PERSPECTIVES
IN CONTROL

ENGINEERING

Edited by TARIQ SAMAD

B

PERSPECTIVES IN
CONTROL ENGINEERING

IEEE Press
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331

IEEE Press Editorial Board
Robert J. Herrick, Editor in Chief
M. Akay M. Eden M. Padgett
J. B. Anderson M. E. El-Hawary W. D. Reeve
P. M. Anderson R. F. Hoyt M. S. Newman
J. E. Brewer S. V. Kartalopoulos G. Zobrist
D. Kirk

Kenneth Moore, Director of IEEE Press
Catherine Faduska, Senior Acquisitions Editor
John Griffin, Acquisitions Editor
Robert Bedford, Assistant Acquisitions Editor
Anthony VenGraitis, Project Editor
Marilyn Catis, Marketing Manager

IEEE Control Systems Society, Sponsor
CSS Liaison to IEEE Press, Bruce M. Krogh

Cover design: William T. Donnelly, WT Design

Technical Reviewers
Bruce H. Krogh, Carnegie Mellon University, Pittsburgh, PA
Dr. Michael K. Masten, Texas Instruments, Plano, TX
Harris N. McClamroch, University of Michigan, Ann Arbor, MI
Siva S. Banda, Wright Patterson AFB, OH

Books of Related Interest from the IEEE Press

THE CONTROL HANDBOOK

Edited by William S. Levine

A CRC Handbook published in cooperation with IEEE Press

1995 Hardcover 1,568 pp IEEE Order No. PC5649 ISBN 0-8493-8570-9

INTELLIGENT CONTROL SYSTEMS: Theory and Applications
Edited by Madan M. Gupta and Naresh K. Sinha
1996 Hardcover 865 pp IEEE Order No. PC4176 ISBN 0-7803-1063-2

UNDERSTANDING ELECTRO-MECHANICAL ENGINEERING: An Introduction to
Mechatronics

Lawerence J. Kamm
1996 Softcover 416 pp IEEE Order No. PP3806 ISBN 0-7803-1031-4

ROBUST VISION FOR VISION-BASED CONTROL OF MOTION
Edited by Markus Vincze and Gregory D. Hager
2000 Hardcover 272 pp IEEE Order No. PC5403 ISBN 0-7803-5378-1

PERSPECTIVES IN
CONTROL ENGINEERING

Technologies, Applications, and New Directions

Tariq Samad
Honeywell Technology Center
Minneapolis, MN

IEEE Control Systems Society, Sponsor

@ IEEE
PRESS

The Institute of Electrical and Electronics Engineers, Inc., New York

This book and other books may be purchased at a discount
from the publisher when ordered in bulk quantities. Contact:

IEEE Press Marketing
Attn: Special Sales

445 Hoes Lane

P.O. Box 1331
Piscataway, NJ 0885-1331
Fax: +1 732 981 9334

For more information about IEEE Press products, visit the
IEEE Online Catalog & Store at http://www .ieee.org/iceestore.

©2001 by the Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, 17th Floor, New York, NY 10016-5997

All rights reserved. No part of this book may be reproduced in any form,
nor may it be stored in a retrieval system or transmitted in any form
without written permission from the publisher.

Printed in the United States of America.
10 9 8 7 6 5 4 3 2 1

ISBN 0-7803-5356-0
IEEE Order No. PC5798

Library of Congress Cataloging-in-Publication Data

Samad, Tariq.

Perspectives in control engineering: technologies, applications, and new directions Tariq
Samad.

p. cm.

“IEEE Control Systems Society, sponsor.”

Includes bibliographical references and index.

ISBN 0-7803-5356-0

1. Automatic control. 2. Control theory. I. IEEE Control Systems Society. II. Title.

TJ213 .S1145 2000 00-038854
629.8—dc21 CIP

PART |

CHAPTER 1

CHAPTER 2

CONTENTS

Introduction xvii
Acknowledgments xxiii
CONTROL TECHNOLOGIES

REAL-TIME COMPUTING AND CONTROL 1
Scott Bortoff

Editor’s Summary 1
1.1 Introduction 1
1.1.1 Background 2

1.2 Timing Is Everything 4
1.3 Low-Level Real-Time Programming 6
1.3.1 Fixed-Priority Scheduling Theory 8

1.3.2 Data Dependence 10
1.4 Real-Time Operating Systems and Programming

Languages 11

1.4.1 Real-Time Operating Systems at Run-Time 13
1.5 Hardware Issues 17

1.5.1 Desktop PCs 17

1.5.2 Single-Board Computers 17

1.5.3 Digital Signal Processors 18

1.54 Programmable Logic Controllers 18
1.6 Conclusion 19

References 19

DISCRETE-EVENT SYSTEMS AND THEIR
OPTIMIZATION 20
Edwin K. P. Chong

Editor’s Summary 20
2.1 Introduction 20
2.2 Discrete-Event Systems 22

2.2.1 What Is a System? 22

2.2.2 What Is a Discrete-Event System? 23

2.2.3 Why the Need for Discrete-Event Systems? 24

2.3 Some Discrete-Event System Models 25

2.3.1 State Trajectory of a Discrete-Event System 25

2.3.2 State Model of a Discrete-Event System 26
2321 State Machines 26
2322 Nondeterministic State Machines 27
2323 Markov Chains 28

Vi

CHAPTER 3

CHAPTER 4

24

2.5

Contents

2.3.2.4 State Machines and Discrete-

Event Systems 29
2.3.3 State Models with Event Clocks 29
2.3.3.1 Event Clocks 30
2.3.3.2 Discrete-Event Simulations 32
2.3.3.3 Markov and Semi-Markov
Processes 32
Optimization of Discrete-Event Systems 33
2.4.1 What Is Optimization? 33
2.4.2 Gradient Algorithms for Optimization 34
2.43 Gradient Estimation 35
2.44 Online Optimization 37
2.44.1 Basic Idea 37
2442 Example Application 37
Further Reading 40
Acknowledgments 40
References 40

COMPUTER-AUTOMATED CONTROL SYSTEM
DESIGN 42
Georg Griibel

Editor’s Summary 42

3.1
32
33

34

3.5

3.6

Introduction 42
Control Design Life Cycle to Be Supported by CACSD 45
Design Modeling and Synthesis Algorithms 47
3.3.1 Physical System Modeling 48
3.3.2 Synthesis Algorithms and Controller Modeling 51
3.3.3 Performance Evaluation Setup 53
Quality Modeling for Design Analysis and Decision
Making 54
3.4.1 Quality Functions 56
3.4.2 Feasible Design and Competing Requirements 58
3.4.3 Visualization for Comparative Design
Exploration 59
Automatic Tuning and Declarative Compromising 60
3.5.1 Automated Tuning by Multi-Objective Parameter
Optimization 62
3.5.2 Declarative Compromising 63
3.5.3 Robust Control Laws by Multimodel
Compromising 66
Further CACSD Technology 66
Acknowledgments 69
References 69

SYSTEM MODELING 71
Pradeep Misra

Editor’s Summary 71

4.1 Introduction 71
4.1.1 Historical Perspective 72
4.1.2 Modeling and Control 73
4.13 Classification 73

4.2 Static Models 75
4.2.1 Linear Models 75
4.2.2 Nonlinear Models 77

4.3 Dynamical Models 79

Contents

CHAPTER 5

92

43.1 Lumped Parameter Models 80
4.3.2 System Identification 82
43.2.1 Transfer Function Models 83
4.3.2.2 State Space Models 84
43.3 Model Reduction 86
43.3.1 Modal Truncation 86
4332 Singular Perturbation 86
433.3 Balanced Reduction 87
4.4 Nonlinear Dynamical Systems 88
44.1 Common Effects of Nonlinearities 89
442 Linearization 92
4.42.1 Local Linearized Approximation
4422 Describing Function Approximation
4423 Feedback Linearization 95
4.5 Models of Distributed Parameter Systems 95
45.1 Classification of PDEs 96
4.5.2 Finite Difference Models of PDEs 97
45.2.1 Explicit Models
(Forward Differences) 98
4.5.2.2 Implicit Models
(Backward Differences) 99
4.6 Macromodels: Scope and Future 99
47 Remarks 101
Acknowledgment 102
References 102
INTELLIGENT CONTROL: AN OVERVIEW OF
TECHNIQUES 104
Kevin M. Passino
Editor’s Summary 104
5.1 Introduction 104
5.2 Intelligent Control Techniques 105
5.2.1 Fuzzy Control 105
5.2.1.1 Fuzzy Control Design 106
5.2.1.2 Ship Example 109
5.2.1.3 Design Concerns 109
5.2.2 Neural Networks 110
5.2.2.1 Multilayer Perceptrons 110
5.2.2.2 Training Neural Networks 113
5.2.2.3 Design Concerns 115
5.2.3 Genetic Algorithms 116
5.2.3.1 The Population of Individuals 116
5.2.3.2 Genetic Operators 117
5.2.3.3 Design Concerns 118
5.2.4 Expert and Planning Systems 119
5.2.4.1 Expert Control 119
5.2.42 Planning Systems for Control 120

53

5.2.5 Intelligent and Autonomous Control

Applications 122
5.3.1 Heuristic Construction of Nonlinear
Controllers 122

5.3.1.1 Model-Free Control?

122

121

5.3.1.2 Example: Vibration Damping in a

Flexible-Link Robot
5.3.2 Data-Based Nonlinear Estimation

123

124

vii

viii

CHAPTER 6

CHAPTER 7

5.3.2.1 Estimator Construction
Methodology 124
5.3.2.2 Example: Automotive Engine Failure

Estimation 125
5.3.3 Intelligent Adaptive Control Strategies 126
5.3.3.1 Fuzzy, Neural, and Genetic Adaptive
Control 126
5.3.3.2 Example: Adaptive Fuzzy Control for
Ship Steering 128
5.4 Concluding Remarks: Outlook on Intelligent Control
Acknowledgments 132
References 132

130

NEURAL, FUZZY, AND APPROXIMATION-BASED

CONTROL 134
Jay A. Farrell and Marios M. Polycarpou

Editor’s Summary 134
6.1 Introduction 134
6.1.1 Components of Approximation-Based Control
6.1.1.1 Control Architecture 135
6.1.1.2 Approximator 136
6.1.1.3 Stable Training Algorithm 137
6.1.2 Problem Statement 138
6.1.3 Discussion 139
6.2 Control Architectures 140
6.2.1 Indirect Methods 141
6.2.2 Direct Methods 142
6.3 Approximator Properties 142
6.3.1 Universal Approximator 143
6.3.2 Parameter (Non)Linearity 145
6.3.3 Best Approximator Property 147
6.3.4 Generalization 147
6.3.5 Extent of Influence Function Support 149
6.3.5.1 Approximators with Local Influence
Functions 149
6.3.5.2 Lattice-Based Approximators 151
6.3.5.3 Curse of Dimensionality 151
6.3.6 Approximator Transparency 151
6.4 Parameter Estimation: Online Approximation 152
6.4.1 Parametric Models 152
6.42 Gradient Algorithms 155
6.4.3 Least-Squares Algorithms 157
6.4.4 Lyapunov-Based Algorithms 158
6.4.5 Robust Learning Algorithms 160
6.5 Conclusions 162
References 163

SUPERVISORY HYBRID CONTROL SYSTEMS
Michael D. Lemmon

Editor’s Summary 165

7.1 Introduction 165

7.2 Examples of Supervisory Hybrid Systems 166
7.2.1 Switched Dynamical Systems 167
7.2.2 Asynchronous Sequential Circuits 169

7.3 Hybrid Automaton 170

135

165

Contents

Contents

CHAPTER 8

CHAPTER 9

7.3.1 Definition of the Hybrid Automaton 171
7.3.2 Robotic System Example: Revisited 174
7.4 Hybrid Specifications 177
7.5 Hybrid System Analysis 179
7.6 Hybrid Control System Synthesis 183
7.7 Summary 185
Acknowledgments 186
References 186

VARIABLE STRUCTURE AND SLIDING-MODE

CONTROL 189

Fumio Hamano and Younchan Kim

Editor’s Summary 189

8.1 Introduction 189

8.2 Basic Idea of Sliding-Mode Control 193
8.2.1 Tracking Problem and Tracking Error

Dynamics 193

8.2.2 Choosing a Sliding Surface (or Line) 194
8.2.3 Control Law to Confine the State on the Sliding

Surface 194

8.24 Control Law for Reaching the Sliding Surface
(and Staying on It) 195

8.2.5 Robust Sliding-Mode Control 195

8.2.6 Generalized Lyapunov Function 196

8.2.7 Preventing Chattering by Continuous
Approximation 197

8.3 Sliding-Mode Control: General Case 198

8.3.1 Problem Formulation 199

8.3.2 Sliding Surface 200

8.3.3 Robust Sliding-Mode Control 201

8.3.4 Continuous Approximation to Avoid
Chattering 203

8.3.5 Example: Single Degree of Freedom Robot

8.4 Sliding-Mode-Like Control For Sampled Data
Control Systems 206

8.5 Concluding Remarks 216
References 216

CONTROL SYSTEMS FOR “COMPLEXITY
MANAGEMENT"” 218
Tarig Samad

203

Editor’s Summary 218

9.1 Introduction 218
9.1.1 Control Systems: Domain Knowledge and Solution

Technologies 219

9.2 Control and Automation Tomorrow: Toward
Complexity Management 221

9.3 Objectives for Control and Automation 221
9.3.1 Human and Environmental Safety 222
9.3.2 Regulatory Compliance 223
9.3.3 Time and Cost to Market 223
9.3.4 Increased Autonomy 224
9.3.5 Other Criteria: Yield, Capacity, Efficiency,

and More 224

9.4 Emerging Control Technologies for Complex Systems

225

ix

PART i

CHAPTER 10

9.4.1 Randomized Algorithms 225
9.4.2 Biologically Motivated Control 226

9.4.3 Complex Adaptive Systems 227
9.44 Distributed Parameter Systems 228
9.5 New Application Opportunities for Control and
Automation 228
9.5.1 Large-Scale and Enterprisewide Optimization 228
9.5.2 Integration of Business and Physical Systems 229
9.5.3 Autonomous Vehicles 229
9.5.4 Data Mining and Intelligent Data Analysis 231
9.5.5 Control Systems and the World Wide Web 231
9.6 Schools of Complexity Management 231
9.6.1 Human and Environmental Safety: Forfeiture
and Risk Assessment 232

9.6.2 Efficiency in Design: System Engineering and
Virtuality 233
9.6.3 Nature and Biology: Evolution, Emergence, and

Power Laws 234
9.6.4 Societal Connections 235
9.7 Conclusions 236
References 237
CONTROL APPLICATIONS

CONTROL OF MULTIVEHICLE AEROSPACE SYSTEMS
Jorge Tierno, Joseph Jackson, and Steven Green

Editor’s Summary 239
10.1 Introduction 239
10.2 Future Controls Applications and Challenges in ATM 241
10.2.1 Preliminaries: Airspace and Air Traffic
Management 241
10.2.2 Air Traffic Capacity Management in the Presence
of Disturbances 242
10.2.2.1 Initial Conditions and Framework 243
10.2.2.2 Control Variables 244
10.2.2.3 State Variables 244
10.2.2.4 Disturbances 245
10.2.2.5 Control System 245

10.2.3 Enabling User Preferences in a Safety-Constrained
ATM System 246
10.2.3.1 Development of Distributed

Separation Assurance Procedures 247
10.2.3.2 ATM Considerations 247
10.2.3.3 Flight Deck Considerations 248
10.2.3.4 Airline Operating Center (AOC)
Considerations 248
10.2.4 “Executing to Plan” in Constrained Airspace:
Terminal Area Operations 249

10.3 Example 2: Uninhabited (Combat) Air Vehicles 249
10.3.1 Inter-Fleet and Central-Command-to-Fleet

Communications 250
10.3.2 Safety Analysis and Conflict Resolution 251
10.3.3 Autonomy 252
10.4 Example 3: Formation Flying and Satellite Clusters 253

10.4.1 Multi-Agent Systems and Decentralized

Contents

239

Contents

CHAPTER 11

CHAPTER 12

Xi

Distributed Control 254
10.4.1.1 Emergent Behavior 255
104.1.2 Flocking 255
104.1.3 Market-Oriented Programming 255
10.4.2 Distributed Processing 255
10.5 Conclusions 256
Acknowledgments 257
References 257

AFFORDABLE FLIGHT CONTROL FOR AIRCRAFT
AND MISSILES 259
Kevin A. Wise

Editor’s Summary 259
11.1 Introduction 259
11.2 Aircraft and Missile Dynamics and Linear Models 260

11.3 Simulation Tools 268
11.4 Flight Control System Design 269
114.1 Aircraft Control Law Design Using Dynamic
Inversion 270
1142 Missile Control Law Design Using Linear
Quadratic Optimal Control 273
11.43 Zero Shaping to Improve Control System

Design 279
11.5 Analysis Tools 281
11.5.1 Linear Analysis Models 281

11.5.2 Performance Analysis 283
11.5.3 Robustness Analysis 283

11.6 Digital Implementation, Reusable Software, and
Autocode 286

11.7 Flight Control Challenges in the Twenty-First Century:
Unmanned Aircraft 287
References 290

INDUSTRIAL PROCESS CONTROL 291
Michael A. Johnson and Michael J. Grimble

Editor’s Summary 291

12.1 Introduction 291

12.2 Industrial Process Control Technology: State of the Art 292
12.2.1 The Information Technology Infrastructure

for Process Control 293
12.2.2 Process Control Applications Software 294
12.2.2.1 Control Application Suite 1 294
12.2.2.2 Control Application Suite 2 295
12.2.2.3 Control Application Suite 3 295
12.2.3 Data Communications and Standards 296
1224 Summary Conclusions 296
12.3 Organizing Process Control Applications/Production
Processes 297
12.3.1 The Industrial Operations Hierarchy: Strategy
Issues 297
12.3.2 The Industrial Operations Hierarchy: Information
Issues 299
12.4 Performance Monitoring 300
12.4.1 Statistical Process Control 301

12.42 Performance Quality Indices 302

Xii

CHAPTER 13

12.5

12.6

12.7

12.8

Contents

12.4.3 Benchmarking Process Control 305

12.4.4 Summary Conclusions 306
Industrial Three Term Control 306
12.5.1 The Sustained Oscillation Procedure 307
12.5.1.1 Procedure 1: Method of Sustained
Oscillation 308

12.5.2 Why Autotune? 309
12.5.2.1 Problems with Ziegler-Nichols PID
Tuning 309
12.5.2.2 A Technology Changeover in the

1980s 310
12.5.2.3 Process Controller Technology
Today 310
12.5.3 The Relay Experiment 310
12.5.3.1 Nonparametric Identification by Relay
Experiment 311
12.5.3.2 PID Control 311
12.5.3.3 Procedure 2: The Relay Experiment 312
12.5.4 Recent Directions for Industrial PID 312
Adaptation and Robustness 313

12.6.1 Adaptation 313
12.6.2 Robustness 313

Aspects of Global System Optimization 314
12.7.1 The Supervisory System Command Structure 315
12.7.1.1 Low-Level Control Strategies 315
12.7.1.2 Dynamic Setpoint Maneuvers 315
12.7.1.3 Setpoint Optimization and Load
Management Strategy 316

12.7.2 Model-Based Predictive Control 316
12.7.2.1 The Basics of Model-Based Predictive

Control 317
12.7.2.2 A Process Model 317
12.7.2.3 A Predictive Model Equation 317
12.7.2.4 A Process Cost Function 317

12.7.2.5 A Receding Horizon Control
Philosophy 318

12.7.2.6 Some MPC Tuning Parameters 318

12.7.2.7 The Two Key Advantages of MPC 318

12.7.2.8 MPC Architectures 319

12.7.2.9 Finally, the Industrial Varieties of MPC 319
Conclusions 319
Acknowledgements 321
References 321

POWER SYSTEM CONTROL AND ESTIMATION
IN A COMPETITIVE ENVIRONMENT 324
Christopher L. DeMarco

Editor’s Summary 324

13.1

13.2

Introduction: Electric Power System Structure and
Forces for Change 324

Power System Dynamics and the Historical Structure
of Grid Control 327

13.2.1 Control Objectives in Power Systems 327
13.2.2 Synchronous Generator Dynamics: A Brief
Tutorial 328

13.2.3 Grid Frequency Regulation 331

Contents

CHAPTER 14

CHAPTER 15 AUTOMOTIVE POWERTRAIN CONTROLLER DEVELOPMENT

13.2.4 Stability-Enhancing Controls in Power Systems

13.3 Institutional Changes Impacting Control Techniques 337
13.3.1 Power Grid Control Structures: If They’re Not Broken,

Why Fix Them? 338
13.4 New Technologies Impacting Restructuring and Control
in a Competitive Environment 339
13.4.1 The Impact of Efficient Gas Turbines 339
13.4.2 The Role of New Information and Measurement
Technologies 340
13.43 Control Opportunities for Flexible AC
Transmission Systems 342
13.5 A Perspective on Future Directions for Power System
Control Development and Research 343
References 346

INTELLIGENT TRANSPORTATION SYSTEMS: ROADWAY

APPLICATIONS 348
Umit Ozgliner

Editor’s Summary 348
14.1 Introduction 348
14.2 Traffic-Related Issues 351
14.2.1 Signalization 351
14.2.2 Networks of Intersections 352
14.2.3 Routing 353
14.2.4 Control of Traffic on Highways 354
14.2.4.1 Convoys, Platoons, et al. 354
14242 Ramp Control and Merging 354
14.2.4.3 Automated Highway Systems 355
14.2.5 Some Practical Concerns 355
14.3 Intelligent Vehicles 357

14.3.1 Pre-IV Autonomy: Cruise Control and ABS 357

14.3.1.1 Preliminary Needs: Drive-by-Wire
Vehicles 357
14.3.2 Car Following and Advanced Cruise Control
14.3.3 Lane Tracking 361

14.3.3.1 Vehicle Model 362
14332 A Nonlinear Lane-Keeping
Controller 363
1434 A Lateral Lane Change Controller 365
14.3.5 Hybrid Systems and Scenario Resolution 365
144 Conclusions 366

144.1 Related Problems 366

144.1.1 Precision Movement 366

14.4.1.2 Coupled Systems 366

144.1.3 Autonomy versus Full Information
Exchange 366

14.4.1.4 Fault Tolerance/Safety 368
14.42 And Technology Keeps Marching On... 368
References 369

USING CACSD 370

xiii

K. Butts, J. Cook, C. Davey, J. Friedman, P. Menter, S. Raman,

N. Sivashankar, P. Smith, and S. Toeppa
Editor’s Summary 370

Xiv

CHAPTER 16

CHAPTER 17

15.2

15.3

154

Introduction 370
15.1.1 The Role of the Powertrain Control System 371
15.1.2 The Powertrain Controller Development
Organization 372
The Systems Engineering Process 373
15.2.1 The Powertrain Controller Development
Process 374
Computer-Aided Control System Design for Powertrain
Controller Development 376
15.3.1 Software Requirements Capture 377
15.3.2 Software Application Architecture Design 377
15.3.3 Control Feature Design and Validation 379
1534 Software Application Validation 382
15.3.5 Control Feature Software Design 382
15.3.6 Control Feature Software Implementation 383
15.3.7 Control Feature Structural Verification 383
15.3.8 Control Feature Functional Verification 384
15.3.9 Software Application Structural Verification 385
15.3.10 Software Application Functional Verification 386
15.3.11 Software/Module Integration Verification 386
15.3.12 User Documentation 387
15.3.13 Configuration Management 388
15.3.14 Software Engineering Project Management 388
Conclusion 390
References 391

BUILDING CONTROL AND AUTOMATION SYSTEMS
Albert T. P. So

Editor’s Summary 393

16.1
16.2

16.3

16.4

16.5

16.6
16.7

Introduction 393

Existing Building Control Technologies 395
16.2.1 Applications of PID Loops 396
16.2.2 Programmable Logic Control 398
16.2.3 Direct Digital Controls 399
Information Technology for Building Systems Control 399
16.3.1 Control Networks 400

16.3.2 Protocols 402

Building Automation Systems (BASs) 404
16.4.1 Hardware Structure 404

16.4.2 Software Features 406

Advanced Building Controls Technologies 407
16.5.1 Applications of Expert Systems 407
16.5.2 Neural Network-Based Control 408
16.5.3 Fuzzy Logic-Based Control 410
16.54 Computer Vision-Based Control 412
Difficulties with Building Systems Control 413
Conclusion 414

References 415

CONTROLLING CIVIL INFRASTRUCTURES 417
B. F. Spencer Jr. and Michael K. Sain

Editor’s Summary 417
17.1 Introduction 417
17.2 Hybrid Control Systems 420

17.2.1 Hybrid Mass Damper 420
17.2.2 Hybrid Base Isolation 429

Contents

393

Contents

17.3

17.4

17.5

Semiactive Control Systems 430

17.3.1 Variable-Orifice Dampers 430

17.3.2 Variable-Friction Dampers 431

17.3.3 Controllable Tuned Liquid Dampers 431
17.3.4 Controllable Fluid Dampers 432

17.3.5 Semiactive Impact Dampers 434
Semiactive Control of Civil Engineering Structures 435
17.4.1 Scale-Model Studies 435

17.4.2 Full-Scale Seismic MR Damper 436
Conclusions 439

Acknowledgements 440

References 440

CHAPTER 18 ROBOT CONTROL 442
Bruno Siciliano

Editor’s Summary 442

18.1
18.2
18.3
18.4
18.5
18.6

A Historical Perspective 442
Kinematic Control 443
Dynamic Control 446
Force Control 451

Visual Servoing 457

The Future 459

References 460

CHAPTER 19 CONTROL OF COMMUNICATION NETWORKS 462
R. Srikant

Editor’s Summary 462

19.1
19.2

19.3

194

19.5

INDEX 491

Introduction 462

Network Control and Management 464

19.2.1 Admission Control for Real-Time Sources 464
19.22 Congestion Control for Best-Effort Sources 465

19.2.3 Routing 466
19.2.4 Scheduling 467

QoS, Admission Control, and Calculus of Variations 468
19.3.1 Large Deviations of the Empirical Mean of a
Sequence of Random Variables 468

19.3.2 Large Deviations of a Random Process from Its
Fluid Limit 469

19.3.3 Estimating Probabilities of Rare Events in Queues 471
19.3.4 Examples 474

Congestion Control 476

19.4.1 Model 477

19.42 Implementation Issues 480

19.4.3 Simulations 483

Conclusions 486

Acknowledgements 487

References 488

ABOUT THE EDITOR 503

INTRODUCTION

Automation systems that affect the physical world must ultimately exploit concepts that
control engineering and science have always been at the forefront of developing—con-
cepts such as feedback, dynamical systems, optimization, modeling, and estimation. It
is thus no wonder that controls has, in the past, been a linchpin of our modern tech-
nological world. Achievements as numerous and diverse as space missions, petroleum
refining, climate-controlled homes and buildings, commercial and military airplanes,
innumerable chemical products, reliable electric power, and many, many others have
been rendered possible because of control technology. Controls is one of a handful of
disciplines that can truly claim to be a common enabler across such a spectrum of
applications.

Today, governments, societies, and corporations are attempting to close the gap on
ever-larger-scale systems and ever-more-complex problems. In response to the dictates
of human and environmental safety, national defense, corporate cost-reduction and
profitability, and other factors, a new generation of automation and control systems
is being envisioned and developed.

Many of today’s technologically motivated trends augur well for control, but
significant extensions in the existing controls technology base are required. For exam-
ple, while advances in single-loop and low-level control will always be of interest, the
real opportunities for impact are increasingly at higher levels of systems. The past
successes of control can be attributed in part to the effectiveness with which control
technologists have uncovered new applications of their theories, algorithms, and heur-
istics. Similar diligence is still mandatory and, in addition, we are being challenged to
understand a new and larger class of problems, and to develop new tools and tech-
niques for their solutions.

Some degree of redefinition of controls as a discipline is needed to ensure both that
the expertise of control engineers and scientists continues to be viewed as essential to
the evolutions and revolutions in automation, and that safe, efficient, and performative
solutions are ultimately developed. The redefinition is not a rewriting but a broad-
ening—the foundations of modern control have served society and industry in exemp-
lary ways over the past half-century or so; our challenge is to extend these foundations
and the intellectual edifices we construct from them. One of the themes of this book is
that control technologists are meeting these challenges across a broad spectrum of
techniques and application arenas.

The revolution in information technologies that we have witnessed over the last
decade or two is, of course, part of the picture. The dramatic advances in processors,
memory, communications, displays, and other hardware and software ““infrastructure”

xvii

xviii Introduction

have profoundly changed how we live and work. These advances are also being recog-
nized as facilitating new levels of functionality and intelligence in control systems. In
particular, we now have the computational infrastructure available to perform the
complicated calculations implicit in so many control theoretic developments—develop-
ments that, for lack of processing and memory resources, have been gathering dust on
the bookshelf.

Some readers may contrast the optimism expressed above with the lack of recogni-
tion of control in the broader technical community. Ask a randomly selected person
what the key technologies are for the future, and it is unlikely that you will hear control
engineering mentioned. Instead, computing, networks, and perhaps robotics and auton-
omous vehicles will be on the list. This lack of recognition is not late-breaking news to
control engineers and scientists—most of us have become somewhat inured by now to
questions such as “So what does control have to do with anything anyway?” In fact,
however, there are several reasons for the underappreciation of control, notably the
following:

e Control is a “hidden” component in all automated systems, invisible to end
users—the general public in particular.

o The breadth and multifaceted nature of controls is such that relatively few of its
practitioners and developers themselves appreciate its entire scope.

e Controls is among the most mathematically rigorous of the engineering disci-
plines: the intimidation factor limits broad-based appreciation.

e As an established and historically successful discipline, controls has tended to
eschew hyperbole and self-promotion, perhaps to a fault.

None of these reasons has any bearing on the reality of the current impact of control
technology or its future relevance. We can be excited about the substance of our dis-
cipline even as we acknowledge its rhetorical shortcomings!

ABOUT THIS BOOK

This edited volume brings together a set of chapters authored by experts in a number of
specialized subfields of control technology. Our objective is to provide a broad review
of the state of the art in control science and engineering, with particular emphasis on
new research and application directions. The ‘““take home message” is that controls is a
vibrant, exciting, diverse field. Its new initiatives are likely to ensure its central role in
technological solutions for the increasingly complex challenges facing society and
industry in a new millennium.

This book is targeted to control engineers of all stripes, from industrial practi-
tioners to academic researchers. This is a broad audience, and the book attempts to
appeal to this diversity by not narrowly constraining the style, tone, or technical depth
of individual chapters. Some chapters are technical tutorials; others focus on discus-
sions of today’s state of the art; some provide experimental results; several emphasize
future visions; and so on. We hope that the heterogeneity will create cross-cutting
appeal; our goal is that every control engineer will find parts of this book of significant
interest both intellectually and professionally. Most chapters are written at a level

Introduction Xix

appropriate for an undergraduate-degree control engineer, but a few may require an
introductory graduate-level mathematical background.

Although this book covers most of the key technical specializations of control, it is
not intended to be an encyclopedic compilation. Readability and a reasonable length
were important considerations in planning the contents. As discussed below, the sub-
jects covered reflect the emphases of the IEEE Control Systems Society (CSS). In any
case, controls is too dynamic a discipline to expect one snapshot such as a printed book
to be truly comprehensive, even in principle.

Book Outline

The technical contributions to this volume are structured into two parts. The first set of
chapters is devoted to control “technologies”; the second focuses on traditional and
novel application domains for control systems. To help unify and integrate the different
chapters, each is preceded by an Editor’s Summary and, where appropriate, includes at
the end a list of related chapters. The book includes affiliation and contact information
for the chapter contributors and a comprehensive index.

Part 1. The nine chapters in the first part are concerned with the following tech-
nology-oriented topics:

e Chapter 1: Scott Bortoff describes the challenges and solution approaches for
implementing control algorithms on real-time digital computing platforms. The
complications discussed include sampling rate variations, variable processing
delays, task scheduling, interprocess communication, and sensor and actuator
failure.

e Chapter 2: Edwin Chong reviews discrete-event systems, contrasting them with
the continuous-time systems (and sampled equivalents) which control science
and engineering have traditionally focused on. Techniques for optimizing dis-
crete-event systems for applications in communications networks, manufactur-
ing systems, and other fields are presented.

o Chapter 3: George Griibel offers a general introduction to the topic of computer-
aided control system design (CACSD). The chapter emphasizes the importance of
system modeling, performance specifications, and the iterative process of control-
ler development. As an example, flight control system design is considered.

e Chapter 4: Pradeep Misra gives a broad overview of the basic concepts of
modeling and simulation as they relate to control systems. He discusses a num-
ber of modeling methodologies and topics, including system identification,
model reduction, linearization, and distributed parameter systems.

e Chapter 5: Kevin Passino reviews a number of intelligent control techniques.
The central concepts of fuzzy logic, neural networks, genetic algorithms, and
planning systems are outlined and illustrated with examples from ship maneu-
vering, robotics, and automotive diagnostics. Remarks on autonomous and
adaptive control are also included.

e Chapter 6: Jay Farrell and Marios Polycarpou give the reader a technical intro-
duction to “nonlinear approximators,” specifically neural networks and fuzzy
models. The authors describe algorithms for estimating values of approximator

XX

Introduction

parameters, and they introduce the concepts of generalization, approximator
transparency, and linear versus nonlinear parametrizations.

Chapter 7: Hybrid dynamical systems—systems that contain both continuous-
time and discrete-event dynamics—are the subject of this chapter by Michael
Lemmon. The focus here is on hybrid systems where the discrete-event compo-
nent models supervisory commands. Deadlock avoidance for a two-arm robotic
platform serves as the motivating example.

Chapter 8: Fumio Hamano and Younchan Kim also treat hybrid systems. Their
subject is variable structure control—control schemes in which the control
structure can be modified dynamically. One particular variable structure control
technique, sliding mode control, is developed in some detail.

Chapter 9: To conclude the first part of the book, Tariq Samad discusses the
increasing complexity of automation and control systems and attempts to relate
it to developments in control technology and control applications.

Part II. Each of the ten chapters in the second part of this volume discusses the
application of control to an important application domain.

Chapter 10: Jorge Tierno, Joseph Jackson, and Steven Green describe issues
related to the control of multiple aerospace vehicles. They consider three appli-
cation areas, all of which are driving new research: “free flight”” commercial air
transportation, autonomous formation flight of uninhabited vehicles, and pre-
cise positioning of satellite clusters.

Chapter 11: Kevin Wise discusses the development of flight control laws in
military high-performance aircraft and missiles, with an emphasis on cost effi-
ciency and exploitation of CACSD tools. Dynamic models for control design
are presented, and the role of simulation and analysis software is emphasized.
Chapter 12: Michael Johnson and Michael Grimble outline the hierarchical
organization of process control systems and review several control technologies
for the process industries. These include performance monitoring, PID control-
ler tuning, adaptive and robust control, model predictive control, and plantwide
optimization.

Chapter 13: Christopher DeMarco reviews the historical operation of electric
power networks and the control challenges arising from the deregulation and
competition that are now driving the evolution of the electric power industry.
New technological developments, from flexible AC transmission devices to
agent-based optimization, are proposed to meet these challenges.

Chapter 14: An area of increasing engineering interest in general is intelligent
transportation systems. Such systems pose a number of challenging control
problems, and in this chapter Umit Ozgiiner discusses several of these—with
specific attention to traffic control and intelligent road vehicles.

Chapter 15: As a sophisticated example of CACSD, Ken Butts and colleagues
discuss in detail a process for team-based development of automotive power-
train controllers. The process is based on systems engineering principles. Key
aspects include validation and verification, feedback mechanisms, and analysis
and design support.

Introduction xXi

e Chapter 16: Albert So starts his chapter with a review of the history of building
control and automation systems. He notes the revolution in building automa-
tion caused by the personal computer platform, and he discusses local area
networks for building management systems. Finally, applications of intelligent
control in this domain are reviewed.

e Chapter 17: A relatively new area for control is the control of civil structures
such as buildings, bridges, and towers. In this chapter, Michael Sain and Bill
Spencer note some relevant actuation technologies and present several examples
of operational structural control systems. Semiactive control actuators are dis-
cussed at some length.

e Chapter 18: Bruno Siciliano presents traditional techniques and recent develop-
ments in robot control. The chapter sketches the evolution from kinematic
control to dynamic control to force control, which permits precise tasks in
elastic or compliant environments to be accomplished. Vision-based robot con-
trol is highlighted as the next frontier.

e Chapter 19: The last chapter also highlights a new, and promising avenue for
control applications: communication networks. R. Srikant points out the con-
trol problems involved: admission control, congestion control, packet routing,
and scheduling of node bandwidth. He also discusses specific considerations for
asynchronous transfer mode networks and the Internet.

CSS Technical Activities Board—Providing
Resources for Control Engineers

This book is an initiative of the Technical Activities Board of the IEEE Control
Systems Society. The majority of the chapter contributors are leaders of CSS TAB,
and in most cases are chairs of technical committees on specialized control topics. The
difficult process of identifying which topics to include in a book of limited size was
facilitated by the structure of TAB: the topics largely correspond to the technical
committees.

CSS TAB provides resources and collaboration opportunities for control engineers
and scientists, whether students, industrial practitioners, or academic researchers. Up-
to-date information about the Board and about available resources can be accessed
through the Web site of the Control Systems Society http://www .ieeecss.org. The CSS
home page can also be accessed through the central IEEE Web site at http://icee.org/
organizations/tab/cur_soc_hps.html. Furthermore, information on joining the Society
and on membership benefits can also be obtained through this Web site.

The flagship periodical of IEEE CSS, Control Systems Magazine, regularly carries
feature articles on emerging technologies and application domains for control. Many of
these articles are written at introductory or tutorial levels. (Earlier versions of a couple
of the chapters in this book appeared in CSM.) Readers who find this book of interest
may find CSM a useful vehicle for keeping abreast of future developments in control
technology.

Tariq Samad
Honeywell Technology Center
Minneapolis, MN

ACKNOWLEDGMENTS

I am grateful to the contributors to this volume for graciously tolerating several rounds
of review and revision. The Publications Activities Board of the IEEE Control Systems
Society, chaired by Bruce Krogh, supported this project and solicited several reviewers
whose feedback on an earlier draft of the manuscript resulted in a significantly
improved final product. Finally, it has been a pleasure working with the IEEE Press
staff on this project.

Tariq Samad

Honeywell Technology Center
Minneapolis, MN

xxiii

XXiv

LIST OF CONTRIBUTORS

Ken Butts

Ford Research Laboratory

Powertrain Control Systems Department
MD 2036 SRL

2101 Village Road

Dearborn, MI 48121 USA

Edwin K. P. Chong

Purdue University

School of Electrical and Computer
Engineering

1285 Electrical Engineering Building
West Lafayette, IN 47907-1285 USA

Christopher DeMarco

Department of Electrical and Computer
Engineering

University of Wisconsin—-Madison

1415 Engineering Drive

Madison, WI 53706 USA

Jay A. Farrell

Department of Electrical Engineering
Marlan and Rosemary Bourns College of
Engineering

University of California, Riverside
Riverside, CA 92521 USA

George Griibel

formerly with:

Institute of Robotics and System Dynamics
DLR - German Aerospace Center
Oberpfaffenhofen

D-82234 Wessling, GERMANY

Fumio Hamano

California State University, Long Beach
Department of Electrical Engineering
1250 Bellflower Blvd.

Long Beach, CA 90840 USA

Michael A. Johnson
Industrial Control Centre
University of Strathclyde
George Street

Glasgow G1 1QE
Scotland, UK

Younchan Kim

California State University, Long Beach
Department of Electrical Engineering
1250 Bellflower Blvd.

Long Beach, CA 90840 USA

Michael D. Lemmon

Department of Electrical Engineering
University of Notre Dame

Notre Dame, IN 46556 USA

Pradeep Misra

Wright State University

Electrical Engineering Department
3640 Col. Glenn

Dayton, OH 45435 USA

Umit Ozgiiner

Ohio State University

Department of Electrical Engineering
2015 Neil Avenue

~ Columbus, OH 43210 USA

List of Contributors

Kevin M. Passino

Department of Electrical Engineering
The Ohio State University

2015 Neil Ave.

Columbus, OH 43210 USA

Marlos M. Polycarpou

University of Cincinnati

Department of Electrical and Computer
Engineering and Computer Science
Cincinnati, OH 45221-0030 USA

Bruno Siciliano

IEEE Robitics and Automation Society Vice-
President for Publications

PRISMA Lab. Dipartimento di Informatica
e Sistemistica

Universita degli Studi di Napoli

Federico II

Via Claudio 21, 80125 Napoli, ITALY

Michael K. Sain

University of Notre Dame
Department of Electrical Engineering
275 Fitzpatrick Hall

Notre Dame, IN 46556 USA

R. Srikant

Coordinated Science Lab and Department of
General Engineering

University of Illinois

1308 W. Main Street

Urbana, IL 61801 USA

Tariq Samad

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418 USA

Albert T. P. So

Department of Building & Construction,
City University of Hong Kong

Tat Chee Avenue, Kowloon,

HONG KONG

B. F. Spencer, Jr.

University of Notre Dame
Department of Civil Engineering &
Geological Sciences

156 Fitzpatrick Hall

Notre Dame, IN 46556 USA

Jorge Tierno

Honeywell Technology Center
3660 Technology Dr.
Minneapolis, MN 55418 USA

Kevin A. Wise

Boeing Technical Fellow
The Boeing Company
P.O. Box 516

St. Louis, MO 63166 USA

Chapter | REAL-TIME COMPUTING
1 AND CONTROL

Scott Bortoff

Editor’s Summary
To engineers involved in designing, developing, or operating control systems for practical applications,
research in control may seem an exercise in mathematical abstractions. As an engineering discipline,
however, the connection with the physical world is intrinsic to control. Interfacing with sensors and
actuators, implementing advanced algorithms on real-time platforms, dealing with sampling time issues,
and other such pragmatic matters may seem to be taken for granted in much of advanced control, but in
fact there is an extensive body of research that is concerned with these very topics

All advanced control algorithms today are hosted on digital computing systems, and any discussion
of real-time control applications must address the specific issues and challenges associated with digital
implementation. The benefits of digital realization are numerous: software-based computing allows more
sophisticated control laws; updates and maintenance are rendered easier in many cases; control systems
can be made more compact; and control can more readily be integrated with ancillary functions such as
information display, system health management, and data recording.

But the digital world brings complications too. For example, the continuous variables of a physical
system must now be discretely sampled. Variations in the sampling rate are generally assumed to be
negligible, but this is not always the case and a significant adverse impact on control quality can result.
Similarly, variable delays arise in the processing of sensory data. In today’s processors, even the same
sequence of arithmetic operations can take more or less time to execute depending on the state of the
processor and operand values.

As control programs become more complex, so do their real-time implementations. Most control
system computing platforms are used for several tasks in addition to executing the base control law. Real-
time computing and control thus also involves the solution of difficult scheduling problems. Different tasks
can have different priorities, desired execution frequencies, and execution times; there may be dependences
between them that require interprocess communication and accessing of shared resources; and failures of
sensors and actuators and other abnormal situations cannot be allowed to compromise safety.

Scott Bortoff is an associate professor in the Department of Electrical and Computer Engineering at
the University of Toronto, and a former chair of the IEEE-CSS Technical Committee on Real-Time
Computing, Control, and Signal Processing.

1.1 INTRODUCTION

It is safe to say that most modern control systems are implemented digitally. From the
fly-by-wire systems that control modern commercial and military aircraft to the digital
proportional-integral-derivative (PID) boxes that regulate everything from temperature
to pH in a process control setting, there is a clear preference for digital realizations. This

Chapter 1 Real-Time Computing and Control

is true even though the plant might be a continuous-time system, the control law might
be designed using continuous-time mathematics, and the controller itself could other-
wise be realized with inexpensive analog components.

The reasons for this trend are well-known: Software is easier to modify than analog
hardware; both dynamic range and signal-to-noise ratio of digital signals can be made
larger (especially given today’s high-precision digital-to-analog (D/A) converters [1]),
larger time constants can be implemented with software, complex nonlinear and adap-
tive control laws can be realized only by using a computer, overall system reliability is
increased, overall control system weight can be reduced, and so on. In addition, a
computer in the loop can add functionality to the system as a whole, much of which
might be considered outside the traditional domain of control systems. For example, a
processor in the loop can log data, a critical feature to the process control industry.
With off-the-shelf networking technology, the controller can interface with the Internet,
giving control engineers remote access to the system. Built-in testing and fault detec-
tion, a necessity for avionics systems, can also be coded into the controller.

In this chapter, we focus on the methods and tools used to implement digital
controllers. Our main focus is on software, an area that has undergone a tremendous
transformation in the last decade or so. Indeed, all areas of real-time systems, including
real-time operating systems, programming languages, scheduling theory, and formal
methods, are very active areas of research within both computer science and electrical
engineering, and there are now a number of monographs on the subject, for example,
[2He6].

After providing some background in Section 1.1, we present an example in Section
1.2 that illustrates why real-time aspects should be of interest to the control engineer.
We then turn our attention to the methods used to implement digital controllers,
beginning in Section 1.3 with a low-level approach that is best when the control law
is simple, for example, single-input, single-output PID. Of course, computers in-the-
loop are often used for more than just control. The real-time control system might be
designed to realize a conventional control law and also to provide a timely response,
within a specified deadline, to other asynchronous events. In this case, designing a single
program to execute as a single task becomes unwieldy. Therefore, as the number of real-
time specifications and tasks increases, the software is best designed to run not as a
single process but as as multiple, cooperating, communicating processes. In Section
1.3.1. we present an introduction to scheduling theory, which is used to assign priorities
to processes running under a priority-based preemptive operating system. Our focus
then turns to higher level approaches to real-time control system implementation,
namely, real-time operating systems and programming languages, in Section 1.4. We
close the chapter in Section 1.5 with a brief look at hardware, including single-board
computers and Programmable Logic Controllers (PLCs).

1.1.1 Background

Most feedback control systems can be represented by the generic feedback loop shown
in Figure 1.1. Here, the Plant includes the actuators, the system to be controlled, and
the sensor dynamics. The Controller is comprised of the sampler, which may be an
analog-to-digital (A/D) converter, a shaft encoder, or some other instrument that con-
verts each measured plant signal y,(f), | <i < p, into a discrete-time measurement y;(?);
a processor, which computes the control law based on these measurements; and a

Section 1.1 Introduction 3

Controller)
Data hold
: A A _ u
—:—r——> Control law Y l—se s Plant 4
Data sampler
y
T

Figure 1.1 The general form of a digital control system.

sample-and-hold, which converts the discrete-time control signals #;, 1 < i < m, back
into continuous-time signals u;, 1 < i < m, for example, a digital-to-analog converter.
(Throughout this chapter, the symbol ™ is used to denote a sampled, discrete-time
quantity.) The controller is usually designed to sample y;(f) periodically, at uniformly
spaced instances of time ¢ = kT, where k > 0 is an integer index and T is the sample
period. The control law itself is usually realized as a set of discrete-time state equations

u(kT) = h\%(kT), Y(kT), WkT)), (1.1)
X(kT + T) = f(X(kT), Y(kT), VkT)), (1.2)
where the vectors =[%y,.... 5,7, a=[a,..., 3,7, and §= Wl,...,?p]T are the

controller state, controller output, and sampled plant output, respectively, 7€ R is a
vector of reference input signals, and f and & are (perhaps nonlinear) maps of appro-
priate dimension.

Example 1.1.1

Consider the servo control system diagrammed in Figure 1.2, where the plant has transfer
function P(s) = re +1) Suppose that in addition to several transient response specifications, the
servo angle y must also track a ramp input applied at r with zero steady-state error. To meet these
specifications, assume that a digital PID control structure is used, as shown in Figure 1.2. The
three gains, K, K4, and K;, are designed to satisfy the specifications under two assumptions:
(1) y(¢) is sampled uniformly in time, at t = kT, for some T'> 0; and (2) the processor’s
computational delay is fixed and known to the designer. Often, the computational delay is
assumed to be zero because the time required to compute the control law is much less than T In
this case, the controller is being designed under the assumption that the output u(kT') is available
simultaneously with the sampled input y(kT'). In any case, the state equations (1.1)~(1.2) for the
digital PID controller shown in Figure 1.2 are

WkT) = Sc](kT) + (K T - &> 5(kT) + (K +KT+)’TkT) (1.3)

fKT+T) = xz(kT) (1.4)
%kT + T) = 5(kT) + &kT) (1.5)

where e(kT) = (7(kT) — i}(kT)) is the tracking error. The states are usually initialized at the
origin, so Z1(0) = Z»(0) = 0.

4 Chapter 1 Real-Time Computing and Control

Digital PID control law
K,
W Data hold Plant Sampler
PN e KTz f: i | 1—esT| u 10 y y
+ : z+1 Y s s(s+1)
K (z-1)
Tz

Figure 1.2 Servomotor with digital PID controller.

Coding (1.1)(1.2) on any processor is a usually an elementary task in any pro-
gramming language. The real challenge is timing: The processor must be programmed
to sample y uniformly in time, at T-second intervals, and the controller output # must
be computed and applied to the plant at a time consistent with the design assumptions.
In particular, if the computational delay is assumed to be zero, then u(kT) must be
applied to the plant as soon as possible after y(kT) is sampled. This is because the
control law gains (or more generally, the functions f and h) are typically quite sensitive
to the sample interval T’; a small change in T can result in a large change in closed-loop
pole locations, for example. Moreover, the performance of the overall system is usually
very sensitive to timing jitter, which is a variance in the time that y is sampled and/or
the time that u is applied to the plant.

1.2 TIMING IS EVERYTHING

In an actual digital implementation, delays are present in both the signal conversion
hardware and the processor. If the delay is of fixed duration, then (1.1)1.2) can often
be modified to compensate the delay. The simplest case occurs when the delay is a
multiple of T, that is, ¢T for some positive integer ¢. In this case, g additional shift
operators (1/z%, where z is the shift operator) can be put into the loop, between the
sampler and the data hold, and the control law can be designed to meet performance
specifications despite the delay. Of course, the additional shift operators are not part of
the control law—their presence in the loop is to model the total controller delay.
Unfortunately, the delays in a digital control system are not always of fixed dura-
tion. Depending on the hardware used, an analog-to-digital converter may take a
varying amount of time to complete the data conversion. Or if a timer is used to
generate a processor interrupt and an interrupt service routine (ISR) is then used to
trigger the data-conversion hardware, then a delay will be associated with servicing the
interrupt, called the interrupt latency. This is seldom a fixed duration of time because
the processor could be servicing an interrupt of higher priority, whose ISR must finish
before the data-conversion ISR can run. In addition, processors, especially those with
complex instruction set architectures (CISC) such as the Pentium, can take a varying
number of central processing unit (CPU) cycles—a varying amount of time—to com-

Section 1.2 Timing is Everything 5

plete the calculation of (1.1)—(1.2). This is due to instruction branching, main memory
caches (which reduce the average amount of time to fetch instructions and operands
but increase the variance), and the fact that the number of CPU cycles required to
execute some instructions, such as floating point multiplication, is dependent on the
operands themselves. All of these varying delays result in timing jitter, so that y(kT) is
not sampled at time kT but some time later, and w(kT) is not applied to the plant at
exactly time k7T, but some time later.

