order
model. Indeed, in some cases (such as in the control of flexible structures) the full-order
model may be of infinite dimension.

In this section, we consider modifications to the standard learning algorithms in
order to provide stability and improve performance in the presence of modeling errors.
These modifications lead to what is known as robust learning algorithms. The term
robust is used to indicate that the learning algorithm is such that in the presence of
modeling errors it retains its stability properties. It is well known from the adaptive
control literature of linear systems [16] that in the presence of even small modeling

Section 6.4 Parameter Estimation: Online Approximation 161

errors, standard adaptive laws may cause the parameter vector OCt) to drift to infinity, a
phenomenon usually referred to as parameter drift.

Intuitively, parameter drift occurs when the learning algorithm attempts to adjust
the parameters in order to match a function for which an exact match does not exist for
any value of the parameters (due either to approximation error or to other modeling
errors such as external disturbances). Two approaches may be used to prevent para­
meter drift. In the first approach, the learning algorithm is modified so that it directly
restricts the parameter estimates from drifting to infinity. The a-modification, the €­

modification, and the projection algorithms belong to this category. In the second
approach, the parameter estimates are prevented from drifting to infinity indirectly
by not allowing the error, which is driving the learning algorithm, from becoming
too small. The dead-zone algorithm has this characteristic.

To illustrate the various options for robustifying the adaptive laws discussed in
Sections 6.4.2-6.4.4, we consider a generic adaptive law

e(t) = rg(t)€(t), (6.26)

where r is the learning rate matrix, get) is the regressor vector, and €(t) is the estimation
error. In the case of the gradient algorithm (6.19), the regressor is get) = ~(t) and the
estimation error is €(t) = yet) - BT ~(t). For the Lyapunov-based algorithm given by
(6.25), the regressor is get) = If>(z(t)), and the estimation error is €(t) = yet) - yet).

Based on (6.26), four different modifications for enhancing robustness are as
follows.

Projection modification: One of the most straightforward and effective ways to
prevent parameter drift is to restrain the parameter estimates within a predefined
bounded and convex region P. The projection modification implements this idea as
follows: If the parameter estimate 0 is inside the desired region P, or is on the
boundary and directed inside the region P, then the standard adaptive law (6.26) is
implemented. In the case that 0 is on the boundary of P and its derivative is
directed outside the region, then it is projected onto the tangent hyperplane.
Therefore, the projection modification keeps the parameter estimation vector
within the desired convex region P for all times. If P is selected to be sufficiently
large so that it contains the optimal parameters ()*, then it can be shown that in
addition to the boundedness of the parameter estimates, the rest of the stability
properties of the adaptive law are not affected.

a-modification: In this approach, the adaptive law (6.26) is modified to

B(t) = rg(t)€(t) - r aB(t) (6.27)

where 0' is a small positive constant. The additional term -rO"o acts as a stabilizing
component for the adaptive law. For example, if the parameter estimate OCt) starts
drifting to large positive values, then -rO"o becomes large and negative, thus
forcing the parameter estimate to decrease. Although the a-modification does
not require a priori information such as an upper bound on the approximation
error, the robustness is achieved at the expense of destroying some of the conver-

162 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

gence properties of the ideal (no approximation error) case. Therefore, several
modifications have been suggested for addressing this issue, including the so-called
switching a-modification [16].

e-modificatiom The s-modification was motivated as an attempt to eliminate some
of the drawbacks associated with the a-modification. It is given by

OCt) = r~(t)E(t) - rIE(t)lvO(t) (6.28)

where v > 0 is a design constant. The idea behind this approach is to retain the
conver~ence properties of the adaptive scheme by forcing the additional term
-riElvO to be zero in the case that f(t) is zero. In the case that the parameter
estimate vector O(t) starts drifting to large values, then the e-modification again
acts as a stabilizing force.

Dead-zone modification: In the presence of approximation errors, the adaptive law
(6.26) tries to minimize the estimation error E, sometimes at the expense of increas­
ing the magnitude of the parameter estimates. The idea behind the dead-zone
modification is to enhance robustness by turning off adaptation when the estima­
tion error becomes relatively small compared to the approximation error. The
dead-zone modification is given by

if lEI ~ 80

if lEI < 80
(6.29)

where 80 is a positive design constant that depends on the approximation error.
One of the drawbacks of the dead-zone modification is that the designer needs an
upper bound on the approximation error, which is usually not available.

In the presence of approximation errors (i.e., ef =1= 0), the above rob~st adaptive
laws guarantee, under certain conditions, that the parameter estimates OCt) and the
estimation error E(t) remain bounded. Although, it cannot be established in the pre­
sence of approximation error that E(t) will converge to zero, it can be shown that the
estimation error is small-in-the-mean [16], in the sense that integral square error over a
finite interval is proportional to the integral square approximation error.

6.5 CONCLUSIONS

On-line approximation-based control methods, including neural and fuzzy methods,
offer a means to improve the performance of nonlinear control systems when the
application involves functions that cannot be accurately modeled a priori. In addition,
these methods provide the opportunity to develop a better understanding of the pro­
cesses underlying the system to be controlled. Increased understanding is achieved
through analysis of the approximated functions, if approximator convergence has
been guaranteed in the control design.

Approximation-based control system design requires specification of a control
architecture, an approximator structure, and a parameter estimation algorithm for

References 163

which the stability of the overall system can be guaranteed under assumptions reflective
of the application. This chapter has discussed each of these issues and provided refer­
ences to articles that provide more in-depth discussion of the same issues.

Related Chapters

• For additional background material on neural networks and fuzzy logic see Ch. 5.
• Applications of nonlinear approximation and approximation-based control are

described in Chs. 5 and 16.
• Ch. 4 reviews some other approaches to developing approximate models from data.

REFERENCES

[1] J. Albus, "A new approach to manipulator control: The cerebellar model articulation con­
troller (CMAC)." Trans. ASME, J. Dynamic Syst., Meas., Contr., Vol. 97, pp. 220-227,
1975.

[2] K. Astrom and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1995.
[3] A. Barron, "Universal approximation bounds for superpositions of a sigmoidal function."

IEEE Transactions on Information Theory, Vol. 39, no. 3, pp. 930-945, 1993.
[4] M. Brown and C~ Harris, Neurofuzzy Adaptive Modelling and Control. Englewood Cliffs, NJ:

Prentice-Hall, 1994.
[5] D. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive net­

works," Complex Systems, pp. 321-355, 1988.
[6] G. Cybenko, "Approximation by superposition of a sigmoidal function." Mathematics of

Control, Signals, and Systems, Vol. 2, no. 4, pp. 303-314, 1989.
[7] R. Eubank, Spline Smoothing and Nonparametric Regression. New York: Marcel Dekker,

1988.
[8] J. Farrell, "Motivations for local approximators in passive learning control." Journal of

Intelligent Control and Systems, Vol. 1, no. 2, pp. 195-210, 1996.
[9] J. Farrell, "Neural control." In W. Levin (ed.), The Control Handbook, pp. 1017-1030. Boca

Raton, FL: CRC Press, 1996.
[10] J. Farrell, "Stability and approximator convergence in nonparametric nonlinear

adaptive control." IEEE Transactions on Neural Networks, Vol. 9, no. 5, pp. 1008-1029,
1998.

[11] K. Funahashi, "On the approximate realization of continuous mappings by neural net­
works." Neural Networks, Vol. 2, pp. 183-192, 1989.

[12] F. Girosi and T. Poggio, "Networks and the best approximation property." MIT A.I. Memo
No. 1164, October 1989.

[13] M. Gupta and N. Sinha (eds.). Intelligent Control Systems: Theory and Applications. New
York: IEEE Press, 1996.

[14] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal
approximators." Neural Networks, Vol. 2, pp. 359-366, 1989.

[15] L. Hunt and G. Meyer, "Stable inversion for nonlinear systems." Automatica, Vol. 33, no. 8,
pp. 1549-1554, August 1997.

[16] P. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall, 1996.
[17] D. James, "Stability of a model reference control system." AIAA Journal, Vol. 9, no. 5, 1971.
[18] H. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.

164 References

[19] P. Millington, "Associative reinforcement learning for optimal control." S. M. Thesis:
Department of Aeronautics and Astronautics, MIT, 1991.

[20] K. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using
neural networks." IEEE Trans. Neural Networks, Vol. 1, pp. 4-27, 1990.

[21] K. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addison-Wesley, 1998.
[22] M. Polycarpou and P. Ioannou, "Identification and control of nonlinear systems using

neural network models: design and stability analysis." Technical Report 91-09-01,
University of Southern California, Los Angeles, September 1991.

[23] M. Polycarpou, "Stable adaptive neural control scheme for nonlinear systems." IEEE
Transactions on Automatic Control, Vol. 41, no. 3, pp. 447-451, March 1996.

[24] M. Polycarpou, "On-line approximators for nonlinear system identification: a unified
approach." In C. Leondes (ed.), Control and Dynamic Systems: Neural Network Systems
Techniques and Applications, Vol. 7, pp. 191-230. New York: Academic Press, 1998.

[25] M. Polycarpou and M. Mears, "Stable adaptive tracking of uncertain systems using non­
linearly parametrized on-line approximators." International Journal of Control, Vol. 70, no.
3, pp. 363-384, May 1998.

[26] T. Poggio and F. Girosi, "Networks for approximation and learning." Proceedings of the
IEEE, Vol. 78, no. 9, pp. 1481-1497, 1990.

[27] M. Powell, "Radial basis functions for multivariable interpolation: A review." In J. Mason
and M. Cox (eds.), Algorithmsfor Approximation of Functions and Data, pp. 143-167. New
York: Oxford University Press, 1987.

[28] D. Rumelhart, J. McClelland, et al. Parallel Distributed Processing-Explorations in the
Microstructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press, 1986.

[29] R. Sanner and J. Slotine, "Gaussian networks for direct adaptive control." IEEE Trans. on
Neural Networks, Vol. 3, pp. 837-863, 1992.

[30] S. Sastry and A. Isidori, "Adaptive control of linearizable systems." IEEE Transactions on
Automatic Control, Vol. 34, no. 11, November 1989.

[31] S. Shekhar and M. Amin, "Generalization by neural networks." IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, no. 2, pp. 177-185, 1992.

[32] M. Stinchcombe and H. White, "Universal approximation using feedforward networks with
non-sigmoid hidden layer activation functions." Proceedings of the International Joint
Conference on Neural Networks, Vol. 1, pp. 613-617, 1989.

[33] G. Walter, Wavelets and Other Orthogonal Systems with Applications. Boca Raton, FL: CRC
Press, 1994.

[34] L. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood
Cliffs, NJ: Prentice Hall, 1994.

[35] S. Weaver, L. Baird, and M. Polycarpou, "An analytical framework for local feedforward
networks." IEEE Transactions on Neural Networks, Vol. 9, no. 3, pp. 473-482, 1998.

[36] P. Werbos, "Backpropagation through time: What it does and how to do it." Proc. of the
IEEE, Vol. 78, no. 9, pp. 1550-1560, 1990.

[37] H. Werntges, "Partitions of unity neural function approximation," Proc. IEEE Int. Conf.
Neural Networks, pp. 914-918, 1993.

[38] B. Widrow and M. Hoff, "Adaptive switching circuits." IRE WESCON Convention Record,
pp. 96-104, 1960.

[39] L. Zadeh, "Fuzzy sets." Information and Control, Vol. 8, pp. 338-353, 1965.
[40] L. Zadeh, "Outline of a new approach to the analysis of complex systems and decision

processes." IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, no. 1, pp. 28­
44, 1973.

Chapter

7
SUPERVISORY HYBRID CONTROL
SYSTEMS

Michael D. Lemmon

Editor's Summary

The exploitation of well-honed techniques and the exploration of new challenges need not be mutually

exclusive strategies for research. This maxim is illustrated by an emerging technology in control: hybrid

dynamical systems. These systems combine, within a unified framework and formulation, discrete-event

systems (for more on these systems, see Chapter 2) and continuous-time dynamics. Hybrid systems

represent a broadening of the scope of control, with infusions of ideas and theories from other fields,

especially formal methods in computer science.

This chapter discusses hybrid systems in some depth, with particular emphasis on supervisory

applications. In this case, the discrete events are viewed as supervisory decisions affecting the qualitative

behavior of a system, with different "modes" of behavior exhibiting different continuous dynamics. An

example of a two-arm robotic platform is used to motivate the technical discussion, and other applications

are also noted. Other chapters in this volume also outline applications of hybrid dynamical systems (e.g.,

Chapter 14). Variable structure control, the topic of Chapter 8, can also be considered a hybrid system

approach to control.

This chapter introduces and explains several new concepts, borrowed in some cases from computer

science, that are important for the analysis and synthesis of supervisory hybrid systems. Hybrid automata,

an extension of finite state machines, are a popular representational formalism. Together with temporal

logics, which can be used to formulate specifications for hybrid control systems, these representations

allow the safety and performance of the system to be automatically determined, under some assumptions.

Michael Lemmon is an associate professor in the Electrical Engineering Department at the

University of Notre Dame. He chairs the Technical Committee on Hybrid Systems of the IEEE

Control Systems Society.

7.1 INTRODUCTION

Supervisory hybrid systems are systems that integrate high-level decision making with
traditional regulatory control functions. Such systems are referred to as hybrid because
they generate a mixture of continuous-valued (i.e., measurements of the physical pro­
cess variables) and discrete-valued signals (i.e., discrete decisions that supervise the
plant's behavior).

On the basis of the preceding description, it should be apparent that any complex
engineering system employing some sort of decision making can be viewed as a super­
visory hybrid system. To appreciate the potential benefits of this viewpoint, it is impor­
tant to recall that most complex engineering systems are developed in an iterative

165

166 Chapter 7 Supervisory Hybrid Control Systems

manner. The system is decomposed into subsystems that separate decision-making
functions from lower-level regulatory functions. These subsystems are designed inde­
pendently of each other, and simulation testing evaluates the performance of the rein­
tegrated system. If the results of simulation testing are unsatisfactory, then the
subsystems may be redesigned and another cycle of simulation testing commences. In
cases where a loose coupling exists between decision making and regulation subsystems,
this iterative approach can converge relatively quickly to an acceptable design.
Advances in computer and networking technology, however, make it possible to
develop systems in which decision making and regulation are strongly coupled.
When this happens, simulation-based testing can become expensive, time consuming,
and still provide no provable guarantees of acceptable system performance. It is in these
situations that supervisory hybrid systems theory provides a powerful new approach to
system analysis and development.

Supervisory hybrid systems theory treats both the decision-making and regulation
functions of the overall system at the same time. As a result, hybrid systems theory
allows us to consider the impact of strong subsystem coupling much earlier in the design
process. In recent years, there has been considerable interest in the development of a
formal mathematical framework for the study of supervisory hybrid systems. Two
different application areas have driven this interest. Computer scientists have found
supervisory hybrid system methodologies a useful means for solving timing and safety
problems in asynchronous digital circuits. Control systems engineers have found that
hybrid systems provide a convenient and potentially powerful method for the analysis
and synthesis of large-scale supervisory control systems. In both cases, the goal is to
provide nothing less than a new framework for the analysis of complex systems in
which previously disparate approaches to decision making and control are united in
a single systematic framework.

This chapter provides a tutorial introduction to supervisory hybrid systems. The
chapter opens by highlighting the distinction between the discrete and continuous parts
of a supervisory hybrid system. Examples of hybrid systems are presented, and a
popular modeling paradigm known as the hybrid automaton is described. The chapter
overviews recent progress in the analysis and synthesis of systems modeled by hybrid
automata and closes with a summary of open issues in the field.

7.2 EXAMPLES OF SUPERVISORY HYBRID
SYSTEMS

Systems science is concerned with the use of formal mathematical methods in the mod­
eling and analysis of engineering systems. We generally view a system as some sort of
physical process whose behavior can be monitored by taking measurements of impor­
tant process variables. If the system in question is a chemical reaction, for instance, then
measurements of process temperature and pressure may be used to characterize the
current state of the reaction. A robotic system, for example, may have its current
state characterized by measuring the joint angles representing the robot's current spatial
configuration. When such measurements of the physical process are indexed with respect
to another independent variable (such as time), then we obtain a signal.

A systems scientist represents the signal x as an abstract mathematical function,
x : I ~ M, mapping elements of the index set I onto the measurement set M. A

Section 7.2 Examples of Supervisory Hybrid Systems 167

categorization of signals can be based on the type of measurement set. A discrete
measurement set is a set whose elements can be placed in a one-to-one correspondence
with integers. A continuous measurement set is a set that can be transformed in a
continuous manner to Euclidean n-space ffin. Signals whose measurement sets are dis­
crete (continuous) are referred to as discrete-valued (continuous-valued) signals.
Discrete-valued signals are sometimes called discrete-event signals. Systems generating
such signals are called discrete-event systems (DES). Any function taking values in ffin

can be viewed as a continuous signal. Discrete-event signals are often generated by
decision-making systems.

Formal methods for dealing with signals and systems have traditionally assumed
that the signals are either discrete- or continuous-valued. In practice, however, engi­
neering systems consist of mixtures of continuous and discrete systems. A computer
controlling a physical process generates just such a mixture of signals. The state of the
physical process is represented by continuous-valued signals, whereas the state of the
computer program controlling the physical process has a finite number of discrete
states. Systems that generate signals containing a mixture of continuous and discrete
valued signals are often referred to as supervisory hybrid systems. A large number of
practical engineering systems can be represented as hybrid dynamical systems. The
remainder of this section presents two examples. One example is based on robotic
systems, and the other concerns digital circuits.

7.2.1 Switched Dynamical Systems

A common type of hybrid system arises when the system's differential equation has
a discontinuous righthand side. Such systems possess continuous-valued and discrete­
valued states. The continuous-valued state trajectory (denoted as x(t)) is governed by
ordinary differential equations. The discrete-valued state trajectory (denoted as i(t))
takes values over a finite set of symbols, and its evolution is generated by a switching
function q. Individual discrete states are sometimes referred to as system modes.
Formally, we write the system equations for this switched system as

x(t) = f(x(t) , i(t))

i(t) = q(x(t), i(t-)),

(7.1)

(7.2)

where i : 9t~ Q is a discrete-valued continuous-time signal representing the time his­
tory of switching modes. The continuous state trajectory x(t) is generated by the func­
tion f : ffin X Q ~ ffin, and the discrete state's trajectory i(t) is generated by the
switching function q : ffi x Q ~ Q. i(t-) denotes the righthand limit of the signal i as
time approaches t. It is customary to define q in such a way that there are well-defined
switching sets between the various discrete states. In particular, we let the switching set
Qij between mode i and mode j be defined as

Qij = {x E ffin : j = q(x, i)}

The switching set, therefore, represents a subset of the continuous state space in which a
discrete mode switch from mode i to mode j can occur.

We now turn our attention to the type of signals generated by the system in Eqs.
(7.1) and (7.2). Define the system's state space 'H = Q x ffin as the Cartesian product of

168 Chapter 7 Supervisory Hybrid Control Systems

the discrete set Q and the continuous state x E mn
• A hybrid system trajectory is a

continuous-time signal (J : m--* 'H taking values in the hybrid state space 'H. Given a
specific hybrid trajectory (J, the time r is said to be a switching time if
i(r) = q(x(r), i(r-» #- i(r-». In other words, the switching time r represents that instant
in time when the discrete-valued component, i, changes value. We say that a hybrid
system trajectory (J is generated by the system in Eqs. (7.1) and (7.2) if

• for any interval (rt, r2) that does not contain a switching time, the hybrid state
(J(r) (for all r E (rt, r2» satisfies Eq. (7.1); and

• for any switching time r, the hybrid state rr(r) satisfies the switching Eq. (7.2).

A hybrid trajectory (J that is generated by Eqs. (7.1)-(7.2) is also called a solution to the
equations.

An important issue concerns the existence and uniqueness of solutions to equations
in (7.1)-(7.2). We cannot expect the hybrid system trajectories to be continuous because
of the discontinuity of the righthand side of Eq. (7.1). It is possible, however, to identify
conditions guaranteeing the existence of piecewise continuous solutions to the system
equations. These existence conditions [1] require the semi-continuity of set-valued map­
pings associated with Eq. (7.1).

Although it is usually easy to ensure the existence of piecewise continuous hybrid
trajectories, it is not always possible to guarantee the uniqueness of these solutions.
Switched systems often generate nondeterministic trajectories. This means that for a
given initial condition, there may be many different trajectories that satisfy the system
equations. In addition to nondeterministic piecewise continuous trajectories, it is pos­
sible for the system to generate chattering solutions. Chattering hybrid system trajec­
tories arise when the system switches infinitely fast between various modes. In the
variable structure control literature [2], these solutions are referred to as sliding
modes. In general, it is often considered undesirable for a supervisory hybrid system
to exhibit chattering behavior. Computer scientists also have an interesting term for this
behavior. Systems capable of exhibiting such chattering solutions are sometimes
referred to as Zeno systems. The name refers to the classical Zeno's paradox in
which the concept of a limit is first informally introduced.

A concrete example of a switching system will be found in Figure 7.1. This figure
shows a free-floating robotic vehicle with two articulated arms. The system is required
to obtain components from a parts bin and to move these components to a work area
where an assembly operation is to be performed. The tasks of fetching the workpiece,
transporting it to the work area, and then returning to the parts bin are performed
repeatedly. The equations of motion for the arms are expressed by the following differ­
ential equations

(7.3)

(7.4)

(7.5)

170 Chapter 7 Supervisory Hybrid Control Systems

ing system models are not generally represented as equations but rather as directed
graphs.

A digital circuit is a circuit (system) taking binary-valued inputs and producing
binary-valued outputs. An AND gate, for instance, represents a simple example of a
digital system with two binary inputs and a single binary output. The AND gate is an
example of a combinational circuit, a circuit whose output is completely specified by the
present inputs. In many applications, we are more interested in the behavior of sequen­
tial circuits. A sequential circuit is a digital circuit whose current output is dependent on
the current and previous inputs to the system. Sequential circuits that change their
internal states in step with a global clock tick are referred to as synchronous sequential
circuits. Essentially, we can view such circuits as discrete-time, discrete state systems.
Synchronous sequential digital circuits provide convenient models for digital integrated
circuits. They can model the behavior of simple circuits such as flip-flops. Synchronous
sequential circuits can also model the behavior of very large scale integrated (VLSI)
chips such as microprocessors.

It is of practical importance to be able to check whether or not VLSI chips behave
correctly. Because of the large size of these chips, a great deal of effort has been devoted
to the development of computationally efficient methods for checking circuit correct­
ness. Circuit verification refers to the activity of checking circuit correctness. Symbolic
model checking (SMC) [3] is a very efficient means of checking the correctness of VLSI
chips that can be modeled as synchronous sequential circuits. This algorithmic
approach to circuit verification makes use of a graph theoretic model for the system
that is known as the finite automaton. Checking the safety of the circuit involves
computing a collection of discrete states that can be reached from a specified set of
target states.

Although SMC methods work well for synchronous sequential circuits, it should
be noted that many digital systems cannot be modeled this way. Synchronous sequen­
tial models assume that all machine states change in step with a global clock. In chips
that need to respond in a reactive way to the outside world, or in extremely large
circuits, synchronous operation may not be a realistic assumption. In such systems,
the discrete states of the circuit may change at times between contiguous clock ticks. As
a result, these systems generate signals that may be discrete-valued and continuous­
valued. We sometimes refer to this type of sequential circuit as an asynchronous sequen­
tial circuit. Asynchronous circuits are clearly hybrid systems. Asynchronous circuits are
found with increasing frequency, particularly in the context of real-time or embedded
control. For these real-time systems, traditional SMC methodologies cannot provide
provable guarantees of circuit correctness. The recent advances in supervisory hybrid
systems theory have been driven by this need to extend traditional SMC methods to
asynchronous digital circuits. Many of these advances make use of a specific hybrid
system modeling paradigm known as the hybrid automaton [4].

7.3 HYBRID AUTOMATON

Early system theoretic models for hybrid systems tended to focus on switched system
representations of the form found in Eqs. (7.1)-(7.2). A reference to these early models
may be found in [5]. Although familiar to most systems scientists, these equational
models do not provide a convenient means of representing discrete behaviors. Other

Section 7.3 Hybrid Automaton 171

modeling paradigms have emerged which provide computationally tractable frame­
works for dealing with discrete and continuous dynamics. These models include logical
DES models [6],hybrid automata [4], and continuous Petri nets [7]. Of all these models,
the hybrid automaton has been the most influential.

Computer scientists have long used formal graph-theoretic models to represent
concurrent computer processes. Finite state machines and Petri nets represent two
well-known examples of such formal methods. Although powerful computational
tools were developed for the manipulation of such formal methods, it was apparent
in dealing with multiprocessors, real-time systems, and asynchronous digital circuits
that these tools were inadequate. It was realized that existing graph-theoretic formal­
isms would need to incorporate continuous dynamics, and this realization led to the
development of the hybrid automaton.

7.3.1 Definition of the Hybrid Automaton

The hybrid automaton is a modeling framework for hybrid systems that combines
the graph-theoretic formalisms of traditional computer science with the equational
formalisms found in traditional systems science. It can be defined as a three-tuple
(N, t1, £) where N is a marked network representing the discrete-event behavior of
the system. t1 is a set of mappings, fi :mn

~ mn (i = 1, ... ,p), that map vectors in mn

back onto vectors in mn
. The mappings in t1 represent the various continuous dyna­

mical subsystems that the hybrid automaton can switch between. Finally, L maps the
arcs and vertices of networks N onto predicates in a propositional logic. This mapping
characterizes the interactions between the hybrid automaton's continuous and discrete
dynamics. These three components-the network N, the set t1, and the labels £-are
described in greater detail below.

The network N is represented by the ordered pair (V, A) where V is a set of vertices
and A C V x V is a set of directed arcs between vertices. The vertex set is finite, with its
cardinality denoted as IVI. Networks are often represented graphically. An open circle
is used to represent each vertex of the network. An arrow starting at vertex Vi and
terminating with an arrowhead at node Vj is used to represent the arc (Vi' Vj)' Arcs and
vertices are frequently labeled as a means of binding the network with a real-life
process. As a specific example of a network, let's consider the set of vertices V = {VI,
V2, V3, V4, vs} and the set of arcs

Figure 7.2 shows the graphical representation of this network. This network is labeled,
the specific labels referring to the robotic system shown in Figure 7.1.

Network N = (V, A) enumerates all possible states that a discrete-event system
might occupy. The current state of the system is denoted by marking the network. A
marked network is the triple, (V, A, JL) where V and A are the network's vertices and
arcs, respectively. The final element of the triple is a function JL : V ~ {a, I} that
associates either zero or one with each vertex of the network. If JL(V) = 1, then vertex
V is marked. Otherwise the vertex is unmarked. Graphically, a marked vertex is denoted
by placing a small solid circle (also called a token) in the marked vertex. In Figure 7.2,
the vertex V2 is marked. It is common to think of JL as a vector jl in which the value of
the ith element of this vector is the marking of the ith vertex. This marking vector

172 Chapter 7 Supervisory Hybrid Control Systems

V2
GoTo Bin

VI
Work area

V4
Leave Bin

V3
Parts Bin

Figure 7.2 Network for a discrete-event
system.

constitutes the discrete state of the hybrid automaton. The value that this vector takes
at time T is denoted as ji(T).

The set ~ is a finite set of vector fields over 9ln characterized as

Each fi : 9ln ~ 9ln (for i = 1, ... ,p) maps the continuous state space 9ln back onto
itself. The elements of ~ represent continuous dynamical systems that generate state
trajectories x: 9l~ 9ln satisfying the differential equation x(t) =fj(x(t)) for some
fj E ~. The continuous state of the hybrid system is characterized by the following
four-tuple, z = (x, x, TO, xo) where x is one of the mappings (say fi) in ~, x : 9l~ 9ln

is a continuous function of 9l taking values in 9ln, TO E 9l, and Xo E 9ln• The objects in
this continuous state z = (x, x, TO, Xo) are referred to as the continuous state's rate,
value, initial time, and initial value, respectively. Together these objects form an initial
value problem

x(t) = fi(x(t))

X(TO) = Xo

(7.7)

(7.8)

that is satisfied by the function x : [TO, 00) ~ 9ln.

Combining the four-tuple z with the marking vector ji yields the system's hybrid
state. The hybrid automaton's state, therefore, is represented by an ordered pair (J' =
(z, ji) consisting of the continuous state z and the discrete state ji marking the network.
The set of all ordered pairs, (z, ji), is denoted as H and will be called the hybrid state
space. We will be interested in functions (J' : 9l~ H of time that take values in the
hybrid state space. These hybrid-valued continuous-time signals will be called hybrid
trajectories. Note that this definition parallels the notion of hybrid trajectory intro­
duced in the context of switched dynamical systems (see Eqs. (7.1)-(7.2)).

The event labels £ form the third component of the hybrid automaton. E is the
interface between the discrete subsystem N and the continuous subsystems in ~. The
event labeling is represented as a mapping £ : V U A ~ P from the arcs and vertices of
the network onto formulas in a propositional logic P. The atomic formulas of this logic
are defined with respect to the continuous state z. Although the vertices and arcs can be

Section 7.3 Hybrid Automaton 173

labeled in a variety of ways, one convenient labeling is introduced below. We first
introduce the following set of atomic equations:

• Invariant equations are equations of one of three forms. The first form of the
invariant is [x =fj] where x is the rate of the continuous state and fj is in ~.

Letting r be a switching time, then the second type of invariant equation has the
form [h(xo(r) = 0] where h : ~n ~ ~ is a function of the initial condition Xo of
the hybrid state. The third type of invariant has the form [ro = r] and acts to
reset the initial time in the continuous state z to the switching time r.

• Guard equations have the form [g(x) > 0] where g : ~n ~ ~ is a functional
defined over the continuous state space, ~n.

An atomic formula p is said to be satisfied by hybrid state (1 if and only if the
equation is true when the hybrid state (1 is substituted into the equation. We denote the
satisfaction ofp by (1 as (1 Fp. Other legal fomulas in P are generated recursively by the
conjunction or negation of other formulas in P. For instance, if both p and q are in P,
then the conjunctionp /\ q is in P. We say that the hybrid state (1 satisfies p /\ q (denoted
as (1 Fp /\ q) if and only if (1 Fp and (1 Fq. In a similar way if PEP, then the negation
-p is also in P. Moreover, we say that the hybrid state (1 satisfies -p (i.e., (1 F-p) if and
only if (1 does not satisfy p. All formulas in P can be generated by the recursive
application of conjunction (/\) and negation (....,). For example, the disjunctive formula
p v q =,(-p /\,q).

The labeling function £ associates each vertex and arc of the network with a
proposition in P. The bindings implied by £ determine how the continuous and discrete
parts of our hybrid system interact. For the hybrid automata considered in this chapter,
we assume that network arcs are labeled with guard equations and that network vertices
are labeled with invariant equations.

We now define the dynamics of the hybrid automaton by characterizing all hybrid
trajectories that can be generated by a given automaton (N, ~,£). A time r E ~ is said
to be a switching time if and only if jl(r-) i= jl(r+). In other words, a switching time is
the instant when the marking of the network N changes. Given an arbitrary hybrid
trajectory (1 : m~ H, we say that this trajectory is generated by the hybrid automaton
(N, ~, £) if and only if the trajectory (1 satisfies the following conditions:

• For all r E (1'1, 1'2) that are not switching times and where '['1 is a switching time,
there exists a marked vertex v such that the hybrid state (1(1') FL(v).

This condition requires, essentially, that between switching times the contin­
uous part of the hybrid system state must satisfy the differential equations
implied by the vertex predicate L(v). Recall that the vertex predicates are invar­
iant equations of the form [x =fi], [h(xo) = 0], and [ro = r]. For these predi­
cates to be satisfied, the continuous state z must be reset so that the rate x, the
initial time ro, and the initial state Xo satisfy the equations in L(v). These objects
characterize the initial value problem in Eqs. (7.7) and (7.8) generating the
hybrid system's continuous state value x. Therefore the switch at time rl causes
the hybrid system to switch the underlying continuous-time dynamics of the
hybrid system.

174 Chapter 7 Supervisory Hybrid Control Systems

• If r is a switching time, then there is an arc (w, v) such that c(r") FL«w, v»,
J1(w(r+» = J1(w(r-» - 1 = 0 and J1(v(r+» = J1(v(r-» + 1 = 1.

This condition states that at the switching time r, there is an arc (w, v) in the
network which fires. The arc fires when the continuous state trajectory x(r)
satisfies the guard equation L«w, v» on the arc and when the discrete enabling
conditions of the marking vector are satisfied. Recall that the label L«w, v» is a
guard equation representing an inequality constraint on the continuous state's
value x. This label, therefore, represents a necessary condition that the contin­
uous state x has to satisfy before the arc (w, v) can fire. In addition to this
continuous enabling condition, there are discrete enabling conditions. The final
two conditions state that the vertex w must be marked just prior to the switch.
These conditions also tell us what must happen to the marking vector after the
switch. The firing of arc (w, v) will modify the network's marking vector by
removing a token from wand placing a token in vertex v.

Two important classes of hybrid automata are obtained by restricting the nature of
the objects in the triple, (N, ~, £). If the elements of ~ are all unity (i.e., x= 1), then
the hybrid automaton is called a timed automaton. The class of rectangular hybrid
automata occurs when elements of ~ are set valued mappings in 9tn characterizing
rectangular regions and when the guard and invariant equations form rectangles in
the continuous state space 9tn•

7.3.2 Robotic System Example: Revisited

As a concrete example of a hybrid automaton, let's reexamine the robotic system in
Figure 7.1. Recall that this system is a robotic vehicle with two articulated arms repeat­
edly moving between the parts bin and work area. The dynamics of the continuous­
valued variables (the arm angles) were given in Eqs. (7.3)-(7.5). Let's assume that each
arm is controlled by a computer process (an instantiation of the arm control program).
The processes execute on the same machine. The network in Figure 7.2 can be used to
represent this program. In Figure 7.2, we've labeled the vertices of our network with the
names GoToBin, WorkArea, Stop, PartsBin, and LeaveBin. These labels characterize
which discrete state the arm is in when the labeled vertex is marked. For instance, if the
vertex labeled GoToBin is marked, then the arm is moving toward the parts bin. If the
vertex labeled PartsBin is marked, then the arm is in the parts bin. Note that Figure
7.2 also contains an additional error state (Stop) that the control program can enter in
the event of a fault.

What type of faults might this program encounter? One type of fault occurs if the
robotic arms collide. As shown in Figure 7.1, it can be seen that the parts bin is
common to both robotic arms. If both arms enter the parts bin at the same time,
there is a high probability that the arms might collide. We therefore need to impose
a mutual exclusion requirement on the system. Not only must the arms complete their
respective tasks, but they must also execute the tasks so that both arms don't enter the
parts bin at the same time. In other words, the robotic system needs to treat the parts
bin as a critical section that both arms access in a mutually exclusive manner.

A candidate solution to the mutual exclusion problem can be readily developed.
Assuming that both processes execute on the same computer under the direction of a
multitasking operating system, then we can use operating system (OjS) control struc-

Section 7.3 Hybrid Automaton 175

tures such as semaphores or mutexes [8] to ensure mutually exclusive execution of that
section of program code requesting access to the parts bin. In other words, by requiring
that the virtual (i.e., computer) processes respect the mutual exclusion requirement, we
expect the robotic arms (i.e., the physical system) to respect the requirement as well.

The use of semaphores ensuring mutual exclusion is illustrated in the following
pseudocode.

ENTRY:

CRIT1:
EXIT:
ERR:
REM:

if (mutex==l) goto ENTRY;
mutex=l;
if (arm_not_in-partsbin) goto-partsbin();
mutex=O;
if(ar~locked) STOP;
if (arm_not_in_workarea) goto_workarea();
goto ENTRY;

This code segment has four distinct parts. There is an entry section (ENTRY) which tests
the lock variable mutex to see if the other arm is moving toward the parts bin. As a
practical matter, the lock variable could be implemented as an O/S semaphore. If the
lock variable mutex is 0, then the program sets the lock variable to alert the other
process that the arm is heading to the parts bin. This process then enters its critical
section (eRIT1), which represents that code which must be executed mutually exclu­
sively. In other words, both computer processes cannot be executing their critical sec­
tions at the same time. While in the critical section, the program checks to see if the arm
is in the parts bin (the function call arm_not_in_partsbin) and outputs the command
signal to the arm's motor (the function call goto_partsbin()). Upon leaving the parts
bin, the process releases the lock variable and then enters its remainder (REM) section
from which it commands the arm to move back to the work area. This remainder
section checks to see if the arm is in the work area (the function call arm_not_in_
workarea) and outputs the command signal to the arm (the function call goto_
workarea()), which moves the arm toward the work area. We've also included an
error state (ERR) that aborts the program's execution if the arm hits its mechanical
limits (arm_locked evaluates to true).

A hybrid automaton capturing the dynamics of our robotic system along with the
supervisory control logic represented in the above pseudocode is shown in Figure 7.3.
This figure shows two concurrent networks representing the control programs for both
robotic arms. The set t1 consists of the vector fields

111 = -01 + k(81 + 8b) ,

t1 = /12 = -01 + k(81 + ()b - Tlj2),

/13 = -01,

121 = -02 + k(82 + 8b) ,

122 = -02 + k(82 +8b - Tlj2),

123 = -02

(7.9)

The labels for the network are shown in Figure 7.3.
We now step through the discrete transitions of one of the automatons in Figure

7.3 and show how network labels affect the transitions. The mutex is represented by a
specific label on the arc between the vertices labeled GoToBin and WorkArea. The
conditional predicate,[mutex > 0] asserts that if the lock variable is zero, then the
arc may fire and the system will command the arm to move toward the parts bin. The

176

Go ToBin

Chapter 7 Supervisory Hybrid Control Systems

Go ToBin

Leave Bin Leave Bin

Figure 7.3 Hybrid automaton for robotic system.

discrete state GoToBin is labeled with the predicate [mutex = 1]/\ [til = 111]. This pre­
dicate sets the lock variable, which signals that arm 1 is moving toward the parts bin.
The second part of the predicate switches the continuous dynamics actually controlling
the arm's movement toward the parts bin. The arc connecting GoToBin to the discrete
state PartsBin is labeled with the predicate [1011 < .1]. This guard condition represents
a strip in the continuous state space characterizing the extent of the parts bin for robot
arm 1. Once the arm is in the parts bin, the system begins moving the arm out of the
bin; therefore the state PartsBin is labeled with the predicate [01 = 112]. Once the arm is
out of the bin, we allow the system's discrete state to transition to the state LeaveBin.
The predicate guarding this transition is [1011 > 0.1]. Upon leaving the bin, the system
resets the lock variable so that the other arm can access the parts bin, hence the
predicate on LeaveBin is [mutex = 0]. Finally, the system returns to the WorkArea
state if the appropriate conditions on the angle are satisfied.

Note that the variable mutex has a mixed interpretation. It is actually a discrete
variable of the control program. But it is used in the guard predicate as if it were a
continuous-valued variable. This usage highlights one common convention in hybrid
automaton modeling. Discrete variables used in process synchronization are frequently
treated as continuous-valued states with a zero rate. Since the rate is zero, these states
are constant until the satisfaction of an invariant predicate resets the initial value of the
state at a switching instant. Also note that Figure 7.3 does not explicitly note the
predicates [TO = T] and [xo = X(T)]. We have dropped these predicates from the figure
since we assume that they label every vertex.

The preceding discussion stepped through the various discrete states of the auto­
maton controlling the first arm of the vehicle and related this automaton back to the
control program introduced above. Mutexes represent a standard synchronization
mechanism in computer systems, but it is not apparent whether ensuring mutually
exclusive access to the process's critical sections is sufficient to guarantee the safe
operation of the physical system. This particular system exhibits a subtle coupling
between the arm and body dynamics. Angular momentum is conserved in this system

Section 7.4 Hybrid Specifications 177

so that the movement of the arms will induce a body rotation. This conservation
relation is found in Eq. (7.3). The coupling between arm and body can lead to system
failures that are not predicted by an analysis of the system's control program. It may be
possible for commanded arm movements to rotate the body to a position from which
one or both of the arms cannot reach the parts bin. If this were to occur, then the
system would deadlock (i.e., the program would be stuck in one of its discrete states).
This deadlock represents the other way in which our hybrid system might fail.

The possibility of system deadlock is also captured in the hybrid automaton model
of Figure 7.3. Note that the transition out of discrete state GoToBin has a nondetermi­
nistic next state in the sense that we can either transition to PartsBin or Stopped. The
condition for transitioning to the Stopped state is [fh > 1.74] V [01 < -0.17]. This is a
safety condition that is triggered if the arm moves too far (i.e., hits its physical stops). In
this case, we transition to the Stopped state. The Stopped state is a deadlocked state
from which all forward progress in the system ceases. It is labeled with the predicate
[01 =113] /\ [02 =123], which causes both arms to eventually stop their motion.

7.4 HYBRID SPECIFICATIONS

In traditional control systems, design specifications are often captured through perfor­
mance measures such as integrated squared error (ISE) and maximum overshoot. These
performance measures, however, are often inadequate in completely characterizing
what a system designer wants the system to do. It may, for instance, be necessary to
condition system performance on an applied reference signal. A gain-scheduled system
may need to satisfy one bound on its ISE at one setpoint, but it may be acceptable to
relax this performance bound at another operating point. Finally, these traditional
control performance measures do not capture discrete-event system specifications
such as deadlock freedom. The conclusion that must be drawn from these observations
is that traditional control measures, by themselves, are inadequate to completely repre­
sent the performance requirements that occur in many complex engineering systems.

An important aspect of hybrid systems theory involves the development of a
specification framework which more faithfully captures the design requirements for a
complex system. These specification frameworks are also hybrid objects since they
combine traditional control theoretic performance measures with logical constraints
on the system's desired discrete-event behavior. Moreover, the specification framework
must be compatible with the chosen modeling framework (i.e., the hybrid automaton)
in the sense that verifying whether or not a given hybrid system satisfies a hybrid
specification is tractable (i.e., can be determined after a finite number of calculations).
For hybrid automata, several logical specification languages have been proposed. These
languages include the duration calculus [9], ~-temporallogics [10], and timed computa­
tion tree logics [11]. This section shows the reader how hybrid system specifications can
be posed using a timed temporal logic.

A logic may be characterized by its atomic formulas, its syntax, and its semantics.
The atomic formulas are a set of elementary formulas or equations. The logic's syntax is
the set of rules defining how atomic formulas may be combined to form legal formulas
or predicates in the logic. The semantics characterize the meaning of a logical predicate
with respect to a specified/rame. The frame, F, is a set of states through which a system
might evolve (i.e., the hybrid states in our hybrid automaton). The meaning of logical

178 Chapter 7 Supervisory Hybrid Control Systems

formulas is determined by defining the truth values of all logical equations with respect
to the frame states. In particular, if a logical formula p is true with respect to frame state
S E F, then we say that S satisfies p, and we denote this as S FF p where F is the frame
over which S exists. In cases where the frame is clear, we drop the subscript F.

We will consider posing complex system specifications as predicates in a temporal
logic that is an extension of the computation tree logic (CTL) [12]. We refer to this logic
as CTLI. It is an extension of CTL because it simply allows atomic formulas whose
truth values are determined with respect to equations or inequalities on the continuous
state of the hybrid system. Let a(t) be a hybrid system trajectory, the atomic formulas
will take the form [g(x(t» > 0] or [tL(t) = tLo]. The first atomic formula is an inequality
constraint on the continuous value of the hybrid state and was used earlier as a guard
condition in the hybrid automaton. The current hybrid state a(t) is said to satisfy this
formula if the inequality is true for the given state at time t. The second atomic formula
is a specific marking of the network. In this case, the hybrid state at time t satisfies the
predicate if and only if the network's marking at time t equals tLo.

The frame is a hybrid automaton, so no explicit mention of the frame is made
below. The syntax and semantics of CTLI are defined as follows:

SF {::> p is satisfied by state S

SF-'P {::> P is not satisfied by state S

sep 1\ q {::> p and q are satisfied by state S

sFp3Uq {::> there exists a hybrid trajectory a(t) such that

0'(0) = S and a time tl such that

a(t) FP v q for t < tl and a(tl) Fq.

sFpVUq {::> for all hybrid trajectories O'(t) such that 0'(0) = s,

there exists a time t1 such that

a(t)'Fp v q for t < tl and O'(tl)'Fq.

Thus the formula p 1\ q represents our usual notion of logical conjunction, p v q repre­
sents logical disjunction and --.p represents the logical not operation. The other two
formulas, pVUq and p3Uq, have a special meaning that is specific to temporal logics.
These operators provide a way of describing temporal relationships between predicates.
The formula pVUq can be seen as saying that for all hybrid trajectories, predicate p is
true until predicate q is true. The formula p3Uq is the existential formula, meaning that
there exists a trajectory in which p is true until q is true. The formulas VUp and 3Up are
equivalent to [true]VUp and [true]3Up, respectively.

We now present an example illustrating the use of CTLI. In referring to the
example in Figure 7.1, the first requirement is that the system must satisfy a mutual
exclusion requirement. A temporal logic specification capturing this desired constraint
IS

Section 7.5 Hybrid System Analysis 179

This particular specification equation says that for all possible hybrid trajectories, the
computer programs controlling both arms will not enter their critical sections at the
same time. The critical sections are defined by inequality constraints on the absolute
value of the arm angles 01 and O2 in the inertial frame.

Not all solutions to the mutual exclusion problem are equally desirable. An easy
way to guarantee mutual exclusion is to require that the system deadlocks in a safe
state. In other words, if one of the arms stops moving, then we can always ensure that
the other arm accesses the parts bin in a mutually exclusive manner. For this reason, it
is also essential to require that the system be deadlock-free. A system attempting to
enforce a mutual exclusion constraint is deadlock-free if each process in its entry section
is guaranteed of eventually transitioning into its critical section after a finite waiting
time. A weak version of deadlock-freedom may be expressed by the CTLI formula,

[WorkArea]\fU[PartsBin]

This requirement is weak because no constraints have been imposed on the amount
of time before deadlock is broken. A time limit on the duration of deadlock might be
imposed by introducing a clock into the system that measures how long the arm has
been deadlocked. Let Xl denote the state of such a clock, and let's assume the clock is
reset and restarted when the system first marks the vertex WorkArea. In this case, the
following equation provides a useful characterization of the deadlock-freedom require­
ment,

[WorkArea]\fU[[PartsBin] 1\ [Xl < c]]

The specification is requiring that all trajectories starting in WorkArea enter PartsBin
in less than c time units.

The particular logic used here, however, is extremely simple, and no attempt has
been made to formulate a complete logic. Considerable work is still being done to
investigate specification logics for hybrid systems. This chapter has only presented
some of the basic principles and ideas behind using logics to formally specify hybrid
system behavior. The interested reader is referred to [9-11].

7.5 HYBRID SYSTEM ANALYSIS

The analysis problem asks whether or not the model satisfies the specification. Solving
this problem involves identifying sufficient or necessary and sufficient tests for satisfia­
bility of the specification with respect to the assumed model (a hybrid automaton).
Necessary and sufficient tests are often referred to as verification tests, whereas merely
sufficient conditions are often referred to as validation tests. Verification methods have
been studied extensively by computer scientists interested in extending symbolic model
checking to real-time systems.

Validation methods are frequently used in the control systems community where it
is often impractical from a computational standpoint to verify system properties such as
stability and robust performance. In both cases, we are concerned with determining
whether there exists a set of initial conditions from which there emanate trajectories

180 Chapter 7 Supervisory Hybrid Control Systems

satisfying the formal specification. This section overviews recent progress in our under­
standing of verification and validation problems in hybrid systems analysis.

The greatest progress appears to have been made in the verification of tem­
poral logic specifications for restricted classes of hybrid automata. These verifica­
tion methods are an extension of symbolic model checking (SMC), a commercially
successful approach used in checking the correctness of large-scale synchronous
digital circuits. This work [11, 13] attempts to extend symbolic model checking
to real-time systems.

Model checking in hybrid automata is based on an extension of symbolic model
checking for digital circuits. A full discussion of symbolic model checking is beyond the
scope of this chapter, but a simple example will serve to illustrate the basic principle.

Let's consider the finite state machine shown in Figure 7.2 and the CTL predicate,

p = 3U[PartsBin]

This CTL specification asks us to identify all discrete states from which there exists a
state trajectory eventually ending up in the parts bin, PartsBin.

Now consider a sequence of sets, ni , for i = 0, 1, 2, The first set, no, consists of
all those discrete states for which the predicate p in the CTL formula 3Up is true. In this
case, we see that no = {PartsBin}. The next set, nb is generated by the relation

where the set n consists of the preset of all vertices in Qo. This preset represents those
discrete states from which there exists at least one trajectory reaching Qo. In this case,
we see that

Q 1 = {GoToBin, PartsBin}.

We repeat the above iteration until, in the ith iteration, we compute all of those
discrete states that can reach no after i steps. The first observation that can be made
about this iteration is that it is monotonic, since ni ~ Qi+l. The second observation is
that because the state machine has a finite number of vertices, we are guaranteed that
there exists some j such that nj = nk for all k 2:j. In other words, the iteration has a
fixed point, which we denote as n. This fixed point represents all the discrete states of
the system satisfying the CTL formula 3Up. Moreover, this fixed point can be identified
after a finite number of iterations, so the fixed point is computable. In this example, the
fixed point is the set

n = {PartsBin, WorkArea, GoToBin, LeaveBin}.

Figure 7.4 illustrates the basic steps in this iteration leading to the final determina­
tion of the fixed point. This figure shows each set of states in the sequence ni . This set
consists of all discrete states that can reach a discrete state satisfying the predicate p in
CTL formula 3lAp. Thus the iterative procedures used in symbolic model checking are
essentially solving reachability problems over the discrete-event system's state space.
The specification 3Up is then verified by comparing this fixed point against the initial

Section 7.5 Hybrid System Analysis 181

---. ---. ---.
o, = {V3} Q I = Pre{Qo}= {V2' V3} Q2 = Pre{Qd = {vI' V2' V3} Q3 = Pre{Q2} = {Vb V2' V3' V4}

Figure 7.4 Model checking iteration.

starting states for our system. If the starting states are contained within this fixed point,
then the specification can be considered to be verified.

Extending SMC methods to hybrid systems involves solving the reachability pro­
blem for both continuous and discrete system states. As before, let's consider the
verification of the CTL formula 3Llp where p = [PartsBin]. The SMC method
described earlier identifies those discrete states that can reach the parts bin solely on
the basis of the connectivity between logical states in the network. The enabling and
firing of arcs in hybrid automata, however, are also conditioned on satisfaction of the
guard equation labeling the arc in question. This implies that although connectivity
between discrete states is certainly necessary for reachability, it is by no means suffi­
cient. To fire the arc between the discrete states GoToBin and PartsBin, we must also
ensure that the continuous state 01 satisfies the guard condition, 1011 < 0.1. Extensions
of SMC methods to hybrid systems must therefore determine methods for computing
subsets, S, of continuous states that allow the firing of the arc.

These subsets can be computed using a recursive procedure similar to that used in
traditional SMC methods. This recursive procedure computes a sequence of discrete
sets Qi and continuous sets Si' The initial set 8 0 consists of all continuous states
satisfying the guard conditions on the vertices marked by Qo. Unlike traditional
model checking, however, there is no guarantee that the sequence of continuous state
subsets Si will ever converge to a fixed point after a finite number of steps. This last
point concerning the nonfinite nature of the computation highlights one of the weak­
nesses of model-checking methods as applied to hybrid systems. Since the computation
may not terminate in a finite number of steps, the computation of these reachable sets is
not decidable [14].

The decidability of the verification problem for hybrid systems has been an impor­
tant issue driving a great deal of current work. In general, verification problems for
hybrid automata are undecidable. Restricted classes of rectangular hybrid automata,
however, have been shown to be decidable. Yet for minor perturbations of these
restricted classes, decidability can be lost. The primary obstacle in establishing the
decidability of hybrid systems rests with the fact that the precursor operation for
determining S may not converge. In particular, it was implied in [14] that the decid­
ability boundary for hybrid systems may well rest with rectangular hybrid automata.

The preceding discussion has focused on algorithmic verification methods. These
methods search through the state space of the system in order to verify a given speci­
fication. In concurrent systems, however, the number of states grows exponentially with
the number of concurrent processes. As a result, algorithmic model-checking methods
are frequently impractical for highly concurrent systems. One way around this limita-

182 Chapter 7 Supervisory Hybrid Control Systems

tion is to use deductive verification tools [15-16]. Deductive verification uses automated
theorem-proving techniques to deduce the satisfiability of the specification. The sym­
bolic model-checking methods are often referred to as automatic verification methods
because they require little user intervention. Deductive verification, however, often
requires some set of heuristics or user input to help guide the proof process.

In view of the undecidability of verification problems for many hybrid systems, it is
natural to ask whether or not we should relax our demands and settle for validation
tests. Recall that validation only requires finding sufficient conditions for a specifica­
tion's satisfiability. The hope, of course, is that the sufficient condition is easier to
compute and yet is sufficiently tight to be useful. The use of sufficient conditions in
control theory has a long history. A number of fundamental control problems can be
shown to be undecidable, but this fact has not prevented the development of sufficient
methods that are still very useful.

An example of a useful sufficient test can be found in Lyapunov's second method.
This method provides a sufficient test for system stability and serves as the basis for a
number of analysis and synthesis methods in control theory. Given a dynamical system
x=I(x) with state trajectories x(t), we say that Xo is an equilibrium point if and only if
f(xo) = O. The equilibrium point is stable in the sense of Lyapunov if for all E > 0 there
is a 8 > 0 such that IIx(O)1I < 8 implies IIx(t)1I < E for all t 2:: O. Lyapunov's method
states that if there exists a positive definite functional V: mn

~ msuch that V(xo) =
oand V(x(t)) < 0, then the equilibrium point is Lyapunov stable. Lyapunov methods
are well known to only provide sufficient tests for system stability (though converse
results exist for linear systems). Despite this shortcoming, Lyapunov methods are still
an extremely useful tool in the study of nonlinear dynamical systems.

Given the importance of Lyapunov methods, it is not surprising to find a variety of
results on the Lyapunov stability of hybrid systems. Recall that a switched system
consists of a collection of continuous systems x=fi(x). The hybrid system switches
between these continuous subsystems on the basis of a supervisory control logic.
Assuming that system switching is non-Zeno, for the jth mode, we can identify a
collection of closed bounded time intervals over which that system is active. Figure
7.5 illustrates one such hybrid system trajectory and identifies the set of disjoint time
intervals over which the first mode is active. Assuming there are N systems to switch
among, we associate a function "V.i (j = 1, ... ,N) with thejth subystem. We say that this
family of functionals is Lyapunov-like if "V.i(x(t)) is decreasing over the intervals in which
the jth mode is active. Figure 7.5 illustrates a set of Lyapunov-like functionals for this
particular system. The result in [17] states that if there exists such a family of Lyapunov­
like functions, then the switched system is stable in the sense of Lyapunov. Note that in
this result, there can be discontinuous jumps in the value of "V.i(t) between different
modes. Extensions of this approach will be found in [18], and methods for constructing
such Lyapunov functions will be found in [19-22].

Although extensions of Lyapunov methods provide considerable insight into vali­
dating hybrid system stability, these methods can also be used to validate temporal
logic specifications regarding a hybrid system's deadlock freedom [23]. If we look at the
level curves of the Lyapunov function, it should be apparent from the negative definite
nature of V that these sets are invariant with respect to a cycle of discrete events. By
invariance, we mean that if the continuous state starts in that set, then repeated appli­
cation of the cycle of events will always return to the same set. These sets are sometimes
referred to as viability kernels [24]. Recall that the extension of the SMC iteration to

Section 7.6 Hybrid Control System Synthesis 183

~(x(t»

il i2 i4 Time

i j = switching times

Figure 7.5 Switched Lyapunov system.

, , ,
\
\,,,,

J

"

hybrid automata required computing a set 8 which is a fixed point of a recursion. The
recursion is computing the sets that can be reached from an initial state, and the fixed
point of this recursion (if it exists) is precisely the invariant set which the Lyapunov
analysis attempts to approximate. In this regard, therefore, Lyapunov methods provide
a useful tool for hybrid system validation as well as traditional stability analysis.

7.6 HYBRID CONTROL SYSTEM SYNTHESIS

Verification/validation methods are analysis methods concerned with determining
whether a system is capable of meeting a logical specification. When the verification
method shows that the specification is infeasible, then we need to consider the use of
controllers enforcing the specified behavior. In this context, we need to develop synth­
esis methods for hybrid control systems.

Probably the first issue to be dealt with concerns precisely what is a hybrid control
system. As introduced earlier, a hybrid system is a system generating a mixture of
discrete- and continuous-valued signals. A controller for this system may be viewed
in a number of ways. Consider a hybrid plant with two sets of inputs and outputs. The
inputs are categorized as continuous and discrete (u(t) and u(t), respectively), and the
outputs also possess a discrete and continuous nature. A hybrid control system is
formed when another system (which mayor may not be hybrid) is connected to the
plant in a way that regulates the plant's output behavior in a specified manner. In
particular, we want our hybrid control system to enforce performance specifications
that are posed as a formula in a hybridized temporal logic.

As shown in Figure 7.6, we can consider three distinct types of hybrid control
system topologies. These topologies represent three different viewpoints of hybrid con­
trol. The controller, for instance, can be viewed as a discrete-event supervisor, a con­
tinuous system controller, or a true hybrid feedback controller. An example of the first
viewpoint will be found in [6]. In this case, the controller is a logical discrete-event
system that is designed to prevent the discrete state from transitioning to some illegal
value. In the second case, we adopt the robust control viewpoint in which discrete-event
switching leads to perturbations of the continuous-time plant. The objective is then to

184 Chapter 7 Supervisory Hybrid Control Systems

Hybrid
plant

Continuous
controller

y

u

DES
controller

Hybrid
plant

'-------y

u y
Hybrid
plant

u y

Hybrid
controller

Continuous controllertreats
discrete-event part of system

as a disturbance.

DES controllerdisables"bad"
eventsto regulateplant

performance.

Hybridcontrolleruses discrete­
eventand continuous outputs

fromplant to regulatehybridplant.

Figure 7.6 Hybrid control system topologies.

design a controller that ensures robust performance of the continuous variable subsys­
tem over all possible switching events. Some details on this viewpoint to hybrid control
can be found in [25]. The third viewpoint attempts to treat the continuous and discrete
characters of the plant with an even hand and therefore requires the development of a
truly hybrid controller. This approach to hybrid control system synthesis, however, is
still relatively novel, and we will briefly outline it in more detail.

Hybrid controllers accept hybrid-valued inputs and produce hybrid-valued out­
puts. Because the controller is hybrid, it allows the designer greater flexibility in coor­
dinating the behavior of the discrete and continuous parts of the system. The topology
of this hybrid control system is shown in Figure 7.6 (right). As a concrete example, let's
consider the robotic system of Figure 7.1. The plant in this case is a dynamical system
whose continuous states 01 and O2 are governed by a pair of differential equations in
Eqs. (7.3)-(7.4). The constraint on arm movement (Eq. 7.5) introduces a hybrid nature
into the system. In addition, we have also included mechanical stops that prevent the
arms from moving beyond a certain range. These constraints are of the form

-0.17 < 01 < 1.74

-1.74 < O2 < 0.17

This plant, therefore, generates two types of outputs; a discrete-valued output indicat­
ing when the system's mechanical stops have been reached and a continuous-valued
output consisting of the angles that each robotic arm makes with respect to the parts
bin. Our hybrid controller has access to these two types of signals.

The controller for this system is represented by the automaton in Figure 7.3, and
since this is a hybrid automaton, the controller is itself a hybrid system. The discrete­
valued events indicating when the arms have encountered their mechanical limits is used
to transition the controller's discrete state to the Stop vertex representing the error
condition, ERR. The continuous-valued signals 01 and O2 are used in the automaton's
guard and switching conditions. As used in the guard conditions, these continuous­
valued signals determine the type of feedback that guides the robotic arms to their
desired positions. We therefore see that hybrid automata provide a convenient structure
for the modeling of both the hybrid plant and the hybrid controller. In this particular
example, the discrete control involves the determination of those control structures (i.e.,

Section 7.7 Summary 185

the locking variable mutex), which help ensure mutual exclusion as well as the con­
troller parameters (i.e., the control gains k) that control the commanded arm's move­
ments. Hybrid control system synthesis is concerned with developing automatic
methods for the simultaneous determination of both the control switching logic and
the continuous-valued controllers.

The preceding example outlines the hybrid controller framework. The development
of a systematic design methodology for such controllers is an intensive area of research.
There is insufficient space in this introductory chapter to discuss hybrid controller
synthesis in any detail. Recent approaches include gain-scheduling [26, 27], formal
power series methods [28], game-theoretic formulations [29], the use of verification
tools [30], and Horn clause logical control [31]. The interested reader is referred to
the References for further study.

7.7 SUMMARY

This chapter has provided an introduction to many of the concepts and trends in hybrid
systems science. Hybrid systems science is an interdisciplinary field requiring familiarity
with methods and concepts from computer science and traditional systems science.
Because of the introductory nature of this chapter, it was impossible to itemize all of
the important work being performed. Much of the work outlined here will be found in a
series of workshop proceedings published by Springer-Verlag [32-38] as well as numer­
ous other workshops and various special issues of technical journals (Theoretical
Computer Science, IEEE Transactions on Automatic Control, Discrete Event Dynamic
Systems, International Journal of Control, System and Control Letters, Automatica).
There have recently been significant applications of these methods in traffic control
[39], automotive systems [40], and chemical process control [41]. All of these accom­
plishments point to a science that shows excellent potential for having a profound
impact on the way we design and develop the engineering applications of the future.

Hybrid systems science is far from a mature field. This chapter summarizes a recent
synthesis of computer science and systems science methods and a number of open
questions remain. One of the predominant issues concerns computational complexity.
As noted earlier, algorithmic model checking can be computationally intensive.
Recursive computation of the viability kernel is not guaranteed to converge, and the
finite state machine formalism suffers from state explosion problems when dealing with
highly concurrent systems. Other open issues in hybrid systems concern synthesis and
identification issues. Although a variety of frameworks have been proposed for hybrid
control system synthesis, no universal agreement has formed concerning the best
approach to follow. Additional work is needed in determining the role of Zeno-type
or sliding-mode control in hybrid system supervision. Finally, it should be noted that
very little attention has been paid to the issue of hybrid system identification and event
detection.

Finally, hybrid systems theory is a highly interdisciplinary field requiring a famil­
iarity with methods and concepts from computer science and traditional systems
science. Current engineering curricula, however, often emphasize one or the other set
of mathematical tools, thereby handicapping many engineers in their study of this field.
A crucial prerequisite for the application of hybrid system methods will require an
engineering education that embraces both discrete and continuous mathematics. The

186 Chapter 7 Supervisory Hybrid Control Systems

need for such a shift in engineering education has already been recognized by some of
the more progressive elements of the academic community, and it can be expected that
future graduates from these engineering schools will be well versed in hybrid aspects of
the systems sciences.

ACKNOWLEDGMENTS

The partial financial support of the Army Research Office (DAAH04-96-10285 and
DAAG5-98-1-0199) is gratefully acknowledged.

Related Chapters

• Chapter 1 includes a discussion of real-time programming for control systems, one
application area for hybrid automata.

• An introduction to discrete-event systems can be found in Chapter 2.
• Variable structure control, the topic of Chapter 8, is another prominent type of hybrid

control scheme.
• Additional types of system models, including other compositional models, can be found

in Chapter 4.

REFERENCES

[1] J. P. Aubin and A. Cellina, Differential Inclusions. Berlin: Springer-Verlag, 1984.
[2] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, "Variable structure control of nonlinear

multivariable systems: a tutorial." Proceedings of the IEEE, Vol. 76, no. 3, March 1988.
[3] K. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer Academic, 1993.
[4] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Po, "Hybrid automata: An algorith­

mic approach to the specification and verification of hybrid systems." In R. L. Grossman, A.
Nerode, A. P. Ravn, and H. Rischel (eds.), Hybrid Systems, Lecture Notes in Computer
Science, Vol. 736, pp. 209-229. New York: Springer-Verlag, 1993.

[5] M. S. Branicky, "Studies in Hybrid systems: Modeling, analysis, and control." LIDS-TH­
2304, Ph.D. Dissertation, Massachusetts Institute of Technology, LIDS, 1995.

[6] J. A. Stiver, P. J. Antsaklis, and M. D. Lemmon, "A logical DES approach to the design of
hybrid control systems." Mathematical Computer Modeling, Vol. 23, nos. 11/12, pp. 55-76,
1996.

[7] J. LeBail, H. AHa, and R. David, "Hybrid petri nets." Proceedings 1st European Control
Conference, Grenoble, France, 1991.

[8] R. Gallmeister, POSIX.4, Programming for the Real World. O'Reilly and Associates, 1995.
[9] C. Zhou, "Duration calculi: An overview." In Bjorner, Broy and Pottosin (eds.), Proc.

Formal Methods in Programming and Their Application. Lecture Notes in Computer
Science, Vol. 735, pp. 256-266. New York: Springer-Verlag, 1993.

[10] R. Alur, C. Courcoubetis, and D. Dill, "Model checking in dense real time." Information and
Computation, Vol. 104, pp. 2-34, 1993.

[11] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, "Symbolic model checking for real­
time systems." Information and Computation, Vol. 111, pp. 193-244, 1994.

References 187

[12] E. M. Clarke and E. A. Emerson, "Synthesis of synchronization skeletons for branching
time temporal logic." Logic ofPrograms. Lecture Notes in Computer Science,Vol. 131,New
York: Springer-Verlag, 1981.

[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, "A user's guide to HyTech." First Workshop
on Tools and Algorithms for the Construction and Analysis of Systems: TACAS94. Lecture
Notes in Computer Science, Vol. 1019, pp. 41-71. New York: Springer-Verlag, 1995.

[14] T. A. Henzinger, P. Kopke, A. Puri, and P. Varaiya, "What's decidable about hybrid
automata?" Proc. of the 27th Annual ACM Symposium on the Theory of Computing, 1995.

[15] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety. New York:
Springer-Verlag, 1995.

[16] Z. Manna and H. Sipma, "Deductive verification of hybrid systems using STeP." In Hybrid
Systems: Computation and Control, Vol. 1386, LNCS, New York: Springer-Verlag, 1998.

[17] M. S. Branicky, "Multiple Lyapunov functions and other analysis tools for switched and
hybrid systems." IEEE Trans. on Automatic Control, Vol. 43, no. 4, pp. 475--482, April 1998.

[18] L. Hou, A. N. Michel,and H. Ye, "Stability analysis of switched systems." Proceedings ofthe
35th IEEE Conference on Decision and Control, Kobe, Japan, 1996.

[19] M. Johansson and A. Rantzer, "Computation of piecewise quadratic Lyapunov functions
for hybrid systems." IEEE Transactions on Automatic Control, Vol. 43, no. 4, pp. 555-559,
1998.

[20] C. A. Yfoulis, A. Muir, N. B. O. L. Pettit, and P. E. Wellstead, "Stabilization of orthogonal
piecewise linear Lyapunov-like functions." Proc. of the IEEE Conference on Decision and
Control, December 1998.

[21] A. Hassibi and S. Boyd, "A class of Lyapunov functionals for analyzing hybrid dynamical
systems." Proc. of the American Control Conference, February 1999.

[22] K. X. He and M. D. Lemmon, "Lyapunov stability of continuous valued systems under the
supervision of discrete event transition systems." Hybrid Systems: Control and Computation.
Lecture Notes in Computer Science Vol. 1386, New York: Springer-Verlag, 1998.

[23] K. X. He and M. D. Lemmon, "Using dynamical invariants in the analysis of hybrid
dynamical systems." Proceedings of the IFAC World Congress, Beijing, 1999.

[24] A. Deshpande and P. Varaiya, "Viable control of hybrid systems." In P. J. Antsakis, W.
Kohn, A. N. Nerode, and S. Sastry (eds.), Hybrid Systems II, Lecture Notes in Computer
Science, Vol. 999, pp. 128-147. New York: Springer-Verlag, 1995.

[25] A. S. Morse, Control Using Logic Based Switching, Lecture Notes in Control and
Information Sciences, Vol. 222. New York: Springer-Verlag, 1997.

[26] C. J. Bett and M. D. Lemmon, "Bounded amplitude performance of switched LPV systems
with applications to hybrid systems." Automatica, Vol. 35, pp. 491-503, 1999.

[27] M. D. Lemmon and C. J. Bett, "Safe implementations of supervisory commands."
International Journal of Control, Vol. 70, no. 2, pp. 271-288, 1998.

[28] A. Nerode and W. Kohn, "Multiple agent hybrid control architecture." In R. L. Grossman,
A. N. Nerode, A. P. Ravn, and H. Rischel (eds.), Hybrid Systems, Lecture Notes in
Computer Science, Vol. 736, pp. 297-316. New York: Springer-Verlag, 1993.

[29] J. Lygeros, C. Tomlin, and S. Sastry, "Multiobjective hybrid controller synthesis." Proc.
Hart'97, 1997.

[30] H. Wong-Toi, "Synthesis of controllers for linear hybrid automata." Proceedings of the 36th
IEEE Conference on Decision and Control, San Diego, California, 1997.

[31] A. Bemporad and M. Morari, "Control of systems integrating logic, dynamics, and con­
straints." IFA Technical Report A UT-98-04, Institut fur Automatik, Swiss Federal Institute
of Technology. Also in Automatica, Vol. 35, pp. 407--428, 1999.

[32] R. L. Grossman, A. N. Nerode , A. P. Ravn , and H. Rischel (eds.), Hybrid Systems. Lecture
Notes in Computer Science, Vol. 736. New York: Springer-Verlag, 1993.

[33] P. J. Antsakis, W. Kohn, A. N. Nerode, and S. Sastry (eds.), Hybrid Systems II. Lecture
Notes in Computer Science, Vol. 999. New York: Springer-Verlag, 1995.

188 References

[34] R. Alur, T. A. Henzinger, and E. D. Sontag (eds.), Hybrid Systems III; Verification and
Control. Lecture Notes in Computer Science, Vol. 1066. New York: Springer-Verlag, 1996.

[35] P. J. Antsaklis, W. Kohn, A. N. Nerode, and S. Sastry (eds.), Hybrid Systems IV. Lecture
Notes in Computer Science, Vol. 1273. New York: Springer-Verlag, 1997.

[36] P. J. Antsaklis, W. Kohn, M. D. Lemmon, A. N. Nerode, and S. Sastry (eds.), Hybrid
Systems V. Lecture Notes in Computer Science, Vol. 1567. New York: Springer-Verlag,
1999.

[37] T. A. Henzinger and S. Sastry (eds.), Hybrid Systems: Control and Computation, Lecture
Notes in Computer Science, Vol. 1386. New York: Springer-Verlag, 1998.

[38] O. Maler (ed.), Hybrid and real-time systems: Hart '97. Lecture Notes in Computer Science,
Vol. 1201. New York: Springer-Verlag, 1997.

[39] C. Tomlin, G. Pappas, and S. Sastry, "Conflict resolution for air traffic management: a
study in multiagent hybrid systems." IEEE Trans. ofAutomatic Control, Vol. 43, no. 4, 1998.

[40] B. Lennartson, M. Tittus, B. Egardt, and S. Petterson, "Hybrid systems in process control."
Control Systems Magazine, Vol. 16, no. 5, pp. 45-56, 1996.

[41] R. Balluchi, M. De Benedetto, C. Pinello, C. Rossi, and A. Sangiovanni-Vincentelli,
"Hybrid control for automotive engine management: The cut-off case." In T. A.
Henzinger and S. Sastry (eds.), Hybrid Systems: computation and control, Lecture Notes
in Computer Science, Vol. 1386. New York: Springer-Verlag, 1998.

Chapter

8
VARIABLE STRUCTURE AND
SLIDING-MODE CONTROL

Fumio Hamano and Younchan Kim

Editor's Summary

Control design is often construed as an activity directed toward the development of a single controller for

a given system. This is a limiting perspective, however. In many control applications, changes in controller

structure, including discrete jumps in parameter values, are necessary: manual-to-automatic startups and

gain scheduling are common examples. Furthermore, switching between two controllers can lead to higher

performing control loops than if either of the controllers is used exclusively, and such switching can

stabilize a loop that is unstable with either controller.

Chapter 7 discussed one important class of variable structure control: supervisory hybrid control

systems. This chapter focuses on another: sliding-mode control. An important difference between the two

is that hybrid control often assumes that the system to be controlled is subject to uncontrolled structural

variations, whereas sliding-mode control uses controlled structural variation (i.e., switching) as an integral

part of a control mechanism. Here, different control laws are used depending on whether the state is on

one side of a (hyper-)surface ("switching surface") or on the other. In either case, the control causes the

state to move toward the surface. Once the surface is reached, the same pair of control laws attempts to

keep the state on it-the surface is chosen so that the state then naturally slides toward the target point.

The resulting control is robust and invariant; that is, the desired performance is maintained in the presence

of a class of uncertainties and disturbances.

This chapter provides a technically and mathematically detailed, yet accessible, tutorial on sliding­

mode control, starting with some motivating illustrations. For ease of exposition, the initial discussion is

limited to single-input single-output systems. Modifications to the basic algorithms are then noted that can

handle uncertainty in the system model and that can prevent chattering in the control signal. The general

multivariable case is also treated in detail, and issues related to sampled data control systems are discussed.

Fumio Hamano is both a professor and chair of the Department of Electrical Engineering at

California State University, Long Beach, and the chair of the Technology Review Subcommittee of the

IEEE Control Systems Society. Younchan Kim is a Ph.D. candidate in the Department of Electrical

Engineering at the same institution.

8.1 INTRODUCTION

This chapter deals with control systems for which the structure of the control law may
change (e.g., jump of controller parameter values, change of the form of the function)
during the course of action in accordance with the state, output, or error measurement.
Such systems are generally referred to as variable structure control systems. The

189

Section 8.1 Introduction 191

on a simple measure, that is, the distance of the state from the sliding surface. As a
result, it is relatively easy to design the control law to compensate for modeling uncer­
tainties and disturbances; that is, the control can be made robust without much diffi­
culty. In addition, since the sliding surface does not change with the presence of
modeling errors and disturbances, the system behavior does not change (at least ideally)
once the state is on the surface (i.e., the control is invariant). Robustness and invariance
are important properties of sliding-mode control.

Sliding mode control may require infinitely fast switching. Therefore, in practice,
we can only use the method approximately. The approximation should, however, be
used with care as demonstrated in the following example [27]. Figure 8.2 depicts the
responses of the system described by Xl = 0.3X2 + UXb X2 = -0.7XI + 4u3xb and U=
-sgn{Xl (Xl + X2)} when the sgn function (Figure 8.3(a)) is approximated by (i) hyster­
esis with e = 0.01 (Figure 8.3(b)), and by (ii) saturation with e = 0.01 (Figure 8.3(c)).
The trajectory converges to the neighborhood of the origin for case (i), and it diverges
for case (ii).

The theoretical issues of existence and uniqueness of a solution for a differential
equation describing a system under sliding-mode control cannot be treated within the
conventional framework based on piecewise continuity and Lipschitz condition, and
will not be discussed here. Interested readers should refer to the theory of differential
equations with a discontinuous righthand side due to Filippov [13], which approximates
the function at the discontinuity by "averaging." For brief explanations, the reader
should see [4, Chapter I], [7], [8], [27], for instance.

Because of the "nonideal" aspects of physical systems such as hysteresis and delay,
the fast oscillation (but at a finite frequency) called chattering may occur in practice.
(See the trajectory for the system with the hysteresis in Figure 8.2.) How to eliminate
chattering will be discussed at the ends of Sections 8.2 and 8.3. The use of computers in
control systems results in sampled-data (or hybrid) systems in which both discrete- and
continuous-time elements are present. Such systems will be discussed in Section 8.4.

Or-------r---r---....------.--"....--r---...--_

-0.5

x2
Hysteresis

-1

<,
-1.5

0 0.2 0.4 0.6 0.8 1.2 1.4
Xl

Figure 8.2 System responses with approximations by hysteresis and saturation.

192 Chapter 8 Variable Structure and Sliding-Mode Control

sgny

11-----

o

(a)

y

e
..... 1
.....

l

0 E Y

...
-1

r'

(b)

sat ~
E

(c)

y

Figure8.3 (a) Signum sgn y. (b) Hysteresis hys ? (c) Saturation sat?

Sliding-mode control was pioneered in the Soviet Union in the 1950s, initially for
second-order continuous-time linear systems [4, Chapter 1], [12]. The method has been
extended to deal with various types of systems, such as multi-inputjmulti-output, dis­
crete-time, nonlinear, distributed, linear parameter-varying, and stochastic systems [7],
[19], [24]. A variety of applications of sliding-mode control have also appeared in the
literature. (See, for instance, [6, Chapter 7], [7], [19], [23], [26], [27], and [30].) Sliding­
mode control has been implemented in real systems (experimental, prototype, and
factory systems), and its practicality and effectiveness have been reported. The reader
interested in practical implementations of sliding-mode control may refer to [7, Chapter
18] for controlling electric drives used for machine tools, vehicle control, and process
control; [17], [21], and [22] for position servo systems; [29] for underwater vehicle
control; [18] and [25] for robot control; [24] for controlling an active magnetic bearing
system; [16] for magnetic servo levitation; and [28] for mobile robot control.

Notation: The small letters x, Xi, a, b.f, A, etc., denote vectors, scalars, or vector- or
scalar-valued functions. The capital letters A, B, G, K, etc., possibly with subscripts,
denote matrices, matrix-valued functions, and sets (with the exceptions given below). If
A is a matrix, A I denotes the transpose of A. To simplify the notation, the letters X, Xi'
etc., are used in place of x(t), Xi(t), etc., with a slight abuse of notation except when the
latter notation is desirable for clarity. The letters V, R, R+, and t are reserved for the
following quantities: V is used for a particular scalar valued function (Lyapunov func­
tion), R denotes the set of all real numbers, R+ stands for the set of nonnegative
numbers, Rk is the set of all real vectors of dimension k (interpreted as column vectors
unless otherwise specified), and t denotes time. In addition, M and J are used for mass
and moment of inertia. "Expression 1 := expression 2" (or "expression 1 =: expression
2") stands for "expression 1 is defined by expression 2" (or, respectively, "expression 2
is defined by expression I.") If X is a function of t, then x := ~x, the derivative of X with
respect to t. In case X is a vector-valued function, the derivative operates on each

Section 8.2 Basic Idea of Sliding-Mode Control 193

element of x. The function sgn is the signum function, that is, sgn s = 1 if s > 0 and sgn
s = -1 if s < O. The symbol E means "belongs to" or "an element of'; for example, x E

Rk indicates that x is an element of Rk (i.e., x is a real vector with dimension k). If
x E Rk

, then IlxlI stands for the Euclidean norm of x, and IIxlloo is the sup norm of x,

i.e., IIxlloo := maxlx.] where Xi is the ith element of x.
i

8.2 BASIC IDEA OF SLIDING-MODE CONTROL

In this section we examine a single-input second-order system with sliding-mode control
to illustrate the basic mechanism of sliding-mode control.

8.2.1 Tracking Problem and Tracking Error
Dynamics

Let us consider the following tracking problem. The plant to be controlled is
described by the equations

Xpl = Xp2

Xp2 =h2(XpI' Xp2) + u + d

where xpl, Xp2, U, and d are real-valued functions of time t E R+, andh2 is a real-valued
function of two variables. The functions xpl and Xp2 are state variables, and u and d
represent, respectively, the control input and unknown external disturbances. We wish
to design a control law u so that Xpl and x p2 closely follow (or converge to) a given
reference trajectory (Xrl' Xr2) where Xr1 = Xr2. Defining the tracking errors Xi by

Xi := Xpi - Xri' i = 1,2,

and using the plant equations, we obtain the state equations for the tracking errors

Xi =X2

X2 =h2(XpI' Xp2) - Xr2 + u + d

=h2(XI + Xr1, X2 + Xr2) - Xr2 + u + d.

Since xr;'s and xr;'s are given functions of t, we will write

- -
f2(xI, X2, t) :=h2(XI + Xrl, X2 + Xr2) - Xr2·

Then, Eq. (8.2) becomes

(8.1)

(8.2)

(8.3)

The problem therefore reduces to that of finding a proper control law so that Xl

converges to zero (for i = 1,2) for the system described by Eqs. (8.1) and (8.3). In
practice,h2' and so,h, may not be accurately modeled. Therefore, we should write h2 =
h2 + Llh2 and 12 =/2 + Ll/2 whereh2 and/2 =h2 - Xr2 are known functions (i.e., the

194 Chapter 8 Variable Structure and Sliding-Mode Control

estimates ofh2 and h) and f:,./P2 and f:,.!2 represent modeling uncertainties. For read­
ability, we defer the consideration of the uncertain terms until Section 8.2.5, and we will
first discuss the above problem with the assumption that the uncertainties t1/P2' t112'
and d are zero. Thus we consider the system described by Eqs. (8.1) and (8.3) with the
assumptions h =12 (known) and d = O. To solve the above problem, we first select a
line S in the state space of the system given by Eqs. (8.1) and (8.3). (In higher-order
systems, we deal with a hypersurface instead of a line. This line or surface will become a
sliding surface with a proper control law.) The line S must be well-behaved so that state
trajectories confined in S are convergent to zero. We then design a controller to bring
the state (Xl(t), X2(t)) to S in finite time if the initial state (Xl(to), X2(tO)) is off the line S
and to force the state to stay on S once it is on S.

8.2.2 Choosing a Sliding Surface (or Line)

To be specific, let S be a function defined by

(8.4)

where A is a positive number. We define a line S in the (Xl, x2)-space by the equation

S=O. (8.5)

That is, we define S:= {x E R2Is(XI, X2) = OJ. Notice that it is important to choose
A > O. In fact, since Xl = X2, S = 0 means

Therefore, Amust be positive for Xl to converge to zero if the trajectory is confined to S.
The function X2 then converges also to zero by Eqs. (8.4) and (8.5).

8.2.3 Control Law to Confine the State on the
Sliding Surface

Suppose that the state (Xl(t), X2(t)) is on S at time t. In order for the state to remain
on S, the time derivative of S evaluated along the trajectory of (Xl, X2) must be zero, that
is, S = ~S(XI' X2) = O. By Eqs. (8.1), (8.3), and (8.4),

(8.6)

Let

(8.7)

and select u by

u = ueq.

Then it is trivial to see s= O. The control law ueq is called equivalent control (meaning
that without uncertainties and disturbances it leads to a motion along the sliding sur­
face S, and thus is equivalent to the robust controller to be designed later).

Section 8.2 Basic Idea of Sliding-Mode Control 195

8.2.4 Control Law for Reaching the Sliding Surface
(and Staying on It)

The state space is divided into two half spaces by S: One half of the space is
characterized by s > 0, and the other half corresponds to s < O. The magnitude lsi =
Is(xI' x2)1 is a measure of the distance of (Xl, X2) from S. Suppose that (Xl, X2) is not on
S. To move the state (Xl, X2) toward the sliding surface, we choose the control U so that
the value of lsi decreases and will vanish in a finite time, more specifically,

s ::s -ex < 0

s2::ex>O

if S > 0,

if S < 0

(8.8)

(8.9)

for all t 2:: 0 where ex is a positive number. Let to be the initial time, and also let tI be the
time at which the state reaches the sliding surface. Then, clearly,

(8.10)

To find a desired control law, suppose s > O. From Eqs. (8.6) and (8.7), it is easy to see
that the control law

U = ueq - ex

leads to s = -(1. Thus Eq. (8.8) is satisfied. Similarly, for s < 0, the control law

U = ueq + ex

results in s= ex, and Eq. (8.9) holds. Combining the above two control laws, we obtain

U = ueq - ex sgn s. (8.11)

Remark. The above control law applies not only to reaching the sliding surface
but also to staying on the surface since the switching term in Eq. (8.11) forces the state
to go back to the sliding surface if it deviates from the surface.

8.2.5 Robust Sliding-Mode Control

In this section we deal with the case where the uncertain functions ~/P2' tif2' and d
may be nonzero. We assume that these functions are bounded by known functions.
Thus let

for all Xl, X2 E R, and t E R+ where p is a known continuous function. (The condition
will be generalized in Section 8.3.) It is easy to modify the control law discussed in
Section 8.2.4 to accommodate the above uncertainties. For this, recalling Eqs. (8.7) and
(8.11), let

U == ueq - ex sgn s + v (8.12)

196 Chapter 8 Variable Structure and Sliding-Mode Control

Note that the first two terms in the righthand side of this equation produce a proper
control when the uncertainties M2 and d are not present. We will choose v to overcome
the effect of the uncertainties. Recalling Eqs. (8.1) and (8.3), the system equations (i.e.,
the tracking error equations) are given by

(8.1)

(8.13)

From Eqs. (8.1), (8.4), and (8.13),

Using Eqs. (8.7) and (8.12), we get

s= ~f2 + d - a sgn s + v.

Similarly to the previous section, for the state satisfying s > 0, we have

s= -a + ~fi + d + v ::s -a + p + v.

