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Preface

The first edition of this book began in January 1993 when I was “elected” by Dr. William
Destler, who was then Chairman of the Electrical Engineering Department at the University
of Maryland and is now President of the Rochester Institute of Technology, to set up and
write experiments for a new senior elective laboratory course, ENEE418c Communications
Laboratory, scheduled to be given for the first time in the Fall 1993 semester. At that
time, we chose to use the state-of-the-art Texas Instruments TMS320C30 EVM (evaluation
module) DSP board. In January 2001 we upgraded the lab to use the new state-of-the-art
Texas Instruments TMS320C6701 EVM DSP board which is now no longer supported by TI.
Starting with the Fall 2007 semester, we will use TI’s TMS320C6713 DSK which is relatively
inexpensive and connects conveniently to a USB port of a modern PC. The lab’s PC’s are
all connected to the campus network. Each lab group is given a private workspace on a
departmental server. Students are given only read/execute privileges for the standard utility
and development software on the PC’s so they do not inadvertently alter these files.

In 1993, books for hardware based laboratory courses with standard digital signal pro-
cessing and filter design experiments existed, but no book focusing on analog and digital
communications techniques was available. This is still largely true.

Laboratories in the Department of Electrical and Computer Engineering at the University
of Maryland are separate courses. Each week they have a one hour lecture given by a regular
faculty member to introduce the theory and explain the experiments followed by a three
hour laboratory period run by a graduate teaching assistant. Students in this lab work in
pairs. We have found that this works well because both group members actively participate.
With groups of three or more, some members just sit and watch. Students have card key
access to the laboratory from 8:00 AM to 11:00 PM seven days a week and so they can work
outside of regular class hours if they wish.

One section of the lab was first offered in the Fall 1993 semester and two in the Spring
1994 semester. Then five sections a week were offered for several years until a couple of years
ago when a new communications capstone design course was offered in addition. The stu-
dents have been highly enthusiastic and often spend extra hours working on the experiments
because they find them to be very interesting and challenging. They also have realized that
this course will help them get jobs and provide them with the skills required to perform well
in their future jobs. The lab was designed for seniors, but 1/4 to 1/3 of the class is now
graduate students who want to learn some real-world practical skills in addition to the purely
theoretical concepts presented in the typical graduate communications and signal processing
courses. When asked why they are taking this senior class, the graduate students often say
they think it will help them get jobs.
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viii Preface

The goal of this set of experiments is to explore the digital signal processing and com-
munication systems theoretical concepts presented in typical senior elective courses on these
subjects by implementing them with actual hardware and in real time. In the process,
students will gain experience using equipment commonly used in industry, such as, oscillo-
scopes, spectrum analyzers, signal generators, error rate test sets, digital signal processors,
and analog-to-digital and digital-to-analog converters. They will also learn about typical
software development tools. In addition, they will learn that there is a big step in going
from an equation on paper to a real working system.

This book differs from any others on the market in that its primary focus is on communi-
cation systems. Fundamental digital signal processing concepts like digital filters and FFT’s
are included because they are required in communication systems. Approaches that are par-
ticularly useful for DSP implementations are presented. While the experiments, particularly
the earlier ones, are described for the TMS320C6713 DSK, they can be easily modified for
any DSP board with an A/D and D/A converter.

There are several books on digital signal processing experiments for stable software pack-
ages like MATHCAD and MATLAB. In my view, one of the purposes of a laboratory course
is to help prepare students for industrial jobs. Off-line software simulation is no substitute
for making actual hardware work in real-time. It does not present students with the strange
unexpected and often frustrating things that occur when using actual hardware in real-time
which can not be explained by nice equations, nor does it teach them how to use standard
lab equipment.

The prerequisites for this course are an understanding of linear systems and transform
methods at a level that is often presented in a junior required course on Signals and Systems
and a working knowledge of PC’s and C programming. Students who have programmed
in other languages like BASIC, PASCAL, or FORTRAN can quickly learn enough C to
do the experiments if they are willing to make the effort. Corequisite are a senior level
elective course in Digital Signal Processing and/or Communication Systems. Ideally, both
courses should be taken before the Communications Laboratory. However, this is not usually
possible for our seniors. We wanted our students to have the opportunity to take this lab,
so we made just one of them a corequisite. With the engineering background of a senior,
the presentation of the necessary theory in the text, and the one hour lab lecture to explain
the theory, students have quickly learned the signal processing and communication system
concepts required for the experiments. In addition, it can be argued that a lab course should
help prepare students for the work world where they will have to figure out new things for
themselves so the experiments should have some uncertainty and require students to fill in
some of the details.

There is a large initial hurdle for the students to get over while learning the details re-
quired to use the lab’s hardware and software tools. Chapters 1 and 2 gradually introduce
them to these tools and the architecture of the TMS320C6713 floating-point DSP. An at-
tempt has been made to reduce this hurdle by including some basic programs on the program
disk for initializing the DSK that can be used as a starting point for the experiments.

FIR and IIR filter design and implementation are explored in Chapter 3. Filters are re-
quired in many communication system signal processing algorithms. Experiments comparing
the relative merits of C and assembly language implementations are performed. In particu-
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lar, TI’s linear assembly is briefly discussed. Modern DSP applications in industry are often
written primarily in C with only numerically intensive critical functions written in assembly
to reduce development time and improve portability to new platforms. TI’s optimizing C
compiler generates relatively efficient software pipelined executable code that is adequate for
the experiments in this course. Therefore, assembly programming is not emphasized.

Chapter 4 investigates the FFT and power spectrum estimation. A simple spectrum
analyzer is made.

Chapters 5 through 8 explore the classical analog communication methods of ampli-
tude modulation, double-sideband suppressed-carrier amplitude modulation, single-sideband
modulation, and frequency modulation. Transmitters and receivers are built using DSP
techniques. Noncoherent receivers using envelope detectors and coherent receivers using
phase-locked loops are implemented. The use of Hilbert transforms and complex signal
representations in modulation systems are explored.

Chapters 9 through 16 introduce some digital communication techniques. These ex-
periments focus on methods used in high-speed wire-line data modems where DSP’s have
been extensively used. Topics covered include linear shift register scramblers, the RS232C
interface, pulse amplitude modulation (PAM), variable phase interpolation, and quadra-
ture amplitude modulation (QAM). The experiments lead up to building almost a complete
V.22bis transmitter and receiver. Symbol clock recovery and tracking, carrier tracking, and
adaptive equalizer receiver functions are implemented. The echo canceling technique used in
V.32, V.34, V.90, and V.92 modems is studied in Chapter 16. Enough details are included so
that this set of experiments could form a good practical guide to engineers in industry inter-
ested in wire-line modem design. I learned many of these techniques while consulting since
1970 for companies that build high-speed wire-line modems and have seen them employed
in hundreds of thousands of modems.

Multi-carrier modulation has become popular in a variety of systems. It is employed
in several types of Digital Subscriber Line (DSL) systems which use copper telephone lines
where it is called Discrete Multi-Tone (DMT) modulation. It is a popular choice for wireless
systems transmitting over fading channels where it is called Orthogonal Frequency Division
Multiplexing (OFDM). These include existing HF radio and Wi-Fi systems as well as soon
to be deployed WiMax systems. The European cellular 3GPP committees are working to
finalize a multi-carrier system called LTE. Multi-carrier modulation is explored in Chapter
17.

Chapter 18 briefly presents some ideas for additional projects related to high-speed wire-
line modem design, error-control coding, and speech codecs. These ideas can be expanded
to satisfy the capstone design project requirements of the ABET accrediting committee.

Appendix C contains a complete list of the equipment used for this laboratory at the
University of Maryland. It has been included as a guide to others setting up a similar
lab and is not intended to be an endorsement of any specific manufacturer. Clearly, any
equipment with equivalent capabilities can be substituted for items in the list.

There are many more experiments in this book than can be performed in one semester.
Based on our experience, an ambitious goal is to have all students do Chapters 1, 2, and 3
followed by a choice of any three additional experiments. In some semesters, we have limited
the choice to three of the classical analog modulation chapters and in others to three of the
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digital communication chapters. It would be nice if students could continue in the lab for a
second semester for additional credit and build on their earlier experiments.

Utility programs, software updates, text corrections, lab lecture slides, and supplementary
material can be found on my web site www.ece.umd.edu/~tretter.

Steven A. Tretter
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Chapter 1

Overview of the Hardware and
Software Tools

The purpose of this initial chapter is to introduce you to the main features of the hardware
and software tools that will be used in this course. A variety of signal processing and com-
munication system components will be implemented by writing C and/or assembly language
programs for the TMS320C6713 floating-point DSP in our lab. The TMS320C6713 resides
on a board Texas Instruments (TI) calls the TMS320C6713 DSK (DSP Starter Kit) which
is a small external board that connects to the PC through a USB port. The TMS320C6713
communicates with the analog world through a TI AIC23 stereo codec on the DSK board.
The experiments in this book can be easily modified for other DSP boards. It is important
to have a general picture of the hardware platform so you will understand how to write
programs to accomplish the desired tasks.

First, a very brief history of DSP chips is presented and some typical applications are
discussed. Then, the important features of the TMS320C6713 DSP are described. As a
short cut, this DSP will sometimes be referred to as the ’C6713. It is a part of a larger
family of floating-point DSP’s including the TMS320C6701, TMS320C6711, TMS320C6722,
TMS320C6726, and TMS320C6727. This family will be referred to as the ’C6x or ’C6000
family. Next, a block diagram for the DSK is discussed followed by an introduction to some
of the software tools. For the first experiment, you are asked to work through the Code
Composer Tutorial. If you work through all parts of the tutorial, it will more than fill up
the three hour lab period.

Details of the ’C6713 architecture and instruction set and of the DSK board will be
gradually introduced in the first few experiments as they are required. Complete details
for the DSP’s, DSK, and TI software can be found in the Texas Instruments manuals when
required. You can find them on the PC hard drive, TI web site, and lab bookshelf. (The
ability to read manuals is an important skill to acquire!) Extensive documentation for the
DSK board, ’C6713 DSP hardware, and software development tools is included with the
special version of TI’s Code Composer supplied with the DSK. Look at Code Composer’s
“Help” menu for this extensive documentation.

There are a large number of things to be learned initially and you may feel overwhelmed.
Please be assured that the majority of your classmates feel the same way. Very shortly

1
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you will get over this initial hurdle and find the experiments interesting and challenging.
As the semester progresses, you will build up a bag-of-tricks that can be used in following
experiments so they will almost seem to get easier.

1.1 Some DSP Chip History and Typical Applications

Digital signal processing chips (DSP’s) were introduced in the early 1980’s and have caused
a revolution in product design. Current major DSP manufacturers include Texas Instru-
ments (TI), Motorola, Lucent/Agere, Analog Devices, NEC, SGS-Thomson, and Conexant
(formerly Rockwell Semiconductor). DSP’s differ from ordinary microprocessors in that they
are specifically designed to rapidly perform the sum of products operation required in many
discrete-time signal processing algorithms. They contain hardware parallel multipliers, and
functions implemented by microcode in ordinary microprocessors are implemented by high
speed hardware in DSP’s. Since they do not have to perform some of the functions of a high
end microprocessor like an Intel Pentium, a DSP can be streamlined to have a smaller size,
use less power, and have a lower cost. Low cost DSP’s have made it more economical to
implement functions by digital signal processing techniques rather than by hard-wired ana-
log circuits, particularly for audio band applications like speech compression and telephone
line modems. The speeds of the latest generations of DSP’s have increased to the point
where they are being used in high speed applications like DSL and wireless base stations and
hand sets. Some of the advantage results from the fact that integrated digital circuits are
very reliable and can be automatically inserted in boards easily. In addition, programmable
DSP’s can implement complicated linear and nonlinear algorithms and easily switch func-
tions by jumping to different sections of program code. The complexity of the algorithms
is only limited by the imagination of the programmer and the processing speed of the DSP.
Once the program is perfected, the chip function does not change with age unless a very rare
failure occurs. On the other hand, analog components require more board space, sometimes
must be trimmed to the correct values after insertion, and change with temperature and
age. Analog circuits are designed to perform specific functions and lack the flexibility of the
programmable DSP approach. Another advantage is that small changes in the DSP function
or bug fixes can be made by changing a few lines of code in a ROM or EPROM while similar
changes may be very difficult with a hard-wired analog circuit.

Digital signal processing algorithms were used long before the advent of DSP chips.
They were implemented on large main-frame computers and, later, on expensive “high-
speed” mini-computers. Depending on the signal bandwidths, these implementations were
real or non-real-time. As semiconductor technology evolved, custom processors were built
with many TTL MSI chips including cascadable ALU sections and stand alone multiplier
chips. A typical system contained over 100 MSI chips. These systems were big and expen-
sive to manufacture because of the large chip count, and consumed many watts of power
requiring cooling fans. The most popular first generation DSP chips, the NEC µPD7720
and Texas Instruments TMS32010, became commercially available in late 1982. These chips
performed 16-bit integer arithmetic at the rate of 5 million instructions per second (MIPS)
and had limited internal RAM, ROM, and I/O capabilities. They initially cost about $600
not including the software and hardware development tools. Many current DSP’s that are
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orders of magnitude more advanced cost less than $20. They reduced the chip count by
a very large percentage resulting in smaller circuit boards using significantly less power,
more reliable systems, and reduced manufacturing complexity and cost to the point where
DSP’s are present in many consumer products. Cell phones and telephone line modems are
probably the largest DSP markets.

DSP’s have continually evolved since they were first introduced as VLSI technology im-
proved, as users requested additional functionality, and as competition arose. More internal
RAM and ROM has been added and the total address space has been increased. Additional
functions have been added like hardware bit-reversed addressing for FFT’s, hardware cir-
cular buffer addressing, serial ports, timers, DMA controllers, and sophisticated interrupt
systems including shadow registers for low overhead context switching. Analog Devices has
included switched capacitor filters and sigma-delta A/D and D/A converters on some DSP
chips. Instruction rates have increased dramatically. State-of-the-art integer DSP’s like the
TMS320C5000 series are available with members that can operate at clock rates of 200 MHz
and cost around $20 in quantity. The even newer TMS320C6000 family, which has a very
long instruction word architecture (VLIW), has members with clock rates up to 1 GHz and
cost about $150. The speed increase is largely a result of reduced geometries and improved
CMOS technology. In the last couple of years, DSP manufactures have been developing chips
with multiple DSP cores and shared memory for use in high-end commercial applications
like network access servers handling many voice and data channels. DSP chips with special
purpose accelerators like Viterbi decoders, turbo code decoders, multimedia functions, and
encryption/decryption functions are appearing. The rapid emergence of broadband wireless
applications is pushing DSP manufacturers to rapidly increase DSP speeds and capabilities
so they do not lose out to FPGA’s.

The introduction of CMOS technology after the first couple of generations of DSP’s
significantly reduced power consumption. Also, lower supply voltages are now being used.
Applications like telephone line modems that required at least two DSP’s and an additional
ordinary microprocessor acting as a controller fifteen years ago can now be implemented
using a single DSP and at lower cost! Power consumption has been significantly reduced for
some DSP’s to conserve battery life in cell phones. Custom TI chips currently in production
with six DSP cores can do around 90 full duplex V.90 modems concurrently. With concurrent
process running in DSP’s, software issues involving real-time multi-tasking operating systems
have become as important as hardware issues.

A milestone in DSP history occurred around 1986 when AT&T introduced the first
commercial floating-point DSP, the DSP32. In 1988, TI shipped initial samples of the
TMS320C30 at a price of $1,300 to begin its first generation TMS320C3x floating-point
DSP family. Both processors have a 32-bit word length. The TMS320C30 family has a
member that can run at 25 million instructions per second (MIPS) and costs about $200.
A stripped down version, the TMS320C31, followed and has a member that can perform 40
MIPs with a price of about $35. TI started its second generation floating-point DSP family
with the TMS320C40 which contains extensive support for parallel processing. At least eight
or nine years ago, TI introduced the TMS320C67x series of floating point DSP’s. The first of
these was the TMS320C6701 which was followed by the TMS320C6711, TMS320C6713, and
TMS320C672x family of floating point DSP’s. The ’C67x DSP’s have a VLIW (Very Long
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Instruction Word) architecture with eight execution units in their CPU’s and clock speeds
currently range up to 350 MHz.

Floating-point DSP’s are used in some applications because of their ease in programming.
However, integer DSP’s are used most frequently. Some reasons are because they are smaller,
cheaper, faster, and use less power. Cost is a major concern in the competitive commercial
market particularly for mass produced products like modems, cell phones, and hard disk
drives. Power consumption is of particular concern for cell phones. Care must be taken with
integer DSP’s to scale signals to avoid overflow and underflow. However, this is not much
of a problem in most digital communication system applications where signal power levels
remain relatively constant. Floating-point DSP’s automatically perform this scaling.

DSP’s are used in a wide variety of offline and real-time applications. Some typical areas
and specific applications are:

• Telecommunications: telephone line modems, FAX, cellular telephones, speaker
phones, ADPCM transcoders, digital speech interpolation, broadband wireless sys-
tems, and answering machines

• Voice/Speech: speech digitization and compression, voice mail, speaker verification,
and speech synthesis

• Automotive: engine control, antilock brakes, active suspension, airbag control, and
system diagnosis

• Control Systems: head positioning servo systems in disk drives, laser printer control,
robot control, engine and motor control, and numerical control of automatic machine
tools

• Military: radar and sonar signal processing, navigation systems, missile guidance, HF
radio frequency modems, secure spread spectrum radios, and secure voice

• Medical: hearing aids, MRI imaging, ultrasound imaging, and patient monitoring

• Instrumentation: spectrum analysis, transient analysis, signal generators

• Image Processing: HDTV, pattern recognition, image enhancement, image compres-
sion and transmission, 3-D rotation, and animation

Texas Instruments DSP’s can be grouped into the following three categories:

• Low Cost, Fixed-Point, 16-Bit Word Length

Motor control, disk head positioning, control
TMS320C1s, ’C2x, ’C24x

• Power Efficient, Fixed-Point, 16Bit Words

Wireless phones, modems, VoIP
’C5x, ’C54x, ’C55x
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• High Performance DSP’s

Communications infrastructure, xDSL, imaging, video
’C62x (16-bit fixed-point)
’C3x, ’C4x, ’C64x, ’C67x (32-bit floating-point)

Clearly, real-time DSP applications are limited to cases where the required signal sam-
pling rate is sufficiently less than the DSP instruction rate so a reasonable number of in-
structions can be performed between samples. For example, a wide-band radio frequency
(RF) signal with a high carrier frequency can not be directly sampled and demodulated
with a DSP. However, when the bandwidth of the RF signal is sufficiently less than the
instruction rate, analog front-end circuits can be used to demodulate it to baseband inphase
and quadrature components which can then be sampled at a rate equal to the bandwidth
and processed by a DSP. Alternatively, an analog filter can be used to form the Hilbert
transform of the RF signal and then the original signal and its Hilbert transform can be
sampled at a rate equal to the bandwidth and processed with a DSP. DSP’s have been
extensively used in audio frequency applications where many instructions can be performed
between samples. However, they are being used to process increasingly wide-band signals as
the instruction rates of new generations increase. Special purpose VLSI chips and FPGA’s
have been used to implement limited DSP functions at very high rates.

A very important attribute of the DSP approach is the flexibility of a programmable de-
vice. An example illustrating an ideal application for this flexibility will now be presented.
In June 1994, the ITU approved the final draft of the V.34 telephone line modem recom-
mendation. This modem can transmit data at rates varying from 2400 to 33600 bits/sec in
multiples of 2400 bits/sec. A variety of modulation schemes are used during handshaking and
normal data transmission. During the initial handshaking phase, binary, continuous phase,
frequency shift keying is used to exchange information about modem capabilities using the
V.8 protocol. Later, the called modem, usually referred to as the answer modem, transmits
a signal called the answer tone to the calling modem. In the V.34 case, a small sinusoidal
amplitude modulation is impressed on the answer tone to identify it as a V.34 modem, so
the receiver in the calling modem needs to perform the function of an envelope detector.
In another phase of the handshake, a channel probing sequence consisting of a sum of sine
waves is transmitted first by one modem and then by the other. The calling and answer
modem transmitters must synthesize this signal and the receivers must process it to estimate
channel characteristics such as frequency response, noise level, and nonlinearities. Another
special sequence is transmitted to rapidly adjust adaptive equalizers in the receivers. During
still another portion of the handshake, binary differential phase shift keying (DBPSK) is
used to exchange configuration information between the modems. Quadrature amplitude
modulation (QAM) is used during normal data transmission. Transmit and receive signal
separation is achieved by using adaptive echo cancellers. Additional tasks that must be
performed during normal data transmission are scrambling and descrambling the input bit
stream, mapping the scrambled data bits to transmitted signal points by a technique called
shell mapping, trellis encoding, nonlinear precoding, and soft decision Viterbi decoding. All
these tasks, and more, can now be performed by a single integer DSP. In fact, a state-
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of-the-art DSP can run several full duplex V.34 modems concurrently. In addition to the
V.34 recommendation, these chips often contain code to act as at least six older modem
types, have FAX modes, and do V.90 and V.92 modems. All that is required to include new
functions is to “add a few more lines of code” and, possibly, some more memory. Consumer
modem costs have plummeted to less than $100. Programmable DSP’s have made it possible
to manufacture products with tremendous complexity and sophistication at prices that the
ordinary consumer can easily afford.

Finally, to maintain a balanced viewpoint, it should be pointed out that the DSP ap-
proach is not always the best solution to a problem even if a DSP can accomplish the task.
For example, a commercial AM radio signal, which has a carrier frequency in the order of
1 MHz, can trivially be demodulated by a simple envelope detector consisting of little more
than a diode, resistor, and capacitor. As engineers, you should always look for the most
reasonable and economical method of solving a design problem.

1.2 The TMS320C6713 Floating-Point DSP

The experiments in this book are explained for the Texas Instruments TMS320C6713 DSK
floating-point DSP boards. Floating-point DSP’s with 32-bit words were chosen for this lab
to simplify the programming tasks, especially in a high-level language like C. Most integer
DSP’s have 16-bit words so underflow, overflow, and dynamic range must be taken into ac-
count when programming them. In addition, emulating 32-bit floating-point arithmetic on a
16-bit integer DSP generates inefficient machine code. In practice, integer arithmetic can be
used for most applications without very much difficulty. Therefore, high volume commercial
products almost always use 16-bit integer DSP’s because they are faster, use less power, and
are cheaper. Floating-point DSP’s are used for high-end low volume applications. A func-
tional block diagram of the TMS320C6713 is shown in Figure 1.1, respectively. Their major
components and features are briefly described in the following subsections. For complete de-
tails, see the TMS320C6000 CPU and Instruction Set Reference Guide [I.7], TMS320C6000
Peripherals Reference Guide [I.10], and the TMS320C6713B Floating-Point Digital Signal
Processor [I.12].

1.2.1 The ’C6000 Central Processing Unit (CPU)

Members of the TMS320C67x family of DSP’s all have essentially the same central processing
unit (CPU) which is also called the DSP core. The CPU has a very long instruction word
(VLIW) architecture that TI calls VelociTi. The CPU always fetches eight 32-bit instructions
at once and there is a 256-bit bus to the internal program memory. Each group of eight
instructions is called a fetch packet . The CPU has eight functional units that can operate
in parallel and are equally split into two halves called the A or 1 and B or 2 sides. All eight
units do not have to be given instruction words if they are not ready. Therefore, instructions
are dispatched to the functional units as execute packets with a variable number of 32-bit
instruction words. This variable length feature distinguishes the ’C6000 CPU from other
VLIW architectures. The eight functional units include:
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Figure 1.1: Functional Block Diagram of the TMS320C6713 DSP

• Four arithmetic and logic units (ALU’s) that can perform fixed and floating-point
operations (.L1, .L2, .S1, .S2)

• Two ALU’s that perform only fixed-point operations (.D1, .D2)

• Two multipliers that can perform fixed or floating-point multiplications (.M1, .M2)

The General Purpose Register File

The CPU has thirty-two 32-bit general purpose registers split equally between the A and B
sides. The CPU has a load/store architecture in which all instructions operate on registers.
The data-addressing units .D1 and .D2 are in charge of all data transfers between the register
files and memory. The four functional units on a side can freely share the 16 registers on
that side. Each side has a single data bus connected to all the registers on the other side, so
the functional units on one side can access data in the registers on the other side. Access to
a register on the same side uses one clock cycle while access to a register on the other side
requires a read and write cycle.

Integer and Floating-Point Word Formats

An integer in the ’C6000 family is a 32-bit word. Suppose the word has the form d =
(d31, d30, . . . , d1, d0). The left-most bit, d31, is the most significant bit (MSB) and the right-
most bit, d0, is the least significant bit (LSB). Integers can be unsigned or signed. An



8 Overview of the Hardware and Software Tools

unsigned integer has the decimal value

v =
31∑

n=0

dn2n (1.1)

and is in the range [0, 232 − 1]. Signed integers are in the two’s complement format with the
MSB as the sign bit. A signed integer has the decimal value

v = −b312
31 +

30∑
n=0

dn2n (1.2)

which is in the range [−231, 231 − 1]. Notice that when b31 = 0 the integer is positive, while
it is negative for b31 = 1. These forms assume the binary radix point is on the right of
the LSB. The radix point can be assumed to be anywhere within the word so the word has
both an integer and fractional part. If L fractional bits are assumed, the word has the form
b = (b31, . . . , bL . bL−1, . . . , b0) and has the decimal value

v = 2−L(−b312
31 +

30∑
n=0

dn2n) (1.3)

The integer is said to have QL format. It is up to the programmer to keep track of the location
of the radix point when integer arithmetic is performed. Integers occupy one register in the
register file.

The ’C6000 DSP’s also support 40-bit long integers. Long integers are stored in two
successive registers in the register file. The least significant 32 bits are located in an even
numbered register and the most significant 8 bits are located in the lower 8 bits of the next
higher register which is odd numbered. The floating-point DSP’s (’C67x) can also form
double precision 64-bit integers that occupy all bits in a pair of consecutive registers. Some
instructions also operate on 16-bit halves of registers.

The ’C67x DSP’s support IEEE single and double-precision floating-point numbers .
IEEE floating-point numbers can be normal numbers, denormalized (or subnormal) numbers,
NaNs (not a number), and infinity numbers. Denormalized numbers are nonzero numbers
that are smaller in magnitude than the smallest nonzero positive normal number. Single-
precision numbers are 32 bits long and double-precision numbers are 64 bits long. Normal
single-precision numbers are accurate to at least six decimal places and normal double-
precision numbers to at least 15 places.

The single-precision word format is shown in the Figure 1.2.

31 30 23 22 0
s e7, e6, . . . , e0 f1, f2, . . . , f22, f23

Figure 1.2: IEEE Single-Precision Floating-Point Number Format

The fields in this word will now be described.

• The one-bit field s is the sign bit. Numbers are positive for s = 0 and negative for
s = 1.
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• The eight-bit field (e7, . . . , e0) is the biased exponent which has the decimal value

e =
7∑

k=0

ek2
k

so 0 ≤ e ≤ 255. The biased exponent for a normal number can not be 0 or 255. The
value e = 0 is reserved for numbers that are identically 0. The value e = 255 is reserved
for infinity and NaN.

• The 23-bit field (f1, . . . , f23) is the mantissa or fractional part and has the decimal
value

f =
23∑

k=1

fk2
−k

corresponding to the binary word 0 . f1f2 . . . f23. The mantissa is in the range [0, 1 −
2−23]

The numerical value, x, of the single-precision floating-point word is determined by the
following rules:

1. If e = 255 and f �= 0, then x is NaN independent of s.

2. If e = 255 and f = 0, then x = (−1)s∞.

3. If 0 < e < 255, then x = (−1)s2e−127(1 + f). These are the normal numbers. Notice
that 1 + f corresponds to the binary word 1 . f1 . . . f23. For normal numbers, the
exponent is chosen to move the leading 1 to the 1’s position just to the left of the
binary point. Since the 1 is know to be present, it is not included in the f field
allowing for one extra bit of accuracy for the mantissa.

4. If e = 0 and f �= 0, the x = (−1)s2−126f . These are the denormalized numbers.

5. If e = 0 and f = 0, then x = (−1)s × 0. Notice that a positive and negative 0 are
defined.

The double-precision word format is shown in Figure 1.3. The fields are similar to the

63 62 52 51 0
s e10, e9, . . . , e0 f1, f2, . . . , f22, f52

Figure 1.3: IEEE Double-Precision Floating-Point Number Format

single-precision fields and are:

• The one-bit field s is the sign bit. Numbers are positive for s = 0 and negative for
s = 1.
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• The eleven-bit field (e10, . . . , e0) is the biased exponent which has the decimal value

e =
10∑

k=0

ek2
k

so 0 ≤ e ≤ 2047. The biased exponent for a normal number can not be 0 or 2047.
The value e = 0 is reserved for numbers that are identically 0. The value e = 2047 is
reserved for infinity and NaN.

• The 52-bit field (f1, . . . , f52) is the mantissa or fractional part and has the decimal
value

f =
52∑

k=1

fk2
−k

corresponding to the binary word 0 . f1f2 . . . f52. The mantissa is in the range [0, 1 −
2−52]

The numerical value, x, of the double-precision floating-point word is determined by the
following rules:

1. If e = 2047 and f �= 0, then x is NaN independent of s.

2. If e = 2047 and f = 0, then x = (−1)s∞.

3. If 0 < e < 2047, then x = (−1)s2e−1023(1 + f). These are the normal numbers.
Notice that 1 + f corresponds to the binary word 1 . f1 . . . f52. For normal numbers,
the exponent is chosen to move the leading 1 to the 1’s position just to the left of the
binary point. Since the 1 is know to be present, it is not included in the f field allowing
for one extra bit of accuracy for the mantissa.

4. If e = 0 and f �= 0, the x = (−1)s21022f . These are the denormalized numbers.

5. If e = 0 and f = 0, then x = (−1)s × 0. Notice that a positive and negative 0 are
defined.

In the ’C67x DSP’s, single-precision floating-point numbers are stored in a single register.
Double-precision floating-point numbers are stored in a pair of adjacent registers. The least
significant 32 bits are stored in an even numbered register and the most significant 32 bits
are stored in the next higher register. Therefore, the even numbered register stores the lower
32 bits of the mantissa while the odd numbered register contains, starting from its LSB, the
upper 20 bits of the mantissa, the eleven biased exponent bits, and the sign bit.

The Multiplier

The TMS320C67x DSP’s have two multipliers, .M1 and .M2. Each multiplier can perform a
variety of 16-bit integer × 16-bit integer products resulting in a 32-bit integer product that
is stored in one register. They can perform the integer product of the lower 16 bits of one
register and the lower 16 bits of another, the product of the lower 16 bits of one register and
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the upper 16 bits of another register, etc. They can also perform the product of two 32-bit
integers resulting in a 32-bit product which is stored in one register and is the lower 32 bits
of the product, or a 64-bit product which is stored in two adjacent registers with the lower
32 bits in the even register and upper 32 bits in the odd register.

The multipliers can also perform the product of two single-precision floating-point num-
bers resulting in a single-precision floating-point product. In addition, they can perform
the product of two double-precision floating-point numbers resulting in a double-precision
product.

Interrupts

The ’C6000 CPU’s contain a vectored priority interrupt controller. The highest priority
interrupt is RESET which is connected to the hardware reset pin and cannot be masked.
The next priority interrupt is the non-maskable interrupt (NMI) which is generally used to
alert the CPU of a serious hardware problem like a power failure. Then, there are twelve
lower priority maskable interrupts INT4–INT15 with INT4 having the highest and INT15
the lowest priority. These maskable interrupts can be selected from up to 32 sources for
the ’C6000 family. The sources vary between family members. For the TMS320C6713,
they include external interrupt pins selected by the GPIO unit, and interrupts from internal
peripherals such as timers, McBSP serial ports, McASP serial ports, EDMA channels, and
the host port interface. The CPU’s have a multiplexer called the interrupt selector that
allows the user to select and connect interrupt sources to INT4 through INT15. The interrupt
system is discussed in detail in Chapter 2.

1.2.2 Memory Organization for the TMS320C6713 DSK

The ’C6713 DSP has an L1/L2 memory architecture consisting of a 4K-byte L1P Program
Cache (direct-mapped), a 4K-byte L1D Data Cache (2-way set associative), and an L2
memory with 256K-bytes total. The L2 memory is partitioned into a 64K-byte L2 unified
cache/mapped RAM which is up to 4-way set associative, and 192K-bytes of additional L2
mapped RAM. The L1P cache has a 256-bit wide bus to the CPU so the CPU can read a
fetch packet (eight 32-bit instructions) each cycle.

The ’C6713 DSP has a 32-bit External Memory Interface (EMIF) unit that provides a
glueless interface to SDRAM, Flash, SBSRAM, SRAM, and EPROM. The DSP has a 512
M-byte total addressable external memory space. Data is byte (8-bit), half-word (16-bit), or
word (32-bit) addressable. Table 1.1 shows the default memory map for the TMS320C6713
DSK.

1.2.3 Enhanced Direct Memory Access Controller (EDMA)

The TMS320C6713 has an enhanced direct memory access controller (EDMA) that can
transfer data between any locations in the DSP’s 32-bit address space independently of
the CPU. See the TMS320C6000 Peripherals Reference Guide [I.10] for complete details.
The EDMA handles all data transfers between the L2 cache/memory controller and the
peripherals. These include cache servicing, non-cacheable memory access, user-programmed
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Table 1.1: Memory Map for the TMS320C6713

C67x Family
Address Memory Type C6713DSK

0x00000000 Internal Memory Internal Memory
0x00030000 Reserved Space Reserved

or or
Peripheral Regs Peripheral

0x80000000 EMIF CE0 SDRAM
0x90000000 EMIF CE1 Flash
0x90080000 CPLD
0xA0000000 EMIF CE2

Daughter Card
0xB0000000 EMIF CE3

data transfers, and host access. It can move data to and from any addressable memory spaces
including internal memory (L2 SRAM), peripherals, and external memory. The EDMA
includes event and interrupt processing registers, an event encoder, a parameter RAM, and
address generation hardware. It has 16 independent channels and they can be assigned
priorities. Data transfers can be initiated by the CPU or events from the peripherals and
some external pins. The user can select how events are mapped to the channels. The
EDMA can transfer elements that are 8-bit bytes, 16-bit halfwords, or 32-bit words. Very
sophisticated block transfers can be programmed including transfers of 1-dimensional and
2-dimensional data blocks consisting of multiple frames. The EDMA is described in more
detail in Chapter 2 where you will use it to repetitively transfer an array to the codec.

1.2.4 Serial Ports

The TMS320C6713 contains two bidirectional multichannel buffered serial ports (McBSP0
and McBSP1). The serial ports operate independently and have identical structures. They
can be set to transfer 8, 12, 16, 20, 24, or 32 bit words. The bit clocks and frame synchs
can be internal or external and the McBSP includes programmable hardware for generating
shift clocks and frame synchs. The McBSP’s allow direct interface to high-speed data links
like T1 and E1 channels, codecs, and Motorola Serial-Peripheral-Interface (SPI) devices.
They can multiplex up to 128 channels. The McBSP can also perform µ-Law and A-Law
companding and de-companding. For complete details see the TMS320C6000 Peripherals
Reference Guide [I.10].

The McASP is a serial port optimized for the needs of multi-channel audio applications. The
two McASP’s can support two completely independent audio zones simultaneously. Each
McASP includes a pool of 16 shift registers that may be configured to operate as either
transmit data, receive data, or general-purpose I/O (GPIO). The McASP’s can use a time-
division multiplexed (TDM) synchronous serial format or a digital audio interface (DIT)

The ’C6713 DSP also includes two multi-channel audio serial ports (McASP0 and McASP1).
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format. Both the transmit and receive sections of the McASP also support burst mode
which is useful for non-audio data, for example, transferring data between two DSPs. See
the TMS320C6713B Floating-Point Digital Signal Processor [I.12] for details.

1.2.5 Other Internal Peripherals

The TMS320C6713 DSP contains two 32-bit general-purpose timers that can be used to time
events, count events, generate pulses, interrupt the CPU, and send synchronization events
to the EDMA. They can be clocked by an internal or external source. Each has an input
and output pin. A periodic clock signal can be generated on the output pin and the input
can be used to count events.

The TMS320C6713 also has a Host Port Interface (HPI). The HPI provides a 16-bit
interface to a host. The host functions as a master and can access the entire memory map
of the DSP. Accesses are accomplished by using the EDMA.

Two I2C serial ports are included for control purposes. Each I2C port is compatible with
Philips I2C Specification Revision 2.1. They can operate up to 400 Kbps, have noise filters,
seven and ten-bit device addressing modes, master and slave functionality, can generate
events, and include slew-rate limited open-drain output buffers.

The TMS320C6713B has a PLL and a flexible PLL controller consisting of a prescaler
and four dividers. The controller can generate different clocks for different parts of the DSP.
A wide range of frequencies can be achieved with the dividers and prescaler.

There is also a general purpose input/output (GPIO) module with 16 external pins that
can be individually programmed to be inputs or outputs. Some of the pins can be mapped
to interrupts and events. See the TMS320C6713B Floating-Point Digital Signal Processor
[I.12] for more details.

The DSP’s are also IEEE-1149.1 (JTAG) boundary scan compatible.

1.2.6 Brief Description of the TMS320C6000 Instruction Set

The TMS320C6000 DSP’s have an extensive instruction set which is tailored to the algo-
rithms used in digital signal processing. There are instructions for fixed and floating-point
addition, subtraction, and multiplication as well as for logical operations, circular buffering,
and data loading and storing. All instructions can be conditionally executed. Tables 1.2 and
1.3 show the mnemonics for these instructions and how they are mapped to functional units.
For complete details see the TMS320C6000 CPU and Instruction Set Reference Guide [I.7].
The function of an instruction is often somewhat obvious from the mnemonic. For example,
instructions with the prefix ADD do addition, MPY is a multiplication, LDW loads a word
from memory into a register, STB stores a byte from a register to memory, and MPYSP
does a single-precision floating-point multiplication.

The addressing modes for the ’C67x are linear, circular using BK0, and circular using
BK1. Linear addressing can be used with all register, but circular addressing can only be
used with registers A4–A7 and B4–B7. Addresses can be formed in four basic ways: register
indirect, register relative, register relative with 15-bit constant offset, and base + index.
In addition, the addresses can be left unmodified, preincremented or predecremented, or
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Table 1.2: Fixed-Point Instructions Common to the ’C62x and ’C67x

.L unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)
ADD MPYU ADDK SHL ADDAB STH (15-bit offset)
ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)
AND MPYSU AND SHRU ADDAW SUB
CMPEQ MPYH B disp SSHL LDB SUBAB
CMPGT MPYHU B IRP SUB LDBU SUBAH
CMPGTU MPYHUS B NRP SUBU LDH SUBAW
CMPLT MPYHSU B reg SUB2 LDHU ZERO
CMPLTU MPYHL CLR XOR LDW
LMBD MPHLU EXT ZERO LDB (15-bit offset)
MV MPYHULS EXTU LDBU (15-bit offset)
NEG MPYHSLU MV LDH (15-bit offset)
NORM MPYLH MVC LDHU (15-bit offset)
NOT MPYLHU MVK LDW (15-bit offset)
OR MPYLUHS MVKH MV
SADD MPYLSHU MVKLH STB
SAT SMPY NEG STH
SSUB SMPYHL NOT STW
SUB SMPYLH OR
SUBU SMPYH
SUBC
XOR
ZERO

postincremented or postdecremented. All these options are shown in Table 1.4. Offsets are
multiplied by 4, 2, or 1 (shifted left by 2, 1, or 0 bits) before being added or subtracted
from the base address according to whether a word, half-word, or byte is being used . The
addresses computed refer to the byte location of the data in memory. The BK0 and BK1
fields in the Addressing Mode Register (AMR) set the block sizes for circular addressing.

As an example, consider the instruction

LDW .D1 *++A4[9], A1

This instruction loads a 32-bit word (LDW) using functional unit .D1 into register A1 from
the memory byte address: contents of (A4) + 4 × 9. The offset, 9, is multiplied by 4 since
there are 4 bytes per word.

Almost all of the programming for this course will be done in C, so you do not have to
spend much time learning the details of assembly language programming using the instruc-
tion set. If a C program is written in a straight forward way without any special care, the
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Table 1.3: Extra Instructions for the ’C67x

.L unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD
ADDSP MPYI ABSSP LDDW
DPINT MPYID CMPEQDP
DPSP MPYSP CMPEQSP
DPTRUNC CMPGTDP
INTDP CMPGTSP
INTDPU CMPLTDP
INTSP CMPLTSP
INTSPU RCPDP
SPINT RCPSP
SPTRUNC RSQRDP
SUBDP RSQRSP
SUBSP SPDP

Table 1.4: Addressing Modes

Preincrement or Postincrement or
No Modification of Predecrement of Postdecrement of

Addressing Type Address Register Address Register Address Register

Register Indirect *R *++R *R++
*−−R *R−−

Register Relative *+R[ucst5] *++R[ucst5] *R++[ucst5]
*−R[ucst5] *−−R[ucst5] *R−−[ucst5]

Register Relative with *+B14/B15[ucst15] none none
15-bit Constant Offset

Base + Index *+R[offsetR] *++R[offsetR] *R++[offsetR]
*−R[offsetR] *−−R[offsetR] *R−−[offsetR]

Notes:
ucst5 = 5-bit unsigned integer constant
ucst15 = 15-bit unsigned integer constant
R = base register
offsetR = index register
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TI C6000 C compiler generates reasonably efficient code that is adequate for many applica-
tions. Program efficiency can be improved significantly by using the compiler’s optimization
features.

It is important to know something about the DSP assembly instructions to understand
how the DSP works and what happens when higher level instructions are turned into machine
instructions by the compiler. Also, some DSP hardware capabilities like hardware circular
buffering are not used by the compiler.

1.2.7 Parallel Operations and Pipelining

As mentioned earlier, the instruction word for each CPU functional unit is 32 bits long, and
eight instructions are fetched at a time. The group of eight instructions or 8 × 32 = 256
bits is called a fetch packet. Fetch packets must start at an address that is a multiple of
eight 32-bit words. Since the CPU has eight functional units, up to eight instructions can be
executed in parallel. Each must use a different functional unit. However, not all functional
units must be used. Each group of instructions operating in parallel is called an execute
packet .

Bit 0 of each instruction is called the p-bit and determines if the instruction operates
in parallel with another. The instructions in a fetch packet are scanned from the lowest
address to the highest. If the p-bit of instruction i is 1, then instruction i + 1 is executed in
parallel with instruction i. If it is 0, instruction i + 1 is executed one cycle after instruction
i. The p-bit of the eighth instruction is always 0 because it cannot chain to the next fetch
packet. If all the p-bits in a fetch packet are 0, the instructions are executed sequentially in
time, one after the other, starting with the first instruction in the packet. If the first seven
p-bits are 1, all eight instructions are executed in parallel. When some are 0 and some 1,
the execute packets (chained instructions) are executed sequentially in time starting from
the packet with the lowest address. If a branch occurs in the middle of an execute packet,
all instructions in the entire fetch packet at lower addresses than the branch are ignored.

Instructions are processed in a multi-stage pipeline consisting of a program fetch, program
decode, and execute stage as shown in Table 1.5. The fetch stage has four phases for
all instructions: (1) program address generation (PG), (2) program address sent (PS), (3)
program wait (PW), and (4) program data receive (PR). The decode stage has two phases
for each instruction: (1) dispatch (DP) and (2) decode (DC). Instructions in the execute
stage can pass through anywhere from 1 to 10 phases (E1–E10). Parallel instructions pass
simultaneously through each pipeline phase. Serial instructions proceed through the pipeline
with a fixed relative phase difference. There are no pipeline interlocks.

During the PG (program address generate) phase of the fetch stage, the program address
is computed by the CPU. The address is sent to memory in the PS (program address send)
phase and it is read in the PW (program access ready wait) phase. Finally, the CPU receives
the fetch packet in the PR (program fetch packet receive) phase.

During the DP (instruction dispatch) phase of the decode stage, the fetch packet of eight
instructions is partitioned into execute packets and the instructions are assigned to functional
units. Then in the DC (instruction decode) phase, the source registers, destination registers,
and required data paths are decoded for instruction execution by the functional units.
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Table 1.5: TMS320C6x Pipeline Phases

Stage Phase Symbol

Program Program Address PG
Fetch Generation

Program Address PS
Sent

Program PW
Wait

Program PR
Data Receive

Program Dispatch DP
Decode

Decode DC
Execute Execute 1 E1

...
...

Execute 10 E10

Execute packets can take anywhere from 1 to 10 execute phases. Fixed-point instructions
take at most 5 phases while floating-point instructions can take up to 10 phases. Most fixed-
point instructions are single-cycle instructions and use only the execute phase E1. See [I.7]
for details of the execution phases for all the different kinds of instructions.

An elementary example of the pipeline operation is shown in Figure 1.4. Here it is
assumed that each fetch packet is one execute packet so all eight instructions are in parallel.
The fetch packets flow in lockstep through each pipeline phase. It is also assumed that each
execute packet requires all 10 execute phases. The pipeline is full at clock cycle 7 when fetch
packet n reaches the E1 execute phase and fetch packet n+6 is in the PG (program address
generate) phase.

Since different instructions can require a different number of execute phases, the pipeline
operation can be much more complicated than shown in Figure 1.4. Care must be taken so
that the results of one instruction are ready when they are needed by another. Therefore,
dummy no operation (NOP) instructions must be included where necessary to synchronize
the computations. This makes hand assembly coding very difficult and tedious. Fortunately,
TI provides an optimizing assembler that automatically assigns instructions to functional
units and inserts NOP’s where necessary. The assembler input source is a slightly higher level
language than pure assembly instructions and is called linear assembly . The TI optimizing
C compiler also automatically performs the scheduling. See the TMS320C6000 Assembly
Language Tools User’s Guide [I.5], TMS320C6000 Optimizing Compiler User’s Guide [I.9],
and TMS320C6000 Programmer’s Guide [I.11] for complete details.

The concept of delay slots is useful in analyzing instruction execution. Each instruction
type has a number of delay slots associated with it. A delay slot is a CPU cycle that occurs
after the first execution phase (E1) of an instruction. Results for an instruction are not
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Clock Fetch Packet
Cycle n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10

1 PG
2 PS PG
3 PW PS PG
4 PR PW PS PG
5 DP PR PW PS PG
6 DC DP PR PW PS PG
7 E1 DC DP PR PW PS PG
8 E2 E1 DC DP PR PW PS PG
9 E3 E2 E1 DC DP PR PW PS PG
10 E4 E3 E2 E1 DC DP PR PW PS PG
11 E5 E4 E3 E2 E1 DC DP PR PW PS PG
12 E6 E5 E4 E3 E2 E1 DC DP PR PW PS
13 E7 E6 E5 E4 E3 E2 E1 DC DP PR PW
14 E8 E7 E6 E5 E4 E3 E2 E1 DC DP PR
15 E9 E8 E7 E6 E5 E4 E3 E2 E1 DC DP
16 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 DC
17 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1

Figure 1.4: Pipeline Operation Assuming One Execute Packet per Fetch Packet

available for use by another instruction until after the last delay slot. For example, single
cycle instructions complete execution during the E1 pipeline phase and have no delay slots.
The MPY instruction has one delay slot so its results are not available until the end of the
E2 pipeline phase.

A store instruction uses the E1, E2, and E3 pipeline phases and writes its data to memory
in the E3 phase but is considered to have no delay slots. The reason is that the results of a
store must be accessed by a load instruction which uses phases E1 through E5. For a load
instruction, the memory address is read during the E3 phase, is received at the CPU core
boundary in the E4 phase and is written to the register in the E5 phase, so a load instruction
has four delay slots. Since a store instruction writes its data to memory in the E3 phase, a
load instruction following a store instruction finds the data from the store in memory when
it reads the location in its E3 phase.

Branch instructions use just one execute phase. However, there are five delay slots
between the execution of the branch and execution of the target code. This is illustrated in
Figure 1.5. The branch target code is in the PG phase when the branch is in the E1 phase.
There are then five delay lots until the target reaches the E1 phase.

1.3 The TMS320C6713 DSP Starter Kit (DSK)

The TMS320C6713 DSK is a low cost board designed to allow the user to evaluate the
capabilities of the ’C6713 DSP and develop ’C6713-based products. It demonstrates how
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PG PS PW PR DP DC E1
Branch Target PG PS PW PR DP DC E1

←− delay slots −→
Figure 1.5: Branch Instruction Execution

the DSP can be interfaced with various kinds of memories and peripherals, and illustrates
power, clock, JTAG and parallel peripheral interfaces. The board is approximately 5 inches
wide and 8 inches long and is designed to sit on the desktop external to a host PC. It connects
to the host PC through a USB port or an XDS510 emulator. A simplified block diagram of
the DSK is shown in Figure 1.6.
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Figure 1.6: Block Diagram of the TMS320C6713 DSP Starter Kit (DSK)

The major DSK hardware features are:

• A TMS320C6713 DSP operating at 225 MHz.

• An AIC23 stereo codec with Line In, Line Out, MIC, and headphone stereo jacks

• 16 Mbytes of synchronous DRAM (SDRAM)

• 512 Kbytes of non-volatile Flash memory (256 Kbytes usable in default configuration)
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• Four user accessible LEDs and DIP switches

• Software board configuration through registers implemented in complex logic device
(CPLD)

• Configurable boot options

• Expansion connectors for daughter cards

• JTAG emulation through on-board JTAG emulator with USB host interface or external
emulator

A printed technical reference manual comes with the DSK. Extensive documentation for
the DSK and ’C6713 DSP is included on the CD that comes with the DSK. You can choose
to have the documentation loaded on the PC hard drive when you install the DSK support
software and Code Composer Studio. It includes a large collection of TI manuals. These
TI manuals along with much other information can be conveniently accessed through Code
Composer’s “Help” menu. The version of Code Composer Studio delivered with the DSK is
tailored to it.

1.3.1 The Audio Interface Onboard the TMS320C6713 DSK

The TMS320C6713 DSK uses a Texas Instruments AIC23 codec. In the default configuration,
the codec is connected to the two serial ports, McBSP0 and McBSP1. McBSP0 is used as
a unidirectional channel to control the codec’s internal configuration registers. It should be
programmed to send a 16-bit control word to the AIC23 in SPI format. The top 7 bits of
the control word specify the register to be modified and the lower 9 bits contain the register
value. Once the codec is configured, the control channel is normally idle while audio data is
being transmitted.

McBSP1 is used as the bi-directional data channel for ADC input and DAC output
samples. The codec supports a variety of sample formats. For the experiments in this
course, the codec should be configured to use 16-bit samples in two’s complement signed
format. The codec should be set to operate in master mode so it supplies the frame sync
and bit clocks at the correct sample rate to McBSP1. The preferred serial format is DSP
mode which is designed specifically to operate with the McBSP ports on TI DSPs.

The codec has a 12 MHz system clock which is the same as the frequency used in many
USB systems. The AIC23 can divide down the 12 MHz clock frequency to provide sampling
rates of 8000, 16000, 24000, 32000, 44100, 48000, and 96000 Hz.

McBSP0 and McBSP1 can be individually disconnected through software from the AIC23
codec and routed to the Peripheral Expansion Connector. This allows commercially available
and individually designed daughter cards to be plugged into the expansion sockets on the
DSK. TI has published a daughter card standard that all its variety of DSK’s follow. There
are daughter cards for a significant number of codecs that are more capable than the AIC23.
At the University of Maryland, we have designed a daughter card to convert RS232 serial
port signal levels to TTL levels compatible with the McBSP signals.
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More details about the hardware characteristics of the AIC23 and how to use it are
presented in Chapter 2. Also look at the Code Composer “Help” menu for details. To see
the details of how the AIC23 is included on the DSK, see the TMS320C6713 DSK Technical
Reference, [I.2]. For complete details on the AIC23 chip itself, see TLV320AIC23 Stereo
Audio CODEC Data Manual, [I.4].

1.4 Software Support for the DSK Board and ’C6x

DSP’s

1.4.1 The Board Support Library (BSL)

A special Board Support Library (BSL) is supplied with the TMS320C6713 DSK. The BSL
provides C-language functions for configuring and controlling all the on-board devices. The
library includes modules for general board initialization, access to the AIC23 codec, reading
the DIP switches, controlling the LED’s, and programming and erasing the Flash memory.
The source code for this library is also included. The version of Code Composer supplied
with the DSK is set up to automatically use the BSL. You can get complete documentation
for the BSL by connecting the DSK to your PC, bring up Code Composer, and going to
Help, Contents, TMS320C6713DSK, Software, Board Support Library.

The function for configuring the codec in the BSL sets McBSP1 to transmit and receive
16-bit words. The codec sends 16-bit left and right channel input samples to McBSP1
alternately and a program reading these samples from McBSP1’s Data Receive Register
(DRR1) would have to somehow figure out which is the right and which is the left channel
sample. We have modified the code configuration function DSK6713_AIC23_openCodec() to
send and receive data samples from the codec in DSP format using 32-bit words. The first
word transmitted by the AIC23 codec is the left channel 16-bit sample and the right channel
16-bit sample is transmitted immediately after the left channel sample. The AIC23 generates
a single frame sync at the beginning of the left channel sample. Therefore, a 32-bit word
received by McBSP1 contains the left sample in the upper 16 bits and the right sample in the
lower 16 bits. This solves the channel ambiguity problem. The reverse process takes place
when sending samples from the DSP to the codec. The user’s program should pack the left
channel 16-bit sample in the upper 16 bits of an integer and the right channel 16-bit sample
in the lower 16 bits and then write this word to the Data Transmit Register (DXR1) of
McBSP1. We have replaced the original BSL codec configuration function with our modified
function and renamed the file dsk6713bsl32.lib. The required header files as well as the
source code are installed on our PC’s. The codec configuration process is discussed in detail
in Chapter 2.

We have also added the files intr.obj and intr_.obj, which are the compiled versions
of intr.c and intr_.asm, to dsk6713bsl32.lib. The required header files have also been
added to the “include” folder. These files provide a simple interrupt structure that allows
interrupts to be dynamically hooked to or unhooked from interrupt service routines. The file
intr.c includes functions to reset the interrupt registers to defaults, initialize the interrupt
vector table and interrupt service routine jump table, assign interrupt sources to CPU inter-
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rupt numbers, hook interrupt service routines to CPU interrupts, and set and clear bits in
the Interrupt Enable Register (IER) and Interrupt Flags Register (IFR). Chapter 2 discusses
this interrupt structure in much more detail. Complete documentation can be found in the
source files.

1.4.2 The Chip Support Library

TI has created a Chip Support Library (CSL) that contains C functions and macros for
configuring and interfacing with all the ’C6713 on-chip peripherals and CPU interrupt con-
troller. Complete details are presented in the TMS320C6000 Chip Support Library API
User’s Guide [I.6]. This library is loaded onto the PC when the DSK software is installed.
Each peripheral is covered by an individual API module. The CSL header files provide a
complete symbolic description of all peripheral registers and register fields.

The CSL provides two methods for initializing the registers of a peripheral. The symbolic
names of all peripherals are listed in Table 1 of [I.6]. Let PER be a peripheral name, for
example, McBSP. One method is to use the function PER_configArgs(reg0, reg1, ...).
You must construct all the register words before calling this function. The CSL has the
PER_REG_RMK macros to help set the fields in each register. The second method is to use the
function PER_config(&MyConfig) where MyConfig is a structure constructed by using the
CSL structure type PER_Config as shown in the following lines:

PER_Config MyConfig = {

reg0,

reg1,

...

};

You still need to construct the register values.
The CSL provides a graphical user interface (GUI) that is part of the DSP/BIOS Config-

uration Tool of Code Composer Studio to set the peripheral registers for most of the ’C6000
series DSP’s. However, the TMS320C6000 Chip Support Library API User’s Guide says the
GUI does not support the TMS320C6713.

1.5 Code Composer Studio

You will constantly use Texas Instruments’ multi-function program, Code Composer Studio
(CCS), on the PC to generate programs for the TMS320C6713 DSP, load them into the DSP
memory, run them, and monitor program execution. See the Code Composer Studio User’s
Guide [I.3] and online CCS help files for complete details.

1.5.1 Project Files and Building Programs

You can build a project in CCS to easily manage an application involving multiple source
files, libraries, memory maps, and special command files. The file containing all the project
information is given the extension pjt. By clicking on the Rebuild All or Incremental build task
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bar buttons or by menu selections, you can create an executable module in COFF (common
object format file) that can be loaded into the DSP’s memory. The default behavior is to use
the extension, out, for executable modules. To build a program, CCS invokes the program
cl6x.exe with the appropriate command line options, input source file names, and output
file names. The program cl6x.exe is a shell program that

1. compiles C source files using the TI optimizing C compiler, outputting assembly mod-
ules with the extension asm,

2. assembles assembly and linear assembly source files including those generated by the
compiler using asm6x.exe creating relocatable object modules with the extension obj,

3. links the object modules and required library modules using lnk6x.exe according to
information in a linker command file into an executable COFF file. Linker command
files normally have the extension cmd.

The Incremental build option only compiles and assembles source files that have been modified
since the last build, speeding up the building process. Figure 1.7 illustrates the process of
building an executable module.

CCS includes a full featured editor with syntax highlighting for entering and modifying
source code. When a file is compiled or assembled and errors are detected, CCS can jump
from the error message window to the location of the error in the source file displayed in the
editing window.

1.5.2 The Optimizing Compiler and Assembler

Code Composer Studio includes a C/C++ optimizing compiler that converts standard ANSI
C source programs into C6000 assembly language source. An interlist facility can be invoked
that creates an output file showing each C source statement followed by the assembly code
generated to implement the statement. Several levels of optimization can be used. The
compiler automatically schedules parallel use of the ’C6x execution units and inserts NOP’s
where necessary to account for delay slots. At the higher optimization levels, the compiler
performs software pipelining which is a technique to make loops execute as efficiently as
possible by making maximum parallel use of the execution units and pipeline stages. This
would be extremely difficult and time consuming by hand. A smart compiler is a necessity
to make the complicated hardware architecture of the ’C6000 family easy and productive to
use.

The compiler has several extensions to ANSI C. Assembly statements can be included
inline with the C source code. This is useful for manipulating registers in the DSP and using
special hardware features that are not efficiently accessible thorough C. There are also a
number of intrinsics that can be used like C functions and perform assembly instructions.
An interrupt keyword has been added that can be used to declare a C function to be an
interrupt handler. The compiler then generates the code necessary to save and restore the
machine state on entry and exit. A volatile keyword can be used to type a variable so
that the optimizer does not optimize it out of existence. For example, a status register in a
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Figure 1.7: Building Programs
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serial port may change when a word is received, but the compiler will not recognize this can
happen and assume a reference to the register never changes.

Program efficiency can be improved significantly by using the compiler’s optimization
features, appropriate compiler directives, and good memory assignments. Extensive details
about how to write optimized programs can be found in the Programmer’s Guide [I.11].
Another jump in efficiency can be made by using the intrinsics. They are somewhat similar
to inline assembly instructions and make the compiler use the DSP’s hardware efficiently.
A complete list of the intrinsics can be found in the TMS320C6000 Optimizing Compiler
User’s Guide [I.9 ]. By using all the optimization techniques, good programmers have been
able to write C programs that, when compiled, are as efficient as hand optimized assembly
code.

The trend in industry these days is to write almost an entire application in C because of
the speed in writing the program, ease of reading by others, and its portability to new DSP
types. Small portions of the program that are time intensive may be hand programmed and
optimized. The TI code generation tools can profile running programs and produce statistics
about the execution time of program segments.

TI has created a language called linear assembly that is part way between pure assembly
language and C. Linear assembly source files have the extension sa. In linear assembly you
do not have to be concerned with assigning registers or pipeline issues. Symbolic names
can be used for registers. The assembly optimizer assigns registers and optimizes loops to
generate highly parallel assembly code.

The assembly source code files generated by the compiler and optimizing assembler must
then be passed through the assembler to generate relocatable object modules.

See the TMS320C6000 Optimizing Compiler User’s Guide [I.9] and TMS320C6000 As-
sembly Language Tools User’s Guide [I.5] for complete details on the compiler and assembler.

1.5.3 The Linker

The final step in building a program is to link all the relocatable modules together. The
linker, lnk6x.exe, combines relocatable object modules to form an executable output pro-
gram. The default extension for executable programs is out. In addition, the linker can
generate a map file showing the absolute memory addresses of all global variables. A very
important input to the linker is a linker command file which has the extension cmd. The
command file can contain names of additional object modules to link, paths to libraries,
names for the map and out files, a memory map for the target hardware system, and com-
mands describing where to put specific program sections in memory. An example of a linker
command file is presented early in Chapter 2. See the TMS320C6000 Assembly Language
Tools User’s Guide [I.5] for all the linker capabilities and options.

1.5.4 Building Programs from Command Line Prompts

The programs cl6x.exe, asm6x.exe, and lnk6x.exe can all be executed from a command
line prompt. The general format for invoking the cl6x.exe shell is

cl6x [-compiler options] [filenames] [-z [link options]]
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Items in rectangular brackets are optional. The entry [filenames] is a list of source files.
Filenames that have no extension are automatically considered to have the extension, c, and
to be C source code. Filenames with the extension, asm, are considered to be assembly
language source code and are assembled and files with the extension, sa, are treated as linear
assembly source and operated on by the optimizing assembler. Everything to the right of the
-z option applies only to the linker. The assembler and linker can be executed in a similar
manner. See the TI compiler and assembler manuals for complete details.

1.5.5 The Archiver

CCS includes an archiver program ar6x.exe that can be used to build libraries of relocatable
object modules or source files. It can display a table of contents for an archive. The archiver
can also insert modules into or extract modules from an archive. The archiver details are
presented in the TMS320C6000 Assembly Language Tools User’s Guide [I.5].

1.5.6 Additional Code Composer Studio Features

CCS has many additional features and some are described in the following list.

• Code Composer Studio has extensive capabilities for loading, running and monitoring
program execution. It is the tool you will almost always use to load program into the
target board memory and start the program running. It can single step through C or
assembly instructions, stop at break points, display or change the contents of memory
ranges and registers, watch selected C variables, and profile running programs.

• CCS can send data to the target board from a PC file or read data from probe points
in the DSP program to a PC file.

• CCS can capture data from the target board and graph the results as a function of
time, perform an FFT, or display a constellation diagram, eye diagram, or image.

• CCS has an interpretive general extension language (GEL) similar to C that allows
you to extend CCS’s capabilities. Through GEL functions CCS can access and change
target memory locations including DSP registers and add options to the CCS menus.

• CCS facilitates building programs including a real-time operating system, DSP/BIOS.
When CCS does normal file I/O, it halts the DSP during the data transfers so the
program will not run in real-time. DSP/BIOS allows real-time data exchange (RTDX).
DSP/BIOS can run multiple threads with different priorities. We will not use this
facility in our experiments because it adds another level of complication and hides the
basic DSP software and hardware issues. However, it certainly could be used in further
independent projects.
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1.6 Other Software

A variety of free-ware a commercial programs are available on the PC’s. The free-ware
programs include file compression archivers, a telnet terminal, an FTP program, and the
GNUPLOT graphing program. Additional programs are listed below.

1.6.1 Digital Filter Design Programs

Filtering is a fundamental operation in communication systems. Several programs have been
collected, modified, and written for designing digital filters for the experiments. They are
all free-ware programs. These digital filter design programs are:

• window.exe is a program for designing lowpass, highpass, bandpass, bandstop, dif-
ferentiation, and Hilbert transform FIR filters using the Fourier series and window
function method. The basic program was taken from the classic IEEE Press book,
Programs for Digital Signal Processing [II.C.7] and modified by the author.

• remez87.exe is a program for designing multiple passband/stopband, differentiation,
and Hilbert transform FIR filters using the McClellan-Parks approach. The basic
program was taken from [II.C.7] and modified by the author.

• iir.exe is a program for designing lowpass, highpass, bandpass, and band-reject IIR
digital filters using the bilinear transformation to convert classical analog prototype
filters into digital filters. Classical analog Butterworth, Chebyshev, inverse Chebyshev,
and elliptic filters can also be designed. The basic program was downloaded from the
TI bulletin board and modified by the author. The original program was written by
S. Burrus at Rice University.

• rascos.exe is a program written by the author for designing FIR filters that approx-
imate the raised cosine frequency response. The impulse response is separated into
subfilters for an interpolation filter bank.

• sqrtraco.exe is a program written by the author for designing FIR filters that ap-
proximate the square-root of raised cosine frequency response. The impulse response
is separated into subfilters for an interpolation filter bank.

The MATLAB signal processing package has filter design functions similar to some of
the ones listed above.

1.6.2 Commercial Software

Commercial software available for the laboratory includes:

• The standard Microsoft Office suite including MS Word and Excel.

• Microsoft Visual C++

• MATLAB

• Anti-virus programs
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1.7 Introductory Experiments

Code Composer Studio is the software utility you will almost always use to generate and edit
source code, build executable DSP programs, and load the programs into the TMS320C6713
DSK. The goals of this introductory experiment are to become familiar with the audio
connections to the DSK and to explore some of the capabilities of Code Composer Studio.
No lab report is required for this experiment.

For your first lab session, perform the following tasks:

1. Check out the hardware. Find the three audio connectors for the DSK. They are MIC

IN, LINE IN, and LINE OUT. The MIC IN jack is for low level signals from a microphone.
You will be using the commercial signal generator for this course and should use only
the LINE IN and LINE OUT connectors for these larger signal levels. Beware that a
common mistake of lab students is to make the input too large and saturate the input
amplifiers resulting in strange outputs.

2. If it has not already been done, connect the power supply to the DSK. Then connect
the DSK to a USB port on the PC. You will hear the Microsoft “bing-bong” sound
when the operating system detects the new USB Connection.

3. Start CCS by double clicking on the icon named C6713 DSK CCS on the desktop.
The ’C6713 DSK version of CCS will not start unless the DSK is powered up and the
USB connection has been made. The CCS splash screen will appear first for a few
seconds and then the CCS workspace window will appear. Depending on the state of
the PC, you may or may not see a message window in the lower right-hand corner with
the message, “Waiting for USB Enumeration,” and hear the USB connection sound.
When the CCS workspace window is closed, you will hear the Microsoft “bong-bing
bing-bong” sounds.

4. Work through as much of the Code Composer Studio IDE tutorial and other tutorials
as possible during the first lab period. To get to the tutorial, click on Help on the CCS
menu bar. Next select Tutorial and click on Code Composer Studio IDE in the table of
contents on the left side of the window. Be sure to learn how to (1) create a project file,
(2) build and run a program, (3) use break points and watch windows, (4) profile code
execution, and (5) do file I/O and display graphs. Also browse through the extensive
hardware and software documentation under the Help menu.

Please do not modify or work in the C:\TI, C:\CCStudio_v3.1, or C:\c6713 directories.
Copy any files you will modify to a directory in your workspace on the network server or
on the PC and do your work there. Almost all of the time you should use a directory in
your workspace on the network server. Create files on the hard drive only in an emergency
when the network is down. Finally, some words of wisdom learned by hard experience are,
“Always make backups of your programs before leaving the lab session!”



Chapter 2

Learning to Use the Hardware and
Software Tools by Generating a Sine
Wave

The goal of this experiment is to learn how to use the hardware and software tools available
at each station. The hardware includes a PC, TMS320C6713 DSK, a signal generator, and
an oscilloscope. The main software tool you will use is Code Composer Studio (CCS) which
contains an editor and a project building facility which automates calling the C compiler,
assembler, and linker. You will also use CCS to load programs into the DSP boards, run
them, and monitor their execution. You will gradually learn about the DSP’s architecture
including the McBSP serial ports, interrupt controller, and EDMA controllers by generating
a sine wave by using polling, by using interrupts, and by using DMA from a table.

The experiments in this chapter assume that the TMS320C6713 DSK is being used
along with the support library dsk6713bsl32.lib described in Section 1.4.1. The codec
initialization function in this library configures McBSP1 to transmit and receive 16-bit left
and right channel sample pairs packed into a single 32-bit word with the left channel sample
in the upper 16 bits and the right channel sample in the lower 16 bits. Functions for setting
up a simple interrupt environment and interfacing with the interrupt registers were also
added to this library.

2.1 Getting Started with a Simple Audio Loop Through

Program

2.1.1 A Linker Command File and Beginning C Program

First copy the linker command file, dsk6713.cmd, listed below to your working directory from
the directory C:\c6713dsk. Linker command files are used to define how relocatable program
sections are mapped into the physical system memory. They can also contain assembler
options and lists of object programs to be included in the output modules. Additional
object modules can also be included on the linker command line. The modules are loaded

29
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in the order in which they appear in the command line list of .cmd and .obj files. Command
files are convenient for saving definitions and operations that will be ordinarily used when
linking programs for a particular project.

The -c line in dsk6713.cmd tells the linker to use the autoinitialization feature of C
programs. The TI C compiler builds a table containing the data required to initialize all
variables initialized in the C program. Code is included in the executable module to load
the data values in the table into the variables when the program starts. The -heap and
-stack lines allocate memory for the heap and stack. The number after these commands is
the allocated memory size in bytes.

The -lrts6700.lib line tells the linker to search the C run-time library rts6700.lib

for unresolved references. This library provides the standard functions the C compiler ex-
pects. The line -lcsl6713.lib tells the linker to search the Chip Support Library (CSL)
csl6713.lib. CCS has been set to know the path to these libraries. They are almost always
used by C programs. Including these lines in the linker command file automatically includes
them in the linker search path without any further effort on your part.

The MEMORY portion of the command file is used to define the physical memory layout.
For example, the line

IRAM : origin = 0x0, len = 0x40000 /* 256 Kbytes */

defines the internal program memory to be a region called IRAM which starts at byte address
0x00000000, and has a length of 0x00040000 bytes which is 256 Kbytes.

The C compiler puts data and program code into named sections. Named sections can
also be created by the programmer in assembly source code. The SECTIONS portion of
the linker command file tells the linker how to place sections into defined memory regions.
The standard conventions are to place program instructions in the .text section, initialized
constants in the .const section, global and static variables in the .bss section, initialization
tables for variables and constants in the .cinit section, local variables in the .stack section,
and buffers for C I/O functions in the .cio section. Data from assembly programs can be
put in the .data section. C does not use the .data section. There are many more options
for linker command files that allow complex mappings of programs into physical memory.
See the TMS320C6000 Assembly Language Tools User’s Guide [I.5] for complete details.

Program 2.1 Linker Command File dsk6713.cmd

/**************************************************************/

/* File dsk6713.cmd */

/* This linker command file can be used as the starting */

/* point for linking programs for the TMS320C6713 DSK. */

/* */

/* This CMD file assumes everything fits into internal RAM. */

/* If that’s not true, map some sections to the external */

/* SDRAM. */

/**************************************************************/
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-c

-heap 0x1000

-stack 0x400

-lrts6700.lib

-lcsl6713.lib

MEMORY

{

IRAM : origin = 0x0, len = 0x40000 /* 256 Kbytes */

SDRAM : origin = 0x80000000, len = 0x1000000 /* 16 Mbytes SDRAM */

FLASH : origin = 0x90000000, len = 0x40000 /* 256 Kbytes */

}

SECTIONS

{

.vec: load = 0x00000000 /* Interrupt vectors included */

/* by using intr_reset() */

.text: load = IRAM /* Executable code */

.const: load = IRAM /* Initialized constants */

.bss: load = IRAM /* Global and static variables */

.data: load = IRAM /* Data from .asm programs */

.cinit: load = IRAM /* Tables for initializing */

/* variables and constants */

.stack: load = IRAM /* Stack for local variables */

.far: load = IRAM /* Global and static variables */

/* declared far */

.sysmem: load = IRAM /* Used by malloc, etc. (heap) */

.cio: load = IRAM /* Used for C I/O functions */

.csldata load = IRAM

.switch load = IRAM

}

Before executing the code that performs your desired signal processing algorithm, the
DSK and DSP have to be initialized. This is partially taken care of when you start Code
Composer. The version of CCS supplied with the ’C6713 DSK has been configured to
automatically load the general extension language (GEL) file DSK6713.gel in the directory
C:\ti\cc\gel for CCS v2.21 or C:\CCStudio_v3.1 for CCS v3.1. This file defines a memory
map, creates some GEL functions for the CCS GEL menu, sets some CPLD registers to
configure components on the DSK board, and initializes the EMIF for the memory on the
board. Your program must do the remaining initialization.

Copy the file dskstart32.c from the directory C:\c6713dsk to your workspace. A list-
ings of this file is shown below. You will add it to a project file shortly. This file can be used as
the starting point for all your programs. It uses functions from the UMD modified Board Sup-
port Library (BSL), dsk6713bsl32.lib, in the directory C:\c6713dsk\dsk6713bsl32\lib.
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The required header files and source files can be found in the parallel sub-directories, include
and sources. You can find detailed documentation for the BSL by starting Code Composer
and clicking on Help → Contents → TMS320C6713 DSK → Software → Board Support.

First, dskstart32.c calls DSK6713_init() to initialize the board support library. The
source code for this function is in the BSL file dsk6713.c. The function initializes the chip’s
PLL, configures the EMF based on the DSK version, and sets the CPLD registers to a default
state.

Next dskstart32.c initializes the interrupt controller registers and installs the default
interrupt service routines by calling the function intr_reset() in the UMD added file
intr.c. This function clears GIE and PGIE, disables all interrupts except RESET in IER,
clears the flags in the IFR for the the maskable interrupts INT4 through INT15, resets the
interrupt multiplexers, initializes the interrupt service table pointer (ISTP), and sets up the
Interrupt Service Routine Jump Table. The object modules intr.obj and intr_.obj were
added to BSL library so you should not include intr.c and intr_.asm in your project. See
Section 2.5.5 and Table 2.7 for a list of the interrupt functions and macros. For complete
details, see the source files intr.c and intr.h .

Next the codec is started by calling the function DSK6713_AIC23_openCodec(). This
function configures serial port McBSP0 to act as a unidirectional control channel in the
SPI mode transmitting 16-bit words. Then it configures the AIC23 stereo codec to operate
in the DSP mode with 16-bit data words with a sampling rate of 48 kHz. Then McBSP1
is configured to send data samples to the codec or receive data samples from the codec
in the DSP format using 32-bit words. The first word transmitted by the AIC23 is the
left channel sample. The right channel sample is transmitted immediately after the left
sample. The AIC23 generates a single frame sync at the beginning of the left channel
sample. Therefore, a 32-bit word received by McBSP1 contains the left sample in the upper
16 bits and the right sample in the lower 16 bits. The 16-bit samples are in 2’s complement
format. Words transmitted from McBSP1 to AIC23 must have the same format. The codec
and McBSP1 are configured so that the codec generates the frame syncs and shift clocks.
See the text at the top of dskstart32.c for more details about the UMD modifications of
DSK6713_AIC23_openCodec.c from the TI BSL version which sets McBSP1 to transmit and
receive 16-bit words.

Finally, dskstart32.c enters an infinite loop that reads pairs of left and right channel
samples from the codec ADC and loops them back out to the codec DAC. This loop should
be replaced by the C code to achieve the goals of your experiments.

Program 2.2 dskstart32.c

/*************************************************************/

/* Function DSK6713_AIC23_openCodec() in dsk6713_opencodec.c */

/* is a modification of the same function in the BSL module */

/* DSK6713_AIC23_openCodec.c. It configures McBSP1 to trans- */

/* mit and receive 32-bit words rather than 16-bit words by */

/* changing the RWDLEN1 value to 32BIT, XWDLEN1 to 32BIT, */

/* RFRLEN1 to OF(0), and XFRLEN1 to OF(0) in structure */

/* mcbspCfgData in dsk6713_opencodec.c. This causes McBSP1 */
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/* to use a single phase frame consisting of one 32-bit word */

/* per frame. Words are sent to the codec by using the BSL */

/* function DSK6713_AIC23_write() and read from the codec by */

/* using the function DSK6713_AIC23_read(). */

/*************************************************************/

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <intr.h>

#include <math.h>

/* Codec configuration settings */

/* See dsk6713_aic23.h and the TLV320AIC23 Stereo Audio CODEC Data Manual */

/* for a detailed description of the bits in each of the 10 AIC23 control */

/* registers in the following configuration structure. */

DSK6713_AIC23_Config config = { \

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ \

0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control (48 kHz) */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */ \

};

/***********************************************************/

/* Main program: Replace with your code */

/***********************************************************/

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

Uint32 sample_pair = 0;

/* Initialize the interrupt system */
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intr_reset();

/* dsk6713_init() must be called before other BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_16KHZ);

/* Read left and right channel samples from the ADC and loop */

/* them back out to the DAC. */

for(;;){

while(!DSK6713_AIC23_read(hCodec, &sample_pair));

while(!DSK6713_AIC23_write(hCodec, sample_pair));

}

}

How Samples are Sent to the Codec

Left and right sample pairs are sent to the codec as 32-bit words with the left channel
sample in the upper 16 bits and the right channel sample in the lower 16 bits. Each sample
is in 16-bit two’s complement format. These 32-bit words are sent to the codec by the BSL
function DSK6713_AIC23_write(). This function polls the McBSP1 XRDY flag and returns
immediately without sending the sample if it is false and also returns the value 0 (FALSE).
It sends the sample word by writing it to the Data Transmit Register (DXR) of McBSP1 if
XRDY is 1 (TRUE) and returns the value 1. The C code for this function is shown below.

#include <dsk6713.h>

#include <dsk6713_aic23.h>

Int16 DSK6713_AIC23_write(DSK6713_AIC23_CodecHandle hCodec, Uint32 val)

{ /* If McBSP not ready for new data, return false */

if (!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE)) {

return (FALSE);

}

/* Write 16 bit data value to DXR */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, val);

/* Short delay for McBSP state machine to update */

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");

asm(" nop");
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asm(" nop");

asm(" nop");

return(TRUE);

}

The lower level functions McBSP_xrdy() and MCBSP_write() are in TI’s CSL library.

How Samples are Read from the Codec

Words are read from the codec by using the function DSK6713_AIC23_read(). This function
polls the RRDY flag of McBSP1 and returns immediately if it is FALSE without reading a
word and also returns the value FALSE. If RRDY is TRUE it reads a word from the Data
Receive Register (DRR) of McBSP1 and returns the value TRUE. The source code for this
function is shown below.

#include <dsk6713.h>

#include <dsk6713_aic23.h>

Int16 DSK6713_AIC23_read(DSK6713_AIC23_CodecHandle hCodec, Uint32 *val)

{/* If no new data available, return false */

if (!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE)) {

return (FALSE);

}

/* Read the data */

*val = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

return (TRUE);

}

MCBSP_rrdy() and MCBSP_read() are in TI’s CSL library. MCBSP_rrdy() tests the receive
ready (RRDY) flag of the McBSP associated with the handle. MCBSP_read() reads a 32-bit
word from the Data Receive Register (DRR) of the McBSP. Notice that the word read is
typed as an unsigned int.