Example 1.2.1

Continuing the digital PID control system introduced in Example 1.1.1, let us illustrate the effect
of timing jitter. First, assume that the PID gains, listed in Table 1.1, have been designed under the
ideal assumptions of zero computational delay and a fixed, uniform sample time of T = 50 ms. In
this case, if we apply a ramp input 7(kT") = kT, then the internal model principle tells us that the
tracking error will converge to zero as k — oc.

How is performance affected if this same control law is implemented with hardware that
samples y(t) not at time ¢t = kT but rather at time ¢ = kT + D, where D is a random variable,
uniformly distributed in the interval [0.005, 0.010]? Thus, the actual measurement occurs 5 to 10 ms
after time k7. What if we assume further that the time required to compute (k) is not zero but is a
random variable C, uniformly distributed in the interval [0.015, 0.030], meaning the processor takes
15 to 30 ms to complete the calculation of w(kT")? In this case, @(k) could be applied to the plant as
late as 40 ms after time k7', or, more importantly, as late as 30 ms after y is measured.

Figure 1.3 shows the effects of this timing jitter on the tracking error for the servomotor
system by comparing it with the ideal delay-free case, when the ramp input 7(k) = kT is applied.
(All initial conditions are zero.) As expected, in the ideal case, € converges to zero exponentially.
However, when computational and measurement delay are included in the simulation, € no longer
converges to zero. In fact, it suffers from a “noisy” steady-state error. What causes this? During
the interval of time [kT, kT + C + D), the previously computed control, u(kT' — T'), is still being
applied to the plant. The design has not taken this into account.

Judging from this example, it is dangerous for the control system designer to be
ignorant of real-time implementation issues. Both delay and timing jitter, present in any
real-world application, can adversely affect closed-loop performance. At the very least,
the designer should be aware of their effects. Better still, the designer should incorpo-
rate the computational delays and worst-case timing jitter estimates into the control law
specifications. Including the time-varying effects of timing jitter into controller design
methodologies is very much an open area of research. Nonetheless, the designer can
always perform simulations that include the effects of delay and timing jitter, as we
have here. Finally, the designer should be actively involved at the implementation stage,
in case the control law must be modified should the timing specifications change. In
short, the control system designer’s efforts do not end with Egs. (1.1)-(1.2).

TABLE 1.1 PID Controller Parameters

Parameter Value
T 50 ms
K, 1.0
K 0.5

K, 0.5

6 Chapter 1 Real-Time Computing and Control

Servomotor position tracking error for ramp input

0
'\‘(g =
8
S
Y —0.1 x
% ¢
| * x’g) * = ideal (no delays)
<5 x = actual delays
x X |
X
X
_0.2 Il ' - A -
0 1 2 3 4 5

Time (s)

Figure 1.3 Ramp response of a servomotor with digital PID control. The % symbols
denote ideal response, when the rotor position is sampled every 50 ms,
and there is no computational delay. The x symbols denote the response
when there is both measurement and computational delay in the loop.

1.3 LOW-LEVEL REAL-TIME PROGRAMMING

There are several ways to approach the task of programming a processor to implement
a digital controller. At one end of the spectrum, assembly language or a sequential
language such as C can be used without the benefit of an operating system. This is
probably the easiest approach if the processor is to be used only to realize a single
control law, and the sensor and actuator interfaces are relatively simple. At the other
end of the spectrum lie real-time programming languages such as Ada and commercial
real-time operating systems such as QNX and Lynx. These are most useful in more
complex situations, when the processor has other tasks to accomplish in addition to
realizing a digital control law, and these tasks have hard real-time constraints. Between
these extremes lies a myriad of real-time kernels, executives, and ‘“‘soft” real-time oper-
ating systems such as Windows NT. Depending on application, these can simplify the
often challenging task of real-time programming.

Let us first suppose that the designer must realize (1.1)-(1.2) using a single pro-
cessor for a relatively simple system, such as the digital PID servo system. In this case, a
combination of C and assembler without any operating system support is probably the
best choice. The program is simply designed to use any available timer to generate a
processor interrupt every T seconds. (The timer is simply a counter that decrements
from an initial value at a fixed frequency. When it reaches zero, it issues an interrupt to
the processor, resets to its initial value, and begins counting toward zero again.)
Physically, the timer may be part of the processor hardware itself, as is the case with
most digital signal processors, or it may be part of external hardware such as an A/D
card. The control law is then programmed as the ISR, which first converts y(kT) to
Y(kT) (or, more precisely, triggers the conversion hardware and waits for its comple-

Section 1.3 Low-Level Real-Time Programming 7

tion), then computes w(kT) using (1.1), converts W(kT) to u(kT), and finally computes
X(kT + T) using (1.2). The software is written to initialize the timer and the ISR, and
then to enter into an infinite loop to wait for the interrupt. In this loop, it can execute
any other tasks, such as built-in testing or fault diagnosis. When the interrupt is gen-
erated, the processor immediately executes the ISR. Of course, the interrupt latency,
delays in signal conversion, and time to execute the interrupt service routine all should
be taken into account in the design of the control law. If the processor has no other jobs
to execute, these delays are usually measured in microseconds on a modern micropro-
cessor, so their relevance is implementation-dependent.

Now let us suppose that the processor is to accomplish several other tasks in
addition to just realizing a simple controller. For example, suppose that a single pro-
cessor is to be used for the following three tasks:

1. Realize the digital PID controller for the servo system diagrammed in Figure 1.2.

2. Interface with an ultrasonic transducer, which measures a distance in space. This
task is really two separate tasks. First, the processor must periodically send a signal
to the sensor, which then emits an ultrasonic pulse. At the same time, the processor
must start a timer. When the returned echo is received by the sensor, it raises an
interrupt line to the processor. The processor must respond by stopping the timer
and reading its value, which is subsequently converted to a distance estimate.

3. Pass data to and from a second processor via an RS-232 serial port.

The designer who chooses to write a single low-level program for all three tasks will
soon realize that it will contain four ISRs: one for the digital PID control law, which is
driven by a timer; one to trigger the ultrasonic sensor, which is also driven by a timer;
one to stop the ultrasonic sensor counter and read its value, which is driven by the
sensor itself; and one to attend to the serial port buffer, which is driven by the RS-232
port hardware. If we assume that there is no dependence among these three tasks, then
any of the interrupts could occur at any time. In particular, two could occur simulta-
neously, or one could occur while the processor is executing the ISR for another. Thus,
the designer must assign priorities to each interrupt.

Most modern processors have special hardware that orders the interrupts and their
ISRs according to a priority assignment. Should interrupt X occur while the ISR for
interrupt Y is running, then ISR Y will be interrupted only if X has a higher priority
than Y. In this case, ISR Y would be stopped, and ISR X would run to completion: ISR
X has preempted ISR Y. When finished, the processor will return to ISR Y. Otherwise,
if X has a lower or equal priority than Y, then ISR Y is allowed to run to completion, at
which point ISR X begins processing. By convention, the integer 1 is usually associated
with the “highest” priority task, while higher integer values imply lower priorities.

Returning to our example, we see that each of the four tasks has severe timing
constraints. One way software can be designed for these specifications is to code each
of the four tasks as an ISR and then program the hardware to generate the
appropriate interrupts. But each ISR would have to be assigned a priority. How should
the designer assign these priorities? For a relatively simple example such as this, an
exhaustive search of all possible assignments is possible. We can simply check all 24
possible priority assignments and determine if the timing constraints are met for each
assignment. However, since the number of possible priority assignments is equal to the

Chapter 1 Real-Time Computing and Control

factorial of the number of tasks, a more formal method is needed. Fortunately, schedul-
ing theory provides several sufficiently mature tools to aid the designer in this task.

1.3.1 Fixed-Priority Scheduling Theory

In any real-time system, process scheduling is the programmer’s responsibility. In
the previous example, the processes to be scheduled were four ISRs. More generally,
each might be an independent process running under a fully preemptive, priority-
based, real-time operating system. (Here, fully preemptive means that a higher-priority
process will always be able to interrupt a lower priority process, and the higher-
priority process will then run until completion.) In either case, process scheduling
means assigning a priority P;, where P; € {1, 2,..., N}, to each process, denoted t;,
1 <i< N. There are several methods to assign priorities, and indeed scheduling
theory for real-time systems continues to be a vigorous area of research.
Fortunately, several so-called fixed-priority algorithms, where the process priority
P; is assigned to the process before run-time and remains fixed during run-time,
are adequate for most control applications.

Let us first assume we have a set of N periodic processes, denoted {z;,..., Ty}
Each might be an ISR triggered by a timer, for example. For each process, assume the
following data are known to the designer:

e The computation time C;, which is the worst-case (least upper bound) time
required to complete process t;, assuming no other processes can run;

o A deadline D;, which is the maximum allowable time between the release time of
a process 7; (e.g., the time that an interrupt for a particular ISR occurs) and
when the process must complete; and

e A period T, which is the time between releases of process ;.

Note that we can relax the periodic assumption and include sporadic processes in the
analysis, if we assume that the time 7; is the minimum arrival time for the process. In our
previous example, the ultrasonic sensor ISR that stops the timer and reads its value is a
sporadic process. The interrupt is generated when the echo returns to the sensor, not by a
timer. But this interrupt has a minimum arrival time that is equal to the product of the
speed of sound and twice the minimum distance that can be sensed.

The rate monotonic (RM) algorithm is probably the most popular method of
priority assignment. Priorities P; are assigned inversely related to the process period
T;. In particular, the process with the shortest period is assigned the highest priority
(1), while the process with the longest period is assigned the lowest priority (N). In
its simplest form, the process deadlines D; are assumed to be equal to the period T;.
In this case, several simple necessary and/or sufficient conditions can be checked to
see if the schedule is feasible, that is, if all processes will meet their deadlines. For
example, if

a

iﬂ

i
i=1

where the left-hand side is the total processor utilization, then the process set is feasible.
If the deadlines D; are less than 7}, then this formula no longer holds, but other
necessary and sufficient conditions are easily checked [4].

“< N2V 1),

Section 1.3 Low-Level Real-Time Programming 9

Another similar algorithm is the so-called Deadline Monotonic (DM) scheduling
[7]. Here, fixed priorities P; are assigned inversely to the process deadlines D;, instead of
the periods. (This should not be confused with the earliest deadline first algorithm,
which is a dynamic-priority scheduling algorithm that executes the process with the
earliest deadline.) This approach has several advantages over RM, including a greater
emphasis on process deadline. This can result in a reduction in timing jitter (the varia-
tion in the total time required to complete a process) when compared to RM, which can
be critical to a control application.

After assigning priorities, we must check to see if each process will meet its dead-
line. Both RM and DM schedules, and most other fixed-priority algorithms, are ana-
lyzed the same way. For each t;, define the response time R; as the worst-case amount of
time required for the process 7; to complete. Since process t; can interrupt process 1; if
P; < P;, the response time for t; must be added to C; when computing R;. That is, we
must add to the computation time C; the so-called maximum inferference that t;
receives from all tasks of higher priority. Once all the response times are computed,
we simply check if R; is less than D; for 1 <i < N, and if so, then the process set is
schedulable, meaning all processes are guaranteed to meet their deadlines.

It can be shown that the response time R; satisfies the equation

R,-=C,-+Z[

R,«_|
—|C;, (1.6)
ieH T

J

where H is the set of processes with priority strictly greater than P;, and where [-] is
the ceiling operator, defined for all real numbers s as [s] = §, where 5 is the smallest
integer that is greater than or equal to s. Equation (1.6) is not difficult to understand:
The term [%'l is simply the (integer) number of times that a higher-priority process t;
can interrupt task t; before 7; has completed. Multiplying this term by C; and sum-
ming over all tasks of higher priority than task t; gives the maximum (worst-case)
amount of time spent servicing all the higher priority tasks. Adding C; gives the
response time.

Note that Eq. (1.6) is nonlinear because of the ceiling operator. However, it is
easily solved by converting it into the following recurrence relation [7]

R:
?'.] G, (L7)

R{.‘+'=C,~+Z[
J

jeH

for k > 1, where R! = C;. If R“*! = R for any k > 1, then R; = R¥. In this case, the
task 7; is guaranteed to meet its deadline if and only if R; < D;.

Example 1.3.1

Consider three processes 71, 72, and 73, with computation times C;, periods T;, and deadlines D; as
given in Table 1.2. The RM schedule would assign the highest priority to 7; and the lowest to 73,
that is, P, =1, P, = 2, and P = 3. Using Eq. (1.7) to compute the response times, we find that
R; =1 because 71 has the highest priority. Since R; < D; =5, 7; is guaranteed to meet its
deadline. Computing R, recursively using (1.7), we have

Chapter 1 Real-Time Computing and Control

R =2

R§=2+H-1=3
5

R3=2+E]-1=3,

so R, =3 < 10 = D,, and so 7 also meets its deadline. Computing R; the same way, we have

R =3

R§=3+-%--1+-T3(—)T-2=6
R§=3+Fg_-1+r%_~2=7
R‘;=3+_;1+_T76_~2=7.

Since R3 =7 >4 = Ds, 13 is not guaranteed to meet its deadline, and the rate monotonic
schedule fails the schedulability test.

On the other hand, if we use a Deadline Monotonic schedule, then the priorities are
reassigned as P, = 2, P, = 3, and P; = 1. A very similar calculation shows that

R3=3<4=D3
R =4<5=D,
R,=7<10=D,

and all three processes are guaranteed to meet their deadlines.

1.3.2 Data Dependence

Thus far, we have assumed that the processes 7, ..., Ty are independent. Of
course, in most real-time systems, processes communicate among themselves, share
resources, and so on. For example, it is very common for two processes to communicate
by using shared memory; that is, certain variables can be stored in memory that can be
accessed by two separate processes.

TABLE 1.2 Computation Times, Periods, and
Deadlines for an Example Schedule

Process C T D
Tl 1 5
7 2 10 10

T3 3 20 4

Section 1.4 Real-Time Operating Systems and Programming Languages 1"

Example 1.3.2

Suppose three processes, 7;, 1 < i < 3, are running on a single processor, and 7; and 73 share some
memory, denoted X, that stores a vector x of real numbers. The process 73 implements a user
interface that displays x on a screen, while 7, is a device driver that interfaces with data-
conversion hardware, reading the data x from a hardware register and storing it in X. Assume 7
is at a higher priority than 75. Now, 7, might interrupt (preempt) 73 while 73 is accessing X. Thus,
when 7 finishes putting new data into X and 73 begins to run again, then the (old) data that 73
was reading will be inconsistent with the (new) data that 7; put into X.

The sections of code that access a shared resource such as shared memory are said
to be critical sections. Computer scientists have known for decades that such critical
sections must be protected, meaning only one process at a time may access the shared
resource. For example, if a process and an ISR share a memory location that stores an
integer, then neither one can interrupt (preempt) the other while the integer is being
written to that memory location, an operation that might take several processor
instructions to complete. Otherwise, the data stored will be corrupted.

Now, if each “process” is really an ISR, then the simplest way to protect a
shared resource is to disable all interrupts before entering the critical section and
then reenable all of them after leaving the critical section. In this way, once an
ISR begins the critical section, it is guaranteed to complete its execution without
interruption. This is a very common way for ISRs to communicate. In Example
1.3.2, 7; would disable interrupts before reading from X, thus ensuring that it will
not be interrupted by t; until it is finished. Note, however, that disabling interrupts
for a period of time increases the interrupt latency, since a higher-priority interrupt
(1) will not be processed until a lower-priority process (t3) has reenabled the inter-
rupts. Thus, every effort should be made to minimize the number of CPU cycles over
which interrupts remain disabled.

Real-time programming at this level becomes awkward as the number of processor
tasks increases. A single program becomes difficult to test because the usual tools such
as debuggers are often useless: A real-time system is not correct unless both its logic and
its timing are correct. The designer might be able to verify the logical correctness of the
code with a debugger, test vectors, and so forth, but proving that the timing constraints
are also satisfied under all conditions can be very difficult. Moreover, if the designer
must add another task after the code is complete, then the entire design might have to
be redone because the timing of the whole system has changed. Finally, worst-case
interrupt latency might become intolerable due to a large number of critical sections
of code, each protected by disabling and reenabling interrupts. When enough of these
effects conspire to make a low-level approach too difficult, either a real-time operating
system or a high-level real-time programming language is probably in order.

1.4 REAL-TIME OPERATING SYSTEMS AND
PROGRAMMING LANGUAGES

An operating system is a program, or a set of programs, that manages the hardware and
software resources of a computer. At the heart of any operating system is its kernel. The
kernel is the program that schedules application programs, manages main memory,
handles communication among application programs, and usually contains drivers for

12

Chapter 1 Real-Time Computing and Control

devices such as disks, user interfaces, and network interfaces. The kernel insulates each
application program from the details of opening files, communicating with other pro-
grams, and so forth.

Most preemptive, priority-based, real-time operating systems are built around
relatively small kernels that provide a minimum of functionality. For example, the
QNX kernel [8] provides only two basic functions:

e Process scheduling, which manages the state of each process and determines
when each process will run; and

o Interprocess communication, which allows processes to send messages to each
other.

All other functions that might normally be associated with the kernel, such as device
drivers and file system support, are provided as separate processes. This architecture
offers several advantages over large, feature-rich kernels (such as Linux). First, because
the kernel is small, the worst-case interrupt latency time (the time elapsed after an
interrupt occurs but before its ISR runs) can be shorter and simpler to determine.
Latency time can be both long and difficult to measure for a large kernel for the
following reason [9]. Suppose a low-priority user process executes a system call to
the kernel just before a high-priority interrupt occurs. When the interrupt does
occur, that system call might not be preemptable because the kernel itself is not pre-
emptable. Thus, the interrupt might not be serviced until control is returned to the low-
priority process. To make matters worse, the nonpreemptable system call could in turn
issue a second and then a third nonpreemptable system call. Thus, with a large number
of available, nonpreemptable system calls, the worst case interrupt latency could be not
only long, but also quite difficult to determine. Moreover, this worst-case might occur
only very rarely and would therefore be an overly conservative estimate of latency time.

This is the case with many popular operating systems, such as Windows NT [10].
Because the NT kernel is not fully preemptable, it is not possible to determine a worst-
case bound on the amount of time that will elapse between an event, such as a software
interrupt, and the operating system’s response. This makes such operating systems
unsuitable for so-called hard real-time applications, where the response time must be
precise and guaranteed. For example, imagine a process that generates gating signals in
a pulse-width modulation (PWM) motor driver. The duration of the pulse is the control
input. Suppose the process uses a system timer to control the duration of the pulses.
The timer is initialized at a number proportional to the desired pulse duration and
counts down, generating a software interrupt when it reaches zero. The process then
responds to the interrupt by changing the state of a bit on a digital output card via a
device driver for that card. If this process is running under Windows NT, then the
amount of time that will elapse between the timer interrupt and the hardware bit flip
will vary, leading to a “noisy” control signal. The variance is not entirely deterministic.
(In particular, it is impossible to compute an upper bound on this time, such that the
operating system will always satisfy the bound.) Moreover, as the PWM switching
frequency increases, this varying delay will remain the same (at best), meaning the
signal-to-noise ratio will decrease. Thus, if the PWM switching frequency is sufficiently
high, then such a software-only solution using Windows NT will probably fail to meet a
specification on signal-to-noise ratio. On the other hand, for many control systems the
response time of an operating system like NT is “fast enough.” Indeed, NT is designed

Section 1.4 Real-Time Operating Systems and Programming Languages 13

to minimize response times. In such a case, the latency and its variance, that is, the
timing jitter, would be relatively small and performance would not be noticeably
affected. Returning to the PWM example, if the pulses have a duration of between
one and two seconds, then a few milliseconds of timing jitter will probably not adversely
affect performance.

When the sampling frequency is relatively high and a hard bound on response time
is necessary, then a truly real-time operating system becomes necessary. By limiting the
functionality of the kernel to the bare essentials and by designing the kernel to be fully
preemptable, meaning kernel system calls can be interrupted, a real-time kernel will
provide not only a lower latency time, but also a more predictable latency time. Note
that this does not necessarily limit the functionality of the operating system as a whole.
Device drivers, file system support, user interfaces, and so on, can be added as processes
whose priority can be assigned by the programmer.

The primary advantage of using a real-time priority-based operating system over
writing a single low-level program is that each task can be coded as a separate process.
There are two prevailing philosophies here: Either a programming language such as C,
extended by real-time libraries, can be used to develop each separate program, or
alternatively, a real-time language such as Ada can be used to generate cooperating
processes. In both scenarios, the result is really the same: A number of cooperating
processes are created that run together, for all practical purposes simultaneously on a
single processor.

Developing and testing each process separately offer the same advantages that
breaking down a single, large program into separate subroutines does. Management
is simplified since coding can be done by several developers. Testing is often simplified
because the logical correctness of each process can be determined independently from
other processes, and the timing correctness can be determined by the proper application
of scheduling theory. Determining the worst-case run-times (C;), necessary to assign
priorities (P;), can be done for each process independently. Finally, adding functionality
is simply a matter of writing new code for new processes and perhaps redefining prio-
rities—existing processes do not require modification. Thus, for sufficiently complex
real-time programming tasks, fully preemptive, priority-based operating systems and
real-time programming languages are a major asset.

1.4.1 Real-Time Operating Systems at Run-Time

In a preemptive, priority-based system, priority is assigned to a process by the
designer, not the operating system (OS), assuming static priorities are being used. It is
important to understand how a typical real-time OS schedules these processes. Roughly
speaking, each process can assume one of two states: ready or blocked. The operating
system maintains a list of all processes and allows the process that has the highest priority
and is also in the ready state to execute. The OS will continue to monitor the status of all
other processes. The highest-priority process continues to execute until either another
higher-priority process becomes ready, because of an external signal, for example, or the
process itself becomes blocked, for example, it completes its calculations.

In the QNX operating system, for example, processes either are in the ready state,
or they assume one of a number of different blocked states, each of which is related to
interprocess communication. A simplified version of the situation is diagrammed in
Figure 1.4. Again, the highest-priority ready process runs, until either another

14

Chapter 1 Real-Time Computing and Control

higher-priority process becomes ready or it issues either a send() or receive() call,
both of which are kernel calls. (Other processes might enter the ready state because of a
hardware interrupt or a timer interrupt, for example.) When this occurs, the process
becomes blocked, ceases to run, and the kernel executes the next process in the ready
state with the highest priority. Should two or more processes be ready and at the same
priority, then they can be scheduled round-robin, or first-in first-out (FIFO). This
client-server architecture is very well-suited to control applications, as the following
example illustrates.

KReceive
Reply
Receive
Ready blocked
Reply Send
blocked Send
Send
. blocked
Receive

Figure 1.4 The QNX process states are based on a client-server model. A process
begins in the ready state. If it issues a send message to another process, it
becomes send-blocked until it receives a receive message from that pro-
cess. It then becomes reply-blocked, until it receives the reply signal from
that process, when it again becomes ready. Otherwise, it can issue a
receive message and become receive-blocked, until it receives a send
message from another process. Messages issued by the process are
shown in bold, while those issued by other processes are in normal type-
face. Taken from [8].

Example 1.4.1

Let us return to the three processes introduced in Example 1.3.2. Again, process 7; is a simple
device driver. When it runs, it reads the data x from several A/D registers, copies it into the
shared memory X, and then blocks. Suppose now that process 7, is a control law, which uses x to
compute a control using an expression such as (1.1)~(1.2). As such, 7 is timer-driven, meaning it
will sleep (block) until a timer expires, at which point it becomes ready. Finally, 73 is the user
interface, which displays x on the computer screen. Suppose priorities are assigned as P; =1,
P, =3, and Py = 5, and all other processes running have lower priority (P; > 5 for ¢ > 3).

At time ¢y, when all three processes are started, 7; (the device driver) will run because it has
the highest priority. After properly initializing the A/D hardware, it issues a receive(r;) call and
becomes receive-blocked until 7, issues a send(7;). Being the highest-priority process now in the
ready state, 7, (the controller) now runs. It initializes its timer, and it goes to sleep (blocks) until
the timer expires. When this occurs, at every time k7, it first issues a send(r;), causing 7, to reply-
block. (It would normally receive-block, but 71 has already issued a receive(r;), so 7, reply-
blocks.) Now 7; moves to the ready state, and being the highest priority process, it runs. It reads
the A/D, moves the data into shared memory, and issues a reply(re), which makes 7, ready.
Finally, it issues a receive(rs) to become receive-blocked again. At this point, 7» will run again,

Section 1.4 Real-Time Operating Systems and Programming Languages 15

copy the data from shared memory, compute the control law, and output it. It then goes back to
sleep (blocks), awaiting the next timer signal. Finally, 73 (the user interface) can run because by
now both 7 and 7 are blocked. It will continue to run until the timer driving 7, expires at time
kT + T, 7, becomes ready, and the cycle begins anew. Note that the processes 7; and 7, can never
access the shared memory simultaneously because of the priority assignment. Also note that
additional processes could run at lower priorities, but they would not affect 71, 72, and 73. Finally,
note how the logical correctness of all three processes can be tested (debugged) independently of
one another. The situation is diagrammed in Figure 1.5.

Figure 1.5 Three QNX process states that are
used to implement a control law in Example
1.4.1. The shaded bars indicate when each
process executes.

kT kT+T kT+2T ¢t

When a low-level interrupt-driven approach is used, mutual exclusion of shared
resources is assured by disabling interrupts during critical sections of code. With a real-
time operating system, this is no longer necessary. (In fact, it might not be possible!) To
protect critical sections of code, well-known software constructs such as semaphores can
be used, or priorities can be assigned which guarantee that critical sections cannot be
interrupted, as in Example 1.4.1. A semaphore acts as a lock, preventing all other
processes from accessing a shared resource, until the process that entered its critical
section finishes.

Example 1.4.2

Let us revisit the situation in Examples 1.3.2 and 1.4.1 a final time, and suppose the user-interface
process 73 decreases (locks) a semaphore before entering its critical section of code that accesses
the shared memory X. If 73 is preempted by 7, while in the critical section, 7, would first check the
semaphore and find that X is being used by another process. It would then block, at which point
73 would complete its access to X. This ensures correct logical behavior: Process 7, must wait until
process 73 completes its access and unlocks the critical section.

When 7; blocks, the operating system will run the process that has the highest priority that is
ready, which will be 73. This will complete its critical section and unlock the shared resource. At
this point, 7, becomes ready and preempts 73, as it should. But suppose that a fourth process, 74,
with a priority between those of 7> and 73, that is, P; = 4, becomes ready while 73 is executing its
critical section. Suppose 74 does not use X, so it is not affected by the locked semaphore. Thus, it
will preempt 3. Since all other processes are effectively blocked, 74 will run to completion. In this
case, the priority of 4 is in effect higher than 7, which is probably not what the designer had
intended. The situation is illustrated in Figure 1.6.

16

T

L7

T

T4

T3

Chapter 1 Real-Time Computing and Control

F . . - Figure 1.6 Protecting critical sections with a

semaphore, for example, can lead to priority
inversion (above). Process 73, with the lowest
priority, enters a critical section when, at #;,
7, becomes ready. It runs until #,, at which
point it attempts to enter the same critical
section and becomes blocked. At this point,
75 is the highest priority ready process, and it
: Co : runs. But it has not completed the critical
_ Lo : section when, at 3, it is preempted by 74,
.o : . which has a priority between that of 7, and

1 1y 1y 15 ts Time

13. 74 will run to completion, while 7, remains

T blocked. ; finally completes its critical sec-

tion at t5. The figure (below) shows the

. o . same four processes where a priority ceiling
_ P o3 ! algorithm has promoted the priority of 73 to
. v K that of 7, while it executes in its critical sec-

n I ly Iq Is 3 Time tion. Notice the reduced number of context

switches.

Example 1.4.2 illustrates an undesirable phenomenon known as priority inversion,
in which a higher-priority task (t,) is effectively preempted by a lower-priority process
(t4). This can be overcome by the use of a priority ceiling protocol. The idea is to
promote the priority of any process that accesses a shared resource to exactly the
priority of the highest-priority process that also shares that particular resource.
Returning to our example, the priority of 73 would be promoted to P; = 1 while it is
accessing x. If , becomes ready during this period, it waits until 73 is finished (because
its priority is equal, not less than the newly promoted 73). When t; finishes its critical
section, its priority is returned to Py =5, and 1, will preempt. The priority ceiling
protocol is also illustrated in Figure 1.6.

The priority ceiling protocol has several desirable properties, including preventing
priority inversion, preventing deadlock, and minimizing the number of context switches
[7]. Importantly, the schedulability test (1.6) can be modified accordingly: We simply
have to add to R; the worst-case blocking time, which we denote B,

R,=C,+B,+Z'-

R,-‘I
i 4 o (1.8)
i€eH TJ J

The priority ceiling protocol guarantees that t; will be blocked by a lower priority
process at most once while it is running. (The process that is blocking 7; will run at

Section 1.5 Hardware Issues 17

least the priority of t; while accessing the shared resource.) Thus, B; is just the largest C;
of all tasks sharing the resource. A more complete discussion is beyond our scope, and
we refer the reader to any one of a number of textbooks on the subject, for example [4].

There are alternatives to the use of preemptive, priority-based, multitasking oper-
ating systems that we have presented here. For example, so called cyclic executives
execute processes on a fixed schedule and have certain advantages, such as minimizing
timing jitter. But the trend in industry seems to be toward multitasking, real-time
operating systems, in which programs are written using well-known languages such
as C, extended with libraries of real-time functions, or perhaps Ada. Given the wide-
spread familiarity of both C and multitasking operating systems such as Linux, this
trend will doubtless continue.

1.5 HARDWARE ISSUES

Our emphasis to this point has been on the real-time software aspects of controller
implementation using a general processor. The chapter would be incomplete without
some discussion of the hardware requirements. In the following subsections, we outline
a few of the more popular off-the-shelf hardware platforms used to realize control
systems.

1.5.1 Desktop PCs

The commodity pricing of desktop PCs, along with their continuously improving
performance, storage capacity, and ability to network, has made them increasingly
popular platforms for real-time control. Of course, it is often necessary to enclose
the delicate electronics into an appropriate industrial-strength case. But, under the
hood, there is little difference between an industrially hardened PC and its desktop
version. Input-output can be provided by using appropriate expansion cards. The
primary advantage of using PCs is, of course, low cost, relatively high performance,
and a large variety of available software.

The question is what operating system to use. As discussed earlier, Windows NT is
not a “hard” real-time operating system: A controller that is running as a process on
such a machine will suffer from some timing jitter. Depending on the other executing
processes, this may or may not be an issue for the particular control problem at hand.
As an alternative to developing a controller in a language such as C, the designer can
turn to number of Windows NT applications that provide graphically programmable
controllers. Labview from National Instruments is a popular example. In a matter of
minutes, a designer can program a PID controller using its graphical programming
language. However, if more demanding real-time performance is required, a “hard”
real-time OS such as the Unix-derivatives QNX or Lynx should be used.

1.5.2 Single-Board Computers

Desktop PCs can be too large and bulky for embedded use. When size is an issue, a
so-called single-board computer can be used. Functionally, these are complete PCs on a
single printed circuit board, perhaps lacking the keyboard and monitor, and manufac-
tured with smaller footprints than would be used for a desktop PC. Typically, they are
equipped with popular busses such as the PCI bus and the relatively new PC-104 bus.
The latter accommodates very small expansion cards for input-output. These are

18

Chapter 1 Real-Time Computing and Control

stacked parallel to the “motherboard,” so that the entire unit fills a very compact
volume. Most support solid-state storage such as flash memory that can replace disk
drives, making the PC more rugged. Several operating systems are now available which
can be loaded from flash memory instead of disk drives.

1.5.3 Digital Signal Processors

Several manufacturers market Digital Signal Processors (DSPs) and complete
stand-alone DSP boards for control system implementation. DSPs excel at the numer-
ical aspects of control, such as floating point multiplication and indexing arithmetic.
Moreover, most DSPs do not have memory caches and use a RISC architecture, mean-
ing instructions take a fixed number of CPU cycles to complete. Thus the time required
to execute a set of instructions is easy to predict. When the timing aspects of a controller
implementation are critical, both in terms of speed and timing jitter, a DSP will offer
the best solution.

1.5.4 Programmable Logic Controllers

Programmable Logic Controllers (PLCs) are special-purpose industrial computers
that are used extensively in industry to implement control systems [12, 13]. Historically,
PLCs were invented as a programmable replacement for large hardwired control panels
that were used to control machines on the factory floor in the automotive industry.
Typically, these panels connected switches to relays, valves, lights, sensors, and so on,
all wired together to make a complex factory system work. Thus, early PLCs acted as
simple on/off control devices, taking input from perhaps a large number of switches
and sensors, and providing output to electromechanical relays.

Traditionally, PLCs have been programmed using a graphical language called a
ladder diagram. A ladder diagram is essentially a schematic wiring diagram that shows
the logical behavior of an electrical circuit. It is familiar to electricians and technicians
who might work on a factory floor. Each “rung” of a ladder represents an electrical
circuit, which might include a switch, relay, light,and so forth. “‘Rungs” can be added to
the PLC program just as a new line of C code can be added to a C program.

PLCs have evolved into much more than just programmable switches. Elements
such as timers, logic statements, and arithmetic operations can be used to make deci-
sions based on timing and logic. They can include a rich set of input/output modules,
including A/D converters, shaft encoder modules, and even vision systems. Modules
particular to control include PID subsystems and ethernet communication modules.
Thus, a custom control system can be put together using a PLC and a set of appropriate
modules and software.

PLCs are generally used in an environment that has a large number of inputs and
outputs, and where logical decisions based on these signals must be made. For exam-
ple, the high-level control of an industrial robotic manipulator will often be done
using a PLC. Such a controller would provide the reference set-points to the low-level
joint control system. At the same time, it might monitor a safety system, stopping the
robot should a light-beam break, indicating that a person has entered an unsafe area.
The PLC might also interface with other factory-floor PLCs that control the systems
that feed parts to the manipulator. More complete descriptions can be found in [12,
13].

References 19

1.6 CONCLUSION

Real-time programming is usually thought to be beyond the scope of conventional
control theory and practice. This is rather ironic, given that so much advanced theory
can only find application through advances in real-time technology. In this chapter, we
have illustrated the danger of ignoring real-time issues, and we have introduced some
modern tools that are extremely useful for complex real-time control system design. In
the future, tools such as real-time operating systems, programming languages, and
processor architectures will make possible control systems with increased functionality
and complexity. Control engineers should not only reach out and embrace this tech-
nology, but they should play a role in its development. After all, the job does not end
with a difference equation.

Related Chapters

e Some related types of real-time control issues also arise in communication networks—
see Ch. 19.

e The use of programmable logic controllers for real-time control programming is briefly
discussed in Ch. 16.

e In Ch. 13, a challenging class of real-time control problems that arise in power systems,
due to couplings between geographically separate generators, is discussed.

REFERENCES

[1] S. R. Norsworthy, R. Schreier, and G. C. Temes (eds.), Delta-Sigma Data Converters.
Piscataway, NJ: IEEE Press, 1997.
[2] R.J. A. Buhr and D. L. Bailey, 4n Introduction to Real-Time Systems. Upper Saddle River,
NIJ: Prentice Hall, 1999.
[3] M. Joseph (ed.), Real-Time Systems: Specification, Verification and Analysis. New York:
Prentice Hall, 1996.
[4] C. M. Krishna and K. G. Shin, Real-Time Systems. New York: McGraw-Hill, 1997.
[5] J. Wikander and B. Svensson (eds.), Real-Time Systems in Mechatronic Applications.
Boston, MA: Kluwer, 1998.
[6] G. Olsson and G. Piani, Computer Systems for Automation and Control. New York: Prentice
Hall, 1992.
[7] N. C. Audsley, A. Burns, and A. J. Wellings, “Deadline monotonic scheduling theory and
application.” Control Engineering Practice, Vol. 1, no. 1, pp. 71-78, February 1993.
[8] ONX OS System Architecture. Kanata, Ontario, Canada: QNX Software Systems, Ltd., 1993.
[9] H. Rzehak, “Real-time Unix: What performance can we expect?” Control Engineering
Practice, Vol. 1, no. 1, pp. 65-70, February 1993.
[10] M. Ragen, “Real-time systems with Microsoft Windows NT.” Available at www.micro
soft.com/embedded/winnt.htm.
[11] J. L. Peterson and A. Silberschatz, Operating System Concepts. Reading, MA: Addison-
Wesley, 1987.
[12] J. Stenerson, Fundamentals of Programmable Logic Controllers, Sensors, and
Communications. Englewood Cliffs, NJ: Prentice Hall, 1993.
[13] T. E. Kissell, Understanding and Using Programmable Controllers. Englewood Cliffs, NJ:
Prentice-Hall, 1986.

Chapter | DISCRETE-EVENT SYSTEMS
? AND THEIR OPTIMIZATION

Edwin K. P. Chong

Editor’s Summary
Classical control technology has by and large focused on continuous-time systems—including their digi-
tized and sampled equivalents. The unequivocal success in this arena has resulted in a broadening of
interests and in explorations of the application of control concepts to other problems, even those that are
not readily amenable to the techniques of traditional control. This chapter focuses on one such topic:
discrete-event systems.

Whereas control technology is mostly concerned with systems with internal dynamics that can be
mediated by continuous-valued inputs, discrete-event systems (DES) exhibit dynamics that evolve in
accordance with external events—the state of the system changes only when an event occurs. Many
problems in communication networks, manufacturing systems, transportation and traffic, and numerous
other domains can be seen as DES applications. In the first case, for example, events of interest can be the
arrival of packets of information at a node in the network. (Connections between DES and communica-
tion networks are further elaborated in Chapter 19.)

Modeling approaches for DES include state machines and automata, Markov chains, and timed
models using event clocks. Simple examples are shown for each, drawn from computer systems with on,
off, and failed states and single-server queues. Some of these models are also discussed in Chapter 7 which
deals with systems that combine discrete-event and continuous-time dynamics.

This chapter also discusses the topic of optimization of DESs: how control parameters of a DES (for
example, the mean service time for jobs in a queue) can be selected to optimize some performance measure.
To use gradient-based optimization methods for discrete-event systems, gradient information must be
estimated; since the systems and their representations are not continuous, gradients cannot be analytically
calculated. Stochastic approximation algorithms are an effective option and can even allow DES optimi-
zation to be performed on-line, while the system is operating.

Edwin Chong is an associate professor in the School of Electrical and Computer Engineering at
Purdue University, West Lafayette, and the chair of the IEEE-CSS Technical Committee on Discrete
Event Systems.

2.1 INTRODUCTION

20

The twentieth century was dominated by the development of highly complex man-made
systems that performed complicated tasks. From mobile telephone networks to satellite
space stations, the development of such systems was accompanied by an ever-increasing
demand for even more sophisticated systems. As we usher in a new century that pro-
mises the development of technology currently not even imaginable, the need for a

Section 2.1 Introduction 21

systematic and mathematical approach to the analysis, design, and control of compli-
cated large-scale systems is becoming increasingly important.

Such a need has long been recognized by researchers in a multitude of technolo-
gical areas. In operations research, for example, researchers have been interested for a
long time in systematic methods to deal with large-scale systems. However, only in
relatively recent years have control engineers taken up this challenge. A result of this
undertaking has been the birth and development of the area of study known as discrete-
event systems.!

A discrete-event system is a dynamic system that evolves in accordance with the
occurrence of events. An extensive literature on discrete-event systems has appeared in
the last 15 years, and their study continues to be an area of ongoing research. Targeting
application areas such as telecommunication networks and manufacturing systems, the
area has attracted an interdisciplinary pool of researchers, from systems and control,
theoretical computer science, operations research, and artificial intelligence. Within the
domain of control engineering, the study of discrete-event systems attempts to address
the following questions:

o To what extent can ideas from classical systems and control theory be used in
discrete-event systems, and how?

e How do we specify and solve decision and control problems in discrete-event
systems?

e What models are appropriate for performance analysis and optimization of
discrete-event systems?

e How do we systematically and optimally design a discrete-event system to
satisfy given design specifications?

The study of discrete-event systems has reached a stage where an undergraduate-
level textbook on the subject is available, as well as several books on specialized topics
in the area. (We provide some references at the end of the chapter.) Moreover, many
academic institutions around the world have begun to offer courses on discrete-event
systems, reflecting the increased recognition of the importance of the area. Nonetheless,
to date, the state of the art does not yet fully address all of the questions listed above,
and much remains to be done in the area.

In this chapter, we provide an overview of discrete-event systems at a level that
should be accessible to engineers with no more than undergraduate training in systems
and control. The treatment starts out at an elementary level and builds up to a discus-
sion of optimization techniques that are in fact too advanced to be discussed in detail in
a chapter like this. Our goal is simply to whet the reader’s appetite, providing a glimpse
of what promises to be an important topic for control engineers in years to come.

In the next section, we provide a simple definition of a discrete-event system. We
begin in Section 2.2.1 with a basic discussion of systems, including input-output systems
and states. Then, in Section 2.2.2, we introduce the idea of a discrete-event system,
contrasting it with classical models based on differential and difference equations. In

! Often, the abbreviation DES is used. Some use the term discrete-event dynamic system, with the
abbreviation DEDS.

22

Chapter 2 Discrete-Event Systems and Their Optimization

Section 2.2.3, we argue that discrete-event systems arise naturally as models when
considering many of today’s complex engineering systems.

Section 2.3 is devoted to a discussion of some basic ideas in modeling discrete-
event systems. We discuss state trajectories (Section 2.3.1) and state machine models
(Section 2.3.2), as well as some extensions of these ideas. To explore discrete-event
system models that consider event occurrence times, in Section 2.3.3 we describe a
particular model using event clocks. Here, we also discuss discrete-event simulations,
as well as Markov and semi-Markov processes. These discussions, though brief, assume
some knowledge of probability and stochastic processes.

In Section 2.4, we discuss the problem of optimization in discrete-event systems,
focusing on a particular approach involving gradients. First, in Section 2.4.1, we define
the components of an optimization problem. Then, in Section 2.4.2 we discuss one
approach to solving optimization problems based on gradient algorithms. To apply
this approach to the optimization of discrete-event systems, in Section 2.4.3 we argue
that gradient estimation is a key ingredient, and we introduce some ideas along these
lines. Finally, in Section 2.4.4, we describe the use of gradient estimators and stochastic
approximation algorithms for the on-line optimization of discrete-event systems. We
illustrate the application of this approach via an example of a capacity allocation
problem.

Finally, in Section 2.5, we provide directions for further reading. In keeping with
the intended level of our exposition, we have attempted to restrict our reference list to
books and overview articles. These references provide good starting points for investi-
gation, and most contain further references to other useful sources, including research
articles.

2.2 DISCRETE-EVENT SYSTEMS

2.2.1 What Is a System?

The heart of control engineering is the ability to analyze real-world “systems”
using analytical tools (pen-and-paper or computer/software). Typically, this analysis
is done by reasoning with a model of the system, the language of such reasoning being
mathematics. Throughout this chapter, we use the term system to mean a mathematical
model, constructed for the purpose of analysis. This use of the term is typical in formal
methods of control engineering.

The prototypical system in control engineering is the input-output system. Here, we
associate with the model an explicit input and output. Typically, the input is “control-
lable” in the sense that we can manipulate it to achieve some desired effect. The output
is usually the manifestation of the resulting effect, such as a sensor measurement of
some physical quantity.

It is also common in control engineering to use state models. Here, we associate
with the model an explicit description of the state of the system. The state is usually an
entity that determines or characterizes the “internal condition” of the system. For
example, the state of a hot-water heater may be defined by the temperature and volume
of water it contains.

Also relevant to our discussion is the notion of a dynamic system. Such a system
“evolves” in the sense that its state changes in response to external factors. Such factors

Section 2.2 Discrete-Event Systems 23

may include changing values of the input, or simply just the passing of time. In the
latter case, we say that the dynamic system ‘“‘evolves in accordance with time.” For
example, the water temperature of a hot-water heater may increase in response to a
change of the temperature setting (input). If it has a leak, the volume may decrease with
time even when there is no change in input.

Over the centuries, scientists (physicists, chemists, etc.) have provided engineers
with system models based on physical laws. However these laws were developed, they
agree with how the world operates—experimental measurements of the behavior of the
world agree with what is predicted by these laws. Therefore, such physical laws appro-
priately provide the basis for system models, and many engineering marvels have been
created as a result.

The prevailing mathematical principle underlying physical laws is the differential
equation. From Maxwell to Schrodinger, scientists have used differential equations as
the primary vehicle to describe how things work. Specifically, given certain variables
that describe the state of a system, such as volume and temperature, a differential
equation tells us how these variables change with time (and sometimes even how
they vary with location in space). Not surprisingly, over the years differential equations
have provided the primary basis for models in control engineering.

As the use of computers became mainstream in control systems, engineers began to
use a slightly different form of model, called the difference equation. Functionally, the
difference equation serves the same purpose as the differential equation in that it
dictates how a system evolves with time. The distinguishing factor is that in a difference
equation, time takes on values only at discrete points (e.g., every tick of a second). For
this reason, difference equations give rise to what are called discrete-time models. Such
models may be used to describe the value of the state of a system as sampled at discrete
instants of time, such as is necessitated by the use of an A/D (analog-to-digital) con-
verter.

2.2.2 What Is a Discrete-Event System?

A discrete-event system is a dynamic system that evolves in accordance with
occurrences of events. It is instructive to distinguish discrete-event systems from models
based on differential and difference equations. First, we note that while differential and
difference equation models evolve with time, a discrete-event system evolves with the
occurrence of events. The occurrence of such events may also be associated with
instants of time, but this association is unnecessary in certain applications. (We will
provide examples later.) A discrete-event system model may also involve a state. By
definition, the state of a discrete-event system changes only when an event occurs. Note
that the adjective discrete in “discrete-event system” is used to emphasize the notion
that an event makes the system state change abruptly and not continuously. The reader
should not confuse a discrete-event system with a discrete-time system.

Discrete-event system models are useful in a wide variety of situations and provide
a flexible means to describe many systems of interest. An event in a discrete-event
system can represent virtually anything that occurs abruptly. For example, an event
may correspond to the arrival of a packet at a node in a communication network, the
completion of a job by a central processing unit (CPU), or the failure of a machine in a
manufacturing system. Discrete-event system models can be used in virtually all man-
made systems, examples of which are endless—manufacturing systems, communication

24

Chapter 2 Discrete-Event Systems and Their Optimization

networks, computer systems, logistics, vehicular traffic, economic systems, stock mar-
kets, and so on. Discrete-event systems also provide suitable models for some natural
phenomena, such as particle interactions in certain materials.

2.2.3 Why the Need for Discrete-Event Systems?

Discrete-event system models are useful when dealing with dynamic systems that
are not fully captured by classical models, such as differential or difference equations.
Such systems increasingly are dominating the modeling arena for two main reasons.

First, the complexity of many man-made systems necessitates viewing them at
different levels of abstraction. It is often impossible to have a single picture of an entire
system; engineering systems are just too complicated nowadays. The standard practice
is to define various levels of abstraction, each of which can be handled in a manageable
way. Usually, in such multilevel abstractions, a low-level view provides a detailed
description of the dynamics of the various components in the system, whereas a
high-level view is used to characterize the interactions between the components.
Although the low-level dynamics are often adequately captured by classical differential
equation models, the high-level view involves dynamics of a different nature, such as
logical decision making, discrete control actions, abstract task descriptions, and switch-
ing between modes. Therefore, at sufficiently high levels of abstraction, the use of events
to capture dynamics is natural, perhaps even inevitable.

Example

Control issues in manufacturing systems typically are approached in a hierarchical fashion (see
Table 2.1). At the lowest level, we take into account individual machines in the manufacturing
system, such as conveyor motors or robotic manipulators. Here, the time scale of the dynamics
(i.e., how fast the state of the system is changing) is relatively short, perhaps on the order of
milliseconds.

At a higher level, we consider the cells in the manufacturing system. Each cell consists of
several machines, but we are not concerned with the details of individual machines. We focus only
on the aggregate behavior of the machines as a cell. The time scale at which the dynamics evolve is
longer here than in the low-level view, somewhere in the domain of minutes or hours.

At the highest level shown in Table 2.1, we are concerned with the overall behavior of the
factory—the so-called big picture of the system. Here, even individual cells are not of interest,
only how they interact together to affect the overall factory. Time scales at this level are relatively
long, perhaps involving days or even months.

TABLE 2.1 Control Hierarchy in Manufacturing Systems

Level Time Scale Example Issues Example Technologies

Machine Short Robot arm trajectory PID, PLC, Fuzzy
Relay ladder logic
Servomotor control

Cell Medium Routing Simulation
Scheduling
Factory Long Material planning Just-in-time, Kanban

Inventory control
Tooling problem

Section 2.3 Some Discrete-Event System Models 25

A second reason for considering discrete-event system models is that many deci-
sion and control problems involving complex systems are inherently discrete in nature.
These include resource allocation, scheduling, policy selection, synchronization, rout-
ing, and admission control in communication networks. Although such issues give rise
to challenging problems for control engineers, they cannot readily be tackled using only
classical models such as differential equations.

2.3 SOME DISCRETE-EVENT SYSTEM MODELS

Figure 2.1 State trajectory of a discrete event

2.3.1 State Trajectory of a Discrete-Event System

Figure 2.1 shows the state of a discrete-event system model as a function of time
(the state trajectory). Notice that the state of the system changes only when an event
occurs. The labels ¢, 8, and so on, signify the associated events. In between the instants
of occurrence of events, the state remains fixed. Note that the vertical axis in Figure 2.1
does not necessarily represent‘‘numerical” values, such as 1, 2, or 3 but may be arbi-
trary qualitative states, such as on or off. It is often natural in discrete-event systems to
restrict the possible states of the system to some “discrete” (countable) set.

State

system. Time

Figure 2.2 State trajectory of a simple model

Example (Simple model of computer)

Consider a “high-level” model of a computer with three states: on, off, and down. When the state
is off and we push the power switch (the event push-switch, denoted , occurs), the state changes
to on. Similarly, when the state is on and the event 7 occurs, the state changes to off. If the event
Sault (¢) occurs when the state is on, the state changes to down. Once in the state down, the state
remains there until the event repair (p) occurs, in which case the state changes to off. Figure 2.2
illustrates a possible state trajectory of the discrete-event system model of the computer.

State
ON — [rm—
7 | Jt: n:
OFF |l ¢: [r— -_— 0 O O
I p!
DOWN I..__I

of a computer. Time

26

Chapter 2 Discrete-Event Systems and Their Optimization

Note that in this example, the number of states in the system is finite (three). In
general, it is possible to have an infinite number of states, as in the following
example.