Thus, if we choose v such that v ::s -p, then s ::s -a. On the other hand, for s < 0, we
have

s= a + ~fi + d + v 2:: a - p + v.

So, choosing v satisfying v 2:: p results in s2:: a. Thus, combining the above two cases, v
may be chosen as

v = -psgns.

Thus, by Eqs. (8.12) and (8.14), the overall control law is given by

U = ueq - (a + p)sgns.

(8.14)

(8.15)

Here, p is a function of Xl, x2, and t defined above, and a is a positive number (though
it can be chosen as a function of Xl, x2, and t).

8.2.6 Generalized Lyapunoy Function

The control law obtained in the previous section can also be found by using the
idea of Lyapunov functions. (Background materials on Lyapunov stability theory as
well as extensive discussion of its application can be found in [5], [6], and so on. But this
section may be read without the background.)

Define a function V (which is a generalized Lyapunov function) by

Section 8.2 Basic Idea of Sliding-Mode Control 197

Note that V(S(Xb X2)) represents a measure of distance (or squared distance) of a point
(Xl, X2) from the sliding surface S (on which the value of V, and therefore the value of s,
is zero). Thus V < 0 means that the state moves toward the surface S. Using the control
law defined by Eqs. (8.12) and (8.7)

v=~ V · S= ss = s(!!i.f2 + d - a sgns + v)as
~ -alsl + Islp+ sv.

It is easy to see that the choice of the control

v = -psgns

results in

V s -alsl. (8.16)

Note that the overall control law u obtained above is identical to the one given by Eq.
(8.15).

Remark. Equation (8.16) implies (d/dt)lsl ~ -a for s =j:. 0, which, in turn, implies
Eq. (8.10); that is, V will vanish in at most Is(x(to), x(to))I/a. Equation (8.16) also
assures that the state will remain on S once it has reached S.

8.2.7 Preventing Chattering by Continuous
Approximation

As stated in Section 8.1, the control law designed above forces the state trajectory
to remain on S possibly by way of infinitely fast switching. However, in practice, the
switching may occur with a slight delay when the trajectory reaches the switching sur­
face, which causes the state trajectory to overshoot from one side of the surface to the
other. The process repeats itself, causing the trajectory to cross the surface back and
forth at a fast pace. This phenomenon is called chattering (because of the noise that it
may create). The chattering is generally not desirable since it may excite unmodeled
high-frequency dynamics resulting in unexpected instability. (For more discussion on
chattering, refer to [6, Chapter 7], [8], and [27] for instance.) The chattering can be
avoided by "smoothing" the switching controller. Use of continuous approximation of
the switching function (i.e., use of a saturation function in place of the switching
function) [5, Chapter 13], [6, Chapter 7], use of an asymptotic observer [7, Chapter
14], [27], and use of a sliding sector in place of a sliding surface [15] have been reported
to be effective. Here, we will discuss the first approach. Let B be a (small) positive
number. In place of Eq. (8.15), we use

U = ueq - (a + p)sat (;).

where the saturation function sat is defined by

(8.17)

198 Chapter 8 Variable Structure and Sliding-Mode Control

{
y,

sat(y) =
sgny,

if IYI:::: 1

if IYI > 1.

The functions sgns and sat(sje) are depicted in Figure 8.3(a) and (c). Clearly, as e ~ 0,
sat(sje) approaches sgns. Instead of a switching (or sliding) surface S, we have a
boundarylayer SBL := {x E R2

1 Is(xI' x2)1 ~ s} separating the space into two regions s >
e and s < -e. Within the boundary layer, the value of u transitions continuously. The
above control with saturation clearly forces the trajectory to within the layer once the
state reaches the layer. (Note: (d/dt) lsI ~ -ex for lsI?: s.) Furthermore, it can be shown
that, when the trajectory is confined in the layer, the trajectory (i.e., the tracking error)
is bounded by the quantity dependent on e. Hence we have the following.

Theorem 8.2.7.1. If the initial state (Xl(to), X2(tO» E SBL, then with the control
law given by Eq. (8.17) we have

!x,(t)1 s i- + Ix,(to)le-A(t-lo)

I X2(t)1s 2e + Alxl (to)le-A(t-tO)

for all t ?: to.
Proof By the definition of s,

Xl +AXI = s.

Solving this for Xl, we get

Xl(t) = e-A(t-to)XI (to) + 11 e-A(I-r)s(x, (r), x2(r»dr.
to

Since lsI:::: e,

Then, since X2 = -AX} + s,

Remark. (Xl(r), X2(t» approaches an arbitrary small neighborhood of the zero
state as t ~ 00 if e > 0 is chosen arbitrarily small.

Remark. An extension of Theorem 8.2.7.1 to higher order systems can be found
in [6, Chapter 7].

8.3. SLIDING-MODE CONTROL: GENERAL CASE

In this section we discuss the sliding-mode control in a more general context.

Section 8.3. Sliding-Mode Control: General Case

8.3.1 Problem Formulation

199

We will be concerned with the system described (in the so-called regular form) by

Xl <I, (Xb X2, t) + D.!l (Xl, X2, t)

X2 = !2(XI' X2, t) + G2(XI ' X2, t){ u + D.g2(XI' X2, U, t)}

(8.18)

(8.19)

where Xl(t) E s:», X2(t) E Rm
, U(t) E Rm for each time t E R+, andj] (Xl, X2, t) E Rn

-
m

,

D.!I(XI, X2, t) E Rn
-

m
, !2(XI' X2, t) E Rm

, G2(XI' X2, t) E R"?", D.g2(XI' X2, U, t) E Rm for
each Xl E R":", X2 E te: U E Rm

, and t E R+. The column vectors x(t):= [xf(t) x~(t)]'

and u(t) are, respectively, the state and control input at time t. The functions!I,!2, and
G2 are assumed known, and D.!l and D.g2 represent uncertain terms. Thus!b!2' and G2
can be used in the control law, while D.!l and D.g2 cannot. We assume that G2(XI ' X2, t)
is nonsingular for each Xl E Rn

-
m

, X2 E B", and t E R+, andj], D.!l,and!2 vanish at the
origin of the state space (i.e., they are zero whenever Xl and X2 are zero). The uncer­
tainty D.g2 is called a matcheduncertainty in the sense that this uncertainty affects the
same channel as u (i.e., D.g2 can be eliminated by an appropriate u if we know what D.g2
is), and D.!l is called an unmatched uncertainty.

Remark. Equation (8.19) is equivalent to the form

- - 1 - -
where D.!2(XI, X2, t) E B", and D.g2(XI' X2, U, t) E R", via D.g2 = G"2 D.!2 + D.g2.

Remark. A control system equation

where ~ E Rn and u E R" can be transformed into the form described by Eqs. (8.18) and
(8.20) using a nonlinear coordinate transformation

satisfying

(See [3, Chapter 4], [5, Chapter 12], [6, Chapter 6], or [8] for the details.) The time­
varying representation such as Eqs. (8.18) and (8.20) may appear for tracking problems
as described in Section 8.2.

Definition. The zero state is asymptotically stable if the following two conditions
hold: (1) There exists a nontrivial region in the state space called a region of
convergence and Xl(t), X2(t) --+ 0 as t --+ 00 when the initial state (Xl (to), X2(tO))
is within the region, and (2) (stability in the sense of Lyapunov) the trajectory can
be kept arbitrarily close to zero if the initial state is chosen sufficientlyclose to zero;

200 Chapter 8 Variable Structure and Sliding-Mode Control

that is, for any number e > 0, there is a number 8 > 0 such that IIx(to)1I ~ 8 implies
IIx(t)1I ~ e for all t 2: to. If in addition the region of convergence is the entire state
space, the above stability is global. (See [6].)
Noting that Eqs. (8.18) and (8.19) are generalizations of Eqs. (8.1) and (8.3), we

will find u such that the zero of the system described by Eqs. (8.18) and (8.19)is globally
asymptotically stable, in particular, Xl (t), X2(t) --+ 0 as t --+ 00. As before, we will solve
this problem by using the sliding-mode control.

Remark. In this chapter we discuss the use of sliding-mode control to achieve
global asymptotic stability for simplicity of technical presentation. For the problem of
attaining local asymptotic stability, see the remark at the end of Section 8.3.3.

8.3.2 Sliding Surface

As we did in Section 8.2.2, we first define a continuously differentiable function S

by

(8.21)

</J(O, t) = 0 for all t E R+.

As before

(8.22)

defines the sliding surface S(t), that is, S(t) := {x E Rnls(Xb X2, t) = O} (provided that
we can find an appropriate u). To find the equation governing the system behavior on
the sliding surface S, we substitute Eq. (8.22) into Eq. (8.18). Then, we have

(8.23)

The function l/J is chosen so that the zero state of this reduced order system is (globally)
asymptotically stable and so Xl (t) --+ 0 as t --+ 00. Then, by Eq. (8.22), it follows also
that X2(t) --+ 0 as t --+ 00.

Example 3.1

For the system described by Eqs. (8.1) and (8.3) in Section 8.2, D,.!I(XI, f/J(XI), t) = 0 and
Xl = !1(XI,f/J(XI), t) = f/J(XI) = -AXI, A> o. Clearly, XI(t) ~ 0 as t ~ 00. Since X2 = f/J(XI)
= -AXI, X2(t) ~ 0 as t ~ 00 as well.

Example 3.2

Suppose Eq. (8.18) is linear and time-invariant, say

(8.24)

where An and A l 2 are, respectively, known (n - m) x (n - m) and (n - m) x m real matrices.
Applying

Section 8.3. Sliding-Mode Control: General Case

we get

201

where K is an m x (n - m) real matrix. Choose K so that All + Al 2K is Hurwitz (i.e., has
eigenvalues with negative real parts). Such a K exists if and only if the pair (All, A12) is
stabilizable, or if (All, A12) is controllable. (See [1, Chapter 3] or [9].) A specific K may be found
by solving a linear quadratic optimal control or regulator problem with the solution of a matrix
Riccati equation, or by using a coordinate transformation to reduce Eq. (8.24) to a controllable
canonical form. (These can be found in a standard linear control textbook, for example, [2]. Also
see Eq. (8.32).)

Example 3.3

Stiction usually occurs when the velocity of the system (such as a positioning system) is low. To
reduce the effect of the stiction, the following s may be chosen:

where Xl E R is the position, X2 = Xl is the velocity, , is a positive constant, and the reference
trajectory is identically zero [21].

8.3.3 Robust Sliding-Mode Control

As before, we use the sequation for controller design. From Eqs. (8.18), (8.19), and
(8.21), we have

. . a4>. a4>
S=X2--XI--

aXI at

=h(XI' X2, t) + G2(XI' X2, t){u + dg2(Xb X2, U, t)}

a4> a4>
- -a {ji(XI' X2, t) + d!I(XI, X2, t)} - -a .

Xl t

Without uncertainties, that is, if ~g2 and ~fi are zero, the equivalent control

(8.25)

(8.26)

results in s = 0, and so the trajectory remains on the surface S if the state is already on
S. But to compensate for uncertainties and to bring in or bring back to the surface S the
state not on S, we will use the control of the form

(8.27)

where vet) E R" is to be determined below. From Eqs. (8.25)-(8.27), we have

(8.28)

where

202 Chapter 8 Variable Structure and Sliding-Mode Control

We assume that the uncertainty Sh is bounded by the inequality

for all Xl E Rn-m
, X2 E Rm

, v E Rm
, and t E R+, where a continuous function P(Xb X2,

t) 2: 0 and a number K E [0,1) are known. As in Section 8.2.6, using the above uncer­
tainty bound, we will find v to move the (off-the-surface) state toward the surface 8.
Rewriting Eq. (8.28) element-wise, we have

where S;, v;, and Sh, are, respectively, the ith elements of s, v, and Sh. Following the
procedure used in Section 8.2.6, define for each i = 1, ... , m,

As indicated in Section 8.2, V;(S(XI (t), X2(t)), t) is a measure of (squared) distance of the
state x(t) from 8;(t) := {x E Rnlsi(xI, X2, t) = O}, and we will find v; such that

V· < -als·11- 1

where a is a positive number (specified by the designer). We have

Choose a function 17 satisfying

for all Xl E Rn-m
, X2 E E", and v E te: and define

(8.29)

Then, we have

·1717
V; ~ - -1-ls;1 + pls;I+K-

1
-ls;1 = -17lsil + pls;1 ~ -als;l·

-K -K

Remark. The above inequality assures that the state trajectory remains on the
surface 8;(t) := {x E Rnls;(xI' X2, t) = O} ifit is already on the surface, and the trajectory
initially off the surface S, reaches it in finite time. (See the Remark after Eq. (8.16) in
Section 8.2.6.) the sliding surface 8 is the intersection of 8 b ... , 8m .

Remark. For local asymptotic stability, the zero state of Eq. (8.23) needs to be
asymptotically stable only locally with the region of convergence ns near the zero. But,

Section 8.3. Sliding-Mode Control: General Case 203

then, for a trajectory of Eqs. (8.18) and (8.19) to converge to the zero state, the initial
state must be within the region where Qs can be reached in finite time.

8.3.4 Continuous Approximation to Avoid
Chattering

As in Section 8.2.7, let e be a (small) positive number. In place ofEq. (8.29), we use

i= 1, ... ,m. (8.30)

As noted in Section 8.2.7, as e --+ 0, sat(s;le) approaches sgn s.,
Remark. It can be shown that under some conditions the trajectories of the

system of Eqs. (8.18) and (8.19) with application of Eqs. (8.26), (8.27), and (8.30)
converge to a neighborhood N(e) of the zero state, and the size of the neighborhood
can be specified by the choice of e. (See [5, Chapter 13] for the details.)

8.3.5 Example: Single Degree of Freedom Robot

We consider a single degree of freedom (revolute) robot represented by

Jjj +Mgl sin () +boO = u

where () is the joint angle of the robot (i.e., the angle between the directions of the link
and gravity), J is the total moment of inertia about the joint axis, M is the total mass, l
is the distance from the joint axis to the center of mass of the system, bo is the friction
constant, and u is the input torque. Let (), be the reference trajectory. We wish to design
a sliding-mode controller u so that () closely follow (),. For this let Xpl := ()and xp2 := O.
Then, we have the plant state equation

Xpl = Xp2

Xp2 = -(MglIJ) sinxpl - (boIJ)xp2 + (1IJ)u.

With the tracking errors defined by Xl := Xpl - (), and X2 := Xp2 - 0" we have the state
equations for the error

Xl = Xpl - 0, = Xp2 - 0, = X2

X2 = Xp2 - 0, = -(MglIJ) sin(xI + (),) - (boIJ)(x2 +0,) + (1IJ)u.

The coefficients MglIJ, bo, and IIJ may not be known exactly. So, we write
MglfJ = a + tsa, bolJ = b + Sb, and IIJ = c + t1c where a, b, and c are the estimates
of MglIJ, bolJ, and IIJ, and Su, Sb, and t1c are parameter uncertainties (which may
be due to an unknown payload for instance). Then, the above equations reduce to

204 Chapter 8 Variable Structure and Sliding-Mode Control

X2 = -(a + ~a) sin(xi + 0,) - (b + ~b)(X2 + 8,) + (c + ~c)u

= -asin(xi + 0,) - b(X2 + 8,) + c{u + ~g2}

where ~g2 := (l/c){-~asin(xi+ 0,) - ~b(X2 + 8,) + ~cu}.

Define s:= X2 + AXI. Then,

So, the equivalent control is given by

Ueq = (l/c){asin(xl + 0,) + b(X2 + 8,) - AX2}.

Let U = ueq+ (l/c)v. Then, we have s = v + ~h where

~h = c~g2 = -~asin(xl + 0,) - ~b(X2 + 8,) + ~c{ueq + (l/c)v}.

Substituting into this equation ueq obtained above, it is easy to see that

Thus

and p may be chosen as

I Sc I I ~c I . I ~c ~c Ip= -~a+-a +-~b+-b 10,1+ -~b+-b--A IX21,
C max c max c C max

andK=I~cl <1
c max

where IYlmax denotes the maximum value of IYI over the uncertainties. Then, the sliding­
mode control and its continuous approximation are given by, respectively

p+a
U = ueq - c(l _ K) sgns

Section 8.3. Sliding-Mode Control: General Case

and

p+a (S)
U = Ueq - c(1 _ K) sat "6

205

where a is a positive number, e is a small positive number, and p and K are as given
above. For specific numerical values of the system parameters ([5, Chapter 13])

a=b=e='A=1

- ! < So < I -I < db < 2 _! < de < !2- -, - -, 2- -2'

we have

p = 1.5+ 2.510,1 + 21x21, K = 0.5.

If we choose a = 0.5 > 0, the sliding-mode controller and its continuous approximation
are given by

u = sin(xl + (},) + 0, - 2(2 + 2.510,1 + 2lx21)sgns

U = sin(x, + Or) + Or - 2(2 + 2.S10r l + 21x21)sat (;).

The simulation results for the continuous approximation are shown in Figures 8.4-8.6.
The parameters and functions used for different simulations are tabulated in Table 8.1.
Figure 8.6 depicts simulation results for the system with the matched random distur­
bance d with values between -0.5 and 0.5 as shown in Figure 8.6(e), that is, for the
system with the second plant equation described by

Xp2 = -(Mgl/J)sinxpl - (bO/ J)Xp2 + (I/J)(u + d).

Matlab Version 5.2 was used for the simulations.

TABLE 8.1 Parameters and Functions Used for Section 8.3.5 Simulations

Fig. No.

Figure 8.4

Figure 8.5
Figure 8.6

8,

:: t for 0 < t < 36 --

x
2" for t > 3

Same as above
Same as above

0.5

0.1
0.1

(0.2, 0)

(0.2, 0)
(0,0)

Disturbance

None

None
Random matched.

See Figure 8.6(e)

206 Chapter 8 Variable Structure and Sliding-Mode Control

Piecewise linear (Jr; e =0.5; Xpl(O) =0.2, Xp2(0) =0

1.6

1.2

0.8

0.4

2 4
Time

(a)

6 8 10

0.2

0.1

o

Piecewise linear (Jr; e =0.5; Xpl(O) =0.2, Xp2(0) =0

-0.2

o 2 4 6
Time
(b)

Figure 8.4

8

8.4. SLIDING-MODE-LIKE CONTROL FOR
SAMPLED DATA CONTROL SYSTEMS

In this section, we consider a single-input linear sampled data system described by

x= Ax+bu

where A and b are in the control canonical form, that is,

(8.31)

Section 8.4. Sliding-Mode-Like Control for Sampled Data Control Systems

Piecewise linear fJr; e = 0.5;Xpl(O) = 0.2,Xp2(0) = 0

O"'--~-----+-----------r--------l

-0.2

207

o 0.1

xl

(c)

0.2

Piecewise linear(}r; e = 0.5;Xpl(O) = 0.2,Xp2(0) = 0
0.3 ,...-.--~-----,.-----------.-------.

0.2

S 0.1

o

2 4
Time

(d)

6 8 10

Figure 8.4 (continued)

0 1 0 0 0

0 0 1 0 0

A'- 0 b '- (8.32).- .-
0 0 0 1 0

al a2 an-l an hI

and x = [Xl,"" xn] ' .

The control input u is assumed fixed over a sampling interval T, that is,

208 Chapter 8 Variable Structure and Sliding-Mode Control

PiecewiselinearOr; e = 0.1; Xpl(O) = 0.2, Xp2(0) = 0

1.6

1.2

0.8

0.4

2 4
Time

(a)

6 8 10

Piecewiselinear (Jr; e = 0.1; Xpl(O) = 0.2, Xp2(0) = 0

0.2

0.1 Xl

0.0

-0.1 x2

-0.2

0 2 4 6
Time
(b)

Figure 8.5

8 10

u(kT + r) = u(kT), 0 ~ r < T. (8.33)

N h (n-l) W k I Iote t at x2 = Xl, X3 = X2 = Xl,·'·, Xn = Xn-l = ... = Xl . e see a contro aw
such that IIx(t)1I ~ 0 as t ~ 00. Following the idea of the sliding-mode control design
discussed in the previous sections, define

seX) := c'x = CIXI + ... + Cn-IXn-1 + Xn·

Then, as before, S := {x E Rnls(x) = O} is a surface in the state space. We choose real
constants c/s so thatr:' + Cn_Ipn-2 + ... + C2P + CI is Hurwitz; that is, the zeros have
negative real parts.

Section 8.4. Sliding-Mode-Like Control for Sampled Data Control Systems 209

Piecewise linearOr; E =0.1;Xpl(O) =0.2,xp2(O) =0

Ol------.l~-----------r------t

-0.2

o 0.1
Xl

(C)

0.2

Piecewise linear(Jr; E =0.1;Xpl(O) =0.2,Xp2(O) =0
0.3 ,..------------..,.-------.----......

0.2

S 0.1

0.0r-----------------------4

10864
Time

(d)

2
-0.1 ~-----------------------.....o

Figure 8.5 (continued)

Remark. The above choice of c;'s means that, since the motion of the state on S is
characterized by

we have x(t) ~ 0 as t ~ 00 provided the trajectory is confined to S.

210 Chapter 8 Variable Structure and Sliding-Mode Control

Piecewise linearOr; e =0.1;Xpl(O) =0, Xp2(0) =0
Randomdisturbance present

2

1.6

1.2

0.8

0.4

0
0 2 4 6 8 10

Time
(a)

Piecewise linearOr; e =0.1;Xpl(O) =0, Xp2(0) =0
Randomdisturbance present

0.01 .------.----------,.----.....-----...

o

108642
-0.01 '--__---a...L..-__--L ---L--__-----'

o
Time
(b)

Figure 8.6

Since the input is fixed for a certain interval of time, it is not in general possible to
confine the trajectory to S. But it is possible to asymptotically stabilize the system by
introducing a cone-shaped region (also called a sector) surrounding S that plays a
similar role to that of a sliding surface (see Figure 8.7). To capture the essence of the
treatment for the hybrid situation (discrete-time controller in a continuous time system)
without elaborate technicality, we assume that the system parameters a;'s and hI are
known real numbers. With a slight abuse of notation, we will use u(k), x(k), and s(k) in
place of u(kT), x(kT), and s(x(kT». In an attempt to bring the state to S (as in the
previous sections), we will find u so that

Is(k + 1)1 < Is(k)l· (8.34)

Section 8.4. Sliding-Mode-Like Control for Sampled Data Control Systems

Piecewise linear(Jr; e =0.1;Xpl(O) =0, Xp2(0) =0
x 10-3 Randomdisturbance present

4

2

X2 0 ...-------"'---+------+-+----+-----1

-2

-4

211

-5 -4 -3 -2
xl

(c)

-1 o

Piecewise linear(Jr; e =0.1;Xpl(O) =0, Xp2(0) =0
x 10-3 Randomdisturbance present

3r-------.,..---------------.r--------.

o

s

-5

o 2 4
Time

(d)

6 8 10

Figure 8.6 (continued)

For this, recall the variation of constants formula

x(t) = eA(t-tO)x(to) + Jt eA(H)bu(r:)dr:.
to

(8.35)

Using Eqs. (8.33) and (8.35), and a change of variables, we get the discrete-time state
equation

x(k + 1) = Adx(k) + bdu(k) (8.36)

212 Chapter 8 Variable Structure and Sliding-Mode Control

108642

o

0.5r-----~-- --~--____r--__..

-0.5 L--__..L..----==:::::L...__--L.__----L__-J

o
Time

(e)

Figure 8.6 (continued) Disturbance with random amplitude.

where Ad := eAT and bd := f[eATbdr:. By the definition of sand Eq. (8.36), we have

s(k + 1) = e'x(k + 1) = e'Adx(k) + e'bdu(k).

But

A AT AT 1 2 2d=e =1+ +-A T +
2!

Therefore,

s(k+ 1) = e'x(k) +e' {AT + ~! A
2T2 + ···}X(k) + e'bdu(k).

Let y be the largest singular value of A, that is, the largest (nonnegative) square root of
the eigenvalues of A'A, and recall IIAII = y. Then,

s(k + 1) s e'x(k) + lIell {YT + ~! yT2 + ...} IIx(k)II + e'bdu(k)

=s(k) + II ell Ilx(k) II (eyT - 1)+ e'bdu(k).

Write sN(k) := lIel\l\x(k)\I(eyT - 1). Then, we have

Section 8.4. Sliding-Mode-Like Control for Sampled Data Control Systems

Similarly,

s(k + 1) 2:: s(k) - sN(k) + c'bdu(k)

= -s(k) + {2s(k) - sN(k)} + c' bdu(k).

213

Suppose s(k) > o. Clearly, from the above inequalities, to achieve Eq. (8.34), that is,
-s(k) < s(k+ 1) < s(k), it is sufficient to choose u so that the following inequalities hold

sN(k) + c'bdu(k) < 0,

{2s(k) - sN(k)} + c'bdu(k) > 0,

which are equivalent to

Such u clearly exists provided sN(k) - 2s(k) < -sN(k), that is, s(k) > sN(k), which
means that yT must be sufficiently small. Assuming c'bd > 0 (the other case can be
treated similarly), u can be chosen, for instance, as

(k)
=! (sN(k) - 2s(k))+ (-sN(k)) =_s(k)

u 2 'b 'b .CdC d

Similarly, for s(k) < 0, Eq. (8.34) is achieved by a control law satisfying

(8.37)

and such a control law exists provided -s(k) > sN(k). Combining the above two cases,
we conclude that if

(8.38)

a control law can be found to satisfy Eq. (8.34). An example of such a control law is
given by Eq. (8.37). It can also be shown (see [20]) that

s(kT + r) ~ s(k), 0 ~ r ~ T.

Remark. The region Scone in which Eq. (8.38) is not valid, that is
Scone := {x E Rnllc'xl ~ "xII IIcll(eyT

- I)} defines a cone-shaped region. (See Figure
8.7.)

214 Chapter 8 Variable Structure and Sliding-Mode Control

Figure 8.7 Scone and S.

The following theorem is due to Jabbari and Tomizuka [20] tailored to the situa­
tion where all a;'s and hI are known.

Theorem 8.4.1. Given the system described by Eqs. (8.31)-(8.33) and a vector c
defining a stable surface, the control u chosen in Eq. (8.37) results in

Is(k+ 1)1 < Is(k) I for x(k)¢ Scone

Is(k+ 1)1 < sN(k) for x(k) E Scone·
(8.39)

Furthermore, IIx(t)1I ~ 0 as t ~ 00 provided T is sufficiently small, or more specifi­
cally, if T satisfies

ex
e

yT
- 1 < ---;::::=============

P2 (~ +.ll£illl) + 1
P2 PI Pi

Here, Co := [CI .•. cn-Il/, and a, Ph and P2 are positive numbers satisfying the following
inequalities:

Define a matrix

0 1 0

0 0 1

p.-.-
0 0 0

-CI -C2 -C3

o
o

which is Hurwitz by assumption. Denote by fJlI II the norm with respect to a basis f3.
Then, the solution of the differential equation ~ = P{, {(O) = {o E Rn

-
I satisfies

fJllePt{oll ::s e-at fJlI{oll for some basis f3. Furthermore, the norm in the basis f3 is related
to that of the original basis by PIli · II ::s fJ II · II ::s P211 . II·

Remark. Equation (8.39) means that the trajectory starting in Scone stays near or
in Scone.

Remark. The control law described by Eq. (8.37) is a fixed control law. This is
due to the assumption that the system parameters are known. For systems with uncer­
tain parameters (with known bounds), a discrete-time variable structure control law
continuous in x can be designed. See [20] for the details.

216

8.5 CONCLUDING REMARKS

Chapter 8 Variable Structure and Sliding-Mode Control

In this chapter we have discussed robust variable structure control systems-more
specifically, the sliding-mode control. Continuous-time sliding-mode control has been
treated in a fairly general context. In practice, sliding-mode controls tend to create
undesirable chattering. As a method to prevent chattering, modification of the slid­
ing-mode control using saturation functions (replacing switching functions) has also
been discussed. Use of computers in control systems leads to sampled-data systems.
This chapter has illustrated a sliding-mode-like control for time-invariant linear systems
with known coefficients. For further discussions on this topic, see [4, Chapter 5], [14],
and [20]. There are various specific design methods for sliding-mode control, particu­
larly for multi-input systems. The interested readers should refer to [5, Chapter 13], [6,
Chapter 7], [8], [15], [19]. Sliding-mode control has found many practical applications as
described in Section 8.1, and new applications are emerging [24], [26], [28]. As a final
note, a design method called min-max design, or Lyapunov redesign, also leads to a
variable structure control [5, Chapter 13], [10]. The resulting control law resembles that
of the sliding-mode design with a boundary layer. But instead of controlling toward and
within the boundary layer, it provides convergence of the trajectory toward the ball
near the zero state and stability near the zero. Similar to the boundary layer, the ball
can be made as small as the designer desires.

Related Chapters

• For a detailed discussion of hybrid dynamical systems, see Ch. 7.
• A technical tutorial on robot control can be found in Ch. 18.
• Lyapunov methods are also discussed in Ch. 6.

REFERENCES

[1] G. Basile and G. Marro, Controlled and Conditioned Invariants in Linear System Theory.
Englewood Cliffs, NJ: Prentice Hall, 1992.

[2] K. Furuta, A. Sano, and D. Atherton, State Variable Methods in Automatic Control.
Chichester, UK: John Wiley & Sons, 1988.

[3] A. Isidori, Nonlinear Control Systems, 2nd ed. New York: Springer, 1989.
[4] U. Itkis, Control Systems with Variable Structure. New York: Halsted Press, John Wiley &

Sons, 1976.
[5] H. K. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.
[6] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall,

1991.
[7] V. I. Utkin, Sliding Modes in Control Optimization. Berlin, Heidelberg, New York: Springer,

1992.
[8] R. A. DeCarlo, S. H. Zak, and S. V. Drakunov, "Variable structure, sliding-mode controller

design." In W. Levine (ed.), The Control Handbook. Boca Raton, FL: CRC and IEEE Press,
1996.

[9] F. Hamano, "Geometric theory of linear systems." In W. Levine (ed.), The Control
Handbook. Boca Raton, FL: CRC and IEEE Press, 1996.

References 217

[10] M. Coreless and G. Leitmann, "Continuous state feedback guaranteeing uniform ultimate
boundedness for uncertain dynamical systems." IEEE Trans. Automat. Contr., Vol. AC-26,
no. 5, pp. 1139-1144, 1981.

[11] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, "Variable structure control of nonlinear
multivariable systems: A tutorial." Proc. IEEE, Vol. 76, no. 3, pp. 212-232, March 1988.

[12] S. V. Emel'yanov. "Use of nonlinear correcting devices of switching type to improve the
quality of second-order automatic control systems." Avtomat. i Telemekh., Vol. 20, no. 7,
1959.

[13] A. F. Filippov, "Differential equations with discontinuous right-hand side."
Mathematicheskii Sbornik, Vol. 51, no. 1, pp. 99-128, 1960.

[14] K. Furuta, "Sliding mode control of a discrete system." Systems & Control Letters, Vol. 14,
pp. 145-152, 1990.

[15] K. Furuta and Y. Pan, "Variable structure control of continuous-time system with sliding
sector," Proc. IFAC, World Congress, Beijing, 1999.

[16] M. M. Gutierrez and P. I. Ro, "Sliding mode control of a nonlinear input system:
Application to a magnetically levitated fast tool servo." IEEE Transactions on Industrial
Electronics, Vol. 45, no. 6, pp. 921-927, December 1998.

[17] F. Harashima, H. Hashimoto, and S. Kondo, "MOSFET converter-fed position servo
system with sliding mode control." IEEE Transactions on Industrial Electronics, Vol. 32,
no. 3, pp. 238-244, August 1985.

[18] H. Hashimoto, K. Maruyama, and F. Harashima, "A microprocessor-based robot manip­
ulator control with sliding mode." IEEE Transactions on Industrial Electronics, Vol. 34, no.
1, pp. 11-18, February 1987.

[19] J. Y. Hung, W. Gao, and J. C. Hung, "Variable structure control: a survey." IEEE
Transactions on Industrial Electronics, Vol. 40, no. 1, pp. 2-22, February 1993.

[20] A. Jabbari and M. Tomizuka, "Robust discrete-timecontrol of continuous time plants in the
presence of external disturbances." Japan/USA Symposium on Flexible Automation, Vol. 1,
ASME, 1992.

[21] A. Jabbari, M. Tomizuka, and T. Sakaguchi, "Robust nonlinear control of positioning
systems with stiction." Proceedings of the American Control Conference, San Diego, CA,
1990.

[22] O. Kaynak and F. Harashima, "Disturbance rejection by means of a sliding mode." Proc.
IEEE Transactions on Industrial Electronics, Vol. 32, no. 1, February 1985.

[23] P. K. Nandam and P. C. Sen, "Industrial applications of slidingmode control." Proc. IEEE/
lAS International Conference on Industrial Automation and Control, pp. 275-280, 1995.

[24] S. Sivrioglu and K. Nonami, "Sliding mode control with time-varying hyperplane for AMB
systems." IEEE/ASME Transactions on Mechatronics, Vol. 3, no. 1, March 1998.

[25] C.-Y. Su, T.-P. Leung, and Y. Stepanenko, "Real-time implementation of regressor-based
sliding mode control algorithm for robotic manipulators." IEEE Transactions on Industrial
Electronics, Vol. 40, no. 1, February 1993.

[26] C. Unsal and P. Kachroo, "Sliding mode measurement feedback control for antilock brak­
ing systems." IEEE Transactions on Control Systems Technology, Vol. 7, no. 2, pp. 271-281,
March 1999.

[27] V. I. Utkin, "Sliding mode control design principles and applications to electric drives."
IEEE Transactions on Industrial Electronics, Vol. 40, no. 1, pp. 23-36, February 1993.

[28] J.-M. Yang and J.-H. Kim, "Sliding mode motion control ofnonholonomic mobile robots."
IEEE Control Systems Magazine, Vol. 19, no. 2, pp. 15-23 and 73, April 1999.

[29] D. R. Yoerger, J. B. Newman, and J.-J. E. Slotine, "Supervisory control system for the
JASON ROV." IEEE J. Oceanic Eng., Vol. 11, no. 3, pp. 392-400,1986.

[30] K. D. Young, "Controller design for a manipulator using theory of variable structure
systems." IEEE Trans. Syst., Man, Cybernetics, Vol. 8, pp. 101-109, 1978.

Chapter

9
CONTROL SYSTEMS FOR
IICOMPLEXITY MANAGEMENT"

Tariq Samad

Editor's Summary

At the midway point in this volume, this chapter attempts a "big picture" discussion on the trends and

developments in advanced control systems. Previous chapters have described some of the new control

technologies that are being pursued in research, and the second half of this book reviewsthe state of the art

and future prospects in a variety of application arenas. Here, we view controls as a key discipline for

"complexity management," a perspective that recognizes the substantially increased complexity of our

engineering systems and the role that control systems can play in ensuring their safe, efficient, and profit­

able operation.

Talk of complexity is rife in virtually all technological (and many nontechnological) fields. However,

it is in the area of control and automation that a practice of complexity is urgently needed. It is one matter

to analyze the increasing complexity of systems or phenomena of interest; it is another matter entirely to

"close the loop" on such systems. Indeed, the complexity of control solutions can increase disproportio­

nately to the complexity of the target system.

But complexity is not just a problem; it is an opportunity too. Organizations (and people) that can

harness the increasingly sophisticated technologies that are now at our disposal and leverage them into a

new generation of automation and control solutions can expect to realize substantial economic (and

intellectual) benefits.

This chapter reviews several objectives for control and automation systems, from human and envir­

onmental safety to increased autonomy; it briefly outlines some emerging control technologies that are not

covered in depth elsewhere in this book; and it describes a few new, general application opportunities for

control. Finally, a brief review of various schools of complexity management is provided, contrasting the

diverse motivations that different intellectual communities are bringing to this intriguing new topic.

Tariq Samad is with Honeywell Technology Center and is a former vice president of technical

activities for IEEE-CSS.

9.1 INTRODUCTION

Part 1 of this volume has focused, for the most part, on some of the algorithmic and
theoretical machinery that control scientists and engineers have been recently develop­
ing. New specialized fields of control have emerged, such as discrete-event systems,
hybrid control, intelligent control, and computer-aided control system design, and
these are changing our notions of what control engineering is about. Linear systems
and the PID will always be part of the control engineer's lexicon, but now our expertise
and relevance also encompass large-scale, nonlinear, and decision-making problems.

218

Section 9.1 Introduction 219

Similar generalizations can also be made regarding the second half of this book. In
some cases, the scope of our activities in traditional industries that have already reaped
considerable benefit from control is expanding to higher levels of systems and enter­
prises. In other cases, entirely new domains and application areas are now looking to
control, anticipating the same sorts of rewards that the process industries or building
automation or aviation have historically gained.

Neither in technology nor in application is the trend in control toward one of
"more of the same." The redefining and broadening that are underway can ultimately
be seen as a response to the increasing complexity of our technological world. Effective
technologies for "complexity management" are being sought by government, industry,
and society. In this chapter, we discuss the implications of this for control. (A multi­
disciplinary perspective can be found in [17] and [18]; some of the material here is taken
from the first chapter of the latter.) New technological developments and new applica­
tion opportunities are both highlighted, and this chapter thereby serves as a transition
from the previous technology-oriented chapters to the subsequent application-oriented
ones. Issues related to the complexity of an increasingly automated world are also
discussed more generally, and some reactions within the scientific and engineering
communities are reviewed. We begin by discussing the interplay between domain exper­
tise and technique in control solutions.

9.1.1 Control Systems: Domain Knowledge and
Solution Technologies

For devising effective control and automation solutions, two types of expertise are
required. Domain knowledge is the first of these-we can control systems only if we
understand them. This knowledge can exist in various forms, explicit and implicit:
domain models for conceptual design, dynamic models for control algorithms, mental
models of human operators, and many others. The degree and effectiveness of auto­
mation achievable are proportional to the quality and quantity of domain knowledge
that is brought to bear. Thus controlling a distillation column requires that we capture
an understanding of its construction and the chemistry of its operation; modern flight
control would be impossible without knowledge of aircraft aerodynamics and jet pro­
pulsion; environmental control for buildings is contingent on knowing building layouts
and pollutant diffusion mechanisms, among other factors.

The second component for control systems can be called the solution technolo­
gies. The automation and control of any complex engineering system is a multi­
disciplinary undertaking. Sensing and actuation technologies are needed for
measuring and moderating the physical world; control algorithms furnish the "intel­
ligence" for mapping measurements and commands to actions; effective interaction
between the automation system and its human users requires knowledge of human
factors and cognitive science; software engineering is essentially the new manufactur­
ing discipline for knowledge- and information-intensive systems; system health man­
agement technology is needed to help minimize and manage maintenance; and so
on. Detailed treatments of most of these disciplines are beyond the scope of this
book, the majority of which is focused on the "core" of control systems-eontrol
technologies in a narrower sense. Here, too, there is variety: Modeling, identifica­
tion, optimization, estimation, and the other algorithmic methods of control engi-

222 Chapter 9 Control Systems for "Complexity Management"

Ore

Water

Evaporation

Heat exchange

Precipitation

Alumina

Cooling

Water

Solids

Figure 9.4 Tomorrow's need: enterprise-wide
optimization and control. The picture shows
the processes involved in alumina refining­
turning mined bauxite into alumina. The
liquor loop in this system can have a resi­
dence time of weeks. Industry is starting to
look at the automation of systems of this
scale.

design and development time and cost, regulatory compliance, and workforce reduction
are some of the considerations that are driving automation initiatives.

Since commercial organizations comprise a significant proportion of both the
suppliers and users of new technology, an underlying driver for automation is often
economics. However, it is useful to examine the economic motivation in finer detail,
decomposing it into different aspects that, to a first approximation, can be considered
separable. Thus, while we do not explicitly break out profits and revenues as objectives
for automation, these are often (but by no means always) the ends served by the means
discussed below.

9.3.1 Human and Environmental Safety

Only in some cases is safety the primary motivation driving the development of an
engineering system, but it is a near-universal concern that technology and automation
are often called on to address. For some mature systems, safety issues can spur a large
fraction of the associated innovation and research. We build cars primarily to transport
people and their possessions, but a variety of devices are employed to ensure that this
transportation does not endanger lives or the environment. Many of the recent con­
trols-related technological developments in automobiles have been driven by the need
to improve the safety of drivers and passengers-witness airbags and antilock brakes.

There are also systems in which safety is the primary objective and that are
designed to protect us and our environments against natural forces or other engineering
systems. Civil structures, such as dikes and bomb shelters, are obvious examples. This
primary versus secondary distinction may be debated and in any case depends on the

Section 9.3 Objectives for Control and Automation 223

sometimes arbitrary delimitation of a system. Safety is certainly the primary considera­
tion in a bicycle helmet, but it seems natural to consider seatbelts as a safety feature
within the automobile system.

9.3.2 Regulatory Compliance

In the eyes of the public, human and environmental safety is an overriding concern
with new technological developments. This concern directly influences the design, devel­
opment, and operation of engineered systems, as alluded to earlier, but it also focuses
attention on another facet of complexity management. At all political and governmen­
tal levels-from city councils to international organizations-there is increasing over­
sight on technology and its products. Regulations on environmental impact and human
safety have resulted in new industries being established and have affected existing ones
in profound ways.

In the automotive industry, regulatory compliance has been (arguably) the single
most significant factor in increasing the complexity of engine control systems.
Automobiles do not drive that much faster today than they did three decades ago,
but their tailpipe emissions of nitrous oxides and hydrocarbons are orders of magnitude
lower. New sensors; electronic fuel injection systems; catalytic converters; on-board
diagnostic modules; advanced algorithms that regulate fuel flow, engine speed, and
ignition timing in response to instantaneous conditions-these are some of the major
enhancements in engines today whose primary purpose is to ensure that concentrations
of regulated exhaust chemicals do not exceed mandated limits.

Legislation has been a major driver for new technological developments in the
process industries as well. New product and service businesses have been formed to
facilitate regulatory compliance and reporting. Emissions monitoring software for
power plants and other process industries is one example, and many others exist in
biomedicine, pharmaceuticals, consumer products, and food.

9.3.3 Time and Cost to Market

The design, development, and manufacturing of new technological products are
complex processes, and performing them well requires time and effort. As the products
themselves become more complex, these processes do so as well and in many respects
disproportionately. Doubling the number of parts in a device quadruples the number of
potential (binary) interactions, and validation and testing become that much more
problematic.

Yet marketplace realities are demanding that companies develop new products, of
increasing complexity, in less time. Product turnover and innovation indices are widely
seen as indicators of quality in technology sectors. Good technical ideas are one ingre­
dient, but their rapid commercialization is often seen as more important. (After all, a
corporation can generally acquire the technical idea more readily than a marketable
product.)

Fast time-to-market demands are not wishful thinking on the part of executive
management; numerous recent instances can be cited in which product development
times have been considerably shortened in comparison to previous developments.
Computing technologies have been central to these achievements. Easy-to-use software
packages have been developed to facilitate control design, implementation, and testing
in all major control application domains.

224 Chapter 9 Control Systems for "Complexity Management"

9.3.4 Increased Autonomy

In many businesses, personnel costs constitute a large fraction of total expenses.
Where human involvement is not considered critical, its replacement by suitably sophis­
ticated automated substitutes can result in substantial financial savings. The benefits of
automation are of course not limited to cost reduction. Autonomous systems are being
sought for higher productivity, for operation in hostile or otherwise inhospitable envir­
onments, for miniaturization reasons, and for other purposes.

Complete automation of any significant system is not feasible now and will not be
feasible in the foreseeable future. Increased autonomy thus implies essentially that the
role of the human is shifted from lower-level to higher-level tasks. What used to be
accomplished with a large team may now be done with a smaller team or with one
person. With improvements in navigation systems and avionics, for example, the avia­
tion industry has been able to reduce its cockpit flight crew by more than half. Fifty
years ago, the state-of-the-art commercial airliner was the newly developed Lockheed
Constellation. Its crew consisted of the pilot, copilot, navigator, flight engineer, and
radio operator. Today's aircraft fly with just a pilot and copilot. In process industry
sectors, automation solutions are being sought for some of the functions that plant
operators perform. Preventive maintenance, prognostics, and diagnostics-aspects of
system health management-are a particular focus of activity in this context.

Increased autonomy and the technological infrastructure that has enabled it also
imply that larger-scale systems are now falling under the purview of automation.
Sensors, actuators, processors, and displays for entire facilities can now be integrated
through one distributed computing system. The control room in an oil refinery may
provide access to or manipulate 20,000 or more "points" or variables. In possibly the
largest integrated control system implemented to date, the Munich II international
airport building management system can be used to control everything from heating
and cooling to baggage transport. The system controls more than 100,000 points and
integrates 13 major subsystems from nine different vendors, all distributed over a site
that includes more than 120 buildings [1].

9.3.5 Other Criteria: Yield, Capacity, Efficiency, and
More

Technological systems are developed for a primary purpose, whether it's produc­
tion of gasoline in the case of oil refineries, transport of people and goods in the case of
automobiles and airplanes, information processing in the case of computers, or organ
stimulation in the case of implanted biomedical devices. Some of the objectives dis­
cussed earlier have illustrated how these primary purposes are not the only ones that
matter and how in fact aspects of complex technological systems that might originally
have been considered secondary from the point of view of system functionality can take
on substantial importance.

Improvements in how well the system performs its primary function are also a
continuing need-if not the only one. The specific nature of these performance
improvements is system and function dependent, but it is useful to consider some
examples:

• Manufacturing yield. An obvious performance metric for a manufacturing pro­
cess is the within-specification product output per unit time. Improvements in

Section 9.4 Emerging Control Technologies for Complex Systems 225

yield relate directly to increased revenues (demand permitting) and so are
always driving the development of automation and control systems. In many
industries, plants are distinguished first on the basis of their production: mega­
watt output in power generation units, barrels per year for oil refineries, annual
units for many discrete manufacturing lines.

• Transportation capacity. With vehicles, measures of speed, payload (number of
passengers or cargo capacity), and distance are primary. In the case of auto­
mobiles and commercial aircraft, we have seen little or no improvement on the
first two metrics over at least two decades. (In the latter case, however, the
capacity of the air transportation system as a whole has seen considerable
growth.)

• Information processing power. Processing speeds and memory capacity define
performance in computers, and the continuing demand for growth on these
counts has required increased complexity-in device physics, design methods,
and manufacturing processes-to satisfy. At the same time, these improvements
have themselves fueled the development of complex systems.

• Energy efficiency. This applies to all technological products, although its impor­
tance varies widely. Fuel efficiency in automobiles is of relatively less impor­
tance compared to fuel efficiency of aircraft. Even for a given system, energy
efficiency can vary over time or location. Thus automobile fuel economy is
much more important in most parts of the world than in the United States
with its relatively low gasoline prices.

• Miniaturization. The utility of some functions is dependent on their encapsula­
tion in small packages. Heart pacemakers, for example, have existed for over 40
years, but initially they were bulky, used external electrodes, and operated off
line voltage. Compact, implantable pacemakers have been a revolutionary
improvement; miniaturized sensors and actuators (electrodes) in particular
have facilitated implantation. Miniaturization is also central to the development
of effective substitutes for organs such as the heart [10].

9.4 EMERGING CONTROL TECHNOLOGIES FOR
COMPLEX SYSTEMS

Given the qualitative tenor of the preceding remarks, it does not seem feasible to
identify specific developments in control science and engineering that are directly and
immediately motivated by specific drivers for automation. However, broader research
trends can be correlated with these new challenges. In general, we can discern a move­
ment away from narrowly specialized techniques that can give globally optimal, exact
solutions for highly constrained problems; and toward techniques that are flexible,
scalable, and broadly applicable. Most of the previous chapters in the book can be
seen in this light. Here we highlight emerging control technologies that have not already
been elaborated in detail.

9.4.1 Randomized Algorithms

As we attempt to address larger-scale, more complex problems, the limitations of
our existing toolbox of techniques are an obstacle. The problem formulations of mod­
ern control theory, ideally suited for the applications of past decades, are inherently

226 Chapter 9 Control Systems for "Complexity Management"

intractable in terms of their scaling properties. The question arises, Is there an alter­
native way of looking at the analysis and synthesis of models and controllers that is
tractable, theoretically well-founded, and potentially useful for practical application?

One attractive property of conventional theories and derived algorithms for mod­
eling, optimization, and control has been the "guarantees" on various counts-such as
accuracy, speed, stability-that result. Unfortunately, these guarantees are gained at
some cost, notably computational complexity. For example, determining whether the
structured singular value is less than one is a certain indicator of stability, but the
problem is NP-Hard and, hence, cannot be expected to be solvable for large-dimen­
sional problems.

The area of randomized algorithms suggests an answer [19]. The concepts of
Monte Carlo simulation and Vapnik-Chervonenkis (VC) dimension (neither of which
is especially new-this emerging technology could more accurately be labeled "reemer­
ging") lead to an entirely different way of looking at problems of interest. We eschew
deterministic guarantees in heading in this direction, but there is nothing ad hoc about
the approach. The theory can furnish probabilities of performance or stability and,
furthermore, can precisely quantify the confidence in these estimated probabilities. This
can be done for linear or nonlinear problems, under relatively weak assumptions. We
assume, for example, that samples can be drawn at random and independently from a
distribution of models or controllers and that the VC dimension of a model or con­
troller (or an upper bound) can be computed. The numbers often work out surprisingly
favorably, rebutting the usual "curse of dimensionality" arguments. Recent work also
shows that Bayesian priors can be used to quantify expected performance in cases
where the VC dimension of a concept space is infinite-a setup that would otherwise
be considered uselessly underdetermined [11].

9.4.2 Biologically Motivated Control

Biological organisms represent a class of effective solutions to complexity manage­
ment. At the higher levels of the biological world, vertebrates are able to survive, find
sustenance, fend off predators, and raise kin, all over lifetimes that span decades or
years and in the face of a physical environment that presents a host of challenges.

Little in our conventional control systems technology bears any substantive simi­
larity to the design of biological control systems. Yet the success of the latter in dealing
with complex systems (the "body" of the organism and the external environment are
both examples of such) is unquestionable. This fact behooves us to gain a deeper
understanding of the architecture and function of biocontrol. The central nervous
system (CNS) of vertebrates is an ideal candidate for study in this context, and con­
siderable literature is now available that illuminates such aspects of vertebrate CNS as
its modular structure, the functions performed by different modules, the information
processing pathways, and its integration with sensory organs and muscular tissue.

An especially notable characteristic of vertebrate eNS is the distinctive bidirec­
tional bridging connections across parallel sensory and motor pathways (Figure 9.5).
This structure allows actions to sensory stimuli to be initiated at various, more or less
abstract, levels of processing, ranging from the presensory cortex to the prefrontal
cortex. The inhibitory functions of the cortical areas enable this scheme.

Enough is now known about vertebrate CNS that we can start to outline CNS­
based solution approaches to difficult problems in the automation of engineering sys-

Section 9.4 Emerging Control Technologies for Complex Systems 227

A: Outerfeedback loop
enabling andmodifying
dynamic response (coordination
of intention and sequential
activity)

Limbicsystem
(Motivation)

Basalganglia
(Coordination)

o

Cerebrum
(Cognitive processes)

Thalamus
(Dataconcentrator)

Spinalcolumn

Cerebellum
(Proprioception)

B: Innerfeedback loopfor
sensorimotor system, tracking
andmodifying muscleresponse
errors(coordination of response)

Figure 9.5 Control system architecture for the vertebrate central nervous system.
(Figure courtesy of Blaise Morton)

terns. As one example, a control system for autonomous (uninhabited) fighter aircraft
can be suggested. Of course, the biological analogy should only be carried so far as is
useful; there are many important functions or subfunctions for which our existing
technology already provides effective solutions. It is at the overall architectural level
that the CNS analogy is likely to be most useful.

9.4.3 Complex Adaptive Systems

Complexity, as a phenomenon, is by no means limited to our artifacts. At virtually
all scales of space and time, the natural world is replete with complex systems. A view
that has gained considerable popularity over the last decade or so is that complexity in
nature can be understood as emerging from the interaction of numerous, but individu­
ally simple, entities-often referred to as agents. This perspective has led to the estab­
lishment of complex adaptive systems (CAS) as a new interdisciplinary field of study
that draws on research in such diverse disciplines as artificial intelligence, biology,
physics, and nonlinear dynamical systems. Successful explorations with CAS have
already been conducted in domains such as market economics, manufacturing logistics,
chemistry, and ecology.

In CAS simulations, agents are object-oriented representations of domain entities.
By endowing agents with adaptation capabilities, these simulations can address analy­
tically intractable optimization problems. The adaptation mechanisms are generally
based on algorithms inspired by biological evolution, such as genetic algorithms.
Essentially, perturbations and modifications of parameters or structures within agents
are essayed, and the effects of the variations are evaluated through the simulation.
Criteria of interest, which may be agent-specific or global, can thus be optimized as
the agents evolve.

228 Chapter 9 Control Systems for "Complexity Management"

9.4.4 Distributed Parameter Systems

The mathematics of distributed parameter systems has a long history, but only in
relatively recent years has the control of such systems become recognized as a specia­
lized and important topic. Cross-directional control of paper machines and other flat
sheet systems, flexible structure control for space applications, the control of mem­
branes and deformable mirrors-these are some of the applications that now are
seen as having much in common.

Unlike conventional, lumped parameter systems, distributed parameter systems
cannot be modeled purely by ordinary differential equations. The dynamics must be
expressed in terms of partial differential equations to capture the spatio-temporal cou­
plings. Distributed parameter system control requires large numbers of sensors and
actuators to deal with spatial variation. A thousand actuators may be used in today's
state-of-the-art paper machine controllers for ensuring that the thickness of the man­
ufactured paper is within tolerance. (The tolerance limit may be a half micron out of a
thickness of 20 or so microns.)

The development of microelectromechanical systems (MEMS) has also spurred
research in the control of distributed parameter systems. For example, microvalves
have now been manufactured in which the valve opening is regulated by a large
number of individually actuated "gates." These are currently used simplistically to
meet a desired "percent open" setpoint, but with more sophisticated control schemes
it has been suggested that reliable laminar flow could be achieved over a wide opera­
tional range. Analogously, proposals have been proffered for drag reduction in air­
craft and other vehicles by controlling large numbers of microflaps on exterior
surfaces.

9.5 NEW APPLICATION OPPORTUNITIES FOR
CONTROL AND AUTOMATION

In previous sections of this chapter, and elsewhere in this book, some of the "how's"
and "why's" of complexity management for control systems are noted. Here we
briefly outline a few of the associated "what's"-the new application possibilities
that are now being explored. Although the opportunities discussed here and the ear­
lier sections of this chapter will overlap somewhat, the additional specificity may help
readers gain a deeper appreciation of the dramatic changes that new developments in
control promise.

9.5.1 Large-Scale andEnterprisewide Optimization

Examinations of progress in control solutions in established application domains
reveal some common themes. As lower-level problems are successfully managed, atten­
tion turns to the next higher level-and so on. In the control of process plants, the first
targets for automation were single-input single-output loops for physical parameters
such as the temperature in a vessel. Next, multivariable systems were automatically
controlled-pressure, temperature, flow outputs in a reactor are dynamically coupled,
and multiple inputs should be coordinated to realize desired operation. The current
state of the practice allows entire units, such as distillation columns in a refinery, to be
put under feedback control.

Section 9.5 New Application Opportunities for Control and Automation 229

Analogously, commercial aviation has seen the successive automation of "inner­
loop" processes that directly control elevators, ailerons, and rudders; "handling quali­
ties" that ensure desired transient behavior to a given new vehicle state; and flight
management systems that can automatically fly an aircraft from way-point to way­
point.

The next step in the progression is seen as a quantum leap. In the process indus­
tries, the new target of research is enterprisewide optimization in which one automation
umbrella is unfurled over all the processes and systems involved in turning raw material
into product. The scale of such undertakings is truly daunting (recall Figure 9.4, for
example). In the aviation industry, the interest has turned from controlling an aircraft
to controlling the airspace. The hot topic today is "free flight," in which control and
automation systems are used to ensure that aircraft can fly routes according to airline
preferences rather than as mandated by air traffic control. In principle, both human
safety and airline profitability can be significantly enhanced.

9.5.2 Integration of Business and Physical Systems

An important corollary of the interest in enterprisewide optimization is that con­
trol system objectives can no longer be narrowly constrained to the operation of the
physical system. It is still important to ensure that temperatures stay within bounds, line
speeds are maximized, product quality requirements are met, energy is efficiently
expended, and so on. In addition-and this is a somewhat novel development in the
application of control science-economic objectives have explicitly intruded into the
picture. In closing the loop around a refinery, the control algorithm must factor in the
cost of crude oil and the prices and demands of different products that the refinery can
produce. Monetary costs of energy, of meeting (or failing) emissions constraints, even
of maintenance shutdowns, are part of the picture.

One industry in which the integration of business and physical realms has recently
taken on a new importance is electric power. Deregulation and competition in the
power industry in several countries over the last few years has resulted in new business
structures. At the same time, generation and transmission facilities impose hard phy­
sical constraints on the power system. For a utility to attempt to maximize its profit
while ensuring that its power delivery commitments can be accommodated by the
transmission system-which is simultaneously being used by many other utilities and
power generators-economics and electricity must be jointly analyzed. An illustration is
provided by a prototype modeling and optimization tool recently developed under the
sponsorship of the Electric Power Research Institute. The tool integrates classical
power flow calculations, corporate transaction models, and generation and consump­
tion profiles within a complex adaptive systems framework. Figure 9.6 shows the user
interface for the tool (named SEPIA for Simulators for Electric Power Industry Agents)
[6].

9.5.3 Autonomous Vehicles

Vehicles that can fly, drive, or otherwise propel themselves have held an enduring
fascination for people. Researchers in control systems have hardly been immune from
such imaginings. Many of them, in fact, have attempted to turn these visions into real
systems. Research in autonomous vehicles has made substantial progress recently, and
there is now considerable excitement in the controls community that practical auton-

Section 9.6 Schools of Complexity Management 231

and climbing stairs, among other behaviors that used to be well outside the realm of
automated systems.

9.5.4 Data Mining and Intelligent Data Analysis

Virtually all engineering systems are sufficiently stationary' so that their past beha­
vior can help explicate current performance. Historical data can thus be invaluable for
controlling complex systems-provided that it is available in large quantity, that it is
readily accessible in electronic form, that appropriate statistical algorithms are available
for deriving useful information from it, and that computational platforms can process it
rapidly. These provisions were problematic even a decade ago, but not any longer, and
data mining is on the "in" list of new technologies.

Although applications in areas such as direct marketing are already widespread, a
fuller treatment of data mining for dynamical systems is necessary before the technology
can have an impact on control systems. Research is well underway in this direction. As
a hypothetical vision of the benefits that may lie in store, Figure 9.7 illustrates a
potential application in an oil refinery.

9.5.5 Control Systems and the World Wide Web

Control engineering has not been at the center of the Internet and World Wide
Web explosions, but we are starting to see some implications of the Web as an
enabling technology for control. For example, Honeywell Hi-Spec Solutions has
announced a series of Web-based products for the process industries [7]. One is called
LoopScout™: a data collector can be downloaded free over the Web; the collected
data are shipped back and automatically analyzed by statistical algorithms at the Hi­
Spec Solutions server. Customers can then order a variety of reports that highlight
problem control loops, allowing maintenance and asset management resources to be
efficiently used. Similarly, Intellificout" focuses on plant heat exchangers. Site-resi­
dent software applets can be downloaded that monitor and analyze shell-and-tube
heat exchanger performance in real time. Plant staff is alerted if abnormalities are
uncovered.

In neither of these cases is closed-loop control being attempted over the Web. The
Internet is not a real-time network, and no guarantees are provided for data rates or
latencies. Real-time Web-based control is thus not a feasible proposition for any prac­
tical application. However, this situation could change if a global network with better
real-time performance were to be developed. The next generation internet (NGI) could
potentially be one such development.

9.6 SCHOOLS OF COMPLEXITY MANAGEMENT

Our focus in this chapter has been on examining the effects of the increasing
complexity of automation on control science and engineering. The problem of
complexity management, however, is of widespread interest within the technological
community generally and even beyond it. In this section, we take a step back and
review a selection of the discussion and proposals that have arisen out of a broad­
based interest in managing complexity on the part of scientists, engineers, and
others. The connection with previous sections is somewhat peripheral; the intent

Section 9.6 Schools of Complexity Management 233

such as chemical plants and aircraft, the benefits are substantial (no feasible alternatives
are known), and the freak worst-case accident will not be unthinkably catastrophic.
With modest efforts we can further improve the safety of such systems and live with the
remaining risk. His second category includes large marine transports and genetically
engineered systems. Here benefits are again substantial, and risks, though higher, are
outweighed. His recommendation is that we invest the substantial resources necessary
for minimizing the likelihood of accidents such as the sinking of the Estonia ferry. The
final category is reserved for systems that we must abandon because the scale of cat­
astrophe that can result from their failures is absolutely intolerable, and, further,
because less risky alternatives to these systems exist. The primary instance of this
class is nuclear power.

Perrow's argument is not quantitative. Indeed, in some respects, it is a reaction to a
mathematically sophisticated approach to complexity management known as risk
assessment with which it shares the concern for safety. Given any system, risk assess­
ment develops models that describe various ways that accidents can result, and it
attempts to calculate the probability of each accident by considering the individual
abnormal events that produce the accident. Probabilities for these individual events
are needed in this calculation. Accidents are also often quantified in terms of the
monetary losses or losses of lives they cause (and sometimes the two are explicitly
related to each other). The end result is a number, a monetary amount, which can
then be compared to the expense of engineering workarounds that will sufficiently
reduce the probabilities of individual abnormal events. A variety of risks to human
safety in this vein, with attendant statistics, are considered in [9].

9.6.2 Efficiency in Design: System Engineering and
Virtuality

Whereas risk assessment and the "forfeiture" tack focus on the issue of safety,
systems engineering (e.g., [16]) also addresses other aspects of complex technological
systems, such as how to design systems cost-effectively, so that their reliability is max­
imized. Depending on the needs of specific projects, systems engineering can include
systems analysis, requirements specification, system architecting, and other topics.
Systems engineering (also sometimes referred to as systems management) often focuses
on structured, formal process models for design and development. These models, at the
highest level, specify the steps and tasks involved in the development of engineering
systems, from the conceptual to product stage, and they can encompass the entire life
cycle of products or technologies. Depending on the characteristics of the technologies
and products, different models may be appropriate. When development is a sequential
process, "waterfall" models can be considered. For more complex systems, with sub­
stantial couplings and interdependences, "spiral" models may be more suitable [15].

A related topic is virtual engineering, which is a term used to capture the increasing
use of computational tools for facilitating system design [3]. These tools allow complex
systems to be engineered "virtually," greatly reducing the need for manufacturing
physical prototypes. The paradigmatic example is integrated circuit design. A technol­
ogy that is fueling complexification requires complexity management itself, as might be
expected. Putting millions of transistors on a few square centimeters is not humanly
possible, and the electronics industry has been able to accomplish it only by relying
extensively on libraries of largely automated tools for placement, layout, verification,

234 Chapter 9 Control Systems for "Complexity Management"

simulation, synthesis, and virtually all tasks associated with the design and analysis of
VLSI devices.

The use of conceptually similar tools is spreading to all technology-driven indus­
tries. The recent development of the Boeing 777 is a well-publicized example. At one
time, 238 teams were working in concert to design the 777 using "design/build"
computational tools. Full-scale physical mockups were not needed at every stage,
correct part fits were ensured before manufacturing through digital preassembly,
and multinational teams were able to work in coordination. The design/build virtual
engineering teams were also considered essential for delivering "service-ready" air­
craft to airlines.

Although design is a primary application of virtual engineering, there are many
others, Simulation-based training, as another example, is commonplace in many indus­
tries. Aircraft pilots, power system dispatchers, and oil refinery operators routinely
hone their skills on simulators, which allow appropriate human responses to dangerous
incidents to be learned by trial and error, but without the potentially catastrophic
consequences of trials on the real system.

9.6.3 Nature and Biology: Evolution, Emergence,
and Power Laws

As already noted, every living system represents a successful solution to a complex
problem-the environment within which the organism must survive. The biological
world thus provides innumerable examples of complexity management. These successes
have been achieved through an approach unlike any of those noted above. No formal,
structured development process was followed, no specifications were written in
advance, and no computer-aided design or analysis tools used!

This has led many researchers to propose that complex engineering systems can be
developed and operated using biologically inspired methods. Computational implemen­
tations (not necessarily especially faithful) of biological evolution can "learn" the right
answers to difficult problems through a process that simulates natural selection but
(since this process is simulation and not reality) without the inefficiencies of the origi­
nal. The algorithms that have been developed for this field, generally referred to as
evolutionary computing [4], are all highly flexible and customizable. They make few
assumptions about the characteristics of the problem compared to more traditional
optimization algorithms, and evolutionary computing algorithms are thus applicable
to problem formulations for which the latter cannot be used. Thus the design space
need not be differentiable, convex, or even continuous; discrete and continuous vari­
ables can be simultaneously accommodated; arbitrary inequality and equality con­
straints can be included; and so on. Genetic algorithms are perhaps the best known
instance of an evolutionary computing algorithm and well established as an important
intelligent control technique.

In most of the preceding discussion, complexity can be seen, at least in part, as a
consequence of scale. Systems become more complex as their components become more
numerous, as more couplings arise, or as more behaviors are encapsulated. There is,
however, another sense in which complexity is used within the technical community. In
many small-scale systems, certain parametric regimes can cause a transition from well­
behaved "simple" behavior to unpredictable "chaotic" dynamics. The output of such a

Section 9.6 Schools of Complexity Management 235

system may appear to be random, but the system is entirely deterministic, and the
apparent randomness is due to (often mild) nonlinearities.'

The key attribute of this chaos is a sensitive dependence on initial conditions, as
memorialized in the Chinese butterfly apothegm: lepidopteran flittings in Beijing can
produce showers in Minneapolis (or blizzards, depending on the time of year). A variety
of mathematical tools are now available to detect chaos in systems by analyzing their
outputs. Chaos has been uncovered in a wide range of systems, including manufactur­
ing operations, road transportation networks, biological organisms, contagious disease
epidemics, and financial markets. Systems of all sorts-small-scale and large-scale,
abstract and real-ean thus be analyzed through the language of nonlinear dynamical
systems, the "science of complexity" [12]. Chaotic attractors, bifurcations, Lyapunov
exponents, and other characteristics can provide insight into the complexity of a system
and suggest approaches for managing the complexity.

The leading exponent of work in this area is the Santa Fe Institute (SFI), a private,
nonprofit, multidisciplinary research and education center founded in 1984. SFI is
described by one of its founders as "one of very few research centers in the world
devoted exclusively to the study of simplicity and complexity across a wide variety of
fields." [5, p. xiv]. Chaos theory and nonlinear dynamical systems are among the main
themes pursued, but in an interdisciplinary environment that also includes international
experts in biology, quantum physics, information theory, and economic theory.
Theoretical research is coupled with application explorations in financial markets,
manufacturing operations, cosmology, and social sciences, among others.

Alternative and intriguing explanations have recently been proposed for some
putatively chaotic phenomena-and many others [2]. It turns out that a vast array of
systems exhibit power law spectra: A quantity of interest (for example, the frequency of
occurrence of an event) can be expressed as some power of another quantity (such as
the magnitude or severity of the event). Thus a log-log plot of earthquake magnitude
versus the number of earthquakes of at least that magnitude over some geographical
region is a straight line (of negative slope).

The pervasiveness of power laws in human systems, including distributions of
cities on the basis of their populations and the distribution of English words as a
function of their usage rank, has been known since Zipf [20]. A new wealth of data
from natural systems and observations in controlled experiments have further vali­
dated the power law model, and we now have the beginnings of a theory that may
ultimately lead to a science of "self-organized criticality," the label coined for the new
field. Unlike chaos theory, which shows how low-dimensional deterministic systems
can exhibit seemingly random behavior, self-organized criticality is concerned with
large-scale systems. Power law dynamics arise from the statistics of the interactions
between system components.

9.6.4 Societal Connections

Although we have referred to market considerations and the economics of tech­
nology development and commercialization, the focus of the discussion has been on

1 Perhaps the simplest example of chaos arises for the logistic difference equation,
x[t + 1]= ax[t](l - x[t]). For a = 2.5, the system will eventually lead to a constant value for x, given
any starting value x[O] between 0 and 1. For a = 3.25, x will oscillate forever between two values. For
a = 3.5, a cycle of period 4 results. Chaotic dynamics arise when a = 4 (for x[O] t= 0.5).

236 Chapter 9 Control Systems for "Complexity Management"

technological issues and approaches. Another mark of increasing complexity, however,
is that technology spills over into societal arenas. Managing complexity in such an
environment requires an awareness of the interconnectivity between technology and
society. As engineers and scientists, we are used to thinking that the primary influences
are unidirectional. Technological and scientific achievements lead to societal change­
through the telephone, television, electric power, the automobile, aviation, synthetic
fibers, gasoline, the computer, and so on, our ways of life have changed in ways that
were once inconceivable.

But technology development itself does not happen in a vacuum. Government
funding of scientific research is ultimately under political and societal control; grass­
roots movements can derail major industries; "slick" marketing campaigns can some­
times overcome technical shortcomings; small, and not necessarily rational, advantages
can snowball into industry domination. Technology certainly affects society, but it is
"how society shapes technology" in the words of Pool [14] that technologists must also
understand in today's complex world. Pool's emphasis is on nuclear power-a para­
digmatic example, at least in the United States, of how society has influenced technol­
ogy-but he also discusses numerous other case studies.

In a similar vein, Latour [8] coins the word "technoscience" to "describe all the
elements tied to the scientific contents no matter how dirty, unexpected, or foreign they
seem" (p. 174). Science and technology themselves are just elements of this broader,
socially influenced enterprise, in which laboratory researchers, product engineers, and
technology managers are a part of a network that includes consumers, heads of funding
agencies, military strategists, legal professionals, and even metrologists. Figure 9.8
illustrates some of the complexity associated with the objects and processes of technol­
ogy development in this view.

9.7 CONCLUSIONS

This chapter has argued that a dramatic change is underway in automation and control.
Fueled in part by the inexorably exponential advancements in hardware and software

Workforce Arguments

Instruments Objects

Figure 9.8 Spirals and circles of network-driven growth (from [8]).

References 237

technologies, and in part by economic and societal concerns-global competition and
resource constraints, for example-our artifacts are becoming increasingly more
complex.

Control systems are now being tasked to close the loop on substantially larger­
scale problems than before. The complexity of these undertakings is truly daunting and
is beyond the capabilities of the current state of the art. Many of the emerging tech­
nologies in control, such as hybrid and discrete-event systems, intelligent control, non­
linear approximators, distributed parameter systems, and biologically inspired control
architectures are attempting to correct this shortcoming. These and other research
developments, if ultimately successful, will help furnish systematic, sound methods
for dealing with tomorrow's control challenges.

Any impression that controls is a peripheral technology for meeting the automa­
tion challenges of the future would thus be misplaced. The portfolio of techniques
and the research directions of control science and engineering will evolve, but the
centrality of controls, as a unified discipline, for complexity management is assured.
Indeed, there are good reasons to anticipate a revival of excitement and enthusiasm.
As the scale of automation increases, the importance and visibility of modeling,
identification, optimization, feedback, dynamics and so on, will inevitably be raised.
The controls community has much to offer-and much to gain-by embracing com­
plexity management.

REFERENCES

[1] M. Ancevic, "Intelligent building system for airport." ASHRAE Journal, pp. 31-35,
November 1997.

[2] P. Bak, How Nature Works. New York: Copernicus Books, 1996.
[3] J. C. Doyle, "Theoretical foundations of virtual engineering for complex systems." http://

www.cds.caltech.edu/vecs/, 1997.
[4] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence.

New York: IEEE Press, 1995.
[5] M. Gell-Mann, The Quark and the Jaguar: Explorations in the Simple and the Complex. New

York: W. H. Freeman, 1994.
[6] S. A. Harp, et al. Complex Adaptive Strategies: Tools for the Power Industry. Technical

Report TR-112816, EPRI, 3412 Hillview Avenue, Palo Alto, CA, 1999.
[7] Hi-Spec Solutions. http://www.hispec.com/RecentNews/press/teleConReg.htm.
[8] B. Latour, Science in Action. Cambridge, MA: Harvard University Press, 1987.
[9] H. W. Lewis, Technological Risk. New York: W. W. Norton, 1990.

[10] E. H. Maslen, et al., "Artificial hearts." IEEE Control Systems Magazine, Vol. 18, no. 6,
1998.

[11] D. McAllester, "Some PAC-Bayesian theorems." Proc. Computational Learning Theory
(COLT '98), pp. 230-234,1998.

[12] G. Nicholis and I. Prigogine, Exploring Complexity. New York: W. H. Freeman and Co.,
1989.

[13] C. Perrow, Normal Accidents. New York: Basic Books, 1984.
[14] R. Pool, Beyond Engineering: How Society Shapes Technology. New York: Oxford

University Press, 1997.
[15] E. Rechtin and M. Maier, The Art of System Architecting. Boca Raton, FL: CRC Press,

1997.
[16] A. P. Sage, Systems Engineering. New York: Wiley-Interscience, 1997.

238 References

[17] T. Samad (ed.), Complexity Management: Multidisciplinary Perspectives in Automation and
Control. Technical Report CON-R98-001, Honeywell Technology Center, 3660 Technology
Drive, Minneapolis, MN 55418, 1998.

[18] T. Samad and J. Weyrauch (eds.), Automation, Control and Complexity: An Integrated
Approach. Chichester, UK: John Wiley and Sons, 2000.

[19] M. Vidyasagar, "Statistical learning theory and randomized algorithms for control." IEEE
Control Systems Magazine, Vol. 18, no. 6, pp. 69-85, 1998.

[20] G. K. Zipf, Human Behavior and the Principle of Least Effort. Cambridge, MA: Addison­
Wesley, 1949.

Chapter

10
CONTROL OF MULTIVEHICLE
AEROSPACE SYSTEMS

Jorge Tierno, Joseph Jackson, and Steven Green

Editor's Summary

Aircraft and spacecraft have been perhaps the most visible and awe-inspiring applications for control

technology. The continuing march toward, and achievement of, ever higher performance in flight control

have seemed inexorable and a perpetual source of problems as challenging as any that controls researchers

could wish for.

Yet, while difficult problems in vehicle flight control remain outstanding, it is fair to say that

algorithmic research in this area has encountered the law of diminishing returns. As discussed in

Chapter 11, substantial challenges remain in single-vehiclecontrol, related to the cost-effective develop­

ment and deployment of controllers rather than new algorithms and theories. That aerospace control

remains a vigorous, exciting field from algorithmic and theoretical perspectives as well can be attributed in

large part to a broad new research direction: the control of multivehicle systems.

This chapter discusses three different and important multivehicle aerospace challenges. The first is in

commercial aviation, where government and industry are seeking radical alternatives to today's air traffic

control technology. Concepts such as "free flight" promise substantial improvements in safety and opera­

tional efficiency-under the proviso that the enabling control technology is available. The second example

presented is formation flying for uninhabited combat air vehicles (DCAVs), with fleet coordination and

autonomy requiring new fundamental research. Finally, the control of satellite clusters is discussed. This

application is motivated by the cost and failure rates of large monolithic satellites and by the additional

capabilities, such as synthetic aperture radar, that can be achieved by precise positioning of spatially

distributed satellites.

Multivehicle systems are now a topic of general interest in control and automation; the interest is not

limited to aerospace. Chapter 14 notes applications to road vehicles, including platooning automobiles.

Jorge Tierno is with the Dynamics and Control group at Honeywell Technology Center, Joseph

Jackson is with Honeywell Air Transport Systems, and Steven Green is with NASA Ames Research

Center.

10.1 INTRODUCTION

Automatic control technology for single-aerospace vehicles has seen significant progress
in the past 30 years. It has achieved a level of sophistication that makes cost, and not
theory, the principal limiting factor in performance. Although theoreticians and practi-

239

240 Chapter 10 Control of Multivehicle Aerospace Systems

cing engineers alike in this area still face significant challenges, it is no longer a major
open question.

Automation is now extending beyond the single vehicle to a set of vehicles working
in a coordinated fashion. Fleet or formation automation is being driven by many
factors, the two most significant ones probably being the quests for increased safety
and increased autonomy.

Coordinated control of a fleet of vehicles poses new challenges at all levels of the
control hierarchy. On the one hand, theory and technology for the higher levels of the
hierarchy, those dealing with the autonomy and coordination aspects, need to be devel­
oped from the ground up. On the other hand, the lower levels of the hierarchy, those
dealing with the regulation aspect of control, need to be optimized in order to interact
with the autonomy layer.

This chapter discusses some of these new challenges and briefly presents some ideas
on how to solve them through three different examples derived from aerospace applica­
tions of multivehicle systems.

The first example is the commercial air traffic management (ATM) system. ATM is
at the verge of revolutionary changes related to the introduction of "free flight." In
future ATM systems, much more emphasis will be put on enabling users (i.e., airlines)
to select their preferred routing, with minimal guidance from centralized facilities.
Implementing such a system, while increasing overall capacity and maintaining or
increasing current safety levels, will require the development of new automation both
on-board the aircraft and on the ground.

The second example deals with the technological demands of uninhabited com­
bat air vehicles (UCAVs) and autonomous and semi-autonomous UCAV forma­
tions. In a meaningful sense, UCAVs are a reality today. Success with cruise
missiles has shown that it is feasible to inflict severe damage on enemy or terrorist
nerve centers without putting pilots in harm's way. Although cruise missiles can be
considered first-generation UCAVs, they are a far cry from the ultimate objective of
autonomous DCAV fleets capable of executing complex missions in uncertain
environments. We will describe some of the technology developments that need
to come to fruition in order to build and field successful and safe UCAV
formations.

The final example describes some of the recent developments and current research
topics in the field of low Earth orbit satellite clusters. Smaller, simpler, cheaper satel­
lites, operating as a unit, are more economical than large satellites. By being physically
separated, the cluster is more capable (e.g., distributed aperture radar applications) and
less vulnerable to being taken out by a single event such as a meteor or a collision with
spacecraft debris. To achieve its potential in flexibility and cost reduction, it is required
that all satellites be identical, that they all perform similar tasks (forming a network of
peers and not a master/slave configuration), and that all distributed operations be
readily reconfigurable in case of failure. These requirements pose exciting new chal­
lenges to the controls community. One of these challenges is to determine how simple
identical control systems for individuals in the cluster can be chosen in order to achieve
a given collective behavior. Some of the possibilities being considered will be discussed.

Control of fleets of aerospace vehicles is at the moment an open, quite active, and
exciting research area. By presenting the examples mentioned above in this book, we
hope to interest young engineers in this area.

Section 10.2 Future Controls Applications and Challenges in ATM

10.2 FUTURE CONTROLS APPLICATIONS AND
CHALLENGES IN ATM

241

On the road toward free flight, the designers of future ATM systems and components
will face a number of interesting control challenges. Only a few key control challenges
are described here, but we hope they will give the reader an appreciation of the role of
control systems studies and contributions in the evolution of ATM. The examples
described are as follows:

• Air traffic capacity management in the presence of disturbances (Section 10.2.2).

• Enabling user preferences in a safety-constrained air traffic system (Section
10.2.3).

• "Executing to plan" in constrained airspace-terminal area operations (Section
10.2.4).

10.2.1 Preliminaries: Airspace and Air Traffic
Management

We will focus on flight operations within "controlled" airspace (i.e., airspace
within which a flight must obtain an air traffic control, ATC, clearance to operate).
The en route airspace within the continental United States (CONUS) is divided into 20
geographic regions (Figure 10.1), each of which is under the jurisdiction of an Air
Route Traffic Control Center. In general Centers control the airspace from just
above the surface on up to flight level (FL) 600 (60,000 ft). Each Center itself is sub­
divided into sectors (Figure 10.2), upwards of 20 or more, each operated by at least one

Figure 10.1 US Air Route Traffic Control Centers.

244 Chapter 10 Control of Multivehicle Aerospace Systems

gational beacons for en route guidance, inertial landing systems (ILS) near
airport terminals, and the global positioning system (GPS).

• Fleet equipage. The number and configuration of aircraft also influence the role
of ATM as regulator. Aircraft velocity, range, and on-board equipment must be
considered.

10.2.2.2 Control Variables

Given the "problem structure" and initial conditions, the next issue is to identify
what degrees of freedom are available to modify the state of the air traffic system:

• Delay restrictions. Air traffic management can impose delays to maintain a
target level of safety (e.g., level of sector-traffic density). The ground delay
procedure holds flights in order to reduce congestion or other limitation at
the destination. Sector traffic is also controlled by adjusting delays of incoming
and outbound traffic.

• Traffic rerouting. When faced with severe weather fronts, airport closures, or
medical emergencies, aircraft can be rerouted or diverted.

• Runway configurations. The availability of runways for landing or takeoff is
contingent on weather conditions. A good example of this "control" is at San
Francisco International, where inclement weather can shut down one of a pair
of runways/approaches to maintain safety of operations, thereby cutting capa­
city in half.

• Traffic metering. The metering and sequencing of traffic in the terminal area are
used to avoid congestion of airport facilities. Note that the Center-TRACON
Automation System (CTAS) uses route changes (vectoring, fanning, base leg
extensions) as well as altitude and speed clearances to perform metering and
sequencing operations.

• Equipment upgrades. Users may add new fleet equipment if the cost-benefit
tradeoff justifies it.

10.2.2.3 State Variables

The next items to be considered are the key state variables that can be measured or
estimated in air traffic systems and that are correlated with the performance of the
system.

• Sector-traffic density. This refers to the number of aircraft under control by each
ATM control center.

• Airport state ofoperations. Airports can operate under different conditions, with
specific rules, that is, visual meteorological conditions (VMC) or instrument
meteorological conditions (IMC). Other factors, such as the runway visual
range (RVR), will also affect airport capacity and throughput.

• Geographically distributed delay across the air traffic system. Delays will propa­
gate through the air traffic system.

• Flight trajectories. The flight plans of the aircraft in the air are also a funda­
mental and measurable state of the system.

Section 10.2 Future Controls Applications and Challenges in ATM

10.2.2.4 Disturbances

245

Disturbances, that is, uncontrolled variables, can affect the behavior of the overall
system. The most significant of these disturbances are:

• Weather. This is the single most significant disturbance to consider. Weather
patterns can close areas to air traffic and degrade or impede operations at
airports.

• Medical emergencies. On-board medical emergencies can alter flight plans and
require emergency procedures in the terminal.

• Aircraft equipment failures. Equipment failures can delay departures, affecting
gate assignments, connecting flights, and crew availability.

• Change in special use airspace restrictions.

10.2.2.5 Control System

After a model of the air traffic system has been determined, a control system can be
devised. In order to do so, we first must identify the achievable performance. Some
fundamental variables determine hard constraints on system performance, including the
following:

• Capacity versus safety ofoperations tradeoff Higher capacity can be achieved by
lowering the separation requirements between aircraft in flight, but this also
compromises the safety of the system. This is a fundamental tradeoff for the
overall performance of the system.

• Airport capacity. Separation of arriving and departing vehicles is dictated by
wake vortices behind the airplanes. This is a fundamental physical limit that sets
an upper bound on the airport's capacity.

• Economics of modernization. Although more modern systems could increase
performance, it may not be economically justifiable to implement them uni­
formly across the system.

• Aircraft capability (and variation across fleet). Related to the previous point,
not all aircraft will be equally capable, and older airplanes may be in the system
for many years yet.

• Human-in-the-loop workload (controller, flight crew). Any system relying on
human controllers and pilots must respect their task load limits.

The second component of the control system is the measurement and estimation of
the state variables described previously. Different state variables have different time
constants associated with them and should be treated accordingly (see Figure 10.4).

• Short-term or tactical measurements such as airport runway visual range, air­
port ceiling, and the measurements of tactical hazard alerting systems such as
TCAS (Traffic Collision Avoidance System, an on-board system that alerts
pilots of other aircraft in the immediate vicinity and recommends corrective
action).

Section 10.2 Future Controls Applications and Challenges in ATM 247

enabled by modifying the current system (ground-based responsibility for separation)
to minimize deviations from the UPT [7, 19]. An alternative approach is to shift separa­
tion responsibility to the aircraft along with greater authority and flexibility in flight
planning and maneuvering.

An operational mechanism to provide shared air and ground responsibility for
separation assurance in the en route phase of flight is being investigated under the
NASA Aeronautics Advanced Air Transportation Technology (AATT) program [10].
Early AATT studies propose methods to maximize user flexibility in relatively low­
density airspace. Several controls applications and challenges associated with a new en
route separation assurance system are described below.

10.2.3. 1 Development of Distributed Separation
Assurance Procedures

Shared separation in en route "unconstrained" airspace would require the follow­
ing (necessary but not sufficient) air traffic system-level functionality:

• Mechanism to transfer position and intent data between aircraft and ATM.

• Unambiguous presentation of traffic data, conflict detections, and conflict reso­
lutions that support user preferences.