2.1.2 Properties of the AIC23 Codec

The TMS320C6713 DSK supplies a 12 MHz clock to the AIC23 codec which is divided down
internally in the AIC23 to give the sampling rates shown in the table below. The codec can be
set to these sampling rates by using the function DSK6713_AIC23_setFreq(handle,freq ID)

from the BSL library. This function puts the quantity “Value” into AIC23 control register
8.

Some of the AIC23 analog interface properties are

• The ADC for the line inputs has a full-scale range of 1.0 V RMS.

• The microphone input is a high-impedance, low-capacitance input compatible with a
wide range of microphones.

McBSP_xrdy() tests the XRDY flag of the McBSP corresponding to the handle and MCBSP_

write () writes the data word to the data transmit register (DXR) of the McBSP.
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Table 2.1: AIC23 Sampling Rates

freq ID Value Frequency

DSK6713 AIC23 FREQ 8KHZ 0x06 8000 Hz
DSK6713 AIC23 FREQ 16KHZ 0x2c 16000 Hz
DSK6713 AIC23 FREQ 24KHZ 0x20 24000 Hz
DSK6713 AIC23 FREQ 32KHZ 0x0c 32000 Hz
DSK6713 AIC23 FREQ 44KHZ 0x11 44100 Hz
DSK6713 AIC23 FREQ 48KHZ 0x00 48000 Hz
DSK6713 AIC23 FREQ 96KHZ 0x0e 96000 Hz

• The DAC for the line outputs has a full-scale output voltage range of 1.0 V RMS.

• The stereo headphone outputs are designed to drive 16 or 32-ohm headphones.

• The AIC23 has an analog bypass mode that directly connects the analog line inputs
to the analog line outputs.

• The AIC23 has a sidetone insertion mode where the microphone input is routed to the
line and headphone outputs.

For complete details on the AIC23 codec including input and output filter frequency
responses, see the TLV320AIC23 Stereo Audio CODEC Data Manual [I.4].

2.1.3 Creating a CCS Project for dskstart32.c

Now that you have gotten the starting C program and linker command file, it is time to
make a project file and build the executable output file. Perform the following tasks:

1. The first time you use Code Composer Studio you need to save your Workspace in
a place where you have write permission. To do this, start CCS, click on File, then
Workspace, and then Save Workspace As ... and give it a valid name in your private
workspace.

2. To start a project in CCS, click on Project, select New, and fill out the boxes as follows:

Project Name: give it a name
Location: a directory in your

private workspace
Project type: Executable (.out)
Target TMS320C67xx

3. Copy C:\c6713dsk\dskstart32.c to your workspace and add the copied C source file
to the project.

4. Next set the build options for Code Composer Studio. Click on Project and select Build

Options. Enter the following options:
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Compiler -> Basic

Target Version: 671x (-mv6710)

Generate Debug Info: Full Symbolic Debug (-g)

Opt Speed vs Size: Speed Most Critical (no ms)

Opt Level: None

Program Level Opt: None

Compiler -> Preprocessor

Include Search Path (-i): .; c:\c6713dsk\dsk6713bsl32\include

Define Symbols (-d): CHIP_6713

Preprocessing: None

Compiler -> Files

Asm Directory: "a directory in your workspace"

Obj Directory: "a directory in your workspace"

Linker -> Basic

Output Filename (-o): dskstart32.out (You can change this.)

Map Filename (-m): dskstart32.map (optional)

Autoinit Model: Run-time autoinitialization

Library Search Path:

5. Add to the project the linker command file c:\c6713dsk\dsk6713.cmd and the library
c:\c6713dsk\dsk6713bsl32\lib\dsk6713bsl32.lib

2.1.4 Experiment 2.1: Building and Testing dskstart32.c

The program, dskstart32.c, simply loops the input ADC samples back to the output DAC.
To check that your project builds and runs correctly, do the following:

1. Plug a stereo cable into the DSK Line Input and connect both channels to the same
signal generator output. The program dskstart32 should set the codec to sample at
16000 Hz, so set the signal generator to output a sine wave of less than 8000 Hz.

2. Plug a stereo cable into the DSK Line Output. Connect the left and right outputs
to two different oscilloscope channels. You should use channels 1 and 4 on the HP
oscilloscopes. NOTE: The right channel is the white plug and the left channel is the
red plug.

3. Make sure the sampling rate is set to 16000 Hz in dskstart32.c.

4. After your project options have been set, build the executable module by clicking on
the Rebuild All icon or Project → Rebuild All.

5. Load the program using File → Load Program
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6. Start the program running and check that the sine waves appear on the scope. Make
sure the input level is small enough so that there is no clipping.

7. Increase the input signal level until the clipping occurs and the output is distorted so
you can recognize this problem in future experiments. Then reduce the level again so
there is no clipping.

8. Vary the sine wave frequency. What happens when it is more than 8000 Hz? Why?

9. Measure the amplitude response of the system by varying the input frequency and di-
viding the output amplitude by the input amplitude. Plot the amplitude response. Use
enough frequencies to get a smooth curve, particularly in regions where the amplitude
response changes quickly. Your amplitude response results will be needed for Chapter
3 experiments.

2.2

You will use the McBSP1 serial port whenever you send a signal sample to or get a sample
from the codec. For complete McBSP details see [I.10]. A simplified block diagram of a
McBSP is shown in Figure 2.1. The signals shown in the diagram are:

DX/DR Serial transmit/receive data
FSX/FSR Transmit/receive frame sync

CLKX/CLKR Transmit/receive serial shift clock
XINT/RINT Transmit/receive interrupt to CPU

XEVT/REVT Transmit/receive interrupt to DMA
CLKS External clock for Sample Rate Generator

The Sample Rate Generator (SRG) can be used to generate the frame syncs and shift
clocks from and internal or external clock. The SRG is not used with the codecs because
the codecs supply the frame syncs and shift clocks.

The Events/Interrupts block can send interrupt requests to the CPU and event notifica-
tions to the EDMA when words are received or transmitted by the serial port.

2.2.1 Basic McBSP Transmitter and Receiver Operation

A more detailed diagram of the McBSP transmitter is shown in Figure 2.2. The transmitter
operates as follows:

• The CPU or DMA writes a 32-bit word in parallel into the Data Transmit Register
(DXR) which is a 32-bit memory-mapped register. The XRDY flag is cleared whenever
data is written to the DXR.

• When the transmit frame lynch (FSX) goes high, a word of the configured number of
bits is serially shifted out of the Transmit Shift Register (XSR). After a word is shifted
out of the XSR, a parallel transfer of the DXR into the XSR is performed. The XRDY

More Details on the McBSP Serial Ports and Codecs
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Figure 2.1: McBSP Block Diagram

flag is set when the transfer occurs. The CPU can test the XRDY flag to see if the
DXR is empty and another word can be written to it. McBSP1 should be configured
to transmit 32-bit words to the codec onboard the DSK.

• The serial port transmitter sends an interrupt request (XINT) to the CPU when the
XRDY flag makes a transition from 0 to 1 if XINTM = 00b in the Serial Port Control
Register (SPCR). It also sends a Transmit Event Notice (XEVT) to the DMA.

A McBSP receiver block diagram is shown in Figure 2.3. The receiver operation is
essentially the reverse of the transmitter operation. It works as follows:

• When the receive frame synch (FSR) goes high, the received bits are shifted serially
into the Receive Shift Register (RSR).

• When an element with the configured number of bits is received, the 32-bit RSR is
transferred in parallel to the Receive Buffer Register (RBR) if it is empty.

• The RBR is then copied to the Data Receive Register (DRR) if it is empty. It is up
to the programmer to select the element with the configured number of bits from the
32-bit DRR word. McBSP1 should be configured to receive 32-bit elements.
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• The RRDY bit in the SPCR is set to 1 when the RBR is moved to the DRR, and it is
cleared when the DRR is read.

• When RRDY transitions from 0 to 1, the McBSP generates a CPU interrupt request
(RINT) if RINTM = 00b in the SPCR. A receive event (REVT) is also sent to the
EDMA controller.

The TI chip support library (CSL) [I.6] contains a module with C functions and macros
that supports every feature of the McBSP serial ports.

2.2.2 Example C Code for Reading from and Writing to the Codec

The following C code segments show one way of interfacing with the AIC23 stereo codec. It
is assumed that earlier in the program the McBSP1 transmitter and receiver are configured
for a one-phase frame containing one 32-bit word. The most significant 16-bits of each 32-bit
word are the left channel sample and the least significant 16-bits are the right channel sample
each in 2’s complement format.

The following code segment shows how to get a left and right channel sample from the
codec ADC. The sampling frequency is controlled by the frame syncs generated by the codec.
The program sits in a while loop polling the RRDY flag until a sample arrives using the
BSL function DSK6713_AIC23_read(hCodec,&sample_pair) described on page 35. When
the RRDY flag becomes true, the word in the DRR is read, stored in sample_pair, and
the RRDY flag is cleared. The right and left channel samples are then extracted from
sample_pair. First sample_pair is cast into a signed int. The result is arithmetically
shifted right 16 bits, so the right channel sample falls off the right end of the word leaving
the left channel sample in the lower 16 bits with its sign extended through the upper 16 bits.
The result is converted to a float when it is put in the float, left. The right channel sample
is extracted by again casting sample_pair into a signed int, shifting it left 16 bits to knock
off the 16 left channel bits and put the right channel sample sign bit in bit 31 which is the
32-bit integer sign bit, and then arithmetically shifting the result right 16 bits to extend the
sign through the upper 16 bits and leave the right channel sample in the lower 16 bits. The
result is converted to a float by setting it equal to the float, right.

Program 2.3 Example C Code for Stereo Read

DSK6713_AIC23_CodecHandle hCodec;

Uint32 sample_pair = 0;

float left, right;

...

/* Poll RRDY. When TRUE, read DRR */

while(!DSK6713_AIC23_read(hCodec,&sample_pair));

/* Extract left channel sample, sign extend, convert to float */
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left = ( (int) sample_pair) >> 16;

/* Extract right channel sample, sign extend, convert to float */

right =( (int) sample_pair) << 16 >> 16;

Sending a pair of sample to the DAC involves the opposite operations. The following
program segment assumes the samples are initially in floating-point format. The first step
is to convert them to the integer words ileft and iright. Care must be taken so that
the samples fit in 16-bit integers. Next the left sample is or-ed into the upper 16-bits of
the output 32-bit integer word, sample, and the right channel sample into the lower 16
bits. Notice that the upper 16 bits of the right channel have been masked to 0. Then the
program sits in a while loop until the transmit ready bit (XRDY) in the SPCR becomes
true. When XRDY becomes true, the Data Transmit Register (DXR) has become empty
and the new pair of samples is written to it. These last steps are performed by the function
DSK6713_AIC23_write(hCodec, sample) described on page 34.

Program 2.4 Example C Code for Stereo Write

DSK6713_AIC23_CodecHandle hCodec;

float left, right;

int ileft, iright, sample;

...

/* Convert left and right values to integers */

ileft = (int) left;

iright = (int) right;

/* Combine L/R samples into a 32-bit word */

sample = (ileft<<16)|(iright & 0x0000FFFF);

/* Poll XRDY bit until true, then write to DXR*/

while(!DSK6713_AIC23_write(hCodec, sample));

The method of sending or receiving a word by waiting for the XRDY or RRDY bits to
become true is called polling.

2.3 The ’C6000 Timers

The TMS320C6713 has two 32-bit general purpose timers. They can be used to time events,
count events, generate pulses, interrupt the CPU, and send synchronization events to the
EDMA. The timers can be clocked by an internal or external signal. They have an input pin
(TINP) and an output pin (TOUT) which can also be configured as general purpose I/O
pins. See [I.10] for all the details about the timers.

The internal clock frequency for the ’C6713 timers is the CPU clock frequency divided
by four. Therefore, the DSK timer clock frequency is 225Mhz/4 = 56.25 MHz. You will
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use the external clock output as an external input to the McBSP1 serial port Sample Rate
Generator (SRG) to create a bit clock for a bit-error rate tester in the RS232 experiments
of Chapter 10.

When the external input pin, TINP, is selected as the timer clock source, the timer can
count input pulses and interrupt the CPU when a preset number is reached.

Each timer has the three registers shown in Table 2.2. The CSL library [I.6] has C
functions and macros for configuring and interfacing with the timers.

When the ’C6713 timers are driven by the internal clock source, the frequency of the
signal on the TOUT pin is

fout =
CPU clock frequency

N × Period Register value
(2.1)

where N = 4 for pulse mode and N = 8 for clock mode.

Table 2.2: Timer Registers

Name and Abbreviation Description

Timer Control (CTL) Sets the operating mode of the timer, monitors
the timer status, and controls the function
of the TOUT pin.

Timer Period (PRD) Contains the number of input clock cycles to count
or determines the period of the TOUT signal

Timer Counter (CNT) A 32-bit register holding the current value
of the incrementing counter.

2.4 Generating a Sine Wave by Polling XRDY

In the next three sections, you will use the simple task of generating a sine wave by three
different methods to learn about various aspects of the DSP and DSK. In this section you will
use the polling method described briefly above. The goal is to generate the continuous-time
sine wave

s(t) = sin 2πf0t

with frequency f0 at the codec’s line output jack. Let fs = 1/T be the desired sampling rate
where T is the sampling period. Then the required signal samples are

s(nT ) = sin 2πf0nT = sin 2π
f0

fs

n = sin n∆ (2.2)

where ∆ = 2πf0/fs is the change in the angle, θ(t) = 2πf0t, between successive samples.
The required sequence of angles can be generated recursively. Let

θ[n] = n∆ (2.3)
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Then
θ[n + 1] = (n + 1)∆ = n∆ + ∆ = θ[n] + ∆ (2.4)

and the desired sine wave samples are sin θ[n]. This algorithm will be used to generate
sinusoidal carriers for modulators and demodulators in some of the following chapters. In
some applications it is efficient to store an array of samples of one cycle of a sine wave taken
at a sequence of angles sufficiently close together to meet the accuracy requirements of the
application and use θ[n] as an index into the array to get the sine values. In this section,
the C sin() function will be used to generate the values.

A sample program segment for generating a sine wave by polling is shown in Program
Program 2.5. The initialization code is not shown. During initialization, the codec must
be configured for the desired sampling rate. Two important items should be noted in the
program:

1. The codec uses 16-bit two’s complement integers which are in the range ±215 =
±32, 768. Also | sin x| ≤ 1 so if it is converted to an integer, it becomes zero almost
everywhere. Therefore, sin(angle) which is a float is multiplied by the float 15,000.0
before it is converted to an integer to use a large portion of the dynamic range of the
DAC.

2. If the angle θ is continually incremented by ∆ it will grow without bound and even-
tually overflow. Also, some C implementations of sinx do not behave well for large
x. Therefore, the program checks to see if θ becomes larger than 2π and subtracts 2π
when it does. This works because sin(x) = sin(x − 2π).

Program 2.5 Sample Program Segment for Polling

#include <math.h>

#define pi 3.141592653589

int sample = 0;

float fs = 16000.;

float f0 = 1000.;

float delta = 2.*pi*f0/fs;

float twopi = 2.0*pi;

float angle = 0;

float left;

for(;;){ /* Infinite loop */

left = 15000.0*sin(angle); /* Scale for DAC */

sample = ((int) left) <<16; /* Put in top half */

/* Poll XRDY bit until true, then write to DXR */

while(!DSK6713_AIC23_write(hCodec, sample));

angle += delta; /* Increment sine wave angle */
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if( angle >= twopi) angle -= twopi; /* Keep angle from overflowing */

}

2.4.1 Experiment 2.2: Instructions for the Polling Experiment

First, note the following important information:

• Remember to include math.h in your C program.

• The DSK has stereo LINE IN and LINE OUT jacks. The lab has cables to convert
from the DSK stereo plug to an RCA mono connector for the left channel and an RCA
mono connector for the right channel. The RCA connectors are plugged into RCA to
BNC adapters so they can be connected to the oscillators and oscilloscopes.

• Cable Color Scheme

– Left Channel: Red plug

– Right Channel: White plug

For the polling experiment do the following:

1. Set the sampling rate to 16 kHz.

2. Generate a 1 kHz sine wave on the left channel and a 2 kHz sine wave on the right
channel. Remember that | sin(x)| ≤ 1 and that floats less than 1 become 0 when
converted to ints. Therefore, scale your floating point sine wave samples to make them
greater than 1 and fill reasonable part of the DAC dynamic range before converting
them to ints.

3. Combine the left and right channel integer samples into a 32-bit integer and write the
resulting word to the McBSP1 DXR using polling of the XRDY flag.

4. Observe the left and right channel outputs on two oscilloscope channels.

5. Verify that the sine wave frequencies observed on the scope are the desired values by
measuring their periods.

6. Use the signal generator to measure the frequencies. The HP oscilloscopes also can
measure the frequencies.

7. When you have verified that your program is working, change the left channel frequency
to 15 kHz and the right channel frequency to 14 kHz. Measure the DAC output
frequencies. Explain your results by mathematical analysis. That is, give equations to
show why you got what you did. (Hint: Look up “aliasing” in any reference on digital
signal processing.)
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2.5 Generating a Sine Wave Using Interrupts

Nearly all the time in the polling method is spent sitting in a loop waiting for the XRDY
flag to get set and the DSP is doing almost nothing. In a real-world application the DSP
would be performing many other tasks like running a CELP speech codec, modulating and
demodulating data for a modem, or decoding a turbo code. A much more efficient approach
is to let the DSP perform these desired tasks in the background and have the serial port
interrupt the background tasks when it needs a sample to transmit or a sample has been
received. The interrupt service routine is called a foreground task. See the TMS320C6000
CPU and Instruction Set Reference Guide [I.7] and TMS320C6713B Floating-Point Digital
Signal Processor [I.12] for complete details on the interrupt controller.

2.5.1 The CPU Interrupt Priorities and Sources

TMS320C6713 DSP has a vectored priority interrupt controller that handles 16 different
CPU interrupts. The highest priority interrupt is RESET which cannot be masked. The
next priority interrupt is the Non-Maskable Interrupt (NMI) which is used to alert the DSP of
a serious hardware problem. There are two reserved interrupts and 12 additional maskable
CPU interrupts. The peripherals, such as, the timers, McBSP and McASP serial ports,
EDMA controller, plus external interrupt pins sourced from the GPIO module present a set
of many interrupt sources. The 16 CPU interrupts and their default sources are shown in
Table 2.3. INT 00 has the highest priority and INT 15 the lowest.

The interrupt system includes a multiplexer to select the CPU interrupt sources and map
them to the 12 maskable prioritized CPU interrupts. The complete list of C6713 interrupt
sources is shown in the Table 2.4 along with the required Interrupt Selector values. The
GPIO module can select external pins as interrupt sources. The mapping is shown in Table
2.5.

2.5.2 Interrupt Control Registers

The interrupt control registers and their purposes are shown in Table 2.6. Complete details
about the layout of the registers are presented in the TMS320C6000 CPU and Instruction Set
Reference Guide [I.7]. The CSL library provides functions for interfacing with these registers.
The University of Maryland modified dsk6713bsl32 library also contains a variety of macros
and functions for interfacing with these registers and setting up an interrupt system with
an interrupt service routine jump table that allows interrupt service routines to be hooked
to or unhooked from CPU interrupts in a C program. A list of these functions is shown in
Table 2.7.

The Control Status Register (CSR) bit 0 is the Global Interrupt Enable (GIE) bit. All
maskable interrupts are disabled If GIE = 0, and maskable interrupts can be enabled if GIE
= 1. Bit 1 is the Previous GIE (PGIE) which saves the value of GIE when an interrupt is
taken.

Bits 0 through 15 of the Interrupt Enable Register (IER) correspond to the 16 CPU
interrupts. An interrupt is enabled by setting its bit to 1 and disabled by clearing its bit
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Table 2.3: Default CPU Interrupt Sources

INTERRUPT DEFAULT
CPU BYTE SELECTOR SELECTOR DEFAULT

INTERRUPT OFFSET CONTROL VALUE INTERRUPT
NUMBER IN IST REGISTER (BINARY) EVENT

INT 00 000h - - RESET
INT 01 020h - - NMI
INT 02 040h - - Reserved
INT 03 060h - - Reserved
INT 04 080h MUXL[4:0] 00100 GPINT4
INT 05 0A0h MUXL[9:5] 00101 GPINT5
INT 06 0C0h MUXL[14:10] 00110 GPINT6
INT 07 0E0h MUXL[20:16] 00111 GPINT7
INT 08 100h MUXL[25:21] 01000 EDMAINT
INT 09 120h MUXL30:26] 01001 EMUDTDMA
INT 10 140h MUXH[4:0] 00011 SDINT
INT 11 160h MUXH[9:5] 01010 EMURTDXRX
INT 12 180h MUXH[14:10] 01011 EMURTDXTX
INT 13 1A0h MUXH[20:16] 00000 DSPINT
INT 14 1C0h MUXH[25:21] 00001 TINT0
INT 15 1E0h MUXH[30:26] 00010 TINT1

to 0. Bit 1 is the Nonmaskable Interrupt Enable (NMIE) bit. NMIE must be set, that is,
NMIE = 1, for the maskable interrupts 4 through 15 to get serviced. If NMIE = 0, none of
the maskable interrupts get serviced.

When an interrupt occurs, the corresponding bit gets set in the Interrupt Flags Register
(IFR) . This happens whether or not the interrupt is enabled and allows pending interrupts
to be serviced at a later time if they are not currently enabled. Interrupts are serviced in
the order of their priority with a lower number interrupt having higher priority.

A bit in the IFR can be manually set by writing a 1 to the corresponding bit in the Inter-
rupt Set Register (ISR).. A bit in the IFR can be cleared by writing a 1 to the corresponding
bit in the Interrupt Clear Register (ICR) .

When an interrupt is serviced, the program jumps to the interrupt service routine. It
must know where to return to after the ISR is completed. The Interrupt Return Pointer
(IRP) saves the return address. The Nonmaskable Interrupt Return Pointer (NRP) serves
the same purpose for nonmaskable interrupts.

The Interrupt Service Table Pointer (ISTP) holds the address of the Interrupt Service
table. When the DSP is powered up, the default address is initialized to be address 0 at the
start of memory.
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Table 2.4: Interrupt Sources

INTERRUPT
SELECTOR INTERRUPT MODULE

VALUE EVENT
(BINARY)

00000 DSPINT HPI
00001 TINT0 Timer 0
00010 TINT1 Timer 1
00011 SDINT EMIF
00100 GPINT4 GPIO
00101 GPINT5 GPIO
00110 GPINT6 GPIO
00111 GPINT7 GPIO
01000 EDMAINT EDMA
01001 EMUDTDMA Emulation
01010 EMURTDXRX Emulation
01011 EMURTDXTX Emulation
01100 XINT0 McBSP0
01101 RINT0 McBSP0
01110 XINT1 McBSP1
01111 RINT1 McBSP1
10000 GPINT0 GPIO
10001 Reserved -
10010 Reserved -
10011 Reserved -
10100 Reserved -
10101 Reserved -
10110 I2CINT0 I2C0
10111 I2CINT1 I2C1
11000 Reserved -
11001 Reserved -
11010 Reserved -
11011 Reserved -
11100 AXINT0 McASP0
11101 ARINT0 McASP0
11110 AXINT1 McASP1
11111 ARINT1 McASP1
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Table 2.5: External Interrupt Sources

PIN INTERRUPT MODULE
NAME EVENT

GP[15] GPINT0 GPIO
GP[14] GPINT0 GPIO
GP[13] GPINT0 GPIO
GP[12] GPINT0 GPIO
GP[11] GPINT0 GPIO
GP[10] GPINT0 GPIO
GP[9] GPINT0 GPIO
GP[8] GPINT0 GPIO
GP[7] GPINT0 or GPINT7 GPIO
GP[6] GPINT0 or GPINT6 GPIO
GP[5] GPINT0 or GPINT5 GPIO
GP[4] GPINT0 or GPINT4 GPIO
GP[3] GPINT0 GPIO
GP[2] GPINT0 GPIO
GP[1] GPINT0 GPIO
GP[0] GPINT0 GPIO

Table 2.6: Interrupt Control Registers

Name Description

CSR Control Status Register Globally set or disable interrupts
IER Interrupt Enable Register Enable interrupts. Bit n corresponds to

INT n
IFR Interrupt Flags Register Shows status of interrupts. Bit n corre-

sponds to INT n
ISR Interrupt Set Register Manually set flags in IFR
ICR Interrupt Clear Register Manually clear flags in IFR
ISTP Interrupt Service Table

Pointer
Pointer to the beginning of the interrupt
service table

NRP Nonmaskable Interrupt Re-
turn Pointer

Return address used on return from a
nonmaskable interrupt

IRP Interrupt Return Pointer Return address used on return from a
maskable interrupt
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2.5.3 What Happens When an Interrupt Occurs

In order for a maskable interrupt to occur, the following conditions must be true:

• The global interrupt enable bit(GIE) which is bit 0 in the control status register (CSR)
is set to 1. When GIE = 0, no maskable interrupt can occur.

• The nonmaskable interrupt enable bit (NMIE) in the interrupt enable register (IER)
is set to 1. No maskable interrupt can occur if NMIE = 0.

• The bit corresponding to the desired interrupt is set to 1 in the IER.

• The desired interrupt occurs, which sets the corresponding bit in the interrupt flags
register (IFR) to 1 and no higher priority interrupt flags are 1 in the IFR

When CPU interrupt n occurs, program execution jumps to byte offset 4×8×n = 32n in
an interrupt service table (IST). The IST contains 16 interrupt service fetch packets (ISFP),
each consisting of eight 32-bit instruction words. An ISFP may contain an entire interrupt
service routine or may branch to a larger service routine. An example of an ISFP for RESET
for C programs is shown below. The C compiler generates the C initialization code starting
at address _c_init00, so the RESET ISFP simply branches to this address.

_RESET: mvk _c_int00,b0 ; load lower 16 bits of _c_init00

mvkh _c_int00,b0 ; load upper 16 bits of _c_init00

b .s2 b0 ; branch to C initialization

nop 5 ; do 5 NOP’s for branch latency 5

nop ; add four words to fetch packet

nop ; to make a total of 8 words

nop

nop

We will normally start the interrupt service table (IST) at location 0. It can be relocated
and the Interrupt Service Table Pointer register (ISTP) points to its starting address which
must be a multiple of 256 words. The organization of the IST is shown in Table 2.3.

The DSP takes the following actions when an interrupt occurs:

• The corresponding flag in the interrupt flags register (IFR) is set to 1.

• If GIE = NMIE = 1 and no higher priority interrupts are pending, the interrupt is
serviced:

– GIE is copied to PGIE (previous global interrupt enable bit) and GIE is cleared to
preclude other interrupts. GIE can be manually set to allow the interrupt service
routine to be interrupted itself.

– The flag bit in the IFR is cleared to show that the interrupt has been serviced.

– The return address is put in the interrupt return pointer (IRP).
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– Execution jumps to the corresponding fetch packet in the interrupt service table
(IST).

– The service routine must save the CPU state on entry and restore it on exit.

– A return from a maskable interrupt is accomplished by the assembly instructions

B IRP; return, moves PGIE to GIE

NOP 5 ; delay slots for branch

2.5.4 TI Extensions to Standard C Interrupt Service Routines

The Texas Instruments compiler includes extensions to standard C for interrupt service
routines. To make the compiler use these extensions when writing an interrupt service
routine in C, declare the function to be an ISR by using the interrupt keyword. For
example, declare your_isr_name() to be an ISR by the statement

interrupt void your_isr_name(){...}

where the dots within the braces represent your source code. You can also use the interrupt
pragma as shown on the following line:

#pragma INTERRUPT(your_isr_name)

The C compiler will then automatically generate code to:

1. Save the CPU registers used by the ISR on the stack. If the ISR calls another function,
all registers are saved.

2. Restore the registers before returning with a B IRP instruction.

You cannot pass parameters to, or return values from an interrupt service routine1

2.5.5 Using the dsk6713bsl32 Library for Interrupts

A list of C functions and macros for interfacing with the interrupt system is shown in Table
2.7. To write and build programs using the TI C interrupt extensions and the dsk6713bsl32
interrupt functions:

• Add the linker command file C:\c6713dsk\dsk6713.cmd to your project.

• Include the header file C:\c6713dsk\dsk6713bsl32\include\intr.h in your pro-
gram. You should set the “Include Search Path” in your project, so it is only necessary
to use the line “include intr.h” in your C program.

• Be sure to add the library dsk6713bsl32.lib to your project.

The interrupt service table will be generated in a section called .vec. The sample beginning
linker command file dsk6713.cmd loads the .vec section starting at absolute address 0.

1When using the Chip Support Library (CSL) and DSP/BIOS the conventions for ISR’s are different.
The interrupt keyword should not be used and the ISR’s can pass arguments. See [I.8] for details.
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Table 2.7: Interrupt Functions Provided by intr.h and intr.c in dsk6713bsl32

MACRO FUNCTIONS

INTR_GLOBAL_ENABLE() Sets GIE bit in CSR

INTR_GLOBAL_DISABLE() Clears GIE bit in CSR

INTR_ENABLE(bit) Sets bit in IER

INTR_DISABLE(bit) Clears bit in IER

INTR_CHECK_FLAG(bit) Returns value of bit in IFR

INTR_SET_FLAG(bit) Set interrupt by writing to ISR bit

INTR_CLR_FLAG(bit) Clears int. flag by writing 1 to ICR bit

INTR_SET_MAP(cpu_intr, src,sel) Map interrupt source to CPU interrupt

INTR_GET_ISN(cpu_intr,sel)) Get ISN of selected interrupt

INTR_MAP_RESET() Reset interrupt multiplexer map to defaults

INTR_EXT_POLARITY(bit,val) Assign external interrupt’s polarity

FUNCTIONS

intr_hook(*fp,cpu_intr) Place function pointer into ISR jump

table at location for cpu_intr

intr_init() Initialize ISTP with base address of the

interrupt service table (IST). Using this

function causes default interrupt service

fetch packets (ISFP) to be loaded into the

Interrupt Service Table (IST) and a default

interrupt service routine jump table to be

created.

intr_map(cpu_intr, isn) Maps interrupt source isn to the cpu_intr

intr_isn(cpu_intr) Returns interrupt source number for CPU int.

intr_reset() Reset interrupt registers to default values

intr_get_cpu_intr(isn) Return CPU interrupt assigned to ISN.

If isn not mapped, return -1
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Installing a C Interrupt Service Routine

The following list shows the steps that should be taken to “install” a C interrupt service
routine for CPU interrupt 15 as an example.

1. Use intr_reset() to set the interrupt control registers to their default values. It
initializes the ISTP and causes the interrupt service table and interrupt service routine
jump table to be installed.

2. Map the interrupt source number to a CPU interrupt number.
intr_map(CPU_INT15, ISN_XINT0);

3. Clear the interrupt flag to make sure none is pending.
INTR_CLR_FLAG(CPU_INT15);

4. Hook the ISR to the CPU interrupt. Let the ISR be my_isr().
intr_hook(my_isr, CPU_INT15);

5. Enable the NMI interrupt.
INTR_ENABLE(CPU_INT_NMI);

6. Enable the CPU interrupt in the IE register.
INTR_ENABLE(CPU_INT15);

7. Set the GIE bit in the CSR.
INTR_GLOBAL_ENABLE();

An example of using these functions is shown in Program 2.6 on page 54.

2.5.6 Experiment 2.3: Generating Sine Waves by Using Interrupts

Repeat the instructions for generating a sine wave by polling in Section 2.4.1 but now use a
C interrupt service routine to generate the sine wave samples and write them to the McBSP1
data transmit register (DXR1). No polling of the XRDY1 flag is needed because samples are
transmitted only when interrupts occur at the codec’s sampling rate and cause execution to
jump into your interrupt service routine.

The main() function should:

• initialize McBSP0, McBSP1, and the codec with a 16 kHz sampling rate,

• map CPU INT15 to McBSP1 XINT1,
Note: The choice of INT15 was arbitrary. Any of INT4 – INT15 can be used.

• hook CPU INT15 to your ISR,

• enable interrupts,

• and go into an infinite interruptible loop.
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A partial C code segment for accomplishing these tasks is shown in the following program
listing. An important point is to notice that angle_left and angle_right in the ISR must
retain their values between ISR calls. This is done in the ISR in the program segment
by declaring them to be static. They could also have been made global variables. Also,
you should not use the polling McBSP write function since the program jumps to the ISR
when the XRDY1 flag goes from FALSE to TRUE. Use the CSL non-polling write function
MCBSP_write() as shown in the program segment.

Program 2.6 Sample C Code for Generating a Sine Wave by Interrupts

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <intr.h>

...

#define sampling_rate 16000.

#define freq_left 1000.

#define freq_right 2000.

#define scale 10000.0

#define PI 3.141592653589

float twopi = 2.*PI;

/* phase increment left for sine wave */

float delta_left = 2.0*PI*freq_left/sampling_rate;

/* phase increment for right sine wave */

float delta_right = 2.0*PI*freq_right/sampling_rate;

interrupt void tx_isr(void); /* prototype the ISR */

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

/**********************************************************************/

/* Initialize interrupt system with intr_reset() */

/* */

/* The default interrupt service routines are set up by calling the */

/* function intr_reset() in the UMD added file intr.c. This clears */

/* GIE and PGIE, disables all interrupts except RESET in IER, clears */
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/* the flags in the IFR for the the maskable interrupts INT4 - INT15, */

/* resets the interrupt multiplexers, initializes the interrupt */

/* service table pointer (ISTP), and causes the Interrupt Service */

/* Table and Interrupt Service Routine Jump Table to be loaded. */

/**********************************************************************/

intr_reset();

/* dsk6713_init() must be called before other BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec. McBSP1 uses 32-bit words */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_16KHZ);

/* Select McBSP1 transmit int for INT15 */

intr_map(CPU_INT15, ISN_XINT1);

/* Hook our ISR to INT15 */

intr_hook(tx_isr, CPU_INT15);

/* Clear old interrupts */

INTR_CLR_FLAG(CPU_INT15);

/* Enable interrupts */

/* NMI must be enabled for other ints to occur */

INTR_ENABLE(CPU_INT_NMI);

/* Set INT15 bit in IER */

INTR_ENABLE(CPU_INT15);

/* Turn on enabled ints */

INTR_GLOBAL_ENABLE();

/* Write a word to start transmission using CSL function */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, 0);

for (;;); /* infinite interruptible loop */

}

interrupt void tx_isr(void){

float x_left, x_right;

/**********************************************************************/
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/* Note: angle_left and angle_right must retain their values between */

/* ISR calls. Do this by making them static as below or global. */

/**********************************************************************/

static float angle_left=0.;

static float angle_right=0.;

int output, ileft, iright;

/* Put your code here to do the following:

1. Generate scaled left and right channel sine samples. Convert them

to integers and combine them into a 32-bit output word.

2. Increment phase angles of sines modulo 2*pi.

3. There is no need to poll XRDY1 since its transition from false to

true causes a jump to this ISR. DSK6713_AIC23_DATAHANDLE is

declared as a global variable in DSK6713_aic23_opencodec.c. Just

write the output sample to McBSP1 by the CSL library function

MCBSP_write() as shown below. */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, output);

}

2.6 Generating a Sine Wave with the EDMA and a

Table

In the polling and interrupt experiments, the sine wave sample values were numerically
computed using the sin(·) function and this consumes CPU cycles. In many real-time
applications, a set of tasks is repeated periodically so the DSP has a limited amount of
time to perform each task and computational efficiency is critical. An efficient method for
generating a sine wave carrier signal in communication systems is to read the sample values
out of a precomputed table. In this experiment, you will learn how to read the samples from
a table and load them into the McBSP1 Data Transmit Register (DXR1) for transmission
to the codec by using the Enhanced Direct Memory Access (EDMA) controller. The EDMA
controller is another important internal TMS320C6713 peripheral. The EDMA controller
handles all data transfers between the L2 cache/memory controller and peripherals in the
’C621x/’C671x/’C64x family of DSP’s independently of the CPU operations. Earlier ’C6x
series DSP’s like the ’C6201 and ’C6701 have a simpler peripheral called the DMA controller.
The architecture of the EDMA controller is quite different than that of the DMA controller.
Enhancements of the EDMA include 16 channels for the ’C6713 with programmable priority,
and the ability to link and chain data transfers.

2.6.1 EDMA Overview

The Enhanced Direct Memory Access Controller (EDMA) handles all data transfers between
the L2 cache/memory controller and the peripherals. These include cache servicing, non-
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cacheable memory access, user-programmed data transfers, and host access. The EDMA
can move data to and from any addressable memory spaces including internal memory (L2
SRAM), peripherals, and external memory. The EDMA is quite complex and we will only
touch on its operation. See the TMS320C6000 Peripherals Reference Guide [I.10, Chapter
6] and TMS320C6713B Floating-Point Digital Signal Processor [I.12] for complete details.

Some of the EDMA features are:

• The EDMA controller includes event and interrupt processing registers, an event en-
coder, a parameter RAM, and address generation hardware.

• The EDMA has 16 independent channels and they can be assigned priorities.

• Data transfers can be initiated by the CPU or events.

• When an event occurs, its transfer parameters are read from the Parameter RAM
(PaRAM). These parameters are sent to address generation hardware.

• The EDMA can transfer elements that are 8-bit bytes, 16-bit halfwords, or 32-bit
words.

• Very sophisticated block transfers can be programmed. The EDMA can transfer 1-
dimensional and 2-dimensional data blocks consisting of multiple frames. See [I.10,
Section 6.8] for details.

• After an element transfer, source and/or destination element addresses can stay the
same, be incremented or decremented by one element, or incremented or decremented
by the value in the index register ELEIDX for the channel. Arrays are offset by FRMIDX

for the channel.

• After a programmed transfer is completed, the EDMA can continue data transfers by
linking to another transfer programmed in the Parameter RAM for the channel or by
chaining to a transfer for another channel.

• The EDMA can generate transfer completion interrupts to the CPU along with a
programable transfer complete code. The CPU can then take some desired action
based on the transfer complete code.

• The EDMA has a quick DMA mode (QDMA) that can be used for quick, one-time
transfers.

2.6.2 EDMA Event Selection

The ’C6713 EDMA supports up to 16 EDMA channels. Channels 8 through 11 are reserved
for chaining, leaving 12 channels to service peripheral devices. Data transfers can be initiated
by the CPU or events. The default mapping of events to channels is shown in Table 2.8. The
user can change the mapping of events to channels. The EDMA selector registers ESEL0,
ESEL1, and ESEL2 control this mapping. Table 2.9 shows the events and selector codes.
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Table 2.8: TMS320C6713 Default EDMA Events

EDMA DEFAULT
EDMA SELECTOR SELECTOR DEFAULT
CHAN. CONTROL CODE EDMA

REGISTER (BINARY) EVENT

0 ESEL0[5:0] 000000 DSPINT
1 ESEL0[13:8] 000001 TINT0
2 ESEL0[21:16] 000010 TINT1
3 ESEL0[29:24] 000011 SDINT
4 ESEL1[5:0] 000100 GPINT4
5 ESEL1[13:8] 000101 GPINT5
6 ESEL1[21:16 ] 000110 GPINT6
7 ESEL1[29:24] 000111 GPINT7
8 - - TCC8 (Chaining)
9 - - TCC9 (Chaining)
10 - - TCC10 (Chaining)
11 - - TCC11 (Chaining)
12 ESEL3[5:0] 001100 XEVT0
13 ESEL3[13:8] 001101 REVT0
14 ESEL3[21:16] 001110 XEVT1
15 ESEL3[29:24] 001111 REVT1

2.6.3 Registers for Event Processing

The EDMA controller contains four registers for event processing. They are described in the
following list.

Event Register (ER)
When event n occurs, bit n is set in the ER.

Event Enable Register (EER)
Setting bit n of the EER enables processing of that event. Clearing bit n to 0 disables
processing of event n. The occurrence of event n is latched in the ER even if it is
disabled.

Event Clear Register (ECR)
If an event is enabled in the EER and gets posted in the ER, the ER bit is automatically
cleared when the EDMA processes the transfer for the event. If the event is disabled,
the CPU can clear the event flag bit in the ER by writing a 1 to the corresponding bit
in the ECR. Writing a 0 has no effect.

Event Set Register (ESR)
Writing a 1 to a bit in the ESR causes the corresponding bit in the event register (ER)
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to get set. This allows the CPU to submit event requests and can be used as a good
debugging tool.

Table 2.9: EDMA Event Selection

EDMA
SELECTOR EDMA MODULE

CODE EVENT
(binary)

000000 DSPINT HPI
000001 TINT0 Timer 0
000010 TINT1 Timer 1
000011 SDINT EMIF
000100 GPINT4 GPIO
000101 GPINT5 GPIO
000110 GPINT6 GPIO
000111 GPINT7 GPIO
001000 GPINT0 GPIO
001001 GPINT1 GPIO
001010 GPINT2 GPIO
001011 GPINT3 GPIO
001100 XEVT0 McBSP0
001101 REVT0 McBSP0
001110 XEVT1 McBSP1
001111 REVT1 McBSP1
010000– Reserved
011111
100000 AXEVTE0 McASP0
100001 AXEVTO0 McASP0
100010 AXEVT0 McASP0
100011 AREVTE0 McASP0

EDMA
SELECTOR EDMA MODULE

CODE EVENT
(binary)

100100 AREVTO McASP0
100101 AREVT0 McASP0
100110 AXEVTE1 McASP1
100111 AXEVTO1 McASP1
101000 AXEVT1 McASP1
101001 AREVTE1 McASP1
101010 AREVTO1 McASP1
101011 AREVT1 McASP1
101100 I2CREVT0 I2C0
101101 I2CXEVT0 I2C0
101110 I2CREVT1 I2C1
101111 I2CXEVT1 I2C1
110000 GPINT8 GPIO
110001 GPINT9 GPIO
110010 GPINT10 GPIO
110011 GPINT11 GPIO
110100 GPINT12 GPIO
110101 GPINT13 GPIO
110110 GPINT14 GPIO
110111 GPINT15 GPIO
111000– Reserved
111111

2.6.4 The Parameter RAM (PaRAM)

The transfer parameter table for the EDMA channels and link information is stored in the
Parameter RAM (PaRAM) which is a 2K-byte RAM block located within the EDMA. The
table consists of six-word parameter sets for a total of 85 sets. Each set uses 6 × 4 = 24
bytes and contains the parameters for a transfer shown in the Table 2.10.

The OPT Field in the (PaRAM)

The meanings of all the fields in a transfer set are fairly obvious except for OPT which
contains fields to set the priority to High or Low; set the element size to 8, 16, or 32 bits;
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define the source and destination as 1 or 2-dimensional; set the source and destination address
update modes; enable or disable the transfer complete interrupt; define the transfer complete
code; enable or disable linking; and set the frame synchronization mode.

Table 2.10: Format of a Transfer Parameter Set Record

31 16 15 0

Options (OPT) Word 0

Source Address (SRC) Word 1

Array/frame count Element count Word 2

(FRMCNT) (ELECNT)

Destination Address (DST) Word 3

Array/frame index Element index Word 4

(FRMIDX) (ELEIDX)

Element count link address Word 5

reload (ELERLD) (LINK)

Contents of the PaRAM

The PaRAM is organized as follows:

• The first 16 parameter sets are for the 16 EDMA events. Each set contains 24 bytes.

• The remaining parameter sets are used for linking transfers. Each set is 24 bytes.

• The remaining 8 bytes of unused RAM can be used as a scratch pad area. A part of or
the entire PaRAM can be used as a scratch pad RAM when the events corresponding
to this region are disabled.

When an event mapped to a particular channel occurs, say channel n with n ∈ {0, 1, . . . , 15},
its parameters are read from parameter set n in the PaRAM and sent to the address genera-
tion hardware.

2.6.5 Synchronization of EDMA Transfers

The EDMA can make 1 or 2-dimensional transfers. We will only consider the 1-D case. A
1-D block transfer consists of FRMCNT + 1 frames. Each frame consists of the number of
elements specified by the field ELECNT in the parameter set. The following two types of
1-D synchronized transfers are possible:

1. Element Synchronized 1-D Transfer (FS = 0 in OPT)
When a channel sync event occurs, for example, a transition of a McBSP XRDY flag
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from false to true, an element in a frame is transferred from its source to destination,
the source and destination addresses are updated in the parameter set after the element
is transferred, and the element count (ELECNT) is decremented in the parameter set.

When ELCNT = 1, indicating the final element in the frame, and a sync event occurs,
the element is transferred. Then the element count is reloaded with the value of
ELERLD in the parameter set and the frame count (FRMCNT) is decremented by 1.
The EDMA continues transfers at sync events for a new frame if one still remains to
be transferred.

2. Frame Synchronized 1-D Transfers (FS = 1 in OPT )
A sync event causes all the elements in a frame to be transferred as rapidly as possible.
Each new event causes another frame to be transferred as rapidly as possible until the
requested number of frames has been transferred.

2.6.6 Linking and Chaining EDMA Transfers

Linking EDMA Transfers

When the LINK field, bit 1, in options parameter OPT is set to 0, the EDMA stops after a
transfer is completed. When LINK = 1 and the requested transfer is completed, the transfer
parameters are reloaded with the parameter set pointed to by the 16-bit link address, and
the EDMA continues transfers with this new set. The entire parameter RAM is located in
the memory area 01A0xxxxh, so a 16-bit link address is sufficient. The link address must
be located on a 24-byte boundary. There is no limit to the number of transfers that can
be linked. However, the final transfer should link to a NULL parameter set which is one
with all its entries set to 0 (24 zero bytes). A transfer can be linked to itself to simulate
the autoinitialization feature of the TMS320C6201 and TMS320C6701 DMA. This is useful
for circular buffering and repetitive transfers. To eliminate timing problems resulting from
the parameter reload time, the event register (ER) is not checked while the parameters are
being reloaded. However, new events are registered in the ER. Any record in the PaRAM can
be used for linking. However, a set in the first 16 should be used only if the corresponding
event is disabled.

Chaining EDMA Channels

The EDMA chaining capability allows the completion of an EDMA channel transfer to trigger
another EDMA channel transfer. EDMA chaining does not modify any channel parameters.
It just gives a synchronization event to the chained channel. Linking and chaining are
different. Linking reloads the current channel parameters with the linked parameters and
transfers continue on the same channel with the linked parameters. Chaining does not modify
or update any chained parameters. It simply gives a synchronization event to the chained
channel. Channels 8, 9, 10, and 11 are reserved for chaining. Chaining is enabled by setting
bit 8, 9, 10, or 11 in the channel chain enable register (CCER). The four-bit field, transfer
complete code (TCC), in OPT for a channel must also be set to one of these four values to
cause chaining to occur at the end of the transfer.
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2.6.7 EDMA Interrupts to the CPU

When the TCINT bit is set to 1 in OPT for an EDMA channel and the event mapped to
the channel occurs, the EDMA sets a bit in the channel interrupt pending register (CIPR)
determined by the transfer complete code programmed in OPT. Then, if the bit corresponding
to the channel is set in the channel interrupt enable register (CIER), the EDMA generates the
interrupt EDMA INT to the CPU. If the CPU interrupt EDMA INT (default CPU INT8) is
enabled in the CPU IER, program execution jumps to the vectored interrupt service routine
(ISR). The ISR can read the CIPR to check which EDMA events have been registered as
completed and take the appropriate action.

2.6.8 Experiment 2.4: Generating a Sine Wave Using the EDMA
Controller

To learn how to use the EDMA controller, write a program to do the following:

1. Configure the McBSP’s and codec as in the polling and interrupt experiments and
again use a 16 kHz sampling rate.

2. Generate a 512 word integer array, table[512], where the upper 16 bits are the samples
for 32 cycles of a 1 kHz sine wave for the left channel, and the lower 16 bits are the
samples for 64 cycles of a 2 kHz sine wave for the right channel. Of course, the left
and right channel sine wave samples must be scaled to use a large part of the DAC’s
dynamic range and must be converted to 16-bit integers before being combined into
32-bit words.

3. Configure the EDMA controller to transfer the entire array of 512 samples to the Data
Transmit Register (DXR) of McBSP1 which will send them to the codec. Synchronize
the transfers with the XRDY1 event to get the 16 kHz sampling rate.

4. Link the channel parameter set back to itself so the sine waves are continuously sent.

Test your program by running it and observing the codec left and right channel outputs on
the oscilloscope Verify that they are sine waves with the desired frequencies.

The following example program segment does most of the work for you. It is on the
PC’s hard drive as C:\c6713dsk\edma_sines.c and on the class web site. It uses TI’s Chip
Support Library (CSL) to configure the EDMA. Detailed information about the CSL can
be found in the TMS320C6000 Chip Support Library API Reference Guide [I.6]. You can
also conveniently find CSL documentation by bringing up Code Composer and following the
path:

Help → Contents → Chip Support Library → EDMA Module.

The program configures the EDMA to use element sync by the event XEVT1 which happens
when XRDY1 makes a transition from 0 to 1 The default mapping of this event to EDMA
channel 14 is used. The EDMA is set to transfer single frames containing 512 elements with
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the elements being 32-bit words. The same 512-word sine wave sample frame is transmitted
repeatedly by linking back to the same parameter set at the end of each frame transfer.

The two lines
EDMA_link(hEdmaXmt,hEdmaReloadXmt);

EDMA_link(hEdmaReloadXmt, hEdmaReloadXmt);

require some clarification. The function EDMA_link() sets the LINK parameter in the pa-
rameter set record. In the structure gEdmaConfigXmt, the LINK parameter is set to NULL.
In the first code line above, the NULL for LINK is set in the PaRAM channel record to
point to the reload record. This completes the channel parameter set for the XEVT1 event.
When the last word in the frame is transmitted and a link occurs, the reload parameter set
is copied to the channel parameter set. To repeat the same transfer, the reloaded parameter
set should be identical to the initial set. Therefore, the second line above replaces the NULL
for LINK in the reload parameter set to its own address, that is, the address of that reload
parameter set. This makes the reload parameter set the same as the channel parameter set.

Program 2.7 Program for Generating Sine Waves Using the EDMA

#include <stdio.h>

#include <stdlib.h>

#include <dsk6713.h>

#include <dsk6713_aic23.h>

#include <csl_edma.h>

#include <intr.h>

#include <math.h>

#define sampling_rate 16000

#define SZ_TABLE 512

#define f_left 1000.

#define f_right 2000.

#define scale 15000.

#define pi 3.141592653589

int table[512];

/* Codec Configuration Settings

See dsk6713_aic23.h and the TLV320AIC23 Stereo Audio CODEC Data

Manual for a detailed description of the bits in each of the 10

AIC23 control registers in the following configuration structure. */

DSK6713_AIC23_Config config = { \

0x0017, /* 0 DSK6713_AIC23_LEFTINVOL

Left line input channel volume */ \

0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL

Right line input channel volume */\

0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL
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Left channel headphone volume */ \

0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL

Right channel headphone volume */ \

0x0011, /* 4 DSK6713_AIC23_ANAPATH

Analog audio path control */ \

0x0000, /* 5 DSK6713_AIC23_DIGPATH

Digital audio path control */ \

0x0000, /* 6 DSK6713_AIC23_POWERDOWN

Power down control */ \

0x0043, /* 7 DSK6713_AIC23_DIGIF

Digital audio interface format */ \

0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample

rate control (48 kHz) */ \

0x0001 /* 9 DSK6713_AIC23_DIGACT

Digital interface activation */ \

};

EDMA_Handle hEdmaXmt; // EDMA channel handles

EDMA_Handle hEdmaReloadXmt;

Int16 gXmtChan; // TCC code (see initEDMA())

/* Transmit side EDMA configuration */

EDMA_Config gEdmaConfigXmt = {

EDMA_FMKS(OPT, PRI, HIGH) | // Priority

EDMA_FMKS(OPT, ESIZE, 32BIT) | // Element size

EDMA_FMKS(OPT, 2DS, NO) | // 1 dimensional source

EDMA_FMKS(OPT, SUM, INC) | // Src update mode

EDMA_FMKS(OPT, 2DD, NO) | // 1 dimensional dest

EDMA_FMKS(OPT, DUM, NONE)| // Dest update mode

EDMA_FMKS(OPT, TCINT, NO)| // No EDMA interrupt

EDMA_FMKS(OPT, TCC, OF(0))| // Trans. compl. code

EDMA_FMKS(OPT, LINK, YES)| // Enable linking

EDMA_FMKS(OPT, FS, NO), // Use frame sync?

(Uint32) table, // Src address

EDMA_FMK(CNT, FRMCNT, NULL) | // Frame count

EDMA_FMK(CNT, ELECNT, SZ_TABLE),// Element cnt

EDMA_FMKS(DST, DST, OF(0)), //Dest address

EDMA_FMKS(IDX, FRMIDX, DEFAULT) | // Frame index

EDMA_FMKS(IDX, ELEIDX, DEFAULT), // Element index

EDMA_FMK (RLD, ELERLD, NULL) | // Reload element
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EDMA_FMK (RLD, LINK, NULL) // Reload link

};

/* Function Prototypes */

void initEdma(void);

void create_table(void);

void main(void){

DSK6713_AIC23_CodecHandle hCodec;

intr_reset(); /* Initialize interrupt system */

/* dsk6713_init() must be called before other BSL functions */

DSK6713_init(); /* In the BSL library */

/* Start the codec. McBSP1 uses 32-bit words,

1 phase, 1 word frame */

hCodec = DSK6713_AIC23_openCodec(0, &config);

/* Change the sampling rate to 16 kHz */

DSK6713_AIC23_setFreq(hCodec, DSK6713_AIC23_FREQ_16KHZ);

create_table(); /* You must write this function. */

initEdma(); /* Initialize the EDMA controller (See below) */

while(1); /* infiniteloop */

} /* end of main() */

/**************************************************/

/* Create a table where upper 16-bits are samples */

/* of a sine wave with frequency f_left, and the */

/* lower 16 bits are samples of a sine wave with */

/* frequency f_right. */

/**************************************************/

void create_table(void){

PUT YOUR CODE TO GENERATE THE SINE TABLE HERE.

}

/*************************************************/

/* initEdma() - Initialize the EDMA controller. */

/* Use linked transfers to automatically restart */

/* at beginning of sine table. */

/*************************************************/

void initEdma(void)
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{

/* Configure transmit channel */

/* Get hEdmaXmt handle, Set channel event to XEVT1 */

hEdmaXmt = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);

/* Get handle for reload table. This function reserves space for

a 6-word link parameter set in the PaRAM. The "-1" argument

tells the function to choose an unused set. */

hEdmaReloadXmt = EDMA_allocTable(-1);

/* Get the address of DXR for McBSP1 and put it in the

channel parameter configuration structure. */

gEdmaConfigXmt.dst = MCBSP_getXmtAddr(DSK6713_AIC23_DATAHANDLE);

/* Then configure the Xmt table. (LINK is set to NULL from

structure gEdmaConfigXmt) */

EDMA_config(hEdmaXmt, &gEdmaConfigXmt);

/* Configure the Xmt reload table to be the same as the Xmt table

(Link is set to NULL from structure gEdmaConfigXmt) */

EDMA_config(hEdmaReloadXmt, &gEdmaConfigXmt);

/* Link back to table start */

/* Set LINK in channel parameter set to point to the reload

parameter set */

EDMA_link(hEdmaXmt,hEdmaReloadXmt);

/* Set LINK in the reload parameter set to point to the reload

parameter set */

EDMA_link(hEdmaReloadXmt, hEdmaReloadXmt);

/* Enable EDMA channel */

EDMA_enableChannel(hEdmaXmt);

/* Do a dummy write to generate the first McBSP transmit event */

MCBSP_write(DSK6713_AIC23_DATAHANDLE, 0);

}



Chapter 3

Digital Filters

The major goal of this chapter is to learn how to implement discrete-time filters using a DSP
and in in real-time. Discrete-time filters are often called digital filters. The theory is usually
presented in a typical required Electrical Engineering undergraduate course on signals and
systems and a Senior elective course on digital signal processing. Having to write a DSP
program and getting every detail correct, and seeing filters work with live signals leads to
a deeper understanding of digital filtering. In the process, you will learn more about the
TMS320C6713 DSP and the TMS320C6713 DSK.

3.1 Discrete-Time Convolution and Frequency

Responses

The output y[n] of a linear, time-invariant, discrete-time system (LTI) can be computed by
convolving its input x[n] with its unit pulse response h[n]. The equation for this discrete-time
convolution is

y[n] =
∞∑

k=−∞

x[k]h[n − k] =
∞∑

k=−∞

h[k]x[n − k] (3.1)

The z-transform of the discrete-time convolution of two signals is the product of the two
transforms, that is,

Y (z) =
∞∑

n=−∞

y[n]z−n = X(z)H(z) (3.2)

where

H(z) =
∞∑

n=−∞

h[n]z−n and X(z) =
∞∑

n=−∞

x[n]z−n (3.3)

The response of an LTI system to a sinusoid after the transients have become negligible
is called its sinusoidal steady-state response. To determine this response, let the input be
the sampled complex sinusoid

x[n] = CejωnT

67
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According to (3.1), the output is

y[n] =
∞∑

k=−∞

h[k]Cejω(n−k)T = CejωnT
∞∑

k=−∞

h[k]e−jωkT = x[n]H(z)|z=ejωT (3.4)

Thus, the output is a sinusoid at the same frequency as the input but with its amplitude
scaled by the complex number

H∗(ω) = H(z)|z=ejωT (3.5)

The function H∗(ω) is called the frequency response of the system. The function A(ω) =
|H∗(ω)| is called the amplitude response of the system and the angle θ(ω) = arg H∗(ω) is
called its phase response. Notice that all of these responses are periodic as functions of ω
with period equal to the sampling rate ωs = 2π/T . In polar form

H∗(ω) = A(ω)ejθ(ω) (3.6)

so, according to (3.4), the output can be expressed as

y[n] = CA(ω)ej[ωnT+θ(ω)] (3.7)

When the input is the real sinusoid

x[n] = C cos(ωnT + φ) = �e{CejφejωnT}

the output is

y[n] = �e{H∗(ω)CejφejωnT} = CA(ω) cos[ωnT + θ(ω) + φ]

In other words, the system scales the magnitude of the sinusoidal input by the amplitude
response and shifts its phase by the phase response. This is the basis for digital filtering.

3.2 Finite Duration Impulse Response (FIR) Filters

3.2.1 Block Diagram for Most Common Realization

If the unit pulse response is identically zero outside the set of integers {0, 1, · · · , N − 1}, the
convolution (3.1) becomes

y[n] =
N−1∑
k=0

h[k]x[n − k] =
n∑

k=n−N+1

x[k]h[n − k] (3.8)

A filter of this type is called an N-tap finite duration impulse response (FIR) filter, non-
recursive filter, transversal filter, or moving average filter. A block diagram for the most
common method of implementing FIR filters is shown in Fig. 3.1 on page 69. It consists of
a delay line represented by the chain of blocks labeled z−1 and a set of taps into the delay
line with weights equal to the unit pulse response samples.
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Figure 3.1: Type 1 Direct Form Realization

The block diagram of an FIR filter shown in Fig. 3.1 could represent the physical layout
of a hardware implementation or just the structure of a software algorithm. In a software
implementation, the delay line would just be an array in memory. Entering a new sample
into an array by shifting the entire array is inefficient. In the exercises described below, you
will learn how to implement the “shift register” by forming a circular array or buffer in C
and also by using the hardware circular addressing capabilities of the TMS320C6x DSP’s.

3.2.2 Two Methods for Finding the Filter Coefficients to Achieve
a Desired Frequency Response

Two programs for designing digital filters are included in the directory C:\DIGFIL. Both
methods design filters with exactly linear phase which is a reason FIR filters are sometimes
preferred over IIR filters.

Historically, the first method for designing digital filters was the Fourier series and win-
dow function method. See [II.C.17, Chapter 8] for the theory. The program window.exe

implements this method. It was taken from the IEEE Press book, Programs for Digital
Signal Processing [II.C.7] and modified to make it more user friendly. The program presents
a selection of seven different window types. The Hamming window (3) and Kaiser window
(6) are the ones you will most likely find best. Six different filter types are available: (1)
lowpass, (2) highpass, (3) bandpass, (4) bandstop, (5) bandpass Hilbert transform, and (6)
bandpass differentiator. To use this program, first copy it to your working directory and
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then type window. As an example of how to use the program, suppose the sampling rate is 8
kHz, and a 21 tap bandpass filter with a lower cutoff frequency of 1 kHz and an upper cutoff
frequency of 3 kHz is desired using the Hamming window. The program screen output and
typical responses are shown below. The text written by the program is in capital letters and
the user responses are shown in lower case letters but they can be entered as either capital
or lower case letters. The lower case functions after window types 3, 4, and 5 are displayed
by the program.

ENTER NAME OF LISTING FILE: junk.lst

ENTER FILENAME FOR COEFFICIENTS: junk.cof

ENTER SAMPLING FREQUENCY IN HZ: 8000

WINDOW TYPES

1 RECTANGULAR WINDOW

2 TRIANGULAR WINDOW

3 HAMMING WINDOW 0.54 + 0.46 cos(theta)

4 GENERALIZED HAMMING WINDOW alpha + (1-alpha) cos(theta)

5 HANNING WINDOW 0.5 + 0.5 cos(theta)

6 KAISER (I0-SINH) WINDOW

7 CHEBYSHEV WINDOW

FILTER TYPES

1 LOWPASS FILTER

2 HIGHPASS FILTER

3 BANDPASS FILTER

4 BANDSTOP FILTER

5 BANDPASS HILBERT TRANSFORM

6 BANDPASS DIFFERENTIATOR

ENTER FILTER LENGTH, WINDOW TYPE, FILTER TYPE: 21,3,3

SPECIFY LOWER, UPPER CUTOFF IN HZ: 1000,3000

CREATE (FREQUENCY,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat

LINEAR (L) OR DB (D) SCALE ?: d

The LISTING FILE is where the number of taps, filter type, window type, sampling
frequency, and filter coefficients are written. The FILENAME FOR COEFFICIENTS has one
entry per line. The first line is the number of coefficients. The remaining lines are the
coefficients in order of increasing index and in floating point format. This file is useful for
using the coefficients in another program. The (FREQ, RESPONSE) file is a listing of the
amplitude response of the filter on a linear or dB scale. Each line contains a pair of numbers
consisting of the frequency and corresponding amplitude response. The frequency increment
is automatically selected to show the ripples in the amplitude response.

The second program for designing digital filters is remez87.exe. It is a modified version of
the program in the IEEE book, Programs for Digital Signal Processing [II.C.7]. The program
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was developed by J. McClellan and T. Parks who were at Rice University at the time. It uses
the Remez exchange algorithm to design filters that are optimum in the Chebyshev sense,
that is, the maximum absolute error is minimized and causes the error to be equal ripple.
The program can design (1) multiple passband/stopband filters, (2) differentiators, and (3)
Hilbert transform filters.

Use of remez87.exe will be demonstrated by an example. Suppose the sampling rate is 8
kHz and a 21 tap bandpass filter with a passband extending from 1000 to 3000 Hz is desired.
Using the conventions of this program, three bands must be specified. They are: (1) a
lower stopband, (2) the passband, and (3) an upper stopband. Let the lower stopband edges
extend from 0 to 500 Hz, the passband edges extend from 1000 to 3000 Hz, and the upper
stopband edges extend from 3500 to 4000 Hz. Values must be specified for the amplitude in
each of the bands. Let the values in the two stopbands be 0 and the value in the passband be
1. Also, weights for each band must be specified. The weight values scale the error in each
band. Since the algorithm generates an equal ripple weighted error, larger weights result in
bands with smaller unweighted ripple. For this example let the bands be equally weighted
with the value 1.

The program remez87 uses a variable GRID DENSITY to determine the frequency incre-
ment for computing the frequency response error with larger numbers corresponding to closer
spaced frequencies. Values in the range of 16 to 32 seem to work well with little difference
observed in the results. The smaller number requires less computation and uses smaller
arrays. The program computes the frequency response of the resulting filter and asks the
user to enter the lower and upper frequency limits to use for the response. Program screen
prompts are in capital letters. User responses can be in either upper or lower case. The
prompts and responses for this example are shown below.

ENTER LISTING FILENAME: junk.lst

ENTER COEFFICIENT STORAGE FILENAME: junk.cof

LINEAR OR DB AMPLITUDE SCALE FOR PLOTS? (L OR D): d

ENTER SAMPLING FREQUENCY (HZ): 8000

ENTER START AND STOP FREQUENCIES IN HZ FOR

RESPONSE CALCULATION (FSTART,FSTOP): 0,4000

FILTER TYPES AVAILABLE:

1 MULTIPLE PASSBAND/STOPBAND FILTER

2 DIFFERENTIATOR

3 HILBERT TRANSFORM

ENTER: FILTER LENGTH, TYPE, NO. OF BANDS, GRID DENSITY: 21,1,3,32

ENTER THE BAND EDGES (FREQUENCIES IN HERTZ)

0,500,1000,3000,3500,4000

SPECIAL USER DEFINED AMPLITUDE RESPONSE(Y/N)? n

SPECIAL USER DEFINED WEIGHTING FUNCTION(Y/N)? n

ENTER (SEPARATED BY COMMAS):

1. VALUE FOR EACH BAND FOR MULTIPLE PASS/STOP BAND FILTERS
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2. SLOPES FOR DIFFERENTIATOR (GAIN = Ki*f -> SLOPE = Ki

WHERE Ki = SLOPE OF i-TH BAND, f IN HERTZ)

3. MAGNITUDE OF DESIRED VALUE FOR HILBERT TRANSFORM

0,1,0

ENTER WEIGHT FOR EACH BAND. (FOR A DIFFERENTIATOR

THE WEIGHT FUNCTION GENERATED BY THE PROGRAM FOR THE i th

BAND IS WT(i)/f WHERE WT(i) IS THE ENTERED BAND WEIGHT AND

f IS IN HERTZ.)

1,1,1

STARTING REMEZ ITERATIONS

DEVIATION = .159436E-03

.

.

.

CALCULATING IMPULSE RESPONSE

CALCULATING FREQUENCY RESPONSE

CREATE (FREQ,RESPONSE) FILE (Y OR N)? y

ENTER FILENAME: junk.dat

The files requested by remez87 are essentially the same as for window. However, the
LISTING file contains more information, such as, the frequencies where the peak errors occur,
a frequency response listing in linear and dB form, and a crude plot of the response used in
the days when only line printers without graphics capabilities were available.

The program remez87 asks if you want a SPECIAL USER DEFINED AMPLITUDE
RESPONSE or a SPECIAL USER DEFINED WEIGHTING FUNCTION. You can write
your own special subroutines for a special desired amplitude response and/or weighting
function and link them into the main program. No special functions are included in this
version of the program.

Similar filter design programs can be found in the MATLAB signal processing package.

3.3 Using Circular Buffers to Implement FIR Filters

in C

For an N-tap FIR filter with coefficients nonzero only for indices in the set {0, . . . , N − 1},
the convolution sum (3.1) becomes

y[n] =
N−1∑
k=0

h[k]x[n − k] = h[0]x[n] + h[1]x[n − 1] + · · · + h[N − 1]x[n − N + 1] (3.9)

Notice that the oldest input sample x[n − (N − 1)] is multiplied by the impulse response
sample h[N − 1] with the largest index and the newest sample x[n] is multiplied by the
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impulse response sample h[0] with the smallest index. This equation is shown schematically
in Figure 3.1 where the N required signal samples are shown stored in a delay line. In a
software implementation, the delay line represents an array in memory. Entering the newest
sample into the “delay line” by shifting the elements in the entire array is inefficient for a
software implementation and a better approach is to use circular buffers. Circular buffers can
be implemented in C. Also, the ’C6000 DSP’s have hardware support that can be accessed
by assembly instructions to implement circular buffers even more efficiently.

The concept of a circular buffer is illustrated in Figure 3.2. The filter coefficients are
stored in the N element array h[ ]. A variable, newest, points to the location in the

Array Index Filter Coefficient Circular Buffer

Array h[] Array xcirc[]

0 h[0] x[n − newest]

1 h[1] x[n − newest + 1]
...

...
...

x[n − 1]

newest x[n]

oldest x[n − N + 1]

x[n − N + 2]
...

...
...

N − 2 h[N − 2] x[n − newest − 2]

N − 1 h[N − 1] x[n − newest − 1]

Figure 3.2: Contents of Coefficient Array and Circular Buffer

circular buffer array that contains the most recently entered sample. When a new sample is
received at time n, it is written over the sample at location oldest = newest + 1 modulo N
and newest is incremented modulo N . In a physical implementation using a shift register,
the overwritten sample would be shifted out of the end of the shift register when the new
one is shifted in. Notice that when newest initially has the value N − 1, it becomes 0 when
incremented modulo N . Thus, data samples are written into the array in a circular fashion
moving down the array one element at a time to the bottom at location N − 1 and then
jumping back up to the top of the array at location 0. Finally, the filter output can be
calculated as

y[n] =
N−1∑
k=0

h[k]xcirc[mod(newest − k,N)] (3.10)

where mod(newest−k,N) is the integer in the set {0, . . . , N−1} formed by adding multiples
of N to newest − k until it falls in this set.

A segment of a C program for implementing the FIR filter with a circular buffer is shown



74 Digital Filters

below.

Program 3.1 C Program Segment for an FIR Filter with Circular Buffer

main()

{

int x_index = 0;

float y, xcirc[N];

...

/*--------------------------------------------*/

/* circularly increment newest */

++newest;

if(newest == N) newest = 0;

/*-------------------------------------------*/

/* Put new sample in delay line. */

xcirc[newest] = newsample;

/*-------------------------------------------*/

/* Do convolution sum */

y = 0;

x_index = newest

for (k = 0; k < N; k++)

{

y += h[k]*xcirc[x_index];

/*-------------------------------------*/

/* circularly decrement x_index */

--x_index;

if(x_index == -1) x_index = N-1;

/*-------------------------------------*/

}

...

}

Warning: DSK6713_AIC23_read() and MCBSP_read() each return a 32-bit unsigned int.
Convert the returned value to an int before shifting right 16 bits to knock off the right chan-
nel and get the left channel with sign extension. Shifting an unsigned int right fills the MSB’s
with 0’s so the sign is not extended.

Note: C has the mod operator, %, but its implementation by the compiler is very inefficient
because the compiler must account for all general cases. Therefore, you should implement
the mod operation as shown in the code segment above.
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3.4 Circular Buffers Using the ’C6000 Hardware

The TMS320C6000 family of DSP’s has built-in hardware capability for circular buffers.
The eight registers, A4–A7 and B4–B7, can be used for linear or circular indirect addressing.
The Address Mode Register (AMR) contains 2-bit fields, as shown in Table 3.1, for each
register that determine the address modes as shown in Table 3.2. The number of words in
the buffer is called the block size. The block size is determined by either the BK0 or BK1
5-bit fields in the AMR. The choice between them is determined by the 2-bit mode fields.
Let Nblock be the value of the BK0 or BK1 field. Then the circular buffer has the size
BUF LEN = 2Nblock+1 bytes. So, the circular buffer size can only be a power of 2 bytes.

Table 3.1: Address Mode Register (AMR) Fields

31 26 25 21 20 16 15 14 13 12 11 10
Resvd BK1 BK0 B7 mode B6 mode B5 mode

9 8 7 6 5 4 3 2 1 0
B4 mode A7 mode A6 mode A5 mode A4 mode

Table 3.2: AMR Mode Field Encoding

Mode Addressing Option

00 Linear Mode
01 Circular Mode Using BK0 Size
10 Circular Mode Using BK1 Size
11 Reserved

The buffer must be aligned on a byte boundary that is a multiple of the block size
BUF LEN. Therefore, the Nblock+1 lsb’s of the buffer base address must all be 0. This can
be done in a C program by using the DATA ALIGN pragma. Suppose the buffer is an array
x[ ]. The alignment command is:

#pragma DATA_ALIGN(x, BUF_LEN)

The array x[ ] must be a global array. The alignment can also be done by creating a
named section in the assembly program and using the linker to align the section properly.

3.4.1 How the Circular Buffer is Implemented

Circular addressing is implemented by inhibiting carries or borrows between bits Nblock and
Nblock+1 in the address calculations. Therefore, bits Nblock+1 through 31 do not change
as the address is incremented or decremented by an amount less than the buffer size.
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3.4.2 Indirect Addressing Through Registers

Hardware circular addressing cannot be performed in C. It must be carried out by assembly
instructions. Circular addressing is accomplished by indirect addressing through one of the
eight allowed registers using the auto-increment/decrement and indexed modes. A typical
circular buffering instruction is

LDW *A5--, A8

where the A5 field in the AMR has been set for circular addressing. LDW is the mnemonic for
“load a word.” The word is loaded into the destination register A8 from the address pointed
to by A5 and the address is decremented by 4 bytes according the mode in the AMR after
being used (post decremented).

3.5 Interfacing C and Assembly Functions

Because of the tremendous advances in DSP hardware capabilities and software code gener-
ation tools, it is becoming standard practice to implement applications almost entirely in a
higher level language like C. Some advantages are:

• Rapid software development using a high level language.

• Can use powerful optimizing compilers.

• Application can be easily ported to different DSP’s.

• Profiling tools can find time intensive code segments which can then be written in
optimized assembly code.

Generating efficient assembly code for the ’C6000 family by hand is very difficult because
there are the multiple execution units, there is a multi-level pipeline, and different instruc-
tions take different times to execute.

Another reason for using assembly routines is that some hardware capabilities of the
DSP, such as, hardware circular buffering, cannot be directly accessed by C. Therefore, we
will learn the fundamentals of how to call assembly functions from C in this section. Look
at Sections 8.4 and 8.5 of the TMS320C6000 Optimizing Compiler User’s Guide, [I.9] for
the complete details.

The C compiler has a specific set of conventions for register usage and argument passing.
The register usage conventions are shown in Tables 3.3 and 3.4. In particular, notice that
register B15 is used as the stack pointer, B3 contains the return address, register A4 is used
to return 32-bit results, and the A5:A4 pair is used to return 64-bit results like long ints and
doubles.

3.5.1 Responsibilities of the Calling and Called Function

The following steps must be taken by the calling function (parent) which can be a C or
assembly routine. The called function (child) can be a C or assembly function also.
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1. Passed arguments are placed in registers or on the stack. By convention, argument 1
is the left most argument.

• The first ten arguments are passed in A and B registers as shown in Tables 3.3
and 3.4

• Additional arguments are passed on the stack.

2. The calling function (parent) must save A0 through A9 and B0 through B9 if needed
after the call, by pushing them on the stack.

3. The caller branches to the function (child).

4. Upon returning, the caller reclaims stack space used for arguments.

Table 3.3: “A” Side Register Usage

Preserved
Register By Special Uses

A0 Parent
A1 Parent
A2 Parent
A3 Parent Structure register
A4 Parent Argument 1 or return value
A5 Parent Argument 1 or return value

with A4 for doubles and longs
A6 Parent Argument 3
A7 Parent Argument 3 with A6 for

doubles and longs
A8 Parent Argument 5
A9 Parent Argument 5 with A8 for

doubles and longs
A10 Child Argument 7
A11 Child Argument 7 with A10 for

doubles and longs
A12 Child Argument 9
A13 Child Argument 9 with A12 for

doubles and longs
A14 Child
A15 Child Frame pointer (FP)

The called function or child must do the following:

1. The called function allocates space on the stack for local variables, temporary storage,
and arguments to functions this function might call. The frame pointer (FP) is used
to access arguments on the stack.
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Table 3.4: “B” Side Register Usage

Preserved
Register By Special Uses

B0 Parent
B1 Parent
B2 Parent
B3 Parent Return address
B4 Parent Argument 2
B5 Parent Argument 2 with B4 for

doubles and longs
B6 Parent Argument 4
B7 Parent Argument 4 with B6 for

doubles and longs
B8 Parent Argument 6
B9 Parent Argument 6 with B8 for

doubles and longs
B10 Child Argument 8
B11 Child Argument 8 with B10 for

doubles and longs
B12 Child Argument 10
B13 Child Argument 10 with B12 for

doubles and longs
B14 Child Data page pointer (DP)
B15 Child Stack pointer (SP)

2. If the called function calls another, the return address must be saved on the stack.
Otherwise it is left in B3.

3. If the called function modifies A10 through A15 or B10 through B15, it must save
them in other registers or on the stack.

4. The called function code is executed.

5. The called function returns an int, float, or pointer in A4. Double or long double are
returned in the A5:A4 pair.

6. A10–A15 and B10–B15 are restored if used.

7. The frame and stack pointers are restored.

8. The function returns by branching to the value in B3.
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3.5.2 Using Assembly Functions with C

To write assembly functions that can be called from C, the following items must be kept in
mind:

• C variable names are prefixed with an underscore by the compiler when generating
assembly code. For example, a C variable named x is called _x in the assembly code.

• The caller must put the arguments in the proper registers or on the stack for arguments
beyond number 10.

• A10–A15 and B10–B15, B3 and, possibly, A3 must be preserved by the called function.
It can use all other registers freely.

• The called function must pop everything it pushed on the stack before returning to
the caller.

• Any object or function declared in the assembly function that is accessed or called
from C must be declared with a .def or .global directive in the assembly code. This
allows the linker to resolve references to it.

3.6 Linear Assembly Code and the Assembly Opti-

mizer

Writing efficient assembly code is very difficult and time consuming. The TI code generation
tools allow you to write in a language called linear assembly code which is very similar to
full assembly code but you do not have to worry about many of the hardware and software
details. Linear assembly files should be given the extension sa. Linear assembly code does
not include information about parallel instructions or instruction latencies. Register usage
is usually not assigned in the source code but may be. Also, symbolic names can be used
for registers. The assembly optimizer operates on linear assembly files and converts them
to regular assembly code. The optimizer assumes files with the sa extension include linear
assembly code. Some of the tasks it performs are:

• finding instructions that can operate in parallel

• handling pipeline latencies

• assigning register usage

• defining which execution units to use

• optimizing execution time by software pipelining

• creating entry and exit assembly code for functions to be called by C.
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See [I.9] and [I.11] for complete details on linear assembly code, and how to use the assembly
optimizer and interpret its diagnostic reports.

A C-callable linear assembly function must declare its entry point to be global and include
.cproc and .endproc directives to mark the assembly code region to be optimized. An
example of a C-callable linear assembly function for performing one convolution iteration
using a hardware circular sample buffer is shown in Section 3.6.1 in the file convol1.sa.
You will find the following lines in the program:

.global _convolve

_convolve .cproc x_addr, h_addr, Nh, Nblock, newest

.reg sum, prod, x_value, h_value

.