Example (Queue)

Consider the familiar scenario where customers arrive at a server that can serve only one
customer at a time. Customers who have arrived but have not yet completed service must wait in
line (they form a queue). These customers include those who are being served and those who have
not yet begun service. As soon as the server completes service of a customer, that customer
immediately leaves the system.

The model described here is called a single-server queue. The events in the system are
customer arrival (o) and service completion (o). The possible states of the system can be modeled
simply as the number of customers in the queue (i.e., customers who have arrived but have not yet
departed). When event « occurs, the state goes from n to n + 1, where n € {0,1,2,...}, while the
event o causes the state to go from n ton — 1, where n € {1,2,...}. Note that the event o cannot
occur in state 0 (when there are no customers present). Figure 2.3 depicts a possible state
trajectory of a queue.

While queues model a wide variety of familiar situations found in daily life, such as waiting
in line at the checkout counter of a supermarket, they are also useful in many other application
domains, ranging from telecommunication networks to viral epidemics.

State

3 —
a' g
| |

2 m 1 1 |

a: a: a: gl
1 : S
a) a: e 0o o
0]

Time

Figure 2.3 State trajectory of a queue.

2.3.2 State Model of a Discrete-Event System

2.3.2.1 State Machines

A discrete-event system with a countable number of states can be represented
conveniently by a state transition diagram. In such a diagram, a circle represents a
state, and an arrow going from one state to another (also called an arc) represents a
change of state (also called a state transition). Each arc has a label that represents
the event associated with the state transition. Such a model is also called a state
machine or automaton. The set of all possible states in the system is called the state
space.

Section 2.3 Some Discrete-Event System Models 27

Example (Simple model of computer)

Consider again the previous example of a simple model of a computer. Figure 2.4 shows the state
transition diagram of the model. The state space in this example is {on, off, down}.

ON

o . OFF DOWN
Figure 2.4 State transition diagram for a sim-

ple model of a computer. p

This example, with a finite number of states, falls within the class of finite state
machines (or finite automata). State machines with an infinite number of states are also
possible, as is the case with the single-server queue.

Example (Queue)

Consider the example of a queue. The state, being the number of customers in the system, can be
any nonnegative integer. The state space is therefore infinite. Figure 2.5 shows the state transition
diagram for the queue.

a a a a
Figure 2.5 State transition diagram for a
o o o o

queue.

To summarize, a state machine is a model consisting of a set of states .S (the state
space), a set of events E, and a state transition rule & that specifies the next state when
an event occurs at a given state. Specifically, if s is the current state and event e occurs,
the state changes from s to s’, where s’ = §(s, e). It is convenient to think of & as
represented by the arcs in the state transition diagram. Usually, a state machine
model also includes specification of an initial state s.

2.3.2.2 Nondeterministic State Machines

The state machine model, though simple, provides a useful basis for modeling
many systems found in practice. There are several ways to extend the model to incor-
porate more flexible features. The most immediate extension is to allow the occurrence
of a single event at a given state to cause state transitions to more than just one other
state.

28

Chapter 2 Discrete-Event Systems and Their Optimization

Example (Simple model of computer)

Consider again the previous example of a simple model of a computer. Suppose we extend the
model by specifying that when the event 7 (push-switch) occurs at state off, the state can either
become on or down. In this case, the state transition diagram of the model is given in Figure 2.6.
Note that there is an arc from state off to state on as well as another arc to state down, both
labeled with the event m. When event 7 occurs at state off, the next state is either on or down. We
do not specify beforehand which it will be; the next state is therefore not deterministically
determined by the current state and the event that occurs.

ON

OFF DOWN

5 Figure 2.6 Nondeterministic state transition

diagram for a simple model of a computer.

State machine models in which a single event at a given state can cause transitions
to multiple possible states is called a nondeterministic state machine.

2.3.2.3 Markov Chains

Another extension of the state machine model is to incorporate probabilities with
events. Specifically, in certain applications, the state transitions occur with certain
probabilities. In this case, again we can use a state transition diagram to represent
the system, incorporating a probability with each state transition. The resulting
model is called a Markov chain.

Example (Simple model of computer)

Consider the previous example of the nondeterministic model of a computer. Suppose the
probabilities of state transitions are given in Table 2.2. We can represent the Markov chain model
for the system using the state transition diagram in Figure 2.7, where, in addition to the event
labels,we also incorporate the transition probabilities.

TABLE 2.2 State Transition Proba-
bilities for Markov Chain Model
of Computer

Current State Next State Event Probability
OFF ON i 0.95
OFF DOWN 4 0.05
ON OFF 4 0.9

ON DOWN ¢ 0.1
DOWN OFF P 1.0

Section 2.3 Some Discrete-Event System Models 29

o (oo
Figure 2.7 State transition diagram for . '

Markov chain model of a computer. P10

2.3.2.4 State Machines and Discrete-Event Systems

At this stage, it is natural to ask what can be done with models of the kind
described earlier. To answer this question, we point out that the study of automata is
a mature subject, with many textbooks written on various aspects of their analysis. The
same can be said about Markov chains. Although it is beyond the scope of this chapter
to discuss the rich theory underlying such models, it should be clear that control
engineers can benefit greatly by taking advantage of the many useful techniques from
the vast literature on these topics. (We provide some references at the end of the
chapter.) In addition to state machines, several alternative discrete-event system models
are available that capture different aspects of the modeling process. These include Petri
nets, max-plus algebra, and communicating sequential processes. Again, a significant
literature is devoted to the study of these models, including their use in applications
such as communication protocols, software engineering, transportation systems, and
manufacturing. Another line of investigation currently of interest combines discrete-
event system models with differential equation models, resulting in what are called
hybrid systems.

The use of state machines in the study of control of discrete-event systems was
initiated by Ramadge and Wonham [18). Their framework provides a way to explore
control theoretic questions in discrete-event systems. More specifically, they incorpo-
rate the notion of a control input that can be used to influence the behavior of the
system—the control input disables certain events from occurring. Given such a control
framework, many control theoretic ideas familiar in the study of control theory can be
applied to discrete-event systems. For example, we can explore how to design a “feed-
back” controller that uses observations of the state trajectory to choose the control
input such that the overall behavior of the system satisfies some given design specifica-
tion. This line of investigation has led to a theory of supervisory control for discrete-
event systems. We will not discuss this topic any further in this chapter.

2.3.3 State Models with Event Clocks

The previous discussion of discrete-event models does not consider the times at
which events occur, but only the order in which they occur and how the state of the
system changes as a result. Although many problems of interest can be addressed using
only such untimed models (also called logical models), others require explicitly dealing
with the times at which events occur. For example, suppose we are interested in the
average waiting time experienced by customers in a system modeled as a single-server

30

Chapter 2 Discrete-Event Systems and Their Optimization

queue. The waiting time of each customer is the time duration between the arrival and
start of service of a customer—clearly the difference between the occurrence times of
two events: a service completion and an arrival. A model capturing waiting times in a
queue must include event occurrence times.

2.3.3.1 Event Clocks

We now describe one possible way to extend state machine models to include event
occurrence times, leading to a timed discrete-event system model. This extension
involves introducing the notion of event clocks. To proceed, recall that a state machine
consists of a set of states S, a set of events E, and a state transition rule 5. At any given
state s, consider the set of all events that can occur. We can visualize this set by
considering all arcs that leave the state s in the state transition diagram and by listing
all event labels for those arcs. We call this set the set of feasible events at state s, denoted

Example (Simple model of computer)

Consider again the simple model of a computer shown in Figure 2.4. We have three states,
S = {on, off, down}, and three events E = {r, ¢, p}. At the state off, only event = is feasible;
thus, E¢(off) = {r}. At the state on, there are two feasible events: Ef(on) = {m, #}. At the state
down, only one event is feasible: Ef(down) = {p}.

Note that as the state changes, certain events that were not previously feasible may
become feasible. Also, when an event occurs and the state changes, that event may no
longer be feasible in the next state.

In our timed discrete-event system model, we associate an event clock with each
event in E. When an event that was not previously feasible becomes feasible owing to a
state transition, the clock for that event is set to some initial positive value. This clock
runs down at unit rate and will eventually reach 0. As soon as it does, the event occurs.
Because there may be several events that are feasible at any given state, there are several
event clocks running in parallel, each at unit rate. Whichever clock reaches 0 first causes
its associated event to occur.

Example (Queue)

Consider the example of a single-server queue, as shown in Figure 2.5. Here, we have state space
$=1{0,1,2,...} and event set E = {a, g}. Note that both events are feasible at all states except in
state 0, where only the arrival event « is feasible. In other words, Ef(0) = {a}, while
E¢(s) = {a,0} forall s=1,2,....

Suppose we start at state 0 (an empty system). The only feasible event is o, so we set the
event clock for o at some initial value. As time progresses, the a-clock runs down at unit rate.
When this clock reaches 0, the event a occurs (for the first time), and the state changes from 0
to 1. At this stage, both events a and o are feasible. Therefore, we set both clocks to some
initial values, and let them run down at unit rate. Suppose the a-clock reaches 0 first. At that
time, a occurs again (a new customer arrives) and the state goes from 1 to 2. Here, both o and
o are again feasible. However, we need only reset the a-clock to some initial value because the
o-clock has not yet reached 0 and still has some positive time remaining. Having set the a-
clock, the process continues, with both clocks racing to 0 to determine which event is next to

Section 2.3 Some Discrete-Event System Models 31

State
3 |]
a' o'
| |
2 1 1 I |
a: a: a: ol
1 [
a) a: o 0o 0
0 t t + t t } t e
a, a dl as a, d2 d3 d4 Time

Figure 2.8 Timed state trajectory of a queue.

occur. Figure 2.8 illustrates a possible timed state trajectory of the queue, with event times
labeled as a;,aqg,... for the arrival («) times and di,dy,...for the service completion or
departure (o) times.

Note that the initial clock values in the above timed model have convenient
interpretations. Suppose we label the initial setting of the a-clock at the beginning (when the
state was 0) as Ag. We can think of this value as the time until the first arrival. When the state
first changes from 0 to 1, suppose we denote the initial clock values as A; for the a-clock and
S, for the o-clock. Then, we can think of A; as the interarrival time between the first and
second customers, and S; the service time of the first customer (the time it takes to serve the
first customer). Note that if A; < S, then the second customer arrives before the first customer
has completed service, as is the case in Figure 2.8. In this case, the second customer has to wait
in line, and the number of customers in the system increases from 1 to 2. In a similar way, we
can define interarrival times A, As,... and service times Ss,S;,.... In Figure 2.8, the
interarrival times are given by A, = a,41 — an, n=1,2,..., these being the times between the
occurrences of event a. Note that S, Ss,... are not the times between the occurrences of event
o because o is not a feasible event when the state is 0. These periods when the state is 0 are
called idle periods of the queue. The intervals of time between idle periods are called busy
periods of the queue.

It is apparent that the (timed) state trajectory of the system is completely determined by the
numbers Ag, A, Ay, ... and 51, Ss,. ... These numbers are called the event lifetimes. The event
lifetimes in a timed model can be viewed as the input to the system, which completely determines
the resulting state trajectory.

This description of how event clocks determine the timed state trajectory relies on
the assumption that once an event becomes feasible, it remains feasible until it occurs.
This property of a system is called noninterruption. In systems with this property, once
an event clock is set, it continues to run down until it reaches 0. Although many systems
in practice, such as queues and networks of queues, satisfy this property, not all systems
do; such systems are said to be interruptive. For example, the system in Figure 2.4 does
not satisfy the noninterruption assumption because when the state changes from on to
down, the event 7 becomes infeasible. Clearly, interruptive systems have to be treated
differently. However, many models can be made to satisfy noninterruption by simple
modifications. For example, we can modify the system in Figure 2.4 by including an arc
from state down to itself with the label 7. In other words, event x is feasible in state
down but causes a transition back to state down.This model satisfies the noninterrup-
tion property and may equally serve our practical purposes.

32

Chapter 2 Discrete-Event Systems and Their Optimization
2.3.3.2 Discrete-Event Simulations

Timed models using event clocks often are used as the basis for computer simu-
lations of discrete-event systems (also called discrete-event simulations). Such simula-
tions are useful for computing estimates of performance measures, such as the
average waiting time in a queue. To construct the simulation, we first decide how
to set the values of the event lifetimes. Typically, the sequence of event lifetimes for
each event is assumed to be an independent, identically distributed random sequence
with a given distribution. Such a sequence can be generated using a random number
generator, a common component of discrete-event simulation software packages.
Finally, we implement the previously described mechanism for generating the timed
trajectory of the system given the event lifetimes. From the timed trajectory, we can
extract whatever information we desire, such as waiting times of customers in a
queue.

Discrete-event simulations with random event lifetimes can also be applied to
models with nondeterminism. (Recall our previous discussion on nondeterministic
state machines.) Here, the occurrence of an event at a given state can lead to several
possible next states. The typical approach is to pick one of these next states according to
some prespecified probabilities, as is done in Markov chain models. These transitions
can also be implemented using a random number generator.

There is a significant literature on discrete-event simulation techniques; see, for
example, [3], [9]. It suffices to mention here that simulation tools play an important role
in the modeling and performance evaluation of discrete-event systems.

2.3.3.3 Markov and Semi-Markov Processes

The stochastic process resulting from using independent, identically distributed
event lifetime sequences and probabilistic state transitions is called a generalized
semi-Markov process. Researchers have done significant work in characterizing the
properties of such processes. These studies provide valuable analytical tools that can
be used in the analysis of discrete-event systems modeled by such processes; see refer-
ences [10] and [11].

In the special case where the distribution functions of the event lifetimes are all
exponential, the resulting stochastic process is called a continuous-time Markov process.
Such processes yield to a rich analytical theory for which a large literature is available.
Here, again we encourage the interested reader to take advantage of the many acces-
sible treatments of the theory (see, e.g., [5]).

A special case of significant pedagogical interest in the study of queueing systems is
the single-server queue with exponentially distributed interarrival and service times.
Such a system is called an M/M/1 queue. (We shall not discuss the rationale for the
notation “M/M/1.”) Because such a system yields to Markov process analysis, its
properties are easy to derive and are used to provide insight into the behavior of queues.
For example, it is easy to derive the formula for the steady-state average waiting time in
an M/M/1 queue:

Section 2.4 Optimization of Discrete-Event Systems 33

where 6 is the mean service time and 1/ is the mean interarrival time. The parameter A
is also called the arrival rate. Similarly, it is common to express the mean service time as
0 = 1/u, where p is called the service rate. Note that the steady-state average waiting
time exists only if A < u, in which case we say that the queue is stable. The condition
A < u for stability is intuitively appealing: The queue is stable only if the service rate
exceeds the arrival rate, for otherwise the queue will build up indefinitely and customers
will have increasingly larger waiting times.

2.4 OPTIMIZATION OF DISCRETE-EVENT
SYSTEMS

In the design and operation of discrete-event systems, the designer often has the option
of choosing between various alternative systems. Typically, the criterion governing such
a choice is the optimality of the system with respect to a certain performance measure.
This choice is often exercised through adjusting the values of control parameters. For
example, in the operation of a communication network, we can often adjust the routing
parameters within the network. These routing parameters affect the performance of the
network. Naturally, we are interested in choosing their values such that the overall
throughput or delay is optimized.

The design and operation of discrete-event systems therefore often center around
the problem of performance optimization. In this section, we discuss one possible
approach to this problem.

2.4.1 What Is Optimization?

Optimization is the task of making the best choice among a set of given alterna-
tives. To define such a problem, we must first have a way to compare alternative
choices. This comparison is usually done via an objective function. In the context of
our discussion on performance optimization, the objective function is simply the per-
formance measure. In other words, for each choice, the value of the objective function is
the performance of the system corresponding to that choice. To be specific, we will
assume that our goal is to minimize the value of the objective function. In other words,
we wish to find the choice with an objective function value that is as small as possible.
Maximization problems can be handled simply by multiplying the objective function by
—1. Usually, in an optimization problem we also have to specify the set of feasible
choices, which represents those choices or alternatives over which our minimization is
required. This set is also called the feasible region.

Example (M/M/1 Queue)

Consider a single-server M/M/1 queue with interarrival rate A and mean service time 6. Suppose
we are interested in the steady-state average sojourn time. The sojourn time of a customer in the
queue is the duration of time from arrival to service completion (departure) of the customer. In
other words, the sojourn time is the sum of the waiting time and the service time. The steady-state
average sojourn time is the average sojourn time of all customers, taken over an infinite horizon
(i.e., taken over an infinite number of customers, hence the use of the term steady-state).
Denote the steady-state average sojourn time by 7'(6), which is a function of the parameter 6.
Here, 6 is the control parameter that we can adjust. Consider the problem of choosing the
parameter 6 to minimize the performance measure J(6) = T'(6) + ¢/6, where c is a given positive
number. The rationale here is that we wish to minimize the sojourn time but with some penalty on

34

Chapter 2 Discrete-Event Systems and Their Optimization

choosing small values of 6, if there were no penalty on the choice of § to minimize the sojourn
time, the obvious choice would be § = 0. The values of 4 that are feasible in our problem are those
for which the queue is stable. As mentioned before, these are values for which 6 < 1/A. In
practice, we will need to restrict our set of feasible choices of 6 to some subset of the stability
region.

Figure 2.9 shows a plot of J(6) versus 6 for an M/M/1 queue with A = 1. In this figure, D
denotes the set of feasible parameter values (the feasible region). Because we know the formula
for the steady-state average sojourn time in an M/M/lqueue, we can analytically compute the
solution to this optimization problem: 8, = 0.2 in the case of the objective function in Figure 2.9.
(In fact, the value of ¢ = 0.0625 was chosen here to give rise to this convenient solution.)

JO 4
104
5t
0 + >
0 0.5 1 6
< - Figure 2.9 Objective function for M/M/1
D queue with A = 1.

2.4.2 Gradient Algorithms for Optimization

There are many approaches to solving an optimization problem. A common
approach is to make use of the gradient of the objective function. Given a function
J(0) where the argument 6 is a vector with components 6!, ...,6%, the gradient of J at
the point 6, denoted VJ(6), is a vector with components

aJ aJ
W(B), ces 50—,{-(9).

If the argument 6 is a scalar parameter, then the gradient is simply the derivative.
The typical method for using gradients for optimization is via a gradient algorithm.
Such an algorithm has the form

Ops1 =0, — a,VJ(6,),

where a, is a positive scalar called the step size. The algorithm is an iterative procedure
that produces a sequence of iterates {6,} = {6y, 6,, ...} with the goal that it converges to
the solution of the optimization problem. The rationale behind the form of the gradient
algorithm is that the vector VJ(6,) at 6, points in the direction of steepest descent of the
function J. The step size simply dictates how large a step to take in that direction to get
from 6, to 6,.,. In applying the algorithm, we have to specify an initial point 6, usually

Section 2.4 Optimization of Discrete-Event Systems 35

a point that represents our best a priori guess. For more details on such algorithms,
see [8].

The above algorithm may lead to values of iterates 6, that lie outside of the
feasible region D, which is often undesirable. To avoid such a situation, a common
approach is to apply a projection at each iteration. A projection IT; is a mapping that
takes any point outside of D and gives us a value inside D, but leaves any point inside
of D untouched. In other words, if 6 ¢ D, then Ip[6] € D. On the other hand, if
6 € D, then Ip[0] = 6. The projected version of the gradient algorithm then has the
form

Opy1 = pl6, — a,VJ(6,)].

Notice that in the projected gradient algorithm, all iterates 6, lie inside D. A common
projection method is to pick the point I1p[f] to be the point inside D that is closest
to 6.

2.4.3 Gradient Estimation

The standard gradient method does not easily apply to problems involving dis-
crete-event systems because the method relies on being able to compute the value of
the gradient at any given point. Discrete-event systems are often too complex to yield
analytical expressions for gradients of performance measures. Moreover, such gradi-
ents usually depend on certain system parameter values or statistical distributions,
which are often unknown. For example, the steady-state average sojourn time in a
single-server queue depends on the arrival rate as well as the interarrival and service
time distributions. Unless these entities are known, we cannot explicitly compute the
gradient.

It turns out that the form of the gradient algorithm can still be used if we have
estimates of the gradient. In other words, we may consider using the following algo-
rithm:

Ony1 = pl6, — aph,),

where A, is an estimate of VJ(9,). Of course, for the algorithm to work, the estimate 4,
must be a “sufficiently good” estimate of VJ(6,). Significant work has been done on
such algorithms since the early 1950s. The first paper to study such algorithms rigor-
ously was by Herbert Robbins and Sutton Monro in 1951, who coined the name
stochastic approximation to describe the method.

Stochastic approximation algorithms are applicable to optimization problems in
discrete-event systems only if we have suitable methods to estimate the gradients of
performance measures. Since the early 1980s, several methods have been proposed for
gradient estimation in discrete-event systems. Foremost among such methods are per-
turbation analysis (see [10], [12]) and the score function or likelihood ratio method (see
[19)).

While it is beyond the scope of this chapter to describe in detail the various
gradient estimation techniques for discrete-event systems, here we give a basic descrip-
tion of one such technique: infinitesimal perturbation analysis (IPA). (For a more
detailed description of the technique, see [10], [12].) The technique of IPA for

36

Chapter 2 Discrete-Event Systems and Their Optimization

discrete-event systems is based on assuming that the event lifetimes are functions of the
control parameter and then expressing the performance measure of interest as a func-
tion of the event lifetimes.

For example, suppose we are interested in the steady-state mean sojourn time,
which is the steady-state average of the sojourn times of the customers in the queue.
Note that the sojourn time of a customer is the difference between the service comple-
tion time and arrival time of the customer. Because we are interested only in the
difference between these two times, we can set the origin of time arbitrarily. So, assume
the origin of time is at the beginning of the busy period (recall the definition of a busy
period in Section 2.3.3.1). The arrival time of the customer is the sum of interarrival
times from the beginning of the busy period to the arrival of the customer; see Figure
2.8. Similarly, the service completion time is the sum of service times from the beginning
of the busy period to the departure of the customer. Therefore, the sojourn time of a
customer can be expressed as a function of certain interarrival and service times, the
event lifetimes of the queueing model.

Suppose the service times are all functions of the control parameter 6, the mean
service time. For example, the service time of the nth customer may be S, = 0Y,,, where
Y, is a positive quantity that does not depend on 6. Note that by writing the sojourn
time of a customer as a function of the interarrival and service times, we can express the
derivative of the sojourn time with respect to the parameter 6 as a function of the
derivatives of the service times. (The derivatives of the interarrival times with respect
to @ are all zero because the interarrival times are assumed here to be independent of 6.)
Because the service time of each customer is an explicit function of 6, the derivative of
the service time can also be expressed as an explicit function of 6. For example, if the
service time is given by S, = 07, then the derivative of the service time with respect to 6
is S, =7Y,.

In IPA, we use the steady-state average of the derivatives of the sojourn times as an
estimate of the derivative of the steady-state average sojourn time. Therefore, IPA
provides us with a method to estimate the derivative of interest using quantities invol-
ving event lifetimes. The method of IPA is useful for derivative estimation in simula-
tions. In addition to estimating quantities such as the sojourn time from simulation, we
can also estimate derivatives of such quantities.

Often, the derivative of an event lifetime can further be expressed as a function of
the event lifetime itself. For example, if the event lifetime S, is given by S, = 07, then
its derivative is given by S, = Y, = S,/6. Such an expression allows us to obtain IPA
derivative estimates simply by knowing the values of the event lifetimes. This benefit is
especially useful when estimating derivatives from empirical observations of a real
system. In this case, we can measure the values of event lifetimes and as a consequence
also compute their derivatives. These, together with IPA, allow us to estimate deriva-
tives of performance measures from observations of a real system. Thus we can estimate
gradients for the purpose of performance optimization during the normal, productive
operation of a discrete-event system.

Two limitations of IPA prevent its general applicability. The first is that the
method relies on knowing the function relating the event lifetimes with the performance
measure. Second, the method works only if this function meets certain technical
requirements, which may not hold or may be difficult to check. Nonetheless, these
limitations are met in a wide range of applications, such as in many forms of queueing
networks (see [10] for examples).

Section 2.4 Optimization of Discrete-Event Systems 37

2.4.4 Online Optimization
2.4.4.1 Basic Idea

Our goal is to use derivative estimation techniques together with stochastic
approximation (gradient) algorithms to adjust the control parameters so that the sys-
tem performance is (eventually) optimized. Because techniques such as IPA can be used
to estimate derivatives via observations of a real system, the possibility exists to apply
such optimization algorithms on-line (i.e., while the system is running). Of course, such
algorithms can also be used in simulations of a system.

Figure 2.10 illustrates the idea of on-line optimization of a discrete-event system.
At each iteration, we take observations of the system (by measuring event lifetimes).
Then, we use these observations to form an estimate of the gradient. The gradient
estimate is then used to update the control parameter via a stochastic approximation
algorithm as described before. The updated control parameter is then fed back to the
system, and the process continues in an iterative fashion.

DES
Parameter Observations
update
On-line
Figure 2.10 On-line optimization of discrete- algorithm

event system.

Example (Optimization of M/M/1 Queue)

Consider the problem of optimizing the performance measure for an M/M/1 queue described in
the previous example: J(6) = T(6) + ¢/6, where T(0) is the steady-state average sojourn time and
0 is a control parameter associated with the service times. Specifically, the service time of the nth
customer is S, = 6Y,, where Y, has mean 1. Because the derivative of J is given by
J'(0) =T'(8) — c/6?, the estimation of J'(f) involves only estimating T’(6). This estimation
can be accomplished easily in the single-server queue using IPA (see [6] for details).

We apply the on-line optimization approach described above, driven by IPA estimates of the
derivative of J. Figure 2.11 shows plots of the sequence of iterates ,, versus n (which also counts
the number of customers). We used an initial value of 6y = 0.4. The dashed line represents a single
iterate sequence,while the solid line represents an average over 100 such sequences. Note that the
convergence of the algorithm to the optimal value of 0.2 is quite apparent. In fact, we can actually
prove that the algorithm converges to the optimal solution in this case (see [6]).

2.4.4.2 Example Application

To further illustrate the on-line optimization approach, we describe an example
application. Consider a communication transmitter with total capacity C (bits/s). There
are K classes of traffic streams feeding packets to the transmitter, with an infinite buffer
to store packets that have arrived but have not yet been transmitted. The length (in bits)
of each packet is random, but with unknown distribution. The arrival rate of packets in
each class is also unknown and may differ from class to class. The transmitter divides its

38

Chapter 2 Discrete-Event Systems and Their Optimization

0.5 T T T
— Average
04k -=-=-=- Sample i
03 F 8
0, \

b |

\
02F 7 sw=o= = =
0.1F .

0 ' 'S I
0 1000 2000 3000 4000

Figure 2.11 Sequence of parameter iterates 6, for single-server queue.

capacity into K portions, so that the effective capacity experienced by class k is Cg,
k=1,...,K. The problem is to choose the values of Cj, ..., Cgx such that some per-
formance measure is optimized. We assume that the entire capacity is used, so that
C,+ -4+ Ckg = C. Such a system is also called a multiplexer.

To formulate this problem so that we can apply the techniques described earlier, let
6" = C;/C be the fraction of the total capacity allocated to class k, k = 1,..., K. The
parameters 6',...,6% are the control parameters that we can adjust. Figure 2.12 illus-
trates the problem. Let T:.(6%) be the steady-state average packet delay in class k. (The
delay experienced by a packet is the time duration from the arrival to the completion of
transmission of the packet.) Consider the performance measure

K
J6) =) wiTx(@)
k=1

where 6 is the vector with components ', ...,6%, and wy, ..., wg are positive weights.
The performance measure is the weighted sum of the steady-state average packet delays
over all classes, where the weights reflect the relative importance of each class. For
example, if the traffic classes represent data, video, and speech, we may choose a large

8'c 62C 63C 6XcC
Channel 1 |Channel 2| Channel 3 LI Channel K
C

Figure 2.12 Capacity allocation problem.

Section 2.4 Optimization of Discrete-Event Systems 39

weight for the video class (because video traffic requires small delays), while the weight
for the data class can be small (because data traffic is insensitive to delays). The feasible
region consists of those vectors # with positive components summing to 1. The opti-
mization problem can thus be expressed as:

K
minimize _ w T(6")
k=1

K
subject to Z =1
k=1
¢>0k=1,...,K.

We can apply the on-line optimization approach described earlier to this problem,
using IPA estimators (see [7] for details). Figure 2.13 shows plots of the iterates 6}, 62,
and 6. for a three-channel system with exponentially distributed interarrival times and
service times. (The algorithm does not use any information on the service time distribu-
tions or the arrival rates.) As before, each dashed line represents a single iterate
sequence, while each solid line represents an average over 100 such sequences. We
used w; =1, wy, =2, w3 = 3. Because the exponential interarrival and service time
distributions lead to a Markov process, we can derive an expression for the perfor-
mance measure in this case. Although this expression does not yield to an analytical
solution to the optimization problem, we can readily apply a numerical method.
Therefore, we can solve the problem independently for the sake of comparison. The
solution provided by the numerical method is: 6} = 0.2965, 62 = 0.3364, 62 = 0.3671.
From Figure 2.13, it is apparent that the on-line algorithm converges to these values,
even though the algorithm does not rely on a priori knowledge of the arrival rates or
service time distributions. In fact, the convergence of this algorithm can be proved