• "Real-time" situation awareness of conflicts and resolution procedures by
ATM.

• Determination of the role of controllers and flight crews under normal and
nonnormal conditions to maintain the overall safety of ATM operations.

• Seamless reversion to positive ground separation control in the event of an
unresolved conflict or abnormal event or upon the transition to constrained
airspace.

• Intersectorjfacility coordination to orchestrate equitable, efficient, and stable
metering of traffic flow management (TFM) affected flights.

Modeling and simulation of these functions in an air traffic system framework, as
has been recommended in general by the RTCA Free Flight Select Committee and
discussed in Section 10.2.2, will provide valuable insight into the safety, reliability,
and robustness of candidate shared separation procedures under nominal, normal,
and worst-case conditions. (The RTCA, organized as the Radio Technical
Commission for Aeronautics in 1935, is a private, not-for-profit organization that
addresses requirements and technical concepts for aviation.)

10.2.3.2 ATM Considerations

Independent of whether separation responsibility resides on the ground or is
shared with the flight deck, ATM must fulfill a critical TFM role to enable user pre­
ferences. It may not be reasonable for the sophisticated aircraft of the future to plan
"optimum" trajectories when the trajectory constraints (e.g., required time of arrivalj
metering) vary over airspace and time. It is not efficient for an aircraft to fly fast (to
maintain schedule) into airspace with delays that could have been absorbed earlier,
more efficiently. On the other hand, it may not be economically wise to slow down for a

248 Chapter 10 Control of Multivehicle Aerospace Systems

delay that is uncertain. A user's choice of preferences (such as speed profile or routing)
is directly dependent on ATM constraints as well as the user's estimation of the state of
the air traffic system (delays, weather). It is incumbent on the ATM system to provide
users with the following two services: accurate, real-time updates of the status of the air
traffic system (from which intelligent preferences may be selected); and stable, equit­
able, and minimal TFM constraints (required time-of-arrival, RTA) within which user
preferences may be applied.

10.2.3.3 Flight Deck Considerations

The feasibility of shared separation will require the ability to detect and display
conflicts, present resolution strategies to the flight crew for acceptance, and revert to
ground separation control with a high degree of reliability. As it is likely that shared
separation benefits will only be achieved if the presence of this flight deck function­
ality is the rule rather than the exception in the airspace where the procedure is
exercised, this functionality will have to be implemented across a mixed fleet of air­
craft and airlines, as discussed earlier. Integrating the separation task into those that
the flight crews routinely execute in en route airspace might in itself be achievable,
were it not for the limitations on the presentation of basic aircraft parameters, navi­
gation, flight plan, weather radar, TCAS, wind-shear, terrain avoidance, cockpit dis­
play of traffic information (CDTI), and other demands for information presentation
to the flight crew. This limitation is especially difficult to overcome in older aircraft
with minimal display area.

An interesting controls-related problem here is to determine what information
the flight crew needs to support the shared separation procedure, how to present the
information that conveys the conflict and resolution strategy while maintaining situa­
tion awareness, and what control variables to exercise in order for the flight crew to
perform the procedure. This process must account for the user preferences and equi­
page constraints of both aircraft and should not propagate the conflict to other pairs
of aircraft. A related problem is to determine the least common denominator aircraft
equipage that can support shared separation to a limited extent across a mixed fleet of
aircraft with minimum cost to the users (airlines).

10.2.3.4 Airline Operating Center fAOC)
Considerations

There are rare-normal conditions that will require a major redirection of en
route traffic to maintain airspace safety, such as to avoid severe weather fronts or
divert to an alternate destination in response to an airport closure. Under these
conditions, it is unlikely that the flight deck will have the capability, in terms of
information access and computational resources, to coordinate independently with
ATM to derive a conflict-free resolution that is optimal from an airline fleet opera­
tion point of view. However, it may be beneficial to retain some measure of shared
separation responsibility under these conditions to potentially reduce controller
workload and sector traffic density. A direct involvement of AOCs with ATM
and en route aircraft could facilitate shared separation responsibility and optimal
conflict resolutions.

Section 10.3 Example 2: Uninhabited (Combat) Air Vehicles 249

10.2.4 "Executing to Plan" in Constrained
Airspace: Terminal Area Operations

Within the extended terminal area, that is, the airspace within 200 nm of a major
airport, the degrees of freedom by which an individual aircraft can maneuver are sig­
nificantly reduced from en route operations. In this high-density airspace (i.e., many
constraints), positive controller intervention is required to maintain the safety of opera­
tions as arrival traffic converges. ATM automation tools have been developed to assist
the controller and flight crews to operate more efficiently in the terminal area [1, 2].

A modern avionics system can automatically control a commercial aircraft from
takeoff above 300 feet above ground level (AGL) through climb, cruise, and descent
portions of the flight regime, with an automatic landing at a required time of arrival
(RTA). However, because of today's controller intervention in the terminal area, or in
the future ATM augmented as planned with the ground-based Traffic Management
Advisor (TMA) and Passive Final Approach Spacing Tool (P-FAST), the flight path
guidance portion of the flight deck automation is basically "turned off," and the flight
crew operates the avionics using basic heading, speed, and altitude commands to the
autoflight system. To enable a more efficient utilization of resources in a free flight
environment, a more cooperative approach is needed between the evolving flight deck
and ground system automation. Several efforts have investigated the use of two-way
data communications (datalink) [7, 19] to facilitate the transfer of aircraft intent and
state information to the ground automation, and traffic clearances to the flight deck.
Further study is needed to determine what level of cooperation between the airborne and
ground automation maximizes the closed-loop performance of terminal area operations,
that is, capacity, while maintaining safety of operations with a mixed fleet of (possibly
uncooperative) arrival traffic under varying environmental conditions. Assuming that
user preferences and flexibility are supported by the ATM system, significant gains in
capacity and efficiency can be achieved if aircraft fly more predictable trajectories.
Airborne automation can help pilots fly more precise trajectories that will allow con­
trollers to operate with less conservatism to protect against flight path uncertainties.

Research into closely spaced parallel approach procedures [1, 2] shows promise to
maintain clear weather airport capacity in instrument meteorological conditions at
airports with parallel runways spaced less than 3400 feet. This procedure requires
precision navigation positioning (such as differential GPS, DGPS), aircraft-to-aircraft
communications, display of the traffic position on the parallel runway, and escape
maneuver alerting should aircraft position safety tolerances be exceeded. Although
commercial aircraft are currently certificated with automatic approach and landing
systems that are demonstrated to adequately reject gusts, turbulence, and other anoma­
lies in the final approach phase of flight, this closely spaced parallel approach procedure
may place new control demands on precision approach systems in order to maintain
adequate safety margins.

10.3 EXAMPLE 2: UNINHABITED (COMBAT) AIR
VEHICLES

Uninhabited vehicles will doubtless playa major role in air combat in the twenty-first
century [14]. UCAVs can bring at least three significant advantages to combat missions:
targets can be attacked without endangering human pilots; performance need not be

250 Chapter 10 Control of Multivehicle Aerospace Systems

constrained by human tolerance limits (e.g., of g forces) nor payload diminished
because of human-centered vehicle-pilot interfaces; and vehicle and mission costs can
be substantially reduced.

Uninhabited combat vehicles will be phased in gradually, performing first the
missions for which they are most easily adapted (and for which human pilots are
worst prepared). Suppression of air defenses is a likely candidate for initial use of
UCAVs. Cruise missiles and other smart munitions are currently used to accomplish
significant portions of this mission. This presents a clear path to the inclusion of
increasing autonomy and nonexpendable uninhabited vehicles. More challenging mis­
sions will include the use of UCAVs for area access denial (as a substitute for land
mines, for example), and eventually for aerial superiority combat.

Although UCAVs' flight performance will be higher, and thus so will be the
requirements on the flight control systems, we expect the control of individual vehicles
to remain fairly standard. However, fleet coordination and autonomy issues open large
areas of research. In what follows we briefly describe these areas.

10.3.1 Inter-Fleet and Central-Command-to-Fleet
Communications

A communication architecture and language has to be developed that can achieve
three related but distinct objectives: coordination of the formation, robustness of the
maneuvers carried out, and distributed optimization of the formation behavior. Besides
having the ability and flexibility to express these tasks, the language has to be concise in
order to reduce communication bandwidth, facilitate scaling of formation size, and
simplify coordination of heterogeneous formations. Although the communications lan­
guage is only part of this architecture, its careful design can have a significant impact on
the performance and ease of implementation of the overall system. Coordinated control
requires the exchange, first of all, of information about variables and parameters of
interest. These can be considered the message objects and include the following:

• Trajectory modes and multivehicle trajectories

• Mission modes
• Vehicle states, including fuel, weapons, faults, damage
• Interpreted sensor data, for example target or threat detections

Figure 10.5 shows an example of possible trajectories that would constitute some of
these message objects. These objects can be communicated with different intentions and
for different communicative purposes. Thus we can distinguish between different types
of messages-a simplified "speech act" portfolio for coordinated multivehicular con­
trol. Examples include:

• Queries
• Commands
• Warnings

• Assertions
• Acknowledgments

252 Chapter 10 Control of Multivehicle Aerospace Systems

optimization. A performance index and a set of constraints are derived from the pro­
blem specification (e.g., maintain separation, while keeping velocities, accelerations,
and deviations from nominal routes within certain bounds). Next, a set of bounded
structured uncertainty in the systems behavior is added. Finally, we determine the
nominal trajectories that will minimize the worst-case cost while respecting the con­
straints. Although usually the exact solution cannot be computed, approximations can
be computed using convex optimization algorithms that have guaranteed bounds on the
robustness level.

10.3.3 Autonomy

To design an autonomous fighter, we need to enhance the functionality of current
systems in many ways. Although a standard flight-management system with autopilot
might be adequate for most of the flight, there will be alert modes and combat modes of
operation when many complex, concurrent, coordinated actions and reactions may
have to be planned and performed in real time. Figure 10.6 shows a schematic of a
hierarchic architecture for a (semi)-autonomous vehicle.

One new problem associated with an autonomous vehicle arises from the lack of
preprogrammed information about the situations in which the vehicle may find itself.
Current sensor signal processing algorithms focus on detecting threats and identifying
targets, but a more fundamental problem is trying to figure out where to look. Different
sensor modalities (e.g., radar, video cameras, infrared sensors) provide different
(though highly correlated) information-the decision of which sensor or group of
sensors to use in identifying a potential target depends on the type of targets one is

Mission objectives Mission status UCAV

• Faultmanagement

Modecommands, constraints

Maneuver commands

• Maneuvercontrol

Actuatorcommands

Strategic layer

Tactical layer

Regulation layer

Physicallayer

14-----.. Models,trajectories,
missiondata,...

Modes, optimizedtrajectories

Performance indicators

~-~ State information,...

Tracking errors

Inter-UCAV
communication

Figure 10.6 DCAV control system architecture for (semi-)autonomous multivehicle
missions

Section 10.4 Example 3: Formation Flying and Satellite Clusters 253

expecting to encounter. In a human-operated system, this sensor allocation problem is
solved by the operator, who makes a decision based on situational awareness. An
autonomous vehicle must solve this problem by some other means, possibly by using
an on-board situational-awareness module.

The situational-awareness function is another new problem that must be
addressed for an autonomous vehicle. Needed is a module that builds and maintains
a model of the environment in which the vehicle finds itself. The model includes
state space models of the motion of both enemy and friendly forces, along with
other relevant data (whether entities are friendly, armed, damaged, on a collision
course, etc.). The model must be updated in real time, relying on predictive estima­
tion for those dynamic elements of the environment that are not currently
monitored.

Another new type of function is the temporal planning of actions. This is a high­
level motor-control activity that continuously updates a time-parameterized set of
commands to the highest level effector submodules. These commands are generated
in order to realize system functions at the highest, most abstract level, there being a
hierarchy of submodules determining commands for lower levelswithin the system. The
motor-control hierarchy of command is another system function that will require new
research to define.

Also needed is research in a strategy/tactical module. One approach here is to
combine an extensive, situationally indexed set of memorized actions together with a
faster-than-real-time simulation/analysis module to evaluate possible short-term/
long-term alternatives. A difficult part of this module is the development of an
evaluation function that can decide whether one hypothetical outcome is better
than another.

There are other vehicle functions that will need modification for an autonomous
system, but the four special areas mentioned here seem to need the most work. The final
area of research we note is to determine a system architecture that will enable efficient
implementation of all the vehicle functions. One approach to this problem is to examine
how analogous functions are organized in the central nervous system of animals [3, 13],
but many other possible approaches might be considered.

10.4 EXAMPLE 3: FORMATION FLYING AND
SATELLITE CLUSTERS

Large, one-of-a-kind satellites are costly and very susceptible to single failures that can
destroy the vehicle or substantially cripple its performance. Recent studies suggest that
savings of cost and weight (which affects the launch cost) can be achieved by distribut­
ing the same functionality within the elements of a "cluster" of satellites. Such a cluster
will be formed by small, fairly simple vehicles flying in formation. The cluster operates
cooperatively to perform a function, in a sense as a "virtual" satellite. As an example,
clusters currently being considered by the Air Force Research Laboratories (in the
TechSat21 program) consist of 8 to 16 satellites operating within a radius of 100 to
1000 meters.

Many technologies need to be developed to make this concept fully operational.
Relative position sensing is of particular importance, both for formation flying and for
distributed sensor operations. The control of a relatively large number of closely spaced

254 Chapter 10 Control of Multivehicle Aerospace Systems

vehicles, however, also poses some interesting problems in distributed control. The
cluster's distributed control algorithms and software must have the following
properties:

• To achieve all the benefits, the cluster should have a large level of autonomy.
Individual satellites should not require direct commands from ground control.

• All satellites and their software need to be identical; there cannot be a "key­
stone" satellite in the cluster.

• The cluster should be able to detect and resolve conflicts during normal opera­
tions (configuration, deconfiguration), and during failures.

• The cluster should minimize resource use (computing resources, communica­
tions resources, and fuel).

10.4.1 Multi-Agent Systems and Decentralized
Distributed Control

A constellation of small satellites is a classic example of a multi-agent system, a
system in which many independent agents interact in a common environment. In gen­
eral, the agents in a multi-agent system mayor may not cooperate with each other; the
distinguishing characteristic of multi-agent systems is simply that the individual agents
are autonomous rather than being directed by a centralized controller, so that the
behavior of the whole system is controlled in a distributed fashion. The modeling of
multi-agent systems is an important part of current artificial intelligence and artificial
life research; tools such as SWARM [9] can simulate many different types of biological
and economic interactions.

Decentralized, distributed control offers several important advantages, including:

1. Simplicity: Decentralized networks of agents may be able to work out reasonable
solutions to problems without the need for complex and computationally intensive
centralized control algorithms.

2. Robustness: Decentralized systems are less vulnerable to faults because there is no
"command agent" whose malfunction would disable the entire system.

3. Flexibility: Decentralized systems can be easily reconfigured by making small
changes in the individual agents' behavior.

In addition, decentralized systems of agents can be designed to exhibit "emergent
behavior," behavior whose complexity is far beyond that of any individual agent's
programming. The control protocols that enable constellations of satellites to exhibit
useful types of emergent behavior include:

• Station-keeping within a particular configuration (e.g., a 2-D imaging array for
a sparse aperture radar mission).

• Collision avoidance, both in the course of a normal orbit cycle and in response
to fault conditions.

• Reconfiguration in response to changing mission requirements.
• Distributed processing and communications tasks (e.g., processing of distribu­

ted aperture radar, DAR, image data).

Section 10.4 Example 3: Formation Flying and Satellite Clusters

10.4.1.1 Emergent Behavior

255

Emergent behavior can be defined as "a global effect generated by local rules" [11].
More precisely, emergent behavior is complex behavior exhibited by a multi-agent
system whose individual members operate according to simple rules and interact in
simple ways. Numerous examples exist in the natural world, from the swimming pat­
terns of fish schools to the cooperation of worker ants. See, for example, [4, 6].

Systems in which emergent behavior can arise are typically subsumptive systems. In
a subsumptive system, the individual elements are interchangeable; have little or no
usefulness when acting alone; cannot control the behavior of other elements; and work
according to predefined rules without knowing the common goal they are trying to
accomplish. Thus the behavior of a subsumptive system represents an extreme case of
decentralized control.

10.4.1.2 Flocking

Flocking is a type of behavior in which agents moving in space are able to
remain in a stable configuration-a "flock"-and respond properly to the presence
of obstacles by following a few simple control rules. Reynolds [12] has simulated
flocking by directing a set of agents called "boids" with three rules: avoid obstacles
that you can see, maintain a constant distance from your neighbors, and move
toward a locally approximated "center." The boids then "fly" in a simulated aero­
dynamic environment, accelerating in preferred directions determined by their obedi­
ence to the rules. The boids' resulting behavior is very similar to that of a real flock of
birds.

Satellites keeping station in a constellation must obey similarly simple rules: avoid
collisions and correct for drift relative to neighboring satellites.

10.4.1.3 Market-Oriented Programming

Market-oriented programming is, in its most general form, a method of allocating
resources in a multi-agent system by simulating a bidding process carried out among
agents producing and consuming the resources. This process may be carried out by
trades among neighboring agents or by systemwide resource auctions. In an auction­
eering model, consumer and producer agents submit bids specifying amounts of
resources they are willing to buy or sell in return for other resources. A central "auc­
tion" receives these bids and sends back "price quotes" indicating current going rates
for resources; it comes to a final allocation decision when there are no new bids. This
decision reflects equilibrium prices for the various resources, set by the interplay
between the consumer and producer bids.

10.4.2 Distributed Processing

In a satellite constellation performing a task such as DAR imaging, numerous
processing tasks are required; image data must be correlated and analyzed, and results

256 Chapter 10 Control of Multivehicle Aerospace Systems

transmitted to ground stations. There are three important resource considerations for
carrying out these tasks: computation time, intersatellite communications, and satellite­
to-ground communications. Some of the tasks involved will only need a fixed set of
resources that one satellite in the constellation can supply; others will require more than
one satellite's capabilities (e.g., parallel computation); still others will require multiple
copies to be run concurrently for redundancy purposes. We must establish a mechanism
for allocating computing and communication resources that takes into account all of
these possibilities.

Several groups of researchers have used auctioneering techniques to allocate com­
putational tasks in parallel processing systems. In one such system, called Spawn [15],
distributed processors act as producer agents, passively accepting bids for computa­
tional tasks. These tasks are consumers, endowed with a certain "budget" reflecting
their criticality and the amount of time they require. Each processor runs an auction for
each time slice it has available, soliciting bids from various tasks that might want to use
the time slice; large applications may be divided into many subtasks bidding separately.
Wellman et al. [17, 18], have implemented a similar, but more generally applicable,
system called MARX; MARX is based on the WALRAS model [16] and allows alloca­
tions of multiple types of resources.

Neither of these systems, however, addresses the requirements of real-time func­
tioning and fault-tolerance that are intrinsic to a satellite application. The establish­
ment of guarantees-that a given task will be able to execute within a predetermined
amount of time or that a failed satellite will have a strictly limited effect on proces­
sing-is not a feature of market models as currently implemented. One development
that addresses these concerns is a real-time resource management system for distrib­
uted environments called RT-ARM [8]. This system uses a negotiation tree-based
approach to allocate computing and other resources based on quality-of-service and
criticality requirements; it supports dynamic adaptation to changes in system state,
such as fault scenarios.

10.5 CONCLUSIONS

We have presented examples from three different domains: commercial flight opera­
tions, military combat formations, and space systems. All of them deal with the
interactions of multiple vehicles sharing an operational space. Some of the problems
that arise when considering these multivehicle systems are conflict avoidance,
distributed resource allocation, distributed optimization, and communication and
coordination.

Some of these problems can be recast in the framework of some theory well known
to the controls community, including linear and nonlinear optimization, robustness
analysis, and robust control synthesis. The new applications pose new challenges to
these theories, and they will surely evolve and adapt to meet them.

Other problems, however, are newer to our community-such as autonomy and
decision hierarchies, languages for command, control and coordination, and analysis
and synthesis methods for hybrid dynamical systems.

As has happened many times in the past, control will draw from other fields to
meet the new challenges. This much will never change.

References

ACKNOWLEDGMENTS

257

The authors wish to thank Dr. Blaise Morton, Nicholas Weininger, and Dr. Tariq
Samad for their contributions and comments on this chapter.

Related Chapters

• Single-vehicle flight control, for both aircraft and missiles, is the focus of Chapter 11.
• See Chapter 7 for a tutorial on hybrid systems.
• Multi-agent systems are also being explored for power system applications (see Chapter

13)

REFERENCES

[1] Inter-agency Air Traffic Management (ATM) Integrated Product Team, "Integrated plan
for air traffic management research and technology development." Technical report, FAAj
NASA, December 1997.

[2] R. Ashford, "Technological developments in airspace optimization-a summary of NASA
research." In Developing Strategies for Effective Airport Capacity Management Conference.
London, February 1998.

[3] Per Brodal, The Central Nervous System. New York: Oxford University Press, 1998.
[4] J. L. Casti, Cooperation and Conflict in General Evolutionary Processes. New York: John

Wiley & Sons, 1994.
[5] A.R. Odoni, et al., "Existing and required modeling capabilities for evaluating ATM sys­

tems and concepts." Technical Report, International Center for Air Transportation,
Massachusetts Institute of Technology, March 1997.

[6] M. Gell-Mann, The Quark and the Jaguar: Adventures in the Simple and the Complex. New
York: W. H. Freeman, 1994.

[7] S. M. Green, T. Goka, and D. H. Williams, "Enabling user preferences through data
exchange." In AlAA Guidance, Navigation, and Control Conference, August 1997.

[8] J. Huang, R. Jha, W. Heimerdinger, M. Muhammad, S. Lauzac, B. Kannikeswaran,
K. Schwan, W. Zhao, and R. Bettati, "RT-ARM: A real-time adaptive resource manage­
ment system for distributed mission-critical applications." In Proc. Workshop on Middleware
for Distributed Real-Time Systems, December 1997, New York, IEEE Press.

[9] C. Langton, The SWARM simulation system. http://www.santafe.edu/projects/swarm.
[10] AATT Program Office, "ATM concept definition and integrated evaluations." Technical

Report, NASA, October 1997.
[11] R. Parent, "Emergent behavior: Particles and flocks." In Computer Animation: Algorithms

and Techniques, book in progress.
[12] C.W. Reynolds, "Flocks, herds, and schools: A distributed behavioral model." Computer

Graphics, Vol. 21, no. 4, pp. 25-34, 1987.
[13] Michael D. Rugg, Cognitive Neuroscience. Cambridge, MA: MIT Press, 1997.
[14] USAF Scientific Advisory Board, New World Vistas. Air and Space Power for the 21st

Century. Aircraft and Propulsion Volume. Department of the Air Force, 1995.
[15] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and S. Stometta, "Spawn: A distrib­

uted computational economy." IEEE Transactions on Software Engineering, Vol. 18, no. 2,
pp. 103-117, 1992.

258 References

[16] M. Wellman, "The WALRAS algorithm: A convergent distributed implementation of gen­
eral equilibrium outcomes." Computational Economics, Vol. 12, no. 1, pp. 1-24, 1998.

[17] M. Wellman, S. Jamin, and J. MacKie-Mason, Michigan Adaptive Resource eX-change.
http://ai.eecs.umich.edu/MARX/.

[18] M. P. Wellman and P. R. Wurman. "Market-aware agents for a multiagent world."
Robotics and Autonomous Systems, to appear.

[19] D. W. Williams, P. D. Arbuckle, S. M. Green, and W. den Braven. "Profile negotiation: An
air/ground automation integration concept for managing arrival traffic." AGARD
Conference Proceedings 538, "Machine Intelligence in Air Traffic Management," Berlin,
May 1993.

Chapter

11
AFFORDABLE FLIGHT CONTROL
FOR AIRCRAFT AND MISSILES

Kevin A. Wise

Editor's Summary
Not so long ago, research in flight control was largely an algorithmic endeavor-the objective was to

devise higher performance control laws. Such research still continues, but an additional imperative is

now prominent. For many new flight control developments, the challenge is not so much to come up

with the control algorithm; the existing literature describes how to do that sufficiently well. The new

challenges are cost-efficiency and development time reduction.

This chapter revises some of the basic technology for flight control systems and discusses how

computational tools are now being used to ensure that new control systems can be affordably devel­

oped and deployed. The target vehicles for the flight control technology described are military aircraft

and missiles. There are notable differences between the two, such as the use of different sets of

actuators (in missiles, for example, reaction jets can directly control roll, pitch, and yaw).

Flight control system design requirements also differ fundamentally for aircraft and missiles,due

to the presence of a pilot in the former. As a consequence, control techniques can differ. Dynamic

inversion-a form of feedback linearization-is a popular technique for aircraft flight control, whereas

linear quadratic optimal control is commonly used for missiles. In either case, complications arise due

to the fact that accelerometers and gyros are not located at the center of gravity of the vehicle. In some

cases, performance and stability can be improved by appropriately locating the sensors.

Simulation and analysis software is now essential for flight control design. The chapter discusses

tools within the MATRIXx toolset that permit performance and robustness evaluation over a range of

operating conditions. Today's tools allow aerospace engineers to graphically design a flight control

system, analyze its performance and stability, and generate autocode that can be ported directly to

training simulators, hardware in the loop simulators, and the aircraft itself. Similar tools are in use in

other industries too-see Ch. 15 for an automotive industry perspective. Further discussion on com­

puter aided control system design can also be found in Ch. 3 which also outlines a flight control

application.

What lies ahead for flight control? This chapter concludes by noting the interest in, and the

challenges associated with, uninhabited aircraft. This topic is also discussed in Ch 10 where focus is on

multi-vehicle aerospace challenges.

Kevin Wise is with Boeing Phantom Works.

11.1 INTRODUCTION

Aircraft and missile flight control engineers must design for stability, performance,
robustness, and digital implementation. This is a very complex problem because of
the highly nonlinear dynamics, aerodynamics, and large operating envelopes. In addi-

259

Section 11.2 Aircraft and Missile Dynamics and Linear Models 261

(11.1)

u= rv - qw + X + Gx + Tx

v= pw - ru+ Y + Gy+ T;

w= qu - pv + Z + Gz + Tz

jJ = -Lpqpq - Lqrqr + L + LT

q= -Mprpr - M r2p2(r
2 - p2) + M + MT

r = -Npqpq - Nqrqr + N + NT

where G; models gravity, (X, Y, Z) models the linear accelerations produced by the
aerodynamic forces, (L, M, N) models the angular accelerations produced by the
aerodynamic moments, (Tx ' Ty , Tz) models propulsion system forces, and (L T , M T,

NT) models the moments produced by the propulsion system. Note that these variables
have units of acceleration. The aerodynamic forces and moments are modeled as non­
dimensional quantities and are scaled to units of force. This scaling is described by

(11.2)

where q(lb/ft2
) is the dynamic pressure, S (fr') is a reference area, m is the mass in slugs,

(Cx' Cy, Cz) model nondimensional aerodynamic forces, (Cz, Cm' Cn) model nondi­
mensional moments, I is a reference length, and (lxx, lyy, lzz' lxz) are moments of inertia.
Note that the cross-axis inertia term lxz couples the roll-yaw moment equations and can
significantly impact handling and stability characteristics. The coefficients Lpq, Lqn Mpn
Mr2p2, Npq, and Nqr in Eq. (11.1) are functions of the moments of inertia.

The pitch-plane angle-of-attack a and yaw-plane sideslip angle fJ are defined in
Figure 11.1. The total angle of attack, aT, is the angle from the velocity vector to the x­
body axis. The stability axis coordinates are a transformation of the body axes using (1,.

The wind axis coordinates are a transformation from stability axes using fJ. The stabi­
lity axis coordinate system will be used later in the design of the flight control system.

The aerodynamic forces (Cx' Cy , Cz) and moments ic; c.; Cn) are typically mod­
eled as functions of (1" {J, Mach, body rates (P, q, r), a, {J, the aerodynamic control
surface deflections (8e , 8a, and 8r for elevator, aileron, and rudder surfaces, respectively),
center-of-gravity (CG) changes, and propulsion system effects (plume effects). Also, the
aerodynamic forces may depend on whether reaction jets are on or off Get interaction
effects). These complicated and highly nonlinear functions are used in the EOM to
model the airframe's aerodynamics.

The gravitational forces are modeled as:

[
GX] [-sin(8)]
Gy = g cos(8) sin(<jJ)

Gz cos(8)cos(<jJ)

where 8 and <jJ are pitch attitude and roll angle, respectively.

(11.3)

262 Chapter 11 Affordable Flight Control for Aircraft and Missiles

For aircraft with thrust vector control (TVC), the flight control system is designed
to command the TVC actuator angle 8T (rad). The TVC forces and moments are
modeled using a constant thrust T that is deflected by the actuator. It is assumed
that the actuator can deflect the thrust vector only in the pitch (8r) and yaw (8r)
planes, using separate actuators devoted to this task. The roll, pitch, a~d yaw moments
(L T, M T, NT) produced by the TVC will be the moment arm IT = xcg - XTVC times the
above pitch and yaw forces, where xcg and XTVC are the x-distances from the CG and
TVC actuator, respectively. The forces and moments used in Eq. (11.1) are:

-ITIxzT sin(8Tr)

Tx cos(8Te)cos 8Tr LT
IxxIzz - I;z

t;
T

- cos(8Tr) MT
ITTsin(8Te)cos(8Tr) (11.4)= =m Iyy

t, - sin(8Te)cos(8Tr) NT
-lr1xxT sin~8r,)

IxxIzz - Ixz

For missile systems with a reaction control system (RCS), the flight control system is
designed to command the RCS thrust level TRCS (lb). The reaction jets are assumed to
be positioned so that no axial force is generated. The RCS actuators are designed to
provide roll, pitch, and yaw moment control. The forces produced by the pitch and yaw
jets are modeled as Tyand t: The moments produced by the thrusters are modeled by
thrust forces multiplied by the moment arm IT = xcg - XRCS' It is assumed here that the
pitch and yaw jets are located at the same missile x-station XRCS' Roll jets (with thrust
TRoll and moment arm IRoll) may also be used to control missile roll. These jets are
symmetrically placed so that only a rolling moment LT = IRollTRolllIxx is produced. The
RCS forces and moments used in Eq. (11.1) are

IRQllTRQll + -lrlxz~~

0 0 LT
Ixx Ixxlzz - I xz

r. = i; MT .ui. (11.5)
m Iyy

r, r, NT
ITlxxTy

IxxIzz - I;z

The following derivation will form a set of differential equations describing the
dynamics for V, eX, and iJ valid for large a's and f3 < 90°. Consider the following
definition of the body velocities from Figure 11.1:

u = V cos(a) cos(f3)

v = V sin(f3)

w = V sin(a) cos(f3)

(11.6)

where V is the magnitude of the velocity vector. This can be represented as a trans­
formation of the wind-axis velocity vector to the body axes as follows:

Section 11.2 Aircraft and Missile Dynamics and Linear Models 263

u ca 0 -sa cfJ -sfJ 0 V

v = 0 0 sfJ cfJ 0 0 (11.7)

W Body sa 0 ca 0 0 0 Wind

where c(e) and see) denote cos(e) and sinte), respectively. The angular velocities in
stability axes are given by

Ps ca 0 sa P

q 0 0 q

r, -sa 0 ca r

Differentiating Eq. (11.7) yields

U cacfJ -sacfJ -casfJ V
v sfJ 0 cfJ Va

w sacfJ cacfJ -sasfJ V~

(11.8)

(11.9)

Inverting the coefficient matrix in the preceding equation yields

V -cac2 fJ -sfJcfJ -sac2fJ U
-1

iJVa = - sa 0 -ca
cf3

V~ sfJcfJca -c2fJ sasfJcfJ W
yo

W(a, fJ)

Substituting from Eq. (11.1) yields

V P u X Gx Tx

Va = W(a, fJ) - q x v + Y + Gy + T'y

V~ r w Z Gz t,

Expanding Eq. (11.11) results in

(11.10)

(11.11)

a = (l/VcfJ)[-sa(X + Gx + Tx) + ca(Z + Gz + Tz)]+ q - Ps tan(fJ)

~ = (l/V)[-casfJ(X + Gx + Tx) + cfJ(Y + Gy+ Ty) - sasfJ(Z + Gz + Tz)] - 's.

(11.12)

264 Chapter 11 Affordable Flight Control for Aircraft and Missiles

To develop an aircraft control law using feedback linearization, expressions for V, ii,
and fi are needed:

+ [caa.]T[Gx+X+TX
] }

-saa Gz+ Z + T,

+q- Ps tanfJ - Ps~ + (a - q)tanfJ~ - ~(a - q +PstanfJ)

[

cfJGz + sasfJGy] T [P] T ... 1 -casfJXa - sasfJZa a
fJ = - casfJGz - sasfJGx q + [] [.]

V -casfJXfJ + cfJYfJ fJ
-cfJG x - casfJGy r

[

-casfJXlSa + cfJYlSa] T s, [-caSfJ] T i;
+ -casfJX"e+ sasfJZ"e ~e + cfJ ~Y

-casfJXlSr + cfJYlSr s, -sasfJ T2

+
sasfJa - cacfJ~

-sfJ/J

-casfJa - sacfJ~

Section 11.2 Aircraft and Missile Dynamics and Linear Models 265

where the subscripts on X, Y, and Z refer to partial derivatives with respect to that
variable.

Equations relating the Euler angle rates to the stability axis rotational rates are
also needed. These relationships are given by

~ = (ca + tan8cl/>sa)ps + tan8sl/>q + (tan8cl/>ca - sa)rs

iJ = -sasl/>ps + ceq - casor.:

To develop flight control laws for missiles using optimal control theory, linear
models are needed. The pitch-plane nonlinear angle of attack and pitch rate dynamics
are described in Eqs. (11.1) and (11.12). Neglecting the roll-yaw dynamics and lineariz­
ing about ao results in

where

a= ~(Zaa + q + Z8e
Oe - sin(ao)Tx + cos(ao)Tz)

q= Maa + Mqq+ M 8eoe + M T

(11.13)

Since most TVC actuators are limited to small deflection angles, sin(oT) ~ 0T and
e e

cos(8T) ~ 1, resulting in
e

T; = Tim Tz = -(TIm)8Te
(11.14)

To model Res thruster forces (axial thrust T is due to main engine) (see Eq. (11.5»

T; = Tim (11.15)

Neglecting the influence of gravity on the a dynamics (since it is divided by V) and the
T sin(ao) term (since it represents a constant), and combining these into a linear matrix
model results in

+

T(saos8To- caoc8To)
mV

-liT
yy

(11.16)

266 Chapter 11 Affordable Flight Control for Aircraft and Missiles

This state space model can be used to design a pitch autopilot at a specific flight
condition (ao, Mach, altitude, CG).

The lateral directional nonlinear dynamics are described in Eqs. (11.1) and (11.12).
Zeroing the pitch dynamics and linearizing about ao (with fJ = 0) results in

~ ~
y

~ fJ Y8 Y 8sao +-::L. cao +--::...L ----:::L --'
V V V V V [::]p = Lp Lp L, P + L8a L8,

r Np Np N, r N8a N8,
(11.17)

1 0 0 r,
V

+ 0 0 LT

0 0 NT

where the elements of the matrices were obtained in a similar manner to Eq. (11.13).
For TVC (assuming a small TVC angle 0T,) results in

-T
t; =-OT

m '
(11.18)

Modeling an RCS control system yields

T
T - 2y-

m
(11.19)

Neglecting gravity results in the following linear autopilot design model

This state space model can be used to design roll-yaw autopilots at a specific flight
condition (ao, Mach, altitude, CG). Note that fJo was assumed to be zero assuming
bank-to-turn.

Section 11.2 Aircraft and Missile Dynamics and Linear Models 267

In missile flight control systems, there are typically four tail fins, each driven by an
electromechanical actuator. The fin actuator dynamics can usually be modeled with a
second-order transfer function. The significant nonlinearities typically modeled include
position and rate limits, as well as mechanical backlash.

The fin mixing logic that relates 8e, 8u' 8a, and 8, commands to individual fin
deflections is configuration specific and depends on whether the missile is flown with
an "x" or "+"-tail. Here (for an x-tail) the equations for the fin mixing logic are:

=

-1 -1

-1 1

1 -1

1 1

(11.21)

where 8e, 8a, and 8, are the autopilot pitch, roll, and yaw fin commands, respectively,
distributed to the four fins, and the 8;, i = 1, ... ,4, are the actual fin deflections. Note
that it is the 8; that exhibit the nonlinearities (fin and rate limits, backlash).

In deriving the autopilot design models, it was assumed that the airframe was a
rigid body. In fact, it is a flexible body, and these dynamics have a significant impact on
the sensed accelerations and body rates. (This applies to aircraft control systems as
well.) The discussion here is limited to the airframe's pitch plane. Also discussed is the
tail-wags-the-dog effect due to fin mass imbalance and inertias, and TVC nozzle iner­
tias. (See [1] for more detail on modeling these dynamics.) Consider the following rigid
body model coupled with the first bending mode:

a Za/ V ZbI z· ex ZfJ/V Z~'/Vbi

q M a «: M bi M· q MfJ M.. [::]bi s
= + (11.22)

bi 0 0 0 bi 0 0

t; bla b1q bbl b61 bl bfJ1 b..
fJI

where the subscripts denote partial derivatives with respect to that variable, This ana­
lysis model describes the pitch plane rigid body dynamics (ex, q) combined with the first
bending mode (hI), including the tail-wags-the-dog effects proportional to 8'e. The pitch
rate gyro measurement qFlex and z-axis accelerometer measurement AZP'ex for this model
are

qFlex = qIMU + F~16l

A ZFlex = AZ/MU + FAIbl / g
(11.23)

where qIMU and Az1M U are the rigid body pitch rate and acceleration from an inertial
measurement unit (IMU), and FA l and F~l are the mode displacement and slope,
respectively, Partitioning the A-matrix in Eq. (11.22) into 2 x 2 blocks, the (1, 1)
block is the same as in Eq. (11.16) and describes the rigid body dynamics. The (1,2)
block describes the changes in the aerodynamic forces and moments due to the body
flexure. The (2,1) block describes how the rigid body states (ex, q) excite the bending
mode. The (2,2) block describes the first bending mode's second order dynamics.

270 Chapter 11 Affordable Flight Control for Aircraft and Missiles

"flying qualities." In general, flying qualities are achieved by making the aircraft's
dynamics from stick to commanded variable respond like a linear transfer function
(whose dynamics vary or are scheduled with flight condition).

In contrast, missile control systems are designed to provide a fast response to
commands generated by a guidance system. Like the pilot in an aircraft, the guidance
system closes loops around the missile's inner loop flight control system. Unlike aircraft
control systems, missile inner loop flight control systems are designed to have a high
bandwidth (loop gain crossover frequency) so that the missile can respond very quickly.

Although the flight control design requirements are different for aircraft and mis­
siles, both use successive loop closures to control their trajectories. A great deal of
insight into flight control design can be gained by examining this principle. To stabilize
an unstable air vehicle, angular rate feedback is used. Translational acceleration loops
are often then closed around the inner rate loops. 1 The zero dynamics of the inner loop
significantly affect the location of the resulting poles for the closed-loop system. In a
classical sense, when the outer loops are closed and the gain in the loop is varied, the
poles migrate towards the zeros. Thus, shaping the zero dynamics can be an important
contributor to achieving a high-performance, robust feedback control system design.
This is discussed further in Section 11.4.

11.4.1 Aircraft Control Law Design Using Dynamic
Inversion

Feedback linearization, also known as dynamic inversion [2], has become a com­
mon method for the design of flight control systems for both aircraft and missiles.
Control laws based on feedback linearization theory transform a nonlinear system
into a linear system via nonlinear feedback control and a transformation of the state
vector. Once the nonlinear system is in linear form, linear control methods can be used
to design loop shapes that result in the desired response characteristics. The basic idea is
that given a nonlinear plant x = f(x) = g(x)u, a control law that achieves the desired
response characteristics may be formulated as u =g(x)-l[v - f(x)] , where v specifies the
desired response. When the loops are closed, the resulting system is characterized by
x= v. This approach can be thought of as a deaugmentation-augmentation approach:
Subtract (deaugment) off the aerodynamics and gyroscopic coupling effects and add
(augment) the system with the desired dynamics (flying qualities). General feedback
linearization theory requires that the nonlinear plant be minimum phase since the
resulting control law effectively inverts the plant and would otherwise produce a
closed-loop system that is not internally stable.

The typical approaches for applying dynamic inversion to the design of aircraft
and missilecontrol laws can be separated into two broad categories: those that consider
the dynamics as a single coupled set of nonlinear differential equations, and those that
model the dynamics as evolving in multiple time scales. The multiple time scale
approach typically separates the inner loop rotational (rotational rates) dynamics
and outer loop translational (angle of attack, sideslip, stability axis roll angle) dynamics
by assuming that the rotational dynamics evolve much faster than the translational.
This approach requires that the control effectors are primarily moment-producing

1 This is true for aircraft at moderate to high speeds. At low speeds, it is common to close an angle­
of-attack loop in the outer loop closure.

272 Chapter 11 Affordable Flight Control for Aircraft and Missiles

relative degree of 1, and thus the total relative degree is 3. (See [2] for the definition of
relative degree and its relationship to internal stability.) Since the total relative degree is
equal to the number of states, this time scale will have no internal dynamics. The fast
time scale control law is given by u = g(x)-l[v - f(x)] where the desired dynamics are
chosen as commanded rotational accelerations, v = [Psc qc Ysc]T. The resulting
closed-loop dynamics for the fast time scale are three decoupled integrators relating
the rotational acceleration commands to their corresponding rotational rates. The left
side of Eq. (11.24) can be derived by differentiating Eq. (11.8) and substituting from
Eq.(ll.l).

The translational dynamics of the aircraft are modeled and controlled in the slow
time scale. The states of the slow dynamics are given by x = [a eX f3 i3 l/J () V V]T. The
control variables are the commands to the inner loop fast dynamics, which are the
vehicle rotational accelerations, u = [[is q ys]T. The objective of feedback linearization
in the slow time scale is to use the rotational accelerations to control a in response to
the pilot's pitch stick input, f3 in response to the pilot's pedal input, and Ps in response
to the pilot's lateral stick input. This defines the output vector to be y = fPs a f3]T. The
dynamics of the slow time scale can be expressed in the form

eX f4(X) 0 0 0

a f5(X) - tan (f3) 0

i3 f6(X) 0 0 0

~ f7(X) 0 0 -1
Ps

= + q (11.25)
l/J !s(x) 0 0 0

f9(X) 0 0 0
r,

()

V flO (x) 0 0 0

V 111 (x) 0 0 0

where!5(x),f7(x),!8(x),!9(x), and!ll(x) are functions of the state vector, while each of
the remaining functions equates a state derivative to the corresponding state that con­
tains its derivative. It follows that this system has a vector relative degree of {O, 2, 2} and
thus a total relative degree of 4. Since the total relative degree is less than the number of
states, internal dynamics will be present in this time scale. (These dynamics must be
stable.)

The solution of the noninteracting controls problem yields a control law for the
slow time scale as

[~:] = [- ta~(fJ) ~ ~]-1[v_[f5~X)]].
rsc 0 0 -1 h(x)

(11.26)

The desired dynamics, v, of the slow time scale (outer loop) are selected based on flying
qualities requirements. Flying qualities requirements describe the aircraft response
characteristics that pilots desire to complete various tasks. These guidelines have
been developed through extensive research and are documented in the Military

Section 11.4 Flight Control System Design 273

Standard l797A. Flying qualities are ranked as Levell, 2, or 3. Levell indicates that
flying qualities are clearly acceptable for the intended task; Level 2 indicates that flying
qualities are adequate to complete a task but improvements are desirable; and Level 3
indicates that the aircraft is controllable but the pilot workload is excessive and/or the
mission effectiveness is inadequate.

In the longitudinal axis, flying qualities requirements can be specified in terms of a
second-order angle of attack to longitudinal stick 8LON response, given by

2a KUJsp
--= 2 2 .
8LON S + 2~spUJspS + UJsp

(11.27)

Requirements for the short period frequency, UJsp, and damping ratio, ~sp, are given in
terms of the vehicle lift curve slope, n.]«, where nz is the normal acceleration in the
negative z-body direction. Lateral axis flying qualities are specified by the stability axis
roll rate response to a lateral stick 8LAT input. The desired first-order response is
characterized by

A- K
8LAT - t'RS+ 1·

(11.28)

Specifications for the roll mode time constant, t'R, are given as a function of the max­
imum achievable steady-state roll rate. Directional axis flying qualities are specified in
terms of the dutch roll frequency, UJd, and damping ratio, ~d. The desired second-order
response characterizing the sideslip response to a directional control (pedal, 8DIR) input
is given by

(11.29)

The control law of Eq. (11.26) linearizes the angle of attack and sideslip responses
of the aircraft but produces internal dynamics whose stability must be evaluated. Since
the slow time scale dynamics are in normal form, the states of the internal dynamics are
directly identified as

(11.30)

and thus consist of the phugoid and spiral modes of the aircraft. The phugoid mode is
defined by changes in pitch attitude and velocity at a constant angle of attack, while the
spiral mode is characterized by unconstrained roll motion at a constant sideslip angle.
These modes are typically stabilized through feedback of attitudes, velocity, and accel­
erations. The stability of these modes is further augmented by the loop closure through
the pilot.

11.4.2 Missile Control Law Design Using Linear
Quadratic Optimal Control

Missile flight control design is different from aircraft flight control design.
Typically, missiles are designed to have as fast a response as possible. This is different

274 Chapter 11 Affordable Flight Control for Aircraft and Missiles

from designing for flying qualities as described in the last section. Maximizing overall
missile performance requires choosing the appropriate autopilot command structure for
each mission phase. This may include designing a different autopilot for separation
(launch), an agile turn (high a turn), midcourse (long flyout), and endgame (terminal
homing) maneuvers. The autopilot can command either body rates (P, q, r), wind angles
(a, fJ), attitudes (<jJ, 8, 1/1), or accelerations (A z ' Ay).

During launch, a body rate command system is typically used. Rate command
autopilots are very robust to the uncertain proximity aerodynamics. During an agile
turn, directional control of the missile's velocity vector relative to the missile body is
desired. This equates to commanding a or fJ and regulating roll to zero. During mid­
course and in the terminal phase, an acceleration command autopilot is typically used.
At the end of terminal homing, during a guidance integrated fuse maneuver, the missile
attitude may be commanded to improve the lethality of the warhead.

Separation, midcourse, and endgame autopilots have been designed and imple­
mented in production missiles, and are in general well understood. Autopilot designs
for agile turns (high a flight) are significantly less understood. Missile performance
during the agile turn can be maximized by maximizing the missile's turn rate (higher
turn rates lead to faster target intercepts). The missile's turn rate (for a pitch-plane
maneuver) is given by y= Az cos(a) - Ax sin(a)/ V. High turn rates can be achieved by
commanding a constant high a or by commanding large values of normal acceleration
(Azcos(a) - Ax sin(a)). Simulation studies have shown that because of the large changes
in the missile's velocity (V) at high a's (due to the high drag), commanding body
accelerations during an agile turn may not be desirable.

The nonlinear missile dynamics can be written as x= I(x, u). To form a linear
model, partial derivatives of the fi are needed with respect to each state variable and
each control input. These partial derivatives are evaluated at a specific design point
(flight condition). This would typically be at a trimmed equilibrium condition; how­
ever, at high a's the missile is generally not in what is considered an equilibrium
condition.

The Robust Servomechanism Linear Quadratic Regulator (RSLQR) design incor­
porates integral control to track commands with zero steady-state error. The name
"Robust" comes from its ability to track any magnitude command, without altering
the structure or recalculating feedback gains. The mechanization of the RSLQR design
algorithms allows for easy change of the commanded variable (i.e., attitude, rate, or
acceleration) with no change in structure. This greatly simplifies the transition between
different flight regimes where the commanded variable may change, and it allows for
automation of calculating the feedback control gains.

Consider the following finite dimensional linear time-invariant model of the missile
dynamics

x=Ax+Bu+Ew

Yc = Ccx+Dcu+Fcw,
(11.31)

with w E Rnw an unmeasurable disturbance, and x E Rnx, U E Rnu, and y c ERne.
The command input vector r to be tracked has the same dimension as the con­

trolled outputs Yc' It is assumed that the kth differential equations for rand ware
known and are given by

Section 11.4 Flight Control System Design

(k) k (k-i)

r = Lair,

i=1

(k) ~ (k-i)

W= L.Ja: W
i=1

275

(11.32)

(k-i)
where the a, are known scalars and r denotes the (k - i)th derivative of r. The
polynomial formed by the Laplace transformation of Eq. (11.32) is

k

a(s) = I - L ail - i

i=1
(11.33)

and describes a known class of inputs without knowledge of their magnitudes.
Define the error signal as e =Ye - r. Tracking in Ye is regulation in e; therefore, the

objective is to make the error approach zero e~ 0 (ye ~ r) as t ~ 00, in the presence
of unmeasurable disturbances W in a robust manner with respect to the plant descrip­
tion. The differential equation for the error may be written as

(k) ~ (k-i) _ (k) ~ (k-i) (k) ~ (k-i)
e - L.Jai e -Ye- L.Jai Ye - r + L.Jai r ·

i=1 i=1 i=1
yo

=0

(11.34)

Using the definition for r in Eq. (11.32), we find that the r variables of the right side of
Eq. (11.34) sum to zero. Differentiating Eq. (11.31), we have

(k) (k) (k) (k)
Ye = C; x +De U +Fe W •

Substituting this into Eq. (11.34) yields

(k) ~ (k-i) [(k) ~ (k-i)] [(k) ~ (k-i)]e - L.J a, e = C, X - L.J a, X +D, u - L.J a, U

i=1 i=1 i=1

[
(k) ~ -+ Fe W - L.J a, W •

i=1
, J

yo

=0

(11.35)

(11.36)

Using the definition for w, the third term of Eq. (11.36) is zero. This equation defines a
set of simultaneous linear differential equations for the error. Let ~ and J,t be defined as

_ (k) _ ~ (k-i)
~ - x L.Jai x ,

i=1

_ (k) ~ (k-i)
J,t - U - L.J ai U •

i=1

(11.37)

The error dynamics in Eq. (11.36) then becomes

276 Chapter 11 Affordable Flight Control for Aircraft and Missiles

Differentiating ~ yields

Using Eq. (13.31), we have

. _ (k+l) ~ (k-i+l)
~ - X - L.J ai x .

i=l

(11.38)

(11.39)

. [(k) ~ (k-i)] [(k) ~ (k-i)] [(k) ~ (k-i)]
~=A X-f;;tCii x +B U-f;;tCii U +E, W-f;;tCii W ,=A~+BJ1' (1.40)

v

=0

The error dynamics described in Eq. (11.38) is also a linear combination of ~ and u,
Using this definition, we define a new state vector z containing the (k - 1) derivatives of
the error vector augmented with ~, written as

(11.41)

This new state vector z has dimension nx + kn.. Differentiating Eq. (11.41) yields the
"wiggle" system, defined as

with A and iJ given by:

(11.42)

o I
o 0

A= 0 0

ak l ak-l l
o 0

o 0 0
o 0 0

I 0 ,B=
all c, o,
o A B

(11.43)

The RSLQR is obtained by applying linear quadratic regulator theory to the wiggle
system in Eq. (11.42). By regulating z, we regulate to zero both e and s, In steady state,
this allows the state vector x to be a nonzero constant vector in which C,» = r.

Consider a constant input command r. This gives r= 0 (k = 1) with al = 0 (Eq.
(11.32)). The command error is e = Yc - r. The state space system described in Eq.
(11.42) is given by

[e] . A- [0 Cc] B- [Dc]z = x ,/l = U, = 0 A ' = B ·

LQR control theory is applied to Eq. (11.42) using the performance index (PI)

(11.44)

Section 11.4 Flight Control System Design

00

J = f (ZTQZ+ /17RJL)dr.
o

277

(11.45)

where Q and R are weighting matrices. Solving this infinite time LQR problem yields a
state feedback control law ~ = - Kz given as

~ = -R-liJTpz

=-Kz
(11.46)

where the real symmetric matrix P is the solution of the algebraic Riccati equation

0= ATP+ PA - piJR-liJTP +Q.

The optimal control u(t) is obtained by integrating ~(t), that is,

u =f udt = -Kf zdt = -K[f edt - s;».

(11.47)

(11.48)

This controller mechanization yields integral control action on the error to provide zero
steady-state error command following.

The Q in the LQR problem acts as a weight to penalize the states, that is, zTQz.
The elements of Q are tuned to achieve performance and robustness. The controller
gains are designed by tuning the LQR penalty matrices Q and R. Their "ratio" is an
important factor in determining the size of the gains. Making Q large relative to R will
increase the speed of response but may require large control effort. Making R large
relative to Q will slow the speed of response while requiring less control effort. Since the
"ratio" is important, the R matrix can be set to an identity (also since it is a scalar) and
the elements of the Q matrix tuned to achieve the desired response. This reduces the
number of parameters that have to be adjusted.

In using Eq. (11.48) the state vector x must be available for feedback. If the state
vector is not available, then projective control theory can be used to project the optimal
state feedback design to an output feedback architecture while preserving the dominant
eigenstructure of the state feedback design. The number of closed-loop poles (eigenva­
lues) that can be retained from the state feedback design is equal to the number of
outputs (ny) available for feedback and the number of error states (ne) . Projective
control theory retains both the eigenvalues and eigenvectors of the dominant poles,
while the others are free to shift from their location in the state feedback design. This
step in the control law design process can be used to eliminate the actuator state feed­
backs from the control law.

The closed-loop system formed with the state feedback controller has (ne +nx)

poles, which are the eigenvalues of (A - BK). Each eigenvalue (>I.j) has an associated
eigenvector (Vi) defined by

Section 11.5 Analysis Tools 283

ruple (A, B, C, D). By using a trim capability provided by MATRIXx, the controller
(which is also nonlinear), aerodynamic and propulsion models, and equations of
motion are trimmed at a specificflight condition. After trim, linear models are extracted
for each model. Both analytical linearizations and models from numerical perturbation
of the nonlinearities are used. Included in the analysis model are time delays, zero order
hold models modeling digital implementation, and aeroservoelastic compensation to
filter flexible body dynamics. If information regarding a block is not available, the state
space model for that block contains (A = 0, B = 0, C = 0, D = I). As more information
is available about a subsystem, like actuators, higher fidelity models can be easily
inserted.

11.5.2 Performance Analysis

Figure 11.10 illustrates toolset modules that use the linear model for design and
performance analysis. Performance analysis is always a very important aspect of the
design process. This analysis is performed in both the frequency domain and the time
domain. Toolset modules are used to extract performance data about the design to
determine how well the design meets requirements.

Frequency domain tools perform classical and singular value frequency response
analysis. In aircraft flight control systems, frequency response characteristics of the
model are compared with the target flying qualities to assess the performance. Low­
order equivalent system models are fitted to the frequency response and compared
against the flying qualities model. Aeroservoelastic filter design tools are used to
optimize filter coefficients. These filters are designed to provide a certain attenuation
at modal frequencies while minimizing the phase lag introduced in the pilot frequen­
cies. These filters must satisfy these requirements over a large operating envelope that
depends on the aircraft configuration (what stores are on the wings). Aircraft flight
control systems must be robust to (independent of) what weapons are loaded on the
aircraft. (You do not want a different flight control system for each weapon loadout.)
This makes robustness a key feature in the performance analysis of the flight control
system.

11.5.3 Robustness Analysis

During the 1980s, many significant analysis capabilities were developed for linear
time-invariant control systems. These robustness analysis methods gave engineers the
ability to assess the control system's dependence on knowing model parameters
(beyond a single parameter root locus), as well as the sensitivity to neglected or incor­
rectly modeled dynamics. In addition to assessing robust stability, these same methods
can be used to develop and specify hardware requirements.

Robustness analysis methods typically transform the control system under study
into a new block diagram in which the uncertainties have been isolated from known
quantities. Stability of the control system is determined by examining the return dif­
ference matrix I + L(s), where L(s) is the loop transfer function matrix. It can be shown
that det[I + L(s)] = 4Jcl(S)/4Jo/(s), where 4Jcl(S) is the closed-loop characteristic polyno­
mial and 4Jo/(s) is the open-loop polynomial. When the uncertainties in the control
system are set to zero, representing the nominal system, the control system is stable
(l/Jo/(s) has no closed RHP zeros), and the det[I + L(s)] locus encircles the origin the
same number of times as there are unstable open-loop poles. When the uncertainties are

N co ...
P
i
l
o
t
I
n
p
u
~

Pl
an

t
In

pu
t

Z
er

o
O

rd
er

A
ct

ua
to

r
R

ig
id

B
od

y
+

C
on

tr
ol

le
r

...
.....

.
...

.....
.

~
I

~
....

T
im

e
D

el
ay

....
H

ol
d

....
D

yn
am

ic
s

....
D

yn
am

ic
s

lin
...

ti
m

ed
el

ay
zo

h
ac

tu
at

e
lo

na
f

la
ta

f
+

.4
l

A
SE

L
in

ea
r

A
na

ly
si

s
M

od
el

---.
.

D
yn

am
ic

s

T
B

D

A
SE

Pl
an

t
O

ut
pu

t
Se

ns
or

C
om

pe
ns

at
io

n
.....

.
T

im
e

D
el

ay
.....

.
D

yn
am

ic
s

l....
..II

I
cF

B
.....

.
""'

l1l
I

""'
l1l

I
""'

l1l
I

""'
l1l

I

as
ec

om
p

ti
m

ed
el

ay
se

ns
or

M
od

el
C

on
st

ru
ct

io
n:

m
ak

eo
pe

n
m

ak
ec

lo
se

*
*

*
A

ut
om

at
ed

Fl
ig

ht
R

ob
us

tn
es

s
A

na
ly

si
s

C
on

tr
ol

D
es

ig
n

Fr
eq

ue
nc

y
R

es
po

ns
e

T
ra

ns
ie

nt
R

es
po

ns
e

-R
O

B
U

S
T

R
-

SS
V

,u

A
U

T
O

G
A

IN
fr

op
en

fr
cl

os
tr

es
p

ro
bu

st
r

ss
vm

u

,!
~

*
A

SE
C

om
pe

ns
at

io
n

L
ow

O
rd

er
Fl

yi
ng

Q
ua

lit
ie

s
Fi

lte
r

D
es

ig
n

E
qu

iv
al

en
t

Sy
st

em
s
..

A
na

ly
si

s
M

od
ul

e

as
e_

fi
lte

r
lo

se
xe

c
lo

ng
lo

s
fq

ev
al

Id
lo

s
ge

nl
os

F
ig

ur
e

11
.1

0
A

na
ly

si
s

m
od

ul
es

us
ed

to
an

al
ys

is
co

nt
ro

l
sy

st
em

st
ab

il
it

y,
pe

rf
or

m
an

ce
,

an
d

ro
bu

st
ne

ss
pr

op
er

ti
es

.

Section 11.7 Flight Control Challenges in the Twenty-First Century: Unmanned Aircraft 287

flight control system is designed graphically, and the autocode feature provided by
MATRIXx allows for rapid development of the flight software. This autocoded soft­
ware is used by the engineer; it is used in the manned simulators and in the hardware in
the loop simulators (HIL); and it will fly in the aircraft.

This new process represents a new paradigm in developing flight software. Figure
11.13 illustrates the changes to the existing software development process. In the new
process, there is no handoff of software requirements to a software development group.
Also, instead of writing the flight software by hand, where errors could be introduced,
the graphical block diagrams are autocoded. This software is then unit tested and
transitioned to software engineers for integration testing and incorporation into the
operation flight program (OFP). The vision behind this new process is to have the
same engineer who is developing the requirements also create the software implementing
those requirements, all within the same tool, thus minimizing errors and reducing costs.

Validation and verification of the software are shown in Figure 11.14. After auto­
code generation, the autocode software is unit tested. This is a very important step in
the validation and verification of software and is often the most expensive. For each
software module, test vectors are needed to test that the software has no errors and
satisfies requirements. Figure 11.15 illustrates how this process can be automated using
MATRIXx. In designing the flight control system (or algorithms) in MATRIXx, mod­
ules, or superblocks, are created implementing the functional requirements. The engi­
neer in creating the superblock simulates the design, thus creating test vector inputs as
well as expected results. The engineer reviews the results to make sure that the algo­
rithms satisfy all functional requirements. Once the design is complete, the superblock
becomes configuration controlled, and the test vectors and expected results are written
to configuration-controlled directories for later use in integration and hardware testing.
Using the autocode template from MATRIXx, unit test drivers are created that can
automate the unit testing on workstations, in circuit emulators (ICE), or on flight
control computer hardware. These test drivers execute the software using the test
vectors and generate test results. They are then loaded back into MATRIXx and
compared against the expected results.

In the past, software testing has required significantly more labor than developing the
software. By using autocode, fewer software coding mistakes are made, thus reducing the
number of errors uncovered during testing. Since engineers familiar with the functional
requirements are performing the unit testing, anomalies in the requirements are uncov­
ered early in the testing process and can be fixed. This new process allows the engineers to
develop the requirements much later in the program without impacting schedule.

11.7 FLIGHT CONTROL CHALLENGES IN THE
TWENTY-FIRST CENTURY: UNMANNED
AIRCRAFT

Recently, several new programs have emerged that focus on the development of
unmanned combat aircraft. The overall goal is to improve military effectiveness and
the affordability of these systems. A new level of vehicle autonomy is needed to reduce
the operating and support costs of these systems. These systems must possess the
intelligence required to behave in a completely autonomous manner, to react to a
changing environment or to changes in their own configuration, and to execute mis-

References 290

phases of the mission to coordinate position and time. In addition, when flying in
formation, a follow-the-leader guidance mode will be required.

The flight control system will need to be robust and reconfigurable. The vehicle
management system will have to be able to reconfigure the aircraft in case of failures or
damages in order to make the system as safe to operate as manned systems. Robust
damage-adaptive flight control will be required to provide safe and predictable control
over the aircraft's trajectory. Building intelligence into the unmanned aircraft will
require sensors to provide the information needed to diagnose vehicle health and
reconfigure the system if needed. On-line system identification will play an important
role in minimizing the costs of adding and instrumenting vehicle subsystems. On-board
behavioral models of the vehicle subsystems for healthy and degraded mode operation
will be needed to reduce/minimize the cost of vehicle autonomy.

The challenge that lies ahead is to build a new level of autonomous vehicle gui­
dance and control technology but at the same time make it affordable. No answer is
correct if it is too expensive to implement. Affordable design of the flight control laws
as described in this chapter is just the first step. The next step will be to make these
systems autonomous.

Related Chapters

• New control concepts for multiple piloted and uninhabited vehicles are described in
Chapter 10.

• Computational tools for control design are discussed generally in Chapter 3, where flight
control also serves as a motivating example.

• Chapter 15 discusses in some detail the use of computational tools for an automotive
control application.

REFERENCES

[1] J. H. Blakelock, Automatic Control ofAircraft and Missiles, 2nd ed. New York: John Wiley
& Sons, 1991.

[2] A. Isidori, Nonlinear Control Systems, 2nd ed. New York: Springer-Verlag, 1989.
[3] K. A. Wise, "A Comparison of six robustness tests evaluating missileautopilot robustness to

uncertain aerodynamics." Journal of Guidance, Control, and Dynamics, Vol. 15, no. 4, pp.
861-870, 1992.

[4] K. A. Wise, "Singular value robustness tests for missile autopilot uncertainties." Journal of
Guidance, Control, and Dynamics, Vol. 14, no. 3, pp. 597-606, 1991.

[5] J. C. Doyle, "Analysis of feedback systems with structured uncertainties." IEEE
Proceedings, Vol. 129, Part D, no. 6, pp. 242-250, November 1982.

[6] P. Young, M. Newlin, and J. C. Doyle, "Practical computation of the mixed J-t problem."
Proceedings of the American Control Conference, Chicago, IL, 1992.

[7] K. A. Wise, "Missile autopilot robustness using the real multiloop stability margin." Journal
of Guidance, Control, and Dynamics, Vol. 16, no. 2, pp. 354-362, 1993.

[8] M. Pachter and P. Chandler, "Challenges of autonomous control." IEEE Control Systems
Magazine, Vol. 18, no. 4, August 1998.

[9] Proceedings of the Association for Unmanned Vehicle Systems International-AUVSI'99,
Baltimore, MD, July, 1999.

Chapter

12
INDUSTRIAL PROCESS CONTROL

Michael A. Johnson and Michael J. Grimble

Editor's Summary

In terms of economic impact, the process industries represent the industrial sector that has benefited the

most from control technology. A large-scale process plant, such as an oil refinery, can contain over 10,000

individual control loops. A substantial hardware, software, and communications infrastructure, integrated

in "distributed control systems," is required to support automation at this scale.

Process control is generally hierarchically organized. Sensors and actuators at the lowest level are

interfaced to single-loop controllers, which are coordinated through multivariable control, with super­

visory control, scheduling, and management information systems providing additional layers that ulti­

mately connect physical equipment with the enterprise level. (The hierarchy can go even further-Chapter

13 notes applications at an industrywide level for one process industry, power generation.) There has been

steady progress, driven in significant part by the information technology revolution, in expanding the

domain of control systems to the higher levels of the hierarchy.

Several important technological research areas for process control are reviewed here. Performance

monitoring, with classical techniques such as statistical process control and recent extensions thereof, can

help capture the objectives of process operation and quantify the degree of success in their achievement. A

number of tuning approaches for PID control are summarized, with tuning rules listed for developments

spanning half a century. New developments in adaptive and robust control that appear to be well suited for

process industry application are identified (see Chapter 5 for more on the topic of adaptive control). Model­

based predictive control, virtually synonymous with advanced control in many segments of the process

industries, is discussed. And, finally, the chapter notes the important new topic of plant-wide optimization.

Michael Johnson and Michael Grimble are professors associated with the Industrial Control Center,

University of Strathclyde. Michael Grimble chairs the IEEE-CSS Technical Committee on Industrial

Process Control.

12.1 INTRODUCTION

The process industries are a broad group of businesses comprising both the primary
and secondary industrial sectors. The primary industries look after the first stages of
processing raw materials, or producing the primary energy requirements for our
society. These basic industries are the heavy industries such as oil refining, fossil
power generation, pulp and paper producers, and metals refiners, or the utilities such
as the water/wastewater sectors. The so-called secondary industries are those in which
the first stage of product manufacturing is initiated. In this second group of industries
would be found petrochemicals, pharmaceuticals, brewing, distillers, food producers,
glass-making, and textile manufacturers. Manufacturing is the tertiary industrial layer

291

292 Chapter 12 Industrial Process Control

which combines the primary outputs of energy with the partially refined raw materials
to produce finished goods for our consumer-based society. Clearly, the whole process
industrial sector is highly strategic to the support of civilized society, producing energy
for light, warmth, and transportation, purified water and pharmaceuticals for healthy
living, and the many materials (plastics, sheet metal, glass, and so on) for the conve­
nience goods of our society.

A significant feature of the process industries is their sheer scale; plants are very
large installations with substantial energy and/or material flows present. Thus, in these
industrial sectors the emphasis is on using control technology and methods that pro­
duce commercial payback very quickly. For simple plants and processes, plant opera­
tors prefer automated procedures and minimal human operator interaction with the
control system. However, in some complex and possibly dangerous plants, top-level
manual operator control can still be seen today. This paradoxical situation is driven by
the operational priority of producing maximum least cost throughput, with any form of
control system experimentation being seen as having the potential to disrupt production
and plant production schedules. The outcome of these constraints is at best slow
incremental change to the plant control procedures and, at worst, no change at all,
with operators maintaining "day one" performance only.

Even if process plant control strategies evolve slowly, however, the plant hardware,
computer control systems, communications systems, and computer software change
remorselessly. These new developments require that the installed plant be technologi­
cally upgraded, reengineered, and sometimes even rebuilt. It is at these major refurb­
ishment or technological changeovers that new control systems and strategies can be
considered and installed. Thus digital control capabilities are now quite widespread,
and the payback on applying more sophisticated controls is excellent, granting a com­
petitive advantage to those bold enough to exploit the potential of ideas available in the
control research community.

In this chapter, industrial priorities are followed by a brief review of the techno­
logical framework of current process control hardware, software, and standards. This
leads to a hierarchical paradigm consistent with industrial operational practice. Over
the years, the process control industries have absorbed into this hierarchy those aspects
of academic control concepts that have been deemed useful. Examples include auto­
mated loop tuning (the auto tune culture) and predictive control algorithms. The chap­
ter progresses through this hierarchy, describing some of the control concepts that have
been used as well as those that might be used in future technological solutions to the
problems of the process industries.

12.2 INDUSTRIAL PROCESS CONTROL
TECHNOLOGY: STATE OF THE ART

The 1990s witnessed significant strides in the development of computer control tech­
nology and the related communications networks. In national groupings where co­
ordinated and strategic control research is pursued, like the United States or the
European Union (EU), the push to exploit information technology (IT) has been
relentless. In the United States, the VISION 2020 strategic assessment of research
priorities in the chemical engineering industries was underscored by strong IT themes.
In the EU, the ESPRIT program was devoted to the many different interconnections

294 Chapter 12 Industrial Process Control

dynamics of supply chains. A supply chain is the term given to the way feedstocks,
components, and products flow through the organization in response to customer
orders. The second important change has been the phenomenal development in perso­
nal computer hardware and software. Thus many new computer systems for process
unit control are based on personal computer kits. This means that in addition to the
control system being based on the PC, many supplementary software packages are
available to the process operator for monitoring and administrative tasks like process
performance data analysis, organization of maintenance schedules, or routine report
writing. The company process or control engineer can exploit this extra process unit
resource to achieve better control and more informed performance monitoring using
novel multimedia methods. It is expected that the computer network and the use of PC
process control hardware will flourish and grow substantially over the coming decade.

12.2.2 Process Control Applications Software

The recent dramatic changes in the man-machine interfaces of personal compu­
ters have enhanced the entry, manipulation, and presentation of data. For example, in
the related field of systems simulation, tools like MATRIXx , EASY5x, and
SIMULINK, which use graphical user interface (GUI) technology have changed
the way process models are used and analyzed [35]. In the process controls area
the presentation of process schematics and the way dynamic process data can be
shown to the process unit operator have also changed over the last decade. The
outcome of these changes is the use of far more sophisticated data processing routines
in an attempt to provide the operator with much more meaningful representations
and precise measures of process behavior. However an important question is whether
the underlying process control techniques have also changed. Perhaps the best way to
answer this question is to examine the market and review some of the products
currently available.

12.2.2. 1 Control Application Suite 1

For application in any DCS, Honeywell Hi-Spec Solutions has developed a
family of control tools that goes by the name of Profit Suite. This is a suite of
applications products whose emphasis is on optimizing the total process operation
and which exploits the technical themes [24] of (1) being model based, (2) incorpor­
ating a prediction capability, and (3) using simple controllers that are robust to plant
uncertainty.

Two key components are the use of model-based predictive control algorithms and
a robust PID tuning tool. The model-based predictive control algorithm is promoted
strongly from the viewpoint that the cost function can be directly related to system
performance and hence profit [33]. The robust PID algorithm called R-PID uses the
idea of choosing the PID coefficients to optimize a cost function across a family of
process models [29].

An interesting feature of the Honeywell product is the attempt to push the opti­
mization concepts further up the industrial operational hierarchy. Thus the idea is to
consider the global optimization of a multiunit process plant to achieve additional
economic gains. Hence the above technical themes are joined by two more, those of
(4) performance monitoring and (5) global process optimization.

Section 12.2 Industrial Process Control Technology: State of the Art

12.2.2.2 Control Application Suite 2

295

The second suite in the marketplace is essentially European in origin, and its
controller development package is reviewed. The controller creation design process of
this software is essentially a two-stage process:

Stage 1: Autotune based on a relay experiment [1,2] is used to establish some
preliminary knowledge about the process. A PID rule base can then be used to produce
an appropriate set of three term controller coefficients.

Stage 2: If the process engineer feels that the process is subject to change, or the
model is insufficiently accurate, then an adaptation/identification stage can be used to
complete the required design. In this second stage, the process is excited by a carefully
designed pseudorandom-binary-sequence (PRBS) and a process identification is per­
formed. The PID design is accomplished using dominant pole-placement design [2].

This process control design technology has the technical themes of

1. Nonparametric identification for the PID design.

2. Parametric identification of the process model for the enhanced controller design.

12.2.2.3 Control Application Suite 3

Virtual instrumentation (VI) seeks to emulate real hardware instrumentation on a
personal computer. It exploits graphical user interface technology to enable the rapid
creation of instruments and controllers from existing software libraries. Unlike C,
BASIC, or FORTRAN, the software uses graphical symbols, or icons, to represent
low-level operations or mathematical statements. These icons can be selected from
existing libraries and connected together by virtual wires representing data links.

LabVIEW™[28] is an example of a virtual instrumental software that has enjoyed
wide application. The software has three main sections:

1. The front panel. This is a template ready for embellishment as the front panel of the
virtual instrument under construction.

2. The block diagram. This is the source code program constructed from the libraries
of icons and connected together by wires.

3. The icon and connector. Once a VI has been constructed it can be captured as a
single icon. Thus the VIs can be defined as separate units and then connected
together. The connector specifies inputs and outputs and facilitates the construc­
tion of a hierarchical structure for an instrument or device. In this way, the con­
struction of a very complicated instrument becomes modular and easy.

The facilities that make virtual instrumentation software like LabVIEW so suc­
cessful include the ease of data acquisition and the simplicity by which it is possible to
produce tailored data analysis instruments quickly. LabVIEW now comes with new
supervisory software called BridgeVIEW™, which can be used to integrate instrumen­
tation and controller units. The LabVIEW software also has some PID kits available.
These modules contain sustained oscillation routines and open-loop and closed-loop
tuning procedures. Other varieties of PID control algorithms are included, for example,
PID control operating on setpoint error squared. Most recently, LabVIEW has released
a setpoint relay experiment based on the work of Luo et al. [30].

296 Chapter 12 Industrial Process Control

In summary, the tools to construct different types of controller VIs are readily
available in LabVIEW. The current PID kit uses the technical themes of:

1. Nonparametric identification procedures, sustained oscillation, and a set-point
relay.

2. A PID coefficient rule base.

12.2.3 Data Communications and Standards

Data communications is the process of taking physical plant measurements and
using them in a control system. In addition, the plant data can be used for monitoring
and fault detection routines. Continuous variables are usually measured in analog form
and then sampled for use in a digital process control system.

Field devices are often linked to a central computer using an analog point-to-point
connection. In recent years, the use of microprocessor technology has created a gen­
eration of smart field devices that can perform self-diagnostic tests and calibration, and
have enhanced numerical computation capability. However, it was the move to digital
communications technology which enabled the development of much more interactive
and responsive computer-based control systems.

Digital communications technology comprises hardware, software, and network
aspects.

1. Hardware aspects include communications media (cables, fiber-optics, telephone
networks, or radio links), data transfer architecture and electrical standards for
equipment connections (RS-232, for example).

2. Software aspects include timing and the protocols for the software interfaces. The
major development in this area was the Open Systems Interconnection (OSI)
reference model which enabled communications to be organized into seven layers,
each with designated functions.

3. Network aspects began from the need to have more than one device connected to
more than one computer in a process system. A key outcome was the local area
network (LAN), which, as the name suggests, is a geographically distributed com­
munications network. The potential to effectively control, coordinate, and manage
processes on a plantwide basis suddenly became possible.

To ensure the interoperability of different suppliers' equipment, the need for a
worldwide communications standard was imperative. This standard was to be at the
lowest functional level of the OSI model and would be a universal field bus standard.
This goal of a single universal field bus standard has not yet been achieved, although
there are several candidates.

12.2.4 Summary Conclusions

The information technology of process control is thriving. The last decade has seen
rapid development in process control hardware, software, and data communications.
Typical standard options in the applications products of many leading control system
suppliers include the following:

• A library of traditional controllers with application guidelines, including three
term controllers (PID family), lead/lag, dead-time compensators, ratio control-

Section 12.3 Organizing Process Control Applications/Production Processes 297

lers, and signal selectors. These can support complex cascaded schemes encom­
passing constraint overrides, feedforward, and setpoint compensators.

• Advanced tools for PID, including robust designs, rule-based methods, and
single-loop performance monitoring tools.

• Model-based tools for multivariable control, including predictive controllers
and tools for difficult-to-control plants (long dead-time, inverse response plants,
etc.).

• Steady-state optimizers using both linear and nonlinear model-based methods.

• Control systems to meet the S88 standard for batch processes.

These advances in system capability are enabling process control vendors to glo­
balize the controlsystem to the whole plant. Thus one of the most exciting goals for the
next decade is to see the process industries exploit these new global system opportu­
nities and create the applications experience of optimized and closed-loop production
coordination.

However, control companies still have room to innovate in the low-level loop
structures where robustness and adaptive theories are slowly being introduced in
these regulators. The three-term PID controller remains as popular as ever with new
methodologies being devised to ensure that the companies have new PID products to
bring to the market.

12.3 ORGANIZING PROCESS CONTROL
APPLICATIONS/PRODUCTION PROCESSES

Modern industrial plants range in size and scale from the relatively compact single­
site conglomeration, comprising sayan oil refinery or a steel works, to the geographi­
cally dispersed national electric power network or water distribution network.
Whatever the size and geographical spread of such plants, their process operations
tend to be characterized by high energy consumption and substantial feedstock and
material usage. Supplementary utility support in terms of power and materials is often
very high. The unit and global operation of these important industrial processes is
almost always complex and demanding. Large-scale distributed computer systems are
essential to provide the necessary plant synchronization and coordination needed to
operate these processes efficiently and effectively.The drive for a competitive advantage
often means that an older plant is refurbished with the installation of distributed
computer control systems. Meanwhile, a newly installed plant will always be controlled
using a high level of advanced computer technology. Such new on-line computer sys­
tems offer the potential to progress beyond simple control and coordination and to
address the financially rewarding problems of global plant optimization.

12.3.1 The Industrial Operations Hierarchy:
Strategy Issues

The technology of the process control operations hierarchy has been shown in
Figure 12.1. In the lower layers of the hierarchy, the direct digital control (DDC),
sensors, and actuators interface with the industrial process. In the supervisory control,
scheduling, and management layers, the technological framework is one of intercon­
nected computer networks. These provide the information links between the enterprise

298 Chapter 12 Industrial Process Control

management (commercial/business divisions) and the plant management (production
divisions). As discussed, the industrial communications networks follow a hierarchy:
field bus at the DDC level, system bus at the supervisory level and local area network
(LAN)/long-distance bus at the scheduling and management levels.

To discuss the strategic aspects and the information flows underpinning the opera­
tion of the large-scale industrial process, an extremely convenient generic framework is
the standard process control hierarchy, as shown in Figure 12.2. This framework can be
used to describe and conceptualize the tasks to be accomplished by state-of-the-art
process control technology and data communications for large-scale industrial pro­
cesses.

The strategy of global plant control usually has two components-one geographi­
cal, where the plant is subdivided into operational units, and one management control,
where a plant control and command framework is needed. Figure 12.2 shows that a
global plant optimization strategy must encompass every layer of the control hierarchy:

1. DistributedDigital ControlLevel: Control loops should be optimized and correctly
tuned, with constant vigilance to retune the loops if operational conditions change.

2. Supervisory Level: Here the control centers on the process unit, comprising a
number of items of plant equipment and a supervisor. In the case of feedstock
changeover or new local conditions, setpoints supplied from the scheduling layer

Layer5
Management
information
services

Layer4
Production
scheduling

Layer3
Supervisory
control

Layer2
Direct
digital
control

Layer 1
Sensors(S)
&
actuators(A)

MIS

Process

Figure 12.2 The industrial operations hierarchy.

Section 12.3 Organizing Process Control Applications/Production Processes 299

have to be implemented. This requires routines and algorithms, first to automate
the transition and second to optimize the changeover. Such operational setpoint
maneuvers are usually subject to actuator and process output constraints.
Consequently, constrained optimization and constrained control algorithms char­
acterize the solution methods for this type of problem.

3. Scheduling Level: The response time of the processes through the hierarchy gen­
erally becomes slower at the higher levels, so that there is a longer time frame in
which to provide control and commands to the lower layers. This feature is one
reason why global plant optimization is able to function. At the scheduling level,
plantwide monitoring, coordination, and planning occur. The problems at this
level generally involve steady-state optimization algorithms concerned with
longer-term plant changes and objectives. Production strategies to accommodate
unplanned outages and planned maintenance and repair periods originate from
this layer. At this level of the hierarchy, unit performance measures will be collated
to give global plant performance figures.

4. Management Information System (MIS): The management information system is
the information network that facilitates the functioning of the enterprise. It com­
prises the interfaces between the different commercial activities of the organization:
sales, production, finance and personnel. Ultimately, this system provides the
appropriate facts and figures to the company boardroom to inform the top-level
strategic decisions of the company.

12.3.2 The Industrial Operations Hierarchy:
Information Issues

Real-time operating information of an appropriate quality is the key to global
plant optimization. A diagram that uses the standard process control hierarchy to
structure typical large-scale system information flows is shown in Figure 12.3. It is
from this structure that three types of performance indices or diagnostics can be iden­
tified:

1. Control Performance Indices. These are associated with the direct digital control
and the supervisory layer. They are the design metrics on which the low-level
control design methods are based. Such measures can be classical, for example,
process overshoot or settling time, or they can be modern and involve, say, robust­
ness measures related to singular values, or alternatively use the optimization of
mathematical cost indices.

2. Fault Detection Indices. Included in the sensor/actuator layer, the direct digital
control layer, and the supervisory layer will be indices or diagnostics designed to
detect and identify fault conditions. The outcome of these (often simple) algo­
rithms will be operator alarms and subsequent actions.

3. Plant Performance Indices. These are invariably plant or process specific and are
devised to capture some cost aspect of the plant/process/unit performance.
Sometimes these indices have a direct financial interpretation. Consequently,
they are usually associated with the scheduling and management layers of the
operational hierarchy. Although plant performance indices have provided critical
items of information for industrial personnel, only recently have academics begun
to take an interest in this area and subject it to a systematic and formal analysis.

300 Chapter 12 Industrial Process Control

~arketconditions
Management

Aims/goalsstrategy

Productspecs. -+ MIS I+- Minimise
Productdemand ~l Costper productunit
Rawmaterial costs

..
Maximise

Energy costs Production..
Maximise
Real-time
Operating
Information

"
Scheduling layer

Plantperformance indices Plantperformance indices

Product unit costs Productunit costs
Plantefficiencies Plantefficiencies
Plantdown-times Plantdown-times

Supervisory layer

Operating conditions Unit control

Unitperformance Set-point changes
Alarmstatus Sequencing

Figure 12.3 Hierarchical information structure.

The optimization of control performance indices has a long history as exemplified
by Kalman's linear quadratic performance index [26,16,18]. However, the practical and
systematic use of similar performance indices in supervisory control design and for
controller performance assessment is a fairly new phenomenon. The availability of
sensibly defined plant performance indices will also be important for the future devel­
opment of global optimization tools. Although fault detection indices are not involved
in plant optimization, these techniques are part of the portfolio of techniques of modern
supervisory control. Hence it is useful to include them in this initial discussion of the
operational hierarchy. In the next section, some of the methods that have been devel­
oped for performance monitoring, and subsequently extended to analyze performance
quality, are discussed.

12.4 PERFORMANCE MONITORING

The procedures for performance monitoring provide an on-line means of quantify­
ing and analyzing process output quality, plant efficiencies, and process unit perfor­
mance. Once such an analysis is available, it is possible to consider whether a process
operation needs to be optimized and how this might be achieved. In a range of process
industries, the basic on-line tool for performance monitoring and optimization is sta­
tistical process control, or procedures based on this philosophy via the magnificent
seven-the histogram, the checksheet, the Pareto chart, the cause-and-effect diagram,
the defect concentration diagram, the scatter diagram, and the control chart [32].

Section 12.4 Performance Monitoring 301

Motivated by the success of the on-line methods of statistical process control
[31,32], performance monitoring techniques seek to extend these principles to create
entirely new facilities. These new methodologies include performance quality indices [4],
function curve diagnostics [14] and controller performance indices [21,34]. As many of
the names of these techniques indicate, a performance index or diagnostic often plays a
fundamental role in these methods.