.

.

.return sum ; By C convention, put sum in A4

.endproc

In this example, the entry point is _convolve. The names following .cproc are the function’s
arguments. The .reg line lists symbolic variable names that the assembly optimizer will
assign to registers or the stack, if necessary. Finally, the .return directive causes the
assembly optimizer to return sum to the caller by putting it in A4, which is the C convention.

Invoking the Assembly Optimizer

The linear assembly file can be processed by the assembly optimizer by using the command
prompt shell command

cl6x -mv6713 -o3 -k convol1.sa

The items on the command line have the following meanings:

• -mv6713 specifies the ’C6713 DSP.

• -o3 specifies optimization level 3. The 3 can be replaced by 0, 1, or 2. The -o option
can be left out for no optimization.

• -k specifies that the .asm output should be kept

• convol1.sa is the input file to be optimized.

You can also use Code Composer Studio to process the .sa file by adding it to a project,
clicking on Project and then Options, selecting the Compiler tab and setting the desired
optimization level, and building the project.
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3.6.1 A Linear Assembly Convolution Function that Uses a Cir-
cular Buffer and Can be Called from C

A C callable linear assembly program for computing one output sample of an FIR filter by
a convolution sum using a hardware circular buffer is shown in Program 3.2. The source
file convol1.sa contains the function convolve() and can be found on the class web site
and in the directory C:\c6713dsk. A segment of a main C program for calling this function
is shown in Program 3.5 later. See the TMS320C6000 CPU and Instruction Set Reference
Guide [I.7] for complete descriptions of all the assembly instructions. Documentation for
what the instructions are doing is included as comments in the linear assembly code.

Partial output from the assembly optimizer for no optimization and the highest level
of optimization, -o3, is shown in Program 3.3 on page 84 and Program 3.4 on page 85,
respectively. Notice that the assembly optimizer uses the C conventions and assigns the
stack pointer (SP) to register B15, the data page pointer (DP) to B14, and the frame
pointer (FP) to A15. The input arguments are found by the function in registers following
the C conventions and were placed there by the calling C program. Observe how the loop
is implemented by a conditional branch based on the contents of register B0. The final
convolution sum is returned in A4 using the C convention.

The resulting assembly code for no optimization contains many NOP’s and essentially
no parallel scheduling of the execution units. The result for -o3 optimization contains a
significant amount of parallelization. For example, consider the lines

[!A2] ADDSP .L1 A0,A3,A3 ; ^ |92| sum of products

|| MPYSP .M1X B5,A5,A0 ; @|91| h[k]*x[n-k]

Repetitions of these lines form most of the convolution sum. The product of a filter coefficient
and data sample is computed and placed in A0 and in parallel the previous product from
A0 is added to the accumulated sum in A3 and put back into A3. The instruction ADDSP

stands for “floating-point add single precision” and MPYSP for “floating-point multiply single
precision.” The assembly optimizer reports a variety of statistics showing some bounds on
the optimization and how the execution units are used. In the -o3 example, it reports that

;* ii = 4 Schedule found with 4 iterations in parallel

This means that the convolution loop kernel requires ii = 4 cycles and four iterations of the
convolution summation loop are being processed in the pipeline at the same time.

Program 3.2 convol1.sa

;******************************************************

; File: convol1.sa

; By: S.A. Tretter

;

; Compile using

;

; cl6x -mv6713 -o3 convol1.sa
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;

; or by using Code Composer Studio with these options.

;

; This is a C callable assembly function for computing

; one convolution iteration. The circular buffering

; hardware of the C6000 is used. The function

; prototype is:

;

; extern float convolve( float x[ ], float h[ ], int Nh,

; int Nblock, int newest );

;

; x[ ] circular input sample buffer

; h[ ] FIR filter coefficients

; Nh number of filter taps

; Nblock circular buffer size in bytes is

; 2^{Nblock+1} and in words is 2^{Nblock-1}

; newest index pointing to newest sample in buffer

; According to the TI C Compiler conventions, the

; arguments on entry are found in the following

; registers:

;

; &x[0] A4

; &h[0] B4

; Nh A6

; Nblock B6

; newest A8

;

; WARNING: The C calling function must align the

; circular buffer, x[ ], on a boundary that is a

; multiple of the buffer size in bytes, that is, a

; multiple of BUF_LEN = 2^{Nblock+1} bytes. This can

; be done by a statement in the C program of the form

; #pragma DATA_ALIGN(x, BUF_LEN)

; Note: x[] must be a global array.

;********************************************************

.global _convolve

_convolve .cproc x_addr, h_addr, Nh, Nblock, newest

.reg sum, prod, x_value, h_value

; Compute address of x[newest] and put in x_addr

; Note: The instruction ADDAW shifts the second argument,

; newest, left 2 bits, i.e., multiplies it by 4,
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; before adding it to the first argument to form

; the actual byte address of x[newest].

ADDAW x_addr, newest, x_addr ; &x[newest]

;-------------------------------------------------------

; Set up circular addressing

; Load Nblock into the BK0 field of the Address Mode

; Register (AMR)

SHL Nblock, 16, Nblock ; Shift Nblock to BK0 field

; Note: The assembly optimizer will assign x_addr to

; some register it likes. You will have to

; manually look at the assembled and optimized

; code to see which register it picked and then

; set up the circular mode using BK0 by writing

; 01 to the field for that register in AMR.

; The assembler will give you a warning that

; changing the AMR can give unpredictable

; results but you can ignore this.

;

; Suppose B4 was chosen by the optimizer.

;

set Nblock, 8,8, Nblock; Set mode circular, BK0, B4

; set Nblock, 10,10, Nblock; Use this for B5.

MVC Nblock, AMR ; load mode into AMR

;-------------------------------------------------------

; Clear convolution sum registers

ZERO sum

; Now compute the convolution sum.

loop: .trip 8, 500 ; assume between 8 and 500 taps

LDW *x_addr--, x_value ; x[newest-k] -> x_value

LDW *h_addr++, h_value ; h[k] -> h_value

MPYSP x_value, h_value, prod ; h[k]*x[n-k]

ADDSP prod, sum, sum ; sum of products

[Nh] SUB Nh, 1, Nh ; Decrement count by 1 tap

[Nh] B loop ; Continue until all taps computed

.return sum ; By C convention, put sum in A4
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.endproc

Program 3.3 Part of Assembly Optimizer Output for No Optimization

.asg A15, FP

.asg B14, DP

.asg B15, SP

.global _convolve
.sect ".text"

;******************************************************************************
;* FUNCTION NAME: _convolve *
;* *
;* Regs Modified : A0,A3,A4,B0,B4,B5,B6 *
;* Regs Used : A0,A3,A4,A6,A8,B0,B3,B4,B5,B6 *
;******************************************************************************
_convolve:
; .reg sum, prod, x_value, h_value

MV .S2X A8,B5 ; |47|

MV .S2X A4,B4 ; |47|
|| MV .S1X B4,A0 ; |47|

MV .S2X A6,B0 ; |47|
.line 10

ADDAW .D2 B4,B5,B4 ; |56| &x[newest]
.line 17

SHL .S2 B6,0x10,B6 ; |63| Shift Nblock to BK0 field
.line 31

SET .S2 B6,0x8,0x8,B6 ; |77| Set mode circular, BK0, B4
.line 33

MVC .S2 B6,AMR ; |79| load mode into AMR
NOP 1

.line 38
ZERO .D1 A4 ; |84|

.line 42

loop:
.line 43

LDW .D2T2 *B4--,B5 ; |89| x[newest-k] -> x_value
NOP 4

.line 44
LDW .D1T1 *A0++,A3 ; |90| h[k] -> h_value
NOP 4

.line 45
MPYSP .M1X B5,A3,A3 ; |91| h[k]*x[n-k]
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NOP 3
.line 46

ADDSP .L1 A3,A4,A4 ; |92| sum of products
NOP 3

.line 48
[ B0] ADD .D2 0xffffffff,B0,B0 ; |94| Decrement count by 1 tap

.line 49
[ B0] B .S1 loop ; |95| Continue until done

NOP 5
; BRANCH OCCURS ; |95|

;** --------------------------------------------------------------------------*
.line 51
.line 52

B .S2 B3 ; |98|
NOP 5
; BRANCH OCCURS ; |98|

.endfunc 98,000000000h,0

Program 3.4 Part of Assembly Optimizer Output for -o3 Optimization

.asg A15, FP

.asg B14, DP

.asg B15, SP

.global _convolve
.sect ‘‘.text’’

;******************************************************************************
;* FUNCTION NAME: _convolve *
;* *
;* Regs Modified : A0,A1,A2,A3,A4,A5,B0,B4,B5 *
;* Regs Used : A0,A1,A2,A3,A4,A5,A6,A8,B0,B3,B4,B5,B6 *
;******************************************************************************
_convolve:
;*----------------------------------------------------------------------------*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop label : loop
;* Known Minimum Trip Count : 8
;* Known Maximum Trip Count : 500
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound( ) : 4
;* Unpartitioned Resource Bound : 1
;* Partitioned Resource Bound(*) : 1
;* Resource Partition:
;* A-side B-side
;* .L units 1* 0
;* .S units 0 1*
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;* .D units 1* 1*
;* .M units 1* 0
;* .X cross paths 1* 0
;* .T address paths 1* 1*
;* Long read paths 0 0
;* Long write paths 0 0
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 1* 1*
;* Bound(.L .S .D .LS .LSD) 1* 1*
;*
;* Searching for software pipeline schedule at ...
;* ii = 4 Schedule found with 4 iterations in parallel
;* done
;*
;* Epilog not entirely removed
;* Collapsed epilog stages : 2
;*
;* Prolog not entirely removed
;* Collapsed prolog stages : 2
;*
;* Minimum required memory pad : 0 bytes
;*
;* For further improvement on this loop, try option -mh8
;*
;* Minimum safe trip count : 1
;*----------------------------------------------------------------------------*
L1: ; PIPED LOOP PROLOG

NOP 1
MV .S2X A6,B0
MV .S2X A8,B5

MV .S2X A4,B4
|| MV .S1X B4,A4

.line 10
ADDAW .D2 B4,B5,B5 ; |56| &x[newest]

.line 17
SHL .S2 B6,0x10,B4 ; |63| Shift Nblock to BK0 field

.line 31
SET .S2 B4,0x8,0x8,B4 ; |77| Set mode circular, BK0, B4

.line 33
MVC .S2 B4,AMR ; |79| load mode into AMR

.line 38
NOP 1
ZERO .D1 A3 ; |84|

.line 42
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MV .D2 B5,B4
|| B .S2 loop ; (P) |95| Continue until done

SUB .L1X B0,1,A1
|| MVK .S1 0x2,A2 ; init prolog collapse predicate
|| LDW .D2T2 *B4--,B5 ; (P) |89| x[newest-k] -> x_value
|| LDW .D1T1 *A4++,A5 ; (P) |90| h[k] -> h_value

;** --------------------------------------------------------------------------*
loop: ; PIPED LOOP KERNEL

[!A2] ADDSP .L1 A0,A3,A3 ; |92| sum of products
|| MPYSP .M1X B5,A5,A0 ; @|91| h[k]*x[n-k]

[ B0] ADD .D2 0xffffffff,B0,B0 ; @|94| Decrement count by 1 tap

[ A2] SUB .D1 A2,1,A2 ;
|| [ B0] B .S2 loop ; @|95| Continue until done

[ A1] SUB .S1 A1,1,A1 ;
|| [ A1] LDW .D2T2 *B4--,B5 ; @@@|89| x[newest-k] -> x_value
|| [ A1] LDW .D1T1 *A4++,A5 ; @@@|90| h[k] -> h_value

;** --------------------------------------------------------------------------*
L3: ; PIPED LOOP EPILOG

ADDSP .L1 A0,A3,A3 ; (E) @@@ |92| sum of products
.line 52
.line 51

B .S2 B3 ; |98|
NOP 2
MV .D1 A3,A4 ; |97|
NOP 2
; BRANCH OCCURS ; |98|

.endfunc 98,000000000h,0

Segment of a C Program for Calling the .asm Convolution Function

A segment of a main C function for calling the assembly function convolve() is shown
in Program 3.5. Suppose we want to do an Nh = 25 tap filter. The circular buffer must
be 32 words or BUF LEN = 4 × 32 = 128 bytes. Since BUF LEN = 2Nblock+1, we need
Nblock = 6. Notice that the program uses the DATA_ALIGN pragma to align the circular
buffer on a multiple of the block length. Also, the circular modification of the buffer input
pointer, newest, is performed in the main routine rather than in the convolution function
since it occurs only once for each new input sample.
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Program 3.5 C Program to Call convolve()

...

#define Nh 25 /* number of filter taps*/

#define Nblock 6 /*length field in AMR */

#define BUF_LEN 1<<(Nblock+1) /* circular buffer */

/* size in bytes */

#define BUF_LEN_WORDS 1<<(Nblock-1) /* BUF_LEN/4 */

/*** NOTE: x[ ] must be a global array *******/

float x[BUF_LEN_WORDS]; /* circular buffer */

/* Align circ. buf. on multiple of block length */

#pragma DATA_ALIGN(x, BUF_LEN)

...

main(){

...

Uint32 sample_pair = 0;

int newest = 0; /* Input pointer for buffer */

float y = 0; /* filter output sample */

int iy = 0; /* int output for codec */

int ix; /* new input sample */

float h[Nh] = { Put your filter coefficients here

separated by commas };

/* Prototype the convolution function. */

extern float convolve(float x[], float h[],

int N_taps, int N_block, int newest);

/* Configure McBSP’s and codec */

...

for(;;){

/* Send last filter output to codec. */

while(!DSK6713_AIC23_write(hCodec, iy));

/* NOTE: DSK6713_AIC23_read() returns unsigned int.*/

/* Convert returned value to an ‘‘int’’ before */

/* shifting right to extend sign. */

/* Get a new sample pair */

while(!DSK6713_AIC23_read(hCodec, &sample_pair));

ix = ( (int) sample_pair) >> 16;/* Extend sign. Eliminate right

channel (16 LSB’s).*/

newest++; /* Increment input pointer modulo buffer size */

if(newest==BUF_LEN_WORDS) newest = 0;
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x[newest] = ix; /* Put new sample in buffer */

y = convolve(x, h, Nh, Nblock, newest); /* Compute new output */

iy = ( (int) y) << 16; /* Convert to int and put in left channel */

}

3.7 Infinite Duration Impulse Response (IIR) Filters

A filter with an impulse response, h(n), that has infinite duration is known as an IIR filter.
When h(n) is the sum of damped exponentials, its z-transform, H(z), which is also called
its transfer function, is a rational function of z. That is, it is the ratio of two finite degree
polynomials. We will use a rational function of the form

H(z) =
b0 + b1z

−1 + b2z
−2 + · · · + bNz−N

1 + a1z−1 + a2z−2 + · · · + aMz−M
=

B(z)

A(z)
(3.11)

3.7.1 Realizations for IIR Filters

Rational transfer functions can be realized in many ways. Three common realizations will
be described below. The first realization will be called a type 0 direct form. The ratio of the
z-transforms of the filter output and input is

Y (z)

X(z)
= H(z) =

B(z)

A(z)
(3.12)

Cross multiplying gives

Y (z)A(z) = X(z)B(z) or Y (z)

(
1 +

M∑
k=1

akz
−k

)
= X(z)

N∑
k=0

bkz
−k (3.13)

Taking all except the Y (z) term to the righthand side yields

Y (z) =
N∑

k=0

bkX(z)z−k −
M∑

k=1

akY (z)z−k (3.14)

The time domain equivalent is the difference equation

y[n] =
N∑

k=0

bkx[n − k] −
M∑

k=1

aky[n − k] (3.15)

This equation shows how to compute the current filter output from the current and N past
inputs and M past outputs. A filter implemented in this way is also called a recursive filter
since past outputs are used to calculate the current output. It is called a direct form because
the coefficients in the transfer function appear directly in the difference equation.
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Another realization which we will call a type 1 direct form is based on observing that
(3.12) can be rearranged into the cascade form

Y (z) =
X(z)

A(z)
B(z) = V (z)B(z) (3.16)

where

V (z) = X(z)
1

A(z)
(3.17)

This is illustrated in Figure 3.3. The intermediate signal v[n] can be computed using the

� 1

A(z)
� B(z) �

X(z) V (z) Y (z)

Figure 3.3: First Step in Finding Type 1 Direct Form Realization

direct form 0 realization

v[n] = x[n] −
M∑

k=1

akv[n − k] (3.18)

Then, the output can be computed as

y[n] =
N∑

k=0

bkv[n − k] (3.19)

A block diagram for these equations is shown in Figure 3.4 where it is assumed that M = N .
This form requires less storage than the type 0 direct form.

The contents of the delay elements, s1[n], . . . , sN [n], are state variables for the filter. The
current output and next state can be computed from the current input and state. The fol-
lowing sequence of steps can be used to compute the filter outputs and states:

Step 1: Compute v[n]

v[n] = x[n] −
N∑

k=1

aksk[n]

Step 2: Compute the output y[n]

y[n] = b0v[n] +
N∑

k=1

bksk[n]

Step 3: Update the state variables

sN [n + 1] = sN−1[n]

sN−1[n + 1] = sN−2[n]
...

s2[n + 1] = s1[n]

s1[n + 1] = v[n]



3.7 Infinite Duration Impulse Response (IIR) Filters 91

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

� � �

�

�

� �

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

z−1

z−1

z−1

x[n] v[n] y[n]

−a1

−a2

−aN−1

−aN

...

+

+

+ +

+

+

+

+

b1

b2s2[n]
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Figure 3.4: Type 1 Direct Form Realization

Another realization called the type 2 direct form can be found by rearranging (3.13). For
simplicity, let M = N . Then

Y (z) = b0X(z) +
N∑

k=1

[bkX(z) − akY (z)]z−k (3.20)

A block diagram for this realization is shown in Figure 3.5. It requires essentially the same
storage and arithmetic as a type 1 direct form.

The sequence of steps for computing the output of the type 2 direct form and updating
its state is:

Step 1: Compute the output y[n]

y[n] = b0x[n] + s1[n]

Step 2: Update the state variables

s1[n + 1] = b1x[n] − a1y[n] + s2[n]

s2[n + 1] = b2x[n] − a2y[n] + s3[n]
...

sN−1[n + 1] = bN−1x[n] − aN−1y[n] + sN [n]

sN [n + 1] = bNx[n] − aNy[n]
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Figure 3.5: Type 2 Direct Form Realization

3.7.2 A Program for Designing IIR Filters

The program, C:\digfil\iir\iir.exe, designs IIR filters by using the bilinear transfor-
mation [II.C.17, pp. 212-219] with a Butterworth, Chebyshev, inverse Chebyshev, or elliptic
analog prototype filter. It can design lowpass, highpass, bandpass, or bandstop analog and
digital filters. The form of the resulting filter is a cascade (product) of sections, each with a
second order numerator and denominator with the leading constant terms normalized to 1,
possibly a first order section normalized in the same way, and an overall scale factor. These
second order sections are also know as biquads. The sections can be realized by any of the
three direct forms described above or other structures that can be found in DSP books.
MATLAB has a similar IIR filter design package.

Care must be taken to prevent overflows and underflows when digital filters are imple-
mented with fixed point DSP’s. This problem is significantly reduced with floating point
DSP’s. Sometimes the overall scale factor generated by iir.exe is quite small and to main-
tain numerical accuracy it should be split among the different sections.
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An example of how to use iir.exe is shown below. The program prompts are shown in
upper case letters and the user responses in lower case letters or numbers. In this example,
a bandpass filter is designed based on an elliptic analog prototype filter. The nominal lower
stopband extends from 0 to 600 Hz, the passband extends from 1000 to 2000 Hz, and the
upper stopband extends from 3000 to 4000 Hz. The questions and answers are explained
more fully after the dialog.

SAVE RESULTS IN A FILE (Y OR N): y

ENTER LISTING FILENAME: junk.lst

ENTER 1 FOR ANALOG, 2 FOR DIGITAL: 2

ENTER SAMPLING RATE IN HZ: 8000

ENTER NUMBER OF FREQS TO DISPLAY: 100

ENTER STARTING FREQUENCY IN HZ: 0

ENTER STOPPING FREQUENCY IN HZ: 4000

ENTER 1 FOR BW, 2 FOR CHEBY, 3 FOR ICHEBY, 4 FOR ELLIPTIC: 4

ENTER 1 FOR LOWPASS, 2 FOR HP, 3 FOR BP, OR 4 FOR BR: 3

ENTER F1,F2,F3,F4 FOR BP OR BR FREQS: 600,1000,2000,3000

ENTER PASSBAND RIPPLE AND STOPBAND ATTENUATION IN +DB: 0.2,40

ELLIPTIC FILTER ORDER = 4

CREATE FREQ, LINEAR GAIN FILE (Y,N)? n

CREATE FREQ, DB GAIN FILE (Y,N)? Y

ENTER FILENAME: junkdb.dat

CREATE FREQ, PHASE FILE (Y,N)? n

CREATE FREQ, DELAY FILE (Y,N)? y

ENTER FILENAME: JUNKDEL.DAT

The first line of the dialog asks if you want to save the results in in a disk file. If the
answer is Y or y, you are prompted for the name of a file. If the answer is N or n, the results
appear on the screen (usually too fast to be read). The program computes the frequency
response of the designed filter at the number of points specified which are equally spaced over
the range of frequencies selected. You are then prompted for the type of analog prototype
filter desired and the frequency selectivity type of the digital filter. In the case of a bandpass
(BP) filter, four critical frequencies, F1 < F2 < F3 < F4, must be entered. The frequency
F1 is the upper edge of the lower stopband, F2 is the lower edge of the passband, F3 is the
upper edge of the passband, and F4 is the lower edge of the upper stopband. In the case
of an elliptic filter, you are then prompted for the desired maximum passband ripple and
the minimum stopband attenuation. The program then computes the order of the required
analog lowpass prototype filter which in this example is 4. The actual order of the digital
filter is double this number for bandpass and band reject filters. The user is given the
option of choosing the filter order or letting iir.exe choose the order for some of the other
prototype filters. Finally you are prompted for the types of frequency response files you wish
to generate which can then be plotted with your favorite graphing program.
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The RESULTS file for this example is shown below. First, the z-plane zeros and poles
are displayed in rectangular form. Then they are shown in polar form. The radius is the
magnitude of the pole or zero and the frequency is fsθ/(2π) where θ is the angle and fs is
the sampling frequency. Notice, that for this bandpass filter, the zeros are all exactly on the
unit circle with frequencies in the stop bands. The pole frequencies are in the passband.

The coefficients of the numerators and denominators of the second order sections are
given and they can be realized by the direct forms. It is shown in many DSP books that it
is computationally better to realize an IIR filter by splitting it into low order sections rather
than by one high order section.

Finally, the amplitude response on a linear scale, the amplitude response on a dB scale,
the phase response, and the envelope delay are listed for the chosen range. This data also
appears in separate files if selected in the dialog.

DIGITAL BANDPASS ELLIPTIC FILTER

FILTER ORDER = 8

Z PLANE

ZEROS POLES

.977149 +- j .212554 .173365 +- j .761580

.902015 +- j .431705 -.028463 +- j .919833

-.538154 +- j .842847 .683010 +- j .651915

-.873779 +- j .486323 .482595 +- j .656484

RADIUS FREQUENCY RADIUS FREQUENCY

.100000E+01 .272712E+03 .781063E+00 .171502E+04

.100000E+01 .568352E+03 .920273E+00 .203939E+04

.100000E+01 .272351E+04 .944190E+00 .970348E+03

.100000E+01 .335335E+04 .814782E+00 .119288E+04

4 CASCADE STAGES, EACH OF THE FORM:

F(z) = ( 1 + B1*z**(-1) + B2*z**(-2) ) / ( 1 + A1*z**(-1) + A2*z**(-2) )

B1 B2 A1 A2

-1.954298 1.000000 -.346731 .610059

-1.804029 1.000000 .056927 .846903

1.076307 1.000000 -1.366019 .891495

1.747559 1.000000 -.965191 .663870

SCALE FACTOR FOR UNITY GAIN IN PASSBAND: 1.8000479016654E-002
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FREQUENCY RESPONSE

FREQUENCY GAIN GAIN (dB) PHASE DELAY (SEC)

.0000 2.1048E-03 -5.3536E+01 .00000 .13458E-03

40.0000 2.0557E-03 -5.3741E+01 -.03385 .13493E-03

80.0000 1.9093E-03 -5.4382E+01 -.06789 .13600E-03

120.0000 1.6681E-03 -5.5556E+01 -.10228 .13780E-03

.

.

.

3.7.3 Two Methods for Measuring a Phase Response

You will be asked to measure the phase response of an IIR filter in the laboratory experiments
below. Two methods for measuring phase differences, (1) Lissajous figures and (2) relative
time delays, are explained in this section. Suppose the input to a system is

x(t) = A sin ω0t (3.21)

and the output is

y(t) = B sin(ω0t + θ) (3.22)

Measuring Phase Differences by Lissajous Figures

If x(t) is applied to the horizontal input of an oscilloscope and y(t) is applied to the vertical
input, the ellipse (

y

B

)2

− 2
(

x

A

)(
y

B

)
cos θ +

(
x

A

)2

= sin2 θ (3.23)

will be observed. If θ = 0 the ellipse degenerates into a straight line with positive slope, if
θ = π it becomes a line with negative slope, and if θ = π/2 or 3π/2 its principal axes become
aligned with the x and y axes.

From (3.21), it can be seen that the maximum value for x is xmax = A. The ellipse
crosses the x-axis when y = 0 or ω0t + θ = π. The corresponding value for x is

x0 = A sin(π − θ) = A sin θ (3.24)

Thus
x0

xmax

= sin θ (3.25)

and so

θ = sin−1 x0

xmax

(3.26)

A similar equation can be derived for y measurements.
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Measuring Phase Differences by Relative Time Delay

You will find it difficult to accurately measure xmax and x0 using the oscilloscope and also
to determine what value to use for the arcsine. An easier and more accurate method for
finding the phase difference is to measure the time delay between the positive zero crossings
of x(t) and y(t). The output can also be expressed as

y(t) = B sin[ω0(t + d)] = B sin(ω0t + θ) (3.27)

where

θ = ω0d = 2π
d

T0

radians (3.28)

Therefore, the phase difference can be easily found by multiplying the relative time delay by
the radian frequency. When using this method, make sure the oscilloscope traces for x(t)
and y(t) are synchronized to the same time reference.

3.8 Laboratory Experiments for Digital Filters

3.8.1 Experiment 3.1: FIR Filters Entirely in C

1. Initialize McBSP0, McBSP1, and the AIC23 codec as before and set the sampling rate
to 16000 Hz.

2. If you have not done this already, measure the amplitude response of the DSK left
channel analog path. We will assume the right channel is the same. Apply a sine wave
from the signal generator to the left channel of the line input and loop the samples
internally in the DSP back to the line output. Vary the frequency and record the values
of the output amplitude divided by the input amplitude. Use enough frequencies to
get an accurate plot of the response. In particular, be sure to use enough points in
the transition region from the passband to the stopband. Plot the response using your
favorite plotting program. You should use the set of frequencies chosen here in the rest
of Chapter 3.

3. Design a 25-tap bandpass FIR filter for a sampling rate of 16 kHz using WINDOW.EXE,
REMEZ87.EXE, or MATLAB. The passband should extend from 2,000 Hz to 5,000
Hz. Plot the theoretical amplitude response in dB.

4. Write a C program to implement the filter using a circular sample buffer. Convert the
input samples to floating point format before putting them into the circular buffer.
The left channel is the upper 16 bits. So, arithmetically shift the received word 16 bits
right to extend the sign and lop off the lower 16 bits (right DAC channel) and then
convert the result to a float.

The start of each iteration should be controlled by synchronizing it to the McBSP1
XRDY flag. Each time a sample is transmitted, a new input sample can be read
because the transmit and receive frame syncs are identical.
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5. First compile your program without optimization. Look at the assembly code generated
by the compiler to get some idea of how the C source code is implemented by the ’C6713.
Use the profiling capabilities of Code Composer Studio to measure the number of cycles
required to generate one output sample. (Do not include the time spent polling the
XRDY flag!)

6. Browse through Chapter 3 Optimizing Your Code in the TMS320C6000 Optimizing
Compiler User’s Guide [I.9]. Then compile your program using the four optimization
levels o0, o1, o2, and o3. Look at the assembly code generated for each optimization
level. Measure and record the number of cycles required to generate one output sample
for each optimization level.

7. Measure the amplitude response of the filtering system from the line input to line
output jack and plot the results on a dB scale after correcting for the DSK response.
Compare your measured result with the theoretical response.

8. Increase the number of filter taps from 25 to find the largest number of taps that can be
used without running out of time and report the result. (Hint: Do not re-design your
filter for each new length. Simply append zeros to your 25-tap design. Multiplying by
zero takes as long as multiplying by any other number because the compiler does not
use the fact multiplying any finite number by zero gives zero.)

3.8.2 Experiment 3.2: FIR Filters Using C and Assembly

1. Complete the C program that calls the assembly function convolve() in the file
convol1.sa. Use the 25-tap filter you designed for Experiment 3.1. The file convol1.sa
can be found in the directory C:\c6713dsk and on the class web site.

2. Build the complete executable module using level -o3 optimization for both the C and
linear assembly programs.

3. Attach the signal generator to the input jack and observe the output on the oscilloscope.
Sweep the input frequency to check that the frequency response is correct. You do not
have to do a detailed frequency response measurement.
Note: You may have to click on Debug → Reset CPU to get the program to run
properly.

4. Use the profiling capabilities of Code Composer Studio to measure the number of
cycles required for one call to the convolution function with and without optimization.
Compare the results to those for the Experiment 3.1 implementation totally in C.

5. Get the file convolve.sa from our web site or the directory C:\c6713dsk. It unrolls
the convolution sum loop once to compute the contributions from two taps in each
iteration of the summation loop. The number of filter taps must be an even number.
However, a filter with an odd number of taps can be implemented by adding one
dummy tap which is zero. The idea is to improve efficiency by eliminating branching
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overhead and by allowing the optimizer to schedule use of the execution units more
optimally.

Rebuild your FIR filter implementation using this new assembly function and level -o3
optimization. Compare the execution time for one call this convolution routine with
that of the function in convol1.sa

The variable, ii, reported by the assembly optimizer indicates the number of cycles
required by the convolution loop kernel. With level -o2 or -o3 optimization it reports
ii = 4 for convol1.sa and convolve.sa, and that 4 instructions are executing in
parallel. Therefore, the kernel for convol1.sa requires 4 cycles per tap while the
kernel for convolve.sa requires only 2 cycles per tap. Notice the convol1.asm only
uses multiplier .M1 while convolve.asm use both .M1 and .M2.

3.8.3 Experiment 3.3: Implementing an IIR Filter

In these experiments you will design a bandpass IIR filter, plot its theoretical amplitude and
phase responses, and compare them with measured responses. Perform the following tasks
for IIR filters:

1. Design an IIR bandpass filter based on an elliptic lowpass analog prototype. Use a 16
kHz sampling rate. The lower stopband should extend from 0 to 800 Hz, the passband
from 2000 to 5000 Hz, and the upper stopband from 7000 to 8000 Hz. The passband
ripple should be no more than 0.3 dB and the stopband attenuation should be at least
40 dB.

Plot the theoretical amplitude response generated by the filter design program on a dB
scale. Plot the phase response also. Explain any discontinuities in the phase response.

2. Write a program to implement your filter on the DSK. Use a cascade of second-order
and, possibly, a first-order type 1 direct form filter sections.

3. Use the signal generator and oscilloscope to measure the amplitude response from the
input to output jacks and plot it in dB. Also measure the phase response and plot the
results. Be sure to adjust the measured responses for the responses of the analog paths
in the DSK. Compare your theoretical and measured responses.

4. Use the profiling capability of Code Composer Studio to measure the number of clock
cycles and time required to process one sample, and record the result. Do this for
the two cases where the program is compiled without optimization and with level -o3
optimization.

3.9 Additional References

There are many excellent books covering the theoretical and practical aspects of digital signal
processing. A few of them are included in Section II.C of the list of references at the end of
this text. The initial books that dealt with discrete-time systems focused on sampled-data
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control systems and appeared in the late 1950’s. They did not discuss methods for designing
digital filters with the demanding frequency responses required in many communications and
signal processing applications. The first complete college textbook that focused on digital
signal processing, Oppenheim and Schafer [II.C.12], appeared in 1975 and was followed a
year later by Tretter [II.C.17]. The theory has advanced very little since these books were
published, but some of the newer books include sections on DSP chips.

See Proakis and Manolakis [II.C.15, Chapter 5] for a more extensive discussion of the
frequency responses of FIR and IIR digital filters including a variety of examples. Also see
Oppenheim and Schafer [II.C.13, Chapter 5].

Detailed discussions of structures for realizing FIR and IIR filters can be found in Op-
penheim and Schafer [II.C.13, Chapter 6] and Proakis and Manolakis [II.C.15, Chapter 7].
They discuss the direct forms presented in this experiment and additional structures like
lattice filters.

All the books listed in Section II.C of the references discuss FIR and IIR digital filter
design techniques to meet frequency domain requirements. For example, see Oppenheim
and Schafer [II.C.13, Chapter 7], Proakis and Manolakis [II.C.15, Chapter 8], and Tretter
[II.C.17, Chapter 8]. The first two of these references present the theory for the method
used in the REMEZ87 FIR filter design program and filter design examples. An excellent
source for FORTRAN digital filter design programs and other signal processing programs is
the classic IEEE Press book [II.C.7].

Important topics not discussed in this experiment are the effects of quantization in A/D
conversion and finite word length arithmetic. See Oppenheim and Schafer [II.C.13, Sections
6.7 – 6.10], Proakis and Manolakis [II.C.15, Sections 6.2 and 7.6 – 7.8], and Tretter [II.C.17,
Chapter 9] for discussions of these topics.



Chapter 4

The FFT and Power Spectrum
Estimation

In this chapter, you will review and implement some important techniques for digital signal
processing and data transmission. In particular, you will learn about the Fast Fourier Trans-
form (FFT) and build a spectrum analyzer using the FFT. A technique called Orthogonal
Frequency Division Multiplexing (OFDM) has become very popular for broadband wireline
and wireless data transmission. OFDM uses an inverse FFT for modulation and an FFT for
demodulation. Therefore, it is important for people specializing in communications and sig-
nal processing to have a strong understanding of the FFT. OFDM is the subject of Chapter
17

It is assumed that the reader is taking or has had a course on the theory of digital signal
processing, so the presentation is brief. It sets the notation and summarizes important
results. Comprehensive developments of the theory can be found in the books on digital
signal processing listed in the references. References for specific topics are suggested at the
end of this chapter.

4.1 The Discrete-Time Fourier Transform

Suppose that a continuous-time signal x(t) is sampled with period T or sampling frequency
ωs = 2π/T to obtain the discrete-time signal x[n] = x(nT ). We will define the discrete-time
Fourier transform of x[n] to be the following sum, if it exists:

X(ω) =
∞∑

n=−∞

x[n]e−jωnT (4.1)

The z-transform of the signal is obtained by making the substitution z = ejωT . Notice that
X(ω) has period ωs since the sum is a Fourier series.

The discrete-time signal can be determined from its discrete-time Fourier transform by
the inversion integral

x[n] =
1

ωs

∫ ωs/2

−ωs/2
X(ω)ejωnTdω (4.2)

101
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Thus, x[n] can be considered to be the sum of sampled sine waves at a continuum of fre-
quencies in the Nyquist band −ωs/2 < ω ≤ ωs/2 with complex amplitudes given by X(ω).
This suggests calling X(ω) the frequency spectrum of the signal.

4.2 Data Window Functions

The observed data sequence must be limited to a finite duration to compute the transform
summation in practice. The most obvious approach is to simply truncate the summation
to a finite range, for example, 0 ≤ n ≤ N − 1. This is equivalent to forming a new data
sequence by multiplying the original signal x[n] by the rectangular N -point data window
function

h1[n] =

{
1 for n = 0, 1, . . . , N − 1
0 elsewhere

(4.3)

The effect of the truncation on the spectrum can be determined by the following product
theorem. Let h[n] and x[n] be discrete-time signals with discrete-time Fourier transforms
H(ω) and X(ω), respectively. Then, it can be shown that y[n] = h[n]x[n] has the transform

Y (ω) =
1

ωs

∫ ωs/2

−ωs/2
X(λ)H(ω − λ) dλ (4.4)

Thus, the transform of a product in the time-domain becomes a convolution of the transforms
in the frequency domain.

The discrete-time Fourier transform of the rectangular window is

H1(ω) =
N−1∑
n=0

e−jωnT = e−jω(N−1)T/2 sin(ωNT/2)

sin(ωT/2)
(4.5)

The transform of a data window is often called a spectral window. A plot of |H1(ω)| for
N = 10 is shown in Figure 4.1. This function has a peak magnitude of height N at the
origin and is zero at the frequencies kωs/N that are not multiples of ωs. Thus, the main lobe
centered about the origin has width 2ωs/N . From (4.4) we see that the transform of the
truncated sum is a smoothed version of the true spectrum, X(ω), obtained by convolving
X(ω) with H1(ω). The value at frequency ω is predominantly an average of values in the
vicinity of ω weighted by H1(ω − λ) over its main lobe which extends from λ = ω − (ωs/N)
to λ = ω+(ωs/N). However, the maximum sidelobe magnitude of H1(ω) is down only about
13 dB from the main lobe peak, so the value of X(ω) estimated by the truncated summation
can be significantly distorted by large values away from ω “leaking through” the spectral
window.

The spectral leakage problem can be reduced by using a data window that has smaller
sidelobes in its transform. To obtain unbiased power spectral density estimates for a flat
spectrum, a data window h[n] should be normalized so that

1

N

N−1∑
n=0

h2[n] = 1 (4.6)
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Figure 4.1: Magnitude of the Rectangular Window Transform for N = 10

Note that this normalization is different from that used for windows in digital filter design.

One popular data window is the Hanning window

h2[n] =

{
c2 0.5

{
1 + cos

[(
n − N−1

2

)
2π
N

]}
for n = 0, 1, . . . , N − 1

0 elsewhere
(4.7)

where c2 = (3/8)−1/2 provides the proper normalization. The corresponding spectral window
is

H2(ω) = c2e
−jω(N−1)T/2

[
0.5H1(ω) + 0.25H1

(
ω − ωs

N

)
+ 0.25H1

(
ω +

ωs

N

)]
(4.8)

The maximum sidelobe amplitude is down by 37.5 dB for this window. However, the main-
lobe has double the width of that for the rectangular window.

Another popular data window is the Hamming window

h3[n] =

{
c3

{
0.54 + 0.46 cos

[(
n − N−1

2

)
2π
N

]}
for n = 0, 1, . . . , N − 1

0 elsewhere
(4.9)
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where c3 = (0.3974)−1/2. The corresponding spectral window is

H3(ω) = c3e
−jω(N−1)T/2

[
0.54H1(ω) + 0.23H1

(
ω − ωs

N

)
+ 0.23H1

(
ω +

ωs

N

)]
(4.10)

This window is almost the same as the Hanning window. Its spectral sidelobes are down by
at least 40 dB.

Other good windows such as the Kaiser and Blackman windows can be found in the DSP
reference books. In general, reduced sidelobes must be traded against increased main lobe
width.

4.3 The Discrete Fourier Transform and its Inverse

Let x[n] be a signal which is zero for n outside the set {0, 1, . . . , N − 1}. We will call this an
N -point sequence. Let X(ω) be the discrete-time Fourier transform of x[n] defined above.
Then, the discrete Fourier transform (DFT) of this sequence is defined to be the new N -point
sequence

Xk = X(kωs/N) =
N−1∑
n=0

x[n]e−j 2π
N

nk for k = 0, 1, . . . , N − 1 (4.11)

The DFT is simply the set of N samples of X(ω) taken at frequencies spaced by ωs/N in
the Nyquist band. Notice that if k is allowed to take values outside the set {0, 1, . . . , N −1},
the value computed by (4.11) repeats with period N .

The original N -point sequence can be determined by using the inverse discrete Fourier
transform (IDFT) formula

x[n] =
1

N

N−1∑
k=0

Xke
j 2π

N
nk for k = 0, 1, . . . , N − 1 (4.12)

4.4 The Fast Fourier Transform

Direct computation of a single DFT point using (4.11) requires N − 1 additions and N
multiplications ignoring the fact that for some k the exponentials are 1 or −1. Thus, di-
rect computation of all N points requires N(N − 1) complex additions and N2 complex
multiplications. The computational complexity can be reduced to the order of N log2 N by
algorithms known as fast Fourier transforms (FFT’s) that compute the DFT indirectly. For
example, with N = 1024 the FFT reduces the computational requirements by a factor of

N2

N log2 N
= 102.4

The improvement increases with N .
One FFT algorithm is called the decimation-in-time algorithm. A brief derivation is

presented below for reference. To simplify the notation, let WN = e−j2π/N so (4.11) becomes

Xk =
N−1∑
n=0

x[n]W nk
N (4.13)
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This algorithm assumes that N is a power of 2. Splitting the sum into a sum over even n
and one over odd n gives

Xk =

N
2
−1∑

n=0

x[2n]W 2nk
N +

N
2
−1∑

n=0

x[2n + 1]W
(2n+1)k
N for k = 0, 1, . . . , N − 1 (4.14)

Let the even numbered points be the N/2 point sequence

a[n] = x[2n] for n = 0, 1, . . . ,
N

2
− 1 (4.15)

and the odd numbered points be the N/2 point sequence

b[n] = x[2n + 1] for n = 0, 1, . . . ,
N

2
− 1 (4.16)

Also observe that W 2
N = WN/2. Thus, (4.14) can be written as

Xk =

N
2
−1∑

n=0

a[n]W nk
N/2 + W k

N

N
2
−1∑

n=0

b[n]W nk
N/2 for k = 0, 1, . . . , N − 1 (4.17)

Let Ak and Bk be the N/2-point DFT’s of a[n] and b[n] so that these DFT’s have period
N/2. With these definitions, (4.17) becomes

Xk = Ak + W k
NBk for k = 0, 1, . . . , N − 1 (4.18)

The next step results in the key equations for the decimation-in-time FFT. First observe
that W

N/2
N = −1. Then, the previous equation can be separated into the two equations

Xk = Ak + W k
NBk for k = 0, 1, . . . ,

N

2
− 1 (4.19)

Xk+ N
2

= Ak − W k
NBk for k = 0, 1, . . . ,

N

2
− 1 (4.20)

Equations (4.19) and (4.20) show how to compute an N -point DFT by combining a pair
of N/2-point DFT’s. A flowgraph for this pair of equations is shown in Figure 4.2. This
computation is called an FFT butterfly because of the shape of the flowgraph. A complete
flowgraph for this first step with N = 8 is shown in Figure 4.3.

Assuming that the N/2-point DFT’s, Ak and Bk, are known, it requires N/2 complex
multiplications to compute BkW

k
N , N/2 complex additions to compute Xk = Ak+W k

NBk, and
N/2 complex subtractions to compute Xk+ N

2

= Ak−W k
NBk for k = 0, 1, . . . , N

2
−1. Addition

and subtraction can be considered to be the same in terms of computational complexity.
Thus, the entire N -point DFT can be computed with N/2 complex multiplications and N
complex additions from the pair of N/2-point DFT’s.

The same procedure can be used to compute the N/2-point DFT’s from N/4-point DFT’s.
Computation of Ak by this method would require N/4 complex multiplications and N/2
complex additions. Finding Bk would require the same amount of computation. Thus the
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Figure 4.2: Flowgraph for an FFT Butterfly

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

















































































































































































�

�

�

�

�

�

�

�

4-point
DFT

4-point
DFT

�

�

�

�

�

�

�

�

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

		�

	
	

		�

	
	

		�

	
	

		�

�

�

�

�

�

�

�

�







�







�







�

x[0]

x[2]

x[4]

x[6]

x[1]

x[3]

x[5]

x[7]

X0

X1

X2

X3

X4

X5

X6

X7

−1

−1

−1

−1

a[0]

a[1]

a[2]

a[3]

b[0]

b[1]

b[2]

b[3]

A0

A1

A2

A3

B0

B1

B2

B3

W8

W 2
8

W 3
8

Figure 4.3: First Step in an 8-Point Decimation-in-Time FFT
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total amount of computation to compute both Ak and Bk is N/2 multiplications and N
additions, which is the same as for computing Xk from Ak and Bk.

The reduction by 2 procedure can be repeated until one-point DFT’s are reached. A one-
point DFT of a point is just the point itself. This requires log2(N) stages. Therefore, the
entire amount of computation required to compute the N -point DFT is N

2
log2(N) complex

multiplications and N log2(N) complex additions.
A complete flowgraph for an 8-point decimation-in-time FFT is shown in Figure 4.4.

Notice that the input points are arranged in a scrambled order while the output DFT is in
its natural order. It can be shown that the successive separation into even and odd numbered
sequences puts the input sequence in bit-reversed order for any N that is a power of 2. The
bit-reversed order is obtained by reversing the bits of the indexes for the original input array
elements. .

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

		

















































































































































































	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

		�

	
	

		�

	
	

		�

	
	

		�

�

�

�

�

�

�

�

�







�







�







�

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X0

X1

X2

X3

X4

X5

X6

X7

−1

−1

−1

−1

W8

W 2
8

W 3
8

	

	

	

	

	

	

	

	

	
	

	
	

	
	

	
		

	
	

	
	

	
	

	
		











































	
	

		�

	
	

		�

�

�

�

�








�








�

	
	

	
	

	
	

	
		

	
	

	
	

	
	

	
		











































	
	

		�

	
	

		�

�

�

�

�








�








�

�
�

�
�

���
�

�
�

���
�

�
���

�
�

�
���

�

�

	

	

	

	

	

	

	

	

	

	

	

	

	

	

−1

�
�

�
�

���
�

�
�

���
�

�
���

�
�

�
���

�

�

	

	
−1

�
�

�
�

���
�

�
�

���
�

�
���

�
�

�
���

�

�

	

	
−1

�
�

�
�

���
�

�
�

���
�

�
���

�
�

�
���

�

�

	

	
−1

−1

−1

−1

−1

−j

−j

Figure 4.4: Complete Flowgraph for an 8-Point Decimation-in-Time FFT

A C function for computing a complex, radix-2, decimation-in-time FFT is included
below. You can find the sources in c:\digfil\fft. It takes its complex input array in
natural order and then rearranges it into bit reversed order. The output is in natural order.
The computations are performed in-place with the output array written over the input array.
The complex exponentials W k are computed recursively. The program could be made more
efficient by precomputing and storing a cosine/sine table at angle increments needed for the
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largest N to be used and addressing the table appropriately for smaller N . A header file
defining a complex structure type and an example main function that computes the 16-point
FFT of cos(5 × 2πn/N) is also shown. The output of this program should be all 0 except
for X5 = X11 = 8.

Program 4.1 Header File Defining Complex Data Structure

/* Header File complex.h */

struct cmpx

{

float real;

float imag;

};

typedef struct cmpx complex;

Program 4.2 C Main Program to Test fft.c

/***************************************************************/

/* Program testfft.c */

/* An example of how to use function fft.c */

/* Compile by: gcc testfft.c fft.c -o fft.out -lm */

/***************************************************************/

#include "complex.h"

#include <math.h>

extern void fft();

main()

{

complex X[16]; /* Declare input array */

int i; /* loop index */

int M = 4; /* log2(16) */

float pi = 3.141592653589;

int N = 16; /* Number of FFT points */

/*-------------------------------------------------------------*/

/* Initialize input array */

/* Generate spectral lines at k = 5 and 11 of height 8. */

for(i=0; i<N; i++)

{

(X[i]).real = cos(i*5*2.0*pi/N);

(X[i]).imag = 0.0;

}
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/*--------------------------------------------------------------*/

/* Perform FFT */

fft(X,M);

/* Display results on screen */

for(i=0; i<N; i++)

printf("%4d%15.5f\t%15.5f\n",i,(X[i]).real, (X[i]).imag);

}

Program 4.3 C Function for Radix-2 Decimation-in-Time FFT

/****************************************************************/

/* Function fft(complex *X, int M) */

/* */

/* This is an elementary, complex, radix 2, decimation in */

/* time FFT. The computations are performed "in place" and */

/* the output overwrites the input array. */

/****************************************************************/

#include "complex.h"/* Definition of complex variable structure */

#include <math.h> /* Definitions for math library */

void fft(complex *X, int M)

/* X is an array of N = 2**M complex points. */

{

complex temp1; /* temporary storage complex variable */

complex W; /* e**(-j 2 pi/ N) */

complex U; /* Twiddle factor W**k */

int i,j,k; /* loop indexes */

int id; /* Index of lower point in butterfly */

int N = 1 << M; /* Number of points for FFT */

int N2 = N/2;

int L; /* FFT stage */

int LE; /* Number of points in sub DFT at stage L, */

/* and offset to next DFT in stage */

int LE1; /* Number of butterflies in one DFT at*/

/* stage L. Also is offset to lower */

/* point in butterfly at stage L */

float pi = 3.1415926535897;

/*==============================================================*/
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/* Rearrange input array in bit-reversed order */

/* */

/* The index j is the bit reversed value of i. Since 0 -> 0 */

/* and N-1 -> N-1 under bit-reversal, these two reversals are */

/* skipped. */

j = 0;

for(i=1; i<(N-1); i++)

{

/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

/* Increment bit-reversed counter for j by adding 1 to msb and */

/* propagating carries from left to right. */

k = N2; /* k is 1 in msb, 0 elsewhere */

/*--------------------------------------------------------------*/

/* Propagate carry from left to right */

while(k<=j) /* Propagate carry if bit is 1 */

{

j = j - k; /* Bit tested is 1, so clear it. */

k = k/2; /* Set up 1 for next bit to right. */

}

j = j+k; /* Change 1st 0 from left to 1 */

/*--------------------------------------------------------------*/

/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

/* Swap samples at locations i and j if not previously swapped.*/

if(i<j) /* Test if previously swapped. */

{

temp1.real = (X[j]).real;

temp1.imag = (X[j]).imag;

(X[j]).real = (X[i]).real;

(X[j]).imag = (X[i]).imag;

(X[i]).real = temp1.real;

(X[i]).imag = temp1.imag;

}

/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

}

/*==============================================================*/

/* Do M stages of butterflies */
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for(L=1; L<= M; L++)

{

LE = 1 << L; /* LE = 2**L = points in sub DFT */

LE1 = LE/2; /* Number of butterflies in sub-DFT */

U.real = 1.0;

U.imag = 0.0; /* U = 1 + j 0 */

W.real = cos(pi/LE1);

W.imag = - sin(pi/LE1); /* W = e**(-j 2 pi/LE) */

/*--------------------------------------------------------------*/

/* Do butterflies for L-th stage */

for(j=0; j<LE1; j++) /* Do the LE1 butterflies per sub DFT*/

{

/*..............................................................*/

/* Compute butterflies that use same W**k */

for(i=j; i<N; i += LE)

{

id = i + LE1; /* Index of lower point in butterfly */

temp1.real = (X[id]).real*U.real - (X[id]).imag*U.imag;

temp1.imag = (X[id]).imag*U.real + (X[id]).real*U.imag;

(X[id]).real = (X[i]).real - temp1.real;

(X[id]).imag = (X[i]).imag - temp1.imag;

(X[i]).real = (X[i]).real + temp1.real;

(X[i]).imag = (X[i]).imag + temp1.imag;

}

/*..............................................................*/

/* Recursively compute W**k as W*W**(k-1) = W*U */

temp1.real = U.real*W.real - U.imag*W.imag;

U.imag = U.real*W.imag + U.imag*W.real;

U.real = temp1.real;

/*..............................................................*/

}

/*--------------------------------------------------------------*/

}

return;

}
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4.5 Using the FFT to Estimate a Power Spectrum

One method for estimating power spectral densities is based on using a function called the
periodogram. The periodogram of an N -point sequence y[n] is defined to be

IN(ω) =
1

N
|Y (ω)|2 (4.21)

where

Y (ω) =
N−1∑
n=0

y[n]e−jωnT (4.22)

is the discrete-time Fourier transform of y[n]. It can be shown that the inverse transform of
the periodogram is the sample autocorrelation function

R(n) =

⎧⎪⎪⎨
⎪⎪⎩

1

N

N−1∑
k=0

y[n + k]ȳ[k] for |n| ≤ N − 1

0 elsewhere

(4.23)

The variable, n, in the autocorrelation function is called the lag. For zero lag

R(0) =
1

N

N−1∑
k=0

|y[k]|2 =
1

ωs

∫ ωs/2

−ωs/2
IN(ω) dω (4.24)

is the average power in the sequence. This equation provides some justification for interpret-
ing the periodogram as a function that shows how the power is distributed in the frequency
domain.

At first glance, it is natural to assume that as N increase, the periodogram becomes a
better estimate of the power spectral density for a stationary random process. However, this
is not true. Actually, the mean of the periodogram converges to the true spectral density
but its variance remains large. As N increases, the periodogram tends to oscillate more
and more rapidly. See references [II.C.12] or [II.C.17] for details of this property and, more
generally, estimation of power spectral densities.

A solution to this problem is to average the periodograms of different N -point sections of
the observed data sequence. Let x[n] be an observed data sequence with duration M = LN
and form the L windowed N -point data sections

yk[n] =

{
h[n]x[n + kN ] for n = 0, 1, . . . , N − 1
0 elsewhere

for k = 0, 1, . . . , L − 1 (4.25)

where h[n] is a desired data window function. Designate the periodogram formed from the
k-th widowed section by IN,k(ω). Then the desired power spectral density estimator is

Ŝ(ω) =
1

L

L−1∑
k=0

IN,k(ω) (4.26)

When the data sections are statistically independent, averaging L sections reduces the vari-
ance by a factor of L. Additional gains can be achieved by overlapping the sections to some
degree.
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The periodograms can be computed at the uniformly spaced frequencies {kωs/N ; k =
0, 1, . . . , N − 1} by using an N -point FFT. When the observed data sequence is real and the
FFT program is designed to accept complex inputs, the computation time can be reduced by
almost a factor of two by using the following identity. Let a[n] and b[n] be two real N -point
sequences and form the complex sequence c[n] = a[n] + jb[n]. Then

|Ak|2 + |Bk|2 =
|Ck|2 + |CN−k|2

2
(4.27)

Thus, the sum of the periodograms of the two real sequences can be computed from the FFT
of the single complex sequence.

4.6 Laboratory Experiments

4.6.1 Experiment 4.1: FFT Experiments

You can use the C FFT function starting on page 109 for these experiments. The files
testfft.c, complex.h, and fft.c can be found in C:\DIGFIL\FFT. To test and extend
your understanding of FFT’s, perform the following tasks:

1. Let the sampling rate be 16 kHz and the sequence length be N = 1024 points. Theoreti-
cally find the DFT of the sequence

xn = sin(2π × 2000 × n/16000) for n = 0, . . . , 1023

2. Generate a program for the TMS320C6713 to compute the FFT of the sequence xn defined
above by doing the following:

(a) First copy the linker command file, dsk6713.cmd from C:\c6713dsk to your project
directory and increase -stack from 0x400 to 0x1000 so the stack does not overflow.
Be sure to use this modified command file in your project.

(b) Fill an N -point complex array with the real and imaginary parts of the sequence xn

defined above.

(c) Compute the FFT of xn by calling the function fft().

(d) Fill a separate N -point real array with the squared complex magnitudes of the FFT
values.

3. Use Code Composer Studio to:

(a) Check your answer by displaying the complex FFT array in a Code Composer Studio
watch window. Alternatively, you can use the C function printf() to write the FFT
values to the CCS display window.

(b) Read the squared magnitude array from the DSP into a disk file by using a probe
point. Compare the disk file with the theoretical result to further check your pro-
gram. You can also use the C function fprintf() to write the array to a PC disk
file.
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(c) Plot the squared magnitude array using the CCS graphing capability.

(d) Find the time required to compute the FFT by using the CCS profiling capability.

4. Repeat steps 1, 2, and 3 except multiply the input sequence by a Hamming window.
When checking your results be sure to examine the FFT in the vicinity of 2000 and 14000
Hz.

5. Change the input sequence to:

xn = sin
[
2π
(
2000 + 0.5

16000

1024

)
n

16000

]

Repeat steps 1 through 4 for this new signal. Explain the results.

4.6.2 Experiment 4.2: Making a Spectrum Analyzer

Now you will make an elementary spectrum analyzer. The DSK will be used to collect
blocks of N = 1024 samples taken at a 16 kHz rate. The DSP will compute and average the
periodograms. The results will be displayed on the PC by using Code Composer Studio’s
animation and graphing capabilities.

Suggestions on How to Structure the Spectrum Analyzer Program

The power spectral density estimates will be based on periodograms of 1024-point blocks of
input samples taken at a 16 kHz rate. The technique described by (4.27) on page 113 to
compute the sum of pairs of periodograms should be used to efficiently utilize the 1024-point
FFT. The following list suggests a method of data collection for your program and the tasks
it should perform.

1. Initialize the DSK as usual.

2. Set up a 1024-word array that contains the floating-point samples of the Hamming win-
dow.

3. Set up an external 513-word array of floats, spectrum[], for the spectrum estimates at
frequencies from 0 to 8000 Hz (k = 0, . . . , 512). (Values from 8000 to 16000 Hz are the
mirror images of the ones from 0 to 8000 Hz.)

4. Ping-Pong Buffers: Use the technique of ping-pong buffers. Set up two external com-
plex floating-point arrays named ping[] and pong[] each of size 1024 complex words.
(See the header file complex.h.) One array will be used to collect new samples from the
ADC using RRDY interrupts from the McBSP1 receiver while an FFT and periodogram
averaging are being performed on the other. The samples should be read, converted to
floating-point words, and stored in the ping or pong array in an interrupt service routine.
The first 1024 samples should be stored in the real part of the array and the next 1024
samples in the imaginary part of the array.
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5. While one array is being filled with new samples through interrupts:

(a) Hamming Windowing: Multiply the real and imaginary parts of the previously
filled array by the Hamming window and leave the results in the same array.

(b) Perform a complex 1024-point FFT on the windowed array.

(c) Use equation (4.27) on page 113 to compute the sum of the squared magnitudes of
the FFT’s of the real and imaginary parts of the array. Remember that when xn is
real, Xk = X̄N−k so that the second half of the FFT is totally redundant. Thus, it
is only necessary to compute the sum of the squared magnitudes for n = 0, . . . , 512.
As each value is computed, add it to the corresponding element of spectrum[].

(d) Once the FFT and additions to spectrum[] have been completed, wait for the
array collecting new samples to be filled. You’ll have to devise a way that the main
function can determine when arrays are filled. Then switch arrays, allow the array
just processed to begin collecting new samples, and begin processing the array that
was newly filled.

(e) Continue to accumulate FFT squared magnitudes in spectrum[] until L = 8 have
been added and then divide the elements by 8 × 1024 or whatever is appropriate
depending on any previous normalizations. You can experiment later with using
larger or smaller values for L.

(f) Add a dummy line to your main function after averaging L = 8 periodograms, that
is, when one spectrum estimate has been completed, and before going back to begin
a new spectrum estimate, as a place for a Code Composer probe point. For example,
the line might be

dummy = ping[0];

(g) Your program should then loop back, clear spectrum[], and compute a new averaged
periodogram, etc.

6. Compile your program using -o3 optimization.

Important Note: Using the “volatile” Declaration to Stop the Optimizer from
Breaking Things

Consider the C source code lines:

int insample;

insample = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

The optimizer looks at MCBSP_read() and sees a function with a constant argument. It
thinks the returned value of this function will never change. It does not know the serial
port DRR contents can be different each time the function is executed. Therefore, it creates
code to set “insample” just once and never do it again. The declaration “volatile” informs
the optimizer that “insample” can actually change and should be updated every time it is
encountered. So, to make sure the optimizer does the correct thing, use the code:
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volatile int insample;

insample = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

WARNING: Remember to increase -stack to 0x1000 in the linker command file. Oth-
erwise the stack might overflow and overwrite some variables causing strange answers.

Another Method of Averaging Periodograms

Periodograms can be averaged by using a one-pole IIR lowpass filter. A filter of this type
has the transfer function

H(z) = (1 − α)/(1 − αz−1) where 0 < α < 1

The closer α is to 1 the more lowpass the filter is and the slower its output changes. The
impulse response of the filter is

h(n) = (1 − α)αnu(n)

and it is sometimes called an exponential averager. Let the current averaged spectrum
estimate at DFT slot k be Sk(n) and the current periodogram at slot k be Ik(n). Then the
exponential averager output is computed by the formula:

Sk(n) = (1 − α)Ik(n) + αSk(n − 1) (4.28)

This computation can be performed each time the sum of a new pair of periodograms is
computed.

Testing Your Spectrum Analyzer

1. Initial Testing Using a Known Synthesized Input

As a first test of your spectrum analyzer, replace the input samples in your interrupt
service routine by samples of a sine wave generated in your program at one of the FFT
bin frequencies. For example, for bin k = 100 your synthesized input could be

10000 cos(n × 100 × 2π/1024)

The scale factor 10000 is to model the dynamic range of the integer samples arriving
from the ADC. In your program, the angle inside the cosine function should be generated
recursively by adding the constant 100×2π/1024 to the old angle each time the interrupt
routine is entered. Also, limit the size of the angle by subtracting 2π when it exceeds 2π
as you did in Chapter 2. Perform the following two exercises:

(a) Temporarily replace the Hamming window by a rectangular window, that is, all 1’s,
and fill the imaginary parts of the sample arrays with all 0’s. Prove that the FFT
values for n = 100 and 1024 − 100 = 924 should be 10000 × 1024/2 and should be
0 for all other k. Determine the theoretical values your spectrum analyzer should
produce. Check that your analyzer is giving the theoretical answer and correct your
program if it isn’t. Try cosines at a few other bin frequencies.
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(b) Re-enable the Hamming window. Theoretically determine what the analyzer output
should be. Check that your analyzer is giving the correct results.

2. Displaying the Spectrum Using Code Composer Studio

To display the spectrum estimates using Code Composer Studio’s break point, probe
point, graphing, and animation capabilities:

(a) Load your executable program.

(b) On the menu bar, select “Debug”.

(c) On the “Debug” menu select “Go Main”.

(d) Scroll down in the source code window to the line “dummy = ping[0];” and click
on it to put the cursor there.

(e) Click on the break point icon (hand) to set a break point at this line. A red circle
should appear next to the line in the margin on the left to indicated that a break
point is set there.

(f) Click on the probe point icon (scope probe) to set a probe point at this line. A blue
circle should be added to the left margin.

(g) On the menu bar, click “View”.

(h) Go down the list and click “Graph”.

(i) On the Graph menu, select “Time/Frequency”.

(j) On the Time/Frequency menu enter:
Start Address: spectrum
Acquisition Buffer Size: 513
Display Data Size: 513
DSP Data Type: 32-bit floating point
Data Plot Style: Bar

(k) Click “OK” and the graph should appear.

(l) Click on the “animate” button. The program should begin running and the graph
should get updated with each new spectrum estimate.

3. Testing with External Inputs

Now attach the signal generator output to the DSK line input and an oscilloscope. Set
your program to use the actual input samples rather than the synthesized cosine wave.
Perform the following experiments:

(a) Set the signal generator to generate a 2 kHz sine wave and observe the output of
your spectrum analyzer using CCS as described above. Compute which FFT bin,
that is, value of k, corresponds to 2 kHz and check that your spectrum analyzer
display is correct.
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(b) Derive a formula for the Fourier coefficients of a non-symmetric square-wave with
one period given by the following equation.

x(t) =

{
A/2 for |t| < τ/2

−A/2 for τ/2 ≤ |t| ≤ T0/2

i. Set the signal generator to generate a 200 Hz square-wave with a 50% duty cycle
and compare the measured and theoretical spectra.

ii. Set the duty cycle to 20% and compare the measured and theoretical spectra.

(c) Test your spectrum analyzer with amplitude modulated signals. These have the
form

Ac[1 + m(t)] cos 2πfct

See Chapter 5 for a detailed discussion of AM. The waveform m(t) is called the
modulating signal and fc the carrier frequency. The function |Ac[1 + m(t)]| is called
the signal envelope. In particular, let fc = 4 kHz and do the following:

i. Let m(t) = Am cos 2π500t and derive the theoretical spectrum for x(t). Am is
called the modulation index for the AM signal. Set the function generator to
generate a signal of this type with a modulation index of 100%. Compare the
theoretical and measured spectra.

ii. Repeat the previous item but change m(t) to a 200 Hz square-wave with a 20%
duty cycle.

(d) Experiment with the FM signals of the signal generator. FM is discussed in detail
in Chapter 8. In particular, see Equation 8.12 of Section 8.1.2 for the spectrum. It
is much more complex than the AM spectrum. Change the modulation index and
observe how the carrier component can disappear and how the spectrum spreads out
as the modulation index is increased.

4. Testing with an Exponential Averager

If time permits and for extra credit, modify your spectrum analyzer program to use
exponential periodogram averaging instead of the arithmetic average of L pairs of peri-
odograms. Experiment with different values of α and see how your display responds when
the input signal is changed. For example, you could change the carrier frequency of an
AM or FM signal, or the modulation index of an FM signal.

4.7 Additional References

The theory and properties of the discrete-time Fourier transform can be found in all the DSP
books listed in the references. In particular, see Oppenheim and Schafer [II.C.13, Sections
2.6–2.9] and Proakis and Manolakis [II.C.15, Sections 3.2–3.4].

For discussions of data windows see Oppenheim and Schafer [II.C.13, Sections 7.4–7.5,
11.2–11.3], Rabiner and Gold [II.C.16, Sections 3.8–3.16], and Tretter [II.C.17, Sections 8.8
and 11.4–11.5].
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For detailed presentations of the discrete-Fourier transform and its properties see Op-
penheim and Schafer [II.C.13, Chapter 8], Proakis and Manolakis [II.C.15, Chapter 9], and
Tretter [II.C.17, Chapter 10].

Extensive coverage of the FFT can be found in Burrus and Parks [II.C.3], Oppenheim
and Schafer [II.C.13, Chapter 9], Proakis and Manolakis [II.C.15, Chapter 9], Rabiner and
Gold [II.C.16, Chapter 6], and Tretter [II.C.17, Chapter 10].

There are many subtleties to the estimation of the power spectral density of a random
signal. Very complete coverage of this topic can be found in the books by Jenkins and Watts
[II.C.9] and Kay [II.C.10]. More concise presentations can be found in Oppenheim and
Schafer [II.C.12 Chapter 11][II.C.13, Chapter 11]; Proakis and Manolakis [II.C.15, Chapter
12]; Manolakis, Ingle, and Kogon [II.C.11]; and Tretter [II.C.17, Chapter 11].



Chapter 5

Amplitude Modulation

A very common method of transmitting information known as amplitude modulation (AM)
will be examined in this chapter. AM was the first widespread technique used in commercial
radio broadcasting. The approaches presented here are particularly suited for implementa-
tion by digital signal processors. More complete discussions of AM and analog implementa-
tions can be found in the textbooks on communication systems suggested at the end of this
chapter.

5.1 Theoretical Description of Amplitude Modulation

5.1.1 Mathematical Formula for an AM Signal

The purpose of modulation is to transform a message m(t) into another signal s(t) that can be
transmitted through some medium like a radio link or telephone cable. The transformation
must be reversible so that m(t) can be recovered exactly from s(t) at the receiver. The
original message m(t) is often called the baseband signal and is usually a lowpass signal.
The transmitted signal s(t) is usually a bandpass signal with its spectrum centered in the
passband of the communication channel, so it is often called the passband signal.

An AM signal has the mathematical form

s(t) = Ac[1 + kam(t)] cos ωct (5.1)

where

c(t) = Ac cos ωct (5.2)

is called the carrier wave and has amplitude Ac and frequency fc = ωc/(2π) Hz. The carrier
frequency, fc, should be larger than the highest spectral component in m(t). The parameter
ka is a positive constant called the amplitude sensitivity of the modulator.

The signal

e(t) = Ac|1 + kam(t)| (5.3)

is called the envelope of s(t). When fc is large relative to the bandwidth of m(t), the
envelope is a smooth signal that passes through the positive peaks of s(t) and it can be
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viewed as modulating (changing) the amplitude of the carrier wave in a way related to m(t).
In standard AM broadcasting, kam(t) is adjusted so that

1 + kam(t) ≥ 0 for all t (5.4)

In this case, the envelope is
e(t) = Ac[1 + kam(t)] (5.5)

so m(t) can be recovered from the envelope to within a scale factor and constant offset. An
envelope detector is called a noncoherent demodulator because it makes no use of the carrier
phase and frequency.

5.1.2 Example for Single Tone Modulation

In the special case of the sinusoidal message, m(t) = Am cos ωmt, the transmitted signal has
the form

s(t) = Ac(1 + µ cos ωmt) cos ωct (5.6)

where µ = kaAm is called the modulation index.
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Figure 5.1: Single Tone AM Example with µ = 0.5 and ωc = 10ωm

For 0 ≤ µ ≤ 1, the modulation index can be measured by observing that the envelope
has the maximum value

emax = Ac(1 + µ) (5.7)

and minimum value
emin = Ac(1 − µ) (5.8)

Taking the ratio of these two equations and solving for µ gives the following formula for
easily computing the modulation index from a display of the modulated signal.

µ =
1 − emin

emax

1 + emin

emax

(5.9)
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When µ = 1 the AM signal is said to be 100% modulated and the envelope periodically
reaches 0. The signal is said to be overmodulated when µ > 1. In general, the AM signal
is said to be overmodulated when 1 + kam(t) is negative some of the time and then m(t)
cannot be determined from the envelope without distortion.

Using the trigonometric identity for the product of cosines, the transmitted signal can
be expressed as

s(t) = Ac cos ωct + 0.5Acµ cos(ωc + ωm)t + 0.5Acµ cos(ωc − ωm)t (5.10)

The first term is a sinusoid at the carrier frequency and carries no message information. The
other two terms are called sidebands and carry the information in m(t). The total power in
s(t) is

Ps = 0.5A2
c + 0.25A2

cµ
2 (5.11)

while the power in the sidebands due to the message is

Pm = 0.25A2
cµ

2 (5.12)

and their ratio is

η =
Pm

Ps

=
µ2

2 + µ2
(5.13)

This ratio increases monotonically from 0 to 1/3 as µ increases from 0 to 1. Since the
carrier component carries no message information, the modulation is most efficient for 100%
modulation.

5.1.3 The Spectrum of an AM Signal

Suppose the baseband message m(t) has a Fourier transform M(ω) and M(ω) = 0 for
|ω| ≥ W . The message is said to be a lowpass band limited signal with cutoff frequency W .
The Fourier transform of the transmitted signal, s(t), is

S(ω) = Acπδ(ω + ωc) + Acπδ(ω − ωc) +
Ac

2
kaM(ω + ωc) +

Ac

2
kaM(ω − ωc) (5.14)

An example is shown in Figure 5.2. Notice that the modulation adds a spectral line at
the carrier frequency and translates the baseband spectrum so that it is centered about the
carrier frequency.

5.2 Demodulating an AM Signal by Envelope Detec-

tion

Commercial radios use a simple, inexpensive, analog circuit known as an envelope detector
to demodulate AM signals. This circuit employs a diode, capacitor, and resistors to follow
the positive peaks of the AM wave with the assumption that the signal is less than 100%
modulated. Two methods for envelope detection that are particularly suited to digital signal
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Figure 5.2: Spectrum of an AM Signal

processing will be studied in this chapter. The first method is called square-law detection
and the second method uses the Hilbert transform to create something called the complex
envelope. As a designer, you should always evaluate whether the analog envelope detector
or DSP implementation is the most cost effective method for accomplishing your task.

5.2.1 Square-Law Demodulation of AM Signals

The block diagram of a square-law envelope detector is shown in Figure 5.3. The input s(t)
has the form of the AM signal given by (5.1). It will be assumed that the baseband message
m(t) is a lowpass signal with cutoff frequency W . The first block in the detector squares the
input resulting in the signal

s2(t) = A2
c [1 + kam(t)]2 cos2 ωct = 0.5A2

c [1 + kam(t)]2 + 0.5A2
c [1 + kam(t)]2 cos 2ωct (5.15)

The first term on the right-hand side of (5.15) is a lowpass signal except that the cutoff
frequency has been increased to 2W by the squaring operation. The second term has a
spectrum centered about ±2ωc. For positive frequencies, this spectrum is confined to the
interval (2ωc − 2W, 2ωc +2W ). For the square-law detector to work properly, the spectra for
these two terms must not overlap. This requirement is met if

2W < 2ωc − 2W or ωc > 2W (5.16)
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The sampling rate required to implement the square-law detector by digital signal pro-
cessing techniques will now be examined. We saw in the previous paragraph that the squared
AM signal is band limited with upper cutoff frequency 2(ωc + W ). Therefore, the input s(t)
must be sampled at a rate of at least 4(ωc + W ) to prevent aliasing and the lowpass filter
H(ω) must operate on samples of s2(t) taken at this rate. The output of the lowpass filter
is band limited in the Nyquist band with a cutoff of 2W . Thus, if H(ω) is implemented
by an FIR filter with tap spacing corresponding to the required fast input sampling rate,
computation can be reduced by computing the output only at times resulting in an output
sampling rate of at least 4W . This technique is called skip sampling or decimation.

� �� �

Lowpass
Filter

s(t)
(·)2 H(ω)

√
(·)

y(t)

Figure 5.3: Square-Law Envelope Detector

The filter H(ω) is an ideal lowpass filter with cutoff frequency 2W so that its output is
0.5A2

c [1 + kam(t)]2. The final box in the detector takes a square-root resulting in an output
signal that is proportional to m(t) with a DC offset. In many cases, the baseband message
has no spectral components around zero frequency and the DC offset can be removed by a
simple highpass filter.

5.2.2 Hilbert Transforms and the Complex Envelope

Another type of envelope detector is based on the Hilbert transform. These transforms are
used extensively for analysis and signal processing in passband communication systems. Let
x(t) be a signal with Fourier transform X(ω). The Hilbert transform of x(t) will be denoted
by x̂(t) and its Fourier transform by X̂(ω). In the time-domain, the Hilbert transform is
defined by the integral

x̂(t) = x(t) ∗ 1

πt
=

1

π

∫ ∞

−∞

x(τ)

t − τ
dτ (5.17)

where ∗ represents convolution. Thus, the Hilbert transform of a signal is obtained by passing
it through a filter with the impulse response

h(t) =
1

πt
(5.18)

It can be shown that

H(ω) = −j sign ω =

⎧⎪⎨
⎪⎩

−j for ω > 0
0 for ω = 0
j for ω < 0

(5.19)
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The Hilbert transform filter is an ideal 90◦ phase shifter. Therefore, in the frequency domain

X̂(ω) = H(ω)X(ω) = (−j sign ω) X(ω) (5.20)

The following Hilbert transform pairs will be useful:

cos ωct
H

=⇒ sin ωct (5.21)

sin ωct
H

=⇒ − cos ωct (5.22)

cos(ωct + θ)
H

=⇒ cos
(
ωct + θ − π

2

)
(5.23)

Let m(t) be a lowpass signal with cutoff frequency W1 and c(t) a highpass signal with lower
cutoff frequency W2 > W1. Then

m(t)c(t)
H

=⇒ m(t)ĉ(t) (5.24)

The analytic signal or pre-envelope associated with x(t) is defined to be

x+(t) = x(t) + j x̂(t) (5.25)

As an example, the analytic signal associated with x(t) = cos ωct is

x+(t) = cos ωct + j sin ωct = ej ωct (5.26)

As another example, let m(t) be a lowpass signal with cutoff frequency W less than the
carrier frequency ωc. Using (5.24), the analytic signal associated with x(t) = m(t) cos ωct
can be shown to be

x+(t) = m(t) cos ωct + j m(t) sin ωct = m(t)ej ωct (5.27)

Using (5.20), it can be shown that the Fourier transform of the analytic signal is

X+(ω) = 2X(ω)u(ω) =

⎧⎪⎨
⎪⎩

2X(ω) for ω > 0
X(0) for ω = 0

0 for ω < 0
(5.28)

Thus, the analytic signal has a one-sided spectrum, that is, its Fourier transform is 0 for
negative ω.

The complex envelope of a signal x(t) with respect to carrier frequency ωc is defined to
be

x̃(t) = x+(t) e−j ωct (5.29)

and has the Fourier transform

X̃(ω) = X+(ω + ωc) = 2X(ω + ωc)u(ω + ωc) (5.30)



5.3 Laboratory Experiments for AM Modulation and Demodulation 127

When these definitions are used, x(t) is usually a bandpass signal and ωc is a frequency in
the passband. Then x̃(t) is a lowpass signal. As an example, consider the AM signal s(t)
given by (5.1). Its pre-envelope is

s+(t) = Ac[1 + kam(t)]ej ωct (5.31)

and its complex envelope is
s̃(t) = Ac[1 + kam(t)] (5.32)

Motivated by the example in the previous paragraph, we will define the real envelope of
a bandpass signal x(t) to be

e(t) = |x̃(t)| (5.33)

Another equivalent formula for the real envelope is

e(t) = |x+(t)| =
[
x2(t) + x̂2(t)

]1/2
(5.34)

The block diagram of an envelope detector based on (5.34) is shown in Figure 5.4. The
required sampling rates will now be investigated when the detector is implemented by digital
signal processing techniques. If the input signal s(t) is a standard AM signal and the base-
band message m(t) is band limited with cutoff frequency W , then s(t) is band limited with
cutoff frequency W + ωc. Thus, the input to the Hilbert transform filter must be sampled
at a rate of at least 2(W + ωc) to prevent aliasing. The squared envelope is band limited
with cutoff frequency 2W so the decimation technique described for the square-law envelope
detector lowpass filter can be applied to the Hilbert transform filter when it is an FIR fil-
ter. Also, the bound relating ωc and W for the square-law detector is not required for this
detector.
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Figure 5.4: Envelope Detector Using the Hilbert Transform

5.3 Laboratory Experiments for AM Modulation and

Demodulation

In the following experiments, you will use the TMS320C6713 DSK to modulate and demodu-
late AM signals. This should reinforce your theoretical knowledge. For each of the exercises,
initialize the DSK and the TMS320C6713 DSP as in Chapters 2 and 3.
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5.3.1 Experiment 5.1: Making an AM Modulator

1. Initialize McBSP0, McBSP1, and the codec as in Chapters 2 and 3, and use the left
channel.

2. Read samples m(nT ) from the codec at a 16 kHz rate.

Convert the samples into 32-bit integers by shifting them arithmetically right by 16
bits. The resulting integers lie in the range ±215.