(see [7]).
0.5
— Average
~~~~~ Sample
0.4 (“- : 1
N ——— e - L€ 0.3671
6, Voot 02
o pam e AT N s ae s o W g 03364
/“‘_y:, )
0.3 !fl = BT
02— ’ L '
0 1000 2000 3000 4000

n

Figure 2.13 Sequences of parameter iterates 6., 62, and 9,’, for capacity allocation
problem.



40 Chapter 2 Discrete-Event Systems and Their Optimization

While the above example illustrates the applicability of the on-line optimization
approach, its applicability to other types of problems requires further study.
Appropriate models are required for which derivative estimators can be formulated.
Much remains to be done along these lines.

2.5 FURTHER READING

For an accessible undergraduate-level textbook on discrete-event systems, see [5]. This
reference covers a wide range of topics on discrete-event systems within a single volume.
Several books have been written on specific topics related to discrete-event systems,
typically at the advanced or research level. These include algebraic models [2], mono-
tone structures [11], and stability analysis [17]. A classic reference on discrete-event
simulation is [9]; a more recent book is [3]. A well-used queueing theory text is [13],
while [4] is an excellent text on models for data communication networks. The article
[18] provides a good overview on the theory of supervisory control of discrete-event
systems. An alternative approach is discussed in [14], while [16] describes a similar
theory based on Petri nets. More on Petri net models of discrete event systems can
be found in [1]. For details on the gradient estimation technique of perturbation ana-
lysis, see [10] and [12]. The score function approach is discussed in [19]. For further
reading on optimization methods, see [8]. The book [15] provides a treatment of sto-
chastic approximation algorithms and their applications. The use of infinitesimal per-
turbation analysis and stochastic approximation algorithms for on-line optimization of
queues is described in [6].

ACKNOWLEDGMENTS

The author is grateful for the support from the National Science Foundation under
grant ECS-9501652 and from DARPA/ITO under grant F19628-98-C-0051.

Related Chapters

o A comprehensive treatment of systems that combine discrete-event and continuous-time
dynamics can be found in Chapter 7.

e The control of communication networks, discussed in Chapter 19, is a particularly
important application for the optimization of discrete-event systems.

o Some modeling methods for continuous-time and sampled data systems are reviewed in
Chapter 4.

REFERENCES

[1] R. David and H. Alla, Petri Nets and Grafcet: Tools for Modeling Discrete Event Systems.
New York: Prentice Hall, 1992.

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and Linearity: An
Algebra for Discrete Event Systems. Chichester, England: John Wiley & Sons, 1992.



References 41

[3] J. Banks, J. S. Carson, and B. N. Nelson, Discrete-Event System Simulation, 2nd ed., Upper
Saddle River, NJ: Prentice Hall, 1996.

[4] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Englewood Cliffs, NJ: Prentice Hall,
1992.

[5]1 C. G. Cassandras, Discrete Event Systems: Modeling and Performance Analysis. Homewood,
IL: Aksen Associates, 1993.

[6] E. K. P. Chong, “On-Line Optimization of Queues using Infinitesimal Perturbation
Analysis,” in Discrete Event Systems, Manufacturing Systems, and Communication
Networks, P. R. Kumar and P. P. Varaiya, eds., Vol. 73, IMA Volumes in Mathematics
and its Applications. New York: Springer-Verlag, pp. 41-57, 1995.

[7] E. K. P. Chong and P. J. Ramadge, “Convergence of Recursive Optimization Algorithms
Using Infinitesimal Perturbation Analysis Estimates.” Discrete Event Dynamic Systems:
Theory and Applications, Vol. 1, no. 4, pp. 339-372, June 1992.

[8] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. New York: John Wiley &
Sons, 1996.

[91 G. S. Fishman, Principles of Discrete-Event Simulation. New York: John Wiley & Sons,
1978.

[10] P. Glasserman, Gradient Estimation via Perturbation Analysis. Norwell, MA: Kluwer
Academic Publishers, 1991.

[11] P. Glasserman and D. D. Yao, Monotone Structures in Discrete-Event Systems. New York:
John Wiley & Sons, 1994.

[12] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic Systems.
Norwell, MA: Kluwer Academic Publishers, 1991.

[13] L. Kleinrock, Queueing Systems, Vol 1: Theory. New York: John Wiley & Sons, 1975.

[14] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete Event Systems.
Norwell, MA: Kluwer Academic Publishers, 1994.

[15] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and Applications. New
York: Springer-Verlag, 1997.

[16] J. Moody and P. Antsaklis, Supervisory Control of Discrete Event Systems Using Petri Nets.
Norwell, MA: Kluwer Academic Publishers, 1998.

[17] K. M. Passino and K. L. Burgess, Stability Analysis of Discrete Event Systems. New York:
John Wiley & Sons, 1998.

[18] P.J. Ramadge and W. M. Wonham, “The control of discrete-event systems.” Proceedings of
the IEEE, Vol. 77, no. 1, pp. 81-97, January 1989.

[19] R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochastic
Optimization via the Score Function Method. New York: John Wiley & Sons, 1992.



Chapter | COMPUTER-AUTOMATED
3 CONTROL SYSTEM DESIGN

Georg Griibel

Editor’s Summary
With cost efficiency a technological imperative today, the future impact of control technology does not
depend on new algorithms and theories alone. Such developments need to be employed rapidly, reducing
the time involved in deploying controllers for new applications. Furthermore, the insertion of advanced
control on a large scale cannot require significant numbers of highly skilled (e.g., Ph.D.-degreed) staff.

Thus control technology must be packaged in a form that allows small teams of control engineers to
efficiently exploit new research developments and to minimize the cycle time from specification to product.
It is a sign of the maturity of control that this packaging is now being accomplished through the devel-
opment of computer-aided control system design (CACSD) tools. In industries where customized control
applications are a frequent demand, CACSD tools that automate several of the steps involved in the
practice of control design are now regularly used. At the same time, research continues toward the goal of
end-to-end (specification to deployment-ready software) control design automation. No practicing control
engineer today can afford to be ignorant of CACSD; it must be considered as much a part of one’s
professional education as, say, the first course in nonlinear control.

This chapter provides an introduction to CACSD, with specific emphasis on control design auto-
mation. System modeling, performance specifications by way of mathematical criteria, and iterative algo-
rithms for realizing an ultimately satisfactory controller are among the topics covered. In other chapters in
this volume, the state of the art and current research trends in CACSD are discussed in depth from the
perspective of two control application domains—automotive powertrain control (Chapter 12) and flight
control (Chapter 13). The latter application is also used to illustrate the general observations in this
chapter.

Georg Griibel was with the DLR German Aerospace Center and is a former chair of the IEEE-CSS
Technical Committee on CACSD.

3.1 INTRODUCTION

CACSD—computer-aided control system design—is the discipline that allows control
engineering methods to be computer executable in a user friendly, reliable, and efficient
way. Its activities yield toolboxes and computer-integrated design frameworks that
make the broad scope of control methodologies hands-on applicable to the practitioner
and that automate the control design and development process as much as possible.
The field started with R. E. Kalman. After Kalman developed the Riccati form-
alism for linear quadratic gaussian (LQG) control synthesis (1960), he and T. S. Englar
developed the first CACSD program suite in 1966. This was the Automatic Synthesis



Section 3.1 Introduction 43

Program (ASP) [15]. It featured programs for solving the Riccati equation for both
continuous and sampled-data systems, computation of time histories by scaled matrix
exponentials, stability computations, loss of controllability by sampling, computation
of a minimal realization, approximation of an impulse response, multi-rate sampling,
continuous time filters, and model-follower control. This program suite made state
space optimal control theory applicable to nontrivial control engineering problems,
which was not possible just by paper and pencil. Since then, CACSD technology has
made tremendous progress in providing fast and reliable numerics [28], the standard
functional programming language Matlab, data models for integrated environments
based on object-oriented software engineering principles [30], and interactive spread-
sheet user interfaces with dynamically coupled information displays for visual explora-
tion, for example, [7].

As illustrated by Figure 3.1, the traditional scope of CACSD covers the triangle of
mathematical modeling of input-output connected systems; control system analysis
with particular emphasis on feedback stability and robustness; and feedback control
synthesis. But the high-powered desktop computation facilities now available enable
the control engineer to use a considerably enlarged methodological framework for
computer-aided system design: Fast nonlinear simulation allows the engineer to inves-
tigate the behavior scenarios of rather complex control systems. Together with control
engineering analysis methods, this allows design-embedded assessment of generic feed-
back properties simultaneously with task-specific system performance. Based on con-

System
requirements

analysis

Mathematical
system modeling

Control
synthesis

Optimization

Real-time software/

hardware co-design
ALGOR. controller Physical plant

Figure 3.1 The engineering triangle supported by CACSD technology.



Chapter 3 Computer-Automated Control System Design

current evaluation of all design specifications, multi-objective optimization can be
applied to find a best-possible compromise among conflicting design requirements
and to automate tuning of the adjustable parameters of a chosen synthesis algorithm.
Hence, the control-specific CACSD methods are used in combination with the general-
purpose methods of nonlinear simulation, design-embedded assessment, and multi-
objective optimization (cf. Figure 3.1). High desktop computation power makes these
computation-intensive methods affordable within an interactive design computation
process.

The overall perspective of CACSD is to embed the control design process into a
simulation-based, “virtual engineering” environment. For that, modeling plays a prime
role to fit the virtual design objects to reality. First, modeling refers to the physical
plant. Computationally affordable symbolic algorithms now allow high-level multidis-
ciplinary system model building, with automatic mathematical model processing, to
generate standard linearized CACSD models as well as numerical code for fast non-
linear simulations. Second, modeling refers to requirements capture, that is, the task to
develop a proper set of executable quality functions for complete coverage of design
requirements. Third, the resulting control law has to be suitably modeled in the form of
computer-executable software specifications for seamless transfer of control algorithms
to the industrial software engineering process for production-ready real-time software/
hardware co-design. This links the “control reality triangle” to CACSD technology (cf.
Figure 3.1).

Virtual engineering paves the way for a “first-shot quality” satisfaction design
procedure from the early phases of dynamic analysis and control synthesis up to vali-
dated specifications of system-embedded control software, which takes into account all
performance requirements as well as tolerances and implementation implications.
Albeit not yet commonly in use, this will in future be essential for attaining performant,
robust control laws, while reducing design engineering cost and development time. This,
in particular, holds for the development of competitive “good enough” products whose
design is to be optimally tuned to user requirements at the lowest system cost by
exploiting the performance potential of a chosen system solution up to its limits.

This contribution deals with CACSD as a technology to support various steps of
control design automation. In Section 3.2, design is characterized as an iterative feed-
back process. This implies that change management in the course of the design process
is of prime concern. Hence a model of control design life cycle is assumed, which shows
where to start and how to initialize the design process, and when to accept a design or
to reiterate on a higher design process level. Section 3.3 deals with object diagrams for
physical system modeling, controller parameterization by control synthesis formalisms,
and the data computation setup for on-line evaluation in control design tuning.
Section 3.4 focuses on executable design specifications in the form of quality functions
in time and frequency domains. Quality functions are the basis for detecting the need
for change early in the design process. In particular, fuzzy-type interval-quality mea-
sures can be used to visualize design satisfaction and conflict detection. Section 3.5
addresses automatic controller tuning by multi-objective multiparameter optimization.
This allows interactive design tradeoffs in a noninferior set of design alternatives,
meaning that no one quality function can be improved without worsening some
other. This compromise is particularly important for designing a balanced multimodel
robust controller that not only is good for a nominal design condition but also behaves
in a satisfactory manner for a set of operating conditions or system parameter toler-



Section 3.2 Control Design Life Cycle to be Supported by CACSD 45

ances. Section 3.6 points to the further need to support declarative design of control
laws by making best use of automated computations in design-automation machinery.
Throughout, the examples to demonstrate conceptual aspects are drawn from [14] and
[25] in the application domain of flight control design.

3.2 CONTROL DESIGN LIFE CYCLE TO BE
SUPPORTED BY CACSD

In the general domain of systems engineering, control law design is the activity respon-
sible for system dynamics integration to provide precise and stable system functioning,
often pushing system operability toward its physical limitations. This task has to be
properly handled by the design process. Whereas control theory embodies mathemati-
cally formalized expert knowledge of where to start and how to initialize the control law
design process, multi-objective optimization-based synthesis tuning provides the quan-
titative decision clues for when to accept a design iteration versus when to reiterate on a
previous design process level. This is depicted as a control design life cycle in Figure 3.2.

Process physics

v

Design modeling & synthesis
- Process dynamics (9]
Function Controller & filters M
requirements Actuator & sensor systems ®T) |d= @ ®
Controlled systems dynamics ® T 1
Case definition & selection ®;6) 1
1
1
1
1
- Quality modeling & analysis 1
Quality Indicators, n |:> @
requirements criteria & demands
Trade off Tuning & compromising
negotiation —> (T-variation) |:> )
AN
yes
Test scenario > Formal validation (p)
data (assessment)
AN
yes

Implementation specifications

Figure 3.2 Control law design life cycle: Where to start and how to initialize the
design process, and when to “ok” or to re-iterate on a higher design
process level.



Chapter 3 Computer-Automated Control System Design

Design Modeling on level (I) makes use of available CACSD tools for system
modeling and synthesis of controllers and filters. Object-oriented information modeling
relates the accumulated model knowledge in a retraceable way. Quality Modeling on
level (J) is the task that formally deploys all the requirements on robust stability,
dynamic performance, control effort, and implementation constraints in the form of
mathematical criteria and satisfaction demands that can be analyzed based on the
models of (I). The pertinent information has to be ordered in such a way that different
design alternatives can be compared visibly. Tuning & Compromising on level (K)
parameterizes the feasible control laws to be implemented. If no feasible solution in
the set of possible design alternatives can be found to satisfy all quality demands, here
the conflicts become visible allowing the designer to reiterate the design process either
by relaxing design demands on level (J) or by adding design degrees of freedom via
higher-order control law dynamics on level (I). Levels I-J-K also form a hierarchy in
terms of the number of iterations the engineer usually has to perform. Design balancing
by parametric quality compromising on level K requires the largest number of itera-
tions. This suggests that design changes I,J,K be stored on a hierarchical database,
which then allows design iterates to be automatically retraced by pertinent indices i,j,k
that mark the corresponding data objects.

Conceptually, control design is a feedback process of manipulation and interpreta-
tion that reduces the uncertainty of what can be achieved in terms of specifications to
attain the desired control function quality attributes of a given dynamic plant object.
This is depicted in Figure 3.3. The objects, attributes, and operations one is dealing with
are interrelated in Figure 3.4.

The modification feedback process between designer and specification in Figure
3.3 corresponds to iterations between level K and level J in Figure 3.2. The manip-
ulation feedback process between designer and object corresponds to iterations
between level K and level 1. The synthesize-search feedback process between objects
and attributes in Figure 3.4 corresponds to tuning and compromising iterations in
level K.

Based on the picture of design as a feedback process, future design environments
for control engineering were anticipated in [21], more than 10 years ago. This con-
ceptual framework, combined with pertinent software engineering principles, led to
the development of the modular control design software environment ANDECS [9],
which is a production implementation of the control design automation concepts
dealt with in this chapter. Broadly, three methods of working are distinguished:
design by analysis and synthesis (attribute-centered), design by procedure (opera-
tion-centered), and design by search (exploration-centered). Attribute-centered design
by analysis and synthesis and exploratory design by search may be combined in a

Manipulation

Designer

Modification Interpretation Object

\ ) ‘/ Figure 3.3 Design is a feedback process,
Specification Perception

(from [21]).



Section 3.3 Design Modeling and Synthesis Algorithms 47

Indicate

Synthesize
{Attributes}/_\{Objects}
~_

Search
Systematic

manipulation

Figure 3.4 Objects, Attributes and Oper-

ations, (from [21]).

Operations on
objects

declarative approach to design. This is possible on the basis of quality functions as
executable design specifications and automatic synthesis tuning to attain these
specifications.

The design process is a feedback process. That is particularly true for control law
design because of its multidisciplinary interrelation with system dynamics. For exam-
ple, the flight control law of an aircraft determines the basic system architecture to
integrate the functional demands of autopilots and piloted flight with flight system
dynamics, which encompasses flight mechanics, aerodynamics, structural loads and
aeroelasticity, engine dynamics, control sensors and actuators, and control-logic soft-
ware embedded in the flight control computers. Changes in performance demands and
system data originate from the disciplinary domains involved as system development
proceeds. This requires a virtual engineering environment, where changes in virtual
system prototypes can be executed rapidly and where data integration supports a
seamless methodology for retraceable change management. The declarative design
approach using interactive multiobjective optimization [23] is believed to be best
suited for satisfying this need.

3.3 DESIGN MODELING AND SYNTHESIS
ALGORITHMS

Design modeling refers to the control objects to be designed as well as to the design
evaluation set up for control law tuning. This encompasses physical system dynamics,
control-system sensors and actuators, and controller logic, which incorporates the
control law for multivariable control-error dynamics shaping, gain scheduling, mode
switching, control redundancy management, and the like. These models, integrated
together, represent the (nonlinear) evaluation model of the controlled system to assess
control performance for various command and disturbance cases. A specific aspect is
modeling of the control law itself. This is called control synthesis. For control synthesis,
control theory provides a broad spectrum of analytic formalisms, each one requiring a
suitable (/inear) synthesis model. Both types of models, evaluation models and synthesis
models, are required as part of the data computation chain for controller tuning.



Chapter 3 Computer-Automated Control System Design

3.3.1 Physical System Modeling

The multidisciplinary nature of control design becomes most visible in the model-
building process of the plant, that is, the physical system that is to be controlled. This
requires contributions from different engineering disciplines which are usually repre-
sented by different specialized groups in the product development team. To integrate
the modeling contributions of different engineering groups, which talk their own
domain-specific language, into a computer-executable comprehensive model of system
dynamics is not an easy task. It is burdened with high engineering transaction costs
since granularity and complexity of system dynamics models evolve as system design
proceeds. Declarative system dynamics model building is best suited to handle this
problem.

Declarative system dynamics model building using equation-based object libraries
is outlined in Figure 3.5. Object diagrams are most appropriate for iterative system
model building and allow a computer-processable representation of system equations to
be automatically generated. Symbolic formula manipulation then allows generation of
an efficient mathematical analysis code and numerical simulation code. Such computer-
aided modeling makes best use of vested interests in validated component models and
thereby reduces engineering transaction costs in model-based multidisciplinary control
design projects. It can be traced back to [2], more than 20 years ago. Nowadays the
availability of high desktop computation and visualization power and advanced soft-

— Declarative
system model building
T i{;ﬁe;te-xt-: T System
\ _ documentation , parameters
System/object diagram
— Automatic
mathematical modeling
Y
Numeric Symbolic
simulation analysis
code code
(" Simulation code for N ( Parameter-explicit w
different simulation nonlinear/linear
environments: models in:
- Matlab/Simulink - Ordinary
(mfile/cmex) state-space form
- MatrixX/Systembuild - LFT standard form
(UCB)
- Dymosim (DSblock) ) L )

Figure 3.5 Declarative system model building as computer-processable input to
automatic mathematical modeling and code generation.



Section 3.3 Design Modeling and Synthesis Algorithms 49

ware [4] makes this approach hands-on applicable to the design engineer. The approach
allows the user to automate various steps in the process of system model building and
model maintenance as the design life cycle evolves:

o Object-oriented decomposition with respect to basic engineering disciplines
allows coding of expert engineering knowledge into validated object class
libraries independent of future use in specific functional system interrelations.
Object encapsulation of all pertinent modeling information (equations, vari-
ables, parameters, units, visualization attributes, etc.) allows structured compu-
ter-processed documentation to be presented in interactive hypertext format to
the design engineer.

o Objects may contain a well-defined interface that encapsulates model complex-
ity at different levels of granularity. This allows changing the internal model
specification without affecting its external interface behavior. In this way, the
contents of an object can be specialized to capture more detailed phenomena by
making use of the inheritance principle of object-oriented information decom-
position. Hence model maintenance can be kept most transparent.

e A “hardware description language” functional composition of a system model
from subsystems and constituent objects can be visualized by hierarchical
object diagrams of which controller block diagrams are just a special case.
Available software allows system composition via object diagrams to be per-
formed interactively by a drag-and-drop graphical user interface. The hier-
archical model structure allows the isolation of subsystem design activities
within a common system dynamics model. Hence efforts with regard to system
dynamics integration and optimization can be kept minimal. Since domain-
specific description icons for the various system components can be used, a
hierarchically structured object diagram is equally expressive for, among other
things, mechanical, electrical, and hydraulic components, and for analog/digi-
tal control elements.

e Integrated symbolic equation manipulation yields efficient mathematical system
models (e.g., all equations that are not necessary for a specific task are auto-
matically removed) from which compilers are able to generate numerically effi-
cient simulation code for different simulation run-time environments. Hence
reuse of the same system model in different simulators is automated.

Aircraft dynamics modeling for flight control design demonstrates the feasibility of
this approach (cf. Figure 3.6). By means of a graphical object editor, one can zoom in
on objects and display their internal structure. Zooming in on the aerodynamics model
results in the object diagram displayed in the top left of Figure 3.6. Zooming in on the
aerodynamics object results in the parameters and equations window of this object, part
of which is displayed in the top right of Figure 3.6. By interactively augmenting the
object diagram, the flight mechanics aircraft model can be visibly changed to an aircraft
flight system dynamics model including the structural flexibility effects of the aircraft
body (“flexBody”), motivators (e.g., longitudinal motion elevators with electro-
hydraulic actuators), and sensors and controls to close the control feedback loop, as
depicted in Figure 3.7.



50

Chapter 3 Computer-Automated Control System Design

B i e S e o

Figure 3.6 Declarative system model building by example of a flight mechanics
object diagram.

Figure 3.7 Aircraft flight-system dynamics object diagram including the feedback
control loop via sensors, controls, and motivators.



Section 3.3 Design Modeling and Synthesis Algorithms 51

3.3.2 Synthesis Algorithms and Controller
Modeling

The core of control design is synthesis of performant, stability-robust control laws.
Control law synthesis consists of three activities: development or adoption of a proper
control law structure, which defines the feedback control system architecture with feed-
back and actuation variables, dynamic compensators as well as signal estimation and
filtering; parameterization of the control law with respect to adjustable tuning para-
meters; and tuning of the control parameters to satisfy all control requirements for the
given physical plant. Tuning is the means to properly adapt a generic synthesis
approach to the given plant at hand. Actually, the same control structure generates
quite different stable or unstable control system behavior depending on how the control
law parameters are tuned. To best cope with the given requirements, the control law
structure chosen has to be sufficiently rich in independent tuning parameters. This may
necessitate design iterations to change the controller structure by increasing the order of
the controller dynamics or by augmenting the feedback information structure through
additional control feedback loops.

Control law structures can be developed through different basic approaches, for
example, the proportional-integral-derivative (PID) compensator approach, the model-
based analytic approach, or the rule-based fuzzy control approach. In any case, the
result is a controller model that can be represented as an algorithm diagram interrelat-
ing various algorithmic blocks. As an example, part of a control law for piloted flight is
shown in Figure 3.8. Note that this belongs to the controls part of the object diagram of
aircraft flight system dynamics of Figure 3.7. In addition, control logic with discrete-
event models can be handled in the declarative framework of an object diagram. For
instance, Petri nets are used to model a simple form of redundancy management for two
elevator actuators in Figure 3.9. Such computer-processable control logic and control

L=l N s

.Nz gain
-Nz integral gain

" |
Nz T
Tesl

> sensor dats '!—\‘ pitch rate

Figure 3.8 Part of a flight control law as executable algorithm diagram.



52

Chapter 3 Computer-Automated Control System Design

airflow
switch! | activate1 T ——— o 3
0.1 T 02 P3 i
—) e e

Figure 3.9 Object diagram of redundancy control logic for two elevator actuators.

algorithm diagrams also serve as computer-executable specifications to develop perti-
nent real-time embedded control software by “autocode” software generators.

Control synthesis algorithms parameterize a controller model, or part of it, with
respect to adjustable tuning parameters. Hence, if the parameters of the controller
model are denoted by K and the adjustable tuning parameters are denoted by T,
then one may distinguish between direct control law parameterization K = T and
indirect parameterization via a synthesis algorithm K = f(T):

K=T
K =f (T, synthesis model)
K = f (T, fuzzy control rules).

PID compensator control
model-based control
rule-based control

PID control design deals with proportional, integral, and derivative action on the
feedback control error as well as the shaping of dynamic compensation filters to
cope with feedback stability. Tuning parameters are the P, I, D gains and compensator
time constants. This approach is commonly called the classical approach.

The model-based analytical approach of mathematical control theory provides a
broad spectrum of different synthesis methods. They may be classified mainly as eigen-
structure methods and Lyapunov-type methods in state space domain, as optimal
control methods in time domain, and as H,, loop-shaping methods in frequency
domain. The solvability requirements of the underlying mathematical synthesis pro-
blem induce a specific control law structure (e.g., state or observer-type output feed-
back). The synthesis formalism parameterizes this control structure as a function of free
synthesis-tuning parameters such as elements of the desired eigenstructure, parameters
of positive definite weighting matrices in a quadratic integral criterion, or the corner
frequencies of weighting filters for loop shaping. Hence, by this approach the control



Section 3.3 Design Modeling and Synthesis Algorithms 53

law is parameterized not explicitly but implicitly as a function of “synthesis tuning”
parameters.

Rule-based fuzzy control yields a nonlinear-gain feedback control structure speci-
fied linguistically by if-then rules on fuzzified error and actuation variables. Tuning
parameters, for example, are the scaling coefficients of membership functions and the
weights among the defining rules, see [13].

Direct control law parameterization is visible with respect to control law structure
and a dynamic augmentation thereof. Indirect control law parameterization via an
analytic synthesis algorithm is aimed at visibility with respect to some type of generic
feedback property (e.g., stability). Nonlinear control law parameterization by fuzzy
control is visible with respect to the functional control-error behavior, for instance.
Note that an admissible control law structure can be composed of individual parts that
are parameterized directly or indirectly, due to a combination of different synthesis
approaches.

3.3.3 Performance Evaluation Setup

Control performance has to be tuned and evaluated with respect to various com-
mand and disturbance cases of assumed plant operation. This requires that the plant
model be integrated with the controller model and that the resulting control system
model be analyzed by suitable time and frequency domain methods for pertinent com-
mand and disturbance inputs. Robust control design asks for a controller with good
command and disturbance performance over a range of operating conditions and
within a tolerance band of system parameters. This is handled by selecting a number
of evaluation cases that are characterized by a parameter set {p;}, which “discretizes™ the
domain of operational and parametric uncertain system dynamics behavior over the
continuum interval set [p] of plant operation and system parameters.

Figure 3.10 shows an example of discretizing the altitude/Mach flight envelope by
several evaluation cases, together with the corresponding pitch rate responses of the
uncontrolled aircraft due to an elevator step disturbance. For robust control tuning an
average system operation case is dealt with concurrently with operation cases that
characterize extreme variations of the dynamic system response, for example, the
cases 6, 1, 5. This is called robust “multi-case tuning.” For robustness assessment,
one takes all the vertices of the flight envelope to initialize the search for worst-case
nonlinear behavior within the permissible system operation domain.

Flight envelope Q/Elevator step (—2.00000E — 02)

d E 2 5 f B
0.90 Pa X 0.6

- / —_ ‘ A

-
£ 060 VAR Xa! E 04
-] / X / o |
3 g 0.2
0 0, // A .
1, 1/
0.00 ——¥% > 0.0
16" 24 32 40 48 E-I 0.0

Mach —>

Figure 3.10 Discretization visualization of the flight envelope by evaluation cases.



54 Chapter 3 Computer-Automated Control System Design

This kind of CACSD control performance evaluation requires a data computation
chain as depicted in Figure 3.11, which simultaneously involves multiple plant model
instantiations {p;} for the various evaluation cases, the controller model, and a synthesis
model in case an analytic synthesis formalism is used. The conceptual separation of
control synthesis into three design tasks (i.e., representing controller structure by a
model, controller model parameterization by a synthesis algorithm, and controller
tuning based on a data computation chain for performance evaluation) lends itself to
a generic CACSD computation setup to handle all kinds of control design problems.
This setup encompasses design modeling as dealt with in this section as well as quality
modeling, which is discussed in the next section.

Synthesis Executable Plant (p) Commands/
model/rules s/w specification models disturbances
l A

Controller K Controller Evaluation

T _1—F; 'synthesis model ’ cases
2 C Criteria I
computation I i

Simulation
analysis

Quality function I indicators T tuner parameters
deployment C criteria K controller parameters
D demand values Q quality functions

Figure 3.11 Generic data computation set up for (multi-case) synthesis tuning.

3.4 QUALITY MODELING FOR DESIGN ANALYSIS
AND DECISION MAKING

Assessing design satisfaction, comparing design alternatives, and detecting and nego-
tiating design conflicts require a suitable formulation that will capture noncommensur-
able design requirements formally. This is done by quality functions. A quality function
is a tuple of a requirement evaluation criterion ¢(i), which is defined as a real-valued
mathematical function of system performance indicators #, together with a demand d to
assess performance satisfaction. In the specific case of hardware-in-the-loop control
tuning, often called control calibration, indicator data are measured as real operation
data. An executable quality function is a quality function with a system model asso-
ciated with it that allows generation of high-fidelity performance indicator data. Such
“yirtual” data obtained from high-fidelity evaluation models have to be used in earlier
design stages where hardware-in-the-loop control tuning is not yet feasible. This links
quality modeling to the previously treated design modeling (cf. Figure 3.11). Model-
based control performance indicators typically are closed-loop system eigenvalues, step



Section 3.4 Quality Modeling for Design Analysis and Decision Making 55

time-responses of linearized system models, frequency responses of various types of
transfer functions, and simulated nonlinear system time responses.

Evaluation criteria can be deterministic or stochastic. Besides generic control per-

formance criteria, for example [5], synthesis-specific criteria can be considered in addi-
tion to monitoring characteristic properties of the control synthesis process [29].
Furthermore, Table 3.1 shows various examples of how task-specific control require-
ments may be expressed by quality functions. The table also exemplifies another aspect:

TABLE 3.1 Control Design Requirements and Quality Functions (Criteria and Demands) for the
Aircraft Landing Approach as Specified in the Control Design Challenge [22]

Requirements Mathematical Criteria  Demands
1 Altitude unit step: c= :|2 (h(2) — 1)2dt
settling time < 45s t; = 10s, t, = 30s min
2 Altitude unit step: c=t—b
rise-time < 12s h(t)) =0.1, h(z;) =09 <12
3 Cross-coupling altitude airspeed:
for a step in commanded altitude of 30 m, the ¢ =maX|V, () = V pmyl <0.5/30
peak value of the transient of the absolute error !
between ¥, and commanded airspeed should be
smaller than 0.5m/s
4 Airspeed unit step: c= t’f( V4(0) = 1)%dt min
settling time < 45s t; =10s, 1, = 30s
5 Airspeed unit step: c=th-—1 <12
rise time < 12s V4(t)) = 10s, V 4(t;) = 30s
6 Cross-coupling airspeed altitude:
for a step in commanded airspeed of 13m/s, the ¢ = max|a(z)| < 10/13
peak value of the transient of the absolute error !
between s and commanded 4, should be smaller
than 10m.
7 Altitude unit step: ¢ = maxp(t) < 1.05
overshoot < 5% !
8 Airspeed unit step: ¢ =maxV (2 < 1.05
overshoot < 5% !
9 Airspeed wind disturbance:
for a wind step with amplitude of 13 m/s, there c= max |V, (1) <26
should be no deviation in the airspeed larger t>15
than 2.6 m/s for more than 15s.
10  Altitude wind disturbance: c= (;2 KA (pdt min
no explicit specification given t, = 30s
Control activity criteria, effort minimization for:
11 tailplane, altitude command min
12 throttle, altitude command ¢ = [2u(t)dr min
13 tailplane, airspeed command min
14 throttle, airspeed command min
15  throttle, wind step ¢ = [ ud(r)dr min
16 throttle rate, wind step —Re(r) min
17 Relative stability of eigenvalues A;: ¢=1-min <—')
no explicit specification i 1Al <0.6
18 Absolute stability of eigenvalues A;: ¢ =exp (max (Re(A,)))
no explicit specification i <095




56

Chapter 3 Computer-Automated Control System Design

To cover control-task performance in due detail may require quite a number of quality
functions associated with different command and disturbance cases. In robust multi-
case tuning, this number even increases because a set of different plant model instantia-
tions is to be considered within a tolerance band of parameter uncertainties or operat-
ing conditions. For instance, taking three operating conditions simultaneously, to
achieve robust control tuning, amounts to 3 x 18 = 54 quality functions based on
Table 3.1.

Computationally, quality functions can be evaluated in parallel to attain reason-
able computer processing times, but a great number of noncommensurable quality
functions pose a complexity burden on decision evaluation for design tradeoffs. This
problem may be alleviated by interactive visual decision support, as discussed later.

3.4.1 Quality Functions

Without loss of generality, a quality function criterion can be mathematically
formulated as a real-valued function which assumes that the smaller a value, the better
the requirement is satisfied. Table 3.1 shows various examples. Then, design satisfaction
can be assessed either by the demand that criteria values are lower than given upper
bounds or that they are as low as possible. Table 3.1 also gives examples for such
demands denoted either by < or min. The min demand can be interpreted as an inequal-
ity demand with a yet undefined upper bound « as low as possible.

This allows definition of commensurable, normalized quality measures to assess
requirement satisfaction:

éj‘=cj/ dj,

g <L requirement j is satisfied, 1)
gi> 1L requirement j is not satisfied, and

gj <o a = “min” denotes best possible requirement satisfaction.

In practice, requirements most often are formulated by indicator intervals to judge
system behavior by quality levels. For example, for piloted flight, handling quality levels
are to be satisfied according to various interval-quality criteria such as the C*, Phase
Rate, Open-Loop-Outset Point (OLOP), and Neal Smith criteria (cf. Figure 3.15).
Thereby level 1 may be “good”, level 2 may be “acceptable” and level 3 may be
“not acceptable” (bad). This kind of specification of design requirements can be treated
by a suitable fuzzy definition of interval quality, for example [18]: Requirement satis-
faction as a function of a scalar indicator i is measured by an interval quality function
g(i) that is characterized by means of at most four good/bad values b, < g; < g, < by,

(i) == max{L(i), 0, H(i)},
LG)=@G-g)/bi—g) bi<g (3.2)
H@) =(G—-gn/(bh—28n) & <& < by

The graph of this mapping is depicted in Figure 3.12. Such interval quality func-
tions are also appropriate to quantify robustness requirements: If system behavior is
known to change within an interval set of operation conditions and system parameter



Section 3.4 Quality Modeling for Design Analysis and Decision Making 57

" s 4] &h by, !
Figure 3.12 Mapping of indicator values to good low good high bad high

an interval quality function.

tolerances, then it makes no sense to specify performance requirements to the point.
Rather, only intervals of “good” and ‘“‘acceptable” performance satisfaction are mean-
ingful requirements, and only by such performance intervals can the achieved degree of
design robustness be formally assessed.

The interval mapping Eq (3.2) is normalized so that g = 1 defines a separation
between feasible (good, acceptable) and not acceptable. This correlates to § = ¢/d = 1
in Eq (3.1). An additional feature is that all “good” indicator values are mapped to
zero, that is, to the lowest possible value. This is of advantage later, when multi-
objective optimization techniques are used for tuning.

Definition of a quality measure § by using the max-operator (3.2) yields a non-
smooth function (cf. Figure 3.12). For numerical treatment in an optimization algo-
rithm, such a function can be smoothed mathematically by the following
approximation, cf. [20], which yields a numerically well-behaved soft interval quality
function, g(i):

Take the general case of a time- (or frequency-) discretized indicator function
ix :=i(); then g(i;) is a smooth approximation of the max-interval function (i)

(i) ~ q(i) + (1/p)log Y _{explo(Litic) — Gi)] + explo(Hi(i) — G} (3.3)
k

To get a good approximation around g = 1, a value of p which is about 20 yields
an error of less than 1%. The exponents in (3.3) are always less than or equal to zero,
and hence unfavorably large values are avoided in evaluating the exponential functions.
Summation is also numerically stable since all addends are positive and less than or
equal to one. Obviously, this type of smoothing approximation can also be applied to
the max-functions in Table 3.1.

Compound quality functions can be formulated by using the maximum function or a
smooth approximation thereof

q(iy, ... i) = max{gq,(iy), ..., g(i1), Ges1(i2), - - ., G (i)} (3.4)

If the individual members of the maximum function are interval quality functions of
type (3.2), a linguistic interpretation in the vein of fuzzy logic is [18]:



58

Chapter 3 Computer-Automated Control System Design

(g satisfies property s) if
(i) has property 1) AND (i, has property 2) AND ... AND (i; has property n),
(3.5)

where “i; has property...” means that the indicator value i; is good or acceptable with
respect to its membership function.
As an example, consider the stability indicator “eigenvalue damping ¢ defined as

where values greater than (.7 are considered as good and values less than 0.3 are
considered as bad. To map ¢ to a compliant interval quality function g(¢), the following
good/bad values are appropriate:

b;=03, g =07 and H():=0.

That is, with demand upper bound d = 1 damping values greater than b, = 0.3 are
mapped to a “satisfactory” interval, and those greater than g, = 0.7 are mapped to
the “good” interval, which in this case is open to the right (H = 0). This interval quality
function is depicted in Figure 3.13.

Relation (3.5) can be used to contend with all n system eigenvalues simultaneously;
that is, (g(¢) is at least satisfactory) if (g(¢;) is at least satisfactory) AND...AND
(g(¢,) is at least satisfactory). Hence “g(¢) is satisfactory” means “the system is well

damped.”

b;=03 g =07 e Figure 3.13 Example: Interval quality func-
tion for damping values ¢.

3.4.2 Feasible Design and Competing
Requirements

Quality measures with positive the smaller the better criteria and quality limiting
upper bounds yield a visible way to assess requirement satisfaction by design alterna-
tives. Define for the set of all quality functions

o :=max {g;}, T e & (3.7
J



Section 3.4 Quality Modeling for Design Analysis and Decision Making 59

Then a design alternative with o < 1 is a feasible design that satisfies all requirements
within the demanded bounds. In particular, a design alternative a'” is said to be better
than a design alternative a® if o < o < 1, and a “best-feasible” design over all

alternatives is characterized by
o = min{a} (3.8)

In well-posed engineering design problems, one always encounters competing require-
ments of performance versus cost, and one has to search for a suitable tradeoff. This
search is to be confined to the set of “best achievable” compromise solutions, known as
Pareto-optimal solutions, where improvement in any one quality measure can be
achieved only by deterioration in at least one other quality measure. Generally, a design
alternative a7 is said to be Pareto preferred, or noninferior, to an alternative a® if all
quality measures of a’” are better (smaller) than or equal to those of a®, with at least
one being strictly better. Hence as a best choice one may select the best-feasible candi-
date (3.8) out of a Pareto preferred set.

3.4.3 Visualization for Comparative Design
Exploration

Given a set of feasible design alternatives, one has to compare them and select a
suitable tradeoff candidate out of this set, or one has to decide Aow to improve design
further, that is, to generate a further design alternative with a “better” tradeoff. For this
decision process advanced CACSD environments adopt the paradigm of “vision to
think” to explore design patterns by interactive information steering. This is most
intelligible if organized as a multilayered information spreadsheet graphical user inter-
face (GUI), for example [7].

Comparative design evaluation in view of tradeoff decisions requires that many
quality functions be simultaneously considered. This needs a high-dimensional kind of
display to visibly compare different design alternatives. The means to do this is a dis-
play in “parallel coordinates”: A high-dimensional space is spanned by parallel coor-
dinate axes and a polygonal line represents a point in this space. For example, Figure
3.14 depicts such a parallel coordinates display of quality functions showing five dif-
ferent design alternatives of a flight control law. Feasibility assessment is visible: all
polynomial lines below a border line of value 1 indicate requirements satisfaction, and
values above this line indicate design deficiencies with respect to the adopted specifica-
tions. This also allows detection of competing requirements: For any two design alter-
natives, which belong to a Pareto-optimal set, competing requirements are visualized by
polygonal lines that are crossing. As an example, in Figure 3.14 a strong conflict can be
immediately detected between maximum elevator rate (ELEVRATE) and satisfaction
of the C* handling quality criterion (CSTAR).

The parallel coordinates of Figure 3.14 span a seven-dimensional design-response
surface. The sequential ordering of the coordinate axes is not unique. Coordinates may
be ordered to focus on hot spots of high design sensitivity; they may be ordered with
respect to different classes of requirements (e.g., the classes’ automatic control require-
ments, handling quality requirements, control effort); or they may be clustered with
respect to different operation and parameter tolerance conditions handled as a multi-



60 Chapter 3 Computer-Automated Control System Design

ELEVRATE
NEAL SMITH
PHASE RATE

(-4
<
-
7]
O

= |DEXP
= GAMMACMD
= OLOP

+= DAMPING

- W A W

Figure 3.14 Design-satisfaction visualization by a parallel coordinates display: five
control law design alternatives are visualized by seven quality functions
each. (The first coordinate orders the design alternatives 1...5.)

model design problem. For the latter, one may line up the different operation cases
along a third, orthogonal axis in a three-dimensional parallel coordinates display.

An interactive parallel coordinates editor as described in [6] is most helpful to
explore the design response surface. It also serves as a graphical steering aid to activate
different views on different information levels. For a particular quality function in this
display one may zoom in to visualize of the pertinent indicators’ behavior within their
intrinsic quality bounds as shown in Figure 3.15. Or one may interactively select any
two competing quality functions and display them in a two-dimensional Cartesian view
to reveal the “compromise gradient” between available design alternatives (cf. Figure
3.17).

The paradigm ‘“‘use vision to think™ is brought to bear most apparently by engi-
neer-in-the-loop virtual reality system simulations whereby complete operation scenar-
ios can be explored interactively. For flight control, for example, the Aviator Visual
Design Simulator (AVDS), software [26] allows full-envelope virtual flight tests at the
control engineer’s desktop computer. This integrated operational view deepens insight
into the system dynamics problem at hand and allows design validation. It eases detec-
tion of design deficiencies that might be hidden by a mere view on discrete design
points, Figure 3.10, which, for design purposes, abstract system operation just by a
number of different evaluation cases.

3.5 AUTOMATIC TUNING AND DECLARATIVE
COMPROMISING

Analytic synthesis methods rely on the assumption that all design requirements can be
translated into commensurable measures and analytically treatable tuning rules. Thus
analytic synthesis tuning struggles with conservatism in exploiting the full performance
potential of the underlying controller structure when applied to multi-objective, non-



Section 3.5 Automatic Tuning and Declarative Compromising 61

Theta, gamma, gamma command Phase rate
f E-1]| A T B2 |
e wal - L T
3 30; /// Theta & 24} |
= [ ' s = ] &
201 “1 1 g 16} | B Level 2
! S| 0§ 11
10} —~1{ § o3|
t ~—— Gamma : ~ t i Level 1
0.0 — - ' 00—
0.00 0.75 1.50 2.25 EO 0.00 0.45 0.90 1.35 EO
t[s] > Freq [Hz] —
OLOP
¢ El
08 o]
= " @jr—ﬂ'/
OE -038 @
®
-24 D@
-4.0
-2.40 -1.95 -1.50 -1.05 E2
Phase [deg] —
Neal Smith
f‘v El
2 1.00 e
: Level 2 e
E 0.50 1
= Fe = {
£ 000 ——A—0BE B . B\
< / 1 Levell \ 1
-0.50
-1.50 -1.05 -0.60 -0.15 El -3 -1 1 3 El
Re —> PhasePL [grd] —>

Figure 3.15 Quality-behavior visualization by various types of indicators within their
intrinsic quality level bounds, where the marked 5 design alternatives
correspond to the quality function display in Figure 3.14.

commensurable design demands as they naturally occur in practice. Nevertheless, a
multitude of CACSD toolboxes is available to support multivariable control system
design problems by various kinds of analytic synthesis methods. To make the best use
of their analytic synthesis strength, such toolboxes ought to be combined with the
versatility of data-driven search algorithms in order to make them applicable to general,
quantitative design requirements. Various case studies with the ANDECS CACSD
environment can be found in [11].

The generic picture of how to embed an automatic search algorithm in the process
of control law synthesis has already been developed in Figure 3.11. It shows the data
computation chain for quality functions, Q, that measure noncommensurable require-
ments, to feed a search algorithm for attaining proper tuning parameter values (7', K).
This computation chain is generic to allow indirect tuning parameterization (7, as it is



Chapter 3 Computer-Automated Control System Design

used in a particular synthesis toolbox, as well as direct tuning (K) of explicit controller
parameters.

3.5.1 Automated Tuning by Multi-Objective
Parameter Optimization

Generally, multiple parameters need to be tuned simultaneously. In addition, these
parameters may be of different types since both synthesis parameters and additional
control law parameters may have to be tuned concurrently if in an incremental design
process an analytically generated control law structure is augmented by additional
dynamic compensators, filters, and signal limiters. Manual sequential tuning of one
parameter after another is not very efficient either in the engineering time required or in
the result that can be achieved. Hence an algorithmic tuning procedure is sought, which
can be used for automated tuning of multiple parameters of different types. Moreover, in
view of Section 3.4.2, automatic tuning should find Pareto-optimal solutions. To find
Pareto-optimal tuning parameters 7T = f(Q), multi-objective evolutionary algorithms as
well as nonlinear mathematical programming algorithms can be applied.

Multi-objective evolutionary algorithms [8] directly use Pareto-preference ranking.
The fitness of a population’s individual is measured by how many other individuals it is
inferior to. According to this criterion, populations are ranked, where the best solutions
will be the noninferior ones. Thus, noninferior solutions will always be most likely to be
selected, leading to convergence to a Pareto set. Methods like multiple subpopulations
and Pareto-fitness sharing are applied to force individuals of the same Pareto rank to
spread out evenly over the entire Pareto set. Evolutionary strategies cope well with large
numbers of parameters as well as with a large search space, which makes them likely to
find the global instead of a local solution in multimodal problems. They require a large
number of function evaluations, but on return they yield multiple solutions that are well
dispersed in or near to the entire Pareto-optimal set.

Nonlinear programming algorithms use an analytical optimality condition for
Pareto optimality and for attaining a numerical convergence condition. If suitably
parameterized, nonlinear programming can be used to systematically find a sequence
of Pareto-optimal solutions one by one. Thus this approach fits well with interactively
exploring the compromise nature of a Pareto-optimal set in the engineer’s search for a
“best” tradeoff. Efficient nonlinear programming algorithms require smooth functions
and are bound to a local solution in the neighborhood of the starting condition that has
to be provided to initialize the algorithm. Since the run-time of such algorithms
increases more than linearly with the number of parameters to be optimized, for inter-
active application of nonlinear programming algorithms, the number of parameters
should be kept low.

Hence a two-phase tuning procedure is appropriate. In the first phase, a multi-
objective evolutionary algorithm is used to globally optimize all available tuning para-
meters. In the second phase, a nonlinear-programming interactive tuning system is
applied for engineering tradeoff search, which starts with a global (near-) Pareto-opti-
mal design alternative found by an evolutionary algorithm in the first phase. For
computing efficiency, one may confine optimization in the second phase to a reduced
(segmented) tuning parameter set.

To check whether a feasible solution can be attained by proper tuning, the follow-
ing constrained minimization problem with an auxiliary variable o > 0 is considered:



Section 3.5 Automatic Tuning and Declarative Compromising 63

rrTn: oT) st g(T) < a (3.9)

for all quality functions, j=1,...,J.

The constrained parameter optimization problem (3.9) can be solved by standard
nonlinear programming algorithms [16].

If T = T* minimizes (3.9), then 7™ is a noninferior, Pareto-optimal, solution [23],
and with ¢® < 1 this is also a best feasible solution. If «*(7™) > 1, no feasible solution is
possible for the stated quality limits and the chosen controller structure. Hence one has
to reiterate design on a higher process level (see the design life cycle depicted in
Figure 3.2).

With (3.7), optimization problem (3.9) is equivalent to the min-max optimization
problem

min max {g;(T)} = o*(T™). (3.10)
T

A solution (3.10) characterizes the particular Pareto-optimal tuning alternative where
two (or more) competing quality functions become equal with minimized maximum
value

qi(T*) = qu(T*) = a*(T") > 0, (3.11)

thus revealing the main conflicting requirements. If &*(7™) < 1, obviously there is room
for a feasible tradeoff in compromising conflicting requirements.

If algorithmic tuning is used to find feasible tuning parameters, then according to
Figure 3.16, with T = f(Q), this closes the CACSD computation chain of Figure 3.11 to
yield an automated tuning loop. A CACSD environment that implements this kind of
automated tuning should support and integrate both kinds of Pareto optimization
approaches, that is, evolutionary algorithms, for example, [29], and nonlinear program-
ming algorithms, for example, [10]. Seamless, versatile, and user friendly integration,
however, is not a simple task and so far no such integrated CACSD environment is
readily available.

3.5.2 Declarative Compromising

In the previous section automatic tuning is used to find Pareto-optimal tuning
parameters; now declarative compromise search within the space of feasible quality

T Controller K. .
synthesis
Figure 3.16 Min-max optimization 7 = F(Q) Q = c
T : ; 0=CID
closes the multi-objective tuning loop, which D > e
incorporates the computation chain of Figure L, H O = max (L,0.H)

11.




64

Chapter 3 Computer-Automated Control System Design

function values is dealt with to attain a “best” engineering tradeoff. For this purpose,
compromising demands d, are interactively declared on conflicting requirements,
whereby d, is chosen to restrain the amount of degradation one is willing to pay on
a requirement’s quality function g, in order to improve satisfaction of all conflicting
requirements in the best possible way. Starting an interactive iteration process with an
already known Pareto-optimal solution Q(""l) = {q(."_l), qg""l) }, one chooses an upper

bound d® for the next design step v such that
>V <d, <1 (3.12)

and looks for a solution of the constrained minimization problem

min o(7T)
T«
sit. g(T) = aq, (.13)

q.(T) < d?,

for all quality functions, j=1,...,J;j #c.

This corresponds to the a posteriori min-max tuning approach developed by
Kreisselmeier and Steinhauser [10, 20]. Compromising is restricted to the set of
Pareto-optimal alternatives. Min-max optimization, constrained by d,, then attains
the ““best-possible” solution in the sense that all criteria of interest are minimized up
to the constraint of a prequantified limit of degradation one declares to be acceptable
for conflicting quality functions.

Consider an example from flight control: By manual tuning according to current
industrial practice, control parameters K = 7° for the control law of Figure 3.8 have
been determined. Some analysis shows that satisfaction of the C* flight-handling criter-
ion is in strong conflict with maximum control rate. Now, constrained min-max opti-
mization is used to quantitatively explore possible compromises. To achieve this, start
with values T° to compute a first Pareto-optimal design alternative. This improves both
C* and maximum control rate without degradation of the other criteria beyond their
already achieved level of satisfaction. Figure 3.17 shows criteria values marked by “0”
for the start value corresponding to 7° and marked by “1”* for the first achieved Pareto-
optimal solution, 7. For this first step, a multi-objective evolutionary algorithm might
have been used to attain a global Pareto-optimal solution.

An “improved” Pareto-optimal solution, which does not exeed the maximum
control rate of the start design T°, can now be obtained as follows: The demand for
C* is set to a, which is to be minimized, and the demand value d, for control rate is
relaxed to value 1.1, which was the value attained by industrial practice to start with.
The previous (Pareto-optimal) tuning values 7" are chosen as attainable start values for
the optimization algorithm. After three to four optimization iterations, which take only
a couple of seconds of computation time, the optimizer reaches a new Pareto-optimal
design alternative “2,” which is characterized by having attained the specified upper
bound for control rate, while decreasing C* as much as possible. Repeating this pro-
cedure accordingly four times results in the compromise set of Figure 3.17, which



Section 3.5 Automatic Tuning and Declarative Compromising 65

¢E0*
g

567

T T T T T T T T

0 Start value 1

CST

48+
40
32t

24}

16+ Level 2

08 Levell

0.9 1.1 1.3 15 1.7 E-1
Max. control-rate [rad/s] >

Figure 3.17 Compromise-gradient visualization in the C*/control-rate plane.

actually is just a different visualization of the same five design alternatives displayed in
Figure 3.14 and Figure 3.15. The shape of the Pareto-optimal compromise set can be
used to negotiate C*-quality versus control-effort. For example, an allowed increase of
maximum elevator rate by 0.02 [rad/s] from “case 2,” which itself corresponds to the
starting result, will improve the C* quality measure by about 30% to reach level 2 of
handling quality. But a much higher maximum control rate has to be allowed to reach
level 1. This is now a question of a tradeoff to be negotiated by the control design
engineer with the cost-responsible systems engineer.

Table 3.2 lists the iteratively compromised controller gains. Automated tuning of
the three parameters by constrained parameter optimization takes a couple of seconds
for execution of each declarative design command, whereas manual tuning of all three
parameters concurrently would have been a much more cumbersome and time-consum-
ing trial-and-error task since it requires a nonlinear change to attain the appropriate
gains.

As demonstrated by this example, compromising is an active “what-if”’ exploration
of a Pareto-optimal solution set in quality-function space. Incrementally relaxing upper
bounds on conflicting criteria by means of graphical-interactive input on a visualization
display like Figure 3.17 allows exploration of the compromise gradient for design
tradeoff negotiations.

TABLE 3.2 Controller Gains: Start Values and Compromising Alternatives of Figure 3.17.

start (0) 1 2 3 4 5
Nz gain 3.76 3.29 3.69 4.52 5.25 6.37
Nz integral gain 2.00 0.96 0.84 0.67 0.60 0.57

Pitch rate gain 0.20 0.00 0.00 0.00 0.03 0.16




66

Chapter 3 Computer-Automated Control System Design

3.5.3 Robust Control Laws by Multimodel
Compromising

Quality-function control law tuning by parameter optimization is not restricted to
a single evaluation model. Any type of control law parameterization can be used
together with a set of linear/nonlinear evaluation models. Several operating conditions,
for instance, the ones marked in Figure 3.10, and several “quality vertex” dynamics
models for the most stable (slowest) and the least stable (fastest) behavior within the
system parameter tolerance range can be handled in this way. The idea is to deploy
individual quality functions for the different evaluation models and to concatenate all
the quality functions to one quality-function set, which then is to be compromised
within the set of Pareto-optimal solutions. The goal of robustness-aimed compromising
is to achieve a balanced control behavior so that off-nominal cases of system behavior
are also controlled well within given quality intervals.

This approach turns out to be design efficient. For the GARTEUR! design
challenge on robust flight control design [22], large parameter tolerances in mass,
center of gravity, airspeed, and computation time delay of the digital flight control
computer have been taken into account by two suitably chosen, worst-case models,
in addition to a model with an average parameter instantiation. This kind of multi-
model compromising has resulted in the most robust control law among 12 design
competition entries developed along different design methodologies. For this multi-
model design case, the overall number of quality functions amounted to 3 x 18 = 54,
based on Table 3.1. But since only those quality functions have to be actively