12.4.1 Statistical Process Control

Statistical process control (SPC) has its origins in the 1920s when Dr. W. A.
Shewhart of the Bell Telephone Laboratories developed the control chart. The key
result from statistics which is being exploited is the Central Limit Theorem. This
indicates that if xn is the sample mean of a random sample of size n, from any distribu­
tion with finite variance 0'2 and mean u, then xn is approximately a normal distribution
of mean /.-t and variance 0'2 In. Consequently, it is possible to assign a probability to a
sample mean occurring in a specific range. For example:

Pr{ IXn - /.-tl < O'IJli} = 0.6820 or Pr{ IXn - /.-tl > O'IJli} = 0.318

Pr{ IXn - /.-tl < 20'IJIi} = 0.9546 or Pr{ IXn - /.-tl > 2O'IJli} = 0.0454

Pr{ IXn - /.-tl < 30'IJIi} = 0.9973 or Pr{ IXn - /.-tl > 3O'IJli} = 0.0027

Thus, if a series of sample means occurs outside the ±2O'/ ,In range, it is highly likely
that the underlying process variable mean has changed. Shewhart's innovation was to
translate this into a control chart, where sample means are plotted in real time, in the
presence of upper and lower control limits, VCL and LCL, respectively:

VCL = /.-t + ko;

Center Line = /.-tv

LCL = /.-tv - ka;

where the process variable mean is /.-tv, the process variable standard deviation is O'v' and
the distance constant k is related to the number of standard deviations for the control
limits (2O'v for < 5% limits; 3O'v for < 1% limits). This theory can be developed for both
discrete attributes and continuous variables, the latter being more appropriate for
process and industrial control applications. A typical chart is shown in Figure 12.4.

Abnormal patterns on control charts then form the means by which deteriorating
process performance is identified. For example:

1. A sequence of (eight) successive points in one direction or a trend is often indica­
tive of component wear, a slow deterioration of a process component, or even
operator fatigue.

2. A sequence of (seven) successivepoints on one side of the process mean indicates a
shift in process variable levels. This may be due to a systematic change in feedstock
or raw material quality, a change in shift, or a change in machine components.

3. A cyclic pattern can indicate systematic environmental changes, rotation of process
operators or a component, cyclically affecting the variable.

Section 12.4 Performance Monitoring 303

Typically, these indices might quantify energy and material usage, emissions and
effluent produced, quality (tolerance) costs, and constraints. More precisely, two types
of indices are common:

A Cost Index, I;

I = _~_o_ta_l_c_o_st_(_m_o_n_e_ta_r_y_)_of_p_r_oc_e_s_s_in_p_u_ts_a_n_d_o_ut_p_u_ts
e Process productyield

A Performance Index, t,

I = Actual performance achieved by process
p Design performance specified for process

Sometimes multiple performance indices and constraints will arise for each indivi­
dual process unit. While some standard mathematical quantities like quadratic error or
loss functions are used, performance indices are usually process specificand reflect some
special performance objectives. This is a little different from the methods of statistical
process control that are usually applied to the mean value of selected process variables,
for example, temperature, pressure, or a physical property like viscosity. These are
primarily the steady-state variables of the process and will be highly dependent on
the reference set-points applied to the process. Optimization of performance quality
usually requires more than the attainment of selected setpoint values since on-line
optimization exploits the degrees of freedom remaining in the process operation. To
appreciate the potential of the method, it is useful to consider an example [4].

Example: Extractive Distillation Process

From the process industries, this example concerned the optimized performance of the
process towers to extract high-purity 1,3-butadiene product from a mixture of C4

hydrocarbons. The three towers involved each had a different process operational
function as seen in Figure 12.5 and consequently different quantifiable performance
objectives.

Tower 1: In the extractive distillation tower, separation is the operational objective;
thus the cost index is defined as:

where SE is the separation factor achieved and QE is the total energy consumed to
attain the separation level.

Tower 2: The second tower is a recycle tower used to separate the butadiene from
the solvent used in the extractive process. For this tower, a performance index is devised
to compare the actual energy consumption, QA, to the design energy consumption, QD,
viz., Js = QA/QD' Optimal operation of the solvent stripping occurs when Js = 1.

Tower 3: The third tower in the process is a finishing tower with the objective of
achieving the high-purity product required. A cost index was chosen for this tower as
JF = SF/QF where SF is the finishing tower separation factor and QF is the energy
consumption required to achieve the separation.

304 Chapter 12 Industrial Process Control

ake

.....

C
.....

edstock 1 2 3 Off-t
~

....
~ ... ~

HI
fe

Tower1

Extraction

Tower2

Solvent
stripping

Tower3

Finishing

Figure 12.5 Extractive distillation of 1,3-butadiene.

Since optimal operation of the three towers does not coincide with each tower
achieving an individual optimal performance value, a global cost performance index
was constructed:

QTFc
JTotal ":»:

I

where QT is the total energy consumption of the three towers, PI is the product flow
rate fraction, and Fe is the monetary cost per energy unit consumed. Thus index J Total is
the monetary equivalent of the energy cost per unit of finished product.

The three cost indices, J E, J F, and J T, and the performance index, J s, were eval­
uated and plotted on-line as though they were just additional measurements. On-line
optimization to minimize the production costs and operate the extraction unit at its
design performance was achieved by a trial-and-error process. This used accumulated
plant operational experience and known empirical cause and effect relationships.
However, the systematic investigation into understanding how to optimize these pro­
cess performance monitoring indices brought valuable process insights, real monetary
savings, and operational benefits.

As can be seen from the example, the methodology of performance quality indices
follows that of statistical process control. A key difference is that the index is not the
standard mathematical formula like a running mean but a quantity that is much more
closely related to process economics. Formal on-line procedures to optimize such quan­
tities remain an uncharted area. However, some general features of this study to opti­
mize global process performance can be identified and listed:

1. Simple process models.

2. Performance quality indices for energy and material consumption costs.

3. Constraints on process conditions and operation.

4. Mixed discrete and continuous process simulation.

5. Optimized operational strategy obtained by testing different scenarios to optimize
the performance quality indices.

To summarize, performance quality indices are not the usual mathematical for­
mulas used in numerical optimization procedures but are designed to capture the

Section 12.4 Performance Monitoring 305

objectives of good process operation. On-line or off-line, they can be used as though
they were providing an additional measurement. They are usually simple and are there­
fore easy to display (plot) and track. These performance quality indices have three
valuable uses:

1. For heuristic on-line optimization. In complex processes, operators and engineers
can use these indices to nudge the process into a more economical condition.

2. As early-warning indicators. As in the control charts of SPC, performance indices
might be used to detect the onset of abnormal conditions producing uneconomical
process operation.

3. As on-line and offline management analysis tools. Since these indices are often
closely related to financial performance through operating costs, management
can use them as a real-time indicator of the economic performance of process
units and operational procedures.

12.4.3 Benchmarking Process Control

Benchmarking is a concept from the world of commerce and is defined as "the
continuous process of measuring products, servicesand practices against the company's
toughest competitors or those companies renowned as industry leaders" [20]. Four
different types of benchmarking are often cited:

• Internal Benchmarking: Comparison of plant/practices within the same com­
pany.

• Competitor Benchmarking: Comparison of plant/practices within the same
industry.

• Parallel Industry Benchmarking: Comparison across different industries.
• Best Practice Company Benchmarking: Comparison with the very best global

companies

The process industries are taking note of the benchmark concept because it comes with
some heavyweight recommendations, for example: "Benchmarking has been found to
provide a catalyst for change with a positive influence on company morale and
employee productivity" [10]. It is therefore useful to have a definition of this concept.

Definition of a Benchmark
A quantity or quality value to be used as a point of reference for performance
assessment.

Benchmarking process control is a logical consequence of the ability to specify
clearly and precisely the performance objectives of a process unit. Furthermore, if
quantifiable performance indices can be agreed to, then the actual performance of a
plant can be benchmarked and comparisons made with company performance in other
plant sites. The key problem in benchmarking is that of being able to agree with
production and management staff on exactly which performance index should be cho­
sen as the benchmark against which to measure plant performance. In some cases, plant
optimization is strictly related to a mathematical cost function in a very unambiguous
way. For example, in power distribution network operation, optimal load flows can be
closely related to quadratic programming problems. In this case the quadratic cost

306 Chapter 12 Industrial Process Control

function provides a clear benchmark function. In other process control areas such
optimal specifications are not so clear.

As international competition becomes fiercer, the need for companies to be super­
efficient will increase. Tools like benchmarking will be used to ensure that businesses
function in the most effective way possible. In a recent pronouncement on new research
initiatives the U.K. Engineering and Physical Research Council said of performance
measurement that there are now several established methods for businesses to measure
themselves against the competition. While such benchmarking can show the historically
most effective organization in terms of both products and flexibility, performance
measures to develop and sustain competitive advantage in the future have not yet
emerged. So development work remains to be done.

12.4.4 Summary Conclusions

Although the new computer network technology of process control is providing
more flexibility for the control engineer, the large-scale process still has to be coordi­
nated, synchronized and directed. For understanding, designing and implementing such
large-scale system control structures, the longstanding hierarchical structures are as
valuable as ever. What was found to be significant was the exciting possibility of adding
practical global optimization power to this structure. Various ways in which this opti­
mization of performance might be achieved were discussed. It was suggested that the
logical outcome of these developments would eventually converge on the use of bench­
marking concepts already common in the world of commercial and business practice.

Apart from these more general issues, process control technology and the indus­
trial optimization paradigm are exploiting various advanced control methods and using
them across the whole process control hierarchy. A short list of methods being used,
working from the bottom of the hierarchy upward, includes:

• Automated loop controller design
• Adaptive concepts and methods

• Robustness concepts and methods

• Reliable control methods
• Prediction and predictive control methods
• Methods to inculcate intelligence

• Upper level optimization

Process control is obviously a broad subject and many different methods find a
useful place in the process control engineer's toolbox. The remainder of this chapter
gives a closer examination of several of these technologies starting at the bottom of the
hierarchy with three-term control.

12.5 INDUSTRIAL THREE TERM CONTROL

In 1942 Ziegler and Nichols [41] sought to avoid abstruse mathematics (even then!) and
devise very practical engineering procedures to address two questions:

1. How can the proper PID controller adjustments be quickly determined for any
control application?

Section 12.5 Industrial Three Term Control 307

2. How can the settings of a PID controller be determined before it is installed in an
existing application?

The first of these questions is an on-line controller tuning problem, while the
second relates to controller commissioning. It is interesting to read in the 1942 paper
that the method of sustained oscillation was devised to solve the tuning problem
(Question 1) and that the reaction curve method was the proposed solution procedure
for the commissioning problem (Question 2). These two methods slowly came to dom­
inate process PID controller tuning. The following sections concentrate on the method
of sustained oscillation because it is this method which has led to automated loop tuning
technology.

12.5.1 The Sustained Oscillation Procedure

The usual unity feedback process control structure can be found in Figure 12.6
where the output z is measured and used to control the process. This measured output is
fed back, compared to a reference input, r, and the error, e, is then used in the PID
controller.

The controller is placed in the forward path in cascade with the industrial system.
Although a textbookPID controller is used, it is given here in the dependent form,
which is commonly found in industrial situations:

[
1 f t de]

u(t) = K; e(t) + T;10 e(r)dr + Td dt

where #e(.) is an error signal, e(t) = r(t) - z(t), u(.) is the process actuator signal, K, is
the proportional gain, T; is the integral time constant, and Td is the derivative time
constant.

The sustained oscillation procedure is based on the observation that "it is common
knowledge that control with infinitely high proportional response is always unstable,
oscillating continuously" [42]. This motivated the idea that if the value of the propor­
tional gain at which the stable-unstable boundary is crossed is known, then this "ulti­
mate" proportional gain K; can be de-tuned by a factor to give acceptable closed-loop
performance.

Ziegler and Nichols developed this idea further by relating the controller reset rate
(or the integral time constant, T;) to the period of the oscillation which occurs when K;
is applied and the stability-instability boundary is reached. Not surprisingly this data
point was termed the "ultimate" period, Pu. Thus the utility of the Ziegler-Nichols
procedure is that a single experiment yields two data points:

Figure 12.6 PID controller for an industrial
system.

Industrial
system

308 Chapter 12 Industrial Process Control

K; = ultimate proportional gain

Pu = ultimate period

The data points K, and Pu are then used in simple rules to yield the controller para­
meters x; T;, and Td . (For example, see Table 12.1).

12.5.1.1 Procedure 1: Method of Sustained
Oscillation

1. The controller's existing settings must be altered so that the integral and deri­
vative actions within the controller are switched out. This usually involves
increasing T; to a large setting, setting Td to zero, and monitoring K, so that
the closed-loop process remains stable.

2. The proportional term in the controller is increased by advancing K; in a series
of stepped values. Each time the process output must be monitored. A purely
oscillatory response (after transients have decayed) is sought.

TABLE 12.1 PID Rules

Time Response Tuning Methods

1943 Ziegler-Nichols Rules: Data s; r,
PI Design K, =0.45Ku T, =0.833Pu

PID Design K, = 0.60Ku T, = 0.5Pu

1973 Modified Ziegler-Nichols Rules-Some overshoot: Data Ku' P;
PID Design K; = 0.33Ku T, = 0.5Pu

1973 Modified Ziegler-Nichols Rules-No overshoot: Data x; r,
PID Design K; = O.20Ku T, = O.33Pu

1991 Refined Ziegler-Nichols Rules: Data x; r; Ko, K = Ko x x;
5(12+ K) 1 (4K)

PI Design s; = 6(15 + 14K)s; r, =5 15+ 1 r;

Time Domain Optimisation Methods

1.2 < K < 15

1993 Zhuang-Atherton ISTE Optimum PID Rules: Data s; r; Ko, K = Ko x s;
PI Design K, = 0.361Ku T, = 0.083(1.935K + I)Pu

PID Design K, =0.509Ku T, =0.051(3.302K + I)Pu Td =0.125Pu

1994 Pessen IAE Optimum PID Rules: Data x; r,
PID Design K; =0.70Ku T, =0.40Pu Td =0.15Pu

Frequency Domain Shaping

1985 Astrom-Hagglund Phase/Gain Margin Rules: Data Ku' P;
PID Design <PPM = 30° K; =0.87K;
PID Design <PPM = 45° K; = O.71Ku

PID Design <PPM = 60° K; = O.50Ku

1995 Voda and Landau KVL Tuning: Data K- 135 , W-135 + 1 < f3 ~ 2

PID Design x, =e~ P)(2~-lJ r, =(~~l~J

T, = 0.55Pu

Ti = 0.77Pu

T, = 1.29Pu

Td = 0.14Pu

Td = 0.2Pu

Td = O.3Pu

Section 12.5 Industrial Three Term Control 309

3. At the verge of instability, with a purely oscillatory output response, the ultimate
proportional gain, Ku, and ultimate period, Pu, are noted.

4. The data points Ku' Pu are then used in a set of rules to give the PID controller
parameters Ki; Ti , andTd . These controller parameter rules will be related to the
type of desired closed-loop system response. Ziegler and Nichols [42] gave one
set of such rules.

The Ziegler and Nichols PID rules were proposed based on the time-domain experience
of detuning the ultimate gain by a factor to give quarter amplitude decay in the closed­
loop system response. Over the intervening years many rules have been devised with all
sorts of different objectives and using different methods. A recent list is given in Table
12.1 [25]. However, it is now possible to see that two distinct aspects are inherent in the
Ziegler and Nichols methodology:

1. Nonparametric identification. This is the design and implementation of an experi­
ment to identify selected points on the Nyquist plot of the system.

2. PID tuning rules. The data relating to the selected point(s) is used in some explicit
rules or formulae to give the coefficients of the PID controller.

The Ziegler-Nichols procedure remained popular for a long time, but in the early 1980s
technology was changing and the opportunity to revamp the PID controller technology
became feasible. It is useful to examine briefly some of the issues that have driven PID
process control into the autotune culture.

12.5.2 Why Autotune?

Recent publications state that in process control more than 95% of loops are of the
proportional-integral-derivative type, mostly PI controllers. Bialkowski [5] has
described a typical Canadian paper mill as having over 2000 control loops, of which
97% use PI controllers. Simple arithmetic shows that there are more than 1940 PI loops
to tune and optimize, and this is in one processing plant alone! The sheer staff resources
needed to organize and accomplish this controller-tuning task are substantial.
Similarly, in a recent survey of Scottish process and manufacturing companies in the
Central Lowland region, Hersh and Johnson [22] found that engineers and managers
were still citing PID controller tuning as a difficult problem. Clearly, a reliable, auto­
mated PID controller tuning procedure is needed to cope with the large numbers of PID
loops as well as to minimize the need to use skilled staff to accomplish the task.

12.5.2. 1 Problems with Ziegler-Nichols PID Tuning

The technique of sustained oscillation is manual. Although the procedure is simple,
it is laborious and time consuming. The procedure also requires the loop being tuned to
be operated at the verge of instability. Consequently, for some processes a safety risk
may be involved. For this reason alone, skilled staff will be needed, and this means that
more expensive personnel is being used on what is essentially a routine procedure.
These considerations led engineers to find ways to automate the task of PID controller
tuning. Among the candidate solutions, Astrom and Hagglund [1] proposed a very
simple, yet theoretically interesting, way of automating the method of sustained oscilla­
tion. The simplicity of their relay method made it particularly attractive from a practical
and commercial viewpoint.

310 Chapter 12 Industrial Process Control

12.5.2.2 A Technology Changeover in the 19805

In the early 1980s, a number of companies announced microprocessor-based pro­
cess control products that incorporated more advanced features: self-tuning, simple
adaptive controls, and automated PID controller procedures. The last named proved
to be extremely attractive commercially and this feature is often given the generic name
autotuning. In actual fact the different ideas or ways to automate PID tuning have been
relatively few in number, pattern recognition (Foxboro) and relay methods (SATT
Controls) being the two most well known

Apart from the market demand for a PID process controller with an autotune (or
automated controller tuning) facility, a key enabling factor has been a change from
controllers based on analog technology to microprocessor technology with vastly super­
ior operator interfaces. This technology changeover occurred in the early 1980s, and
controller manufacturers were keen to exploit the new computational and display
potential of the devices. In this way companies like Leeds and Northrop, Turnbull
Controls, Foxboro, and others were able to create distinctive devices and gain market
advantages.

12.5.2.3 Process Controller Technology Today

The pushbutton "AUTOTUNE" culture is now over a decade old, and small
process controllers provide some fairly advanced features. Three aspects are
significan t:

I. Advanced controller structures: Some devices use some of the more flexible con­
troller structures. Toshiba, for instance, uses a two-degree-of-freedom control law
to achieve better performance. Omron (Japan) has introduced fuzzy logic control
design rules into its PID controller range.

2. Controller schedules: Autotune PID makes the construction of gain schedules to
optimize the performance of different operational sequences fairly straightforward.
However, this may require the intervention of skilled personnel to exploit this
capability.

3. Multi-loop control: Many of the new devices have the ability to manage and
tune many loops. The danger here is that true multi-loop and multivariable
process control problems may be solved by inappropriate ad hoc single-loop
control tuning procedures. The resulting loss in performance could be
considerable.

12.5.3 The Relay Experiment

Hagglund and Astrom [19] patented the idea of using a relay experiment to
approximately identify the critical point, namely the ultimate gain, Ku, and ultimate
period, Pu' for use in a Ziegler-Nichols PID design rule set. The basic configuration
forming the complete relay experimental PID control-tuning device is shown in Figure
12.7. It is important to establish the functional decomposition blocks, for which two
aspects are involved as noted:

Section 12.5 Industrial Three Term Control

Signal
processing unit

PIDcontrol
rule-base

311

PID

1
controllaw

Singlecontrol
u z

e
Sl

loopof industrial

0 system

Relayblock

+$--M

Figure 12.7 Relay experiment and system set-up.

12.5.3.1 Nonparametric Identification by Relay
Experiment

This comprises the blocks:

1. On-off relay of levels, ±M.
2. Signal processing unit, which uses either zero crossing or a peaks-and-troughs

analysis of the oscillating signal to determine the ultimate period, Pu: The ultimate
gain, Ku, will also be determined by this block using the formula K; = 4MIna
where a is the signal input amplitude to the delay. This formula derives from a
describing function analysis [3].

12.5.3.2 PID Control

This comprises two parts:

1. PID controller block. This block implements the control law.

2. Controller coefficient selection block. This takes the output from the relay experi­
ment, namely, the ultimate period Pu and the ultimate gain Ku' and uses a PID
coefficient design rule set to produce Kc' T, and Td • These are passed for use in the
control law of the PID controller block.

The procedure of the relay experiment is thus decoupled from the PID controller
coefficient selection step.

312 Chapter 12 Industrial Process Control

12.5.3.3 Procedure 2: The Relay Experiment

Objective: To determine the system ultimate gain, K; , and ultimate period, Pu•

1. The switch S1 is activated so that the PID control law block is removed from the
loop and the relay block is switched into the forward path.

2. A small perturbation is applied to initiate the self-oscillation or limit cycle. This
step presupposes that an oscillation will occur. The presence of system time delays
or nonlinearity usually ensures that this happens. The height of the relay, M, can
be selected to ensure that the size of the control signal does not unduly upset the
process operation.

3. After the system transients have died away, a steady oscillation should be estab­
lished on the signals z and e. The control signal u will act at a set level, with a
square wave of amplitude ±M superimposed on it. The signal-processing unit can
use signal e to determine the ultimate period, Pu. This can be done by analyzing
peaks and troughs or by counting zero crossings. Since it is possible that relay
height adjustment has taken place during the experiment, the signal processing
block will also compute the ultimate gain using the formula K; = -: where a is
the oscillation amplitude of e or z.

4. Once consistent results for P; and K, have been obtained, control of the experi­
ment moves to the routines to calculate new PID controller coefficients and switch
in the new controller while switching out the relay path and block.

Astrom and Hagglund [2] patented this relay experiment, and it was successfully
commercialized. Many current process controllers use the relay method, and the auto­
tune culture is now widespread. But, the story does not quite end there: Companies and
researchers are continuing to develop the PID technology and improve its functionality
and capabilities.

12.5.4 Recent Directions for Industrial PID

Though very successful, these simple relay experimental procedures initiated
another decade of development and research on the topic of PID controller tuning.
Quite surprisingly, the field is still very active (in Japan, Taiwan, Singapore, Australia,
Canada, the United States, and the United Kingdom for example), and new methods
and devices are being promoted, patented, and packaged as the PID solutions for the
next 10 years.

UnitedStates: Researchers at National Instruments recently announced a modifi­
cation of the relay method to the setpoint relay experiment [30]. Of course, it is the
flexibility of the Virtual Instrument hardware and software which enables the method
to work in a setpoint architecture. Thus with some extra analysis the PID controller
does not have to be switched out of the loop, and the method provides a little more
convenience.

At Honeywell, Lu [29] has tackled the problem of robust PID tuning. The new
robust PID algorithm called R-PID uses the idea of choosing the PID coefficients to
optimize a cost function across a family of process models. Interestingly, it is the PID
tuning aspect that has not received as much attention as the nonparametric identifica­
tion problem, so Lu's contribution is different and useful.

Section 12.6 Adaptation and Robustness 313

Australia: A quantizer is the new method arising from research at the University
of Newcastle. This method extends the relay experiment idea. Instead of a relay, a
quantizer is used. Furthermore, the quantizer is placed after the controller, allowing
control to be maintained at all times [15,39]. As with the relay experiment device a
patent application has been lodged for the new method.

Scotland: A contribution has been made to the PID tuning problem with a new
methodology that finds a tradeoff between a full optimal control solution and a sub­
optimal fixed structure controller. The controller can easily be configured to be of PID
form thereby linking an ideal solution with a PID tradeoff [17].

The relay experiment can be both inaccurate and inflexible [11]. To solve both
problems, a new method is needed, and the quite different solution proposed uses a
digital phase locked loop. The idea is of automated sinusoidal testing but inside a
closed-loop system. The result does not depend on the describing function analysis
[3] for its accuracy, and it can be easily tailored to seek other system points for use
in PID tuning routines. As is common practice with control devices of commercial
potential, patent protection has been sought for the method [12].

12.6 ADAPTATION AND ROBUSTNESS

12.6.1 Adaptation

Many developments have taken place in the theory of adaptive control systems,
particularly regarding the control of nonlinear systems. However, few of these results
can be utilized immediately in industrial applications. The most promising line of
research is in identification for control, which involves the selection of an identification
algorithm that is, in some sense, compatible with the control law calculation. To illus­
trate the main idea, consider a self-tuning controller in which the control law is chosen
to minimize the variance of error and control signal terms. Clearly, the more effective
the controller becomes in minimizing the variance of the control signal, the less excita­
tion is present which is needed for good plant identification. In the limiting case, when
the control signal is a constant, there will of course be no information on which to base
the plant model estimates. It follows that the best choice of control action cannot be
determined independently of the choice of identification algorithm. This subject was
stimulated through the seminal text by Bitmead et al. [6].

A second area that may have practical utility lies in the subject of limited authority
adaptive control. This involves the use of a self-tuning controller, where the full range of
variation is limited, since the full optimal controller is not used. Brasca et al. [7]
described a successful example of this type of algorithm that was used for voltage
control in the electrical power generation industry.

12.6.2 Robustness

Numerous developments have also taken place in robust control which should
have a significant impact on process control systems design. The best-known develop­
ment was initiated by Zames [40] and became known as H oo robust control theory. For
a scalar system, the Hoo norm simply represents the largest gain of a particular transfer
function that can be found by plotting the frequency response and measuring the largest
value of the magnitude. If, for example, the output changes are to be robust to the

314 Chapter 12 Industrial Process Control

disturbance inputs the maximum value of the sensitivity function can be limited.
Different frequency response terms should be limited depending on the types of plant
uncertainty if stability robustness is to be achieved.

Unfortunately, the type of uncertainty model employed may not characterize the
physical uncertainties in process control systems very well. Moreover, high-order con­
trollers are obtained which are often unsuitable for process control systems. Thus
robust Hoo controllers are only valuable in particular problems, where the plant may
be multivariable and a high-performance, low-interaction solution is required [16].

A technique developed mainly for the aerospace industry by [23] may be more
appropriate for process control design. The approach is termed Quantitative Feedback
Theory (QFT) and it enables low-order controllers to be designed with plant models
that may be parameterized to represent the system changes or uncertainties. For exam­
ple, the plant model might be represented as:

k
G(s) = (1)s rs+

where the gain and time constant are expected to lie in given ranges r E [100,500] and
k E [50, 100]. The QFT design method then enables a low-order controller, such as a
PID controller, to be designed which is robust to all such variations. The benefits of
going to a slightly higher-order controller are also obvious from the process. The
technique may be used directly with experimental results rather than with a parameter­
ized plant model. That is, the plant can be tested at, say, 10 operating points, and the
controller can then be found which will stabilize the system and satisfy performance
objectives for the full range of operation.

The main disadvantage of the method is that it requires a design engineering
approach rather than an on-line test it and see procedure. However, only very simple
frequency domain ideas are required to understand and use the method, and it
should offer real benefits for difficult design problems, where robust solutions are
essential.

12.7 ASPECTS OF GLOBAL SYSTEM
OPTIMIZATION

The optimized control and operation of large-scale industrial processes can yield sig­
nificant economic benefits and savings. The industrial techniques used to pursue these
benefits are still evolving, since past design and operational experience is usually the
main guide for current industrial practice. There is considerable industrial interest in
discrete event and continuous simulation tools like SIMPLE+ +, WITNESS, or
SIMFACTORYas an inexpensive means of testing alternative operational or produc­
tion strategies. Yet, the canon of optimization tools, methods, and algorithms for these
problems has plenty of opportunity for growth. The command and control structure of
supervisory systems is perhaps a better established area of research and development.
Yet, although industrial experience and practice have been extensive, there has not been
so much exchange between industry and the academic research community on these
topics.

Section 12.7 Aspects of Global System Optimization

12.7.1 The Supervisory System Command
Structure

315

Motivated by a need to define precisely the supervisory command structure for large­
scale combined cycle and combined heat and power generation plants, a study pro­
duced the structure shown in Figure 12.8.The findings of the study [27] were generic for
large-scale processes and may be discussed from the bottom layer of the supervisory
structure upward.

12.7.1.1 Low Level Control Strategies

The technology at the unit level tends to be installed with all the local control
loops supplied. In large-scale industrial plants, fine-tuning the local loops is not such
a high priority; it is the global integration and optimization that is of more impor­
tance. The actual low-level control design strategies are mainly classical, being pri­
marily multi-loop or cascade loop structures using three term controllers. Sometimes
adaptation to changing process conditions is achieved by simple controller scheduling.
In designing algorithms for integrating and coordinating the global set of process
units, an important practical implication is that the low-level units can be regarded as
a set of interacting stable (closed-loop) systems over which supervisory control is
required.

12.7.1.2 Dynamic Setpoint Maneuvers

To respond to new external process load conditions or to effect feedstock change­
over, the process usually has to be transferred to new operating conditions. However, it
is often found that the changeover or setpoint maneuver has to occur in the presence of
process operational constraints, for example:

1. Actuator limits: these are hard physical limits that characterize certain types of
actuators. Typically, valves can only open to a full aperture, thereby limiting at a
maximum flow.

Set-pointoptimisation for operationconditions

Dynamicset-pointmanoeuvres betweenoperating conditions

Figure 12.8 Process plant supervisory concepts.

316 Chapter 12 Industrial Process Control

2. Actuator rate limits: the actuator that might be driven by an electric drive can only
react or move at a maximum speed. This gives rise to a maximum physical rate of
change limit.

3. Output constraints: while one output is set to following a reference change, a
subsidiary output might have to be constrained to lie within tight limits of its
nominal value. Typically, a boiler might be absorbing a new steam-flow demand,
but the temperature of the steam must not stray outside of 10A> of the nominal
value. Otherwise turbine blade damage might occur.

Standard industrial practice is to use past operational experience and to ramp setpoints
over a preselected time period so that constraints are not violated. In the last decade,
model-based predictive control (MPC) has successfully provided an optimization fra­
mework to automate this constrained changeover of operating point. If process dis­
turbances are measurable at this level, then it is easy to incorporate a disturbance term
into the optimization. The model-based approach is thereby effective for feedforward
disturbance rejection.

12.7.1.3 Setpoint Optimization and Load
Management Strategy

At this point in the hierarchy, the new application of constrained model-based
predictive control algorithms meets the more established procedures of setpoint selec­
tion and optimization, unit allocation, and plant scheduling. Many of these procedures
and strategies will have their source in the original design studies and flowsheet exer­
cises that were conducted prior to plant construction. For this reason, often a close link
exists between the supervisory control structure, the equipment sizing and the original
design objectives for the plant. Thus post-plant construction process optimization is
usually a constrained optimization problem. As has already been mentioned, the
increasingly slow system response times that occur in the higher reaches of the hierarchy
lead to a predominance of static or steady-state optimization problems at these levels.

Use of the techniques of constrained model-based predictive control in the super­
visory layers of the large-scale system hierarchy has been extremely successful in some
industrial sectors. In fact this has often been regarded as the advanced control success
story of the last 20 years or so. For this reason, the technique is given further exposure
in the next section.

12.7.2 Model-Based Predictive Control

The importance of model-based predictive control for the process industries
stretches back to the late 1970s when Richalet et al. [38] reported on the first applica­
tions of the IDCOM (identification and command) algorithm to industrial problems.
Improved versions of the model-based predictive control philosophy followed quite
quickly, as did academic analysis to determine the theoretical properties of this new
type of control algorithm. The industrial evidence emerging was that these numerical
optimization approaches were both versatile and economically very effective. A reputa­
tion for reducing costs and saving money is an excellent motivating force behind any
new technology, and the MPC methodology is now well established in many process
industries. A useful introduction to all aspects of the subject can be found in [8].

12.7 Aspects of Global System Optimization

12.7.2.1 The Basics of Model-Based Predictive
Control

317

The fundamental difference between feedback control and model-based predictive
control is the ability of the latter to anticipate the future control actions required to
achieve new output setpoints. To do this, the MPC problem formulation must be fed
future setpoint data. If a measured disturbance is also present, then this information can
also be fed into the formulation, and feedforward action is obtained quite naturally in
the same optimization framework. Thus in a MPC system, outputs will move in
advance of setpoint changes, whereas in a feedback system the presence of a reference
error is used to activate control action and this only comes after the setpoint change has
occurred. The most obvious analogy is that of driving an automobile around a corner.
Most drivers anticipate approaching the corner and drive into it. Only a very few drivers
would wait until they had reached the corner and then drive around it. To take the
corner in this way, the automobile speed has to be reduced significantly and perfor­
mance is lost. The various formulations of model-based predictive control have the
same basic components, as described next.

12.7.2.2 A Process Model

In MPC, it is assumed that a model of the process is available for on-line execu­
tion. This may be based on prior physical system modeling with parameter fits for the
particular process being controlled, or the model may result from black-box identifica­
tion tests. The model is usually linear in system parameters and may be of state space or
transfer function form. The selection of model type is one factor that leads to the many
different varieties of industrial MPC algorithms.

12.7.2.3 A Predictive Model Equation

It is the ability to run forward the (linear) process model for a fixed number of
time steps and to predict the possible system output that gives MPC its anticipatory
capability. This prediction of the future system trajectory is substituted into the
cost function and controls selected to optimize the future system behavior. Any
future disturbances and setpoint changes can also be included in the prediction
equation.

12.7.2.4 A Process Cost Function

MPC is an optimization-based technique. The optimization cost function should
have a sound physical system basis. To produce the controls automatically, a robust
calculation algorithm is necessary, with well-understood numerical properties.
Quadratic cost functions have a long and reliable tradition of use for the minimization
of errors and are also used in MPC applications. A typical scalar cost function might be
given as:

318 Chapter 12 Industrial Process Control

where

N 2

Output error term = L[Y(t +j It) - r(t + j)]2
j=N1

Nu

Control energy term = L [Aj~U(t + j - 1)]2
j=l

and y(t + j It) is the predicted output j steps into the future, r(t + j) is the reference
signal j steps into the future, Aj is the jth time step weighting, ~u(t) = u(t} - u(t - 1),
the control at time t is given by u(t) , and N1, N2, Nu are tuning parameters specifying
the output and control horizons over which the optimization is performed. As can be
seen, this formulation puts a cost on the error caused when the system output does not
track the desired reference signal and also penalizes the amount of control energy used
to achieve the desired control objective. Thus the quadratic cost index has a physical
process interpretation. There is also the added advantage that this type of cost function
leads to well-known quadratic programming (QP) numerical optimization routines.

12.7.2.5 A Receding Horizon Control Philosophy

The predictive control problem is solved for a control time sequence U = u(t + 1),
u(t + 2), u(t + 3),... u(t + Nu) , and only the first of these control signals, u(t + 1), is
actually implemented. The MPC formulation is then moved forward by one time
step, and the optimization is repeated once more to find the control u(t + 2).
However, on each optimization the moving receding horizon of some N; controls is
found.

12.7.2.6 Some MPC Tuning Parameters

To shape the response, there are various parameters in each of the different MPC
methods. In the typical cost function given earlier can be found the output cost horizon
parameters, N1, N2, and the control cost horizon, Nu • To adjust the balance between
output and control cost, the parameters {Aj} are available. Large values of Aj will ensure
that control changes are expensive and a slow system response will result. Reduce the
value of Aj to make control action cheap, and then a lively control action will cause the
output to be more responsive. These are simple examples of the way the responses of
the MPC system output can be shaped, although it should be noted that each of the
different methods has a particular set of design guidelines.

12.7.2.7 The Two Key Advantages of MPC

The first important advantage of the MPC paradigm is the ability to anticipate the
future control actions required to achieve new output setpoints. The MPC optimization
problem is fedfuture setpoint data to achieve this property. Furthermore, if a measured
disturbance is also present then this information can also be fed into the formulation
and feedforward action is obtained quite naturally in the same framework.

The second important advantage of the MPC paradigm is that it uses quadratic
cost functions. These have a useful physical process interpretation but there is the

Section 12.8 Conclusions 319

equally important advantage that this type of cost function leads to well-known quad­
ratic programming (QP) numerical optimization routines. Furthermore, it is but a small
step to incorporate constraint handling to the QP problem; this makes the MPC meth­
ods especially powerful, giving them a capability that classical control methods do not
have. Typical mathematical constraint descriptions might be as follows:

Operational Constraints
Control limits: Umin :::: uU) :::: Umax
Rate limits: ~Umin s ~uU) :::: ~umax

Output limits: Ymin :::: yU) :::: Ymax

12.7.2.8 MPC Architectures

The last aspect of the MPC paradigm to be reported on in this presentation con­
cerns the potential architectures that can be used with typical MPC algorithms. MPC is a
self-contained controller algorithm and can be used in place of any forward path con­
troller device. For example, as shown in Figure l2.9(a), the design could be used to
replace the standard classical PID controller. However, this is not pursued so often:
instead the PID controller as might be supplied by the process unit vendor is left intact,
and the MPC algorithm isplacedin thesupervisory levelto operate on the reference input
in a cascade architecture as shown in Figure l2.9(b). In this way, the MPC acts as a
supervisor looking after setpoint changeovers and disturbance rejection, and there is no
need to interfere with, or retune, the PID designs that may have been provided by an
external equipment supplier. The formulation of the MPC module requires only the
model of the closed-loop low-level process unit as the system of interest. This series
(and a similar parallel) architecture so often described in the industrial applications
literature deserves more theoretical investigation by the research community.

12.7.2.9 Finally, the Industrial Varieties of MPC

The IDCOM routine of Richalet et al. [38] was followed by the Dynamic Matrix
Control (DMC) algorithm of Cutler and Ramaker [13]. A plethora of routines with
acronyms like EHAC, EPSAC and APCS followed [35]. Among the algorithms that
have been developed over the years, the Generalized Predictive Control (GPC) algo­
rithm of Clarke et al. [9] has received extensive research attention and wide industrial
application. A notable recent development is the Robust Multivariable Predictive
Control Technology (RMPCT) algorithm from Honeywell Hi-Spec Solutions. All
these algorithms have exploited a predictor equation to unravel the future behavior
of the process and a quadratic performance index which is physically justifiable and
computationally convenient, leading to the all-important facility of control system
constraint handling.

12.8 CONCLUSIONS

Future process control systems might either be based on major DCS/SCADA system
suppliers' equipment or use very flexible, commonly available software and portable
computers/workstations. In either event, the process control engineer will be able to
use much more elegant and sophisticated control algorithms. In the past, the overriding

320 Chapter 12 Industrial Process Control

(a)
Measurable
disturbance

e
MPC

algorithm

u
Industrial

system

y

Constraints

(b)

Measurable
MPC disturbance

algorithm

Constraints
r

y
PID u Industrial

t- control l system

1
Figure 12.9 (a) Classical MPC architecture; (b) supervisory MPC architecture.

requirement was simplicity, but in the future the main imperative may be to gain a
competitive advantage, which is the main driving force in most other industries.
Without due diligence to the objectives of economics and effective plant operation,
amusing stories of how badly tuned most of the controllers are on a given plant may
coincide with lessamusing stories of takeover or factory closure. There is therefore a great
opportunity to exploit robust, possibly adaptive, regulators and more effective super­
visory control systems, as long as they meet the essential practical requirements of being
reliable, easy to commission and tune, and relatively simple to understand. Note that the
underlying control theory need not be simple; it is only the ease of use that is important.

Performance monitoring techniques like statistical process control, the perfor­
mance quality indices, and the new control monitoring procedures are important and
valuable modern supervisory tools. These techniques have the following uses:

• Identification of good process conditions

• Detection of poor process performance

• Some fault detection capability

• On-line (nudge-nudge) optimization

• Controller tuning diagnostic applications

• Management analysis applications

References 321

For the regulating loop designs, the reliability of control is important, and the
following topics should receive much more attention:

• Fault-tolerant control

• Reconfigurable control

• Reliable control
• Combined fault monitoring and control

• Limited authority adaptive control

ACKNOWLEDGMENTS

The authors would like to acknowledge invaluable discussions with industrial
colleagues, James Crowe, Andrew Ogden-Swift, Andrew Riley, Mark Brewer,
Claudio Brasca, and Sandro Corsi, on various aspects of process control as currently
applied in industry. Academic colleagues who are thanked for their insights, thoughts,
and assistance include Reza Katebi, Jacqueline Wilkie, and Andrzej Ordys.

The financial support of the European Union for the IN-CONTROL project is
gratefully acknowledged.

Related Chapters

• Some control issues related to a specificprocess industry sector-power
generation-are noted in Chapter 13.

• Chapter 16provides an analogous overviewof control systems for building automation.
• See Chapter 5 for more discussion and examples of adaptive control.
• Supervisory control in a hybrid system context is discussed in Chapter 7.

REFERENCES

[1] K. J. Astrom, Ziegler-Nichols Auto-Tuners. Report LUTFD2j(TRFT-3167) 1-025,
Department of Automatic Control, Lund Institute of Technology, S-22007, Lund 7,
Sweden, 1982.

[2] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design and Tuning. Research
Triangle Park, NC. Instrument Society of America, 1995.

[3] D. P. Atherton, Nonlinear Control Engineering: Describing Function Analysis and Design.
London, U.K.: Van Nostrand Reinhold, 1975.

[4] V. A. Bhandari, R. Paradis, and A. C. Saxena, Using Performance Indicesfor Better Control.
Source unknown, ca. 1990.

[5] W. L. Bialkowski, "Dreams versus reality: A view from both sides of the gap." Pulp and
Paper Canada, Vol. 94, no. 11, pp. 19-27, 1993.

[6] R. R. Bitmead, M. Gevers, and V. Wertz, Adaptive Optimal Control: The Thinking Man's
GPC. Sydney, Australia: Prentice Hall, 1990.

[7] C. Brasca, V. Arcidiacono, and S. Corsi, "An adaptive excitation controller for synchronous
generators: Studies and experimental results at a power station" IEEE Conference On
Control Applications, Vancouver, Canada, 1993.

[8] E. F. Camacho and C. Bordons. Model Predictive Control. London: Springer-Verlag, 1999.

322 References

[9] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalised Predictive Control-Part 1: The
Basic Algorithm." Automatica, Vol. 23, no. 2, pp. 137-148, 1987.

[10] Cooper and Lybrand/CBI, Survey of Benchmarking in the U. K. 1993.
[11] J. Crowe and M. A. Johnson, "On a new process identification method and its application to

industrial control." Submitted for publication Proc. lEE, 1998.
[12] J. Crowe and M. A. Johnson, GB Patent Application No. 9802358.3: Phase Locked Loop

Identification, 1998.
[13] C. R. Cutler and B. L. Ramaker, "Dynamic matrix control-A computer control algo­

rithm." Proc. JACC, San Francisco, 1980.
[14] S. B. Dolins and J. D. Reese, "A curve interpretation and diagnostic technique for industrial

processes." IEEE Trans. Ind. Applies. Vol. 28, no. 1, pp. 261-267, February 1992.
[15] G. Goodwin and S. Crisafulli, Method and Apparatus for Tuning of PID Controllers. CICS

Automation Report No. 96009 and Provisional Patent Application, University of
Newcastle, Australia, 1996.

[16] M. J. Grimble, Robust Industrial Control. Hemel Hempstead: Prentice Hall, 1994.
[17] M. J. Grimble, Restricted Structure LQG Optimal Control for Continuous-Time Systems.

Report ICC/150, Industrial Control Centre, Glasgow, U.K., 1998.
[18] M. J. Grimble, and M. A. Johnson, Optimal Control and Stochastic Estimation Theory. Vol.

1: Deterministic Systems. Vol. 2: Stochastic Systems. Chichester, U.K.: John Wiley & Sons,
1988.

[19] T. Hagglund and K. J. Astrom, u.S. Patent 4,549,123: Method and an Apparatus in Tuning a
PID Regulator. October 22, 1985.

[20] H. J. Harrington, Business Process Improvement. New York: McGraw-Hill, 1991.
[21] T. J. Harris. "Assessment of control loop performance." Can. J. Chem. Engrg., Vol. 67, pp.

856-861, October 1989.
[22] M. A. Hersh and M. A. Johnson, "A study of advanced control systems in the work place."

Control Engineering Practice, Vol. 5, no. 6, pp. 771-778, June 1997.
[23] I. M. Horowitz, Synthesis of Feedback Systems. New York: Academic Press, 1963.
[24] Honeywell Hi-Spec Solutions Newsletter, 3rd Quarter. Minneapolis, MN: Honeywell Inc.,

1998.
[25] M. A. Johnson and A. S. Abdelali, "Process control PID rules: Methods for a comparative

study of recent developments." Procs. Advances in Process Control S, pp. 121-130, Swansea,
U.K., 1998.

[26] R. E. Kalman, "When is a linear control system optimal?" Trans. ASME, Journal of Basic
Engineering, Vol. 86, pp. 51-60, 1964.

[27] M. R. Katebi and M. A. Johnson, "Predictive control design for large-scale systems."
Automatica, Vol. 33, no. 3, pp. 421-425, 1996.

[28] Lab VIEW Student Edition. Version 3.1. Englewood Cliffs, NJ: Prentice Hall, 1996.
[29] Z. J. Lu, Controllers That Determine Optimal Tuning Parameters for Use in Process Control

Systems and Methods ofOperating the Same. Patent Applic., No. 120-17371, Honeywell Inc.,
Minneapolis, MN, 1998.

[30] R. S. Luo, J. Qin, and D. Chen. "A new approach to closed loop auto tuning for PID
controllers" Proc. American Control Conf., Philadelphia, PA, 1998.

[31] C. L. Mamzic and T. W. Tucker, "Incorporating statistical process control within a dis­
tributed control systems." 43rd Annual Symposium: Instrumentation for the Process
Industries, Tech. Paper 3912, Texas, 1988.

[32] D. C. Montgomery, Statistical Quality Control. New York: John Wiley and Sons, 1991.
[33] A. Ogden-Swift, "Maximising process profit in real time." Int. J. Hydrocarbon Engineering,

November 1997.
[34] R. Ortega, G. Escobar, and F. Garcia, "To tune or not to tune? A monitoring procedure to

decide." Automatica, Vol. 28, no. 1, pp. 179-184, 1982.

References 323

[35] A. Pike, M. J. Grimble, M. A. Johnson, A. W. Ordys, and S. Shakoor, "Predictive Control."
In W. S. Levine (Ed.), The Controls Handbook. Boca Raton, FL: CRC Press, 1995.

[36] A. Pike and M. A. Johnson, "Simulation tools for the 90's." Measurement and Control, Vol.
27, pp. 185-195, July-August 1994.

[37] D. Popovic, and V. P. Bhatkar, Computer Control for Industrial Automation. New York:
Marcel Dekker, 1990.

[38] J. Richalet, A. Rault, L. Testaud, and J. Papon, "Model predictive heuristic control:
Applications to industrial processes." Automatica, Vol. 14, pp. 413-428, 1978.

[39] J. Welsh and G. Goodwin. A Novel Mechanismfor Autotuning Based on Quantisation, Proc.
IFAC World Congress, Beijing, 1999.

[40] G. Zames, Feedback, Optimal Sensitivity and Plant Uncertainty via Multiplicative Semi­
Norms. Proc. IFAC World Congress, Kyoto, Japan, pp. 74-78, 1981.

[41] J. G. Ziegler and N. B. Nichols, "Optimum settings for automatic controllers." Trans.
ASME, Vol. 64, pp. 759-768, November 1942.

Chapter

13
POWER SYSTEM CONTROL
AND ESTIMATION IN A
COMPETITIVE ENVIRONMENT

Christopher L. DeMarco

Editor's Summary

Electric power grids are machines that span continents, with dynamics that are correspondingly complex.

Further complications to the operation of power networks have now arisen in many parts of the world as a

consequence of the deregulation and competition underway in the industry. Vertical integration, centra­

lized control, and conservative operation in the past helped ensure stability and reliability in power supply.

In a competitive, deregulated environment, in which none of these strategies is feasible, assuring reliability

is considerably more difficult.

The synchronous ac power grid is a unique entity in that the rotating generators connected to the

grid are all dynamically coupled, regardless of geographical or topological separation. Imbalance of

generation and consumption has instaneous ripple effects on all generators and loads. In the past, with

conservative approaches to power plant operation, power grid loading, and the overall network control,

power system behavior was sufficiently well behaved that linear control design proved reasonably effective.

Today, nonlinear, decentralized control and optimization techniques are needed.

Several new technologies are being explored in this context. High-sampling rate sensors and time

synchronization via the global positioning system (Gf'S) may permit state estimations of greater accu­

racy. Flexible ac transmission devices (FACTS), especially within the so-called universal power flow

controllers, promise substantially greater control over the transmission systems, permitting network

operators to route power independently of network impedance characteristics. New algorithmic tech­

nologies are also under active investigation, including agent-based modeling and optimization and

randomized algorithms.

Christopher DeMarco is a professor in the Department of Electrical and Computer Engineering at

the University of Wisconsin, Madison. He is a past chair of the IEEE-CSS Technical Committee on the

Control of Power Systems.

13.1 INTRODUCTION: ELECTRIC POWER SYSTEM
STRUCTURE AND FORCES FOR CHANGE

Electric power networks are among the largest human engineered systems. They dis­
play significant dynamic coupling on a continental scale, and they depend on feed­
back control to achieve reliable provision of the critical commodity of electric power.

324

Section 13.1 Introduction: Electric Power System Structure and Forces for Change 325

Given the importance of electric power to modern industrial societies, and the range
of practically important control challenges they present, it is not surprising that such
systems have been a key application area for control analysis and design for the past
century.

This long history and naturally conservative engineering and control philosophies
in a regulated industry serving a critical social need have contributed to a perception
that the key control problems of electric power systems have been thoroughly solved.
To some degree, this perception was correct. As more detailed discussion below will
illustrate, when well-engineered and operated conservatively (or, as some economists
would argue, when historically overbuilt to the point of "gold plating"), the electro­
mechanical dynamics of power networks can behave fairly linearly. In this context,
long-standing linear control design philosophies prove reasonably effective at main­
taining reliable service and desirable dynamic performance characteristics. With this
(usually) linear behavior, there exists a separation of time scales among various
dynamic phenomena, which facilitated the evolution of a naturally structured control
hierarchy. In particular, power networks have traditionally been designed with fast
time scale, closed-loop controllers associated with individual pieces of equipment,
using only local measurements and control inputs. More detailed discussion later in
this chapter will elaborate on this point, but it is important to note here that syn­
chronous generators constitute the most significant class of equipment on which this
type of continuously acting, local feedback appears. On a slower time scale, local
control signals are augmented by periodic updates of setpoint inputs. Setpoint
updates are typically generated open loop, through the action of predictive optimiza­
tion calculations, or by human operators. Such setpoint updates are issued as com­
mands from a regional control center, acting to meet the operating objectives of the
overall network.

Although the physical characteristics of the network and generation equipment
lend themselves well to this type of control structure, it is also important to recognize
that this control structure was closely tied to the institutional structure of the organiza­
tions that operated the systems. A convincing elaboration of this argument may be
found in [1]; elements of the argument will be briefly highlighted here. In the United
States, electric utilities were regional regulated monopolies, so that a single business
entity (or a close alliance of companies, in the case of regional control centers) was
responsible for local equipment and its controllers, the centralized command of set­
points, and the network reconfiguration (e.g., switched capacitor banks, transmission
line switching). In other parts of the world, where electric power networks were often
operated as state-owned entities, the degree of institutional integration of responsibility
between local equipment control design and centralized network control and optimiza­
tion was even tighter.

The description above is quite intentionally phrased in a mixture of past and
present tense, because the organizational structures of power networks around the
world, including that of the United States, are in transition. In the United States,
the electric power system is moving to an era in which its operation will be
governed by a very different regulatory and institutional structure. The regional
monopolies held by electric utility companies, with vertical integration that encom­
passes ownership and control of local generation equipment up through the regio­
nal system operation centers, are being restructured to allow for competitive
provision of electric generation. The electric power industry has not been subject

326 Chapter 13 Power System Control and Estimation in a Competitive Environment

to the type of judicially mandated divestiture that occurred in the U.S. telecommu­
nications industry in the 1980s. Rather, restructuring of the power industry is
coming about largely through legislative and associated regulatory actions, elements
of which may be traced back to the Public Utility Regulatory Policies Act of 1978
(PURPA). Further steps toward a competitive structure came with the Energy
Policy Act of 1992. This act laid the groundwork for the most direct impetus
for change, in two landmark orders from the Federal Energy Regulatory
Commission (FERC), numbers 888 and 889 [2, 3]. These 1996 rulings impose a
number of key requirements, with the goal of opening the U.S. electric power
system to competitive provision of generation. In the context of grid control,
perhaps the most critical element of these rulings is the requirement for functional
separation of generation activities from the central control of the transmission grid.
Given the historically tight integration of these activities in the old vertically inte­
grated utility model, this requirement indirectly mandates significant changes in the
structure of control in the U.S. power grid.

The policy and technological motivations for the changes imposed in orders 888
and 889 are many-faceted, and still provide debate. In brief, the philosophical goal is
to create a competitive, (near) real-time market for the provision of electric power.
Although generated power is to be a competitively provided commodity, the opera­
tion of the transmission and distribution grid is to remain a regulated monopoly
activity. These changes in institutional structure are proceeding rapidly and likely
irreversibly. Such changes have radically altered the assumptions under which the
traditional, hierarchical control structure evolved, breaking the tight integration
between systemwide, centralized elements of grid optimization and control, and the
design and implementation of local feedback controls on generators. Equally impor­
tant, with production no longer controlled by a regional regulated monopoly, the
patterns of power transmission across North America show signs of becoming more
volatile, and portions of the transmission grid are periodically becoming more heavily
utilized. Significant to the issue of control design is the fact that the physical
dynamics to be controlled become progressively more nonlinear as the transmission
system is more heavily loaded.

The dramatic shift in institutional structure and (potentially) in operating char­
acteristics for the North American power grid, along with a range of new technologies
that can significantly alter the system dynamic characteristics, force a reexamination
of control analysis and design for electric power networks. In this context, the goals
of this chapter are fourfold. First, to place the control issues in context, we provide a
brief tutorial on the dynamics of synchronous electric power grids, the typical control
objectives and available control actions, and the historic structure of hierarchical
control in North America. Second, we elaborate on the above description of institu­
tional changes in the organizational structure of the system, the proposals for restruc­
turing responsibility for control, and for competitive provision of "ancillary services."
(Several control objectives are closely tied to provision of these so-called ancillary
services.) Third, we examine technological advances that have implications for electric
grid control. These three elements then serve as the foundation for the fourth aspect
of this chapter, which provides a perspective on the new challenges in control analysis
and design that are created by these many technological and institutional changes in
the power industry.

Section 13.2 Power System Dynamics and the Historical Structure of Grid Control

13.2 POWER SYSTEM DYNAMICS AND THE
HISTORICAL STRUCTURE OF GRID
CONTROL

327

Key to understanding the control issues in a synchronous ac power grid are two
cornerstones. First, one must understand the control objectives that have traditionally
been assumed to represent customer and societal needs. Second, one must grasp the
dynamics of synchronous rotating generators interconnected in an ac grid, the control
actions available at each machine, and the control actions at other devices that con­
stitute elements of the grid.

13.2.1 Control Objectives in Power Systems

At a basic level, the control objectives in a power grid follow from desirable oper­
ating characteristics that customers often take for granted. Consider the customer con­
nection point-for example, for a residential customer, the service box connection, or
for a large industrial customer, a substation. Whether or not this objective is consciously
formulated, a residential customer desires that, at the connection point, the electric
power network behave like an ideal sinusoidal voltage source at 60 Hz, 120 volts rms
magnitude.' Clearly, the physical reality is much more complex; but in normal opera­
tion, U.S. utilities often come extraordinarily close to meeting this ideal. Assuming
transformers are moderately loaded to avoid saturation effects, transmission and dis­
tribution networks are largely linear in their voltage/current behavior.i Though some­
what less so, the dominant elements of loads can also be assumed to possess fairly linear
voltage/current characteristics. (The exceptions are loads with power electronic controls,
such as variable speed drives for induction motors, and electronic ballasts for fluorescent
lighting.) As long as the sources in the network (generators) produce purely sinusoidal
voltages of like frequency, the linearity of all connected components ensures that all
voltages and currents in the network are sinusoidal. Hence the simplified control objec­
tive becomes one of maintaining all generators close to the target frequency of 60 Hz and
maintaining voltage magnitudes in the grid so that customers receive 120 volts rms, or
the rated voltage magnitude appropriate to their consumption level. These represent
control objectives on a relatively fast time scale, from tens of milliseconds to minutes.

On a longer time scale, the other key customer desire is that electric power be
economically delivered. To meet this objective, the traditional regulated utility operated
on a cost-minimizing philosophy. Construction and operation of generating plants his­
torically represented the dominant costs in electric power provision. Once plants are

1 Historically, this assumption was crucial to allow cost-effective standardization of end-use con­
sumer appliances and other electric energy consuming devices. The increasing penetration of electronics
and computers as significant load components suggests the need to reexamine this control objective.
Modern electronic power supplies can be economically constructed to be much less sensitive to the
steady-state frequency and voltage magnitude of the ac source, relative to, for example, motor-driven
loads. However, many electronic devices are much more sensitive than motors to fast time scale voltage
dips or spikes in the (otherwise) sinusoidal supply voltage.

2 As will be discussed further, the dynamic behavior of a power network is strongly influenced by
the relation between the mechanical shaft position of generators and the electrical power flow between
nodes of the network. This relation can be highly nonlinear, even when the underlying voltage versus
current behavior in the network is perfectly linear.

328 Chapter 13 Power System Control and Estimation in a Competitive Environment

built and paying off investment becomes a fixed cost, fuel costs become the dominant
variable cost. Clearly, the rate of fuel consumption, and hence the cost of operation per
hour, is a function of a generating plant's electrical power output level. To be able to
meet peak load reliably, the total available capacity of generation must exceed the level
of consumption at peak time periods. This implies that there will be flexibility in the
choice of electrical power output levels among various generating plants in a large net­
work. Operating cost minimization then becomes a two-stage optimization problem.
Suppose that the set of generators available at an instant of time is known. Then one
has the problem of determining the exact power output level for each generator that is
locally feasible for the equipment, such that the sum of the power outputs meets total
customer load plus transmission and distribution losses, while minimizing variable costs
associated with each machine's power output. At a higher level, one has the problem of
determining which set of generators should be "on-line," ready to deliver power to the
grid. The latter problem is a challenging optimization problem. (Indeed, it is formally
"NP-hard" when treated with realistic modeling of intertemporal constraints and non­
convex cost functions.)

The lower level problem, that of tracking load with available generators while
minimizing variable operating costs, can be solved to reasonable accuracy with simple
computations. The details of these optimization methods are not of concern here, but
their result has relevance for our control problem. In particular, the result of this
optimization problem determines the generator power setpoints alluded to earlier. In
a vertically integrated monopoly, the cost minimization problem (or some heuristic
approximation thereof) would be solved by the grid operators. This calculation
would be performed periodically at a regional control center, where computation and
monitoring functions are concentrated. The result provides the setpoints for power
output that each generator in the regional control area will be asked to hold over
some time interval, until the next update. However, these setpoints are calculated
using a prediction of instantaneous customer load and network losses. If these setpoints
were rigidly maintained, they would not ensure exact balance of total generation power
to total consumed power. Understanding how instantaneous power balance is main­
tained, as well as understanding the generators' role in voltage magnitude control,
require examination of coupled synchronous machine dynamics. To add further chal­
lenge to the control problem, the reader can appreciate that the net flow of power
between regional control areas is also a quantity of interest, which control centers
would also like to regulate. Hence our starting problem of controlling generators to
economically maintain sinusoidal voltage frequency and magnitude takes on several
additional facets. The historic solution to the problem in the United States couples local
governor feedback, with a slow time scale regional feedback control, with the open-loop
update of economically attractive target output levels. The regional feedback control is
generally known by the acronym AGC (automatic generation control). An overview is
provided here; for more detail see [4, 5].

13.2.2 Synchronous Generator Dynamics: A Brief
Tutorial

As noted earlier, appreciation of the control problems in present and future power
networks requires basic understanding of coupled synchronous generator dynamics.
This section provides a brief tutorial on the subject. An excellent tutorial that also

Section 13.2 Power System Dynamics and the Historical Structure of Grid Control 329

characterizes the typical oscillatory electromechanical modes observed in a power net­
work is found in [6]. The reader should note that among the future technological trends
with control impact is the increasing penetration of energy sources that are not syn­
chronous, such as photovoltaic arrays, fuel cells, and induction generator-based wind
turbines. However, rotating three-phase synchronous generators constitute the over­
whelming majority of electric energy production around the world, because of their
excellent efficiency, their reliability, and their attractive control characteristics. The
huge capital investment in these machines strongly suggests that they will continue to
operate as a significant source of power for the foreseeable future, even if their own­
ership, institutional role, and control schemes change radically.

The physical structure of a synchronous generator begins from a single electrical
coil on a shaft, wound to produce magnetic field perpendicular to the shaft's axis of
rotation. This coil is known as the field winding. This field winding spins relative to three
stationary coils ("stator coils" in the terminology of machine analysis), each wound to
maximally link the magnetic field when the position of the rotating coil aligns with the
stator coil. The rotating coil has a de excitation applied. For three-phase sinusoidal
operation, the three stator coils are wound and positioned so that as the shaft rotates,
the field from the rotating coil produces a sinusoidally varying flux linkage. Hence for
typical terminal connections, it produces a sinusoidally varying voltage at the machine's
terminals. While a detailed analysis of this structure and its variations is beyond this
presentation (and is the subject of countless texts), a few key observations are useful to
appreciate the control problem. The excitation applied to the rotating coil controls the
strength of the magnetic field produced. This excitation need not be purely constant de
but rather can be varied for control purposes. The variation can typically be assumed
slow relative to the 60-Hz variation of the stator coils' quantities, providing one example
of the many ways in which separation of time scales is exploited. This field winding
consumes a relatively small amount of power compared to the electrical output of the
machine, so achieving controllable excitation is feasible. The primary impact of varying
this excitation, and hence the magnetic field strength, is to vary the magnitude of the
sinusoidal voltages produced in the stationary coils. A secondary impact is to vary the
power output of the machine, and this secondary effect can be exploited to improve the
dynamic response of the machine under transient conditions. Hence, the voltage applied
to the field winding is one key input to our synchronous machine.

Based on the structure we have described, consideration of magnetic field coupling
should suggest to the reader that the frequency of the sinusoidal voltages at the term­
inals of the generator will be proportional to the speed of the rotation shaft. Design
variations that "repeat" interconnected stator windings around the perimeter can be
used to obtain different constants of proportionality between mechanical speed and
electrical frequency and thereby allow for lower rotating speeds in hydro-driven tur­
bines. With suitable normalization, mechanical speed and electrical frequency can be
treated interchangeably.' This is the one subtle but critical observation that the reader
must appreciate to understand interconnected synchronous machine dynamics.

3 As one examines detailed, practical implementation of controllers, some care must be exercised in
treating mechanical angle and electrical phase angle interchangeably if a broad bandwidth feedback loop is
considered. As will be noted in later discussions of power system stabilizer design, a broad-bandwidth
controller can excite torsional flexing and relative angular motion between different portions of the
turbine/generator set shaft; a single mechanical angle no longer fully describes behavior.

330 Chapter 13 Power System Control and Estimation in a Competitive Environment

To illustrate this association of mechanical behavior and electrical behavior, ima­
gine making two types of measurements on an operating generator. Consider a machine
whose design produces 60-Hz terminal voltages for a shaft speed of 1800 rpm. Further
suppose the shaft has a reference marker painted on it, with the shaft illuminated by a
stroboscopic lamp flashing 1800 times per minute. A human observer would see the
reference line in a stationary position when the machine was rotating at constant rated
speed. If the machine briefly accelerated and then returned to rated speed, the reference
line would appear to advance on the shaft and then settle to a new fixed position. As an
analogous electrical observation, consider measuring sinusoidal terminal voltages with
an oscilloscope (though the author advises against clipping the scope probes to a 30-kV
busbar). Further assume that the scope is fed an external, 60-Hz triggering signal. When
operating at rated speed and frequency, the measured voltage would appear as a fixed
sinusoid on the scope display. If, again, the machine briefly accelerated and then
returned to rated speed, the sinusoidal wave shape would appear to have shifted its
phase on the horizontal display axis. Our first critical observation is as follows: The
mechanical angle relative to the "synchronous reference," as indicated by the position
of the strobe illuminated mark on the shaft, is directly proportional to the phase shift of
the observed sinusoidal voltage. The significance of this point will become apparent
momentarily.

To describe the interaction of generators interconnected by a transmission net­
work, one can assume (to good approximation) that the voltage versus current behavior
of the network is linear. In normal operation, there exist 60-Hz sinusoidal voltages of
nearly equal magnitude at each end of the transmission line. (This condition is imposed
by the requirement of holding customer voltage magnitude close to rated values.) The
transmission line will appear as a series impedance between these voltages. The current
flow that results will be a sinusoid of like frequency, and its magnitude is determined by
the phase difference between the sinusoidal voltages at each end. Next, consider the flow
of average power on this line. A straightforward calculation reveals that the flow of
average power from one side of the line to the other is proportional to the sine of the
voltage phase angle difference. This sinusoidal dependence of power exchange on phase
angle differences is the fundamental nonlinearity in the electromechanical dynamics of
power systems.

The last step in this analysis relates to the mechanical behavior of rotating gen­
erators, which are subject to Newton's law in rotational form. In particular, the rota­
tional acceleration of a machine is proportional to the net torque acting on its shaft.
The mechanical torque from a prime mover (e.g., turbine) tends to accelerate the
machine. The fact that we are removing electrical power from the machine implies
that the magnetic fields interacting between the field winding and stator coils must
produce a torque that opposes motion, the so-called electrical torque. Ignoring internal
losses in the generator, we find that these torques must balance to zero when the applied
mechanical shaft power equals the electrical power delivered from the machine to the
network. When applied mechanical power exceeds delivered electrical power, the
machine accelerates; conversely, when electrical power delivered is larger, the machine
decelerates.

In the strobe/oscilloscope experiment above, we noted that when the machine
accelerates, its electrical phase angle advances. This creates a larger phase angle differ­
ence relative to the other end of the transmission line(s) connected to that machine,
causing more electrical power to be drawn from the machine. This excess electrical

Section 13.2 Power System Dynamics and the Historical Structure of Grid Control 331

power drawn creates a "restoring" torque that tends to decelerate the machine, bringing
it back toward equilibrium speed. In a system of many interconnected generators, the
question of whether the system recovers to a stable (and acceptable) equilibrium follow­
ing a disturbance is a critical one; such studies are termed "transient stability analysis."
Given the sinusoidal nature of the power flow nonlinearity, it should not be surprising
that there exist many plausible disturbance scenarios in which the power system does
not return to an acceptable equilibrium. Moreover, individual pieces of equipment are
protected by circuit breakers that disconnect from the grid when voltages, currents, or
mechanical speed/acceleration exceed safe limits. Hence the typical blackout scenario is
one of a large transient in system state variables following a disturbance (e.g., a light­
ning strike to a transmission line), followed by cascading tripping of protective breakers
until a significant portion of a grid is deenergized. The dynamic performance of control
systems is critical in this process, for these control systems influence the magnitude of
state variable excursions and thereby influence whether or not protective relays act to
disconnect a particular piece of equipment in a given disturbance scenario. In power
system controller design, dynamic performance under transient conditions must be
carefully considered along with a controller's contribution to steady-state regulation
about the normal operating point.

13.2.3 Grid Frequency Regulation

With this dynamics description, we return to the issue of the use of generators for
frequency control. The first observation is that an interconnected grid is truly in equili­
brium only if all generators are at the same frequency and that at such an equilibrium
there must be a systemwide balance between generated power and load consumption
plus losses. Any mismatch in power production relative to power consumption drives a
change in speed, and hence instantaneous frequency, at one or more generators. Hence,
for a system at equilibrium, or varying quasistatically, frequency serves as a system­
wide, "shared" signal that indicates the relative balance between total generation power
and total consumption. In a synchronously connected grid, frequency decreases when
total power consumption exceeds total production, and it increases when production
exceeds consumption. It is this inherent feature of the dynamics that allows electric
power grids to maintain systemwide balance without instantaneous measurement of
power consumption and production at all points.

To complete this overview of electromechanical dynamics, it is important to recog­
nize that frequency dependence of power consumption in some loads, as well as small
rotational losses at generators, creates a positive, roughly linear correlation of power
consumption to frequency deviation. This is a natural restorative effect that provides
damping, and it can allow the system to "find" a new equilibrium when there are minor
variations in frequency-independent components of load consumption. For example, if
a frequency-independent component of load consumption (which may be viewed as an
exogenous input) were to increase slightly, and no controller acted to change the
mechanical power feeding generators, the system frequency would gradually decrease
until a new equilibrium was reached at which the decrease in frequency-dependent load
(and losses) balanced the original increase in the frequency-independent load.

The natural damping effect of the frequency-dependent load is small, and long­
term system frequency variations would be unacceptably large if this were the only
corrective mechanism. Therefore, as a first step toward frequency correction and power

332 Chapter 13 Power System Control and Estimation in a Competitive Environment

balance, consider a local control loop that dictates incremental changes in mechanical
power from the prime mover (e.g., turbine), based on local measurements of that
machine's mechanical speed (proportional to its electrical frequency). This is typically
termed the speed governor loop. It is important to recognize that the mechanical power
command signal produced by the governor loop may not be the only signal contribut­
ing the prime mover power command. The governor loop operates with relatively broad
bandwidth; other signals contributing to mechanical power command typically arise
from slower control loops or from periodically updated open-loop setpoint commands.
One simple rule related to governor control design was learned early in the history of
interconnected grid operation: Local governor control for generators should not strive
for zero steady-state error in frequency on multiple machines. The smallest difference
between setpoint signals, which will be widely separated geographically, creates a
dynamic system whose steady state does not display a uniform frequency. For example,
with multiple integral control loops acting, often a steady-state oscillation in system
frequency, a "hunting mode," results. To avoid this, governor feedback is typically
dominated by a simple proportional term. The gain constant of the proportional feed­
back is inversely specified as normalized constant, the percentage "droop." Droop
describes the percentage change in frequency that, acting through this proportional
feedback, would yield a commanded change in mechanical power equal to the rated
power of the generator. The dynamics of the loop are complicated by the fact that there
is a nontrivial dynamic transfer characteristic for the prime mover, relating commanded
change in mechanical power to actual mechanical power achieved at the shaft.
Moreover, given the natural load damping effect described here, governor loops
often have a small, intentional deadband. The design philosophy here is to allow the
system to find a new equilibrium without any change in prime mover power outputs if
the resulting deviation in steady-state frequency is sufficiently small. For a control
engineer examining the power system, it is important to remember that costs of
mechanical wear are associated with continuous governor action that are hard to
quantify, yet not insignificant. One may willingly sacrifice some control performance
in exchange for fewer control actions.

For the next higher level in the generation control hierarchy, it is useful first to
consider a simple approach to systemwide frequency correction, recognizing that the
proportional control of the local governor loops alone allows steady-state frequency
error, away from the desired 60-Hz setpoint. In this simple scheme, a single "master
machine" has a small gain, integral control term added to its governor control loop, so
that this machine controls to zero steady-state frequency error. The nature of the
interconnected dynamics then ensures that this equilibrium frequency is imposed on
the whole interconnected area. However, while conceptually useful for illustration, this
simple scheme is not practical for the large synchronous interconnections that exist in
North America.

As the size of synchronous interconnected regions grew in the United States, it
became clear that assigning frequency control to a single master machine was infeasible.
For a long period, there was no closed-loop system to ensure systemwide balance
between power consumption and production, and with it, zero steady-state frequency
error. Instead, manual control of power setpoints was exercised in such a way as to keep
average frequency error near zero [5]. However, in the 1960s there developed in the
United States an approach toward automating systemwide frequency correction and
power balance. Although the term does not have a unique definition, the family of

Section 13.2 Power System Dynamics and the Historical Structure of Grid Control 333

control techniques developed generally comes under the title of Automatic Generation
Control, or AGC. Extending from the simple master machine concept, it is important
to recognize that only a subset of generators in the system needs to participate in AGC;
that is, only a subset of machines have supplementary signals added to the prime mover
power command. These supplementary signals are not local but often are computed
centrally, for a portion of the grid and a corresponding set of generators that lies within
a defined "control area." Currently, there exist 136 control areas within the North
American grid. These control areas are administratively defined by the North
American Electric Reliability Council (NERC).4 Physically, they represent disjoint
subsets of the North American transmission grid, whose union covers (essentially)
the entire grid.

Transmission lines that connect between control areas, known as tie-lines, are
typically required to have measurement devices that allow monitoring of the flow of
power on these lines. These tie lines are operated with agreed-upon schedules that
dictate the desired net power flow between any connected pair of control areas; this
is known as an "interchange schedule." The interchange schedules provide a setpoint
for the measured output quantity of net flow of power on the tie lines between two
areas. Regulating operation at or near these setpoint values becomes an added control
objective for the AGC level of generator control. The approach employed allows a
tradeoff between the objective of maintaining systemwide power balance and frequency
regulation versus this second objective of maintaining tie line flow. Although variations
exist, the general approach is to construct an indicator output variable within each
control area, known as the Area Control Error, or ACE. The ACE is simply a weighted
sum of instantaneous frequency deviation within the area (typically measured at an
individual generator or another preselected reference point), and the net tie line flow
errors for each outside control area to which the control area computing ACE is
connected. Then, for those generators within the control area that are participating
in AGC, a supplementary control signal is added to their power command input. This
supplementary AGC signal is a weighted integral of the ACE signal for that area. Since
this is a pure integral feedback (albeit with small gain), one would expect the equili­
brium value of the ACE signal to be driven to zero. However, since there are exogen­
ous, time-varying inputs (customer power demand) that also drive this system, it does
not display true equilibrium behavior on the time scale for which the AGC has sig­
nificant effect (a time scale of minutes). Instead, it tends to display a stochastic variation
about a zero value. The control objective for AGC, as administratively monitored by
NERC, becomes one of keeping the maximum excursion of the ACE signal within
specified bounds and ensuring that it crosses through a zero value periodically. (For
a more detailed discussion, see [7].) Being a weighted sum of the two quantities, a zero
value of the ACE signal does not precisely guarantee zero tie line error, or zero fre­
quency error. In practice, the quality of frequency regulation in North America is
extraordinarily good; NERC publishes average frequency deviations on a monthly
basis, with typical values less than ±O.003 Hz. Hence a zero ACE signal does indicate
that tie line flow deviations are close to zero. Historically, the integral of tie line inter-

4 For a wealth of information relating to the administration, operation, and historic performance of
the North American power grid, as well as standards for its control, NERC maintains an extensive set of
resources on the Internet at www.nerc.com.

334 Chapter 13 Power System Control and Estimation in a Competitive Environment

change errors (which indicate net energy deviation from scheduled exchange) was mon­
itored, and an after-the-fact accounting was done to settle the financial impact of this
"inadvertent interchange" of energy between control areas. Not surprisingly, this finan­
cial use of the ACE construct is undergoing scrutiny and modification in the transition
to a competitive environment.

This review of generation control is necessarily somewhat superficial; the interested
reader is strongly advised to seek more detailed accounts. However, this review and
historical perspective are intended to emphasize the significant institutional structure
and history that underlie current control practice. The actual control algorithms are
relatively simple, but the dynamics of the physical system they act upon, and the
institutional arrangements that determine the control objectives and possibilities, are
exceedingly complex. To understand the challenges and opportunities created for new
control approaches, it is important to understand the nature of this historical, and
largely still current, control structure.

13.2.4 Stability-Enhancing Controls in Power
Systems

Before leaving this tutorial on control in power systems, we must touch on several
topics beyond that of generator governor control and AGC. Stepping back and taking
a somewhat abstract view of the power system as a dynamical system, one must recog­
nize that the primary objective of the control loops described here is to allow states of
the power system to quasistatically "track" desirable operating points in response to the
(mostly) slowly varying exogenous input of customer load demand.' Hence these loops
are typically designed by treating the slowly varying inputs as a sequence of frozen
"snapshots," at which the input is viewed as constant and the system model becomes
autonomous. The control design goal becomes one of ensuring that the equilibrium
points corresponding to these snapshots have desirable properties in terms of the values
that state variables and outputs take at these equilibria. For example, one wants oper­
ating points that yield minimum fuel cost at generators, that keep frequency at or near
60 Hz, that maintain transmission line flows within specified limits or near setpoint
values, and so on. But none of these considers the dynamic response of the system in
any significant detail. An uninitiated reader may rightly ask whether any part of the
control design within a power system is concerned with dynamic response character­
istics and stability properties. The answer is most certainly yes but perhaps to a lesser
extent than one might expect. In a sense, the control actions that are available to
respond on a fast time scale, effective in improving dynamic response characteristics,
are somewhat limited. This lessens (but certainly does not eliminate) the interest in
control design for improving dynamic response characteristics. Conversely, the power
system is sufficiently nonlinear that its dynamic response characteristics can change
radically with the operating point.

5 A more realistic model of aggregate load variation measured at a distribution substation starts
from an underlying, slowly varying component that is highly correlated to weather; given weather data,
this underlying component can be quite accurately predicted on an hourly basis. Superimposed on this
underlying component are instantaneous fluctuations that arise from thousands of individual pieces of
equipment switched on and off under customer control. This yields an additional randomly varying, zero
mean stochastic component that might typically have a variance on the order of a few percent of the total
load at the substation.

Section 13.2 Power System Dynamics and the Historical Structure of Grid Control 335

As noted previously, one may roughly say that the system response is worsened,
and stability margins are compromised, as the network is progressively more heavily
loaded. Hence there has historically been considerable interest in analysis techniques
that characterize the relative stability of the system based on changes in operating
point. Often, operators improve the dynamic response and stability characteristics of
the power system by moving to a new operating point, either by quasistatically "steer­
ing" to such a point or by discrete switching of components connected to the grid. This
class of corrective controls to steer the operating point is only loosely closed loop and
often involves significant intervention on the part of human operators at regional
control centers. Faster time scale feedback control algorithms'' were typically kept
relatively simple and designed for robustness in their dynamic response characteristics
over a wide range of operating points rather than choosing a higher performance
controller that might adapt to system operating conditions. This choice will bear re­
examination in a more competitive business environment, where limits on utilization of
the grid to maintain conservative stability margins will be weighed against the denial of
profitable opportunities to competitors wishing to ship power.

Despite the preceding comments, some control actions are available that can act to
improve dynamic response characteristics and stability margins," and design of feed­
back controllers to achieve these goals is an important topic. Moreover, as will be
described, a number of promising new technologies offer improved opportunities for
stability enhancement. In reviewing existing control techniques, among the most not­
able feedback design problems for stability enhancement is that of power system sta­
bilizers (PSS). This seemingly generic term has a very specific definition in the power
field. It refers to a local feedback that measures the output variable of generator speed
or frequency deviation, and from this signal produces an additive input to vary the
excitation of the generator field winding. Being a purely electrical control input, varia­
tion of field-winding excitation does not carry with it the penalties of mechanical wear
and tear that come with varying prime mover power. Also, provided the source of
excitation voltage is sufficiently responsive, the speed of response of such a system
can be quite good. Many modern exciters use a controllable solid-state rectifier, taking
energy from the generator's ac terminals, and hence are responsive on fast time scales.

6 The process of steering to a new operating point could itself be implemented via feedback, but the
analysis of a model that simultaneously captures the fast time scale dynamics being stabilized and the slow
time scale quasistatic adjustment of operating point is daunting. Hence the steering of operating point for
improved stability is generally not treated as a feedback design problem.

7 The comment above begs the question of precisely defining what is meant by "improve dynamic
response characteristics and stability margins." While this classification greatly oversimplifies, the problem
of improving dynamic response is approached by linearizing the power system model about a nominal
operating point, or family of operating points, and applying any of a range of linear system analysis tools
to quantify the quality of performance. Such linearized, local analysis about an operating point(s) is
typically termed "small disturbance" stability analysis in the power system. Characterizing stability mar­
gins is typically approached using a full nonlinear model. The basin of attraction for a power system
operating point is never the entire state space, so determining whether a disturbance or change in config­
uration yields an initial condition outside the domain of attraction of the desired equilibrium is an
important problem. The typical approach starts from a preselected list of plausible large disturbances;
this is termed a contingency list. The stability margin of the system is judged adequate if analysis (usually
time domain simulation of a detailed dynamic model) shows that the system returns to an acceptable,
stable operating point in all of the selected disturbance scenarios.

336 Chapter 13 Power System Control and Estimation in a Competitive Environment

While the earlier overview of power system dynamics suggested that mechanical speed
and electrical frequency could be treated interchangeably, in the context ofPSS analysis
more care must be exercised. Large generator/turbine shafts can have significant tor­
sional dynamics, and broad bandwidth measurement of rotational speed will reflect
torsional oscillations of the shaft at the point of measurement. For an in-depth discus­
sion of PSS and the current state of the art in design methods, the text [8] is recom­
mended; the (slightly dated) bibliography of [9] provides a sampling of research in
improved PSS design methods.

Among other technologies that offer the possibility for fast time scale control are
those based on power electronics. Here a "fast" time scale would refer to control
actions with significant impact on the order of a few cycles of the 60-Hz sinusoidal
frequency. The dominant traditional applications in this category are direct current
transmission lines and controllable capacitive devices known as static Var compensa­
tors. In the case of de transmission, controllable rectifiers and inverters constructed
with high-power thyristors offer the opportunity to control steady-state current or
power flow on the line, relatively independent of ac voltage magnitudes and phase
angles on sending or receiving ends. Moreover, the ability to modulate the flow of
power allows opportunities to influence the dynamic response characteristics of the
network. At present, the number of de transmission installations in the United States
is relatively small, and this opportunity is exploited in only a few locations. However,
there has been recent interest in developing much lower cost implementations of dc
transmission in order to allow greater control of steady-state flow and to exploit market
opportunities in a competitive system. If this so-called dc transmission lite technology
were to see widespread adoption in the U.S. grid, it would bring with it much greater
opportunity for (and perhaps necessity for) modulation control to improve dynamic
response characteristics.

With regard to static Var compensators, the opportunities for dynamic stability
enhancement are conceptually similar to those in dc transmission, but the control
action available (variation of effective capacitance connected from a bus to ground)
tends to have less impact on dynamic performance. The motivation to use these devices
primarily for enhancement of the steady-state operating condition has been strong. To
understand this from a control perspective, consider the dynamics of a power network,
as represented in a linearization about a typical operating point. One commonly has a
subset of the eigenvalues of the system which are lightly damped complex conjugate
pairs. Physically, these modes are associated with behavior in which groups of genera­
tors show lightly damped oscillations of frequency and phase following small distur­
bances. As a rough rule of thumb, one may say that such electromechanical modes
show a much higher measure of controllability from control inputs such as prime mover
mechanical power, or from power modulation control of a de line, and a lower degree
of controllability from a control input such as a static Var compensator. However, it is
dangerous to generalize too broadly because, as noted previously, the dynamic char­
acteristics of a power network are highly dependent on its loading pattern and operat­
ing point. Static Var compensators have been studied for their potential contribution as
dynamic control elements. Moreover, while improved damping of electromechanical
oscillations has been a traditional goal in enhancing dynamic performance, the last
decade and a half has seen growing concern for loss of stability modes in which the
divergence from an acceptable equilibrium appears primarily as a collapse in sinusoidal
voltage magnitudes. This is the so-called voltage stability or voltage collapse problem.

Section 13.3 Institutional Changes Impacting Control Techniques 337

The literature on this topic is huge; see [10, 11] and the references therein. In the context
of voltage stability, the dynamic control impact of static Var compensators and other
devices that influence the injection of reactive power into the network can be much
more significant [12, 13].

13.3 INSTITUTIONAL CHANGES IMPACTING
CONTROL TECHNIQUES

The previous review of system dynamics and existing control techniques in power
systems has already alluded to a number of the new control challenges being created
by changes in the regulatory structure and organizational structure overseeing the
North American power grid. Incremental shifts toward a competitive market for
electric power provision in the United States have been underway for many years,
and significant restructuring in Great Britain predated that of the United States. As
previously noted, the landmark event that set into motion much of the current
activity in the United States was the issuance by the Federal Energy Regulatory
Commission (FERC) of its orders number 888 and 889. The observation that a
competitive generation market would bring significant control challenges was cer­
tainly anticipated before FERC's orders, particularly in light of earlier moves
toward a competitive market in Britain. (For a sampling of related discussions,
see [14].) A true competitive market for generation was judged to be predicated
on the ability of all suppliers to access customers through the transmission network.
The fact that U.S. utilities typically owned and controlled both the regional trans­
mission grid and the generators was seen as an impediment. Therefore, FERC's
action began the process to allow "nondiscriminatory" access to the U.S. transmis­
sion network. The FERC orders place particular emphasis on functionally separat­
ing generation and transmission, and on the means of communicating the
transmission network state in an open fashion. This is intended to allow generation
companies to assess the potential for long-distance power transactions on a conti­
nually updated basis. The technology is given the acronym OASIS, for Open Access
Same-time Information System, a term used in order 889's title. FERC's orders also
discuss some of the support functions necessary to maintain quality of service and
desirable dynamic performance (e.g., frequency regulation, voltage support) and
define the necessary engineering functions as "ancillary services." However, the
FERC orders do not give commensurate attention to the role of feedback control
systems intended to enhance the stability of the network. The absence of clear
regulatory guidance on the issue of dynamic controls has left many open questions;
[15] provides an excellent discussion of these questions posed in the context of the
summer 1996 outages in the western United States.