3. AM modulate the input samples to form the sequence

s(nT ) = Ac[1 + kam(nT )] cos 2πfcnT

where the carrier frequency is fc = 3 kHz and Ac is a constant chosen to give a reasonable
size output.

• Convert the input samples to floating point numbers and do the modulation using
floating point arithmetic.

• Since the input samples lie in the range ±215, you must choose ka or scale the 1 in
the AM equation so that the signal is not overmodulated.

4. Send s(nT ) to the DAC.

• Convert the modulated samples back into appropriately scaled integers and send
them to the left channel of the DAC using polling.

Observing Your Modulator Output

• Attach the signal generator to the DSK left channel line input and the left channel line
output to the oscilloscope.

• Set the signal generator to output a 320 Hz sine-wave with an amplitude that creates less
than 100% modulation. Calculate and sketch the spectrum of the AM signal.

• Sync the oscilloscope to the signal generator sine wave and sketch the signal you observe
on the oscilloscope. Better yet, use Code Composer Studio to capture the output samples
and write them to a PC file as described in the following subsection. Then plot the file.

• Increase the amplitude of the input signal until the AM signal is overmodulated and plot
the resulting waveform. What is the effect of overmodulation on the spectrum?

• Connect the line output to the speakers of the PC and vary the modulating frequency
fm. You should be able to hear the two sidebands move up and down in frequency as you
sweep fm.

• If you made the spectrum analyzer for Chapter 4, run your AM modulator on one DSK
and the spectrum analyzer on another. Connect the modulator output to the analyzer
input and observe the spectrum as you change the input message frequency, fm. You
should see the sidebands move as fm is changed.
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5.3.2 How to Capture DSK Output Samples with CCS for Plot-
ting

The File I/O feature of Code Composer Studio can be used to transfer blocks of words from
the ’C6713’s memory to a text file on the PC. To do this using the polling method:

• Include a loop inside the usual infinite while(1) or for(;;) loop that writes the integer
output samples to a global array, for example, output[].

• When this inner loop exits, the array is filled and ready to be captured by CCS.

• Immediately after the inner loop, put a dummy statement that involves output[] for a
probe point, for example, dummy = output[0];.

The following code segment illustrates this approach.

Code Segment to Allow Capture

#define BUFFER_SIZE 256

int output[BUFFER_SIZE]; /* Must be global so CCS can see it */

main()

{

/* Initialize DSK, etc. */

while(1)

{

for(i=1; i < BUFFER_SIZE; i++)

{

/* 1. Poll XRDY flag and read new input sample. */

/* 2, Process the sample as desired. */

/* 3. Write output sample to buffer. */

output[i] = processed_sample;

/* 4. Write output sample to codec. */

}

dummy = output[0]; /* Dummy line for probe point */

}

}

Setting Up CCS for Capture

Connect the probe point to the output file by the following steps:

1. Set the probe point in your code.

2. Choose “File → File I/O” from the CCS main menu.

3. In the dialog box that appears, click the “File Output” tab and then “Add File.”

4. Enter the filename of your choice but be sure to choose a file of type “*.dat(Integer).”
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5. Return to the File I/O dialog box. Enter output (or whatever you call your output buffer
array) and its length in the “address” and “length” boxes respectively.

6. Click “Add Probe Point” and the Break/Probe/Profile Points dialog box will appear.

7. Select “[your-source=file.c] line zzz → No Connection” in the Probe Point list.

8. Select “File Out [your-output-file.out ]” in the “Connect To:” drop-down box. Then click
“Replace.” The Probe Point list should be updated appropriately.

9. Click “OK” to close the Probe Points dialog box.

10. Click “OK” to close the File I/O box. The “tape player” window should appear.

11. Push the “play button” on the tape player and run your program. Hit the “stop” button
when you’ve collected enough samples. Note that each time you collect more samples
using the same output filename, the new samples are appended to the file.

NOTE: The first line in the output file contains irrelevant data. After the first line is
removed, the file should be your captured samples, one per line, and can be plotted with
your favorite plotting routine.

5.3.3 Experiment 5.2: Making a Square-Law Envelope Detector

Write a program for the TMS320C6713 to implement the square-law envelope detector shown
in Figure 5.3. Continue to use a 16 kHz sampling frequency. Use the signal generator as the
source of the AM signal s(t). Take the input samples from the ADC, perform the demodu-
lation, and send the demodulated output samples to the DAC. Set the carrier frequency to
3 kHz and assume the baseband message m(t) is band limited with a cutoff frequency of 400
Hz. Use a Butterworth lowpass IIR filter for H(ω) that has an order sufficient to suppress
the unwanted components around 2fc by at least 40 dB.

Assume that m(t) has no spectral components below 50 Hz and remove the DC offset at
the output of the square root box by a simple highpass filter of the form

G(z) =
1 + c

2

1 − z−1

1 − c z−1

where c is a constant slightly less than 1 chosen so that the lowest frequency components of
m(t) are negligibly distorted. Notice that this filter has an exact null at 0 frequency and is
1 at half the sampling rate. Plot the amplitude response of this filter for various c to select
an appropriate value.

Observing the Square-Law Detector Output

Experiment 5.2.1: Demodulating an AM Signal with no Additive Noise

Attach the signal generator to the DSK line input and the oscilloscope to the line output.
Set the signal generator to create an AM wave with a sinusoidal modulating signal with a
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frequency between 100 and 400 Hz. Use a 3 kHz carrier. Sketch or capture and plot the AM
input signal and the output of your demodulator.

Experiment 5.2.2: Demodulating an AM Signal Corrupted by Additive Noise

Experiment demodulating signals corrupted by additive, zero mean, Gaussian noise. The
lab does not have hardware continuous-time noise generators. You will have to simulate the
noise in the DSP using the method described in Appendix A and add the simulated noise
sample to the input signal sample. Use the same sinusoidally modulated AM signal as before.
Start with a large signal-to-noise power ratio (SNR) and decrease it until the demodulator
output is very noisy and barely resembles the message sinusoid. The degradation will increase
relatively smoothly over a range of SNR and you will have to use your judgment as to what
“barely resembles” means. Estimate the SNR in dB at this point.

Hint: To change the SNR, just turn the amplitude knob for the carrier on the signal
generator. Do not change σ in your program and recompile for each new σ! For example,
you can let σ be the constant 1.

Attach the line output to the PC’s speaker input and listen to the noisy demodulated
signal. It may be easier for you to determine when “the demodulator output is very noisy
and barely resembles the message” by listening rather than visually.

To calculate the SNR, you will have to measure the average signal power of the samples
observed inside the DSP. The average noise power is the value of σ2 you set in your noise
generator code. You can estimate the average power of the received AM signal samples by
making the simple power meter shown in Figure 5.5. The constant, a, should be close to
but slightly less than 1 to create a narrow band lowpass filter. Try a = 0.99, for example.
Notice that the gain of the filter at 0 frequency is 1. The lowpass filter generates an estimate
of the true statistical expected value E{s2(n)} by time averaging. Make a loop to run the
power meter for several thousand samples. Put a break point after the loop. Then you can
examine the final value of p(n) with Code Composer Studio when the program halts at the
break point.

� � �
x(n) = s2(n)s(n) p(n) = (1 − a)x(n) + ap(n − 1)

(·)2 1 − a

1 − az−1

Lowpass FilterSquarer

Figure 5.5: A Simple Power Meter

5.3.4 Experiment 5.3: Making an Envelope Detector Using the
Hilbert Transform

Write a program to implement the envelope detector shown in Figure 5.4. Again, assume a
carrier frequency of 3 kHz and a baseband message band limited to 400 Hz.

You can design the Hilbert transform filter with the program remez87.exe. Use an odd
number, N , of filter taps. Good results can be achieved by using just one band with a lower
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cutoff frequency f1 and upper cutoff frequency f2 chosen to pass the AM signal. Choosing
the band to be centered in the Nyquist band also seems to improve the filter amplitude
response generated by remez87.exe. To center the band, choose the upper cutoff frequency
to be f2 = 0.5fs − f1 where fs is the sampling frequency. Enter 1 for the magnitude of the
Hilbert transform in the band and 1 for the weight factor. Select N so that the amplitude
response of the filter is quite flat over the signal passband and ripples in the demodulated
signal caused by incomplete cancellation of the 2fc components are essentially invisible in
the demodulated output.

You can also design the Hilbert transform filter with the program window.exe. Try
using the Hamming and Kaiser windows. You can make a tradeoff between the transition
bandwidth and the out-of-band attenuation with the Kaiser window. Remember that the
filter amplitude response is down by a factor of 2 at the band edges for the window function
method of design. Be sure to choose the cutoff frequencies far enough outside the signal
band so there is little roll-off inside the signal band. Since the impulse response of a Hilbert
transform filter has odd symmetry about the center tap, the frequency response will be
exactly zero at ω = 0 and ωs/2.

The resulting FIR filter will have a delay equal to the delay from the input to the center
tap of the filter, T (N − 1)/2. Therefore, s(nT ) must be delayed by this amount to match
the delay in ŝ(nT ). This can be easily accomplished by taking s(nT ) from the point in the
delay-line of the Hilbert transform filter at its center tap.

Test your envelope detector using the same steps as you did for the square-law detector.

5.4 Additional References

There are many good textbooks on communication systems that include discussions of am-
plitude modulation. For example, see Gibson [II.C.9, Chapter 5], and Haykin [II.D.17,
Chapter 3]. See Haykin [II.D.17, Sections 2.10–2.13] for discussions of the Hilbert transform,
pre-envelope, complex envelope, and applications to bandpass systems.



Chapter 6

Double-Sideband Suppressed-Carrier
Amplitude Modulation and Coherent
Detection

The standard AM modulated signal contains a sinusoidal component at the carrier frequency
which does not convey any of the baseband message information. This component is included
to create a positive envelope which allows demodulation by a simple, inexpensive envelope
detector. From an information theory point of view, the power in the sinusoidal carrier com-
ponent is wasted. In this experiment, you will see that it is not necessary to transmit the
carrier component and that the baseband message can be recovered by a coherent demodula-
tor. In fact, it can be shown that a coherent demodulator performs better than an envelope
detector when the received signal is corrupted by additive noise. The type of modulation
that will be studied in this chapter is called double-sideband suppressed-carrier amplitude
modulation (DSBSC-AM). A close approximation to an ideal coherent demodulator called a
Costas loop will be implemented.

6.1 Mathematical Form for a DSBSC-AM Signal

As usual, let m(t) be a baseband message signal. The DSBSC-AM signal corresponding to
m(t) is

s(t) = Acm(t) cos ωct (6.1)

This is the same as the AM signal except with the sinusoidal carrier component eliminated.
A message m(t) typically has positive and negative values so it can not be recovered from
s(t) by an envelope detector. A demodulation method called coherent demodulation will be
explored in this chapter. The Fourier transform of s(t) is

S(ω) = 0.5AcM(ω − ωc) + 0.5AcM(ω + ωc) (6.2)

This is the same as the AM spectrum but with the discrete line at the carrier frequency
removed. An example is shown in Figure 6.2(b). It will be assumed that m(t) is a lowpass
signal with cutoff frequency W . Then, the carrier frequency must satisfy the bound, ωc > W

133
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so that the two terms on the right-hand side of (6.2) do not overlap as shown in Figure 6.2(b).
When they overlap foldover is said to have occurred and perfect demodulation cannot be
achieved.

When m(t) is a real signal, M(−ω) = M(ω) and

S(ωc − ω) = S(ωc + ω) for 0 ≤ ω ≤ ωc (6.3)

This equation shows that the component at frequency ωc + ω contains exactly the same
information as the component at ωc − ω since one can be uniquely determined from the
other by taking the complex conjugate. The portion of the spectrum for |ω| > ωc is called
the upper sideband and the portion for |ω| < ωc is called the lower sideband. The fact
that the modulated signal contains both portions of the spectrum explains why the term,
double-sideband, is used.

6.2 The Ideal Coherent Receiver

The block diagram for an ideal coherent receiver is shown in Figure 6.1. First, the received
signal is passed through a bandpass filter centered at the carrier frequency that passes the
DSBSC signal and eliminates out-of-band noise. The output of the receive bandpass filter is
then multiplied by a replica of the carrier wave. This replica is generated by a device called
the local oscillator (LO) in the receiver. Assuming no noise, the product is

s1(t) = 2s(t) cos ωct = 2Acm(t) cos2 ωct = Acm(t) + Acm(t) cos 2ωct (6.4)

The device that performs the product is often called a product modulator or balanced mixer.

��
��

� � � �
�

Local
Oscillator

×
s(t) m1(t)s1(t)

2 cos ωct

Bandpass

Receive Filter

Lowpass

Post Detection Filter

Mixer

B(ω) G(ω)

Figure 6.1: Block Diagram of an Ideal Coherent Receiver

The Fourier transform of the product modulator output is

S1(ω) = AcM(ω) + 0.5AcM(ω + 2ωc) + 0.5AcM(ω − 2ωc) (6.5)

and is illustrated in Figure 6.2(c). The first term on the right-hand side of (6.4) is propor-
tional to the desired message. The second term has spectral components centered around



6.2 The Ideal Coherent Receiver 135

−2ωc and 2ωc. The corresponding terms can be seen in S1(ω). The undesired high frequency
terms are eliminated by the final lowpass filter which has cutoff frequency W . This is often
called a post detection filter.
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(a) Fourier Transform of Baseband Message

(b) Fourier Transform of DSBSC-AM Signal

(c) Fourier Transform of Mixer Output

Figure 6.2: Spectra in a DSBSC-AM Communication System

An alternative method of demodulation is to first form the pre-envelope of the received
signal. With no additive noise, this is

s+(t) = s(t) + jŝ(t) = Acm(t) cos ωct + jAcm(t) sin ωct = Acm(t)ejωct (6.6)

The baseband message is then recovered to within a scale factor by forming the complex
product

s+(t)e−jωct = Acm(t) (6.7)
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6.3 The Costas Loop as a Practical Approach to Co-

herent Demodulation

A receiver must have perfect knowledge of the carrier frequency and phase of a received
DSBSC-AM signal to perform exact coherent demodulation, and this is almost never the
case. However, these parameters can be estimated and tracked very accurately at the receiver
by devices called phase-locked loops (PLL’s) so that nearly optimum coherent demodulation
can be achieved. A modification of a type of PLL called a Costas loop is shown in Figure
6.3. This form is particularly suited for DSP implementation and the signals shown in the
figure are discrete-time signals with sampling period T .
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Figure 6.3: Second-Order Costas Loop Demodulator

To add some generality, let the received signal after it has passed through a bandpass
receive filter have the form

s(nT ) = Acm(nT ) cos(ωcnT + θ1) (6.8)

where ωc is the nominal carrier frequency and θ1 is a constant or slowly changing phase
angle. When there is a frequency offset between the nominal and actual carrier frequencies
due to Doppler shifts or misalignment of the transmitter and receiver local oscillators, θ1

takes the form
θ1 = ∆ω nT + γ (6.9)

where ∆ω is the frequency offset and γ is a constant phase offset.
The first step in the system is to form the complex envelope

s+(nT ) = s(nT ) + jŝ(nT ) = Acm(nT )ej(ωcnT+θ1) (6.10)
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The parallel solid and dotted lines in the figure represent complex signals with the solid line
corresponding to the real part and dotted line to the imaginary part.

The system generates an estimate φ(nT ) of the angle of the received signal that can
expressed as

φ(nT ) = ωcnT + θ2(nT ) (6.11)

The method for generating this angle will be explained shortly. It is passed through the
complex exponential box to give the local oscillator signal e−jφ(nT ).

The local oscillator signal is multiplied by the complex envelope resulting in the signal

c(nT ) = s+(nT )e−jφ(nT ) = Acm(nT )ej[θ1−θ2(nT )] (6.12)

which is separated into its real part

c1(nT ) = s(nT ) cos φ(nT ) + ŝ(nT ) sin φ(nT )

= Acm(nT ) cos[θ1 − θ2(nT )] (6.13)

and imaginary part

c2(nT ) = ŝ(nT ) cos φ(nT ) − s(nT ) sin φ(nT )

= Acm(nT ) sin[θ1 − θ2(nT )] (6.14)

The loop is said to be in lock when the phase error θ1−θ2 remains small. When the phase
error is exactly zero, the demodulated message appears at the point labeled c1(nT ) = m1(nT )
and c2(nT ) = 0. A lock detection strategy is to lowpass filter c2

2(nT ) and declare that the
loop is in lock when this signal falls below a threshold for a period of time.

The real and imaginary parts are multiplied, resulting in the signal

q(nT ) = c1(nT )c2(nT ) = A2
cm

2(nT ) cos[θ1 − θ2(nT )] sin[θ1 − θ2(nT )]

= 0.5A2
cm

2(nT ) sin{2[θ1 − θ2(nT )]} (6.15)

Notice that when θ1 and θ2 differ by less than 90 degrees, q(nT ) has the same sign as the
phase error θ1 − θ2, so it indicates in which direction the local phase estimate θ2 should
be changed to reduce the phase error to zero. When the loop is in lock, the small angle
approximation, sinx � x, can be used to accurately approximate q(nT ) by

q(nT ) � A2
cm

2(nT )[θ1 − θ2(nT )] for |θ1 − θ2(nT )|  1 (6.16)

The lower half of the block diagram generates the loop’s estimate of the phase of the
received signal by computing

φ((n + 1)T ) = φ(nT ) + ωcT + αq(nT ) + σ(nT ) (6.17)

where
σ(nT ) = βq(nT ) + σ((n − 1)T ) (6.18)

and α and β are small positive constants with β < α/50, typically. The basic philosophy
behind these equations is that at each new sampling instant the loop’s phase estimate is
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incremented by the nominal change in carrier phase between samples, ωcT , plus a small
correction term αq(nT ) roughly proportional to the phase error. Notice that when q(nT ) = 0
for all n, φ(nT ) is the linear ramp

φ(nT ) = ωcnT + φ(0) (6.19)

which has a slope equal to the nominal carrier frequency.
The accumulator block β/(1− z−1) is included to allow the loop to track a carrier input

phase θ1(nT ) that is a linear ramp with zero steady-state error. The input phase has this
form when there is a frequency offset between the received and local carrier frequencies. This
block along with the rest of the lower branch introduces a second-order pole at z = 1 in the
open loop gain which is equivalent to a double accumulation in the time-domain. It is well
known in automatic control theory that a loop with the double accumulation can track a
first-order input polynomial (linear ramp) with zero steady-state error while with a single
accumulation it cannot. The output σ(nT ) of the accumulator reaches the steady-state value
∆ω T which is the phase change between samples caused by the frequency offset ∆ω.

The Costas loop is a nonlinear and time-varying system because of the sin() and m2(nT )
terms in q(nT ). Therefore, it cannot be characterized by a transfer function. However, when
m(nT ) is a stationary process and the loop is in lock, it can be accurately approximated by
a linear, time-invariant system by using the small angle approximation (6.16) and replacing
m2(nT ) by its expected value. Replacing m2(nT ) by its expected value can be justified by
the fact that the loop filters act as lowpass filters on q(nT ) resulting in a time-averaged
estimate of its statistical mean. Let

k1 = A2
c E{m2(nT )} (6.20)

and further approximate q(nT ) by

q(nT ) � k1[θ1 − θ2(nT )] (6.21)

These approximate equations can be represented by the linearized loop shown in Figure 6.4.
The transfer function for the linearized loop is

H(z) =
Θ2(z)

Θ1(z)
=

k1(α + β)
(
1 − α

α+β
z−1

)
z−1

1 − [2 − k1(α + β)]z−1 + (1 − k1α)z−2
(6.22)

The frequency response is obtained by letting z = ejωT and has the shape of a narrowband
lowpass filter for small α and β. The closed loop gain at zero frequency is H(1) = 1.

6.4 Exercises and Experiments for the Costas Loop

Now it is time for you to design, implement, and test a Costas loop coherent receiver. The
continuous-time modulated input signal for your receiver can be generated by the signal
generator. The signal generator should be set to generate an output voltage of the form

s(t) = Acm(t) cos 2πfct (6.23)
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Figure 6.4: Linearized Costas Loop

where

Ac = 1
m(t) = 1 + 0.4 cos 2πfmt
fc = 4000 Hz
fm = 400 Hz

Actually, s(t) is an AM signal with modulation index µ = 0.4. However, it can also be
considered to be a DSBSC-AM signal with m(t) containing a DC value and all the theory
for the Costas loop still holds.

6.4.1 Theoretical Design Exercises

In these exercises you will do theoretical computations to select the Costas loop parameters
for a reasonable design. Do the following steps:

1. Compute k1 by (6.20).

2. Choose some small values for the loop filter constants, for example, α = 0.01 and β =
0.0002. You will find that β should be small relative to α, perhaps, less than α/50, to
get a transient response without excess ripple. Recursively compute the response of the
linearized loop to a unit step in θ1(nT ) using the following formula which is based on
(6.22):

θ2(nT ) = k1[(α + β)θ1((n − 1)T ) − αθ1((n − 2)T )] + [2 − k1(α + β)]θ2((n − 1)T )

− (1 − k1α)θ2((n − 2)T )

Continue the computations until θ2(nT ) gets close to its final value and plot the result.
Repeat this step for different values of α and β until you find a pair for which the step
response settles to its final value in about 0.2 seconds.

3. Compute and plot the closed loop amplitude response A(f) = 20 log10 |H(ej2πf/fs)| for
the values of α and β finally selected in the previous step.
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6.4.2 Hardware Experiments

Write a C program for the TMS320C6713 to perform the following steps. Keep in mind
that the input samples are 16-bit two’s complement integers in the range ±215 so that once
you have converted them to floats, you will have to scale them appropriately to match your
theoretical design.

1. Initialize the DSK as in Chapter 2.

2. Read samples from the ADC at a 16 kHz sampling rate.

3. Demodulate the input signal with a Costas loop. Remember that the VCO phase angle,
φ(nT ), essentially increases linearly but could, possibly, become negative. Make sure
to add or subtract multiples of 2π to keep φ(nT ) in the range [0, 2π) to eliminate any
overflow problems.

4. Send the demodulated signal samples to the DAC.

To test your Costas loop demodulator, do the following:

1. Connect the signal generator to the line input and set it to generate the AM signal s(t)
defined above. Connect the DAC output to the oscilloscope and debug your DSP program
if the output is not m(t).

2. Once your coherent demodulator is working properly, investigate its performance in the
presence of a frequency offset. First set the signal generator carrier frequency to the
nominal 4 kHz value and let your loop achieve lock. Then slowly change the carrier
frequency to a slightly different value and see if the loop remains locked. You may need
to increase α and β to make the loop bandwidth large enough so that the loop can track
at the speed you turn the frequency knob. The loop should be able to track frequency
offsets up to the point where the input signal spectrum falls off the edges of the Hilbert
transform filter.

Use Code Composer Studio to watch σ(nT ) in your DSP program and check that it has
the correct steady-state value for the frequency offset you are using.

3. The linearized equations describe the loop behavior accurately when it is in lock. When
there is a large initial frequency offset, the behavior is quite different. Experimentally
investigate this behavior by setting the signal generator carrier frequency to a value that
differs by 30 Hz or more from the nominal 4 kHz value and starting the Costas loop. The
loop may take a much longer time than you expected to achieve lock. This is called its
pull in behavior.

4. Experiment demodulating signals corrupted by additive, zero mean, Gaussian noise. Use
the approach described on page 131 of Chapter 5. In particular, observe the behavior
of the coherent demodulator as the signal-to-noise ratio is decreased and make a rough
estimate of the SNR at which the demodulator no longer works. If your loop was designed
properly, it should work at lower SNR’s than the envelope detectors.
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Connect the line output to the PC’s speakers and listen to the demodulated signal as the
SNR is changed. Compare the sound with the envelope detector noisy outputs.

5. If you are interested in doing more and time permits, set up an array and write the first
few hundred samples of q(nT ) to the array. Do not add noise to the input samples. Then
send the array to the PC and plot the resulting signal to get a clearer picture of the loop
transient response. You can also do this with other signals in the loop.

6.5 Additional References

For more complete presentations of DSBSC-AM, see Gibson [II.D.9, Chapter 5] and Haykin
[II.D.17, Chapter 3]. For Costas loop discussions see Gibson [II.D.9, Section 8.8], Gitlin,
Hayes, and Weinstein [II.D.11, Section 6.3], and Stiffler [II.D.34, Section 8.5]. To my knowl-
edge, the modified Costas loop structure shown in this experiment cannot be found in other
textbooks.



Chapter 7

Single-Sideband Modulation and
Frequency Translation

AM and DSBSC-AM modulation do not use the frequency spectrum efficiently. Their spec-
tral components equal distances above and below the carrier frequency contain identical
information because they are complex conjugates of each other. The portion above the car-
rier frequency is called the upper sideband and the portion below the lower sideband. In
this experiment you will see how a baseband message can be transmitted by using only one
of the sidebands and, consequently, half the bandwidth of AM or DSBSC-AM. This type
of modulation is called single-sideband (SSB) modulation. It has been extensively used in
many radio transmission systems and in the telephone network.

Translating the frequency spectrum of a signal is closely related to SSB modulation and
is commonly used at various points in communication systems. A technique for frequency
translation particularly suited to DSP implementations will be described in this experiment.
No frequency translation experiments will be performed since it is actually the same as upper
sideband SSB modulation.

7.1 Single-Sideband Modulators

An obvious type of SSB modulator is shown in Figure 7.1. As usual, we will assume that the
baseband message signal m(t) is band limited with a cutoff frequency W which is less than
the carrier frequency ωc. The first stage of this modulator generates the DSBSC-AM signal

a(t) = Acm(t) cos ωct (7.1)

which has the Fourier transform

A(ω) = 0.5AcM(ω − ωc) + 0.5AcM(ω + ωc) (7.2)

and is centered around the carrier frequency ωc.
The DSBSC-AM signal is then passed through the filter H(ω) to select the desired side-

band. Upper sideband SSB modulation is created with the ideal highpass filter

Hu(ω) =

{
1 for |ω| > ωc

0 elsewhere
(7.3)
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Figure 7.1: SSB Modulation by Combining DSBSC-AM and Filtering

and the lower sideband SSB modulation by the ideal lowpass filter

H�(ω) =

{
1 for |ω| < ωc

0 elsewhere
(7.4)

It will now be shown that an SSB signal can be expressed in terms of the baseband
message m(t) and its Hilbert transform m̂(t). The pre-envelope of the SSB signal has the
transform

S+(ω) = 2S(ω)u(ω) = 2A(ω)H(ω)u(ω) = AcM(ω − ωc)H(ω) (7.5)

and the transform of its complex envelope is

S̃(ω) = S+(ω + ωc) = AcM(ω)H(ω + ωc) (7.6)

Now consider the upper sideband case. On substituting Hu(ω) for H(ω) in (7.6), it can
be seen after a little thought that

S̃(ω) = AcM(ω)u(ω) = 0.5AcM(ω)(1 + signω)

= 0.5AcM(ω)[1 + j(−jsign ω)] = 0.5AcM(ω) + j0.5AcM̂(ω) (7.7)

So, the complex envelope is
s̃(t) = 0.5Ac[m(t) + jm̂(t)] (7.8)

Therefore, the SSB signal can be expressed as

s(t) = �e{s̃(t)ejωct} = 0.5Acm(t) cos ωct − 0.5Acm̂(t) sin ωct (7.9)

Similarly, in the lower sideband case, it follows that the transform of the complex envelope
is

S̃(ω) = AcM(ω)u(−ω) = 0.5AcM(ω)(1 − sign ω)

= 0.5AcM(ω)[1 − j(−jsign ω)] = 0.5AcM(ω) − j0.5AcM̂(ω) (7.10)

Therefore, the complex envelope is

s̃(t) = 0.5Ac[m(t) − jm̂(t)] (7.11)

The corresponding SSB signal is

s(t) = �e{s̃(t)ejωct} = 0.5Acm(t) cos ωct + 0.5Acm̂(t) sin ωct (7.12)

Equations (7.9) and (7.12) suggest the SSB modulator structure shown in Figure 7.2.
Upper or lower sideband selection is accomplished by simply changing the sign of the input
to the lower side of the output adder.
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Figure 7.2: A Single-Sideband Modulator Using a Hilbert Transform

7.2 Coherent Demodulation of SSB Signals

One approach to demodulating SSB signals is to first multiply the received signal by a locally
generated replica of the carrier signal. Multiplying (7.9) or (7.12) by 2 cosωct yields

b(t) = Acm(t) cos2 ωct ∓ Acm̂(t) sin ωct cos ωct

= 0.5Acm(t) + 0.5Acm(t) cos 2ωct ∓ 0.5Acm̂(t) sin 2ωct (7.13)

The first term on the right-hand side of (7.13) is proportional to the desired message. The
second and third terms have spectra centered about 2ωc and can be removed by passing b(t)
through a lowpass filter with cutoff frequency W . The effect in the frequency domain of
multiplying by cosωct in the time domain is to shift S(ω) to the right and left by ωc and
take the sum. This translates the sidebands around ±ωc down to baseband and forms M(ω)
which is the desired term and also translates them up to ±2ωc which are the terms removed
by the lowpass filter. A block diagram for this demodulator has the same form as Figure
7.1 except with the input m(t) replaced by the received signal s(t) and the filter H(ω) by a
lowpass filter. In practice, this system should be preceded by a bandpass filter that passes
s(t) and eliminates out-of-band noise.

Another SSB demodulator that uses a Hilbert transform and is well suited to DSP im-
plementation will now be described. The first step is to take the Hilbert transform of the
received signal s(t) and form the pre-envelope. Using (7.8) and (7.11), the pre-envelope can
be expressed as

s+(t) = s(t) + jŝ(t) = s̃(t)ejωct = 0.5Ac[m(t) ± jm̂(t)]ejωct (7.14)

where the plus sign is for upper sideband and the minus sign is for lower sideband modulation.
Multiplying the pre-envelope by e−jωct generates the complex envelope

s̃(t) = s+(t)e−jωct = 0.5Ac[m(t) ± jm̂(t)] (7.15)
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In the frequency domain, this translates the transform of the pre-envelope down to baseband.
Taking the real part of this complex signal gives

0.5Acm(t) = �e{s+(t)e−jωct} = �e{[s(t) + jŝ(t)][cos ωct − j sin ωct]}
= s(t) cos ωct + ŝ(t) sin ωct (7.16)

which is proportional to the desired message signal. This demodulator requires taking a
Hilbert transform but does not require filtering out terms at twice the carrier frequency.
Figure 7.2 is also a block diagram for a demodulator that implements (7.16) if the input
m(t) is replaced by the received signal s(t), the cosine and sine amplitudes are set to 1, and
the plus sign is chosen at the output adder. In practice, the demodulator would be preceded
by an bandpass filter that passes the signal components and rejects out-of-band noise.

These two demodulators assume that the receiver has perfect knowledge of the received
carrier frequency and phase. Unfortunately, this information cannot be derived by a system
like the Costas loop because the SSB signal is the sum of an inphase component m(t) cos ωct
and a quadrature component m̂(t) sin ωct. It can be shown that when the demodulator’s
frequency is correct but the phase is in error, the demodulated output is a phase shifted ver-
sion of the transmitted message. Since the human ear is relatively insensitive to phase, this
does not degrade voice or music. However, the phase offset can cause unacceptable degrada-
tion when the shape of the message must be maintained like in digital data communication
systems. A frequency error results in a demodulated signal which has all its spectral com-
ponents shifted by this error. A standard approach to solving this problem is to add a small
sinusoidal component called a pilot tone whose frequency is not in the SSB signal band and
has a known relationship to the carrier frequency. The pilot tone frequency is often chosen
to be the carrier frequency when the baseband message signal has no DC components. The
receiver can then generate a local carrier reference by using a narrow bandwidth bandpass
filter to select the pilot tone and possibly following this filter by a phase-locked loop.

7.3 Frequency Translation

The spectrum of a bandpass signal must often be translated from one center frequency to
another in communication systems. One reason is to place the signal spectrum in an allocated
channel. Several messages can be multiplexed together by shifting them to non-overlapping
adjacent spectral bands and transmitting the sum of the resulting signals. This is called
frequency division multiplexing (FDM). Another reason is to correct for carrier frequency
offsets caused by oscillator inaccuracies or Doppler shifts. Of course, AM, DSBSC-AM,
and SSB modulators translate signal spectra from baseband to passband and the coherent
demodulators do the reverse.

A method for frequency translation that is well suited to DSP applications will now be
described. Let s(t) be a bandpass signal with the frequency ω0 somewhere in its passband.
The problem is to translate the spectrum so that ω0 is moved to ω1 = ω0 + ∆ω. The first
step is to form the pre-envelope

s+(t) = s(t) + jŝ(t) (7.17)
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The corresponding Fourier transform is

S+(ω) = 2S(ω)u(ω) (7.18)

The next step is to multiply by a complex exponential with frequency ∆ω to get

r+(t) = s+(t)ej∆ωt = [s(t) + jŝ(t)][cos ∆ωt + j sin ∆ωt] (7.19)

which has the transform

R+(ω) = S+(ω − ∆ω) (7.20)

This translates the original spectrum to the right by ∆ω and moves the value at ω0 to the
frequency ω1. Taking the real part of r+(t) gives the desired translated signal

r(t) = s(t) cos ∆ωt − ŝ(t) sin ∆ωt (7.21)

The real part of r+(t) can also be expressed as

r(t) = [r+(t) + r̄+(t)]/2 (7.22)

so its Fourier transform is

R(ω) = [R+(ω) + R̄+(−ω)]/2

= S(ω − ∆ω)u(ω − ∆ω) + S̄(−ω − ∆ω)u(−ω − ∆ω) (7.23)

Figure 7.2 is also the block diagram for a frequency translator if the input m(t) is replaced
by the bandpass signal s(t), the frequency ωc is replaced by ∆ω, 0.5Ac is replaced by 1, and
the negative sign is used at the output adder. Because frequency translation is functionally
the same as upper sideband SSB modulation with the appropriate carrier frequency, no
translation experiments will be performed.

Notice that (7.21) can be used even when the passband of the translated signal overlaps
that of the original signal. To do this using real signals would require a double conversion
process where the signal is first shifted to a non-overlapping band by multiplying by cosω3t
and selecting the upper sideband with a highpass filter and then repeating the process to
translate the spectrum back to the desired frequency. This is generally not as convenient as
(7.21) for DSP applications.

7.4 Laboratory Experiments

Initialize the DSP and codec as in Chapter 2 for the following SSB experiments. Once again,
you will be using a sampling rate of fs = 1/T = 16 kHz. The DSP will be programmed
to both generate and demodulate SSB signals since the lab does not have a hardware SSB
signal generator.
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7.4.1 Experiment 7.1: Making an SSB Modulator

Perform the following tasks to make and test an SSB modulator:

• Initialize the DSP and codec for a 16 kHz sampling rate.

• Write a program to implement the SSB modulator shown in Figure 7.2. Implement both
the upper and lower sideband modulators. Take the message samples m(nT ) from the
ADC. Send the modulated signal samples to the DAC. Use the carrier frequency fc = 4
kHz and an amplitude Ac that scales the output samples appropriately for the codec. Be
sure to match the delay introduced by your Hilbert transform filter.

• Attach the signal generator to the line input and set it to generate a 1200 Hz sine wave.

• Determine the theoretical formulas for the transmitted SSB signals for both the upper
and lower sideband cases with the input m(t) = Am cos 2π1200 t.

• Observe the signals generated by your modulator on the scope for both cases and compare
them with the theoretical ones.

• Vary the frequency of m(t) from 0 to 4 kHz and observe s(t) on the scope. Report what
happens to the frequency of s(t) for both the upper and lower sideband modulators.

• Next add a pilot tone p(t) = Ap cos 2πfct to the SSB output signal to provide a carrier
reference for the demodulator you will make next. Use your judgment in choosing the
value for Ap.

7.4.2 Experiment 7.2: Coherent Demodulation of an SSB Signal

In this exercise you will make a demodulator for the SSB signal with the added pilot tone.
A block diagram of one possible demodulator structure is shown in Figure 7.3. The input
signal s(nT ) is passed through a highpass filter G(ω) that rejects the pilot tone but passes
the SSB component in the upper sideband case. G(ω) should be replaced by a lowpass filter
that passes the SSB signal and rejects the pilot tone in the lower sideband case. A notch
filter could also be used to eliminate the pilot tone. The resulting signal is passed through
a Hilbert transform filter to form the pre-envelope.

The portion enclosed by dotted lines is a pair of bandpass filters that extract replicas of
the pilot tone and its −90◦ phase shift. The transfer functions of these two filters are

B1(z) =
(1 − r)(1 − rz−1 cos ωcT )

1 − 2rz−1 cos ωcT + r2z−2
(7.24)

and

B2(z) =
(1 − r)rz−1 sin ωcT

1 − 2rz−1 cos ωcT + r2z−2
(7.25)

The denominators of these filters have the factorization

1 − 2rz−1 cos ωcT + r2z−2 = (1 − rejωcT z−1)(1 − re−jωcT z−1) (7.26)
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Figure 7.3: Using a Pilot Tone in SSB Demodulation

Thus the filter poles are at z = re±jωcT . The quantity r is a number slightly less than 1 and
controls the bandwidth of the filters. The closer it is to 1, the narrower the bandwidth.

The pre-envelope is then demodulated by the recovered complex carrier reference and
the real part is taken to give the output signal a(nT ). Let the signal input to the multiplier
be v(nT ) = v1(nT ) + jv2(nT ). Then

a(nT ) = �e{v(nT )[c1(nT ) − jc2(nT )]} = v1(nT )c1(nT ) + v2(nT )c2(nT ) (7.27)

Theoretical Exercise

Prove that at the carrier frequency ωc and when r is very close to 1, the transfer functions
of the pilot tone extraction filters are approximately

B1(e
jωcT ) � 0.5 (7.28)

and
B2(e

jωcT ) � −0.5j (7.29)

By trial and error, choose a value of r that gives roughly a 50 Hz 3 dB bandwidth. A
value too close to 1 can cause significant computational problems because of the high internal
gain of the filter which results in numerical overflows and, possibly, instability. A too small
value will make the bandwidth too large and the filter will not sufficiently attenuate the
unwanted signal components.
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Experimental Demodulator Exercises

Perform the following tasks to make and test your SSB demodulator:

1. Write a program to implement the demodulator discussed above and shown in Figure 7.3.

2. Now pipe the samples generated by your modulator program directly to your demodulator
program internally within the DSP. Write the demodulator output samples to the DAC
and check that it is working properly by observing the output on the oscilloscope.

3. Vary the message frequency and check that your modulator and demodulator are working
correctly.

4. When your demodulator is working, send the modulator samples to the left channel DAC
output. Connect the left channel analog output to the left channel input. Demodulate
the left channel input and write the demodulated output samples to the right channel
output. Observe the modulated signal (left channel output) and demodulated signal
(right channel output) on the scope.

7.5 Additional References

For more complete discussions of SSB modulation and a generalization known as vestigial
sideband (VSB) modulation see Gibson [II.D.9, Sections 5.4 and 5.5] and Haykin [II.D.17,
Sections 3.5–3.9].



Chapter 8

Frequency Modulation

Frequency modulation (FM) was invented and commercialized after amplitude modulation.
Its main advantage is that it is more resistant to additive noise than AM. In addition to
commercial radio, it is used as a component of television signals, for satellite and microwave
communications, and for digital data transmission. In this chapter the basic theory of
FM modulation and demodulation will be presented and you will implement two types of
demodulators, the frequency discriminator and the phase-locked loop.

8.1 The FM Signal and Some of its Properties

8.1.1 Definition of Instantaneous Frequency and the FM Signal

An FM signal is generated by using the baseband message signal to change the instantaneous
frequency of a carrier sinusoid rather than its amplitude. The instantaneous frequency of a
sinusoid cos θ(t) is defined to be

ω(t) =
d

dt
θ(t) (8.1)

This definition can be justified by observing that when θ(t) = ωct, its derivative is ωc which is
the frequency of cos ωct. The instantaneous frequency of an FM wave with carrier frequency
ωc is related to the baseband message m(t) by the equation

ω(t) = ωc + kωm(t) (8.2)

where kω is a positive constant called the frequency sensitivity. An oscillator whose frequency
is controlled by its input m(t) in this manner is called a voltage controlled oscillator. The
angle of the FM signal, assuming the value is 0 at t = 0, is

θ(t) =
∫ t

0
ω(τ) dτ = ωct + θm(t) (8.3)

where

θm(t) = kω

∫ t

0
m(τ) dτ (8.4)
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is the carrier phase deviation caused by m(t). The FM signal generated by m(t) is

s(t) = Ac cos[ωct + θm(t)] (8.5)

A discrete-time approximation to the FM wave can be obtained by replacing the integral
by a sum. The approximate phase angle is

θ(nT ) =
n−1∑
k=0

ω(kT )T = ωcnT + θm(nT ) (8.6)

where

θm(nT ) = kωT
n−1∑
k=0

m(kT ) (8.7)

The total carrier angle can be computed recursively by the formula

θ(nT ) = θ((n − 1)T ) + ωcT + kωTm((n − 1)T ) (8.8)

The resulting FM signal sample is

s(nT ) = Ac cos θ(nT ) (8.9)

8.1.2 Single Tone FM Modulation

A simple formula for the Fourier transform of the FM wave in terms of the transform of the
baseband message like that for the AM wave does not exist. However, in the special case of
the sinusoidal message m(t) = Am cos ωmt interesting results can be derived. This is called
single tone FM modulation. The FM wave generated by this message is

s(t) = Ac cos

(
ωct +

kωAm

ωm

sin ωmt

)
(8.10)

The modulation index for this FM signal is defined as

β =
kωAm

ωm

=
peak frequency deviation

modulating frequency
(8.11)

An example for β = 5, fm = 100 Hz, and fc = 1 kHz is shown in Figure 8.1. Observe how
the oscillations are fastest when m(t) is at its positive peak and slowest at its negative peak.

It can be shown [II.D.17, p. 163] that s(t) has the series expansion

s(t) = Ac

∞∑
n=−∞

Jn(β) cos[(ωc + nωm)t] (8.12)

where Jn(x) is the n-th order Bessel function of the first kind and is the value of the following
integral:

Jn(x) =
1

2π

∫ π

−π
e−j(nτ−x sin τ) dτ (8.13)
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Figure 8.1: Example for fc = 1 kHz, fm = 100 Hz, fs = 80 kHz, β = 5

These functions can be computed by the series

Jn(x) =
∞∑

m=0

(−1)m

(
1
2
x
)n+2m

m!(n + m)!
(8.14)

More properties of the Bessel functions can be found in [II.D.17, Appendix 4] and plots of
the first few functions are shown on page 164 of the same reference.

Clearly, the spectrum of the FM signal is much more complex than that of the AM signal.
It has components at the infinite set of frequencies {ωc + nωm; n = −∞, · · · ,∞}. Plots of
the spectra for various β can be found in [II.D.17] as well as most other undergraduate
communication systems textbooks. The sinusoidal component at the carrier frequency has
amplitude J0(β) and can actually become zero for some β.
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8.1.3 Narrow Band FM Modulation

Another case where interesting results can be derived occurs when |θm(t)|  1 for all t and is
called narrow band FM. Using the approximations that cosx � 1 and sin x � x for |x|  1,
the FM signal can be approximated as follows:

s(t) = Ac cos[ωct + θm(t)] = Ac cos ωct cos θm(t) − Ac sin ωct sin θm(t)

� Ac cos ωct − Acθm(t) sin ωct (8.15)

or in complex notation
s(t) � Ac�e

{
ejωct[1 + jθm(t)]

}
(8.16)

This is similar to the AM signal except that the discrete carrier component Ac cos ωct is 90◦

out of phase with the sinusoid Ac sin ωct multiplying the phase angle θm(t). The spectrum
of narrow band FM is similar to that of AM. This narrow band approximation is sometimes
used in analog FM modulators along with a frequency multiplier. However, with DSP
implementations there is little reason not to use (8.9) to generate a true FM signal.

8.1.4 The Bandwidth of an FM Signal

In general, an exact simple formula for the bandwidth of an FM signal does not exist. The
bandwidth depends on the form of the baseband message and the peak frequency deviation.
The following formula, known as Carson’s rule, is often used as an estimate of the bandwidth:

BT = 2(∆f + fm) Hz (8.17)

where

∆f is the peak frequency deviation

and

fm is the maximum frequency at which the baseband message has a component.

For example, commercial FM signals use a peak frequency deviation of ∆f = 75 kHz and
a maximum baseband message frequency of fm = 15 kHz. Carson’s rule estimates the FM
signal bandwidth as BT = 2(75 + 15) = 180 kHz which is six times the 30 kHz bandwidth
that would be required for AM modulation.

8.2 FM Demodulation by a Frequency Discriminator

A frequency discriminator is a device that converts a received FM signal into a voltage that
is an estimate of the instantaneous frequency of its input without using a local oscillator
and, consequently, in a noncoherent manner. Typically, the conversion is performed in
analog discriminators by applying the FM signal to a bandpass filter with a relatively wide
bandwidth and a center frequency that is shifted somewhat from the FM carrier frequency
so that the instantaneous frequency of the input signal falls in a band on one side of the
filter’s amplitude peak where the response is monotonically increasing or decreasing. When
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the instantaneous frequency changes slowly relative to the time-constants of the filter, its
output is approximately an FM signal with the same instantaneous frequency but with an
envelope that varies according to the amplitude response of the filter at the instantaneous
frequency. This approximation is called quasi-static analysis. The amplitude variations are
then detected with an envelope detector like the ones used for AM demodulation. The block
diagram of a very elementary discriminator is shown in Figure 8.2. In a more advanced
discriminator, the input FM signal s(t) is applied to a second bandpass filter with a center
frequency of f1 = fc + ∆ so the instantaneous frequency of s(t) varies to the left of f1 and
the amplitude variations of the filter output are in the opposite direction of those of the first
filter. The envelope of the output of the first filter is subtracted from that of the second filter
to get the discriminator output. If the amplitude responses have the same shapes relative to
their center frequencies and are symmetric about their center frequencies, the discriminator
output will be zero when the input frequency is at the carrier frequency, positive when it
is above, and negative when below. The filters can be designed to result in a discriminator
output that is almost linearly related to the deviation of the input frequency from the carrier
frequency over an adequately wide range.

Bandpass
Filter

f0 = fc − ∆

Envelope
Detector

� � �
s(t) m0(t)

fc
f

f0

|G(f)|

Figure 8.2: An Elementary Discriminator

8.2.1 An FM Discriminator Using the Pre-Envelope

Rather than implementing a filter and envelope detector as shown in Figure 8.2, a better
approach for DSP applications is make a discriminator based on using the pre-envelope.
When θm(t) is sufficiently small and band-limited so that cos θm(t) and sin θm(t) are essen-
tially band-limited signals with cutoff frequencies less than ωc, it can be shown that the
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pre-envelope of the FM signal is

s+(t) = s(t) + jŝ(t) = Ace
j[ ωct+θm(t)] (8.18)

The angle of the pre-envelope is

ϕ(t) = arctan[ŝ(t)/s(t)] = ωct + θm(t) (8.19)

The derivative of the phase is

d

dt
ϕ(t) =

s(t)
d

dt
ŝ(t) − ŝ(t)

d

dt
s(t)

s2(t) + ŝ2(t)
= ωc + kωm(t) (8.20)

which is exactly the instantaneous frequency. This equation can be approximated for a
discrete-time implementation by using FIR filters to form the derivatives and Hilbert trans-
form. Notice that the denominator is the squared envelope of the FM signal.

The bandwidth of this and other FM discriminators must be at least as great as that of
the received FM signal. Thus, the required bandwidth is usually significantly greater than
that of the baseband message. This limits the degree of noise reduction that can be achieved
by preceding the discriminator by a bandpass receive filter.

8.2.2 A Discriminator Using the Complex Envelope

A discriminator using the complex envelope also can be derived. The complex envelope for
the FM signal is

s̃(t) = s+(t)e−jωct = sI(t) + j sQ(t) = Ace
jθm(t)

The angle of the complex envelope is

ϕ̃(t) = arctan[sQ(t)/sI(t)] = θm(t)

and the derivative of the phase is

d

dt
ϕ̃(t) =

sI(t)
d

dt
sQ(t) − sQ(t)

d

dt
sI(t)

s2
I(t) + s2

Q(t)
= kωm(t)

which is proportional to the message signal and has no added constant term.
A block diagram for implementing this discriminator is shown in Figure 8.3. First the

pre-envelope is formed and demodulated to get the complex envelope whose real part is
the inphase component and imaginary part is the quadrature component. The inphase
and quadrature components are both lowpass signals. Therefore, the frequency response
of the differentiators must approximate jω over a band centered around ω = 0 out to the
cut-off frequency for the I and Q components. If the differentiators are implemented as
FIR filters, their amplitude responses will automatically pass through 0 at the origin and
excellent designs can be achieved. Notice how the delays through the Hilbert transform
filter and differentiation filter are matched by taking signals out of the center taps. In
the discriminator using the pre-envelope, the differentiators must be approximate jω over
a passband centered around the carrier frequency and it is harder to make these bandpass
differentiators.
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Figure 8.3: Discrete-Time Discriminator Realization Using the Complex Envelope

8.3 Using a Phase-Locked Loop for FM Demodulation

A device called a phase-locked loop (PLL) can be used to demodulate an FM signal with better
performance in a noisy environment than a frequency discriminator. The block diagram of
a discrete-time version of a PLL is shown in Figure 8.4. It is similar to the Costas loop.

The PLL input shown in the figure is the noiseless FM signal

s(nT ) = Ac cos[ωcnT + θm(nT )] (8.21)

as described by (8.6) through (8.9). This input is passed through a Hilbert transform filter
to form the pre-envelope

s+(nT ) = s(nT ) + jŝ(nT ) = Ace
j[ωcnT+θm(nT )] (8.22)

The pre-envelope is multiplied by the output of the voltage controlled oscillator (VCO)
block. The phase of the VCO one sample into the future is the input to the z−1 block which
is described by the equation

φ((n + 1)T ) = φ(nT ) + ωcT + kvTy(nT ) (8.23)

Starting at n = 0 and iterating the equation, it follows that

φ(nT ) = ωcnT + θ1(nT ) (8.24)

where

θ1(nT ) = θ(0) + kvT
n−1∑
k=0

y(kT ) (8.25)
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Figure 8.4: A Discrete-Time Phase-Locked Loop

The VCO output is

v(nT ) = e−jφ(nT ) = e−j[ωcnT+θ1(nT )] (8.26)

The multiplier output is

p(nT ) = Ace
j[θm(nT )−θ1(nT )] (8.27)

The phase error between the angle of the FM input signal and the VCO output is the
angle of the multiplier output p(nT ) and can be computed as

θm(nT ) − θ1(nT ) = arctan

[�m{p(nT )}
�e{p(nT )}

]
(8.28)

This is shown in the figure as being computed by the C library function atan2(y,x) which is
a four quadrant arctangent and gives angles between −π and π. The block consisting of the
multiplier and arctan function is called a phase detector.

A less accurate, but computationally simpler, estimate of the phase error when the error
is small is

�m{p(nT )} = ŝ(nT ) cos[ωcnT + θ1(nT )] − s(nT ) sin[ωcnT + θ1(nT )]

= Ac sin[θm(nT ) − θ1(nT )] � Ac[θm(nT ) − θ1(nT )] (8.29)

The phase detector output is applied to the loop filter which has a transfer function of
the form

H(z) = α +
β

1 − z−1
= (α + β)

1 − α
α+β

z−1

1 − z−1
(8.30)
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The accumulator portion of the loop filter which has the output σ(nT ) enables the loop
to track carrier frequency offsets with zero error. It will be shown shortly that the output
y(nT ) of the loop filter is an estimate of the transmitted message m(nT ).

The PLL is a nonlinear system because of the characteristics of the phase detector. If the
discontinuities in the arctangent are ignored, the PLL can be represented by the linearized
model shown in Figure 8.5. The transfer function for the linearized PLL is

L(z) =
Y (z)

Θm(z)
=

H(z)

1 + H(z)
kvTz−1

1 − z−1

= (1 − z−1)
α + β − αz−1

1 − [2 − (α + β)kvT ]z−1 + (1 − αkvT )z−2
(8.31)
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−
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Figure 8.5: Linearized Model for the Phase-Locked Loop

At low frequencies, which corresponds to z � 1, L(z) can be approximated by

L(z) � z − 1

kvT
(8.32)

Thus

Y (z) � Θm(z)
z − 1

kvT
(8.33)

and in the time-domain

y(nT ) � θm((n + 1)T ) − θm(nT )

kvT
(8.34)

Using (8.7) for θm gives

y(nT ) � kω

kv

m(nT ) (8.35)

This last equation demonstrates that the PLL is an FM demodulator under the appropriate
conditions.

The frequency response of the linearized loop has the characteristics of a band-limited
differentiator. The loop parameters must be chosen to provide a loop bandwidth that is
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sufficient to pass the desired baseband message signal but the bandwidth should also be
kept as small as possible to suppress out-of-band noise. The PLL performs better than a
frequency discriminator when the FM signal is corrupted by additive noise. The reason
is that the bandwidth of the frequency discriminator must be large enough to pass the
modulated FM signal while the PLL bandwidth only has to be large enough to pass the
baseband message. With wideband FM, the bandwidth of the modulated signal can be
significantly larger than that of the baseband message. Therefore, the PLL can reject more
out-of-band noise because of its narrower bandwidth.

The PLL described in this experiment is very similar to the Costas loop presented in
Chapter 6 for coherent demodulation of DSBSC-AM. However, it should be noted that
there is a significant difference in the loop bandwidths required for these two systems. The
bandwidth of the PLL used for FM demodulation must be large enough to pass the baseband
message signal. On the other hand, the Costas loop is used to generate a stable carrier
reference signal so its bandwidth should be very small and just wide enough to track carrier
drifts and allow a reasonable acquisition time.

8.4 Laboratory Experiments for Frequency Modula-

tion

The following experiments should give you a deeper understanding of the theoretical concepts
presented above for FM modulation and demodulation. As usual, initialize the DSK as in
Chapter 2 and use a 16 kHz sampling rate for these experiments. .

8.4.1 Experiment 8.1: Measuring the Spectrum of an FM Signal

The experiments described in this section assume that a spectrum analyzer is not available.
If your lab has a spectrum analyzer or you made the spectrum analyzer for Chapter 4, you
can use your imagination and expand on the suggestions of this subsection and observe
a wider band of spectral lines. To investigate the spectral properties of FM, perform the
following tasks:

1. Set the signal generator to FM modulate an fc = 4 kHz sinusoidal carrier with an fm =
150 Hz sine wave. Look at the signal generator manual to see how to get an FM signal
with the desired carrier frequency, modulating frequency and waveform, and frequency
deviation.

2. Connect the FM output signal to the oscilloscope and observe the resulting waveforms as
you vary the frequency deviation.

3. Write a program for the DSP to implement an IIR bandpass filter that passes the 4 kHz
carrier component and strongly attenuates the other FM spectral components. Send the
filter output to the DAC so it can be observed on the oscilloscope.
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4. Watch the amplitude of the 4 kHz carrier component on the scope as the modulation
index is increased from 0. Remember that this component should be proportional to
J0(β).

5. Increase the modulation index slowly until the carrier component becomes zero. Compare
this experimentally determined value of β with the theoretical value for the the first zero
of J0(β). You can generate values of the Bessel function by using the series expansion
given by (8.14) on page 153 or with MATLAB.

6. Plot the theoretical power spectrum of a sinusoidally modulated FM signal with β = 2,
5, and 10.

8.4.2 Experiment 8.2: FM Demodulation Using a Frequency Dis-
criminator

Write a C program that implements the frequency discriminator shown in Figure 8.3. Assume
that the carrier frequency is 4 kHz, the baseband message is band-limited with a cutoff
frequency of 500 Hz, and use a sampling rate of 16 kHz. Synchronize the sample processing
loop with the transmit ready flag (XRDY) of McBSP1. Read samples from the ADC, apply
them to your discriminator, and write the output samples to the DAC.

Use remez87.exe, window.exe, or MATLAB to design the FIR differentiation and Hilbert
transform filters. Use enough taps to approximate the desired Hilbert transform frequency
response well from 1200 to 6800 Hz. Try a differentiator bandwidth extending from 0 to
4000 Hz. (Be sure to match the delays of your filters in your implementation.)

Experimentally test your discriminator by doing the following:

1. Use the signal generator to create a sinusoidally modulated FM signal as you did for the
FM spectrum measurement experiments. Attach the signal generator to the line input
and observe your demodulated signal on the oscilloscope to check that the program is
working.

2. Modify your program to add Gaussian noise to the input samples and observe the dis-
criminator output as you increase the noise variance. Does the performance degrade
gracefully as the noise gets large?

3. Attach the line output to the PC’s speakers and listen to the noisy demodulator output
as you vary the SNR.

8.4.3 Experiment 8.3: Using a Phase-Locked Loop for FM De-
modulation

Design and implement a PLL like the one shown in Figure 8.4 to demodulate a sinusoidally
modulated FM signal with the same parameters used previously in the discriminator exper-
iments. Let α = 1 and choose β to be a factor of 100 or more smaller than α. Perform the
following theoretical exercises to select your loop parameters:
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1. Compute and plot the amplitude response of the linearized loop using (8.31) for different
loop parameters until you find a set that gives a reasonable response.

2. Theoretically compute and plot the time response of the linearized loop to a unit step
input for your selected set of parameters by iterating a difference equation corresponding
to the transfer function.

Write a C program for the DSP to implement the PLL. Use a 16 kHz sampling rate.
Remember to take into account that the ADC input samples are in the range ±215. Test
your PLL demodulator by the following steps:

1. Connect an FM signal from the signal generator to the DSK line input and observe the
DAC output on the oscilloscope.

2. See if your PLL will track carrier frequency offsets by changing the carrier frequency on
the signal generator slightly and observing the output. Experiment and see how large an
offset your loop will track. Also observe any differences in behavior when you change the
carrier frequency smoothly and slowly or make step changes.

3. Modify your program to add Gaussian noise to the input samples and observe the demod-
ulated output as the noise variance increases. How does the quality of the demodulated
output signal compare with that of the frequency discriminator at the same signal-to-
noise ratio, particularly when this ratio gets small? You should find that the PLL works
at a lower SNR than the discriminator.

4. Connect the line output to the PC’s speaker and listen to the demodulated output as you
vary the SNR. How does it sound compared to the discriminator output?

8.5 Additional References

All the senior level textbooks on communication systems contain sections on frequency mod-
ulation. For example, see Gibson [II.D.9, Chapter 6] and Haykin [II.D.17, Sections 3.10–
3.14]. See the references just cited, Gitlin [II.D.11, Section 6.2], Gardner [II.D.8], and Lee
and Messerschmitt [II.D.26, Chapter 13] for further discussions of phase-locked loops. A
brief discussion of discrete-time PLL’s can be found in Lee and Messerschmitt [II.D.26, Sec-
tion 13.2]. To my knowledge, the PLL structure described in this experiment using the
pre-envelope cannot be found in other textbooks.



Chapter 9

Pseudo-Random Binary Sequences
and Data Scramblers

This chapter begins a series on digital communications. DSP chips have made a dramatic
impact on this field, initially in narrow band systems like voice-band telephone line modems
and cellular telephones. In 1970, a plain 9600 bps telephone line modem was the size of
a big microwave oven; contained many analog chips for filters, delay lines, and adaptive
equalizer coefficient scalars; required a fan because of significant power consumption; and
cost at least $15,000. It was basically just a data pump with no extra features. A few years
later, medium scale integrated (MSI) digital chips were used to make a micro-coded digital
signal processing unit to replace the analog functions, but the modems were still large and
costly. The MSI chips included cascadable 4-bit wide ALU slices and an AMD multiplier
chip. As soon as DSP chips were introduced in the early 1980’s they were used to further
reduce the size and cost of telephone line modems. Typically, several DSP’s were required to
implement a transmitter and receiver. VLSI technology rapidly improved and now a state-
of-the-art V.92 56 kbps modem can be bought for less than $100 and fits in a small box or
on a small card. In addition, this modem has many features like data compression, error
detection and correction, trellis coded modulation, fax modes, automatic dialing, network
management functions, a secondary channel, and the ability to fall back to most of the past
popular telephone line modem standards ranging from speeds of 300 bps up to 33,600 bps. It
is now possible to concurrently run at least 12 full duplex V.92 modems in a single state-of-
the-art DSP core and chips with multiple cores are currently being sold commercially. These
high-end chips are used in remote access servers (RAS) by Internet service providers for voice
over IP (VOIP) and modem pools. Because of the flexibility of the software approach to
implementing signal processing algorithms with DSP’s, new theoretical developments were
almost instantaneously included in commercial telephone line modems. These techniques
later found their way into higher speed systems that use greater channel bandwidths like
high speed digital subscriber lines (DSL), microwave systems, satellite communications, and
HDTV.

Broadband data transmission via DSL, cable, fiber optic lines, and wireless systems
is rapidly making voiceband telephone line modems obsolete for dial-up access. However,
they are still used in the large FAX machine market. New generations of DSP’s like TI’s
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TMS320C6000 series are being used in the broadband systems. DSP’s with special accel-
erator units for FFT’s, turbo and low density parity check codes, and encryption are being
produced. The DSP manufacturers are working hard to be competitive with FPGA’s for
high speed signal processing tasks.

In order to simulate and test digital communication systems, sequences that approximate
ideal binary random sequences are required. In this chapter, you will see how to generate
pseudo-random binary sequences using linear feedback shift registers. Then you will see how
a simple variation of these circuits can be used to make a self synchronizing digital data
scrambler and descrambler. These scramblers are required to break up long strings of 1’s or
0’s to allow tracking loops in the receiver to maintain lock, rather than for secrecy.

At very high data rates, these scramblers and descramblers can be implemented by very
simple VLSI circuits. At moderate data rates like found in telephone line modems, they
would be implemented by a few lines of simple DSP code. Incorporating this function and
as many others as possible into the DSP code eliminates extra hardware. This improves
reliability and reduces manufacturing cost. The ability to manufacture products at the
lowest possible cost is extremely important to companies operating in the highly competitive
commercial market.

9.1 Using Linear Feedback Shift Registers to Generate

Pseudo-Random Binary Sequences

An ideal binary random sequence is an infinite sequence of independent, identically dis-
tributed, random variables, each taking on the values 0 or 1 with probability 0.5. These
sequences are often used as a models for the data streams generated by binary sources. Ex-
cellent approximations to binary random sequences can be generated by linear feedback shift
registers. The resulting sequences are called pseudo-random, pseudo-noise (PN), maximal
length, or m sequences. Suggestions for additional references are included at the end of this
chapter.

9.1.1 The Linear Feedback Shift Register Sequence Generator

The block diagram of a linear feedback shift register sequence generator is shown in Figure
9.1. It is common in digital sequential circuit analysis to represent a delay element by the
symbol D rather than z−1. The D represents a single stage of a shift register when the circuit
is implemented in hardware or a memory location when it is implemented by software. All
the adders perform modulo 2 addition which is equivalent to the exclusive-or logical function.
Addition and subtraction are identical in modulo 2 arithmetic. The h’s can be 0 or 1, with
0 indicating no connection to the adder and 1 indicating a connection. The input x(n) is a
binary sequence which will be assumed to be identically 0 in this section.

The z-transform of a binary sequence with z−1 replaced by D is called its Huffman
transform. The coefficients of D in the transform are interpreted using modulo 2 arithmetic.
The Huffman transform has the same basic properties as the z-transform so binary sequences
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Figure 9.1: Linear Feedback Shift Register Sequence Generator

and linear sequential circuits can be analyzed and represented by these transforms in the
same way as continuous-amplitude discrete-time systems.

Assuming that the input x(n) is identically 0, the output of the feedback shift register
sequence generator is

y(n) =
m∑

k=1

hky(n − k) (9.1)

where the summation represents modulo 2 additions. Equivalently, any output sequence
must satisfy the homogeneous difference equation

y(n) +
m∑

k=1

hky(n − k) = 0 (9.2)

In this chapter, addition of binary quantities will always be understood to be performed
by modulo 2 arithmetic. Let the state of the shift register generator be defined to be the
m-tuple

s(n) = [y(n − 1), y(n − 2), · · · , y(n − m)] = [s1(n), s2(n), · · · , sm(n)] (9.3)

Given the state at any time, the present and all future outputs can be uniquely computed
from (9.1).

9.1.2 The Connection Polynomial and Sequence Period

If the initial shift register state is 0, then the present and all future outputs must be 0 and
all future states remain at 0. This is the trivial solution to (9.2). It can be shown that if the
initial state is not 0, the future states can never become 0. However, the m-component state
vector can take at most 2m − 1 nonzero values so it must repeat at some time. Then the
output and state sequence will repeat, so the shift register will generate a periodic output
sequence with period no greater than 2m − 1.

The properties of a shift register sequence are determined by its connection polynomial

h(D) = 1 +
m∑

k=1

hkD
k (9.4)
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For simulating binary random sequences, shift register sequences with the maximum possible
period 2m − 1 are of primary interest and these are often called maximal length sequences.
It can be shown that a shift register will generate a maximal length sequence if and only
if its connection polynomial is a special type known as a primitive polynomial. Primitive
polynomials of all degrees exist and tables of primitive polynomials of degree up to 34 can
be found in Peterson and Weldon [II.E.12].

A necessary but not sufficient condition for a polynomial to be primitive is that it be
irreducible. A polynomial with binary coefficients is said to be irreducible over the field
of binary numbers if it cannot be factored into the product of polynomials with binary
coefficients and degrees at least 1. Otherwise it is called reducible. A very simple partial test
of whether a polynomial is irreducible is to check whether 0 or 1 are roots. If 0 is a root,
D must be a factor, and if 1 is a root, D + 1 must be a factor. Notice that if 1 is a root of
h(D), then h(1) = 0 and h(D) must have an even number of 1 coefficients. Thus, irreducible
polynomials over the binary field must have an odd number of 1 coefficients. As an example,
consider the polynomial h1(D) = 1+D +D2. Clearly, 0 and 1 are not roots so D and D +1
are not factors. Since there are no other first degree factors, h(D) must be irreducible. On
the other hand, h2(D) = h2

1(D) does not have 0 or 1 as roots but it is reducible.

The period of a shift register sequence with an irreducible connection polynomial h(D)
of degree m can be shown to be the smallest nonzero integer N such that DN − 1 is divisible
by h(D) using modulo 2 arithmetic for the coefficients. The period N is called the exponent
of h(D). It can be shown that h(D) always must divide D2m−1 − 1. However, N may be
smaller than 2m − 1 but must divide it. The polynomial is primitive when N = 2m − 1. For
primitive connection polynomials, the shift register state goes through all 2m − 1 nonzero
values before repeating.

The situation is more complicated when the connection polynomial is reducible. Suppose

h(D) =
L∏

k=1

fk(D) (9.5)

where each factor is irreducible and has exponent nk. In this case, the shift register will
generate sequences with different periods depending on its initial state. Each period will be
the product of a subset of the exponents.

9.1.3 Properties of Maximal Length Sequences

Maximal length sequences have several properties that make them good approximations to
ideal binary random sequences when N = 2m − 1 is large. Derivations of these properties
can be found in Golomb [II.E.8, pp. 43-45].

Frequency of Occurrence of 1’s and 0’s

The number of 1’s in one period of a maximal length sequence is 2m−1 and the number of
0’s is 2m−1 − 1. Thus, each period contains one more 1 than 0. For large N , 1’s and 0’s
essentially appear with equal likelihood.
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Frequency of Runs of 1’s and 0’s

Just because 1’s and 0’s are essentially equally likely for large N does not mean they are
randomly arranged in time. All the 1’s could be clumped together. However, this is not the
case. A run of k 1’s is defined to be a string starting with a 0, followed by k 1’s, and ending
with a 0. The probability of this string occurring in an ideal binary random sequence is
2−(k+2). Similarly, a run of k 0’s is a string starting with a 1, followed by k 0’s, and ending
with a 1 and has the same probability.

In one period of a maximal length sequence, there is one run of m 1’s. There is no run
of m − 1 1’s. For 1 ≤ k ≤ m − 2, there are 2m−k−2 runs of k 1’s. There is no run of m 0’s,
one run of m − 1 0’s, and 2m−k−2 runs of k 0’s for 1 ≤ k ≤ m − 2.

Correlation Property

In discussing correlation properties, it will be convenient to transform sequences of 0’s and
1’s into sequences of +1’s and −1’s. Let y(n) be a sequence with period N that can have
the value 0 or 1. The transformed sequence is

y̌(n) =

{
+1 if y(n) = 0
−1 if y(n) = 1

(9.6)

The periodic autocorrelation function is defined to be

R(n) =
1

N

N−1∑
k=0

y̌(k)y̌(n + k) (9.7)

where the sum is performed using ordinary addition.
For maximal length sequences, N = 2m − 1 and the periodic autocorrelation function is

R(n) =

{ − 1
N

for n not a multiple of N
1 for n a multiple of N

(9.8)

For ideal binary random sequences, the statistical autocorrelation function is 1 for n = 0
and 0 otherwise.

9.2 Self Synchronizing Data Scramblers

9.2.1 The Scrambler

Long strings of 1’s or 0’s can appear at the output of devices like terminals and computer
serial ports when they are idle. These signals must be randomized before being applied to
the transmitter in a modem or else the symbol clock tracker and adaptive equalizer in the
remote receiver will not work properly. The randomization is frequently accomplished by a
self synchronizing scrambler. Figure 9.1 is also the block diagram for this kind of scrambler
where x(n) is the scrambler input and y(n) is its output. A primitive shift register connection
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polynomial is usually used. Two primitive connection polynomials used in all recent ITU-T
standard modems are

h1(D) = 1 + D18 + D23 (9.9)

and

h2(D) = 1 + D5 + D23 = D23h1(D
−1) (9.10)

Notice that one of these polynomials is obtained from the other by turning its coefficients
around backwards. It can be shown that this always turns one primitive polynomial into
another. With 0 input, the scrambler generates a maximal length sequence of period 223 − 1
if the initial state is nonzero.

The scrambler input and output are related by the equation

y(n) = x(n) +
m∑

k=1

hky(n − k) (9.11)

In terms of the transform notation

Y (D) =
X(D)

h(D)
(9.12)

when the initial state is 0. In ITU-T standards the scrambler is defined by saying that the
output is generated by dividing the input by h(D).

In some ITU-T modem standards, a pseudo-random binary sequence is specified to be
generated by making the scrambler input 1 for an initial training period. Let yh(n) be a
solution to the homogeneous equation formed by letting the input x(n) be identically 0 in
(9.11). This is a maximal length sequence. A particular solution to (9.11) for x(n) ≡ 1 is
yp(n) = 1 for all n. This can be seen as follows. The connection polynomial has an odd
number of nonzero coefficients. Thus the feedback sum on the right-hand side of (9.11) has
an even number of terms which are all 1 and add to 0 modulo 2. Since x(n) = 1, the total
sum on the right-hand side becomes 1 which matches the yp(n) = 1 on the left-hand side.
The total scrambler output is

y(n) = yh(n) + yp(n) = yh(n) + 1 = ȳh(n) (9.13)

where the over-bar denotes logical complement. Thus, the scrambler output is the comple-
ment of a maximal length sequence when the input is 1.

From the previous paragraph, it can be seen that when the initial state of the scrambler
is all 1’s and the input is 1, the output is always 1 and the state remains all 1’s. This is
called a lock-up condition of the scrambler and can easily be detected and corrected. It is the
only initial state that causes lock-up with an all 1’s input. This situation is the complement
of having an identically 0 input and starting in the all 0’s state. A detailed analysis of
the lock-up phenomenon with periodic inputs is presented in Gitlin, Hayes, and Weinstein
[II.D.11, pp. 454–460].
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9.2.2 The Descrambler

At the receiver, the input is recovered from the received sequence y(n) by inverting (9.11).
The resulting descrambling equation is

x(n) = y(n) +
m∑

k=1

hky(n − k) (9.14)

or in transform notation
X(D) = Y (D)h(D) (9.15)

The descrambler is just an FIR filter with m+1 taps that uses modulo 2 arithmetic. A block
diagram of the descrambler is shown in Figure 9.2. If y(n) is corrupted by channel errors,
the scrambler output will also contain errors. If h(D) has K nonzero coefficients, a single
isolated error in y(n) will cause K output errors as it propagates by the nonzero coefficients.
Therefore, a connection polynomial with the least number of nonzero coefficients should be
chosen.
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Figure 9.2: Self Synchronizing Descrambler

9.3 Theoretical and Simulation Exercises for Shift Reg-

ister Sequence Generators and Scramblers

The goal of this chapter is to introduce the shift register sequence method for generating
pseudo-random binary sequences so they can be used to simulate binary data sources in
the remaining chapters on digital communications. The “experiments” in this section are
really theoretical and computer simulation exercises to reinforce your understanding of shift
register sequence generators and self synchronizing scramblers. The programs you will write
can serve as the basis for ones you may need in future experiments.

9.3.1 Exercises for a Shift Register Sequence Generator with a
Primitive Connection Polynomial

It can be shown that h(D) = 1 + D2 + D5 is a primitive polynomial. Perform the following
exercises:
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1. Assume the input to the scrambler in Figure 9.1 is 0 and that the initial state is not 0.
Find the period N of the sequence the shift register generates.

2. Write a C program to implement the scrambler including an input x(n) which is set to
0. Store the shift register state as 5 consecutive bits in a single integer variable. Update
the state by or-ing each new output into the appropriate bit in this integer variable and
then shifting it with one of the C shift operators. You can use the C compiler for the PC
or DSP.

3. Set the state of your shift register to a nonzero value. Generate and record enough outputs
to verify your calculation of the period.

4. Count the number of 1’s and 0’s in one period of your sequence and check that the results
agree with the theory.

5. Count the number of runs of 1’s and 0’s of each possible length in one period of your
sequence and make a table showing the results. Make sure they agree with the theoretical
values.

6. Compute the scaled periodic autocorrelation function NR(n) for n = 0, 1, . . . , N −1 from
your sequence and check that it agrees with the theoretical result given by (9.7).

7. Now write a C program to implement the descrambler. Again, store the descrambler
shift register as a string of 5 consecutive bits in a single C integer variable. Let the
input to the scrambler be x(n) = 1. Generate a scrambled sequence, put it through the
descrambler, and check that the descrambler output is all 1’s. Notice that the initial
states of the scrambler and descrambler do not have to be identical if an initial burst of
errors is acceptable as the descrambler shift register fills up with received bits.

9.3.2 Exercises for a Shift Register Sequence Generator with an
Irreducible but not Primitive Connection Polynomial

Let h(D) = 1+D +D2 +D3 +D4 be the connection polynomial for a shift register sequence
generator. It can be shown that h(D) is irreducible but not primitive. Perform the following
exercises:

1. Find the period N for this sequence generator.

2. The four stage shift register can have 24−1 = 15 nonzero values. Let y(n) be the sequence
generated by a particular nonzero state. Consider y(n) and the sequences obtained by
delaying y(n) by 1, 2, . . . , N −1 samples to be an equivalence class of N sequences. It can
be shown that each member of the equivalence class corresponds to a unique shift register
initial state. Thus, there must be (24 − 1)/N equivalence classes. Find one member of
each equivalence class and its corresponding initial shift register state.
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9.3.3 Exercises for a Shift Register Sequence Generator with a
Reducible Connection Polynomial

Now let the connection polynomial for the shift register sequence generator be

h(D) = (1 + D + D2)(1 + D + D3) = 1 + D4 + D5 (9.16)

Perform the following exercises:

1. Verify that the product is correct.

2. It can be shown that both factors are irreducible. Find the exponents for the two factors.

3. Find initial states that result in sequences with periods 3, 7, and 21. Record the states
and corresponding sequences.

9.4 Additional References

The most complete book on binary pseudo-random sequences is Golomb [II.E.8]. Other
references that discuss them are Gallager [II.E.7, Chapter 6], Gibson [II.D.9, Appendix
G], and Gitlin, Hayes, and Weinstein [II.D.11, Section 6.7]. A detailed analysis of self
synchronizing scramblers is contained in this last reference.



Chapter 10

Introduction to the RS-232C Protocol
and a Bit-Error Rate Tester

In this chapter you will learn about a commercial instrument called a bit-error rate tester
that is commonly used to evaluate the performance of digital communication systems. First,
you will be introduced to the EIA RS-232C interface protocol which is a very common
method for serially transmitting digital data between nearby devices. Then you will connect
a commercial bit-error rate tester to the TMS320C6713 DSK, use the DSP to add noise to
the serial bit stream, run a bit-error rate test, and compare measured and theoretical results.
See the last section of this chapter for additional references on the theory of optimum signal
detection and bit-error probability.

10.1 The EIA RS-232C Serial Interface Protocol

One of the most common methods for serially transmitting digital data between devices has
been the EIA RS-232C interface protocol. EIA stands for Electronics Industries Association
and RS for recommended standard. It is typically used at data rates below 38.4 kbps and
between devices that are less than 15 meters apart. It was not designed for data transmission
over long distances. A full implementation of the standard uses a 25 pin D connector with
the pin connections shown in Table 10.1. Often, only a small subset of the signals is actually
used and a 9 pin connector is employed. RS-232 connections have been replaced by USB and
IEEE 1394 Firewire serial ports on many PC’s and other devices. However, many devices
with RS-232C connectors still exist and you can buy inexpensive USB to RS-232C adapter
cables.

This chapter introduces the concept of binary antipodal data transmission, and the theory
and measurement of bit errors caused by additive Gaussian noise. These concepts do not
depend on the exact type of serial transmission used. The RS-232C method provides a simple
example for exploring the theory.

In the data communications jargon, a data terminal is called a data terminal equipment
which is abbreviated by the letters DTE. Examples of a DTE are a dumb terminal or the
serial port in a PC. To transmit data over long distance channels like a voice-band telephone
channel, the DTE is connected to a modem with an RS-232C cable. The modem is called

173
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a data communications equipment which is abbreviated by DCE. Other types of devices can
also be configured to act as a DCE.

The RS-232C signals nominally have the values 12 and −12 volts. A logical 0 is called a
space and is represented by the 12 volt level. A logical 1 is called a mark and is represented
by the −12 volt level. A voltage above 3 volts is often quantized to a space and a voltage
below −3 volts to a mark.

The most important connector signals are described in the following paragraphs. Pin 6
is called Data Set Ready (DSR) and is controlled by the DCE (modem). A high voltage (12
v) indicates that the DCE has been turned on and is ready to make a connection with a
remote modem. The term “remote” is used to mean “at the far end” of the communications
channel. Pin 20 is named Data Terminal Ready (DTR) and is controlled by the DTE (data
terminal). A high voltage on pin 20 indicates to the DCE that the DTE is turned on and
ready to accept data. Pin 8 is named Data Carrier Detect (DCD) and is controlled by the
DCE. A high voltage on pin 8 indicates to the DTE that the local modem has made a
connection with the remote modem and is ready to begin transmitting data. The process of
making a connection between two modems is often called handshaking. These basic control
signals must usually be high before data transmission can proceed.