compromised which are in strong conflict, not all quality functions of each evalua-
tion model have to be treated actively by the optimization algorithm. Rather, weak
conflicts, where quality functions remain within their “good” level (cf. Section 3.4.1)
have only to be monitored after an optimization cycle and hence need no evaluation
during an optimization run. For this interactive search, the data structure of the
optimization environment should allow activation/deactivation of quality functions
at run-time [7].

3.6 FURTHER CACSD TECHNOLOGY

The common control engineer’s daily life is much more occupied with tuning and
incremental improvement of already available controllers to adapt them to changing
product needs than with designing a new controller from scratch. Thus CACSD
technology to support computer automated control system design within the control
system life cycle has been emphasized in this chapter. The processing power and
visualization capabilities of desktop computing platforms today, together with
advanced modeling, simulation, and multi-objective optimization methodologies,
opens the perspective towards a new control engineering lifestyle of virtual product
engineering in a system dynamics context, where a validated “first-shot quality”
design of executable specifications for ‘“‘autocode” control software development
and maintenance becomes feasible.

! GARTEUR = Group for Aeronautical Research and Technology in EURope.



Section 3.6 Further CACSD Technology 67

Three levels in the control design life cycle have been dealt with in view of
design automation: design modeling; quality modeling; and tuning and compromis-
ing. The follow-on design activity of formal validation (assessment) (cf. Figure 3.2)
seamlessly fits into this conceptual framework. Assessment by a systematic, formal
procedure is to be performed with respect to a relevant subset of the quality func-
tions that capture the given control requirements. In particular, this refers to the
requirement of stability robustness. The design optimization environment (cf.
Figures 3.11 and 3.16) can also be used for model-based assessment: Now the
optimizer has to search for the worst values of quality functions, which can be
attained within an assumed system model tolerance range. That is, instead of mini-
mizing over the tuning parameters 7, the optimizer is used to maximize over the
tolerance range of system parameters p. To detect all hidden design deficiencies a
global search procedure, for example, employing evolutionary algorithms [17], is
required. A different type of approach is model-free validation based on machine
learning, for example, the Unfalsified Control Concept [27]. As an advantage of this
data-driven approach, experimental data can be used, as well as simulated data,
which allows unmodeled hardware in the validation loop. Another aspect is valida-
tion of control logic in discrete-event/continuous-time control systems. This relies on
formal methods of computer science. How to apply qualitative modeling techniques
to the continuous-time part to allow formal validation (“model checking”) by com-
puter science methods is presently a topic of active research.

Declarative control design with explicitly treated quality functions is apparently
better suited to handle the design complexity problem than procedural design in that
it allows interactive exploration of visualized design conflicts and the achievable
design potential. The methodology fosters a design process, in which a full set of
quality functions is taken care of from the very beginning and parametric and
operational tolerances are handled on-line in the design loop by suitably chosen
worst-case evaluation models. This provides the quantified comparison baseline for
design decisions and change management. In future control design environments,
this methodology has to be supported by a uniform information model for CACSD
versioning. Developing the information model within the ISO Standard To
Exchange Product Data (STEP) would formally link the computer-aided control
design process with overall product design (cf. [30]). This should be paralleled by
an automatic translation of system model components into the object-oriented
STEP/EXPRESS language.

The optimization-based approach is computationally demanding and asks for
further development of superfast algorithms for synthesis, analysis, and simulation. In
particular, automated separation of linear from nonlinear model equations for so-called
inline integration [3] in system simulation ought to be advanced by symbolic equation
handling and pertinent numerical solvers. The development of efficient model reduction
algorithms to generate high-fidelity system dynamics models from high-granularity
disciplinary models, for example, finite-element models of structural dynamics, is also
of concern.

The various evaluation cases in multi-objective tuning and compromising can be
executed in parallel by meta-computing, that is, by sharing distributed computation
power in a computer network. This means that information systems interoperability [19]
using object-based middleware techniques for a distributed engineering-software oper-
ating system on top of different computer operating systems, or for a federation of Java



68

Chapter 3 Computer-Automated Control System Design

virtual machines, ought to be adopted for CACSD environments. This implies that
parameterized quality functions as well as the synthesis, analysis, and simulation mod-
ules in Figure 3.11 are provided as data-typed computation components. To support
interworking via a network, the semantics of the quality functions and evaluation cases
have to be made transparent to information brokers such that multidisciplinary users of
an interoperable CACSD system get ready access to this design information. This holds
in particular for the multidisciplinary development and maintenance of system models,
where a standard modeling language like Modelica [24] for both physical and algorith-
mic control components should be used in future. Computer-supported information
sharing is important to keep track of design consistency by all stakeholders who experi-
ence long engineering transactions in their project work.

For initialization of automated design computations, CACSD environments
have to support a manual, procedural process mode as well. This is usually called
a Computer-Aided Control Engineering (CACE) environment. It should rely on a
repository that provides the following layered services: engineering-database ser-
vices, model/data definition services, algorithmic services, tool-control services,
task-control services, user-interaction services, and process communication services
[12], in which every layer connects only to interfaces that are no more than one
level above or below it. Layering is an architectural provision to ease future
upgrades. Such an “open,” layered framework is not yet commercially available.
Its development and implementation with production-quality software on all layers
remain a challenge.

Nonlinear parameter optimization by algorithmic search techniques is the key
asset in automated control design tuning. In a CACSD design-automation environ-
ment, a generic optimization setup (cf. Figure 3.16) should be available, in which the
generic optimization task is defined once and execution can be performed by any
suitable solver from both the field of nonlinear mathematical programming and the
field of evolutionary computation. This requires development of a proper data structure
to interactively switch among different kinds of solvers and to activate/deactivate any
quality function at run-time. In the set of solvers, “hybrid” solvers combining evolu-
tionary algorithms with nonlinear programming algorithms should be available for
global/local search. Conceptually, data-driven search is used to invert the design-
response surface spanned by the attainable values of quality functions (cf. Figure
3.14), with respect to the tuning parameters. One may investigate the use of neural
networks as a general learning approach for approximating this map as the set of
feasible design alternatives evolves by the various optimization search iterations. A
neural network approximation is analytically differentiable and allows gradient com-
putation by applying the chain rule of differentiation. Such an approximation of the
design-response surface can save evaluation time in initializing retuning of a controller
later on.

At a glance, CACSD technology developments and commercial-off-the-shelf
CACSD software products are scattered over a broad range of activities. Declarative
design in view of control design automation, as outlined in this contribution, to a great
extent makes these developments coherent with a suitable computation machinery for
“virtual engineering.” This is a step towards increasing control engineering competitive-
ness by a computer-aligned design process for better balanced, performance-reliable
controllers achieved in shorter engineering time. An information port to CACSD devel-
opments is provided by the home page of the IEEE Technical Committee on CACSD [1].



References 69
ACKNOWLEDGMENT

The contributions of the author’s former colleagues in the DLR—Control Design
Engineering Group are gratefully acknowledged—in particular, H.-D. Joos on multi-
objective flight control design issues; D. Moormann, G. Looye, and P. Mosterman on
object-oriented flight-system dynamics modeling; K.H. Kienitz on fuzzy-type specifica-
tions in goal attainment; R. Finsterwalder on interactive exploration of design-infor-
mation patterns; and A. Varga on performant control numerics software.

Related Chapters

¢ An in-depth discussion of how CACSD tools are being used for automotive powertrain
controller development can be found in Chapter 15.

o Applications of CACSD to flight control are also described in Chapter 11.

e A variety of modeling and simulation methods for control systems is outlined in
Chapter 4.

REFERENCES

[1] IEEE TC on CACSD: : http://www-er.df.op.dlr.de/cacsd/.

[2] H. Elmqvist, “A structured model language for large continuous systems.” Ph.D. Thesis,
Department of Automatic Control, Lund Institute of Technology, Sweden, 1978.

[3] H. Elmqgvist, M. Otter, and F. E. Cellier, “Inline integrations: A mixed symbolic/numeric
approach for solving differential-algebraic equation systems.” Proc. European Simulation
Multiconference, Prague, June 5-8, pp. xxiii—xxxiv, 1995.

[4] H. Eimgqvist, S. E. Mattson, and M. Otter, “Modelica—a language for physical system
modeling, visualization and interaction.” Proc. 10th IEEE Int. Symposium on Computer
Aided Control System Design, Hawaii, August 22-27, pp. 630-639, 1999.

[5] W. Feng and Y. Li, “Performance indices in evolutionary CACSD automation with appli-
cation to batch PID generation.” Proc. 10th IEEE Int. Symposium on Computer Aided
Control System Design, Hawaii, August 22-27, pp. 486-491, 1999.

[6] R. Finsterwalder, “A ‘parallel coordinate’ editor as visual decision aid in a multi-objective
concurrent control engineering environment.” Proc. IFAC Symposium on Computer Aided
Design in Control Systems, Swansea, UK, July 15-17, pp. 118-122, 1991.

[7] R. Finsterwalder, H.-D. Joos, and A. Varga, “A graphical user interface for flight control
development.” Proc. 10th IEEE Int. Symposium on Computer Aided Control System Design,
Hawaii, August 22-27, pp. 439444, 1999.

[8] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective
optimization.” Evolutionary Computing, Vol. 3, no. 1, pp. 1-16, 1995.

[9] G. Griibel, H.-D. Joos, M. Otter, and R. Finsterwalder, “The ANDECS design environment
for control engineering”. Proc. 12th IFAC World Congress, Sydney, Australia, Vol. 6, pp.
447-454, 1993.

[10] G. Griibel, R. Finsterwalder, G. Gramlich, H.-D. Joos, and S. Lewald, “ANDECS: A
computation environment for control applications of optimization.” In R. Bulirsch and
D. Kraft (eds.), Control Applications of Optimization, Int. Series of Numerical
Mathematics, Vol. 115, Birkhduser Verlag Basel, pp. 237-254, 1994.



70

References

[11] G. Griibel (ed.), “Case study: Applied multidisciplinary dynamics design experimenting.”
Proc. IFAC Conf. on Integrated Systems Engineering, Baden-Baden, Germany, September
27-29, pp. 89-117, 1994.

[12] G. Griibel, “The ANDECS CACE framework.” IEEE Control Systems Magazine, pp. 8-13,
April 1995.

[13] H.-D. Joos, M. Schlothane, and G. Griibel, ‘“Multi-objective design of controllers with fuzzy
logic.” Proc. IEEE[IFAC Joint Symposium on Computer-Aided Control System Design,
Tucson, AZ, March 7-9, pp. 75-82, 1994.

[14] H.-D. Joos, “A methodology for multi-objective design assessment and flight control synth-
esis tuning.” J. Aerospace Science and Technology, Vol. 3, no. 3, pp. 161-176, 1999.

[15] R. E. Kalman and T. S. Englar, 4 User’s Manual for the Automatic Synthesis Program
(Program C). NASA CR-475, 1966.

[16] C. T. Kelley, Iterative Methods for Optimization. Frontiers in Applied Mathematics, No. 18,
Society for Industrial and Applied Mathematics, 1999.

[17] J.-H. Kim and H. Myung, “Evolutionary programming techniques for constrained optimi-
zation problems.” IEEE Trans. on Evolutionary Computation, Vol. 1, no. 2, pp. 129-140,
July 1997.

[18] K. H. Kienitz, “Controller design using fuzzy logic—A case study.” Automatica, Vol. 29, no.
2, pp. 549-554, 1993.

[19] B. Kridmer, M. Papazoglou, and H.-W. Schmidt, Information Systems Interoperability.
Advanced Software Development Series, Research Studies Press. New York: John Wiley &
Sons, 1998.

[20] G. Kreisselmeier and R. Steinhauser, “Application of vector performance optimization to
robust control loop design for a fighter aircraft.” Int. Journal Control, Vol. 37, no. 2, pp.
251-284, 1983.

[21] A. G. J. MacFarlane, G. Griibel, and J. Ackermann, “Future design environments for
control engineering.” Automatica, Vol. 25, no. 2, pp. 165-176, 1989.

[22] J. F. Magni, S. Bennani, and J. C. Terlouw (eds.), “Robust flight control—A design
challenge.” Lecture Notes in Control and Information Sciences, Vol. 224, New York:
Springer, 1997.

[23] K. M. Miettinen, Nonlinear Multiobjective Optimization. Norwell, MA: Kluwer Academic
Publishers, 1999.

[24] Modelica: http://www.Modelica.org

[25] D. Moorman, P. J. Mosterman, and G. Looye, “Object-oriented model building of aircraft
flight dynamics and systems.” J. Aerospace Science and Technology, Vol. 3, no. 3, pp. 115-
126, 1999.

[26] S.J. Rasmussen and S. G. Breslin, “AVDS: A flight system design tool for visualization and
engineer-in-the-loop simulation.” Proc. AIAA Guidance and Control Conference, AIAA- 97-
3467, pp. 135-143, 1997.

[27] M. G. Safonov and T.-C. Tsao, “The unfalsified control concept and learning.” IEEE
Transactions on Automatic Control, Vol. 42, no. 6, pp. 841-843, June 1997.

[28] V. Sima and S. Van Huffel, “High-performance algorithms and software for systems and
control computations.” Proc. 10th IEEE Int. Symposium on Computer Aided Control System
Design, Hawaii, August 22-27, pp. 85-90, 1999.

[29] K. C. Tan, T. H. Lee, and E. F. Khor, “Control system design automation with robust
tracking thumbprint performance using a multi-objective evolutionary algorithm.” Proc.
10th IEEE Int. Symposium on Computer Aided Control System Design, Hawaii, August
22-27, pp. 498-503, 1999.

[30] T. Varsamidis, “Object-oriented information modelling for computer-aided control engi-
neering.” Ph.D. Thesis, School of Electronic Engineering and Computer Systems,
University of Wales, Bangor, UK, 1998.



Chapter SYSTEM MODELING

Pradeep Misra

Editor’s Summary
Models—in the sense of mathematical representations of systems—are critical to all advanced control. Not
only is it a truism that we can only control or optimize a system to the extent that we understand it, but
also virtually all advanced control techniques rely on an explicit representation of the system. In some
cases, a model is used in the design process alone; in others, the on-line controller contains a model; in yet
others models of different fidelity and complexity are used for design, analysis, and operation.

While control engineers use models on a regular basis, the full variety of models as relevant to
control is not always appreciated. Models in control engineering can be distinguished along several
dimensions, such as static and dynamic, linear and nonlinear, first principles and empirical, lumped and
distributed. This chapter provides a broad overview of many of the popular modeling methodologies. It
does not attempt to discuss any one approach in complete detail, but rather to explain key concepts and to
present a number of techniques that are seldom treated as parts of one unified topic. Subjects of specific
importance for control that are also discussed include model reduction and linearization of nonlinear
models. More in-depth discussions of specific methods are included in other chapters in this volume—see
Chapter 2 for discrete-event system models, Chapter 7 for hybrid models that combine continuous-time
and discrete-event behaviors, and Chapter 6 for nonlinear “approximators.” Examples of models for
different applications can be found in several chapters in the second part of this book.

As the systems that we attempt to control become increasingly more large-scale and complex, no one
type of modeling approach will be sufficient. A future trend in system modeling is the developing of
macromodels or multimodels, integrations of disparate models in one framework. As today’s systems
become tomorrow’s subsystems, the control engineer’s comprehensive understanding of system modeling
will only continue to become more important.

Pradeep Misra is an associate professor in the Department of Electrical Engineering at Wright State
University. He also serves as the secretary/administrator of the IEEE Control Systems Society.

4.1 INTRODUCTION

A system may be defined as a mechanism comprised of a collection of objects (physical
or abstract) related through physical relationships, along with mathematical rules that
govern the behavior of the mechanism. Only for the most simplistic systems is it
possible to determine the exact relationships and rules that characterize their behavior.

Present technology has enabled engineers to build increasingly complex systems,
which in turn have provided us with the means to perform increasingly difficult tasks.
This increased ability is achieved at the price of distancing ourselves from compact

n



72

Chapter 4 System Modeling

analytical models, typical of systems a few decades ago. Therefore, modeling and
simulation in a broader sense have taken on extremely important roles in modern-
day system analysis and design.

Use of models has been prevalent from ancient times. Although modeling techni-
ques have changed with the advent of technology, the paradigm remains the same. The
process of developing models of complex systems is, by nature, iterative. Typical itera-
tive phases during the modeling process are illustrated in Figure 4.1 [31].

For a reasonably complex system, a model is a simplified rendering of underlying
mechanisms and rules that capture the essence of the system. Typically, regardless of its
complexity, the model will not be able to replicate the actual system exactly when first
derived. Therefore the model must be verified through simulation by comparison of the
system’s response with that of the model and refinement of the model iteratively, until
the model accurately mimics the physical system’s behavior. Occasionally, this leads to
taking a second look at the underlying principles and redefinition of the model. The
degree of accuracy required is, of course, application-dependent.

4.1.1 Historical Perspective

From the earliest times, the driving force for developing models has been to
explain, in a comprehensive manner, the physical world around us. For example, sev-
eral models of our solar system were developed over the centuries. It was assumed that
Earth was at the center of the solar system and these models were only partly successful
in describing and predicting the behavior of the system. Only in the early seventeenth
century, when Johannes Kepler proposed the three laws (modeling assumptions, really)
of planetary motion—the law of orbits, the law of areas, and the law of periods—did
the model of the solar system begin to be more reliable. These laws were based on data
gathered by physical observation of the motion of planets; hence the model may be
considered an empirical model. Later in the same century, Isaac Newton provided a
mathematical and physical basis for Kepler’s laws by deriving the three laws from the
concepts of conservation of energy and momentum.

The solar system example clearly shows the evolutionary process in developing a
sophisticated/reliable model. Earlier models assumed Earth, and after Copernicus, the
Sun as the center, with other bodies in the solar system going around in circular orbits.
The models were based on data gathered with low-fidelity sensors (human eyes), and
there was no evidence that the models were incorrect until, by use of higher fidelity

Knowledge about -
the systeng1 Modeling =
/
Parameter estimation &
\
Y
[Smtsion J—
Y
Measurements ] - - P
and observations Verification
[ IE— Figure 4.1 Iterative modeling process.



Section 4.1 Introduction 73

instruments (telescopes), it was determined that these models did not satisfactorily
explain the system. The underlying principles were reexamined, leading to a more
sophisticated model with elliptical orbits. The model was then refined and validated
by alternative means.

Mathematical maturity has enabled the present-day engineer to develop sophisti-
cated and reliable models. This advance, coupled with significant improvements in
technology, has enabled us to construct and employ highly complex systems. Lest we
become complacent, however, nature continues to humble us by categorically illustrat-
ing the limitations of even the best of the current technology. Conspicuous illustrations
of these limits are the sinking of the Titanic in 1912, the collapse of the Tacoma
Narrows suspension bridge in 1940, and the destruction of the Ariane 5 launcher in
1996, to name a few. Some of these disasters could have been avoided with better
modeling and testing. But before we become too disheartened by the failures, let us
hasten to point out the successes in which we can take pride. From earlier times, we can
cite the Egyptian pyramids, the European cathedrals, and the Taj Mahal, and from
modern times, the Golden Gate bridge, the Apollo project, the Boeing 777 airplane, the
space shuttle, and the space station. The earlier accomplishments utilized empirical
models, whereas the later ones used sophisticated mathematical models of various
subsystems, decomposed mainly hierarchically but not exclusively, and then integrated
for the final design—a multimodel design approach [27].

4.1.2 Modeling and Control

Modeling of a system is seldom, if ever, a goal in itself; rather, it is the means to
attain some goal. From the viewpoint of a control systems engineer, the goal is to
control the response of the underlying system. The successful operation of a system
under changing (and often not fully predictable) conditions often requires a feedback or
closed-loop control system. The response of the system is compared with the desired
operating conditions, and the difference between the two is used to adjust the response
through a controller. The purpose of the controller is to minimize and, ideally, to
eliminate the effect of external disturbances, steady-state errors, transient errors and
variations in plant parameters on the output of the system.

A typical feedback control problem involves the selection of sensors to measure
and monitor the system outputs; selection of actuators to drive the system; mathema-
tical formulation of the desired output response; development of mathematical models
of sensors, actuators, and the plant; design of the controller based on the plant model
and the control criteria; and evaluation of the feedback control system by extensive
simulation or, where possible, applying it to the actual system. These steps are iterated
until the feedback control system exhibits the desired response. It is, therefore, evident
that modeling plays a key role in the effective control of a physical system or a process.

4.1.3 Classification

The vastness of the field of modeling and simulation, which spans all aspects of
science and engineering, makes it virtually impossible to provide a synoptic coverage of
the subject. It is difficult to pin down a specific classification scheme because distinc-
tions arise from a variety of factors. Nonetheless, it can be safely said that a useful
classification must depend on mathematical concepts that are required to accurately
represent the physical phenomenon. Some obvious distinctions would be static versus



74

Chapter 4 System Modeling

dynamical models, time-invariant versus time-varying models, linear versus nonlinear
models, deterministic versus stochastic models, “crisp” versus “fuzzy” models [1], and
so on. Within each such classification, there could be continuous, discrete, or hybrid (a
mixture of continuous and discrete variables) models. System models may also be
classified based on their representation, for example, state variable models versus
input-output models. Various model types can be loosely represented in the treelike
structure shown in Figure 4.2 [10]. In the figure, each branch may be continued to have
further subclassifications, as shown for the linear constant coefficient models.

The layout of the rest of this chapter is as follows. In Section 4.2, we discuss linear
and nonlinear static models and estimation of their parameters. In Section 4.3, we focus
on linear lumped parameter dynamical models obtained from mathematical descrip-
tions of electrical, mechanical (translational and rotational), and thermal systems. We
also discuss linear dynamical models obtained by parameter estimation from input-
output data. Finally, we discuss model order reduction by modal truncation, singular
perturbation, and balanced realizations. In Section 4.4, we cover nonlinear system
models, as well as some of the commonly encountered nonlinearities and several tech-
niques to obtain linearized approximate models of nonlinear systems. In Section 4.5, we
consider classification and finite difference models of distributed parameter systems.
Finally, Section 4.6 contains a general discussion of the scope and future of mathema-
tical modeling.

Mathematical
models
Static Dynamic
Deterministic Stochastic

Increasing degree of realism / \

Decreasing ease of analysis
Lumped Distributed

parameter parameter
Linear Nonlinear
Constant Variable
coefficient coefficient
Discrete Continuous Hybrid

Figure 4.2 Partial classification tree of mathematical models.



Section 4.2 Static Models 75

4.2 STATIC MODELS

Models described by mathematical equations may be stated in a fairly general form as
F(D(x(2)), x(2), u(t), ) =0 4.1

where ¢ indicates that the underlying system is a continuous-time system, F represents a
system of interrelated equations, x(f) represents states, D(x(#)) their first derivatives,
and u(f) external inputs. In a similar manner, discrete-time systems may be represented
as

F(D(x[k]), x[k], ulk], k) = 0 “4.2)

where k represents the discrete-time axis, x[k] represents states, D(x[k]) their first dif-
ference or time shift, and u[k] external inputs. In Eq. (4.1) or (4.2), if the term D(x(¢))
(respectively, D(x[k])) is uniformly zero, the model is static. In that case, the relation-
ship between state variables is purely algebraic. Whether or not the resulting model is
linear will depend on how the states x(¢) (respectively, x[k]) are related. In the remainder
of this section, we will assume that the models are deterministic. Furthermore, we will
deal with continuous models unless otherwise warranted.

A scientist or an engineer tasked with developing a model of a system is generally
privy to some knowledge about the system. This prior understanding can often be
captured in the form of a model structure. The problem that then remains is the
identification of the parameters associated with the model form. Parameter estimation
techniques have been developed that can estimate the best-fit values of these parameters
based on data collected during the operation of the system. Clearly, the greater the
quantity and the better the quality of the collected data, the more accurately the para-
meter values can be determined.

Notions of model structure and parameter estimation arise in static as well as
dynamic models. In the next few paragraphs, we discuss one popular class of
approaches to parameter estimation in static models, both linear and nonlinear. The
field of system identification specifically focuses on parameter estimation for dynamical
models.

4.2.1 Linear Models

Assume that we are given the data points {(x;,y;), i = 1,...n}, where x and y are
both scalars and x; is monotonically increasing. Often the data lends itself to models of
the form

y=r1x)=)_Cfix), 43)
j=1

where f;(x) are known functions. Then, the best values of the unknowns C; that will fit
the model are given by minimization of the least-squares error E(C;, j=1,...,m),
defined as



76

Chapter 4 System Modeling

n m 2
EC.j=1,....m= ZH cjj;(xk)] —yk] : (4.4)
1

k=1 j=

For models of the type described by (4.3), the computation of the unknown parameters
(C)) becomes rather straightforward. To minimize the sum of the square of the error
E(C;, j=1,...,m), we take partial derivatives of the error with respect to
Gy, j=1,...,m. Setting dE/3C; = 0, j = 1, ..., m, will yield normal equations

m

Z[k_lfi(xk)f;-(xk)]q = ;f,-(xk)yk, i=1,...,m. 4.5)

The system of equations in (4.5) can be easily formulated in matrix—vector form as
FTFC=FTy,

where superscript (-)7 denotes matrix transposition, C = [Cy C, --- C,,]is the vector of
unknowns to be determined, ¥ =[y; y, --- y,] is defined from the given data, and the
matrix F is defined as:

HGx) fil) - filx)
fx) filx2) - falxa)

FnG) foul) oo Sonl)

The system of equations in (4.5) may be solved quite efficiently using Cholesky decom-
position, QR decomposition or singular value decomposition (SVD) [9], [26].

The linear least-squares formulation in (4.5) can be readily specialized for a few
frequently encountered situations. For example, if the functions f;(x) = x’ -1 one gets a
polynomial model in x. For j =1 the result would be a straight line, for j=2, a
parabola, and so forth. Furthermore, the least-squares line can account for several
models through linearization to ¥ = CX + D. Table 4.1 shows a few models in
which a linearized representation enables us to obtain the model in a straightforward

TABLE 4.1 Linearization for Linear Least-Squares Approximation

Model Linearization Change of Variable Constants
A 1
y=;+B Y=CX+D X=;, Y=y A=C, B=D
1 1
= Y=CX+D X=x, ¥Y=- A=C, B=D
y Ax+ B * y
y = Be™ Y=CX+D X =x, Y =log,(y) A=C, B=¢"

y = Bx* Y=CX+D X =log,(x), ¥ =log,(») A=C, B=¢"




Section 4.2 Static Models 77

manner. One can, of course, find several other models that may be linearized in similar
fashion.

The simplicity of linear least-squares approximation may tempt one to use higher
degree polynomial approximations to fit nonlinear data. Naturally, in theory, there is
no limit to the degree of polynomial used in representing the data, as long as the
underlying model lends itself to it. However, if the data do not correspond to a high-
degree polynomial model, the fitted polynomial may exhibit highly oscillatory behavior.
The oscillatory behavior may be reduced to some extent by using the least-squares fit
with orthogonal polynomials such as Chebyshev polynomials, but it cannot be elimi-
nated altogether.

In Eq. (4.3), the system model y = f(x) was dependent on a single variable x. From
a computational viewpoint, the modeling problem becomes considerably more challen-
ging if the number of independent variables is more than one. Fortunately, from a
mathematical standpoint, the result is often a simple extension of the single variable
case. The expressions for the least-squares error (4.4) and normal equations (4.5) takes
on vector forms; that is, x is replaced by x, where x represents a vector of variables. The
modified system of equations takes the following form:

n m 2
EC, j= 1,....m)=2[[2q~f,~(xk)] —yk] :
k=1 Jj=1

Setting 9E/8C; = 0, j = 1,..., m, will yield normal equations

J k=1

[Zﬁ(xk)ﬁ(xk)]cj =) fixye  i=1,....m,
=1 k=1

leading to a convenient matrix-vector form for determining the unknowns C;.

4.2.2 Nonlinear Models

For the cases discussed in Section 4.2.1, the choice of the model enabled us to
reformulate the least-squares parameter estimation problem such that the model was
linearly dependent on unknown parameters C;, j =1,...,m. Next, we generalize the
parameter estimation problem to the cases where such a simplification is not possible.
The basic outline of the parameter estimation technique remains unchanged; that is, we
define a least-squares error and compute the parameter values (values of C;) so that the
least-squares error is minimized. Unfortunately, because of nonlinear relationships
among parameters, the minimization procedure for determining C;s becomes iterative.

We may define the model to be fitted as

y=f(x,C)
where nonlinearities are embedded in f(x, C) and C is a vector of model parameters

{Cj,j =1,...,m} to be determined. As before, the least-squares error may be defined as
the sum of the squares of errors between the model and the measured data



78

Chapter 4 System Modeling
- 2
ECj=1,...,m)=) [y —f(x OF.
k=1

Expanding the error to a quadratic form (through the use of Taylor series expansion) at
the rth iteration, we get

E(C)~EC)+[C-C'TS+ %[c —-c'TIC-CN (4.6)

where C is the estimate of the parameter vector C at the rth iteration, S is a column
vector of length m containing the first derivatives of E with respect to C, and T is an
m x m matrix containing second-order derivatives of E with respect to elements of the
parameter vector C, evaluated at C". S and T are, respectively, known as the gradient
vector and the Hessian matrix of E. Mathematically, the former is given by

IE(C)
U6
=—2Z[yk —f(x k,C)]af(x"’C), j=1,....m,c=C"
and the latter by
_FE©)
Tb"acac.
3f(X,C)af(x,C) azf(x, . ,
..22[ k b e —f (s O] ac;c] ijj=1,...,m, C=C

where the second derivative is often ignored.
It is easily seen by setting E(C) — E(C") = 0 in (4.6), that knowing S and T, we can
iteratively refine the model parameter C, using the inverse Hessian iteration

C=C+T7's. 4.7

If the second-order approximation in (4.6) is a poor local approximation or the com-
puted parameter vector C is far from the optimal value, the inverse Hessian iteration
fails to give a good fit of the model to the data. In that situation, an approach similar to
steepest descent [4, 26], given by

C1=C, +0aS

where « is a small constant, is used to refine the approximation. Furthermore, when
successive iterations using the steepest descent produce relatively small improvement,
one can switch back to inverse Hessian iteration in (4.7). The resulting elements of
vector C are the required parameters of the nonlinear model. Of course, the above
optimization scheme is one of several that may be used for obtaining optimal C. Several
others may be found in [4].



Section 4.3 Dynamical Models 79

The preceding discussion addresses only models obtained through unconstrained
optimization. In practice, model parameters may be constrained to lie within certain
predefined regions, making the problem considerably more difficult. A commonly
employed approach to solve such problems employs Lagrange multipliers [2].

4.3 DYNAMICAL MODELS

A very large variety of physical systems exhibit behavior that evolves over time. For
such systems, which are of considerable interest for control, the models and techniques
discussed in the previous section are no longer adequate. Instead, dynamical models are
used to express their changing behavior.

Recall the general functional representation for a system model:

(Continuous) F(D(x(?)), x(£), u(t), ) =0

4.8)
(Discrete) F(D(x[k]), x[k], u[k], k) = 0.
For static models, we assumed that the term (D(x(-)) was zero. For dynamical models,
this term is no longer uniformly zero. If in (4.8), we can rewrite the differential or
difference relationship as

D(1) = F(x, u, 1), 4.9)

then we have state space models. On the other hand, when it is not possible to express
(4.8) as an explicit system of differential equations (4.9), the resulting system is known
as a singular , implicit, or differential-algebraic system. Such models represent dynami-
cal systems with algebraic constraints. Note that, while (4.9) refers to the continuous-
time case only, as shown in Figure 4.3, it is always possible to switch between contin-
uous-time and discrete-time models.

For continuous-time systems, if the function representation exhibits dynamical
dependence on time t (temporal variable) as well as space x (spatial variable), then
the system is defined as a distributed parameter system. Such systems, for example,
structures, heat flow, and fluid flow, are modeled using partial differential equations.
On the other hand, if the dependency on a space variable is absent or negligibly small,
then the system model may be expressed using finitely many differential equations, and
the system is then said to be a lumped parameter system . The latter is perhaps the most
studied class of dynamical systems, especially for linear cases such as electrical circuits,
translational or rotational mechanical systems, and so on. A somewhat more exotic
variety would include systems that are continuous, but may trigger a controlled switch
in a continuous process or set off a timing mechanism in a discrete system. Such systems
are known as state event systems. On the discrete side, dynamical systems include

State events
Continuous Discretization Discrete
systems Tnterpolation systems
Figure 4.3 Continuous and discrete intercon- -

version. Time events



80

Chapter 4 System Modeling

sampled data systems , represented by difference equations. Depending on the sampling
scheme, they may be single-rate or multi-rate sampled data systems. If the sampling
period is not fixed, the systems are called discrete-event systems . In these systems, the
system dynamics is affected only at the occurrence of events; in between events, the
system parameters retain their values. Examples include systems such as traffic net-
works and communication networks. If we interface discrete-event systems with con-
tinuous dynamical systems, we get Aybrid systems [31].

4.3.1 Lumped Parameter Models

The major components of lumped parameter models are energy sources, passive
energy storage elements, and passive dissipative elements. Along with the above basic
components used in electrical, mechanical, hydraulic, or thermal systems, there are also
transduction elements that transfer energy between various physical systems. Some
commonly encountered transduction elements include electric motors (electrical energy
to mechanical energy), generators (mechanical or fluid energy to electrical energy),
heating coils (electrical energy to thermal energy), and so on.

A lumped parameter model is described by a system of differential equations.
These equations are obtained by formulating a set of mathematical equations by sum-
mation of through -variables at any junction, summation of across -variables within any
closed loop, and a mathematical representation of each element of the system. The
dynamical order of the system is governed by the number of independent energy storing
elements.

Nonlinearities will be addressed in the next section; for the time being, we will
review idealized linear elements. Variables required to formulate various lumped para-
meter models and symbols commonly used to denote them are listed in Table 4.2. The
differential and algebraic equations describing individual elements are listed in Table
4.3.

TABLE 4.2 Common Variables Used in System Modeling

System Through-Variable Across-Variable
Electrical Current (I) Voltage (V)
Hydraulic Fluid flow rate (q) Pressure (P)
Rotational Torque (T) Angular Velocity (w)
Translational Force (F) Velocity (v)
Thermal Heat flow rate (Q) Temperature (7))
Thermodynamical Entropy flow (’f,—f) Temperature (T)

As mentioned earlier, transduction is used to transfer energy from one type of
system to another; this does not preclude a transfer of energy from (say) electrical to
electrical form. Transducers may be divided into two major categories:

e Transformers: Transformers relate through-variables to through-variables and
across-variables to across-variables, for example, electric transformers relating
voltage to voltage and current to current with an appropriate proportionality
constant. Another common example would be an electric motor that relates
armature current to torque and voltage across the armature to angular velocity.



Section 4.3 Dynamical Models 81

o Gyrators: Gyrators relate through-variables to across-variables and vice versa,
for example, a hydraulic ram that relates fluid pressure (across variable) to
linear force (through variable) and fluid flow rate (through variable) to linear
velocity of the piston (across variable).

One may now model the system through differential relationships in the time
domain directly to obtain state space models or use Laplace transforms of various
differential relations to obtain transfer function models [5, 15, 24). As discussed later
in Section 4.4, one may also obtain linear lumped parameter models by local lineariza-
tion of nonlinear systems.

TABLE 4.3 Relationships between Through and Cross Variables

Element Symbol Element Equation
Lo dl
Electrical inductance L V= LE
. . av
Electrical capacitance C I= CTz’?
. . vV
Electrical resistance R R= T
. . 1dF
Translational spring K o
. dv
Translational mass M F=M 7
. F
Translational damper B ==
. . 1dT
Rotational spring K =z
. . dw
Rotational mass (inertia) 1 T= IE
. T
Rotational damper B B= =
Fluid inertia 1 P=1 dq
dt
Fluid capacitance C q=C %
. . P
Fluid resistance R R= ;I-
. dT
Thermal capacitance C 0= CI
. T
Thermal resistance R R==




Chapter 4 System Modeling

4.3.2 System Identification

In many practical situations, models of components of the system and their math-
ematical interrelationships are not known precisely. In these cases, the strategy
described in the previous section becomes unsuitable. Instead, one must construct a
mathematical model of the system from measurement of the system’s response to
known signals. The process of constructing mathematical models of dynamical systems
from measured data is known as identification. We will restrict the discussion to linear,
lumped, time-invariant, deterministic systems. Although methods for identifying mod-
els for more general classes of systems exist, they are beyond the scope of the present
discussion. We will consider discrete-time identification because regardless of whether
or not the system under consideration is continuous, the input and the output measure-
ments are obtained at discrete-time instances.

For deterministic systems, models obtained through identification methods may be
broadly classified into nonparametric and parametric models. If the structure of the
model is not defined a priori, then the system model is referred to as a nonparametric
model. Some commonly used nonparametric models include impulse response and
frequency response models. On the other hand, if the structure of the model is pre-
determined, the model is said to be a parametric model. For example, the model may be
restricted to be a sum of a fixed number of decaying exponentials. The identification
process then determines the coefficient and the decay rate for each term in the summa-
tion. Some commonly used parametric models include differential or difference equa-
tions, transfer functions, and state space descriptions. Paradoxically, so-called
nonparametric models have many more parameters generally than parametric models.
It is interesting to note that parametric models can be deduced from nonparametric
models. Because parametric models are more compact (fewer parameters to identify), it
is not surprising that their identification has garnered more attention. Among para-
metric models, the majority of the research has been devoted to identification of models
expressed by difference equations.

Assume the following general model:

Bl@(k) = )+ 5D e®)

where A(q), B(q), C(q), D(q), and E(q) are polynomials in the delay operator ¢, y(k) and
u(k) represent the output and the input, respectively, and e(k) represents external dis-
turbances. Then, depending on the elements of various polynomials, the following
system models are commonly studied.

o) = A +e®)  (FIR)
Egyh) = AQuk)+e)  (ARX)
E@y(k) = AQuik) + Caek)  (ARMAX)
A(9) (4.10)
W0 =5Dui+et))  (OF)
20 = 5B u) + 5Bl (B



Section 4.3 Dynamical Models 83

The model acronyms in (4.10) stand for finite impuise response (FIR), auto-regressive
with exogenous input (ARX), auto-regressive moving average with exogenous input
(ARMAX), output error (OE), and Box-Jenkins (BJ) [3].

4.3.2.1 Transfer Function Models

We first consider the output error model. Taking the z transform of the output
error model under ideal conditions (e(k) = 0), we get a proper stable z-domain transfer
function:
a+az+4a,_ 270

H(z) = ,
@ l4biz7l 4o 4 b,z D4 bz

where the coefficient of the z° term in the denominator is assumed to be unity without
loss of generality and # is the order of the system model and the degree of the numera-
tor polynomial has been assumed to be (# — 1). The above transfer function can also be
written as the infinite series

H@)=hy+hz '+ -+ bz + hk.,_lz_(k"'l) +...
Let f, h represent column vectors of length N> n), where

f=[f0 fio.. fN_l]T and
h=[hy h ... hy,]
denote, respectively, the measured and the actual values of the impulse response. The

latter are also known as Markov parameters of the system. Then, the least-squares
identification problem can be stated as

N,

4
>a]

min |le]| = min
a,b a,b =0

where e = f — h and

a=[a0 a ... a,,_l]T

4.11)
b=[1 b ... b,]

The transfer function coefficients are related to H(z) as

a Hl
= s 4.12)
0 H,

where a and b were defined in (4.11) and the elements of H; and H, are obtained by
equating like powers of z~! on the two sides in the following relationship



84

Chapter 4 System Modeling

agg+az a7 V= bz o+ b, 27"V 8,277
X (hg+hz™ ot bz bz )

Clearly, if b and H; are known, then a can be found from a = H;b. However,
because of measurement errors, it is virtually impossible to determine the exact A.
Hence, we replace H; and H, by matrices F; and F, formed from the measured impulse
response data f. Since f is an estimate of A,

Fyb = d(b)

where d(b) is the equation error.

The elements b; to b, of b can be found by minimizing ||d(d)|. Subsequently,
substituting b in (4.12), we can compute a. Further discussion and extensions of the
above least-squares parameter identification scheme can be found in [6, 17, 23] and the
references therein.

4.3.2.2 State Space Models

Although the identification of a transfer function model is mathematically rather
straightforward, the resulting model can be sensitive to parameter variation. A small
change in the coefficients of the model can affect the system response considerably. In
general, state space models identified from the measured input-output data are less
sensitive to small perturbations in their parameters. A state space model for a linear
time-invariant discrete system with # states, m inputs, and p outputs can be described by

x(k + 1) = Ax(k) + Bu(k) (4.13)
y(k) = Cx(k) + Du(k),

where A is an (n x n) state matrix, B is an (n x m) input matrix, C is a (p x n) output
matrix, and D is a (p x m) input-output matrix. The vectors x, u, and y are known as
the state, input, and output vectors, respectively. We now outline one popular approach
to state space identification.

Assuming that x(0) is zero, we can show the output of the system (4.13) to a known
input sequence #(0), u(1), ..., to be

¥(0) = Du(0)

y(1) = CBu(0) + Du(1)
¥(2) = CABu(0) + CBu(1) + Du(2)

y(r — 1) = CA""2Bu(0) + CA"Bu(1) + - - - + CBu(r — 2) + Du(r — 1)

These relations can be expressed in a matrix—vector form as



Section 4.3 Dynamical Models 85

[»0) »1) - »r—D]=
Cu(©0) u(l) - ur—1)T7

0 u0) --- u(r—2)
[HO) H(1) --- H(r-1)]

L 0 0 -+ u0)
For the purpose of explanation, assume that the underlying system has a single input
and a single output and that u(0) is nonzero. We define the three matrices above as Y,
H,, and U, respectively, and we get H, = YU™'. Note that D = H(0) and CA™'B =
H(@i),i=1,2,..., are the Markov parameters of the system [13]. The computed Markov
parameters are then arranged in a Hankel matrix defined as

CB CAB -.- CA™'B H(1) HQ - H®
g | C4B CA4B ... c4'B | |HQ HG) - Hr+1)
CA'B CA'B ... C4* VB H(r) H(r+1) - HQr-1)

The size of the Hankel matrix is increased with additional measured input-output data
until its rank stops growing, that is, n = rank(H,) = rank(H, ).

Once the Hankel matrix of rank n is found, the state space model of order n is
constructed as follows:

o Perform the singular value decomposition on H; as

Hz[Un Uu][s 0][1/11 V12:|T.
k Uy Un |0 OflVa Vn

e Define a modified Hankel matrix fI, as

CAB CA’B ... CA'B
. CA’B CA?B ... cA™*'B
r= : : . '
CA'B CA*'B ... CA¥B

e Define matrices associated with the state space model as

T
4= S—1/2[U11] ﬁr[Vll]S—lﬂ
Un Va

B=S"*y]
C= U11S1/2
D = H(0).



86

Chapter 4 System Modeling

Note that the techniques for model identification described here illustrate the basic
principles. For more realistic situations, one must take into account several practical
constraints [16, 20].

4.3.3 Model Reduction

Often, in their zeal to capture all possible details, engineers overmodel the physical
system. This leads to fairly large-order system models. Naturally, the higher the dyna-
mical order of the system model, the more complex and usually inefficient is the con-
troller derived from it. It is, therefore, natural to seek lower order approximate models
to closely describe the actual plant. This is known as the model reduction problem.

The earlier approaches to model reduction were based on truncation of less impor-
tant states from state space models. Essentially, the relatively fast-decaying modes of
the system can be ignored as their influence on the performance of the system is less
pronounced than that of slowly decaying modes.

4.3.3.1 Modal Truncation

Given the state space description of a linear time invariant system,

dx

-4

7 x+ Bu
y = Cx + Du,

we assume that the state matrix is in its Jordan form, that is, a matrix with elements
along the main diagonal and possibly a few 1s along the first super diagonal when the
state matrix 4 has dependent eigenvectors for repeated eigenvalues. Assume that 4 can

be partitioned as
A0
4= [ 0 Az]’

where the elements along the diagonal are arranged in increasing magnitude of the
negative real parts. Furthermore, the magnitude of the negative real part of the last
element of A, is much smaller than the magnitude of the negative real part of the first
element of A,. Then, the modes in the block A, will decay much faster than those in A;.
The faster modes may be truncated to get a reduced-order model. Clearly, modes of the
lower order approximation are a subset of modes of the original model. In addition, all
reduced-order models obtained by modal truncation match perfectly with the original
model at infinite frequency.

4.3.3.2 Singular Perturbation

Singular perturbation is a well-studied alternative to the modal method discussed
above. Here again, the underlying principle is to partition the original system as a fast
and a slow subsystem. The states of the fast subsystem are set to their steady-state
values to obtain a reduced-order model. Briefly, the singular perturbation approach
may be described as follows. Given the state space model:



Section 4.3 Dynamical Models 87

d |: xl(t)] [Au AIZ][Xl(t)] [Bl(t):l

- = + u(?)
dt| exy(f) Ay Ax || x(D) By(1)
x1(9)

(4.14)
(I)] + [DJu(?)

0 =[C Cz][

X2

where € is a small number [28]. Then setting € = 0, and assuming that 4,, is invertible,
yields

0 = Ay x1(8) + Appxy(2) + Bou(t)  or,
xy(t) = — Az Ay x1(t) — Az Byu(d).

Substituting x,(¢) in (4.14), one obtains a singular perturbation approximation model

dx,(?)
dt

¥ =[C - CoAz) Ay |31 (1) + [D = CrA% By Ju(h).

= [An — A4z A %1 (1) + [By — 41247 By Ju(r)

Singular-perturbation-based order reduction yields models with a good match with the
original system at low frequencies.

4.3.3.3 Balanced Reduction

Often the overmodeled system may have states that are either uncontrollable or
unobservable. Because these states do not contribute to transfer of signals from the
input to the output of the system, they may be eliminated from the system dynamics. In
addition, there may be states that are weakly controllable and/or observable; that is,
these states make a relatively small contribution in the transfer of signals from the input
to the output. Internally balanced state space realizations have a basis such that each
basis vector is equally controllable and observable. Moreover, it is possible to quantify
the degree of controllability and observability of each basis vector for such realizations.
Given a stable state space realization (4, B, C, D), one can obtain its controllability
grammian (P) and observability grammian (Q), respectively, through the solution of
Lyapunov equations

AP+ PAT + BBT =0
AT+ 04" +CcTc=0.

Then, the realization (4, B, C, D) is said to be internally balanced if P = Q = ¥ and

Ullgl 0 0
R N

0 0 e U,I[

r



88 Chapter 4 System Modeling

where all diagonal elements can be ordered so that o, > 0, > - -- > 0, > 0. The elements
o; represent the degree of controllability and observability of each basis vector of the
state space.

Assume that X can be split into two submatrices X; and Z,, with a clear difference
between the relative values of the magnitudes of their diagonal elements. Then a
reduced-order model may be obtained by

1. Direct truncation: This is easily achieved by splitting the state vector of balanced
realization conformable to the dimensions of the two blocks, ¥; and ¥,, and
truncating the states that correspond to ¥, [8, 21].

2. Singular perturbation approximation: For some applications, direct truncation is
not desirable because the corresponding reduced-order models incur the greatest
approximation errors in the low-frequency range. Balanced singular perturbation
ensures that the error in the low-frequency range is eliminated [7].

4.4 NONLINEAR DYNAMICAL SYSTEMS

As noted in the previous section, the following state description may be used to repre-
sent nonlinear dynamical systems

dx
i F(x,u, ). (4.15)

where the states in (4.15) are nonlinearly related. The system is referred to as autono-
mous if (4.15) does not have explicit dependence on time; otherwise it is said to be
nonautonomous. Furthermore, if u(¢) = 0, the system (4.15) is called unforced; otherwise
it is a referred to as a forced system. Note that in the literature autonomous is often
replaced by time-invariant and nonautonomous by time-varying.

Several inherent properties of linear systems, which make them easier to model and
analyze, become invalid for nonlinear systems. Properties such as superposition and
commutativity (the linearity of a cascade of two linear subsystems) do not carry over to
nonlinear systems. The response of nonlinear systems is not as predictable as for linear
systems; for example, sinusoidal excitation of linear systems, but not nonlinear ones,
produces sinusoidal output with the same frequency as the excitation signal. Another
striking difference is the number of equilibrium points. An equilibrium point of the
system (4.15) is defined as a state in which the velocity of the state is zero; that is, for an
autonomous system F(x, ) = 0. Linear systems have no more than a single isolated
equilibrium point. In contrast, a nonlinear system may have multiple isolated equili-
brium points. As a straightforward example, % = 2mrx has a single equilibrium point at
the origin, whereas ‘fi—’t‘ = x — x* has equilibrium points at 0 and 1.

A typical feedback control system will have a plant and a controller, together with
sensors and actuators. If all elements of these four components are linear, the resulting
system is linear. If any one of the four components exhibits nonlinearity, the overall
system becomes nonlinear. A viable approach to work with such systems is to identify,
and where possible, model the nonlinearity.



Section 4.4 Nonlinear Dynamical Systems 89

4.4.1 Common Effects of Nonlinearities

Next, a few of the more commonly encountered effects of nonlinearities in control
systems are reviewed.

Limit Cycles. Consider a simple harmonic oscillator represented by the following
linear unforced system:

d*x dx
F*’x =0, x(0)= xo, @ ,=0— X1

Its solution to the initial conditions x, and x, is given by

X(t) = reos(t + do). % = —rsin(t — dv)

where r = (x3 + x})"/? and ¢, = tan'(x,/x,), which is periodic for any choice of
nonzero initial conditions. Clearly, the solution represents a circle of radius r in the
(x, dx/dt)-plane, also known as the phase-plane . Furthermore, the entire phase-plane is
covered with periodic solutions.

On the other hand, nonlinear systems can exhibit periodic solutions that are iso-
lated; that is, there exists a finite neighborhood around the periodic solution that does
not contain any other periodic solutions. These isolated periodic solutions are called
limit cycles. These are closed trajectories in the phase-plane, and a nearby trajectory
would either converge to or diverge from the limit cycle. A limit cycle is defined as a
stable limit cycle if the state trajectory converges to the limit cycle and an unstable limit
cycle if the state trajectory diverges from the limit cycle. A nonlinear system may
possess both stable and unstable multiple limit cycles as shown in Figure 4.4.

di()
dt

o

n

‘ "\/ Stable limit cycle

— Unstable limit cycle
Figure 4.4 Multiple limit cycles: stable and S
unstable.

e
/

Bifurcation. As mentioned earlier, linear systems possess at most one isolated
equilibrium point, whereas nonlinear systems may possess several isolated equilibrium
points. Moreover, in nonlinear systems, if there is a parameter that is varying, then it is
conceivable that the number of isolated equilibrium points may change as the para-
meter value changes. This phenomenon of qualitative change in system dynamics is
known as bifurcation . The bifurcation point is the parameter value at which the change



Chapter 4 System Modeling

occurs. A famous example of a nonlinear system that exhibits bifurcation is the
Duffing’s equation, given by

dx  dx | 5

Py + yE +ax = fx°.

The equilibrium point is at x = 0, if @/ < 0. However, when /8 > 0, the equilibrium
point splits into three equilibrium points at 0 and +./a/B. This type of bifurcation is
known as a pitchfork bifurcation.

It is also possible that as a control parameter is varied, a stable fixed point becomes
unstable to form a limit cycle or a stable limit cycle becomes unstable to a fixed point.
This phenomenon is called Hopf bifurcation. A typical representation of pitchfork and
Hopf bifurcation is shown in Figure 4.5.

. (1)

"8 dt Limit cycle
B>0 / (U
—
Bifurcation from a a
Duffing’s equation

(a) (b)

Figure 4.5 (a) Pitchfork (x,: steady-state equilibrium point) and (b) Hopf
bifurcation.

Chaos. Nonlinear dynamical systems can exhibit equilibrium behavior other than
fixed points (points mapping onto themselves) and periodic (limit cycles). Specifically,
some nonlinear systems exhibit aperiodic dynamics. The output can appear to be
completely random, even though the system is deterministic. Such behavior is usually
referred to as chaos and represents unpredictability of the system output. The same
dynamical system can exhibit fixed point, periodic, and chaotic characteristics for
different values of system parameters. Chaos often arises through changes in the sys-
tem’s qualitative behavior from fixed points to limit cycles, which then undergo a series
of period doublings, to a chaotic regime, as a parameter of the system is steadily
changed. Chaotic systems are also extremely sensitive to changes in initial condi-
tions—two infinitesimally close initial conditions can result in arbitrarily different tem-
poral evolution.

This is exhibited by Duffing’s system with a sinusoidal input

d*x Ix 3
Ez—_i_ yE+ax = Bx” +6Ocoswt.

If the system is simulated with two close but distinct initial conditions (x(0), %f o) =
(x1(0), x5(0)) = (3,4) and (4.01,4.01), it gives completely different responses [30]. The
results of the two simulations are shown in Figure 4.6 in the (x, x;) plane.



Section 4.4 Nonlinear Dynamical Systems 91

. : IC=(3,4)
______ IC = (3.01, 4.01)

-4 -3 -2 -1 0 1 2 3 4

Figure 4.6 Chaotic behavior.

The chaos phenomenon is exhibited by a rich variety of physical systems such as
turbulent flow, mechanical systems with backlash, and meteorological phenomena. An
interesting aspect of this seemingly random variation in the output response is the fact
that chaos is strictly deterministic in nature. Chaotic systems are inherently unpredict-
able despite being deterministic.

Hysteresis. Hysteresis is a nonlinear phenomenon commonly observed in the
backlash of gear trains, mechanical bearings, and a chain of cars connected through
links in a train. Mechanical backlash is the motion lost when the direction of motion is
reversed. Hysteresis is also common in electromagnetic applications where the flux
density follows different paths depending on whether the magnetization force is increas-
ing or decreasing. Typical examples are shown in Figure 4.7.

In addition, there are other behaviors such as saturation, dead zone, subharmonic
generation, discretization, asynchronous quenching, and jump hysteresis that add to the
richness of nonlinear models [29, 30].

A commonly employed technique to characterize models and visualize their beha-
vior is through phase-plane representation. A phase-plane represents a two-dimensional
state space for a given second-order dynamical system. Each second-order system may

y(0) Flux density A

l x(1)
i Input |__¥® - D - < oA % .
| ol /D x(f) %/ Magnetizing force
lDl

(a) ()

Figure 4.7 (a) Backlash and (b) hysteresis.



92

Chapter 4 System Modeling

be modeled as a system of two coupled first-order systems with two states. Specifically,
writing a second-order system as

dx
72‘1 =fi(xls x2)

dx
— =, %),

we get

jdj_z_ =f2(x1, xz).
dx;  fi(x1, x2)

The corresponding trajectories when plotted in the (x;, x;) plane yield a phase plane.
The trajectories may be drawn using a slope at each point of the phase trajectory or via
the method of isoclines [29]. The phase-plane trajectories can now be used to study
properties such as limit cycles, chaos, and bifurcation. A major drawback of this
approach is the difficulty in visualizing the solution in dimensions greater than two.

4.4.2 Linearization

In general, the qualitative behavior of a nonlinear system at a point near one of its
equilibrium points is adequately captured by its linearized approximation at that point.
Hence, it is natural to consider ways to obtain a linearized representation of nonlinear
systems. A linear model may be obtained as a local linearized approximation model
obtained through Taylor series expansion or (more recently) as a global linearized
model obtained through feedback linearization, where the former is an approximate
representation and the latter is exact. In addition, we may obtain reasonably accurate
linear models of some nonlinearities through a Fourier series based approximation
technique. In the rest of this section, these models are briefly discussed.

4.4.2.1 Local Linearized Approximation

We assume that the system is expressed by the following nonlinear vector differ-
ential equations

dx
i F(x,u) (4.16)

where x is the state vector of length » and u is the input vector of length m.
Furthermore, F is a differentiable vector function of x and u. Clearly, its isolated
equilibrium points can be determined from F(x,0) = 0. By a shift of axis, an equili-
brium point can be made to lie on the origin in the shifted system. Specifically, if an
isolated equilibrium point lies at x = x;, then the system may be modified to % =
F,(z, u) with an isolated equilibrium point at the origin of the new state space. Hence
we can assume, without any loss of generality, that x = 0 is an equilibrium point of the
system.
Next, using Taylor series expansion of F(x, u) about x =0, u = 0 gives



Section 4.4 Nonlinear Dynamical Systems 93

aF oF 1 |8°F )
F(x,u)=F(0,0)+{——] x+{—] U+ =1 x
0 J x—0,u=0 ) gumo 2|02 x=0,4=0

+ L [oF u? + 3 ___62F xu+
21| au? 2! | 9xou
x=0,u=0 x=0,u=0

Neglecting terms beyond first derivatives and noting that by definition, F(0, 0) = 0, the
linearized approximation of the system (4.16) may be expressed as the linear state
variable model

%:Ax+Bu,

where 4 and B are, respectively, n x n and n x m Jacobian matrices defined as

F
A= [91—7] and B= [9—] .
ax x=0,u=0 u x=0,u=0

This seemingly straightforward method has one major drawback. The dynamics repre-
sented by it are valid only in a small neighborhood of the equilibrium point. Thus, the
method becomes less appealing for highly nonlinear systems.

4.4.2.2 Describing Function Approximation

Use of describing functions attempts to extend transfer function-based modeling,
analysis, and control techniques from linear to nonlinear systems. Essentially, a describ-
ing function gives a linear approximation of a nonlinear system. The premise is that if a