In the context of this chapter, the goal of this section is to provide further
background on these institutional changes so that the reader will have an appreciation
for their potentially dramatic impact on this critical infrastructure and its control.
The topic is immense, and interpretation of the many technological and policy ele­
ments that have contributed to these changes is a daunting task. Equally challenging,
and potentially more controversial, is any attempt to answer questions of cause and
effect in changes that have both policy and technological components. That is: is a
technological change the driving force behind a policy shift, or does a philosophically

338 Chapter 13 Power System Control and Estimation in a Competitive Environment

motivated policy shift open the door to technological changes to follow? Clearly in a
technological and institutional infrastructure as large as the North American power
grid, cause-and-effect relations between policy change and technological change are
mixed in a complex fashion, and historic decisions made with specific goals often lead
to unforeseen consequences. The following brief overview represents only the author's
limited perspective on these topics and is undoubtedly open to challenge. Independent
of the driving forces discussed, an obvious caution offered to engineering readers is to
avoid the intellectual trap of technological determinism. Technological change is a
strong social force, but there is no unique public policy consequence of a given
technological development.

13.3.1 Power Grid Control Structures: If They're
Not Broken, Why Fix Them 7

Given the mature, reliable system of electric power production and delivery in the
United States, it is a natural question for a pragmatic engineer to ask, "If it is not
broken, why fix it?" Such a question greatly oversimplifies the many facets of electric
power production in North America. In some aspects, the historic utility and regulatory
structure in the United States has been extraordinarily successful. One can convincingly
argue that given the physical hardware in place, the operation and control of that
equipment has been performed extremely well over the past several decades.
Although further opportunities for improving control technology and practice certainly
exist in the traditional utility structure, these appear largely in the context of improving
the system's ability to recover from relatively rare events and operating conditions
rather than making significant improvements in the day-to-day operation. However,
viewed nationwide, the procedure of the traditional industry and regulatory structure
for making major capital investments has proven cumbersome and at times quite
flawed. If capital investment decisions are flawed, the equipment built (or not built)
inevitably yields a less than optimal system. In the context of this chapter, a reader may
rightly ask why this criticism should be of concern to a control engineer. If one accepts
that the historic flaws were largely in choices of capital investment, while control of
equipment was carried out quite effectively, were the flaws and their repair not exclu­
sively in the domain of the economists? Elements that argue for an answer in the
negative have already been outlined, but let us reiterate.

The fix being implemented in the United States chooses to let competitive market
forces largely replace regulated central planning in the decisions for capital investment,
particularly with regard to electrical generation. This fix is certainly in keeping with the
general philosophic direction in policy for many major U.S. industries over the past
decade or more. In the power grid, this implies that generators will be placed in the
hands of entities independent of the central grid operators and that these entities con­
trolling generation will compete to provide power to customers. However, recall our
earlier discussion of the nature of electric grid dynamics and its traditional control
mechanisms. Generators are the dominant vehicles for exercising control over the
grid, in order to achieve systemwide objectives such as frequency regulation and stable
dynamic response. In many ways, a synchronous electric power grid presents dynamic
features unlike those of any other market. Rival sets of generating units do not interact
through the market alone. Rather, their electromechanical dynamics are tightly coupled
through the transmission grid. Therefore, the dynamic governor and excitation control

Section 13.4 New Technologies Impacting Restructuring and Control 339

exercised at one machine can have a large impact on the dynamic response of other
generating units and on the network as a whole. A competitive solution puts control of
generators into the hands of independent, profit-maximizing organizations. This could
pose the risk of severely compromising systemwide control objectives, unless new con­
trol techniques and technologies are brought in to maintain acceptable dynamic perfor­
mance and other systemwide objectives without the historic structure of central control
coordination.8

13.4 NEW TECHNOLOGIES IMPACTING
RESTRUCTURING AND CONTROL IN A
COMPETITIVE ENVIRONMENT

13.4.1 The Impact of Efficient Gas Turbines

Among the technological developments that are contributing factors to the end
of regulated, regional monopolies in electric generation, the most obvious is the
advance in combined cycle gas turbines as mechanical power sources for generators.
One element of the traditional argument for monopoly ownership of generators was
that of significant economies of scale in generation technology. For much of the
twentieth century, the hardware deployed to generate electricity appeared to verify
this assumption: Power could be produced with greater efficiency in ever larger
generating stations. Representative of the culmination of this trend are large coal­
fired generating stations of mid-1970s vintage; 38% net efficiency from chemical
energy content of the fuel to electric energy output from the generator is typical
in plants of approximately 1000 MW in size. The trend toward greater efficiency in
larger sized plants was generally perceived to hold true in nuclear plants as well,
though the overall thermal efficiencies achieved are somewhat lower, because of
lower achievable steam temperatures. However, offsetting the reduced operating
(fuel) cost of large plants were the huge capital costs and long lead times in their
construction.

The availability of cost-effective combined cycle gas turbine plants in the last
decade and a half, coupled with the availability of low-cost natural gas, has significantly
altered this picture. Combined cycle gas turbine technology can yield thermal efficien­
cies well in excess of 500/0, in plants of modest size and capital cost. As a result, such
plants can pay for themselves on a much shorter time horizon, making them more
attractive prospects for investment by an unregulated, for-profit entity. Perhaps not
surprisingly, the overwhelming majority of new generation installed in the United
States over the past several years has employed this technology [17, 32]. From a control
standpoint, a key impact of the greater penetration of gas turbines as a primary power
source for generation is the potential that these units offer for more responsive control
of their prime mover mechanical power. However, institutional arrangements can

8 New control technologies are not the only mechanism to ensure that competitive generators
contribute to systemwide goals of frequency regulation, stable dynamic response, grid integrity, and
reliability. There is much to be done to develop market-based and regulatory incentives to induce compe­
titive generator owners to operate in ways that contribute to systemwide goals. However, in many cases,
new control, measurement, and communication technologies will be necessary to facilitate the implemen­
tation of these incentive systems.

340 Chapter 13 Power System Control and Estimation in a Competitive Environment

negate technological opportunity; gas supplies for such units are. sometimes contracted
on a take-or-pay basis, discouraging the use of the machine as a controllable, variable
power source. A secondary dynamic impact of gas-turbine-based generators will be the
relatively smaller rotational inertia of individual machines.

The significant coupling of control and policy questions for new generators is this:
Given that many of these sources are being installed by nonutility entities, will there
exist financial incentives to install and operate these units with the engineering neces­
sary to exploit their control opportunities? The actual control hardware is a relatively
small portion of capital cost, so many would argue that convincing plant owners to
include such additions will be easy. Indeed, there exist ongoing activities within NERC,
the IEEE Power Engineering Society, and elsewhere to consider standards for such
supplemental controllers of traditional form (such as power system stabilizers).
However, as yet, there appears to be no universal incentive system (or enforceable
regulation) to encourage installation of such stability-enhancing generator controls.
The fate of such generator controls in a highly competitive market for commodity
power provision remains to be seen.

13.4.2 The Role of New Information and
Measurement Technologies

One of the questions in a restructured, competitive power network is the role of
grid information. The PERC orders require that information regarding the power
transfer capability of the grid be made widely available and auditable in order to
allow evaluation of the potential for power transfers. In contrast to this, in a compe­
titive market, individual generator owners will want to guard data regarding their
production resources as proprietary information." Studies of dynamic performance
characteristics of the power system and associated control systems design require
both types of data: the transmission system parameters and configuration, and detailed
dynamic characteristics of generating units. Who will possess both types of data? In the
evolving institutional structure, it seems generally agreed that there must remain a
central body overseeing the grid, usually termed the Independent System Operator,
or ISO. The California market has an ISO, and the formation of ISOs appears essen­
tially complete (as of early 1999)for the Pennsylvania-New Jersey-Maryland intercon­
nection, for New England, and for New York. Notably, these are regions that had
strong regional control centers coordinating the resources of multiple utilities before the
advent of orders 888 and 889; such multicompany regional control centers are not
common to all regions of the United States. Other regions of the United States await
agreements to form ISOs.

Based on the examples in place so far, the ISO is typically given strong adminis­
trative powers, and will likely be in a position to collect both types of data described
above. This body is also likely to be closely involved in engineering analyses to ensure
desirable dynamic performance. But even if the ISO has administrative power to collect

9 In one of the ironies inherent in a transition from a regulated monopoly to competitive markets,
until recently the U.S. Department of Energy Information Administration (EIA) cataloged and published
data on significant generating units in the U.S., including their fuel use, cost, and production efficiency.
Until there is more turnover of the capital stock of generation, evaluation of the nature and efficiencyof a
competitor's production facilities may require little more than a trip to the local library [16]. The EIA
continues to publish an annual catalog of major generating facilities and their capabilities.

Section 13.4 New Technologies Impacting Restructuring and Control 341

proprietary generator dynamic data from individual owners, will it have the resources
to validate this huge data set? As reported in [15], the dynamic study models in existence
in the western United States (arguably among the most advanced in the world) had
significant inaccuracies prior to the blackouts experienced in the summer of 1996. In
particular, had the exact initiating events been studied in advance, simulation tools
using the (then) best available data would have failed to correctly predict the occurrence
of major blackouts. A major postmortem engineering effort later corrected model
parameters to a degree that the simulation tools did match actual occurrences with
some fidelity. We may naturally ask how much more severe this situation could become
in the future, if we rely on traditional methods to gather data and assemble dynamic
models.

One may speculate that if ISOs must carry out time domain simulations of
network dynamics to ensure system security and perform control design based on
these studies, supplemental means of collecting dynamic data will become increas­
ingly critical. In particular, there will be a need for improved tools for estimating
both steady-state operating point and dynamic parameters from physical measure­
ments of the system. The former task, that of estimating current system operating
point and grid configuration from on-line measurements, has a long history in
power systems. In power systems terminology, this is termed the state estimation
problem. However, a control engineer encountering this term must understand that
its typical usage refers to estimation of the values of system variables at a steady­
state operating point rather than values along a transient trajectory (and indeed, not
all the quantities estimated are truly state variables of a dynamic model). Estimation
of equilibrium values of system variables from noisy measurements that are non­
linear functions of those variables is often formulated iteratively as a least-squares
estimation problem. This steady-state problem becomes more challenging if one also
recognizes that various components in the grid may be switched in or out of service
and that direct knowledge of the switch status may not be guaranteed. Therefore,
the steady-state estimation problem may be augmented to attempt estimation of
network configuration and switch status from other indirect measurements. With
growth in the number of entities whose competitive position is impacted by system
operating condition and grid configuration, it is easy to predict that interest in this
traditional form of power system state estimation may also grow.

Among the new technologies impacting these developments, most notable is the
growing availability of low-cost, high sampling rate "phasor measurement" units.
The reader should recall our earlier discussion regarding the importance of voltage
phase angle differences between nodes in the grid. This is a key quantity determining
the flow of power. Yet accurate measurement of phase angle differences between
sinusoidal voltages that are hundreds or even thousands of kilometers apart is a
challenging technical problem. Judging relative phase is critically dependent on a
precise time reference. In recent years, the global positioning satellite system (GPS)
has provided a low-cost means of acquiring precisely synchronized time references at
remote measurement points. In the power system, this has created the opportunity
to precisely and directly measure relative phase angles of geographically dispersed
sinusoidal voltages in the grid. These are often termed "wide area" phasor measure­
ments. This adds a very valuable measurement to the set available for (steady-state)
state estimation. It also creates opportunities for improved system protection and
dynamic control. (For a recent sampling of these ideas, see [18,19].)

342 Chapter 13 Power System Control and Estimation in a Competitive Environment

13.4.3 Control Opportunities for Flexible AC
Transmission Systems

New applications of high-power electronics in the transmission grid are often
grouped under the heading of Flexible AC Transmission, or FACTS [20]. More speci­
fically, the term FACTS refers to a family of circuit configurations that use high-power
semiconductor switching elements, such as thyristors or gate turnoff devices (GTOs), to
vary the duty cycle of passive elements such as capacitors and inductors. Such config­
urations can functionally approximate a variable, controllable impedance at the 60-Hz
fundamental, or in more advanced configurations, they can transfer power between
series-connected elements in the transmission grid and shunt-connected elements in
the grid. As a result, FACTS devices make the transmission grid itself much more
dynamically and continuously controllable rather than leaving it to operate only as a
passive circuit.

In the eyes of many observers, FACTS technologies have represented a potential
revolution that has continued to wait in the wings for a number of years. While a
number of interesting demonstration projects have been completed or are on-going,
significant penetration of this technology into the high-voltage transmission grid has yet
to occur. This delay is perhaps not surprising given the institutional restructuring of the
U.S. grid. FACTS devices are relatively high-cost elements that will not contribute to
economic power generation directly, but rather, indirectly, through more efficient con­
trol and utilization of the transmission system. In the aftermath ofFERC's 1996orders,
open questions remain regarding the means for recovery of investment in the transmis­
sion grid, as well as organizational questions about the form of Independent System
Operators (or other entities) for some portions of the United States. Hence the failure
to see large investment in significant new transmission control technologies is not
completely surprising. However, as issues relating to transmission investment are
resolved, it is likely that the FACTS revolution will come, and with it, a range of
interesting new control opportunities and challenges.

Power electronic controllers can present challenging nonlinear problems because,
fundamentally, these devices are composed of circuits in which controlled switches are
the primary regulating element. In transmission applications, one is typically attempt­
ing to control the 60-Hz fundamental component of a current or voltage waveform, or
of an impedance, by switching within an appropriate circuit topology. When the switch­
ing frequency is significantly above that of the fundamental, as is the case in low-power
applications, averaging techniques provide a fairly tractable, usually linear, model for
control design. However, present solid-state technologies for high power are limited in
their switching frequency by loss effects. The limitations on switching frequency create
much more complex dynamic behavior and challenges to control design. Moreover,
combinations of new circuit topologies and devices in the so-called Universal Power
Flow Controller [21] create an opportunity for significantly enhancing steady-state
power flow in a manner that could make the economics of such FACTS technology
much more attractive. Once this technology is deployed in the grid, it will also open the
door to many interesting opportunities in control design for dynamic performance
enhancement.

Section 13.5 A Perspective on Future Directions for Power System Control

13.5 A PERSPECTIVE ON FUTURE DIRECTIONS
FOR POWER SYSTEM CONTROL
DEVELOPMENT AND RESEARCH

343

Perhaps the first key control challenge in the immediate future of power systems is
one alluded to several times in our earlier review: that of rethinking the existing
hierarchical system of systemwide frequency control, the AGC system. This is as
much a problem of administration as it is one of control design. Effective economic
incentives must be found to encourage the participation of competitive units in "glo­
bal" frequency regulation. The NERC Web site (see footnote 4) provides up-to-date
documentation of the U.S. perspective on the next generation of AGC. However,
beyond the administrative and economic aspects, significant opportunities exist for
conceptual innovation in the controller designs. In the overview of AGC provided in
[7], the authors and various discussants allude disparagingly to attempts in the 1970s
to apply optimal control design concepts to the frequency regulation. These optimal
control design techniques were critiqued as grossly unrealistic, neglecting the many
practical constraints on equipment response rates and bounds, and issues of wear and
tear on steam valve systems. However, recent work such as [22] has begun to reex­
amine the use of optimal control in frequency regulation for steam-driven electric
generators, bringing in much more realistic representations of the steam-flow system
and its constraints.

More broadly, the AGC problem encapsulates the general nature of challenges
that will likely be recurring themes in control design as power systems move toward a
competitive generation market. In particular, how does one migrate from a control
structure predicated on centralized ownership and unified administration of generation
and transmission control equipment that existed in the past? As this chapter's review
attempted to indicate, generators are among the most effective elements for achieving
systemwide control objectives of frequency regulation and stable dynamic response,
and to a lesser degree, voltage control. Yet these "control resources" (generators)
will be owned and administered by independent, profit-maximizing entities, divorced
from the Independent System Operators that have responsibility for the transmission.
What new structures of control and what economic incentives will serve to align the
individual profit-maximizing objectives of generation owners with systemwide control
objectives?

Looking to the future, we find that considerable interest is being generated by
agent-based concepts [23]. The agent approach appears to provide a reasonable
model for many examples in nature in which fairly simple local control laws and
logic apparently succeed in generating quite complex global behavior in the aggregate
(e.g., flocking behavior in birds). Clearly, this is an appealing concept when one is faced
with the challenge of obtaining desirable global dynamic performance from relatively
simple local control actions in a competitive power system. Recognizing that NP-hard
optimization problems abound in power systems control and optimization problems, it
is also notable that agent-based approaches are proving quite powerful in improving
solution algorithms for several classic NP-complete problems. At present, agent-based
approaches are being adopted for power systems applications not directly in control
design, but in closely related problems of design of bidding/offering strategies for
competitive generating units.

344 Chapter 13 Power System Control and Estimation in a Competitive Environment

Beyond the agent-based approach, a range of more established control theoretic
concepts remains promising if the system sees a strong shift toward fully decentralized
controllers. One of the clear possibilities in a competitive generation market is that of
much more volatile patterns of generator commitment. That is, individual generators
may be connected and disconnected from the grid in less predictable patterns and with
increasing frequency. In such a scenario, one has a particular structure of robust con­
trol problem in which the structure of the system may vary over a huge range of
configurations, with each configuration having a different set of controllers (on indivi­
dual generators) active or not. Robust decentralized control has a long history in power
system research; the control needs in a competitive environment have further strength­
ened the desirability of this effort. In this context, controller designs based on passivity
and dissipativity ideas hold considerable promise. Indeed, it may be argued that several
traditional design methods for power system stabilizers produce controllers with these
properties. Closely related to passivity-based designs are controllers based on identify­
ing a system Lyapunov function, or family of such functions, and designing for
improved dissipation relative to the Lyapunov function(s). This approach has been
proposed for use with multiple FACTS devices closely interacting in a network.

To the extent that a central body, such as the Independent System Operator, will
continue to tackle systemwide optimization, dynamic control design, and performance
validation, the issue of NP-hard computational problems in power systems remains
significant. Designing control systems that provide acceptable dynamic performance
over wide-ranging operating conditions and grid configurations is a recurring challenge,
and a number of works have sought to transfer concepts from the robust stability and
controller design literature to power systems applications. (See, for example, [24].)
However, power systems have long been recognized as suffering from the "curse of
dimensionality"; the developments of computational complexity allow one to formally
classify many of the robust stability problems found in power systems to be NP-hard
[25]. In the robust control literature and in a range of control design problems, there has
been a recent recognition of the power of probabilistic methods in treating NP-hard
analysis and design problems [26]. Transfer of these concepts to power systems control
design is an extremely appealing avenue for future work.

On the same theme of computationally challenging problems, another aspect of
control design relevant to power applications is the potential for strong interaction
between continuously acting feedback controllers and discontinuous, discrete switching
events, such as protective relays. Given the huge computational challenge these pro­
blems present, traditional approaches in power systems have been rather ad hoc, with
initial control design efforts largely ignoring protective relay action, and, at best, fol­
lowup simulation efforts to test whether relay thresholds are encountered in foreseeable
fault and system disturbance scenarios. to Clearly, this approach is severely limited by
the fact that only those disturbance events and grid configurations anticipated in the
"contingency list" are studied for interaction. It is almost a folk theorem that major

10 Autonomously acting discrete switching events (in contrast to those commanded by human
intervention from a control center operator) are largely associated with protective devices. These act
when system states deviate widely from their acceptable operating range. Therefore, it is reasonable to
suppose that interaction between these effects and normal feedback controls should occur mostly under
fault or disturbance conditions. However, among the common contributing disturbances may be an
inappropriate triggering of one of the protective devices themselves.

Section 13.5 A Perspective on Future Directions for Power System Control 345

failures in complex engineering systems, such as power grids, result from the simulta­
neous occurrence of several rare events, or unusual operating conditions, the combina­
tion of which would not have been identified as a plausible subject for study a priori.
Ideally, one would like a probabilistic, dynamic simulation in which random actions
occur periodically, so that the simulation may "unearth" unexpected interactions of
discrete events and continuously acting controllers. However, in a system of large
dimension, in which the events to be identified are extremely rare, direct computational
implementation of this approach is completely intractable. With suitable modeling, the
occurrence of the rare failure mode appears as a "large deviation" in the state of the
system. Similar issues appear in control and coordination of communication networks,
in which one seeks to identify possible failure modes that have extremely low prob­
ability [27]. To improve computational tractability, the techniques of importance sam­
pling have proven promising in the study of communication networks, and the control
community is playing an active role in the continuing development of related methods.
Such methods are beginning to see application in the study of power system protective
relays [28]. Such methods could be critical to ensure reliability in the development of
control and protection technology for the future U.S. power grid.

Closely related to the issue treating the interaction of discontinuous switching events
and network reconfiguration, continuously acting feedback controls, and stochastically
varying inputs is the application of discrete event and hybrid systems concepts in the
power systems context. Design methodologies to fully coordinate the consideration of
the various types of phenomena in accurate models will be extremely challenging to
develop, but this mix of features is hardly unique to the power system application, and
progress on general methods is being made [29]. Research into these topics is growing as
competitive pressures demand less conservative operating margins in power networks.

Many of the topics for future development and research in power systems control
represent new perspectives on long-standing control problems, being motivated by
restructuring and the emergence of competitive markets in the power industry.
However, competitive markets themselves, and certainly the interaction of physical
dynamics with market-driven events, are important new topics for study within the
power systems domain. It is widely recognized that Wall Street has seen a significant
influx of advanced technical talent to study stochastic market behavior over the last
decade, often drawing on individuals with a control systems orientation. A power
exchange proves a most interesting market for study, given the many time scales that
are spanned by this market's activity, with strategic decisions to be made all the way
from long-term futures markets, down to second-by-second balancing of instanta­
neous generation and load. Work in [30] provides an overview of how this mix of
market and control structures is achieved in the structure of the California
Independent System Operator. More broadly, there are a range of interesting ques­
tions with control aspects raised when market decisions by individual grid partici­
pants contribute as feedback elements to the overall dynamic behavior of the grid. I I

Extending the perspective slightly beyond pure control problems, there are also a host
of interesting questions relating to the prediction of market participants', behavior
that may be well-formulated as game-theoretic problems. Predicting the dynamic

11 These issues were anticipated in the pioneering work of Schweppe, on the so-called Frequency
Adaptive Power Energy Rescheduler, or FAPER, in the late 1970s. See [31] for a description of this
concept and its interaction with longer time scale market phenomena.

346 Chapter 13 Power System Control and Estimation in a Competitive Environment

performance and reliability levels of the future electric power grid will depend criti­
cally on the ability to successfully integrate these many elements into system control
analysis and design tools.

The discussion here has, at best, scratched the surface of the huge range of control­
oriented issues and challenges that are motivated by the restructuring of the electric
power industry in the United States and around the globe. The author recognizes that
the references provided are a very small, and inevitably inadequate, sampling of the
field, and offers apologies to the many fine engineers and researchers contributing to
power system control development who are not acknowledged here. However, this
chapter will have fulfilled its objective if it has sparked interest in the new problems
of electric power system control and estimation among individuals currently focused on
other application areas. Indeed, the process and ultimate outcome of current restruc­
turing in the power industry should interest any individual concerned with the direction
of our technological society. Control engineers have important skills and perspectives
to offer to this task.

Related Chapters

• An overview of process control systems can be found in Ch. 12.
• See Ch. 10 for another agent-based application concept.
• Issues related to the interaction of continuous dynamics and discrete switching are dis­

cussed in Ch. 7.

REFERENCES

[1] L. H. Fink, "New control paradigms for deregulation." In M. Hie, F. Galiana, and L. Fink
(eds.), Power System Restructuring: Engineering and Economics. Boston: Kluwer Academic
Publishers, 1998.

[2] FERC Order no. 888, Final Rule. "Promoting wholesale competition through open access
non-discriminatory transmission services by public utilities; Recovery of stranded costs by
public utilities and transmitting utilities." Docket #RM95-8-000, issued April 24, 1996;
available via http://www.ferc.fed.us/newsl/rules/pages/order888.htm

[3] FERC Order No. 889, Final Rule. "Open access same-time information system and stan­
dards of conduct." Docket # RM95-9-000, issued April 24, 1996; available via http://
www.ferc.fed.us/newsl/rules/pages/order889.htm

[4] A. J. Wood, and B. F. Wollenberg, Power Generation, Operation, and Control, 2nd ed. New
York: John Wiley & Sons, 1996.

[5] N. Jaleeli et al, "Understanding automatic generation control." IEEE Trans. on Power
Systems, Vol. 7, no. 3, pp. 1106--1122, August 1992.

[6] G. Rogers, "Demystifying power system oscillations." IEEE Computer Applications in
Power, Vol. 9, no. 3, pp. 30-35, July 1996.

[7] N. Jaleeli and L.S. VanSlyck, "Tie-line bias prioritized energy control." IEEE Trans. on
Power Systems, Vol. 10, no. 1, pp. 51-59, February 1995.

[8] P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1994.
[9] J. R. Smith, G. Andersson, and C. W. Taylor, "Annotated bibliography on power system

stability controls: 1986--1994." IEEE Trans. on Power Systems, Vol. 11, no. 2, pp. 794--800,
May 1996.

[10] Y. Mansour (ed.), "Suggested techniques for voltage stability analysis." IEEE Power
Engineering Society, Publication #93TH0620-5PWR, 1993.

References 347

[11] C. W. Taylor, Power System Voltage Stability. New York: McGraw-Hill, 1994.
[12] T. J. E. Miller, Reactive Power Control in Electric Systems. New York: John Wiley & Sons,

1982.
[13] "Application of static Var systems for system dynamic performance." IEEE Power

Engineering Society, Publication #87THOI87-5-PWR, 1987.
[14] Proceedings, The Impact of a Less Regulated Utility Environment on Power System Control

and Security. C. L. DeMarco (ed.), workshop sponsored by National Science Foundation,
Engineering Systems/Power Systems Program, Madison, WI, April 19-20, 1991.

[15] J. F. Hauer and C. W. Taylor, "Information, reliability, and control in the newpower system."
Proc. American Control Conference, pp. 2986-2991, Philadelphia, PA, June 24-26, 1998.

[16] Electric Plant Cost and Power Production Expenses 1990. DOE/EIA-0455(90), Energy
Information Administration, U.S. Department of Energy, Washington, DC, June 1992.

[17] Annual Energy Review 1997. DOE/EIA-0384(97), Energy Information Administration, U.S.
Department of Energy, Washington, DC, July 1998.

[18] J. S. Thorpe and A. G. Phadke, "Protecting power systems in the post-restructuring era."
IEEE Computer Applications in Power, Vol. 12, no. 1, pp. 33-37, January 1999.

[19] I. Kamwa, L. Gerin-Lajoie, and G. Trudel, "Multi-loop power system stabilizers using wide
area synchronous phasor measurements." Proc. American Control Conference, pp. 2963­
2967, Philadelphia, PA, June 24-26, 1998.

[20] N. G. Hingorani and K. E. Stahlkopf, "High-power electronics." Scientific American, Vol.
269, no 5, pp.78-85, November 1993.

[21] L. Gyugyi, "Unified power flow control concept for flexible transmission systems."
lEE Proceedings-C, Vol. 139, no. 4, pp. 323-331, July 1992.

[22] C-K. Weng and A. Ray, "Robust wide-range control of steam-electric power plants." IEEE
Trans. on Control Systems Technology, Vol. 5, no. 1, pp. 74-88, January 1997.

[23] A. M. Wildberger, "Complex adaptive systems: concepts and power industry applications."
IEEE Control Systems Magazine, pp. 77-88, December 1997.

[24] M. H. Khammash, V. Vittal, and C. D. Pawloski, "Analysis of control performance for
stability robustness of power systems." IEEE Trans. on Power Systems, Vol. 9, no. 4, pp.
1861-1867, November 1994.

[25] C. L. DeMarco, "Computational complexity results in parameteric robust stability analysis
with power systems applications." In J. H. Chow, P. V. Kokotovic, and R. J. Thomas (eds.),
Systems and Control Theory for Power Systems. New York: Springer-Verlag, 1995.

[26] M. Vidyasagar, "Statisicallearning theory and randomized algorithms for control." IEEE
Control Systems Magazine, Vol. 18, no. 6, pp. 69-85, December 1998.

[27] P. Glasserman, K. Sigman, and D. Yao (eds.), Stochastic Networks: Stability and Rare
Events, Lecture Notes in Statistics Vol. 117, New York: Springer-Verlag, 1996.

[28] J. S. Thorp, A. G. Phadke, S. H. Horowitz, and S. Tamronglak, "Anatomy of power system
disturbances: Importance sampling." Electrical Power & Energy Systems, Vol. 20, no. 2, pp.
147-152, August 1997.

[29] M. S. Branicky, V. S. Borkar, and S. K. Mitter, "A unified framework for hybrid control:
Model and optimal control theory." IEEE Transactions on Automatic Control, Vol. 43, no.
1, pp. 31-45, January 1998.

[30] Z. Alaywan and J. Allen, "California electric restructuring: Broad description of the devel­
opment of the California ISO." IEEE Trans. on Power Systems, Vol. 13, no. 4, pp. 1445­
1452, November 1998.

[31] F. C. Scweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn, Spot Pricing ofElectricity.
Boston: Kluwer Academic Publishers, 1988.

[32] The Changing Structure of the Electric Power Industry: Selected Issues, 1998. DOE/EIA­
0562(98), Energy Information Administration, U.S. Department of Energy, Washington,
DC, July 1998.

Chapter

14
INTELLIGENT TRANSPORTATION
SYSTEMS: ROADWAY
APPLICATIONS

Omit Ozquner

Editor's Summary

Intelligent Transportation Systems (ITS) is a new field, encompassing all modes of transportation of

people and goods. The focus of this chapter is on intelligent road transportation and on the role of control

technologies in this interdisciplinary area.

Two primary control-relevant topics in ITS are traffic control technologies and intelligent vehicles.

The former can be further classified into street traffic and highways. Street traffic applications include

signaling for both single intersections and networks of intersections, where the control variables are traffic

light timings, and routing, in which traffic flow along different roads is manipulated to optimize some

overall efficiency or congestion criterion. Highway traffic control applications range from the relatively

mundane one of ramp control or metering to the exotic prospect of Automated Highway Systems (AHS)

in which multiple vehicles operate as platoons. The grander visions of traffic control require a number of

practical considerations to be addressed, including identification, sensing, and actuation over roadways

with wireless networks.

Intelligent vehicles require the incorporation within automobiles of intelligence and autonomy cap­

abilities. (See Chapter 5 for a general discussion of intelligent control.) Limited autonomy is exhibited even

in today's automobiles with cruise control and antilock braking systems-these loops automate throttle

control and brake control. More meaningful autonomy requires closing a third loop, that of steering. (This

requires a drive-by-wire capability that is currently lacking in production automobiles.) Furthermore, the

overall problem must be considered a multivariable one. The chapter presents mathematical formulations

and solution approaches for advanced cruise control, which includes automatic braking as well as accel­

eration, lane keeping with a sliding-mode-like nonlinear controller (Chapter 8 discusses sliding-mode

control in detail), and lane changing.

Dmit Ozguner is a professor in the Department of Electrical Engineering at the Ohio State

University and the president of the IEEE Intelligent Transportation Systems Council.

14.1 INTRODUCTION

This chapter presents an overview of automatic control in the Intelligent
Transportation Systems (ITS) area. ITS covers the totality of computer, communica­
tion, and control technologies, as well as techniques for transportation of goods and
people in an optimal way. As such, ITS is an interdisciplinary area, and we will describe
the reliance of ITS on control and other engineering topics and on different technolo-

348

Section 14.2 Traffic-Related Issues 351

automated lane change. The following car automatically fills the gap to keep a fixed
distance to the car in front.

We shall return to examples from Demo'97 in the last part of this chapter.
However, as we mentioned above, AHS is not the only area in which ITS technologies
are used, and it is also not the only area that should be of interest to control engineers.

The following discusses ITS in terms of (1) traffic-related issues and (2) intelligent
vehicle (IV) issues. Obviously, both topics are interrelated, although the first has
received comparatively less attention from electrical engineers.

14.2 TRAFFIC-RELATED ISSUES

14.2.1 Signalization

The first problem to be considered in the area of transportation as a control
application is intersection control, or signalization. The control variable is signal
split, that is, the specification of the ratio of green to red time, given a fixed cycle
time for an intersection. In a controlled intersection, the split can be adjusted continu­
ously based on balancing the queue lengths or waiting times for incoming traffic.
Constraints can be applied on minimum green time, and turn options can further
complicate this basic problem.

For a typical intersection as shown in Figure 14.2, the control problem, in which
the cycle time of the traffic light is fixed as T and the only variable that can be adjusted
is the split c, a model and a criterion can be developed.

Let q denote the queue lengths in the direction indicated by their subscripts. Let u
similarly denote incoming and outgoing traffic at the intersections. The undersaturated
intersection is modeled in the following way:

I~x
= u~(t) - u~(t)

u~(t)
if 0 < t s cT

qy
(14.1)

{ ~x u~(t)
if cT < t ~ T

qy u~(t) - u~(t).

All these equations say is that, if more traffic arrives at the intersection than departs,
queues build up. Usually, there also exists aconstraint on c

Figure 14.2

352 Chapter 14 Intelligent Transportation Systems: Roadway Applications

o< Cmin ::s C ::s Cmax < 1, (14.2)

which means that you will get a green light during every cycle, and although it may be a
short one, it will not be too short.

When the intersection is oversaturated, the model can be simplified as

Iqx = U~(t) - clx
qy = U~(t) - (1 - c)ly

(14.3)

during their corresponding green times, where Ix and Iy are the maximum flow capa­
cities in the x-direction and y-direction, respectively. These equations imply that we will
pump as many vehicles out as the outgoing street will take, during all of our green time.

In either case, an optimal solution can be found by defining some cost criterion
such as

minJ = rr (qAt) + qy{t))dt,
c Jo (14.4)

which minimizes total queue lengths over the cycle time. In the oversaturated case,
using Pontrayagin's maximum principle, the solution can be found to be a "bang­
bang" control strategy, that is,

ICmax
c=

Cmin

Ix ~/y

otherwise
(14.5)

If the intersection is not oversaturated, other solutions can be given. Assuming the
queues at the intersection could be cleared in a cycle of the traffic light with the max­
imum flow capacities in the x-direction and y-direction, Ix and /y, we can use some
reasonable ratio depending on the initial queue lengths and flows such as

(14.6)

The point we wanted to make in this simple exposition is that, even in the most
basic ITS application, one can find a control problem to be solved.

14.2.2 Networks of Intersections

Embedding a single intersection into a network, where many roads and many other
intersections exist, complicates various issues. When dealing with networks of intersec­
tions, one also has to model both splitting roadways and turning vehicles at intersec­
tions (both possibly with the traffic ratio predetermined). But the real problem now is
no longer clearing a single intersection but a whole network. Decisions at one intersec­
tion can affect queue lengths at others.

Two basic questions need to be answered:

Section 14.2 Traffic-Related Issues 353

1. What is the overall goal? Is there some relationship between the overall goal and
local goals?

2. What information transmittal framework is to be imposed?

These are standard questions in the large-scale dynamic systems and decentralized
control literature. Indeed, approaches ranging from the decentralized servocompensa­
tor setting to parallel dynamic programming can be attempted.

14.2.3 Routing

Extensive research has been reported for dynamic routing, route guidance, or traffic
assignment, as it is sometimes called in the transportation literature.

The queues in the single-destination routing problem are assumed to be modeled as
a store-and-forward network as shown in Figure 14.3. The mathematical model can be
given as

qn = qn + rn + L u/(t - t/) - L u/(t),
/EL~ /EL~

(14.7)

where qn is the queue length at time t in node n, rn denotes the traffic that arrives at
node n from outside the network at time t, L~ and L~ denote the index set of branches
entering and leaving node n, respectively, and u/(t) is the traffic along the link I.

Assuming that each branch has a capacity C/ and the traveling time along link I is
tf, we find that the following inequalities exist:

(14.8)

A cost function that the routing strategy may attempt to minimize is the aggregate
delay up to a specified time T, that is,

(14.9)

The qn terms in this equation give the delay due to congestion of the network, and the u/

terms give the transit delays or costs. Different constant weights can also be attached to
the terms, and other cost criteria can be envisaged.

Solutions to the above problem, or similar problems that may be defined, will
depend on the information structure allowed. If all measurements are available at
some central location, we will have a different control strategy (and different perfor-

Figure 14.3

I-Ct-----~-·[]Destination
node

354 Chapter 14 Intelligent Transportation Systems: Roadway Applications

mance) than when only local queue lengths are measured. A solution in which estimates
of cost-to-go are passed upstream was provided in [4] for the single-destination case.
Extensions to multi-destination cases and the use of different cost criteria have been
reported through the years.

14.2.4 Control of Traffic on Highways

14.2.4.1 Convoys, Platoons, et al.

In the 1990s, extensive research was done on highway automation as a result of the
continuously increasing number of vehicles on the roads and the high cost of building
new roads. One of the early steps leading to Automated Highway Systems was the
development of the concept of convoys of vehicles with a leader and numerous auto­
mated followers. The problems associated with control for such a convoy can be split
into longitudinal and lateral problems.

The longitudinal control problem for car following has been studied extensively by
many researchers for a long time. In 1967, Levine and Athans considered the problem
of controlling a string of vehicles so as to keep them moving with constant speed and
separation using optimal control theory in a decentralized manner [5]. Chu compared
several feedback structures to determine the effects of supplied information for the
same example [6] based on the optimal decentralized regulation theory. Between 1964
and 1980, several studies for highway automation, including the implementation of
longitudinal and lateral controllers for the lane-tracking and car-following problems,
were conducted at the Ohio State University. A detailed overview of these studies can
be found in [7]. The experience of researchers at PATH, a California alliance of uni­
versities including the University of California at Berkeley and others, was summarized
in [8].

The PATH group contributed extensively to a framework in which the Automated
Highway System relied heavily on a concept of tightly packed convoys of cars moving
at high speed as a single unit called a platoon. Platoons could split, merge, change lanes
together, and so on. The tight spacing and high-speed expectation in platoons implied
fairly demanding constraints for the control loops (say, for speed regulation) for the
individual cars. It also led to the need for reliable intervehicle communication links. In
addition to the lower end control design specifications, the concept of platoons gener­
ated the need for tools to analyze (and design for) the higher level group operations.
This need was met with concurrent research developments in the hybrid systems control
area. Although the expansion of research in hybrid systems can also be attributed to
needs in modeling manufacturing systems and process control, or the natural outcome
of developments in discrete-event dynamic systems, it is clear that control engineers in
AHS needed tools to analyze high-level decision making and scenario resolution.

14.2.4.2 Ramp Control and Merging

Ramp control is one of the first problems, together with determination of signal
split, which has been addressed in terms of control. In standard operation, ramp control
simply controls admission of vehicles into the freeway in a regular way. This forestalls
the infusion of a large burst of traffic into the freeway artery, which may lead to an

Section 14.2 Traffic-Related Issues 355

unwanted stop-and-go operation. Drivers usually prefer to wait at the entrance ramp
rather than be subject to variable speed situations once on the road.

One conceivable way of doing ramp control is to admit vehicles into gaps in free­
way traffic. This would require a means of measuring oncoming traffic on the freeway
in real time, say, by a vision system. Obviously, such a system would work if the
freeway artery was not saturated, and drivers already on the freeway could be relied
on to keep the gaps constant as the admitted vehicles accelerate on the ramp. Indeed, in
an Automated Highway System where the speeds of the vehicles on the freeway, and in
fact the gaps between the vehicles, would be regulated, ramp control would basically be
done as above.

An early approach that was used in considering speed control on the freeway was a
conveyor analogy. The virtual conveyor would have regular segments, and each vehicle
would have to adjust its speed to remain in its assigned virtual segment as it moved.
Some segments would be empty, and the vehicles entering on the ramp would be
assigned to those. One way of thinking of this situation is in terms of a moving sequence
of ones and zeros, where a one denotes a full segment on the virtual conveyor. This
image simplifies creation of the merging string from the ramp in a systematic way.

14.2.4.3 Automated Highway Systems

The fully Automated Highway System, in which all vehicles on designated high­
ways have their speeds and headway regulated, has been advocated for a long time for
providing an optimal solution for future transportation problems. Two facts strengthen
this argument:

1. It is becoming very expensive to add new roads to the highway system.

2. Full control implies that vehicles at high speed can be packed closer together on
the highways, resulting in higher throughput.

It is this second assertion that signifies that control theory and practice has a very
important role to play. The controllers designed for the automated highway system
have to be precise, practical, robust, and reliable.

Through the years, many control groups have worked as parts of teams that have
developed working demonstration systems illustrating parts of AHS. The largest of
these was organized in August 1997 on 1-15 in San Diego by the National
Automated Highway Systems Consortium (NAHSC) and was referred to as
Demo'97. A number of different teams (PATH-GM, CMU-Metro Houston, Ohio
State University, Honda, Toyota, and Eaton-Vorad) had different vehicles or groups
of vehicles performing different automated scenarios on 1-15, demonstrating both dif­
ferent concepts of an AHS and different technologies that can be utilized. Control
played an important role in all of them.

14.2.5 Some Practical Concerns

We have already mentioned that ITS is an interdisciplinary science. We will cer­
tainly notice this again when we overview the topic of intelligent vehicles a little later in
the chapter. But the control engineer with traffic-related ITS problems will also rely on

356 Chapter 14 Intelligent Transportation Systems: Roadway Applications

other disciplines. The issue of getting real-time data for decision making for a whole
network is especially important.

Individual intersection signal control is a local feedback loop. Once the intersec­
tion is part of a full network, the intersection has to be controlled regionally or centrally
(see Figure 14.4). The present practice is to reset splits occasionally (based on statistics
related to time of day), so that control signals are not transmitted continuously to the
intersection. Local measurements are passed back to the regional center; therefore,
whether loop closure is at a high or low rate, the physical communication link needs
to exist and probably constitutes the majority of the cost of the control setup.

Fully automated routing, if it were to be implemented, would at least require the
same communication infrastructure. Added to that is the need of each vehicle to declare
its destination, if optimal regulation is expected. A suboptimal approach could be based
on statistical analysis, which would provide decisions based on average demand for
different destinations. Similarly, if a totally automated vehicle guidance system is not
implemented, it is not clear how individual drivers can be induced to follow the optimal
route calculated by the central traffic center. Presumably, optimal routing selections
could be transmitted to the vehicle, either on an in-vehicle display or on a panel at the
intersection (node), and a certain percentage of drivers would accept and abide by these
suggestions.

The optimal routing problem setting also implies identification and tracking of
individual vehicles as they make their way through the network. One possibility is cars
checking in at each intersection since locations are not needed while traveling along a
link. On the other hand, the technology for locating vehicles already exists and is used
in Global Positioning System (GPS)-based vehicle location systems. The wireless por­
tion in such systems, presently informing a dispatcher of the vehicle's location, can also
be used for other information transmittal.

One class of technologies that needs to be mentioned at this point is that used for
counting and possibly identifying vehicles as they pass along a roadway or stop at an
intersection. These range from the classic detection loop embedded in the road to new
radar-based or laser-based or image-processing-based technologies. Recent applica­
tions, specifically tested on trucks, would have a transponder on the vehicle providing

Trafficcenter

Regional traffic
controller 1 • • •

Regional traffic
controller R

Figure 14.4

•••

Section 14.3 Intelligent Vehicles 357

information to roadside units. All these technologies could conceivably be utilized in
closing the loop in any kind of automated routing system.

The fully Automated Highway System of the future provides many more chal­
lenges. Overall routing information needs to be provided to individual vehicles, along
with either roadway-based speed settings or speed directives to platoons. Ingress and
egress information also needs to be provided, possibly at entry-exit locations. Although
there may be simpler solutions for the latter, in general a wireless network seems to be
needed. A wide-scale application of AHS or routing in general and the associated
wireless communication network introduces new problems. For example, the question
of handoff as information related to individual vehicles as well as links to them change
dynamically provides interesting control theory challenges.

The vehicles in an AHS may actually need more infrastructure aid, not just for
macro-level movement (traffic control), but also micro-level movement (automated lane
tracking). We will discuss this topic in the next section.

14.3 INTELLIGENT VEHICLES

14.3.1 Pre-IV Autonomy: Cruise Control and ABS

Just as the topical area of intelligent control refers to designing systems with some
amount of autonomy, the term "intelligent vehicle" is used for a car (or other means of
transportation) that has some capability of autonomous mobility.

Vehicles where some aspect of human driving is taken over exhibit some autono­
mous behavior beyond simply having automatic control feedback loops. Viewed in this
light, both cruise control (the human driver is no longer regulating the speed) and ABS
(the driver is no longer adjusting the brakes) have characteristics of autonomy.

Cruise control is basically a throttle control feedback loop, whereas ABS is a brake
control feedback loop. From the pure control viewpoint, the realization of an intelligent
vehicle would require two additional capabilities: the ability to jointly control multiple
loops and the ability to close the third loop, steering. As we mentioned before, more
capabilities of situation analysis and decision making will have to be added at this
point, and the need for additional sensing, especially with respect to the effects of the
environment, becomes important.

14.3.1.1 Preliminary Needs: Drive-by-Wire Vehicles

As mentioned earlier, the control-related requirements of an intelligent vehicle
would involve the ability to close the throttle, brake, and steering feedback loops
through a decision mechanism, presumably implemented on a computer. This implies
that drive-by-wire capability is needed. Electronic throttle control is not a new issue,
and simple changes in cruise control ECDs (electronic control units) can provide full
capability. ABS units are somewhat more self-contained, dedicated units that cannot
readily be turned into full electronic brake controllers. However, the technology is not
particularly remote, and most vehicle companies have gone through the development of
electronic throttle and brake control units. Steer-by-wire, on the other hand, is not
standard. Few cars on the road have full electrical steering, although the technology
does exist in the market.

360 Chapter 14 Intelligent Transportation Systems: Roadway Applications

Collisionregion

~u
Relativeaccelerationcurve- - /,., - I /

///t// -~\~-/
/)I' ;j//

/ /.
/--..... R1--.-. / ~

R2....--./1 t / // / . Constant.velocity

I / / t ~ region
I /

I /:---'R6~

:/ / / / ~ idc

MCRL/ /
/

d

Figure 14.7

erate) the follower at the maximum deceleration (acceleration) rate in Region 2
(Region 5). In Region 3 and Region 6, it is possible to steer the trajectories to the
(ds'O) point through a straight line between the initial point and the goal point.
However, the convergence rate would be smaller than the minimum admissible con­
vergence rate because the slope of the line is less than the slope of the MeRL. So, in
Region 6 (Region 3) we prefer first accelerating (decelerating) the follower toward the
MCRL at its maximum acceleration (deceleration) rate and then sliding the trajec­
tories to the goal point through this line.

In Region 1 and Region 4, the desired velocity can be calculated as follows:

m = tan(a),

~U aM-aL
m=-.=----

d ~u

~u

mdes = d - d '
s

(~U)2
m = mdes => aM = - d _ d + aL,

s

(14.12)

where m is the slope of the trajectory velocity vector, mdes is the desired slope, and aM,
aL are the accelerations of the follower and the leader, respectively.

Equation (14.12) gives the necessary acceleration for the follower that ensures the
exact convergence of the solution trajectory to the goal point on a straight line.
However, it may not always be possible to obtain this acceleration due to the accelera­
tion and jerk limits of the vehicle. The bounds on the acceleration are determined by the

Section 14.3 Intelligent Vehicles 361

physical capacity of the vehicle, whereas jerk limits are mainly determined by riding
comfort.

In the other regions, the above argument also holds except that aM is taken as
amax (amin) in Region 6 and Region 5 (Region 3 and Region 4) instead of using Eq.
(14.12).

14.3.3 Lane Tracking

One of the key goals of an automated vehicle is the ability to perform automatic
steering control. Steering control is a nontrivial design problem. Two of the major
control subproblems associated with lateral control are "lane keeping" and "lane chan­
ging." We discuss lane keeping in this section and lane changing in the following one.

There are various external disturbances (wind gusts, bumps on the road, and
sensor noise) and unmodeled dynamics (due to model simplifications, uncertain para­
meters, and actuator nonlinearities) that affect the closed-loop performance of the
feedback system. Robustness with respect to modeling uncertainties and disturbances,
rider comfort, and safety are crucial design concerns.

Steering control is a fundamental design challenge, and the approaches taken to
obtain a stabilizing robust controller design vary significantly based on the available
set of sensors and the performance of the actuators involved. A measure of the
vehicle's orientation and position with respect to the road must be available to the
controller. Among the most commonly used techniques are vision-based lane marker
detection (preferred by many because of its simplicity in terms of the required
machinery and implementation convenience), radar-based offset signal measurement
(developed and used by OSU researchers exclusively), and the magnetic nail-based
local position sensing (used by PATH researchers). Vision- and radar-based systems
provide an offset signal at a preview distance ahead of the vehicle that contains
relative orientation information. The vision system directly processes the image of
the road and detects lane markers. Therefore, it does not require any modifications to
current highway infrastructures. The radar system requires that an inexpensive passive
frequency selective stripe (FSS) be installed in the middle of the lane, in which case
the radar is capable of providing preview information similar to a vision system. Most
other sensor technologies provide only local orientation and position information. It
has been pointed out that control of vehicles without preview distance measurements
poses a difficult control problem at high speeds. Indeed, the experience of researchers
using look-down-only sensors is that road curvature information must be provided to
the lateral controller, usually by encoding it in the sensor components installed on the
road. Thus we see that sensors are an integral part of the design and that the
performance of the sensor system directly impacts the closed-loop system stability
and performance.

The lane change problem is even more challenging than lane keeping. Unless the
sensor system can provide reliable data to guide the vehicle completely from one lane to
another, a portion of the lane change maneuver needs to be performed "open-loop."
Major problems arise due to the following: (1) sensors are noisy, (2) road curvature and
super-elevation (the road as a surface in 3-D space) are unknown, (3) a sensor blind
transition period requires open-loop control, and (4) robustness with respect to wind
disturbances, unmodeled dynamics, and uncertainties in the system becomes more
important and requires extra consideration.

362 Chapter 14 Intelligent Transportation Systems: Roadway Applications

14.3.3.1 Vehicle Model

It is assumed that the vehicle is operating on a flat surface and that a linearized
bicycle model is capable of describing the motion of a vehicle effectively. The standard
linearizing small-angle assumptions are made for the tire slip angles and the front tire
steering angle. A wind disturbance is modeled that affects the lateral and yaw motions
of the vehicle. The corresponding model is depicted in Figure 14.8. The variables
represent the following physical quantities: u(t), v(t), and r(t) are the longitudinal
velocity, lateral velocity, and yaw rate, respectively, 8(t) is the actual steering angle of
the front tires, 1/!(t) is the yaw angle with respect to the road, Ycg(t) is the deviation of the
vehicle's center of gravity from the lane center, o(t) is the offset signal at the look-ahead
point,fj andf,. are the lateral tire forces on the front and rear tires, respectively, a and b
are the distances from the center of gravity of the vehicle to the front and rear axles,
respectively, lw is the position at which a wind disturbance force of fw laterally affects
the vehicle motion, d is the sensor preview distance, and p(t) is the road curvature at the
look-ahead point. All distance measurements are in meters, and all angles are in
radians.

The vehicle dynamics are represented by the following set of linear system
equations

v(t) = all v(t) + aI2r(t) + bI8(t) + dtfw,

r(t) = a21 v(t) + a22 r(t) + b28(t) + d2fw'

Ycg(t) = v(t) + u1/!(t),

V,(t) = up(t - to) - r(t),

z(t) = u2[p(t) - p(t - to)] - duiJ(t - to)'

o(t) = Ycg(t) + d1fJ(t) + z(t),

Figure 14.8

(14.13)

(14.14)

(14.15)

(14.16)

(14.17)

(14.18)

Look-ahead
point

Section 14.3 Intelligent Vehicles 363

where z(t) is a dummy variable that is necessary to characterize the transient response of
the offset signal precisely. In this context, oCt) is the measured offset from lane center at
the look-ahead point (positive to the left of the lane center), and the vehicle center of
gravity Yeg(t) (also positive to the left of the lane center) is to be regulated to zero for all
possible road curvature reference inputs p(t) (positive for clockwise turns) defining the
desired path to be followed using the front-wheel steering angle <S(t) (positive for clock­
wise turns). The linearized model is valid at the operating longitudinal velocity u (posi­
tive for forward motion), which is assumed to be kept constant by means of a decoupled
longitudinal controller, and for small values of pet). The sensor delay to depends on the
operating velocity and the preview distance d and is given by to = diu. The other
parameters of the vehicle model are determined from

kf+kr akf - bk, kf 1
all = ----, al2 = u+ , bl=--, d l =-,

mu mu m m

ak, - bk, a2k + b2k akf t;f r
a21 = I ' a22 =-

u/z
, b2 = - , d2 = --,

U z t, t,

where kf > 0 and k, > 0 are the lateral tire stiffness coefficients of the front and rear
tires, respectively, m is the (virtual) mass of the vehicle, and I, is the (virtual) moment of
inertia around the center of mass perpendicular to the plane in which the vehicle is
located. The remaining variables are as previously defined.

Typical parameter values approximating those of the OSU vehicles are given in
Table 14.1.

14.3.3.2 A Nonlinear Lane-Keeping Controller

The vehicle model provided in the previous section is fairly generic. Here, on the
other hand, we provide a specific controller (that used by the OSU team during
Demo'97) simply to illustrate the type of nonlinear controller design that may be
needed in an IV application.

The lateral control law that is employed to steer the vehicle, which consists of
multiple terms that are functions of the measured signals, is

TABLE 14.1 Typical Model Parameters for OSU Vehicles

a 1.35 m cg to front axle distance
b 1.37 m cg to rear axle distance
m 1569 kg Total mass of the vehicle
kf 5.96 x 104 N/rad Front tire cornering stiffness
k, 8.66 X 104 N/rad Rear tire cornering stiffness
t, 272.4 Ns/rad Moment of inertia along z-axis
u [1,40]m/s Range of longitudinal velocity
d 8.1 m Preview distance
G 1/19160 Actuator gain
(On 22.94 rad/s Actuator natural frequency

~ 0.517 Damping coefficient
tl 0.03 s Actuator delay

364 Chapter 14 Intelligent Transportation Systems: Roadway Applications

8bu/(t) = Kd . 8(t) + K, · o(t)lo(t)1 + KVJ . Wreset(t)

+ Kr(r(t) - rrej(t)) +x.. sat 0: O(r)dr)

+ Km • Ipl . sign(deadzone(o(t))),

8com(t) = sat (8bu/ (t)),

(14.19)

(14.20)

where°and 8are the Kalman observer estimates of the offset signal and its derivative
and Kd , K; KVJ, K" K, and K; are gains of appropriate dimensions and signs. Wreset(t) is
defined as

'lJreseit) = l r(r)dr, (14.21)

such that Wreset(t) = 0, vi = 0.5k, kEN U{OJ.
Each component of the nonlinear steering signal given in Equation (14.19) has a

particular significance. The derivative of the offset signal helps suppress the other­
wise noticeable limit cycles. The quadratic term generates a large penalty for large
deviations from the lane center. The resetting yaw angle periodically corrects the
orientation of the vehicle and aligns it with the road. The integral term is used to
minimize the tracking error at steady state, and the saturation helps reduce oscilla­
tory behavior during transients. The last term accounts for a sliding-mode-like
switching assist toward the lane center upon necessity. A crossover detection algo­
rithm along with a resettable timer runs continuously. If the vehicle deviates from
the lane center for more than a specified time period and if its peak deviation, p,
exceeds a threshold value, then an additive steering term nudges the vehicle toward
the lane center until a crossover occurs. Under normal operating conditions where
the vehicle is tracking the road center closely, this term has no contribution. During
normal driving, the dominant component in the steering command is the term based
on yaw error (the difference between a reference and the actual yaw rates). The
overall steering command to the steering motor is saturated in order to satisfy safety
requirements.

The parameters used for normal highway driving are shown in Table 14.2. A
different set of parameter values are required for high-performance (high-speed,
large-curvature, winding, or slalom course) driving.

TABLE 14.2 Lateral Controller Parameter Values

Kd 12.00 x, 46.00 KljI -10.00
x, -1200.00 x, 12.00 K m 75.00
Kref 0.03 K~ -25.00 K 2.00
T 0.01 B1 1.00 B2 100.00
P 0.00437 J-t 1.00 y 0.10
u; 1.50 ~l 1.00 ~2 1.00

Section 14.3 Intelligent Vehicles 365

14.3.4 A Lateral Lane Change Controller

In any application-oriented controller design, the reasoning behind the design path
pursued lies in the plant to be controlled and the available sensors and actuators.
Modularity and flexibility are always desirable, but the controller must work on the
system at hand. In this case, the choice of a design procedure was mandated by the fact
that preview sensor information (which is used in our lane-keeping algorithm) cannot
be measured continuously during the transition from one lane to another using either
the vision or the radar reflective sensors. There is a dead-zone period when the preview
sensing systems do not provide useful data. This creates a transition period that must be
handled "open-loop" with respect to lateral position information. Attempts to generate
a true open-loop time series steering angle command profile failed because of wind and
super-elevation disturbances, nonsmooth actuator nonlinearities, unmodeled vehicle­
road interactions, and uncertainties in the (possibly time-varying) plant parameters.
Most of these dynamics and disturbances can be bypassed through yaw rate measure­
ment. Thus for the lane change a vehicle yaw rate controller was designed and used to
implement a desired time series yaw rate profile, which would bring the vehicle to the
center of the next lane and preserve the vehicle's angular alignment with the road.

The lane change problem can be summarized as follows: While maintaining lane
orientation at a longitudinal speed u, the vehicle travels a specified distance (a full lane
width) along the lateral axis with respect to its body orientation within a finite time
period and aligns itself with the adjacent lane at the end of the maneuver such that the
lane-keeping task can be resumed safely and smoothly. The autonomous lane change
problem deals with the generation of the appropriate steering signal to cause the vehicle
to accomplish the above described task without driver assistance. The major design
assumptions are: (1) only the yaw rate r and the steering angle 8 are measured, (2)
vehicle parameters are known within a bounded neighborhood of some nominal values,
and (3) the road curvature does not change significantly during the lane change
maneuver.

Studies have been performed to estimate the ideal lateral jerk, acceleration,velo­
city, and displacement signals that the vehicle's center of gravity should follow to per­
form a lane change maneuver while preserving passenger comfort. However, in practice
the only input to the vehicle is commanded steering angle. Therefore, these results must
ultimately be used to generate steering angle commands. This can be accomplished by
generating a reference yaw rate signal and applying a yaw rate controller to generate
steering angle commands.

14.3.5 Hybrid Systems and Scenario Resolution

We have considered some of the basic, control-related issues that are relevant to an
intelligent vehicle. Depending on what the IV is to do and what intelligence it is to
show, a level of real-time situation-analysis and decision making will have to be imple­
mented next.

There are many different, technical ways of addressing situation-analysis and
decision making. As far as producing an implementable controller is concerned, we
will usually end up with a hybrid system. One approach to modeling the discrete
decision making portion of the hybrid system is to use finite state machines. For
illustration purposes, we will provide a few examples of finite state machine representa-

366 Chapter 14 Intelligent Transportation Systems: Roadway Applications

tions of situations in IV problems. (The reader is warned, however, that these are
contrived examples; the true situation is much more complex.)

We first consider the standard cruise control situation. Assume that there are only
two states, manual and cruise. Transitions can occur, depending on a number of exter­
nal events, as shown in Figure 14.9(a). The states and transitions are associated with a
set of external measurements and imply certain lower level control actions. In the
standard cruise control situation, the external measurements causing state transitions
are somewhat limited, in fact, and hence so are the number of states.

Figure 14.9(b) illustrates an Advanced Cruise Control (ACC) situation. The num­
ber of states has increased, the situations covered have expanded, and a larger sensor
suite is implied. A speed-up state (which could have existed in the standard situation
also) has now been distinctly identified.

The ACC outlined above and in Figure 14.9(b) is a rather simple one. We have not
dwelt on issues like possible delays before speeding up when a car in front of us
disappears, or whether brakes will be used in slowing down, or distinctions in required
deceleration, and so on.

14.4 CONCLUSIONS

14.4.1 Related Problems

In this chapter we have concentrated on a few specificcontrol problems in the ITS
area. The selection was somewhat subjective. Indeed, many other problems would be of
interest to the control engineer. We will briefly mention some of them, although no
claim of completeness is made for this list either.

14.4.1.1 Precision Movement

The evaluation of the concept of fully automated driving has increased interest in
other areas where an automated road vehicle may exercise its capabilities. One area is in
precise automated movement for busses in approaching bus stops, otherwise labeled as
docking. The bus mayor may not be driving autonomously on the roadway. However,
control is switched to automatic as the bus stop is approached, and a precise stop is
achieved. Docking is envisaged for direct wheelchair access to a bus, but the issues are
similar to any such movement by trucks for loading purposes.

14.4.1.2 Coupled Systems

The movement of a convoy of vehicles, especially trucks with multiple trailers,
provides interesting new stability problems. The full 3-D movement of such systems,
with due attention being paid to delayed actuation, generally distributed braking pro­
blems, and so on, still provide fertile ground for control research.

14.4.1.3 Autonomy versus Full Information
Exchange

The problem of autonomy versus full information exchange has control-design­
related implications for both general traffic problems and individual vehicle motion.

Section 14.4 Conclusions

(a)

(b) Brake

367

Car aheadspeedsup
or disappears j, -t

Distanceright,
speedmatched

Slowcar
aheadnoted

(c)

Figure 14.9

368 Chapter 14 Intelligent Transportation Systems: Roadway Applications

There are two aspects to this problem. The first is related to the imposition of an
information exchange structure. In the United States, a National ITS Architecture
has been adopted, which defines the paths of information exchange and the location
of various pieces of real-time traffic and transportation data. Use of such data for
control purposes imposes certain constraints on the system design.

Second, the availability and cost of sensor information also impose constraints on
the system designer.

14.4.1.4 Fault Tolerance/Safety

One of the key issues in present-day ITS research is safety enhancement. As the
intelligent vehicles of the future are being developed, more demands are being placed on
the complex systems controlling both the flow of the traffic and the regulation of each
moving platform.

A number of technologies are presently being pursued for warning devices. Lane
change safety warning, rear collision avoidance, lane departure warning, and weaving
vehicle (sleeping driver) warning devices are all initial steps toward what could become
control systems in the future. The error-free operational requirements for these warning
devices today imply very high safety expectations once the control loops are closed
tomorrow. These concerns will lead to extensive investment in fault-tolerant control in
the ITS area.

14.4.2 And Technology Keeps Marching On ...

Undoubtedly, ITS applications and ITS research in control infrastructure
rely on the choice of technologies available. For example, the automated steering
control design would be different for an IV that uses magnets inserted in the
roadway and utilized as the vehicle passes over them than for an IV that
would look ahead to identify its heading from a roadway-placed, radar reflective
stripe.

Again, if a car has access to information that a stopped vehicle is in the lane ahead,
it would need a decision strategy and a controller that would execute a possible lane
change. (A communication system was demonstrated in Demo'97 where a leading car
provided just such information to following cars.)

Yet another example would be the utilization of GPS and precise road map data­
bases in aiding the movement of a car. A lane departure control system that would
nudge a truck back into the lane would be very different if it were based on a GPS/map
system or a vision system.

Finally, the supply of information to a car, not just for its micro-level movements,
but also for its general decision making, can affect overall traffic patterns. For example,
if information about a full parking lot is supplied to a moviegoer, she may choose to
drive to a theater in a different part of town.

So, as technology changes, develops and becomes cheaper, different options will
become available to the control engineer practicing in the ITS area. In this chapter
we have tried to provide a glimpse of some of the interesting and exciting
possibilities.

References

Related Chapters:

• New developments in air transportation, specifically air traffic management,
are discussed in Chapter 10.

• See Chapter 8 for a tutorial on sliding-mode control.
• Several popular intelligent control techniques are described in Chapter 5.
• More details on hybrid systems are available in Chapter 7.

REFERENCES

369

[1] Concise Encyclopedia of Traffic & Transportation System. New York: Pergamon Press,
pp. 478-483, 1991.

[2] E. J. Davison and U. Ozguner, "Decentralized control of traffic network." IEEE Trans.
System, Man, and Cybernetics, Vol. SMC-13, pp. 476-487, 1983.

[3] D. C. Gazis, "Network modeling and control: Store-and-forward approach." Concise
Encyclopedia of Traffic & Transportation System. New York: Pergamon Press, pp. 278­
284, 1991.

[4] P. E. Sarachik and U. Ozguner, "On decentralized dynamic routing for congested traffic
networks." IEEE Trans. Auto. Control, Vol. AC-27, pp. 1233-1238, 1982.

[5] W. S. Levine and M. Athans, "On the optimal error regulation of a string of moving
vehicles." IEEE Transactions on Automatic Control, Vol. AC-ll, pp. 355-361, 1966.

[6] K. C. Chu, "Decentralized control of high-speed vehicular strings," Trans. Sci., no. 8, pp.
361-383, 1974.

[7] R. E. Fenton and R. J. Mayhan, "Automated highway studies at the Ohio State University."
IEEE Trans. on Vehicular Technology, pp. 100-113,1991.

[8] S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand, W. Zang, D. H.
McMahon, H. Peng, S. Sheikholeslam, and N. McKeown, "Automatic vehicle control
developments in the PATH program. " IEEE Trans. on Vehicular Tech., pp. 114-130,1991.

[9] U. Ozguner, K. A. Unyelioglu, ·C. Hatipoglu, "An analytical study of vehicle steering con­
trol." Proc. IEEE Conference on Control Applications, Albany, NY, pp. 125-130, 1995.

Chapter

15
AUTOMOTIVE POWERTRAIN
CONTROLLER DEVELOPMENT
USING CACSD

K. Butts, J. Cook, C. Davey, J. Friedman, P. Menter,
S. Raman, N. Sivashankar, P. Smith, and S. Toeppe

Editor's Summary

Reducing the cost and time associated with developing and deploying new control systems is a challenge

facing all industries that rely extensively on control technology. The automotive industry furnishes a prime

example, especially for powertrain control development. Computer-aided control system design (CACSD),

a topic discussed in some generality in Chapter 3, provides the enabling tools for meeting this challenge.

(For another example of an important application domain for CACSD, see Chapter lion flight control.)

This chapter discusses in detail the process of developing automotive powertrain controller software.

Powertrain control systems can be highly complex, integrating a number of different subsystems: fuel

injection, throttle control, idle speed control, vehicle speed control, engine torque management, emissions

control, knock detection, electronic transmission control, on-board diagnostics, and numerous others. The

overall design must satisfy constraints and criteria imposed by government (such as fuel economy stan­

dards and emission thresholds), the corporate environment (which may demand support for legacy sys­

tems in addition to cost minimization and rapid time to market), and consumer preferences.

To address the complexity of powertrain controller development, Ford Motor Company employs a

systems engineering process. The emphasis is on validation or verification of products of all intermediate

development stages, on the widespread implementation of feedback mechanisms, and on the continuing

availability of support from engineering analysis and design teams. A requirements-based and CACSD­

enabled development process has been implemented which incorporates requirements capture; architecture

design; control feature design, implementation, and verification; and software validation, verification, and

integration.

The chapter also highlights the role of effective project management in large-scale control system

development. Project management metrics can be integrated within the development process, and in the

case of Ford these helped justify the CACSD project investment. Statistical data demonstrating the

improvement in control software quality due to automation supported by CACSD tools is included.

The authors are all with powertrain control systems groups in Ford Motor Company.

15.1 INTRODUCTION

There are two stages of automotive powertrain controller development. First, the fun­
damental control laws that provide robust powertrain system performance in the pre­
sence of parameter and environmental variation must be developed. This work is
typically the responsibility of powertrain research and advanced engineering activities
and is well documented in the literature. A very incomplete reference list includes [1, 3,
20, 32, 33]. Second, prior to product release, more design detail must be added to the

370

Section 15.1 Introduction 371

fundamental control laws. This design detail ensures seamless integration with the
legacy powertrain control systems, reuse across powertrain product families, and
well-defined start-up, shutdown, and diagnostics behavior. The detailed design augmen­
tation and its corresponding software realization are the domain of the production
powertrain controller development organization. In this chapter we describe how com­
puter-aided control system design (CACSD) tools can be used to support the large-scale
automotive powertrain controller software development organization.

15.1.1 The Role of the Powertrain Control System

The challenge for any business that wants to be competitive in a global market­
place is to rapidly and efficiently develop innovative products that meet the needs of
worldwide customers. In the automotive industry, customers demand high-value, reli­
able personal mobility encompassing a wide spectrum of use and lifestyle. These cus­
tomer requirements must be achieved without neglecting society's imperatives
manifested by government regulations on emissions, fuel economy, and safety. To
the designer of automotive powertrain control systems, these needs translate into sys­
tem constraints and performance requirements that must be met quickly and at mini­
mum cost for a multitude of powertrain options and vehicles.

It is an important requirement that safe and reliable performance be maintained
over a wide range of environments and operating conditions for the life of the vehicle,
often many more than 100,000 miles. Certainly, the vehicle must provide good fuel
economy, not only to satisfy the customer's desire for low operating costs but, in the
United States, to meet legislated Corporate Average Fuel Economy (CAFE) standards.
By far the most conspicuous system requirements are the regulations governing exhaust
emissions. Beginning in 1999, U.S. federal standards are attempting to reduce ozone
formation by regulating nonmethane organic gas emissions. (NMOGs are total hydro­
carbons, less methane, plus aldehydes, keytones, alcohols, and ethers.) These standards
define three categories of passenger cars and light duty trucks. Those with the lowest
emissions are called Ultra Low Emission Vehicles, or ULEVs. These vehicles have
requirements of 0.04 grams/mile NMOG, 1.7 grams/mile carbon monoxide, and 0.2
grams/mile oxides of nitrogen, all after 50,000 miles of use. In California, regulations
have been proposed that will sharply reduce even ULEV standards. Worldwide, new
regulations are anticipated that will enforce emission reductions in every market. In
addition, legislated on-board diagnostics (OBD) require the embedded powertrain con­
troller to monitor all emission-related subsystems, inform the driver of a subsystem
malfunction by illuminating an indicator on the instrument panel, and store a descrip­
tive code in the on-board computer memory to be cleared when the vehicle is repaired.

Developing and implementing a management system to achieve these objectives is
a complex and multifaceted task. The modern automobile powertrain consists of many
interacting subsystems that must be coordinated to achieve the required system perfor­
mance. Naturally, technology improvements that reduce emissions often increase sys­
tem complexity by adding new subsystems with additional sensors and actuators.
Invariably, transient system performance is crucial, and robustness with respect to
parameter variations caused by age and environment is mandatory. Finally, controllers
and estimators must be designed to minimize in-situ calibration to speed up product
development, and the embedded control software must be reusable across different
vehicle powertrains.

372 Chapter 15 Automotive Powertrain Controller Development Using CACSD

Powertrain control systems vary widely in scope. The low-end systems consist of
simple port injected four-cylinder engine controllers with integrated idle speed control,
spark timing control, and manifold pressure-based air estimation. The high-end systems
integrate port or direct fuel injection systems for up to 10 cylinders, with exhaust gas
oxygen sensors before and after catalytic converters. Electronic throttle control sub­
systems may be employed with integrated idle speed control, vehicle speed control, and
engine torque management. Exhaust gas recirculation, evaporative emissions controls,
electronic ignition systems, knock detection and control systems, electronically con­
trolled returnless fuel delivery systems, and engine auxiliary controls (e.g., air condi­
tioning, alternator) are also common. Electronic transmission controls, including
pressure control, torque converter slip controls, and shift controls for up to six speeds,
are fully integrated with the aforementioned engine control subsystems. In addition, the
on-board diagnostics requirements can increase the complexity by as much as 100%
because every input and output to the control system must be continuously verified for
proper operation.

15.1.2 The Powertrain Controller Development
Organization

The organizational structure to develop powertrain control systems can take on
many different implementations. However, the following tasks are common to each.

• System specification

• Hardware specification

• Hardware design

• Software specification

• Software design
• System integration and calibration

System specification refers to the task of converting the many governmental regulations
and customer requirements into a first-level decomposition of the overall control sys­
tem. This task may include choosing general control system sensor and actuator com­
binations that meet cost, weight, functional, and other targets. The production
development group typically limits itself to choices that have been proven ready for
implementation by an advanced engineering activity. From the system specification,
detailed hardware and software specifications can be developed through the cascading
of system or subsystem requirements. On the software side, CACSD-based processes
and tools can be employed to develop and realize these specifications. Once the realized
software has been verified, it is calibrated, or tuned, for the specific vehicle in which it
will be used.

Organizational structures that support this range of activities for a major auto­
motive manufacturer or supplier of control systems are typically complex and distrib­
uted geographically. The organizations can focus on projects or control features (e.g.,
idle speed control, fuel control, ignition timing control). Project-focused organizations
tend to provide good customer support at the expense of customized solutions to
generic problems. On the other hand, organizations that focus on control features try

Section 15.2 The Systems Engineering Process 373

to optimize resource requirements and provide generic solutions for all supported
vehicle applications.

Given a control feature-focused organization, care must be taken to partition the
overall control system into chunks that can be maintained effectively. Chunks chosen
too small result in excessive interfaces between control features. Chunks chosen too
large or coarsely can result in low productivity due to individual workload constraints
and unstructured control/software solutions within the chunk. We have chosen to
partition a high-end control system into about 100 control features. Some engineers
will maintain only one large feature (e.g., ignition timing), whereas others may maintain
10 or 15 smaller features (e.g., input processing features).

Our organizational structure mirrors the chosen control system architecture. We
combine individual control feature engineers into subgroups for administrative as well
as functional reasons. These subgroups are organized, for example, to collect all the
fueling-related features together. It is imperative that those individuals responsible for
design and maintenance of the core control features also be responsible for the related
on-board diagnostic features. In addition, design experience has shown that isolating
the specific input/output devices, microcontrollers, and operating systems from the core
control features is beneficial. For example, the fuel control features should not have
specific knowledge of or be dependent on the air measurement technology. Instead, the
fuel features are designed with a standard interface to the air measurement system so
that the fuel system features can be developed in parallel with the air measurement
feature. This feature architecture management facilitates reuse across powertrain appli­
cations, even when implementation technologies differ.

The production groups responsible for control system implementation focus pri­
marily on maintenance of the existing system. That is, new work must conform to
legacy software application architectures and implementations. This seemingly rigid
constraint is driven by vehicle development program demands for quality, productiv­
ity, and timing. In particular, today's automakers strive to complete vehicle programs
in 24 months or less. This goal leaves very little time for redesign of system archi­
tectures or new feature development. In fact, in this organizational model, a strong
advanced engineering activity is required for new and complex control structures. The
advanced engineering organization employs rapid prototyping techniques such as
automatic code generation in conjunction with high-powered development platforms
to develop and bookshelf new technologies [14]. These groups must be able to transfer
their technology, with minimal or no rework, into the production development
machinery.

15.2 THE SYSTEMS ENGINEERING PROCESS

We have found the IEEE Trial-Use Standard for Application and Management of the
Systems Engineering Process [18] to be instructive and helpful. In the standard's termi­
nology, our subject matter, automotive powertrain controller software, would most
likely be classified as a subassembly of the powertrain-control-module component.
Thus powertrain controller software development is far down the systems engineering
process hierarchy. Even so, the engineering effort and software behavioral complexities
warrant a carefully considered development process that emphasizes requirements vali­
dation and synthesis verification. Consider the abstract systems engineering process

Section 15.2 The Systems Engineering Process 375

ensuring that the control software design meets the system's needs. We compensate for
this additional engineering effort with efficient software synthesis, automated software
verification, and reduced rework. The new requirements-based CACSD development
process is described below.

Software Requirements Capture: The process of capturing and documenting the
software requirements. These must be testable, and they form the foundation of the
Functional Validation test scenarios. They should be linked to higher-level system/
subsystem requirements and lower-level Software Application Architecture and
Control Feature Design components.

Software Application Architecture Design: The process of allocating software
requirements to control feature design components. The architect strives to reuse legacy
control feature components whenever possible. New components and their interfaces to
the legacy architecture are defined when necessary. Most aspects of algorithm schedul­
ing are accomplished during this stage.

Control Feature Design and Validation: The act of transforming allocated require­
ments into an executable Control Feature specification model that 'details each and
every expected behavior of the production software. The output of this step is a
detailed, executable, and structured model. Once the algorithm model is prepared,
exhaustive simulations should be used to validate the model against the requirements.
These test scenarios must be structured in a way that allows for reuse during Control
Feature Functional Verification. When this stage is executed by an advanced engineer­
ing activity, rapid-prototyping is used to validate the fundamental control law for
robustness to plant uncertainty and environmental variation.

Software Application Validation: The compilation and analysis of the complete
system model to validate system behavior. Executed after detailed control feature
design and prior to committing software development resources, this analysis ensures
that the integrated control application meets system-level requirements. The test sce­
narios developed in this stage are reused in the Software Application Structural
Verification and Software Application Functional Verification stages.

Control Feature Software Design: The elaboration of the control feature specifica­
tion model with software engineering design detail. Additional information such as
signal data-typing for target microcontroller implementation, function partitioning,
and file allocation is included. Software engineering design metrics, such as fan-in,
fan-out, complexity, and cohesion, are generally used to assess the design.

Control Feature Software Implementation: The conversion of the elaborated con­
trol feature specification model to production code. Local coding practices guide the
software engineer in this conversion. There is an opportunity to automate this step,
which should reduce development time and dramatically improve initial software qual­
ity.

Control Feature Structural Verification: The comparison of control feature speci­
fication model components and software code component behaviors. These non-real­
time, host-based simulation tests verify compliance between code and algorithm model
at the lowest levels.We strive for 100% statement and branch coverage of the algorithm
model. Automation plays a large role in test suite preparation and execution.

376 Chapter 15 Automotive Powertrain Controller Development Using CACSD

Control Feature Functional Verification: The behavioral evaluation of a control
feature software realization or a collection of control feature software realizations. The
specification model behavior is captured via non-real-time, host-based simulation. The
models are then replaced by the equivalent production code, subjected to the same test
scenarios, and simulated. Simulation results from the two systems are compared to
ensure all monitored signals in the code and the model agree. The test scenarios are
reused from the earlier Control Feature Design and Validation stage. This testing, by
association, verifies that the code meets the stated requirements.

Software Application Structural Verification: The comparison of application
assemblies of the control feature specification models and the corresponding software
realizations according to the software application architecture definitions. Data-flow
and control-flow analysis techniques are employed to ensure that the application code
behavior is consistent with the application model behavior. Particular emphasis is
placed on inter-control-feature connectivity, signal latencies, and execution order.

Software Application Functional Verification: The evaluation of application soft­
ware realizations against software system functional requirements via realistic drive
scenario testing. Test scenarios defined in the Software Application Validation stage
are reused in this non-real-time, host-based simulation. Once again, the model and code
behaviors are compared for consistency.

Software/Module Integration Verification: The assembly of the application soft­
ware with a target microcontroller module in a hardware-in-the-loop system. In this
system, the powertrain and vehicle dynamics are simulated in real-time, and the sensor/
actuator electrical signatures are emulated. Thus the target microcontroller module is
stimulated as if installed in the target vehicle application. The realistic drive scenarios
are rerun in this environment to ensure there are no detrimental results due to real-time
software performance, low-level driver interactions, or target microcontroller compiler
issues.

15.3 COMPUTER-AIDED CONTROL SYSTEM
DESIGN FOR POWERTRAIN CONTROLLER
DEVELOPMENT

We rely on CACSD tools to meet the quality and efficiency objectives of the process
outlined in the previous section. Advanced development groups within the automotive
industry have leveraged these tools for several years [13, 16, 21, 23, 32, 35]. Our more
recent challenge was to show that the tools could be used for detailed software speci­
fication in a large-scale production environment. Toward this end, we have formulated
tool requirements for the automotive powertrain controller development community [7,
8, 34]. Briefly, these requirements include the following:

• A commercially supported and seamless environment for information transfer
between the various stages of powertrain controller development.

• An environment for performing dynamic systems analysis and controller
synthesis.

Section 15.3 Computer-Aided Control System Design for Powertrain Controller Development 377

• An environment for modeling and simulating hybrid (mixed continuous and
discrete-state) dynamic systems [9].

• An environment for modeling detailed-software-behavioral specifications within
a real-time-structured-analysis methodology [17].

• An environment for performing controller validation and verification via rapid­
controller-prototyping and hardware-in-the-loop experimentation.

• An environment for automated document and report generation.

• An open environment with documented interfaces to model data and tool
features.

We expand on these requirements and their application to the powertrain controller
development process in the remainder of this section.

15.3.1 Software Requirements Capture

Functional and nonfunctional requirements need to be determined for each of the
identified features; this is the first step of the CACSD process. Individual requirements
should exhibit the qualities outlined succinctly in [22]. Requirements thus are feature
capabilities that are necessary, concise, implementation free, consistent, unambiguous,
and verifiable.

The software functional requirements include those that are necessary for normal
and safe operation of the vehicle, as well as requirements pertaining to mandated
diagnostic information storage and visibility. The functional requirements address per­
formance attributes such as steady-state and dynamic response trajectories, rise and
settling times, and allowable error budgets based on the subsystem and sensor/actuator
budgets. In addition, design constraints (e.g., integration with legacy software archi­
tecture) that the system must satisfy are also captured. Requirements are the essential
building blocks in the development of a model-based software validation methodology.

Over time the intent is to generate a complete set of requirements. Many require­
ments will be "reverse-engineered" from the current control systems implementations.
A requirements capture template, which includes the rationale and the validation pro­
cedure, is used by the control feature development teams to document feature require­
ments. The requirements specify the necessary behavior at start-up, shutdown, and
during normal, aged, or degraded operating conditions of the plant, sensors, and
actuators. The requirements document is reviewed by a team of experienced engineers
for content and rationale.

The generation, refinement, and tracking of requirements can be accomplished
using commercial requirements management tools. In the future, these tools will be
used to link software requirements to the higher-level system requirements and to
provide links to the relevant control feature specification model objects (e.g., data
elements, model components, and test procedures). Thus it will be possible to trace
(in both directions) the requirements cascade to the design level. The same capability
will be available for managing validation and verification procedures.

15.3.2 Software Application Architecture Design

Software design determines the proper software architecture, module organization,
multitask scheduling, software packaging, and detailed design specification. It is impor­
tant to select or establish a methodology that supports the unique organizational and

378 Chapter 15 Automotive Powertrain Controller Development Using CACSD

business issues and then to consistently apply the methodology. Two of the most
popular design methodologies include structured methods and object-oriented meth­
ods. Structured methods [17, 36] are commonly used for embedded control systems.
Newer object-oriented methods [5] have been successfully applied in some application
domains but are less common in embedded control systems. We discuss architecture,
module organization, and multi task scheduling in the remainder of this section.
Software packaging and detailed design are discussed subsequently.

Software architecture provides the overall structure and organization for a soft­
ware design. For embedded control systems, the architecture needs to permit numerous
control algorithms to be combined and scheduled. The architecture also addresses how
the algorithms, utilities, communication interfaces, input and output processing, and
other necessary support software are integrated using uniform approaches. Finally, the
architecture needs to be structured to support expansion, maintenance, and micropro­
cessor retargeting. Because of its pervasive nature, the architecture should be consistent
with all phases of powertrain-controller software development.

Module organization defines how a system is decomposed into major functional
partitions. Well-selected functional partitions permit the system to be efficiently imple­
mented, maintained, and extended. There are several approaches to determining the
proper functional partitioning. The best approach is to be aware of each of the potential
modularization criteria, establish tradeoffs to be made, and then apply the techniques
that best fit the project's overall needs. Some projects may be resource constrained and
cannot afford the overhead of extensive data hiding. Other projects may require sig­
nificant integration of numerous modules that need well-defined and rigorously
enforced interfaces.

Multitask scheduling is crucial to establishing the proper algorithm concurrency,
execution timing, and interactions. Reactive control systems are particularly sensitive to
problems associated with scheduling. The first step is to determine the concurrent
threads of execution within an application. A concurrent thread is any calculation
sequence with an established output that needs to occur in response to a controller
stimulus. All of the processing steps between the start point and the final output are
part of the thread. Once all the threads of execution have been established, it is neces­
sary to assign them to specific tasks. Generally, an efficient approach is to combine
several threads of similar temporal characteristics within the same task. It is necessary
to determine the optimal relative ordering of threads within the task. This analysis
is based primarily on data-flow dependencies and data latency requirements.
Synchronization between tasks needs to be developed when algorithms running in
different tasks require data sharing or coordination. Resource-sharing approaches
need to be carefully designed to avoid deadlocks.

More traditional approaches to software engineering would require that the algo­
rithm requirements be specified independently of the implementation. Once the algo­
rithms are specified, a separate software design step would organize the algorithm
specification into a design specification. However, our organizational and business
requirements admit a more optimized approach. Our organization's primary work
task is maintenance of the control algorithms and software for numerous powertrain
applications. Completely new feature development is a secondary activity. Given this
work structure, it is not necessary to redesign the architecture, module partitioning, or
task scheduling each time a revision is needed. It is therefore advantageous to use a
fixed architecture, module partitioning, and task schedule. Only when a significant

Section 15.3 Computer-Aided Control System Design for Powertrain Controller Development 379

number of changes are made is it necessary to consider changes to these designs. The
CACSD process described in this chapter combines the algorithm requirements defini­
tion (Control Feature Design) and the software design (Software Application
Architecture Design) into a single specification. The combined approach permits a
single CACSD model to be used throughout the development process.