The actual data is sent and received over pins 2 and 3. Pin 2 is the transmitted data
(TD). This is the serial binary data stream sent from the DTE to the DCE for transmission
to the remote DCE. Pin 3 is the received data (RD) sent to the local DTE from the local
DCE which has been transmitted by the remote DCE to the local DCE. Data is typically
transmitted and received independently and simultaneously and this is called full duplex
operation. When data flows in one direction at a time over the same channel, it is called
half duplex operation.

Pin 15 is named Transmitter Clock (TC) and is generated by the DCE. In many cases,
the modem (DCE) controls the data transmission by clocking bits out of the DTE with TC.
In a few cases, the DTE can control the data transmission by supplying a signal called Serial
Clock Transmit External (SCTE) to the modem on pin 24. Pin 17 is named Receiver Clock
(RC) and is generated by the modem. It clocks received data from the modem into the DTE.
These clocks are phased so that the data is clocked into the DTE or DCE in the middle of
a bit where the voltage level is stable.

Once DTR, DSR, and DCD are high, the DTE asks to begin data transmission by raising
pin 4 which is named Request to Send (RTS). When the DCE is ready to receive data from
the DTE and send it to the the remote DCE, the DCE replys by raising pin 5 which is called
Clear to Send (CTS). The DTE then begins sending the data timed by the transmitter clock.

The signals just described and pin 7 which is Signal Ground (SG) are used in most RS-
232C cables. The Ring Indicator (RI) signal on pin 22 is often included when the DCE is a
telephone line modem. This signal is generated by the modem and indicates that the modem
has detected a ringing signal from a remote site in the dial network that is trying to make
a connection. The communications software in the DTE can then send a command to the
modem instructing it to connect to the telephone line and answer the call. The remaining
signals are used only in special situations.
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PIN NAME FUNCTION SOURCE

1 FG Frame Ground –
2 TD Transmitted Data DTE
3 RD Received Data DCE
4 RTS Request to Send DTE
5 CTS Clear to Send DCE
6 DSR Data Set Ready DCE
7 SG Signal Ground –
8 DCD Data Carrier Detect DCE
9 Positive Test Voltage DCE

10 Negative Test Voltage DCE
11 QM Equalizer Mode DCE
12 SDCD Secondary Data Carrier Detect DCE
13 SCTS Secondary Clear to Send DCE
14 STD Secondary Transmitted Data DTE

NS New Sync DTE
15 TC Transmitter Clock DCE
16 SRD Secondary Received Data DCE

DCT Divided Clock, Transmitter DCE
17 RC Receiver Clock DCE
18 DCR Divided Clock, Receiver DCE
19 SRTS Secondary Request to Send DTE
20 DTR Data Terminal Ready DTE
21 SQ Signal Quality Detect DCE
22 RI Ring Indicator DCE
23 DRS Data Rate Selector DCE

Data Rate Selector DTE
24 SCTE Serial Clock Transmit External DTE
25 BUSY Busy DCE

Table 10.1: RS-232C Interface Table
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10.2 Bit-Error Probability for Binary Signaling on the

Additive, White, Gaussian Noise Channel

The performance of a digital communication system is often evaluated by measuring its bit-
error probability as a function of the channel signal-to-noise ratio (SNR) and comparing the
results with theoretical values. The measured bit-error probability is often called the bit-error
rate. The theoretical bit-error probability depends on the modulation and demodulation
schemes used to transmit the digital data over an analog link as well as the type of noise and
distortion the channel introduces. In high speed digital communication systems like satellite
systems, an excellent model for the channel is that it simply adds signal independent, white,
Gaussian noise to the transmitted signal. The noise and distortion introduced by other kinds
of channels like voice-band telephone line links can be significantly more complicated but
the additive Gaussian noise model is often used as a first-order approximation.

As a simple example, we will analyze the case of binary transmission over an additive
Gaussian noise channel. Let the transmitted signal s(t) be a binary waveform that can have
the value A or −A over each bit period nT ≤ t < (n + 1)T where T is the bit duration
and fb = 1/T is the bit or data rate. In each bit period, the values A and −A are equally
likely and the values in different bit periods are independent random variables. Assume the
channel adds white Gaussian noise v(t) with two-sided power spectral density N0/2 to the
signal s(t), so the received signal is

r(t) = s(t) + v(t) (10.1)

It can be shown that a receiver that is optimum in the sense of minimizing the bit-error
probability first computes the statistic

rn =
1

T

∫ (n+1)T

nT
r(t) dt = ±A +

1

T

∫ (n+1)T

nT
v(t) dt = ±A + vn (10.2)

where

vn =
1

T

∫ (n+1)T

nT
v(t) dt (10.3)

The integrator is often called a matched filter or integrate and dump circuit. It can be shown
that vn is a Gaussian random variable with zero mean and variance σ2 = N0/(2T ). The
receiver then decides that A was transmitted in the n-th bit period if vn > 0 and −A was
transmitted if vn ≤ 0.

The probability a decision error is made given that −A was transmitted is

P (error |s(nT ) = −A) = P (−A + vn > 0) = P
(

vn

σ
>

A

σ

)
(10.4)

The random variable vn/σ is a Gaussian random variable with zero mean and variance 1.
Therefore,

P (error |s(nT ) = −A) =
∫ ∞

A/σ

1√
2π

e−
v2

2 dv = Q(A/σ) (10.5)

where

Q(x) =
∫ ∞

x

1√
2π

e−
v2

2 dv (10.6)
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Similarly, it can be shown that the probability of an error given that A was transmitted is
the same thing. Therefore, the average probability of error is

P (error) = P (A)P (error |s(nT ) = A) + P (−A)P (error |s(nT ) = −A) = Q(A/σ) (10.7)

The signal power in the integrator output is A2 and the noise power is σ2, so the output
signal-to-noise ratio is ρ = A2/σ2. Therefore, the bit-error probability in terms of the output
signal-to-noise ratio is

P (error) = Q(
√

ρ ) (10.8)

Different digital communication schemes can be compared and ranked by evaluating their
bit-error probabilities for a given data rate, channel bandwidth, and channel signal-to-noise
ratio.

In mathematics texts and MATLAB, the complementary error function is defined as

erfc(x) =
2√
π

∫ ∞

x
e−t2 dt (10.9)

The tail probability for a standard normal random variable (Gaussian with 0 mean and
variance 1) is

Q(x) =
1√
2π

∫ ∞

x
e−u2/2 du (10.10)

Making the substitution u/
√

2 = t in the integral for Q(x) gives

Q(x) =
1

2
erfc

(
x√
2

)
(10.11)

so another formula for the error probability is

P (error) =
1

2
erfc

(√
ρ

2

)
(10.12)

You can use this result in MATLAB to compute the theoretical bit-error probability.
Another approach to computing the error probability is to use the fact that the Gaussian

tail probability Q(x) can be accurately approximated for x greater than 2 by

Q(x) =
∫ ∞

x

1√
2π

e−
v2

2 dv � 1

x
√

2π
e−

x2

2 (10.13)

This is actually an upper bound for Q(x) and becomes more accurate as x increases.

10.3 The Navtel Datatest 3 Bit Error Rate Tester

There are many commercial test instruments for measuring bit-error rates. These measure-
ments are often called BERT tests in the communications jargon. Each station in this lab
has a Navtel bit-error rate tester. These instruments are designed to operate in the full
duplex mode at data rates commonly used with RS-232C connections. These rates extend
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from 50 to 19200 bps in the normal async/sync mode and include the rates 56, 57.6, and 64
kbps in the high-speed mode. The Navtel tester can act as a DCE or DTE.

The Navtel tester performs a BERT test by transmitting a specified pattern and assumes
the same pattern is transmitted from the remote end. It synchronizes to the received pattern
and then counts errors. The test pattern selection includes several ASCII text sequences as
well as pseudo-random shift register sequences of length 63, 511, 2047, and 4095. The test
duration can be set to be a variety of fixed times, fixed of number bits, or continuous.
During the test, the Navtel counts the number of bits received and the number of errors
and continually computes the bit-error rate as the ratio of the current cumulative number
of errors and the number of bits received. This value can be observed in the tester’s display
while the test is in progress. Some other variables that can be displayed are the number of
bits received, the number of bit errors, the number of blocks received, the number of block
errors, the number of synchronization losses, and the elapsed time. See the Navtel manual
for more details.

The Navtel tester also has a full RS-232C breakout box. LED indicators show the status of
the key RS-232C interface leads. Each key lead has a red and green monitor. An illuminated
red LED indicates an ON, space, or 12 volt signal while an illuminated green LED indicates
an OFF, mark, or -12 volt signal. Neither LED is illuminated if the level is between -3 and
3 volts. The tester can be connected between a DTE and DCE to monitor the leads.

Since the Navtel tester uses RS-232C level signals, it can not be directly connected to the
DSP which uses the 0 and 5 v TTL levels. Each station has a home made TTL to RS-232C
converter daughter card for connecting the tester to McBSP0. Details of the converter card
can be found in Appendix B. McBSP0 is connected to the control port and McBSP1 to the
data port of the AIC23 codec by default. However, they can independently be routed to
the peripheral expansion connector on the DSK instead of to the McBSP’s by writing the
appropriate word to the MISC register of the CPLD. McBSP0 was chosen for the converter
card so McBSP1 can be connected to the codec’s data port. This allows an external device
like the Navtel tester to be used as a data terminal and the DSP to be programmed to act
as a modem, sending and receiving analog channel signals through the codec.

10.4 Bit-Error Rate Test Experiment

In this experiment, you will learn how to use the Navtel bit-error rate tester. Since the lab
does not have Gaussian noise generators, the data pattern from the tester will be sent to the
DSP which will introduce bit errors according to the additive Gaussian noise channel model.
The corrupted bit pattern will then be sent back to the Navtel tester. You will generate a
graph of the bit-error rate vs. SNR and compare it with theoretical results.

Perform the following exercises:

1. Connect one end of the RS-232C cable to the DCE socket on the Navtel tester and the
other end to the DB25 RS-232C connector for the daughter card on the rear of the PC.

2. Turn on the Navtel tester and press the right and left arrows until BERT blinks. Then
press SETUP/CLEAR. Now set the Navtel parameters as follows:
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(a) Press the right arrow to make the entry under MESSAGE blink and then press
SETUP. Use the arrows to select 4095 and press SETUP again. This selects the
shift register sequence of length 4095.

(b) Similarly, set the message length to Cont (continuous).

(c) Set CLOCK to Ext (external). The clocks will be generated by the DSP’s serial port
McBSP0 and converted to RS-232C levels by the daughter card.

(d) Set the MODE to DTE so the Navtel looks like a terminal (DTE).

(e) Set the LEVEL to 8 and PARITY to No. This means that in the async mode each
character will consist of 8 data bits with no parity bit.

(f) Set SY/ASY to Syn (synchronous). In this mode, a continuous bit stream with no
start and stop bits is transmitted.

(g) Set the SPEED to 19200.

3. Write a program for the DSP to take bits from the Navtel tester and simply loop them
back to the Navtel through McBSP0. Later you will be asked to introduce errors into the
bit stream. The sample rate generator (SRG) in McBSP0 should be used to generate the
transmit frame sync (FSX), receive frame sync (FSR), transmit bit clock (CLKX), and
receive bit clock (CLKR). A block diagram of the SRG is shown in Figure 10.1. FSR and
FSX are not connected to the Navtel tester but are used internally in McBSP0. However,
CLKR and CLKX are connected to the Navtel tester and used as its external data clocks,
so McBSP0 must be configured to make them outputs. The clock for the sample rate
generator should be an external clock supplied by Timer 0. The timer output, TOUT0,
is looped back to the SRG0 clock input pin, CLKS0, by the converter box. You should
look at Chapter 12 of the TMS320C6000 Peripherals Reference Guide [I.10] for complete
details on the serial ports and their sample rate generator. You will notice there that the
SRG can use an internal clock whose frequency is CPU clock/2 for the ’C6713 and that it
has dividers to generate the bit clocks and frame syncs. The reason for choosing TOUT0
as the clock source is that the dividers in the SRG cannot divide the internal clock by a
large enough factor to achieve the desired 19200 bps rate.

The timers were discussed in Section 2.3 and the following formula for the frequency of
TOUT for the timer in clock mode was given:

fTOUT =
CPU clock frequency

8 × (Period Register value)
(10.14)

where the “Period Register value” is an unsigned 32-bit integer. The CPU clock frequency
is 225 MHz for the ’C6713 DSK. We will configure the McBSP0 sample rate generator
to use TOUT0 as its clock which can be inverted in the SRG according to the value of
CLKSP and the result, CLKSRG, is selected rather than the internal clock source and
applied to a pair of dividers if the clock select mode bit (CLKSM) is 0. The first divider
uses the value of the 8-bit unsigned integer, CLKGDV, as the divide-down number to
generate the signal, CLKG, which is possibly inverted to form the bit clocks CLKX and
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Figure 10.1: Structure of the Sample Rate Generator (SRG)

CLKR. The frequency of CLKG when the timer is in clock mode is

bit clock frequency = CLKG frequency =
CLKSRG frequency

CLKGDV + 1

=
CPU clock frequency

8 × (Period Register)(CLKGDV + 1)
(10.15)

When CLKGDV is odd or zero, CLKG has a 50% duty cycle. When CLKGDV is an even
number, 2p, the high state lasts p + 1 cycles and the low state p cycles.

The signal CLKG is then applied to a divider with the unsigned integer 12-bit divide-
down number, FPER, to generate the signal FSG which is at the frame sync frequency.
The frequency of FSG is

frame sync frequency = FSG frequency =
CLKG frequency

FPER + 1
(10.16)

The sample rate generator includes one additional counter to generate the width of the
frame sync pulse. The unsigned 8-bit integer, FWID, determines the frame sync pulse
width. The FSG pulse width is FWID + 1 pulses of CLKG.

The following code segment will help you write your program. First, a structure is ini-
tialized with the values required to configure McBSP0 for the desired mode of operation.
McBSP0 is configured to transmit and receive 32-bit words and the divide-down number,
FPER, for the frame syncs is set to 31. According to the peripherals manual, the actual
frame sync period will be FPER + 1 = 32 serial bit clocks. Therefore, data bits will
be transmitted and received with no gaps between words. For details on the mnemon-
ics see the TMS320C6000 Chip Support Library API Reference Guide, [I.6], Appendix
B.10. Next a configuration structure for Timer0 is constructed. In order to use the CSL
functions, MCBSP_open() is called which returns the handle hMcBSP0 and TIMER_open()

is called which returns the handle hTimer0. The structure values for McBSP0 are then
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loaded into the McBSP0 registers by the function MCBSP_config() but McBSP0 is not
started yet. Then Timer0 is initialized by the function TIMER_config() and started
by the function Timer_start(). After the timer is running, McBSP0 is started by the
function McBSP_start(). Finally a dummy word of 0 is written to DXR0 to get the
transmitter actually running.

Program 10.1 Code Segment for Configuring and Starting McBSP0

#include <csl.h>

#include <csl_mcbsp.h>

#include <csl_timer.h>

MCBSP_Handle hMcBSP0;

TIMER_Handle hTimer0;

...

main()

{

...

MCBSP_Config mcbspCfgData = {

MCBSP_FMKS(SPCR, FREE, NO) |

MCBSP_FMKS(SPCR, SOFT, NO) |

MCBSP_FMKS(SPCR, FRST, NO) |

MCBSP_FMKS(SPCR, GRST, YES) |

MCBSP_FMKS(SPCR, XINTM, XRDY) |

MCBSP_FMKS(SPCR, XSYNCERR, NO) |

MCBSP_FMKS(SPCR, XRST, YES) |

MCBSP_FMKS(SPCR, DLB, OFF) |

MCBSP_FMKS(SPCR, RJUST, RZF) |

MCBSP_FMKS(SPCR, CLKSTP, DISABLE) |

MCBSP_FMKS(SPCR, DXENA, OFF) |

MCBSP_FMKS(SPCR, RINTM, RRDY) |

MCBSP_FMKS(SPCR, RSYNCERR, NO) |

MCBSP_FMKS(SPCR, RRST, YES),

MCBSP_FMKS(RCR, RPHASE, SINGLE) |

MCBSP_FMKS(RCR, RFRLEN2, OF(0)) |

MCBSP_FMKS(RCR, RWDLEN2, DEFAULT) |

MCBSP_FMKS(RCR, RCOMPAND, MSB) |

MCBSP_FMKS(RCR, RFIG, NO) |

MCBSP_FMKS(RCR, RDATDLY, 0BIT) |

MCBSP_FMKS(RCR, RFRLEN1, OF(0)) |

MCBSP_FMKS(RCR, RWDLEN1, 32BIT) |

MCBSP_FMKS(RCR, RWDREVRS, DISABLE),
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MCBSP_FMKS(XCR, XPHASE, SINGLE) |

MCBSP_FMKS(XCR, XFRLEN2, DEFAULT) |

MCBSP_FMKS(XCR, XWDLEN2, DEFAULT) |

MCBSP_FMKS(XCR, XCOMPAND, MSB) |

MCBSP_FMKS(XCR, XFIG, NO) |

MCBSP_FMKS(XCR, XDATDLY, 0BIT) |

MCBSP_FMKS(XCR, XFRLEN1, OF(0)) |

MCBSP_FMKS(XCR, XWDLEN1, 32BIT) |

MCBSP_FMKS(XCR, XWDREVRS, DISABLE),

MCBSP_FMKS(SRGR, GSYNC, FREE) |

MCBSP_FMKS(SRGR, CLKSP, RISING) |

MCBSP_FMKS(SRGR, CLKSM, CLKS) |

MCBSP_FMKS(SRGR, FSGM, FSG) |

MCBSP_FMKS(SRGR, FPER, OF(31)) |

MCBSP_FMKS(SRGR, FWID, OF(1)) |

MCBSP_FMKS(SRGR, CLKGDV, OF(0)),

MCBSP_MCR_DEFAULT,

MCBSP_RCER_DEFAULT,

MCBSP_XCER_DEFAULT,

MCBSP_FMKS(PCR, XIOEN, SP) |

MCBSP_FMKS(PCR, RIOEN, SP) |

MCBSP_FMKS(PCR, FSXM, INTERNAL) |

MCBSP_FMKS(PCR, FSRM, INTERNAL) |

MCBSP_FMKS(PCR, CLKXM, OUTPUT) |

MCBSP_FMKS(PCR, CLKRM, OUTPUT) |

MCBSP_FMKS(PCR, CLKSSTAT, DEFAULT) |

MCBSP_FMKS(PCR, DXSTAT, DEFAULT) |

MCBSP_FMKS(PCR, FSXP, ACTIVEHIGH) |

MCBSP_FMKS(PCR, FSRP, ACTIVEHIGH) |

MCBSP_FMKS(PCR, CLKXP, RISING) |

MCBSP_FMKS(PCR, CLKRP, FALLING)

};

TIMER_Config timer0CfgData ={

TIMER_FMKS(CTL, INVINP, NO) |

TIMER_FMKS(CTL, CLKSRC, CPUOVR4) |

TIMER_FMKS(CTL, CP, CLOCK) |

TIMER_FMKS(CTL, HLD, YES) |

TIMER_FMKS(CTL, INVOUT, NO) |

TIMER_FMKS(CTL, FUNC, TOUT),
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put your PDR value here, /* Period register value */

0x00000000 /* Initial counter register value */

};

/* Open McBSP0 and get handle */

hMcBSP0 = MCBSP_open(MCBSP_DEV0, MCBSP_OPEN_RESET);

/* Open Timer0 and get handle */

hTimer0 = TIMER_open(TIMER_DEV0, 0);

/* Configure McBSP0.. */

MCBSP_config(hMcBSP0, &mcbspCfgData);

/* Configure Timer 0 */

TIMER_config(hTimer0, &timer0CfgData);

/* Start Timer0 */

TIMER_start(hTimer0);

/* Start McBSP0 */

MCBSP_start(hMcBSP0, MCBSP_XMIT_START | MCBSP_RCV_START |

MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC, 220);

/* Write a dummy word to DXR0 to get transmitter started */

MCBSP_write(hMcBSP0, 0);

...

4. Include a line in your program to connect McBSP0 to the Peripheral Expansion Connector
rather than the AIC23 control port. You can use a function in the BSL to do this.
For documentation on the BSL functions, start Code Composer Studio, click on Help,

Contents, TMS320C6713 DSK, Software, and, finally, Board Support Library. Bit 0 in the
MISC register of the CPLD controls the McBSP0 connection. You must change it from
0 to 1 to connect McBSP0 to the Peripheral Expansion Connector. You can do this by
including the following line in your program:

DSK6713_rset(DSK6713_MISC, 0x01)

5. Select the Period Register value for Timer0 with McBSP0 sample rate generator divider
CLKGDV = 0 to give a serial bit rate as close to 19200 bps as possible. Check your initial
program by starting a bit-error rate test. To do this, press RUN on the Navtel tester.
Press the up or down arrows until BERT is displayed. If you are looping the data back
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correctly, BERT should remain 0. You can introduce a single error by pressing INSERT
ERROR and observe the effect on the BERT display.

6. Now modify your program to add errors to the bit stream. For each of the 16 pairs of
bits in a received 32-bit word, generate a pair of zero mean, uncorrelated, Gaussian noise
samples by the method described in Appendix A. Assume that a logical 0 is represented
by A volts on the channel and logical 1 by −A volts as discussed in Section 10.2. Let
the integrator output noise variance be σ2 = 1 and adjust A to get the desired output
signal-to-noise ratio. Then, the SNR in dB is

S = 10 log10

A2

σ2
= 20 log10 A (10.17)

and the required value for A is

A = σ × 10S/20 = 10S/20 (10.18)

Let a particular pair of Gaussian noise samples be denoted by (X,Y ). According to the
theory, a transmitted 1 is changed to a 0 if X > A and a transmitted 0 is changed to a
1 if X ≤ −A. The probabilities of these two events are identical because the probability
density function for the zero mean, Gaussian random variables is even. Thus, to determine
when to introduce a bit error, check to see if X > A. If this is true, an error should be
introduced in the first bit of a pair. Similarly, when Y > A an error should be introduced
in the second bit of a pair. The errors can be introduced by XOR-ing 1’s into the error
locations in the received 32-bit serial word to complement the correct bits.

7. Now experimentally generate a bit-error rate vs. SNR plot. Start with a 13 dB SNR and
work down to 7 dB in one dB increments. Make sure to run your test long enough at
each SNR to obtain a statistically reliable estimate of the error rate. Plot the BER as
the ordinate on a logarithmic scale. Plot the SNR in dB on a linear dB scale.

The Gaussian noise generator algorithm causes an upper limit on the SNR value that can
cause errors. It is shown in Appendix A, Equation (A.9) that with the ’C6x compiler the
maximum magnitude for X or Y is

|Xmax| = |Ymax| = σ
√

30 loge 2 = 4.56009σ (10.19)

No errors can occur if Xmax < A. Using (10.18) and (10.19), it follows that this bound is
equivalent to

σ
√

30 loge 2 < σ × 10S/20

or

S > 20 log10

√
30 loge 2 = 13.1795 dB (10.20)

8. Theoretically compute the BER vs. SNR plot and compare it with your experimentally
measured curve.
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10.5 Additional References

There are many books that discuss digital communication systems and have sections on the
optimum detection of signals corrupted by additive Gaussian noise and how to compute error
probabilities for various signal sets. For example, see Gibson [II.D.9, Chapter 10], Gitlin,
Hayes and Weinstein [II.D.11, Section 2.2], and Haykin [II.D.17, Sections 7.2–7.3].



Chapter 11

Digital Data Transmission by
Baseband Pulse Amplitude
Modulation

In this chapter you will be introduced to a common method for digital data transmission
known as baseband pulse amplitude modulation (PAM). The presentation is slanted towards
transmission over band limited channels and DSP implementation. The concepts learned here
will be generalized to passband digital communication systems in Chapters 13–16. Some of
the concepts and terms you will be introduced to are: baseband shaping filters and raised
cosine shaping, intersymbol interference and the Nyquist criterion, eye diagrams, symbol
error probability formulas, interpolation filter banks, and a symbol clock recovery method.

11.1 General Description of a Baseband Pulse Ampli-

tude Modulation System

In pulse amplitude modulation, information symbols are transmitted at discrete, uniformly
spaced time intervals. The carrier signal is a train of pulses uniformly spaced at the same
interval as the information symbols. The amplitude of each pulse is a one-to-one function
of the corresponding information symbol. The information is recovered at the receiver by
measuring the amplitude of each pulse and mapping it back to the information symbol. In
wideband systems, non-overlapping, rectangular, full period pulses are often used. In band
limited systems, the pulses overlap but are selected so that the information symbols can be
measured by sampling the received signal at the symbol rate as will be explained below.

The block diagram of a typical baseband PAM system is shown in Figure 11.1. The
transmitter input di is a serial binary data sequence with a bit rate of Rd bits/sec. Input
bits are blocked into J-bit words by the serial-to-parallel converter and mapped into the
sequence of symbols an which are selected from an alphabet of M = 2J distinct voltage
levels. These symbols are generated at the rate of fs = Rd/J symbols/sec and we will
designate the interval between symbols as T = 1/fs. The term, baud, is commonly used for
the symbol rate fs in honor of Baudot who invented a binary code for representing alpha-
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numeric characters. Baud is also frequently used (or misused) to mean one symbol period.
The levels are often selected to be equally spaced and have an arithmetic average of zero. In
this chapter, we will use levels spaced by 2d with the M possible values

�i = d(2i − 1) for i = −M

2
+ 1, . . . , 0, . . . ,

M

2
(11.1)

Thus, the minimum level is −(M − 1)d and the maximum level is (M − 1)d.
It is mathematically convenient to represent the symbol sequence by the Dirac impulse

train

s∗(t) =
∞∑

k=−∞

akδ(t − kT ) (11.2)

The Impulse Modulator block forms this function. This impulse train is applied to a Transmit
Filter with impulse response gT (t) which band limits the signal to the channel bandwidth.
The resulting transmitted signal is

s(t) =
∞∑

k=−∞

akgT (t − kT ) (11.3)

which is a superposition of amplitude modulated pulses. The combination of the impulse
modulator and transmit filter is a mathematical model for a DAC followed by a lowpass
filter.

In this chapter, the channel will be modeled as a linear, time-invariant filter with the
frequency response C(ω) followed by an additive noise source.

At the receiver, the channel output r(t) is first passed through a receive filter which
eliminates out-of-band noise and, in conjunction with the transmit filter, forms a properly
shaped pulse. The combined transmit filter, channel, and receive filter frequency response is

G(ω) = GT (ω)C(ω)GR(ω) (11.4)

and the corresponding impulse response is

g(t) = gT (t) ∗ c(t) ∗ gR(t) = F−1{G(ω)} (11.5)

where ∗ represents convolution. The combined filter represented by G(ω) is called the base-
band shaping filter. The output of the receive filter is

x(t) =
∞∑

k=−∞

akg(t − kT ) + v(t) ∗ gR(t) (11.6)

Now assume that the noise is zero and the combined impulse response is zero at the time
instants nT except for n = 0 where it is 1, that is,

g(nT ) = δn,0 =

{
1 for n = 0
0 otherwise

(11.7)

An impulse response with this property is said to have no intersymbol interference (ISI).
This property is examined in more detail in Section 11.2. With these assumptions, it can be
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seen from (11.6) that the samples of the receive filter output taken at times nT reduce to
x(nT ) = an which is exactly the sequence of transmitted symbols. Often, the transmit and
receive filters are designed to give a combined filter with no intersymbol interference under
the assumption that the channel frequency response is constant over the signal bandwidth
and, therefore, introduces no distortion.

The output of the receive filter is then sampled at a rate that is an integer multiple N
of the symbol rate fs. Typically, N might be 3 or 4. The corresponding sampling period
is T0 = T/N . The transmitter and receiver time references are not exactly synchronized
in frequency or phase and this is indicated by the variable τ in the sampler output. The
samples are used by the Symbol Clock Recovery system to lock the receiver symbol clock to
the transmitter clock.

In many instances, the channel frequency response is not known exactly and may vary
slowly. The Adaptive Equalizer is a filter that automatically compensates for non-ideal
channel characteristics. In addition, it corrects for small deviations in the transmit and
receive filter responses from their ideal nominal values. The theory of operation of the
adaptive equalizer is presented in Chapter 15.

The equalizer output is sampled at the symbol rate and quantized to the nearest ideal
level. The equalizer output samples deviate from the ideal levels because of the additive
channel noise and residual intersymbol interference. The quantizer output level is mapped
back to the corresponding J-bit binary word and converted back to a serial output data
sequence.

11.2 Baseband Shaping and Intersymbol Interference

It was shown in the previous section that the output of the receive filter is the superposition
of time shifted and amplitude scaled versions of the baseband shaping filter impulse response
g(t) if the noise is ignored. We also learned that when g(t) is zero at the regularly spaced
symbol time instants nT except for n = 0 where it has the value 1, the transmitted symbols
can be recovered by sampling the receive filter output at times nT . In this case, the pulse
generated by the symbol an has amplitude ang(0) = an at time nT and the tails of all the
other pulses pass through 0. So, the pulses generated by different symbols do not interfere
with each other at the times nT . An impulse response with this property is said to have
no intersymbol interference (ISI). In this section, a frequency domain criterion for no ISI
will be presented, a class of lowpass filters with no ISI will be discussed, and a common
experimental method for observing and measuring ISI will be described.

11.2.1 The Nyquist Criterion for No ISI

Equation (11.7) states the criterion for no ISI in terms of the baseband shaping filter impulse
response samples g(nT ). These samples can be computed from the shaping filter frequency
response by the formula

g(nT ) =
1

2π

∫ ∞

−∞
G(ω)ejωnT dω (11.8)
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Let ωs = 2πfs = 2π/T . The integral can be computed by partitioning the ω axis into the
infinite set of intervals (

−ωs

2
− kωs,

ωs

2
− kωs

]
for k = −∞, . . . ,∞

and taking the sum of integrals over the intervals to get

g(nT ) =
∞∑

k=−∞

1

ωs

ωs
2
−kωs∫

−ωs
2
−kωs

1

T
G(ω)ejωnT dω =

∞∑
k=−∞

1

ωs

ωs
2∫

−ωs
2

1

T
G(ω−kωs)e

j(ω−kωs)nT dω (11.9)

Recognizing that e−jknωsT = e−kn2π = 1 and taking the sum inside the integral gives

g(nT ) =
1

ωs

ωs
2∫

−ωs
2

G∗(ω)ejωnT dω (11.10)

where

G∗(ω) =
1

T

∞∑
k=−∞

G(ω − kωs) (11.11)

The function G∗(ω) is called the aliased or folded spectrum and is well known in digital signal
processing theory.

The criterion (11.7) for no ISI is satisfied if and only if G∗(ω) = 1. This can be seen
by evaluating (11.10) for this special case. The constraint that the aliased spectrum G∗(ω)
must be a constant for no ISI is known as the Nyquist criterion.

11.2.2 Raised Cosine Baseband Shaping Filters

The requirement for no ISI only makes constraints on the symbol rate samples of the base-
band shaping filter impulse response. There are an infinite number of impulse responses that
meet the constraints. One class of filters that is often specified for use with lowpass channels
has raised cosine frequency domain shaping. The frequency response of a raised cosine filter
is

G(ω) =

⎧⎪⎪⎨
⎪⎪⎩

T for |ω| ≤ (1 − α)ωs

2
T
2

{
1 − sin

[
T
2α

(
|ω| − ωs

2

)]}
for (1 − α)ωs

2
≤ |ω| ≤ (1 + α)ωs

2

0 elsewhere

(11.12)

where α is a constant in the interval [0, 1] and is called the excess bandwidth factor. The
raised cosine frequency response is flat over the central portion of the passband and rolls off
sinusoidally to zero at the band edge. It is down from the 0 frequency value by a factor of 2,
which is equivalent to 6 dB, at the frequency ωs/2. The frequency ωs/2 is called the Nyquist
frequency.

It can be shown that the corresponding impulse response is

g(t) =
sin

(
ωs

2
t
)

ωs

2
t

cos
(
αωs

2
t
)

1 − 4(αt/T )2
(11.13)
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The program C:\digfil\rascos.exe computes samples of the raised cosine filter impulse
response modified by the Hamming window.

Notice that when α = 0, the raised cosine filter becomes an ideal flat lowpass filter with
cutoff frequency ωs/2. When α = 1, the frequency response has no flat region and is one
cycle of a cosine function raised up so it becomes 0 at the cutoff frequency of ωs. As the
bandwidth is increased by making α closer to 1, the impulse response decays more rapidly.

11.2.3 Splitting the Shaping Between the Transmit and Receive
Filters

When the channel amplitude response is flat across the signal passband and the noise is
white, it can be shown [II.D.29, p. 54] that the amplitude response of the combined baseband
shaping filter should be equally split between the transmit and receive filters to maximize
the output signal-to-noise ratio, that is,

|GT (ω)| = |GR(ω)| = |G(ω)|1/2 (11.14)

Their phases can be arbitrary as long as the combined phase is linear.

When raised cosine shaping is used, the resulting optimum transmit and receive filters
are called square-root of raised cosine filters. The program C:\digfil\sqrtraco.exe can
be used to compute the impulse response of a square-root of raised cosine filter.

11.2.4 Eye Diagrams

The eye diagram is a useful diagnostic tool for qualitatively evaluating the optimality of a
PAM system. An eye diagram is formed by superimposing oscilloscope traces of the receive
filter output. Each trace is triggered at the same phase within a symbol interval and lasts
for a few symbols. A sketch of some traces in an eye diagram for a combined channel with no
ISI and a two-level input symbol alphabet is shown in Figure 11.2. Notice that all the traces
pass through the ideal symbol values of ±d = ±1 at the sampling instants {nT}. The empty
area inside the traces around nT is called an eye opening. With an M level input alphabet,
there are M − 1 openings stacked vertically at each symbol instant. The quantizer slicing
or decision levels are usually chosen to be the values k2d half way between the ideal symbol
levels. Somewhat surprisingly, the optimum time at which to sample the receive filter output
is not at the peaks of the eye diagram with band limited channels. It is somewhat down in
a valley. The more band limited the channel, the more rapidly the eye closes away from the
symbol instants and the higher the peaks between symbols become.

When intersymbol interference is present, the traces do not all pass through the ideal
levels at the sampling instants and these points become dispersed. As the ISI increases, the
dispersion grows and the eye begins to close. As long as the eye is open, no decision errors
are made when the additive channel noise is zero. However, when noise is present, the error
rate increases as the eye closes.
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Figure 11.2: Eye Diagram for a Channel with no ISI and M = 2. Raised Cosine Shaping
with α = 0.12.

With zero additive noise, the symbol rate samples of the receive filter output are

x(nT ) =
∞∑

k=−∞

akg(nT − kT ) = g(0)

⎡
⎢⎢⎣an +

∞∑
k=−∞
k �=n

ak
g(nT − kT )

g(0)

⎤
⎥⎥⎦ (11.15)

The right-hand summation in (11.15) is the ISI for the current received symbol. Decision
errors are made when the magnitude of this ISI exceeds d except when the ISI carries an
outer level outside the eye diagram. We will assume that g(0) > 0. The ISI is a random
variable and depends on the symbol sequence. The worst case or peak ISI occurs when the
symbols ak have their maximum magnitude (M − 1)d and the same sign as g(nT − kT ).
Then the sum for the ISI becomes

D = (M − 1)d
∞∑

k=−∞
k �=n

∣∣∣∣∣g(nT − kT )

g(0)

∣∣∣∣∣ = (M − 1)d
∞∑

k=−∞
k �=0

∣∣∣∣∣g(kT )

g(0)

∣∣∣∣∣ (11.16)

The peak fractional eye closure is defined to be

η =
D

d
= (M − 1)

∞∑
k=−∞

k �=0

∣∣∣∣∣g(kT )

g(0)

∣∣∣∣∣ (11.17)

When η is less than 1, the eyes are open.
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11.3 Implementing the Transmit Filter by an Interpo-

lation Filter Bank

Designing and manufacturing an analog lowpass filter that closely approximates the impulse
response or linear phase frequency response of a desired transmit filter like the raised cosine
or square-root of raised cosine response is difficult. A solution to this problem is to place
the burden on the transmitter DSP and perform most of the shaping with a discrete-time
interpolation filter bank that generates L output samples per symbol. These samples, which
occur with frequency Lfs, are D/A converted and applied to a simple analog lowpass filter
to generate the continuous-time transmitter output.

The first step in deriving the desired interpolation formula is to replace t by nT +m(T/L)
in (11.3) which gives

s
(
nT + m

T

L

)
=

∞∑
k=−∞

akgT

(
nT + m

T

L
− kT

)
for m = 0, 1, . . . , L − 1 (11.18)

Now let L discrete-time interpolation subfilters be defined as

gT,m(n) = gT

(
nT + m

T

L

)
for m = 0, 1, . . . , L − 1 (11.19)

Then, the L output samples required during the symbol period starting at time nT can be
expressed as

s
(
nT + m

T

L

)
=

∞∑
k=−∞

akgT,m(n − k) for m = 0, 1, . . . , L − 1 (11.20)

Notice that for each m, (11.20) is equivalent to passing the T spaced input symbol sequence
{an} through a T spaced digital filter with impulse response gT,m(n). The resulting DSP
output words are then multiplexed to a DAC at the rate of Lfs samples/second. Finally,
the DAC output is passed through a simple analog lowpass filter to eliminate the unwanted
high frequency spectral components around multiples of Lfs. This process is illustrated in
Figure 11.3. In practice, the transmit filter impulse response is truncated to a finite duration
by a window function like the Hamming window so each subfilter becomes a finite tap FIR
digital filter.

11.4 Symbol Error Probability for a Channel with a

Perfect Frequency Response and Additive Gaus-

sian Noise

An important measure of the performance of a digital communication system is its error
probability as a function of the channel SNR. A formula for the symbol error probability of
PAM will be derived in this section under the following assumptions:

1. The frequency response of the channel is a constant over the signal bandwidth.
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Figure 11.3: Implementing the Transmit Filter by an Interpolation Filter Bank

2. Symbols from the M level alphabet are used with equal probability.

3. Symbols selected at different times are uncorrelated random variables.

4. The additive noise is white and Gaussian with two-sided power spectral density N0/2.

5. The combined baseband shaping filter has a raised cosine response with excess bandwidth
factor α and the shaping is split equally between the transmit and receive filters. There-
fore, the transmit and receive filters both have square-root of raised cosine responses.

It can be shown [II.D.29, pp. 52-53] that the average transmitted power is

Ps =
E{a2

n}
T

1

2π

∫ ∞

−∞
|GT (ω)|2 dω (11.21)

With the square-root of raised cosine transmit filter, this reduces to

Ps =
E{a2

n}
T

(11.22)

Using (11.1) and the fact that the levels are equally likely, the expected squared symbol
value is found to be

a2 = E{a2
n} =

2

M

M/2∑
k=1

[d(2k − 1)]2 = (M2 − 1)
d2

3
(11.23)

Therefore, the average transmitted power is

Ps = (M2 − 1)
d2

3T
(11.24)
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The noise at the output of the square-root of raised cosine receive filter has the variance

σ2 =
1

2π

∫ ∞

−∞

N0

2
|GR(ω)|2 dω =

N0

2
(11.25)

Also, the channel noise power in the Nyquist band (−ωs/2, ωs/2) is

PN =
1

2π

∫ ωs/2

−ωs/2

N0

2
dω =

N0

2T
(11.26)

Since there is no ISI, the samples of the receive filter output have the form

x(nT ) = an + vR(nT ) (11.27)

where vR(nT ) is a sample of the channel noise filtered by the receive filter. When an is one
of the M − 2 inner levels, the symbol error probability is

PI = P (|vR(nT )| > d) = 2Q(d/σ) (11.28)

where Q(x) is the Gaussian tail probability defined in (10.13). For the outer level (M − 1)d
the error probability is

PO+ = P (vR(nT ) < −d) = Q(d/σ) (11.29)

and for the outer level −(M − 1)d the error probability is

PO− = P (vR(nT )) > d) = Q(d/σ) = PO+ (11.30)

The total symbol error probability is

Pe =
M − 2

M
PI +

1

M
PO+ +

1

M
PO− = 2

M − 1

M
Q(d/σ) (11.31)

Solving (11.24) for d and using (11.25) and (11.26), the error probability can be expressed
in terms of the channel signal-to-noise ratio Ps/PN as

Pe = 2
M − 1

M
Q

[(
3

M2 − 1

Ps

PN

)1/2
]

(11.32)

11.5 Symbol Clock Recovery

In typical PAM systems, the receiver has a reasonably good, but not perfect, knowledge of
the transmitter’s symbol clock frequency. It must lock its local symbol clock frequency and
phase to those of the received signal to maintain the proper sampling instants. A method
for deriving the symbol clock from the received PAM signal is presented in this section. It
is particularly suited to band limited systems. Wideband systems in which the signals have
sharp transitions often use other clock recovery methods.
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The block diagram of a clock recovery system is shown in Figure 11.4. The receive filter
output x(t) is first passed through a prefilter with frequency response B(ω). The prefilter
is typically a bandpass filter centered at fs/2, half the symbol frequency. Let the combined
baseband shaping filter and prefilter frequency and impulse responses be

G1(ω) = G(ω)B(ω) and g1(t) = g(t) ∗ b(t) (11.33)

Then, the prefilter output is

q(t) =
∞∑

k=−∞

akg1(t − kT ) (11.34)

The prefilter output is passed through a squarer whose output is

p(t) = q2(t) =
∞∑

k=−∞

∞∑
m=−∞

akamg1(t − kT )g1(t − mT ) (11.35)

The squarer output is passed through a narrowband bandpass filter H(ω) whose center
frequency is the symbol rate fs. The output z(t) looks like a sinusoid at the symbol clock
frequency with a slowly varying amplitude and phase. Its zero crossings tend to cluster
together. This signal can then be applied to a narrow band phase-locked loop to generate a
stable symbol clock.

� �
x(t) Prefilter

B(ω)

q(t)
Squarer � � �

p(t)

q2(t)

Bandpass

Filter

H(ω)

z(t) ρ(t)Phase-

Locked

Loop

Figure 11.4: Block Diagram of a Clock Recovery System

As before, it will be assumed that the symbols are a sequence of zero-mean uncorrelated
random variables. Therefore,

E{akam} = a2δk,m (11.36)

where a2 is given by (11.23). The expected value of the squarer output is

E{p(t)} =
∞∑

k=−∞

∞∑
m=−∞

E{akam}g1(t − kT )g1(t − mT ) (11.37)

On using (11.36), this reduces to

E{p(t)} = a2
∞∑

k=−∞

g2
1(t − kT ) (11.38)

The expected value of the squarer output is periodic with period equal to the symbol
period T . Therefore, it can be expressed as a Fourier series of the form

E{p(t)} =
∞∑

k=−∞

pke
jkωst (11.39)
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where

pk =
1

T

∫ T

0
E{p(t)}e−jkωst dt (11.40)

After several lines of manipulations, it can be shown that

pk =
a2

T

∫ ∞

−∞
g2
1(t)e

−jkωst dt =
a2

T2π

∫ ∞

−∞
G1(ω)G1(kωs − ω) dω (11.41)

The expected value of the output bandpass filter is also periodic with the Fourier series
expansion

E{z(t)} =
∞∑

k=−∞

zke
jkωst (11.42)

where

zk = pkH(kωs) = H(kωs)
a2

T2π

∫ ∞

−∞
G1(ω)G1(kωs − ω) dω (11.43)

By selecting the prefilter B(ω) to be a narrow band filter that passes components only
near ±ωs/2, it can be seen from (11.41) that pk = 0 except for k = −1, 0, or 1. By selecting
the output bandpass filter H(ω) so that it only passes spectral components near ±ωs, the
k = 0 term is removed and only the symbol frequency components for k = ±1 remain.

When the baseband shaping filter has zero excess bandwidth, that is, when G(ω) = 0 for
|ω| ≥ ωs/2, all the Fourier coefficients pk are zero for k �= 0 since the nonzero portions of
G(ω) and G(kωs − ω) do not overlap. This timing recovery method then fails.

Franks and Bubrouski [II.D.7] have also derived formulas for E{z2(t)} and var z(t).
They show that when G1(ω) is symmetric about ωs/2 and is band limited to the interval
ωs/4 < |ω| < 3ωs/4 and H(ω) is symmetric about ωs, the variance of z(t) is zero and perfect
timing recovery is possible. When these symmetry conditions are nearly met, the variations
in the zero crossings of the timing wave z(t) are very small and the receiver can track the
symbol clock frequency by locking to the zero crossings. The filters in the timing recovery
system can introduce a phase shift in the timing wave which must be taken into account.
The fractionally spaced equalizer can automatically correct for this phase shift as long as
the recovered symbol clock frequency is correct.

11.6 Simulation and Theoretical Exercises for PAM

These exercises are designed to improve your understanding of PAM by generating signals
with C programs before doing real-time implementations in C or assembly language and
having to deal with the hardware as well as the software. You will generate four level PAM
signals using raised cosine and square-root of raised cosine shaping and create eye diagrams.
You will also be asked to make plots of the symbol error probability for several cases.

11.6.1 Generating Four-Level Pseudo-Random PAM Symbols

Write a C function to generate pseudo-random four-level symbols. The function should use a
23-stage self synchronizing shift register sequence generator with the connection polynomial
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(9.9) or (9.10), as discussed in Chapter 9, to generate the binary sequence dn. Generate the
four-level sequence an from pairs of binary symbols (d2n, d2n+1) according to the rule

an = (−1)d2n(1 + 2d2n+1)d (11.44)

where d is a desired scale factor.
Draw a vertical axis and show the 4 levels. Label each level with its value and also the

corresponding pair of binary digits. Observe that the binary labels for adjacent levels differ
in only one bit. This is called Gray coding. With additive Gaussian noise, the most likely
symbol decision error in the receiver is to an adjacent level. Gray coding minimizes the
bit-error probability at the receiver.

11.6.2 Eye Diagram for a PAM Signal Using a Raised Cosine
Shaping Filter

Use the program rascos.exe to design an interpolation filter bank for a raised cosine shaping
filter with an excess bandwidth factor of α = 1.0. Use a symbol rate of fs = 1/T = 4 kHz.
Truncate the shaping filter impulse response to the interval [−4T, 4T ] with a Hamming
window. Generate L=16 samples of the PAM signal per symbol interval, that is, generate
the sequence s(kT/16).

Use the filter bank and the four-level random symbol sequence to generate data for
an eye diagram that extends over two symbol intervals. Do this by writing enough pairs
(mod(k, 32), s(kT/16)) to a file to form a reasonably filled out 4-level eye diagram. The
function, mod(k, 32), is the remainder when k is divided by 32 and ranges from 0 to 31. As
k increases, mod(k, 32) cycles through the values 0, 1, . . . , 31. This performs the function of
resetting the trace to the left-hand side every two symbols. When k reaches a multiple of
32 and mod(k, 32) = 0, you should write the three extra points (32, s(kT/16)), (32, 0) and
(0, 0) to the file before writing (0, s(kT/16). The first point continues the trace to the right
edge of the plot, the second point moves the trace vertically to 0, and the third point moves
the trace horizontally at 0 from the right edge back to the origin. Writing these three extra
points is necessary for some plotting functions that draw lines through the eye diagram from
the last point on the right-hand side to the first point on the left-hand side. These lines
are blanked out on an oscilloscope when it retraces. Some plotting programs behave nicely,
blank the retrace like an oscilloscope, and the extra points are not needed. Print the eye
diagram using your favorite plotting program.

Now change α to 0.125 and generate a new eye diagram. Print the new diagram. Discuss
differences in the two eye diagrams and comment on how the excess bandwidth factor affects
the required symbol sampling time accuracy in the receiver.

11.6.3 Eye Diagram for a PAM Signal Using a Square-Root of
Raised Cosine Shaping Filter

Repeat the exercises of the previous section for a square-root of raised cosine baseband
shaping filter, but only for α = 0.125. Also, compute the peak fractional eye closure defined
by (11.17) from the shaping filter impulse response.
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11.6.4 Theoretical Error Probability for a PAM System

Plot the symbol error probability Pe given by (11.32) for M = 2, 4, and 8 as a function of
the channel signal-to-noise ratio Ps/PN . Plot Pe on a logarithmic scale and 10 log10(Ps/PN)
dB on a linear scale.

11.7 Hardware Exercises for PAM

Now use the DSP to generate a PAM signal and synthesize the symbol clock recovery system.
Use a symbol rate of fs = 4 kHz. Generate L = 4 PAM signal samples per symbol with an
interpolation filter bank, so the DAC sampling rate should be set to 4 × 4 = 16 kHz.

11.7.1 Generating a PAM Signal and Eye Diagram

Generate a four-level PAM signal using a raised cosine baseband shaping filter. Generate the
four-level pseudo-random input symbol sequence by the same method used in Section 11.6.1.
Choose α = 0.125 for the excess bandwidth factor of your shaping filter and truncate the
impulse response to the interval [−4T, 4T ] by a Hamming window. Generate L = 4 output
samples per symbol period by the interpolation method. Write the output samples to the
left channel. Make sure to use level o3 optimization when compiling your program.

Let the impulse response of the baseband shaping filter, viewed as an FIR filter with T/4
tap spacing, be

gn =

{
g(nT/4) for n = −16,−15, . . . , 16
0 elsewhere

(11.45)

The frequency response of this filter is

G(ω) =
16∑

n=−16

gne−jωnT/4 = g0 + 2
16∑

n=1

gn cos(ωnT/4) (11.46)

The right-hand expression is a result of the fact that the impulse response has even symmetry.
Compute and plot the amplitude response of the filter in dB over the frequency range of 0
to 8 kHz.

There are a variety of ways to structure a program to generate the real-time output signal.
Here is one approach to try. Write output samples to the McBSP1 data transmit register
(DXR) with an interrupt routine that is triggered by the serial port transmit interrupts
(XINT) that occur when the data transmit register is loaded into the serial port transmit
shift register (XSR). Determine the symbol timing by counting interrupts modulo 4. Set up
an 8-word circular buffer as a “mail box.” One half of the buffer (4 words) will be used to
hold the output samples for the current symbol period, and the remaining half will be used
to store the four samples for the next symbol period. Each symbol period, the input and
output halves will be swapped. These are sometimes called ping-pong buffers. The mail box
structure is illustrated in Figure 11.5. Initialize an output pointer to the address of the first
word, word 0, in the buffer and an input pointer to the fifth word, word 4. Before starting
data transmission, set the interrupt count to 0 to indicate the start of a symbol. At the start
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of each symbol period, generate four output samples, and write them to the mailbox. Do
this in the main routine. The input pointer should be incremented circularly modulo 8 after
each sample is written to the mailbox. After the four samples are written to the mailbox, the
main routine should wait for the interrupt count to become 0. When a transmit interrupt
occurs, write the sample addressed by the output pointer to the DXR, increment the output
pointer circularly modulo 8, and increment the interrupt count modulo 4.

Output
0 1 2 3 4 5 6 7

Input

Figure 11.5: The Output Mailbox Structure

Test your transmitter program by observing the eye diagram on the oscilloscope. Use
DC coupling for the scope input.

Generating a Baud Sync Signal

You will need a signal to synchronize the sweeps with the symbol period to get a display like
your theoretical plot. One way to generate a sync signal is to create a 4000 Hz square-wave
on the right channel codec output. You can do this by putting an integer like A = 16000 in
the lower half of the word sent to the codec for first two samples in a baud and −A in the
second two samples. Of course, the codec filters will round off the corners and make it look
more like a sine wave.

11.7.2 Testing the Square-Law Symbol Clock Frequency Genera-
tor

Write a program for the DSP to implement the symbol clock recovery system discussed in
Section 11.5 up to the point labeled z(t) in Figure 11.4. Do not implement the phase-locked
loop. Use the same raised cosine baseband shaping filter you designed in Section 11.7.1. The
sampling rate for all operations in the symbol clock generator should be 4fs = 16 kHz. Write
the PAM output samples to the DAC left channel and also pipe them to your clock recovery
system. For the prefilter, B(ω), design a second-order IIR filter with a center frequency of
fs/2 = 2 kHz and roughly a 100 Hz 3 dB bandwidth. For the postfilter, H(ω), design a
second-order bandpass IIR filter with a center frequency of 4 kHz and a 3 dB bandwidth of
roughly 25 Hz. You should experiment with these bandwidths and observe how they affect
the system performance. Write the clock recovery system output samples z(nT/4) to the
right channel output.

To test your program, first drive your baseband shaping filter with the alternating two-
level symbol sequence an = (−1)nd. This alternating sequence is called a dotting sequence
in the modem jargon. Send the shaping filter output samples to the left channel output,
pipe them to the clock tone generator, and send the clock tone generator output samples to
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the right channel output. Observe the left and right channel outputs simultaneously on the
oscilloscope.

Notice that

(−1)n = cos
(

ωs

2
nT
)

(11.47)

which are symbol rate samples of a cosine wave that has a frequency of half the symbol
rate. According to DSP theory, the sampled signal has spectral components at the set of
frequencies {ωs/2+kωs; k = −∞, . . . ,∞}. The shaping filter will pass the 2 kHz component
and heavily attenuate the other components in the [0, 8) kHz band. In other words, the
PAM output signal should be very close to a 2 kHz sine wave. Check that the tone generator
output is a 4 kHz sine wave locked to the PAM signal.

Next, use a two-level pseudo-random symbol sequence having values ±d. Use the shift
register generator to select the levels. Observe the PAM signal and clock tone generator
output simultaneously on the oscilloscope. They should still be locked together. Comment
on how the tone generator output looks compared to the output with the dotting sequence.

Finally, use the full four-level pseudo-random input symbol sequence. Observe the output
of the clock recovery system on the oscilloscope and compare it with the previous cases.

11.7.3 Optional Team Exercise

If you are interested in doing more with PAM, team up with an adjacent group. Make one
setup a PAM transmitter and the other a PAM receiver. This exercise is nontrivial and
should be considered to be equivalent to a complete lab experiment.

For simplicity put all of the raised cosine shaping in the transmitter. Transmit a two-
level PAM signal. The transmitted levels should be selected by the output of the 23-stage
scrambler described in Section 9.2.1 with an input of 0. Make sure the initial scrambler state
is non-zero. Again, use a 4 kHz symbol rate. Connect the line output of the transmitter to
the line input of the receiver. Sample the received signal at 16 kHz.

Even though the transmitter and receiver both use a sampling frequency of 16 kHz, there
will be slight differences due to small physical and temperature differences in the oscillator
crystals and circuit components. You will have to devise a method for synchronizing the
symbol clock in the receiver to the symbol clock in the transmitter. The sampling phase
of the codec cannot be altered, so you will have to pass the received samples through a
variable phase interpolator that compensates for the phase difference between the transmit
and receive clocks. Variable phase interpolators are discussed in Chapter 12. You can lock
the phase of the receiver symbol clock to the positive zero crossings of the symbol clock
tone generator. In addition you will have to compensate for any delays in the system so that
samples are taken at the symbol instants, that is, at the point where the eye has its maximum
opening. You could also add a baseband version of a T/2 spaced adaptive equalizer. See
Chapter 15 for a discussion of passband equalizers. The fractionally spaced equalizer will
automatically compensate for a fixed symbol phase offset but not for a frequency offset.

Quantize the selected symbol rate samples to a binary sequence. Descramble this se-
quence and check that the output is all 0’s.

Add Gaussian noise to the received samples in the DSP and make a plot of the bit-error
rate vs. SNR.
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11.8 Additional References

For a very complete discussion of baseband digital data transmission by PAM, see the classic
book by Lucky, Salz, and Weldon [II.D.29, Chapter 4]. Also see Gibson [II.D.9, Chapter 8],
Gitlin, Hayes, and Weinstein [II.D.11, Chapter 4], Lee and Messerschmitt [II.D.26, Chapter
6], and Proakis [II.D.32, Chapter 6]. All these references discuss the basic idea of PAM,
baseband shaping filters, intersymbol interference, eye diagrams, Nyquist’s criterion for no
ISI, raised cosine pulses, and symbol error probability formulas.

Discussions of interpolation filter banks can be found in Crochiere and Rabiner [II.C.4,
Section 3.3] and Proakis and Manolakis [II.C.15, Chapter 10].

A very thorough analysis of the symbol clock recovery scheme described in this chapter is
presented in Franks and Bubrouski [II.D.7]. Further discussions of this scheme and others can
be found in Gitlin, Hayes, and Weinstein [II.D.11, Section 6.5] and Lee and Messerschmitt
[II.D.26, Chapter 15].



Chapter 12

Variable Phase Interpolation

The receiver in a digital communication system usually knows the nominal symbol rate used
by the transmitter. Since the receiver is at a distance from the transmitter, has slightly
different components, and is at a different temperature, the locally generated symbol clock
in the receiver will differ in phase and slightly in frequency from the transmitter’s clock.
Therefore, the receiver must synchronize its symbol clock to the clock in the signal received
from the transmitter. It must do this just using information derived from the received signal.
Some codecs designed for modem front ends have built-in hardware capability for changing
their sampling phase by small increments as directed by commands from the DSP they are
connected to. The clock tone generator discussed in Chapter 11 can be used to determine
the needed phase increments. The codec for the TMS320C6713 DSK does not have this
capability and runs with a fixed phase. In this chapter, we will see how to implement the
phase shifting in the DSP by a variable phase interpolator. First, a continuously variable
phase shifter will be presented. Then a phase shifter using fine quantized steps will be
discussed.

Another problem arises when the modem output samples are connected directly to a
digital link like a T1 channel where the sampling rate is fixed at 8 kHz and is different from
the rate needed for the modem input or output samples which is a multiple of the symbol
rate. We will see how to solve this problem by using an interpolation filter bank to convert
between two sampling rates that are rationally related.

12.1 Continuously Variable Phase Interpolation

Let x(t) be a band limited signal with cutoff frequency ωc, that is, X(ω) = 0 for |ω| ≥ ωc. Let
the sampling rate be ωs ≥ 2ωc and sampling period be T = 2π/ωs. The sampling frequency
in Hertz is fs = ωs/(2π) = 1/T . The ideal impulse sampled signal is

x∗(t) =
∞∑

n=−∞

x(nT )δ(t − nT ) (12.1)

and it can be shown the Fourier transform of x∗(t) is given by the aliasing formula

X∗(ω) = fs

∞∑
n=−∞

X(ω − nωs) (12.2)

205
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According to the sampling theorem, x(t) can be exactly reconstructed for any t from its
samples {x(nT )} by applying x∗(t) to an ideal lowpass filter with the frequency response

H0(ω) =

{
1/fs = T for |ω| < fs/2

0 elsewhere
(12.3)

and impulse response

h0(t) =
sin ωs

2
t

ωs

2
t

(12.4)

The reconstruction formula or sampling theorem is

x(t) =
∞∑

k=−∞

x(kT )h0(t − kT ) =
∞∑

k=−∞

x(kT )
sin ωs

2
(t − kT )

ωs

2
(t − kT )

(12.5)

If the signal is over-sampled so that ωs is strictly greater than 2ωc, the following narrower
band ideal lowpass filter can be used for signal reconstruction to eliminate out-of-band noise:

H(ω) =

{
1/fs for − ωc < ω < ωc

0 elsewhere
(12.6)

The impulse response of this filter is

h(t) = 2
ωc

ωs

sin ωct

ωct
(12.7)

Then, x(t) can be reconstructed from its samples by the formula

x(t) =
∞∑

k=−∞

x(kT )h(t − kT ) =
∞∑

k=−∞

x(kT )2
ωc

ωs

sin ωc(t − kT )

ωc(t − kT )
(12.8)

Letting t = nT + dT gives the following formula for interpolating between samples of
x(t):

x(nT + dT ) =
∞∑

k=−∞

x(kT )h(nT − kT + dT )

=
∞∑

k=−∞

h(kT + dT )x(nT − kT ) (12.9)

The variable, d, is the time advance normalized by the sampling period. Values for x(·)
around the time nT can be computed by varying d by the desired fraction of the symbol
period T .

For actual computation, the sum in (12.9) must be truncated. This can be done by
truncating h(t) with a Hanning window. Suppose the impulse response is to be truncated to
the time interval −(L+0.5) < t/T < L+0.5 where L is an integer, and that the normalized
advance is limited to plus or minus half a symbol, that is, −0.5 ≤ d < 0.5. The required
Hanning window is

w(t) =

⎧⎪⎨
⎪⎩

0.5 + 0.5 cos
πt

(L + 0.5)T
for − (L + 0.5) < t/T < L + 0.5

0 elsewhere
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Other windows like the Hamming window, for instance, can be used. Let the windowed
impulse response be

g(t) = h(t)w(t)

=

⎧⎪⎨
⎪⎩

2
ωc

ωs

sin ωct

ωct

(
1

2
+

1

2
cos

πt

(L + 1
2
)T

)
for − (L + 1

2
) < t

T
< L + 1

2

0 elsewhere

(12.10)

Then, the approximation to (12.9) becomes

x̂(nT + dT ) =
L∑

k=−L

g(kT + dT )x(nT − kT ) (12.11)

Of course, a delay of L input samples must be added to make the filter physically realizable,
so the actual formula that would be computed is

x̂(nT − LT + dT ) =
L∑

k=−L

g(kT + dT )x(nT − LT − kT ) (12.12)

With fixed d, this interpolation formula represents a 2L+1 tap FIR filter with tap coefficients
g(nT + dT ) and input sequence x(nT ). Inside the window the desired interpolation filter
impulse response with normalized advance d is

g(nT + dT ) = h(nT + dT )w(nT + dT )

= 2
ωc

ωs

sin ωc(n + d)T

ωc(n + d)T

(
0.5 + 0.5 cos

π(n + d)

L + 0.5

)
(12.13)

for n = −L,−L + 1, . . . , L and − 0.5 ≤ d < 0.5

Notice that (12.13) represents g(t) over the interval [−(L + 0.5)T, (L + 0.5)T ) by 2L + 1
sections over the sub-intervals

[(n − 0.5)T, (n + 0.5)T ) for n = −L, . . . , L

as d varies between −0.5 and 0.5 for each section.
Direct computation of the tap coefficients for each new value of d requires evaluation of

trigonometric functions and division which takes significantly more time than addition or
multiplication in DSP’s. A solution to this problem is to approximate the 2L + 1 sections
of g(t) by low degree polynomials. We will approximate the sections by least-squares cubic
polynomial fits of the form

gk(d) = c0,k + c1,kd + c2,kd
2 + c3,kd

3 for k = −L, . . . , L and − 0.5 ≤ d < 0.5 (12.14)

It is easy to store the 4(2L + 1) polynomial coefficients.
The resulting approximate interpolator can be implemented for a given d by first using

(12.14) to compute the tap values and then performing the convolution

x̃(n; d) =
L∑

k=−L

gk(d)x(nT − kT ) (12.15)



208 Variable Phase Interpolation

An alternative realization can be obtained by substituting (12.14) into (12.15) to give

x̃(n; d) =
3∑

i=0

⎡
⎣ L∑

k=−L

ci,kx(nT − kT )

⎤
⎦ d i (12.16)

For each i, the sum inside the square brackets in (12.16) is a 2L + 1 tap FIR filter with
tap coefficients ci,k and input sequence x(nT ). The outputs of these filters are multiplied by
powers of d and summed. This structure was also suggested in [II.C.6]. For a single fixed d,
computation by (12.16) is not more efficient than by (12.15). However, when interpolated
values for several values of d are required, (12.16) is more efficient.

12.1.1 Computing the Least-Squares Fits

The program interp.exe in the directory C:\digfil\interpol can be used to compute
the least-squares fit polynomial coefficients for the interpolator sections. The source code,
interp.for is also included in the directory. In the first cut at the interpolator program, the
least-squares cubic fit for a section was computed using finely spaced samples of g(t) confined
to the section. It was found that the resulting impulse response had small discontinuities
at the section boundaries. Then cubic splines were used to eliminate these discontinuities
but this forced larger errors in the interiors of the sections. Finally, some samples from
adjoining sections were used in computing the section polynomial approximation and the
discontinuities were significantly reduced. More precisely, to approximate g(t) over the in-
terval [(n−0.5)T, (n+0.5)T ] a least-squares fit was performed by using samples of g(t) taken
uniformly over the interval [(n− 0.5−α)T, (n + 0.5 + α)T ] with 0 ≤ α ≤ 1. Experimentally,
it was found that α = 0.04 gave the best results. In the program, 101 uniformly spaced
samples of g(t) over the extended intervals are used to compute the least-squares fit cubic
polynomials. The user is given the option of choosing the cutoff frequency fc, sampling rate
fs, number of sections, and overlap factor α which is called G in the program.

Another lesson was learned in developing the program. The ideal lowpass impulse re-
sponse was initially truncated with a rectangular window. The resulting amplitude responses
and envelope delays had large ripples. Using the Hanning window nicely solved this problem.

The program response.exe in the interpol directory computes the amplitude response
and envelope delay relative to the center tap for the filters designed by interp.exe. The
program asks you to “ENTER ALPHA” which is the desired normalized advance, d.

12.2 Quantized Variable Phase Interpolation

Another approach to variable phase interpolation is to divide the symbol period into rela-
tively finely spaced points and design a fixed interpolation filter to achieve the phase shift
corresponding to each separate point. The symbol clock recovery and tracking system then
selects the filter with the phase shift closest to the desired value. The design of an interpo-
lation filter bank for implementing a PAM transmit shaping filter was discussed in Section
11.3. Exactly the same technique can be used to design a multi-step phase shifting filter
bank. It is only necessary to replace the transmit filter impulse response, gT (t), by the
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reconstruction filter impulse response, g(t), given by (12.10) and the data symbol sequence,
ak, by the T-spaced signal samples, x(kT ). In this section, T is the period between samples,
not the symbol period. The symbol period is typically an integer like 3 or 4 times T. Then,
the interpolation formula (11.20) for t = nT + m(T/M) becomes

x̂
(
nT + m T

M

)
=

∞∑
k=−∞

x(kT )gm(n − k)

=
L∑

k=−L

gm(k)x(nT − kT ) for m = 0, . . . , M − 1 (12.17)

where M is the number of phase increments between samples and subfilter m has the impulse
response

gm(n) = g
(
nT + m T

M

)
for m = 0, . . . , M − 1 (12.18)

Again, a delay of L samples must be introduced to make the filters physically realizable.
The range for m was chosen to be 0 to M − 1 above while the range for d in Section 12.1

was selected to be −0.5 to 0.5. These choices were somewhat arbitrary. For example, if M
is even, the range for m could also have been chosen to be −0.5M to 0.5M − 1.

For typical modem applications, a reasonable value for the number of phase increments,
M , might be between 32 and 64. To get finer resolution, some manufacturers linearly
interpolate between the outputs of adjacent subfilters based on the required value of d.
Unlike the transmit shaping filter bank shown in Figure 11.3, only the output of the one
subfilter for the selected value of m is computed between each input sample.

The phase shifting method of Section 12.1 is efficient as far as data storage memory is
concerned. However, when d is changing frequently, it effectively requires recomputation
of the filter coefficients for each new d and is not computationally efficient. The quantized
step phase shifter presented in this section is computationally efficient because all the filter
coefficients are pre-computed and stored in data memory. However, it is not as efficient in
terms of data memory usage. The choice between the two methods is a choice the designer
must make based on system constraints.

12.3 Closing the Tracking Loop

A variable phase interpolator and the symbol clock tone generator presented in Section 11.5
can be combined into a phase-locked loop for tracking the symbol clock of a PAM signal as
shown in Figure 12.1. In this figure, T is the sampling period and Tb is the symbol period.
We will require Tb to be an integer multiple of T . In telephone line modems, Tb is typically
3 or 4 times T . In most cases, the transmitter and receiver symbol clocks are very close in
frequency. For example, the ITU-T modem recommendations specify that the symbol clock
should have an accuracy of ±0.01%. Therefore, the symbol clock generated in the receiver
drifts very slowly with respect to the transmitter clock without a tracking loop. However,
transmissions may last for a long period of time and the accumulated phase shift can become
large. Therefore, the receiver must adjust the frequency of its local clock to eliminate the
drift and track the symbol clock embedded in the received signal.
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Figure 12.1: Symbol Clock Tracking Loop

The output of the Variable Phase Interpolator, x̂(nT + diT ), is applied to the Symbol
Clock Tone Generator. It is assumed that the normalized advance, di, changes very slowly.
Suppose that Tb = KT . The output of the Tone Generator e(nT ) is sampled at the symbol
rate to generate the phase error sequence e(iKT ) = e(iTb). The goal of the loop is to adjust
di to force e(iTb) to zero so the loop locks to the positive zero crossings of the generated
clock tone. When the loop is nearly in lock, it can be seen from a sketch of sinx that when
e(nT ) > 0 the sampling instant is too late and the advance di should be reduced. Similarly,
when e(nT ) < 0, the sampling instant is too early and di should be increased. The increment
for di is formed by scaling e(iTb) by a small positive constant α. The increments should be
a small fraction of the sampling period for accurate clock tracking. The increments are then
subtracted from the previous value of d along with a second-order correction to get the new
initial value

d̃i = di−1 − αe(iTb) − γ(iTb) (12.19)

where

γ(iTb) = βe(iTb) + γ((i − 1)Tb) (12.20)

The accumulator generating γ(iTb) adjusts for a constant frequency offset just as in the
loops presented in Chapters 6, 8, and 15. The positive constant β should be 50 to 100 times
smaller than α for reasonable transient response.

It is quite important to have a very stable symbol clock reference in high speed modems.
The clock phase should have little jitter. In Chapter 14 a nonlinear filter, called a random
walk filter, is added to the symbol clock tracking loop for a QAM modem to further smooth
the estimated clock phase.

If the transmitter and receiver clocks are exactly the same frequency, the value for d̃i

should hover around a constant value. Each new sampling period, a new sample of x(·)
is shifted into the interpolator’s FIR filter and the output for the desired value of d̃i is
computed. When there is a frequency offset between the transmitter and receiver symbol
clocks, the value of d̃i will slowly drift in a positive or negative direction. In the continuously
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variable phase interpolator, its value was restricted to the range [−0.5, 0.5). When d̃i falls
outside this range some corrective action must be taken. We will assume it can only fall a
small distance outside this range. If d̃i > 0.5, the normal sample of x(·) should be shifted
into the FIR filter delay line and, additionally, the next new sample in time should be shifted
in. Then 1 should be subtracted from d̃i. If d̃i < −0.5, no new sample should be shifted into
the delay line and 1 should be added to d̃i. The mod T box in Figure 12.1 performs this
corrective action. It generates the final phase advance value di and informs the interpolator
if a sample should be added or deleted.

A similar strategy can be used for the quantized variable phase interpolator. It is conve-
nient to use a number of subfilters that is a power of two, say, M = 2J . The subfilter index
can be stored in a 32-bit integer in a TMS320C67xx DSP with the top J bits, exclusive of
the sign bit, actually used as the index. The phase increments can be added into the lower
bits of the the word which performs the accumulation and averaging. When the upper J bits
fall outside the allowed interval, corrective action similar to that described in the previous
paragraph must be taken.

12.4 Changing the Sampling Rate by a Rational Factor

A situation arises in modem design where it is necessary to use interpolation to change from
one sampling rate to another rationally related rate. Modems have been designed where the
output samples are not converted to a continuous-time signal but are sent directly over a
digital network like the Internet to bypass telephone charges. Sometimes a T1 connection is
used and the samples have to be interpolated to an 8 kHz sampling rate and transformed into
µ or a-law 8-bit codes. For example, the modem might normally have a symbol rate of 2400
baud with three samples generated per symbol resulting in a sampling rate of 7200 Hz. Then
it is necessary to interpolate these samples to an 8000 Hz rate. The least common multiple
of 7200 and 8000 is 72000 = 10 × 7200 = 9 × 8000. A standard approach to performing
the sampling rate conversion is to interpolate the 7200 Hz samples up to a 72000 rate with
an FIR interpolation filter bank and then down-sample by a factor of 9 to get the 8000 Hz
samples.

More generally, let the initial sampling rate be f1 and the final rate be f2. Suppose the
ratio of f1 and f2 when reduced to lowest terms is

f1

f2

=
n1

n2

(12.21)

with n1 and n2 relatively prime. Then the intermediate sampling rate should be

f3 = n2f1 = n1f2 (12.22)

In the example above, n1 = 9 and n2 = 10. Down-sampling the f3 rate sequence by a factor
of n1 gives the desired rate of f2.

The first step in changing the sampling rate from f1 to f3 is to use the sampling theorem
to express the continuous-time signal x(t) in terms of its rate f1 samples. The reconstruction
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formula is

x(t) =
∞∑

k=−∞

x(kT1)h(t − kT1) (12.23)

where

h(t) =
sin πf1t

πf1t
(12.24)

is the impulse response of an ideal lowpass filter with cutoff frequency f1/2 and amplitude
response T1 = 1/f1. Letting t = nT1 + mT1

n2
gives

xm(nT1) = x
(
nT1 + mT1

n2

)
=

∞∑
k=−∞

x(kT1)h
(
nT1 + mT1

n2
− kT1

)

=
∞∑

k=−∞

x(kT1)hm(n − k) for m = 0, . . . , n2 − 1 (12.25)

where subfilter m is

hm(n) = h(nT1 + mT1

n2
) for m = 0, . . . , n2 − 1 (12.26)

This formula shows how to interpolate n2 points between each rate f1 sample starting at
time nT1 to generate the rate f3 = n2f1 sequence. The approach is the same as the one used
for implementing the baseband shaping filter discussed in Section 11.3. For each m, xm(nT1)
is generated by a discrete-time filter operating with sampling rate f1. The interpolation
formula is illustrated in Figure 12.2 as a bank of n2 filters.
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h1(nT1)

hn2−1(nT1)

...

x(nT1)

x0(nT1)

x1(nT1)

xn2−1(nT1)

Figure 12.2: Interpolation Filter Bank

The next step is to down sample the rate f3 sequence by a factor of n1 to get the desired
rate f2 sequence. Suppose the output of subfilter m is chosen from the n2 subfilter outputs
generated at time nT1. The next sample that should be selected is the output of subfilter
m + n1 if m + n1 < n2. If m + n1 ≥ n2, the output of subfilter mod(m + n1, n2) generated
for the interval starting at time (n + 1)T1 should be selected.
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In practice, the impulse response h(t) must be truncated to a finite time duration by,
for example, a Hamming window. Then each subfilter is an FIR filter. The data samples
used to calculate each subfilter output are the same, so only one “delay line” is required to
store them. Each subfilter uses a different set of taps to convolve with the contents of this
delay line. Also, for computational efficiency, the outputs of all n2 subfilters should not be
computed each T1 period. Only the output of the subfilter for the required down-sampled
output sample should be calculated.

The interpolation filter bank can be designed using the program rascos.exe in the
directory C:\digfil discussed in Section 11.2.2. To approximate the ideal lowpass filter, set
the excess bandwidth factor, α, to 0 and set the number of points per symbol to n2.

12.5 Experiments for Variable Phase Interpolation

To continue along with the PAM experiments of Chapter 11, set the sampling rate to 16 kHz
for the experiments of this section.

12.5.1 Experiment 12.1: Open Loop Phase Shifting Experiments

First, you will design and test a quantized variable phase interpolator. Perform the following
tasks:

1. Using the sampling rate of fs = 16000 Hz, generate the samples of a 2000 Hz cosine wave
and send the resulting sequence to the left channel of the DAC. Connect the left channel
line output to the left channel line input and the oscilloscope. The 2000 Hz cosine wave
represents the dotting signal caused by alternating plus and minus input symbols to a
two-level PAM transmitter when the symbol rate is 4000 baud.

2. Design a quantized step phase shifting filter bank as discussed in Section 12.2. Use a
cutoff frequency of fc = fs/2 = 8000 Hz and let the number of phase steps between
samples be M = 8.

3. First take the left channel ADC input samples and pass them thorough subfilter m = 0.
Send the output sequence to the right DAC channel. Observe the right and left line
outputs simultaneously on the oscilloscope. You will observe a phase shift caused by the
delay introduced to make the subfilters physically realizable and by the system filters in
the signal paths.

4. Once the m = 0 filter is working, test each of the subfilters for m = 1 through 7 to make
sure they add the expected advance.

12.5.2 Experiment 12.2: Making a Symbol Clock Tracking Loop

Now you will make the symbol clock tracking loop shown in Figure 12.1. Do the following:
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1. Write a program to implement the Symbol Clock Tone Generator. You should be able
to use the program you created for Chapter 11. Continue to use the sampled 2000 Hz
cosine wave as the input to your variable phase interpolator as in Experiment 12.1. Pipe
the output of your Variable Phase Interpolator directly to the input of the Symbol Clock
Tone Generator inside the DSP program. Do not close the loop yet. Send the output,
e(nT ), of the tone generator to the right DAC and observe the result on the oscilloscope.
You should see a clean 4000 Hz sine wave.

2. Once the clock tone generator is working, implement the rest of the loop. Check that it
locks to the 4000 Hz symbol clock.

3. Change the frequency of the 2000 Hz input tone slightly and check that your loop tracks
the frequency offset.

4. (Optional) Generate a PAM signal with a 4000 baud symbol rate either internally in
the local DSP or, preferably, on another station. Connect the PAM signal to your clock
tracking loop and check that it works.

12.6 Additional References

Discussions of quantized phase interpolation filter banks can be found in Crochiere and
Rabiner [II.C.4, Section 3.3] and Proakis and Manolakis [II.C.15, Chapter 10]. The only
reference for the continuously variable phase interpolator know to the author is the paper
by Farrow [II.C.6]. Symbol clock tracking is crucial to good modem performance, but little
is published in the open literature. Textbooks usually completely ignore the problem and
assume the exact symbol instants are known at the receiver. Manufacturers seem to consider
their methods to be trade secrets not to be disclosed.



Chapter 13

Fundamentals of Quadrature
Amplitude Modulation

Quadrature amplitude modulation (QAM) is a widely used method for transmitting digital
data over bandpass channels. It can be viewed as a generalization of PAM to bandpass chan-
nels. All current telephone line modems based on the ITU-T V series recommendations for
transmission at rates of 2400 bps or more use QAM or include it as an option. These include
recommendations V.22 through V.92. This series includes FAX modems. Recommendation
V.90 modems normally use PAM in the downstream direction from the server to the client
modem and always use QAM in the upstream direction from the client to the server. V.90
modems can choose to use QAM downstream if a digital link from the server to the codec
in the local office on the client side does not exist. V.92 modems normally use PAM in the
downstream and upstream directions but can choose to use QAM based on line conditions.
QAM is also used in DSL telephone line, high speed cable, multi-tone wireless, microwave,
and satellite systems. It is a popular choice because it uses bandwidth efficiently and linear
channel distortions can be corrected by adaptive equalization at the receiver. In addition,
QAM fits in nicely with a common combined coding and modulation scheme used for band
limited channels called trellis coded modulation (TCM).