sinusoidal input is applied to a system with a nonlinearity (symmetric about the origin)
and it is assumed that the output has the same fundamental frequency as the input, then
provided that the term containing the fundamental frequency is most significant, all
higher order harmonics, subharmonics, and the dc component may be ignored [29]. The
resulting model will be a reasonable linear approximation of the nonlinearity.

In performing describing function analysis, it is assumed that there is only one
nonlinearity in the system. If the system contains more than one nonlinearity, they are
all lumped into a single one. Clearly, the approach has some limitations, yet the sim-
plicity afforded by the method makes it quite popular for modeling nonlinearities. A
common procedure to obtain the describing function model of a nonlinearity is to find
the Fourier series representation of the output and use the fundamental harmonic to
construct the describing function.

Let the input to the nonlinear element N(M, w) be

x(f) = M sin wt

and let the steady-state output of the nonlinear device be given by



94

Chapter 4 System Modeling

y(®) =) Nysin(ot + ¢y). (4.17)
=1

with the £ = 0 term being zero and £ = 1 representing the term with the most significant
contribution. Then, by definition, the describing function of the nonlinearity is

NM,w) = Me’¢' (4.18)

Describing function descriptions are obtained by Fourier series expansion of the
output waveform emerging from the nonlinear element when excited by a sinusoidal
input with a fixed frequency. Clearly, (4.17) may be expressed as a trigonometric
Fourier series expansion

o0
¥(O) = ag+ Y _ ar.cos(ker) + by sin(kwr)
k=1

where a;, and b, are the Fourier series coefficients computed as

1 T/2
w=i f W)d(wr)
TJ rp

T/2
- % /_ | Y costkandn

T/2
by = y(t) sin(kwt)d(wt)

TJ_

where T is the period of the input signal. Then the describing function defined in (4.18)
can be reduced to the complex expression

NM,w) = ——+ —AZ (;}) +<]l:‘1,) Ltan™ (a1 /by).

A reasonably large variety of nonlinearities satisfy the following conditions: (a) the
nonlinearity exhibits odd function behavior, that is, f(—f) = —f(—?), (b) there is only
one nonlinear component in the system, (c) the nonlinearity is time invariant, and (d) all
higher-order harmonics are filtered owing to the low-pass property of the controller in
the feedback configuration. Therefore in many, but not all, cases the fundamental term
is the only significant component of the output y(z), justifying the corresponding
describing function as a reasonable approximation of the underlying nonlinearity.
Describing functions for several of the nonlinearities discussed above may be found
in advanced control texts, for example, [29] and [30].



Section 4.5 Models of Distributed Parameter Systems 95
4.4.2.3 Feedback Linearization

Both local linearizations and describing functions lead to approximate linear mod-
els. Although quite adequate for some applications, they fall short in others because of
their inherent limitations. An alternative to approximate linearization is feedback lin-
earization. This approach to obtain linearized models has garnered considerable atten-
tion in the last few years. Naturally, the feedback linearization approach has its own
limitations and shortcomings, and overcoming them is very much a topic of current
research. Feedback linearization is based on differential geometry and requires some
mathematical sophistication; hence readers are referred to [11, 14, 19, 30] and other
texts.

45 MODELS OF DISTRIBUTED PARAMETER
SYSTEMS

In the models discussed thus far, the dynamical changes were limited to the time vari-
able. A very large class of physical systems lends itself to a change of dynamical
behavior in both time and one or several space variables. Such systems are modeled
using partial differential equations (PDEs). As a quick illustration, we model the vibra-
tion of a clamped string. To simplify matters, it is assumed that the string is homo-
geneous and perfectly elastic, that gravitational forces compared to lateral tension on
the string are negligibly small, and that every infinitesimally small section of the string
traverses in a vertical plane. Using the notation in Figure 4.8, it can be easily seen that

Tycosaa=TgcosBp=T

where T4 and T are tensions at the endpoints of the segment under consideration and
T is a constant. Note that the net lateral tension is zero since there is no lateral
deflection by assumption. By Newton’s law, the net vertical tension is

: . &
TgsinfB— T sina = pra_tJ:

where pAx is the mass of the segment, f(x, ¢) is the vertical displacement, and %g is the
acceleration. Dividing the above equation by T, we get the force equation

pAx 3*f
——— =tanf —tana 4.19
fou, 0 A
Ty
a3 b
a A~ |
1y P
1 1
[} ]
S >
Figure 4.8 Deflection in a stretched string. 0 x x+Ax L



96

Chapter 4 System Modeling

where tana and tan 8 are the slopes at x and x + Ax, respectively. Since f(x, ¢), the
vertical displacement, is a function of x as well as ¢, we have

tana=?£ , tanﬁ=% .
ax x ax x+Ax
Rewriting the force equation (4.19), we get
p¥_ LY
Tor  Ax|dx| s x|

In the limit, as Ax — 0, the force equation becomes the partial differential equation

&f Tazf
ot ,oax

4.5.1 Classification of PDEs

Depending on the underlying process, partial differential equations may be linear
or nonlinear. To keep the discussion concise, we limit the scope to only linear PDEs.
The following classification, though not exhaustive, captures a very large class of prac-
tical models. The classification is based on special cases of the general three-dimensional
convection-diffusion equation or the advection-diffusion equation, given by

¥ o ¥ o |¥F P P
at Uit Ut Uy = [3x2 32 az] k20 &

af + U-Vf =«V*, where,

f f f (4.20)
2 Of 82f 62f

Furthermore, f = f(x, y, z, {) is a function of the three space variables as well as time,
and U is the velocity vector (U, U, U,). The three scalar elements in U may be
functions of one or more of the function f, the spatial variables x, y, z, and the temporal
variable ¢. If U is a constant or an explicit function of (x, y, z) and ¢, we obtain a linear
convection-diffusion equation. On the other hand, if U also depends on f, then the
corresponding convection-diffusion equation is nonlinear .

Depending on the underlying physical problem, some of the components in (4.20)
may be zero, leading to special forms of a convection-diffusion equation [25]:

Parabolic PDEs. When all three components of the velocity vector U are uni-
formly zero, Eq. (4.20) simplifies to



Section 4.5 Models of Distributed Parameter Systems 97

v 2
2 = v, 4.21)

Equation (4.21) represents a prototypical parabolic partial differential equation in
spatial and temporal variables. It is also known as the unsteady diffusion equation.

Elliptic PDEs. When all three components of the velocity vector U are uniformly
zero, and in addition f is independent of ¢, Eq. (4.21) simplifies to

Vif =0. 4.22)

Equation (4.22) represents a prototypical elliptic partial differential equation in spatial
variables. It is also known as Laplace’s equation. Following are more general formula-
tions of elliptic PDEs:

V2f =g(x,y,2) Poisson’s equation

Vf + h(x, y, 2)f = g(x, y,2) Helmholtz’s equation.
Hyperbolic PDEs. When the diffusivity k = 0, Eq. (4.20) simplifies to

Zl;+ U-Vf=0. (4.23)

Equation (4.23) represents a prototypical hyperbolic partial differential equation in
spatial and temporal variables. It is also known as the convection equation.

It is easily seen that the above classification is based on three-dimensional flow
models. If the flow is limited to two of the three spatial variables, then Eq. (4.20)
represents two-dimensional flow models. Similarly, if the flow is restricted to a single
spatial variable, then (4.20) represents one-dimensional flow models.

4.5.2 Finite Difference Models of PDEs

Because of their inherently complex nature, the best technique for solution of most
PDEs is numerical. To obtain a numerical solution, the solution space of the PDE is
discretized into rectangles of appropriate dimensions for time and one-space dimen-
sional problems (or two-space dimensional problems), rectangular parallelepipeds for
time and two-space dimensional problems (or three-space dimensional problems), and
rectangular hyper parallelepipeds in higher dimensions. Development of finite differ-
ence models is most easily illustrated by means of time and one-space dimension, for
example, the one-dimensional diffusion equation

Fx.t) _ Ffx.0)
bl Sl (4.24)

Discretization of its solution space for x, < x < x; and * <t < ¢/ involves dividing
the time and space axes into small steps. Step sizes are governed by the nature of the
problem and desired accuracy. If the solution space exhibits large variations, it is



Chapter 4 System Modeling

advisable to use small step sizes and vice versa. The discretized solution space for the
above problem is shown in Figure 4.9.

Based on the approximation model used for derivatives in the PDE, we get several
distinct finite difference models of the system described by the PDEs.

4.5.2.1 Explicit Models (Forward Differences)

We discretize the spatial axis x € (xo, X) in steps of Ax and denote the point xo +
(i = 1)Ax by x;. Similarly, we discretize the temporal axis with increments Az such that
t/ denotes 1° 4 jAt. Then, the point /7 represents the solution at the point (x;, #/) of the
solution space (as shown in Figure 4.9). Using finite difference approximations of
derivatives in (4.24),

of (e, ) _f7* ~f/

ot ' At _+ 0('At) (4.25)
) S |
I)Zfa(xx2 2l (Af;c)2+ Ity oqa)

we get a finite difference model that is first-order accurate in time and second-order
accurate in space. In (4.25), the temporal variable derivative is approximated by for-
ward differences and the space derivative by central differences. The corresponding
stencil is shown in Figure 4.9. The model can be solved for f/*' as

M _ f J 4 ofi _ kAt
=l +(0=2af +afy,, « _(A_x)z—'
Since this is a discrete system, for stability the eigenvalues of the state matrix must be
less than unity in magnitude. Note that it is also possible to use a forward difference
approximation of the time derivative with second-order accuracy in time.

fee, 1) A
/’/ —T T~
Stencil forimpticit /" ~ ~ / ~ 7
method —s—___ WA W AP
IR A A
i
/ KR
7 v
’o/ e / ~ Stencil for explicit
T N7 NS method

P 4

Figure 4.9 Discretization of space-time solution space.



Section 4.6 MacroModels: Scope and Future 99
4.5.2.2 Implicit Models (Backward Differences)

Explicit models based on forward differences are very efficient to solve because
they require a simple sparse matrix multiplication. However, they are not uncondition-
ally stable; stability depends on the step size chosen to discretize the grid. An alternative
approach is to use backward differences in the temporal variable and central differences
in the spatial variable. As will be seen shortly, to propagate the solution, this approach
requires solution of a sparse system of equations.

Assume that the point under consideration is (x;, #/*!). Approximating the PDE at
this point using backward differences in temporal and central differences in spatial
variables, we get

=1 /A /4y )
A7 +O0(A) =« A + O((AD)). (4.26)
On rearranging Eq. (4.26), we get
—of N+ (L4200 —of Y =17 (4.27)

The stencil that corresponds to (4.27) is shown in Figure 4.9. It has been shown that
the implicit model in (4.27) is unconditionally stable. Furthermore, to improve the
accuracy in the temporal variable to O((Af)?), one could use the Crank-Nicholson
method [25].

Following a similar approach, it is easy to see that both implicit and explicit finite
difference models for other PDEs can be obtained. However, one must verify that the
solution will converge by ensuring that the spectral radius of the state matrix of the
underlying dynamical system is less than unity.

4.6 MACROMODELS: SCOPE AND FUTURE

Although the discussion thus far has been limited to techniques for a specific type of
system models, it would only be appropriate to finally turn our attention to more
general questions. It is true that, to a large extent, present technology permits the
engineer to arrive at an acceptably accurate model of a specific component of the
system. We refer to these models as micromodels. A reasonably complex system may
consist of a generous mix of components that may be linear, nonlinear, time driven,
event driven, and so forth. From a modeling viewpoint, a complex system has a
highly amorphous structure. Therefore, no single modeling technique is either suited
or sufficient for representation of a system. A challenging aspect of research in
modeling always has been and continues to be tactical integration of information
(component models) to achieve a specific objective. We will refer to these heteroge-
neous systems as macromodels .

Perhaps it would be fair to say that because of the nature of the subject, the field of
communication networks has had to deal with coordination and control of distributed
information the most. It is also interesting to note that there is much commonality
between some of the macromodeling techniques proposed in the control system litera-



100

Chapter 4 System Modeling

ture and those in use in communication networks. Some commonly used architectures
for local area networks in communication network systems are shown in Figure 4.10.

Over the years, several macromodels have been proposed in the systems literature.
Most continue to be used in their largely original form with suitable modifications or
enhancements as warranted by the system or situation under consideration. These
include hierarchical models, decentralized models, multimodels, and so on.

Hierarchical Models. Hierarchical models represent a top-down control/coordina-
tion protocol. There may be several levels of hierarchy within a system. The modules at
each level of hierarchy control the modules at the next lower level and are in turn
controlled by the modules at the next higher level. The decision-making structure is
pyramidal; the various levels of hierarchy in the system share information vertically. It
is also evident that the decision process has a larger significance when made at higher
levels of hierarchy. Hierarchical models correspond to the star topology in commu-
nication networks. A mathematically sophisticated treatment of hierarchical control
may be found in [18].

Decentralized Models. A decentralized model represents a more distributed infor-
mation and control structure. Although the system remains structurally intact, its out-
put information is shared among several controllers. These controllers collectively
contribute to the control of the system. Unlike hierarchical models, where the structure
is top-down, the structure of decentralized models is more lateral. The control decisions
are made locally, and the effect of local control decisions may be coordinated through a
centralized coordination module. The model provides sufficient flexibility for reorga-
nization and lends itself naturally to building redundancy into the control system. In
decentralized models, although the information is easily accessible throughout the
system, the control architecture is decentralized. In fact, the local controllers are
given considerable autonomy. The tree protocol in communication networks has con-
siderable commonality with decentralized systems, where the system buses carry the
information and subsystems are controlled by local controllers. The reader is referred to
[12] for more details on decentralized models.

Supervisory Control Models. Hierarchical and decentralized models have a unique
characteristic: They provide a uniform structure to the entire system model. This prop-

Station

Information flow

Repeater

(a) Tree (b) Ring (c) Star

Figure 4.10 Common network topologies.



Section 4.7 Remarks 101

erty can be a strong point for situations where there is little or no ambiguity about
micromodels and leads to mathematically well-defined models. On the other hand, if
the system is sufficiently complex, it may not be the best strategy to use a uniform
modeling technique throughout the system. Supervisory control models provide a
framework to address the situation where a multitude of nonuniform micromodels
represent low-level systems. The task of the supervisory control module is then to assign
an appropriate weight to each micromodel and to develop a composite model output to
achieve the control objective.

The control flow outlined in Figure 4.11 represents the general framework within
which supervisory control models may operate. For more information on supervisory
control (also referred to as a multiple model approach), the readers are referred to
[22].

Input
Supervisor

Output

Figure 4.11 Supervisory control.

4.7 REMARKS

The preceding discussion was deliberately limited to deterministic models. In addi-
tion to models and techniques discussed in this chapter, there are mathematically
mature techniques for several other modeling-related issues. For example, an exten-
sive literature addresses the problem of stochastic modeling, briefly alluded to in
Section 4.3.2, where an explicit representation of random uncertainty is taken into
account.

As was mentioned at the very beginning of this chapter, the field of modeling is
vast and ever growing. It would be a daunting task to encapsulate the entire subject into
a few short pages. The primary purpose of this chapter was to expose the reader to
essentials of modeling rather than to provide an exhaustive treatment of models and
modeling techniques. Some of the topics discussed in this chapter are covered in con-
siderably greater detail in related chapters listed in the box below. For the rest, the
reader is urged to refer to the references listed at the end of the chapter and to research
journals, where this ever-evolving subject gets continued attention.



102 Chapter 4 System Modeling
ACKNOWLEDGMENT

The author gratefully acknowledges numerous constructive suggestions by Tariq Samad
in writing this chapter.

Related Chapters

o A discussion on models for discrete-event systems is included in Chapter 2.

e Models for systems that combine continuous-time and discrete-event behavior are
described in Chapter 7.

e A detailed treatment of nonlinear approximators as system models can be found in
Chapter 6.

e Compositional approaches to system modeling that rely on computational tools are
presented in Chapter 3.

REFERENCES

[1] D. Y. Abramovitch and L. G. Bushnell, “Report on the fuzzy versus conventional control
debate.” IEEE Control Systems Magazine, Vol. 19, no. 3, pp. 88-91, 1999.
[2] A. E. Bryson, Dynamic Optimization. Reading, MA: Addison-Wesley, 1999.
[3] P. E. Caines, Linear Stochastic Systems. New York: John Wiley & Sons, 1988.
[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall, 1983.
[5]1 R. C. Dorf and R. H. Bishop, Modern Control Systems. Reading, MA: Addison-Wesley,
1998.
[6] A. G. Evans and R. Fischl, “Optimal least squares time-domain synthesis of digital filters.”
IEEE Trans. Audio and Electroacoustics, Vol. AEA-21, pp. 61-65, 1973.
[7]1 K. V. Fernando and H. Nicolson, “Singular perturbation model reduction of balanced
systems.” IEEE Trans Automat. Control, Vol. AC-27, pp. 466468, 1982.
[8] K. Glover, “All optimal Hankel norm approximations of linear multivariable systems, and
their L., error bounds.” Int. J. Contr., Vol. 39, pp. 1115-1193, 1984.
[9] G. H. Golub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore, MD: Johns
Hopkins University Press, 1989.
[10] W. J. Palm III, Modeling, Analysis and Control of Dynamic Systems. New York: John Wiley
& Sons, 1983.
[11] A. Isidori, Nonlinear Control Systems. New York: Springer-Verlag, 1989.
[12] M. Jamshidi, Large Scale Systems—Modeling, Control and Fuzzy Logic. Englewood Cliffs,
NIJ: Prentice-Hall, 1996.
[13] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[14] H. K. Khalil, Nonlinear Systems. New York: Macmillan, 1992.
[15] B. Kuo, Automatic Control Systems. Englewood Cliffs, NJ: Prentice Hall, 1995.
[16] L. Ljung, System Identification: Theory for the User. Englewood Cliffs, NJ: Prentice-Hall,
1987.
[17] L. E. McBride, H. W. Schafgen, and K. Steiglitz, “Time-domain approximation by iterative
methods.” IEEE Trans. Circuit Theory, Vol. CT-13, pp. 318-387, 1966.
[18] M. C. Mesarovic, D. Macko, and Y. Takahara, Theory of Hierarchical Multilevel Systems.
New York: Academic Press, 1970.



References 103

[19] R. R. Mohler, Nonlinear Systems, Vol. 1, Dynamics and Control. Englewood Cliffs, NJ:
Prentice-Hall, 1991.

[20] M. Moonen and J. Vandewalle, “A QSVD approach to on- and off-line state-space identi-
fication.” Int. J. Contr., Vol. 51, pp. 1133-1146, 1990.

[21] B. C. Moore, “Principal component analysis in linear systems: Controllability, observability,
and model reduction.” IEEE Trans. Automat. Control, Vol. AC-26, pp. 17-31, 1981.

[22] R. Murray-Smith and T. A. Johansen, Multiple Model Approaches to Modelling and Control.
London: Taylor & Francis Ltd., 1997.

[23] J. P. Norton, An Introduction to Identification. New York: Academic Press, 1986.

[24] K. Ogata, Modern Control Engineering. Englewood Cliffs, NJ: Prentice Hall, 1997.

[25] C. Pozrikidis, Numerical Computation in Science and Engineering. London: Oxford
University Press, 1998.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C,
The Art of Computer Programming. Cambridge, MA: Cambridge University Press, 1997.

[27] T. Samad, “Complexity management: Multidisciplinary perspectives on automation and
control.” Technical Report CON-R98-001, Honeywell Technology Center, 1998.

[28] V. Saxena, J. O’Reilly, and P. V. Kokotovic, “Singular perturbation and time scale methods
in control theory: Survey 1976-1983.” Automatica, Vol. 20, pp. 272-293, 1984.

[29] S. M. Shinners, Modern Control System Theory and Design. New York: John Wiley & Sons,
1992.

[30] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice Hall,
1991.

[31] P. P. J. van den Bosch and A. C. van der Klauw, Modeling, Identification and Simulation of
Dynamical Systems. Boca Raton, FL: CRC Press, 1994.



Chapter | INTELLIGENT CONTROL: AN
5 OVERVIEW OF TECHNIQUES

Kevin M. Passino

Editor’s Summary
In many established fields, the label “intelligent” heralds new developments that take issue with some
traditional assumptions in research. In the case of intelligent control, an explicit attempt is made to draw
inspiration from nature, biology, and artificial intelligence, and a methodology is promoted that is more
accepting of heuristics and approximations—and is less insistent on theoretical rigor and completeness—
than is the case with most research in control science.

Beyond such general and abstract features, succinct characterizations of intelligent control are
difficult. Extensional treatments are an easier matter. Fuzzy logic, neural networks, genetic algorithms,
and expert systems constitute the main areas of the field, with applications to nonlinear identification,
nonlinear control design, controller tuning, system optimization, and encapsulation of human operator
expertise. Intelligent control is thus no narrow specialization; it furnishes a diverse body of techniques that
potentially addresses most of the technical challenges in control systems. It is also important to emphasize
that intelligent control is by no means methodologically opposed to theory and analysis. Chapter 6 of this
book, for example, discusses some theoretical results for neural networks and fuzzy models as nonlinear
approximators

Introductory tutorials to the key topics in intelligent control are provided in this chapter. No prior
background in these topics is assumed. Examples from ship maneuvering, robotics, and automotive
diagnostics help motivate the discussion. (Other chapters in this volume, notably Chapter 16, also outline
applications of intelligent control.) General observations on autonomy and adaptation—two character-
istics that are often considered essential to any definition of intelligence—are also included.

Kevin Passino is an associate professor in the Department of Electrical Engineering at The Ohio
State University, past chair of the IEEE-CSS Technical Committee on Intelligent Control, and current vice
president of Technical Activities for CSS.

5.1 INTRODUCTION

104

Intelligent control achieves automation via the emulation of biological intelligence. It
either seeks to replace a human who performs a control task (e.g., a chemical process
operator), or it borrows ideas from how biological systems solve problems and applies
them to the solution of control problems (e.g., the use of neural networks for control).
In this chapter we provide an overview of several techniques used for intelligent control
and discuss challenging industrial application domains where these methods may pro-

vide particularly useful solutions.



Section 5.2 Intelligent Control Techniques 105

This chapter should be viewed as a resource for those who are in the early stages of
considering the development and implementation of intelligent controllers for industrial
applications. It is impossible to provide the full details of a field as large and diverse as
intelligent control in a single chapter. Hence, the focus here is on presenting the main
ideas that have been found most useful in industry. Examples of how these methods
have been used are given, and references for further study are provided.

The chapter begins with a brief overview of the main (popular) areas in intelligent
control, notably, fuzzy control, neural networks, expert and planning systems, and
genetic algorithms. In addition, complex intelligent control systems, in which the
goal is to achieve autonomous behavior, are summarized. In each case, applications
are used to motivate the need for the technique. Moreover, we explain in broad terms
how to apply the methods to challenging problems. We summarize the advantages and
disadvantages of the approaches and provide some comparative analyses with conven-
tional control methods.

Overall, this chapter should be viewed as a practitioner’s first introduction to
intelligent control. The focus is on challenging problems and their solutions. The reader
should be able to gain novel ideas about how to solve challenging problems and will
find resources to carry these ideas to fruition.

5.2 INTELLIGENT CONTROL TECHNIQUES

In this section we provide brief overviews of the main areas of intelligent control. The
objective here is not to provide a comprehensive treatment; rather, we seek only to
present the basic ideas to give a flavor of the approaches.

5.2.1 Fuzzy Control

Fuzzy control is a methodology that represents and implements a (smart) human’s
knowledge about how to control a system. A fuzzy controller is shown in Figure 5.1; it
has several components:

e The rule base is a set of rules about how to control.

e Fuzzification is the process of transforming the numeric inputs into a form that
can be used by the inference mechanism.

Fuzzy controller

5
&

Outputs
y()

o

Reference input .
r(f)

Inputs
u(r)

Process

Defuzzification

Figure 5.1 Fuzzy control system.



106

Chapter 5 Intelligent Control: An Overview of Techniques

e The inference mechanism uses information about the current inputs (formed by
fuzzification), decides which rules apply in the current situation, and forms
conclusions about what the plant input should be.

o Defuzzification converts the conclusions reached by the inference mechanism
into a numeric input for the plant.

5.2.1.1 Fuzzy Control Design

As an example, consider the tanker ship-steering application in Figure 5.2 in which
the ship is traveling in the x direction at a heading y and is steered by the rudder input
3. Here, we seek to develop the control system in Figure 5.3 by specifying a fuzzy
controller that would emulate how a ship captain would steer the ship. Here, if v, is
the desired heading, e = ¢, — ¢ and c = ¢é.

The design of the fuzzy controller essentially amounts to choosing a set of rules
(rule base) in which each rule represents the captain’s knowledge about how to steer.

Consider the following set of rules:

. If e is neg and c is neg then § is poslarge.
. If e is neg and c is zero then § is possmall.
. If e is neg and c is pos then § is zero.

. If e is zero and c is neg then § is possmall.
. If e is zero and c is zero then § is zero.

. If e is zero and c is pos then § is negsmall.
. If e is pos and c is neg then § is zero.

. If e is pos and c is zero then § is negsmall.
. If e is pos and c is pos then § is neglarge.

O 0 3 &N L A W N =

N{.

N o

Figure 5.2 Tanker ship steering problem.

Y, fz':\ 4

- P Fuzzy controller

Tanker
ship

Figure 5.3 Control system for tanker.




Section 5.2 Intelligent Control Techniques 107

Here, “neg” means negative, ‘“‘poslarge” means positive and large, and the others
have analogous meanings. What do these rules mean? Rule 5 says that the heading is
good, so let the rudder input be zero. For Rule 1:

e ‘“‘eis neg” means that i is greater than v,.
e “cis neg” means that ¥ is moving away from v, (if ¥, is fixed).

o In this case we need a large positive rudder angle to get the ship heading in the
direction of ,.

The other rules can be explained in a similar fashion.

What, precisely, do we (or the captain) mean by, for example, “e is pos,” or “c is
zero,” or “§ is poslarge”? We quantify the meanings with “fuzzy sets” (‘““‘membership
functions™), as shown in Figure 5.4. Here, the membership functions on the e axis
(called the e “universe of discourse”) quantify the meanings of the various terms
(e.g., “eis pos”). We think of the membership function having a value of 1 as meaning
“true,” while a value of 0 means “false.” Values of the membership function in between
0 and 1 indicate “degrees of certainty.” For instance, for the e universe of discourse the
triangular membership function that peaks at e = 0 represents the (fuzzy) set of values
of e that can be referred to as “zero.” This membership function has a value of 1 for
e =0 (i.e., i,0(0) = 1) which indicates that we are absolutely certain that for this value
of e we can describe it as being “zero.” As e increases or decreases from 0, we become
less certain that e can be described as “zero,” and when its magnitude is greater than x
we are absolutely certain that it is not zero, so the value of the membership function is
zero. The meaning of the other two membership functions on the e universe of discourse
(and the membership functions on the change-in-error universe of discourse) can be

\/‘pos(e) &1 = %

A

.

e(1), (rad.)

1
&1 &1

”

&= 100
A - A
- 1 [ Uod oy oo
-5 o =e(t), (rad/sec
% & O )
“neglarge”  “negsmall” “zero” “possmall” “poslarge”
_8oz
507180

< -
< * + 4

Figure 5.4 Membership functions for inputs -8 _% £ IO 1 £ g  O(f), (rad)

and output. 2



108

Chapter 5 Intelligent Control: An Overview of Techniques

described in a similar way. The membership functions on the § universe of discourse are
called “singletons.” They represent the case where we are only certain that a value of §
is, for example, “possmall” if it takes on only one value, in this case %, and for any
other value of § we are certain that it is not “possmall.” Finally, notice that Figure 5.4
shows the relationship between the scaling gains in Figure 5.3 and the scaling of the
universes of discourse. (Notice that for the inputs there is an inverse relationship since
an increase an input scaling gain corresponds to making, for instance, the meaning of
“zero” correspond to smaller values.)

It is important to emphasize that other membership function types (shapes) are
possible; it is up to the designer to pick ones that accurately represent the best ideas
about how to control the plant. Fuzzification (in Figure 5.1) is simply the act of finding,
for example, w,,,(e) for a specific value of e.

Next, we discuss the components of the inference mechanism in Figure 5.1. First,
we use fuzzy logic to quantify the conjunctions in the premises of the rules. For
instance, the premise of Rule 2 is

“e is neg and ¢ is zero.”

Let yee(e) and pu,,,(c) denote the respective membership functions of each of the two
terms in the premise of Rule 2. Then, the premise certainty for Rule 2 can be defined by

Hpremise(2) = min{ﬂneg(e)’ Mzero (C)} .

Why? Think about the conjunction of two uncertain statements. The certainty of the
assertion of two things is the certainty of the least certain statement.

In general, more than one Uy emise(;y Will be nonzero at a time, so more than one rule
is “on” (applicable) at every time. Each rule that is “on” can contribute to making a
recommendation about how to control the plant and generally ones that are more on
(i-e., have (Lpemise(y Closer to one) should contribute more to the conclusion. This
completes the description of the inference mechanism.

Defuzzification involves combining the conclusions of all the rules. “Center-aver-
age” defuzzification uses

9
_ Zi:l b i Mpremise(i)

8 9
Zi:l M premise(i)

where b; is the position of the center of the output membership function for the ith rule
(i.e., the position of the singleton). This is simply a weighted average of the conclusions.
It completes the description of a simple fuzzy controller (and notice that we did not use
a mathematical model in its construction).

There are many extensions to the fuzzy controller that we describe above. There
are other ways to quantify the “and” with fuzzy logic, other inference approaches,
other defuzzification methods, “Takagi-Sugeno” fuzzy systems, and multi-input
multi-output fuzzy systems. See (7, 25, 26, 31] for more details.



Section 5.2 Intelligent Control Techniques 109
5.2.1.2 Ship Example

Using a nonlinear model for a tanker ship [3], we get the response in Figure 5.5
(tuned using ideas from how you tune a proportional-derivative controller; notice that
the values of g, =2/m, g, =250, and g, = 8n/18 are different from the first guess
values shown in Figure 5.4) and the controller surface in Figure 5.6. The control surface
shows that there is nothing mystical about the fuzzy controller! It is simply a static (i.e.,
memoryless) nonlinear map. For real-world applications, most often the surface will
have been shaped by the rules to have interesting nonlinearities.

Ship heading (solid) and desired ship heading (dashed), deg

500 1000 1500 2000 ZSbO 30|00 35b0 4000
Time (sec)

Rudder angle (d), deg

—-60 I L I 1 1 L 1
0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec)

Figure 5.5 Response of fuzzy control system for tanker heading regulation
(g1 = 2/m; g2 =250; g0 = 8n/18).

5.2.1.3 Design Concerns

One encounters several design concerns when constructing a fuzzy controller.
First, it is generally important to have a very good understanding of the control
problem, including the plant dynamics and closed-loop specifications. Second, it is
important to construct the rule base very carefully. If you do not tell the controller
how to properly control the plant, it cannot succeed! Third, for practical applications,
you can run into problems with controller complexity since the number of rules used
grows exponentially with the number of inputs to the controller, if you use all pos-
sible combinations of rules. (However, note that the number of rules on at any one
time grows much slower for the ship example.) As with conventional controllers there
are always concerns about the effects of disturbances and noise on, for example,
tracking error. (Just because it is a fuzzy controller does not mean that it is auto-
matically a “robust” controller.) Indeed, analysis of robustness properties, along with



110

Chapter 5 Intelligent Control: An Overview of Techniques

Fuzzy controller mapping between inputs and outputs

Fuzzy controller output (0), deg

~150
S50 9

), dei

0

(S
ad’"g
(& o
g ‘:“0‘ (&

0.2 50
Top. 100 ~
/c)- o 0.4 150 Hcad\“

%

Figure 5.6 Fuzzy controller surface.

stability, steady-state tracking error, and limit cycles, can be quite important for some
applications. As already mentioned, since the fuzzy controller is a nonlinear control-
ler, the current methods in nonlinear analysis apply to fuzzy control systems also.
(See [7, 24, 25, 31] to find out how to perform stability analysis of fuzzy control
systems.)

In summary, the main advantage of fuzzy control is that it provides a heuristic (not
necessarily model-based) approach to nonlinear controller construction. In the next
section, we will discuss why this advantage can be useful in the solution to challenging
industrial applications.

5.2.2 Neural Networks

Artificial neural networks are circuits, computer algorithms, or mathematical represen-
tations loosely inspired by the massively connected set of neurons that form biological
neural networks. Artificial neural networks are an alternative computing technology
that have proven useful in a variety of pattern recognition, signal processing, estima-
tion, and control problems. In this chapter we focus on their use in estimation and
control.

5.2.2.1 Multilayer Perceptrons

The feedforward multilayer perceptron is the most popular neural network in
control system applications, and so we limit our discussion to it. The second most
popular network is probably the radial basis function neural network (of which one
form is identical to one type of fuzzy system).

The multilayer perceptron is composed of an interconnected set of neurons, each of
which has the form shown in Figure 5.7. Here,



Section 5.2 Intelligent Control Techniques 111

Weights

Activation function

z

e p——

Figure 5.7 Single neuron model.

n
zZ= Zw;xi —-b
i=1

and the w; are the interconnection “weights” and b is the “bias” for the neuron. (These
parameters model the interconnections between the cell bodies in the neurons of a
biological neural network.) The signal z represents a signal in the biological neuron,
and the processing that the neuron performs on this signal is represented with an
“activation function” f where

y=f@ =f<zwixi—b)~ (5.1)
i=1

The neuron model represents the biological neuron that “fires”” (turns on) when its
inputs are significantly excited (i.e., z is big enough). Firing is defined by an activation
function f* where two (of many) possibilities for its definition are:

e Threshold function:

1 if z>0
f(z)‘{o if z<0

e Sigmoid (logistic) function:
(5.2)

There are many other possible choices for neurons, including a linear neuron that is
simply given by f(z) = z.

Equation (5.1), with one of the above activation functions, represents the compu-
tations made by one neuron. Next, we interconnect them. Let circles represent the
neurons (weights, bias, and activation function), and lines represent the connections
between the inputs and neurons and the neurons in one layer and the next layer. Figure
5.8 is a three-“layer” perceptron since there are three stages of neural processing
between the inputs and outputs.



112 Chapter 5 Intelligent Control: An Overview of Techniques

First Second Output
hidden hidden layer
layer layer

Figure 5.8 Multilayer perceptron model.

Here, we have

o Inputs: x;, i=1,2,...,n

e Outputs: y;,j=1,2,...,m

o Number of neurons in the first hidden layer, n;, in the second hidden layer n,,
and in the output layer, m

e In an N layer perceptron there are »; neurons in the ith hidden layer,
i=1,2,...,N—1.

We have

n
1_ ,1 1. _ gl
xj —fl <Z w,-jx,- bj)
i=1

withj=1,2,...,n,. We have

n
2 _ 2 2.1 22
i=1

withj=1,2,...,n,. We have

n
yi=K (Z Wi = bf)
i=1
with j =1,2,..., m. Here, we have the following:

. w,!j (w,?j) are the weights of the first (second) hidden layer.
e w; are the weights of the output layer.
. b} are the biases of the first hidden layer.



Section 5.2 Intelligent Control Techniques 113

e b’ are the biases of the second hidden layer.
e b; are the biases of the output layer.

e f; (for the output layer), j}z (for the second hidden layer), and j}l (for the first
hidden layer) are the activation functions (all can be different).

5.2.2.2 Training Neural Networks

How do we construct a neural network? We train it with examples. Regardless of
the type of network, we will refer to it as

y = F(x,0)

where 0 is the vector of parameters that we tune to shape the nonlinearity it implements.
(F could be a fuzzy system too in the discussion below.) For a neural network, 8 would
be a vector of the weights and biases. Sometimes we call F an approximator structure.
Suppose that we gather input-output training data from a function y = g(x) that we do
not have an analytical expression for (e.g., it could be a physical process). .

Suppose that y is a scalar but that x =[xy, ..., x,]". Suppose that x' =[x}, ...,
xi]" is the ith input vector to g and that y* = g(x). Let the training data set be

G={(')):i=1,...,M}.

The function approximation problem is how to tune 6 using G so that F matches g(x) at
a test set I'. (T is generally a much bigger set than G.) For system identification the x'
are composed of past system inputs and outputs (a regressor vector) and the y' are the
resulting outputs. In this case, we tune 6 so that F implements the system mapping
(between regressor vectors and the output). For parameter estimation, the x' can be
regressor vectors, but the ' are parameters that you want to estimate. In this way we
see that by solving the above function approximation problem we are able to solve
several types of problems in estimation (and control, since estimators are used in, for
example, adaptive controllers).

Consider the simpler situation in which it is desired to cause a neural network
F(x, 6) to match the function g(x) at only a single point X where y = g(X). Given an
input X, we would like to adjust 6 so that the difference between the desired output and
neural network output

e=7j— F(%,0) (5.3)

is reduced (where y may be either vector or scalar valued). In terms of an optimization
problem, we want to minimize the cost function

J@)=e'e. (5.4)

Taking infinitesimal steps along the gradient of J(#) with respect to 6 will ensure that
J(6) is nonincreasing. That is, choose

) = —71vJ(6), (5.5)



114

where 1 > 0, and

Chapter 5 Intelligent Control: An Overview of Techniques

where 77 > 0 is a constant and if 6 = [0, ..., 9P]T,

AJ(6)

36 _

vJ(©) = (5.6)

%Q) .

P

Using the definition for J(6), we get

-
b= —i e e)

a9
6=~ (7~ F(5,6) G F(5, 0)

6= —ﬁ%(joﬁ —2F(%,0) 7+ F(%,0)  F(%, 0)).

Now, taking the partial we get

. _( F(%60)_ _OF(x6)  _
= (_2 T2 F(x,O)).

If we let n = 27, we get

T

j_ OFE.2)

0 - F(x,0))

z=0

6 = nt(%, O)e (5.7)

IF(x,2)|"
0z |,_p

{(x,0) = (5.8)

Using this update method, we seek to adjust 6 to try to reduce J(6) so that we achieve
good function approximation.

In discretized form and with nonsingleton training sets, updating is accomplished
by selecting the pair (x', '), where i € {1,..., M} is a random integer chosen at each
iteration, and then using Euler’s first-order approximation the parameter update is



Section 5.2 Intelligent Control Techniques 115
ok + 1) = 8(k) + n¢' (ke(k), (5.9)

where k is the iteration step, e(k) = y' — F(x', 6(k)) and

dF(x', 2) !

{)=—¢ (5.10)

z=0(k)

When M input-output pairs, or patterns, (x',y') where )’ = g(x’) are to be
matched, “batch updates” can also be done. In this case, let

e = yi - F(xi, 0), (5.11)
and let the cost function be
JO)=)Y ¢, (5.12)
i=1

and the update formulas can be derived similarly. This is actually the backpropagation
method (except we have not noted that because of the structure of the layered neural
networks certain computational savings are possible). In practical applications the
backpropagation method, which relies on the steepest descent approach, can be very
slow since the cost J(f) can have long low-slope regions. It is for this reason that in
practice numerical methods are used to update neural network parameters. Two of the
methods that have proven particularly useful are the Levenberg-Marquardt and con-
jugate-gradient methods. For more details, see [5, 8, 12, 13, 14, 16, 17, 21, 32].

5.2.2.3 Design Concerns

You encounter several design concerns in solving the function approximation
problem using gradient methods (or others) to tune the approximator structure.
First, it is difficult to pick a training set G that you know will ensure good approxima-
tion. (Indeed, most often it is impossible to choose the training set; often some other
system chooses it.) Second, the choice of the approximator structure is difficult.
Although most neural networks (and fuzzy systems) satisfy the universal approxima-
tion property, so that they can be tuned to approximate any continuous function on a
closed and bounded set to an arbitrary degree of accuracy, this generally requires that
you be willing to add an arbitrary amount of structure to the approximator (e.g., nodes
to a hidden layer of a multilayer perceptron). Because of finite computing resources, we
must then accept an approximation error. How do we pick the structure to keep this
error as low as possible? This is an open research problem, and algorithms that grow or
shrink the structure automatically have been developed. Third, it is generally impossible
to guarantee convergence of the training methods to a global minimum owing to the
presence of many local minima. Hence it is often difficult to know when to terminate
the algorithm. (Often tests on the size of the gradient update or measures of the
approximation error are used to terminate.) Finally, there is the important issue of
generalization, in which the neural network is hopefully trained to nicely interpolate



116

Chapter 5 Intelligent Control: An Overview of Techniques

between similar inputs. It is very difficult to guarantee that good interpolation is
achieved. Normally, all we can do is use a rich data set (large, with some type of
uniform and dense spacing of data points) to test that we have achieved good inter-
polation. If we have not, then we may not have used enough complexity in our model
structure, or we may have too much complexity that resulted in “overtraining” where
we match very well at the training data but there are large excursions elsewhere.

In summary, the main advantage of neural networks is that they can achieve good
approximation accuracy with a reasonable number of parameters by training with data.
(Hence there is a lack of dependence on models.) We will show how this advantage can
be exploited in the next section for challenging industrial control problems.

5.2.3 Genetic Algorithms

A genetic algorithm (GA) is a computer program that simulates the characteristics of
evolution, natural selection (Darwin), and genetics (Mendel). It is an optimization
technique that performs a parallel (i.e., candidate solutions are distributed over the
search space) and stochastic but directed search to evolve the most fit population.
Sometimes when it “gets stuck” at a local optimum, it is able to use the multiple
candidate solutions to try to simultaneously find other parts of the search space that
will allow it to “jump out” of the local optimum and find a global one (or at least a
better local one). GAs do not need analytical gradient information, but with modifica-
tions they can exploit such information if it is available.

5.2.3.1 The Population of Individuals

The fitness function of a GA measures the quality of the solution to the optimiza-
tion problem (in biological terms, the ability of an individual to survive). The GA seeks
to maximize the fitness function J(6) by selecting the individuals that we represent with
the parameters in 6. To represent the GA in a computer, we make 6 a string (called a
chromosome) as shown in Figure 5.9.

In a base-2 representation, alleles (values in the positions, genes on the chromo-
some) are 0 and 1. In base-10, the alleles take on integer values between 0 and 9. A
sample binary chromosome is given by: 1011110001010, while a sample base-10 chro-
mosome is: 8219345127066. These chromosomes should not necessarily be interpreted
as the corresponding positive integers. We can add a gene for the sign of the number
and fix a position for the decimal point to represent signed reals. In fact, representation
via chromosomes is generally quite abstract. Genes can code for symbolic or structural
characteristics, not just for numeric parameter values, and data structures for chromo-
somes can be trees and lattices, not just vectors.

Chromosomes encode the parameters of a fuzzy system or neural network, or an
estimator or controller’s parameters. For example, to tune the fuzzy controller dis-

Values here = alleles

a1 a3y 2 —

%

String of genes = chromosome
Gene = digit location

Figure 5.9 String for representing an individual.



Section 5.2 Intelligent Control Techniques 117

cussed earlier for the tanker ship, you could use the chromosome:
biby---by

(These are the output membership function centers.) To tune a neural network, you can
use a chromosome that is a concatenation of the weights and biases of the network.
Aspects of the structure of the neural network, such as the number of neurons in a
layer, the number of hidden layers, or the connectivity patterns can also be incorpo-
rated into the chromosome. To tune a proportional-integral-derivative (PID) control-
ler, the chromosome would be a concatenation of its three gains. '

How do we represent a set of individuals (i.e., a population)? Let 6’(k) be a single
parameter at time k (a fixed-length string with sign digit), and suppose that chromo-
some j is composed of N of these parameters that are sometimes called traits. Let

6k = [6,(0), 6k, ..., By 0]

be the jth chromosome.
The population at time (‘“‘generation”) k is

Pk)={0(k):j=1,2,...,5} (5.13)

Normally, you try to pick the population size S to be big enough so that broad
exploration of the search space is achieved, but not too big or you will need too
many computational resources to implement the genetic algorithm.

Evolution occurs as we go from a generation at time k to the next generation at
time k + 1 via fitness evaluation, selection, and the use of genetic operators such as
crossover and mutation.

5.2.3.2 Genetic Operators
Selection follows Darwin’s theory that the most qualified individuals survive to

mate. We quantify “most qualified” via an individual’s fitness J(¢/(k)). We create a
“mating pool” at time k:

ME) ={mk) :j=1.2,...,S} (5.14)
Then, we select an individual for mating by letting each n7/(k) be equal to ¢'(k) € P(k)
with probability
i = ——;I(el(k).) . (5.15)
21 J@(k)

With this approach, more fit individuals will tend to end up mating more often, thereby
providing more offspring. Less fit individuals, on the other hand, will have contributed
less of the genetic material for the next generation.

Next, in the reproduction phase that operates on the mating pool, there are two
operations: crossover and mutation. Crossover is mating in biological terms (the pro-



118

Chapter 5 Intelligent Control: An Overview of Techniques

cess of combining chromosomes), for individuals in M (k). For crossover, you first
specify the crossover probability p, (usually chosen to be near unity). The procedure
for crossover is: Randomly pair off the individuals in the mating pool M (k). Consider
chromosome pair ¢,6'. Generate a random number r € [0, 1]. If r > p,, then do not
crossover (just pass the individuals into the next generation). If r < p., then crossover 74
and #'. To crossover these chromosomes, select at random a cross site and exchange all
the digits to the right of the cross site of one string with the other (see Figure 5.10). Note
that multipoint (multiple cross sites) crossover operators can also be used, with the
offspring chromosomes composed by alternating chromosome segments from the
parents.

(L T TR W N N NN SN A N N N R B

o | | ] ] l I ] ] ] ] ] |

Cross site

Figure 5.10 Crossover operation example.

Crossover perturbs the parameters near good positions to try to find better solu-
tions to the optimization problem. It tends to perform a localized search around the
more fit individuals (i.e., children are interpolations of their parents that may be more
or less fit to survive).

Next, in the reproduction phase, after crossover, we have mutation. The biological
analog of our mutation operation is the random mutation of genetic material. To do
this, with probability p,, change (mutate) each gene location on each chromosome (in
the mating pool) randomly to a member of the number system being used. Mutation
tries to make sure that we do not get stuck at a local maximum of the fitness function
and that we seek to explore other areas of the search space to help find a global
maximum for J(#). Since mutation is pure random search, p,, is usually near zero.

Finally, we produce the next generation by letting

P(k + 1) = M(k).

Evolution is the repetition of the above process. For more details on GAs, see [10, 20,
22, 28].

5.2.3.3 Design Concerns

You can encounter many design concerns when using GAs to solve optimization
problems. First, it is important to fully understand the optimization problem, and to
know what you want to optimize and what you can change to achieve the optimization.
You also must have an idea of what you will accept as an optimal solution. Second,
choice of representation (e.g., the number of digits in a base-10 representation) is
important. Too detailed a representation increases computational complexity, while
too coarse a representation means you may not be able to achieve enough accuracy



Section 5.2 Intelligent Control Techniques 19

in your solution. Third, there are a wide range of other genetic operators (e.g., ““elitism”
where the most fit individual is passed to the next generation without being perturbed
by crossover or mutation) and choosing the appropriate ones is important since they
can affect convergence significantly. Fourth, just as for gradient optimization methods,
it is important to pick a good termination method (even if it is simply a test on how
much improvement has been made on J over the last several generations). Finally, for
practical problems it is difficult to guarantee that you will achieve convergence owing to
the presence of local maxima. Moreover, it can be difficult to select the best solution
from the many candidate solutions that exist. (Most often you pick the parameters that
resulted in the highest value of the fitness function, and these may have been generated
in a past generation, not at the final one.)

In summary, the main advantage of genetic algorithms is that they offer an evolu-
tion-based stochastic search that can be useful in finding good solutions to practical
complex optimization problems, especially when gradient information is not conveni-
ently available.

5.2.4 Expert and Planning Systems

In this section, we briefly overview the expert and planning systems [27] approaches to
control. We keep the discussion particularly brief because the use of expert systems for
control (expert control) is conceptually similar to fuzzy control and because general
planning operations often fall outside the area of traditional control problems
(although they probably should not).

5.2.4.1 Expert Control

For the sake of our discussion, we will simply view the expert system that is used
here as a controller for a dynamic system, as is shown in Figure 5.11. Here, we have an
expert system serving as feedback controller with reference input r and feedback vari-
able y. It uses the information in its knowledge base and its inference mechanism to
decide what command input u to generate for the plant. Conceptually, we see that the
expert controller is closely related to the fuzzy controller. There are, however, several
differences. First, the knowledge base in the expert controller could be a rule base, but is
not necessarily so. It could be developed using other knowledge-representation struc-
tures, such as frames, semantic nets, causal diagrams, and so on. Second, the inference
mechanism in the expert controller is more general than that of the fuzzy controller. It

Expert controller

e

2
Reference input
)

Inference
mechanism

Knowledge-base j

[ TR —--

Inputs Outputs

u(r) wr)
Process >

Figure 5.11 Expert control system.



120

Chapter 5 Intelligent Control: An Overview of Techniques

can use more sophisticated matching strategies to determine which rules should be
allowed to fire. It can also use more elaborate inference strategies such as refraction,
recency, and various other priority schemes. Next, we should note that Figure 5.11
shows a direct expert controller. It is also possible to use an expert system as a super-
visor for conventional or intelligent controllers.

5.2.4.2 Planning Systems for Control

Artificially intelligent planning systems (computer programs that are often
designed to emulate the way experts plan) have been used for several problems, includ-
ing path planning and high-level decisions about control tasks for robots [6, 27]. A
generic planning system can be configured in the architecture of a standard control
system, as shown in Figure 5.12. Here, the “problem domain” (the plant) is the envir-
onment in which the planner operates. There are measured outputs y; at step k (vari-
ables of the problem domain that can be sensed in real time), control actions u; (the
ways in which we can affect the problem domain), disturbances d; (which represent
random events that can affect the problem domain and hence the measured variable y),
and goals g; (what we would like to achieve in the problem domain). There are closed-
loop specifications that quantify performance and stability requirements.

The planner’s task in Figure 5.12 is to monitor the measured outputs and goals and
generate control actions that will counteract the effects of the disturbances and result in
the goals and the closed-loop specifications being achieved. To do this, the planner
performs “‘plan generation,” where it projects into the future (usually a finite number of
steps, and often using a model of the problem domain) and tries to determine a set of
candidate plans. Next, this set of plans is pruned to one plan that is the best one to
apply at the current time (where “best” can be determined based on, e.g., consumption
of resources). The plan is then executed, and during execution the performance result-
ing from the plan is monitored and evaluated. Often, because of disturbances, plans will
fail, and hence the planner must generate a new set of candidate plans, select one, and
then execute that one. While not pictured in Figure 5.12, some planning systems use
situation assessment to try to estimate the state of the problem domain. (This can be
useful in execution monitoring and plan generation.) Others perform world modeling,
in which a model of the problem domain is developed in an on-line fashion (similarly to
on-line system identification); planner design uses information from the world modeler
to tune the planner (so that it makes the right plans for the current problem domain).

Disturbances d,
Planner
Plan generation Control
. Set actions
Goals of One Measured
8k > . plan Uy outputs
S (Re) plan Plan Project plans Plan Plan L 1 o| Problem s
e decisions execution domain Vi
Find e
problem Plan | Execution monitoring I
failur

Figure 5.12 Closed-loop planning system.



Section 5.2 Intelligent Control Techniques 121

The reader will perhaps think of such a planning system as a general adaptive (model
predictive) controller.

5.2.5 Intelligent and Autonomous Control

Autonomous systems have the capability to independently (and successfully) perform
complex tasks. Consumer and governmental demands for such systems are frequently
forcing engineers to push many functions normally performed by humans into
machines. For instance, in the emerging area of intelligent vehicle and highway systems
(IVHS), engineers are designing vehicles and highways that can fully automate vehicle
route selection, steering, braking, and throttle control to reduce congestion and
improve safety. In avionic systems, a pilot’s associate computer program has been
designed to emulate the functions of mission and tactical planning that in the past
may have been performed by the copilot. In manufacturing systems, efficiency optimi-
zation and flow control are being automated, and robots are replacing humans in
performing relatively complex tasks. From a broad historical perspective, each of
these applications began at a low level of automation, and through the years each
has evolved into a more autonomous system. For example, automotive cruise control-
lers are the ancestors of the (research prototype) controllers that achieve coordinated
control of steering, braking, and throttle for autonomous vehicle driving. And the
terrain following and terrain avoidance control systems for low-altitude flight are
ancestors of an artificial pilot’s associate that can integrate mission and tactical plan-
ning activities. The general trend has been for engineers to incrementally “add more
intelligence” in response to consumer, industrial, and government demands and thereby
create systems with increased levels of autonomy.

In this process of enhancing autonomy by adding intelligence, engineers often
study how humans solve problems and then try to directly automate their knowledge
and techniques to achieve high levels of automation. Other times, engineers study how
intelligent biological systems perform complex tasks and then seek to automate “nat-
ure’s approach” in a computer algorithm or circuit implementation to solve a practical
technological problem (e.g., in certain vision systems). Such approaches where we seek
to emulate the functionality of an intelligent biological system (e.g., the human) to solve
a technological problem can be collectively named intelligent systems and control tech-
niques. By using these techniques, some engineers are trying to create highly autono-
mous systems such as those listed above.

Figure 5.13 shows a functional architecture for an intelligent autonomous control-
ler with an interface to the process involving sensing (e.g., via conventional sensing
technology, vision, touch, smell, etc.), actuation (e.g., via hydraulics, robotics, motors,
etc.), and an interface to humans (e.g., a driver, pilot, crew, etc.) and other systems. The
execution level has low-level numeric signal processing and control algorithms (e.g.,
PID, optimal, adaptive, or intelligent control; parameter estimators, failure detection,
and identification [FDI] algorithms). The coordination level provides for tuning, sche-
duling, supervision, and redesign of the execution-level algorithms, crisis management,
planning and learning capabilities for the coordination of execution-level tasks, and
higher-level symbolic decision making for FDI and control algorithm management.
The management level provides for supervising lower-level functions and for managing
the interface to the human(s) and other systems. In particular, the management level
will interact with the users in generating goals for the controller and in assessing the



122

Chapter 5 Intelligent Control: An Overview of Techniques

Humans and other subsystems

=

Management
level

i e

Coordination
level

oD

Execution
level

# Figure 5.13 Intelligent autonomous con-

Process

troller.

capabilities of the system. The management level also monitors performance of the
lower-level systems, plans activities at the highest level (and in cooperation with
humans), and performs high-level learning about the user and the lower-level algo-
rithms. Conventional or intelligent systems methods can be used at each level. For
more information on these types of control systems see [1, 2, 11, 29, 30].

5.3 APPLICATIONS

This section outlines some of the main characteristics of the intelligent system methods
that have proven useful in industrial applications and gives examples of the use of the
methods.

5.3.1 Heuristic Construction of Nonlinear
Controllers

Intelligent control has had a clear impact in industry in the area of heuristic construc-
tion of nonlinear controllers. Two areas in intelligent control have made most of the
contributions to this area: fuzzy control and expert systems for control. (Here we will
focus on fuzzy control, one type of rule-based controller, since the ideas extend directly
to the expert control case.) The methods are heuristic because they normally do not rely
on the development and use of a mathematical model of the process to be controlled.

5.3.1.1 Model-Free Control?

To begin with, it is important to critically examine the claim that fuzzy control is
model-free control. So, is a model used in the fuzzy control design methodology? It is
possible that a mathematical model is not used and that the entire process simply relies
on the ad hoc specification of rules about how to control a process (in an analogous
manner to the way PID controllers are often designed and implemented in industry).



Section 5.3 Applications 123

However, often a model is used in simulation to redesign a fuzzy controller. (Consider
the earlier ship-steering controller design problem.) Others argue that a model is always
used: even if it is not written down, some type of model is used “in your head” (even
though it might not be a formal mathematical model).

Since most people claim that no formal model is used in the fuzzy control design
methodology, the following questions arise:

1. Is it not true that there are few, if any, assumptions to be violated by fuzzy control
and that the technique can be indiscriminately applied? Yes, and sometimes it is
applied to systems where it is clear that a PID controller or lookup table would be
just as effective. So, if this is the case, then why not use fuzzy control? Because it is
more computationally complex than a PID controller and the PID controller is
much more widely understood.

2. Are heuristics all that are available to perform fuzzy controller design? No. Any