Module partitioning is strongly enforced by the concept of the control feature. The
control feature is a stand-alone module that delivers some algorithmic service to the
overall powertrain controller application. Many features can be combined and mixed
together based on the standard architecture. CACSD diagrams are used to capture the
entire feature specification. Each feature is broken down into execution context hier­
archies. The execution context hierarchies are concurrent threads of execution, which
serve as the fundamental components of task scheduling. The resulting control feature
design model has a strong behavioral correlation with the software realization because
the algorithm requirements and software design are combined into a single specification
model. This is useful for debugging, verification, and validation efforts. However, it
does require that the specification engineer take into account some basic software
engineering concepts; otherwise subsequent steps will suffer from poor software design.

15.3.3 Control Feature Design and Validation

Based on the software system-level requirements and architecture analysis, require­
ments for the individual control features are identified. The goal of the control feature
design process is to meet each of these requirements. This goal can be achieved by
designing a new algorithm or by updating and modifying an existing design to meet the
new requirements. This step of the design process constitutes the core element of the
entire process since the control algorithms that get into the final production software
are designed, analyzed, and validated in this step.

The control algorithm is modeled in CACSD tools such as the MathWorks,1 tool
suite. These design tools help not only in visualizing a design concept but also in
validating the design requirements through simulation and analysis. Several structured
design approaches are discussed in the literature. It is important to adopt one of these
approaches to have a systematic, efficient, and unambiguous design process. Our
approach is based loosely on the Hatley-Pirbhai [17] design method. Data-flow is
modeled in Simulink'", while the control-flow is modeled in Stateflow™. The intent
of these models is to specify the production software behavior. The feature interface is
clearly defined with unique signal names that are managed through an organization­
wide data dictionary. Signal labels used in the production software will match those
defined in the algorithm models.

The control system designer can use a top-down or a bottom-up approach (or a
combination of the two) to model the control algorithm. As described previously, the
fundamental algorithm has already been designed at an advanced engineering organi­
zation. At this process step, this fundamental algorithm is refined to make it more
robust; to ensure integration with other control features within the application; and
to satisfy all regulatory requirements. It is a good design practice to validate each sub­
component of the control feature before integration. After the model for the algorithm

1 Matlab and Simulink are registered trademarks, and Stateflowis a trademark ofThe MathWorks, Inc.

380 Chapter 15 Automotive Powertrain Controller Development Using CACSD

is developed, the scheduling constraints are derived from the control system require­
ments. These constraints, together with real-time software architecture constraints, will
ultimately dictate scheduling for the different pieces of the control feature.

After the controller is designed (and implemented as a model), it is validated in
a non-real-time simulation environment. The validation tests are designed to check
each requirement for the control feature. Some of the validation tests are done
using plant models with feedback from the control feature under test. Since numer­
ous subsystems need to be validated using non-real-time simulation, plant models
that are appropriate for each control feature need to be developed, implemented,
and maintained. Most of the plant model components are common to all of the
subsystems, while only a few models must be customized. Hence it is very inefficient
to develop and maintain individual custom plant models to meet the validation
requirements for each control feature. Instead, if a large-scale flexible modeling
environment is developed, then each of the control designers can "plug-in" appro­
priate component models into this common environment for their individual valida­
tion studies. A successful implementation of such a flexible environment is very
resource intensive and has a steep learning curve. However, creating this flexible
environment can have productivity returns through improved model reuse and
reduced maintenance requirements.

A control-oriented powertrain plant model has been implemented in such a flex­
ible, multi-user modeling framework in Matlab'P, Simulink'", and Stateflow': to sup­
port the control feature validation process. This plant model captures the essential
dynamics required to test control algorithms at the feature design step. This multilevel
powertrain model consists of interconnected component models that are linked to
elements in component libraries. The use of model libraries not only facilitates sharing
of models between two designers but also gives the user a number of model choices (if
they exist) for a single component. In the flexible modeling environment, a control
designer may choose to "plug-in" a simple model of a component during the early
stages of the design process and later "plug-in" a detailed model of the component (in
place of the simple model) as the design matures. The development and management of
plant model libraries and plant model architecture is undertaken by a select group of
plant modelers. These plant modelers help control designers configure the appropriate
instantiation of the plant model to meet their validation and analysis needs. Much of
the flexible modeling environment, system, and component models are reused in other
downstream process steps such as Control Feature Functional Verification and
Software Application Functional Verification.

The functional validation of a specific control feature requires not only the plant
models but also models of other control features with which it interacts. When neces­
sary, it is possible to use the full detailed models of these other features for validation.
However, the use of simplified idealized representations is often warranted to facilitate
analysis. The control designers use large-scale plant models with feedback from the
primary control feature (under test) and supporting control features to carry out the
validation tests. The simulation configuration for such a test is shown in Figure 15.2. To
partially automate this process, validation blocks are also designed in some instances to
depict the expected behaviors of system variables. The specific instantiation of the
model architecture (i.e., the library links), the system initial conditions, and the system
inputs describe the different validation tests. These tests are captured in an executable
script so that they can be used in a regression-testing environment for subsequent

382 Chapter 15 Automotive Powertrain Controller Development Using CACSD

modifications are made to an existing design. The designer has a validated model of the
control feature that meets all the functional requirements at the end of this process step.
This control feature model can now serve as the control feature specification and is
provided to the software design engineers and application system engineers.

15.3.4 Software Application Validation

Two significant functions are performed in this validation stage. First, all of the
control feature specification models are integrated into an application-level executable
model. This model includes an abstract model of the scheduling and tasking definitions
established in the Software Application Architecture Design stage. The validation engi­
neer must integrate any new control feature execution contexts (threads) into the task­
ing definitions. In addition, all control feature and software architecture interface
connections are checked for consistency.

Functional validation, from the software system perspective, commences when this
consistent and complete application model is available. The validation engineer stimu­
lates the application model with standard operational scenarios to ensure that the
control features and software application architecture are functionally well integrated.
The engineer analyzes the simulation results and establishes acceptance criteria (objec­
tive and subjective) for downstream software structural and functional verification.

One standard operating scenario is the Key On Engine Off (KOEO) mode, during
which the controller initializes itself and checks for functional capability. Another test
scenario injects sensor and actuator faults to validate the application model's on-board
diagnostic and failure-mode effects behaviors. The validation tests are executed in non­
real-time in the large-scale model environment.

Special application management tools automatically combine (place and intercon­
nect) control feature models into a complete application model. The tools are fully
integrated into the CACSD tool suite and incorporate extensive structural analysis
and other design aids. A scheduling analysis tool that aids in preparation of the tasking
definitions is one example. In the future, computing resource estimation and automated
measurement technologies will be used to further enhance the software architecture
validation effort.

15.3.5 Control Feature Software Design

Detailed software design specification provides all of the extra information
required for implementation. Special cases associated with a particular microprocessor
target implementation need to be identified and addressed. Precise definition of all
algorithmic details must be refined to address all possible operating conditions and
default cases.

Software packaging is a lower-level extension of modularization and is concerned
with how specific functions are defined within a broader defined module. Software
packaging involves establishing functions, function prototypes, file organization, data
organization, and data scoping.

Recall that the Simulink'f and Stateflow™ diagrams serve as the detailed design
specification in our CACSD development process. Details of variable names, data
definitions, data scoping, state-machine behavior, execution rates, and order of execu­
tion have been fully specified in the Software Application Architecture Design and
Control Feature Design and Validation steps. The structure and detail of the diagrams

Section 15.3 Computer-Aided Control System Design for Powertrain Controller Development 383

remain unchanged for all subsequent software development stages. However, it is pos­
sible to add target specific implementation information at a hidden model layer. Thus
the base specification can be reused for multiple implementations.

Future tool development efforts will permit structure chart representations of the
"as wired" design to be generated. Metrics associated with the structure chart organi­
zation will permit the user to determine if the "as wired" design is adequate for long­
term maintenance [36].

15.3.6 Control Feature Software Implementation

Software implementation is the translation of the detailed design specification into
the target language. A straightforward translation will simplify testing and debugging;
however, optimization may be necessary for resource constrained applications.
Traditional approaches suggest that optimization should be deferred until translation
is completed and tested. However, if the application domain has known resource con­
straints and certain design constructs occur frequently, it may be more practical to
directly apply the optimized implementation approach. The key is to use standard
optimization approaches that are documented and understood by all software engineers
associated with the development effort.

The software implementation should be true to the detailed design, and packaging
specifications such as function partitions and data encapsulation should be followed.
There should not be any modifications to the algorithm's functional intent during the
software implementation phase. A software implementation should also follow a cod­
ing standard that defines a style and set of rules for implementation. A standard style is
important for reliability, understandability, readability, and maintenance. Specific rules
are necessary to satisfy safety issues or other mandated coding requirements. These
rules may also address optimization issues.

The CACSD process for software implementation focuses on a coding standard
that ensures a safe implementation that is maintainable and efficient. The software
coder currently determines function partitioning, function prototypes, and file organi­
zation. The core software engineering design activities have occurred primarily during
the specification and detailed design stages, so variable names, data types, data scoping,
and module partitioning are all predetermined and not subject to change. However,
documented methods to address code efficiency are available to the software coder.
Code quality is augmented by the use of automated coding standard checking utilities
and code inspections.

In the future, software will be provided by automatic code generators. The
Simulink'f and Stateflow" diagrams will be developed using the current practices.
However, packaging and detailed design information will be added to the hidden model
layers prior to code generation. Once all of the information is present, the code gen­
erator will produce efficient, function-level code. The automatically generated functions
will be integrated per the architecture defined during the Software Application
Architecture Design and Control Feature Software Design steps.

15.3.7 Control Feature Structural Verification

Control feature structural verification involves unit and integration testing of con­
trol feature components. Unit testing is conducted on small components that typically
correspond to a single function. Integration testing is conducted on several small com-

384 Chapter 15 Automotive Powertrain Controller Development Using CACSD

ponents that have been integrated. Integration testing takes place after successful com­
pletion of unit testing.

Unit testing determines if all aspects of the code implementation produce correct
results. The most common form of unit testing ensures that all statements and possibly
all branches have been tested (covered) [2]. However, this form of testing does not
always ensure that all operating conditions have been fully tested. Therefore, additional
rigor is needed to ensure the domain coverage of predicate equations and the operating
regions of the algorithm equations. It is impossible to achieve complete unit testing
coverage because there are many different aspects to address. A practical solution is to
select a level of coverage that is adequate for organizational needs and the budget.

Integration testing is designed to test whether the integration of several compo­
nents provides the desired functionality. Since the components have already passed unit
testing, it is not necessary to reestablish all paths of operations. However, it is necessary
to test all of the interfaces between the components. It is necessary to verify that state­
machine transition sequences, task schedules, and execution thread sequences are cor­
rectly implemented.

The CACSD process for unit testing uses automatically generated test harnesses
within the Simulink'f environment. Random numbers are generated and passed to both
the model and the software implementation. The results are compared and differences
noted as failures. Each failure is investigated and resolved. The random numbers are
constrained within the operating ranges of the input variables. Discrete and enumerated
variables use discrete random numbers. This random number approach results in
approximately 75% statement and branch coverage. Manual methods are applied
when more rigorous coverage levels are needed. Currently, the CACSD process for
integration testing is based on tests conducted at the bench level, dynamometer cell, or
in the vehicle. A series of experiments conducted by several engineers provides the
necessary level of integration coverage.

Future unit testing will be fully automated wherein the test vectors will be deter­
mined by the structural characteristics of the model. Modified condition/decision cover­
age (MC/DC) will be achieved [10]. MC/DC coverage ensures that all predicate
equation variables can independently alter the outcome of the decision. Most deci­
sion-related errors can be detected with MC/DC coverage. Tests to stress the predicate
and algorithmic equations will also be generated. Additional tests will be generated to
verify lookup table, fixed-point math, loop, state-machine, and feedback loop imple­
mentations.

Future integration testing will utilize the structural characteristics of the model to
generate the test vectors. The vectors will focus on data-flow relationships associated
with equations and interfaces. Test vectors will also be generated to test state-machine
traversal and to establish initial operating states for simulation and analysis.
Additional test vectors will be generated to verify the relative order of execution is
as expected.

15.3.8 Control Feature Functional Verification

The goal of control feature functional verification is to verify that the software
implementation of a control feature meets its design intent. Recall that the control
feature models were functionally validated using closed-loop non-real-time simulation
in the Feature Design and Validation step (see Figure 15.2). This Control Feature

Section 15.3 Computer-Aided Control System Design for Powertrain Controller Development 385

Functional Verification step is very similar, with the exception that production code
replaces the model as the controller in the feedback.

The various test scenarios and results from the design and validation step are
reused in this software verification step. The executable test script file that was gener­
ated during the design step is executed, and the results are compared against the design
validation results. Any discrepancy is attributed to software implementation of the
control algorithm. If specific functional requirements are associated with the software
implementation, additional tests are designed and added to the validation test script.
The software engineer verifies the results of these tests.

Coding standards have to be adopted so that engineers can "Plug and Test" the
controller code in the design validation simulation model. These standards include
retaining the sequence of input and output variables from the control feature model,
as well as the declaration and usage of global variables and shared calibration
parameters. No major structural issues are anticipated at this step because the
code has already passed the structural verification step. The CACSD tool needs
to be flexible enough to support easy integration of code into the modeling and
simulation environment. Automatic procedures using Matlab'" script files have been
used to embed the production code into a C-MEX S-function block that is placed in
the control feature model library. The substitution of the controller model with
the code is a simple task of changing a link in the large-scale flexible modeling
environment.

Once again, the debugging of any undesirable control system performance is chal­
lenging. Although problems can be attributed to the software implementation, the
resolution requires interaction between algorithm designer, software designer, software
implementer, and the tester. At the end of this step, a functionally verified code realiza­
tion of the control feature is available. The system application integrator can now use
this code. The verification results and the test scenarios are again saved for downstream
process usage.

15.3.9 Software Application Structural Verification

Software application structural verification involves integration testing of a com­
plete application or system. A complete application or system is made up of all algo­
rithms, tasks, input/output drivers, support utilities, and the real-time operating system.
Structural testing focuses on verifying that the model behavior and software behavior
match under a variety of test cases derived from the modeled system structure. The test
vectors focus on verifying end-to-end data-flow, scheduling order, and system states
and modes traversal. Structural testing complements functional testing because func­
tional verification mainly tests the primary operational scenarios of the system.
However, functional testing may not cover all data-flow paths or scheduling sequences.
It is therefore necessary to fill in the gaps with additional structural tests.

End-to-end data-flow testing is intended to verify that all data-flow sources are
properly implemented. In some cases, it is possible for a particular output to be calcu­
lated by a number of different equations depending on the system modes and states.
End-to-end data-flow testing ensures that each possible equation (or data flow path) is
exercised. Care must be taken to ensure that correct system modes are established to
permit the equation to be activated. This approach permits a very rigorous checkout of
each of the many possible equations. Various coverage metrics are possible. As with

386 Chapter 15 Automotive Powertrain Controller Development Using CACSD

control-flow coverage, it is necessary to determine the level of coverage that is adequate
for organizational needs and the budget.

Schedule order testing is intended to verify that the relative order of execution
within each task and the temporal characteristics of all of the tasks are correctly
implemented. External measurement equipment is necessary to perform these timing
measurements. Depending on the microprocessor technology, it may be necessary to
instrument key software in order to obtain visibility. Task timing can be determined by
measuring the time between variable updates or discrete output updates. Relative
ordering within a task can be directly measured or accomplished with unique tag out­
puts. Technology is commercially available that will aid in automating these measure­
ments.

System states and modes testing is intended to verify that the primary system states
and modes are properly implemented. These states and modes are identified, and test
vectors are established to exercise all of the transitions.

Currently, the CACSD process does not directly address software system struc­
tural verification. However, as with the Control Feature Structural Verification, the
process accomplishes each desired test scenario via tests conducted by several engineers.
Future structural system testing will be highly automated. Analysis of the model struc­
ture will permit test vectors to be established for end-to-end testing, scheduling order
testing, and state-machine traversal. Technology under evaluation will permit auto­
matic measurement of task schedule performance and relative order of execution on
the target processor.

15.3.10 Software Application Functional
Verification

This section is concerned with verifying the functional behavior of the integrated
control features. Although the previous section concentrated on "plugging" the sub­
systems together, this section discusses verifying that the subsystems can "play"
together.

Functional verification is accomplished through regression testing in which the
code is substituted for the model in the simulation environment, and the functional
tests run on the algorithm model are repeated. The results are compared to the results
from the model validation tests. This stage of testing can be largely automated and run
in the non-real-time host environment. It is important to note that the goal of system
verification is not to repeat subsystem testing on the entire system but to test functional
dependences and system level requirements.

15.3.11 Software/Module Integration Verification

The controller hardware and algorithms are developed in parallel and are inte­
grated at this final stage. Often, systems-level testing is accomplished through the use of
open-loop testers and prototype vehicles. Open-loop testers have limited capabilities
since feedback loops are not simulated. Prototype vehicles are expensive and difficult
environments to achieve repeatable test scenarios. A closed-loop tester (i.e., "virtual
vehicle") can be created through use of hardware-in-the-loop (HIL) technology; this
provides a cost-effective laboratory environment for integration verification and sub­
system validation.

Section 15.3 Computer-Aided Control System Design for Powertrain Controller Development 387

Different HIL configurations have been described in the literature [26], based on
the "hardware" that is in the loop. In this classification, the microcontroller module
and software are the components in the loop, while the plant dynamics and sensor/
actuator behaviors are simulated on the computational platform. Both phenomenolo­
gical and system identification formulations of the models are used. The lumped for­
mulations of conservation of mass, momentum, and energy typically are sufficient,
resulting in the phenomena being expressed either as ordinary differential equations
or algebraic expressions. In the system identification type of models, the input and
output signals are measured, and the model is adapted to process behavior by mini­
mization of the errors between the model and process [19].

The other components of the system are the standard and custom interface cards
that allow the controller to exchange information with the "virtual vehicle" and the
interface through which the user interacts with the HIL system. The details will be
described in [29]. "Test scenarios" generated earlier in the CACSD process are reused
in an automated fashion to exercise the controller software. This step identifies any
"regression" of the software behavior from the algorithm behavior after it has been
embedded in the microcontroller.

Questions that can be answered in this stage include: Does the integrated software
behave in an acceptable manner under the control of the real-time operating system or
scheduler? Are software units executed within their allocated times? Does the software
run for an extended period of time without generating overflow conditions? Can the
software start the simulated engine? Is the software robust to electrical noise on the
sensor and actuator signals? Have errors been introduced due to the microprocessor
target compiler?

An HIL system is currently being developed to validate the software for a six­
cylinder application. Processes are being developed so that model parameters can be
readily generated from corporate databases with component, powertrain, and vehicle
characterizations. Eventually, we hope to provide a flexible HIL system that can be
easily and quickly configured for the entire family of powertrain applications.

15.3.12 User Documentation

User documentation is often an after-thought in a systems development process.
This can lead to documentation that is inaccurate and difficult to maintain. Automating
the documentation process can mitigate this tendency. In our process, a few back­
ground documents are manually produced, while the detailed design documents are
automatically generated from the executable specification model. The resulting docu­
mentation set is made available to the engineering organization on our intranet. Thus
the generally static supporting information and the highly dynamic design information
can be accurately maintained at an affordable cost.

The control feature documentation set is comprised of several components. First,
we present those components that are manually prepared. The feature functional
description is a background-oriented document that describes the functional operation
of the feature in a concise manner. The calibration crib sheet is an abstracted graphical
representation that emphasizes the relationship between the tunable parameters and the
nominal control algorithm. The crib sheet is intended to provide quick reference for the
calibration engineer who is familiar with the detailed operation of the control feature.
The feature release notes section documents the change history of the control feature.

388 Chapter 15 Automotive Powertrain Controller Development Using CACSD

The final document section is automatically derived from the feature control model.
This document includes a hierarchical map of the feature, a list of parameters, and the
full definition of the parameters. Bookmarks, notes, and hotlinks allow the reader to
navigate the document in several ways.

These documents are combined to produce the feature user documentation pack­
age. This package gives a comprehensive overview of the functionality and operation of
the control system. All sections, whether manually or automatically generated, are
automatically translated into a document format that is readily printed or posted on
our intranet system.

15.3.13 Configuration Management

Configuration management systems are massive storehouses of the various docu­
ments needed to produce an automotive control system. These systems act as libraries
from which multiple developers can share and modify documents in a controlled man­
ner. Many configuration management systems support high levels of process and pro­
cess measurement automation. They enable large organizations to manage a high­
frequency software release schedule. Our organization achieves the rate of one or
more development or production releases per day.

In any production automotive software development organization, control of the
various documents, models, data, and source code is important for many reasons. The
production group must be able to reproduce the production release software for some
amount of time into the future. This need may arise when a postproduction service fix is
required or a recall is mandated and control system software must be modified. In
addition, production organizations typically need to have reproducibility for any num­
ber of internal development software releases. Most internal releases tend to be small to
moderate modifications of an existing control system. Configuration management sys­
tems enable the developers to reuse large portions of proven, validated, and verified
portions of the control system.

Requirements, specification models, reusable component libraries, parameteriza­
tions, test scenarios, and test results can all be captured in file format. Thus we have
found that the work products of our model-based development process can be easily
integrated into our configuration management system, at least at a rudimentary level.

15.3.14 Software Engineering Project
Management

The primary purpose of the CACSD-based process is to support the design, devel­
opment, and delivery of a control system project that fully meets or exceeds the custo­
mer's functional and quality requirements at minimal cost. This capability alone,
however, is insufficient. The process must also have the integrated capability to
(1) accurately predict and track estimates of project effort, cost, and quality, and
(2) continually assess and improve the process's capability to deliver its required
work products. Toward this end, fundamental product and process measurements
(known as metrics in the software engineering discipline) have been integrated into
the CACSD development process. This section considers CACSD tools in the context
of a typical software engineering project management process [6, 15, 27], as seen in
Figure 15.3.

References

REFERENCES

391

[1] M. Ashhab, A. Stefanopoulou, J. Cook, and M. Levin, "Camless engine control for robust
unthrottled operation." Special Publication SP-1346, Paper No. 981031, Society of
Automotive Engineers, 1998.

[2] B. Beizer, Software Testing Techniques, 2nd ed. London: International Thomson Computer
Press, 1990.

[3] A. Beydoun, L. Wang, J. Sun, and N. Sivashankar, "Hybrid control of automotive power­
train systems: A case study in hybrid systems." Computation and Control, Berlin, Heidelberg,
New York: Springer-Verlag, April 1998.

[4] B. Boehm, "Software engineering." IEEE Transactions on Computers, Vol. C-25, no. 12,
December 1976.

[5] G. Booch, Object Oriented Design with Applications. Reading, MA: Addison-Wesley, 1994.
[6] F. Brooks, The Mythical Man-Month: Essays in Software Engineering. Reading, MA:

Addison-Wesley, 1975.
[7] K. Butts, D. Stetson, and J. Cook, "Computer aided engineering for automotive powertrain

controller development." Advanced Automotive Technologies, DSC-Vol. 56/DE-Vol. 86,
Proceedings of ASME International Engineering Congress and Exposition, San
Francisco, November 1995.

[8] K. Butts, "An application of integrated CASE/CACSD to automotive powertrain systems."
Proceedings of the 1996 IEEE International Symposium on Computer-Aided Control System
Design, pp. 339-345, September 1996.

[9] K. Butts, L. Kolmanovsky, N. Sivashankar, and J. Sun, "Hybrid systems in automotive
control applications." In S. Morse (ed.), Proceedings of the Block Island Workshop on
Control Using Logic Based Switching. Berlin, Heidelberg, New York: Springer-Verlag, 1996.

[10] J. Chilenski and S. Miller, "Applicability of modified condition/decision coverage to soft­
ware testing." Software Engineering Journal, September 1994.

[11] M. Cusumano, Japan's Software Factories: A Challenge to U.S. Management. New York:
Oxford University Press, 1991.

[12] Parametric Cost Estimating Handbook: Joint Government/Industry Initiative, Chapter 5­
Software Parametric Cost Estimating, sponsored by the United States Department of
Defense, http://www.jsc.nasa.gov/bu2/pcehg.html, Fall 1995.

[13] M. DePoyster, J. Hoying, and K. Majeed, "Rapid prototyping of chassis control systems."
Computer-Aided Control System Design, Proceedings of the 1996 IEEE International
Symposium on Computer-Aided Control System Design, pp. 141-145, September 1996.

[14] R. Dorey and D. Maclay, "Rapid prototyping for the development of powertrain control
systems." Proceedings of the 1996 IEEE International Symposium on Computer-Aided
Control System Design, pp. 135-140, September 1996.

[15] P. Drucker, Management: Tasks, Responsibilities, Practices. New York: Harper & Row,
1973.

[16] D. Godbole and S. Karahan, "Automotive powertrain modeling, simulation and control
using Integrated System's CASE tools." Society of Automotive Engineers, Paper No.
940180, International Congress & Exposition, 1994.

[17] D. Hatley and I. Pirbhai, Strategies for Real-Time System Specification. New York: Dorset
House, 1987.

[18] IEEE Trial-Use Standard for Application and Management of the Systems Engineering
Process, IEEE Std 1220-1994, Institute of Electrical and Electronics Engineers, February
1995.

[19] R. Isermann, S. Sinsel, and J. Schaffnit, "Modeling and real-time simulation of diesel
engines for control design." Society of Automotive Engineers, Paper No. 980796,
International Congress and Exposition, 1998.

392

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

References

M. Jankovic and I. Kolmanovsky, "Robust nonlinear controller for turbocharged diesel
engines." Proceedings of the 1998 American Control Conference, Philadelphia, PA, June
1998.
K. Jung-Ho, J. Byeong, D. Dong-II, and K. Hoyoun, "AUTOTOOL, a PC-based object­
oriented automotive powertrain simulation tool." Proceedings of the IEEE Intelligent
Transportation Systems Conference, pp. 753-758, 1997.
P. Kar, Documented prepared by the Requirements Working Group of the International
Council of Systems Engineering, Presented at the 1996 INCOSE Symposium.
H. Krohm and V. Gheorghiu, "Hardware-in-the-Loop simulation for an electronic clutch
management system." Special Publication SP-1080, Society of Automotive Engineers, Paper
No. 950420, International Congress & Exposition, 1995.
J. Moskwa, J. Anthony, G. Babbitt, and Z. Rubin, "Synthesis of software and hardware in
PCRL for powertrain design and development." IEEE Control Systems Magazine, Special
Issue on Powertrain Control, 1998.
P. Naur and B. Randell (eds.), "Software engineering: A report on a conference sponsored
by the NATO Science Committee." Brussels: Scientific Affairs Division, NATO, January
1969.
B. Powell, N. Sureshbabu, K. Bailey, and M. Dunn, "Hardware in the loop vehicle and
powertrain analysis and control design issues." Proceedings of the 1998 American Control
Conference, Philadelphia, PA, June 1998.
L. Putnam and W. Myers, Controlling Software Development: An Executive Briefing, New
York: IEEE Press, 1996.
C. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda, "Software engineering: Problems
and perspectives." Computer, Institute of Electrical and Electronics Engineers, p. 205,
October 1984.
S. Raman, N. Sivashankar, and W. Stuart, "HIL simulators for powertrain control system
software development." Proceedings of the 1999 American Control Conference. San Diego,
CA, June 1999.
M. Rausch and B. Krogh, "Symbolic verification of Stateflow logic." Proceedings of the
International Workshop on Discrete Event Systems (WODES '98), pp. 489-494, August,
1998.
A. Stefanopoulou, J. Cook, J. Freudenberg, J. Grizzle, M. Haghgooie, and P. Szpak,
"Modeling and control of a spark ignition engine with variable cam timing." Proceedings
of the 1995 American Control Conference, Seattle, WA, June 1995.
A. Stefanopoulou, I. Kolmanovsky, and J. Freudenberg, "Control of variable geometry
turbocharged diesel engines for reduced emissions." Proceedings of the 1998 American
Control Conference, Philadelphia, PA, June 1998.
J. Sun and N. Sivashankar, "Issues in cold start emission control for automotive IC
engines." Proceedings of the 1998 American Control Conference, Philadelphia, PA, June
1998.
S. Toeppe, S. Ranville, and K. Butts, "Specification and testing of automotive powertrain
control system software using CACSD tools." Proceedings of the 17th Digital Avionics
Systems Conference, Seattle, WA, November 1998.
R. Weeks and J. Moskwa, "Automotive engine modeling for real-time control using
MATLAB/SIMULINK." Society of Automotive Engineers, Paper No. 950417,
International Congress & Exposition, 1995.
E. Yourdon and L. Constantine, Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design. Englewood Cliffs, NJ: Prentice-Hall, 1979.

Chapter

16
BUILDING CONTROL AND
AUTOMATION SYSTEMS

Albert T.P. So

Editor's Summary

In industrialized societies, the comfort and productivity of people are influenced substantially by the

quality of automation and control provided in the buildings in which they live and work. Accordingly,

the history of building automation and control shows steady progress in complexity and capability. The

first generation of systems used localized, stand-alone pneumatic controls. A major development in the

1950s, driven by the development of pneumatic sensor transmitters and receiver controllers, was pneu­

matic centralization. Electromechanical multiplexing systems, introduced in the 1960s, substantially

reduced installation and maintenance costs and enabled automatic control of air-handling units for the

first time. Minicomputers and programmable logic controllers (PLCs) became popular after the oil crisis in

1973 and helped spur the development of energy management systems. Today, the personal computer has

revolutionized building control systems. Heating, ventilation, and air-conditioning (HVAC), lighting,

elevators and escalators, and fire and security can now be integrated within one building automation

system.

In terms of basic control technologies, the PID controller remains dominant, especially for HVAC

systems. PLCs are widely used for event-driven and sequencing operations such as start-up of chillers.

With the maturing of local area network technologies and their widespread deployment for building

automation, digital control loops can now be implemented throughout buildings. The infrastructure is

available for implementing advanced algorithms.

Much of this advanced technology is inspired by developments in artificial intelligence. Expert

systems, neural networks, and fuzzy logic have all been used for some building control applications.

(Tutorials on these methods can be found in Chapter 5.) Finally, the availability of inexpensive cameras

and high-speed image processing electronics is permitting the use of vision-based sensing in building

automation (and also in other fields-see Chapter 18 for a discussion of visual servoing in robotics).

This could be used, for example, to estimate the number of residents within an air-conditioned space

and regulate accordingly in response to ad hoc changes in the air-conditioned environment and to conserve

energy.

Albert So is an associate professor in the Department of Building and Construction in the City

University of Hong Kong and chair of the IEEE-CSS Technical Committee on Control Electronics.

16.1 INTRODUCTION

It is generally accepted that people spend almost 800/0 of their lives in buildings. Except
for holidays to the countryside, the destination of most people traveling outside a
building is another building. We live, work, and entertain ourselves inside buildings.

393

394 Chapter 16 Building Control and Automation Systems

Therefore, a comfortable, healthy, and work-effective environment within buildings is
critical for ensuring the efficiencyand quality of our daily activities. That is why interior
environmental control and building automation are so important.

The first environmental control systems for large buildings were pneumatic. They
were capable of maintaining acceptable environmental conditions in a building and of
performing some relatively complex control sequences. However, since they were hard­
ware-intensive, the initial installation costs and maintenance requirements could be
substantial. There were also problems of limited accuracy, mechanical wear, and inflex­
ibility. In recent decades, the integration of building systems such as heating, ventila­
tion, air-conditioning, lighting, fire safety, and security has proven economically
advantageous, while simplifying system interaction. First, let us have a look at the
history of building control development [1].

There was a general expansion in the construction industry after World War II. A
desire to improve comfort within new, larger buildings resulted in more complex
mechanical systems, and so better heating and cooling control systems were developed.
Pneumatic controls and electrical switches were mounted everywhere, while large num­
bers of panels were installed near equipment-controlled areas. The involvement of
human operators to monitor the status of systems and to record readings became
necessary.

In the 1950s, the introduction of the pneumatic sensor-transmitter permitting local
indication and remote signaling plus the receiver-controller with optional remote
adjustment led to pneumatic centralization. The number of local control panels was
thus reduced to a more or less single center that was located in a control room. Another
trend, miniaturization, resulted in the reduction of the physical size of instruments. The
use of electronic sensors and analog control loops by the end of that decade resulted in
a hardwired centralized control center.

In the 1960s, the growth of control companies for commercial buildings promoted
the development of new technologies. Electromechanical multiplexing systems were
introduced, resulting in reduced installation costs and maintenance. Wires were reduced
from hundreds to a few dozen per multiplexer. The control center panel was trans­
formed into a control center console. Commercial digital indication and logging sys­
tems were available on the control center console to permit the automatic recording of
selected parameters during unusual conditions and to provide information regarding
these selected parameters. Automatic control of systems, like air-handling units
(AHUs), became possible. Temperature, flow, pressure, and other equipment para­
meters were monitored on the console. Intercom systems and phones were also part
of the console. The first computerized building automation control center was marketed
late in this decade, and data communication was done by means of coaxial cables or
twisted pairs. Up to this stage, building automation technology was based on the
concept of a centralized control and monitoring system (CCMS).

The use of minicomputers or central processing units (CPUs) and programma­
ble logic controllers (PLCs) in building automation systems increased dramatically
as a result of the oil crisis of 1973. People began to appreciate the importance of
energy conservation. A new term, energy management system (EMS), was derived
and became a standard in control manufacturers' sales brochures. New application
software packages were incorporated into basic automation systems. Some packages
such as duty cycle, demand control, optimum start/stop, optimum temperature, day/
night control, and enthalpy control were introduced. In addition, fire and security

Section 16.2 Existing Building Control Technologies 395

systems were emerging from the fundamental infrastructure of building automation.
The building owner could directly oversee the systems by keeping track of energy
usage and cost. These new tools helped management make better predictions and
compare relative costs of products. By the mid-1970s, the cost of hardware began to
decrease, systems became "user-friendly," and it was possible to program and gen­
erate new databases on the same system. Printers with keyboards (KBs) and cathode
ray tubes (CRTs) with KBs were the primary man-machine interface with the
CPUs. "Dumb" multiplexers were becoming "smart." The small microprocessor
embedded inside some multiplexers could "stand-alone," providing analog alarm
detection that reduced communication transactions. Field interface devices (FIDs)
appeared and were the remote processing units compatible with the CPUs.

In the 1980s, the introduction of personal computers (PCs) revolutionized the
control industry. The comparatively low cost of chips was the principal cause of the
development of new technology in building automation and energy management.
The resultant rapid change motivated manufacturers to engage in research and
development rather than investing in their existing hardware and software. Users
accepted the production of individual microprocessor-based distributed direct digital
control (DDDC) because of the popularity of PCs. The DDDC systems were repla­
cing conventional pneumatic control systems. The building operator console (BOC)
became the major man-machine interface, and all programming was done through
high-level languages such as Pascal or C. The BOC was directly linked to remote
local microprocessor control panels (LMCPs) using proprietary local area network
(LAN) protocols.

16.2 EXISTING BUILDING CONTROL
TECHNOLOGIES

Buildings can roughly be categorized into four major types: commercial, residential,
institutional, and industrial. Commercial buildings include office buildings, restaurants
and shopping centers. Institutional buildings can include school or university campuses,
libraries, hospitals, and public transportation terminals. Industrial buildings refer to all
the industrial plants and factories. The building control and automation technologies
discussed in this chapter apply to all four types of buildings, although some special­
purpose industrial facilities (e.g., nuclear power stations and military research centers)
are outside the scope of the discussion.

Major building systems include heating, ventilation, and air-conditioning (HVAC),
illumination, vertical transportation, electrical distribution, life safety such as fire detec­
tion and fighting and security, office automation, and plumbing and drainage.
Normally, HVAC systems consume about 40% to 50% of the total energy load of
buildings, while lighting systems consume 15% to 200/0. Vertical transportation systems
consume about 3% to 50/0. Hence most applications of control technologies have been
on these three types of systems. Office automation is often provided by the tenants
themselves and so is normally not intrinsic to the original design of the building.
However, there is a trend that the communication part of office automation will
soon be integrated as one standard facility in modern buildings, in particular those
calling themselves "intelligent buildings."

396 Chapter 16 Building Control and Automation Systems

16.2.1 Applications of PID Loops

Control using proportional, integral, and derivative (PID) loops has been well
proven. PID control is relatively simple, robust, and straightforward. It is used mostly
in HVAC systems, for speed control of fans, air volume control with air-handling units
(AHUs), variable air volume (VAV) boxes, and so on. It is also employed in the speed
control of elevators and voltage control of generators.

The air-conditioning process is highly nonlinear; the interaction between the tem­
perature and humidity control loops is significant, and the constraints imposed by the
nonideal behavior of actuators are considerable. Conventionally, a cascaded, multiloop
PID control structure has been used. Brandt and Shavit [2] simulated the response of a
PID-controlled discharge air temperature control system to a step change input. PID
control has been considered a successful implementation in HVAC control since most
practical systems available today employ this conventional technique.

An example of a typical AHU is given here, which will be used in other sections of
this chapter. The schematic model of the AHU is shown in Figure 16.1. AHUs are
widely used in a centralized HVAC system. Normally, one AHU serves one story, and
sometimes up to three stories with the AHU installed at the midstory of the building. It
receives a cooling or heating medium from a remote plant and produces either cool (in
summer) or warm (in winter) air to the air-conditioned space via an air duct distribu­
tion network. Without loss of generality, only cooling is considered here. Chilled water
is supplied from a centralized chiller system via water pipes to the cooling coil inside the
AHU. Air from the conditioned space returns to the AHU as return air through the air
ducts. Most of the return air (Qp) (the remaining being exhausted through the exhaust
air duct) mixes with fresh outdoor air in a proportion controlled by adjusting the
exhaust and fresh air dampers. The damper of the mixing air chamber is interlocked
with both the exhaust (Qep) and fresh air (Qe) dampers. The mixed air then passes
through the filter where dust is removed and arrives at the chilled water-cooling coil
where both the air temperature (Tc) and humidity ratio (Xc) are reduced. The humidity
ratio is also known as absolute humidity or moisture content. It represents the absolute
amount of water vapor within a unit mass of dry air. Accurate control of humidity is

Re
Rl

I fPl I

Qep~: Pe P2 :~ Qp

R
R2

lOl.26kPa P3 Ra
To Rl Pa -./VVVV'- 101.26kPA

Xo P4
Tr To

R2 Xr Xo
R4

Ro
Qw P WetF

Rs

Figure 16.1 Air handling unit model.

Section 16.2 Existing Building Control Technologies 397

accomplished by the selective operation of either the reheater or the humidifier.
Conditioned air is then supplied to the air-conditioned space via air ducts, as supply
air. The pressure of the supply air (Q) is controlled by the variable speed supply air fan.

The aim of the control action on the whole is to achieve the desired room tem­
perature (T,) and humidity levels (X,) inside the air-conditioned space with minimum
delay time and energy consumption. Pressure at any point inside the AHU is denoted
by P, with the suffix indicating the location, and the air resistance at any point is
denoted by R, with the suffix indicating the location. The speed of the supply air fan
is controlled by a variable-speed variable-frequency (VVVF) motor drive to fix the
pressure behind the supply air damper (Ps) to a constant setpoint (Pss). Modern
motor drives usually employ the VVVF technique through which speed can be con­
trolled precisely and energy can be saved. The idea behind VVVF is to maintain a more
or less' constant magnetic flux inside the motor so that the general shape of the torque­
speed curve of the motor remains unchanged during the variation of speed. The heater
and the humidifier are controlled to maintain the room's relative humidity at a desired
setpoint (RHs) ' The chilled water-flow rate is controlled by the regulating valve to
maintain the supply air temperature at a constant setpoint (Tss)' Dampers and the
speed of the return air fan are coordinated to maintain the fresh air supply rate at a
desired value. Normally, an AHU is not equipped with a supply air damper, the Rs' as
shown in Figure 16.1, and it is included here to model the VAV action. For energy
conservation, the VAV system is commonly adopted in most commercial buildings.
Supply air from the AHU will reach the VAV boxes through air ducts. The VAV
box automatically adjusts the volume flow rate of cool air to the conditioned space
based on the deviation of the instantaneous room temperature as sensed by a thermo­
stat and the desirable room temperature as adjusted by the occupants. For the sake of
completeness, the VAV action is also built inside the AHU model in our study, serving
the same function of controlling the temperature of the air-conditioned space, that is,
the room.

In PID control, the deviation, e(k), of the control parameter, say, the supply air
temperature," Ts' from the setpoint, Tss, that is, the desired supply air temperature, at
the kth time step, is used to control the actuating command at the (k + l)th time step,
ac(k + 1). The actuating command can be the percentage of opening of the valve of the
chilled water coil. Then, the chilled water-flow rate, Qw, at the (k + l)th time step can be
controlled according to

k

dac(k) = Kpe(k)+ Kd[e(k) - e(k - 1)] + K;L e(i)
;=1

ac(k + 1) = ac(k) + dac(k) = Qw(k+ 1)

e(k) = Ts(k) - Tss

(16.1)

Here, Kp , Kd , and K; are the gains of the proportional, derivative, and integral control
loops, respectively. Equation (16.1) formulates a discrete controller; the continuous
control operations are similar. Although PID control is simple and straightforward
to use, these three gains need to be manually adjusted for optimal operation of the
controllers. Very often, their settings greatly depend on the experience of the designer,
or they are just fine tuned by trial and error. Even though a PID controller may be well

398 Chapter 16 Building Control and Automation Systems

tuned, its effectiveness is based on the assumption that the system model parameters do
not change much. When a well-tuned PID controller is applied to another system with
different model parameters, the response is likely to become poor and energy consump­
tion is likely to increase. This is because the gain settings of most PID controllers are
based on the normal operating ranges of the plants themselves, or, in other words, the
settings are not adaptable to a changing environment.

16.2.2 Programmable Logic Control

When control systems in buildings were implemented half a century ago, electro­
mechanical devices, that is, relays and contactors, were commonly used. Although we
are now in the age of high-speed electronics and microprocessors, technicians of build­
ing systems are very familiar with this conventional equipment. The introduction of
programmable logic controllers (PLCs) helped to bridge the gap between the old and
new technologies. PLCs are generally used for event-driven and time-sequence opera­
tions. Examples include the sequential re-starting of motors after a major electric power
failure and the starting sequence of all components within a chiller system.

A PLC is a microprocessor-based device designed to perform logic functions pre­
viously accomplished by relays and mechanical timers. It is smaller, faster, more reli­
able, and easier to modify compared with the conventional circuits of relays, which are
complicated and expensive. The facilities provided by a PLC are basically AND/OR/
NOT logic, timers, and counters. Programming by relay ladder diagrams is offered and
is often performed through a separate portable computer. A PLC has two main oper­
ating modes, stop and run. In stop mode, the PLC is powered up but is not performing
any control function; in run mode, it executes all the instructions contained in the
memory. Each logic statement is called a step. Every step is numbered so that the
instructions can be treated in a definite order and recalled when necessary. The pro­
cessor scans each instruction in quick succession and logically assembles a list of out­
puts to be turned on. The whole process of scanning the inputs/outputs/program and
finally updating the outputs is known as a cycle. A ladder logic diagram is shown in
Figure 16.2, which corresponds to the following program:

LDI 001; load inverse contact 001, i.e., the normally closed button, "stop"

LD 002; load contact 002, i.e., the normally open button, "start"

OR 201; perform a logical "or" between 002 and the self-holding contact A

ANB ; perform a further logical "and" with 001

OUT 201; output the result to the output terminal of 201

Start
StopL-

A
1-----------1 Y

Figure 16.2 A typical ladder logic diagram.

Section 16.3 Information Technology for Building Systems Control 399

16.2.3 Direct Digital Controls

Signals from building equipment, such as thermostats, light sensors, tachometers,
and pressure transducers, have historically been analog in nature. Owing to the popu­
larity of analog control techniques involving pneumatics up to the 1970s, electronics
dealing with continuously changing signals were developed and implemented. As the
application of computers became widespread in the late 1970s, there was a problem
with the conversion between the analog signals from building equipment to the com­
puter interface, which was absolutely digital. In addition, since computers carried out
tasks in sequence, it was impossible for the computer to convert the measured value into
a digital form, carry out calculations, and convert the digital results back into an
appropriate analog output value simultaneously and continuously. Therefore, the digi­
tal sampling principle was called in. The input values are not measured continuously,
but a measurement is carried out repeatedly with a given interval, or sampling period,
and the results are converted into digital signals. During the interval, the computer can
process the signal and produce an output before the next sample is available.
Throughout the interval, the output is more or less kept constant until the output signal
is available toward the end of that interval. This is the basis of direct digital control
(DDC) [1]. Recently, in line with the concept of DDC, sensors with digital outputs and
actuators receiving digital signals are seeing common use. Thousands of control devices
have been installed in modern commercial buildings, and, hence, the concept of dis­
tributed DDC (DDDC) is very popular where each device is equipped with a direct
digital controller.

A DDDC system has many benefits. However, in order to ensure high perfor­
mance, the distributed architecture must behave as a single integrated entity and not
as a series of separate controllers. The communication network then becomes the
integrator, providing features to make every system point or variable accessible for
programs, trends, or displays in controller and operator terminals throughout the
system. A powerful and flexible operator control language (OCL) must be available
that offers control for each point through a single, comprehensive program, powerful
and effective program editing features, and a full range of mathematics and logic
functions, and that permits flexible operator override for all system points and vari­
ables.

16.3 INFORMATION TECHNOLOGY FOR
BUILDING SYSTEMS CONTROL

Decades ago, controls in buildings adopted the "centralized" concept: Everything was
supervised by a central controller. Today the trend is toward distribution of functions
by employing modern networking techniques. Integration between control devices is
only feasible with a comprehensive capability for exchanging real-time information
between them. This relies on the provision of a high-speed "bus" or "network." A
bus or network is the link between computer components in a data communication
environment. The term "bus" is used mainly when referring to links between compo­
nents or parts of a single computer system, while the term "network" is most often used
in referring to links between several separate computer systems. The application of local
area networks (LANs) in building system control is now quite mature.

400 Chapter 16 Building Control and Automation Systems

16.3.1 Control Networks

One of the oldest networking product lines is ARCnet [3], which was developed by
the Datapoint Corporation in the 1970s for use with its own proprietary line of com­
puters and released commercially in 1977. It is still being used for the managementj
automation levels of building automation systems (BASs) in some popular systems such
as Metasys from Johnson Controls. ARCnet technology is inexpensive and extremely
simple to install and use. The basic configuration of an ARCnet LAN is a token-passing
bus. This unique format is fully documented in IEEE standard 802.4. Two or more PCs
are connected to a hub (a hub is a device responsible for broadcasting data packages to
and from all ports connected to the LAN), and the hubs themselves are connected along
the single bus. This might be more accurately described as a bus interconnection of
stars. Each hub is the center of a star, and each hub is attached to the bus. Most hubs
are active, meaning that they contain repeaters. However, passive hubs can be used to
connect three to four nodes over very short distances. The cable used in ARCnet LANs
is RG-62AjU, which has a characteristic impedance of 93Q, offers very low loss, and is
small, flexible, and inexpensive. BNC (bayonet-locking) connectors are used. The cable
run between two active hubs cannot exceed 610 m, and the total length of the bus must
not exceed 6 km. ARCnet systems are limited to 256 nodes, while the longest permis­
sible cable run between a passive hub and one of the PC nodes is 30 m. Until recently,
the speed of data transmission on the ARCnet system was 2.5 Mbps. However, the
newest version of ARCnet transmits at 20 Mbps.

Another commonly used LAN type in buildings is Ethernet. Ethernet, which was
developed by the Xerox Corporation at its Palo Alto Research Center in the 1970s,was
based on the Aloha wide-area satellite network implemented at the University of
Hawaii in the late 1960s. In 1980, Xerox joined with DEC and Intel to sponsor a
joint standard for Ethernet. The collaboration resulted in a definition that became
the basis for the IEEE 802.3 standard. Ethernet uses the bus topology. Network
nodes simply tap into the bus cable, which may be a large coaxial cable, like RG-8/
U, or a small coaxial cable, like RG-58jU, or a twisted pair. Information to be trans­
mitted from one user to the other can move in either direction on the bus, but only one
node can transmit at any given time. The bus coaxial cable has a special terminating
connector at each end containing a resistor whose value is equal to its characteristic
impedance. This prevents signal reflections that cause signal loss and significant data
errors. For the RG-8 and RG-58 cables used in Ethernet, this value is 53Q. An RG-8jU
cable is approximately 10mm in diameter, and so it is referred to as a thick cable, and it
is usually bright yellow in color.

Ethernet systems using thick coaxial cables are generally referred to as 10Base-5
systems, where 10 means a 10-Mbps speed; Base means baseband operation (i.e., base­
band is the normal frequency of signal transmission), and the 5 designates a 500-m
maximum distance between nodes, transceivers, or repeaters. Ethernet LANs using
thick cable are also referred to as Thicknet. Ethernet systems implemented with thinner
coaxial cables are known as 10Base-2, or Thinnet systems; here the 2 indicates the
maximum 200-m (actually 185-m) run between nodes or repeaters. The most widely
used thin cable, more flexible and easier to use, is RG-58jU, which is around 6 mm in
diameter. Recent versions of Ethernet use twisted-pair cables. The twisted-pair version
of Ethernet is referred to as a 10Base-T network, where T stands for twisted pair. The
twisted pair used in 10Base-T systems is standard 22-,24- or 26-gauge solid copper wire

Section 16.3 Information Technology for Building Systems Control 401

with RJ-45 modular connectors. Physically, a 10Base-T LAN looks like a star, but the
bus is implemented inside the hub itself. It is usually easier and cheaper to install
10Base-T LANs than it is to install coaxial Ethernet systems, but the transmission
distances are generally more limited. With twisted pairs, the maximum distance between
nodes is 100m and the maximum total permissible length with repeaters is 2500 m. The
most recent development in Ethernet technology is a modified version that permits a
data rate of 100 Mbps, 10 times the normal Ethernet rate. Two versions are available,
namely, 100Base-T and 100VG-AnyLAN. Both use twisted pair and have the same
access method and packet size. The 100VG-AnyLAN version has the IEEE standard
number 802.12. The trend for all new designs is to adopt 100-Mbps Ethernet, and it is
anticipated that the high-speed LANs used for building system control will be upgraded
to 100Base-T or 100VG-AnyLAN in the near future.

Fiber Distributed Data Interface (FDDI) is a high-speed fiber-optic cable network
offering a data transmission rate of 100 Mbps. Though not yet a formal standard,
FDDI is well defined, and its use is growing. The wiring consists of two fiber-optic
cables that are bundled together. The basic topology is a ring, and the access method is
token passing. Network interfacing cards (NICs) installed in each computer contain
fiber-optic transmitters and receivers that repeat the data transmission. Only one of the
fiber-optic cables is used at any given time, and data circulate from node to node
around the ring. The other cable is primarily a reserve path that is used if the main
ring fails. The second ring has its own set of transmitters and receivers, but the data
travel in the opposite direction from the primary ring. The first advantage of FDDI is
speed, allowing more users to access and transmit high volumes of data with little loss
of network performance. The second advantage is security, for it is impossible to tap
into or monitor information on an FDDI ring. Fiber-optic cables are also completely
immune to electrical noise. When a network must be implemented over long distances
in noisy environments, FDDI is an excellent choice. However, the downside is its high
cost. Therefore, for building automation and control, lOOBase-T will probably be
widely adopted in the future, while FDDI will likely be used for communications out­
side buildings or for office automation only. Another application for FDDI is its use as
a backbone LAN for supporting or interconnecting two or more other LANs belonging
to BASs of different brands within a mega-building being developed under different
phases.

With the installation of proper LANs within a building, the concept of networked
DDC can be realized. Networked DDC systems have three general levels of hierarchy
or "architecture," namely, distributed control, building-wide or island host-level con­
trol, and information management. Each level serves an important purpose. The added
value of networked DDC is that all three levels are interconnected.

At the distributed control level, microprocessor-based controllers monitor sensors
and regulate devices to meet the needs of a specific application. A distributed control
device is a complete control system inside a box with all the necessary inputs, outputs,
and control processing logic. These controllers are usually used for traditional HVAC
functions such as discharge air temperature, space temperature, humidity, and fan
control. Distributed control in an intelligent integrated network has three major ben­
efits. The first one is repeatable performance where multiple control strategies for a
specific comfort zone can provide consistent and repeatable results such as switching
from occupied to unoccupied, then reverting back to the exact same comfort conditions
for the next occupied mode. The second benefit is individual control where we can

402 Chapter 16 Building Control and Automation Systems

control a specific zone whatever the appropriate comfort level may be. The system
allows individual employees to set their own comfort levels, and all these devices can
be tied to the BAS network, allowing data to be collected so that a certain comfort
index can be measured. The final benefit is employee productivity where productivity of
personnel can be enhanced by improving the comfort control of the indoor environ­
ment. An increase of 5% to 15% productivity with improved environmental control
may be achieved [4].

The building-wide or host-level control coordinates building-wide control strate­
gies through which a higher level of integrated control is possible by tying together all
distributed controllers via a communication network. This creates a reporting path that
allows information from one controller to be passed to another. Through coordinated
control sequences, the entire BAS can be monitored and its various functions opti­
mized.

At the information management level, data collected from variable points on the
DDC system are transformed into usable information. Data from thousands of I/O
points throughout a BAS can be accessed quickly to assist in management decision
making. With the proper communication architecture, access to system information can
take place at anyone personal computer workstation. The same information can be
available at the building-wide control level and at the stand-alone controllers.
Information management is important for several reasons:

• Responsiveness to occupant problems

• Regulatory compliance and risk management

• Financial decision making

• Public perception

• Quality assurance

16.3.2 Protocols

Even with the appropriate hardware, information exchange on LANs is only
possible with strong software support, that is, the provision of effective protocols.
Today's state-of-the-art buildings contain computer-based control equipment that
helps them to be energy-efficient and user-friendly, but very often pieces of equipment
operate independently from one another. This is especially true when the building
control systems have been completed in phases so that they are of different brands.
One of the greatest impediments to the acceptance and growth of computer-based
control has been the lack of a protocol that enables different manufacturers to "inter­
operate" together. In 1991, committees were formed in Europe to create a standard for
a common communications protocol, ideally at one level of system complexity or,
failing that, at a limited number of levels. As always in the standards-making process,
politics played a prominent role. FND was a German communications protocol which
had already been used. Batibus was French inspired, and it was backed by Merlin
Gerin. In response to industry demand, ASHRAE developed Standard 135-1995­
also known as BACnet-a data communication protocol for building automation
and control networks. These protocols prescribe a detailed set of rules and procedures
that govern all aspects of communicating information from one cooperating machine to
another. All these systems work at different levels of complexity.

Section 16.3 Information Technology for Building Systems Control 403

The European committee was tasked to select one standard at each level, and
finally, FND was chosen for level 3, BACnet for levels 2 and 3, and EIB and
Batibus for level 1. While all this was going on, the American company Echelon poured
millions of dollars into creating a market for its own open communications protocol­
LonWorks. Whereas BACnet relies on a freely available software protocol, LonWorks
is hardware-dependent. We shall look at BACnet and LonWorks a little bit more
closely.

BACnet is a communications and data protocol suite defined by the ASHRAE
135P committee for use in connecting building automation components from various
manufacturers. The effort began in 1987, and BACnet was adopted as an ASHRAE
standard in June, 1995. In December, 1995, BACnet was also adopted by ANSI and is
now an American National Standard (ANSI/ASHRAE 135-1995). Nearly every major
vendor of BASs in North America has demonstrated support for BACnet. With
BACnet, two or more compliant computers may share the same networks and ask
each other to perform various functions on a peer-to-peer basis. There are two key
concepts that are critical. First, BACnet is applicable to all types of building services
systems. The same mechanism that gives BACnet this flexibility has two important
benefits: vendor independence and forward compatibility with future generations of
systems. These are accomplished using an object-oriented approach for representing
all information within each controller. The second key idea is that BACnet can be used
on different communication hardware media and low-levelprotocols, namely, ARCnet,
Ethernet, Echelon LonTalk, RS485 MS/TP and RS232 point-to-point. However, if
some BACnet-compliant devices use Ethernet and others use RS232, for example,
the integration or communication will not be direct. In any event, BACnet provides
a model for integrated building control, consisting of five components:

• Objects to represent system information and databases, along with a uniform
method for accessing both standardized and proprietary information.

• Services that allow BACnet devices to ask each other to perform various func­
tions in standardized ways.

• LANs that provide transport mechanisms for exchanging messages across var­
ious types of networks and communication media.

• Internetworking rules that permit the construction of large networks composed
of different LAN types.

• Conformance rules that define standardized ways of describing systems in
BACnet terms.

The second communication protocol, LonTalk, originally a proprietary one, is
now an open protocol. The term "proprietary" means that the technology was initially
owned by a single proprietor, that is, Echelon. The LonTalk protocol uses some
advanced ideas that are unique, and thus, a special type of communication "chip"
was developed to suit the application. Using this chip and the appropriate software,
users can completely absorb much of the burden of implementing LonTalk, freeing the
rest of the system for application tasks. This chip is called Neuron and is manufactured
by Motorola and Toshiba. LonTalk is like a very simple mailing system that provides
system designers with some basic mechanisms for transporting messages between sys­
tems. In and of itself, LonTalk does not define what these messages contain. For the
message system to be useful in a given application, the sender and receiver need to agree

404 Chapter 16 Building Control and Automation Systems

on the content of these messages. Since Echelon's designers had some idea of the types
of applications that LonTalk might be used for, they developed a second protocol that
could be used to define the content of application messages. This "one size fits all"
protocol represents the session, presentation, and application layers of LonTalk and is
often referred to as LonWorks [5].

Controllers making use of LonWorks can communicate with each other through
what LonWorks calls standard network variable types (SNVTs). The SNVT method is
a different approach to defining data objects and requires detailed knowledge on the
part of the sender and receiver of the structure of each SNVT. SNVTs are identified by
a code number that the receiving controller can use to determine how to interpret the
information presented in each SNVT. The open-ended nature of SNVTs is both a
strength and a liability. Different vendors can use the same SNVT code to mean
different things. At best, this causes confusion when these systems are coupled together,
and, at worst, it can cause inappropriate actions to be mistakenly taken. To help solve
this problem, a consortium of Echelon vendors, known as the LonMark Consortium,
was formed to try to agree on rules for LonWorks applications.

16.4 BUILDING AUTOMATION SYSTEMS (BASs)

So far, we have discussed the basic control technologies adopted in modern build­
ings and the information technology employed to accomplish the concept of distributed
direct digital control. The BAS can be considered the heart of every "intelligent build­
ing." The major functions of a BAS are twofold-monitoring/control and energy
management-although most BASs also include several ancillary features such as
risk management and asset management. There are two aspects of a BAS to discuss,
the hardware structure and the software features. In this section, Metasys of Johnson
Controls is used as an example to illustrate a modern BAS. Actually, BASs of different
manufacturers, such as Honeywell, Landis & Staefa, and Alerton, have more or less
similar configurations and features.

16.4.1 Hardware Structure

Consider Figure 16.3. The basic architecture consists of multiple programmable
control panels, called network control units (NCUs) and operator workstations
(OWSs), which communicate with each other over a high-speed communication net­
work called the Nl LAN. The OWS is normally a standard personal computer, such as
a Pentium-based computer. Each NCU manages a physical area within the building,
such as a mechanical equipment room. The capacity of an NCU can be enhanced with
remote panels called network expansion units (NEUs). The NCUs and NEUs directly
control central plant equipment, while the management of smaller air handlers, heat
pumps, lighting circuits, and other building services systems is delegated to a family of
application-specific controllers (ASCs). The ASCs and NEUs communicate with the
NCUs over a secondary communication network, called the N2 bus. The architecture is
unique in the way that the control functions are mainly distributed but yet remain
tightly coupled. ASCs and NCUs provide stand-alone control capability for HVAC,
fire management, access control, and lighting control wherever they are needed, giving
maximum fault tolerance and reliability. When these controllers are interconnected on
the Nl LAN and N2 bus, all parts of the facility's operation are coordinated with each

406 Chapter 16 Building Control and Automation Systems

consumption in most countries. ILCs provide flexible zone control and after-hours
override capability. The network terminals (NTs) provide convenient interfaces to
NCUs because of their portability.

16.4.2 Software Features

DDC control loops for damper operation are available to provide ventilation or to
utilize outdoor air for cooling. For ventilation control, there are mainly three schemes:
fixed quantity of outdoor air, mixed air control, and economizer control of mixer air.
For heating control, five schemes are available: constant temperature hot-water control,
hot-water reset control, discharge air control, discharge air reset control, and space
temperature control. For cooling/heating/humidification/dehumidification control, five
schemes are available: chilled water control, dehumidification control, humidification
control, heating-cooling sequencing, and humidification-dehumidification sequencing.
Static pressure control and VAV system terminal box control are also quite popular.

The original design concept of BAS is for building energy management. Hence, lots
of relevant features are available inside a modern BAS. The duty cycle program reduces
electrical energy consumed by the fan by cycling it on and off. The power demand
limiting program monitors electrical consumption during each and every demand inter­
val and sheds assigned loads as required to reduce demand. The unoccupied period
program, or night cycle program, is primarily a heating season function, but it can also
maintain a high space temperature limit during the cooling season, if desired. The
optimum start-stop program of chillers is an adaptive energy-saving program that
uses intelligence and the flywheel effect (energy retention capacity) of a building to
save a considerable amount of energy with the program clock. The unoccupied night
purge program can be applied to most HVAC systems that are capable of using 100%

outdoor air when the temperature of outdoor air drops considerably at night. The
enthalpy program monitors the temperature and relative humidity or dewpoint of the
outdoor and return air and then positions the outdoor air and return air dampers to use
the air source with the lowest total heat or least enthalpy. The load reset program
controls heating and/or cooling to maintain comfort conditions in the building while
consuming a minimum amount of energy. The zero-energy band program saves energy
by avoiding simultaneous heating and cooling of air delivered to spaces.

Lighting, as already mentioned, consumes quite a large amount of energy. The
occupied-unoccupied lighting control is a time-based program that schedules the on/off
time of luminaires for a building or zone to coincide with the occupancy schedules.
Another way to reduce the costs associated with lighting is to control the level of
lighting in a building or building zone in terms of time schedule. Lighting level control
is accomplished by two different methods: multilevel lighting and modulated lighting.
To achieve the goal of control, control ballasts are separately designed for different
methods.

For fire protection, the present concept is partial integration where there is an
existing fire alarm system due to the legal requirements in most countries. When hard­
wired to a BAS controller, the fire alarm system behaves as a few input points, either
digital or analog, to the NCUs. However, the trend is toward the total integration
concept. This implies that a single central host computer serves the fire alarm system
as well as the other building systems. The fire alarm control panels and the ASCs
communicate with the OWSs over separate communication buses. An advantage here

Section 16.5 Advanced Building Controls Technologies 407

is that, for example, if a fire occurs on one floor of a multistory building, the HVAC
units can be used to prevent the smoke from spreading by opening exhaust dampers and
closing the outdoor air intake dampers of the fire floor. The integration of security and
access control and other building services systems into a BAS can provide both eco­
nomic and operational benefits. First, initial installation work, such as electric wiring,
can be consolidated, resulting in cost savings. Substantial paybacks can be generated
through HVAC energy management and lighting programs, thereby offsetting some of
the costs involved in the integration process. Second, the cost of on-site human guard
services can be greatly reduced.

The BAS can also be a tool to assist the facility management and operating
personnel of a building. The computerized maintenance management programs provide
facility management personnel with the tools needed to protect equipment, control
costs, schedule workloads, review historical trends, manage materials, and plan bud­
gets. Maintenance scheduling includes work order printout, maintenance history, mate­
rial inventory, financial analysis, and management information. With a BAS, the
concept of condition-based maintenance (CBM) can be realized versus the breakdown
maintenance and planned preventive maintenance schemes conventionally adopted.
With CBM, machines will be maintained only when demanded. The utility's metering
program provides the means to dynamically monitor and record a facility's energy
consumption on a real-time basis while a tenant energy monitoring program is also
available. The heating/cooling plant efficiency program can continuously monitor the
efficiency of the central HVAC plants because a small reduction in the operating
efficiency of these large central systems can result in a significant increase in energy
consumption and its associated costs.

16.5 ADVANCED BUILDING CONTROLS
TECHNOLOGIES

Throughout the 1990s, techniques in artificial intelligence have widely been applied to
control systems in buildings. Some of them are briefly discussed here because they are
still under research and are not yet available in the market. Readers interested in these
technologies are encouraged to consult the works cited in relevant sections.

16.5.1 Applications of Expert Systems

Vertical transportation is one very important service in modern high-rise build­
ings. Elevators are provided in groups, and the assignment of a particular elevator car
to serve a particular landing call is carried out by the supervisory control system. The
philosophy of supervisory control based on traffic sensing and rule-based expert
systems was developed in 1992 [6]. The system was implemented using standard
packages, built on a spreadsheet in the first instance. Simulated input traffic was
generated and dynamically linked to the simulator, showing car movements. An
expert system linked to the traffic sensing system continuously calculated optimal
car movements. It needs expert knowledge to develop the expert system, and thus,
the objectives of optimization must be clearly defined. Another approach consisted
first of a better definition of objectives-that is, factors related to passengers were
quantified; second, an evaluation module was designed; and finally, the evaluation
module was integrated into a target system [7]. One newer approach [8] addressed the

408 Chapter 16 Building Control and Automation Systems

problem of finding optimum routes for a multi-lift system, with the objective of
reducing the overall trip time for passengers by executing an exhaustive search for
all possible moves. Alternatively, the blackboard architecture is a powerful expert
system architecture and a model of problem solving that can be used to deal with
large amounts of diverse and incomplete knowledge. The designer is not committed to
either forward or backward chaining modes of reasoning by treating the blackboard
as a central data store within the system. The blackboard architecture was implemen­
ted [9] for the control and supervision of group automatic operation of elevators
using Prolog. A "channeling" approach [10] was adopted that took maximum advan­
tage of "coincident destinations" by directing passengers with similar destinations
into the same car. This was done by restricting the number of floors served on any
trip to a small subset of the total number of upper floors.

A similar system [11] that is becoming more and more popular is one using the "hall
call allocation" approach in which no car call panel is available inside the car. Each
passenger needs to register his or her destination floor at the landing hall, and a car will
be selected to serve this call. This system makes use of the additional information of
destination hall calls to furnish data for car allocation. Then, assignment indicators are
used to direct passengers' boarding. However, this system does not allow the passenger
any mistake. If the passenger keys in a wrong destination call or enters the wrong
elevator, it will take her quite a long period of time to arrive at the destination. This
concept of channeling was further developed to give higher flexibilityin up-peak, down­
peak, and interfloor situations by introducing the idea of full dynamic zoning [12].

16.5.2 Neural Network-Based Control

The use of artificial neural networks (ANNs) has been proliferating with remark­
able speed. The application of these networks is an attempt to simulate simple biolo­
gical networks by joining together "cells" (or nodes) in a cascaded fashion, all
interconnected. Mathematically, ANNs provide a parameterized structure for non­
linear function approximation and nonlinear classification applications. An ANN­
based approximator or classifier is developed by "training" on a data set representative
of the problem. Several applications to building control systems have been proposed.
Anstett and Kreider [13] applied an ANN to predict the energy use in a complex
institutional building without the need for a data acquisition system. Curtiss et al.
[14] used ANNs for predictive control of a hot-water 'coil to warm an airstream. This
work provided a very good basis for further research in this area of application. In our
air-handling unit, shown in Figure 16.1, there are large numbers of plant status para­
meters and control actuators, such as the supply air damper position, the water valve
position, the fan speed, and the power output of the reheater. These are heavily inter­
connected with one another so that the control action becomes very complicated. Such
a system calls for a multiple-input multiple-output approach. The ANN, shown in
Figure 16.4, serves as the identifier of the AHU and the controller as well [15]. R,
stands for the resistance of the supply air damper; P for the power of the reheater; W
etF for the humidification process; N, for the speed of the supply air fan; Qw for the rate
of the chilled water supply; T, for the room air temperature; RH for the room relative
humidity; P8 for the pressure in the supply air duct; T, for the supply air temperature;
Q for the supply airflow rate; Qp for the return airflow rate; and Xs for the moisture
content of the supply air.

Section 16.5 Advanced Building Controls Technologies

Hiddenlayer

Rs ..
P "0 0

IWetF "0 0
ATr

Ns "'0 0
I 0 .. ARH

Qw "'0 0
0 AP8...

Tr -0 Full I 0 I Full 0 .. ATs
RH ...0 connection 0 connection

0 .., AQ
P8 "'0 0

0 .. AQp
Ts "'0 0

AXs
Q ... 0 0 I

Qp "0 0
Xs :J

Figure 16.4 Air handling system identifier-controller.

409

There are a total of twelve input nodes consisting of the seven plant status para­
meters and the five actuating actions at time t. The normalized values, rather than the
absolute values, are fed into the ANN by appropriate normalization functions. It is
better to normalize all values to within a range such as from 0 to 1 before they are fed
into the input nodes. There are twelve hidden nodes at the second layer of the ANN
identifier/controller. For the output layer, there are seven nodes comprising the seven
plant status parameters at one time step later, that is, at t + D.t. The number of hidden
layers and the number of hidden nodes can be varied during neural network develop­
ment, depending on the speed of the computational machine and the expertise of the
designer. In our case, D.t is always set to a value of one second. Originally, the normal­
ized absolute values of the seven plant status parameters were used. However, it has been
found that the system becomes very insensitive to changes since within a time step of one
second, all changes are actually small changes. Thus, a modification has been made so
that the output nodes contain the normalized values of the deviations of the seven plant
status parameters. In this way, any small changes can be appropriately amplified so as to
have a wide span to cover the whole range from 0 to 1. In our case, a value of 0.5 of a
certain plant status parameter implies that the parameter has not changed at all during
that time step. A value of 1 implies a peak change in the positive direction, while a value
of 0 indicates a peak change in the negative direction.

At the same time, this identifier functions as a controller. At time t, the identifier
updates itself by using the normalized absolute plant status parameters and the normal­
ized absolute actuating actions at time t - D.t together with the normalized deviation of
the plant status parameters at time t as its first training example. Of course, if memory
space is not a problem, it is preferable that past training data be incorporated as well
since every time a new set of data is available, the ANN will slightly forget the past
data. In order to keep the ANN updated around the current operating point of the
plant or system, training by using previous data constitutes good practice. Fortunately,
the plant characteristics change slowly compared with the training rate of the ANN due

410 Chapter 16 Building Control and Automation Systems

to the large inertia of the physical system. In addition, our target is always on steady­
state control and the whole system stays at a particular operating point for quite a long
period of time. Under these circumstances, significant adjustments of the ANN's inter­
nal weighting functions are deemed unnecessary, and there is no genuine control pro­
blem even if the ANN forgets the plant characteristics of a few hours ago. Once the
ANN is trained around a particular operating point, the computational effort to
slightly adjust the individual weighting function inside the ANN subject to minor
changes of the plant characteristics is quite minimal. After the updating process, the
ANN becomes a controller that suitably adjusts the five actuating actions at time t so as
to arrive at a desirable control at time t + 8t.

The control algorithm developed for this ANN is based on the minimization of a
performance index (PI) designed for two aspects: setpoint error minimization and total
energy consumption minimization. It is possible to put the concentration on either
aspect to accomplish the desirable control result. The performance index is defined as:

The Ais are used to distinguish the differences in significance between the four control
variables, T': RH, Pg, and T'; Dw is density, and Cpw is specificheat capacity of chilled
water. The adjustment of two Ks allows emphasis to be placed on either setpoint error
minimization or energy optimization. T, is the dry-bulb temperature of the conditioned
space; RH is the relative humidity; Pg is the air pressure at the supply air duct; and T, is
the temperature of the supply air. Another additional suffix "s" refers to the setpoint of
the variable. Two and T wi are, respectively, output temperature and input temperature at
the chilled water coil; P is the power of the reheater; Qw is chilled water-flow rate; Cpw is
heat capacity. P7 and P6 are air pressure on both sides of the supply air fan; and Q is the
supply airflow rate.

16.5.3 Fuzzy Logic-Based Control

The AHU must be designed to cope with a wide range of operating conditions
since the weather and occupants' activities are subject to significant, periodic changes
from day to night and from season to season and the air-conditioning process is highly
nonlinear. Earlier we discussed the real-time modeling of the whole system by an ANN.
Because air-conditioning is a complicated process and the air-conditioned space is often
subject to external disturbance, the system model is usually not well known beforehand,
and it will be quite time consuming to fine-tune the model. To execute control actions
immediately after commissioning, past experience on similar machines needs to be
relied on, and, therefore, fuzzy logic-based control [16] may perhaps be the best alter­
native solution. Fuzzy control is based on the valuable operational experience of human
experts, and thus the system is robust with respect to ad hoc changes in the environ­
ment. In the example discussed here, the same AHU as shown in Figure 16.1 is used.

The first step of fuzzy control is fuzzification. Fuzzification is the process of con­
verting a real-world parameter into a corresponding set of membership functions of the

Section 16.5 Advanced Building Controls Technologies 411

associated fuzzy sets. In this case, all input variables are subtracted by their reference set
values to form error signals and then converted into membership functions of seven
linguistic fuzzy subsets, namely, VN (very negative), MN (medium negative), SN (small
negative), ZR (zero), SP (small positive), MP (medium positive), and VP (very positive).
The fuzzifying functions for the error signal and the rate of change of error signal of the
return air temperature (i.e., actual temperature inside the conditioned space) are shown
in Figures 16.5(a) and 16.5(b) as examples.

The second step is the provision of a rule base. Basically, two types of control
actions are associated with the AHU: positive action and negative action. For positive
action, the control action has to be positive when both the error and the rate of change
of error are positive. Controllers for the cooling coil and reheater fall into this class. For
example, if the supply air temperature is high and there is a tendency for further
increase, that is, error and rate of change of error are positive, the chilled water-flow
rate has to be increased, that is, is positive, as well. The rule base is listed in Table 16.1,
and is applicable to all five fuzzy controllers in the system, namely, that of the supply air
fan, supply air damper, chilled water valve, reheater, and humidifier.

-2.20 -1.10 -0.88 -0.66 -0.33 -0.11 0.11 0.33 0.66 0.88 1.10 2.20

Error in Tr/oC
(a)

!J-

VN MN SN ZR SP MP VP

-0.044 -0.022 -0.011

(b)

0.011 0.022 0.044

Error change in Tr/oC

Figure 16.5 (a) Fuzzifying functions of error of return air temperature. (b)
Fuzzifying functions of change of error of return air temperature

412 Chapter 16 Building Control and Automation Systems

TABLE 16.1 Positive Control Action

Error Change

Error VN MN SN ZR SP MP VP

VN VN VN VN VN MN SN ZR
MN VN VN VN MN SN ZR SP
SN VN VN MN SN ZR SP MP
ZR VN MN SN ZR SP MP VP
SP MN SN ZR SP MP VP VP
MP SN ZR SP MP VP VP VP
VP ZR SP MP VP VP VP VP

The rule base is normally built inside the inference engine of the fuzzy controller.
The chilled water coil controller is described as an illustrative example. The chilled
water-flow rate is governed by the error in the supply air temperature, Ts' and the
aim is to maintain a constant supply air temperature, Tss• The rule "If (T, - Tss) is
MP and rate of change of (T, - Tss) is SP, then Action is VP" gives a membership
function for VP (JLvp) as:

where JLMP is the degree of belonging of tT, - Tss) in the fuzzy subset entitled MP and
JLsp is the degree of belonging of the rate of change of (T, - Tss) in the fuzzy subset
entitled SP. After the whole evaluation process, we obtain 49 membership functions
from all the rules of each controller. A certain number of rules output identical fuzzy
subsets; for example, 10 rules return membership functions for VP, five rules return
membership functions for MP, and so on. The contribution from each rule is summar­
ized in the defuzzification procedure, which converts a value from the fuzzy environ­
ment back to the real world.

Each of the 49 rules returns a membership function JLi, for i = 1, ... , 49 from the
inference engine. A crisp, nonfuzzy value can be assigned to the output of each fuzzy
rule, Ci. The actual output, OP, of the fuzzy controller can then be computed by the
center-of-gravity method as shown by the following equation:

~49

OP - LJi=l CiJLi
- 49 •

Li=lJLi

This output is then fed to the actuator for the proper control action.

16.5.4 Computer Vision-Based Control

Conventional control for HVAC relies on measuring devices such as thermostats
and humidistats to monitor the temperature and humidity of the supply and return air
of the air-conditioned space. Various control algorithms, such as PID, adaptive, self­
tuning, and fuzzy logic-based, have been incorporated in the control of AHUs for
thermal comfort. However, it is well recognized that slow response rate is the major

Section 16.6 Difficulties with Building Systems Control 413

drawback of most commonly used measuring devices. When an ad hoc change of
considerable magnitude in the load demand occurs, there is usually a rather long
delay before the controller can take any subsequent action. For example, the VAV
box only opens after the thermostat confirms an increase in the return air temperature,
which is a slow action because of the high room inertia as well as the intrinsic delay in
the thermostat's response. Although it may not be too serious bearing in mind the usual
noncritical nature of control applications in most commercial and domestic buildings,
the long transient period may sometimes imply extra energy consumption in bringing
the system back to steady state. By adopting computer vision [17] that can estimate the
number of residents within an air-conditioned space, it is possible to identify any abrupt
changes within seconds. Conventional transducers are, in no way, comparable to this
new approach. Furthermore, better zone control can be accomplished if through com­
puter vision we can identify the location of each occupant. Significant improvements
are possible with respect to both response rate and energy savings.

An experimental system developed at City University of Hong Kong involves a
stereoscopic camera system in which two standard charge coupled device (CCD) cam­
eras are placed side by side. Calibration of each camera needs to be carried out so that
11 parameters associated with the geometry of the camera, such as the focal length,
center of the focus, and lens distortion, can be precisely estimated. After the process of
calibration, any point (xw, Yw' zw) in the world coordinates can be appropriately
matched to a point (Xo, Yo) in the memory of the frame grabber. The frame grabber
is a device that retrieves signals from the camera to produce a corresponding image file.
Then, the process of depth from motion using an optical flow technique is carried out so
that the absolute position in world coordinates of any point seen on the image file can
be estimated. Optical flow estimates the velocity vector of any point on the image file
based on successive images taken within a very short period of time, say fractions of a
second. The velocity vector helps in doing pixel correspondence so that the same point
in space can be accurately identified on the multiple image files from the two cameras.
Based on simple geometry, the absolute position of that point in space is calculated. If
such a point is on the surface of any occupant, the number of occupants and their
positions in space can be found. Appropriate HVAC control actions can then be
executed.

16.6 DIFFICULTIES WITH BUILDING SYSTEMS
CONTROL

The state-of-art technologies related to building control and automation have seen
significant advances for different applications. Two major problems that require urgent
solution are the implementation of full integration and financial viability.

In a previous section on protocols, we studied the effort made by various organi­
zations on the development of open systems and the emphasis on interoperability. The
fundamental idea is to manufacture control devices that talk in an identical and uni­
versallanguage regardless of the brand and model of each device. This dream did come
true in certain restricted levels within a BAS. More should be done in this aspect,
bearing in mind the commercial concerns of most manufacturers in the industry.
Actually, a number of open protocols are available, and it will take time for designers
to agree on one common set of open protocols. A common language for all control

414 Chapter 16 Building Control and Automation Systems

devices may imply free replacement of components of different manufacturers by the
users, thus affecting the profit that is almost guaranteed to certain suppliers who have
been dominating the market for a long period of time. Even though true interoper­
ability at all networking levels within BASs can be achieved, the integration is still
confined to the machine environment. However, the main goal of providing BASs in
modern intelligent buildings is to serve the occupants in terms of human comfort,
human safety, and human efficiency, instead of merely demonstrating high technolo­
gies. Comprehensive and convenient information flow between the BAS and the occu­
pants should be the key feature in the near future. Existing media for presenting and
inputting information, such as numeric codes, long strings, and computer languages,
are not user-friendly enough, making occupants, who are usually laypersons to
advanced technology, try to escape close contact with the building control system.
Therefore, more research and development needs to be done in the area of man­
machine interfaces, not solely for system operators but for the normal occupants as
well. This is what is meant by full integration at both the machine and human levels.

The building industry can, in general, be regarded as a more conventional industry.
The rate of advancement of technology in the field of building and construction is
relatively low compared with that of the electronics and control industries or informa­
tion technology. In this regard, developers of buildings are usually more reluctant to
make huge investments in building systems control, whereas they very often intend to
put more resources into improving the architectural layout such as interior design and
furnishing. In this way, the development strategy for building control systems must be
significantly different from that for, say, aerospace or military systems, where quality
and effectiveness are the major concerns. The installation of a BAS has to be financially
viable, and the performance should emphasize reduction of operational cost and
enhancement of productivity of the building as a whole.

16.7 CONCLUSION

In this chapter, we have first considered existing, well-proven control technologies in
modern buildings, especially intelligent buildings. The most important development,
the information highway and its integration into building control, has been discussed in
some detail. Local area networks, in terms of hardware and software, have also been
described. The structure and features of a typical building automation system can be
considered the heart of every intelligent building. As a practical example, one compre­
hensive intelligent building system can be found in Germany, the Munich International
Airport [18]. This system, developed by Honeywell, has the capacity to control 200,000
points, integrating 13major subsystems from nine different vendors. It provides control
of systems including the power plant, HVAC, people-moving systems, interior lighting
control, runway lights, baggage handling, elevators, and aerobridges, for a total of
112,000 physical points. The airport, opened in 1992, was named the "Intelligent
Building of the Year" in 1993 by the Intelligent Buildings Institute Foundation. The
project demonstrates that a set of functions, no matter how widespread, diverse, or
complex, can be smoothly and effectively integrated together for maximum control and
productivity.

Finally, various advanced control techniques and their applications in building
services systems have been briefly introduced, including control based on expert sys-

References 415

terns, artificial neural networks, fuzzy logic, and computer vision. The difficulties that
the building automation industry will face are also discussed to provide designers with
some vision on the road that lies ahead. It is hoped that this chapter will build up
control engineers' and scholars' interests in the research and development of building
control systems.

Related Chapters

• An analogous overview of control systems in the process industries appears in Chapter
12.

• Neural networks for function approximation are discussed in detail in Chapter 6.
• Tutorial material on intelligent control, with examples on expert systems, neural net­

works, and fuzzy logic, can be found in Chapter 5.
• Chapter 12 also reviews a number of PID tuning methods.
• The structural control of buildings-as distinct from the control of their interior envir­

onments-is the topic of Chapter 17.

REFERENCES

[1] R. A. Carlson and R. A. Di Giandomenico (eds.), Understanding Building Automation
Systems. Kingston, MA: R. S. Means Co., 1991.

[2] S. G. Brandt and G. Shavit, "Simulations of the PID algorithm for direct digital control
application." Proc. Workshop on HVAC Controls, Modelling and Simulation, G.I.T.,
Atlanta, 1984.

[3] A. T. P. So, A. C. W. Wong, and W. L. Chan, "The role of high speed communication in
building automation." Proceedings of Mainland Hong Kong HVAC Seminar '98, ASC,
HKIE, CIBSE, ASHRAE, Beijing, March 1998, pp. 6-11.

[4] D. P. Wyon, "Healthy buildings and their impact on productivity." Proc. Indoor Air '93,6th
Int. Con! on Indoor Air and Climate, Helsinki, Finland, July 1993.

[5] M. Lockareff, "A control networking solution for the utility industry." LonWorks
Technology and the LonMark Standard, 1996.

[6] R. W. Prowse, T. Thomson, and D. Howells, "Design and control of life systems using
expert systems and traffic sensing." In G. C. Barney (ed.), Elevator Technology 4, IAEE, pp.
219-226, 1992.

[7] P. Chenais and K. Weinberger, "New approach in the development of elevator group
control algorithms." In G. C. Barney (ed.), Elevator Technology 4, IAEE, pp. 48-57, 1992.

[8] A. F. Alani, P. Mehta, J. Stonham, and R,. Prowse, "Performance optimisation of knowl­
edge-based elevator group supervisory control system." In G. C. Barney (ed.), Elevator
Technology 6, IAEE, pp. 114-121, 1995.

[9] G. K. H. Pang, "Elevator scheduling system using blackboard architecture." IEEE
Proceedings D, Vol. 138, no. 4, pp. 337-346, 1991.

[10] B. A. Powell, "Important issues in up-peak traffic handling." In G. C. Barney (ed.), Elevator
Technology 4, IAEE, pp. 207-218, 1992.

[11] J. Schroder, "Advanced dispatching, destination hall calls and instant car-to-call assign­
ments." Elevator World Educational Package and Reference Library, Vol. 4, pp. IV8­
IVI4, 1994.