This chapter primarily deals with the QAM transmitter. However, a brief introduction
to the QAM receiver is included. The subsystems required to construct a practical receiver
are described in the following chapters.

13.1 A Basic QAM Transmitter

The block diagram of a basic QAM transmitter is shown in Figure 13.1. It has many
similarities to the PAM transmitter shown in Figure 11.1. The transmitter input is a serial
binary data stream dn arriving at the rate of Rd bps. The Serial to Parallel Converter
groups the input bits into J-bit binary words. Each J-bit word selects a channel symbol
from a 2J element alphabet resulting in a channel symbol rate of fs = Rd/J baud. As
in PAM, T = 1/fs will be used to denote the symbol period. The alphabet consists of
pairs of real numbers representing points in a 2-dimensional space and is called the signal
constellation. More will be said about constellations later. It will be convenient to consider
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the 2-dimensional space to be the complex plane and represent the channel symbol sequence
by the sequence of complex numbers cn = an + jbn. It is customary to call the real part, an,
the inphase or I component and the imaginary part, bn, the quadrature or Q component.

The inphase and quadrature symbol components are passed through separate PAM mod-
ulators identical to the one described in Chapter 11. Thus, they are first passed through
impulse modulators resulting in the signals

a∗(t) =
∞∑

k=−∞

akδ(t − kT ) (13.1)

and

b∗(t) =
∞∑

k=−∞

bkδ(t − kT ) (13.2)

These signals are passed through identical baseband transmit shaping filters, each with
impulse response gT (t). The properties required for gT (t) are exactly the same as the ones
required for the PAM shaping filter discussed in Chapter 11. The outputs a(t) and b(t) of
the shaping filters are called the inphase and quadrature components of the continuous-time
transmitted signal s(t) and are given by the equations

a(t) =
∞∑

k=−∞

akgT (t − kT ) (13.3)

and

b(t) =
∞∑

k=−∞

bkgT (t − kT ) (13.4)

The baseband shaping filter is typically a lowpass filter approximating the raised cosine
or square-root of raised cosine response, so its cutoff frequency is somewhat greater than
fs/2. Consequently, a(t) and b(t) are lowpass signals with power spectra extending down to
0 Hz. In order to translate the spectra up to the passband of a bandpass channel, a(t) and
b(t) are DSBSC-AM modulated by the quadrature carriers cosωct and sin ωct and subtracted
to form the transmitted QAM signal

s(t) = a(t) cos ωct − b(t) sin ωct (13.5)

The carrier frequency ωc must be greater than the shaping filter cutoff frequency to prevent
spectral fold-over. For example, a typical voiceband telephone line channel has a passband
extending from about 300 Hz to 3100 Hz, the symbol rate might be fs = 2400 Hz, and the
carrier frequency might be fc = 1800 Hz.

By using (5.24), it can be shown that the pre-envelope of the QAM signal is

s+(t) = s(t) + jŝ(t) = [a(t) + jb(t)]ejωct (13.6)

Therefore, the transmitted QAM signal can be expressed as

s(t) = �e{s+(t)} = �e{[a(t) + jb(t)]ejωct} (13.7)
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Figure 13.1: A Basic QAM Transmitter

The complex envelope of s(t) is

s̃(t) = s+(t)e−jωct = a(t) + jb(t) (13.8)

Combining (13.6), (13.3), and (13.4) yields

s+(t) =
∞∑

k=−∞

(ak + jbk)gT (t − kT ) ejωct =
∞∑

k=−∞

ckgT (t − kT ) ejωct (13.9)

Therefore, the QAM modulator can be compactly represented in terms of these complex
signals as shown in Figure 13.2. The complex envelope s̃(t) is simply a complex PAM signal
generated by the complex input symbols cn = an + jbn.

13.2 Two Constellation Examples

Examples of two common constellations are described in this section. The first is a rectan-
gular 16-point constellation and the second is a 4-point subset of the first. A method for
assigning data bits to the constellation points so that the system is transparent to 90◦ carrier
ambiguities is described.
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Figure 13.2: Representation of the QAM Modulator in Terms of Complex Signals

13.2.1 The 4×4 16-Point Constellation

A 16-point constellation with points on a 4 × 4 rectangular grid is shown in Figure 13.3. It
is used in the ITU-T V.22bis modem for transmitting 2400 bps with a symbol rate of 600
baud and in the V.32 uncoded option for transmitting 9600 bps at 2400 baud. It is also an
option for the individual carriers in a variety of multi-carrier wireless systems. This symbol
alphabet uses J = 4 bits per symbol. The assignment of input bits to the 4-bit point labels
is discussed below.
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Figure 13.3: The 16-Point Rectangular QAM Constellation

with Labels (Y 1n, Y 2n, Q3n, Q4n)

The 4 × 4 constellation is invariant to 90◦ rotations. That is, a 90◦ rotation of the
constellation results in the same set of points. It can be seen from (13.9) that a 90◦ carrier
phase offset, that is, changing ωct to ωct+π/2, has the effect of multiplying the constellation
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point an +jbn by j which rotates it by 90◦. With this symmetry, carrier tracking loops in the
receivers can only determine the correct phase to the nearest multiple of 90◦. The system
can be made transparent to 90◦ phase offsets by a combination of differentially encoding
two of the input bits to specify the quadrant, and assigning the remaining two input bits to
points within a quadrant so that a 90◦ rotation leaves them unchanged.
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Figure 13.4: Mapping Input Bits to Constellation Points

A block diagram of the method for assigning input bits to constellation points is shown
in Figure 13.4. The input data bits di arrive at Rd bps. This bit sequence is passed through
a scrambler like the one described in Chapter 9 resulting in the scrambled sequence qi. The
reason for using the scrambler is to break up long strings of 1’s or 0’s in the input data
sequence and cause the constellation points to be chosen pseudo-randomly. This randomiza-
tion causes the transmitted spectrum to be distributed and have a shape like the transmit
filter independent of the unscrambled input data sequence. Systems in the receiver like an
adaptive equalizer, and carrier and symbol clock tracking loops require this symbol variation
to operate properly. The V.22bis scrambler uses the difference equation

qi = di ⊕ qi−14 ⊕ qi−17 (13.10)

where ⊕ represents modulo 2 addition or the exclusive-or logical function. The corresponding
connection polynomial is

h(D) = 1 + D14 + D17 (13.11)

Actually, the V.22bis scrambler is slightly more complicated in that it contains a means
for detecting a string of 64 1’s at its output and complementing the next output bit. This
prevents the all 1’s scrambler lock-up condition when the input is all 1’s. Since the lock-up
probability is small, we will ignore this addition to the V.22bis scrambler. The V.32 calling
modem uses the scrambler connection polynomial

hc(D) = 1 + D18 + D23 (13.12)
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and the V.32 answer modem uses the connection polynomial

ha(D) = 1 + D5 + D23 (13.13)

The scrambler output qi is passed to a serial-to-parallel converter which groups the serial
stream into the 4-bit words

(Q1n, Q2n, Q3n, Q4n) = (q4n, q4n+1, q4n+2, q4n+3) (13.14)

These words are generated at the symbol rate fs = Rd/4.
The first two bits (Q1n, Q2n) are used to specify the change in quadrant relative to the

quadrant of the previously transmitted symbol. Table 13.1 shows the relationship between
the current input bits (Q1n, Q2n), the previous absolute quadrant bits (Y 1n−1, Y 2n−1), and
the new absolute quadrant bits (Y 1n, Y 2n). This function is most easily implemented in
a DSP by table look-up. This operation is called differential encoding. The receiver can
uniquely determine the input bit pair (Q1n, Q2n) by determining the quadrant change be-
tween the current and previously received symbols. This angle difference is unaffected by
any constant constellation rotation. The differential decoding in the receiver can also be
performed by a 16-entry look-up table whose inputs are the quadrants of the current and
previous received symbol.

The remaining pair of bits (Q3n, Q4n) are used to select a point in the quadrant specified
by (Y 1n, Y 2n). If you examine Figure 13.3, you will see that (Q3n, Q4n) are assigned so
that they do not change with 90◦ constellation rotations. The combination of the differential
quadrant encoding and this bit assignment makes the overall system transparent to 90◦

rotations.

13.2.2 A 4-Point Four Phase Constellation

A 4-point constellation can be formed from the 4× 4 constellation by selecting the subset of
points with labels {(1101), (1001), (0001), (0101)}. Notice that these points lie on a circle and
are separated by 90◦. This constellation is sometimes called a 4PSK or QPSK constellation.
PSK is an abbreviation for phase shift keying. This constellation is used in many low and
high speed modems. In particular, it is used in the V.22bis modem for transmission at 1200
bps with a symbol rate of 600 baud and in the V.32 modem for transmission at 4800 bps
with a symbol rate of 2400 baud. It is also used in single and multi-carrier wireless systems.

This constellation is also invariant to 90◦ rotations. It can be made transparent to
these rotations by using the same differential quadrant encoding scheme as for the 4 × 4
constellation. The V.22bis and V.32 schemes for mapping input bits to constellation points
using 2 bits/symbol is a simple modification of Figure 13.4. For these modems, the input data
sequence di is again passed through the scrambler to generate the sequence qi. The serial-to-
parallel converter groups the scrambler output into the 2-bit blocks (Q1n, Q2n) = (q2n, q2n+1).
These pairs are differentially encoded exactly as for the 4 × 4 constellation. To select the
desired constellation points, the uncoded bits used in the 4 × 4 constellation are always set
to (Q3n, Q4n) = (01). Therefore, the inputs to the symbol point mapper are

(Y 1n, Y 2n, Q3n, Q4n) = (Y 1n, Y 2n, 0, 1) (13.15)
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Inputs Previous Outputs Quadrant Outputs
Q1n Q2n Y 1n−1 Y 2n−1 Phase Change Y 1n Y 2n

0 0 0 0 +90◦ 0 1
0 0 0 1 +90◦ 1 1
0 0 1 0 +90◦ 0 0
0 0 1 1 +90◦ 1 0
0 1 0 0 0◦ 0 0
0 1 0 1 0◦ 0 1
0 1 1 0 0◦ 1 0
0 1 1 1 0◦ 1 1
1 0 0 0 +180◦ 1 1
1 0 0 1 +180◦ 1 0
1 0 1 0 +180◦ 0 1
1 0 1 1 +180◦ 0 0
1 1 0 0 +270◦ 1 0
1 1 0 1 +270◦ 0 0
1 1 1 0 +270◦ 1 1
1 1 1 1 +270◦ 0 1

Table 13.1: Differential Quadrant Coding for V.22bis and V.32 Uncoded Options

The selection of these four points may seem odd at first, but the standards committee
selected them to make the 4-point constellation an easily generated subset of the 16-point
constellation and also to have about the same average power as the 16-point constellation.

13.3 A Modulator Structure Using Passband Shaping

Filters

In this section, an alternative QAM modulator that uses passband shaping filters will be
derived. This structure is slightly more efficient computationally than the one shown in
Figure 13.1. As a starting point, (13.9) can be modified to

s+(t) =
∞∑

k=−∞

(
cke

jωckT
)

gT (t − kT )ejωc(t−kT ) (13.16)

where gT (t) is the real baseband shaping filter impulse response. Let

h(t) = gT (t)ejωct = hI(t) + jhQ(t) (13.17)

where
hI(t) = gT (t) cos ωct and hQ(t) = gT (t) sin ωct (13.18)

This filter is a bandpass filter with the frequency response H(ω) = GT (ω − ωc). Let

c′k = cke
jωckT = a′

k + jb′k (13.19)
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where
a′

k = �e{c′k} = ak cos ωckT − bk sin ωckT (13.20)

and
b′k = �m{c′k} = ak sin ωckT + bk cos ωckT (13.21)

Substituting these definitions into (13.16) gives

s+(t) =
∞∑

k=−∞

c′kh(t − kT ) (13.22)

and

s(t) = �e{s+(t)} =
∞∑

k=−∞

a′
khI(t − kT ) − b′khQ(t − kT ) (13.23)

A block diagram for the modulator in terms of the complex signals is shown in Figure 13.5.
The form based on (13.23), which is the equation that would be actually implemented, is
shown in Figure 13.6.

��
��� � � � �� � � �

��

Impulse

Modulator
h(t) �e(·)×

ejωcnT

cn c′n s(t)

Figure 13.5: QAM Modulator Using a Passband Shaping Filter
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Figure 13.6: Expanded Block Diagram of the New QAM Modulator

The shaping filters, either baseband or passband, can be implemented by interpolation
filter banks as described in Chapter 11. These banks generate L samples/baud. For example,
V.32 modems use a symbol rate of 2400 baud, so L might be chosen to be 3 or 4 resulting in an
output sampling rate of 7200 or 9600 samples/sec. In the original modulator structure using
baseband shaping filters, each filter output sample must be multiplied by the appropriate
inphase and quadrature carrier samples. In the modulator with passband shaping filters, the
input symbols cn must be rotated (modulated) before being applied to the passband shaping
filters. This operation is required just once per symbol resulting in a slight computational
savings.
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13.4 Ideal QAM Demodulation

Two QAM demodulators will be described in this section using the assumption that the
receiver has exact knowledge of the carrier and symbol clock phases and frequencies. Methods
for tracking these signals will be presented in the next chapter. In addition it will be assumed
that the channel is perfect and that all the shaping is performed at the transmitter by filters
with no intersymbol interference.

A block diagram of the first demodulator is shown in Figure 13.7. It is based on (13.9).
At the receiver input, the Hilbert transform of the received signal is formed to generate the
pre-envelope s+(t). Then, according to (13.9)

s̃(t) = s+(t)e−jωct =
∞∑

k=−∞

(ak + jbk)gT (t − kT ) (13.24)

If gT (t) has no intersymbol interference,

s̃(nT ) = an + jbn (13.25)

which is exactly the transmitted symbol.
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Figure 13.7: QAM Demodulator Using the Complex Envelope

A block diagram of the second demodulator is shown in Figure 13.8. It is based on (13.5)
and uses a pair of DSBSC-AM coherent demodulators which are discussed in Chapter 6.
The output of the product modulator in the upper branch is

s(t)2 cos ωct = a(t) + a(t) cos 2ωct − b(t) sin 2ωct (13.26)

Remember that a(t) is a lowpass signal with a cutoff frequency around fs/2. The second
and third terms have spectra centered around 2ωc and do not overlap the baseband signal
spectrum since the carrier frequency must be chosen to be greater than the cutoff frequency
of the baseband signal. The unwanted highpass terms are eliminated by the lowpass post
detection filter F (ω) which has a cutoff frequency selected to pass a(t) and eliminate the
unwanted terms. The output of the product modulator in the lower branch is

−s(t)2 sin ωct = b(t) − b(t) cos 2ωct − a(t) sin 2ωct (13.27)

Again, the undesired second and third terms can be eliminated by an identical post detection
filter. The resulting inphase and quadrature components, a(t) and b(t) can then be sampled
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Figure 13.8: A Second Form of QAM Demodulator

at the symbol instants to recover the transmitted symbols. This second demodulator is not
as popular in DSP implementations because it requires two post detection filters operating
at a sampling rate dictated by the 2ωc terms. The first demodulator requires one filter to
form the Hilbert transform and the 2ωc terms are automatically cancelled.

13.5 QAM Modulator Experiments

In this experiment, you will make a substantial part of a modem transmitter similar to the
V.22bis calling transmitter. The V.22bis modem was designed primarily for full duplex data
transmission at 1200 or 2400 bits per second over ordinary dial-up 2-wire telephone lines.
The V.22bis modem uses a symbol rate of fs = 600 symbols/sec. Full duplex means that
one modem transmits to a second and the second transmits to the first simultaneously, and
the transmissions in both directions are independent. Two modems communicate in what is
called a point-to-point fashion. The modem that initiates the transmission by placing a call
to the other modem is referred to as the calling or originate modem and the called modem
is referred to as the answer modem. Because of the available sampling rates for the AIC23
codec on the TMS320C6713 DSK, the transmitter you make will use a symbol rate of 1000
baud and data rates of 2000 and 4000 bits per second. The carrier frequencies will also be
changed.

Frequency division multiplexing is used to achieve the full duplex transmission. The
V.22bis calling modem transmits a QAM signal using a carrier frequency of 1200 Hz and
the answer modem transmits using a 2400 Hz carrier. We will use a calling modem carrier
frequency of 2000 Hz and an answer modem carrier frequency of 4000 Hz. Notice that
the carrier frequencies are equal to the data rates. This does not have to be the choice
and is rarely true in general. This choice was convenient for full duplex transmission in
the voice-band telephone line channel with a passband extending from about 300 to 3500.
The V.22bis baseband shaping filters are specified to have a square-root of raised cosine
frequency response with an excess bandwidth factor of α = 0.75. Therefore, the spectrum
of the V.22bis calling modem is nominally confined to the band 675 ≤ f ≤ 1725 and the
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answer modem spectrum to 1875 ≤ f ≤ 2925. For our transmitter, the spectrum of the
calling modem will be confined to the band 1125 ≤ f ≤ 2875 and the answer modem
spectrum to 3125 ≤ f ≤ 4875 Hz. Fifteen years ago, a typical voiceband telephone channel
had a useful bandwidth extending from about 300 to 3100 Hz. The bandwidth is set by
filters in the telephone plant. More recent voiceband channels may have a somewhat wider
bandwidth. However, the PCM codecs in the local office use an 8 kHz sampling rate, so the
upper cutoff frequency must be less than 4 kHz. Hybrids and bandpass filters are used to
separate the transmit and receive signals at the receivers.

13.5.1 Steps to Follow in Making a Transmitter

Perform the following sequence of steps to make your transmitter. Be sure to use the highest
compiler optimization level.

1. Write a C program to initialize the DSK as usual. Set the codec sampling rate to 16000
Hz. With a 16000 Hz sampling rate and a symbol rate of 1000 baud, you will have
to generate 16000/1000 = 16 output samples per symbol. You will be asked below to
write the output samples to the McBSP1 data transmit register (DXR) with an interrupt
service routine activated by the transmitter XRDY flag. You can generate the 1000 Hz
symbol rate timing by counting interrupts in the interrupt service routine.

2. Implement the scrambler defined by (13.10). Set the initial shift register state to all 0’s
and use the input sequence di = 1 for all i. Check that your scrambler is working by
computing an initial segment of the output sequence by hand and comparing it with your
scrambler output. Your program should contain the options of generating two scrambled
output bits per symbol for 2000 bps transmission or four scrambled output bits per symbol
for 4000 bps transmission.

3. Implement the differential encoder shown in Figure 13.4 and Table 13.1. Your program
should contain options for both the 1200 and 2400 bps V.22bis modes, which become 2000
and 4000 bps modes for our modem. At 2000 bps the output of your function should be
(Y 1n, Y 2n, 0, 1) and at 4000 bps it should be (Y 1n, Y 2n, Q3n, Q4n).

4. Map the 4-bit differential encoder output to a constellation point by looking up the values
for an and bn in a table corresponding to Figure 13.3.

5. Now implement the modulator using passband shaping filters as shown in Figure 13.6.
You should generate 16 output samples per symbol resulting in a 16000 Hz output sam-
pling rate. Use the program C:\digfil\sqrtraco.exe along with (13.18) to generate
the impulse response samples of your inphase and quadrature passband shaping filters.
The filter impulse responses should be limited to the time interval [−3T, 3T ] where T is
the symbol period. Since you are making a calling modem transmitter, use a carrier fre-
quency of 2000 Hz. Notice that the symbol rotation shown at the input to the modulator
of Figure 13.6 is not required in this case since

ejωcnT = ej2πnfc/fs = ej2πn2000/1000 = ej4πn = 1 (13.28)
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For testing purposes, also generate the baseband shaping filter coefficients for a raised
cosine response with the α and duration of the passband filters. You can use the program
C:\digfil\rascos.exe to generate the impulse response.

Use the interpolation filter bank method presented in Section 11.3 to generate the L = 16
output samples from the inphase and quadrature passband shaping filters each symbol
period. Combine the filter outputs to form 16 samples of the modulated signal s(t) for
the next symbol period and write the samples to a “mailbox”. The samples put in the
mailbox should be integers suitable for sending to the left channel of the DAC and they
should be scaled so that the line output is limited to ±0.5 v. The mailbox should be a
32-word array. One half of the array should contain the 16 output samples for the symbol
currently being transmitted and the other half should contain the 16 new samples for the
next symbol period. The halves of the array should be swapped after each symbol period.
The mailbox can be implemented as a circular buffer.

6. Write an interrupt service routine to load output samples into the McBSP1 DXR. The
interrupt should be triggered by the XRDY flag of McBSP1. The routine should contain a
pointer to the next output sample in the mailbox. It should write the sample to the DXR
and then increment the pointer. If the pointer is initialized to the start of the mailbox
array, during the first symbol period it will be incremented through the first half of the
array. During the next symbol it will be incremented through the second half of the array.
Before the start of the next symbol, the pointer must be reset to the beginning of the
array. More generally, the input pointer should be mod(output pointer value + 16, 32) at
the end of each symbol.

The interrupt service routine should also maintain a count of the number of interrupts
that have occurred modulo 16 to provide the 1000 Hz symbol timing.

13.5.2 Testing Your Transmitter

Test your transmitter to verify that it is operating properly by performing the following
steps:

1. First select the 2000 bps option. Clear the scrambler shift register and make its input
di = 1 for all i. Set the coefficients of the inphase passband shaping filter equal to
those of the baseband raised cosine shaping filter designed for this experiment. Make the
quadrature component zero by setting the coefficients of the quadrature passband shaping
filter to zero. Observe the eye diagram on the oscilloscope for the resulting signal. Explain
the number of levels you observe in the eye diagram.

Generate a sync signal for the eye diagram by sending a 1000 Hz clock to the right channel
of the codec. You can do this by sending a constant like 16000 to the right channel for
the first eight samples in a baud and −16000 for the last eight samples.

2. Next make the inphase passband shaping filter coefficients zero and make the quadrature
passband shaping filter equal to the baseband raised cosine filter. Observe the resulting
eye pattern on the oscilloscope.
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3. Select the 4000 bps option and repeat the previous two steps.

4. Display the baseband signal constellation by sending the inphase constellation point an,
scaled appropriately, to the left codec channel for each of the 16 samples in a symbol
and send the quadrature component bn to the right channel for each of the 16 samples
in a symbol. Attach the left and right outputs to two oscilloscope channels and set it to
the x-y display option. First set your transmitter to the 2000 bps mode and you should
observe the 4-point constellation. Then set your transmitter to the 4000 bps option and
you should observe the 16-point constellation.

5. Once you are convinced your basic program flow is correct, put in the correct inphase and
quadrature passband shaping filter coefficients for square-root of raised cosine shaping.
Observe the nature of the transmitted signal on the oscilloscope for the 2000 and 4000
bps options. If a spectrum analyzer is available, measure the spectrum of the transmitted
signal and sketch the results. You could also use the spectrum analyzer you made for
Chapter 4 if you did that chapter. Check that it has square-root of raised cosine shaping
about the carrier frequency.

6. Select the 2000 bps option and make the differential encoder input (Q1n, Q2n) = (1, 1) for
all n. The ITU-T standard calls this the unscrambled binary 1’s sequence and it is used by
the answer modem in one segment of the handshaking sequence between the modems. The
resulting sequence of transmitted constellation points continuously rotates by −90◦. You
should observe a periodic signal on the oscilloscope. Measure its fundamental frequency.
Also measure the spectrum of the transmitted signal with the spectrum analyzer if one
is available. Explain your results mathematically.

7. Repeat the previous step with the input to the differential encoder set to all 0’s. This
causes continuous +90◦ phase shifts.

8. Another pattern called the S1 sequence is also used during handshaking. This pattern
uses the 2000 bps constellation and alternates between two points separated by 90◦.
The two points are generated by making the differential encoder dibit inputs (Q1n, Q2n)
alternate between (0, 0) which causes a +90◦ phase change and (1, 1) which causes a −90◦

phase change. The exact pair of points used depends on the initial value (Y 10, Y 20) of
the absolute quadrant and is not specified in the V.22bis standard. For example, the
S1 sequence could alternate between the points (0001) and (0101) shown in Figure 13.3.
Make your transmitter send the S1 sequence continuously and observe the signal on the
oscilloscope. Measure the spectrum with the spectrum analyzer if available. Determine
the spectrum theoretically and compare your measured and theoretical results.

13.5.3 Generating a Startup Sequence

Before two modems begin transmitting customer data to each other, they must go through a
startup sequence to agree on the transmission speed, to adjust their automatic gain controls
(AGC), to train their symbol clock and carrier tracking loops, and to train their adaptive
equalizers and echo cancellers. The startup sequence is also called the handshake sequence.
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Now you will add a startup sequence to your transmitter. This sequence is similar to the
one used for V.22bis modems. This startup sequence will be used when you make a receiver
in the following chapters. Program your transmitter to generate the following three segment
startup sequence:

1. First, send the S1 sequence described in item 8 of Section 13.5.2 for 100 ms.

2. Second, send scrambled binary 1 using the 2000 bps constellation for 700 ms. That is,
clear the scrambler shift register and make its input identically 1.

3. Third, send scrambled binary 1 using the 4000 bps constellation for 200 ms.

After the startup sequence, continue to send scrambled binary 1 using the 4000 bps constel-
lation.

13.6 Additional References

The book by Bingham [II.D.3] presents a good survey of the theory and practice of tele-
phone line digital data modems, most of which use QAM modulation. More comprehensive
presentations of the theory can be found in Gitlin, Hayes, and Weinstein [II.D.11, Chapter
5] and Lee and Messerschmitt [II.D.26, Sections 6.4 and 6.5]. These presentations include
transmitters, receivers, constellations, and error probabilities for various constellations cor-
rupted by additive Gaussian noise. For complete details of the ITU-T V series modem
recommendations, see the CCITT Blue Book [II.D.4] for older printed recommendations.
The name CCITT was changed to ITU-T and recent recommendations can be found at the
ITU-T web site www.itu.ch. In particular, you may be interested in Recommendation V.32
[II.D.20], V.34 [II.D.21], V.90 [II.D.22], and V.92 [II.D.23]. Advanced modulation and coding
techniques invented for V.34 modems including 4D constellations, shell mapping, nonlinear
precoding, and trellis coding are discussed in Tretter [II.D.39].



Chapter 14

QAM Receiver I – General
Description of Complete Receiver
Block Diagram and Details of the
Symbol Clock Recovery and Other
Front-End Subsystems

In this chapter and the next you will make a QAM receiver. You should not do these exper-
iments until you have completed Chapter 13 and have made a working QAM transmitter.
First, the basic subsystems required in the receiver are briefly described. Then the receiver
front-end components, in particular a symbol clock recovery method, are described in detail.
These front-end subsystems are what you will implement in the experiments for this chapter.

14.1 Overview of a QAM Receiver

The block diagram of a QAM receiver is shown in Figure 14.1. We will call the top half
of the figure the receiver front-end. The input signal r0(t) represents the signal at the
receiver input which is the transmitted QAM signal distorted by the non-ideal frequency
response of the channel and additive noise. This signal is passed through the Receive Filter
which is a bandpass filter that passes the QAM signal and eliminates out-of-band noise.
The Receive Filter can also be used in combination with the transmitter filters to perform
the spectral shaping required for no intersymbol interference with a perfect channel. In
transmission through a communications channel like a voiceband telephone circuit, the signal
is often significantly attenuated. Therefore, the output of the Receive Filter is scaled by the
automatic gain control (AGC) to increase its amplitude to a level that fully loads the ADC.
This scaled signal r(t) is sampled at a rate f0 = 1/T0 = n0/T that is n0 times the symbol
rate fs = 1/T and is at least twice the highest frequency component in the QAM signal to
satisfy the the sampling theorem. The ADC output samples r(nT0) are used to adjust the
AGC gain. These samples are also used by the Carrier Detect block to determine when a
QAM signal is actually present at the receiver input and not just channel noise. Many of
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the receiver functions are not started until an input signal is detected. The proper sampling
times for the ADC are determined from the ADC output samples by the Symbol Clock
Recovery subsystem. The frequency and phase of the symbol clock must be tracked by this
subsystem. The ADC block could be a converter with hardware capability for shifting the
sampling phase, or an ADC with a fixed sampling phase combined with a variable phase
interpolator implemented by the DSP as discussed in Chapter 12. Finally, the receiver front-
end forms the pre-envelope r+(nT0) of the received signal. The subsystem that forms the
pre-envelope is often called a phase splitter.
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Figure 14.1: Block Diagram of a QAM Receiver

A real channel does not have a flat amplitude response and constant envelope delay
and this causes intersymbol interference in the received signal. The Passband Adaptive
Equalizer compensates for the channel response to minimize intersymbol interference. An
adaptive filter is used because the exact frequency response of the channel is rarely known.
For example, in the switched telephone network, a different channel can be selected each
time a new call is made. The equalizer is an adaptive FIR filter that operates on samples
spaced by T/n1 and generates output samples spaced by the symbol period T . The constant
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n0 which determines the input sampling period T0 = T/n0 must be divisible by n1. This is
called a fractionally spaced equalizer. In our experiments we will use n1 = 2. The equalizer
input sequence r+(nT/n1) is obtained by skip sampling the sequence r+(nT0) = r+(nT/n0).
Actually, this sampling rate reduction can be performed by having the FIR Hilbert transform
filter operate on the T0 spaced samples r(nT0) and computing its output only at the desired
times nT/n1. The equalizer is discussed in detail in the next chapter.

The equalizer output σ+(nT ) is multiplied by the locally generated carrier reference e−jϕn

to demodulate it to the baseband signal σ̃(nT ). If all the system components were perfect,
the baseband signal samples would be ideal constellation points. In practice, they deviate
from the ideal points due to noise and intersymbol interference. The Slicer quantizes the
baseband samples to the nearest ideal constellation points which are used as the receiver’s
estimates of the transmitted symbols. When the adaptive equalizer is working well and the
carrier reference is good, the quantized output symbols will be the same as the transmitted
symbols with high probability. It will be shown in the next chapter how the local carrier
reference can be synchronized with the received signal’s carrier by using the transmitted
constellation sequence cn and the baseband error cn − σ̃(nT ) between the transmitted se-
quence and baseband equalizer output. The Carrier Phase Generator block performs this
function. During an initial training period, the Ideal Reference generator is used to create
a local replica of the known transmitted training sequence. After that, the outputs of the
slicer are used as good estimates of the transmitted symbols. This is called decision directed
operation. The equalizer coefficients are adjusted by a least mean-square error algorithm
which uses the passband error. A significant portion of the initial training sequence is used
to adjust the adaptive equalizer. The carrier recovery loop typically converges much faster
than the equalizer.

The receiver described here is one of several approaches. Some modem designers prefer
to remove the Hilbert Transform block and force an adaptive equalizer that operates on the
real samples r(nT0) with two sets of real coefficients to perform both the equalization and
phase splitting simultaneously [II.D.30][II.D.27].

14.2 Details About the Receiver Front-End Subsys-

tems

In this section, more details about how to implement most of the receiver front-end sub-
systems are presented. With this information and some ingenuity you should be able to
implement these blocks with the TMS320C6x.

14.2.1 Automatic Gain Control

The purpose of the automatic gain control (AGC) is to scale the analog input voltage to a
level that almost fully loads the ADC but avoids clipping. Various combinations of strategies
can be used. For example, the peak magnitude of the digitized samples can be monitored
for a fixed time period and the analog gain can be adjusted to load the ADC converter
to a desired level with some margin against clipping. This peak detection method can be
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combined with a scaling function that adjusts the average power of the sequence of samples
to a desired level.

14.2.2 The Carrier Detect Subsystem

The purpose of the Carrier Detect subsystem is to determine when a QAM modem signal is
present at the receiver input and not just channel noise. In the modem jargon, people say
that a carrier has been detected when it is decided that a modem signal is being received.
When no QAM signal is present, the receiver is kept in a default state waiting for a known
training sequence to begin. When no carrier is detected, some of the things the receiver does
are: (1) set the AGC to a higher gain, (2) set the EIA RS232 output levels for clear-to-send
(CTS) and carrier detect (CD) to the off state (−12 v), (3) clamp the output data to steady
marks (logical 1 or −12 v), (4) keep the equalizer taps cleared to zero and set the equalizer
adaptation speed control to a fast value, (5) keep the frequency offset variable cleared in the
carrier tracking loop, and (6) put the symbol clock tracking loop in a fast mode.

One approach to carrier detection is to form a running estimate of the received signal
power. This power estimate can be formed by passing the squared ADC output samples
through a first-order recursive lowpass filter with the transfer function

H(z) =
1 − c

1 − c z−1
(14.1)

The constant c is a number slightly less than 1. The closer c is to 1, the more narrow band
the lowpass filter is, but the slower it is to reach steady state. The numerator 1 − c was
chosen to make the gain 1 at zero frequency. The resulting equation for the power estimate
is

p(n) = (1 − c) r2(nT0) + c p(n − 1) (14.2)

This is sometimes called exponential averaging. When the power estimate exceeds a predeter-
mined threshold for a period of time, a received modem signal is declared to be present. Once
a carrier is detected, the threshold should be reduced by 5 dB according to Recommendation
V.22.

Another function of the Carrier Detect box is to detect when the received modem signal
stops. This is called loss of carrier. Loss of carrier is declared when p(n) falls below the re-
duced threshold for a period of time. The threshold hysteresis is used to avoid false detection
of carrier loss caused by the random fluctuations of p(n). According to Recommendation
V.22bis, the carrier detect (CD) RS-232C connector signal should be turned off 40 to 65 ms
after the power level of the received input signal falls below the lower threshold. It should
be turned off in 10 to 24 ms for the V.22 modem.

14.2.3 Symbol Clock Recovery

At the receiver, the transmitter’s symbol clock frequency is known quite accurately, but not
perfectly. The clock phase is completely unknown and can be modeled as a random variable
uniformly distributed over one symbol period. The fractionally spaced adaptive equalizer
which will be discussed in the next chapter can automatically correct for the unknown clock
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phase. However, any error in the clock frequency will cause the equalizer timing reference
to drift towards one end of its delay line and fall off that end at which point the receiver
crashes. Therefore, the clock frequency must be tracked very closely.

A symbol clock recovery scheme described by Godard [II.D.13] is used in some commercial
wireline modems. An idealized block diagram for this scheme is shown in Figure 14.2. The
ADC samples the analog input signal r(t) at the frequency f0 = 1/T0 = n0fs where fs = 1/T
is the symbol rate and n0 is chosen so the sampling frequency satisfies the Nyquist criterion.
Thus, the sampling instants are nT0 + τ where τ represents the clock phase. This phase
varies with time because of clock frequency offsets between the transmitter and receiver and
adjustments made by the receiver’s tracking algorithm. The goal of the tracking loop is to
adjust the sampling frequency so that it is n0 times the true symbol frequency and then
drive τ to zero.
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Figure 14.2: General Block Diagram of Symbol Clock Tracking Loop

The samples are applied to two bandpass filters operating at the sampling rate of f0 =
n0fs. One filter is tuned to the upper Nyquist frequency ωu = ωc +0.5fs and the other to the
lower Nyquist frequency ω� = ωc − 0.5fs. Let the responses of these filters over the Nyquist
band |ω| < 0.5f0 be

Hu(ω) =

{
2 for |ω − ωu| < B/2
0 elsewhere

(14.3)

and

H�(ω) =

{
2 for |ω − ω�| < B/2
0 elsewhere

(14.4)

The bandwidth B/2 should be reasonably small, for example, 100 Hz for a fs = 2400 baud
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modem. Notice that these filters only pass positive frequency components and have complex
impulse responses.

The complex output of the upper Nyquist frequency bandpass filter is multiplied by
the complex conjugate of the output of the lower Nyquist frequency bandpass filter. The
imaginary part of this product is sampled at the symbol rate fs = 1/T . It will be shown
in an example below that the resulting sequence v(n) gives an estimate of the timing phase
error. Each symbol period, the clock phase is advanced or retarded by an amount α times
the phase error plus an amount β times the accumulated phase error. That is, the phase
advancement increment is

p(n) = αv(n) + βγ(n) (14.5)

where
γ(n) = v(n) + γ(n − 1) (14.6)

The accumulator is included to make the timing recovery loop track frequency offsets.
Using the correct polarity for the clock phase adjustment is critically important. Using

the wrong phase results in an unstable loop. When p(n) is positive, the sampling instants
are occurring too late. In this case, the time to the next sample should be reduced by p(n).
Similarly, when p(n) is negative, the sampling instants are occurring too early and the time
to the next sample should be increased by |p(n)| = −p(n).

To see how this system generates symbol clock control information, suppose the trans-
mitted symbol sequence is

cn = (−1)n = cos nπ = cos 0.5ωsnT (14.7)

If the baseband transmit filter has raised cosine spectral shaping so that it has no intersymbol
interference, the baseband complex envelope of the transmitted signal is

s̃(t) = cos 0.5 ωst (14.8)

Notice that the correct sampling instants are at times nT where the pre-envelope has the
values (−1)n. The transmitter output has the pre-envelope

s+(t) = cos(0.5 ωst)e
jωct = 0.5ej(ωc+0.5ωs)t + 0.5ej(ωc−0.5ωs)t (14.9)

Thus, the transmitted signal is the sum of sinusoids at the upper and lower Nyquist frequen-
cies. The output of the upper Nyquist frequency bandpass filter is

gu(nT0 + τ) = ej(ωc+0.5ωs)(nT0+τ) (14.10)

and the output of the lower Nyquist frequency bandpass filter is

g�(nT0 + τ) = ej(ωc−0.5ωs)(nT0+τ) (14.11)

The multiplier output is

q(nT0 + τ) = gu(nT0 + τ)ḡ�(nT0 + τ) = ejωs(nT0+τ) = ejωs(nT/n0+τ) (14.12)
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Replacing n by nn0 to evaluate this signal once per symbol and taking the imaginary part
gives

v(n) = �m q(nT + τ) = sin ωsτ (14.13)

When |ωsτ | < π, v(n) has the same polarity as the sampling phase error τ . Also, when
|ωsτ |  1, sin ωsτ is closely approximated by the linear function ωsτ .

The block diagram for a practical realization of the symbol clock tracking loop is shown
in Figure 14.3. The upper Nyquist frequency bandpass filter is approximated by a filter with
a single complex pole at z = νejωuT0 . Its transfer function is

Hu(z) =
1

1 − νejωuT0z−1
=

1 − νe−jωuT0z−1

(1 − νejωuT0z−1)(1 − νe−jωuT0z−1)

=
1 − z−1ν cos ωuT0

1 − z−12ν cos ωuT0 + ν2z−2
+ j

z−1ν sin ωuT0

1 − z−12ν cos ωuT0 + ν2z−2
(14.14)

The amplitude response of this filter has a peak value of 1/(1 − ν) at the upper Nyquist
frequency ωu. The bandwidth of the filter is determined by the parameter ν which should
be in the range [0, 1). The closer ν is to 1, the narrower the bandwidth. The method used to
compute the complex output from the real input ρ(n) = r(nT0 + τ) is suggested by (14.14).
The first step is to compute the intermediate real variable

η(n) = ρ(n) + 2ν cos(ωuT0)η(n − 1) − ν2η(n − 2) (14.15)

This recursion must be computed at the fast input sampling rate f0 = n0fs. The real and
imaginary parts of the output are computed as

�e{gu(nT0 + τ)} = η(n) − ν cos(ωuT0)η(n − 1) (14.16)

and

�m{gu(nT0 + τ)} = ν sin(ωuT0)η(n − 1) (14.17)

The real and imaginary parts only have to be computed at the symbol rate fs.

The lower Nyquist bandpass filter is implemented in a similar manner by simply replacing
u by � in the previous equations.

The imaginary part of the product gu(nT0 + τ)ḡ�(nT0 + τ) is computed once per symbol
as shown in Figure 14.3 to form the timing error signal v(n). This signal has significant
variability when random data is transmitted. The variability increases as the number of
points in the constellation increases. The philosophy for adjusting the symbol clock sampling
phase is similar to the approach used in the phase-locked loops in previous experiments. The
variability in v(n) is lowpass filtered by incrementing the clock phase by a small fraction α
of v(n) each symbol. In addition, v(n) is accumulated to detect any DC component caused
by a clock frequency offset, and a small fraction β of the accumulation is added to the clock
phase increment. For good transient response, β should be a factor of 50 to 100 times less
than α. The tracking loop becomes more narrow band as α is decreased.
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An Additional Suggestion for Rapid Symbol Clock Acquisition

The bandwidth of the clock tracking loop should be very small to make the clock jitter
negligible. It also must be small to make the loop stable in light of significant delays in
the loop from the time the phase updates are made to the time they propagate through
the system components to the phase error measurements. This means the loop transient
response will be very slow. If the local symbol clock is far off in phase from the clock in
the received signal, the loop will take a long time to slew around to the correct position.
The worst case is when the clocks are 180 degrees out of phase. During the initial training
sequence for many modems a dotting sequence like the S1 sequence discussed in Chapter 13
is transmitted for a short period of time. The dotting sequence has strong components at
the carrier frequency plus or minus half the symbol rate and the output of the Godard clock
tone generation system is a strong tone at the symbol rate. This tone can be used to rapidly
lock on to the symbol clock. The clock tracking loop updating can be turned off and the
symbol rate samples of the complex multiplier output, q(nT + τ) = gu(nT + τ)ḡ�(nT + τ),
can be observed for a period of time during the dotting sequence and their phase measured.
Suppose the measured phase is θq. Then q(·) can be multiplied by exp(−jθq) to form the
complex signal

q̃(nT + τ) = q(nT + τ)e−jθq (14.18)

which has an angle of zero. Geometrically, this is equivalent to rotating the complex clock
tone sample to point in the positive real direction. The imaginary part of q̃(nT + τ) will
then be zero. Then the loop updating can be turned on with �m{q̃(nT + τ)} used as the
signal v(n) that specifies the clock phase update increments. In effect, this fools the loop into
thinking it is initially at the correct phase and it does not have to move from this position.
The fractionally spaced equalizer will compensate for any fixed phase offset.

Including a Random Walk Filter in the Symbol Clock Tracking Loop

In practice, it has been found that the signal p(n) shown in Figure 14.3 must be additionally
filtered to reduce symbol clock jitter, particularly when the signal constellation contains
many points. A technique called a random walk filter has been found to work well and is
shown in Figure 14.4. First, the output of the Godard band edge filter cross-correlator is
hard limited to form the signal

v̌(n) = sign v(n) =

⎧⎪⎨
⎪⎩

1 for v(n) > 0
0 for v(n) = 0

−1 for v(n) < 0
(14.19)

The hard limiting provides a simple AGC action that keeps the loop gain constant inde-
pendent of the input signal level. This signal is then passed through the same kind of
second-order loop filter as shown in Figure 14.3 resulting in the signal p̌(n).

The output of the second-order loop filter is then applied to the random walk filter. The
random walk filter is basically an accumulator that gets reset when its output exceeds a
positive or negative threshold. The random walk filter accumulator output is

y(n) = x(n) + p̌(n) (14.20)
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Figure 14.4: Including a Random Walk Filter in the Clock Tracking Loop

where

x(n + 1) = y(n) − q(n) = x(n) + p̌(n) − q(n) (14.21)

The signal q(n) is generated by the Threshold Detector and is zero most of the time. When
the accumulator output y(n) exceeds the thresholds of L or −L, the accumulator value
is reset and the sampling phase of the ADC or variable phase interpolator is advanced or
retarded. As long as the accumulator output remains between the thresholds, the sampling
phase is not changed. This significantly reduces clock jitter. The exact rules describing the
Threshold Detector and accumulator are:

q(n) =

⎧⎪⎨
⎪⎩

0 for |y(n)| < L
L for y(n) ≥ L

−L for y(n) ≤ −L
(14.22)

and

x(n + 1) =

⎧⎪⎨
⎪⎩

y(n) for |y(n)| < L
y(n) − L for y(n) ≥ L
y(n) + L for y(n) ≤ −L

(14.23)

When y(n) exceeds the positive threshold L, this indicates that the sampling phase is
too late, so the phase must be advanced. When y(n) is algebraically less that the negative
threshold, −L, the phase must be retarded. The phase is not changed while y(n) remains
between the thresholds.
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14.3 Experiments for the QAM Receiver Front-End

In this experiment you will build the front-end for a modified V.22bis receiver operating in
the answer mode. Use the modified V.22bis calling mode transmitter you made in Chapter 13
as the signal source. Set the transmitter to the 2000 bps data rate and 4-point constellation
option. Run the transmitter on an adjacent station and connect its line output to the line
input of the receiver station. Remember that the signal transmitted by the calling modem
uses a 2000 Hz carrier and a symbol rate of 1000 baud. It uses 75% excess bandwidth
square-root of raised cosine spectral shaping so the transmitted signal is theoretically band
limited to the interval (1125, 2875) Hz. Perform the following items to build and test your
receiver front-end. Be sure to use the highest level of compiler optimization

1. Initialize McBSP1 as usual.

2. The sampling rate for the codec must be at least twice the highest input frequency
component or 2 × 2875 = 5750 Hz. It also must be a multiple of the symbol rate and a
frequency the AIC23 can generate. Use a sampling rate of 8000 Hz which meets all these
requirements. Then, the input will be sampled eight times per symbol interval.

3. Forget about implementing Receive Filter and the AGC function. Just make sure the
input signal level is adjusted so that no clipping occurs.

4. Write an interrupt service routine for the DSP triggered by the McBSP1 Receiver Ready
Flag (RRDY) to read samples from the Data Receive Register (DRR). Count interrupts
modulo 8 to determine the symbol timing. You can use this count to control when various
receiver functions are performed during a symbol period. You will also need a cumulative
interrupt or symbol count to time segments of the hand shaking sequence when you
implement the rest of the receiver in the next chapter.

5. Implement the Carrier Detect function using the approach presented in Section 14.2.2.
Keep the accumulator register in the symbol clock tracking loop cleared until a carrier is
detected. You can write the output of the carrier detector to the DAC converter to check
that is functioning properly.

6. Implement the symbol clock tracking system shown in Figure 14.3 and discussed in Section
14.2.3. Choose the bandpass filter parameter ν to achieve a 3 dB bandwidth of about 50
Hz. Use the f0 = 8000 Hz sampling rate.

Initially, do not close the loop and modify the sampling phase. For testing purposes,
generate the imaginary part of the complex multiplier output at the 8 kHz sampling
rate. Send the resulting samples to the DAC and observe the result on the oscilloscope
when the transmitter is set to send the S1 sequence described in item 8 of Section 13.5.2
continuously. You should observe a 1000 Hz sine wave. Once this function is working,
set the transmitter to send scrambled 1’s and observe the result on the oscilloscope. You
might also set the transmitter to the 4000 bps mode and observe the result. When you
are sure the bandpass filters and complex multiplier are working properly, change the
program to generate the product once per symbol. Generate the phase error signal p(n)
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and close the loop by incrementing the time between samples appropriately. You can
send p(n) to the DAC to observe its behavior.

7. To complete the receiver front-end, design and implement the phase splitter. Design the
Hilbert transform filter so its amplitude response is quite flat over the signal passband.
The Hilbert transform FIR filter should operate on samples spaced by T0 = 1/f0 = T/n0

where n0 = 8. However, compute its output at the slower rate 2fs = f0/4 = 2000 Hz,
that is, compute two equally spaced output samples per symbol. Pass these pre-envelope
samples on to the adaptive equalizer which is discussed Chapter 15.

14.4 Additional References

See Godard [II.D.13] for a detailed analysis of the symbol clock tracking method described
in this experiment. He calls it the band edge component maximization (BECM) approach.
Additional discussions of timing recovery can be found in Bingham [II.D.3, Chapter 7], Gitlin,
Hayes, and Weinstein [II.D.11, Chapter 6], and Lee and Messerschmitt [II.D.26, Chapter 15].

See Section 5.2.2 of Chapter 5 Amplitude Modulation for an introduction to Hilbert
transforms and Section 5.3.4 for tools for designing FIR Hilbert transform filters.



Chapter 15

QAM Receiver II – The Passband
Adaptive Equalizer and Carrier
Recovery System

An important milestone in high speed data transmission over narrow band channels like the
voice band telephone channel was the invention and commercialization of the FIR adaptive
equalizer by R.W. Lucky at AT&T Bell Laboratories in the early 1960’s [II.D.28]. The
purpose of the adaptive equalizer is to remove the intersymbol interference caused by the
amplitude and phase distortions of the channel. Adaptive filters are used because the fre-
quency response of the channel is not known accurately in many situations. Lucky’s original
equalizers used the zero forcing algorithm. Other people soon replaced this algorithm by
Widrow’s [II.D.41] more powerful least-mean-square (LMS) algorithm. Another major in-
fluence has been the remarkable advances in VLSI technology. This has led to ever more
powerful DSP’s which allow complex algorithms to be implemented very inexpensively. For
example, modems that include data rates of 300 bps, 1200 bps, and 2400 up to 56000 bps,
as well as error correction, data compression capabilities, and FAX modes can be bought for
less the $100.

In this chapter, you will complete the QAM receiver by making the adaptive equalizer and
carrier recovery system. You will make two kinds of equalizers – the complex cross-coupled
passband equalizer and the phase-splitting fractionally spaced equalizer. You will implement
the LMS equalizer adjustment algorithm and a technique known as blind equalization.

15.1 The Complex Cross-Coupled Passband Adaptive

Equalizer

A type of equalizer that operates on samples of the pre-envelope of the received signal is
shown in Figure 15.1. The input to the equalizer is the sequence r+(nT/n1) obtained by
evaluating the output of the Hilbert transform filter in the receiver front end at the desired
times. Thus, the equalizer operates on samples taken at the rate f1 = n1fs where fs = 1/T is
the symbol rate. The blocks in the figure containing z−1/n1 represent complex signal delays

241
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of T1 = T/n1. Remember that the spectrum of the QAM pre-envelope is confined to the
positive frequency interval [fc − 0.5(1 + α)fs ≤ f ≤ fc + 0.5(1 + α)fs] where fc is the carrier
frequency and α is the excess bandwidth factor. The width of this interval is (1 +α)fs. The
integer n1 should be chosen to prevent aliasing of the pre-envelope. Since 0 ≤ α ≤ 1, n1

must be greater than or equal to 2 so that no aliasing occurs. In this chapter, we will use
n1 = 2 and the resulting structure is commonly called a T/2 spaced equalizer. An equalizer
which operates on samples spaced by less than the symbol period T is called a fractionally
spaced equalizer. Early equalizers used n1 = 1 which corresponds to T spaced samples. It
was soon recognized that fractionally spaced equalizers performed better and, in particular,
could act as interpolators and compensate for any fixed symbol clock timing phase offset.

The equalizer output at time nT/n1 is

σ+(nT/n1) =
N−1∑
k=0

hkr+((n − k)T/n1) (15.1)

The equalizer coefficients h0, . . . , hN−1 are complex numbers and are sometimes called the
equalizer tap values. It will soon be shown how to adaptively adjust the tap values to
minimize ISI. The Down Sampler selects every n1th equalizer output sample to generate the
symbol spaced sequence σ+(nT ). Replacing n by nn1 in (15.1) gives

σ+(nT ) =
N−1∑
k=0

hkr+

(
nT − k

T

n1

)
(15.2)

In practice, the fractionally spaced equalizer and down sampler are implemented by just
evaluating (15.1) once per symbol period. Notice that this sum involves pre-envelope samples
spaced by T/n1. The remainder of the receiver operates on symbol spaced samples.

Down
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Figure 15.1: The Complex Cross-Coupled Passband Equalizer

15.1.1 The LMS Method for Adjusting the Equalizer Tap Values

The equalizer output samples are demodulated to baseband using the carrier angle ϕn gen-
erated by the carrier tracking system. For the time being, it will be assumed that the carrier
phase is known exactly. The demodulated samples are

σ̃(nT ) = σ+(nT ) e−jϕn (15.3)
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The goal of the equalizer is to make the baseband output samples as close as possible to a
delayed version cn−nd

of the transmitted input symbol sequence. With a perfect channel,
this can be accomplished by setting hnd

to 1 and all other taps to 0. The choice of nd

effectively sets the time reference for the receiver. The symbol at tap nd is considered to
be the current received symbol. The time reference nd is usually selected to be near the
center of the equalizer delay line. Then, the equalizer can be thought of as a non-causal
system where the taps before nd operate on future samples and the taps after nd operate on
past samples. With real telephone lines, it has been found experimentally that nd should
be chosen to be closer to N − 1 than 0. The optimum placement depends on the channel
frequency response.

A mathematically tractable criterion for selecting the equalizer tap values is to choose
them to minimize the mean-squared baseband or passband error. The instantaneous base-
band error is

ε̃(nT ) = cn−nd
− σ̃(nT ) (15.4)

and the instantaneous passband error is

ε+(nT ) = ε̃(nT )ejϕn = [cn−nd
− σ̃(nT )] ejϕn = cn−nd

ejϕn − σ+(nT ) (15.5)

The mean-squared error to be minimized is

Λ = E{|ε̃(nT )|2} = E{|ε+(nT )|2} = E{|cn−nd
− σ̃(nT )|2} (15.6)

where E denotes statistical expectation. Similar results are obtained when E is thought of
as a sum over n. Let the complex tap values have the representation

hk = hR,k + j hI,k where hR,k = �e{hk} and hI,k = �m{hk} (15.7)

The optimum coefficients can be found by setting the derivatives of Λ with respect to the tap
value components equal to zero. Since the mean-squared error is a quadratic function of the
tap components, the error function is convex and a unique solution exists. The derivative
with respect of hR,m is

∂Λ

∂hR,m

= E

{
∂

∂hR,m

[ε̃(nT )ε̃(nT ) ]

}
= E

{
ε̃(nT )

∂ε̃(nT )

hR,m

+ ε̃(nT )
∂ε̃(nT )

∂hR,m

}

= 2 E

{
�e

[
ε̃(nT )

∂ε̃(nT )

∂hR,m

]}
= −2 E

{
�e

[
ε̃(nT )ejϕnr+(nT − mT/n1)

]}
(15.8)

In terms of the passband instantaneous error, this result can be written as

∂Λ

∂hR,m

= −2 E
{
�e

[
ε+(nT ) r+(nT − mT/n1)

]}
(15.9)

Similarly, it can be shown that

∂Λ

∂hI,m

= E

{
∂

∂hI,m

[ε̃(nT )ε̃(nT ) ]

}
= 2 E

{
�e

[
ε̃(nT )

∂ε̃(nT )

∂hI,m

]}

= −2 E
{
�e

[
ε̃(nT )(−j)ejϕnr+(nT − mT/n1)

]}
= −2 E

{
�m

[
ε̃(nT )ejϕn r+(nT − mT/n1)

]}
(15.10)
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So, in terms of the passband error signal

∂Λ

∂hI,m

= −2 E
{
�m

[
ε+(nT ) r+(nT − mT/n1)

]}
(15.11)

Let the “derivative” with respect to the complex tap value hm be defined as

∂Λ

∂hm

∆
=

∂Λ

∂hR,m

+ j
∂Λ

∂hI,m

= −2 E{ε+(nT ) r+(nT − mT/n1) } (15.12)

Thus, the derivative with respect to tap hm is proportional to the average of the product of
the instantaneous passband error ε+(nT ) and the complex conjugate of the passband data
sample r+(nT − mT/n1) sitting at tap m at time nT .

The optimum equalizer tap values must satisfy the equations

∂Λ

∂hm

= −2 E{ε+(nT ) r+(nT − mT/n1) } = 0 for m = 0, . . . , N − 1 (15.13)

Substituting (15.5) for the passband error and rearranging yields the set of equations

N−1∑
k=0

hkE{r+(nT − kT/n1) r+(nT − mT/n1) } = E{cn−nd
ejϕn r+(nT − mT/n1)}

for m = 0, . . . , N − 1 (15.14)

These are called the normal equations in estimation theory and the fact that the error
sequence must be uncorrelated with the data samples is called the orthogonality principle.
Assuming that the channel and baseband symbol sequence information required to compute
the expectations is available, this is a set of N linear equations in the N unknown equalizer
coefficients. Let the transpose of the N -dimensional coefficient column vector be

ht = [h0, h1, . . . , hN−1] (15.15)

Let the N ×N correlation matrix R for the received samples in the equalizer delay line have
the elements

Rm,k = E{r+(nT − kT/n1) r+(nT − mT/n1) } for k,m = 0, . . . , N − 1 (15.16)

Also, let the N×1 column vector p of cross-correlations between the desired equalizer output
and delay line samples have elements

pm,1 = E{cn−nd
ejϕn r+(nT − mT/n1)} for m = 0, . . . , N − 1 (15.17)

Then, the linear set of equations can be written as the matrix equation

Rh = p (15.18)

When R is nonsingular, the solution for the optimum tap values is

h = R−1p (15.19)
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and it can be shown that the resulting minimum mean-squared error is

Λmin = E{|cn−nd
|2} − (p̄)tR−1p (15.20)

In many real world applications like data transmission over voice band telephone channels
in the switched telephone network, the channel frequency response and noise statistics are
known only roughly at the transmitter and receiver. Therefore, the correlation matrices
cannot be computed and the optimum tap values cannot be calculated by (15.19). A solution
to this problem is to use an adaptive tap adjustment algorithm. The most popular algorithm
is the least-mean square (LMS) or stochastic gradient algorithm. The basic philosophy is to
iteratively minimize Λ by incrementing the tap values by small amounts in the directions
opposite the derivatives given by (15.12). This is a form of gradient search algorithm known
as the method of steepest descent. The expected value required to compute a derivative
cannot be evaluated when the channel is unknown. However, a known training sequence is
usually sent at the beginning of transmission, so ε+(nT ) and r+(nT − mT/n1) are known
to the receiver and a time average of the products of these quantities can be used as an
unbiased estimate of the true expected value. These ideas suggest using the following tap
adjustment formula:

hm(n + 1) = hm(n) + µ ε+(nT ) r+(nT − mT/n1) for m = 0, . . . , N − 1 (15.21)

where hm(n) is the value of the m-th tap at time n and µ is a small positive constant. This
is the LMS tap adjustment algorithm.

The parameter µ controls the speed and smoothness of the convergence of the taps to
their optimum values. A large value of µ gives rapid initial convergence but large variations
about the theoretically optimum final value because of the small averaging effect. A small
value results in slow convergence but small tap variations around the optimum values. Very
large values of µ cause the algorithm to become unstable, while very small values can result
in arithmetic underflow which causes the adjustments to stop. In practice, the adaptation is
often started with a moderately large value of µ to get rapid initial convergence for a period
of time and then “gear shifted” to a small value for precise final adjustment.

The block diagram of a section of an adaptive passband equalizer illustrating the LMS
algorithm for adjusting one tap is shown in Figure 15.2. The outputs of all the tap multipliers
are summed in the box labeled “+” to form the passband output signal σ+(nT ). The
passband output is demodulated to the baseband signal σ̃(nT ) using the angle ϕn generated
by the carrier tracking system. The Slicer quantizes its input to the closest ideal constellation
point. During initial training, a known sequence cn is transmitted and a delayed version cn−nd

is generated in the receiver by the Ideal Reference block. The exact baseband error signal
ε̃(nT ) can be formed during the initial training period. This error signal is modulated to
passband and correlated against the data sample at the tap being adjusted and scaled by
µ to form the tap update increment. After the equalizer converges to the point where the
baseband output symbols σ̃(nT ) are close to the ideal constellation points, the switch can
be moved to the slicer output and ĉn−nd

can be used as an accurate estimate of the delayed
transmitted symbol sequence. This mode is called decision directed equalization. Decision
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ĉn−nd

+
Ideal

Reference
cn−nd

−
ε̃(nT )

. . .

σ+(nT )

σ̃(nT )

µ ε+(nT )

r+(nT − mT/n1)

µ

Figure 15.2: Block Diagram Illustrating the LMS Algorithm in a Passband Equalizer
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directed equalization is required in practice because the receiver does not know the random
symbol sequence transmitted during normal data transmission. If the majority of decisions
are correct, the equalizer will converge because of the averaging effect of a small µ. Infrequent
errors can not move the equalizer taps very far from their optimum values.

15.1.2 Theoretical Behavior of the LMS Algorithm

The behavior of the LMS algorithm has been extensively analyzed [II.D.11, 18, 26, 32, 41].
It has been shown by invoking an independence approximation that the behavior depends
on the eigenvalues of the correlation matrix R. Let these eigenvalues, arranged in order of
increasing size, be {λ1, . . . , λN} so λ1 = λmin is the smallest and λN = λmax is the largest
eigenvalue. Then it has been shown that the mean of a tap value error, E{hm(n) − hm},
is the sum of exponential modes of the form (1 − µλi)

n. Therefore, the mean tap values
converge to the optimum tap values if

|1 − µλi| < 1 for i = 1, . . . , N (15.22)

or

0 < µ <
2

λmax

(15.23)

It is shown in Lee and Messerschmitt [II.D.26] that the value for µ that maximizes the speed
of convergence is

µopt =
2

λmin + λmax

(15.24)

Then

|1 − µoptλmin| = |1 − µoptλmax| =

λmax

λmin

− 1

λmax

λ min

+ 1
(15.25)

Therefore, the maximum speed of convergence is determined by the ratio of the maximum
and minimum eigenvalues. This ratio is called the eigenvalue spread. Maximum speed of
convergence can be achieved when the eigenvalue spread is 1 which implies that all the
eigenvalues are the same.

Convergence of the mean tap values does not imply convergence of the mean-squared
equalizer output error. It is shown in Haykin [II.D.18, p. 329] that the mean-squared error
converges if and only if

0 < µ <
2

N∑
i=1

λi

=
2

trace R
(15.26)

The denominator of this upper bound is

trace R =
N−1∑
k=0

Rk,k =
N−1∑
k=0

E{|r+(nT − kT/n1)|2} (15.27)
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All of the eigenvalues of R are real and positive since it is a Hermitian matrix. Therefore,
(15.26) is a tighter bound on µ than (15.23).

Physically, the denominator is the sum of the average power of the received samples in
the equalizer delay line. When a T spaced equalizer (n1 = 1) is used, these samples form a
stationary random sequence and the sum is N times the average power of the received signal
at the symbol instant nT . For fractionally spaced equalizers, the sequence is cyclostationary
and the average powers vary periodically as a function of k and have period n1. In the limit
as the excess bandwidth factor α approaches zero, the fractionally spaced samples become
a stationary sequence. In any case, the denominator increases monotonically and nearly
linearly with the equalizer length N . Therefore, the stability constraint on the tap update
factor µ becomes tighter as the equalizer becomes longer.

The mean-squared error does not converge to the theoretical minimum value with the
LMS algorithm as a result of the noisy gradient estimates. These noisy estimates cause the
taps to jitter about their optimum values in steady-state and this increases the mean-squared
error. It is shown in Haykin [II.D.18, p. 327] that the mean-squared error converges to

ΛLMS = Λmin + Λex (15.28)

where

Λex = Λmin

µ
N∑

i=1

λi/(2 − µλi)

1 − µ
N∑

i=1

λi/(2 − µλi)

� Λmin

µ
N∑

i=1

λi

2 − µ
N∑

i=1

λi

if |µλi|  1 for all i (15.29)

is the excess mean-squared error. In practice, µ is usually switched to a very small value
after an initial training period to minimize the tap jitter and excess mean-squared error.

15.1.3 Adding Tap Leakage to the LMS Algorithm

Convergence problems can occur with fractionally spaced equalizers because R is nearly
singular. It can be shown that the eigenvalues of R are proportional to the amplitude
spectrum of r+(nT/n1) for large N . For n1 > 1 and no additive channel noise, this spectrum
is zero over a region around half the sampling rate. When R is singular, the normal equation
(15.18) does not have a unique solution for the tap vector since the sum of any solution and
a vector in the null space of R is another solution and all solutions have the same mean-
squared error. In practice, the taps can slowly drift as a result of computational biases while
the mean-squared error remains small. When a tap gets too large for its finite-word-length
hardware representation and overflows, the system crashes. A solution to this problem is to
modify the LMS algorithm to include tap leakage. The modified tap adjustment algorithm
is

hm(n + 1) = (1 − γ)hm(n) + µ e+(nT ) r+(nT − mT/n1) for m = 0, . . . , N − 1 (15.30)

where γ is a small positive constant. Thus, with each iteration, the current tap value is
shrunk slightly before adding the estimated gradient increment.
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Figure 15.3: The Phase-Splitting Fractionally Spaced Equalizer

The phase-splitting fractionally spaced equalizer shown in Figure 15.3 is commonly used
in current telephone line modems. Mueller and Werner [II.D.30] observed that the real
and imaginary outputs of the cascade of the Hilbert transform FIR filter and complex cross-
coupled equalizer are linear combinations of the input samples to the Hilbert transform filter.
Therefore, they suggested combining the two functions into the structure shown in Figure
15.3. The phase-splitting equalizer is computationally more efficient than the complex cross-
coupled equalizer because the complex products, which require four real multiplications, are
replaced by two real products. Ling and Qureshi [II.D.27] show that the price paid is slower
convergence.

When the phase-splitting equalizer is used, the Hilbert transform filter shown in the
receiver front end block diagram on page 230 is removed and the signal r(nT0) is connected
directly to the equalizer input. The input sampling rate f0 = 1/T0 must be at least twice
the upper cutoff frequency of the received signal to satisfy the Sampling Theorem. As usual,
we will use T to denote the symbol period and fs = 1/T to denote the symbol rate. It
is convenient to let T0 = T/n0, and then f0 = n0fs. For example, a V.32 modem uses a
carrier frequency of fc = 1800 Hz, a symbol rate of fs = 2400 Hz, and square-root of raised
cosine shaping with α = 12% excess bandwidth resulting in an upper cutoff frequency of
about 3144 Hz. Therefore, a convenient choice is to let n0 = 3 resulting in a sampling rate
of f0 = 7200 Hz. The z−1/n0 blocks in Figure 15.3 represent delays of T0.

The output of the upper filter in the phase-splitting equalizer at time nT is

σR(nT ) = �e{σ+(nT )} =
N−1∑
k=0

hR,kr(nT − kT/n0) (15.31)

and the output of the lower filter at time nT is

σI(nT ) = �m{σ+(nT )} =
N−1∑
k=0

hI,kr(nT − kT/n0) (15.32)
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Therefore, the output of the Down Sampler block is

σ+(nT ) = σR(nT ) + j σI(nT ) =
N−1∑
k=0

hkr(nT − kT/n0) (15.33)

where the complex equalizer taps are defined to be

hk = hR,k + j hI,k for k = 0, . . . , N − 1 (15.34)

Notice that the complex tap value hk is multiplied by the real data sample r(nT − kT/n0)
which requires only two real products. On the other hand, a complex tap is multiplied by
a complex data sample in the complex cross-coupled equalizer and this requires four real
products. The equalized passband samples σ+(nT ) are processed in exactly the same way
as shown in the bottom half of Figure 15.2. Each sample is demodulated to baseband and
quantized to the nearest constellation point. The baseband error ε̃(nT ) is formed using the
ideal reference sequence or slicer decision and remodulated to the passband error ε+(nT ).

As in the case of the complex cross-coupled equalizer, the tap values can be chosen to
minimize the mean-squared baseband or passband error defined by (15.6). Using the same
approach as before, it can be shown that the derivatives of Λ with respect to the tap values
are

∂Λ

∂hR,m

= −2 E {�e[ε+(nT )]r(nT − mT/n0)} for m = 0, . . . , N − 1 (15.35)

and
∂Λ

∂hI,m

= −2 E {�m[ε+(nT )]r(nT − mT/n0)} for m = 0, . . . , N − 1 (15.36)

Thus,

∂Λ

∂hm

∆
=

∂Λ

∂hR,m

+ j
∂Λ

∂hI,m

= −2 E{ε+(nT ) r(nT − mT/n1)} for m = 0, . . . , N − 1 (15.37)

These derivatives suggest using the following LMS algorithm with tap leakage for adapt-
ing the taps:

hm(n + 1) = (1 − γ)hm(n) + µ ε+(nT )r(nT − mT/n0) (15.38)

where γ is a small positive leakage constant and µ is a small positive update scale factor. In
terms of the individual tap components, this formula is equivalent to

hR,m(n + 1) = (1 − γ)hR,m(n) + µ�e{ε+(nT )} r(nT − mT/n0) (15.39)

and
hI,m(n + 1) = (1 − γ)hI,m(n) + µ�m{ε+(nT )} r(nT − mT/n0) (15.40)

Notice that the complex passband error is multiplied by a real data sample to update the
complex tap and this requires two real products. In the complex cross-coupled equalizer, the
complex error is multiplied by a complex data sample and this requires four real products.

A block diagram for LMS updating of the phase-splitting equalizer taps would be very
similar to Figure 15.2. The main difference would be that the complex signal r+(nT−mT/n1)
would be replaced by the real signal r(nT −mT/n0) so the complex T/n1 spaced delay line
would become a real T/n0 spaced delay line. The (complex × complex) products involving
r+(·) for updating the taps and computing the equalizer output would be replaced by (real
× complex) products involving r(·). Also, the tap leakage is not shown in Figure 15.2.
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15.3 Decision Directed Carrier Tracking

Up to this point, it has been assumed that the carrier phase is known exactly. An approach to
estimating and tracking the carrier phase can be motivated by minimizing the mean-squared
error Λ with respect to the parameters of the phase sequence generated by the receiver’s
Carrier Recovery block. Suppose this sequence has the form

ϕn = ωcnT + θ (15.41)

where ωc is the carrier frequency and θ is a fixed unknown phase offset. Replacing hR,m by
θ in (15.8), we find that the derivative of the mean-squared error with respect to the phase
offset is

∂Λ

∂θ
= 2 E

{
�e

[
ε̃(nT )

∂ε̃(nT )

∂θ

]}
(15.42)

Remember that the baseband error is

ε̃(nT ) = cn−nd
− σ̃(nT ) = cn−nd

− σ+(nT )e−j(ωcnT+θ) (15.43)

Therefore,

∂Λ

∂θ
= 2 E

{
�e

[
ε̃(nT ) j σ+(nT )e−j(ωcnT+θ)

]}
= −2 E

{
�m

[
ε̃(nT ) σ̃(nT )

]}
(15.44)

On replacing ε̃(nT ) by cn−nd
− σ̃(nT ), the following alternative formula for the derivative is

obtained:
∂Λ

∂θ
= −2 E {�m [ cn−nd

σ̃(nT )]} (15.45)

This derivative has an interesting physical interpretation. Let

cn−nd
= Rce

jβc and σ̃(nT ) = Rσejβσ (15.46)

be the polar form representations for these two complex numbers. Remember that the
equalized baseband output sample σ̃(nT ) is supposed to be a close approximation to the
ideal symbol cn−nd

. Then

�m [ cn−nd
σ̃(nT )] = RcRσ sin(βσ − βc) (15.47)

so

sin(βσ − βc) =
�m [ cn−nd

σ̃(nT )]

RcRσ

(15.48)

This has the same sign as the phase error between the ideal constellation point cn−nd
and

the equalized baseband received point σ̃(nT ) if the phase error is not too large, and is nearly
a linear function of the error for small phase errors.

This phase error measure can be used in a phase-locked loop to iteratively adjust θ so the
baseband equalized points are aligned in angle with the ideal constellation points. Changing
θ by some angle has the effect of rotating the baseband equalized points by the negative of
the angle. In practice, cn−nd

and σ̃(nT ) become close when the equalizer converges so Rσ
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Figure 15.4: Decision Directed Carrier Tracking System

can be replaced by Rc in (15.48 ). These observations suggest adjusting θ according to the
formula

θ(n + 1) = θ(n) + k1
�m{ ε̃(nT ) σ̃(nT )}

|cn−nd
|2 (15.49)

where k1 is a small positive constant. A practical realization for a second-order carrier
tracking loop based on this equation and including carrier frequency offset tracking is shown
in Figure 15.4. First, an approximation to the phase error is computed from the baseband
equalizer output sample σ̃(nT ) by the formula

∆θ(n) =
�m{ ε̃(nT ) σ̃(nT )}

|cn−nd
|2 (15.50)

During initial startup, a known symbol sequence is often transmitted and the Ideal Reference
generator in the receiver replicates these symbols. After the equalizer and carrier tracking
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loop have converged, the outputs of the Slicer are substituted for the known sequence and
the system operates in the decision directed mode. The phase estimate generated by the
lower part of the block diagram is

ϕ̂n+1 = ϕ̂n + ωcT + k1∆θ(n) + ψ(n) (15.51)

where

ψ(n) = ψ(n − 1) + k2∆θ(n) (15.52)

Notice that ωcT is the nominal change in the carrier phase angle between symbols. When
∆θ(n) is zero for all n and the z−1 delay elements are initially cleared, the phase generated
is

ϕ̂n = ωcnT (15.53)

The philosophy behind the carrier tracking loop is to increment the phase angle predicted
for the next symbol instant, ϕ̂n + ωcT , by a small fraction, k1, of the current phase error
estimate ∆θ(n). In addition, a fraction, k2, of the phase error is accumulated to measure any
bias caused by a frequency offset, and added to the phase increment. The system is a second-
order phase-locked loop similar in behavior to the ones discussed in previous chapters. It
will track a constant phase and frequency offset with zero final error. The ratio k1/k2 should
be in the order of 100 for good transient response.

15.4 Blind Equalization

In most cases, the adaptive equalizer in a QAM receiver is initially trained during handshak-
ing with a known ideal reference sequence. There are times when ideal reference training
is not possible or desirable. For example, if a tributary modem in a multi-drop network
goes off line because of a power failure or for repairs, it would be desirable to bring the
modem back online without having to retrain all the tributary modems on the network.
With a simple constellation like the four-phase V.22 constellation, it is sometimes possible
to achieve equalization using the decision directed mode. However, with 16 or more con-
stellation points, starting LMS adaptation in the decision directed mode almost always fails
with typical channels. A variety of algorithms called blind equalization have been discovered
that use only very general knowledge of the transmitted constellation and not the exact
transmitted sequence. These algorithms converge much slower than the LMS algorithm
with ideal reference training and the final output constellation remains fuzzy, but the un-
derlying ideal constellation becomes clearly apparent. After the constellation emerges with
blind equalization, the equalizer can be switched to LMS decision directed training for fine
equalization.

Blind equalization was first disclosed by Sato [II.D.33] in 1975 for the special case of one-
dimensional multilevel PAM. Godard [II.D.14] in 1980 was the first to disclose and thoroughly
analyze a class of blind equalization algorithms for QAM. Treichler and Agee independently
developed a similar approach in the classified world and their work was published in the
open literature in 1983 [II.D.37]. This method has become known as the constant modulus
algorithm (CMA). Another approach is presented by Benveniste in [II.D.2] and is called
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a reduced constellation algorithm (RCA). It is a generalization of Sato’s method to two
dimensions. See the last section in this chapter for additional references.

Godard’s 2nd order blind equalization algorithm is the one most commonly used in com-
mercial modems. Jablon [II.D.24] experimentally compared this 2nd order CMA algorithm
with the RCA algorithm and concluded that the CMA algorithm converges faster when car-
rier phase and symbol timing are also being estimated. Only Godard’s algorithm will be
presented in this chapter.

Godard’s class of CMA algorithms operates directly on the passband equalizer output
σ+(nT ) shown in Fig.’s 14.1, 15.1, and 15.3. The equalizer taps are adjusted to minimize
the dispersion of order p which is defined as

Dp = E
{
(Rp − |σ+(nT )|p)2

}
(15.54)

where p is a positive integer and Rp is a positive constant for which a formula will be given
soon. Since the demodulated equalizer output is σ̃(nT ) = σ+(nT ) e−jφn , the dispersion can
also be expressed as

Dp = E
{
(Rp − |σ̃(nT )|p)2

}
(15.55)

Notice that the dispersion is independent of the locally generated carrier phase. There-
fore, the constellation can emerge rotated by any angle as the algorithm converges. The job
of the carrier recovery loop is to rotate it to the correct angle. The carrier recovery loop is
effectively a one-tap complex equalizer with the tap constrained to have magnitude 1. An
equalizer with a small number of taps can adapt faster than one with many taps, so the
carrier recovery loop can converge much faster than the equalizer. The fact that the CMA
algorithm does not have to rotate the constellation to the correct angle may account for the
better performance Jablon observed for the CMA algorithm over the RCA algorithm.

15.4.1 Blind Equalization with the Complex Cross-Coupled Equal-
izer

The equalizer taps can be adapted iteratively by taking small steps in the direction opposite
to the gradient of Dp with respect to the taps. With some work, it can be shown that in the
case of the complex cross-coupled passband equalizer

∂Dp

∂hm

∆
=

∂Dp

∂hR,m

+ j
∂Dp

∂hI,m

= −2p E
{
(Rp − |σ+(nT )|p) |σ+(nT )|p−2σ+(nT ) r(nT − mT/n1)

}
(15.56)

Godard shows that the value of Rp required to give the correct constellation size is

Rp =
E {|cn|2p}
E {|cn|p} (15.57)

Remember that cn is the baseband symbol sequence randomly selected from the ideal con-
stellation.
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The statistical expectation in (15.56) is not known in practice but can be approximated
by time averaging the product inside the expectation operator. This leads to the following
stochastic gradient algorithm for adapting the equalizer taps:

hm(n + 1) = hm(n) + µ (Rp − |σ+(nT )|p) |σ+(nT )|p−2σ+(nT ) r(nT − mT/n1)

for m = 0, . . . , N − 1 (15.58)

where µ is a small positive constant as in the LMS algorithm.
Even after convergence, the term Rp − |σ+(nT )|p in the estimated gradient will fluctuate

significantly and the blind equalized constellation will be somewhat fuzzy. The constant µ
must be chosen significantly smaller for the CMA algorithm than for the LMS algorithm.
After the equalizer converges with the blind equalization algorithm, a switch to decision
directed LMS training can be made to achieve precise equalization.