good models that can be used probably should be.

3. By ignoring a formal model, if it is available, is it not the case that a significant
amount of information about how to control the plant is ignored? Yes. If, for
example, you have a model of a complex process, we often use simulations to gain
an understanding of how best to control the plant—and this knowledge can be
used to design a fuzzy controller.

Nonetheless, at times it is either difficult or virtually impossible to develop a useful
mathematical model. In such instances, heuristic constructive methods for controllers
can be very useful. (Of course, we often do the same thing with PID controllers).

In the next section, we give an example of where fuzzy controllers were developed
and proved to be very effective, and no mathematical model was used.

5.3.1.2 Example: Vibration Damping in a
Flexible-Link Robot

For nearly a decade, control engineers and roboticists alike have been investigat-
ing the problem of controlling robotic mechanisms that have very flexible links. Such
mechanisms are important in space structure applications where large, lightweight
robots are to be utilized in a variety of tasks, including deployment, spacecraft
servicing, space-station maintenance, and so on. Flexibility is not designed into the
mechanism; it is usually an undesirable characteristic that results from trading off
mass and length requirements in optimizing the effectiveness and “deployability” of
the robot. These requirements and limitations of mass and rigidity give rise to many
interesting issues from a control perspective. Why turn to fuzzy control for this
application?

The modeling complexity of multilink flexible robots is well documented, and
numerous researchers have investigated a variety of techniques for representing flexible
and rigid dynamics of such mechanisms. Equally numerous are the works addressing
the control problem in simulation studies based on mathematical models, under
assumptions of perfect modeling. Even in simulation, however, a challenging control
problem exists; it is well known that vibration suppression in slewing mechanical
structures whose parameters depend on the configuration (i.e., are time varying) can



124

Chapter 5 Intelligent Control: An Overview of Techniques

be extremely difficult to achieve. Compounding the problem, numerous experimental
studies have shown that when implementation issues are taken into consideration,
modeling uncertainties either render the simulation-based control designs useless or
demand extensive tuning of controller parameters (often in an ad hoc manner).

Hence, even if a relatively accurate model of the flexible robot can be developed, it
is often too complex to use in controller development, especially for many control
design procedures that require restrictive assumptions for the plant (e.g., linearity). It
is for this reason that conventional controllers for flexible robots are developed either
(1) via simple crude models of the plant behavior that satisfy the necessary assumptions
(e.g., either from first principles or using system identification methods) or (2) via the ad
hoc tuning of linear or nonlinear controllers. Regardless, heuristics enter the design
process when the conventional control design process is used.

It is important to emphasize, however, that conventional control-engineering
approaches that use appropriate heuristics to tune the design have been relatively
successful. For a process such as a flexible robot, one is left with the following question:
How much of the success can be attributed to use of the mathematical model and
conventional control design approach, and how much should be attributed to the clever
heuristic tuning that the control engineer uses upon implementation? Why not simply
acknowledge that much of the problem must be solved with heuristic ideas and avoid all
the work that is needed to develop the mathematical models? Fuzzy control provides
such an opportunity and has in fact been shown to be quite successful for this applica-
tion [23] compared to conventional control approaches, especially if one takes into
account the efforts to develop a mathematical model that are needed for the conven-
tional approaches.

5.3.2 Data-Based Nonlinear Estimation

The second major area where methods from intelligent control have had an impact in
industry is in the use of neural networks to construct mappings from data. In particular,
neural network methods have been found to be quite useful in pattern recognition and
estimation. Here we explain how to construct neural network-based estimators and give
an example of where such a method was used.

5.3.2.1 Estimator Construction Methodology

In conventional system identification, you gather plant input-output data and
construct a model (mapping) between the inputs and outputs. In this case, model
construction is often done by tuning the parameters of a model (e.g., the parameters
of a linear mapping can be tuned using linear least-squares methods or gradient meth-
ods). To validate this model, you gather novel plant input-output data and pass the
inputs into your constructed model and compare its outputs to the ones that were
generated by the model. If some measure of the difference between the plant and
model outputs is small, then we accept that the model is a good representation of the
system.

Neural networks or fuzzy systems are also tunable functions that can be used for
this system identification task. Fuzzy and neural systems are nonlinear and are para-
meterized by membership function parameters or weights (and biases), respectively.
Gradient methods can be used to tune them to match mappings that are characterized



Section 5.3 Applications 125

with data. Validation of the models proceeds along the same lines as with conventional
system identification.

In certain situations, you can also gather data that relates the inputs and outputs of
the system to parameters within the system. To do this, you must be able to vary system
parameters and gather data for each value of the system parameter. (The gathered data
should change each time the parameter changes, and it is gathered via either a sophis-
ticated simulation model or actual experiments with the plant.) Then, using a gradient
method, you can adjust the neural or fuzzy system parameters to minimize the estima-
tion error. The resulting system can serve as a parameter estimator (i.e., after it is
tuned—normally it cannot be tuned on-line because actual values of the parameters
are not known on-line, and they are what you are trying to estimate).

5.3.2.2 Example: Automotive Engine Failure
Estimation

In recent years, significant attention has been given to reducing exhaust gas
emissions produced by internal combustion engines. In addition to overall engine
and emission system design, correct or fault-free engine operation is a major factor
determining the amount of exhaust gas emissions produced in internal combustion
engines. Hence, there has been a recent focus on the development of on-board diag-
nostic systems that monitor relative engine health. Although on-board vehicle diag-
nostics can often detect and isolate some major engine faults, because of widely
varying driving environments they may be unable to detect minor faults, which
may nonetheless affect engine performance. Minor engine faults warrant special atten-
tion because they do not noticeably hinder engine performance but may increase
exhaust gas emissions for a long period of time without the problem being corrected.
The minor faults we consider in this case study include calibration faults (here, the
occurrence of a calibration fault means that a sensed or commanded signal is multi-
plied by a gain factor not equal to one, while in the no-fault case the sensed or
commanded signal is multiplied by one) in the throttle and mass fuel actuators,
and in the engine speed and mass air sensors. The reliability of these actuators and
sensors is particularly important to the engine controller since their failure can affect
the performance of the emissions control system. Here, we simply discuss how to
formulate the problem so that it can be solved with neural or fuzzy estimation
schemes. The key to this problem is to understand how data are generated for the
training of neural or fuzzy system estimators.

The experimental setup in the engine test cell consists of a Ford 3.0 L V-6 engine
coupled to an electric dynamometer through an automatic transmission. An air charge
temperature sensor (ACT), a throttle position sensor (TPS), and a mass airflow sensor
(MAF) are installed in the engine to measure the air charge temperature, throttle
position, and air mass flow rate. Two heated exhaust gas oxygen sensors (HEGO)
are located in the exhaust pipes upstream of the catalytic converter. The resultant
airflow information and input from the various engine sensors are used to compute
the required fuel flow rate necessary to maintain a prescribed air-to-fuel ratio for the
given engine operation. The central processing unit (EEC-IV) determines the needed
injector pulse width and spark timing, and outputs a command to the injector to meter
the exact quantity of fuel. An ECM (electronic control module) breakout box is used to
provide external connections to the EEC-IV controller and the data acquisition system.



126

Chapter 5 Intelligent Control: An Overview of Techniques

The angular velocity sensor system consists of a digital magnetic zero-speed sensor and
a specially designed frequency-to-voltage converter, which converts frequency signals
proportional to the rotational speed into an analog voltage.

Data are sampled in every engine revolution. A variable load is produced through
the dynamometer, which is controlled by a DYN-LOC IV speed/torque controller in
conjunction with a DTC-1 throttle controller installed by DyneSystems Company. The
load torque and dynamometer speed are obtained through a load cell and a tachometer,
respectively. The throttle and the dynamometer load reference inputs are generated
through a computer program and are sent through an RS-232 serial communication
line to the controller. Physical quantities of interest are digitized and acquired utilizing
a National Instruments AT-MIO-16F-5 A/D timing board for a personal computer.
Because of government mandates, periodic inspections and maintenance for engines are
becoming more common. One such test developed by the Environmental Protection
Agency (EPA) is the Inspection and Maintenance (IM) 240 cycle. The EPA IM240 cycle
represents a driving scenario developed for the purpose of testing compliance of vehicle
emissions systems for contents of carbon monoxide (CO), unburned hydrocarbons
(HC), and nitrogen oxides (NO,). A modified version of this cycle was used in all
the tests.

Using the engine test cell, we take measurements of engine inputs and outputs for
various calibration faults (i.e., we gather sequences of data for each fault). Then, we
induce faults over the whole range of possible values of calibration faults. Data from all
these experiments become our training data set (the set G described in the neural net-
work section). This allows us to construct neural or fuzzy estimators for calibration
faults that can be tested in the actual experimental testbed. Additional details on this
application are given in [18].

5.3.3 Intelligent Adaptive Control Strategies

In this section we overview how intelligent systems methods can be used to achieve
adaptive control. Rather than providing a detailed tutorial on of all the (many) stra-
tegies that have been investigated and reported in the literature, an overview will be
provided in the first subsection of this section that will show how all the methods
broadly relate to each other. The reader should keep in mind that all of these methods
bear very close relationships to the work in conventional adaptive control [15].

5.3.3.1 Fuzzy, Neural, and Genetic Adaptive Control

There are two general approaches to adaptive control. In the first one, depicted in
Figure 5.14, we use an on-line system identification method to estimate the parameters
of the plant (by estimating the parameters of an identifier model) and a controller
designer module to subsequently specify the parameters of the controller. If the plant
parameters change, the identifier will provide estimates of these and the controller
designer will subsequently tune the controller. It is inherently assumed that we are
certain that the estimated plant parameters are equivalent to the actual ones at all
times. (This is called the certainty equivalence principle.) Then if the controller designer
can specify a controller for each set of plant parameter estimates, it will succeed in
controlling the plant. The overall approach is called indirect adaptive control since we
tune the controller indirectly by first estimating the plant parameters.



Section 5.3 Applications 127

Plant
Controller B arameters System <
designer identification
Controller
parameters
t t t
0 Controller “ )H Plant X )>

Figure 5.14 Indirect adaptivie control.

The model structure used for the identifier model could be linear with adjustable
coefficients. Alternatively, it could be a neural or fuzzy system with tunable parameters
(e.g., membership function parameters or weights and biases). In this case, the model
that is being tuned is a nonlinear function. Since the plant is assumed to be unknown
but constant, the nonlinear mapping it implements is unknown. In adjusting the non-
linear mapping implemented by the neural or fuzzy system to match the unknown
nonlinear mapping of the plant, we are solving an on-line function approximation
problem. Normally, gradient or least-squares methods are used to tune neural or
fuzzy systems for indirect adaptive control (although problem-dependent heuristics
can sometimes be useful for practical applications). The stability of these methods
has been studied by several researchers (including Farrell and Polycarpou who provide
an overview of this research in Chapter 6 [9]). Other times, a genetic algorithm has been
employed for such on-line model tuning, and in this case it may also be possible to tune
the model structure.

In the second general approach to adaptive control, which is shown in Figure 5.15,
the adaptation mechanism observes the signals from the control system and adapts the
parameters of the controller to maintain performance even if there are changes in the
plant. Sometimes, in either the direct or indirect adaptive controllers, the desired per-

Adaptation <
mechanism
) u(®) f
—i)—b Controller Plant y())

Figure 5.15 Direct adaptive control.



128

Chapter 5 Intelligent Control: An Overview of Techniques

formance is characterized with a reference model, and the controller then seeks to make
the closed-loop system behave as the reference model would, even if the plant changes.
This is called model reference adaptive control (MRAC).

In neural control or adaptive fuzzy control, the controller is implemented with a
neural or fuzzy system, respectively. Normally, gradient or least-squares methods are
used to tune the controller (although sometimes problem-dependent heuristics have
been found to be quite useful for practical applications, such as in the fuzzy model
reference learning controller discussed later). The stability of direct adaptive neural or
fuzzy methods has been studied by several researchers. (Again, for an overview of the
research, see Chapter 6 by Farrell and Polycarpou.) Clearly, since the genetic algorithm
is also an optimization method, it can be used to tune neural or fuzzy system mappings
when they are also used as controllers. The key to making such a controller work is to
provide a way to define a fitness function for evaluating the quality of a population of
controllers. (In one approach a model of the plant is used to predict into the future how
each controller in the population will perform.) Then, the most fit controller in the
population is used at each step to control the plant. This is a type of adaptive model
predictive control (MPC) method.

In practical applications it is sometimes found that a supervisory controller can be
very useful. Such a controller takes as inputs data from the plant and the reference
input (and any other information available, e.g., from the user) and tunes the under-
lying control strategy. For example, in the flexible-link robot application discussed
earlier, such a strategy was found to be very useful in tuning a fuzzy controller. In
an aircraft application, it was found useful in tuning an adaptive fuzzy controller to try
to ensure that the controller was maximally sensitive to plant failures in the sense that
it would quickly respond to them, but it still maintained stable high-performance
operation.

5.3.3.2 Example: Adaptive Fuzzy Control
for Ship Steering

How good is the fuzzy controller that we designed for the ship-steering problem
earlier in this chapter? Between trips, let there be a change from ballast to full condi-
tions on the ship (a weight change). In this case, using the controller we had developed
earlier, we get the response in Figure 5.16.

Clearly there has been a significant degradation in performance. It is possible to
tune the fuzzy controller to reduce the effect of this disturbance, but then other dis-
turbances may occur and may have adverse effects on performance. This presents a
fundamental challenge to fuzzy control and motivates the need to develop a method
that can automatically tune the fuzzy controller if there are changes in the plant.

Fuzzy model reference learning control (FMRLC) is one heuristic approach to
adaptive fuzzy control, and the overall scheme is shown in Figure 5.17. Here, at the
lower level in the figure is a plant that is controlled by a fuzzy controller. (As an
example, this one simply has inputs of the error and change in error.) The reference
model is a user-specified dynamical system that is used to quantify how we would like
the system to behave between the reference input and the plant output. For example, we
may request a first-order response with a specified time constant between the reference
input and plant output. The learning mechanism observes the performance of the low-
level fuzzy controller loop and decides when to update the fuzzy controller. For this



Section 5.3 Applications

60
50
40
30
20
10

0
10

Ship heading (solid) and desired ship heading (dashed), deg.

0 500 1000

1500 2000 2500

3000 3500

4000
Time (sec)
80 . ' Rludder ang'le 0), derg. . )
60 | . . . i
40+ 4
20+ 4
0
=204+
-40} ]
-60 : - L L ! L 1
0 500 1000 1500 2000 2500 3000 3500 4000

Time (sec)

Figure 5.16 Response of fuzzy control system for tanker heading regulation, weight

change.

Learning mechanism

Reference [, (47

model | Knowledge-base |

- T ]

l(now‘l:‘d%e-b“se p(kT)| Inference |Z >
modifier g?—mechanism

[Storage_} ol y}

Fuzzy inverse model”

Fuzzy sets || Rule-base

.D_

&

Inference Dg'I
mechanism

&

Fuzzy controller

y(kT)

Plant

Figure 5.17 Fuzzy model reference learning controller.

129



130

Chapter 5 Intelligent Control: An Overview of Techniques

example, when the error between the reference model output and the plant output is
large, the learning mechanism will make large changes to the fuzzy controller (by tuning
its output membership function centers). When this error is small, then it will make
small changes. For more details, see [19).

How does the FMRLC work for the tanker ship? Assume that we initialize the
controller with the one that was developed via manual tuning earlier. To see that it can
tune a rule base see the response in Figure 5.18. (We use a first-order reference model.)
Here, at 1 = 9000 sec the ship weight is suddenly changed from ballast to full, and we
see that while initially the weight change causes poor transient performance, it quickly
recovers to provide good tracking. Compare this response to the direct fuzzy controller
results shown in Figure 5.16. You can see that it does very well at tuning the fuzzy
controller (although it may not be done tuning at the end of the simulation). The tuned
controller surface (at the end of the simulation) is shown in Figure 5.19, and we see that
it produced some shape changes relative to the manually constructed one in Figure 5.6
since it is trying to compensate for the effects of the weight change.

Ship heading (solid) and desired ship heading (dashed), deg.

I 1

02 04 06 08 1 1.2 1.4 116 1‘.8 2

100 Rsxddcr ar’1glc, ou‘tput of ‘fuzzy cyomrollc‘r (input‘to the s,hip), de'g. 19t
50 :
0
-50
100 1 1 n ! i I ; L "
0 0.2 04 06 08 1 1.2 1.4 1.6 1.8 2l i
0.1 Fl:zzy in\:erse m?del out'put (no?zero va;llues infiicate a‘daptati?n)

Time (sec) x 10

Figure 5.18 FMRLC response.

5.4 CONCLUDING REMARKS: OUTLOOK ON

INTELLIGENT CONTROL

In this section we briefly note some of the current and future research directions in
intelligent control. Current theoretical research in intelligent control is focusing on:

e Mathematical stability/convergence/robustness analysis for learning systems.
e Mathematical comparative analysis with nonlinear adaptive methods.



Section 5.4 Concluding Remarks: Outlook on Intelligent Control 131

FMRLC-tuned fuzzy controller mapping between inputs and output

2

Fuzzy controller output (d), deg.

Figure 5.19 FMRLC, tuned controller surface.

However, as Albert Einstein once said: “So far as the laws of mathematics refer to
reality, they are not certain. And so far as they are certain, they do not refer to reality.”
Or stated another way, your approaches developed with mathematical analysis are only
as good as the model you use to develop them.

Current research on the development of new techniques in intelligent control
focuses on the following:

e Complex heuristic learning strategies.
e Memory and computational savings.
e Coping with “hybrid” discrete-event/differential equation models.

Current research in applications and implementations is focusing on a wide variety
of problems. It is important to note the following:

e There is a definite need for experimental research (especially in comparative
analysis and new nontraditional applications).

e There have been definite successes in industry (though we are certainly not
providing a complete overview of these successes).

e For researchers in universities, working with industry is challenging and impor-
tant.

In summary, intelligent control tries to borrow ideas not only from physics and
mathematics to help develop control systems, but also from biology, neuroscience,
artificial intelligence, and others. It has proven useful in some applications, as we
discussed in the previous section, and it may offer useful solutions to the challenging
problems that you encounter.



132 Chapter 5 Intelligent Control: An Overview of Techniques
ACKNOWLEDGMENTS

The author would like to thank J. Spooner who had worked with the author on writing
an earlier version of Section 5.2.2.2. The author would also like to thank the editor T.
Samad for his helpful edits and for organizing the writing of this book.

Related Chapters

e Chapter 6 provides a detailed technical introduction to neural networks and nonlinear
approximation, including a discussion of stability properties of adaptive approximators.

e Other intelligent control techniques include agent-based complex adaptive systems. Some
applications of these are outlined in Chapters 10 and 13.

e Some building control applications of neural networks, fuzzy logic, and expert systems
can be found in Chapter 16.

REFERENCES

[1] J. S. Albus, “Outline for a theory of intelligence.” IEEE Trans. on Systems, Man, and
Cybernetics, Vol. 21, no. 3, pp. 473-509, May/June 1991.

[2] P. J. Antsaklis, and K. M. Passino (eds.), An Introduction to Intelligent and Autonomous
Control. Norwell, MA: Kluwer Academic Press, 1993.

[3] K. J. Astrdm and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1995.

[4] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific Press, 1995.

[5] M. Brown and C. Harris, Neurofuzzy Adaptive Modeling and Control. Englewood Cliffs, NJ:
Prentice Hall, 1994.

[6] T. Dean and M. P. Wellman, Planning and Control. San Mateo, CA: Morgan Kaufman,
1991.

[7] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control. New
York: Springer-Verlag, 1993.

[8] J. Farrell, “Neural control.” In W. Levine (ed.), The Control Handbook, pp. 1017-1030.
Boca Raton, FL: CRC Press, 1996.

[9] J. Farrell and M. Polycarpou. “On-line approximation based control with neural networks
and fuzzy systems.” In T. Samad (ed.), Perspectives in Control Engineering: Technologies,
Applications, and New Directions, pp. 134-164. New York: IEEE Press, 2001.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading,
MA: Addison-Wesley, 1989.

[11] M. Gupta and N. Sinha (eds.), Intelligent Control: Theory and Practice. New York: IEEE
Press, 1995.

[12] M. Hagan, H. Demuth, and M. Beale, Neural Network Design. Boston: PWS Publishing,
1996.

[13] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation.
Reading, MA: Addison-Wesley, 1991.

[14] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural networks for control
systems: A survey.” In M. M. Gupta and D. H. Rao (eds.), Neuro-Control Systems: Theory
and Applications, pp. 171-200. New York: IEEE Press, 1994.

[15] P. A. Toannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall,
1996.



References 133

[16] J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence. Englewood Cliffs, NIJ:
Prentice Hall, 1997.

[17] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice Hall, 1992.

[18] E. G. Laukonen, K. M. Passino, V. Krishnaswami, G.-C. Luh, and G. Rizzoni, “Fault
detection and isolation for an experimental internal combustion engine via fuzzy identifica-
tion.” IEEE Trans. on Control Systems Technology, Vol. 3, no. 3, pp. 347-355, September
1995.

[19] J. R. Layne and K. M. Passino, “Fuzzy model reference learning control for cargo ship
steering.” IEEE Control Systems Magazine, Vol. 13, no. 6, pp. 23-34, December 1993.

[20] Z. Michalewicz, Genetic Algorithms+ Data Structure= Evolution Programs. Berlin: Springer-
Verlag, 1992.

[21] W. T. Miller, R. S. Sutton, and P. J. Werbos (eds.), Neural Networks for Control.
Cambridge, MA: MIT Press, 1991.

[22] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press, 1996.

[23] V. G. Moudgal, K. M. Passino, and S. Yurkovich, “Rule-based control for a flexible-link
robot.” IEEE Trans. on Control Systems Technology, Vol. 2, no. 4, pp. 392—405, December
1994.

[24] R. Palm, D. Driankov, and H. Hellendoorn, Model Based Fuzzy Control. New York:
Springer-Verlag, 1997.

[25] Kevin M. Passino and Stephen Yurkovich, Fuzzy Control. Menlo Park, CA: Addison-
Wesley Longman, 1998.

[26] T. Ross. Fuzzy Logic in Engineering Applications. New York: McGraw-Hill, 1995.

[27] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ:
Prentice Hall, 1995.

[28] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey.” IEEE Computer Magazine,
pp. 17-26, June 1994.

[29] R. F. Stengel, “Toward intelligent flight control.” IEEE Trans. on Systems, Man, and
Cybernetics, Vol. 23, no. 6, pp. 1699-1717, November/December 1993.

[30] K. Valavanis and G. Saridis, Intelligent Robotic Systems: Theory, Design, and Applications.
Norwell, MA: Kluwer Academic Press, 1992.

[31] L.-X. Wang, A Course in Fuzzy Systems and Control. Englewood Cliffs, NJ: Prentice Hall,
1997.

[32] D. White and D. Sofge (eds.), Handbook of Intelligent Control: Neural, Fuzzy and Adaptive
Approaches. New York: Van Nostrand Reinhold, 1992.



Chapter NEURAL, FUZZY, AND
6 APPROXIMATION-BASED CONTROL

Jay A. Farrell and Marios M. Polycarpou

Editor’s Summary
The assumption of linearity must be given due credit for the tremendous practical impact that control
systems have had over the last several decades. However, as the original challenges have been encountered
and overcome, and as the control and automation of complex, large-scale problems are being sought,
effective methods for dealing with nonlinear systems have become essential.

One key component of nonlinear controls technology is representations or models of nonlinear
systems that are derived from operational data. Such models, referred to as approximators, are the
focus of this chapter. Specific attention is paid to neural networks and fuzzy models. These topics are
discussed within a general formulation that emphasizes their close relationships with other approximator
structures. In this chapter, several associated properties are noted and defined, including universal approx-
imation, linear and nonlinear parameterizations, generalization, and approximator transparency.
Compared to most other chapters in this volume, this one is relatively theoretical. Less formal introduc-
tions to neural networks and fuzzy logic can be found in Chapter 5; some applications are discussed
therein and in Chapter 16.

An important problem in approximator development is the estimation of the approximator para-
meters. This chapter discusses some algorithms—specifically steepest descent, least-squares, and
Lyapunov-based algorithms—that can be used for this purpose. Some degree of modeling error is inescap-
able, and this realization has motivated the development of extensions to parameter estimation algorithms.

Readers interested in additional nonlinear control methods may also find Chapter 8 of interest,
which provides a readable technical introduction to a popular nonlinear control design technique, sliding-
mode control.

Jay Farrell is an associate professor in the Department of Electrical Engineering at the University of
California at Riverside and a former IEEE-CSS liaison representative to the IEEE Neural Networks
Council. Marios Polycarpou is an associate professor in the Department of Electrical and Computer
Engineering and Computer Science at the University of Cincinnati, and a current CSS representative to
IEEE-NNC

6.1 INTRODUCTION

134

Introductory control courses focus on the design of linear control systems. However,
many control applications involve significant nonlinearities. Although linear control
design methods can sometimes be applied to nonlinear systems over limited operating
regions through the process of linearization, the level of performance desired in other
applications requires that the nonlinearities be directly addressed in the control system



Section 6.1 Introduction 135

design. The challenge of addressing nonlinearities during the control design process is
further complicated when the description of the nonlinearities involves significant
uncertainty. In such applications, the level of achievable performance may be enhanced
by using on-line function approximation techniques to increase the accuracy of the
model of the nonlinearities. Such on-line approximation-based control methods include
the popular areas of adaptive fuzzy and neural control. This chapter discusses various
issues related to on-line approximation-based control using a unifying framework and
notation.

6.1.1 Components of Approximation-Based
Control

Implementation or analysis of an on-line approximation-based control system requires
that the designer properly specify the problem and solution. This section discusses
major aspects of the problem specification.

6.1.1.1 Control Architecture

Specification of the control architecture is application dependent and has various
aspects. The designer must determine how the nonlinear function affects the system
dynamics and specify a control methodology capable of using the approximated non-
linear function to improve the system performance. Two examples will clarify these
issues.

Consider a dynamic system that can be described as

X)) =xq(), fori=1,...,n—-1
x(1) = f(x(1)) + gx(D)h(u(D)),
y(@) = x(2)

where x = (x, ..., x,) is the state of the system, u(?) is the control input, f and g are
accurately known functions, and the actuator function 4 involves significant nonlinear-

ity. The actuator nonlinearity may, for example, represent dead-zone and saturation
effects. If a satisfactory control system can be designed for the system

X)) =x1(), fori=1,...,n-1
X(1) = f(x(1)) + g(x(D)(?)
y(®) = x()

and the function 4 can be approximated and inverted, then defining u(¢) = };“(v(t)) will
solve the original control problem (see Figure 6.1).
Consider a dynamic system that can be described as
X =x1(0), fori=1,...,n-1
%,(1) = f(x(2)) + gx()u(?),
y(0) = x(0)



136

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

l—gmh
b ‘ fm h(u)-»ﬂ—»:—»l;fs"‘

L f(x) —

Figure 6.1 Actuator nonlinearity compensation. The shaded area contains the con-
trol system.

where x is the state of the system, u(7) is the control input, and f and g are unknown
nonlinearities. Let f and g represent approximations to the unknown functions f and g.
Then, a control law can be defined as

1

E m("(ﬂ - f(x(1) (6.1)

u(t)

when g(x(#)) # 0 where v(7) can be specified as a function of the tracking error to meet
the performance specification [23, 29, 30]. If the approximations were exact, then this
control law would cancel the plant dynamics resulting in

X, (1) = v(1).

When the approximators involve error, it can be shown that the tracking error is
directly related to the error in the function approximation [10]. Therefore, the designer
will be interested in ensuring the convergence of the on-line approximator to the
unknown function.

For generalizations of the control law of Eq. (6.1), see [30]. For a discussion
of alternative control laws used with approximation-based control methods, see, for
example, Figure 17.4 in [13, 15], or Section 6.2.

6.1.1.2 Approximator

Having analyzed the control problem and specified a control architecture capable
of using an approximated function to improve the system control performance, the
designer must specify the form of the approximating function. This specification
includes the definition of the inputs and outputs of the function, the domain D over
which the inputs can range, and the structure of the approximating function.

_ For the discussion that follows, the approximating function will be denoted as
f(x; 8, o) where

f(x;6,0) =67 ¢(x, 0) (6.2)



Section 6.1 Introduction 137

where in this notation x is a dummy variable. The actual function inputs may include
elements of the state, control input, or outputs. The notation f(x; 8, o) implies that f is
evaluated as a function of x when 6 and o are considered fixed for the purposes of
function evaluation. In applications, the approximator parameters 6 and o will be
adapted on-line to improve the accuracy of the approximating function.' The (neural
network) literature refers to the parameters 6 as the output layer parameters. The
parameters o are referred to as the input layer parameters. Note that the approximation
of Eq. (6.2) is linear with respect to 6. The vector of basis functions ¢ will be referred to
as the regressor vector. For the applications of interest in this chapter, the regressor
vector is typically a nonlinear function of x and the parameter vector o. Specification of
the structure of the approximating function includes selection of the basis elements of
the regressor ¢, the dimension of 6, and the dimension of o. The values of 6 and o are
determined through parameter estimation methods based on the on-line data.

The approximator structure defined in Eq. (6.2) is sufficient to describe the various
approximators used in the neural and fuzzy control literature, as well as many other
approximators. In this chapter, we will not discuss specific types of approximators.
Instead, we will analyze approximation-based control from a unifying perspective.
Section 6.3 analyzes the properties of approximators as they relate to approximation-
based control methods. References to publications discussing specific approximator
structures are, for example, B-splines [7], CMAC [1], fuzzy logic [34, 39, 40], radial
basis functions [5, 27], sigmoidal neural networks [28], and wavelets [33].

Regardless of the choice of the function approximator and its structure, normally
perfect approximation is not possible. The approximation error will be denoted
e(x;0, o) where

e(x; 0, 0) = f(x) — f(x; 6, 0). (6.3)

If 6* and o* denote the parameters that minimize the norm of the approximating error,
then

e(x) = e(x; 0, 0*) = f(x) — f(x; 8*, o).

In applications, the quantities e(x),8* and o* are not known but are useful for the
purposes of analysis.

6.1.1.3 Stable Training Algorithm

Given that the control architecture and approximator structure have been selected,
the designer must specify the algorithm for adapting the adjustable parameters 6 and o
of the approximating function based on the on-line data and control performance.

Section 6.4 presents parameter estimation techniques and analyzes the related
theoretical issues. The main issue to be considered in the development of the parameter
estimation algorithm is the overall stability of the closed-loop control system. The
stability of the closed-loop system requires guarantees of the convergence of the system
state and of (at least) the boundedness of the error in the approximator parameter

! This is referred to as training in the neural network literature.



138

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

vector. This analysis must be completed with caution, as it is possible to design a system
for which the system state is asymptotically stable while

1. even when perfect approximation is possible (i.e., e(x) = 0), the error in the esti-
mated approximator parameters is bounded but not convergent;

2. when perfect approximation is not possible, the error in the estimated approxima-
tor parameters may become unbounded.

In the first case, the lack of approximator convergence is due to lack of persistent
excitation, which is discussed further in Section 6.4. This lack of approximator con-
vergence may be acceptable, if the approximator is not needed for any other purpose,
since the control performance is still achieved. However, control performance will
improve as approximator accuracy increases. Also, the designer of a control system
involving on-line approximation usually has interest in the approximated function and
is therefore interested in its accuracy. In such cases, the designer must ensure the
convergence of the control state and approximator parameters. In the second case,
the fact that e(x) cannot be forced to zero (the typical situation) must be addressed
in the design of the parameter estimation algorithm. Such algorithms are discussed in
Section 6.4.5.

6.1.2 Problem Statement

Given the discussion of the previous subsections, the approximation-based control
problem can be summarized as follows.

Approximation-Based Control Problem. Given plant input-output data z(r) =
(u(?), y(9)) in compact set D

1. specify a control architecture utilizing an approximated function f(z());

2. find a positive integer M, vectors 6 € R™ and o € R™> (M = M, + M,), and a
family of approximators f(z; 6, o) such that for a cost function of the form

J6.0) = fD V@ —f (@ 6, o) Pdz (6.4)

there exists (6%, 0*) € RM such that (6*, %) = argmin ,J(6, 0), and the closed-
loop system achieves the specified level of performance;

3. find an estimation algorithm (8(¢), 6(f)) = A(z(v)), T € [0, 7] such that (8(¢), 5(2))
approaches (6%, 0*) and the closed loop system is stable.

Therefore, the designer has to select a family of approximators, an estimation algo-
rithm, and a control methodology. The designer should be interested in proving (under
reasonable assumptions) that

1. the tracking error x(¢) — x,(¢) is bounded and asymptotically approaches zero (or a
small neighborhood of the origin); and



Section 6.1 Introduction 139

2. the function approximation error f(z) — f (z) is bounded over D and asymptotically
approaches zero (or is asymptotically less than some € over D).

6.1.3 Discussion

The objective of on-line approximation-based control methods is to achieve a higher
level of control system performance than could be achieved based on the a priori model
information. Such methods can be significantly more complicated (computationally and
theoretically) than nonadaptive or even linear adaptive control methods. This extra
complication can result in unexpected behavior (e.g., instability) if the design is not
rigorously analyzed under reasonable assumptions.

On-line function approximation has an important role to play in the development
of advanced control systems. On-line function approximation-based control, including
neural and fuzzy approaches, has become feasible in recent decades as a result of the
rapid advances that have occurred in computing technologies. These advances have also
spurred the reemergence of neural network research. Various motivations have been
cited in the literature for the use of neural control. A few of the motivations are as
follows:

e Neural networks are universal approximators. As discussed in Section 6.3.1,
numerous families of approximators have this or related properties.
Therefore, the fact that neural networks are universal approximators is not a
motivation for using them over any other approximator with the same property.

e Neural networks are popular, convenient, or easy to compute. All of these are
weak motivations.

o Neural networks are trainable by backpropagation (gradient descent). Gradient
descent parameter adjustment applies to many families of approximators as
long as the resultant approximator is a continuous function of the parameters.
However, gradient descent is not a strong motivation for using a given approx-
imator owing to the lack of robustness to residual approximation error as
discussed in Section 6.4.5.

e Neural networks use distributed information processing. Distributed informa-
tion processing refers to knowledge stored over many parameters and computa-
tions completed over many nodes. The claim is that this produces fault
tolerance. This claim is justified by the analogy to biological systems.
However, the neural networks that are typically implemented are much smaller
and simpler than such biological systems, resulting in a weak analogy. In fact,
additional parameter adjustment should be expected after node failures before
performance might be recovered. Several other approximators can make the
same distributed information processing claims. In addition, if the approxima-
tor is implemented on a traditional single-processor computer (as is the case in
the vast majority of applications), then it is not possible for a “single nodal
processor” to fail.

e Neural networks offer the inherent potential for parallel computation. Any
approximation structure that can be written in vector product form is suitable
for parallel implementation. Interesting questions are whether any particular
application is worth special hardware, or more generally, whether any particular



140 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

approximation structure merits additional research funding to develop special
hardware.

This list questions several typical motivations for the use of neural networks in approx-
imation-based control applications. The intent is not to show that neural networks
should not be used, but to encourage more careful consideration of the motivations
before choosing a particular function approximator. Alternative motivations are dis-
cussed in greater depth in Section 6.3.

6.2 CONTROL ARCHITECTURES

An approximation-based controller is formed by combining one or more on-line
approximators, which provide estimates of the unknown functions at each instant,
with a control law, whose objective is to use the known components of the plant and
the on-line estimates of the unknown components in order to achieve a desired control
performance.

There are two approaches for combining the control law and the on-line approx-
imation functions. In the first approach, referred to as indirect control, the on-line
approximator is used to estimate the unknown nonlinearities of the plant. Based on
these functional estimates, the control law is computed by treating the estimates as if
they were the true functions, based on the certainty equivalence principle [2]. In the
second approach, referred to as direct control, the on-line approximator is used to
estimate directly the unknown nonlinear controller functions.

To illustrate the concepts of indirect and direct control, consider the problem of
controlling an nth order single-input system of the form

x = f(x) + g(x)u,

where the vector functions f and g are assumed to be unknown. According to the
indirect control approach, two on-line approximation functions, denoted by f(x) and
&(x), will be employed to estimate the unknown functions f(x) and g(x), respectively. By
processing the input u(z) and state variables x(¢) in real time, on-line parameter estima-
tion methods are designed for updating the parameters associated with each approx-
imation function f(x) and g(x), as shown in Figure 6.2. These functional estimates are
then used in place of the unknown functions in the control law. For example, for
feedback linearizing control, the idea is to cancel the nonlinearities in the feedback
loop and then employ standard linear control design methods in order to achieve a
desired control performance. Alternatively, in direct control the approach is to approx-
imate the controller functions directly without approximating f(x) and g(x). Therefore,
for feedback linearization the control law

u = a(x) + B(X)v,
which is used to linearize the system from v to x, is approximated by
u = &(x) + Bx)v,

where & and B are on-line approximation functions (see Figure 6.3).



Section 6.2 Control Architectures 141

r | Controller u Plant x
Input C(f(x), 8(x)) x=f(x)+gx)u
command
by
r On-line approximation
-] of f(x) and g(x)
[70 [aw

Figure 6.2 Indirect control architecture.

r | Controller u Plant x
Input C(a), px) F=fx)+g(x)u
command
r On-line approximation
| of a(x) and B(x)
oo |

Figure 6.3 Direct control architecture.

Both the direct and indirect approaches present formidable challenges in develop-
ing provably stable on-line approximation control systems.

6.2.1 Indirect Methods

In indirect control approaches, the approximation function is used to estimate the
unknown nonlinearities of the system. Therefore, the plant model P(f) is characterized
in terms of all the unknown nonlinearities f = {fl, fay ... fs}. For example, in a linear-
ized system, the linear model may need to be augmented by unknown nonlinearities
that represent higher-order terms left out during small-signal linearization.
Approximation functions with on-line parameter estimation generate estimates
f =111,/ ...f;1, corresponding to each unknown function f;. Each of these function
estimates is generated in real time (or in almost real time) by processing the plant input
u(f) and output y(f). The on-line approximators given by f yield an estimated plant
model P(f), which is updated continuously. According to the indirect control
approach, the estimated plant model P(f) is treated as the “true” plant, and a control
law is designed for it.

An indirect control design consists of two separate tasks: (1) the on-line
approximation of the unknown nonlinearities and (2) the nonlinear feedback control
design. In principle, any on-line approximation algorithm can be combined with any
nonlinear feedback control law in constructing an indirect on-line approximation



142

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

control scheme. Indeed, one of the key appealing features of indirect control is the
versatility to unify various on-line approximation schemes and feedback control
laws. However, combining a stable estimation scheme with a stable control law
does not necessarily imply that the overall scheme will be stable. Unlike linear
systems, where separation of identification and control can be achieved using adap-
tive linear control techniques, for nonlinear systems the problem is more difficult. A
cause of this difficulty is the difference in instability behavior between linear and
nonlinear systems. Although the states of an unstable linear system remain bounded
over any finite interval, in the case of nonlinear systems the states may become
unbounded in finite time. Therefore, even small approximation errors may cause
the state of the system to become unbounded in finite time—before the on-line
approximation is able to “learn” the unknown nonlinearity. In general, because of
difficulties in establishing stability of indirect control schemes for on-line approxi-
mation, care needs to be taken in their use.

In the practical implementation of indirect control schemes, both on-line approx-
imation and control can be carried out synchronously at every instant of time, or
asynchronously after processing some of the data over some period of time. For
example, in the presence of noise and/or external disturbances, it is common to
perform updates on the on-line approximation function at every instant of time but
to update the control law over a slower time-scale.

6.2.2 Direct Methods

In direct control approaches, on-line approximation is performed directly on unknown
functions in the control law. In order to design a direct control scheme, the plant model
P(f) needs to be converted into a controller structure C(er) that meets the performance
requirements. The controller structure is characterized in terms of unknown control
functions o = {al, a, ... aq}, which appear because of the unknown plant functions f.
In the direct control approach, the on-line approximators are designed to approximate
each unknown function «;. Therefore, processing the plant input u(z) and output y(¢)
yields the estimated controller functions directly.

One appealing feature of direct control schemes is the ability to aggregate several
unknown nonlinearities into one collective term. This can be especially useful for
complex nonlinear systems where tracing the propagation of unknown nonlinearities
into the design of a feedback control law can be intractable. The major source of
difficulty in designing direct control schemes appears in the selection of the controller
structure C(e) and especially in the derivation of adaptive laws for updating the
estimated parameters of the approximation functions. A useful tool in the design
of direct control schemes is Lyapunov’s stability theory [18], which is discussed in
Section 6.4.4.

6.3 APPROXIMATOR PROPERTIES

This section focuses on the properties of families of function approximators. For each
property, the technical meaning of the property will first be presented. Then the
property will be interpreted in the context of approximation-based control
applications.



Section 6.3 Approximator Properties 143

6.3.1 Universal Approximator

For approximation-based control applications, a fundamental question is whether a
particular family of approximators is capable of providing a close approximation to the
function f(x). There are at least three interesting aspects of this question:

1. Is there some subset of a family of approximators that is capable of providing an
accurate approximation to f(x)?

2. If there exists some subset of the family of approximators that is capable of
providing an accurate approximation, can the designer specify an approximation
structure in this subset a priori?

3. Given that an approximation structure can be specified, can appropriate parameter
vectors 6 and o be estimated using data obtained, while ensuring stable operation,
during on-line system operation?

To answer these questions satisfactorily, various technical issues must be addressed.
This section seeks to present a readable, yet rigorous, combination of the results of [14,
32] to analyze the first question. To enhance readability, some technical detail has been
removed. The reader interested in a more complete discussion should consult the
numerous articles on universal approximation (e.g., [6, 11, 14, 32]).

Definition 6.3.1 (Affine Functions) For any r € {1,2,3...}, A" : R — R denotes
the set of affine functions of the form

Ax)=wIx+b
where w,x € R" and b € R.
Definition 6.3.2 (Single Hidden Layer Networks) The family of r input, N node,

single hidden layer network approximators associated with nodal processor g(-) is
defined by

S,,N={f:§ﬁ'—>§ﬁ

N
f(x) = Ze,.g(A,.(x)), xeR,0eRY, andA; e A’].

i=1

The fact that various approximators, including sigmoidal networks and radial basis
functions, can be coerced into this form is demonstrated in [32]. Any single hidden layer
network can be written in the form of Eq. (6.2) by defining ¢,(x, o) to be g(4;(x)), where
o is a vector composed of the elements of w and b. Specification of a unique single
hidden layer network approximator requires definition of the following S5-tuple
F =(r,N,g,0,0). If all parameters except for 8 are specified, then we have a linear-
in-the-parameters estimation problem (see Section 6.4).

Definition 6.3.2 explicitly defines single-output network functions. The definition
of vector output network functions is a direct extension of the definition, where each
vector component is defined as in Definition 6.3.2 and 6 is a matrix. With the definition
of vector output single hidden layer networks, multi-hidden layer networks can be
defined by using the vector output from one network as the vector input to another



Chapter 6 Neural, Fuzzy, and Approximation-Based Control

network. The discussion that follows focuses on single hidden layer networks. Similar
results apply to multi-hidden layer networks [11, 32].

To state the theorem that follows requires that two classes of nodal processors be
specified.

Definition 6.3.3 (Squashing functions) The nodal processor g(-) is a squashing
function if g(-) is a non-constant, continuous, bounded, and monotone increasing
function of its scalar argument.

Definition 6.3.4 (Local functions) The nodal processor g(-) is a local function if g(-)
is continuous, g(-) € L1 (L, 1 <p < oo and [gdu # 0 for Lebesgue measure .

Combining the results of [11, 14, 32),2 the following theorem results.

Theorem 6.3.1 (Universal Approximation) If g(-) satisfies either Definition 6.3.3 or
6.3.4, f is continuous on the compact set D € R', and S is the family of approxima-
tors defined in Definition 6.3.2, then for a given € there exist N(e) such that for N >
N(e) there exist f € S, y such that

of.f) <e

for an appropriately defined metric p for functions on D.

Results such as Theorem 6.3.1 are referred to as universal approximation results.
Approximators that satisfy such theorems are referred to as universal approximators.
Universal approximation theorems such as this state that under reasonable assumptions
on the nodal processor and the function to be approximated, if the (single hidden layer)
network approximator has enough nodes, then an accurate network approximation can
be constructed by selection of 6 and o. Such theorems do not provide constructive
methods for determining appropriate values of N, 9, or o.

Universal approximation results are one of the most typically cited reasons for
applying neural or fuzzy techniques in control applications involving significant unmo-
deled nonlinear effects. The reasoning is along the following lines: The dynamics
involve a function f(x) = fy(x) + Af(x) where Af(x) has a significant effect on the
system performance and is known to have properties satisfying a Universal
Approximation Theorem, but Af(x) cannot be accurately modeled a priori. Based on
universal approximation results, the designer knows that there exists some subset of F
that approximates Af(x) to an accuracy € for which the control specification can be
achieved. Therefore, the approximation-based control problem reduces to finding f €
F that satisfies the € accuracy specification. Most articles in the literature address the
third question stated at the beginning of this section: selection of 6 or (6, o) given that
the remaining elements of F have been specified. However, selection of N for a given
choice of g and o (or (N, o) for a specified g) is the step in the design process that limits
the approximation accuracy that can ultimately be achieved. To cite universal approx-

2 The results of these articles are more general than the theorem that follows but require a more
technical discussion.



Section 6.3 Approximator Properties 145

imation results as a motivation and then select N as some arbitrary, small number is
essentially contradictory.

Starting with the motivation stated in the previous paragraph, it is reasonable to
derive stable algorithms for adaptive estimation of 8 (or (6, 0)) if N is specified large
enough that it can be assumed larger than the unknown N. Specification of too small a
value for N defeats the purpose of using a universal approximation-based technique.
When N is selected too small but a provably stable parameter estimation algorithm is
used, stable (even satisfactory) control performance is still achievable; however, accu-
rate approximation will not be achievable. Unfortunately, the parameter N is typically
unknown, since Af(x) is not known. Therefore, the selection of N must be made overly
large to ensure accurate approximation. The tradeoff for overestimating the value of N
is the larger memory and computation time requirements of the implementation. In
addition, if N is selected too large, then the approximator will be capable of fitting the
measurement noise as well as the function. Fourier-analysis-based methods for selecting
N are discussed in [29]. Online adjustment of N is an interesting area of research which
tries to minimize the computational requirements while minimizing ¢ and ensuring
stability.

Results such as Theorem 6.3.1 provide sufficient conditions for the approximation
of continuous functions over compact domains. Other approximation schemes exist
which do not satisfy the conditions of these particular theorems but are capable of
achieving € approximation accuracy. For example, the Stone-Weierstrass Theorem
shows this property for polynomial series. In addition, some classical approximation
methods can be coerced into the form necessary to apply the universal approximation
results. Therefore, there exist numerous approximators capable of achieving € approx-
imation accuracy. The decision among them should be made by considering other
approximator properties and carefully weighing their relative advantages and disad-
vantages.

6.3.2 Parameter (Non)Linearity

An initial decision that the designer must make is whether o will be fixed a priori (i.e.,
o(t) = 6(0) and ¢ = 0) or adapted on-line (i.e., o(¢) is a function of the on-line data and
control performance). If o is fixed during on-line operation, then the function approx-
imator is linear in the remaining adjustable parameters 6, so that the designer has a
linear-in-the-parameter on-line function approximation problem. Proving theoretical
issues, such as closed-loop system stability, is easier in the linear-in-parameter (LIP)
case. In the case where the approximating parameters o are fixed, these parameters will
be dropped from the approximation notation, yielding

f(x,6) = 67 p(x). (6.5)

Fixing o is beneficial in terms of simplifying the analysis but is limiting in terms of the
functions that can be accurately approximated. To obtain a linear in the parameters
function approximation problem, the designer must specify a priori (r, N, G, o). If these
parameters are not specified judiciously, then the desired € accuracy may not be achiev-
able for any value of 6. For later use, we define:



146

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

Definition 6.3.5 (Linear-in-Parameter Approximators) The family of r input, N
node, LIP approximators associated with nodal processor g(-) is defined by

i=1

Si¥ga = {f ‘W >

N
@) =) 6g(x),xeR,and f sn”]. (6.6)

In addition to simplifying the theoretical analysis, an additional motivation for the
desire to use LIP approximations is that such approximators have a single global
minimizing parameter vector (i.e., there are no local minima).

Theorem 6.3.2 (Unique Minimum) [8] Given an approximator of the form Egq.
(6.5), for any N, there exists a unique 6* € RN such that f(x) = (6*)T ¢(x) + €7(x)
where

6* = argmin, /D FGe) = fCx - O)]dx. 6.7)

In addition, there are no (non-global) local minima of the cost function.

Given that there exists a minimizing parameter vector, the uniqueness of 6* can be
proven by expanding Eq. (6.7) and noticing that it is quadratic in 6. Therefore, a major
advantage of LIP approximators is that there exists a single global minimizing para-
meter vector. When a nonlinear in the parameter approximator is selected, there may be
several local minima in the space of possible parameters. If the estimated parameter
vector starts out in the basin of attraction of a local minimum, the estimated parameters
will converge to the local minimum. In this case, it is immaterial that the global mini-
mizing parameter vector achieves € approximation accuracy if the parameter vector at
the local minimum does not. An additional motivation for the use of LIP approxima-
tors is discussed in Section 6.3.3.

The relative drawbacks of approximators that are linear in the adjustable para-
meters are discussed, for example, by Barron in [3]. Barron shows that given certain
technical assumptions, approximators that are nonlinear in their parameters have
squared approximation errors of order O(%), while approximators that are linear in
their parameters cannot have squared approximation errors smaller than order N‘}’-T" (N
is the number of parameters, and d is the dimension of domain D). In spite of these
disadvantageous order of approximation comparisons for high-dimension input
domains, there is still significant interest in linear-in-parameter approximators. First,
the theoretical performance guarantees necessary in dynamic applications prior to
implementation may not be available for approximators with nonlinear parameter
dependence. Second, when the approximator is linearly parameterized and the basis
elements are local, significant computational advantages result [10]. Third, in low-
input-dimension applications, more detailed analysis than order of approximation
arguments is required to determine the relative merits of linear- or nonlinear-in-para-
meter approximators.



Section 6.3 Approximator Properties 147

6.3.3 Best Approximator Property

Universal approximation theorems of the type discussed in Section 6.3.1 analyze the
problem of whether for a family of function approximators S, y, there exists a € S, y
that approximates a given function with at most € error over a region D. This section
considers an interesting related question: Given a convergent sequence of approxima-
tors {a;}, a; € S, y, is the limit point of the sequence in the set S, ? If the limit point is
guaranteed to be in S, y, then the family of approximators is said to have the “best
approximator” property.

Let f be a continuous function on D (ie., f € C(D)). Let S, y be a family of
approximators defined on D such that S, y C C(D). If the norm for functions in
C(D) is denoted by || - ||, then the distance between two elements of C(D) will be defined
as p(f,g)=If—gll. The distance from f to S,y is defined as
of S, x) = infes ,o(f @)

The best approximation problem [12] can be stated as: Given f € C(D) and
S,y C C(D), find a* € S, y such that p(f,a*) = p(f, S, y). Universal approximation
theorems do not seek a best approximator, but rather an e-accuracy approximator.
However, a sequence of approximators can be conceived that achieve ¢;-accuracy
approximation, where {¢;} is a sequence that converges to zero. Depending on the
properties of the set S, y, the limit point of such a sequence may or may not exist in
A

A set S, y is called an existence set if for any f € C(D) there is at least one best
approximation to f in S, y. A set S, y is called a uniqueness set if for any f € C(D) there
is at most one best approximation to f in S, y.

Proposition 4.2 of [12] shows that LIP approximators yield families of approxi-
mators (i.€., S,y ,,) that are existence sets. Nonlinear-in-parameter approximators
may not have the best approximation property. In particular, [12] shows that radial
basis functions with adaptive centers and sigmoidal neural networks with an adaptive
input layer (or multiple adaptive layers) do not have the best approximator property.

6.3.4 Generalization

The term gerneralization is often used to motivate the use of neural network/fuzzy
methods. The motivational phrase is typically of the form “neural networks have the
ability to generalize from the training data.” Analysis of such statements requires
definition of the term generalization.

In [31] neural network applications are classified as either recognition or general-
ization. Recognition applications attempt to classify noisy inputs into one of a variety of
categories that were deduced by the network during training (e.g., classify a hand-
written character as one of the letters of a given alphabet). Fault identification applica-
tions could fall into this recognition category of applications. Generalization applica-
tions try to estimate the output value of a continuous function for given input values to
the function. The estimated output value depends on the previous set of training data
that was used to construct an approximating function to fit the training data in some
well-defined sense. Most neural and fuzzy adaptive control applications fall into this
generalization category.

The above categorization is not completely satisfying, since useful pattern recogni-
tion requires classification of input patterns outside the original training set. Therefore,
recognition also incorporates the concept of generalization. Recognition can be inter-



148

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

preted as a mapping from a continuous set of real vectors to a set of m output values,