416 References

[12] A. T. P. So and W. L. Chan, "Comprehensive dynamic zoning algorithms." In G. C. Barney
(ed.), Elevator Technology 8, pp. 98-107, April 1997, reprinted in Elevator World, pp. 99­
103, September 1997.

[13] M. Anstett and J. F. Kreider, "Application of neural networking models to predict energy
use." ASHRAE Transactions: Research, Pt. 1, pp. 505-517, 1993.

[14] P. S. Curtiss, J. F. Kreider, and M. J. Brandemuehl, "Adaptive control of HVAC processes
using predictive neural networks." ASHRAE Transactions: Research, Pt. 1, pp. 496-504,
1993.

[15] A. T. P. So, T. T. Chow, W. L. Chan, and W. L. Tse, "A neural network based identifier/
controller for modern HVAC control." ASHRAE Transactions, Vol. 102, Pte 1, pp. 14-31,
1996.

[16] A. T. P. So, T. T. Chow, W. L. Chan, and W. L. Tse, "Fuzzy air handling system con­
troller." Building Services Engineering Research and Technology, CIBSE, Vol. 15, no. 2,
1994, pp. 95-105.

[17] A. T. P. So, W. L. Chan, and T. T. Chow, "A computer vision based HVAC control
system." ASHRAE Transactions, Vol. 102, Pte 1, 1996, pp. 661-678.

[18] M. Ancevic, "Intelligent building system for airport," ASHRAE Journal, pp. 31-35,
November 1997.

Chapter

17
CONTROLLING CIVIL
INFRASTRUCTURES

B. F. Spencer Jr. and Michael K. Sain

Editor's Summary

Controls is well-established in most of the major engineering disciplines-electrical, chemical, mechanical,

aerospace. Historically, an important exception has been civil engineering, and, as this chapter illustrates,

recent developments are bridging the gap. The importance of understanding the dynamics of civil struc­

tures has been recognized since the 1940 Tacoma Narrows bridge collapse, but feedback control of

buildings, bridges, towers, and other structures is a relatively recent development. The concept of active

control for such systems was first introduced in 1972. Since then, a vast literature has been generated on

the topic, and, more impressively, a number of successful implementations have been completed (the first

full-scale one in 1989). Many of the largest applications have been to buildings in Japan, driven by the

desire to achieve protection against earthquakes.

The first implementation of structural control was based on active mass dampers (AMDs). An AMD

system couples an auxiliary mass to the structure through an actuator. Sensor measurements of building

movement and stresses are used in a control algorithm to move the auxiliary mass relative to the building.

Such systems are versatile and capable, but issues of reliability and power consumption have driven the

search for improvements. The next significant development was controllers that employed a combination

of active and passive devices. These hybrid active/passive control systems (no relationship to the hybrid

discrete/continuous systems discussed in Chapter 7) rely on one of two approaches: hybrid mass damping

and hybrid base isolation. The former is especially popular. The largest building in Japan, the Yokohama

Landmark Tower, incorporates two hybrid mass dampers (HMDs), each weighing 170 tons.

The most recent innovation is the semiactive control device. These devices cannot inject mechanical

energy into the structure but have properties that can be manipulated to achieve structural disturbance

rejection. In many cases, they can operate on battery power; this is a significant advantage since seismic

events can interrupt main power supplies. Examples of semiactive devices include variable-orifice fluid

dampers, variable-stiffness devices, variable-friction devices, controllable and tuned liquid dampers, and

magnetorheological dampers. The last topic is discussed at some length in this chapter, and experimental

results are shown.

B. F. Spencer Jr. is a professor in the Department of Civil Engineering and Geological Sciences at

the University of Notre Dame. Michael K. Sain is the Frank M. Freimann Professor of Electrical

Engineering at the same institution.

17.1 INTRODUCTION

The protection of civil structures, including their material contents and human occu­
pants, is a worldwide priority of the most serious importance. Such protection may
range from reliable operation and comfort, on the one hand, to survivability on the

417

418 Chapter 17 Controlling Civil Infrastructures

other. Examples of such structures that readily leap to mind include buildings, offshore
rigs, towers, roads, bridges, and pipelines. In like manner, the events that require such
protective measures are earthquakes, winds, waves, traffic, lightning, and-today,
regrettably-deliberate acts. Control methods will make a genuine contribution to
this problem area, which has such great economic and social implications. In this
chapter, we review recent developments that have been rapidly occurring in the area
of controlled civil structures, including full-scale implementations and actuator types
and characteristics, as well as trends toward the incorporation of more modern algo­
rithms and technologies.

Buildings and other physical structures, including highway infrastructures, have
traditionally relied on their strength and ability to dissipate energy to survive under
severe dynamic loading. In recent years, worldwide attention has been directed toward
the use of control and automation to mitigate the effects of these dynamic loads on these
structures [1-3]. In fact, several buildings in Japan, including a 70-story hotel and a 52­
story office complex, are currently employing active control strategies for motion con­
trol. Active systems are also used temporarily in the construction of bridges or large span
structures (e.g., lifelines, roofs) where no other means can provide adequate protection.

Figure 17.1 provides a schematic diagram of the structural control problem. The
basic task is to determine a control strategy that uses the measured structural
responses to calculate an appropriate control signal to send to the actuator that
will enhance structural safety and serviceability. To better understand the problem,
consider control of the tall building depicted in Figure 17.2 using an active mass
damper (AMD) system. For this control system, a small auxiliary mass, which is
usually less than 1% of the total mass of the structure, is installed on one of the
upper floors of the building and an actuator is connected between the auxiliary mass
and the structure. Responses and loads at key locations on the building are measured
and sent to the control computer. The computer processes the responses according to
the control algorithm and sends an appropriate signal to the AMD actuator. The
actuator then reacts against the auxiliary mass, applying inertial control forces to the
structure to reduce the structural responses in the desired manner. A wealth of
structural control studies have been conducted since Yao (1972)1 first introduced

Excitation Structure Response

Figure 17.1 Schematic diagram of the structural control problem.

1 Space does not permit a complete listing of references. The reader may obtain the specificcitations
from the earlier version of this chapter titled "Controlling Buildings: A New Frontier in Feedback,"
published in IEEE Control Systems Magazine, December 1997; or they may be accessed at
www.nd.edu/r-quake.

T
A

B
L

E
17

.1
S

u
m

m
a

ry
o

f
A

ct
iv

e
ly

C
o

n
tr

o
lle

d
B

u
ild

in
g

s/
T

o
w

e
rs

A
M

D
/H

M
D

Y
e

a
r

C
o

n
tr

o
l

sy
st

e
m

M
a

ss
F

u
ll-

sc
a

le
st

ru
ct

u
re

L
o

ca
ti

o
n

co
m

p
le

te
d

S
ca

le
o

f
b

u
ild

in
g

e
m

p
lo

ye
d

N
o.

(t
o

n
s)

A
ct

u
a

ti
o

n
m

e
ch

a
n

is
m

K
yo

ba
sh

i
Se

iw
a

T
ok

yo
,

Ja
pa

n
19

89
3

3
m

,
40

0
to

n,
A

M
D

2
5

hy
dr

au
li

c
11

st
or

ie
s

K
aj

im
a

R
es

ea
rc

h
In

st
it

ut
e

T
o

k
y

o
,J

ap
an

19
90

12
m

,
40

0
to

n,
A

ct
iv

e
V

ar
ia

bl
e

hy
dr

au
li

c
K

aT
R

I
N

o.
21

B
ui

ld
in

g
3

st
or

ie
s

St
if

fn
es

s
Sy

st
em

(6
de

vi
ce

s)
S

en
da

ga
ya

IN
T

E
S

T
ok

yo
,

Ja
pa

n
19

92
58

m
,

32
80

to
n,

A
M

D
2

72
hy

dr
au

li
c

11
st

or
ie

s
A

pp
la

us
e

T
ow

er
O

sa
ka

,
Ja

pa
n

19
92

16
1

m
,

13
94

3
to

n,
H

M
D

1
48

0
hy

dr
au

li
c

34
st

or
ie

s
K

an
sa

i
In

t.
A

ir
po

rt
O

sa
ka

,
Ja

pa
n

19
92

86
m

,
25

70
to

n,
H

M
D

2
10

se
rv

om
ot

or
C

on
tr

ol
T

ow
er

7
st

or
ie

s
O

sa
ka

R
es

or
t

C
ity

20
00

O
sa

ka
,

Ja
pa

n
19

92
20

0
m

,
56

98
0

to
n,

H
M

D
2

20
0

se
rv

om
ot

or
50

st
or

ie
s

Y
ok

oh
am

a
L

an
d

M
ar

k
T

ow
er

Y
ok

oh
am

a,
K

an
ag

aw
a,

19
93

29
6

m
,

26
06

10
to

n,
H

M
D

2
34

0
se

rv
om

ot
or

Ja
pa

n
70

st
or

ie
s

L
on

g
T

er
m

C
re

di
t

B
an

k
T

o
k

y
o

,J
ap

an
19

93
12

9
m

,
40

00
0

to
n,

H
M

D
1

19
5

hy
dr

au
li

c
21

st
or

ie
s

A
nd

o
N

is
hi

ki
ch

o
T

ok
yo

,
Ja

pa
n

19
93

54
m

,
26

00
to

n,
H

M
D

1
22

se
rv

om
ot

or
14

st
or

ie
s

(D
U

O
X

)
H

ot
el

N
ik

ko
K

an
az

aw
a

K
an

az
aw

a,
Is

hi
ka

w
a,

19
94

13
1

m
,

27
00

0
to

n,
H

M
D

2
10

0
hy

dr
au

li
c

Ja
pa

n
29

st
or

ie
s

H
ir

os
hi

m
a

R
ie

hg
a

R
oy

al
H

ot
el

H
ir

os
hi

m
a,

Ja
pa

n
19

94
15

0
m

,
83

00
0

to
n,

H
M

D
1

80
se

rv
om

ot
or

35
st

or
ie

s
S

hi
nj

uk
u

P
ar

k
T

ow
er

T
ok

yo
,

Ja
pa

n
19

94
22

7
m

,
13

00
00

to
n,

H
M

D
3

33
0

se
rv

om
ot

or
52

st
or

ie
s

M
H

I
Y

o
k

o
h

am
a

B
ld

g.
Y

ok
oh

am
a,

K
an

ag
aw

a,
19

94
15

2m
,

61
80

0
to

n,
H

M
D

1
60

se
rv

om
ot

or
Ja

pa
n

34
st

or
ie

s
H

am
am

at
su

A
C

T
T

ow
er

H
am

am
at

su
,

S
hi

zu
ok

a,
19

94
21

2m
,

10
75

00
to

n,
H

M
D

2
18

0
se

rv
om

ot
or

Ja
pa

n
46

st
or

ie
s

...
(c

on
ti

nu
ed

)
N -
'

~ N N

T
A

B
L

E
17

.1
(c

o
n

ti
n

u
e

d
)

A
M

D
/H

M
D

Y
ea

r
C

o
n

tr
o

l
sy

st
e

m
M

a
ss

F
u

ll-
sc

a
le

st
ru

ct
u

re
L

o
ca

tio
n

co
m

p
le

te
d

S
ca

le
o

f
b

u
ild

in
g

e
m

p
lo

ye
d

N
o.

(t
o

n
s)

A
ct

u
a

ti
o

n
m

e
ch

a
n

is
m

R
iv

er
si

de
S

um
id

a
T

ok
yo

,
Ja

pa
n

19
94

13
4

m
,

52
00

0
to

n,
A

M
O

2
30

se
rv

om
ot

or
33

st
or

ie
s

H
ik

ar
ig

ao
ka

J-
C

it
y

T
ok

yo
,

Ja
pa

n
19

94
11

0m
,

29
30

0
to

n,
H

M
O

2
44

se
rv

om
ot

or
26

st
or

ie
s

M
iy

az
ak

i
P

ho
en

ix
H

ot
el

M
iy

az
ak

i,
Ja

pa
n

19
94

15
4

m
,

83
65

0
to

n
H

M
O

2
24

0
se

rv
om

ot
or

O
ce

an
45

43
st

or
ie

s
O

sa
ka

W
T

C
B

ld
g.

O
sa

ka
,

Ja
pa

n
19

94
25

2
m

,
80

00
0

to
n

H
M

O
2

10
0

se
rv

om
ot

or
52

st
or

ie
s

D
ow

a
K

as
ai

P
ho

en
ix

T
ow

er
O

sa
ka

,
Ja

pa
n

19
95

14
5

m
,

26
00

0
to

n,
H

M
O

2
84

se
rv

om
ot

or
28

st
or

ie
s

(O
U

O
X

)
R

in
ku

G
at

e
T

ow
er

N
o

rt
h

B
ld

g.
O

sa
ka

,
Ja

p
an

19
95

25
5

m
,

75
00

0
to

n,
H

M
O

2
16

0
se

rv
om

ot
or

56
st

or
ie

s
H

ir
ob

e
M

iy
ak

e
B

ld
g.

T
ok

yo
,

Ja
pa

n
19

95
31

m
,

27
3

to
n,

H
M

O
1

2.
1

se
rv

om
ot

or
9

st
or

ie
s

Pl
az

a
Ic

hi
ha

ra
C

hi
ba

,
Ja

pa
n

19
95

61
m

,
57

60
to

n,
H

M
O

2
14

se
rv

om
ot

or
12

st
or

ie
s

T
C

T
ow

er
K

ao
H

su
ng

,
T

ai
w

an
19

96
85

st
or

ie
s

H
M

O
2

35
0

se
rv

om
ot

or
R

in
ku

G
at

e
T

ow
er

N
o

rt
h

B
ld

g.
O

sa
ka

,
Ja

pa
n

19
96

25
5.

3
m

,
56

st
or

ie
s

H
M

O
2

80
se

rv
om

ot
or

H
er

bi
s

O
sa

ka
B

ld
g.

O
sa

ka
,

Ja
pa

n
19

97
19

0
m

,
40

st
or

ie
s

H
M

O
1

15
8

se
rv

om
ot

or
It

oy
am

a
T

ow
er

T
ok

yo
,

Ja
pa

n
19

97
H

M
O

N
an

ji
ng

T
ow

er
N

an
ji

ng
,

C
hi

na
19

97
/9

8
3

1
0

m
A

M
O

1
60

hy
dr

au
li

c
Ja

pa
n

O
T

IS
E

le
va

to
r

T
es

t
T

ow
er

C
hi

ba
,

Ja
pa

n
19

98
H

M
O

JR
-O

da
ky

u
C

om
m

un
ic

at
io

n
B

ld
g.

T
ok

yo
,

Ja
pa

n
19

98
A

M
O

B
un

ka
F

as
hi

on
C

ol
le

ge
T

o
k

y
o

,J
ap

an
19

98
93

m
,

24
00

0
to

n
H

M
O

+
T

M
O

2
3

se
rv

om
ot

or
O

ita
O

as
is

H
ib

o
ra

B
ld

g.
O

it
a,

Ja
pa

n
19

98
10

1
m

,
20

00
0

to
n,

H
M

O
2

3
cy

li
nd

ri
ca

l
lin

ea
r-

21
st

or
ie

s
in

du
ct

io
n-

se
rv

om
ot

or
S

ot
et

su
T

ak
as

hi
m

ay
a

B
ld

g.
Ja

pa
n

11
5m

H
M

O
2

61

rJ
).

(1
)

0 l""
'+ o·

T
A

B
L

E
17

.2
S

u
m

m
a

ry
o

f
B

ri
d

g
e

T
o

w
e

rs
E

m
p

lo
yi

n
g

A
ct

iv
e

C
o

n
tr

o
l

D
u

ri
n

g
E

re
ct

io
n

~
..

-.
.J

F
re

q
u

e
n

cy
M

o
v
in

g
m

a
ss

,
N

o.
o

f
N

H
e

ig
h

t,
ra

n
g

e
m

a
ss

ra
ti

o
co

n
tr

o
lle

d
:c: ~

N
a

m
e

o
f

b
ri

d
g

e
Y

ea
rs

e
m

p
lo

ye
d

w
e

ig
h

t
(H

z)
(%

1)
C

o
n

tr
o

l
a

lg
o

ri
th

m
m

o
d

e
s

sr ~ s:
R

ai
nb

ow
B

ri
dg

e
o

P
yl

on
1

19
91

-1
99

2
11

9m
4

8
0

0
to

n
f

0.
26

-0
.9

5
6

to
n

x
2

F
ee

db
ac

k
co

nt
ro

l
3

0 ~
0.

6
l""

'+
~

D
V

F
B

2
0

P
yl

on
2

19
91

-1
99

2
11

7m
4

8
0

0
to

n
f

0.
26

-0
.5

5
2

to
n

1
- rJ).

0.
14

~ fZ
l

T
su

ru
m

i-
T

su
ba

sa
B

ri
dg

e
'

19
92

-1
99

3
1

8
3

m
3

5
6

0
to

n
f

0.
27

--
0.

99
1

0
to

n
x

2
O

pt
im

al
re

gu
la

to
r

1
l""

'+
(1

)

0.
16

D
V

F
B

S fZ
l

H
ak

uc
ho

B
ri

dg
e

P
yl

on
1

19
92

-1
99

4
12

7.
9m

2
4

0
0

to
n

f
0.

13
--

0.
68

9
to

n
f

su
b-

op
ti

m
al

fe
ed

ba
ck

co
nt

ro
l

0.
4

P
yl

on
2

19
92

-1
99

4
13

1
m

2
5

0
0

to
n

f
0.

13
--

0.
68

4
to

n
x

2
D

V
F

B
0.

36
A

ka
sh

i
K

ai
ky

o
B

ri
dg

e
P

yl
on

s
1

&
2

19
93

-1
99

5
29

3
m

24
,6

50
to

n
f

-0
.1

2
7

-
28

to
n

x
2

O
pt

im
al

re
gu

la
to

r
0.

8
D

V
F

B
M

ei
ko

-C
en

tr
al

B
ri

dg
e

'
P

yl
on

1
19

94
-1

99
5

19
0

m
62

00
to

n
f

0.
18

--
0.

42
8

to
n

x
2

R
oo

F
ee

db
ac

k
co

nt
ro

l
0.

98
-1

.1
5

P
yl

on
2

19
94

-1
99

5
19

0
m

62
00

to
n

f
0.

16
-0

.2
5

0.
17

--
0.

38
1s

t
K

ur
us

hi
m

a
B

ri
dg

e
P

yl
on

1
19

95
-1

99
7

11
2m

16
00

to
nf

0.
23

-1
.6

7
6

to
n

x
2

S
ub

-o
pt

im
al

re
gu

la
to

r
co

nt
ro

l
3

0.
15

-2
.0

5
P

yl
on

2
19

95
-1

99
7

14
5m

2
4

0
0

to
n

f
0.

17
-1

.7
0

1
0

to
n

x
2

H
oo

F
ee

db
ac

k
co

nt
ro

l
3

0.
3-

2.
6

2n
d

K
ur

us
hi

m
a

B
ri

dg
e

P
yl

on
1

19
94

-1
99

7
16

6
m

44
07

to
n

f
0.

17
-1

.0
6

1
0

to
n

x
2

D
V

F
B

/R
oo

2
0.

41
P

yl
on

2
19

95
-1

99
7

14
3m

4
0

0
0

to
n

f
0.

20
-1

.4
5

1
0

to
n

x
2

F
uz

zy
co

nt
ro

l
m

or
e

th
an

3
0.

54
-1

.0
1

(c
on

ti
nu

ed
)

t W

t "
.

T
A

B
L

E
17

.2
(c

o
n

ti
n

u
e

d
)

N
a

m
e

o
f

b
ri

d
g

e

3r
d

K
ur

us
hi

m
a

B
ri

dg
e

P
yl

on
1

P
yl

on
2

N
ak

aj
im

a
B

ri
dg

e"

F
re

q
u

e
n

cy
M

o
v
in

g
m

a
ss

,
H

e
ig

h
t,

ra
n

g
e

m
a

ss
ra

ti
o

Y
ea

rs
e

m
p

lo
ye

d
w

e
ig

h
t

(H
z)

(%
1)

C
o

n
tr

o
l

a
lg

o
ri

th
m

19
95

-1
99

6
17

9
m

45
00

to
n

f
0.

13
-0

.7
6

11
to

n
x

2
V

ar
ia

bl
e

ga
in

0.
3-

2.
4

D
V

F
B

19
94

-1
99

6
17

9
m

46
00

to
n

f
0.

13
-0

.7
6

11
to

n
x

2
H

oc
o

u
tp

u
t

fe
ed

ba
ck

co
nt

ro
l

0.
3-

2.
4

19
95

-1
99

6
71

m
5

8
0

to
n

f
0.

21
-1

.8
7

3.
5

to
n

x
2

F
uz

zy
co

nt
ro

l
1.

0-
10

.6

N
o.

o
f

co
n

tr
o

lle
d

m
o

d
e

s

3

1
P

er
ce

nt
of

fi
rs

t
m

o
d

al
m

as
s.

2
D

ir
ec

t
ve

lo
ci

ty
fe

ed
ba

ck
.

3
C

ab
le

-s
ta

ye
d

br
id

ge
.

O
th

er
s

ar
e

su
sp

en
si

on
br

id
ge

s.

Section 17.2 Hybrid Control Systems 429

sliding friction bearings, was shown to adequately reduce the structural response via a
nonlinear control policy, while not violating the constraints. Wu and Yang, 1997,
considered continuous sliding-mode control of the Nanjing Tower. This research was
conducted as part of the U.S.-People's Republic of China cooperative program
through the National Science Foundation.

A number of other interesting ideas employing the mass damper concept have been
proposed. Seto et aI., 1994, 1996, investigated the possibility of using active or passive
forces acting between two adjacent structures to reduce the seismic response of both
structures. As viewed from actual construction, many modern buildings might be
divided into two or more adjacent substructures with connecting elements. Mita et
aI., 1994a, b, and Chai and Feng, 1996, presented studies of mega-subcontrol systems
for tall buildings. The control system takes advantage of the megastructure configura­
tion by designing the substructures contained in the megastructure to act as multi­
degree-of-freedom tuned mass dampers. This approach implies that the subsystems
act as vibration absorbers, and hence no additional mass is required as would be the
case with a more conventional design. Craig et aI., 1993, showed that hybrid control
schemes, combining a simple active mass damper with the passive damping provided by
cladding-structure interaction (Pinelli et aI., 1995), doubled the reduction in peak
response due to passive damping alone.

Researchers have investigated various control methods for HMDs. For example,
Shing et aI., 1994, Kawatani et aI., 1994, Petti et aI., 1994, Suhardjo et aI., 1992, and
Spencer et al. [4], have considered optimal control methods for HMD controller design.
Tamura et aI., 1994, proposed a gain-scheduling technique in which the control gains
vary with the excitation level to account for stroke and control force limitations.
Similarly, Niiya et aI., 1994,proposed an ad hoc control algorithm for HMDs to account
for the limitations on the stroke. Adhikari and Yamaguchi, 1996, and Nonami et aI.,
1994, applied sliding-mode theory to control structures with HMD systems.

17.2.2 Hybrid Base Isolation

Another class of hybrid control systems that has been investigated by a number of
researchers is found in the active base isolation system, consisting of a passive base
isolation system combined with a control actuator to supplement the effects of the base
isolation system. Base isolation systems have been implemented on civil engineering
structures worldwide for a number of years because of their simplicity, reliability, and
effectiveness. Excellent review articles of base isolation systems are presented by Kelly,
1981, 1986; Buckle and Mayes, 1990; and Soong and Constantinou, 1994. However,
base isolation systems are passive systems and have only a limited ability to adapt to
changing demands for structural response reduction. With the addition of an active
control device to a base isolated structure, a higher level of performance can potentially
be achieved without a substantial increase in the cost (Reinhorn et aI., 1987), which is
very appealing from a practical viewpoint. Since base isolation by itself can reduce the
interstory drift and the absolute acceleration of the structure at the expense of large
absolute base displacement, the combination with active control is able both to achieve
low interstory drift and to limit the maximum base displacement with a single set of
control forces. A robust controller for uncertain linear base-isolated structures was
proposed by Kelly et aI., 1987 and more recently by Yoshida et aI., 1994,
Schmitendorf et aI., 1994, and Yang et aI., 1996.

430 Chapter 17 Controlling Civil Infrastructures

Several small-scale experiments have been performed to verify the effectiveness of
this class of systems in reducing the structural responses. Reinhorn and Riley, 1994,
performed analytical and experimental studies of a small-scale bridge with a sliding
hybrid isolation system in which a control actuator was employed between the sliding
surface and the ground to supplement the base isolation system.

Also mentioned in this context is another type of hybrid base isolation system that
employs a semiactive, friction-controllable fluid bearing in the isolation system. Feng et
al., 1993, employed such bearings in a hybrid base isolation system in which the pres­
sure in the fluid could be varied to control the amount of friction at the isolation
surface. Yang et al., 1995a, b, investigated the use of a continuous sliding-mode control
and variable structure system for a base isolated structure with friction-controllable
bearings.

Because base isolation systems exhibit nonlinear behavior, researchers have devel­
oped various nonlinear control strategies including fuzzy control (Nagarajaiah, 1994),
neural network-based control (Venini and Wen, 1994; Ghaboussi et al., 1995), and
robust nonlinear control (Luo et al., 1996). In addition, Inaudi et al., 1993, studied
the use of frequency domain shaping techniques in designing controllers.

17.3 SEMIACTIVE CONTROL SYSTEMS

Control strategies based on semiactive devices appear to combine the best features of
passive and active control systems and to offer the greatest likelihood for near-term
acceptance of control technology as a viable means of protecting civil engineering
structural systems against earthquake and wind loading. The attention received in
recent years can be attributed to the fact that semiactive control devices offer the
adaptability of active control devices without requiring the associated large power
sources. In fact, many devices can operate on battery power, which is critical during
seismic events when the main power source to the structure may fail.

According to presently accepted definitions, a semiactive control device is one that
cannot inject mechanical energy into the controlled structural system (i.e., including the
structure and the control device) but has properties that can be controlled to optimally
reduce the responses of the system. Therefore, in contrast to active control devices,
semiactive control devices do not have the potential to destabilize (in the bounded
input/bounded output sense) the structural system. Preliminary studies indicate that
appropriately implemented semiactive systems perform significantly better than passive
devices and have the potential to achieve the majority of the performance of fully active
systems, thus allowing for the possibility of effective response reduction during a wide
array of dynamic loading conditions ([12]; Dyke et al., 1996a, b). Examples of such
devices will be discussed in this section, including variable-orifice fluid dampers, vari­
able-stiffness devices, variable-friction devices, controllable tuned liquid dampers, con­
trollable fluid dampers, and controllable impact dampers.

17.3.1 Variable-Orifice Dampers

One means of achieving a variable-damping device is to use a controllable, elec­
tromechanical, variable-orifice valve to alter the resistance to flow of a conventional
hydraulic fluid damper. A schematic of such a device is given in Figure 17.10. The
concept of applying this type of variable-damping device to control the motion of

434 Chapter 17 Controlling Civil Infrastructures

device is proportional to the plastic viscosity and inversely proportional to the square of
the maximum field-induced yield stress [13, 15]. This means that for comparable
mechanical performance the amount of active fluid needed in an MR fluid device will
be about two orders of magnitude smaller than that of an ER device.

From a practical application perspective, an advantage of MR fluids is the
ancillary power supply needed to control the fluid. Although the total energy and
power requirements for comparably performing MR and ER devices are approxi­
mately equal [13, 15], only MR devices can be powered directly from common,
low-voltage sources. Furthermore, standard electrical connectors, wires, and feed­
throughs can be reliably used, even in mechanically aggressive and dirty environ­
ments, without fear of dielectric breakdown. This aspect is particularly important
in cost-sensitive applications.

Another advantage of MR fluids is their relative insensitivity to temperature
extremes and contaminants. Carlson and Weiss [14] indicated that the achievable
yield stress of an MR fluid is an order of magnitude greater than its ER counterpart
and that MR fluids can operate at temperatures from -40 to 150°C, with only slight
variations in the yield stress. This arises from the fact that the magnetic polarization of
the particles, and therefore the yield stress of the MR fluid, is not strongly influenced by
temperature variations. Similarly, contaminants (e.g., moisture) have little effect on the
fluid's magnetic properties. A summary of the properties of both MR and ER fluids is
given in Table 17.3.

The future of MR devices for civil engineering applications appears to be quite
bright. More details regarding the application of MR technology to control of civil
engineering structures are given in section 17.4.

17.3.5 Semiactive Impact Dampers

Passive impact dampers have been around for many years and have been used very
successfully to reduce vibration and noise in turbines and gear cases. Studies of multi­
particle dampers under random excitation (Papalou and Masri, 1994) have shown that
significant vibration reduction can be achieved in lightly damped systems with a rela­
tively small multiparticle impact damper. Single particle dampers of the same total mass
give greater vibration reduction in certain frequency bands but may have little or no
effect in other frequency bands. To remedy this defect, semiactive control has been

TABLE 17.3 Summary of the Properties of Today's MR and ER Fluids

Property

Maximum yield stress, ty(field)

Maximum field
Plastic viscosity, n;
Operable temperature range
Stability
Response time
Density

1Jp/~(field)
Maximum energy density
Power supply (typical)

MR Fluids

So-100 kPa
I'V 2S0 kA/m
0.1-1.0 Pa-s

-40 to IS0°C
Unaffected by most impurities

milliseconds
3 to 4 g/cm 3

10- 10-10-11 s/Pa
0.1 Joules/em'

2-2S V
1-2 A

ER Fluids

2-S kPa
1'V4 kV/mm
0.1-1.0 Pa-s
+10 to 90°C

Cannot tolerate impurities
milliseconds
1 to 2 g/cm 3

10- 7-10-8 s/Pa
0.001 Joules/em'

2000-S000V
1-10 rnA

Section 17.4 Semiactive Control of Civil Engineering Structures 435

applied to impact dampers, such that only favorable impacts are permitted (Caughey et
aI., 1989; Masri et aI., 1989, 1994).

17.4 SEMIACTIVE CONTROL OF CIVIL
ENGINEERING STRUCTURES

Magnetorheological dampers are one of the most promising realizations of semi­
active dampers for application to full-scale civil structures. Spencer et aI., 1996, 1997;
[16], Dyke et aI., 1996a, b [12], and Carlson and Spencer, 1996, have recently conducted
pilot studies to demonstrate the efficacy of MR dampers for semiactive seismic response
control. Simulations and laboratory model experiments show that an MR damper, used
in conjunction with recently proposed acceleration feedback strategies, significantly
outperforms comparable passive damping configurations, while requiring only a frac­
tion of the input power needed by the active controller. Moreover, the technology has
been demonstrated to be scalable to devices sufficiently large for implementation in civil
engineering structures. This section summarizes these efforts.

17.4.1 Scale-Model Studies

Figure 17.13 is a diagram of the three-story model building that was employed in
the pilot MR damper studies conducted at the Structural Dynamics and Control/
Earthquake Engineering Laboratory at the University of Notre Dame (see
www.nd.edu/r-quake/), The test structure used in this experiment is designed to be a
scale model of the prototype building discussed in Chung et aI., 1989, and is subject to
one-dimensional ground motion. A single magnetorheological (MR) damper is installed
between the ground and the first floor, as shown in Figure 17.13. The MR damper
employed here, the Lord SD-I000 linear MR fluid damper, is a small, monotube
damper designed for use in a semiactive suspension system in large on- and off-highway
vehicle seats. The SD-I000 damper is capable of providing a wide dynamic range of
force control for very modest input power levels. The damper is 3.8 em in diameter, 21.5
em long in the fully extended position, and has a ±2.5-cm stroke. An input power of 4
watts is required to operate the damper at its nominal maximum design current of
1 amp.

Because of the intrinsically nonlinear nature of all semiactive control devices,
development of control strategies that are practically implementable and can fully
utilize the capabilities of these unique devices is a challenging task. Various nonlinear
control strategies have been developed to take advantage of the particular character­
istics of the semiactive devices, including bang-bang control (McClamroch, et aI.,
1995), clipped optimal control (Dyke et aI., 1996a, b [12]; Patten et aI., 1994a, b),
bi-state control (Patten et aI., 1994a, b), fuzzy control methods (Sun et aI., 1994),
modulated homogeneous friction (Inaude, 1997), and adaptive nonlinear control
(Kamagata and Kobori, 1994). Caughey, 1993, proposed a variable-stiffness algo­
rithm that employed a semiactive implementation of the Reid spring (Reid, 1956)
as a structural element that could provide large amounts of damping for a very small
expenditure of control energy.

To evaluate the effectiveness of the semiactive control system employing the
MR damper, acceleration feedback control strategies (Dyke et aI., 1996a, b, [12])
based on H2 performance measures were implemented on the laboratory structure.

440 Chapter 17 Controlling Civil Infrastructures

type. Controllable fluid dampers provide a fascinating class of instances, with the
magnetorheological fluids offering attractive properties.

It turns out that models for such devices lead one into issues of hybrid control and
hysteresis, both of which are topics of considerable current interest in the controls
community.

In summary, the modern thrust toward control of civil structures is providing a
new opportunity for control engineers to make their work more understandable to the
public, while at the same time making a genuine technical, economic, and social con­
tribution.

And there are hundreds of interesting ideas to ponder!

ACKNOWLEDGMENTS

The research efforts of the authors are supported in part by National Science
Foundation Grant Nos. CMS 95-00301 and CMS 95-28083. The work of the second
author is supported in part by the Frank M. Freimann Chair in Electrical Engineering.
The authors are grateful for the contributions of Professors T. T. Soong and A. M.
Reinhorn of the State University of New York at Buffalo, Professor Y. Fujino of the
University of Tokyo, Japan, Professor K. Yoshida of Keio University, Japan, Professor
A. Nishitani ofWaseda University, Japan, and Professor K. Seto of Nihon University,
Japan. The authors would also like to thank the reviewers for their careful reading of
the manuscript and their helpful comments.

Related Chapters

• The automation and control of building environments is discussed in Chapter 16.

REFERENCES

[1] T. T. Soong, Active Structural Control: Theory and Practice, London: Longman Scientific
and Technical, 1990.

[2] Y. Fujino, T. T. Soong, and B. F. Spencer Jr., "Structural control: Basic concepts and
applications." Proc. ASCE Structures Congress XIV, Chicago, Illinois, pp. 1277-1287,
April 1996.

[3] G. W. Housner et al., "Structural control: Past, present and future." J. Engrg. Mech.,
ASCE, September 1997.

[4] B. F. Spencer Jr., J. Suhardjo, and M. K. Sain, "Frequency domain optimal control stra­
tegies for aseismic protection." J. Engrg. Mech., ASCE, Vol. 120, no. 1, pp. 135-159, 1994.

[5] B. F. Spencer Jr., M. K. Sain, C.-H. Won, D. C. Kaspari Jr., and P. M. Sain, "Reliability­
based measures of structural control robustness." Struct. Safety, Vol. 15, pp. 111-129, 1994.

[6] S. J. Dyke, B. F. Spencer Jr., P. Quast, and M. K. Sain, "The role of control-structure
interaction in protective system design." J. Engrg. Mech., ASCE, Vol. 121, no. 2, pp. 322­
338, 1995.

[7] D. P. Tomasula, B. F. Spencer Jr., and M. K. Sain, "Nonlinear structural control for
limiting extreme dynamic responses." J. Engrg. Mech., ASCE, Vol. 122, no. 3, pp. 218­
229, 1996.

References 441

[8] S. J. Dyke, B. F. Spencer Jr., P. Quast, M. K. Sain, D. C. Kaspari Jr., and T.T. Soong,
"Acceleration feedback control ofMDOF structures." J. Engrg. Mech., ASCE, Vol. 122,no.
9, pp. 907-918, 1996.

[9] T. Kobori, "Future direction on research and development of seismic-response-controlled
structure." Proc. 1st World Conf. on Struct. Control, Los Angeles, California, Panel:19-31,
August 1994.

[10] T. T. Soong and A. M. Reinhorn, "An overview of active and hybrid structural control
research in the U.S." The Struct. Dyn. Design of Tall Buildings, Vol. 2, pp. 192-209, 1993.

[11] Y. Fujino, "Recent research and developments on control of bridges under wind and traffic
excitations in Japan." Proc. Int. Workshop on Struct. Control, pp. 144-150, 1994.

[12] S. J. Dyke, B. F. Spencer Jr., M. K. Sain, and J. D. Carlson, "Seismic response reduction
using magnetorheological dampers." Proc. IFAC World Congress, San Francisco, CA, June
30-July 5, 1996.

[13] J. D. Carlson "The promise of controllable fluids." Proc. ofActuator 94 (H. Borgmann and
K. Lenz, eds.), AXON Technologie Consult GmbH, pp. 26~270, 1994.

[14] J. D. Carlson and K. D. Weiss, "A growing attraction to magnetic fluids." Machine Design,
pp. 61-65, August 1994.

[15] J. D. Carlson, D. M. Catanzarite, and K. A. St. Clair, "Commercial magneto-rheological
fluid devices." Proc. 5th Int. Conf. on ER Fluids, MR Fluids and Associated Technology,
University of Sheffield, UK, 1995.

[16] B. F. Spencer Jr., S. J. Dyke, M. K. Sain, and J. D. Carlson, "Phenomenological model of a
magnetorheological damper." J. Engrg. Mech., ASCE, Vol. 123, no. 3, pp. 230-238, 1997.

Chapter

18
ROBOT CONTROL

Bruno Siciliano

Editor's Summary

Where robotics is concerned, controls has been ahead of its time. Robotic controls has been a popular

research area for some time, yet the practical impact of this research has been limited. The robotics

industry remains small, and most production robots incorporate only basic control schemes such as

PIDs. But a number of encouraging signs herald progress. For the first time, robot shipments in North

America exceeded $1 billion recently. European manufacturers now sell tens of thousands of robots per

year, and new control technologies are starting to be exploited by industry.

This chapter discusses a number of techniques for robot control. In kinematic control, the inverse

kinematics of the robot are approximated so that the joint variables (e.g., joint angles) required for desired

robot effector position can be obtained. These joint angles can then be used as setpoint inputs to a

feedback loop that issues torque commands to the robot. Substantial performance improvements can

be gained by dynamic control in which a dynamic model for the robot is used. Desired trajectories for

velocities and accelerations of joint variables can then be specified and tracked. The next major step is

force control. This requires several innovations: on-line computation of inverse kinematics within the

feedback loop, coordinate transforms for control in the operational space rather than the robot joint

space, and a model for the environment. The benefit is that the force employed by the robot end effectors

can now be regulated, allowing, for example, precise tasks in elastic or compliant environments to be

undertaken.

If commercial robots are to perform the same sorts of activities that humans perform on a routine

basis, robot control laws must be integrated with vision feedback. The chapter discusses new developments

in vision-based control, specifically visual servoing in which a visual feedback control loop continuously

steers the robot-end effector toward the target. Hardware and software limitations that have kept such

techniques from being practical have now been overcome.

Bruno Siciliano is a professor in the Department of Computer and Systems Engineering at the

University of Naples. From 1996 to 1999 he chaired the IEEE CSS Technical Committee on

Manufacturing Automation and Robotic Control.

18.1 A HISTORICAL PERSPECTIVE

Robotics is concerned with the study of those machines that can replace human beings
in the execution of a task, as regards both physical activity and decision making. As
such, robotics has attracted an ever increasing number of control researchers in the last
20 years, producing a visible cross-fertilization between the two fields. This is rather
evident from the number of publications and annual conferences devoting much space
to control problems in robotics.

442

Section 18.2 Kinematic Control 443

As automation becomes more prevalent in industry and as typical bulky robots are
replaced with new systems that are smaller, faster, lighter, and smarter, traditional PID
control will no longer be a satisfactory means of control in many situations. Optimum
performance of industrial automation systems, especially if they include robots, will
demand the use of such technologies as robust control, adaptive control, and intelligent
control.

Despite many years of robotics research involving a large number of scientists and
engineers, there has been some disappointment about the fairly slow progress in
robotics compared to human performance. Nowadays, industrial robots in nearly all
applications are purely position-controlled devices, still far removed from the human
arm's performance with its amazingly low own weight against load ratio, force/torque­
controlled muscular actuation, and on-line sensory feedback through vision and touch.

For many years, robot manufacturers have not integrated available research
results into their robot controllers. Nevertheless, a number of factors indicate that
the field is becoming mature for a transfer of technology from the robotics control
research community to the robotics industry.

First of all, industrial robots are much cheaper now-approximately a factor of
four-than 10 years ago, while the peripheral costs, for example, for precise part feed­
ing devices, have remained substantially the same. Interestingly enough, there are no
big North American manufacturers left-with the noticeable exception of Adept­
while the big European manufacturers ABB and Kuka have been gaining excellent
positions selling as many as 10,000 robots per year. Just recently, European manufac­
turers have started to focus on control improvements [1]. The specificareas of improve­
ment include:

• Intuitive programming with six-degree-of-freedom manual devices.

• Model-based dynamic control.
• Open control architectures for on-line sensory feedback.

In what follows, some key issues in robot control technology are discussed. These
offer the potential for the design of a new generation of enhanced industrial robot
controllers. For the purpose of discussion, the focus will be on conventional robot
manipulators consisting of a sequence of rigid links connected by joints with an end
effector performing the task required of the robot.

18.2 KINEMATIC CONTROL

The problem of controlling a robot is to determine the time profile of the generalized
forces (forces or torques) to be developed by the joint actuators so as to guarantee
execution of the commanded task while satisfying given transient and steady-state
requirements. The task may involve either the execution of specified motions for a
robot operating in free space, or the execution of specified motions and contact forces
for a robot whose end effector is constrained by the environment.

Several techniques can be employed for controlling a robot. The technique fol­
lowed, as well as the way it is implemented, may have a significant influence on the
robot performance and on the possible range of applications. For instance, the need for
trajectory tracking control in the Cartesian space may lead to hardware/software imple-

444 Chapter 18 Robot Control

mentations that differ from those allowing point-to-point control where only reaching
of the final position is of concern. On the other hand, the robot mechanical design
influences the control scheme utilized. For instance, the control problem of a Cartesian
robot is substantially different from that of an anthropomorphic robot, that is, a robot
whose mechanical structure resembles that of the human arm.

Regardless of the specific type of mechanical robot, task specification (end-effector
motion and forces) is usually carried out in the so-called operational space, whereas
control actions (joint actuator generalized forces) are performed in the joint space.
Therefore, an inverse kinematics problem arises which consists of computing the
joint motion corresponding to the given end-effector motion.

The kinematic model of a robot can be written in the form

x = k(q) (18.1)

where q denotes the vector of joint variables, x denotes the vector of task variables­
typically three position coordinates and three Euler angles, hereafter called pose-and
k(·) is the direct kinematics function that can be derived for any robot structure accord­
ing to well-established procedures, for example, based on the Denavit-Hartenberg
parameters [2].

The inverse kinematics problem-eomputing q given x in (18.1)-cannot be solved
in closed form for robots that do not possess a simple geometry, for example, a six-joint
robot with a spherical wrist. In such cases, it is worth considering the differential
kinematics in the form

x= J(q)q (18.2)

where J = adkjadq is the robot Jacobian. By exploiting the linearity of (18.2) in q, the
inverse differential kinematics problem can be solved for any robot geometry; joint
velocities can be obtained at the current joint configuration (resolved-rate motion [3]),
and then joint positions can be computed by integrating the velocity solution over time
with known initial conditions.

Assuming that J is square and full-rank, the implementation of the inverse kine­
matics algorithm leads to the scheme in Figure 18.1, where a closed loop has been
introduced to avoid typical solution drift owing to numerical integration. A feedback
correction term is used, based on the task space error between the desired and actual
end-effector poses (Xd - x), with K being a positive definite matrix gain [4].

This approach allows a natural treatment of singularities (of the matrix J) and
redundancy, that is, when more joint variables than task variables are available. The
most general solution can be cast in the form [5]

Xd---------,

+

x

k(·)

q

Figure 18.1 Closed-loop inverse kinematics
algorithm.

Section 18.2 Kinematic Control

q =]t(q)x + (I _]t(q)](q))qo

445

(18.3)

where Jt denotes a right pseudo-inverse of the Jacobian-for instance,
J t = JT(JJT)-l, but a damped least-squares inverse is to be used in the neighborhood
of singularities [6]. The homogeneous term (I - Jt J)qo is available to meet additional
task requirements-through the choice of qo-in the case of redundancy [7]. Typically,
a local optimization of a performance index can be carried out by choosing qo as the
gradient of such index.

Despite its simplicity and applicability to any geometry, it should be stressed that
the inverse kinematics problem for most industrial robots is not solved at the differ­
ential kinematics level. For this reason, considerable errors typically occur for robots
with complex geometry, for example, with a nonspherical wrist as in several current
designs. Similarly, singularities and redundancy are not handled in the robot controller.
Only recently, a successful implementation of a solution of the type shown in Figure
18.1 can be found in the so-called Space Mouse developed at DLR, which Staubli and
Kuka have now integrated in the programming panels of their robots.

No matter what technique is used, a joint space control scheme can be designed
that allows tracking of the reference inputs as obtained by the inverse kinematics
solution. However, this two-stage solution has the drawback that a joint space control
scheme does not influence the task space variables that are controlled in an open-loop
fashion through the robot mechanical structure. It is then clear that any uncertainty of
the structure (construction tolerance, lack of calibration, gear backlash, elasticity) or
any imprecision in the knowledge of the end-effector pose relative to an object to
manipulate causes a loss of accuracy in the task space variables. Therefore, a joint
space controller performs well for robot motion in free space, whereas an operational
space controller should be adopted for constrained robot motion, as is discussed later in
this chapter.

The driving system of the joints also has an effect on the type of control strategy
used. Most industrial robots are actuated by electric motors with reduction gears of
high ratios. The presence of gears tends to linearize system dynamics and thus to
decouple the joints in view of the reduction of nonlinearity effects. The price to pay,
however, is the occurrence of joint friction, elasticity, and backlash. These factors can
limit system performance to a greater extent than inertial and Coriolis forces, that is,
those forces generated by configuration-dependent inertias. Therefore, a typical indus­
trial robot controller adopts a so-called kinematic control strategy according to which
each joint of the robot is regarded as an independent (linear) system and coupling
effects between joints are treated as disturbances [8], that is, only the kinematics is
taken into account in the first stage, and no attempt is made to account for the dynamic
interaction due to varying configurations during motion. A block scheme of kinematic
control is illustrated in Figure 18.2 where standard PID controllers are used to generate
the input driving torques 7: at the joints. The PID gains are usually pretuned by the
manufacturer for optimum dynamic and static performance. In this respect, ABB was
among the first to perform gain-scheduling in their controllers to adjust the gains for
various inertial configurations of the robots. With this strategy, the joint servos are
voltage- (or velocity-) controlled and are typically not accessible to the user.

On the other hand, a robot actuated with direct drives eliminates the drawbacks
due to friction, elasticity, and backlash, but the effects of nonlinearities and couplings

446 Chapter 18 Robot Control

q

Figure 18.2 Kinematic control.

between the joints become relevant. Very few industrial robots with anthropomorphic
structure adopt this kind of actuation, while direct drives can be found in SCARA
(Selective Compliance Articulated Robot Arm) robots. A breakthrough in tracking
performance, even for gear-driven robots operating at high speeds, can be gained by
resorting to a so-called dynamic control strategy where the robot dynamic model is
explicitly used [13].

18.3 DYNAMIC CONTROL

The dynamic model of a robot can be written in the form [2]

B(q)q + C(q, q)q +g(q) = r (18.4)

where B is the symmetric and positive definite inertia matrix, Cq is the vector of
Coriolis and centrifugal torques (with C a suitable factorizing matrix), and g is the
vector of gravitational torques.

A notable physical property of the dynamic model is the linearity in the para­
meters, that is, the equations of motion (18.4) can be rewritten in the form [9]

Y(q,q,q)1r= r (18.5)

where n is a vector of dynamic parameters-in general, the mass, the three components
of the first moment of inertia, and the six components of the inertia tensor for each
link-and Y is a factorizing matrix (called regressor), which is a function of joint
positions, velocities, and accelerations. Notice that not all the dynamic parameters
for each link explicitly appear in the dynamic model, and a suitable minimization
can be sought by recognizing linear combinations of more parameters [10].

Since the dynamic parameters of an industrial robot are not known, property
(18.5) can be exploited to pursue a linear dynamic parameter identification, which is a
natural prelude to designing a dynamic control scheme. On the assumption that the
kinematic parameters in the matrix Yare known with good accuracy, for example, as a
result of a kinematic calibration [11], measurements of joint positions q, velocities q,
and accelerations qare required. Joint positions and velocities can be measured while
numerical reconstruction of accelerations is needed. This operation can be performed
on the basis of the position and velocity values recorded during the execution of
suitable motion trajectories imposed on the robot. These should preferably be of poly­
nomial type but should not excite unmodeled dynamic effects such as joint elasticity or
link flexibility. As regards joint torques, since no torque sensors are available at the
joints, they can be evaluated from current measurements in the typical case of electric

Section 18.3 Dynamic Control 447

actuators. Eventually, they can be computed from wrist force measurements, if such
sensors are available.

If measurements of joint torques, positions, velocities, and accelerations have been
obtained at given time instants tl' ... , tN along a given trajectory, then

(18.6)

The number of time instants sets the number of measurements to perform and should
be large enough to avoid ill-conditioning of matrix Y. Solving (18.6) by a least-squares
technique leads to the solution in the form

(18.7)

where (yTy)-1 yT is a left pseudo-inverse matrix of Y.
The technique presented here can be applied even for a reduced number of para­

meters-say that some of them are accurately known-and eventually to identify the
dynamic parameters of an unknown, rigidly grasped payload at the robot's end effec­
tor. In that case, it is sufficient to regard the payload as a structural modification of the
last link.

An alternative way to write the dynamic model of a robot is in terms of energy
conservation (Hamiltonian form), that is,

~~ (il B(q)q) = il(r - g) (18.8)

where the lefthand side is the time derivative of the kinetic energy and the righthand
side represents the power generated by the torques acting on the joints (driving torques
minus gravitational torques). Expression (18.8) does not mean that Coriolis and cen­
trifugal terms in (18.4) have disappeared, but merely that they are now accounted for
via the time derivative of the inertia matrix. In fact, it can be shown that a proper
factorization of the matrix C can be found so that the matrix iJ - 2C is skew-sym­
metric, which constitutes another notable property of the dynamic model of a robot.

This alternative form leads to deriving a simple control scheme to regulate the joint
variables q to a desired constant set point qd. The key point is to choose a controller so
as to mimic the effects of equipping each joint with a passive mechanical device of the
spring and damper type. In that case, the associated mechanical energy can be written
as

(18.9)

where q= qd - q and Kp is a positive definite (usually diagonal) matrix. Using such
virtual mechanical energy as a candidate Lyapunov function, it is worth taking the time
derivative of (18.9), which in view of (18.8) can be written as

448

v= qT(r - g(q) - Kp"'q).

Chapter 18 Robot Control

(18.10)

At this point, choosing a PD control with gravity compensation as [12]

r = Kp q - Kn q +g(q)

with Kn a positive definite (diagonal) matrix, gives

V· .TK· 0= -q nq ::s

(18.11)

(18.12)

which is negative semi-definite. Observing that V is identically zero only if q= 0 (via
LaSalle's theorem) implies that q--+ 0 asymptotically.

Apart from the sole model-based requirement of gravity compensation, the
controller (18.11) matches the physical intuition that a joint PD controller can stabilize
the mechanical system in spite of all the nonlinearities and coupling effects! This out­
standing result is a major one in the robot control literature. It serves to demonstrate
why a linear independent joint control, as is to be found in most industrial robot
controllers, guarantees good positioning accuracy. If the desired trajectory is time­
varying, the simple adjustment of adding a velocity feedforward action Knqd-and
even an acceleration term qd-to (18.11) guarantees reasonably good performance.
Furthermore, since gravity is usually not known, the replacement of the gravity com­
pensation with an integral action on the joint error K I Jt qd~-leading to a complete
independent joint PID control-is the typical recipe adopted in industrial robot con­
trollers for all practical purposes. Indeed, it is possible to prove that with a suitable
choice of the PID gains, asymptotic stability can still be guaranteed [12]. A scheme for
PID control with velocity and acceleration feedforward is illustrated in Figure 18.3.
Clearly, if joint velocity transducers are not available (as in most industrial robots), a
truly derivative action on the joint position error is present in lieu of the proportional
action on the joint velocity error.

Whenever the required operational speeds become too high, or better tracking
accuracy is desired, a simple PID controller no longer suffices, and a full dynamic
model-based control is to be designed. Dynamic model compensation can be carried
out in two ways: in a feedforward fashion and in a feedback fashion. The former leads

+
+ I'V'L-_-------..

+
Robot q.

Figure 18.3 PID control with velocity and acceleration feedforward.

Section 18.3 Dynamic Control 449

to the so-called computed torque strategy [14], while the latter can be cast in the frame­
work of the inverse dynamics control strategy for nonlinear mechanical systems.

The essence of computedtorque control is illustrated by the block scheme in Figure
18.4 where a nonlinear model-based feedforward action is added to the linear feedback
control action and the linear feedforward action. This further action is computed on the
basis of the desired joint trajectory (position, velocity, and acceleration) and compen­
sates the nonlinear coupling terms due to inertial, Coriolis, centrifugal, and gravita­
tional torques that vary during robot motion. Even in the case of imperfect dynamic
modeling, the computed torque technique has the advantage of alleviating the distur­
bance rejection task for the feedback control structure. In other words, the gains of the
linear action need not be so large for good rejection since the actual disturbance is much
smaller than without the nonlinear model-based action. Nonetheless, only a partial
feedforward action may be performed so as to compensate those terms of the dynamic
model that give the most relevant contributions during robot motion. Since inertial and
gravitational terms dominate velocity-dependent terms (at operational joint speeds not
greater than a few radians per second), a partial compensation can be achieved by
computing only the gravitational torques and the inertial torques due to the diagonal
elements of the inertia matrix. In this way, only the terms depending on the global robot
configuration are compensated, while those deriving from motion interaction with the
other joints are not.

For high tracking performance, the "best" controller can be found through a
nonlinear model-based feedback action (inverse dynamics control) as [15]

r = B(q)y +n(q, q) (18.13)

with n(q, q) = C(q, q)q +g(q). Thanks to the positive definiteness of the inertia matrix,
the control law (18.13) provides a global feedback linearization of the system described
by (18.4) into the equivalent system

(18.14)

which is thus linear and decoupled. The design of the new control input y can be carried
out according to well-established techniques for linear systems, for example, pole place­
ment, and takes on the general form

Figure 18.4 Computed torque control.

450 Chapter 18 Robot Control

(18.15)

with K p and Kn positive definite (diagonal) matrices. The resulting block scheme is
illustrated in Figure 18.5, in which two feedback loops are represented: an inner loop
based on the robot dynamic model and an outer loop operating on the tracking error.
The function of the inner loop is to obtain a linear and decoupled input/output relation­
ship, whereas the outer loop is required to stabilize the overall system. The controller
design for the outer loop is simplified since it operates on a linear and time-invariant
system. Notice that the implementation of this control scheme requires computation of
the inertia matrix and the vector of Coriolis, centrifugal, and gravitational terms. These
terms must be computed on-line since control is now based on nonlinear feedback of
the current system state. Thus it is not possible to precompute the terms off-line as can
be done for computed torque control.

This technique of nonlinear compensation and decoupling is very attractive from a
control viewpoint since the nonlinear and coupled robot dynamics is replaced with a set
of linear and decoupled second-order subsystems. Nonetheless, this technique is based
on the assumption of perfect cancellation of dynamic terms, and then it is quite natural
to raise questions about sensitivity and robustness problems due to unavoidably imper­
fect compensation.

Implementation of a dynamic control strategy is based on achieving torque control
at the joint servos, which is virtually impossible to realize since industrial robot con­
trollers are typically not accessible to the user. Even then, the parameters of the
dynamic model should be accurately known and the equations of motion should be
computed in real time. These conditions are difficult to verify in practice. On one hand,
the model is usually known with a certain degree of uncertainty due to imperfect
knowledge of robot mechanical parameters, existence of unmodeled dynamics, and
model dependence on end-effector payloads not exactly known and thus not perfectly
compensated. On the other hand, inverse dynamics computation is to be performed at
sampling times of the order of a millisecond so as to ensure that the assumption of
operating in the continuous time domain is realistic. This may pose severe constraints
on the hardware/software architecture of the control system. In such cases, it may be
advisable to lighten the computation of inverse dynamics and compute only the domi­
nant terms.

Figure 18.5 Inverse dynamics control.

Section 18.4 Force Control 451

In order to cope with imperfect dynamic compensation, a great body of robot
control research has been devoted to the design of robust and adaptive controllers;
see [17] and [18], respectively, for two valuable surveys of the two classes of controllers.
These control schemes are not treated in detail here, because only very recently have
industrial robot manufacturers become receptive to dynamic control. Before advanced
control techniques can become widespread in industrial robots, open control architec­
tures will likely need to be adopted. In this respect, it should be mentioned that an early
attempt to realize an open controller was carried out by Tecnospazio a few years ago
for the controllers of Comau industrial robots [16]. More recently, an open control
architecture is being developed at DLR using the industrial standard real-time multi­
tasking operating system VxWorks. Hopefully, such an auspicious trend will be fol­
lowed up by several robot manufacturers.

For the purpose of the present chapter, however, it is worth emphasizing the
conceptual difference between robust and adaptive control, although both attempt to
accomplish basically the same goal, that is, control under uncertainty. An adaptive
controller incorporates some sort of on-line parameter estimation, whereas a robust
controller is usually a fixed controller designed to satisfy performance specifications
over a given range of uncertainty. Therefore, in general, robust controllers provide a
natural rejection to unmodeled dynamics and external disturbances, whereas adaptive
controllers rely on an accurate analytical dynamic model, the only uncertainty being in
the knowledge of the dynamic parameters. On the other hand, some adaptive control­
lers can learn from past experience and usually give a smoother time behavior of the
control torques, whereas some estimate of the uncertainty needs to be found for a
robust controller so as to impose control inputs that the mechanical structure can
bear. Robust controllers can be of the high-gain [19], sliding-mode [20], Lyapunov­
based [21], or dynamic compensation [22] type, while most adaptive controllers exploit
the property of linearity in the dynamic parameters expressed by (15.5) and can be
of direct [23], indirect [24], or composite [25] type.

18.4 FORCE CONTROL

One of the fundamental requirements for the success of a manipulation task is the
capability to handle interactions between robot and environment. Typical examples
of manipulation tasks are mechanical part mating, object contour surface tracking,
and employment of tools for machining mechanical parts.

The success of an interaction task undertaken with motion control algorithms
depends entirely on planning accuracy and control performance. To this end, it is
crucial to have a detailed model of both robot (kinematics and dynamics) and environ­
ment (mechanical features and geometry). A model of the robot can be known with
enough precision, but a detailed description of the environment is difficult to obtain.
Planning errors may result in a trajectory assigned to the end effector which is no longer
suitable for correct task execution. To understand the importance of this implication, it
is sufficient to observe that to perform a mechanical part mating with a positional
approach, the relative positioning of the parts should be guaranteed with an accuracy
of an order of magnitude greater than part mechanical tolerance. Once the absolute
position of one part is exactly known, the robot should guide the motion of the other
with the same accuracy.

452 Chapter 18 Robot Control

When the robot is governed by position control algorithms, any deviation of the
actual trajectory from the reference one provokes a reaction of the control system. This
tends to minimize such deviation independently of the generating cause. Hence, if the
deviation from the planned trajectory is due to the interaction of the robot with the
environment, reaction forces arise and the position control attempts to reduce the
deviation as it would for any disturbance opposing the end-effector motion. In this
case, however, the effect of the control action may be an increase in contact force which
is not accompanied by a decrease in deviation. This situation may lead to an increase of
contact force until the natural limit set by saturation of robot actuators is encountered,
or mechanical crisis of one of the elements of the interaction takes place. The higher the
environment stiffness and position control accuracy, the more easily an unstable con­
tact case can occur. In fact, large constraint reaction forces result from deformation of a
stiff environment under a strong position control action.

The quantity that describes the state of interaction more effectively is the contact
force at the robot's end effector. High values of contact force are generally undesirable
because they may stress both the robot and the manipulated object [26]. For appro­
priate handling of interactions, it is then necessary to consider force control strategies,
either in an indirect way via a suitable use of position control laws or in a direct way via
truly force control laws [27].

Since contact forces are naturally described in the operational space, it is conve­
nient to refer to an operational space control strategy [28]. This is radically different
from the above kinematic and dynamic control strategies which require the pre-inver­
sion of the end-effector motion into equivalent joint motions. Since the user typically
specifies the motion in terms of operational space variables, the measured joint space
variables can be transformed into the corresponding operational space variables
through direct kinematics relations. Comparing the desired variables with the recon­
structed variables allows designing feedback control loops where trajectory inversion is
replaced with a suitable coordinate transformation embedded in the feedback loop.
This transformation typically requires the computation of the robot Jacobian. In par­
ticular, the static model of the robot, which is dual to the differential kinematics model
in (18.2), is

T = JT(q)f (18.16)

where f is the equivalent force at the end effector.
It is not difficult to show that the counterpart of the joint space PD control with

gravity compensation (18.11) in the operational space is [29]

T = JT(q)Kpx - KD q+ g(q) (18.17)

where x= Xd - x denotes the error between the desired and actual task space variables.
Differently from (11), the virtual spring no longer acts at the joints but at the end
effector. Hence the elastic force Kp x needs to be transformed into equivalent joint
torques through a relationship similar to (18.16). Asymptotic stability still holds as
long as the Jacobian is full rank. Similarly, the counterpart of the joint space inverse
dynamics control (18.13, 18.15) in the operational space differs only for the choice of
the resolved acceleration [30] as

Section 18.4 Force Control 453

(18.18)

where the time derivative of the differential kinematics model (15.2) has been exploited.
As above, singularities of J may give trouble, and the inverse needs to be replaced with
a pseudo-inverse for a redundant robot.

Compared to joint space control schemes, operational control schemes suffer from
considerable computational complexity in view of the necessity to handle the inverse
kinematics inside the feedback loop, that is, on-line. Therefore, such schemes have not
yet been implemented on industrial robot controllers. Nevertheless, they are fundamen­
tal to design force control schemes as shown next and as a premise for on-line sensory
feedback control schemes such as the visual servoing strategy presented in the next
section.

If the end effector is in contact with the environment, an additional term _JT (q)f
arises on the righthand side of (18.1) where f is the vector of contact forces exerted by
the robot's end effector on the environment. Hence, for the PD control scheme with
gravity compensation (18.17), at the equilibrium the task space error is

- -K-1/x- p (18.19)

under the assumption of a full-rank Jacobian.
For a better understanding of the interaction between robot and environment, it is

necessary to have an analytical description of contact forces. A real contact is a natu­
rally distributed phenomenon in which the local characteristics of both robot and
environment are involved. In addition, friction effects between parts typically exist
which greatly complicate the nature of the contact itself. A detailed description of
the contact is demanding from a modeling viewpoint. To point out the fundamental
aspects of interaction control, it is convenient to resort to a simple but significant model
of contact. To this purpose, a decoupled elastically compliant environment is consid­
ered, which is described by the model

f =K(x - xe) (18.20)

where K is the positive semi-definite stiffness matrix and Xe denotes the rest pose of the
undeformed environment. Folding (18.20) into (18.19) gives at the equilibrium:

(18.21)

(18.22)

These equations reveal that the control (18.17) behaves as a stiffness control [32] in that
the interaction of the robot with the environment is influenced by the mutual weight of
the active stiffness Kp imposed by the controller versus the passive stiffness K offered
by the environment. For a given environment stiffness, according to the prescribed
interaction task, one may choose large values of the elements of Kp for those directions
along which the environment has to comply and small values of the elements of Kp for
those directions along which the robot has to comply.

The dynamic extension of stiffness control is straightforwardly derived by consid­
ering the operational space inverse dynamics control (18.13, 18.18)and modifying r and

454 Chapter 18 Robot Control

y so as to cope with the presence of contact forces. On the assumption of having a wrist
force sensor to measure the contact force, the following impedance control [31] can be
introduced:

r = B(q)y +n(q, q) + JT(q)f

with

This leads to the error dynamic equation

(18.23)

(18.24)

(18.25)

which remarkably makes the end effector behave as a linear and decoupled active
mechanical impedance characterized by a desired equivalent mass M d , damping KD,

and stiffness Kp , in spite of all the nonlinear and coupled dynamics of the robot. The
resulting block scheme of a robot in contact with an elastic environment under impe­
dance control is illustrated in Figure 18.6

In these schemes, the interaction force could be indirectly controlled by acting on
the reference value of the robot motion control system. Interaction between robot and
environment is anyhow directly influenced by the environment stiffness and by either
the stiffness or the impedance of the robot. On the other hand, if it is desired to
accurately control the contact force, it is necessary to devise control schemes that
allow directly specifying the desired interaction force. The development of a direct
force control scheme, in analogy to a motion control scheme, would require the adop­
tion of a stabilizing PD control action on the force error, besides the usual nonlinear
compensation actions. Force measurements may be corrupted by noise, and then a
derivative action could be troublesome in practical implementation. The stabilizing
action is to be provided by suitable damping of velocity terms. As a consequence, a
force control system typically features a control law based not only on force measure­
ments but also on velocity measurements and eventually position measurements as well.

The realization of a true force control scheme can be entrusted to the closure of an
outer force regulation feedback loop [33] generating the control input for the motion

Figure 18.6 Robot in contact with elastic environment under impedance control.

Section 18.4 Force Control 455

control scheme with which the robot is usually endowed. Therefore, force control
schemes are presented below which are based on the use of an inverse dynamics position
control. Nevertheless, notice that a force control strategy is meaningful only for those
directions of the operational space along which interaction forces between robot and
environment may arise.

With reference to the inverse dynamics law with force measurement (18.23), the
new input can be chosen as

with

XF = CF(fd - f)

(18.26)

(18.27)

wheref d is a desired value of contact force and CF is a diagonal matrix whose elements
give the control actions to perform along the operational space directions of interest.
The resulting block scheme of such force control, illustrated in Figure 18.7, suggests
choosing a PI action on the force error, that is,

(18.28)

where the matrices KF and KI have to be properly tuned, together with Kp and KD, to
ensure good stability margins and bandwidth for the equivalent third-order system. On
the assumption that a stable equilibrium is reached, it is

s«; = KXe +fd

f 00 <I«
(18.29)

(18.30)

confirming that force regulation is achieved, while the actual end-effector pose depends
on the amount of environment stiffness and desired force.

It may be argued that, if the position feedback loop in Figure 18.7 is opened, then
XF would represent a velocity reference so that a simple proportional force controller
would suffice-with a simplified control design for the equivalent second-order system.
However, the absence of an integral action in the force controller would not ensure

Figure 18.7 Robot in contact with elastic environment under force control.

456 Chapter 18 Robot Control

reduction of the effects due to unmodeled dynamics. Thus such a solution is not further
pursued.

If it is desired to specify a desired end-effector pose Xd as in pure motion control
schemes, the scheme of Figure 18.7 can be modified by adding the reference Xd to the
input where positions are summed, leading to the block scheme in Figure 18.8. This is
termed parallel force/position control [34], in view of the presence of a position control
action Kpx in parallel to a force control action KpCF(fd - f). It is easy to verify that, in
this case, the equilibrium is

X oo = Xd + CF(K(xe - xoo) + fd)

f 00 =fd·

(18.31)

(18.32)

Assuming that the desired force is assigned consistently with the constrained task space
directions, these equations reveal that the desired forcef d is reached at steady state and
that the desired pose Xd is reached by x along the unconstrained directions. Along the
constrained directions, the adoption of an integral action in CF as for the scheme of
Figure 18.7 results in a position error on x depending on the environment stiffness.

Whenever an accurate geometric description of the environment is available, it is
possible to predetermine the directions along which to control a position and the
directions along which to control a force [35]. This leads to the so-called hybrid posi­
tion/force control formalism [36] in which either a force or a position is controlled along
each task space direction according to a selection mechanism. However, in those situa­
tions when hybrid control has to operate under imperfect task planning, the system
behavior may become quite critical. For instance, consider the extreme case when a
hybrid controller governs robot motion in a situation of unplanned impact. Clearly, it is
not possible to modify the behavior of the control scheme based on what actually
happens in the environment, as the selection has canceled part of the force sensor
measurements on the assumption that this information is not useful to the controller.

To conclude the discussion about force control, it should be noticed that stiffness
control could be easily implemented in available industrial robot controllers if the user
were offered the possibility of adjusting the gains of the PD action. Obviously, the PD
action in the joint space differs from that required in the operational space, but through
knowledge of robot kinematics (Jacobian), it is possible to find a relationship between
the joint stiffness and the end-effector stiffness and then establish some good ranges of
gains for ensuring a more or less compliant interaction. On the other hand, impedance

Figure 18.8 Robot in contact with elastic environment under parallel force/position
control.

Section 18.5 Visual Servoing 457

control and force control rely on the possibility of implementing a dynamic control, and
more crucially of mounting a force/torque sensor at the robot's wrist. In reality, the
force sensor is not strictly required of an impedance controller, but then the resulting
impedance would be coupled and configuration dependent. Such a device is still judged
by robot manufacturers to be rather expensive in the face of the cost of the robot­
although prices have been decreasing recently as more products have become available
on the market-and not fully reliable in terms of the available force and (especially)
torque ranges. Again, it is to be stressed that in order to make a robot more intelligent
and capable of autonomous interaction with the environment, an open control archi­
tecture is needed. This architecture should permit interfacing external sensors, for
example, the force sensor just mentioned and other sensors such as the vision sensor
discussed next.

18.5 VISUAL SERVOING

A great many tasks routinely performed by humans (for example, machine control,
driving, assembly, or fruit picking) are based on visually perceived information. In
order for robots to perform such tasks, without extensive instrumentation or reengi­
neering of the environment, they must also have the ability to perceive and act upon
visual information. Computer vision is therefore an important sensory modality for
robotic systems because it mimics the human sense of vision and permits noncontact
measurement of the environment. Limited vision capability has been available in
commercial robot controllers for many years now. It is used for tasks such as insert­
ing parts with respect to fixed marks on printed circuit boards or for grasping random
parts moving on conveyor belts. Typically, these systems adopt a look-and-move
strategy-a well-calibrated camera and vision system determines the desired robot
end-effector pose, and the robot system is commanded to make the appropriate
motion. See [37] for a valuable tutorial on visual servo control. The accuracy of
the resulting motion clearly depends directly on the quality of the camera
calibration [38] and the accuracy of the robot. The systems in operation today are
able to achieve the necessary precision using high-quality and expensive components
and good systems engineering. A visual system may include more than one camera,
and the cameras can be placed either on the robot observing the target (the so-called
eye-in-hand configuration [39]) or in the world observing the robot and the target (the
so-called hand-eye coordination [40]).

A distinction can be made in commonly used vision-based systems regarding the
presence or absence of joint level feedback. For several reasons, nearly all implemented
systems adopt joint level feedback. First, the relatively low sampling rates available
from vision makes direct control of a robot's end effector with complex, nonlinear
dynamics an extremely challenging control problem. Using internal feedback with a
high sampling rate generally presents the visual controller with idealized axis
dynamics [41]. Second, many robots already have an interface for accepting
Cartesian velocity or incremental position inputs to the internal position controller.

An alternative promising approach to increasing the performance of the overall
system is to use a vision system to continuously guide, or steer, the robot end effector
toward the target. Such a closed-loop position control structure for a robot end effector
is referred to as a visual servoing system. A visual feedback control loop, like any

458 Chapter 18 Robot Control

feedback control system, will increase closed-loop accuracy and robustness to error in
the sensor or the robot.

According to the taxonomy of visual servo systems introduced in [42], it is worth
distinguishing position-based visual servoing from image-based visual servoing. With
reference to the block scheme in Figure 18.9, in position-based servoing, a feature
vector CfJ is extracted from the image vector i-typically the coordinates of the centroid
of the target-and used in conjunction with a geometric model of the target and the
known camera model to estimate the pose of the target with respect to the camera.
Feedback is computed on the estimated target pose x, which is compared to the desired
pose Xd to form an error used by an operational space controller.

On the other hand, with reference to the block scheme shown in Figure 18.10, in
image-based servoing, feedback of the feature vector is accomplished and the error is
computed directly in the image space. This presents a significant challenge to controller
design since the overall system is nonlinear and highly coupled. In this respect, a useful
tool to transform the image-space error iP= CfJd - CfJ (typically expressed in terms of
pixels in the image plane) into an equivalent operational space error i is the so-called
image Jacobian J, relating the rate of change of the target pose to the rate of change of
the image feature, that is,

ip = Ji(x)x. (18.33)

In this way, for instance, it is possible to design a PD control action with gravity
compensation in the image space analogous to (15.17) in the form [43]

(18.34)

which gives successful regulation to a desired pose, provided that a stable behavior can
be guaranteed. On the other hand, the design of a tracking controller may be cumber­
some because of the limitation imposed by the analog video signal field rate (25 or 30
Hz), which in turn prevents accurate tracking at fast speeds.

To conclude the discussion, benefits from technology trends are pointed out [44].
The fundamental technologies required for visual servoing are image sensors and com­
puting. Fortunately, the price to performance ratios of both technologies are improving
as a result of continuing progress in microelectronic fabrication density and the con­
vergence of video and computing driven by consumer demands. Cameras may become
so cheap as to become ubiquitous. Rather than using expensive robots to position
cameras, it may be cheaper to add large numbers of cameras and switch between
them as required.

The performance of early and current visual servo systems has been constrained by
broadcast TV standards, with limitations discussed earlier in this chapter. In the last

Operational
space

control

x

Figure 18.9 Position-based visual servoing.

Section 18.6 The Future

Image
space

control

r Robot
+

camera

459

Figure 18.10 Image-based visual servoing.

few years, nonstandard cameras have come onto the market which provide progressive
scan (noninterlaced) output and tradeoffs between resolution and frame rate. Digital
output cameras are also becoming available, which have the advantage of providing
more stable images and requiring a simpler computer interface. The field of electro­
optics is also booming, with phenomenal developments in laser and sensor technology.
Small-point laser range finders and scanning laser range finders are now commercially
available. More recently, frame grabber boards to be installed directly in the controller
(e.g., a PC) are being developed so as to minimize the total computation time of the
control law.

18.6 THE FUTURE

This chapter has surveyed some technologies that offer a potential for the design of
smarter robot controllers. Classical applications of industrial robotics in well-structured
environments did not justify developing new designs or controllers. Recently, with the
advent of the so-called advanced or service robots, some companies have apparently
been reconsidering the issue and are willing to develop customized, special-purpose
robotic devices with marked characteristics of autonomy for operation in hostile envir­
onments (space, underwater, nuclear, military, etc.) or to execute service missions
(domestic applications, medical aids, assistance to the disabled, agriculture, etc.). The
key to success in these applications is the incorporation of enhanced sensory feedback
capabilities into the control unit of a robotic system. In this respect, the rapid techno­
logical progress in sensors and computers of the last decade gives concrete hopes that
the robots of the new millennium will eventually be more intelligent and autonomous.
The outlook for the future therefore seems bright, with two provisos. On the academic
side, researchers should be able to clearly demonstrate real progress in robot technology
rather than prizing their results. At the same time, on the industrial side, control
engineers should overcome their typical reluctance to bring in concepts and methods
from academia because of their apparent complexity. These are a challenge and an
opportunity!

Related Chapters

• A general discussion on adaptive control appears in Chapter 5.
• Lyapunov methods are also reviewed in Chapters 6 and 8.
• Chapter 7 uses a robotic system to illustrate hybrid dynamical system concepts.

460 Chapter 18 Robot Control

REFERENCES

[1] G. Hirzinger, J. Bals, B. Brunner, R. Koeppe, and M. Schedl, "Towards a new robot
generation." Proc. 5th Int. Symp. on Methods and Models in Automation and Robotics,
Miedzyzdroje, Poland, pp. 747-762, 1998.

[2] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipulators. New York:
McGraw-Hill, 1996.

[3] D. E. Whitney, "Resolved motion rate control of manipulators and human prostheses."
IEEE Trans. on Man-Machine Systems, Vol. 10, pp. 47-53, 1969.

[4] B. Siciliano, "A closed-loop inverse kinematic scheme for on-line joint-based robot control."
Robotica, Vol. 8, pp. 231-243, 1990.

[5] A. Liegeois, "Automatic supervisory control of the configuration and behavior of multibody
mechanisms." IEEE Trans. on Systems, Man, and Cybernetics, Vol. 7, pp. 868-871, 1977.

[6] S. Chiaverini, B. Siciliano, and o. Egeland, "Review of the damped least-squares inverse
kinematics with experiments on an industrial robot manipulator." IEEE Trans. on Control
Systems Technology, Vol. 2, pp. 123-134, 1994.

[7] Y. Nakamura, Advanced Robotics: Redundancy and Optimization. Reading, MA: Addison­
Wesley, 1991.

[8] J. Y. S. Luh, "Conventional controller design for industrial robots: A tutorial." IEEE Trans.
on Systems, Man, and Cybernetics, Vol. 13, pp. 298-316, 1983.

[9] F. Nicolo and J. Katende, "A robust MRAC for industrial robots." Proc. 2nd lASTED Int.
Symp. Robotics and Automation, Lugano, Switzerland, pp. 162-171, 1983.

[10] M. Gautier and W. Khalil, "Direct calculation of minimum set of inertial parameters of
serial robots." IEEE Trans. on Robotics and Automation, Vol. 6, pp. 368-373, 1990.

[11] J. M. Hollerbach, "A survey of kinematic calibration." In O. Khatib, J. J. Craig, and
T. Lozano-Perez (eds.), The Robotics Review 1, pp. 207-242. Cambridge, MA: MIT Press,
1998.

[12] S. Arimoto and F. Miyazaki, "Stability and robustness of PID feedback control for robot
manipulators of sensory capability." In M. Brady and R. Paul (eds.), Robotics Research: The
First International Symp., pp. 783-799, Cambridge, MA: MIT Press, 1984.

[13] C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model-Based Control of a Robot
Manipulator. Cambridge, MA: MIT Press, 1988.

[14] A. K. Bejczy,Robot Arm Dynamics and Control. Memo. 33-669.Jet Propulsion Laboratory,
California Institute of Technology, 1974.

[15] K. Kreutz, "On manipulator control by exact linearization." IEEE Trans. on Automatic
Control, Vol. 34, pp. 763-767, 1989.

[16] F. Dogliani, G. Magnani, and L. Sciavicco, "An open architecture industrial controller."
Newsl. of IEEE Robotics and Automation Soc., Vol. 7, no. 3, pp. 19-21, 1993.

[17] C. Abdallah, D. Dawson, P. Dorato, and M. Jamshidi, "Survey of robust control for rigid
robots." IEEE Control Systems Mag., Vol. 11, no. 2, pp. 24-30, 1991.

[18] R. Ortega and M. W. Spong, "Adaptive motion control of rigid robots: A tutorial."
Automatica, Vol. 25, pp. 877-888, 1989.

[19] S. Jajasuriya and C. N. Hwang, "Tracking controllers for robot manipulators: A high-gain
perspective." ASME J. ofDynamic Systems, Measurement, and Control, Vol. 110,pp. 39-45,
1988.

[20] J.-J. E. Slotine, "The robust control of robot manipulators." Int. J. Robotics Research,
Vol. 4, no. 2, pp. 123-138, 1985.

[21] M. Corless, "Tracking controllers for uncertain systems: Application to a Manutec r3
robot." ASME J. of Dynamic Systems, Measurement, and Control, Vol. 111, pp. 609-618,
1989.

[22] M. W. Spong and M. Vidyasagar, "Robust linear compensator design for nonlinear robotic
control." IEEE J. of Robotics and Automation, Vol. 3, pp. 345-351, 1987.

References 461

[23] J.-J. E. Slotine and W. Li, "On the adaptive control of robot manipulators." Int. J. of
Robotics Research, Vol. 6, no. 3, pp. 49-59, 1987.

[24] R. H. Middleton and G. C. Goodwin, "Adaptive computed torque control for rigid link
manipulators." Systems & Control Lett., Vol. 10, pp. 9-16, 1988.

[25] J.-J. E. Slotine and W. Li, "Composite adaptive manipulator control." Automatica, Vol. 25,
pp. 509-519, 1989.

[26] D. E. Whitney, "Force feedback control of manipulator fine motions." ASME J. of
Dynamic Systems, Measurement, and Control, Vol. 99, pp. 91-97, 1977.

[27] B. Siciliano and L. Villani, Robot Force Control. Boston: Kluwer Academic Publishers, 1999.
[28] O. Khatib, "A unified approach for motion and force control of robot manipulators: The

operational space formulation." IEEE J. of Robotics and Automation, Vol. 3, pp. 43-53,
1987.

[29] M. Takegaki and S. Arimoto, "A new feedback method for dynamic control of manipula­
tors." ASME J. of Dynamic Systems, Measurement, and Control, Vol. 102, pp. 119-125,
1981.

[30] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, "Resolved-acceleration control of mechan­
ical manipulators." IEEE Trans. on Automatic Control, Vol. 25, pp. 468-474, 1980.

[31] N. Hogan, "Impedance control: An approach to manipulation: Parts I-IlL" ASME J. of
Dynamic Systems, Measurement, and Control, Vol. 107, pp. 1-7, 1985.

[32] J. K. Salisbury, "Active stiffness control of a manipulator in Cartesian coordinates." Proc.
19th IEEE Conf. on Decision and Control, Albuquerque, NM, pp. 95-100, 1980.

[33] J. De Schutter and H. Van Brussel, "Compliant robot motion I-IL" Int. J. of Robotics
Research, Vol. 7, no. 4, pp. 3-33, 1988.

[34] S. Chiaverini and L. Sciavicco, "The parallel approach to force/position control of robotic
manipulators." IEEE Trans. on Robotics and Automation, Vol. 4, pp. 361-373, 1993.

[35] M. T. Mason, "Compliance and force control for computer controlled manipulators." IEEE
Trans. on Systems, Man, and Cybernetics, Vol. 6, pp. 418-432, 1981.

[36] M. H. Raibert and J. J. Craig, "Hybrid position/force control of manipulators." ASME J. of
Dynamic Systems, Measurement, and Control, Vol. 103, pp. 126-133, 1981.

[37] S. Hutchinson, G. Hager, and P. Corke, "A tutorial on visual servo control." IEEE Trans.
on Robotics and Automation, Vo1. 12, pp. 651-670, 1996.

[38] R. Y. Tsai and R. K. Lenz, "Techniques for calibration of the scale factor and image center
for high accuracy 3D machine vision metrology." IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 10, pp. 713-720, 1988.

[39] B. Nelson and P. K. Khosla, "Increasing the tracking region of an eye-in-hand system by
singularity and joint limit avoidance." Proc. 1993 IEEE Int. Con! on Robotics and
Automation, Atlanta, GA, Vol. 3, pp. 418-423, 1993.

[40] G. D. Hager, "A modular system for robust hand-eye coordination." IEEE Trans. on
Robotics and Automation, Vol. 13, pp. 582-595, 1997.

[41] P. I. Corke, Visual Control of Robots. New York: Research Studies Press and John Wiley,
1996.

[42] A. C. Sanderson and L. E. Weiss, "Image-based visual servo control using relational graph
error signals." Proc. IEEE, pp. 1074-1077, 1980.

[43] R. Kelly, "Robust asymptotically stable visual servoing of planar robots." IEEE Trans. on
Robotics and Automation, Vo1. 12, pp. 759-766, 1996.

[44] P. L Corke and G. D. Hager, "Vision-based robot contro1." In Control Problems in Robotics
and Automation, B. Siciliano and K.P. Valavanis (eds.), London: Springer, pp. 177-192,
1998.

Chapter

19
CONTROL OF COMMUNICATION
NETWORKS

R. Srikant

Editor's Summary

Two other chapters in this volume discuss new application areas for control: intelligent transportation

systems (Chapter 14) and civil structures (Chapter 17). This chapter focuses on a third, and equally

exciting, one: the control of communication networks. It is a sign of the enduring vitality of controls as

a solution technology that industries of recent vintage are recognizing its relevance for solving a new

generation of problems. In areas such as communication networks, many of these problems simply did not

exist in anything like their present form when the foundations of modem control were being laid some

decades ago.

Communication networks pose a number of control problems, all of which can generally be

related to ensuring reliable and rapid transmission of heterogeneous digital data over large-scale, geo­

graphically distributed channels and processing nodes. Four problems of particular importance are

admission control when real-time service is desired, congestion control through regulation of transmis­

sion rates, packet routing, and scheduling of available node bandwidth among multiple sources. These

problems have different manifestations, depending on the type of network and traffic and on quality of

service (QoS) requirements. The chapter notes specific considerations for the Internet and asynchronous

transfer mode (ATM) networks. Other types of communication networks, as used in distributed control

systems in the building control and process control industries, are briefly discussed in Chapters 16 and

12, respectively.

Communication network control problems are spawning new theoretical developments in control,

for example, in discrete-event systems (Chapter 2). At the same time, established control techniques such

as linear quadratic gaussian (LQG) and calculus of variations remain directly applicable. This chapter also

identifies a number of central implementation issues for the control of communication networks. These

include the measurement interval used for calculating queue lengths, the feedback mechanisms employed

for network control and "fairness" issues in allocating bandwidth.