The most commonly implemented algorithm is the p = 2 case. Then, the tap update
formula reduces to

hm(n + 1) = hm(n) + µ
(
Rp − |σ+(nT )|2

)
σ+(nT ) r(nT − mT/n1)

for m = 0, . . . , N − 1 (15.59)

and the required value of R2 is

R2 =
E {|cn|4}
E {|cn|2} (15.60)

The computational complexity for this adaptation algorithm is essentially the same as for
the LMS algorithm. In both cases, an error signal is multiplied by the complex conjugate of
the received signal sample at the tap being adjusted. In this case the error signal is

ε(n) =
(
Rp − |σ+(nT )|2

)
σ+(nT ) (15.61)

Godard derives some convergence properties for the CMA algorithms. Let g(0) be the
channel impulse response sample with the largest magnitude. Then for the p = 2 case, a
sufficient but not necessary condition for convergence is that all the equalizer taps be initially
set to zero except for the reference tap at some position L near the center of the delay line.
This tap must satisfy the inequality

|hL|2 >
E {|cn|4}

2|g(0)|2 (E {|cn|2})2 (15.62)

15.4.2 Blind Equalization with the Phase-Splitting Equalizer

The CMA algorithm for the phase-splitting equalizer is almost identical to the one for the
complex equalizer. It can be shown that the gradient of the dispersion with respect to tap
m for the phase-splitting equalizer is

∂Dp

∂hm

∆
=

∂Dp

∂hR,m

+ j
∂Dp

∂hI,m

= −2p E
{
(Rp − |σ+(nT )|p) |σ+(nT )|p−2σ+(nT ) r(nT − mT/n0)

}
(15.63)
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This suggests the following stochastic gradient tap adjustment formula:

hm(n + 1) = hm(n) + µ (Rp − |σ+(nT )|p) |σ+(nT )|p−2σ+(nT ) r(nT − mT/n0)

for m = 0, . . . , N − 1 (15.64)

The value required for Rp is again specified by (15.57).
For p = 2, the tap update formula reduces to

hm(n + 1) = hm(n) + µ
(
Rp − |σ+(nT )|2

)
σ+(nT ) r(nT − mT/n0)

for m = 0, . . . , N − 1 (15.65)

At the start of blind equalization, the real taps should all be set to zero except for the
reference tap at position L. The imaginary taps should be set to approximate a Hilbert
transform with the reference tap at position L. The scaling should be adjusted to satisfy
the convergence condition for the complex equalizer.

15.5 Complex Cross-Coupled Equalizer and Carrier

Tracking Loop Experiments

Now it is time to complete the QAM receiver you began in Chapter 14 by building an adaptive
equalizer and carrier tracking loop. Be sure to use the maximum compiler optimization level.
You will be directed through a step-by-step approach to completing the receiver. First,
you will make a 4-point and, optionally, a 16-point slicer. Then you will make the carrier
tracking loop with the equalizer bypassed. Once the carrier loop is operating, you will build
a complex cross-coupled equalizer. Finally, you will make the descrambler and check that
all 1’s are received when they are transmitted. Optionally, you can implement the phase-
splitting passband equalizer after successfully completing the complex equalizer. You can
also experiment with blind equalization.

This is a long experiment involving the implementation of a number of subsystems. It
would be reasonable to team up with one or more other groups and work jointly on this
experiment. You will have to decide how to partition the tasks among the team members,
make sure the programs fit together, and manage the progress of subgroups. These are things
you will have to do as an engineer on a product design and development team in industry.

Continue to use the modified V.22bis transmitter you made for Chapter 13 as the signal
source. Program the transmitter to initially send the S1 alternating sequence described in
item 8 of Section 13.5.2 for 1000 symbols (1 second) to allow the symbol clock recovery
loop to lock up. Then continuously send scrambled 1’s using the 4-point V.22 constellation.
Optionally, after sending 4000 (4 seconds) 4-point symbols, switch to sending scrambled 1’s
using the 16-point V.22bis constellation shown in Figure 13.3.

15.5.1 Implementing the Slicer

The Slicer outputs are required to generate the baseband error sequence used by both the
adaptive equalizer and carrier tracking loop in the decision directed mode. Therefore, the
first logical step in completing the QAM receiver is to implement the slicers.
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Making the 4-Point Slicer

The V.22 constellation consists of the 4 points shown in Figure 13.3 with the coordinates
(3, 1), (−1, 3), (−3,−1), and (1,−3). These points lie on a circle and are separated by 90◦

but are rotated by an odd angle relative to the axes. Make a 4-point slicer to quantize each
baseband equalizer output sample to the nearest ideal constellation point. To simplify the
quantization operation, rotate the received baseband samples σ̃(nT ) = xn + j yn so that the
ideal points lie on 45◦ lines. You can do this by using the transformation

x′
n + j y′

n = (xn + j yn)(2 + j)

= (2x − y) + j(x + 2y) (15.66)

This transformation rotates the ideal points to the nearest 45◦ line and scales them to the
four points ±5± j 5. Then the slicing operation amounts to determining which quadrant the
transformed point lies in, and this can be determined by simply examining the sign bits of
x′

n and y′
n.

In your slicer function, also do the following tasks:

1. Form the unrotated baseband error ε̃(nT ) = cn − σ̃(nT ) where cn is the unrotated ideal
constellation point corresponding to the slicer decision.

2. Generate and store the differentially encoded data bits (Y 1n, Y 2n).

3. Differentially decode the data bits by using the inverse of Table 13.1.

Test your slicer by using Code Composer Studio to single-step through your code with a
made up sequence of baseband input samples.

Making the 16-Point Slicer

As an optional task, make a 16-point slicer for the V.22bis constellation. The slicer should
quantize the baseband equalizer output sample to the nearest ideal constellation point.
The slicer program should contain a table that has a record for each of the 16 constel-
lation points. Each record should include the coordinates of the ideal point, the data bits
(Y 1n, Y 2n, Q3n, Q4n) associated with the point, and the quantity 1/|cn|2 for use in the carrier
tracking algorithm. In addition, the slicer should perform the following tasks:

1. Form the baseband error.

2. Generate and store the differentially encoded bits (Y 1n, Y 2n).

3. Differentially decode the data bits by using the inverse of Table 13.1.

Test your slicer by using Code Composer Studio to single-step through your code with a
made up sequence of baseband input samples.
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15.5.2 Making a Demodulator and Carrier Tracking Loop

As the next step in building the QAM receiver, implement the demodulator and carrier
tracking system shown in Figures 14.1 and 15.4. Design your software to include a 16-
tap T/2 complex cross-coupled equalizer. To reduce the interaction between subsystems
for debugging purposes, effectively bypass the equalizer. To do this, set up the necessary
circular buffers to hold the complex passband samples for the equalizer delay line coming
from the front end phase splitter and create the arrays for the complex equalizer coefficients
h0, . . . , h15. Set all the equalizer coefficients to 0 + j0 except make h8 = 1 + j0. Implement
the equalizer convolution sum with the taps frozen at these values so the equalizer input
samples will simply be passed to its output with a delay. Always load samples from the
phase splitter into the equalizer delay line regardless of whether or not the Carrier Detect
system indicates the presence of a received modem signal. The Godard clock recovery system
implemented in Chapter 14 should make the times at which its cross-correlator outputs are
computed nearly optimum times at which to sample the received symbols. The equalizer
output should be computed at these symbol spaced times.

Monitor the Carrier Detect signal generated by the receiver front end and when a carrier
is detected begin incrementing a counter once per symbol period. Keep the 2nd order
accumulator state variable ψ(n−1) stored in the z−1 block shown in Figure 15.4 cleared until
the count reaches 1008. At this time, the S1 sequence should be finished and the equalizer
delay line should be filled with received samples of the 4-point scrambled 1’s signal. In this
part of the experiment, the equalizer taps should be frozen at the initial values specified
above independent of the Carrier Detect signal.

Write a program to implement the carrier tracking loop. Before a received modem signal
is detected, let the carrier loop phase free run. That is, let k1 = k2 = ψ(n − 1) = 0 so that

ϕ̂n+1 = ϕ̂n + ωcT (15.67)

To test your program, scale and convert the real and imaginary parts of the baseband
equalized sample σ̃(nT ) into 16-bit integers. Send this pair of integers to left and right
codec DAC channels to create a constellation display. Always make a constellation display
independent of the state of the Carrier Detect signal. If everything is working properly, you
should observe four distinct clouds of points separated by 90◦ on the constellation display.

You were instructed above to make all the equalizer taps zero except for h8. It is possible
because of a sample delay unaccounted for in your program that this is the wrong tap to pick
as a time reference and your constellation display samples are being taken half way between
the correct sampling instants. In this case, you probably will not observe four distinct clouds
of points. In any case, test for the best sampling time by setting h7 to 1 + j0 and all the
rest of the taps to zero. This advances the sampling instants by T/2. Observe the resulting
constellation display. In the rest of this experiment, use the initial equalizer tap setting that
gives the best results.

Once the carrier tracking loop is basically working, experiment using different values of
k1 and k2. When k1 is large, the constellation will appear to jitter due to the large random
perturbations. When k1 is very small, convergence will be slow.
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15.5.3 Making a Complex Cross-Coupled Adaptive Equalizer

Now implement the LMS with leakage equalizer tap adaptation algorithm defined by (15.30).
Keep the taps frozen at their initial values until the Carrier Detect count reaches 1008
symbols by making γ and µ zero until this time. Then turn on the update algorithm by
setting µ to a small number like 0.001. The leakage constant γ should be very small so the
approximate gradient updates significantly outweigh the tap reduction by the factor 1 − γ.
Observe the equalizer convergence on your constellation display. If the equalizer and carrier
tracking loop are working properly, the clouds caused by intersymbol interference should
converge to four tight points. Experiment with several values of the update constant µ and
observe the convergence speed and tightness of the steady-state constellation.

15.5.4 Bit-Error Rate Test

Once the equalizer and carrier tracking loop are working, add the descrambler to your re-
ceiver. The descrambler output should be steady 1’s. To check this, you can write the
descrambled bits to an array and use Code Composer Studio to examine the array when you
halt the DSP program. A probe point can not be used because it halts the DSP while read-
ing so the program does not run in real-time. You can also use the converter box designed
for the RS232 experiments and send the descrambled bit stream out through McBSP0 in
real-time.

Add Gaussian noise samples to the ADC input samples using the method presented in
Appendix A. Observe the dispersion of the constellation caused by the noise for different
SNR.

Experimentally, generate a plot of the bit-error rate vs. SNR. Do this by waiting until the
equalizer has converged and then counting the number of 0’s in the descrambled bit stream
for a fixed duration at each SNR. Make sure the count duration is long enough to give a
statistically reliable estimate of the bit-error rate.

Derive a theoretical formula for the symbol error probability vs. SNR and plot the results.
Compare this plot with your experimental bit-error rate plot. The general shape should be
the same but the curves will be different because one is for symbol errors and the other is
for bit errors. Also, the self-synchronizing descrambler generates three output bit errors for
each isolated error in its input bit stream.

15.5.5 Optional Experiment – Receiving the 16-Point V.22bis Con-
stellation

As an optional experiment, program the transmitter to send the S1 sequence for 1000 sym-
bols, followed by the 4-point constellation for scrambled 1’s for 4000 symbols, followed by
the 16-point constellation for scrambled 1’s indefinitely. Use a counter as above to start the
equalizer and carrier tracking loop 1008 symbols after carrier detection using the 4-point
slicer. After an additional 4400 symbols, switch to the 16-point slicer. If your timing is
off by a few symbols, it should have a negligible effect when the carrier tracking loop and
equalizer update constants are small.



260 QAM Receiver II – Equalizer and Carrier Recovery System

Perform a bit-error rate test for the 16-point constellation and plot the results. Compare
the plots for the 4 and 16-point constellations. Find in the literature or derive a theoretical
formula for the symbol error rate and plot the results. Compare the results for the 4 and
16-point constellations.

15.5.6 Optional Experiment – Ideal Reference Training

You were directed to set the scrambler to the all 0 state at the start of scrambled 1’s
transmission. Therefore the transmitted training sequence is known and ideal reference
training can be performed. Make a replica of the scrambler and constellation point selector
in the receiver. About 1000 symbols after carrier detect, start generating the ideal reference
symbol sequence and use it to train the equalizer and carrier loop. Initialize all the equalizer
taps to zero for ideal reference training. Once the equalizer is trained, halt the receiver and
examine the equalizer tap magnitudes using Code Composer Studio. Adjust the time at
which you start the ideal reference training to center the largest tap in the equalizer delay
line. If your initial timing phase is too far off, the main tap will want to be off one end
or the other of the delay line and the equalizer will not converge. After the equalizer has
converged, switch back to decision directed adaptation.

One of the virtues of a fractionally spaced equalizer is that it can adjust for any symbol
timing phase offset. Start the ideal reference training T/2 seconds (half a symbol period)
later than before and observe the system convergence.

15.6 Optional Phase-Splitting Fractionally Spaced

Equalizer Experiment

If you are interested in pursuing adaptive equalizers further, build a phase-splitting fraction-
ally spaced equalizer for the modified V.22bis receiver. First strip the phase splitter out of
the receiver front end. Continue to use the sampling rate f0 = 8fs = 8000 Hz. Then, the
phase-splitting equalizer must be a T/8 equalizer. The 16-tap T/2 complex cross-coupled
equalizer spans eight symbols. A T/8 phase-splitting equalizer must have 8 × 8 = 64 com-
plex taps to span eight symbols. However, remember that the complex equalizer must be
preceded by a Hilbert transform filter which gives the cascade a longer memory span. In any
case, make a 64 complex tap phase-splitting equalizer. The carrier tracking loop and slicer
do not have to be changed from the previous design.

The equalizer taps must be initially set to make it a phase splitter when the decision
directed startup mode is used. Do this by initially setting all the real taps {hR,n} to zero
except for one near the center of the delay line which should be set to 1. Design a 63-tap
Hilbert transform filter using remez87.exe or window.exe and set the imaginary taps {hI,n}
to these values. Align the center tap of the Hilbert transform filter with the nonzero real
tap.

The position you pick for the initial main tap (the one with real part equal to 1) may
not give the optimum sampling phase. There are 8 choices for the symbol spaced sampling
phase. Determine the optimum phase in a way similar to what you did for the T/2 complex
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equalizer. That is, freeze the equalizer taps at their initial values. Set the transmitter to
send 1000 symbols of S1 followed by the 4-point constellation for scrambled 1’s indefinitely.
Observe the constellation display for each of the 8 phases when the 4-point constellation is
transmitted. Choose the phase that results in the tightest constellation.

Also experiment with ideal reference training. Set all the equalizer taps to zero initially
in this mode. The taps should automatically adjust for any timing phase offset and converge
to a set of values that perform the equalization and phase-splitting functions. After a period
of time when the equalizer has converged, switch to the decision directed mode.

You could also test your receiver with the 16-point constellation. As before, begin the
training with the 4-point constellation and then switch to the 16-point constellation after
the equalizer has converged.

Perform a bit-error rate test for your receiver. Compare the tightness of the constella-
tion and the bit-error rate performance of your complex cross-coupled and phase-splitting
equalizers.

15.7 Optional Blind Equalization Experiment

Use the modified V.22bis transmitter you made for Chapter 13 as the signal source for the
blind equalization experiments of this subsection. You might want to pass the signal through
the commercial telephone channel simulator to introduce additional intersymbol interference
by selecting a bad line. Perform the following tasks:

1. Program the transmitter to first send the S1 alternations for 1000 symbols to allow your
symbol clock tracking loop to lock up. Then switch to sending scrambled 1’s using the
16-point constellation.

2. Compute the required value for R2 using (15.60) to make the equalized constellation have
the correct scaling for your 16-point slicer.

3. Modify your complex cross-coupled equalizer to use Godard’s p = 2 tap update algorithm
given by (15.59). Initialize all the taps to zero except for the reference tap near the
center of the delay line that you experimentally selected in the previous exercises. Set
the reference tap to a value you think will satisfy (15.62). Note that if all the taps are
set to zero, the equalizer output will be zero, the tap update increments will all be zero,
and adaptation will not occur.

4. Wait for 1008 symbols after carrier detect and then begin CMA updating of the equalizer
taps. Turn on the carrier tracking loop at this time also. The 16-point constellation with
the correct rotation should emerge. If the constellation display does not converge to the
expected picture but to some different stable pattern, try adjusting the initial value of
the reference tap. You might want to wait to turn on the 2nd order integrator in the
carrier loop for some time after adaptive equalization is started so random slicing errors
do not drive its output far from the correct value. If this happens the constellation will
spin rapidly.
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5. Repeat the previous task with the carrier loop free-running at the nominal carrier fre-
quency. The constellation should emerge but spin at the carrier offset frequency.

6. Devise and implement a strategy for switching from CMA to LMS training and watch
the received constellation converge to 16 tight points.

7. If you are interested in experimenting with blind equalization further, implement it for
the phase-splitting fractionally spaced equalizer.

15.8 Additional References

The use of adaptive transversal equalizers in data modems was first investigated and com-
mercialized by R.W. Lucky [II.D.28] at AT&T Bell Labs in the mid 1960’s. This approach is
also discussed in Lucky, Salz, and Weldon [II.D.29, Chapter 6] and is based on a zero forcing
criterion. These two references are primarily of historical interest since the zero forcing ap-
proach was soon replaced by the more powerful LMS algorithm. For detailed presentations of
the complex cross-coupled LMS algorithm for adaptive equalization, see Gitlin, Hayes, and
Weinstein [II.D.11, Chapter 8], Haykin [II.D.18, Chapter 9], Lee and Messerschmitt [II.D.26,
Chapter 9], Proakis [II.D.32, Chapter 6], Treichler, Johnson, and Larimore [II.D.38, Chapter
4], and Widrow and Stearns [II.D.41, Chapter 10].

The tap leakage algorithm is proposed and investigated in Gitlin, Meadors, and Wein-
stein [II.D.12]. Treichler, Johnson, and Larimore [II.D.38, Section 4.2.6.2] also analyze the
behavior of the LMS algorithm with tap leakage.

Mueller and Werner [II.D.30] and Ling and Qureshi [II.D.27] are good references for the
fractionally spaced phase-splitting equalizer. The equivalence of the cross-coupled complex
equalizer and phase-splitting equalizer is presented in Tretter [II.D.39, Chapter 11] along with
a derivation of the transfer function of the optimum linear fractionally spaced equalizer.

Discussions of carrier recovery techniques for QAM systems can be found in Gitlin, Hayes,
and Weinstein [II.D.11, Section 6.4] and Lee and Messerschmitt [II.D.26, Chapter 14]. An ad-
dition to the carrier tracking loop presented in this chapter that allows tracking of sinusoidal
phase jitter is discussed in Sugar and Tretter [II.D.35].

Blind equalization was first disclosed by Sato [II.D.33] for one dimensional multilevel
PAM. The next major publication was by Godard [II.D.14] which presented a thorough
analysis of a class of blind equalization algorithms and carrier tracking for QAM receivers.
Treichler and Agee [II.D.37] independently discovered the 2nd order case of Godard’s class
of algorithms. Benveniste and Goursat [II.D.2] presented additional blind equalization algo-
rithms. More recent papers on blind equalization include Foschini [II.D.6] and Picchi and
Prati [II.D.31]. Books with discussions of blind equalization include Gitlin, Hayes,and We-
instein [II.D.11], Haykin [II.D.18, Chapter 20], Proakis [II.D.32, Chapter 20], and Treichler,
Johnson, and Larimore [II.D.38, Chapter 6].



Chapter 16

Echo Cancellation for Full-Duplex
Modems

An important advance in the design of high speed voice-band telephone line modems for the
dial network was the introduction of echo cancelers to achieve full-duplex data transmission
over 2-wire circuits. This technique was studied in the early 1980’s and then widely intro-
duced in commercial products in the mid 1980’s when the CCITT V.32 recommendation for
a 9600 bps modem was approved. A few years later, the V.32bis recommendation for 14.4
kbps modems was approved, and the V.34 recommendation for rates up to 33.6 kbps was
approved in June 1994. These also use echo cancelers. The recent V.90 and V.92 modems
that use PCM downstream use echo cancelers to. Echo cancelers are also used in some high
speed digital subscriber lines at data rates of 64 kbps or more. Line echo cancelers were
used with analog voice transmission to eliminate annoying talker echo prior to the inclusion
of echo cancellation in digital data modems. The voice echo cancelers are placed at different
points in the telephone circuit than the ones for data transmission and are disabled during
data transmission by a special signal in the modem handshake sequence. The technique is
also used in speaker phones to eliminate annoying acoustic reflections from the speaker to
the microphone and then back to the far end talker.

In this chapter, you will learn the fundamentals of echo cancellation for voice-band
modems. You will build an echo canceler for near-end echo and observe its behavior without
a far end transmitted signal. You will also build a far-end canceler with frequency offset
correction. Suggestions for additional references on echo cancellation are included at the end
of this chapter.

You should do Chapter 13 before this experiment because the modified V.22bis trans-
mitter you make there will be used as the signal source.

16.1 The Echo Sources in a Dialed Telephone Line Cir-

cuit

A typical full-duplex dialed telephone line circuit is shown in Figure 16.1. The Transmitter,
Receiver, and Hybrid boxes shown on the left are all contained in the left modem and the
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ones on the right are in another modem. The left transmitter sends to the right receiver
while the right transmitter simultaneously sends to the left receiver. The transmissions in
both directions are independent of each other. Both modems are connected to ordinary
2-wire voice-band telephone line circuits which go from the modem site to the local office
and are called 2-wire local loops.

A modem transmits and receives over the same pair of wires. The function of the Hybrid
box is to isolate the transmit and received signals at the 4-wire to 2-wire interfaces. An
ideal hybrid routes the signal on the transmit terminal pair on the 4-wire side only to the
2-wire loop and not to the receive pair on the 4-wire side. Similarly, the received signal on
the 2-wire loop is routed only to the receive terminal pair on the 4-wire side. Customers can
lease 4-wire circuits at additional cost and eliminate the need for echo cancelers.

Signals are transmitted between offices within the telephone plant using 4-wire circuits.
One pair is used to transmit in one direction and the other pair in the opposite direction.
Again, hybrids are used at the 2-wire to 4-wire interfaces. The 4-wire circuit can consist of
combinations of ground lines, fiber optic cables, microwave links, and satellite circuits. A
very large percentage of the transmissions between offices is in digital form in the US.

Hybrid

Receiver

Transmitter

Hybrid Hybrid

�

Hybrid

Transmitter

Receiver

� � �
��

�

2-Wire
Loop

4-Wire
Carrier Circuit

2-Wire
Loop

� �

�

Figure 16.1: Typical Full-Duplex Dialed Telephone Line Connection Without Echo Cancel-
lation

Real-world hybrids are not perfect. They are designed to work with a nominal impedance
on the 2-wire loop and actual loops differ from the nominal. Therefore, some of the transmit-
ted signal at a local modem leaks through the hybrid back to the local transmitter. This is
known as near-end echo. When the impedance imbalance is large, the near-end echo power
can be 30 dB above the power of the desired signal received from the transmitter of the
far-end modem. The impulse response of the near-end echo path typically has a duration
of from 5 to 18 ms. Another source of echo is leakage through the hybrid at the far end of
the 4-wire circuit and is called far-end echo. The far-end echo is delayed by the propagation
time through the echo path. This delay can range from a few milliseconds up to as much
as 1.5 seconds when the transmission path contains a couple of satellite hops. The duration
of the impulse response of the far-end echo path, ignoring the bulk delay, is typically no
more than 20 ms. The level of the far-end echo is typically at least 15 dB below that of the
near-end echo. In addition, there can be frequency offsets on the far-end echo when carrier
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circuits are in the path. Additional echos can circulate around the 4-wire circuit but are
usually attenuated to the point of being negligible.

Techniques used for eliminating the echos depend on whether the modems are low or high
speed. The voice-band circuit has a usable bandwidth extending from about 300 to 3200 Hz.
Low speed modems like the V.22bis separate the transmit and receive paths by frequency
division multiplexing and bandpass filtering. Higher speed modems like the V.34 use a
symbol rate of 2400 Hz or more so the signal spectrum fills most of the available bandwidth
and frequency division multiplexing cannot be used. The near and far-end modems use the
same carrier frequency, so the transmitted and received spectra completely overlap. Echo
cancellation was chosen as the solution to this problem.

16.2 The Data-Driven, Nyquist, In-Band Echo Can-

celer

16.2.1 General Description

The architecture for a practical echo canceler is shown in Figure 16.2. The transmitter uses
the passband shaping filter approach presented in Section 13.3 and shown in Figure 13.6.
As in Chapter 13, cn = an + j bn is the sequence of constellation points selected by the input
data and

c′n = cnejωcnT = a′
n + j b′n (16.1)

is called the rotated symbol sequence. The echo canceler is basically an adaptive tapped
delay-line filter with near and far-end sections. It is driven by the rotated symbols and
synthesizes a replica of the real passband echo. For these reasons, it is called a data-driven,
in-band canceler.

Since the synthesized echo is subtracted directly from the received signal, echo samples
must be generated and the received signal sampled at a rate that is at least twice the highest
frequency component in the received signal so the Nyquist criterion is satisfied. The received
signal is typically sampled at L times the symbol rate fs = 1/T as indicated in the ADC
block in the figure. For example, the symbol rate for a V.32 modem is 2400 Hz with a carrier
frequency of 1800 Hz and uses 12% excess bandwidth square-root of raised cosine shaping,
so the upper cutoff frequency is 3144 Hz. The smallest choice for L that satisfies the Nyqist
criterion is L = 3 resulting in a sampling rate of 7200 Hz and is the most efficient choice in
terms of minimizing the required number of computations per second.

The canceler also includes a far-end frequency offset correction phase-locked loop. With-
out frequency offset correction, the received constellation appears to pulsate at the offset
frequency and the error rate performance is severely degraded. Modern links where the
transmission between local offices is entirely digital do not have any frequency offset.

The synthesized echo samples are subtracted from the received signal samples to give
what is called the residual signal sequence. The remaining echo component in the resid-
ual is typically required to be at least 30 dB below the received data signal component for
adequate error rate performance. The echo canceler and received signal sampling instants
are synchronized to the transmitter symbol timing. The signal received from the far-end
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Figure 16.2: A Data-Driven, Nyquist, In-Band, Echo Canceler
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modem has the same nominal symbol rate. However, it will have a slightly different fre-
quency because of minor hardware differences. Therefore, the residual sampling instants are
not synchronized with the desired receiver symbol timing. This problem is solved by the
Receiver Interpolator block which generates output samples synchronized with the receiver
timing. The interpolator can be implemented by converting the residual samples back to
a continuous-time signal and re-sampling the analog lowpass reconstruction filter output at
times synchronized with the receiver timing. Modem analog front end chips are commer-
cially available that perform the interpolation using numerical DSP techniques. These chips
also include the ADC, DAC, analog lowpass transmit and bandpass receive filters, and clock
generation circuits. The interpolation can also be performed numerically using the variable
phase interpolator methods presented in Chapter 12. The interpolated residual sequence is
sent to the receiver which has the same structure as described in Chapters 14 and 15.

The echo canceler problem is simpler than the equalizer problem in one way. The modem’s
transmitter and receiver are located in the same box and may even be implemented as
subroutines in the same DSP. Therefore, the local receiver has exact knowledge of the locally
transmitted symbol sequence and the exact error signal, the residual, is formed. The adaptive
equalizer must use decision directed adaptation algorithms after the initial handshaking
sequence. The canceler problem is more difficult in another way. In the equalizer problem,
the received signal to noise ratio is usually rather high. In the echo canceler problem it is
usually low because the desired received signal from the far-end modem can be at a significant
level relative to the echos that need to be cancelled. Therefore, a large amount of averaging
must be performed in the adaptation algorithm to suppress the far end signal which looks
like noise to the canceler. When both modems are transmitting simultaneously, they are said
to be double talking. In practice, the local and remote echo cancelers are usually separately
trained in the half-duplex mode during an initial handshake sequence. The data signals
transmitted in both directions are statistically independent. Different scramblers are used
in the near and far end modems to ensure this independence. This allows the echo impulse
response to be tracked during double talking with enough averaging.

16.2.2 The Near-End Echo Canceler

The inputs to the near-end echo canceler are the rotated symbols c′n which occur at the
symbol rate fs = 1/T . The canceler must generate outputs at a rate Lfs that satisfies the
Nyquist criterion for sampling the received signal v(t). The canceler can be implemented by
generalizing the interpolation filter bank structure discussed in Section 11.3. The canceler
requires L FIR subfilters each of which is called a subcanceler. Suppose each subcanceler has
N1 complex taps and the taps for the m-th subcanceler are denoted by

Am(n) = αR,m(n) + j αI,m(n) for n = 0, . . . , N1 − 1 and m = 0, . . . , L − 1 (16.2)

The subcancelers all use the same delay-line which stores the present and N1−1 past rotated
symbols. After each new rotated symbol c′n arrives, the L subcanceler outputs are computed
as

pR(nT + mT/L) = �e

⎧⎨
⎩

N1−1∑
k=0

Am(k)c′n−k

⎫⎬
⎭
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=
N1−1∑
k=0

αR,m(k)a′
n−k − αI,m(k)b′n−k for m = 0, . . . , L − 1 (16.3)

The residual for the m-th subcanceler is

ρ(nT + mT/L) = v(nT + mT/L) − pR(nT + mT/L) − qR(nT + mT/L) (16.4)

where qR(nT + mT/L) is the far-end echo canceler output. As with adaptive equalizers,
choosing the subcanceler coefficients to minimize the L mean-squared residuals has been
found to be a good strategy. The derivatives of the m-th residual with respect to the i-th
real and imaginary tap components are

∂

∂αR,m(i)
ρ2(nT + mT/L) = −2ρ(nT + mT/L)a′

n−i (16.5)

and
∂

∂αI,m(i)
ρ2(nT + mT/L) = 2ρ(nT + mT/L)b′n−i (16.6)

Therefore, using the LMS strategy presented in Chapter 15, the coefficients of the m-th
subcanceler can be adjusted by the following formulas:

αR,m(i; n + 1) = αR,m(i, n) + µρ(nT + mT/L) a′
n−i for i = 0, . . . , N1 − 1 (16.7)

αI,m(i; n + 1) = αI,m(i; n) − µρ(nT + mT/L) b′n−i for i = 0, . . . , N1 − 1 (16.8)

where µ is a small positive constant. These formulas can be expressed in terms of the complex
coefficients and rotated data symbols by the single equation

Am(i; n + 1) = Am(i; n) + µρ(nT + mT/L) c′n−i for i = 0, . . . , N1 − 1 (16.9)

Some simple stability and rate of convergence formulas can be derived for this LMS
algorithm. Suppose the constellation points are selected with equal likelihood, are an uncor-
related sequence, and are located so that

σ2 = E{a2
n} = E{b2

n} (16.10)

Then, it can be shown [II.D.40] that this LMS adaptation algorithm is stable if the update
scale factor µ satisfies the bounds

0 < µ <
1

N1σ2
(16.11)

The scale factor that gives the most rapid convergence of the mean-squared error is

µ0 =
1

2N1σ2
(16.12)

Let ξ(nT + mT/L) be the portion of the received signal v(nT + mT/L) exclusive of the
echos. It includes the received far-end data signal and channel noise. Then, the steady-state
mean-squared residual value, assuming the far-end echo is not present, is

R∞ =

1

L

L−1∑
m=0

E{ξ2(nT + mT/L)}
1 − µN1σ2

(16.13)
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This equation shows that as µ is reduced to zero, the steady-state residual power reduces
to the power of the interference signal. When µ is chosen to give the fastest speed of
convergence, the steady-state residual power is double that of the interference signal.

During double talking, µ must be made very small to average out the effects of the
interference from the far-end data signal. This can result in an underflow problem and cause
the adaptation to stop, particularly with fixed point DSP’s. A solution to this problem
is to sum several past products to form the gradient estimate and is called the block least
mean-square (BLMS) algorithm. The formula for adjusting the i-th complex tap of the m-th
subfilter using a block depth of M is

Am(i; n + M) = Am(i; n) + µ
M−1∑
k=0

ρ(nT + kT + mT/L) c′n+k−i (16.14)

Notice that this reduces to the standard LMS algorithm for M = 1. With the BLMS
algorithm, the taps are adjusted every M samples. The stability and convergence rate
formulas are the same as for the LMS algorithm.

It is very likely with current DSP technology, that all the echo canceler taps can not be
updated during one symbol period, especially when the DSP is performing other transmitter
and receiver tasks in addition. A standard solution to this problem is to update just a
portion of the taps each symbol period.

16.2.3 The Far-End Echo Canceler

The impulse response of the echo path usually consists of an initial period of activity caused
by the near-end echo, followed by a period of silence, followed by a period of activity caused
by the far-end echo. No echo canceler filter taps are required to model the silent period
caused by the round-trip propagation time of the far-end echo. It is only necessary to
include a bulk delay to model the round-trip delay. A portion of the handshake sequence is
used to measure the round-trip delay in V.32, V.32bis, and V.34 modems. The far-end echo
may have a frequency offset in addition to the delay. The frequency offset is corrected by
multiplying the output of the Bulk Delay by ejβn . The details of the offset correction are
presented in the following subsection. The structure of the far-end echo canceler FIR filter
is exactly the same as for the near-end canceler except that it will have more taps because
the far-end echo is usually dispersed more than the near-end echo.

Suppose the measured bulk delay is d0 symbols. Then, the input to the far-end echo
canceler is

c′′n = c′n−d0
ejβn = a′′

n + j b′′n (16.15)

Let the taps for the m-th far-end echo subcanceler be

Gm(n) = γR,m(n) + j γI,m(n) for n = 0, . . . , N2 − 1 and m = 0, . . . , L − 1 (16.16)

Then, the m-th subcanceler output is

qR(nT + mT/L) = �e{q(nT + mT/L)} = �e

⎧⎨
⎩

N2−1∑
k=0

Gm(k)c′′n−k

⎫⎬
⎭
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=
N2−1∑
k=0

γR,m(k)a′′
n−k − γI,m(k)b′′n−k (16.17)

Using the same approach as for the near-end canceler, the LMS tap adjustment formula for
the m-th subcanceler is found to be

Gm(i; n + 1) = Gm(i; n) + µρ(nT + mT/L) c′′n−i for i = 0, . . . , N2 − 1 (16.18)

16.2.4 Far-End Frequency Offset Compensation

With older telephone circuits using analog frequency division multiplexing, it has been found
that it is important to compensate for the far-end echo frequency offset to achieve satisfactory
modem performance. As a first approximation, suppose this effect can be removed by letting

βn = θ + ω0nT (16.19)

Then, the complex output of the m-th far end echo subcanceler is

q(nT + mT/L) =
N2−1∑
k=0

Gm(k)c′n−d0−ke
j[θ+ω0(n−k)T ]

= ej(θ+ω0nT )
N2−1∑
k=0

Gm(k)e−jω0kT c′n−d0−k (16.20)

The derivative of the squared residual with respect to θ is

∂

∂θ
ρ2(nT + mT/L) = −2ρ(nT + mT/L)

∂

∂θ
�e{q(nT + mT/L)}

=−2ρ(nT +mT/L)�e

{
∂

∂θ
q(nT +mT/L)

}
= −2ρ(nT +mT/L)�e{j q(nT +mT/L)}

= 2ρ(nT + mT/L)�m{q(nT + mT/L)} (16.21)

where

�m{q(nT + mT/L)} =
N2−1∑
k=0

γI,m(k)a′′
n−k + γR,m(k)b′′n−k (16.22)

Let

∆n = −
L−1∑
m=0

ρ(nT + mT/L)�m{q(nT + mT/L)} (16.23)

Then, a second-order phase-locked loop update formula for the far-end echo phase correction
angle suggested by these results is

βn+1 = βn + k3∆n + Γn (16.24)

where the second-order accumulator output is

Γn = Γn−1 + k4∆n (16.25)
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and k3 and k4 are small positive constants with k3/k4 ≈ 100. The structure for this PLL
is essentially the same as the lower part of the QAM carrier tracking loop shown in Figure
15.4 with ωcT = 0.

In order to save computation time, the phase update can be performed once per symbol
period using the residual from just one subcanceler. For example, suppose the residual for
subcanceler m = 0 is used. Then, the only change required in the formulas is to replace ∆n

by
∆n = −ρ(nT )�m{q(nT )} (16.26)

16.3 Echo Canceler Experiments

You will be asked to make a near-end echo canceler and a far-end echo canceler with frequency
offset correction in these experiments. No interfering data signal from a far-end modem will
be included. Make sure to use the highest compiler optimization level.

16.3.1 Making a Near-End Echo Canceler

Use the modified V.22bis transmitter you made in Chapter 13 as a starting point for your
near-end echo canceler program. Send the output samples to the left channel of the DAC.
Connect the DAC output to the ADC input to simulate the near-end echo. Your transmitter
uses a passband shaping filter with an impulse response that spans 8 symbols. Therefore,
your near-end echo canceler will have to span at least 8 symbols which is equivalent to 8
ms at 1000 baud. Use an 8000 Hz sampling rate for the echo canceler. This requires using
L = 8000/1000 = 8 samples per symbol or 8 subcancelers.

You will have to figure out a strategy for interleaving the transmitter and echo canceler
subfilter computations each symbol. Consider using the interrupts for transmitted samples
somehow to generate the required timing.

Implement the echo canceler with 8 subcancelers using (16.7) and (16.8) to update the
taps. Pass the residual signal to the right DAC channel and observe it on the oscilloscope.
Experiment with different values of the update scale factor µ and observe the convergence
rates and steady-state residual variations. Measure the power of the received sequence before
the echo canceler subtraction node and the power of the residual. and calculate the ratio of
the input to residual power in dB.

16.3.2 Making a Far-End Echo Canceler with Frequency Offset
Correction

Simulate a frequency offset far-end echo by multiplying the complex output of the transmitter
passband shaping filter by ej2πfdnT0 before sending its real part to the DAC. The parameter
T0 is the filter bank sampling period and fd is the frequency offset. Choose a frequency offset
of fd = 0.25 Hz. For simulation purposes, assume the far-end propagation time is zero and
ignore the Bulk Delay block. Add the frequency correction functions to your near-end echo
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canceler and pretend it is a far-end canceler. Do not implement a near-end canceler also.
Update the far-end frequency offset tracking loop only once per symbol when processing
subcanceler m = 0 using (16.24), (16.25), and (16.26).

Send the residual to the right DAC channel and observe it on the oscilloscope. Experiment
with the system parameters and observe the residual behavior. When you have found a good
set of parameters, measure the input and residual powers and compute the ratio in dB.

16.4 Additional References

Werner [II.D.40] gives a very good presentation of echo cancelers for digital data modems.
This work had a significant influence on the round trip delay estimation method chosen for
the V.32 recommendation. Also see Gitlin, Hayes, and Weinstein [II.D.11, Chapter 9], and
Lee and Messerschmitt [II.D.26, Chapter 18] for comprehensive theoretical treatments and
alternative structures for echo cancelers.



Chapter 17

Multi-Carrier Modulation

This chapter explores the fundamental concepts of multi-carrier modulation. Multi-carrier
modulation is important to know about today because it is used extensively in broadband
digital wireline systems and in many broadband wireless systems. The systems are very
complex and this chapter will only look at the fundamental concepts used for modulation
and demodulation by implementing a simplified ADSL transmitter and receiver. The systems
also include sophisticated error correcting codes, interleavers, and network protocols.

17.1 A Brief Overview of the History and Implemen-

tation of Multi-Carrier Modulation

Multi-carrier modulation is often selected for situations where the channel frequency re-
sponse and noise interference vary significantly with frequency and/or time over the signal-
ing bandwidth. Applications include fading wireless channels and broadband wireline digital
subscriber lines. It is called discrete multi-tone modulation (DMT) in the wireline commu-
nity and orthogonal frequency division multiplexing (OFDM) in the wireless community. The
basic philosophy behind multi-carrier modulation is to partition the channel frequency band
into multiple non-overlapping narrow-band sub-channels with nearly constant frequency re-
sponse over each sub-channel. Data is transmitted by modulating carriers centered in each
sub-channel using a narrow-band modulation method like QAM. The individual carriers are
often called tones or subcarriers. At the receiver, the QAM constellation for each subcarrier
is essentially scaled by a complex constant corresponding to the channel frequency response
at the subcarrier frequency and can be easily equalized by multiplying by the reciprocal
of the constant. A block of many data bits is taken from the data source and subsets of
bits are assigned to the different subcarriers based on sub-channel signal-to-noise ratio mea-
surements. The subcarriers are modulated and all transmitted for some time T and then
another data block is taken and the process is repeated. The sum of modulated subcarriers
transmitted for an input data block is called a multi-carrier symbol. Since many bits are
assigned to a symbol, the symbol rate 1/T is small compared to the data rate or, in other
words, the symbol period is long compared to the input bit period.

Multi-carrier modulation is used extensively is in broadband digital wireline systems

273



274 Multi-Carrier Modulation

using existing copper twisted pair telephone line cables. These telephone line systems are
known as digital subscriber lines . The American National Standards Institute published a
standard for a broadband multi-carrier wireline system in 1998 [E.1] called an asymmetric
digital subscriber line (ADSL) . The International Telecommunication Union has approved a
number of multi-carrier wireline recommendations including ITU-T G.992.3 [E.10], G.992.4
[E.11], and G.992.5 [E.12]. Multi-carrier modulation is called discrete multi-tone modulation
(DMT) in the wireline world.

Voice-band telephone line modems starting with the Western Electric 110 baud Bell 103
binary FSK (frequency shift keyed) modems of the 1960’s, followed by other proprietary
commercial modems, and ones conforming to the international standard ITU-T V-series
recommendations up to the ITU-T V.34 modem approved in 1998 have all used single-
carrier modulation. The voice-band channel is well modeled by a linear time-invariant filter
followed by additive noise. Almost all of the modems operating at data rates of 1200 bits per
second or more have used quadrature amplitude modulation (QAM). A few early high speed
modems used single sideband modulation. The ITU-T V.90 modem approved in September
1998 always uses single-carrier V.34 modulation upstream from the customer to the central
office but pulse code modulation (PCM) downstream from the central office to the customer
if channel conditions allow it. The V.92 modems approved in 2000 use PCM upstream and
downstream but can fall back to V.34 in either direction. Chapters 13, 14, 15, and 16 present
the theory and algorithms required to implement a single-carrier voice-band telephone line
modem.

A few multi-carrier voice-band telephone line modems have been produced but none were
commercially successful or included in international standards. The manufacturers claimed
to make optimum use of the telephone channel by adjusting carrier amplitudes and number
of bits assigned to each carrier based on capacity formulas from Information Theory. One
reason for not being accepted is that they introduced large delays at voice-band data rates.
Another reason is that their transmitted signal had a large peak-to-average ratio requiring
amplifiers and circuits with a large dynamic range and small non-linearities. The performance
of multi-carrier modems was also degraded by carrier phase jitter which was still present in
telephone plant analog carrier circuits. These have now been almost entirely replaced by
digital PCM systems. In addition, equivalent results could be obtained with single-carrier
modems using adaptive precoding.

The situation changed dramatically when the telephone companies were forced by govern-
ment regulation and competition from cable and wireless companies to provide broadband
data transmission. This required direct access to the copper twisted pair local loops without
going through the lowpass voice-band filters with a cut-off frequency of around 4 kHz. It was
found that the local loops could support signals with spectral components up to 1.1 MHz
or more, in some cases, allowing data rates up to several megabits per second. The useful
bandwidth depends on the distance of the customer from the central office, bridge taps into
the cable, and ambient noise. See Golden [E:3] for extensive discussion of the cable prop-
erties. The frequency response of the cables and noise interference varies greatly over these
bandwidths. The noise includes AM radio signals and cross-talk from other cables in the
same bundle. Experts decided that the adaptive equalization technique used in single-carrier
systems was expensive to implement at high symbol rates, did not allow flexibility in using
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the channel, and that moderate delay was not a problem for applications using broadband
systems like web surfing or video on demand. They chose to use the multi-carrier approach
with the subcarrier frequencies uniformly spread over the usable bandwidth. In ADSL, up-
stream transmission uses subcarrier frequencies at multiples of 4.3125 kHz from about 25
kHz to 138 kHz and can provide data rates up to 896 kbit/s. Downstream transmission uses
frequencies at multiples of 4.3125 kHz usually in the band from 138 kHz to 1.104 MHz but
can use the full 25 kHz to 1.104 MHz band if echo cancellation is implemented providing
data rates up to 8 Mbit/s. QAM modulation with a large range of constellation sizes is
used for each of the subcarriers. The frequencies below 25 kHz are not used so the plain old
telephone system (POTS) 0 to 4 kHz voice-band channels can be frequency division mul-
tiplexed with the ADSL signals onto the same cable. Channel measurements of the cable
frequency response and interfering noise are used to determine which subcarriers to use,
their amplitudes, and the number of data bits assigned to each to try to achieve a data rate
approaching the capacity predicted by Information Theory.

Multi-carrier modulation is used extensively in wireless digital data communication sys-
tems where the channel has fading characteristics caused by the transmitted signal propagat-
ing over multiple paths to the receiver as a result of reflections and diffraction. Multi-carrier
modulation is called orthogonal frequency division multiplexing (OFDM) in the wireless com-
munity. It is essentially the same as DMT used in the DSL systems. These fading channels
are also called multi-path channels. They are time varying because of motion of the reflectors
and, possibly, the transmitter and receiver. When an unmodulated carrier is transmitted
and all the paths have about the same power and introduce independent random phase
shifts and there are many paths, the amplitude of the received signal can be shown to have
a probability density function that is well approximated by the Rayleigh density and the
phase is uniformly distributed over [0, 2π). When there is a strong line-of-sight component,
the probability density function for the amplitude of the received signal has a Rician pdf.
See books on wireless communications like Goldsmith [E.4], Haykin [E.5], Schwartz [E.15],
and Stüber [E.17] for the detailed theory. The frequency response of the channel from trans-
mitter to the receiver can have an amplitude that varies significantly with frequency and can
have deep nulls at some frequencies depending on the delays and amplitudes of the paths.
These channels are said to have frequency selective fading. The peaks and nulls are caused
by reinforcement and cancellation of the signals arriving along the different paths.

Multi-carrier modulation was used as long as fifty years ago for HF digital radio commu-
nication over long distances like from ship to shore. The HF signal reflects off layers of the
ionosphere and can propagate over long distances bouncing around the Earth. The received
signal experiences significant time varying multi-path fading as the ionospheric layers shift.
The initial radios used analog filters which were difficult to keep tuned. In the late 1960’s, the
military began using expensive special purpose mini-computers and digital signal processing
algorithms including the FFT and IFFT to perform the speech compression, encryption,
modulation, forward error correction, and demodulation. The systems used around a 3 kHz
bandwidth and in the order of 32 subcarriers. Small inexpensive modern DSP’s can now be
used to implement the HF modems.

Arguably, the most common current use of multi-carrier modulation is in the ubiquitous
Wi-Fi networks. There are a number of IEEE standards for Wi-Fi. The IEEE 802.11a
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standard [E.6] was released in 1999. It uses OFDM in the 5 GHz band, has a maximum data
rate of 54 Mbit/s with a typical throughput of 21 Mbit/s, an indoor range of about 25 meters,
and an outdoor range of about 75 meters. The IEEE 802.11g standard [E.7] was released
in 2003. It uses OFDM in in the 2.4 GHz band, has a maximum data rate of 54 Mbit/s
and typical throughput of 20 Mbit/s, an indoor range of about 40 meters, and an outdoor
range of about 95 meters. Each individual subcarrier can be modulated with BPSK, QPSK,
16-QAM, or 64-QAM. A new standard, 802.11n, is in the advanced stages and is expected
to be released around September 2007. It includes provisions for multiple transmit and
receive antennas (MIMO). The indoor environment is quite hostile with extensive multi-
path propagation and interference from other electronic devices transmitting in the Wi-Fi
bands. Multi-carrier modulation allows the Wi-Fi systems to adaptively select subcarriers
at frequencies where the channel is good.

By far, the most common Wi-Fi network configuration is to have multiple users connect to
the network through a nearby transceiver called an access point. A multiple access protocol is
used. In the wireline DSL systems, a single transceiver on one end of the line communicates
with a single transceiver on the other end. This arrangement is called a point-to-point
connection. It is also possible for two nearby Wi-Fi users to make a point-to-point connection.

Currently, multi-carrier modulation is almost always being selected and implemented for
long distance broadband digital wireless communications with fixed and mobile users rather
than code division multiple access (CDMA). These systems will have architectures similar
to cellular telephone networks where the mobiles connect to a nearby base station and are
automatically switched between stations as they move to adjacent cells. The standardized
system that is currently getting the most attention and is in the process of being deployed by
major carriers like Sprint is popularly called WiMax. This system was initially standardized
in 2004 by IEEE Std 802.16 [E.8] as a fixed broadband system. In 2005 it was expanded
to include mobile units by IEEE Std 802.16e [E.9]. The 802.16e systems were designed to
operate below 11 GHz and have bandwidths ranging from 1.25 to 20 MHz. These standards
contain a multitude of options. An industry wide committee called the WiMax Forum has
been meeting to select a subset of options that manufacturers should include to make WiMax
transceivers compatible with each other. Companies like Texas Instruments have groups
furiously working on making DSP’s with special peripherals to implement signal processing
tasks required in WiMax transceivers and groups creating optimized software to implement
the required algorithms. It is projected that mobiles as much as 30 miles away will be able to
communicate with a base station. The WiMax systems are very flexible in terms of channel
bandwidths, data rates, and number of users. They are also very complicated and use the
latest modulation and coding methods.

WiMax uses a variant of OFDM called orthogonal frequency division multiple access
(OFDMA). In OFDMA, different mobiles are allocated different subsets of subcarrier fre-
quencies. Periodically, the base station collects groups of bits from the digital network to
be sent to each of the mobiles. Each group of bits is mapped to a set of QAM constellation
points, one for each subcarrier allocated to that mobile. QPSK (4-QAM), 16-QAM, or 64-
QAM constellations can be used based on desired data rates, transmitted signal bandwidths,
and measured channel conditions. Each constellation point is a complex number that spec-
ifies the DFT value for the corresponding subcarrier frequency or DFT index. The set of
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constellation points for all the mobiles is the DFT frequency domain representation for one
transmitted symbol. Modulation is performed by taking the inverse fast Fourier transform
(IFFT) of the set of constellation points. WiMax systems can use IFFT sizes of 128, 512,
1024, or 2048 points. The total number of subcarriers used for all the mobiles is somewhat
less than each of these IFFT sizes because some subcarriers at the band edges are set to zero
to confine the spectrum and other subcarriers are used to send pilot signals for channel esti-
mation. The mobiles demodulate each symbol by using an FFT. A similar process happens
in the upstream direction from the mobiles to the base station. Each mobile periodically col-
lects a group of bits to be sent to the base station, maps them to constellation points for its
assigned set of subcarriers, and performs modulation using an IFFT. The transmissions from
the mobiles must be timed so that when they arrive at the base station their sum appears
to the base station as a single OFDM symbol. The 802.16e standard includes procedures
for initially acquiring and tracking this timing. The base station demodulates the received
symbols by taking FFT’s.

The European cellular telephone community is also working on multi-carrier broadband
wireless data communication standards to compete with WiMax. The Third Generation
Partnership Project (3GPP) is working on a standard called Long Term Evolution (LTE)
[E.18]. OFDMA will be used in the down link from the base station to the mobiles and an-
other variation of OFDM called single carrier frequency division multiple access (SC-FDMA)
will be used uplink. Again, QPSK, 16-QAM, and 64-QAM constellations are proposed. The
bandwidths will be scalable from 1.25 to 20 MHz. Maximum data rates are projected to be
100 Mbit/s down link and 50 Mbit/s uplink. Systems are expected to be rolled out in 2009.

Multi-carrier modulation is also used in a variety of other systems. It is used for digital
audio and video broadcasting in Europe. It is also included as one option in the IEEE 802.15
ultra-wideband standard. A number of proprietary systems have been built and field tested.
One of these is called FLASH-OFDM which was created by a spin-off from Bell Labs called
Flarion which was recently bought by Qualcomm.

17.2 Asymmetric Digital Subscriber Line (ADSL) Sys-

tem Architecture

Figure 17.1 shows the high level block diagram of an ADSL link. At a telephone company
central office, data for a remote customer premise is collected from a broadband network
like the Internet and routed to an ADSL modem. The Network Interface box often con-
tains a device called a Digital Subscriber Line Access Multiplexer (DSLAM) that performs
the multiplexing task. In the xDSL community, modems are often called transceivers for
transmitter/receiver. The modem in the central office is designated by ATU-C which stands
for “ADSL transceiver unit, central office.” The ATU-C transmitter transforms its input
data into a sequence of multi-carrier symbols that are sent through a splitter in the central
office and then over the copper twisted pair local loop to the customer premise. The ATU-C
transmit spectrum for ITU-T Recommendation G.992.3 [E.10] is most often confined to a
frequency band extending from 138 kHz to 1.104 MHz. There is also an option to use echo
cancellation and let the spectrum go from 25 kHz to 1.104 MHz but this is rarely used. The
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maximum downstream data rate for ADSL2 is 12 Mbit/s but the actual rate depends on the
quality of the local loop. An ordinary voice-band telephone channel from the Public Switched
Telephone Network (PSTN) which has a lowpass spectrum with a nominal cutoff frequency
of 4 kHz is also applied to the central office splitter and sent to the customer over the local
loop along with the ADSL signal. Ordinary telephone channels have been given the name
Plain Old Telephone Service (POTS). At the customer premise, the ADSL and POTS signals
are separated by the highpass and lowpass filters in a splitter at the customer premise. A
somewhat simpler and lower cost option called splitterless ADSL in ITU-T Recommendation
G.992.4 [E.11] eliminates the customer premise splitter and requires the customer to install
lowpass filters at his ordinary telephones. The ADSL modem at the customer premise is
called the remote transceiver and is designated by ATU-R where R stands for remote. The
ATU-R demodulates the received multi-carrier symbols and sends the received data to the
customer premise network. CPE in the figure stands for “customer premise equipment”
which could be a PC or network printer. Data and voice transmission upstream from the
customer premise to the central office follows the same process as downstream except that
the upstream ADSL2 spectrum is limited to a band extending from 25 kHz to 138 kHz with
a maximum data rate of 1 Mbit/s. The reason for the asymmetry in the upstream and
downstream data rates is that the designers envisioned that the major use of the broadband
connection would be for surfing the Internet or video on demand where small messages would
be sent from the customer to a server and large files would be down-loaded from the server
to the customer.

17.3 Components of a Simplified ADSL Transmitter

The block diagram of an ADSL transmitter that is a simplified version of the one in the
ANSI T1.413 standard [E.1] is shown in Figure 17.2. The ITU-T G.993.3 transmitter [E.10]
is very similar. These standards include extensive descriptions of how data is collected from
a number of input streams and put into frames to form the “Data Source” shown in Figure
17.2 for a wide variety of data rates that are multiples of 32 kbit/s. The data rates are
adaptively determined from measurements of the local loop frequency response and noise
and are computed based on equations from Information Theory to maximize the rate of
reliable transmission. The standards include a parallel path into the “Map block” box that
does not include the interleaver to give a “fast” path with much less delay. They also include
the option for a trellis encoder between the “Map block” and IFFT block.

17.3.1 The Cyclic Redundancy Check Generator

The cyclic redundancy check generator (CRC) computes a check byte for each successive
block of k bits from the Data Source. Because of the flexibility of how the input sources are
multiplexed and variety of data rates, these blocks can be anywhere from 67 up to around
14,875 bytes long. Let the block of data bits be the row vector

M = [mk−1,mk−2, . . . , m1, m0]
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An equivalent representation is the polynomial

M(D) = mk−1 + mk−2D + . . . + m1D
K−2 + m0D

k−1

The check byte is the remainder when M(D)D8 is divided by the primitive polynomial
g(D) = D8 + D4 + D3 + D2 + 1 where coefficients are computed using modulo 2 arithmetic.
Let this check byte be

c(D) = mod[M(D)D8, g(D)] = c7 + c6D + . . . + c2D
5 + c1D

6 + c0D
7 (17.1)

A circuit for computing the check byte is shown in Figure 17.3. Each D represents a one-bit
delay element. The adders perform modulo two addition which is the same as an exclusive-
or function. The eight delay elements are initially cleared to zero. Then the data bits are
shifted into the right side of the feedback register starting with m0, the coefficient of the
highest power of D. The check byte is the contents of the register after the last data bit,
mk−1 is shifted in.

The data block with the check byte appended has the polynomial representation

X(D) = M(D)D8 + c(D) (17.2)

or vector form
X = [c7, c6, . . . , c1, c0,mk−1, mk−2, . . . , m1, m0] (17.3)

If the CRC generator register is initially cleared and the components of the vector X are
shifted into the adder on the right-hand side, starting with m0 down to c7, the delay elements
will end up being all 0. If Y (D) = X(D) + e(D) where e(D) is an error pattern which is not
divisible by g(D), the register contents will not be zero when Y (D) is shifted into the CRC
generator. Any error pattern which is divisible by g(D) is an undetectable error pattern.

Adding the CRC byte allows the receiver to make a final overall check for transmission
errors. CRC failures are typically used by the system operators to check for equipment
failures.



17.3 Components of a Simplified ADSL Transmitter 281

D D 
+ D 
+ D 
+ D D D D 
+� � � � � � � � � � �

�

� � �
�

m0

c0c1c7

m1· · ·mk−1

c6 c5 c4 c3 c2

Figure 17.3: Cyclic Redundancy Check (CRC) Generator

17.3.2 The Scrambler

The bit stream from the CRC generator is then passed through a self-synchronizing scrambler
like the one discussed in Chapter 9 and shown in Figure 9.1 to break up long strings of 1’s
and 0’s. The connection polynomial is h(D) = 1 + D18 + D23 which is the same as the one
used in the V.32 and V.34 calling modems. Let the input to the scrambler be x(n). Then,
the scrambler output is

y(n) = x(n) + y(n − 18) + y(n − 23) (17.4)

where “+” is modulo two addition. The input can be computed from the output, that is,
descrambled by computing

x(n) = y(n) + y(n − 18) + y(n − 23) (17.5)

17.3.3 The Reed-Solomon Encoder

Successive blocks of bits from the scrambler are operated on by the Reed-Solomon encoder
which adds redundant bits to the blocks so that transmission errors can be corrected at the
receiver. This process is often called forward error correction (FEC). The detailed theory
of these codes is beyond the scope of this course. See books on error correcting codes like
Peterson and Weldon [F.12] and Wicker [F.19] for complete details. A brief description of
the encoder will be given here to give you a hint of what it does.

The ADSL Reed-Solomon encoder is based on the primitive polynomial f(D) = D8 +
D4 + D3 + D2 + 1 which was used in the CRC generator. This polynomial has roots in the
Galois field GF(28). Let α be one of the roots. Then all the 256 elements of GF(28) can be
represented in the form

β = b0 + b1α + . . . + b6α
6 + b7α

7

where the bi’s are 0 or 1. An element can also be represented by the byte [b0, b1, . . . , b7]. The
ADSL Reed-Solomon encoder considers code symbols to be elements of GF(28) or bytes.
A codeword can be at most 255 bytes long including the information and check bits. The
integer 255 is the natural length of codewords, but some information symbols can be set to
zero and not used. A variety of generator polynomials can be used and have the form

g(D) =
R−1∏
i=0

(D − αi) (17.6)
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where R is a positive integer. The degree of g(D) is R which is also the number of check
symbols in a codeword. The number of information symbols is 255−R and the code rate is
(255 − R)/255. Up to t = �R/2� symbol errors can be corrected in a codeword. Anywhere
from one to eight bit errors in a code symbol (byte) is a single symbol error as far as the
Reed-Solomon code is concerned. The choice of R allows a tradeoff between error correction
capability and code rate. The ANSI T1.413 standard requires implementations for R = 2i
for i = 0, 1, . . . , 8.

A block of K message bytes [m0,m1, . . . ,mK−1] can be represented by the polynomial

M(D) =
K−1∑
i=0

miD
K−1−i (17.7)

The check symbols are the remainder when M(D)DR is divided by g(D) using GF(28)
arithmetic, that is,

C(D) = mod[M(D)DR, g(D)] =
R−1∑
i=0

ciD
R−1−i (17.8)

and the complete codeword is x(D) = M(D)DR + C(D). The highest order K symbols are
the message bytes and the lower order R symbols are the check symbols. The codeword
length is N = K + R.

17.3.4 The Convolutional Interleaver

Impulse noise is one of the major disturbances in ADSL systems. An impulse can corrupt
several multi-carrier symbols and cause bursts of errors in the received data streams if no
special precautions are taken. ADSL systems protect against bursts in two ways. First,
the Reed-Solomon codes discussed in the previous section naturally can correct multiple bit
errors in a single code symbol, which consist of a string of eight bits, since any pattern of
eight or less bits is treated as a single GF(28) code symbol error. Second, a technique that has
been used for many years in other systems called interleaving is required by the standards for
the data streams needing low error rates. Detailed discussions of interleaving are presented
in Ramsey [F.13] and Forney [F.5]. Basically, an interleaver shuffles multiple codewords
together before transmission so symbols from an individual codeword are separated in time
when the interleaved codewords are transmitted over the channel. Suppose the symbols
from one codeword occur in the interleaved stream at multiples of an integer L called the
interleaving depth. Then an error burst of length B on the channel will cause about B/L
errors in the word obtained by deinterleaving at the receiver. The exact number of errors in
the deinterleaved word depends on the burst phasing and length.

The ADSL standards specify the use of a type of interleaver called a convolutional inter-
leaver. Suppose we start entering codewords of length N bytes into the interleaver at time
0. Then, entering of the jth codeword starts at time jN . Let this codeword be designated
by

Xj = [Bj
0, B

j
1, . . . , B

j
N−1]
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The symbols are entered into the interleaver starting from the left with Bj
0 at time jN and

ending on the right with Bj
N−1 at time jN + N − 1 = (j + 1)N − 1. Symbol Bj

i is entered

at time jN + i. The ADSL interleaver delays Bj
i by i(L− 1) symbols for i = 0, 1, . . . , N − 1.

The integer L is called the interleaving depth. The ANSI standard requires support of the
values 1, 2, 4, 8, 16, 32, and 64 for L which are all powers of 2. The symbol Bj

i emerges
from the interleaver at time

T j
i = jN + i + i(L − 1) = jN + iL (17.9)

When N and L are relatively prime, each code symbol emerges from the interleaver at a
distinct time and every time slot is filled with a code symbol. When N is odd and L is a
power of 2, N and L are relatively prime.

One possible interleaver implementation is shown in Figure 17.4. Each D represents a
delay of one time unit for a code symbol, that is, a byte, so DL is a delay of L time units.
We will call the cascade of delay elements a shift register. The output of each adder is
the bit-wise exclusive-or of the two input bytes. At time jN the symbols for codeword Xj

appear in parallel at the inputs to the “and” gates. The output of a gate is the input byte
when the “Load” signal is 1, and a 0 byte when Load is 0. The Load signal becomes 1 at
time n = jN so Bj

0 appears at the output labeled In. The register is clocked once and Bj
0 is

clocked out of the interleaver into the next system component. At the same time, the rest of
the Bj

i ’s are loaded into the DL boxes. Then Load is set to 0 to make the outputs of the and
gates 0 bytes and the registers are clocked N − 1 more times. This process is repeated for
each new codeword. The Load signal is 0 except at times jN when a new codeword arrives.
To summarize, the N code symbols of a new codeword are loaded into the register stages
separated by L time units and then N bytes are clocked out of the register. This process is
repeated every N clock pulses for each new codeword. It can be shown that when N and L
are relatively prime, new code symbols are entered into empty stages in the register and all
positions are filled with bytes from some codeword. At the start of each new codeword, that
is, at time jN , the horizontal inputs to the adders are all zero bytes that have been loaded
into the shift register during the N − 1 times when Load is 0. This structure is equivalent
to the Ramsey Type II [F.13] interleaver.
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Figure 17.4: Shift Register Implementation of the ADSL Interleaver

The block diagram of a deinterleaver is shown in Figure 17.5. Assuming that the inter-
leaver output is directly connected to the deinterleaver input, starting at time 0, symbols of
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the interleaved sequence are shifted into an (N − 1)L stage shift register with taps every L
stages as shown in the figure. After a delay of (N − 1)L symbols, B0

0 appears at the right
side of the shift register. Then N symbols are combed out of the shift register at the taps
and collected into the original codeword transmitted starting at time 0. The figure shows
these N symbols being loaded in parallel into an N -symbol shift register by the Load signal.
The re-assembled codeword can then be shifted out of this register serially. It could also
just be written into an array in a RAM memory. This process is then repeated continually
with N symbols shifted into the register and N combed out. Figure 17.5 shows the situa-
tion when the jth codeword is ready to be combed out of the register. Each input symbol
to the interleaver experiences a delay of (N − 1)L symbols before it is combed out of the
deinterleaver, ignoring the other system delays.

DL DL �� DL���

�

DL · · ·

· · ·
· · ·

Load

In

I ′
n

Bj
1 Bj

0Bj
N−1 Bj

N−2

Parallel to Serial Converter

Figure 17.5: A Deinterleaver

The interleaver can also be implemented using a RAM organized as a two-dimensional
array with N columns and L rows. An example for N = 5 and L = 2 is illustrated in Figure
17.6. A row of N interleaved symbols is read out of the array starting from column 0 on
the left. Then the symbols of a new codeword, say, Xj, are entered into the array from
row j down in a manner that will now be described. The symbol Bj

i should appear at the
interleaver output at time T j

i = jN + iL for i = 0, . . . , N − 1. Therefore symbol Bj
0 should

be written into row j and column 0 of the array. The next symbol, Bj
1 should be written

into column L of row j if L < N . Symbol Bj
i is written into column iL of row j as long

as iL < N . In general, iL can be divided by N to get quotient, qi, and remainder ri with
0 ≤ ri ≤ N − 1 and iL = qiN + ri. Therefore,

T j
i = jN + (qiN + ri) = (j + qi)N + ri (17.10)

and Bj
i should be written into column ri of row j + qi. In words, it should be written qi rows

down from row j and ri columns over. After Xj is entered into the array, the N symbols in
row j are read out from left to right. The process is then repeated starting with row j + 1,
and so on. Deinterleaving can be performed by writing the received rows into a memory
array similar to the interleaver array and combing the symbols from each codeword out of
the array.

The maximum number of rows down occurs for i = N − 1 and is, assuming N > L,

qN−1 =

⌊
(N − 1)L

N

⌋
=
⌊
L − L

N

⌋
= L − 1 (17.11)
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Therefore, the symbols of codeword Xj are distributed over L rows starting with row j.
After row j is read out, its contents are no longer needed. Consequently, the row can be
cleared and the row containing the last few symbols for codeword Xj+1 can be written into
the row just read out. Thus the memory can be used as a circular array of L rows.

0 1 2 3 4

j − 1
...

...
...

...
...

j Bj
0 Bj−1

3 Bj
1 Bj−1

4 Bj
2

j + 1 Bj+1
0 Bj

3 Bj+1
1 Bj

4 Bj+1
2

j + 2 Bj+2
0 Bj+1

3 Bj+2
1 Bj+1

4 Bj+2
2

j + 3
... Bj+2

3

... Bj+2
4

...

Figure 17.6: RAM Interleaver Implementation Example for N = 5 and L = 2

17.3.5 The Map and IFFT Modulator Blocks

Successive blocks of bits are collected from the interleaver every T0 seconds and assigned
to subcarriers in the transmitted symbols. For ADSL, the nominal data symbol rate is
f0 = 1/T0 = 4000 symbols per second. The number of bits assigned to a subcarrier is
determined by measurements of the channel frequency response and noise at the subcarrier
frequency made during the transceiver initialization sequence. The channel characteristics
can also be monitored during data transmission and the bit assignments adjusted. See
Golden, et al., [E.3, pp. 204–206] for a discussion of bit allocation algorithms. Each group of
bits assigned to a subcarrier is mapped to a complex number Zk = Xk + jYk corresponding
to a point in a QAM constellation. The number of bits assigned to a subcarrier can range
from 2 through 15, that is, the constellation size can vary from 22 = 4 up to 215 = 32, 768
points according to the ADSL standard. The constellation points Zk for 0 ≤ k ≤ N/2 − 1
are considered to be the first half of the elements of an N -point DFT. Actually, the standard
requires that Z0 = 0. The remaining half of the elements are set to

ZN−k = Zk for k = 1, . . . , N/2 − 1 and ZN/2 = ZN/2 (17.12)

This implies that ZN/2 must be real. The standard specifies that it should not be used for
data transmission. With this complex conjugate symmetry, it can be shown that the N -point
time sequence zn = IDFT{Zk} is real. Conversely, when zn is real, its DFT must have this
complex conjugate symmetry. The central office ATU-C transmitter uses N = 512 and the
remote ATU-R transmitter uses N = 64. In Figures 17.2 and 17.8, NSC = N/2.
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Using an IDFT for Modulation

Modulation is performed by taking an IDFT of the sequence of constellation points. Since N
is a power of 2, the IDFT can be efficiently computed using an inverse fast Fourier transform
(IFFT). The time sequence computed by the IDFT, and more efficiently by an IFFT, is

zn =
1

N

N−1∑
k=0

Zke
j 2π

N
kn =

1

N

N−1∑
k=0

Zke
j2π(k

f1
N )nT1 for n = 0, . . . , N − 1 (17.13)

where f1 = 1/T1 is the sampling frequency. Let Zk = Ake
jθk where Ak = |Zk| and θk =

arg Zk. Using the complex conjugate symmetry property of the Zk sequence and assuming
Z0 = ZN/2 = 0, it follows that

zn =
1

N

N
2
−1∑

k=1

[
Zke

j2πk
f1
N

nT1 + ZN−ke
j2π(N−k)

f1
N

nT1

]

=
1

N

N
2
−1∑

k=1

Ak

[
ej(2πk

f1
N

nT1+θk) + e−j(2πk
f1
N

nT1+θk)
]

=
2

N

N
2
−1∑

k=1

Ak cos

(
2πk

f1

N
nT1 + θk

)
(17.14)

Therefore, the time sequence zn is the sum of cosines at the subcarrier frequencies f (k) =
kf1/N for k = 1, . . . , N/2− 1 sampled with period T1. The frequency f1/2 corresponding to
k = N/2 is called the Nyquist frequency .

Algorithm for Creating Constellations

If b bits are assigned to a subcarrier, its constellation must have 2b points. Let the bits
assigned to a subcarrier be the binary vector (vb−1, vb−2, . . . , v1, v0) which has the decimal
value d =

∑b−1
i=0 vi2

i. In the ANSI T1.413-1998 ADSL standard [E.1], the X and Y coordinates
of a constellation point when b is even are, to within a scale factor, the odd integers with
the 2’s complement representations

Xk ↔ (vb−1, vb−3, . . . , v1, 1) and Yk ↔ (vb−2, vb−4, . . . , v0, 1) (17.15)

Constellations for b = 2 and 4 are shown if Figure 17.7. The ADSL standard also gives an
algorithm for constellations with b odd. In practice, the actual constellations are scaled to
give desired power levels for each subcarrier.

The ANSI ADSL standard [E.1, Section 6.8] also includes an option for using a 4-
dimensional, 16-state, Wei [F.18] trellis code for converting input data bits to sequences
of constellation points. This code is a slight variation of the one used in V.34 modems. The
details of this code will not be described here and are left for interested readers to pursue.
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Figure 17.7: Constellations with 4 and 16 Points

The Cyclic Prefix

The impulse response of a local loop lasts for many samples. However, it changes very
slowly over time, so the local loop can be considered to be a linear time-invariant system,
for all practical purposes. The impulse response of a wireless channel can also last for
many samples as a result of multi-path propagation and this is referred to as delay spread.
The wireless channel can change relatively quickly with time as a result of motion of the
transmitter, receiver, and reflecting objects and must be treated as a time-varying chan-
nel. However, multi-carrier modulation and linear time-invariant methods can be used if
the channel changes insignificantly over the duration of a symbol and channel estimates are
continually updated. In either case, the channel impulse response causes intersymbol inter-
ference (ISI) between adjacent multi-carrier symbols. Suppose the impulse response, h(n),
can be nonzero only for n = 0, 1, . . . , L and a symbol, zn, starting at time n = 0 ends at
time n = M and the symbol duration is longer than the impulse response duration, that is,
M > L. The ISI from this symbol into the next is

I(n) =
M∑

k=n−L

zkh(n − k) for n = M + 1, . . . , M + L (17.16)

as h(n − k) slides off the right side of the non-zero portion of zk. A similar initial transient
occurs as h(n − k) slides onto the next symbol during the same time period.

The ISI and initial transient problem has been solved for wireline and wireless systems
by increasing the symbol duration to N ′ = N + ν samples by prepending a cleverly chosen
sequence of ν samples which is longer than the impulse response duration. This provides a
guard time between symbols for the ISI to disappear. The prepended samples are the last ν
samples of the symbol, that is, (zN−ν , . . . , zN−2, zN−1), so the augmented symbol sequence is
(zN−ν , . . . , zN−2, zN−1, z0, z1, . . . , zN−1). Suppose z0 occurs at time n = 0. Then the channel
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output for 0 ≤ n ≤ N − 1, ignoring noise, is

r(n) =
n∑

k=n−L

zmod(k,N)h(n − k) =
N∑

k=0

zkhmod(n−k,N) (17.17)

where

hn =

{
h(n) for 0 ≤ n ≤ L

0 for L + 1 ≤ n ≤ N − 1

This formula can be thought of as the convolution of h(n) with a periodically repeated version
of the N symbol samples computed by the IFFT, or the circular or cyclic convolution of the
N -point sequences zn and hn. The DFT of the cyclic convolution of two N -point signals is
the product of their DFT’s, that is

Rk = DFT{rn} = DFT{zn}DFT{hn} = ZkHk (17.18)

The N ′ = N + ν points of the augmented sequence are sent to the DAC starting with the
cyclic prefix.

The ATU-C and ATU-R both use cyclic prefixes of length ν = N/16. Thus the length
of the cyclic prefix for the ATU-C is νC = 512/16 = 32 and N ′

C = 544. For the ATU-R,
νR = 64/16 = 4 and N ′

R = 68.

The Actual Sampling Rates and Subcarrier Frequencies

The ATU-C and ATU-R insert a known N ′-point sync sequence in their symbol streams after
every 68 data symbols. To maintain a data symbol rate of 4000 data symbols per second,
the channel symbol rate is increased by the factor 69/68. Therefore, the sampling rates are

f1 =
69

68
× 4000 × (N + ν) =

{ 69
68

× 4000 × 544 = 2.208 MHz for ATU-C
69
68

× 4000 × 68 = 276 kHz for ATU-R
(17.19)

The subcarrier frequencies in both cases are multiples of f1/N = 4.3125 kHz.

17.3.6 Some Signals Used for Initialization and Synchronization

The ADSL standards define a complicated procedure to initialize the central office and
remote transceivers for full duplex data transmission. Interested readers should consult the
standards for all the details. A few of the signals defined in the ANSI standard will be
described in this section so they can be used for the experiments.

One obvious signal is called QUIET. This signal is just 0 volts for a period of time. It
is used before transmission starts and the transceivers are idle as well as between several
segments of the initialization sequence.

A signal transmitted by the ATU-C is called C-REVERB. This signal allows the ATU-R
to adjust its automatic gain control (AGC), synchronize its timing, measure noise on the
channel, measure the channel amplitude response, and adjust its adaptive equalizer. The
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data bit sequence for a DMT C-REVERB symbol is generated starting at time n = 1 by the
following rule:

dn = 1 for n = 1, . . . , 9
dn = dn−4 + dn−9 for n = 10, . . . 512

(17.20)

where “+” is modulo 2 addition. The bits d1 through d9 are initialized to all 1’s for each
C-REVERB symbol, so the C-REVERB symbols all use the same data sequence. This is the
rule for a 9-stage PN sequence generator as discussed in Chapter 9 and shown in Figure
9.1 except the output is taken from the delay element on the right side of the generator
and all the delay elements are initially set to 1. The connection polynomial is the primitive
polynomial h(D) = 1 + D4 + D9. The period of this sequence is 29 − 1 = 511, so d512 = d1.
Subcarriers 0 and 256 are set to 0 and bits d1 and d2 are not used. Bit pairs (d2k+1, d2k+2)
are used to QPSK modulate subcarriers k = 1, . . . , 255 as shown up to a scale factor in
Table 17.1. Bits d129 and d130 which modulate subcarrier 64 are overwritten by bits (0, 0)
to generate the constellation point (X64, Y64) = (+1, +1) to form a pilot carrier . The 512
C-REVERB symbol time samples are transmitted without the cyclic prefix. The C-REVERB

symbol is repeated anywhere from 512 up to 1536 times depending on the several positions
it occupies in the initialization sequence.

Another signal called C-SEGUE is the 180 degree phase reversal of C-REVERB for 10
symbols and follows right after the end of C-REVERB. This phase reversal can be detected
by the receiver and used as a timing mark.

Table 17.1: Mapping of Two Data Bits to QPSK Constellation Points

d2k+1 d2k+2 Decimal Label Xk Yk

0 0 0 +1 +1
0 1 1 +1 −1
1 0 2 −1 +1
1 1 3 −1 −1

The ATU-R transmits similar signals. The bits for R-REVERB are generated by a 6-stage
PN sequence generator according to the rule:

dn = 1 for n = 1, . . . , 6
dn = dn−5 + dn−6 for n = 7, . . . 64

(17.21)

Bits d1 through d6 are initialized to all 1’s for each R-REVERB symbol, so they all use the
same data sequence. This sequence has period 63 so d64 = d1. Subcarriers 0 and 32 are set
to 0 and bits d1 and d2 are not used. Bit pairs (d2k+1, d2k+2) are used to QPSK modulate
subcarriers k = 1, . . . , 31 as shown up to a scale factor in Table 17.1. Bits d33 and d34 which
modulate subcarrier 16 are overwritten by bits (0, 0) to generate the constellation point
(X16, Y16) = (+1, +1) to form a pilot carrier . R-REVERB is transmitted with no cyclic prefix
and repeated many times. An R-SEGUE similar to C-SEGUE is used to generate a timing
mark.
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The ATU-C and ATU-R both send a synchronization symbol after every 68 data symbols.
These symbols are identical to C-REVERB and R-REVERB except that the cyclic prefixes are
included.

17.4 A Simplified ADSL Receiver

The block diagram of a simplified ADSL receiver is shown in Figure 17.8. Signals from the
far end transmitter are first applied to an analog-to-digital converter (ADC). The sampling
rate for the signal received at the ATU-R receiver from the ATU-C transmitter is typically
f1 = 2.208 MHz which is twice the Nyquist frequency for the downstream signal. The
sampling rate for the signal received at the ATU-C receiver from the ATU-R transmitter
is typically f1 = 276 kHz. The remaining blocks in the figure, except for the Frequency
Domain Equalizer, perform the inverse operations of those in the transmitter.

ADC

samples
of

a block
CollectRedundancy

Do Cyclic

Check Frequency
Domain
Equalizer

(FEQ)
(Demod)

2NSC-point

FFT

1
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Decoder

Descrambler
...