where the output value indicates the appropriate classification. In this chapter, general-
ization will only be considered in the context of function approximation, as specified in
Section 6.1.2.

As motivated in Section 6.1.2, the approximation-based control problem theore-
tically involves a cost function of the form:

) = /D @) —f @ 0)dz. 68)

This cost function implies that the approximation error should be minimized by selec-
tion of @ over the region D. Unfortunately, the above approximation problem (as
stated) can only be solved if f(z) is known.

When f(z) is not known, practical solutions to approximation-based control pro-
blems address the minimization of a cost function defined as a summation of sample
errors

N ~
IO =53 Iy~ Fla OFF (69)
i=1

where y; = f(z;) is known (or able to be estimated from noisy measurements) from
variables sensed in the control application. Generalization refers to the capability of
an approximator that minimizes the scattered data approximation cost function of Eq.
(6.9) to also minimize the function approximation cost function of Eq. (6.8). This
capability depends on (1) the degree of continuity of f and f, (2) the available training
data, and (3) the method of evaluation of the generalization results. Analysis of general-
ization claims should be split into analysis of the ability of approximators to interpolate
and to extrapolate.

Interpolation is the process of providing an estimate of f(z) at a point z, where z —
z; is small for some 1 <i < N. Conceptually, interpolation averages appropriately
weighted training points in the vicinity of the evaluation point. Therefore, interpolation
is desirable as both a noise filtering and data reduction process. The capability of the
function approximator to interpolate between training samples is necessary if the
approximator is to make efficient use of memory and the training data.

Extrapolation is the process of providing an estimate of f(z) at a point z, where
z —z; is large for all 1 <i < N. Therefore, extrapolation attempts to predict the value
of the function in a region far from the available training data. In off-line (batch)
training scenarios, the set of training samples can be designed to be representative of
the region D, so that extrapolation does not occur. In on-line control applications,
operating conditions may force the designer to use whatever data the system generates,
even if the training data do not representatively cover all of D. Since the class of
functions to be approximated is large (i.e., all continuous functions on D) and the
training data will include measurement noise, accurate extrapolation should not be
expected. In fact, the control methodology should include provisions to accommodate
regions of the state space for which adequate training has not occurred. Instead, the
system should slowly move from regions for which accurate approximation has been
achieved into regions still requiring exploration. In addition, it is desirable that explora-



Section 6.3 Approximator Properties 149

tion of new regions does not destroy approximation accuracy previously attained in
other regions, which is one of the motivations for function approximators with locally
supported influence functions.

6.3.5 Extent of Influence Function Support

In the specification of the approximators of Egs. (6.2) or (6.5), a major factor in
determining the ultimate performance that can be achieved is the selection of the
influence functions ¢(x). An important characteristic in the selection of ¢ is the extent
of the support of the elements of ¢ which is defined to be Supp, = {x € D|¢,(x) # 0}.
Let u(A) be a function that measures the area of the set 4. Then, the influence functions
¢; will be referred to as global influence functions if u(Suppy ) = u(D). The influence
functions ¢; will be referred to as local influence functions if w(Suppy) <K w(D).

Based on the discussion in Section 6.3.4, the designer should not expect f to
accurately extrapolate training data from one region into other (unexplored) regions.
In addition, it is desirable that training data in new regions not affect the previously
achieved approximation accuracy in distant regions. Both of these issues motivate the
selection of local influence functions.

The on-line parameter estimation algorithms of Section 6.4 will adapt the para-
meter vector estimate 6(t) based on the current tracking error e(?). If the influence
function ¢; has global support, then changing the estimated parameter 6; affects the
approximation accuracy throughout D. Alternatively, if ¢; has local support, then
changing the estimated parameter 6; affects the approximation accuracy only on
Supp,, which by assumption is a small region of D.

6.3.5.1 Approximators with Local Influence
Functions

Several approximators with local influence functions have been proposed in the
literature. This section analyzes such approximators in a general framework [9].
Local and global approximation structures can be distinguished as follows [9].

Definition 6.3.6 (Local Approximation Structure) 4 function f (x, 0) is a local
approximation to f(x) at x, if for any € there exist 6 and § such that II £(x) f (x, 0) I
< € for all x € B(xy, 8) = {x]||x — xo| < 68}.

Two common examples of local approximation structures are constant and linear
functions. The constant, linear, or higher order polynomial function can be used to
accurately approximate an arbitrary continuous function if the region of validity of the
approximation is small enough.

Definition 6.3.7 (Global Approximation Structure) A parametric model f (x, é) is an
e-accurate global approximation to f (x) over domain D if for the given € there exists 6
such that || f(x) — f(x,0) ||< € for all x € D.

The main objective of this section is to appropriately piece together a (large) set of local
approximation structures to achieve a global approximation structure. The following



150 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

definition of the class of Basis-Influence Functions [19] presents one means of achieving
this objective.

Definition 6.3.8 (Basis-Influence Functions) 4 function approximator is of the BI
Class if and only if it can be written as

f (x, é) = Z/,-(x, 6; x)Ti(x; x;) (6.10)

where each fi(x, 6; x;) is a local approximation to f(x) for all x € B(x;,8), and
I'i(x; x;) has local support S; which is a subset of B(x;, §) such that D C | J; S;.

Examples of basis-influence approximators include Boxes, CMAC [1], Radial Basis
Functions [26], splines, and several versions of fuzzy systems [21, 34]. In the traditional
implementation of each of these approximators, the basis functions are constant func-
tions. If more capable basis functions (e.g., linear functions) were implemented, then the
designer could expect a decrease in the number of required local approximation struc-
tures. Figure 6.4 illustrates basis-influence function approximation using linear approx-
imations locally with normalized Gaussian influence functions. For clarity, the
influence functions are plotted at a 10% scale and only a portion of each linear approx-
imation is plotted. An alternative definition of local influence, which also provides a
measure of the degree of localization based on the learning algorithm, is given in [35].
The partition of unity is defined as follows [37].

09F
0.8
0.7
06
0.5
04r

03+

0.2F

0.1

00 01 02 03 04 05 06 07 08 09 1

Figure 6.4 Basis-influence function approximation. The original function is shown as
a dashed line. The local approximations (basis functions) are shown as
solid lines. The influence functions (drawn at 10% scale) are shown as
solid lines at the bottom of the figure.



Section 6.3 Approximator Properties 151

Definition 6.3.9 (Partition of Unity) The set of positive semi-definite influence func-
tions {T';}(x) form a Partition of Unity on D if for any x € D, Zfil rix)=1.
If a set of positive semi-definite influence functions {I';} do not form a partition of unity,
but have the coverage property (i.e., for any x € D there exists at least one 7 such that
I';(x) # 0), then a partition of unity can be formed from {I';} as

(6.11)

Function approximators with the partition of unity property, if well designed, are
capable of accurate interpolation.

If the influence functions form a Partition of Unity, it can be shown that under the
assumptions of Definitions 6.3.6 and 6.3.8, the basis-influence approximation achieves
global e approximation accuracy on D.

6.3.5.2 Lattice-Based Approximators

Specification of locally supported basis functions requires specification of the sup-
port of each basis element. Typically, this is implemented through the specification of
center and width parameters of the basis elements. This specification includes the choice
as to whether the center and width parameters are fixed a priori or estimated based on
the acquired data.

Adaptive estimation of the center and width parameters is a nonlinear estimation
problem. Therefore, the resulting approximator would not have the best approximator
property but would have the beneficial order of approximation behavior discussed in
Section 6.3.2.

Prior specification of the centers on a grid of points results in a lattice-based
approximator [4]. Lattice-based approximators result in significant computational sim-
plification over adaptive center-based approximators for two reasons. First, the center
adaptation calculations are not required. Second, the nonzero elements of the vector ¢
can be determined without direct calculation of ¢ [10]. If the width parameters are also
fixed a priori, then a linear parameter estimation problem results with the correspond-
ing benefits.

6.3.5.3 Curse of Dimensionality

The main drawback of using locally supported basis elements is the fact that the
required number of basis elements increases exponentially with the dimension of D. If D
is d dimensional and m basis elements are allocated per dimension, then the total
number of basis elements is m“. This drawback is referred to as the curse of dimension-
ality.

6.3.6 Approximator Transparency

Approximator transparency refers to the designer’s ability to preload a priori informa-
tion into the function approximator and to interpret the approximated function as it
evolves. Applications using fuzzy systems typically cite approximator transparency as a



152 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

motivation. The fuzzy system can be interpreted as a rule base stating either the control
value or control law applicable at a given system state [21, 34].

In any application, a priori information can be preloaded by at least two
approaches. First, the function to be approximated can always be decomposed as

J(X) =/,(x) + Af(x) (6.12)

where f,(x) represents the known portion of the function and Af(x) represents the
unknown portion for which an approximation will be developed on-line. In this case,
the approximated function would be

) =£,(0) + AF (%).

Second, if for some reason, the approach described in Eq. (6.12) were not satisfactory,
then f(x) could be initialized by off-line methods to accurately approximate the known
portion of the function (i.e., f,(x)). During on-line operation, the parameters of the
approximator would be tuned to account for the unknown portion of the function (i.e.,
Af(x)).

Any approximator of the basis-influence class allows the user to interpret the
approximated function. The influence functions dictate which of the basis functions
are applicable (and the amount of applicability) at any given point.

6.4 PARAMETER ESTIMATION: ONLINE
APPROXIMATION

This section examines the formulation of parametric models for the approximation
problem and the derivation of parameter estimation algorithms with certain stability
and robustness properties. Parameter estimation refers to the procedure for updating
the parameters of the function approximator. For notational consistency and conve-
nience, we focus on continuous-time parameter estimation methods. In general, there is
no loss of generality in formulating the parameter estimation in continuous time since
for all the algorithms discussed in this section, there are also corresponding discrete-
time procedures [24].

6.4.1 Parametric Models

From a mathematical viewpoint, the selection of a function approximator provides a
way to parameterize an unknown function. As discussed in Section 6.3, several approx-
imator properties such as localization, generalization, and parametric linearity need to
be considered. Once the structure of the approximation function has been selected, then
the unknown function to be approximated is said to be parameterized and the problem
reduces to one of parameter estimation. This problem falls within the domain of tradi-
tional adaptive control and on-line parameter estimation methods, provided that the
structure of the on-line approximator remains fixed.

To further examine the construction of parametric models, let us focus on the on-
line approximation problem of a nonlinear system represented by

x(0) = £(x(2), u(?)), (6.13)



Section 6.4 Parameter Estimation: Online Approximation 153

where u(¢) € R™ is the control input vector, x(z) € R" is the state variable vector, and
f: R" x R"—R" is a vector field representing the dynamics of the system. As discussed
earlier, in most applications the vector field f is partially known either by analytical
methods using first principles or by off-line identification methods. Therefore f can be
decomposed as

f(x, u) = fy(x, u) + Af(x, u),

where f, represents the known system dynamics and Af represents the discrepancy
between the actual dynamics f and the nominal dynamics f,. The above decomposition
is crucial because it allows the control designer to incorporate prior information;
thereby the neural network (or other type of approximator) is needed to approximate
only the uncertainty Af (whose magnitude is typically small) instead of the overall
function f. Furthermore, if adaptation of the on-line approximator is disabled, then
the residual controller is the one developed based on the nominal model, or a linear
approximation of the nonlinear system in the case of linear control design methods.
The nonlinear system (6.13) can be rewritten as

x = fo(x, u) + Af(x, u; 6%) + e/(x, ), (6.14)

where Af is an approximating function of the type described in Section 6.3 and 6* € RY
is an “optimal” parameter vector that minimizes the cost function (6.4) between Af and
Af for all (x, u) belonging to a compact set D. The error term e, defined as

er(x, u) = Af(x,u) — Af(x, u; 6),

represents the approximation error, which is the minimum possible deviation between
the unknown function Af and the input-output function of the on-line approximator
Af. In general, increasing the number of adjustable parameters (denoted by N) reduces
the function approximation error. Universal approximation results (discussed in
Section 6.3.1) indicate that if N is sufficiently large, then e, can be made arbitrarily
small.

With a reasonably large number of parameters, the function approximation error,
in general, is expected to be small (but not zero). The bound of the function approx-
imation error is a critical quantity in approximation-based control, representing the
optimal approximation capability of the selected function approximator within the
compact region D. Linear modeling, which has dominated system theory and design
during the last five decades, can be thought of as a special case of approximation-based
control, where the approximators are linear models of the form f(x, u) = Ax + Bu. In
the case of linear models, the approximation error e, is zero at the point of linearization
and may increase at state space regions farther away. The basic idea behind approx-
imation-based control using nonlinear models is to expand the region where the
approximation is valid from a small neighborhood around the linearizing point (in
the case of linear models) to a larger region D, where D can be relatively large (i.e.,
defining the state space region of possible operation). It should be noted, however, that
similar to linear control methods, if the state trajectories move outside the approxima-



154

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

tion region D, then the approximation-based controller may not be effective in achiev-
ing the desired control objectives.

In order to prevent the state trajectories from leaving the region D, some bound
(possibly state-dependent) on the unknown function Af is required. Otherwise, the
state trajectories can move away from the desired trajectory faster than the feedback
control can bring them back, possibly leading to instability. Unlike linear systems,
where state trajectories can grow, at most, exponentially, in nonlinear systems the
state trajectories can become unbounded in finite time. This is referred to as finite
escape time. Therefore, in nonlinear systems the controller needs to be more aggressive
in order to restrict the trajectories within a desired region. Several authors have
designed control systems that assume known bounds on the unknown dynamics in
order to restrict trajectories from leaving a specified region, and therefore obtaining
global stability results (see, €.g., [22, 29]). These results employ the sliding-mode type of
control methods to restrict the system within some desired region. Adaptive bounding
methods have been used recently [23, 25] to relax some of the restrictive assumptions on
the system uncertainty bounds.

If x is available for measurement in Eq. (6.14), then the parameter estimation
problem becomes a static nonlinear approximation problem of the general form

¥ = Af(z; 6) + e (6.15)

where z = (x, u) and § = x — f(x, u) are measurable variables, e, is the approximation
error (or noise term), and 6" is the unknown parameter vector to be estimated. Because
in most applications only x is available for measurement and the use of differentiation
is not desirable, the assumption of x being available should be avoided. One way to
avoid the use of differentiators is to use filtering techniques. By filtering each side of

(6.14) with a first-order stable filter HLA, where A > 0, we obtain

1 p; *
=g [af@ 69] +3 (6.16)

where?

2

y=s+A

] - [fox, )]

1
§= m [e/(x, ll)]

_ In the special case where the approximation function is linearly parameterized (i.e.,
Af(z; 6%) = (6*) ¢(z)), then (6.16) becomes a linear parametric model of the form

y=©""¢+8 (6.17)
where ¢ is a vector of the filtered version of each basis; that is, { = H#A[cp(z)].

3 The notation y = H(s)[x], where H(s) is a stable transfer function, is to be interpreted as y(¢) being
the output of a linear system H(s) with x(¢) as input.



Section 6.4 Parameter Estimation: Online Approximation 155

Next we consider various on-line adaptive techniques for the estimation of *. The
gradient and least-squares methods are optimization-based methods, where the idea is
to form an appropriate error function and minimize it using standard optimization
techniques. Lyapunov-based methods, on the other hand, rely on the use of
Lyapunov functions to derive a learning algorithm with inherent stability properties.
In order to address the presence of the approximation error §, in Section 6.4.5 we
discuss the use of robust learning algorithms.

6.4.2 Gradient Algorithms

One of the most straightforward and widely used approaches for parameter estimation
involves the use of the gradient (or steepest descent) method. The main idea behind the
gradient method is to start with an initial estimate 9(0) of the unknown parameter 6*
and to update at each time # the parameter estimate O(t) in the direction where the cost
function J (6) decreases the most. Several variations of the standard gradient algorithm
have also been used in the parameter estimation literature. For example, the stochastic
gradient approach leads to the well-known least-mean-square (LMS) algorithm, first
developed by Widrow and Hoff [38]. Another useful modification of the gradient
algorithm is the gradient projection algorithm, which restricts the parameter estimates
in a specified region.

In this section, we focus on the deterministic, continuous-time version of the
gradient learning algorithm. For continuous-time adaptive algorithms, infinitesimally
small step lengths yield the following update law with respect to a specified cost func-
tion:

6t) = —~VI@®),

where VJ(é) denotes the gradient of the cost function J with respect to 6. Based on
(6.17), if we minimize the cost function associated with the instantaneous error

A1 ap T -
716 =35 (v - "020) " (v - 030) (6.18)
we obtain the following gradient estimation algorithm:

6 = T5() (30 - 07 (%), (6.19)

where I' is a positive-definite symmetrlc matrix representing the learning rate matrix
and the initial condition is given by 0(0) 90 In the special case where the same
learning rate y is used for each parameter estimate, then I' = yI, where I is the identity
matrix.

The normalized gradient algorithm is a variation of the gradient algorithm, which is
sometimes used to improve the stability and convergence properties of the algorithm.
The normalized gradient algorithm is described by

;  Te(y0 -8 e)
Y S IOr O




156

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

where 8 > 0 is a design constant.

The backpropagation algorithm, which has been used extensively in the literature
for training neural networks, is also a gradient-based algorithm. However, the exten-
sion of the backpropagation algorithm to dynamical systems (using learning algorithms
such as dynamic backpropagation [20] and backpropagation through time [36]) yields
adaptive laws that typically require the sensitivity a% of the output x with respect to
variations in the unknown parameters 6*. Since these sensitivity functions are not
available, implementation of such adaptive laws is not possible. In these cases, approx-
imations of the sensitivity functions are used instead of the actual ones. One type of
approximation used in dynamic backpropagation is to replace the gradient with respect
to the unknown parameters by the gradient with respect to the estimated parameters.
Such adaptive laws were used extensively in the early neural control literature, and
simulations indicated that they performed well under certain conditions. Unfortunately,
with approximate sensitivity functions, it is not possible, in general, to prove stability
and convergence. It is interesting to note that approximate sensitivity function
approaches also appeared in the early days of adaptive linear control, in the form of
the so-called MIT rule [17].

One way to avoid the stability problems associated with approximate sensitivity
functions is to reformulate the problem so that the cost function is convex with respect
to the adjustable parameters. Based on the filtering techniques of Section 6.4.1, the cost
function described by (6.18) with y as defined in (6.17) satisfies the convexity property
for linearly parameterized approximators, and its gradient with respect to the estimated
parameters is implementable (% is calculable from available measurements). Therefore,
the gradient algorithm described by (6.19) has some desirable stability properties, which
are summarized as follows:

Theorem 6.4.1 (Stability of Gradient Algorithm) Suppose the regressor vector is
uniformly bounded (i.e., { € Ly,). If the on-line approximator is linearly parameter-
ized (i.e., Af(z 9) 9T¢(z) ) and there is no approximation error (i.e.,§ =0), then
the gradient algorithm described by (6.17) and (6.19) has the following properties:

M) GO-6) L0 Lo, @) 60) € Lo,
(3) lim,0o(¥(1) = 0DED) =0, (@) lim, o, 6() =0.

Even in the restrictive case of no approximation errors and a linearly parameter-
ized approximator, it cannot be established that the parameter estimate vector 9(t) will
converge to the optimal vector 6*. To guarantee that 9(t) will converge to 6%, the
regressor vector {(¢) needs to satisfy a so-called persistency of excitation condltlon
Intuitively, this implies that there should be sufficient variation in ¢{(f) to allow the
parameter estimates to converge to their optimal values. To get a basic idea of why
persistency of excitation is important, consider the trivial case where ¢(#) = 0. In this
case, y = (9*)T;' will be zero, and the parameter estimate will satisfy 6 = 0, which
implies that 9(t) = 0(0) Therefore, even though y() — O(t);'(t) =0 for all >0, the
estimated parameter vector 6 does not converge to 6%, unless 0(0) is incidentally selected
to be the optimal parameter vector 6*.

In the presence of approximation errors (i.e., 5(f) # 0), the stability of the gradient
algorithm (6.19) cannot be guaranteed. In fact, it is known from on-line parameter



Section 6.4 Parameter Estimation: Online Approximation 157

estimation of linear systems that even relatively small approximation errors are suffi-
cient to make the adaptive system unstable. To address this problem, the standard
update law described by (6.19) needs to be modified. Several modifications exist in
the literature for enhancing the robustness of adaptive schemes. These modifications
are discussed in Section 6.4.5.

6.4.3 Least-Squares Algorithms

Least-squares methods have been widely used in parameter estimation in both batch
(nonrecursive) and recursive form [2, 16]. The basic idea behind the least-squares
method is to fit a mathematical model to a sequence of observed data by minimizing
the sum of the squares of the difference between the observed and computed data. To
illustrate the least-squares method, consider the problem of computing the parameter
vector 6 at time ¢ that minimizes the cost function

16 = [ (300 - 0200) (36 - ¥ 00,

where y(7) is the measured data at time 7, and {(7) is the regressor vector at time t. The
above cost function penalizes all the past errors y(z) — T (@)6(r) for t=0up to t =1,
relative to the current parameter estimate 6(z). By setting to zero the gradient (with
respect to ) of the cost function (VJ(6) = 0), we obtain the least-squares estimate for
o():

. t -1
b(r) = [ fo ;(r);T(r)dr] fo (@ (D, (6.20)

provided that the inverse exists, which is a function of the level of regressor excitation.

The least-squares estimate given by (6.20) is derived for batch processing; in other
words, all the data in the time interval [0, 7] is gathered before it is processed. In
approximation-based control, the estimated parameter vector 6(¢) needs to be computed
in real time, as new data becomes available. The recursive version of the least-squares
algorithm is given by

60 = P (y' (0 - 7000 60 =6y (6:21)
P() = ~P(O:(0):" (OP() P(0) =P, (6:22)

where P(¢) is a square matrix of the same dimension as the parameter estimate 0. The
initial condition P, of the P matrix is chosen to be positive-definite. Because of the
similarity of the recursive least-squares algorithm to the Kalman filter, when it is
appropriately initialized the matrix P is called the covariance matrix.

The update law for 6, described by (6.21), is similar to the gradient learning algo-
rithm (6.19), with P(¢) representing a time-varying learning rate. In practice, recursive
least squares can converge considerably faster than the gradient algorithm at the
expense of the increased computation required to compute P. However, in its “pure”
form, the recursive least squares may result in the covariance matrix P(f) becoming
arbitrarily small. This problem, which is referred to as the covariance wind-up problem,



158

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

can slow down adaptation in some directions and, as a result, critically dampen the
ability of the algorithm to track time-varying parameters.

Several modifications to the “pure” least-squares algorithm have been considered.
One such modification is covariance resetting, according to which the covariance matrix
is reset to P(z,) = P, at time ¢, if the minimum eigenvalue of P(z,) is less than a pre-
defined small positive constant. This modification helps prevent the covariance matrix
from becoming too small. Another commonly used modification to the least-squares
algorithm leads to the least-squares with forgetting factor, which is given by

) = PO (y() - T (00 (623)
B() = —P()0T (OP) + BP() (624)

where 8 > 0 is typically a small positive constant. The extra term SP(¢) in (6.24) pre-
vents the covariance matrix from becoming too small; on the other hand, it may cause
it to become too large. To avoid this complication, P(¢) is either reset to Py or adapta-
tion is disabled (i.e., P(¢) = 0) in the case that P(¢) becomes too large. The literature on
parameter estimation and adaptive control has several rules of thumb on how to choose
the design variables that appear in the least-squares algorithm and its various modified
versions.

The recursive least-squares algorithm described by (6.21) and (6.22) has similar
stability properties as the gradient algorithm.

Theorem 6.4.2 (Stability of Recursive Least-Squares Algorithm) Suppose the
regressor vector is uniformly bounded (i.e., ;e Ly ). If the on-line approximator
is linearly parameterized (i.e., Af(z 0) 6 ¢(z) ) and there is no approximation
error (i.e., 8§ =0), then the recursive least-squares algorithm described by (6.21)
and (6.22) with y defined by (6.17) has the following properties:

(¥() = 6(1)5()) € L0 Lo, 6(1) € Loo,
lim, 00 (¥(2) = (1)(1)) = O, P(7) € Lo,
lim,_, o, 6(t) = 6, where 8 is a constant vector.

In comparing the stability properties of the gradient and least-squares algorithms,
we notice that in addition to the other boundedness and convergence properties, the
recursive least squares also guarantees that the parameter estimate 6(f) converges to a
constant vector 6. If the regressor vector ¢ satisfies the persistency of excitation condi-
tion, then 6(f) converges to the optimal parameter vector 6*.

Despite its fast convergence properties, the recursive least-squares algorithm has
not been widely used in problems involving large function approximation structures,
mainly because of its heavy computational demands. Specifically, if the number of
adjustable parameters is N, then updating of the covariance matrix P(¢) requires adap-
tation of N? parameters.

6.4.4 Lyapunov-Based Algorithms

Lyapunov stability theory, and in particular Lyapunov’s direct method, is one of the
most celebrated methods for investigating the stability properties of nonlinear systems



Section 6.4 Parameter Estimation: Online Approximation 159

[18]. The principal idea is that it enables one to determine whether or not the equili-
brium state of a dynamical system is stable without explicitly solving the differential
equation. The procedure for deriving such stability properties involves finding a suita-
ble scalar function V(x, ), in terms of the state variables x and time ¢, and investigating

its time derivative
d T (ax\ v
@’ x0= (ax) (dt) o

along the trajectories of the system. Based on the properties of V(x, f) (known as the
Lyapunov function) and its derivative, various conclusions can be made regarding the
stability of the system.

In general, there are no well-defined methods for selecting a Lyapunov function.
However, in adaptive control problems, a standard class of Lyapunov function candi-
dates is known to yield useful results. Furthermore, in some applications, such as
mechanical systems, the Lyapunov function can be thought to represent a system’s
total energy, which provides an intuitive lead into selecting the Lyapunov function.
In terms of energy considerations, the intuitive reasoning behind Lyapunov stability
theory is that in a purely dissipative system the energy stored in the system is always
positive and its time derivative is nonpositive.

The derivation of parameter estimation algorithms using the Lyapunov stability
theory is crucial to the design of stable adaptive and learning systems. Historically,
Lyapunov-based techniques provided the first algorithms for globally stable adaptive
control systems in the early 1960s. In the recent history of neural control and adaptive
fuzzy control methods, most of the results that deal with the stability of such schemes
are based, to some extent, on Lyapunov-based algorithms. In many nonlinear control
problems, Lyapunov stability theory is used not only for the derivation of learning
algorithms but also for the design of the feedback control law.

In Lyapunov-based algorithms, the problem of designing an adaptive law is for-
mulated as a stability problem in which the differential equation of the adaptive law is
chosen so that certain stability properties can be established using Lyapunov theory.
Because such algorithms are derived based on stability methods, by design they have
some inherent stability and convergence properties.

According to the Lyapunov design method, an estimation model is derived based
on Eq. (6.16). The estimation model is described by

1 A oA
y=—— f ) ]9
Y=iT7 [A (z. )
which in the case of linearly parameterized approximators becomes

7= [0"s0)

A Lyapunov function is then selected, which is positive definite with respect to the
estimation error y — § and the parameter estimation error 6%, — . Taking the derivative
of the Lyapunov function gives an expression in terms of 9. The idea is to select the



160

Chapter 6 Neural, Fuzzy, and Approximation-Based Control

righthand side of the adaptive law so that the derivative of the Lyapunov function is
nonpositive, thus guaranteeing the boundedness of O(t) and y(?).

The Lyapunov design method generates the following adaptive law in the case of
linearly parameterized approximators:

(1) = ToD)¥ () — §(0) (6.25)

The above parameter estimation algorithm derived using Lyapunov stability methods is
essentially of the same form as the gradient algorithm (6.19) derived using optimization
techniques. The stability and convergence properties of the two algorithms are also
similar.

Theorem 6.4.3 (Stability of Lyapunov-Based Algorithm) Suppose the regressor
vector ¢ is uniformly bounded (i.e., ¢ € Ly,). If the on-line approximator is linearly
parameterized (i.e., Af(z 0) 6T¢(z) ) and there is no approximation error (i.e.,
e, =0), then the Lyapunov-based algorithm described by (6.25) has the following
properties:

YO = §(D) € L3N Loy, O(1) € Loy,
lim,,oo(y()) = 5(0) =0, §(0) € Loc,
lim,_, o 8(f) = 0.

The same remarks as in the gradient algorithm with regards to the persistency of
excitation condition for parameter convergence are also valid here. Similarly, the
Lyapunov-based algorithm (6.25) needs to be modified to handle approximation errors.

6.4.5 Robust Learning Algorithms

The learning algorithms described in Sections 6.4.2—-6.4.4 are based on the assumption
of no residual modeling errors. In other words, it was assumed that the only uncertainty
in the dynamical system is due to Af(x, u), which can be represented exactly by an on-
line approximation function Af(x, u; ") for some unknown parameter vector 6*. In
practice, the on-line approximation function Af(x, u; §) may not be able to match
exactly the modeling uncertainty Af(x, u), even if 6 was to be selected optimally. This
discrepancy is usually called the approximation error, or the function reconstruction
error. Furthermore, there may be unmodeled dynamics, and the measured input-output
variables may be corrupted by noise and external disturbances. Unmodeled dynamics
arise as a result of model reduction, which may be done either purposefully, in order to
reduce the complexity of the model, or because of unknown dynamics of the full-order
model. Indeed, in some cases (such as in the control of flexible structures) the full-order
model may be of infinite dimension.

In this section, we consider modifications to the standard learning algorithms in
order to provide stability and improve performance in the presence of modeling errors.
These modifications lead to what is known as robust learning algorithms. The term
robust is used to indicate that the learning algorithm is such that in the presence of
modeling errors it retains its stability properties. It is well known from the adaptive
control literature of linear systems [16] that in the presence of even small modeling



Section 6.4 Parameter Estimation: Online Approximation 161

errors, standard adaptive laws may cause the parameter vector §(f) to drift to infinity, a
phenomenon usually referred to as parameter drift.

Intuitively, parameter drift occurs when the learning algorithm attempts to adjust
the parameters in order to match a function for which an exact match does not exist for
any value of the parameters (due either to approximation error or to other modeling
errors such as external disturbances). Two approaches may be used to prevent para-
meter drift. In the first approach, the learning algorithm is modified so that it directly
restricts the parameter estimates from drifting to infinity. The o-modification, the e-
modification, and the projection algorithms belong to this category. In the second
approach, the parameter estimates are prevented from drifting to infinity indirectly
by not allowing the error, which is driving the learning algorithm, from becoming
too small. The dead-zone algorithm has this characteristic.

To illustrate the various options for robustifying the adaptive laws discussed in
Sections 6.4.2-6.4.4, we consider a generic adaptive law

8(t) = TE()e(t), (6.26)

where I is the learning rate matrix, £(¢) is the regressor vector, and €(?) is the estimation
error. In the case of the gradient algorithm (6.19), the regressor is £(f) = ¢(¢) and the
estimation error is €(f) = y(f) — 67 {(?). For the Lyapunov-based algorithm given by
(6.25), the regressor is £(f) = ¢(z(?)), and the estimation error is €(f) = y(¢) — ¥(2).

Based on (6.26), four different modifications for enhancing robustness are as
follows.

Projection modification: One of the most straightforward and effective ways to
prevent parameter drift is to restrain the parameter estimates within a predefined
bounded and convex region P. The projection modification implements this idea as
follows: If the parameter estimate 6 is inside the desired region P, or is on the
boundary and directed inside the region P, then the standard adaptive law (6.26) is
implemented. In the case that 6 is on the boundary of P and its derivative is
directed outside the region, then it is projected onto the tangent hyperplane.
Therefore, the projection modification keeps the parameter estimation vector
within the desired convex region P for all times. If P is selected to be sufficiently
large so that it contains the optimal parameters 6%, then it can be shown that in
addition to the boundedness of the parameter estimates, the rest of the stability
properties of the adaptive law are not affected.

o-modification: In this approach, the adaptive law (6.26) is modified to

8(6) = TE(t)e(t) — Tob(1) (6.27)

where o is a small positive constant. The additional term —I'af acts as a stabilizing
component for the adaptive law. For example, if the parameter estimate é(t) starts
drifting to large positive values, then —T'of becomes large and negative, thus
forcing the parameter estimate to decrease. Although the o-modification does
not require a priori information such as an upper bound on the approximation
error, the robustness is achieved at the expense of destroying some of the conver-



162 Chapter 6 Neural, Fuzzy, and Approximation-Based Control

gence properties of the ideal (no approximation error) case. Therefore, several
modifications have been suggested for addressing this issue, including the so-called
switching o-modification [16].

e-modification: The e-modification was motivated as an attempt to eliminate some
of the drawbacks associated with the o-modification. It is given by

(1) = TE(e() — TI(D)A() (6.28)

where v > 0 is a design constant. The idea behind this approach is to retain the
convergence properties of the adaptive scheme by forcing the additional term
—TI'le[vd to be zero in the case that €(?) is zero. In the case that the parameter
estimate vector 6(¢) starts drifting to large values, then the e-modification again
acts as a stabilizing force.

Dead-zone modification: In the presence of approximation errors, the adaptive law
(6.26) tries to minimize the estimation error €, sometimes at the expense of increas-
ing the magnitude of the parameter estimates. The idea behind the dead-zone
modification is to enhance robustness by turning off adaptation when the estima-
tion error becomes relatively small compared to the approximation error. The
dead-zone modification is given by

jo- (00 111z

where &, is a positive design constant that depends on the approximation error.
One of the drawbacks of the dead-zone modification is that the designer needs an
upper bound on the approximation error, which is usually not available.

In the presence of approximation errors (i.e., s # 0), the above robust adaptive
laws guarantee, under certain conditions, that the parameter estimates 9(t) and the
estimation error €(¢) remain bounded. Although, it cannot be established in the pre-
sence of approximation error that €(f) will converge to zero, it can be shown that the
estimation error is small-in-the-mean [16], in the sense that integral square error over a
finite interval is proportional to the integral square approximation error.

6.5 CONCLUSIONS

On-line approximation-based control methods, including neural and fuzzy methods,
offer a means to improve the performance of nonlinear control systems when the
application involves functions that cannot be accurately modeled a priori. In addition,
these methods provide the opportunity to develop a better understanding of the pro-
cesses underlying the system to be controlled. Increased understanding is achieved
through analysis of the approximated functions, if approximator convergence has
been guaranteed in the control design.

Approximation-based control system design requires specification of a control
architecture, an approximator structure, and a parameter estimation algorithm for



References 163

which the stability of the overall system can be guaranteed under assumptions reflective
of the application. This chapter has discussed each of these issues and provided refer-
ences to articles that provide more in-depth discussion of the same issues.

Related Chapters

e For additional background material on neural networks and fuzzy logic see Ch. 5.

e Applications of nonlinear approximation and approximation-based control are
described in Chs. 5 and 16.

e Ch. 4 reviews some other approaches to developing approximate models from data.

REFERENCES

[1] J. Albus, “A new approach to manipulator control: The cerebellar model articulation con-
troller (CMAC).” Trans. ASME, J. Dynamic Syst., Meas., Contr., Vol. 97, pp. 220-227,
1975.

[2] K. Astrém and B. Wittenmark, Adaptive Control. Reading, MA: Addison-Wesley, 1995.

[3] A. Barron, “Universal approximation bounds for superpositions of a sigmoidal function.”
IEEE Transactions on Information Theory, Vol. 39, no. 3, pp. 930-945, 1993.

[4] M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[5] D. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive net-
works,” Complex Systems, pp. 321-355, 1988.

[6] G. Cybenko, “Approximation by superposition of a sigmoidal function.” Mathematics of
Control, Signals, and Systems, Vol. 2, no. 4, pp. 303-314, 1989.

[7]1 R. Eubank, Spline Smoothing and Nonparametric Regression. New York: Marcel Dekker,
1988.

[8] J. Farrell, “Motivations for local approximators in passive learning control.” Journal of
Intelligent Control and Systems, Vol. 1, no. 2, pp. 195-210, 1996.

[9] I. Farrell, “Neural control.” In W. Levin (ed.), The Control Handbook, pp. 1017-1030. Boca
Raton, FL: CRC Press, 1996.

[10] J. Farrell, “Stability and approximator convergence in nonparametric nonlinear
adaptive control.” IEEE Transactions on Neural Networks, Vol. 9, no. 5, pp. 1008-1029,
1998.

[11] K. Funahashi, “On the approximate realization of continuous mappings by neural net-
works.” Neural Networks, Vol. 2, pp. 183-192, 1989.

[12] F. Girosi and T. Poggio, “Networks and the best approximation property.” MIT A.I. Memo
No. 1164, October 1989.

[13] M. Gupta and N. Sinha (eds.). Intelligent Control Systems: Theory and Applications. New
York: IEEE Press, 1996.

[14] K. Hornik, M. Stinchcombe, and H. White, ‘“Multilayer feedforward networks are universal
approximators.” Neural Networks, Vol. 2, pp. 359-366, 1989.

[15] L. Hunt and G. Meyer, “Stable inversion for nonlinear systems.” Automatica, Vol. 33, no. 8,
pp. 1549-1554, August 1997.

[16] P. Ioannou and J. Sun, Robust Adaptive Control. Englewood Cliffs, NJ: Prentice Hall, 1996.

[17] D. James, “Stability of a model reference control system.” 4144 Journal, Vol. 9, no. 5, 1971.

[18] H. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1996.



164

References

[19] P. Millington, “Associative reinforcement learning for optimal control.” S. M. Thesis:
Department of Aeronautics and Astronautics, MIT, 1991.

[20] K. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using
neural networks.” IEEE Trans. Neural Networks, Vol. 1, pp. 4-27, 1990.

[21] K. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addison-Wesley, 1998.

[22] M. Polycarpou and P. Ioannou, “Identification and control of nonlinear systems using
neural network models: design and stability analysis.” Technical Report 91-09-01,
University of Southern California, Los Angeles, September 1991.

[23] M. Polycarpou, “Stable adaptive neural control scheme for nonlinear systems.” IEEE
Transactions on Automatic Control, Vol. 41, no. 3, pp. 447451, March 1996.

[24] M. Polycarpou, “On-line approximators for nonlinear system identification: a unified
approach.” In C. Leondes (ed.), Control and Dynamic Systems: Neural Network Systems
Techniques and Applications, Vol. 7, pp. 191-230. New York: Academic Press, 1998.

[25] M. Polycarpou and M. Mears, “Stable adaptive tracking of uncertain systems using non-
linearly parametrized on-line approximators.” International Journal of Control, Vol. 70, no.
3, pp- 363-384, May 1998.

[26] T. Poggio and F. Girosi, “Networks for approximation and learning.” Proceedings of the
IEEE, Vol. 78, no. 9, pp. 1481-1497, 1990.

[27] M. Powell, “Radial basis functions for multivariable interpolation: A review.” In J. Mason
and M. Cox (eds.), Algorithms for Approximation of Functions and Data, pp. 143-167. New
York: Oxford University Press, 1987.

[28] D. Rumelhart, J. McClelland, et al. Parallel Distributed Processing—Explorations in the
Microstructure of Cognition, Volume 1: Foundations. Cambridge, MA: MIT Press, 1986.

[29] R. Sanner and J. Slotine, “Gaussian networks for direct adaptive control.” IEEE Trans. on
Neural Networks, Vol. 3, pp. 837-863, 1992.

[30] S. Sastry and A. Isidori, “Adaptive control of linearizable systems.” IEEE Transactions on
Automatic Control, Vol. 34, no. 11, November 1989.

[31] S. Shekhar and M. Amin, “Generalization by neural networks.” IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, no. 2, pp. 177-185, 1992.

[32] M. Stinchcombe and H. White, “Universal approximation using feedforward networks with
non-sigmoid hidden layer activation functions.” Proceedings of the International Joint
Conference on Neural Networks, Vol. 1, pp. 613-617, 1989.

[33] G. Walter, Wavelets and Other Orthogonal Systems with Applications. Boca Raton, FL: CRC
Press, 1994.

[34] L. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood
Cliffs, NJ: Prentice Hall, 1994.

[35] S. Weaver, L. Baird, and M. Polycarpou, “An analytical framework for local feedforward
networks.” IEEE Transactions on Neural Networks, Vol. 9, no. 3, pp. 473482, 1998.

[36] P. Werbos, “Backpropagation through time: What it does and how to do it.” Proc. of the
IEEE, Vol. 78, no. 9, pp. 15501560, 1990.

[37] H. Werntges, “Partitions of unity neural function approximation,” Proc. IEEE Int. Conf.
Neural Networks, pp. 914-918, 1993.

[38] B. Widrow and M. Hoff, “Adaptive switching circuits.” IRE WESCON Convention Record,
pp. 96-104, 1960.

[39] L. Zadeh, “Fuzzy sets.” Information and Control, Vol. 8, pp. 338-353, 1965.

[40] L. Zadeh, “Outline of a new approach to the analysis of complex systems and decision
processes.” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, no. 1, pp. 28-
44, 1973.



chapter | SUPERVISORY HYBRID CONTROL
7 SYSTEMS

Michael D. Lemmon

Editor’s Summary
The exploitation of well-honed techniques and the exploration of new challenges need not be mutually
exclusive strategies for research. This maxim is illustrated by an emerging technology in control: hybrid
dynamical systems. These systems combine, within a unified framework and formulation, discrete-event
systems (for more on these systems, see Chapter 2) and continuous-time dynamics. Hybrid systems
represent a broadening of the scope of control, with infusions of ideas and theories from other fields,
especially formal methods in computer science.

This chapter discusses hybrid systems in some depth, with particular emphasis on supervisory
applications. In this case, the discrete events are viewed as supervisory decisions affecting the qualitative
behavior of a system, with different “modes” of behavior exhibiting different continuous dynamics. An
example of a two-arm robotic platform is used to motivate the technical discussion, and other applications
are also noted. Other chapters in this volume also outline applications of hybrid dynamical systems (e.g.,
Chapter 14). Variable structure control, the topic of Chapter 8, can also be considered a hybrid system
approach to control.

This chapter introduces and explains several new concepts, borrowed in some cases from computer
science, that are important for the analysis and synthesis of supervisory hybrid systems. Hybrid automata,
an extension of finite state machines, are a popular representational formalism. Together with temporal
logics, which can be used to formulate specifications for hybrid control systems, these representations
allow the safety and performance of the system to be automatically determined, under some assumptions.

Michael Lemmon is an associate professor in the Electrical Engineering Department at the
University of Notre Dame. He chairs the Technical Committee on Hybrid Systems of the IEEE
Control Systems Society.

7.1 INTRODUCTION

Supervisory hybrid systems are systems that integrate high-level decision making with
traditional regulatory control functions. Such systems are referred to as hybrid because
they generate a mixture of continuous-valued (i.e., measurements of the physical pro-
cess variables) and discrete-valued signals (i.e., discrete decisions that supervise the
plant’s behavior).

On the basis of the preceding description, it should be apparent that any complex
engineering system employing some sort of decision making can be viewed as a super-
visory hybrid system. To appreciate the potential benefits of this viewpoint, it is impor-
tant to recall that most complex engineering systems are developed in an iterative

165



166 Chapter 7 Supervisory Hybrid Control Systems

manner. The system is decomposed into subsystems that separate decision-making
functions from lower-level regulatory functions. These subsystems are designed inde-
pendently of each other, and simulation testing evaluates the performance of the rein-
tegrated system. If the results of simulation testing are unsatisfactory, then the
subsystems may be redesigned and another cycle of simulation testing commences. In
cases where a loose coupling exists between decision making and regulation subsystems,
this iterative approach can converge relatively quickly to an acceptable design.
Advances in computer and networking technology, however, make it possible to
develop systems in which decision making and regulation are strongly coupled.
When this happens, simulation-based testing can become expensive, time consuming,
and still provide no provable guarantees of acceptable system performance. It is in these
situations that supervisory hybrid systems theory provides a powerful new approach to
system analysis and development.

Supervisory hybrid systems theory treats both the decision-making and regulation
functions of the overall system at the same time. As a result, hybrid systems theory
allows us to consider the impact of strong subsystem coupling much earlier in the design
process. In recent years, there has been considerable interest in the development of a
formal mathematical framework for the study of supervisory hybrid systems. Two
different application areas have driven this interest. Computer scientists have found
supervisory hybrid system methodologies a useful means for solving timing and safety
problems in asynchronous digital circuits. Control systems engineers have found that
hybrid systems provide a convenient and potentially powerful method for the analysis
and synthesis of large-scale supervisory control systems. In both cases, the goal is to
provide nothing less than a new framework for the analysis of complex systems in
which previously disparate approaches to decision making and control are united in
a single systematic framework.

This chapter provides a tutorial introduction to supervisory hybrid systems. The
chapter opens by highlighting the distinction between the discrete and continuous parts
of a supervisory hybrid system. Examples of hybrid systems are presented, and a
popular modeling paradigm known as the hybrid automaton is described. The chapter
overviews recent progress in the analysis and synthesis of systems modeled by hybrid
automata and closes with a summary of open issues in the field.

7.2 EXAMPLES OF SUPERVISORY HYBRID
SYSTEMS

Systems science is concerned with the use of formal mathematical methods in the mod-
eling and analysis of engineering systems. We generally view a system as some sort of
physical process whose behavior can be monitored by taking measurements of impor-
tant process variables. If the system in question is a chemical reaction, for instance, then
measurements of process temperature and pressure may be used to characterize the
current state of the reaction. A robotic system, for example, may have its current
state characterized by measuring the joint angles representing the robot’s current spatial
configuration. When such measurements of the physical process are indexed with respect
to another independent variable (such as time), then we obtain a signal.

A systems scientist represents the signal x as an abstract mathematical function,
x:I - M, mapping elements of the index set / onto the measurement set M. A



Section 7.2 Examples of Supervisory Hybrid Systems 167

categorization of signals can be based on the type of measurement set. A discrete
measurement set is a set whose elements can be placed in a one-to-one correspondence
with integers. A continuous measurement set is a set that can be transformed in a
continuous manner to Euclidean n-space ®". Signals whose measurement sets are dis-
crete (continuous) are referred to as discrete-valued (continuous-valued) signals.
Discrete-valued signals are sometimes called discrete-event signals. Systems generating
such signals are called discrete-event systems (DES). Any function taking values in %"
can be viewed as a continuous signal. Discrete-event signals are often generated by
decision-making systems.

Formal methods for dealing with signals and systems have traditionally assumed
that the signals are either discrete- or continuous-valued. In practice, however, engi-
neering systems consist of mixtures of continuous and discrete systems. A computer
controlling a physical process generates just such a mixture of signals. The state of the
physical process is represented by continuous-valued signals, whereas the state of the
computer program controlling the physical process has a finite number of discrete
states. Systems that generate signals containing a mixture of continuous and discrete
valued signals are often referred to as supervisory hybrid systems. A large number of
practical engineering systems can be represented as hybrid dynamical systems. The
remainder of this section presents two examples. One example is based on robotic
systems, and the other concerns digital circuits.

7.2.1 Switched Dynamical Systems

A common type of hybrid system arises when the system’s differential equation has
a discontinuous righthand side. Such systems possess continuous-valued and discrete-
valued states. The continuous-valued state trajectory (denoted as x(¢)) is governed by
ordinary differential equations. The discrete-valued state trajectory (denoted as i(z))
takes values over a finite set of symbols, and its evolution is generated by a switching
function ¢. Individual discrete states are sometimes referred to as system modes.
Formally, we write the system equations for this switched system as

x(1) = f(x(1), i(1)) (7.1)
i(1) = q(x(), {17)), (7.2)

where i : # — Q is a discrete-valued continuous-time signal representing the time his-
tory of switching modes. The continuous state trajectory x(f) is generated by the func-
tion f: R" x Q@ — K", and the discrete state’s trajectory i(z) is generated by the
switching function ¢ : ® x Q@ — . i(#”) denotes the righthand limit of the signal i as
time approaches ¢. It is customary to define ¢ in such a way that there are well-defined
switching sets between the various discrete states. In particular, we let the switching set
;; between mode i and mode j be defined as

Q= {xe®" : j=q(x )

The switching set, therefore, represents a subset of the continuous state space in which a
discrete mode switch from mode i to mode j can occur.

We now turn our attention to the type of signals generated by the system in Egs.
(7.1) and (7.2). Define the system’s state space H =  x R" as the Cartesian product of



168

Chapter 7 Supervisory Hybrid Control Systems

the discrete set © and the continuous state x € R". A hybrid system trajectory is a
continuous-time signal o : ® — H taking values in the hybrid state space H. Given a
specific hybrid trajectory o, the time t is said to be a switching time if
i(t) = q(x(7), i(t7)) # i(z7)). In other words, the switching time 7 represents that instant
in time when the discrete-valued component, i, changes value. We say that a hybrid
system trajectory o is generated by the system in Egs. (7.1) and (7.2) if

o for any interval (;, 1) that does not contain a switching time, the hybrid state
o(t) (for all T € (71, 1)) satisfies Eq. (7.1); and

o for any switching time 7, the hybrid state o(z) satisfies the switching Eq. (7.2).

A hybrid trajectory o that is generated by Eqs. (7.1)~(7.2) is also called a solution to the
equations.

An important issue concerns the existence and uniqueness of solutions to equations
in (7.1)+7.2). We cannot expect the hybrid system trajectories to be continuous because
of the discontinuity of the righthand side of Eq. (7.1). It is possible, however, to identify
conditions guaranteeing the existence of piecewise continuous solutions to the system
equations. These existence conditions [1] require the semi-continuity of set-valued map-
pings associated with Eq. (7.1).

Although it is usually easy to ensure the existence of piecewise continuous hybrid
trajectories, it is not always possible to guarantee the uniqueness of these solutions.
Switched systems often generate nondeterministic trajectories. This means that for a
given initial condition, there may be many different trajectories that satisfy the system
equations. In addition to nondeterministic piecewise continuous trajectories, it is pos-
sible for the system to generate chattering solutions. Chattering hybrid system trajec-
tories arise when the system switches infinitely fast between various modes. In the
variable structure control literature [2], these solutions are referred to as sliding
modes. In general, it is often considered undesirable for a supervisory hybrid system
to exhibit chattering behavior. Computer scientists also have an interesting term for this
behavior. Systems capable of exhibiting such chattering solutions are sometimes
referred to as Zeno systems. The name refers to the classical Zeno’s paradox in
which the concept of a limit is first informally introduced.

A concrete example of a switching system will be found in Figure 7.1. This figure
shows a free-floating robotic vehicle with two articulated arms. The system is required
to obtain components from a parts bin and to move these components to a work area
where an assembly operation is to be performed. The tasks of fetching the workpiece,
transporting it to the work area, and then returning to the parts bin are performed
repeatedly. The equations of motion for the arms are expressed by the following differ-
ential equations

d*0 do .
721' = —7; + k(91 + 91, - ll(t)) (73)
de,  de, .
22 = a T+ 0 — i) (1.4)

o,  J, (del d92) a9

A YAV EE]



Section 7.2 Examples of Supervisory Hybrid Systems 169

B - robot Body
Al -Arm 1

A2 -Arm2

PB - Parts Bin

WAL - Work Area 1
WA2 - Work Area 2

Figure 7.1 Free-floating robotic system.

where 0, and 6, are the arm angles with respect to the body axes (see Figure 7.1), 6, is
the angle of the body with respect to an inertial reference frame, J, and J, are the
moments of inertia for the arm and body, respectively, i; and i, are reference inputs,
and k is a proportional feedback gain. The arm angles with respect to an inertial frame
are 6, = 6, + 6, and 6, = 6, + 6,. Equations (7.3) and (7.4) represent the controlled
behavior of the robotic arms in body coordinates. Equation (7.5) requires that the
system’s total angular momentum be conserved.

Equations (7.3)7.5) characterize the continuous-valued state trajectory of this
system. The discrete state trajectory is represented by the reference inputs i;(f) and
i,(7). The reference inputs for arm 1 have the form

W) +a/2 if 16, +6 <.1
hoy=4 n@)-=n/2 if 16, +6,—n/2| <.1 (7.6)

i) otherwise

under the assumption that i;(0) = /2. A similar equation characterizing the reference
input for arm 2 can also be defined. This discrete switching equation corresponds to Eq.
(7.2). 1t directs robot arm 1 to move back and forth between the parts bin and work
area in an alternating manner.

7.2.2 Asynchronous Sequential Circuits

The switched system of Egs. (7.1)+(7.2) is a classical example of a hybrid system.
These equations provide an equational representation of the system which is familiar to
most systems engineers. Another important type of hybrid systems, however, arises in
the analysis of sequential digital circuits. A great deal of the research in hybrid systems
has been driven by this particular application. In this case, we start with a system that
was originally treated using formal methods from discrete mathematics and then was
hybridized when real-world considerations began to play an important role. The result-



170 Chapter 7 Supervisory Hybrid Control Systems

ing system models are not generally represented as equations but rather as directed
graphs.

A digital circuit is a circuit (system) taking binary-valued inputs and producing
binary-valued outputs. An AND gate, for instance, represents a simple example of a
digital system with two binary inputs and a single binary output. The AND gate is an
example of a combinational circuit, a circuit whose output is completely specified by the
present inputs. In many applications, we are more interested in the behavior of sequen-
tial circuits. A sequential circuit is a digital circuit whose current output is dependent on
the current and previous inputs to the system. Sequential circuits that change their
internal states in step with a global clock tick are referred to as synchronous sequential
circuits. Essentially, we can view such circuits as discrete-time, discrete state systems.
Synchronous sequential digital circuits provide convenient models for digital integrated
circuits. They can model the behavior of simple circuits such as flip-flops. Synchronous
sequential circuits can also model the behavior of very large scale integrated (VLSI)
chips such as microprocessors.

It is of practical importance to be able to check whether or not VLSI chips behave
correctly. Because of the large size of these chips, a great deal of effort has been devoted
to the development of computationally efficient methods for checking circuit correct-
ness. Circuit verification refers to the activity of checking circuit correctness. Symbolic
model checking (SMC) [3] is a very efficient means of checking the correctness of VLSI
chips that can be modeled as synchronous sequential circuits. This algorithmic
approach to circuit verification makes use of a graph theoretic model for the system
that is known as the finite automaton. Checking the safety of the circuit involves
computing a collection of discrete states that can be reached from a specified set of
target states.

Although SMC methods work well for synchronous sequential circuits, it should
be noted that many digital systems cannot be modeled this way. Synchronous sequen-
tial models assume that all machine states change in step with a global clock. In chips
that need to respond in a reactive way to the outside world, or in extremely large
circuits, synchronous operation may not be a realistic assumption. In such systems,
the discrete states of the circuit may change at times between contiguous clock ticks. As
a result, these systems generate signals that may be discrete-valued and continuous-
valued. We sometimes refer to this type of sequential circuit as an asynchronous sequen-
tial circuit. Asynchronous circuits are clearly hybrid systems. Asynchronous circuits are
found with increasing frequency, particularly in the context of real-time or embedded
control. For these real-time systems, traditional SMC methodologies cannot provide
provable guarantees of circuit correctness. The recent advances in supervisory hybrid
systems theory have been driven b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>