R. Srikant is an assistant professor in the Department of Electrical Engineering at the University of

Illinois at Urbana-Champaign. He chairs the Working Group on Communication Networks for IEEE

Control Systems Society.

19.1 INTRODUCTION

A communication network is a collection of nodes and links, in which each node can
potentially serve as an origin or destination for a traffic source. Each link is a transmis­
sion medium (optical fiber, satellite link, etc.) whose traffic-carrying capacity is mea­
sured in bits-per-second (bps). This capacity is often referred to as bandwidth or data

462

464 Chapter 19 Control of Communication Networks

19.2 NETWORK CONTROL AND MANAGEMENT

From a network control and management point of view, real-time sources are admitted
into the network only if there are sufficient resources to satisfy their QoS requirements.
On the other hand, non-real-time sources are always admitted into the network with the
understanding that the resources in the network would be allocated to them on a best­
effort basis; that is, real-time sources are given higher priority, and whatever bandwidth
is left unused by the real-time sources is allocated to the non-real-time sources. In what
follows, we identify four major problems in controlling and managing a network with
real-time and non-real-time sources. Some aspects of each of these problems can be
studied using control-theoretic tools.

19.2.1 Admission Control for Real-Time Sources

As mentioned earlier, real-time sources are admitted into the network only if the
network has sufficient capacity to meet their stated QoS requirements. In the simplest
one-node example, suppose that the link connected to the node has a capacity of 50 bps
and that all sources are of the ON-OFF type. An ON-OFF source is one that randomly
switches between an ON state and an OFF state. In the ON state, let us assume that it
generates data at a rate of 1 bps and that it does not generate any data when it is OFF.
Let us also suppose that there is no buffer at the node, and therefore, if we admit more
than 50 sources into the network, some data would be lost since, occasionally, more
than 50 of the sources can be in the ON state at the same time. Thus, if the QoS
requirement is in terms of fraction of bits lost, a very conservative admission control
scheme would be to admit a maximum of 50 sources into the network at any time.
Under this conservative scheme, if a source arrives when there are already 50 sources in
the system, then it is blocked, that is, denied admission by the network.

In reality, most real-time sources can tolerate some packet loss. If we know the
fraction of time a source is ON, then we can calculate the fraction of packets lost if
we admit more than 50 sources into the network at one time. Thus, a better admis­
sion control scheme would be to stop admitting sources only when the fraction of lost
packets would exceed the QoS requested by the sources. In a real node, there is a
nonzero buffer that can store packets when the total arrival rate temporarily exceeds
the bandwidth of the link. This buffer space further increases the amount of sources
that can be admitted. Thus, one can admit many more sources than the conservative
admission control scheme by allowing small amounts of packet loss. This idea is
called statistical multiplexing. A significant portion of the mathematical research in
communication networks over the last decade has been devoted to computing the
probability of packet loss for many different types of arrival processes and many
different scheduling disciplines at the nodes. Several techniques have been used to
solve this problem, including spectral expansion [4], Laplace transform techniques [1],
and large deviations [23]. In Section 19.3, we present a connection between this
admission control problem and deterministic optimal control using the theory of
large deviations.

A different point of view of admission control which has also received wide­
spread interest is one in which the network negotiates a deterministic contract with
each source. The contract is in terms of the maximum and mean arrival rates and
burstiness (which is a measure of the variability of the traffic about the mean) for the

Section 19.2 Network Control and Management 465

packet arrival process. As long as a source conforms to the contract, the network
agrees to transfer its packets with no loss. This type of arrival model has been
analyzed in [31].

19.2.2 Congestion Control for Best-Effort Sources

From an application point of view, earlier we categorized sources as real-time and
non-real-time sources. From a network point of view, the service provided to sources in
high-speed communication networks can be classified as guaranteed service and best­
effort service. Guaranteed service refers to a contract between the network service
provider and the end user, which requires the network to provide a fixed quality-of­
service (QoS) to the traffic. The QoS guarantees could be in the form of upper bounds
on packet loss probability, delay, and so on. In contrast, sources that subscribe to the
best-effort service are provided minimal or no guarantees a priori. In the Internet, there
are no guarantees, while in Asynchronous Transfer Mode (ATM) networks, the best­
effort traffic (known as Available Bit Rate [ABR] service) may be guaranteed a mini­
mum data rate. Under the best-effort service, instead of guaranteeing a fixed QoS, the
idea is to fairly allocate the network resources to competing users. The guaranteed­
service traffic-referred to as either Constant Bit Rate (CBR) or Variable Bit Rate
(VBR) traffic in ATM networks-gets a higher scheduling priority compared to the
best-effort traffic. In other words, at a given node, when both best-effort traffic and
guaranteed-service traffic are backlogged (i.e., have packets that are waiting to be sent),
the packets from the guaranteed-service traffic are processed first, and the best-effort
traffic is served only if there are no packets in the guaranteed-service queue. Typically,
real-time sources would request guaranteed service, while non-real-time sources would
request best-effort service. However, if the congestion in the network is small, real-time
sources may also use the best-effort service.

From a control point of view, each best-effort source or user may be thought of as
an entity that generates data at a rate specified by the network. The network exercises
control over the best-effort traffic by either assigning these rates based on the conges­
tion in the network or providing congestion information to the sources that would
individually choose their transmission rates. This is referred to as congestion control.
In the absence of such a control mechanism, the buffers at each node in the network
(which store packets temporarily) may overflow and lead to packet losses.

There are two basic approaches to congestion control. In the Internet, the protocol
used for this purpose is called TCP [26]. In the TCP protocol, each source slowly
increases the rate at which it transmits data, and upon detection of congestion, the
data rate is reduced. Congestion is detected when buffers overflow and packets are lost.
It is the responsibility of the destination to inform the source of lost packets, and
intermediate nodes in the network do not provide any feedback directly to the source.
In contrast, in ATM ABR service, the communication protocol between the source and
the network allows for intermediate nodes to suggest a data rate to the ABR sources. In
Section 19.4, we adopt this framework. Thus, from the point of view of the current
technology, the approach presented in that section can be viewed as a congestion
control mechanism for ATM ABR sources.

Congestion control can also be viewed in a game-theoretic context, in which each
user minimizes its own performance objective. This would correspond to a situation in
which each source makes its decision based on the information provided by the net-

466 Chapter 19 Control of Communication Networks

work, somewhat along the lines of TCP. The interested reader can refer to [33] (and
references within) for various versions of this problem.

Recent work by Kelly and his co-workers has cast congestion control in a new
light. Kelly considers pricing as a mechanism to induce the correct behavior of selfish
users during times of network congestion. This point of view is presented in [24].

19.2.3 Routing

Our discussion so far has been confined to a single-node network. A real network
consists of a large number of nodes, and therefore, a packet can take many routes to go
from an origin to a destination. Routing in communication networks is performed in
one of three ways: circuit-switched routing, virtual circuit routing, and datagram
routing.

The term circuit-switched routing has its origins in the routing techniques used in
telephone networks. For a telephone call, a fixed amount of bandwidth is reserved on
every link in its route. Thus a call is blocked if there is no route with enough spare
capacity connecting the voice source's origin and destination. A call may also be
blocked if the only available paths consist of many links since a call that occupies
multiple links may potentially block many calls in the future. Circuit-switched routing
was extensively analyzed in the 1980s, and an excellent survey of the control issues
associated with this type of routing can be found in [25].

Virtual-circuit routing is similar to circuit-switched routing in the sense that all
packets that belong to a traffic source take the same route from origin to destination,
and this route is predetermined when a source is admitted into the network. However,
in contrast to circuit-switched routing, a fixed bandwidth need not be reserved for each
source along its route. The amount of bandwidth allocated to a source could be time­
varying depending on the type of service. For real-time sources, a common technique is
to convert the QoS requirements of a source into an effective bandwidth [23] (Section
19.3), in which case, from a network management point of view, the situation becomes
similar to circuit-switched routing.

In datagram routing, each packet from a traffic source could take a different path
from origin to destination. This is the type of routing used in the Internet. In the
simplest form of datagram routing, the routes are chosen to minimize the number of
links that a packet traverses. If the links in the network do not fail, then essentially all
packets from a traffic source will follow the same route. In more complicated routing
schemes, where the route is based on some other criterion such as attempting to mini­
mize average delay in the network, routes will be periodically recomputed, and there is a
greater chance that different packets from the same traffic source could choose different
routes. For a thorough introduction to different types of routing schemes, see [5].

From a control-theoretic point of view, optimal virtual-circuit routing can be
thought of as a stochastic control problem involving a dynamic program over a very
large state space (see [30] and references within). Solving this problem exactly is practi­
cally impossible because of the dimensionality of the state space. Indeed, given a parti­
cular routing scheme, computing its performance analytically is fundamentally difficult,
as shown in [21], and simulation can be very expensive even when simulation speed-up
techniques such as the ones in [34, 35]are used. Thus, the only way to obtain reasonably
good routing schemes is to solve the dynamic program approximately; this approach
has been applied successfully to realistic networks in [30]. It would be interesting to

Section 19.2 Network Control and Management 467

compare the results in [30] to the performance bounds given in [20] for the case in which
all calls request the same amount of bandwidth and in [12] for the case where different
call classes request different amounts of bandwidth.

In a single-link network with many call classes, the routing problem reduces to a
simple admission control decision: depending on the state of the network, should a call
be accepted or not? When the call classes request different amounts of bandwidth, even
this is a difficult problem to solve. This problem has been approached in a novel way in
[3]. By considering an appropriate fluid limit, Altman et al. convert the stochastic
control problem into a deterministic optimal control problem. The solution to this
deterministic optimal control problem can provide useful insight into the structure of
the optimal policy for the original stochastic problem.

A different view of routing than the one presented so far is one in which users have
a certain amount of flow that they have to route and they select routes to optimize their
individual performance objectives. Here the users could be either end users or service
providers, depending on the context. The issue of interest here is to understand the
interaction of noncooperative, selfish users in a network. A natural approach to such
problems is to use game theory, and many variants of these problems have been studied
in [29].

19.2.4 Scheduling

Once sources are admitted and routed on specific paths, nodes have to decide how
to allocate their bandwidth among various sources. For instance, suppose that we
admit five sources, each requiring 0.2 Kbps to meet their QoS requirements, and that
all five sources pass through a common node whose capacity is 1 Kbps. A naive scheme
would simply allocate 0.2 Kbps to each source. Thus, suppose four of the sources have
empty queues for some period of time and the fifth source is backlogged (i.e., its queue
is not empty) during this time; then the fifth source would continue to get 0.2 Kbps even
though the entire link capacity is available. A better scheme would be to give a weight of
0.2 to each source and divide the node capacity only among backlogged sources in
proportion to their weights. In the above example, if there are only three backlogged
sources, each one would get ! Kbps. This is called Fluid Fair Queueing (FFQ) or
Generalized Processor Sharing (GPS) [16, 31]. However, such a scheme cannot be
implemented in practice since packets are indivisible entities, not fluids; therefore, it
is not possible to instantaneously divide the link capacity among competing sources.
Thus, close approximations of this fluid scheduling algorithm, called Weighted Fair
Queueing (WFQ) or Packet-by-Packet Generalized Processor Sharing (PGPS) are used
in practice [16, 31].

A novel modification of this algorithm has been studied recently in [28] using
game-theoretic tools. Suppose that Ai(s, t) is the number of arrivals from source i in
the time interval [s, t), and we assume that Ai(s, t) is constrained as follows:

Ai(s, t) S Pi(t - s) + O'i.

Such a constraint is called a leaky bucket constraint [5]. Note many arrival processes
can satisfy the constraint for a given Pi and O'i. Let us also suppose that we are interested
in designing a scheduling algorithm to minimize losses given the leaky bucket para­
meters of the sources. Then, the scheduler can be thought of as playing a zero-sum
game where it attempts to minimize losses and the arrival processes attempt to max-

468 Chapter 19 Control of Communication Networks

imize the losses subject to their (Pi, O'i) constraints. The results in [28] show that one can
improve upon GPS and PGPS using such a game formulation. Using game theory to
address scheduling problems is a very recent development. One can easily think of many
variants to the basic problem addressed in [28], such as allowing other performance
measures, other types of arrival processes, and other types of servers to model wireless
networks. These are interesting open issues that remain to be addressed.

19.3 OOS, ADMISSION CONTROL, AND
CALCULUS OF VARIATIONS

In this section, we provide an informal discussion of the relationship between comput­
ing the probability of rare QoS violations in queues and the calculus of variations. For
the purposes of simplicity, our discussion here is not meant to be mathematically
rigorous but rather to provide insight into the queueing behavior that leads to rare
QoS violations. For rigorous proofs of the results here, see, for example, [15], and for
an informal introduction to variational problems that arise in large deviations, see [8].
Since our goal is to provide a survey of the control issues in communication networks,
we narrowly focus our attention on the application of large deviations to estimate rare
event probabilities in queues. However, a more fundamental connection exists between
optimal control and large deviations, and this is explored in [17, 37].

19.3.1 Large Deviations of the Empirical Mean of a
Sequence of Random Variables

Let A1,A2, ••• be a sequence of independent, identically distributed random vari­
ables with mean u, and let the moment-generating function M(O) = E(e8A1

) be well
defined for 0 in a neighborhood of o. Let s, := Al + A 2 + ... + An and S; := ~. By
the law of large numbers, the empirical mean S; will converge to ~ in an appropriate
sense. However, we are often interested in estimating the probability that this empirical
mean will have a large deviation from the mean. For example, consider an experiment
in which we toss a fair coin 1000 times. We expect, on average, 500 heads and 500 tails.
If we repeat this experiment many times, in some instances of the experiment, the
number of heads will be greater than 700. In other words, the empirical mean would
sometimes be larger than 0.7. We would like to estimate the probability of this rare
large deviation from the mean behavior.

To estimate such probabilities, we first recall Markov's inequality: for any random
variable X with mean E(X), P(X> x) ~ E(X)jx. Noting that E(e8Sn) = Mn(O), it fol­
lows from Markov's inequality that

where 0 > 0 and A(O) := log M(O) is known as the log-moment generating function
(lmgf), or the cumulant-generating function (cgf). To get the best bound on the prob­
ability P(Sn > a), we minimize the righthand side of the above inequality with respect
to a. Defining

Section 19.3 QoS, Admission Control, and Calculus of Variations

lea) := sup{aO - A(O)},
()

we have

P(Sn > a) :::: e-nI(a).

469

(19.1)

The above bound on P(Sn > a) is called the Chernoff bound, and lea) is called the rate
function. If we assume that a > 0, then we can dispense with the condition that 0 > °
[15, Lemma 2.2.5], and therefore, we have allowed 0 to be unrestricted in sign in the
definition of lea). The rate function lea) is also called the convex transform (or the
Cramer-Fenchel-Legendre transform) of A(O). A very useful property of lea) and A(O) is
that they are convex duals of each other. In other words, the convex transform of lea) is
A(O), that is,

A(O) = sup{aO - lea)}.
a

It is easy to verify that lea) and A(O) are convex functions.
The bound (19.1) is known to be asymptotically tight in the following sense:

lim !logP(Sn > a) = -I(a).
n--+oon

(19.2)

This result is known as Cramer's theorem [15, Theorem 2.2.3]. Under mild conditions,
given by the Gartner-Ellis theorem [15, Theorem 2.3.6], this result remains valid for
(possibly) dependent random variables AI, A2, ••• by redefining the lmgf as follows:

In large deviations terminology, a sequence of random variables is said to satisfy a
large deviations principle (LDP) if there exists a function 1(·) such that (19.2) holds. A
more precise definition of when a sequence of random variables is said to satisfy an
LDP can be found in [15].

19.3.2 Large Deviations of a Random Process from
its Fluid Limit

Let AI, A2, ••• be a sequence of random variables with mean u, and let us assume
that they satisfy an LDP with rate function lex). Define

1 nt

Sn(t) := - LA;,
n ;=1

Vt = kin, k=0,1,2, ...

For values of t that are not of the form kin, define Sn(t) by linear interpolation. As
n ~ 00, by the law of large numbers, ~ L7~1 A; ~ u, and hence Sn(t)~ ui, which is
called the fluid limit of the process Sn(t). Since the function Sn(t) behaves like the linear
function iu for very large n, a natural large deviationsquestion is the following: What is
the probability that the function will deviate from this behavior and look like some

470 Chapter 19 Control of Communication Networks

other function a(t)?1 To keep the discussion simple, let us assume that t E [0, tf]'
tf < 00. We will now informally argue that, for very large n,

A precise version of the above result is in [14].
Let us divide the interval [0, tf] into M small subintervals, each of length 6.t.

P(Sn(t) ~ a(t»

~ P(Sn(O) = a(O), Sn(6.t) = a(6.t), Sn(26.t) = a(26.t), ... , Sn(M 6.t) = a(M6.t»

= P(Sn(M6.t) = a(M6.t)ISn((M - 1)6.t) = a((M - 1)6.t»x

P(Sn((M - 1)6.t) = a((M - 1)6.t)ISn((M - 2)6.t) = a((M - 2)6.t) x ... X

P(Sn(6.t) = a(dt)ISn(O) = a(O».

Note that

1nMl::1t
Sn(Mdt) = - L Ai

n i=1
1 nMl::1t

= Sn((M - 1)6.t) +- L Ai·
n i=n(M-l)l::1t+l

Thus,

P(Sn(M~t) = a(M~t)ISn«M- l)~t) = a«M - l)~t»

(

nMl::1t)
= P L Ai ~ a«M - l)~t)n~t

i=n(M-l)~t

~ e-nl::1tI(a«M-l)~t)).

Proceeding similarly, we get

M-l
P(Sn(t) ~ a(t» ~ ne-nl::1 tI(a(il::1 t))

i=1

= e-nL:~l l::1ta(il::1t)

rv -n J/f I(a(s))ds
~eo.

Thus Sn(t) satisfies an LDP with rate functionJ~ I(a(s»ds.

I We are really interested in the probability that Sn(t) is in the neighborhood of a(t). Hence, we
use the notation P(Sn(t) ~ a(t)) rather thanP(Sn(t) = a(t)).

Section 19.3 QoS, Admission Control, and Calculus of Variations

19.3.3 Estimating Probabilities of Rare Events in
Queues

471

Consider a discrete-time queue with the capacity to serve c bits in each time unit.
Let Ak denote the number of arriving bits generated in time unit k by the source
accessing the queue. Let us suppose that the current time is 0, and the arrival process
started at time -00. Thus, at the current time, the system is in steady state. Assuming
large buffer sizes, we are interested in the steady-state probability of buffer overflow. If
the buffer size is denoted by n, and queue length at time k is denoted by Qk' we are
interested in estimating P(Qo > n) for large n.

We first note the following well-known equation called Loynes' formula:

P(Qo > n) =p(~~i;Ai - cK > n).

To understand this equation, note that

Qo = max{Q_I + A_I - C, o}
Q_I = maX{Q_2 + A_2 - C, OJ.

These two equations are called Lindley's equations. Thus

2

Qo = max{Q_2 + LA-i - 2c, A_I - C, OJ.
i=1

(19.3)

Continuing as above, and assuming Q-oo = 0, gives the relationship (19.3). From
(19.3), we can upper and lower bound the probability P(Qo > n) as

If, for each K, P(LJ=-KAi - cK > n) is of the form e-nYK for some YK > 0, then the
largest of these probabilities will dominate as n ~ 00; that is, the lower bound will be
approximately equal to the upper bound in (19.4). In what follows, we will argue that
P(L:=-K Ai - cK > n) goes to zero exponentially fast in n, and thus we have the
approximation

(19.5)

This approximation (19.5) illustrates an important idea in large deviations analysis:
Rare events occur in the most likely way. Specifically, in this case, we have replaced
the probability of the union of some events by the probability of the most likely
event.

472 Chapter 19 Control of Communication Networks

Define

K

Wk- 1 := LA-i - c(K - k + 1).
i=k

Wo can be interpreted as follows: if -K is the last time before k = 0 that the queue was
empty, then Wo is simply the queue length at time O. To use the results from the
previous subsection, first we have to convert the probabilistic buffer overflow event
into a deterministic event using the fluid limit scaling. To this end, we let T = Kin,
which gives

nT

Wo = LA-i - cnT.
i=1

Thus,

Wo 1 nT
-=-LA_i-cT.
n n i=1

Define x(t) := ~nt, where t = kin. Since we are interested in the event {Wo > n}, we
impose the condition x(O) 2: 1, and since WK = 0, we have x(- T) = O. Let us suppose
that ~ L:t:!-nt Ai exhibits a large deviation from its fluid limit tu and behaves like some
function aCt) in the interval [-T, 0] as n~ 00. Then, x(t) = aCt) - ct, t E [-T, 0].

From our discussion in the previous subsection,

p(!t Ai ~ a(t)) ~ e-n f-T I(iz(s))ds.

n i=1

Since many possible trajectories aCt) can lead to buffer overflow, we approximate the
buffer overflow probability by the probability of the most likely trajectory. Thus

P(x(O) > 1) ~ sup {e-n f-T 1
(i1(s))ds : x(-T) = 0, x(O) :::: 1, x(t) = a(t) - ct, -T:::: t :::: oj.

T,a(·)

To convert the above problem into a variational form encountered in control
theory, we first define u(t) = aCt). Since x(t) = aCt) - ct, we have x(t) = u(t) - c. Thus
P(x(O) > 1) ~ e-nJ*, where J* is the optimal cost in the following optimal control
problem:

i~f IT I(u(s))ds,

such that

Section 19.3 QoS, Admission Control, and Calculus of Variations

x= u(t) - c

x(- T) = 0, x(O) 2:: I, T is free.

473

In general, this problem could be difficult to solve. But it turns out that, by exploiting
certain properties of the rate function, one can solve the problem without solving
complicated Euler-Lagrange equations.

The first observation is that, since I is a convex function, by Jensen's inequality, for
any u(t),

~ IT I(u(s))ds ::: I(u) ,

where u= ~ tTu(s)ds. Thus, it is sufficient to consider constant controls of the form
u(t) == u. Since x(- T) = 0 and x(O) 2:: I, the constant uhas to satisfy (u - c)T 2:: I.

We next argue that it is sufficient to only consider constant controls of the form
u= c + t. For stable operation of the queue, we assume that the mean service rate is
larger than the mean arrival rate, that is, c > E(A}). Since the probability of the empiri­
cal mean being larger than x is approximately equal to e-nI(x), and since it is reasonable
to expect the probability of such large deviations to decrease when (x - E(A}»
increases, one would expect I(x) to be a nondecreasing function of x for x > E(A}).
This is indeed true [15, Lemma 2.2.5]. Hence

_ I
u2:: c + T ·

Thus the objective of the optimal control problem simplifies to

inf£I(C + -T
I)dS = inf TI(C + T

I
) = infI(c + x).

T>O -T T>O x>o X

Now, suppose that there is a quality-of-service (QoS) requirement which stipulates
that the probability of loss should not exceed some L. Then, the admission control
problem is to decide whether or not to admit the source, depending on whether the QoS
requirement can be met. Defining 8 := -~logL,where we recall that n is the buffer size,
we have L = e"". Thus we would admit the source if infxc-O I(C;X) > 8. A necessary and
sufficient condition to meet the QoS requirement is

A(8)
--<c8 . (19.6)

The necessity and sufficiency of the above condition can be easily seen by exploiting the
relationship between 1(·) and A(·) :

I(c+x) > Bx => 8(c+x) -I(c+x) < 8c => A(8) < Be,

and

c8 - A(8) > 0 => (c + x)8 - A(8) > Bx => I(c + x) > Bx,Vx.

474 Chapter 19 Control of Communication Networks

Since the minimum b~ndwidth needed to meet the QoS requirement of the source is A~O),

this quantity is known as the effective bandwidth of the source. Even though we have
derived the effective bandwidth for discrete-time sources only, the result is valid for
continuous-time sources too.

The effective bandwidth has an appealing risk-sensitive interpretation. Recall that

Note that the righthand-side of this equation is similar to the risk-sensitive exponential
cost functions, which, in turn, are closely related to the cost functions in H oo optimal
control problems [37]. Suppose that Ai ~ P, almost surely, and let A= E(A i). Thus Pis
the peak rate, and A is the mean rate of the source. Then, it is easy to show that

1· A(8) - A- d li A(8) - P
Im-~-- ,an Im--- .

0--+° 0 0--+ 00 8

Thus the effective bandwidth is a function of the risk of buffer overflow in the network.
If the source is willing to accept the risk of frequent occurrence of buffer overflows
(which would correspond to 8~ 0), then the capacity required to meet the QoS
demand is close to the mean rate A. On the other hand, if the source wishes to minimize
the risk of buffer overflows (8~ (0), then the required capacity is close to the peak
rate.

19.3.4 Examples

The effective bandwidth formula given in the previous section can be easily com­
puted for many realistic arrival processes. Here, we give one such example for contin­
uous-time ON-OFF models, which are widely used to model traffic sources in
communication networks. Consider a source that produces data at Jl bps when ON
and produces no data when OFF. Let the ON and OFF periods be exponentially
distributed with means ...L and -.L respectively.

We derive the effe~tive bqandwidth for this source along the lines of a similar
derivation for a discrete-time source in [9]. Define

M~(O) := E(eOA(O,t)lx(O) = ON) and Mf(O) := E(eOA(O,t)lx(O) = OFF).

Noting that for small 8, P(x(8) = ONlx(O) = OFF) ~ qu8 and P(x(8) = OFFlx(O) =
ON) ~ Qd8, it is easy to see that

Note that

E(eOA(o,t)lx(8) = OFF) = E(eOA(O,t-o)lx(O) = OFF) = Mf-o.

Using this and letting 8~ 0, we get

Section 19.3 QoS, Admission Control, and Calculus of Variations

Similarly,

475

(19.7)

The term e{)J1jj arises because A(O, 8) = JL8 given that x(O) = ON. Now, using e{)J-t8 ~ 1 +
()JL8, and letting 8 -+ 0, we get

(19.8)

Define

Then, M t((}) = M~((})1!u + Mf((})1!d' where 1!d and 1!u are the steady-state probabilities
of being in the OFF and ON states, respectively. From (19.7)-(19.8), it is clear that
M t((}) is of the form M, = ale{)}t +a2e{)2t for some 01 and (}2.Thus

where (}1 denotes the largest eigenvalue of the matrix

It is easy to see that (}l is given by

To get an idea of the amount of statistical multiplexing gain that is possible due to
large buffers, we consider an example with JL = 1 and the mean data rate of the source,
t q JL, equal to 1. Thus, effective bandwidth would be some number between 0.5 and

iu.o depending on the value of 8. In Table 19.1, we present the values of the effective
bandwidth for various values of qu and the QoS requirement 8, while keeping the mean
rate equal to 0.5. The table also gives the percentage reduction in the capacity required
by using the effective bandwidth as opposed to peak-rate provisioning. It is clear from
the table that allowing small probabilities of loss would allow for dramatically
improved network utilization when compared to the conservative design for zero cell
loss.

In this section, we have only dealt with the statistical multiplexing gain associated
with large buffers. As mentioned in Section 19.2, significant statistical multiplexing gain
is also achieved when multiplexing a lot of bursty sources even with a zero buffer. Large
deviations asymptotics obtained by simultaneously scaling both the buffer and band­
width are provided in [6].

476 Chapter 19 Control of Communication Networks

TABLE 19.1 Effective Bandwidth for ON-OFF Sources
with Rate 1

qu 8 Eff. bandwidth

0.01 0.01 0.6180
0.01 0.02 0.7071
0.01 0.1 0.9099
0.1 0.01 0.5125
0.1 0.02 0.5249
0.1 0.1 0.6180
0.2 0.01 0.5062
0.2 0.02 0.5125
0.2 0.1 0.5616

The results presented here are only valid for a single node. Extensions to certain
special types of networks can be found in [10]. Obtaining results for general networks is
still an open issue. In [13], a different approach is explored. There, the bandwidth
needed to decouple the network into a collection of noninteracting nodes has been
studied. A different direction of research is to extend the results to multiple classes of
calls in which each node discriminates between the different call types by using some
scheduling policy. Large-deviation results using optimal control techniques similar to
those described in this chapter have been studied for the GPS policy and for the
Generalized Longest Queue First (GLQF) policy (see references in [32]). Although
most of these papers deal with the issue of computing rare buffer overflow, the similar
problem for delay has been addressed in [32]. When using the effective bandwidth-type
results as above, one should also keep in mind that these are approximations. Although
the approximations mostly work well in practice, in some situations one could get bad
estimates. Examples of such cases are provided in [36] and in the references within.

19.4 CONGESTION CONTROL

To develop a mathematical model of congestion control, we will adopt the point of view
that there is a single bottleneck node that plays a dominant role in determining the
performance of a given set of sources. In this case, the simplest feedback control
mechanism is called rate matching. In rate matching, the node measures the average
rate available to ABR sources at periodic intervals and simply divides a fraction of this
capacity equally among the various users. The main advantage of this scheme is its
simplicity, but it is difficult to optimally control queue length to avoid buffer overflows.
However, this scheme is stable; that is, the queue length remains bounded in an appro­
priate stochastic sense. Queue length information is not used in this basic algorithm.

Alternatively, this problem can also be viewed as a feedback control problem in
which queue length is used as the explicit feedback. One can study this problem using
classical control techniques or a state space approach. As in rate matching, the primary
goal is not optimality but simply queue-length stability. In these approaches, the avail­
able bandwidth to ABR sources is treated as an unmodeled disturbance. Thus these
algorithms ensure stability in the presence of this disturbance. A comprehensive list of
references on congestion control is provided in [2].

Section 19.4 Congestion Control 477

Here, we review the results in [2] in which both available rate and queue length are
used to compute the data rates for the ABR sources. For a control-theoretic formula­
tion, we model the available bandwidth as an autoregressive (AR) process driven by a
white noise process. Modeling the available bandwidth allows this algorithm to achieve
better performance than other existing algorithms.

There is a fundamental difficulty in obtaining good congestion control perfor­
mance, namely, action delay, which is defined in terms of two components. The first
component is the downstream delay, that is, the delay between the time that the bottle­
neck node issues its command to the time it takes for a source to receive this command.
The second component is the upstream delay, that is, the time it takes for the data
packets generated by the source to reach the bottleneck node. The sum of these delays is
the action delay. It is well known in the control literature that the presence of delays in
the feedback path poses difficulties. In our problem, this problem is further magnified
because the action delays are different for different sources. Although the simple rate
matching algorithms do not account for delay, the control-theoretic approaches
account for feedback delay in their solutions. In the solution presented here, delay is
explicitly taken into account.

The congestion control problem is formulated as an LQG stochastic control
problem, in which the control actions of all users are actually determined centrally
by the node, which, however, has to take into account the fact that these different
actions will affect the queue dynamics at different times due to upstream and down­
stream delays. Even though this is not directly related to the analysis of this chapter,
one can actually show that [2] the centralized control problem with action delays is
equivalent to a decentralized team problem with information delays, where now the
decisions are made by the users. In the parlance of team theory, this fits into the class
of LQG teams with nested information, and hence the congestion control problem is
not as intractable as problems with nonclassical information. The problem posed here
does in fact admit an optimal solution, which is characterized in terms of the solution
of a discrete-time algebraic riccati equation (DARE) whose dimension is determined
by the magnitude of the largest delay and the order of the AR process describing the
available capacity [22]. However, there are other solutions, easier to implement (they
involve the solution of a scalar DARE), which share a common, appealing feature of
certainty equivalence in addition to being stabilizing. These simpler solutions are
presented here.

19.4.1 Model

We consider here a discrete-time model, in which a time unit corresponds to the
length of the minimum measurement interval. Let qn denote the queue length at a
bottleneck link, and ~n denote the effective service rate available for ABR traffic in
that link at the beginning of the nth time slot. Let rmn denote the effective source rate for
source m (m = 1, ... , M) at the input of the bottleneck link during the nth time slot,
which is actually the outcome of an action taken by source m several time steps earlier,
based on a command signal sent by the node even earlier. We denote the total time it
takes for the decision by the node regarding the transmission rate of source m to reach
that source and subsequently for the effect of this decision to reach the bottleneck node
(i.e., the sum of downstream and upstream delays-using the terminology introduced

478 Chapter 19 Control of Communication Networks

earlier) by dm,2 and the command decision of the node for source m at time n by Vmn,
which we will sometimes also write as vm,n. Hence we have the relationship:

Vm,n-dm = rmn: (19.9)

Now, in terms of the notation introduced, the queue length evolves according to

M M

qn+l = qn + Lrmn - JLn == qn + L vm,n-dm - JLn·
m=1 m=1

(19.10)

This equation corresponds to a linearized version of the actual queue dynamics, since
we have ignored the fact that the queue length cannot be negative. Simulations show
that this linearization is in fact valid when the controllers are successful in maintaining
the queue size around a positive target value Q, sufficiently away from zero. The service
rate JLn available to the sources may change over time in an unpredictable way since this
is the capacity left over from high-priority traffic. We model this available capacity by a
p-dimensional stable AR process:

JLn = JL + ~n
p

~n = Lai~n-i + lPn-I,
i=1

(19.11)

(19.12)

where JL is the known constant nominal service rate, a., i = 1, ... ,p, are known para­
meters, and {lPn}n~1 is a zero-mean i.i.d. sequence with finite variance.

The objective function, to be minimized by the node, involves the transmission
rates of all the sources that use the isolated bottleneck node, as well as the length of the
queue at that node, and is given by

. 1 l~[2 ~ 1 2jJ = lim sup N E L...J (qn - Q) + L...J 2 (rmn - am JLn)]
N~oo n=1 m=1 cm

(19.13)

where Q is the target queue length, cm's are some positive constants, and L~=1 am = 1.
Loosely speaking, the network attempts to operate on the following principle: If

the sources obey the control commands issued by the network, then the network
attempts to transfer the packets without any loss. Of course, this can be achieved by
making the data rates equal to zero for all the sources, which is clearly not desirable.
Thus another goal of the network is to maximize utilization; that is, the sum of the data
rates of all the sources should be nearly equal to the total capacity available for best­
effort sources. Keeping this in mind, the cost function can be interpreted as follows. The
first additive term above represents a penalty for deviating from a desirable queue
length. The secondadditive term is a measure of the quality with which the input rate
for each source tracks a given fraction of the available service rate, where the em's are
weighting terms that serve to prioritize the relative importance of these individual terms

2 Without any loss of generality, we take the dm's to be orderred in accordance with their indices,
that is, d1 ::s d2 ::s ooo,::S dMo

Section 19.4 Congestion Control 479

(among different sources as well as collectively with respect to the first additive term).
For example, if we desire "fair" sharing of the available bandwidth, we would choose

assuming that everything else is also symmetric for the sources.
The information available to the node at time n is In, where

Hence,

Vmn = Ymn(In), n = 1,2, ... ,; m = 1,2, ... , M,

where Ymn is some measurable function, with respect to which J will be minimized.
From [2], by introducing the new (appropriately shifted) variables

the optimal solution when all users have perfect-state information is given by

Umn = -Pm Xn + am ~n' m = 1 ... , M ,

where

(19.14)

(19.15)

(19.16)

(19.17)

This is therefore the optimum transmission rate for source m if there were no delay
(upstream or downstream) in the network. In the presence of delay, however, these
rates could lead to an unstable queue system. Hence there is a need to take into account
the upstream and downstream delays on various links.

Here we present a specific form of a certainty-equivalent controller,which we call
STARC (Stochastic Team Algorithm for Rate Control), where we simply replace Xn
and ~n by their best estimates in the expression for Umn :

* " "
um,n = -Pm Xn+dmln + am ~n+dmln' m = 1, ... , M · (19.18)

Here Pm is as defined by (19.17), and Xn+dmIn' €n+d mIn are the predicted values of xn+dm
and ~n+dm' respectively, based on the information In' and given that all other controllers
are also in the form (19.18). These predictors are generated by

480 Chapter 19 Control of Communication Networks

and

M

Xn+jln = Xn+j-lln +L Um,n- dm+j - l ln - €n+j-lln, j ~ 1 ;
i=1

Xnln = Xn

" P" "
~n+jln =L (Xi~n+j-iln' j ~ 1; ~n-kln = ~n-k' k ~ 0 ,

i=1

" ._!-pmXn+j - l ln + am€n+ j - l ln if j ~ dm+ 1
Um n-d +j-lln . -

, m Um,n- d
m

+j - l if j < dm + 1.

(19.19)

(19.20)

(19.21)

These are the recursive equations generating the predictors for the queue length and
rate information at a future time, where the future time is the current time plus the
action delay for the corresponding source. For example, €n+jln denotes the predicted
value at time n of the value of ~ at some future time n +j, based on the information
available at time n, which is In. A similar interpretation holds for xn+jln.

The above algorithm is relatively easy to implement. The estimator algorithms are
simple scalar operations and the scalar solution of the Riccati equation has already
been obtained explicitly.

19.4.2 Implementation Issues

Measurement Interval: In deriving the LQG-based congestion controller, we
assumed a discrete-time control problem. In reality, queue size changes at every arrival
or departure event. To convert it into a discrete-time control problem, we use the
measurement interval over which the available rate for ABR sources is measured at
the node as our basic time unit. The queue length is, of course, variable within this time
unit. However, for mathematical modeling purposes, we consider the queue length at
any time unit to be the queue length at the end of the measurement interval. Extensive
simulations confirm that this modeling error is not significant.

The length of the measurement interval also has another impact on the mathema­
tical model. Ignoring queueing delay, a traffic source that is transmitting between an
origin and destination of 1000 km has a round-trip delay of roughly 19 ms, assuming
that the transmission takes place over an optical fiber with refractive index 0.7. Suppose
that we have a bottleneck node with capacity 1 Gbps and that the length of our
measurement interval is the time taken to process 5000 cells. Thus, the measurement
interval is 2.12 ms. Thus, the round-trip delay is 2~f2 = 8.96 time units. Since our
mathematical model requires the delay to be an integer, this would be rounded to 9
time units. Again, despite this modeling inaccuracy, we have shown through simula­
tions that our controller continues to perform well.

Rate Management (RM) Cells: In our model, we assumed that feedback is avail­
able once during every measurement interval. However, the actual feedback mechanism
in ATM ABR service is more complicated. Each source generates a cell called an RM
cell for purposes of collecting feedback information from the nodes in its route. ATM
Forum, the standards organizations that defines protocol standards for ATM net­
works, has defined a parameter called NRm, which is used to decide how often RM

Section 19.4 Congestion Control 481

cells are generated by each source. One RM cell is generated after every (NRm - 1) data
cells. Typically, NRm is taken to be 32, and thus, one RM cell is generated for every 32
cells. This is done for reasons of scalability; that is, as the network size becomes large
and the number of sources is correspondingly large, this scheme for RM cell generation
will ensure that a maximum of i of the network bandwidth is used for congestion
feedback. Thus it limits the percentage of overhead associated with ATM ABR service.
This would not be true if, for example, one uses some other scheme such as generating
an RM cell every x ms for some x. There are some exceptions to the rule described
above for generating RM cells. If a traffic source is sending information at a rate that is
too slow for a reasonable number of RM cells to be generated, then it is allowed to
generate cells more frequently than one every 32 cells.

The RM cell traverses the virtual circuit setup for a traffic source, and once it
reaches the destination, it is turned back toward the source. It is during the reverse path
that it actually collects the feedback information. The reason stated for this is that,
when the RM cell returns to the traffic source, it would have the newer information
than if the information was collected in the forward path. In the reverse path, the RM
cell has a field called the ER (explicit rate) field, which is altered by each node through
which the RM cell passes. If a node decides that the traffic source has to transmit at rate
r, then it compares r with the current value of ER. If r < ER, then ER is set to r;
otherwise, the ER field is not changed. Thus, when the RM cell returns to the traffic
source, the smallest of the rates computed by the nodes in the path is reported to the
source and the source uses this rate until it receives the next RM cell back.

The above mechanism for feedback implies that feedback may not be available at
every time instant. In fact, whether or not feedback is available every time instant
depends on the rate at which each traffic source can generate data and the length of
the measurement interval. If the measurement interval is long enough so that each
traffic source generates at least one RM cell during each such period, then this mechan­
ism for collecting feedback information does not violate our modeling assumptions.
Indeed, simulations indicate that this is true.

Variable delay: We have so far assumed that the action delay for each source is
fixed. In reality, as mentioned earlier, delay has two components: propagation delay
and queueing delay. While propagation delay is fixed, queueing delay is variable.
However, in practice, queueing delay is small compared to propagation delay, so
that the small variability in delay does not seem to affect the performance of the
congestion controllers.

Max-min and Proportional Fairness: In our controller design for a single node, we
remarked that a sensible choice for the a:s in the case of a single bottleneck node would
be a, = 1/M, where M is the number of sources currently using the node. By such a
choice of the a;'s, we aim to divide the available bandwidth equally between the com­
peting sources. However, this may not be the best choice when there are many nodes.

Consider the network depicted in Figure 19.2. There are three nodes and two links
both with capacity 90 units. Sources 1 and 2 share Link 1, and Sources 2, 3, and 4 share
Link 2. On Link 2, the bandwidth is divided equally between the three sources and each
one gets 30 units. On Link 1, with our current choice of a;'s, Sources I and 2 would
attempt to get 45 each. However, Source 2 can use only 30 units becauase it is bottle­
necked at Link 2. Source 1 can use its full share of 45 units, and thus, the total used
bandwidth on Link 1 is only 75 units and 15 units of bandwidth are wasted.

482

81 81

Chapter 19 Control of Communication Networks

84

S2
S3 S4

S3

S2

Figure 19.2 Under a max-min fair allocation,
Sources 2, 3, and 4 get 30 units of bandwidth,
while Source 1 gets 60 units of bandwidth.

Clearly, in this situation, it seems better to allocate the remaining 15 units on Link
1 to Source 1. Thus, on Link 1, at should be~, and a2 should be!, whereas on Link 2,
a2, a3 and a4 should be !. Such an allocation of bandwidths is called max-min fair [5].
Under a max-min fair allocation, the bandwidth allocated to a source can be increased
only if the bandwidth allocated to the user using the smallest amount of bandwidth is
reduced. Thus we protect "small" users with such an allocation. Alternatively, one
could use other bandwidth allocation schemes such as proportional fairness [24] to
distribute the bandwidth in a multi-node network. From our point of view, however,
this simply means that the a/s have to be adapted to be compatible with the notion of
fairness that we want to use.

Peak rate constraints: When we designed the congestion controllers, we assumed
that the sources could transmit at the rate suggested by the nodes. However, for various
reasons, the maximum rate at which a source can transmit may be limited. For example,
the source may access the ATM network through an access link, in which case the
maximum rate at which the network receives data from this source is limited by the
access speed. Another reason for a peak rate could be simply that the application can
only transmit at a certain maximum rate. Thus, when the bottleneck node's rate com­
mand is larger than the source's peak rate constraint, then the source will simply
transmit at the peak rate. Clearly, this would lead to underutilization of the bottleneck
node.

If the sum of the peak rates of all the sources is less than the available capacity at
the bottleneck node, there is nothing that one can do to fully utilize the node. Assuming
this is not true, if one of the sources sends at a rate lower than its allocated rate, then it
makes sense to redistribute the bandwidth unused by this source to other sources. For
example, suppose that there are two sources, Source 1 and Source 2, and that we start
with at = a2 = !. If, on the average, Source 1 uses only one-third of the link bandwidth,
then the node should adapt the a/s to be at =! and a2 = ~.

Bursty Sources: In addition to sources being peak-rate constrained, they could
also be bursty. In other words, sometimes they may have no data to send and, at
other times, they may have data to send. Thus, the source would ignore rate commands
during inactive periods. If the source's active and inactive periods are on a very fast
time scale compared to the measurement interval, the node cannot adapt to the bursti­
ness of the source. However, if the source's active and inactive periods are relatively
long compared to the measurement interval, then, by measuring the data transmission
from each source, each node can adapt the a/s to redistribute the bandwidth unused by
the inactive sources among those that can use this bandwidth. Note that, in all three
cases-to achieve max-min or proportional fairness, or to account for peak rate con­
straints or bursty sources-the a/s can be adapted to redistribute the bandwidth allo­
cation between the various sources. This requires that the node measure the utilization

484 Chapter 19 Control of Communication Networks

In the figure, SVi represents a set of VBR sources as detailed under the figure, and D Vi
is the destination of SVi. Moreover, the VBR sources considered are of two types: video
traces obtained from various publicly available Web sites and simulated ON-OFF
sources. The latter are bursty sources simulated by us which alternate between ON
and OFF states according to a Markov chain, and when in the ON state, cells arrive at
a constant rate.

In addition to the VBR sources, we have four ABR sources, as shown in
Figure 19.4, which are subject to rate control using STARe. Three of the ABR sources
are bottlenecked at the third node. The fourth ABR source will then use the remaining
capacity at the second node (according to the max-min criterion [5]), which then
becomes bottlenecked. The network eventually ends up with two bottleneck nodes.
Table 19.2 specifies the action delays used in the mathematical model.

For the simulation, we used the following parameter values:

• Time unit: Time required to serve 5000 cells.

• Target queue length: Q= 700.

• Weights: em = 1 \1m.

• The nominal service rate JL and the AR process parameters (Xi are estimated
on-line using the Yule-Walker algorithm [7], assuming that the order of the
AR process is 8.

• The propagation delay from one node to the next is 1.6. Note that the actual
delay is variable since the cells go through node buffers, which leads to addi­
tional queueing delays.

Following the current ATM standards, the feedback mechanism has been implemented
using RM cells that are generated by the sources every 32 data cells.

The VBR sources used in this example are such that the mean available ABR
capacities are around 4870, 4720, 4480, and 4860 cells per time unit at Nodes 1, 2, 3,
and 4, respectively. The main bottleneck node is the third one where the capacity should
be equally distributed between the sources ABR1, ABR2, and ABR4. So those three
sources should transmit at around 1500cells per time unit. Then, since ABRI does not
use its fair share at Node 2 (which is around 2350), ABR2 should use the remaining

SAi: source ABRi
DAi: destination ABRi

DAt

DA4

Figure 19.4 Max-min fairness configuration: ABR sources.

Acknowledgments 487

admission control and congestion control. For the other problems, we have provided
an overview of the results along with several references to recent research in these
areas. Furthermore, throughout the chapter, we have identified several open problems
that may be of interest to control specialists.

We have focused primarily on wide-area high-speed networks in this survey.
For applications of control methods to multiple access communications, see [19].
There is also considerable work on control of queueing networks motivated by
applications in manufacturing which could prove useful in understanding the beha­
vior of communication networks as well. For instance, see the work of Kumar,
Meyn, and their co-workers on the stability and performance of general queueing
networks [27, 11].

Finally, we end the chapter with a note of caution and a note of optimism.
Control problems in communication networks are complex and challenging and are
becoming extremely important because of the explosive growth of the networking
industry. The note of caution is that, while there are exceptions, most problems in
this area do not directly fit into the mold of traditional control theory. Indeed, the
successful network engineer requires a knowledge of various disciplines, including
control theory, operations research, computer science, and information theory. On
the other hand, we believe that the general concepts underlying traditional feedback
control and optimal state space control can play a central role in building the
networks of the future. As in the case of information theory and communication
networks [18], however, the realization of this promise awaits a union between
control theory and communication networks which is still unconsummated. This
could be a source for optimism since, in the future, control theorists may be able
to play an important role in facilitating this union.

ACKNOWLEDGMENTS

It is a pleasure to thank Eitan Altman, Tamer Basar and Sonia Compans for earlier
collaboration that resulted in the work presented in Section 19.4, Bruce Hajek for
discussions on the material in Section 19.3, and P. R. Kumar for bringing [37] to our
attention.

Part of the work presented here is a result of research supported by an NSF
CAREER Award NCR 9701525, a grant from the Nokia Research Center and a
grant from Rome Labs (Air Force Contract F30602-96COI56) through Scientific
Systems Company, Inc.

Related Chapters

• Communication networks are an example of discrete event systems, a general introduc­
tion to which can be found in ChI 2.

• See ChI 16 for a review of communication networks and protocols as used in and
proposed for building control system.

• A brief discussion of communication networks for process control systems is included in
Ch.12.

488 Chapter 19 Control of Communication Networks

REFERENCES

[1] J. Abate, G. L. Choudhury, D. M. Lucantoni, and W. Whitt, "Asymptotic analysis of tail
probabilities based on the computation of moments." Annals ofApplied Probability, Vol. 5,
pp. 983-1007, 1995.

[2] E. Altman, T. Basar, and R. Srikant, "Congestion control as a stochastic control problem
with action delays." Automatica, December 1999. Special Issue on Control Methods for
communication networks, V. Anantharam and J. Walrand, editors.

[3] E. Altman, T. Jimenez, and G. Koole, "On optimal call admission control." Proceedings of
the IEEE Conference on Decision and Control, Tampa, FL, 1998.

[4] D. Anick, D. Mitra, and M. Sondhi, "Stochastic theory of a data-handling system." Bell
System Technical Journal, Vol. 61, pp. 1871-1894, 1982.

[5] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ: Prentice Hall,
1987.

[6] D. D. Botvich and N. G. Duffield, "Large deviations, economies of scale, and the shape of
the loss curve in large multiplexers." Queueing Systems, Vol. 20, pp. 293-320, 1995.

[7] P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods. 2nd ed. New York:
Springer, 1991.

[8] J. A. Bucklew, Large Deviation Techniques in Decision, Simulation and Estimation, New
York: John Wiley, 1990.

[9] C-S. Chang, "Stability, queue length and delay of deterministic and stochastic queuing
networks. IEEE Transactions on Automatic Control, Vol. 39, pp. 913-931, 1994.

[10] C. S. Chang, "Sample path large deviations and intree networks." Queueing Systems, Vol.
20, pp. 7-36, 1995.

[11] R-R. Chen and S. P. Meyn, "Value iteration and optimization of multiclass queueing net­
works," 1998. Preprint.

[12] A. Dasylva and R. Srikant, "Bounds on the performance of admission control and routing
schemes in general topology networks." Proceedings of the IEEE INFOCOM, New York,
April 1999.

[13] G. de Veciana, C. Courcoubetis, and J. Walrand, "Decoupling bandwidths: A decompositon
approach to resource management in networks." Proceedings of the IEEE INFOCOM, pp.
446-474, 1994.

[14] A. Dembo and T. Zajic, "Large deviations: From empirical mean and measure to partial
sums process." Stochastic Processes and Applications, Vol. 67, pp. 195-211, 1995.

[15] A. Dembo and o. Zeitouni, Large Deviations Techniques and Applications, 2nd ed. New
York: Springer, 1998.

[16] A. Demers, S. Keshav, and S. Shenker, "Analysis and simulation of a fair queueing algo­
rithm.' ACM SIGCOMM, pp. 1-12, 1989.

[17] P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory ofLarge Deviations.
New York: John Wiley, 1997.

[18] A. Ephremides and B. Hajek, "Information theory and communication networks: An
unconsummated union." IEEE Transactions on Information Theory, Vol. 44, pp. 2384­
2415, 1998.

[19] A. Ephremides and S. Verdu, "Control and optimization methods in communication net­
work problems." IEEE Transactions on Automatic Control, Vol. 34, pp. 930-942, September
1989.

[20] R. J. Gibbens and F. P. Kelly, '''Network programming methods for loss networks," IEEE
Journal on Selected Areas in Communications. Vol. , pp. 1995.

[21] A. G. Greenberg and R. Srikant, "Computational techniques for accurate performance
evaluation in multirate, multihop communication networks." IEEE/ACM Transactions on
Networking, Vol. 5, pp. 253-277, March 1997.

References 489

[22] O. C. Imer and T. Basar, "Optimum solution to a team problem with information delays:
An application in flow control in communication networks," 1999. Proc. IEEE Con!
Decision and Contr., Phoenix, AZ, December 1999.

[23] F. P. Kelly, "Notes on effectivebandwidths." In F. P. Kelly, S. Zachary, and I. B. Ziedins
(eds.), Stochastic Networks: Theory and Applications, pp. 141-168, 1996.

[24] F. P. Kelly, A. Maulloo, and D. Tan, "Rate control in communication networks: Shadow
prices, proportional fairness and stability." Journal of the Operational Research Society, Vol.
49, pp. 237-252, 1998.

[25] F. P. Kelly, Loss networks. The Annals of Applied Probability, Vol. 1, no. 3, pp. 319-378,
August 1991.

[26] S. Keshav, An Engineering Approach to Computer Networks. Reading, MA: Addison­
Wesley, 1997.

[27] P. R. Kumar, "A tutorial on some new methods for performance evaluation of queueing
networks." IEEE Journal on Selected Areas in Communications, Vol. 13, pp. 970-980,
August 1995.

[28] R. La and V. Anantharam, "Adaptive modification of generalizedprocessor sharing," 1998.
Available at http://diva.eecs.berkeley.edn/vananth

[29] R. La and V. Anantharam, "Optimal routing control: Game-theoretic approach." Proc.
IEEE Con! on Decision and Control, December 1997, San Diego, CA.

[30] P. Marbach, O. Mihatsch, and J. N. Tsitsiklis, "Call admission control and routing in
integrated service networks using reinforcement learning." Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, FL, 1998.

[31] A. Parekh and R. Gallager, "A generalized processor sharing approach to flow control in
integrated services networks: The single node case." IEEEjACM Transactions on
Networking, 1993.

[32] I. Paschalidis, "Performance analysis and admission control in multimedia communication
networks." Automatica, December 1999. Special Issue on Control Methods for communica­
tion networks, V. Anantharam and J. Walrand, editors.

[33] S. Shenker, "Making greed work in networks: A game-theoretic analysis of switch service
disciplines." IEEEjACM Transactions on Networking, Vol. 3, pp. 819-831, 1995.

[34] R. Srikant and W. Whitt, "Simulation run lengths to estimate blocking probabilities in
multi-server loss models." ACM Transactions on Modelling and Computer Simulation, pp.
7-52, January 1996.

[35] R. Srikant and W. Whitt, "Variance reduction in simulation of loss models." Operations
Research, July-August 1999, pp. 509-523.

[36] V. Subramanian and R. Srikant, "Statistical multiplexing with priorities: Tail probabilities
of queue lengths, workloads and waiting times." Proceedings of the IEEE Conference on
Decision and Control, San Diego, CA, 1997.

[37] P. Whittle, Optimal Control: Basics and Beyond. New York: John Wiley & Sons, 1996.

INDEX

A

activation function 111
active control

bridge towers 423-4
building/towers 421-2

active mass damper (AMD) system 418-19
actuator nonlinearity 135
A/D (analog-to-digital) converter 2, 6, 14,

23
adaptive bounding 154
adaptive control 121, 126-30, 313,435,443,

451
cruise control 358
direct 127
genetic 126-8
indirect 126
neural networks 126-8

adaptive law 161
admission control, real-time sources 464-5
advanced cruise control (ACC) 358, 366
aerospace systems, multivehicle 239-58
affine functions 143
agent-based systems 227, 254-5, 343
air charge temperature sensor (ACT) 125
air-handling units (ARDs) 394, 396, 405,

410-12
air traffic management (ATM) 240

airline operating center (AOC) 248
airspace 241-2
constrained airspace 249
control system design 245-6
control variables 244
distributed separation assurance

procedures 247
disturbances 242-6
flight deck considerations 248
future controls applications and

challenges 241-9

initial conditions and framework
243-4

state variables 244
terminal area operations 249
traffic flow management (TFM)

constraints 247-8
uncontrolled variables 245
user-preferred trajectories (UPTs) 246-9

aircraft
control law design 270-3
dynamics 260-8
dynamics modeling 49
flight control 259-90
landing approach 55
linear models 260-8

algorithmic tuning 62
AND gate 170
ANDECS 46
angular velocity sensor system 126
antilock brakes (ABS) 222, 357-8
approximation, on-line 152
approximation-based control 134-64

components 135-8
control architectures 140-2
cost function 148
neural networks 139-40
problem statement 138-9

approximation errors 137, 153, 156-7, 162
approximation function

linearly parameterized 154
structure 152

approximation problem
nonlinear system 152-3
parameter estimation algorithms 152
parametric models 152

approximator 136-7
parameter (non)linearity 145-6
properties 142-52
structure 137

491

492

approximator (continued)
transparency 151-2
with local influence functions 149-51

arc firing 174
ARCnet 400, 403, 405
area control error (ACE) 333-4
arrival rate 33
artificial neural networks (ANNs)

see neural networks
asymptotically stable state 199-200
asynchronous sequential circuits

169-70
Asynchronous Transfer Mode (ATM)

networks 463, 465, 482
AT-MIO-16F-5 A/D timing board 126
atomic equations 173
Automated Highway System (AHS)

350-1, 354-7
automatic generation control (AGC) 328,

333-4, 343
Automatic Synthesis Program (ASP) 43
automatic tuning 60-3
automation, control design 68
automation systems

building 393-416
hardware structure 404-6
objectives 221
software features 406-7

automaton 26
automotive engine failure estimation 125-6
automotive powertrain controller

development 370-92
organizational structure 372-3
process requirements 374-6
role of 371-2
software requirements 374-6
see also CACSD

autonomous systems 88, 121-2, 224
autonomous vehicles 229-31, 252-3,

287-90
auto-regressivemoving average with

exogenous input (ARMAX) 83
auto-regressive with exogenous input (ARX)

83
autotuning 310
available bit rate (ABR) 465, 476-7,

480-1, 483-6

B

backlash 91
backpropagation algorithm 115, 156

Index

backpropagation through time 156
backward differences 99
BACnet 402-3
balanced reduction 87-8
basis-influence functions 150
Batibus 402
benchmarking 305-6, 419
bifurcation 89
biological systems 104, 121, 226-7, 234-5,

255
blocking time 16
body axis coordinate system 260
boundary layer 198
Box-Jenkins (BJ) 83
bridge towers, active control 423-4
BridgeVIEW 295
buffer overflow 474
building control and automation

systems 393-416
advanced technologies 407-13
development 393-5
existing technologies 395-9

bursty sources 482-3
business systems integration 229
busy periods 31

C

CACSD 42-70,370-92
computation chain 63
configuration management 388
control algorithm 379
control design life cycle 45-7
debugging 381
functional verification 384-5
further technology 66-8
generic computation setup 54
interoperable system 68
rapid prototyping 381
requirements 376-7
software application

architecture design 377-9
functional verification 386
structural verification 385-6
validation 382

software design 382
software engineering project

management 388-9
software implementation 383
software/module integration

verification 386-7
software requirements capture 377

Index

structural verification 383-4
toolboxes 61
unit testing 384
user documentation 387-8
validation 380
see also automotive powertrain

controller development
calculus of variations 468
capacity allocation problem 38-9
car-following control 358-61
central differences 98
central nervous systems (CNS) 226
central processing unit (CPU) 23

cycles 4
certainty equivalence principle 140
chaos 90-1, 234-5
chattering 191, 197

avoidance 203
hybrid system trajectories 168
prevention by continuous

approximation 197-8
solutions 168

Chebyshev polynomials 77
Cholesky decomposition 76
chromosomes 116-18
circuit-switched routing 466
circuit verification 170
civil engineering infrastructures 417-41

control problem 417-20
hybrid control systems 420-30
semiactive control systems 430-9

closed-loop inverse kinematics
algorithm 444

closed-loop planning system 120
combinational circuit 170
communication networks 462-89

congestion control 476-86
control and management 464-8
examples 474-6
implementation issues 480-3
overview 462-3
simulations 483-6

comparative design exploration,
visualization for 59-60

complex adaptive systems (CAS) 227
complex instruction set architectures

(CISC) 4
complex systems, emerging control

technologies 225-8
complexity management 218-38

future 221
"schools" 231-6

493

compound quality functions 57
computation tree logic (CTL) 178-81
computed torque control 449
computer-aided control engineering (CACE)

environment 68
computer-aided control system design see

CACSD
computer vision 412-13, 457
condition-based maintenance (CBM) 407
congestion control

best-effort sources 465-6
communication networks 476-86

constant bit rate (CBR) 465
continuous approximation 203
continuous-time adaptive algorithms 155
continuous-time Markov process 32
continuous-time systems 79
control action, positive 412
control architecture 135-6, 443, 451, 457
control design automation 68
control hierarchy in manufacturing

systems 24
control law

design life cycle 45
parameterization 66
structures 51, 53

control networks 400-2
control performance evaluation setup 53-4
control performance indices 299, 410
control synthesis algorithms 52
controllability grammian 87
controllable fluid dampers 432-4
controller gains 65
controller modeling 51-4
convection equation 97
coordination 240, 250-1
cost function, instantaneous error 155
cost index 303
covariance matrix 157
covariance resetting 158
C*-quality versus control-effort 65
critical sections 11, 174
crossover operation 118
cruise assist systems 358
cruise control 357
CSTAR 59
CTAS 244
curse of dimensionality 151, 226, 344

D

data acquisition system 125

494

data analysis, intelligent 231
data-based nonlinear estimation

124-5
data communications 296
data dependence 10
data mining 231
datagram routing 466
de transmission 336
DCS/SCADA 319
deadline monotonic (DM) algorithm 9
deadlock 177
deadlock-free system 179
dead-zone 161, 365

modification 162
decentralized distributed control

254-5
decentralized models 100
decision making 54-60
decision process 59
declarative compromising 63-5
declarative system dynamics model

building 48
deductive verification 182
describing function

approximation 93-4
design analysis 54-60
design efficiency 233-4
design modeling 46-53
desktop PCs 17
difference equation 23
differential 23
diffusion equation 97
digital circuit 170
digital communications

technology 296
digital control system

direct 399
distributed 298
general form 3

digital magnetic zero-speed sensor 126
digital signal processors (DSPs) 18
direct adaptive control 127
direct control 140, 142
direct control law parameterization 53
direct digital control (DDC) 297-8, 399,

401-2, 406
direct truncation 88
directed graphs 170
discrete-event signals 167
discrete-event systems 20-42, 80, 167, 172,

180, 184
definition 21, 23-4

Index

models 25-33
need for 24
optimization 33-40
overview 22-5
simulations 32
state model 26-9
state trajectory 25-6

discrete-time algebraic riccati equation
(DARE) 477

discrete-time models 79, 477-80
discretization visualization of flight

envelope 53
distributed control system (DCS) 293-4,

319
distributed DDC (DDDC) 399
distributed digital control 298
distributed parameter system 79, 228

models 95-9
distributed processing 255-6
documentation 387-8
domain knowledge 219-20
drive-by-wire vehicles 357-8
DTC-l throttle controller 126
Duffing's equation 90
DYN-LOC IV speed/torque

controller 126
dynamic backpropagation 156
dynamic inversion 270-3
dynamic matrix control (DMC)

algorithm 319
dynamic programming 251, 353, 466
dynamic setpoint maneuvers 315-16
dynamic system 22-3
dynamical models 79-88

E

EASY5x 294
EEC-IV controller 125
effective bandwidth 466, 474
eigenstructure methods 52
electric power system see power system

control and estimation
electronic control units (ECDs) 357
electronic throttle control 357
electrorheological (ER) fluids 433-4
ELEVRATE 59
energy efficiency 225
energy management systems 394
engine test cell 126
enterprisewide optimization 228-9
environmental safety 222-3, 232-3

Index

EPA IM240 cycle 126
s-modification 162
equilibrium point 182
error state 175
estimation error, small-in-the-mean 162
estimation model 159
estimator construction methodology 124-5
Ethernet 400, 403
Euler's first-order approximation 114
evaluation cases 53
evaluation criteria 55
evaluation model 47
event clocks 30-1
event labels 172
event lifetime 31, 36
existence set 147
expert systems 119-20, 407-13
explicit models 98
extractive distillation process 303-4
extrapolation 148

F

failure detection and identification (FDI)
algorithms 121

fault detection indices 299
fault tolerance/safety enhancement 368
feasibility assessment 59
feasible design 58-9

alternatives 59
feasible events 30
feasible region 33
Federal Energy Regulatory Commission

(FERC) 337
feedback control systems 2, 88
feedback linearization 95, 140, 264, 270
feedback loop 2
feedback process 46-7
feedforward multilayer perceptron 110
Fiber Distributed Data Interface (FDDI)

401
finite difference models of PDEs 97-9
finite impulse response (FIR) 83
finite state machines 27, 171
fire protection 406
fitness function 116
fixed point 180
fixed-priority scheduling theory 8-9
Flexible AC Transmission (FACTS) 342,

344
flexible-link robot, vibration damping

123-4

495

flight control systems 64, 259-90
analysis tools 281-6
design 49, 269-80
development 286-8
law 51
simulation tools 268-9
unmanned aircraft 289-90
zero shaping 279-80

flight envelope, discretization
visualization of 53

flocking 255
flying qualities 270-1
FMRLC 130-1
force control, robotic systems 451-7
forced system 88
formation flying 253-6
forward differences 98
Fourier series 93-4
Fourier series coefficients 94
Fourier series expansion 94
free-floating robotic system 169
free flight 229, 240
frequency-to-voltage converter 126
function approximation 113, 115, 150
function approximation error 139
fuzzy adaptive control, generalization

applications 147
fuzzy control 51, 53, 105-10, 119, 419, 420,

435
adaptive control 126-8
design 106-10
ship example 109
ship steering 128-30

fuzzy estimation 125-1
fuzzy logic 57
fuzzy logic-based control 410-12
fuzzy model reference learning control

(FMRLC) 128
fuzzy systems 124, 150

approximation transparency 152

G

gain scheduling 445
game theory 467-8
GARTEUR design challenge 66
gas turbines 339-40
GEN4 program 286
generalised predictive control (GPC)

algorithm 319
generalization 147-9
generalized Lyapunov function 196-7

496

generalized semi-Markov process 32
genetic adaptive control 126-8
genetic algorithms (GA) 116-19, 234

design concerns 118-19
genetic operators 117-18
global approximation structure 149-50
global asymptotic stability 200
global positioning system (GPS) 249, 341,

356, 368
global system optimization 314-19
gradient algorithm 34-5, 155-7

stability 156
gradient estimation 35-6
gradient vector 78
graphical user interfaces (GUls) 281, 294
grid control 327-37

structures 338-9
grid frequency regulation 331-4
guard equations 173
gyrators 81

H

Hankel matrix 85
hardware-in-the-Ioop (HIL) 260, 287,

386-7
Hatley-Pirbhai design method 379
heated exhaust gas oxygen sensors (HEGO)

125
Hessian matrix 78
heuristic construction of nonlinear

controllers 122
hierarchical models 100
Hopf bifurcation 90
human safety 222-3, 232-3
human systems, power laws 235
HVAC systems 395-6,407,412-14
hybrid automaton 166, 17a-7

definition 171
dynamics 173
robotic systems 176

hybrid base isolation 429-30
hybrid mass damper (HMD) 42a-9
hybrid specifications 177-9
hybrid state 172
hybrid state space 172
hybrid systems 29, 80, 354, 365-6

analysis 179-83
civil structures 42a-30
continuous state 172
synthesis 183-5
trajectory 168

Index

hybrid trajectories 172
hysteresis 91

IDCOM 316, 319
idle periods 31
impedance control 454
implicit models 99
Independent System Operator (ISO) 34a-l,

343-5
indirect adaptive control 126
indirect control systems 14a-2
individuals, population of 116-17
industrial process control 291-323

applications/production
processes 297-300

applications software 294-6
information issues 299-300
information technology

infrastructure 293-4
operations hierarchy 298-300
standard options 296
state of the art 292-6
strategy issues 298-9

industrial three term control 306-13
infinitesimal perturbation analysis (IPA)

35-6,39
influence functions 149-51
information processing power 225
information systems

interoperability 67
information technology 399-404
initial state 27
input 22
input-output system 22
Inspection and Maintenance (1M) 240

cycle 126
instantaneous error, cost function 155
integrated squared error (ISE) 177
intelligent control

applications 122-30
current research 131
in robotics 443
outlook on 13a-l
overview 104-33
techniques 105-22

intelligent cruise control 358
intelligent data analysis 231
Intelligent Transportation Systems (ITS)

348-69
fault tolerance/safety enhancement 368

Index

related problems 366-8
intelligent vehicle and highway systems

(IVHS) 121, 350, 357-66
IntelliScout 231
Internet 231, 463
interpolation 148
interrupt latency 4
interrupt service routine (ISR) 4, 7-8, 11
interruptive systems 31
intersections, networks of 352-3
interval quality criteria 56
interval quality functions 56

damping values 58
invariant equations 173
inverse dynamics control 450
inverse Hessian iteration 78
inverse kinematics 444
iterative modeling process 72

K

Kalman filter 157
kernel 11

L

labeling function 173
Labview 17, 295-6
ladder logic 18, 398
Lagrange multipliers 79
lane change controller 365
lane-keeping controller 363-4
lane tracking 361-4
Laplace equation 97
large deviations principle (LDP) 469-70
large-scale optimization 228-9
lattice-based approximators 151
learning algorithms 155, 160-2
least-mean-square (LMS)

algorithm 155
least-squares

algorithms 157-8
identification problem 83
parameter identification scheme 84
with forgetting factor 158

lighting control 406
likelihood ratio 35
limit cycles 89
limited authority adaptive control 313
linear analysis models 281
linear control systems 134
linear-in-parameter (LIP)

approximation 145-6

497

linear least-squares approximation,
linearization for 76-7

linear models 75-7
linear parametric model 154
linear quadratic gaussian (LQG) control

synthesis 42, 480
linear quadratic optimal control 273-9
linearization 92-5

for linear least-squares
approximation 76-7

linearly parameterized
approximators 159

Linux 12, 17
load management strategy 316
local approximation structure 149
local area networks (LANs) 293, 399-401
local functions 144
local linearized approximation 92-3
logical models 29
Lon Talk 403-4
low level control strategies 315
lumped parameter models 80-1
lumped parameter system 79
Lyapunov stability and design methods 52,

142, 155, 158-60, 182, 196-7, 344, 447,
451

Lynx 6, 17

M

macromodels, scope and future
99-101

magnetorheological dampers 435-9
magnetorheological (MR) fluids 433-4
management information system (MIS)

299
manipulation feedback process 46
manufacturing systems, control

hierarchy in 24
manufacturing yield 224-5
market behavior 345
market-oriented programming 255
marketing time and cost 223
Markov chain 28-9
Markov inequality 468
Markov parameters 83, 85
Markov process 22, 32-3, 39
MARX 256
mass airflow sensor (MAF) 125
mathematical models 74
MATRIXx 281, 286-7, 294
maximum overshoot 177

498

max-min fairness model 485-6
membership function 107-8, 124,410-12
metrics 388-90
microelectromechanical systems (MEMS)

228
micromodels 99
miniaturization 225
minimizing parameter vector 146
minimum convergence rate line (MCRL)

359-60
missiles

control law design 273-9
dynamics 260-8
flight control 259-90
linear models 260-8

MIT rule 156
MIMII queue 32-4, 37
modal truncation 86
model-based predictive control (MPC)

316-19
architectures 319
industrial varieties 319
key advantages 318-19
tuning parameters 318.

model checking iteration 181
model-free control 122-3
model predictive control (MPC) 128
model reduction 86-8
model reference adaptive control (MRAC)

128
modeling errors 160
modification feedback process 46
Monte Carlo 226
motherboard 18
MR fluid damper, full-scale

seismic 436
multi-agent systems 254-5
multi-hidden layer networks 143
multi-input multi-output fuzzy

systems 108
multilayer perceptrons 110-13
multilink flexible robots 123-4
multimodel compromising 66
multiobjective parameter

optimization 62-3
multiple limit cycles 89
multitask scheduling 378
mutexes 175-6
mutual exclusion 174

Index

N

network control units (NCUs) 404
network marking 171
networked DDC systems 401
networks of intersections 352-3
neural networks 110-16, 124, 408-10, 419,

430
adaptive control 126-8
approximation-based control 139-40
control algorithm 410
design concerns 115-16
generalization applications 147
performance index 410
recognition applications 147
training 113-15, 156

Newton's law 95
nodal processors 144
nonautonomous system 88
nondeterministic state machines 27-8
nondeterministic trajectories 168
noninterruption 31
nonlinear control law parameterization 53
nonlinear controllers, heuristic construction

of 122
nonlinear dynamical systems 88-95, 234-5
nonlinear estimation, data-based

124-5
nonlinear models 77-9
nonlinear programming algorithms 62
nonlinear systems 134-5

approximation problem 152-3
stability 158-60

nonlinearities, common effects 89-92
normalized gradient algorithm 155
North American Electric Reliability Council

(NERC) 333

o
objective function 33-4
observability grammian 87
on-board diagnostics 371-3
on-line approximation functions 140
on-line optimization 37-40
Open Access Same-time Information System

(OASIS) 337
Open Systems Interconnection (OSI) 296
operator control language (DCL) 399
output error 83
overmodeled system 87

Index

p

parallel coordinates 59
parameter drift 161
parameter estimation error 159
parametric models 152-5
Pareto analysis 300, 302
Pareto-Optimal 59, 64
partial classification tree 74
partial differential equations (PDEs)

95-6
classification 96-7
elliptic 97
finite difference models of 97-9
hyperbolic 97
parabolic 96-7

partition of unity 151
parts bin 168, 174
PATH group 354
peak rate constraints 482
performance

analysis 283
index 303
monitoring 300-6
quality indices 302-5
versus cost 59

perturbation analysis 35
Petri nets 29, 40, 51, 171
phase-plane representation 91
physical systems

integration 229
modeling 48-9

PID control 1-7, 17, 51-2, 117, 121-3,
294-7, 306-13, 396-8, 443-8

ramp response 6
tuning 309-10

pitch autopilot block diagram 278
pitch loop autopilot 278
pitchfork bifurcation 90
planning systems 120-1
plant performance indices 300
platoon 354
pole placement 295, 449
population of individuals 116-17
positive control action 412
power laws 234-5
power system control and estimation

324-47
institutional changes impacting control

techniques 337
new technologies 339-42

499

power system control development and
research, future directions 343-6

power system control objectives 327-8
power system dynamics 327-37
power system stability-enhancing controls

334-7
power system stabilizers (PSS) 335-6
predictive model equation 317
primary industries 291
priority ceiling protocol 16-17
priority inversion 16
probabilistic methods 344
process cost function 317-18
process industries see industrial process

control
Profit Suite 294
programmable logic controllers (PLCs) 2,

18-19, 24, 293, 394, 398
projection modification 161
proportional fairness 481-2
protocols 402-4
Public Utility Regulatory Policies Act of

1978 (PURPA) 326
pulse-width modulation (PWM)

motor driver 12
switching frequency 12

Q

QNX kernel 12
QNX operating system 13
QNX process states 13-15
QR decomposition 76
quality functions 54-6, 66, 68
quality levels 56
quality modeling 46, 54-60
quality-of-service (QoS) 465, 468, 473, 475
quantitative feedback theory (QFT) 314
queues 26-7, 30-1, 351, 467, 476-87

probabilities of rare events 471-4

R

ramp control and merging 354-5
random process 469-70
random variables 468-9
randomized algorithms 225-6
rate management (RM) cells 480-1
rate matching 476
rate monotonic (RM) algorithm 8
reaction control system (RCS) 261
real-time computing and control 1-19

hardware issues 17-18

500

real-time low-level programming 6-11
real-time operating systems 11-17

at run time 13-17
real-time programming languages

11-17
real-time sources, admission control 464-5
rectangular hybrid automata 174
recursive least-squares algorithm,

stability 158
redundancy control logic 52
regulatory compliance 223
relay experiment 310-12
response time 9
risk assessment 232-3
roadway transportation 348-69
robotic systems

control 152, 442-61
example 174-7
force control 451-7
free-floating 169
historical perspective 442-3
humanoid robot 230
hybrid automaton 176
kinematic control 443-6
single degree of freedom 203-5
visual servoing 457-9

robust control 53, 66, 109, 191, 195-6,
201-3, 251, 256, 260, 268, 274, 283-6,
313-14,344,361,430,443,451

robust learning algorithms 160-2
robust multivariable predictive control

technology (RPMCT)
algorithm 319

robust PID algorithm (R-PID) 294
Robust Servomechanism Linear Quadratic

Regulator (RSLQR) 273-9
robustness 283-6, 313-14
roll-yaw autopilot block diagram 279
routing 353-4, 466-7
RT-ARM 256
rule-base 53, 105-9, 119, 411-12

5

safety analysis, UCAVs 251-2
safety issues 222-3, 232-3
sampled data systems 80, 206-15
sampling frequency 13
satellite clusters 240, 253-6

emergent behavior 255
scale-model studies 435-6
scenario resolution 365-6

Index

scheduling 8-13, 25, 297-9, 378,467-8
scheduling level 299
score function 35
script files 281
secondary industries 291
semaphores 15, 16, 175
semiactive control systems, civil engineering

infrastructures 430-9
semiactive impact dampers 434
semi-Markov process 32-3
SEPIA software tool 230
sequential circuits 170
service rate 33
servo control system 3
setpoint optimization 316
shared memory 11
ship steering, fuzzy control 128-30
o-modiflcation 161
sigmoid (logistic) function 111
signalization 351-2
signum function 193
simulation tools, flight control

systems 268-9
simulations, communication

networks 483-6
SIMULINK 294, 379-84
single-board computers 17-18
single-output network functions 143
single-season model 111
singular, implicit, or differential-

algebraic system 79
singular perturbation 86-8
singular value decomposition (SVD) 76
six degree-of-freedom equations of motion

(EOM) 260
sliding manifold 190
sliding-mode control 168, 189-217, 364,

419, 429-30, 451
applications 192
basic principle 193-8
general case 198-205
problem formulation 199
robust 195-6, 201-3
sampled data control systems

206-15
sliding surface 190, 194, 200-1

control law 195
societal connections 235-6
software project management 388-9
software testing 287
sojourn times 33, 36
solar system 72

Index

solution technologies 219-20
squashing functions 144
stability indicator eigenvalue

damping 58
stable queue 33
stable training algorithm 137-8
standard network variable types

(SNVTs) 404
star topology 100
STARC (Stochastic Team Algorithm for

Rate Control) 479, 484
state event systems 79
Stateflow 379-83
state machines 26-7, 29
state models 22, 26-33
state space 26

models 81, 84-6
state trajectory 26
state transition 26-8

diagram 26-8
static models 75-9
static nonlinear approximation

problem 154
statistical multiplexing 464
statistical process control (SPC) 301
steady-state average sojourn time 33, 36
steady-state mean sojourn time 36
steepest descent 78
steering control 361
step sizes 34, 97-8
stochastic approximation 35
stochastic modeling 101
Stone-Weierstrass Theorem 145
superfast algorithms 67
supervisory control 29, 101

models 100-1
supervisory hybrid systems 165-217

definition 167
examples 166-70
theory 166

supervisory level 299
supervisory system command

structure 315-16
supply chain 294
sustained oscillation procedure 307-9
SWARM 254
switched systems 167-70
switching surface 190
symbolic model checking (SMC) 170, 180-1
synchronous generator dynamics 328-31
synchronous sequential digital circuits 170
synthesis algorithms 51-4

synthesis model 47
synthesis-specific criteria 55
synthesis tuning 54
synthesize-search feedback process 46
system

analysis 22
definition 71
identification 82-8, 120

system control, difficulties with building
413-14

system engineering 233-4, 457
model 374
process 373-6

system modeling 71-103
classification 73-4
common variables 80
control systems 73
historical perspective 72-3

T

Takagi-Sugeno fuzzy systems 108
task-specific control requirements 55
Taylor series expansion 78, 92
TCAS 245, 248
TCP 465-6
techno science 236
threshold function 111
throttle position sensor (TPS) 125
thrust vector control (TVC) 252, 266-8
time- (or frequency-) discretized

indicator function 57
timed automaton 174
timed-discrete-event system model 30
timed state trajectory 31
timing 4-5, 18
timing jitter 4, 18
tracking errors 4, 138, 203, 205
tracking errors dynamics 193-4
tracking problem 193-4
TRACON 242
traffic control on highways 354-5
traffic related issues 351-7
transducers 80-1
transfer function coefficients 83
transfer function models 81, 83-4
transformers 80
transition rule 27
Transmission Control Protocol/Internet

Protocol (TCP /IP) 463
transportation capacity 225
tunable functions 124

501

502

tuned liquid column dampers (TLCD)
431-2

tuned mass damper (TMD) 420, 425, 432
tuned sloshing dampers (TSD) 432
Tuning & Compromising 46
tuning loop 63

U

UCAVs 240, 249-53
autonomy 252-3
conflict resolution 251-2
inter-fleet and central-command-to-fleet

communications 250-1
safety analysis 251-2

underwater vehicles 230
uniform information model 67
uninhabited combat air vehicles see UCAVs
unique minimum 146
uniqueness set 147
universal approximation 144

Theorems 147
universal approximator 143-5
Universal Power Flow Controller 342
universe of discourse 107
unmanned aircraft, flight control

systems 289-90
unsteady diffusion equation 97
untimed models 29

v
validation tests 179, 182
Vapnik-Chervonenkis (VC) dimension 226
variable bit rate (VBR) 465, 484
variable delay 481
variable-friction dampers 431
variable-orifice dampers 430-1
variable structure 189-217

Index

vector output single hidden layer
networks 143

vehicle autonomy 229-31
vehicle dynamics 362
vehicle location systems 356
vehicle model 362-3
verification tests 179
very large scale integrated (VL~I)

chips 170, 234
viability kernels 182
vibration damping, flexible-link robot

123-4
video traffic 38-9
virtual circuit routing 466
virtual engineering 44, 47, 233-4
virtual instrumentation 295
visual servoing, robotic systems 457-9
visualization for comparative design

exploration 59-60
voltage stability (or voltage collapse)

problem 336-7
VxWorks 451

W

WALRAS 256
wiggle system 276
Windows NT 12, 17
work area 174
World Wide Web (WWW) 231

y

Yule-Walker algorithm 483

z
z-domain transfer function 83
Zeno systems 168
Ziegler-Nichols tuning 307-9

ABOUT THE EDITOR

Tariq Samad is Chief Fellow at Honeywell Technology Center, where he is involved in a
number of projects and initiatives in various areas of systems and control technology. Much
of his research has focused on intelligent control systems, including neural networks, genetic
algorithms, and agent-based systems, and he has explored applications of these techniques to
aerospace, industrial, and other domains. Dr. Samad has also been active in establishing
several university/industry collaborations, both within the United States and internationally,
and he is currently an adjunct professor in the department of electrical engineering at Georgia
Institute of Technology. Dr. Samad received a B.S. degree in engineering and applied science
from Yale University, and M.S. and Ph.D. degrees in electrical and computer engineering
from Carnegie Mellon University.

Dr. Samad holds eleven patents and is a Honeywell STAR inventor. He has authored or
co-authored about 100 publications. He is the author of A Natural Language Interface for
Computer Aided Design (Kluwer Academic Publishers, 1986) and co-editor of Automation,
Control and Complexity: An Integrated View (John Wiley and Sons, in press). He is on the
editorial board of Neural Processing Letters and is the Editor-in-Chief of IEEE Control
Systems Magazine, the largest circulation of a technical periodical dedicated to all aspects
of control systems.

Dr. Samad is currently serving his second term as an elected member of the IEEE Control
Systems Society's Board of Governors (1997-2002). His past service to CSS has included
chairing the Technical Committee on Industrial Process Control (1996-97) and serving as vice
president of Technical Activities (1998); it was in the latter capacity that he conceived and
initiated this volume.

503

	CONTENTS
	Chapter 1 REAL-TIME COMPUTING AND CONTROL
	Chapter 2 DISCRETE-EVENT SYSTEMS AND THEIR OPTIMIZATION
	Chapter 3 COMPUTER-AUTOMATED CONTROL SYSTEM DESIGN
	Chapter 4 SYSTEM MODELING
	Chapter 5 INTELLIGENT CONTROL: AN OVERVIEW OF TECHNIQUES
	Chapter 6 NEURAL, FUZZY, AND APPROXIMATION-BASED CONTROL
	Chapter 7 SUPERVISORY HYBRID CONTROL SYSTEMS
	Chapter 8 VARIABLE STRUCTURE AND SLIDING-MODE CONTROL
	Chapter 9 CONTROL SYSTEMS FOR "COMPLEXITY MANAGEMENT"
	Chapter 10 CONTROL OF MULTIVEHICLE AEROSPACE SYSTEMS
	Chapter 11 AFFORDABLE FLIGHT CONTROL FOR AIRCRAFT AND MISSILES
	Chapter 12 INDUSTRIAL PROCESS CONTROL
	Chapter 13 POWER SYSTEM CONTROL AND ESTIMATION IN A COMPETITIVE ENVIRONMENT
	Chapter 14 INTELLIGENT TRANSPORTATION SYSTEMS: ROAD WAY APPLICATIONS
	Chapter 15 AUTOMOTIVE POWER TRAIN CONTROLLER DEVELOPMENT USING CACSD
	Chapter 16 BUILDING CONTROL AND AUTOMATION SYSTEMS
	Chapter 17 CONTROLLING CIVIL INFRASTRUCTURES
	Chapter18 ROBOT CONTROL
	Chapter 19 CONTROL OF COMMUNICATIONNETWORKS
	INDEX
	ABOUT THE EDITOR