...
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Data
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and

remove
Cyclic
Prefix
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Figure 17.8: Simplified Block Diagram of an ADSL Receiver

One block that has not been shown is called a time-domain equalizer (TEQ). The impulse
response of a local loop is often longer than the lengths of the cyclic prefixes specified in the
standards. This problem has been solved by putting an adaptive filter between the ADC and
“Collect a block of samples” block. The job of this filter is to shorten the channel impulse
response to an acceptable length. It is trained during the initialization procedure. This type
of filter is usually not used in wireless systems because the signal parameters are chosen to
make the delay spread no longer than the cyclic prefix length. Also, the filter would have to
be updated as fast as the wireless channel changes. We will not implement the TEQ in this
course. See Chapter 11 of Golden, et al., [E.3] for details.

Other blocks that have not been shown explicitly are those for sampling clock and symbol
clock acquisition and tracking. These functions are critical in making a transceiver actually
work in the real world but are usually overlooked in textbooks. They are implicitly included



17.4 A Simplified ADSL Receiver 291

in the “Collect a block of samples” block. Approaches to timing acquisition and tracking
will be discussed in Sections 17.4.2 and 17.4.3.

17.4.1 Demodulation and Frequency Domain Equalization

The samples for a DMT symbol are collected and a sequence of N = 2NSC consecutive
samples are extracted by removing the cyclic prefix. Let the resulting sequence for symbol
i be rn,i for n = 0, . . . , N − 1. The FFT demodulator output is

Rk,i =
N−1∑
n=0

rn,ie
−j 2π

N
nk = Zk,iHk + Vk,i for k = 0, . . . , N − 1 (17.22)

where Hk is the channel frequency response at subcarrier k, Sk = E{|Zk,i|2}, and Vk,i is
a zero-mean noise sample with variance σ2

k = E{|Vk,i|2}. The effect of Hk is to scale and
rotate the received constellation. Only the lower half of the points are needed because of the
complex conjugate symmetry of the transform of a real sequence.

The channel frequency response can be estimated during initialization when a know
sequence like REVERB is transmitted for many symbols. One method for estimating Hk is to
average Rk,i/Zk,i over a number of symbols. This assumes that the sample clock has already
been adequately acquired and drifts negligibly between symbols.

The initial channel frequency response estimates can be adaptively updated during regu-
lar data transmission to refine the initial estimates, track slow changes in the channel caused
by environmental factors like daily variations in temperature, and compensate for small sam-
ple clock drifts. The LMS algorithm, discussed for single carrier modems in Chapter 15, with
a one-tap equalizer can be used for each subcarrier. The resulting set of equalizers is called a
frequency domain equalizer (FEQ). Let the equalizer coefficient for subcarrier k be Wk, the
equalized received point be Z̃k,i = WkRk,i, and the estimation error be ∆k,i = Zk,i −WkRk,i.
Under noisy conditions, Wk can be chosen to minimize

Λk = E
{
|∆k,i|2

}
= E

{
(Zk,i − WkRk,i)(Zk,i − WkRk,i)

}
(17.23)

If Hk is known, the closed form solution is

Ŵk =
Sk

Sk|Hk|2 + σ2
k

Hk (17.24)

and the corresponding mean-squared error is

Λ̂k = σ2
k

Sk

Sk|Hk|2 + σ2
k

(17.25)

Since Hk is not actually known, the iterative LMS algorithm can be used. Let Ak and Bk

be the real and imaginary parts of Wk so that Wk = Ak + jBk. Taking derivatives as in the
LMS derivation in Chapter 15 gives

∂Λk

∂Ak

= −2 E{�e{∆k,iRk,i}} (17.26)
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and
∂Λk

∂Bk

= −2 E{�m{∆k,iRk,i}} (17.27)

so
∂Λk

∂Wk

�
=

∂Λk

∂Ak

+ j
∂Λk

∂Bk

= −2 E{∆k,iRk,i} (17.28)

This suggests the approximate update formula

Wk(i + 1) = Wk(i) + µ∆k,iRk,i = Wk(i) + µ[Zk,i − Wk(i)Rk,i]Rk,i (17.29)

where µ is a small positive constant. It was stated in Chapter 15 that in order for the
mean-squared error to converge, µ must satisfy the stability constraint

0 < µ < 2/E{|Rk,i|2} = 2/(Sk|Hk|2 + σ2
k) (17.30)

Since the product ∆k,iRk,i is a rough estimate of its expected value, the coefficient estimate
converges to the correct mean value with excess fluctuations. Making µ small reduces the
excess variance but slows the convergence time. A formula for the excess mean-squared error
is given by (15.29).

The true value of Zk,i is not known at the receiver. However, after initial channel esti-
mation, the equalizer output Z̃k,i = WkRk,i will be close to the true value. Then an accurate
estimate of Zk,i can be made by quantizing Z̃k,i to the closest ideal constellation point.
The quantization procedure results in very accurate decisions during initialization symbol
sequences when the 4-point QPSK constellation is used. This “decision directed” approach
works very well in practice even for constellations of large size after the equalizer coefficient
has converged and µ is made small.

17.4.2 Sample Clock Acquisition and Tracking

The sample clocks in a transmitter and remote receiver will have some frequency offset. This
offset will be small because the standards place tight tolerances on the clock frequency. Nev-
ertheless, a small frequency error will accumulate to a large phase error over time leading to
significant degradation of performance. The receiver must lock its clock to the transmitter
clock based on timing information derived from its received signal. The offset can be esti-
mated in an open loop manner during initialization when known signals are transmitted, and
updated in a closed loop tracking mode during normal data transmission. Most systems use
a phase-locked loop (PLL) to generate and track the sampling times. Some systems emulate
a phase-locked loop in software using numerical interpolation or buffers with sample stuffing
or deletion to eliminate the cost of the hardware PLL.

Effect of Sample Clock Offset on the Output of the Receiver’s FFT

Let T1 = 1/f1 be the sampling period of the transmitter. Consider the symbol with samples,
zn, given by (17.13) starting at time n = 0 with a ν sample cyclic prefix longer than the
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channel impulse response prepended for time −ν,−ν + 1, . . . ,−1. When this N + ν point
sequence is applied to the DAC, the resulting continuous-time signal is

z(t) =
1

N

N−1∑
�=0

Z�e
j2π�

f1
N

t (17.31)

Let the sampling period at the receiver be T2 = (1 + ε)T1 where ε is a small constant. Then,
the samples observed at the receiver are

rn,0 =
1

N

N−1∑
�=0

H�Z�e
j2π�

f1
N

n(1+ε)T1 =
1

N

N−1∑
�=0

H�Z�e
j 2π

N
(1+ε)n� (17.32)

where Hk is the channel frequency response at subcarrier k. The receiver computes the DFT
of this sequence to get

Rk,0 =
N−1∑
n=0

rn,0 e−j 2π
N

nk =
N−1∑
n=0

1

N

N−1∑
�=0

H�Z�e
j 2π

N
(1+ε)n�e−j 2π

N
nk

=
N−1∑
�=0

H�Z�
1

N

N−1∑
n=0

ej 2π
N

n[(1+ε)�−k] =
N−1∑
�=0

H�Z� Q(k, �, ε) (17.33)

where

Q(k, �, ε) =
1

N

N−1∑
n=0

ej 2π
N

n[(1+ε)�−k] =
1

N

ej2π[(1+ε)�−k] − 1

ej 2π
N

[(1+ε)�−k] − 1
(17.34)

By factoring out e to half the exponent in the numerator and denominator, this can be put
into the following more informative form:

Q(k, �, ε) = ej 2π
N

[(1+ε)�−k]N−1

2

sin π[(1 + ε)� − k]

N sin π
N

[(1 + ε)� − k]
(17.35)

Equation (17.33) shows that an effect of timing offset is to introduce crosstalk from one
subchannel into another. The component proportional to Zk in Rk,0 is

HkZkQ(k, k, ε) = HkZke
j 2π

N
kε N−1

2

sin πkε

N sin π
N

kε
(17.36)

The timing frequency offset causes a phase rotation of HkZk by the angle βk = k 2π
N

εN−1
2

that increases linearly with frequency index and scales its amplitude. The amplitude scaling
is negligible for small |ε| and computation shows that the crosstalk components are small
when the timing offset is within the tolerances required by the standards. Therefore,

Rk,0 ≈ HkZke
j 2π

N
kε N−1

2 for |ε|  1 (17.37)
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Open Loop Estimation of the Sample Clock Period Error

Now suppose the symbol including the cyclic prefix is repeated starting at time N . The
transmitted signal is z1(t) = z[t − (N + ν)T1] for NT1 ≤ t ≤ (2N + ν)T1. The cyclic prefix
for this repeated symbol extends over NT1 ≤ t ≤ (N + ν)T1. Skipping over what it thinks
is the received cyclic prefix, the receiver collects the N -point sequence

rn,1 = z1[(n + N + ν)T2] = z1[(n + N + ν)(1 + ε)T1] = z[n(1 + ε)T1 + (N + ν)εT1]

=
1

N

N−1∑
�=0

H�Z�e
j 2π

N
�ε(N+ν)ej 2π

N
(1+ε)n� for n = 0, . . . , N − 1 (17.38)

and computes the DFT

Rk,1 =
N−1∑
�=0

H�Z�e
j 2π

N
�ε(N+ν) Q(k, �, ε) (17.39)

Again, the subcarrier crosstalk is small if |ε|  1 and

Rk,1 ≈ HkZke
j 2π

N
kε N−1

2 ej 2π
N

kε(N+ν) (17.40)

At this point in the initialization procedure, the channel frequency response Hk may not
be known yet. The phase effects of this response and the constellation point Zk can be
removed by forming the product

Γk,1 = Rk,1Rk,0 = |HkZk|2ej 2π
N

kε(N+ν) (17.41)

which has the angle

ϕk,1 = arg Γk,1 =
2π

N
kε(N + ν) (17.42)

The preceding derivations have neglected the effects of noise. An accurate estimate of ε can
be obtained when noise is present by averaging Γk,i = Rk,iRk,i−1 over several symbols for a
range of k, computing phase estimates ϕ̂k from the averages, and then choosing ε to form a
least-squares fit of a straight line to the phase estimates over the range of k. Suppose the
range is k1 ≤ k ≤ k2. Then the least-squares fit estimate is

ε̂ =
N

2π(N + ν)

⎛
⎝ k2∑

k=k1

k2

⎞
⎠

−1
k2∑

k=k1

kϕ̂k (17.43)

The sum of squares can be computed by using the formula

N∑
n=1

k2 =
N(N + 1)(2N + 1)

6
(17.44)
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Tracking the Sample Clock Period

Once initialization is finished, random DMT symbols generated by customer data are trans-
mitted and the open loop method of estimating the timing period error just presented cannot
be used. At the end of initialization, the frequency domain equalizer (FEQ) should be well
adjusted and a good estimate of ε should have been made and inserted into the clock gen-
erator. The constellations observed for each subcarrier at the output of the receiver’s FFT
should be very close to the ideal transmitted constellations. If there is a small residual clock
period error, the constellations will appear to slowly rotate if the FEQ is kept constant as
shown by (17.42). These observations suggests that a decision-directed method can be used
for tracking the sample clock. Let Ẑk,i = |Ẑk,i|ejαk,i be the ideal constellation point closest
to the equalized point Z̃k,i = |Z̃k,i|ejψk,i for the symbol at time i. The operation of finding
this ideal point is often called quantizing or slicing Z̃k,i to the nearest ideal point. The angle
between the equalized and estimated ideal constellation points can be determined as

ζk,i = arg(Z̃k,iẐk,i) = arg
(
|Z̃k,i| |Ẑk,i|ej(ψk,i−αk,i)

)
= ψk,i − αk,i (17.45)

In rectangular form

Z̃k,iẐk,i = |Z̃k,i| |Ẑk,i| cos ζk,i + j|Z̃k,i| |Ẑk,i| sin ζk,i (17.46)

The phase rotation from one symbol to the next will be small when the sample clock is being
tracked well. Using the approximation sinx ≈ x for |x|  1 and the fact that |Z̃k,i| ≈ |Ẑk,i|
when the FEQ is well adjusted, gives

�m{Z̃k,iẐk,i} = |Z̃k,i| |Ẑk,i| sin ζk,i ≈ |Z̃k,i| |Ẑk,i| ζk,i ≈ |Ẑk,i|2 ζk,i (17.47)

which is proportional to the phase rotation. Computing �m{Z̃k,iẐk,i} from the rectangular
forms requires the difference of two real products and is an efficient method for implemen-
tation with DSP’s. According to (17.42) ζk,i should be proportional to the frequency index
k and ε if noise is ignored. A straight line can be fit to the phase rotations at different
subcarriers to give the following formula similar to (17.43) for estimating the residual timing
offset to within a constant:

ζi = C
∑

kused

kζk,i (17.48)

where C is an appropriate scale factor.
The phase rotation estimate can be used to update the sampling period of a hardware

phase-locked loop. If ζi > 0, the constellation has rotated counter clockwise (in the positive
direction mathematically), and the sampling period is too large and should be reduced. This
can be done in hardware by inserting extra high speed clock pulses into a divider chain in
the PLL. If ζi < 0 the sampling period is too small and should be increased. This can be
done in hardware by inhibiting pulses to a divider chain.

The TMS320C6713 DSK does not have a codec that includes a hardware PLL for the
sample clock, so we will have to use a different approach. Suppose the FEQ is perfectly
adjusted at symbol time i and is held constant after that. At symbol time i there will be
no constellation rotation. According to (17.42), the constellation at symbol time i + 1 will
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be rotated by ϕk,1 = 2π
N

kε(N + ν). This can be corrected by rotating the equalized point
in the opposite direction by ϕk,1. Mathematically, the counter-rotation can be accomplished
by multiplying the equalized point Z̃k,i+1 by e−jϕk,1 . Each successive symbol the equalized
point has to be counter-rotated by a larger angle. That is, at symbol i + q the equalized
point would have to be rotated by angle −qϕk,1.

A second-order PLL can be implemented to generate the required rotation. Let the PLL
output at symbol time i be τi. The corresponding constellation point should be rotated by
the angle −2π

N
kτi(N + ν). First, the phase errors are accumulated using the equation

δi = δi−1 + βζi (17.49)

Then, the PLL output is computed as

τi = τi−1 + δi (17.50)

where α and β are small constants. The idea is that when the phase rotation estimate ζi has
a constant component, its accumulated value will converge in the closed loop to the constant
required to increment τi each iteration to force the observed rotation error to zero. Adding
a αζi term to the equation for τi would allow the loop to eliminate a constant constellation
tilt. However, the FEQ already corrects for any constant tilt, so it is not necessary to add
this term here. For this arrangement to work correctly, the FEQ must change its coefficients
much more slowly than the timing PLL tracks.

The PLL output τi will grow linearly without bound unless some corrective action is
taken. If no action is taken, the symbol timing can slip into the cyclic prefix or into an
adjacent symbol. An approach is to keep |τi| ≤ 0.5 by stuffing or robbing a sample between
symbols. When τi exceeds 0.5, this indicates that the equalized constellations are rotated
in a counter-clockwise direction and the sampling period is too large. This can be corrected
by advancing the timing by one sample. The advance can be implemented by “stuffing” an
extra sample into the cyclic prefix to move the N points collected for the symbol forward in
the sample buffer by one sample. Then τi should be replaced by τi−1. When τi becomes less
than −0.5, this indicates the sampling is occurring too early and a one sample delay should
be introduced. This can be accomplished by deleting or “robbing” a sample from the cyclic
prefix to move the symbol collection time one sample later relative to the sample buffer and
then τi should be replaced by τi + 1. In this scheme, τi will vary between −0.5 and 0.5.

17.4.3 Symbol Alignment Acquisition and Tracking

The receiver must determine where a symbol starts so it can delete the cyclic prefix and
select a sequence of N ISI free samples for the FFT demodulator. Before the initialization
process begins, the transmitters are silent. A receiver can monitor the power level of its
input signal, detect a jump above a preset threshold, and determine relatively quickly when
an initialization signal has started. Special training signals like REVERB, which consists
of repeated symbols without cyclic prefixes, are sent during initialization for specified time
intervals. Symbol counting from the detection of the start of initialization can give a ball
park estimate of when data symbols begin. To help the symbol synchronization process, the
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SEGUE sequence is sent for 10 symbols at the end of REVERB. SEGUE symbols are the 180
degree phase shift of REVERB symbols. This phase reversal can be accurately detected and
used as a timing mark.

Once regular data symbols are transmitted, a ν sample cyclic prefix is included in the
symbols. The receiver can search symbols for the repetition of the prefix N samples later by
some type of correlation process. For example, the receiver could compute the periodicity
metric

pn,i =
n∑

�=n−d

(r�,i − r�−N,i)
2 =

n∑
�=n−d

r2
�,i +

n∑
�=n−d

r2
�−N,i − 2

n∑
�=n−d

r�,ir�−N,i (17.51)

where d is somewhat less than the cyclic prefix length ν. This could also be averaged over
several symbols. The metric will be close to zero when n is at the end of the symbol and the
two samples subtracted are theoretically identical and gets large elsewhere. Of course, they
will not be identical in the real world because of noise and ISI. The minimum of the metric
indicates the location of the end of a symbol. A test for the location of the minimum is to
check when for some appropriately chosen small positive constant γ
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⎠ (17.52)

or
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�−N,i

⎞
⎠ (17.53)

In this last form, the search is for correlation peaks rather than periodicity metric nulls.
The computation could be simplified by replacing the right-hand side by a fixed threshold.
However, the sum on the right-hand side is an estimate of the average power and provides
an automatic threshold normalization.

During data transmission, the special sync symbol is sent after every 68 regular data
symbols. A correlation peak search for the sync symbol could also be used to aid symbol
synchronization.

17.4.4 Remaining Blocks

The remaining blocks in the receiver do the reverse of the corresponding blocks in the trans-
mitter. The constellation points at the output of the FEQ are quantized and mapped back
into a bit sequence. This sequence is deinterleaved, processed by the Reed-Solomon decoder,
descrambled, and CRC checked. The resulting output bits are sent to the data sink. Any
CRC errors are reported to the maintenance functions.

The descrambler is described by (17.5). The Reed-Solomon decoding algorithm is beyond
the scope of this book. Interested readers can find the details in books on error correcting
codes like Wicker [F.19]. The CRC check is performed by shifting a codeword including the
CRC bits into the CRC generator shown in Figure 17.3 starting with all the delay elements
cleared. The register delay elements should all be 0 when the last bit is shifted in for the
check to pass.
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17.5 Making a Simplified ADSL Transmitter and Re-

ceiver

In this experiment you will make a simplified version of an ANSI T1.413-1998 [E.1] ADSL
ATU-R transmitter and ATU-C receiver. Set the TMS320C6713 DSK sampling rate to
f1 = 16 kHz. The transmitter should use an N = 64 point IFFT and the receiver a 64-
point FFT. The subcarriers are at frequencies that are multiples of 16000/64 = 250 Hz.
The subcarriers for k = 0 and 32 should be set to zero and not used. The subcarriers for
k = 1, . . . , 31 will be used to send QPSK (4-QAM) or 16-QAM constellations corresponding
to 2 and 4 bits per constellation point, respectively. The subcarrier points for k > 32 are
determined by the constellation points for k < 32 by the complex conjugate symmetry rule

Z64−k = Zk for k = 1, . . . , 31 (17.54)

which will force zn = IFFT{Zk} to be real.
Use a cyclic prefix of ν = 4 samples. You may have to lengthen this after measuring

the channel impulse response. Then the length of regular data symbols will be N ′ = 68
samples. The number of symbols transmitted per second will be 16000/68 = 235.294. The
minimum number of bits transmitted per symbol is 2 × 31 = 62 when QPSK is used for
all the used subcarriers giving a data rate of 62 × 16000/68 = 14588.235 bits per second if
no sync symbols are used. The maximum number of bits per symbol is 4 × 31 = 124 when
16-QAM is used for all the used subcarriers giving a data rate of 124× 16000/68 = 29176.47
bits per second if no sync symbols are used. This rates are scaled by 68/69 when a sync
symbol is inserted after every 68 data symbols.

Carry out the steps in the following subsections to make and test your transmitter and
receiver.

17.5.1 Making a 64-Point IFFT and a 64-Point FFT

You will need a 64-point IFFT for your transmitter and a 64-point FFT for your receiver.
Modify the decimation-in-time FFT function from Chapter 4 to be a 64-point IFFT. This
function should accept the 64-point constellation array in natural order, shuffle it into bit-
reversed order, and then perform the equivalent of the “decimation-in-time” FFT algorithm
to get the output time sequence in natural order. Read required cosine and sine values for
the “twiddle factors” from a pre-computed table rather than compute them recursively like
in the FFT function from Chapter 4. Only a single sine table is needed, not both a sine
and cosine table, because cos θ = sin(θ +π/2). You can achieve some computational savings
in the last stage by using the fact that the output must be real and not computing the
imaginary part. Test your IFFT by putting in some sequences that have known outputs.
For example, Zk = cos(2πmk/64) has the IFFT, zn = 0.5δ[n − m] + 0.5δ[n − (64 − m)].

Modify the decimation-in-time FFT function in Chapter 4 to be a 64-point FFT. Again,
read the sine/cosine twiddle factors from a table. Some computational savings can be
achieved by using the fact that the input is real in the first stage. Test your function
by using some inputs with known FFT’s.
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17.5.2
Inverses

Implement the 23-stage self synchronizing scrambler presented in Section 17.3.2 with input
x(n) = 1 for all n to generate simulated customer random data. Bypass the CRC generator,
Reed-Solomon encoder, and convolutional interleaver for the time being. You can implement
these later as optional exercises. Initially you will test your transmitter with QPSK constel-
lations for all of the 31 used subcarriers. In this mode, you should generate blocks of 62 bits
with the scrambler. Later you will use 16-QAM for all 31 used subcarriers which will require
blocks of 124 bits.

Make a function that maps an array of 62 input bits into a 64 element complex array Z
with Z[0] = Z[32] = 0, Z[1], . . . , Z[31] QPSK constellation points Xk + jYk corresponding
to successive pairs of input bits using the rule stated on page 287 and illustrated in Figure
17.7, and Z64−k = Zk for k = 1, . . . , 31.

Make another function for 16-QAM that maps an array of 124 input bits into a 64
element complex array Z with Z[0] = Z[32] = 0, Z[1], . . . , Z[31] 16-QAM constellation
points Xk + jYk corresponding to successive groups of four input bits using the rule stated
on page 287 and illustrated in Figure 17.7, and Z64−k = Zk for k = 1, . . . , 31.

Make the inverse functions. That is, make functions to convert a 64 element complex
array back into an array of 62 bits for QPSK and 124 bits for 16-QAM. These functions
should quantize a complex point R[k] corresponding to an element of the output of the FFT
in the receiver to the ideal constellation point shown in Figure 17.7 that is nearest to it in
Euclidean distance, and put the two or four data bits corresponding to the quantized point
into a 62 or 124 element array for k = 1, . . . , 31. Implement a descrambler using (17.5). Test
your inverse mappers and descrambler separately. Then test the cascade of the scrambler,
mapper, inverse mapper, and descrambler for a string of transmitted DMT symbols. Do this
internally in a program for one DSP without worrying about getting data to and from the
codec. The output of the descrambler should be all 1’s except, possibly, for a short initial
transient if the scrambler and descrambler initial states differ.

Once the cascade is working, insert the transmitter IFFT and receiver FFT. First leave
the IFFT output as a floating-point array. Use this array as the FFT input. Do this internally
in the single DSP program without worrying about getting data to and from the codec. Next
convert the IFFT output array to an integer format scaled appropriately for the right codec
channel and use it internally in the program as the receiver FFT input and check that the
cascade works. You will have to structure the inverse mapper to account for the scaling.

17.5.3 Measuring the Channel Impulse Response Duration

You will send the samples generated in the DSP for the transmitter through the DAC in
the AIC23 codec to the Line Out, through a cable from the Line Out to the Line In of the
receiver, and through the ADC of the codec. Initially, you will loop the Line Out of the DSK
back to the Line In of the same DSK. Later, you will connect the Line Out of one station to
the Line In of another station. The channels for both of these cases should be very similar.
The duration of the channel impulse response must be known to select the length of the

Making a Scrambler, Constellation Point Mapper, and Their
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cyclic prefix. Write a program to first send 128 zeros to the right channel ADC to clear any
initial startup transients. Then send periodic pulses to the right channel ADC. For example,
send

s[n] =
∞∑

k=2

15000 δ[n − 64k] (17.55)

The scale factor, 15000, was chosen to use a significant portion of the range of the ADC. This
signal is a periodic train of unit pulses occurring every 64 samples with zeros in between.
Loop the Line Out back to the Line In of the same DSK. Collect 128 samples from the Line In
in an array starting when you send the first pulse. Examine the array using a watch window
or, perhaps, more informatively by using the graphing capabilities of Code Composer and
determine the duration of the channel impulse response. You can also connect the Line
Out to the oscilloscope and observer the impulse response through the ADC to the Line
Out. Another approach would be to internally within the DSP program, loop the samples
received from right channel Line In back out to the left channel Line output and observe
the repetitions of the impulse response on the oscilloscope. Choose a value, ν, for the cyclic
prefix length that is somewhat larger than the duration of the channel impulse response.

17.5.4 Completing the Transmitter

Now it is time to put together the transmitter blocks along with an initialization sequence and
operate in real-time. Use ping-pong buffers to send output samples to the left channel DAC
when transmitting regular data symbols. Define two integer arrays, ping[] and pong[],
each of which can hold the output samples for one DMT symbol. Samples should be sent
to the DAC from one of the arrays using an interrupt service routine triggered by interrupts
from the McBSP1 XRDY1 flag. You could also use the EDMA to send out the samples.
While the samples are going out of one array, your program should generate the samples for
the next DMT symbol and put them into the other array and then wait for all the samples to
be transmitted from the first array. Then the functions of the two arrays should be swapped
with samples transmitted from the array just filled and samples for a new DMT symbol
generated and put into the other array.

As an initial test of your ping-pong buffer scheme, select a subcarrier with index k0 in
the set {1, 2, . . . , 31} and a constant Ck0

to give a significant DAC output, and form the
complex 64-dimensional array of subcarrier constellation points

Zk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for k = 0 and 32
Ck0

for k = k0

Ck0
for k = 64 − k0

0 otherwise

(17.56)

Send the 64-point time sequence zn repeatedly and without a cyclic prefix. Perform the
IFFT for each symbol, even though the results will be the same each time, to make sure it is
integrated into your ping-pong scheme correctly. The transmitted signal should be a cosine
wave at the subcarrier frequency. Check that this is what you see on the oscilloscope. Try
this for several subcarrier frequencies.
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Once your ping-pong buffer scheme is working, create a program to make the transmitter
send the following sequence of signals:

1. When your transmitter program first starts, send about one second of silence. That
is, send samples that are all 0 volts for about one second. This will allow any initial
transients that might occur when your program is loaded and started to disappear. It
will also allow the receiver to recognize that the transmitter is not yet sending a signal
and get into a waiting state.

2. Next, send the R-REVERB symbol described on page 289 without a cyclic prefix 1024
times. This will allow the receiver to detect the presence of a signal, estimate symbol
clock timing frequency offset, and initially train its equalizer. You should compute the
real 64-point R-REVERB time sequence just once, scale it to use a significant range of the
DAC, convert it to the integer format for the left DAC channel, and store the resulting
64-point sequence in an integer array for repeated transmission. You can use interrupts or
the EDMA with linking to repeatedly transmit the R-REVERB 64-point time sequence.
Since you have already implemented ping-pong buffers, a good approach would be to
store the 64-point sequence in both ping[] and pong[] and let your ping-pong scheme
alternate between sending the two buffers.

3. After all the R-REVERB symbols have been sent, send the R-SEGUE symbol ten times.
This symbol is defined on page 290. The R-SEGUE symbol is a 180 degree phase reversal
of the R-REVERB signal and provides a timing mark to signal the receiver indicating that
actual data signal will be transmitted next.

4. Next, go into an endless loop and transmit data symbols including a cyclic prefix. The
data blocks for the symbols should be generated by the 23-stage scrambler with all 1’s
as its input. Use QPSK for all the subcarriers. Send the sync symbol described on page
290 after every 68 data symbols.

5. Once you get your receiver to work with QPSK, you can use 16-QAM for the subcarriers.
You might want to send QPSK for some know time period initially, and then switch to
16-QAM. Send a sync symbol after every 68 data symbols.

17.5.5 Making the Receiver

Receivers are usually much more difficult to make than transmitters. They require functions
to detect signal presence, do automatic gain control, acquire and track sample and symbol
clocks, perform adaptive equalization, implement algorithms for optimum detection of signals
in noise, and implement sophisticated decoders for error correction. For systems where
the signal is modulated on a high frequency carrier, the receiver often must also include
components to acquire and track the carrier frequency and phase, and demodulate the signal
to baseband. In this experiment, you will implement the receiver in a different DSK than
the transmitter so sample clock acquisition and tracking, and symbol location issues must
be addressed. You might find it useful to simulate some of the algorithms you will have to
implement for the receiver in MATLAB before trying to get them to work in real-time on
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the DSK. Connect the Line Out of your transmitter DSK to the Line In of the receiver DSK.
Perform the tasks listed below to make your ADSL receiver.

1. Make a function to detect when an ADSL signal is present at the receiver input. One
approach is to detect signal energy by squaring the input samples and averaging the
squares with a first-order exponential averager. Let d(n) be the averager output and r(n)
the received signal. Then the power detection system should compute

d(n) = βd(n − 1) + (1 − β)r2(n) (17.57)

where β is a positive constant slightly less than 1 that determines the averaging time
constant. The closer β is to 1, the slower the averager will respond but the smoother
its output will be. When d(n) rises above a threshold for several samples, decide an
ADSL signal is present. The threshold determines the false detection probability when
the channel is noisy. When the threshold is low, an ADSL signal will be detected quickly
but false alarms will also be frequent. When the threshold is high, false alarms will be
rare but it will take longer to detect the signal. Of course, if the threshold is too high
there will be no false alarms but the signal will never be detected. Experimentally select
values for β and the threshold so the start of a received ADSL signal is reliably detected
by the end of one or two 64-sample symbols.

On channels with very little noise, quick detection can be achieved by detecting when the
absolute value of the input exceeds a threshold for the first time and, possibly, several
nearby times. This quick detection approach could be used for an initial estimate of the
DMT symbol timing.

Before a signal is detected, keep the receiver functions reset and waiting. When a signal
is detected, start a counter to keep track of how many R-REVERB symbols have been
received.

2. The receiver must track sample clock frequency offset and DMT symbol alignment. Also,
the FFT you implemented does an in-place computation and overwrites the input array
with the output array. These considerations make it inconvenient to use the ping-pong
buffer approach in the receiver. An approach you can use is to set up a circular buffer
of floats for received samples whose length is two symbols long, that is, 2N ′ = 2(64 +
ν) elements. The received samples should be converted to floats when stored in the
circular buffer. A variable pointing to the start of a symbol can be defined. Sample
clock adjustments and symbol alignment can be made by modifying this pointer. The 64
samples for a symbol, excluding the cyclic prefix, can be copied to a separate input array
for the FFT.

3. Begin collecting samples in the circular buffer once a signal is detected. Declare a 64-
element complex array for the FFT input. Copy successive blocks of 64 samples to the real
part of this array and zero the imaginary part. Form the FFT’s of the blocks. During the
first 200 R-REVERB symbols, estimate the sample clock fractional period error, ε, using
the “open loop” method described on page 294 using (17.43).
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4. For the next several symbols, compute an estimate of the reciprocal of the channel fre-
quency response, 1/Hk, for each subcarrier. These will be used as the initial frequency
domain equalizer (FEQ) coefficients. You already know the FFT values for the R-REVERB

symbol from the definition of this signal. Let Rk,i be the receiver’s FFT output at index
k for symbol i, and Zk be the transmitted FFT value. The estimate for one received
symbol is

Wk(i) =
Zk

Rk,i

=
ZkRk,i

|Rk,i|2 (17.58)

The arithmetic average of these estimates over several symbols can be computed to reduce
noise. You can do the divisions using the standard C floating-point division operator.
Compute these estimates for k = 1, . . . , 31.

5. Initialize the FEQ coefficients to the values computed in the previous task. Then begin
adaptively updating the equalizer coefficients using the LMS algorithm given by (17.29) in
Section 17.4.1. Begin running the FEQ to compute the equalized values Z̃k,i = Wk(i)Rk,i.
Use an update constant µ large enough to track phase rotations caused by sample clock
frequency offset but small enough to have relatively small coefficient jitter. You will
have to turn on the slicer that quantizes FEQ outputs to the nearest ideal constellation
points. Do not start the sample clock tracking algorithm yet. Run in this mode for 256
symbols. The constellations you observe at the equalizer output should be the QPSK
input constellations. You might ask why this works with no cyclic prefix? The answer is
that the R-REVERB symbol is being repeated. The end of one symbol acts as the cyclic
prefix for the next.

6. A good diagnostic tool and informative way of observing the receiver operation is a
constellation display. This display shows the real versus imaginary parts of the FEQ
outputs for the equalized symbol stream for a particular subcarrier in an X-Y display on
an oscilloscope. When the channel noise is small and the equalization is good, well defined
constellation points will be observed. If additive noise with approximately Gaussian
characteristics is present, the ideal constellation points will smear into circular clusters.
Poor equalization will also cause clusters. When sample clock frequency offset is present
and the equalizer updates are very slow, the observed constellation will slowly rotate.

To make a constellation display, send the real part of the equalizer output for a subcarrier
to the left channel of the DAC and the imaginary part to the right channel for each of the
64 + ν output samples during a symbol. Display the two channels as an X-Y plot on the
oscilloscope. Freeze the equalizer coefficients by making µ zero and repeat R-REVERB

symbols continuously. Look at a constellation display to see if there is constellation
rotation caused by sample clock frequency offset.

7. After the 256 symbols of LMS equalizer updating (456 symbols after the start of signal
detection) set the equalizer update scale factor to a small value and turn on the sample
clock algorithm specified by (17.49) and (17.50) and perform the constellation counter-
rotations. Initialize δi according to the open loop value computed during the first 200
received symbols. The clock PLL should track significantly faster than the equalizer.
Adjust the timing phase when |τi| exceeds its threshold by shifting the 64-sample record
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copied from the circular buffer forward or backward by one sample and correcting τi as
discussed on page 296.

8. Continue running the FFT, FEQ, clock tracker, and symbol counter. When the counter
gets close to 1024, begin looking for the 180 degree phase shift that occurs when R-SEGUE

begins. Use your ingenuity to come up with an algorithm for detecting the phase shift.
Your algorithm should operate on the received sample sequence and detect the phase shift
within 4 samples. Count for 10 symbols from this timing mark to determine when regular
data transmission begins with symbols including a cyclic prefix. The timing mark should
allow you to determine with reasonable accuracy when the cyclic prefix of the first data
symbol starts.

9. Turn on the cyclic prefix correlation algorithm presented in Section 17.4.3 for determining
symbol alignment when the reception of regular data symbols begins. You should already
have a ball park estimate of when a symbol begins. Search around this point in the
circular buffer for the phasing that gives a null in the periodicity metric or a peak in
the cyclic prefix correlation. For each received symbol, skip over the cyclic prefix and
copy 64 good symbol samples to the FFT input array. Perform the FFT, FEQ, sample
clock tracking, slicing, inverse map to a bit sequence, and descrambling. If everything is
working properly, the descrambler output should be all 1’s.

10. Additional optional tasks you can perform are:

(a) Add Gaussian noise to the transmitted samples and make a plot of the bit-error rate
as a function of signal-to-noise ratio.

(b) Implement the CRC generator in the transmitter and CRC checker in the receiver.

(c) Implement the interleaver in the transmitter and deinterleaver in the receiver.

(d) Pass the transmitter output samples through a filter simulating a worse channel
before sending them to the DAC in the transmitter and observe system performance.

(e) Come up with a scheme for estimating the signal-to-noise ratio at the receiver for
each subcarrier when there is noise on the channel and the amplitude response varies
significantly. Do some research and implement an algorithm for optimally assigning
the number of bits to each subcarrier to achieve a desired error probability.

(f) Implement the Reed-Solomon encoder in the transmitter and decoder in the receiver.
This is a major task and is worthy of being counted as an entire experiment.

(g) Browse through the ADSL standards and implement additional features they con-
tain.

17.6 Additional References

There are many books on wireless systems and DSL that have sections on multi-carrier
modulation. See Golden, et al., [E.3] for a very up-to-date and technically in-depth treatment
of DSL. Other books on DSL include Bingham [E.2] and Starr, et al., [E.16]. Haykin and
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Moher [E.5] is a well written book on wireless communications that discusses multi-carrier
modulation. Goldsmith [E.4], Schwartz [E.15], and Stüber [E.17] have technical sections
on multi-carrier systems. The ITU-T Recommendations G.992.3, G.992.4, and G.992.5 for
ADSL can be downloaded free of charge as PDF files from the ITU-T web site:

http://www.itu.int/rec/T-REC-G/e

The IEEE 802.11 standards for Wi-Fi can be downloaded free of charge from:

http://standards.ieee.org/getieee802/802.11.html

and the IEEE 802.16 standards for WiMax from:

http://standards.ieee.org/getieee802/802.16.html



Chapter 18

Suggestions for Additional
Experiments

It would take a long time (maybe a couple of years?) to complete all the experiments
in this book. However, in light of the recent ABET requirement in engineering education
for capstone design projects, several additional topics for experiments related to current
communication techniques are very briefly described below. References to get you started
on each project are included.

18.1 Elementary Modem Handshake Sequence

As an introduction to modem handshake procedures, implement the V.22bis transmitter
and receiver handshake sequences. Build the transmitter in one station and the receiver in
another. See the ITU-T V.22bis recommendation [II.D.4] for a detailed specification of these
sequences. You will have to figure out methods for detecting critical points in the sequences.

After you have the V22.bis transmitter and receiver working in separate DSP’s, integrate
the two into a single DSP. The challenge will be to figure out how to time-share the DSP
between the transmitter and receiver programs. Remember that the transmitter and receiver
in a single modem must operate independently in a full duplex fashion, so assume that
the transmit and receive symbol clocks will be different in phase and slightly different in
frequency. Implement a second transmitter and receiver on another station. Connect the
two together in a full-duplex mode and make them talk to each other without errors. You
can connect the modems through the TAS telephone line simulator and check that your
modems work with a variety of lines and impairments. After completing this project, you
will have built almost a complete V.22bis modem.

18.2

Modem

The V.21 modem transmits data at 300 bps using binary, continuous phase frequency mod-
ulation. This is one of the oldest and simplest types of modems. Each input data bit selects
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Make an ITU-T V.21 Frequency Shift Keyed (FSK)
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one of two frequencies to be transmitted. The originate and answer modems use different
frequency pairs to achieve full-duplex transmission. The transmitted signal is generated by
using an FM modulator like the one described in Chapter 8 with a two level input and has
continuous phase between bit transitions. Data bytes are usually transmitted in a asyn-
chronous mode using start and stop bits. Tasks you could perform for this project include:

1. Make a transmitter on one DSK taking the binary data input from the BERT test set.

2. Make a receiver including timing recovery on another DSK. No elaborate timing recovery
system is needed for asynchronous byte transmissions. The start of a byte is signaled by
a transition from a stop bit to a start bit. The data bits for the byte are spaced by 1/300
seconds so the center of each bit can be found by simply counting samples. The timing
start reference can be reset with the stop to start bit transition for each byte.

3. You can use the TAS telephone line emulator to make bit error rate vs. SNR tests along
with a second BERT tester.

4. Make a full duplex modem by implementing the transmitter and receiver on one DSK
and have two modems talk to each other in full-duplex mode.

5. Compute the theoretical spectrum for the FSK signal and compare it with the spectrum
for your FSK modulator output.

Lucky, Salz, and Weldon [II.D.29] has a detailed chapter on FSK including a derivation
of the power spectral density. ITU-T Recommendation V.21 specifies all the requirements
for this modem. The class web page www.ee.umd.edu/courses, Fall 1999, ENEE 429W,

Lecture Notes and Handouts, Continuous Phase Frequency Shift Keying should be
useful.

18.3 Fast Equalizer Training Using Periodic Sequences

Equalizer training using the LMS algorithm with an ideal reference sequence takes a signifi-
cant amount of time. The training time can be reduced very significantly by transmitting a
sequence with a period equal to the equalizer duration in symbols and using FFT methods
to compute the optimum equalizer coefficients. The training signal probes the channel with
a bank of sinusoids whose frequencies are multiples of the repetition rate of the sequence.
The equalizer is switched to the LMS decision directed mode after the initial fast training.
This fast training method was included in a modem standard for the first time in the V.34
recommendation. A clear and detailed explanation of the method is presented by Chevillat,
Maiwald, and Ungerboeck in [II.D.5]. Also see Tretter [II.D.39, Chapter 11]. As a project,
you could incorporate this fast train technique into the modem transmitter and receiver you
built in Chapters 13, 14, and 15.
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18.4 Trellis Coded Modulation

Ungerboeck [II.F.14] made a major breakthrough in coding for narrow-band channels in
the late 1970’s now called trellis coded modulation. It has been included in every V series
modem recommendation since its discovery and some ADSL standards. The method involves
doubling the normal number of points in the constellation, using a convolutional code in the
transmitter to select constellation points, and performing soft-decision Viterbi decoding in
the receiver. Performance gains of 4 to 5 dB are readily achieved. See Ungerboeck [II.F.15]
for a more recent and tutorial version of his original paper. The book by Biglieri, et al.,
[II.F.3] gives a detailed presentation of trellis coding. Other references to trellis coding
and soft decision Viterbi decoding can be found in Lee and Messerschmitt [II.D.26, Section
7.4 and Chapter 12], Gitlin, Hayes, and Weinstein [II.D.11, Sections 3.5 and 5.7], Proakis
[II.D.32, Sections 5.3.2 and 5.4], and Tretter [II.D.39, Chapter 3].

As a project, you could implement the V.32 trellis code and a soft decision Viterbi
decoder. See the ITU-T V.32 recommendation [II.D.4], Lee and Messerschmitt [II.D.26, p.
517], or Proakis [II.D.32, p. 504] for complete details on the V.32 encoder. This encoder
was invented by Lee-Fang Wei [II.F.17] at Bell Telephone Laboratories. To avoid processing
time problems in the receiver, you could implement the system using the V.22 symbol rate
of 600 baud. This would also allow you to use most of the programs you have previously
generated.

If you are interested in pursuing trellis coding further, implement one or more of the V.34
4-dimensional 16, 32, or 64 state codes. See Wei [II.F.18] for a discussion of multi-dimensional
trellis codes. See Tretter [II.D.39] for the V.34 codes.

18.5 Reed-Solomon Encoder and Decoder

Reed-Solomon codes are cyclic block codes that are used in many applications. Applications
include error correction for compact disks, digital subscriber line modems, many types of
wireless systems, and satellite communication systems. They can be viewed as a type of BCH
code with code symbols that are blocks of bits. These codes are good for correct isolated
random errors as well as error bursts. Encoding is relatively easy. Efficient algorithms exist
for doing the much more difficult decoding task. See books on error correcting codes like
Gallager [F.7] and Wicker [F.19] for details.

As a project, you could make a Reed-Solomon encoder and decoder for an ADSL transceiver.
This code has symbols consisting of eight bits (a byte) and a natural block length of 255
bytes. The codes have a wide range of error correcting capabilities. They require 2t check
symbols to correct t symbol errors and have 255 − 2t information symbols.

18.6 Turbo Codes

Turbo codes were first disclosed at a public conference in 1993 by Berrou, Glavieux, and
Thitimajshima [F.1]. They presented simulation results showing performance of their en-
coder and decoding algorithm remarkably close to the Shannon capacity limit with a reason-
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able computational complexity. Their results were initially met with skepticism, but others
quickly duplicated them and turbo codes were rapidly used in applications and included
in standards. Turbo codes use parallel concatenation of recursive systematic convolutional
codes with interleaved input streams and soft-decision iterative decoding. A very good ref-
erence for these codes is Vucetic [F.16]. A substantial project would be to learn about turbo
codes and implement an encoder and decoder for the code specified in the WiMax IEEE
recommendation 802.16 [E.8].

18.7 Low Density Parity Check Codes

Robert G. Gallager invented and studied low-density parity-check codes (LDPC codes)during
his doctoral research in the Department of Electrical Engineering at the Massachusetts Insti-
tute of Technology and published his work in his doctoral dissertation in 1960. An expanded
version of his dissertation was published as an M.I.T. Press monograph in 1963 [F.6]. These
codes were ignored for many years because the decoding algorithm was too computationally
complex to be economically justifiable given the hardware technology of the times. They
were rediscovered in the late 1990’s and shown to have performance near to the Shannon ca-
pacity limit with reasonable complexity and cost for the current digital processor technology.
The decoding algorithm is an iterative one and can be viewed as message passing on a graph
using a sum-product algorithm. The complexity is comparable to or less than that of turbo
codes and the performance is at least as good. LDPC codes are at the forefront of current
research on error correcting codes. A good reference for LDPC codes is Fan [F.4]. The web
site, www.inference.phy.cam.ac.uk/mackay/CodesGallager.html, of David MacKay is
a good source of articles on LDPC codes and software for designing and simulating them.
LDPC codes have been used in some commercial products and are included in the mobile
WiMax 802.16e standard [E.9] as optional codes. A good project would be to learn about
the theory of LDPC codes, implement encoders and decoders for the IEEE 802.16e LDPC
codes, and perform simulations to get error probability versus signal-to-noise ratio curves.

18.8 V.34 Constellation Shaping by Shell Mapping

Additional performance can be gained by shaping the constellation to minimize the average
signal power while maintaining the minimum distance between points. For example, in two
dimensions a circle with the same area as a square has less average power. In N dimensions,
a sphere has less average power than any other figure with the same volume. The V.34 rec-
ommendation specifies a 16-dimensional shaping technique called shell mapping that closely
approximates the gains of ideal spherical shaping. In previous V series modems, the two-
dimensional constellation points are used with equal likelihood. With shell mapping, the
points in the two-dimensional constellation nearest the origin are more likely than the outer
points. The two-dimensional points approximately have a circular Gaussian distribution.
See the ITU-T V.34 recommendation [II.D.21] for a cookbook formula for shell mapping.
An explanation of the theory can be found in Laroia, Farvardin, and Tretter [II.F.9][II.F.10]
and in Tretter [II.D.39, Chapter 8].
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As a project, you could implement the V.34 shell mapping algorithm and its inverse.
You should weigh using pre-computed tables against on-the-fly computation to achieve the
required processing speed. This trade-off between memory and computation often arises in
DSP applications.

18.9 Nonlinear Precoding for V.34

The V.34 modem can use a noise whitening filter in the receiver to improve the Viterbi
decoder performance. The intersymbol interference introduced by the noise whitening filter
is compensated for at the transmitter by a nonlinear precoding technique. Nonlinear pre-
coding was first suggested by Tomlinson [II.D.36] and Harashima [II.D.16]. The method was
generalized to QAM systems and improved by Laroia [II.D.25] and quickly further improved
by Laroia and Betts of AT&T and, independently, by Cole of General DataComm during
development of the V.34 recommendation. The result was presented at a TIA meeting in
July 1993 [II.D.15]. The final version of the nonlinear precoder can be found in the V.34
recommendation [II.D.21] and in Tretter [II.D.39, Chapter 5].

As a project, implement the V.34 shell mapper, nonlinear precoder, and 4D 16-state
trellis encoder in the transmitter. See Tretter [II.D.39, Chapters 9 and 10] to learn how
these components are connected. Implement the inverses in your receiver. Transmit the
signal through the TAS channel simulator with additive noise and compare the bit-error rate
performance of the system with and without precoding. Also compare the performance with
and without shell mapping.

18.10 Speech Codecs

DSP’s are used extensively for speech codecs in telephones for digital exchanges, codecs
at the local office, in wireless telephones, and in secure military applications. The ITU
has generated a G series of recommendations for speech codecs with various degrees of
complexity. The simplest is the pulse code modulation (PCM) Recommendation G.711.
The next in complexity is G.726 for adaptive differential pulse code modulation (ADPCM).
Then there are several code excited linear prediction (CELP) recommendations like G.729
that are quite complex. There are a variety of cellular phone standards that each have their
own unique speech codecs. There are C reference programs available from ITU and on the
web for implementing many of these codecs. You could easily work for several semesters
making an array of speech codecs to work on the DSK.



Appendix A

Generating Gaussian Random
Numbers

This appendix describes how to convert a sequence of uniformly distributed random numbers
into a pair of sequences that approximate a pair of white, uncorrelated, Gaussian random
sequences. These sequences can be used to simulate the inphase and quadrature noise com-
ponents in passband communication systems. This method is convenient because many
programming languages have a function for generating uniformly distributed random num-
bers. Limitations of the ’C6713 C compiler random number generator are discussed.

A.1 The ’C6713 C Compiler Pseudo Random Number

Generator

The ’C6713 optimizing C compiler library contains the functions int rand(void) and void

srand(unsigned int seed) for generating a random sequence of integers uniformly dis-
tributed over the range [0, RAND MAX] where RAND MAX is defined to be 215−1 = 32767
in stdlib.h. These numbers occupy only the least significant 15 bits of the DSP’s 32-bit
word. The source code for these functions is shown in Program A.1 below. The function
srand sets the value of the random number generator seed so that subsequent calls of rand
produce a new sequence of pseudo-random numbers. The srand function does not return a
value. If rand is called before srand is called, it generates the same sequence as if srand was
called first with a seed value of 1. The function rand generates the same sequence whenever
srand sets the same seed. This random number generation technique is often referred to as
the multiplicative congruential method.

Program A.1 ’C67x C Compiler Programs rand() and srand()

#include <stdlib.h>

unsigned long next = 1;

313
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int rand(void)

{

int r;

next = next * 1103515245 + 12345;

r = (int)((next/65536) % ((unsigned long)RAND_MAX + 1));

return r;

}

void srand(unsigned seed)

{

next = seed;

}

A.2 A Better Uniform Random Number Generator

It is shown in Section A.4 that a finite word-length uniform random number generator causes
a limit on the peak value of the approximately Gaussian random variables generated by the
method presented in this appendix. This puts an upper limit on the signal-to-noise ratio
(SNR) that will cause bit errors in a simulation of a digital communication system. At
SNR’s above this limit, no errors will occur. The random numbers generated by the ’C6713
C compiler function use only 15 bits of the 32-bit DSP word. The function rand() shown
in Program A.2 generates 31-bit random numbers uniformly distributed over the integers in
the range [0, RAND MAX] where now RAND MAX = 231 − 2 and increases the SNR limit.
This function was used in the old TMS320C3x/4x C compiler library.

Program A.2 32-bit Uniform Pseudo Random Number Generator Function

/***************************************************************************/

/* rand.c for TMS320C3x/4x */

/* */

/* NOTE: This file should be compiled with the -mm (short multiply) */

/* switch for best results. */

/***************************************************************************/

#include <stdlib.h>

static unsigned next = 1;

/****************************************************************************/

/* rand() - COMPUTE THE NEXT VALUE IN THE RANDOM NUMBER SEQUENCE. */

/* */

/* The sequence used is x’ = (A*x) mod M, (A = 16807, M = 2^31 - 1). */

/* This is the "minimal standard" generator from CACM Oct 1988, p. 1192.*/

/* The implementation is based on an algorithm using 2 31-bit registers */

/* to represent the product (A*x), from CACM Jan 1990, p. 87. */
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/* */

/****************************************************************************/

#define A 16807u /* MULTIPLIER VALUE */

int rand()

{

unsigned x0 = (next << 16) >> 16; /* 16 LSBs OF SEED */

unsigned x1 = next >> 16; /* 16 MSBs OF SEED */

unsigned p, q; /* MSW (31 bits), LSW OF PRODUCT (31 bits) */

/*---------------------------------------------------------------------*/

/* COMPUTE THE PRODUCT (A * next) USING CROSS MULTIPLICATION OF */

/* 16-BIT HALVES OF THE INPUT VALUES. THE RESULT IS REPRESENTED AS 2 */

/* 31-BIT VALUES. SINCE ’A’ FITS IN 15 BITS, ITS UPPER HALF CAN BE */

/* DISREGARDED. USING THE NOTATION val[m::n] TO MEAN "BITS n THROUGH */

/* m OF val", THE PRODUCT IS COMPUTED AS: */

/* q = (A * x)[0::30] = ((A * x1)[0::14] << 16) + (A * x0)[0::30] */

/* p = (A * x)[31::60] = (A * x1)[15::30] + (A * x0)[31] + C */

/* WHERE C = q[31] (CARRY BIT FROM q). NOTE THAT BECAUSE A < 2^15, */

/* (A * x0)[31] IS ALWAYS 0. */

/*---------------------------------------------------------------------*/

q = ((A * x1) << 17 >> 1) + (A * x0); /* q[31] is the carry */

p = ((A * x1) >> 15) + (q >> 31); /* q>>31 moves the carry to the lsb */

q = q << 1 >> 1; /* CLEAR CARRY which is q[31]*/

/*---------------------------------------------------------------------*/

/* IF (p + q) < 2^31, RESULT IS (p + q). OTHERWISE, RESULT IS */

/* (p + q) - 2^31 + 1. This can be proved as follows: */

/* A * x = [p, q] = p * 2^31 + q = p * [(2^31 - 1) + 1] + q */

/* = p * (2^31 - 1) + (p + q) */

/* Thus mod(a*x, 2^31 - 1) = mod( p+q, 2^31 - 1) */

/* = p + q for p + q < 2^31 -1 */

/* = p + q - 2^31 + 1 otherwise */

/* The last line follows by observing that p+q is always less than */

/* 2^32. */

/*---------------------------------------------------------------------*/

p += q; /* form p + q and now p is p + q */

/* Now p has the value of p + q. If p[31] = 1, p+q > 2^31 -1 and if */

/* p[31] = 0, p+q <= 2^31 - 1. Thus p >> 31 adds 0 or 1 as needed. */

/* ( ( ... ) << 1 ) >> 1 clears bit 31 which does nothing if it is */

/* already 0 but subtracts 2^31 if it is 1. */

return next = ((p + (p >> 31)) << 1) >> 1; /* ADD CARRY, THEN CLEAR IT */



316 Generating Gaussian Random Numbers

}

/****************************************************************************/

/* srand() - SET THE INITIAL SEED FOR rand(). */

/****************************************************************************/

void srand(unsigned seed)

{

next = seed;

}

A.3 Turning Uniformly Distributed Random Variables

into a Pair of Gaussian Random Variables

The first step is to convert a random variable V which is uniformly distributed over [0, 1)
into a random variable R that has the Rayleigh probability density function

fR(r) =
r

σ2
e−

r2

2σ2 u(r) (A.1)

and cumulative distribution function

FR(r) =
[
1 − e−

r2

2σ2

]
u(r) (A.2)

V can be generated by calling rand, converting the returned integer to a floating-point
number, and dividing the result by RAND MAX+1 = 32768 = 215 for the ’C6713 compiler.
The random variable V can be converted into R by the transformation

R =
√
−2σ2 loge(1 − V ) (A.3)

Notice that this function is the inverse of the cumulative distribution function FR(r). A proof
that this gives the desired result can be found in most introductory probability textbooks.
Then number returned by rand is divided by RAND MAX + 1 rather than RAND MAX
so 1 − V can never become zero and cause a numerical computation problem for the loge

function.
The next step is to convert V into a pair of uncorrelated Gaussian random variables. Let

Θ be a random variable uniformly distributed over [0, 2π) and independent of V . Θ can be
generated by calling rand again, dividing the result by RAND MAX + 1 to get a random
number uniformly distributed over [0, 1), and then multiplying the result by 2π. Finally, it
can be shown that

X = R cos Θ (A.4)

and
Y = R sin Θ (A.5)

are two uncorrelated Gaussian random variables, each with zero mean and variance σ2. That
is, they each have a probability density function of the form

f(x) =
1

σ
√

2π
e−

x2

2σ2 (A.6)
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This method is good for simulating noise in communication systems because it approx-
imates the tails of the Gaussian distribution well. Notice that as V approaches 1, R, X,
and Y approach infinity in magnitude. Other methods that are based on the Central Limit
Theorem and involve taking the sum of a fixed number of uniform independent random
variables approximate the peak of the pdf well but approximate the tails poorly. Problems
in communication systems are usually caused by infrequently occurring large values of the
noise, that is, the tails of the pdf.

A.4

Gaussian Random Variables Generated by This

Method

To add a little generality, consider a random number generator that outputs N -bit words in
the range [0, RAND MAX] with RAND MAX = 2N − 1. The largest value of V that can be
reached in (A.3) is

Vmax =
RAND MAX

RAND MAX + 1
= 1 − 2−N (A.7)

Then, the largest value that R, X, or Y can reach is

R[N ]
max = X [N ]

max = Y [N ]
max =

√
−2σ2 loge(1 − Vmax) = σ

√
2N loge 2 (A.8)

For the ’C6713 compiler the result is

R[15]
max = X [15]

max = Y [15]
max = σ

√
30 loge 2 = 4.56009σ (A.9)

and for the ’C30 old compiler it is

R[31]
max = X [31]

max = Y [31]
max = σ

√
62 loge 2 = 6.55554σ (A.10)

The ratio of these two numbers is

R[31]
max

R
[15]
max

=

√
31

15
= 1.4376 (A.11)

Limit on the Peak Magnitude of the Approximately



Appendix B

A TTL/RS-232C Interface for
McBSP0

The pins for the DSP peripherals including the McBSP serial ports and timers are available
on the peripheral expansion connector on the TMS320C6713 DSK. The signal levels have
the TTL values of 0 and 5 volts. The experiments for Chapter 10 require the use of McBSP0
and Timer0 to exchange serial data with the Navtel bit-error rate tester which uses RS-232C
levels. In the RS-232C protocol, a logical 0 is called a space and is represented by +12v while
a logical 1 is called a mark and is represented by −12v. The RS-232C interface protocol is
described in detail in Chapter 10. The circuit diagram for a TTL to RS-232C converter for
use with the Navtel tester is shown in Figure B.1. McBSP0 was selected for the RS-232C
channel because McBSP1 is normally connected to the AIC23 codec on the TMS320C6713
DSK. This allows a communication system to be made where an external device like the
Navtel bit-error rate tester supplies and receives binary data simulating a terminal, and the
codec can be used to transmit and receive the analog modulated signals transmitted over a
channel.

The converter uses a MAXIM MAX238 RS-232 Driver/Receiver chip. The MAX238
just requires a single +5v power source and three external capacitors. It contains a voltage
doubler and inverter to generate the ±12v levels. The package contains four TTL to RS-232C
drivers and four RS-232C to TTL receivers.

A DB25 connector for the RS-232C cable is attached to a bracket for a PC card slot on
the back of the PC. The Received Data, Transmitted Data, Receiver Clock, and Transmitter
Clock leads are connected to the MAX238 chip. Request to Send (RTS) is looped back to
Clear to Send (CD) and Data Carrier Detect (DCD) on the connector. Also, Data Terminal
Ready (DTR) is looped back to Data Set Ready (DSR). In this way, when the Navtel tester
is turned on and a bit-error rate test is selected, it raises RTS and DTR which automatically
raise CTS, DCD, and DSR.

Transmitted Data on the RS-232C side is sent to the Receive Data pin of McBSP0.
Similarly, Transmit Data of McBSP0 is routed to Received Data of the RS-232C connector.
A similar name swap occurs with the clocks. This is because the RS-232C connector on the
converter is configured to look like a modem or DCE. In this case, pin 3 is data received by
the modem and pin 2 is data transmitted by the modem.
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The Timer0 output pin TOUT0 is looped back to the sample rate generator 1 external
clock input pin CLKS0. This signal is divided down in the sample rate generator to form
the bit clocks and frame syncs. The transmit and receive bit clocks should be output on the
CLKX and CLKR pins to drive the Navtel tester.

Details on how to set the McBSP0 and Timer0 control registers are provided in Section
10.4.
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Appendix C

Equipment List for Each Station

This equipment list was included to provide guidance to those setting up a similar labo-
ratory and is not intended to be an endorsement of any particular manufacturer. Clearly,
many companies make equipment with equivalent capabilities that can be substituted for
the specific items listed below.

• A modern PC running Windows XP

• Texas Instruments TMS320C6713 Digital Starter Kit (TMS320C6713 DSK)

32-bit floating point DSP module which includes stereo ADC and DAC for each PC

• Network cards installed in each PC

• Tektronix 2205 Oscilloscope

Dual channel oscilloscope

• GW INSTEK Function Generator, Model GFG-3015

Sine, triangular, and square wave outputs; frequency counter; AM and FM modulated
signals

• Navtel DATATEST3 – bit error rate tester

U of MD homemade RS232/TTL converter to interface Navtel with TMS320C6713 McBSP0
and Timer0 on the DSK

• Penril Alliance V.32 modem

A V.32 and V.22bis modem with built in diagnostic constellation X-Y outputs. These
are not made anymore and it is unlikely you will find them. Substitute a recent V.90 or
92 modem.

• Microphone and speaker (These can be part of the PC system.)
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324 Equipment List for Each Station

• 3 foot cables with 3.5-mm stereo audio plugs on one end and left and right RCA connectors
on the other end.

• RCA to BNC adapters to hook the left and right channels to the oscilloscopes and signal
generators.

• Two BNC to alligator clip cables

• Three BNC T connectors

• Three BNC female to banana/screw connectors

Additional Shared Equipment

• Two TAS 111 Telephone Network Emulators

Emulate amplitude and phase distortion, nonlinear distortion, additive noise, frequency
translation and carrier phase jitter

• Two Tektronix 495P Spectrum Analyzers

• HP laser printer
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decimation-in-time, 104
deinterleaver, 283
delay slots, 17

for branch instructions, 18
for load instructions, 18
for MPY instructions, 18
for store instructions, 18

denormalized numbers, 9
DFT, see discrete Fourier transform
differential encoding

for V.22bis and V.32 modems, 220
digital filter

amplitude response, 68
FIR filters, 68

design program remez87.exe, 70
design program window.exe, 69
Type 1 Direct Form, 68

frequency response, 68
IIR filters, 89

design program IIR.EXE, 92
type 0 direct form, 89
type1 direct form, 90
type2 direct form, 91

phase response, 68
digital subscriber line, 274
discrete multi-tone modulation, 274
discrete Fourier transform, 104
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discrete-time Fourier transform, 101
DMA, 11
DMT, 274
dotting sequence, 201
double-sideband suppressed carrier

AM, see DSBSC-AM
down sampling, 212
DRR, 39
DSBSC-AM, 133–141

Fourier transform of signal, 133
ideal coherent receiver, 134–135
signal equation, 133

DSK, 18
dsk6713.cmd

program listing, 30
DSK6713_AIC23_read(), 35
DSK6713_AIC23_write(), 34
dsk6713bsl.lib, 21
dsk6713.cmd, 29
dskstart32.c, 31

program listing, 32
DSL, 274
DSLAM, 277
DSP Starter Kit, 18
DSP/BIOS, 26
DST, 60
DTE, 173
DXR, 38

echo canceler, 263–272
block LMS adaptation, 269
data-driven, Nyquist, in-band, 265–271
far-end canceler, 269–271
far-end echo source, 264
far-end frequency offset tracking, 270–

271
LMS adaptation, 268
near-end canceler, 267–269
near-end echo source, 264
subcanceler, 267

ECR, 58
EDMA, 11, 56

CCER, 61
CIER, 62

CIPR, 62
EDMA INT, 62
Event Clear Register, 58
Event Enable Register, 58
Event Register, 58
Event Set Register, 58
features, 57
LINK, 61
OPT, 59
PaRAM, 59
selector registers, 57

EDMA INT, 62
EER, 58
EIA, 173
ELECNT, 60, 61
ELEIDX, 57, 60
ELERLD, 60, 61
enhanced direct memory access, 11
envelope

complex, 126
of AM signal, 121
pre-envelope, 126
real, 127

envelope detector, 123
square-law, 124–125
using Hilbert transform, 127

equalizer
blind, 253–256
decision directed training, 231, 245
fast training, 308
fractionally spaced, passband, complex,

230–231, 241–248
ideal reference training, 245
minimum mean-squared error tap val-

ues, 242–245
phase-splitting fractionally spaced, 249–

250
tap leakage, 248
the LMS adaptation algorithm, 245–

248
for ADSL FEQ, 291
theoretical behavior, 247–248

ER, 58
ESEL0, 57
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ESEL1, 57
ESEL2, 57
ESR, 58
Event Clear Register, 58
Event Enable Register, 58
Event Register, 58
Event Set Register, 58
execute packets, 6, 16
eye diagram, 192–193

Farrow interpolator, 208
fast Fourier transform, 104–111

butterfly, 105
computational complexity, 107
decimation-in-time algorithm, 104

bit reversed input order, 107
radix-2 C function, 107
to estimate a power spectrum, 112–113

FEC, 281
FEQ, 291
fetch packet, 6, 16
FFT, see fast Fourier transform

ADSL demodulator, 291
FIR filters, 68
floating-point number format, 8
FM, see frequency modulation
foreground task, 46
forward error correction, 281
Fourier transform

discrete, 104
discrete-time, 101
fast Fourier transform, 104–111

FPER, 180
frame pointer (FP), 81
frequency discriminator, 154–156

using the complex envelope, 156
using the pre-envelope, 155

frequency division multiplexing, 146, 224
frequency domain equalizer, 291
frequency modulation, 151–162

Carson’s rule for bandwidth, 154
demodulation by frequency discrimina-

tor, 154–156
formula for FM signal, 152

frequency sensitivity, 151
instantaneous frequency, 151
linearized model for PLL, 159
modulation index, 152
narrow band FM, 154
phase-locked loop demodulator, 157–

160
signal pre-envelope, 156
single tone example, 152–153

Bessel function series, 152
frequency translation, 146–147
FRMCNT, 60, 61
FRMIDX, 57, 60
FSG, 180
FSR, 39, 179
FSX, 38, 179
full duplex, 224
FWID, 180

Galois field, 281
Gaussian noise

approximation for tail probability, 177
Gaussian noise, 176–177

additive Gaussian noise channel, 176
bit-error probability for binary sym-

bols, 177
GIE, 46
global interrupt enable bit (GIE), 46, 50
Godard

blind equalization, 253
QAM clock recovery method, 233

GPIO, 13
GPIO external pin selection, 46
Gray coding, 199

Hamming window, 69, 103
Hanning window, 103
Harashima, 311
Hilbert transform, 125–126

at Costas loop input, 136
at PLL input, 157
filter design by remez87.exe, 131
filter design by remez87.exe, 71
filter design by window.exe, 69
filter design by window.exe, 132
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in envelope detector, 127
in frequency discriminator, 156
in frequency translator, 146
in QAM demodulator, 223
in SSB demodulator, 145
in SSB modulator, 144

Host Port Interface, 13
HPI, 13
Huffman transform, 164
hybrid, 264

I2C serial ports, 13
ICR, 47
IEEE floating-point numbers, 8

double-precision, 9
single-precision, 8

IER, 50
IFR, 47, 50
IIR filters, 89

type 0 direct form, 89
iir.exe, 27
impulse modulator

in PAM transmitter, 188
in QAM transmitter, 216

instantaneous frequency, 151
instruction set, 13
integer format, 7
interleaver

convolutional, 282
interleaving, 282

depth, 282
interp.exe, 208
interpolation filter bank, 194, 209

for QAM passband shaping filter, 222
interpolator

continuously variable phase, 205
quantize phase steps, 208

interrupt
control status register (CSR), 50
enable register (IER), 50
flags register (IFR), 50
pragma, 51
return pointer (IRP), 50
service fetch packet (ISFP), 50

service table (IST), 50
service table pointer (ISTP), 50

Interrupt Clear Register, 47
interrupt controller, 46
Interrupt Flags Register, 47
Interrupt Return Pointer, 47
Interrupt Selector, 46
Interrupt Service Table Pointer, 47
Interrupt Set Register, 47
interrupts, 11

interrupt keyword, 51
CSR, 50
GIE, 46, 50
IER, 50
IFR, 50
IRP, 50
ISFP, 50
IST, 50
ISTP, 50
NMIE, 50
PGIE, 50
with CSL and DSP/BIOS, 51

intersymbol interference, 190–193
in ADSL, 287
time-domain criterion for no ISI, 188

intrinsics, 23
IRP, 47, 50
ISFP, 50
ISI, see intersymbol interference
ISR, 47
IST, 50
ISTP, 47, 50

Kaiser window, 69

Laroia, 311
LDPC codes, 310
LDW, 76
linear assembly, 17, 25, 79
LINK, 60
linker, 25

command file, 25
example, 30
memory map, 30
section allocation, 30
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Lissajous figure, 95
LMS, see equalizer and echo canceler
LMS algorithm

for ADSL FEQ equalizer, 292
lnk6x.exe, 23, 25
local loop, 264
local oscillator, 134
low-density parity-check codes, 310
LTE, 277
LTI system, 67
Lucky, 241

m sequence, 164
mail box, 200
mantissa, 9
matched filter, 176
maximal length sequence, 164, 166
McASP, 12
McBSP, 12

CLKG, 179
CLKGDV, 179
CLKR, 179
CLKS, 179
CLKSM, 179
CLKSP, 179
CLKSRG, 179
CLKX, 179
DRR, 39
DXR, 38
FPER, 180
FSG, 180
FSR, 39, 179
FSX, 38, 179
FWID, 180
RBR, 39
RINT, 41
RRDY, 41
RSR, 39
SPCR, 39
SRG, 38, 179
XINT, 39
XRDY flag, 38
XSR, 38

memory map in linker command file, 30

modem
answer, 224
calling or originate, 224
V.22bis, 218, 224–225

carrier frequencies, 224
S1 sequence, 227

V.32, 218
V.32bis, 263
V.34, 263

modulation index for AM, 122
MPYSP, 81

NaN, 9
NMIE, 47, 50
nonmaskable interrupt enable bit (NMIE),

47, 50
Nonmaskable Interrupt Return Pointer, 47
NOP, 17
NRP, 47
Nyquist criterion for no ISI, 190–191
Nyquist frequency, 191, 286

OFDM, 275
OFDMA, 276
orthogonal frequency division multiplexing,

275

p-bit, 16
PAM, see pulse amplitude modulation
parallel operations, 16
PaRAM, 59

DST, 60
ELECNT, 60, 61
ELEIDX, 60
ELERLD, 60, 61
FRMCNT, 60, 61
FRMIDX, 60
LINK, 60
OPT, 59

Parameter RAM, 59
passband shaping filter, 221–222
periodogram, 112
PGIE, 50
phase splitter, 230
phase detector, 158
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phase-locked loop, 136
for FM demodulation, 157–160
for QAM carrier tracking, 251–253
for symbol clock tracking, 209, 232–235
for tracking frequency offset of far-end

echo, 270
pilot carrier, 289
pilot tone, 148
ping-pong buffers, 200
pipeline, 16
plain old telephone service, 278
PLL, see phase-locked loop
PN sequence, 164

in ADSL, 289
polling, 42
post detection filter, 135
POTS, 275, 278
power meter, 131
power spectral density estimation, 112–113
pragma

DATA ALIGN, 75
interrupt, 51

PRD, 43
pre-envelope, 126

for FM signal, 156
Fourier transform for SSB signal, 144
in FM PLL demodulator, 157
in frequency discriminator, 155
of DSBSC-AM signal, 135
of QAM signal, 216

previous global interrupt enable bit (PGIE),
50

primitive polynomial, 166
primitive polynomial

two degree 23 primitive polynomials,
168

product modulator, 134
project files, 22
PSK, 220
PSTN, 278
pulse amplitude modulation, 187–202

baseband shaping filter, 188
criterion of no intersymbol interfer-

ence, 188

Nyquist criterion for no ISI, 190–191
raised cosine, 191–192
split between transmit and receive fil-

ter, 192
square-root of raised cosine, 192

block diagram of PAM system, 189
dotting sequence, 201
example of uniformly spaced symbol lev-

els, 188
eye diagram, 192–193
formula for transmitted signal, 188
impulse modulator, 188
intersymbol interference, 190–193
receive filter, 188
symbol clock recovery, 196–198
symbol error probability, 194–196
transmit filter, 188

implementing by interpolation filter
bank, 194

Q format, 8
QAM, see quadrature amplitude modula-

tion
QDMA, 57
quadrature amplitude modulation

a basic transmitter, 215–217
baseband inphase and quadrature sig-

nal components, 216
a receiver block diagram, 230
automatic gain control, 231–232
baseband shaping filter, 216
carrier detect block, 229
carrier detect subsystem, 232
carrier frequency requirement, 216
channel symbol rate, 215
constellations

90◦ rotational invariance, 218
16-point example, 218–220
4-point example, 220–221
differential encoding for V.22bis and

V.32, 220
mapping input bits to constellation

points, 219–221
decision directed carrier tracking, 251–

253
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equalizer
decision directed training, 245
fractionally spaced complex, 230–231,

241–248
ideal reference training, 245
minimum mean-squared error tap

values, 242–245
phase-splitting fractionally spaced, 249–

250
tap leakage, 248
the LMS algorithm, 245–248

equation for transmitted signal, 216
ideal demodulators, 223–224

using Hilbert transform, 223
using product modulators, 223–224

impulse modulator, 216
in LTE, 277
in WiMax, 276
modulator in terms of complex signals,

218
passband shaping filter, 221–222
pre-envelope of signal, 216
receive filter, 229
slicer

for 4-point V.22bis constellation, 257
symbol clock recovery, 232–235

random walk filter, 237–238
QUIET, 288

raised cosine baseband shaping filter, 191–
192

excess bandwidth factor α, 191
frequency response, 191
impulse response, 191

Ramsey interleaver, 283
random walk filter, 237–238
rascos.exe, 27
Rayleigh density, 275
RBR, 39
rectangular window, 102
Reed-Solomon encoder, 281
register file, 7
remez87.exe, 27
REVERB, 288

REVT, 41
Rician density, 275
RINT, 41
RRDY, 41
RS-232C interface, 173–174

25-pin connector signals, 174
mark voltage level, 174
space voltage level, 174

RSR, 39
RTDX, 26

S1 sequence, 227
sample rate generator, 179

CLKG, 179
CLKGDV, 179
CLKS, 179
CLKSM, 179
CLKSP, 179
CLKSRG, 179
FPER, 180
FSG, 180
FWID, 180

Sample Rate Generator (SRG), 38
sampling rate change, 211
sampling theorem, 206
SC-FDMA, 277
scrambler, self synchronizing, 167–168

connection polynomials for V.32, 168,
219

descrambler, 169
for ADSL, 281
for V.22bis modem, 219
input/output equation, 168
lock-up condition, 168

serial port interrupt, 39
serial ports, 12

I2C, 13
McASP, 12
McBSP, 12

shell mapping, 310
shift register sequence generator, 164–167

connection polynomial, 165–166
for maximal length, 166
for V.32 scramblers, 168
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maximal length, 166
period, 166
properties of maximal length sequences

frequency of 1’s and 0’s, 166
properties of maximal length sequences,

166–167
correlation property, 167
runs of 1’s and 0’s, 167

recurrence formula, 165
sideband

lower, 134
upper, 134

single-sideband modulation, 143–148
coherent demodulation, 145–146
complex envelope

lower sideband case, 144
upper sideband case, 144

complex envelope Fourier transform, 144
for lower sideband case, 144
for upper sideband case, 144

demodulation using a pilot tone, 148
lower sideband filter, 144
lower sideband signal using Hilbert trans-

form, 144
mixer and filter modulator, 143
modulator using Hilbert transform, 144
pre-envelope Fourier transform, 144
upper sideband filter, 143
upper sideband signal using Hilbert trans-

form, 144
slicer, 231

for 4-point V.22bis and V.32 constella-
tions, 257

SPCR, 39
sqrtraco.exe, 27
square-root of raised cosine shaping filter,

192
in V.22bis modem, 224

SRG, 38, 179
SSB modulation, see single-sideband mod-

ulation
stack pointer, 76, 81
state variables, 90
symbol clock in ADSL, 296

tap leakage, 248
TCINT, 62
TEQ, 290
time-domain equalizer, 290
timers, 13, 42

control (CTL) register, 43
counter (CNT) register, 43
internal clock frequency, 42
period (PRD) register, 43
TINP input pin, 42
TOUT frequency, 179
TOUT output pin, 42

TINP, 42
TMS320C6000

CPU, 6
DSP core, 6
serial ports, 12
timers, 13

Tomlinson, 311
TOUT, 42

frequency, 179
Transfer Complete Code, 61
Transmit Event Notice, 39
Transmit Shift Register, 38
trellis code

Wei 16-state 4-dimensional, 286
trellis coded modulation, 309
TTC, 61
turbo codes, 309
two’s complement format, 8

V.22bis modem
carrier frequencies, 224

V.22bis modem, 218, 224–225
S1 sequence, 227

V.32 modem, 218
V.32bis modem, 263
V.34 modem, 263
VCO, see voltage controlled oscillator
vectored interrupt controller, 46
VLIW, 6
voltage controlled oscillator, 151, 157

Wei, 286
Wi-Fi, 275
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Widrow, 241
WiMax, 276
window.exe, 27
window functions, 102–104

Hamming, 69, 103
Hanning, 103
Kaiser, 69
rectangular, 102

XEVT, 39
XINT, 39
XRDY, 38
XSR, 38


	Frontmatter
	Preface
	Acknowledgments
	Contents
	1 Overview of the Hardware and Software Tools
	2 Learning to Use the Hardware and Software Tools by Generating a Sine Wave 
	3 Digital Filters
	4 The FFT and Power Spectrum Estimation
	5 Amplitude Modulation
	6 Double-Sideband Suppressed-Carrier Amplitude Modulation and Coherent Detection
	7 Single-Sideband Modulation and Frequency Translation
	8 Frequency Modulation
	9 Pseudo-Random Binary Sequences and Data Scramblers
	10 Introduction to the RS-232C Protocol and a Bit-Error Rate Tester
	11 Digital Data Transmission by Baseband Pulse Amplitude Modulation
	12 Variable Phase Interpolation
	13 Fundamentals of Quadrature Amplitude Modulation
	14 QAM Receiver I – General Description of Complete Receiver Block Diagram and Details of the Symbol Clock Recovery and Other Front-End Subsystems
	15 QAM Receiver II – The Passband Adaptive Equalizer and Carrier Recovery System
	16 Echo Cancellation for Full-Duplex Modems
	17 Multi-Carrier Modulation
	18 Suggestions for Additional Experiments
	Appendix A Generating Gaussian Random Numbers
	Appendix B A TTL/RS-232C Interface for McBSP0
	Appendix C Equipment List for Each Station
	References
	Index



